Sample records for dense local network

  1. Experimental study of thin film sensor networks for wind turbine blade damage detection

    NASA Astrophysics Data System (ADS)

    Downey, A.; Laflamme, S.; Ubertini, F.; Sauder, H.; Sarkar, P.

    2017-02-01

    Damage detection of wind turbine blades is difficult due to their complex geometry and large size, for which large deployment of sensing systems is typically not economical. A solution is to develop and deploy dedicated sensor networks fabricated from inexpensive materials and electronics. The authors have recently developed a novel skin-type strain gauge for measuring strain over very large surfaces. The skin, a type of large-area electronics, is constituted from a network of soft elastomeric capacitors. The sensing system is analogous to a biological skin, where local strain can be monitored over a global area. In this paper, we propose the utilization of a dense network of soft elastomeric capacitors to detect, localize, and quantify damage on wind turbine blades. We also leverage mature off-the-shelf technologies, in particular resistive strain gauges, to augment such dense sensor network with high accuracy data at key locations, therefore constituting a hybrid dense sensor network. The proposed hybrid dense sensor network is installed inside a wind turbine blade model, and tested in a wind tunnel to simulate an operational environment. Results demonstrate the ability of the hybrid dense sensor network to detect, localize, and quantify damage.

  2. Experimental damage detection of wind turbine blade using thin film sensor array

    NASA Astrophysics Data System (ADS)

    Downey, Austin; Laflamme, Simon; Ubertini, Filippo; Sarkar, Partha

    2017-04-01

    Damage detection of wind turbine blades is difficult due to their large sizes and complex geometries. Additionally, economic restraints limit the viability of high-cost monitoring methods. While it is possible to monitor certain global signatures through modal analysis, obtaining useful measurements over a blade's surface using off-the-shelf sensing technologies is difficult and typically not economical. A solution is to deploy dedicated sensor networks fabricated from inexpensive materials and electronics. The authors have recently developed a novel large-area electronic sensor measuring strain over very large surfaces. The sensing system is analogous to a biological skin, where local strain can be monitored over a global area. In this paper, we propose the utilization of a hybrid dense sensor network of soft elastomeric capacitors to detect, localize, and quantify damage, and resistive strain gauges to augment such dense sensor network with high accuracy data at key locations. The proposed hybrid dense sensor network is installed inside a wind turbine blade model and tested in a wind tunnel to simulate an operational environment. Damage in the form of changing boundary conditions is introduced into the monitored section of the blade. Results demonstrate the ability of the hybrid dense sensor network, and associated algorithms, to detect, localize, and quantify damage.

  3. An automated method for finding molecular complexes in large protein interaction networks

    PubMed Central

    Bader, Gary D; Hogue, Christopher WV

    2003-01-01

    Background Recent advances in proteomics technologies such as two-hybrid, phage display and mass spectrometry have enabled us to create a detailed map of biomolecular interaction networks. Initial mapping efforts have already produced a wealth of data. As the size of the interaction set increases, databases and computational methods will be required to store, visualize and analyze the information in order to effectively aid in knowledge discovery. Results This paper describes a novel graph theoretic clustering algorithm, "Molecular Complex Detection" (MCODE), that detects densely connected regions in large protein-protein interaction networks that may represent molecular complexes. The method is based on vertex weighting by local neighborhood density and outward traversal from a locally dense seed protein to isolate the dense regions according to given parameters. The algorithm has the advantage over other graph clustering methods of having a directed mode that allows fine-tuning of clusters of interest without considering the rest of the network and allows examination of cluster interconnectivity, which is relevant for protein networks. Protein interaction and complex information from the yeast Saccharomyces cerevisiae was used for evaluation. Conclusion Dense regions of protein interaction networks can be found, based solely on connectivity data, many of which correspond to known protein complexes. The algorithm is not affected by a known high rate of false positives in data from high-throughput interaction techniques. The program is available from . PMID:12525261

  4. Dense fibrillar collagen is a potent inducer of invadopodia via a specific signaling network

    PubMed Central

    Swatkoski, Stephen; Matsumoto, Kazue; Campbell, Catherine B.; Petrie, Ryan J.; Dimitriadis, Emilios K.; Li, Xin; Mueller, Susette C.; Bugge, Thomas H.; Gucek, Marjan

    2015-01-01

    Cell interactions with the extracellular matrix (ECM) can regulate multiple cellular activities and the matrix itself in dynamic, bidirectional processes. One such process is local proteolytic modification of the ECM. Invadopodia of tumor cells are actin-rich proteolytic protrusions that locally degrade matrix molecules and mediate invasion. We report that a novel high-density fibrillar collagen (HDFC) matrix is a potent inducer of invadopodia, both in carcinoma cell lines and in primary human fibroblasts. In carcinoma cells, HDFC matrix induced formation of invadopodia via a specific integrin signaling pathway that did not require growth factors or even altered gene and protein expression. In contrast, phosphoproteomics identified major changes in a complex phosphosignaling network with kindlin2 serine phosphorylation as a key regulatory element. This kindlin2-dependent signal transduction network was required for efficient induction of invadopodia on dense fibrillar collagen and for local degradation of collagen. This novel phosphosignaling mechanism regulates cell surface invadopodia via kindlin2 for local proteolytic remodeling of the ECM. PMID:25646088

  5. Overlapping communities from dense disjoint and high total degree clusters

    NASA Astrophysics Data System (ADS)

    Zhang, Hongli; Gao, Yang; Zhang, Yue

    2018-04-01

    Community plays an important role in the field of sociology, biology and especially in domains of computer science, where systems are often represented as networks. And community detection is of great importance in the domains. A community is a dense subgraph of the whole graph with more links between its members than between its members to the outside nodes, and nodes in the same community probably share common properties or play similar roles in the graph. Communities overlap when nodes in a graph belong to multiple communities. A vast variety of overlapping community detection methods have been proposed in the literature, and the local expansion method is one of the most successful techniques dealing with large networks. The paper presents a density-based seeding method, in which dense disjoint local clusters are searched and selected as seeds. The proposed method selects a seed by the total degree and density of local clusters utilizing merely local structures of the network. Furthermore, this paper proposes a novel community refining phase via minimizing the conductance of each community, through which the quality of identified communities is largely improved in linear time. Experimental results in synthetic networks show that the proposed seeding method outperforms other seeding methods in the state of the art and the proposed refining method largely enhances the quality of the identified communities. Experimental results in real graphs with ground-truth communities show that the proposed approach outperforms other state of the art overlapping community detection algorithms, in particular, it is more than two orders of magnitude faster than the existing global algorithms with higher quality, and it obtains much more accurate community structure than the current local algorithms without any priori information.

  6. From sparse to dense and from assortative to disassortative in online social networks

    PubMed Central

    Li, Menghui; Guan, Shuguang; Wu, Chensheng; Gong, Xiaofeng; Li, Kun; Wu, Jinshan; Di, Zengru; Lai, Choy-Heng

    2014-01-01

    Inspired by the analysis of several empirical online social networks, we propose a simple reaction-diffusion-like coevolving model, in which individuals are activated to create links based on their states, influenced by local dynamics and their own intention. It is shown that the model can reproduce the remarkable properties observed in empirical online social networks; in particular, the assortative coefficients are neutral or negative, and the power law exponents γ are smaller than 2. Moreover, we demonstrate that, under appropriate conditions, the model network naturally makes transition(s) from assortative to disassortative, and from sparse to dense in their characteristics. The model is useful in understanding the formation and evolution of online social networks. PMID:24798703

  7. From sparse to dense and from assortative to disassortative in online social networks.

    PubMed

    Li, Menghui; Guan, Shuguang; Wu, Chensheng; Gong, Xiaofeng; Li, Kun; Wu, Jinshan; Di, Zengru; Lai, Choy-Heng

    2014-05-06

    Inspired by the analysis of several empirical online social networks, we propose a simple reaction-diffusion-like coevolving model, in which individuals are activated to create links based on their states, influenced by local dynamics and their own intention. It is shown that the model can reproduce the remarkable properties observed in empirical online social networks; in particular, the assortative coefficients are neutral or negative, and the power law exponents γ are smaller than 2. Moreover, we demonstrate that, under appropriate conditions, the model network naturally makes transition(s) from assortative to disassortative, and from sparse to dense in their characteristics. The model is useful in understanding the formation and evolution of online social networks.

  8. Regional and local variations in atmospheric aerosols using ground-based sun photometry during Distributed Regional Aerosol Gridded Observation Networks (DRAGON) in 2012

    NASA Astrophysics Data System (ADS)

    Sano, Itaru; Mukai, Sonoyo; Nakata, Makiko; Holben, Brent N.

    2016-11-01

    Aerosol mass concentrations are affected by local emissions as well as long-range transboundary (LRT) aerosols. This work investigates regional and local variations of aerosols based on Distributed Regional Aerosol Gridded Observation Networks (DRAGON). We constructed DRAGON-Japan and DRAGON-Osaka in spring of 2012. The former network covers almost all of Japan in order to obtain aerosol information in regional scale over Japanese islands. It was determined from the DRAGON-Japan campaign that the values of aerosol optical thickness (AOT) decrease from west to east during an aerosol episode. In fact, the highest AOT was recorded at Fukue Island at the western end of the network, and the value was much higher than that of urban areas. The latter network (DRAGON-Osaka) was set as a dense instrument network in the megalopolis of Osaka, with a population of 12 million, to better understand local aerosol dynamics in urban areas. AOT was further measured with a mobile sun photometer attached to a car. This transect information showed that aerosol concentrations rapidly changed in time and space together when most of the Osaka area was covered with moderate LRT aerosols. The combined use of the dense instrument network (DRAGON-Osaka) and high-frequency measurements provides the motion of aerosol advection, which coincides with the wind vector around the layer between 700 and 850 hPa as provided by the reanalysis data of the National Centers for Environmental Prediction (NCEP).

  9. Regional and Local Variations in Atmospheric Aerosols Using Ground-Based Sun Photometry During Distributed Regional Aerosol Gridded Observation Networks (DRAGON) in 2012

    NASA Technical Reports Server (NTRS)

    Sano, Itaru; Mukai, Sonoyo; Nakata, Makiko; Holben, Brent N.

    2016-01-01

    Aerosol mass concentrations are affected by local emissions as well as long-range transboundary (LRT) aerosols. This work investigates regional and local variations of aerosols based on Distributed Regional Aerosol Gridded Observation Networks (DRAGON).We constructed DRAGON-Japan and DRAGON-Osaka in spring of 2012. The former network covers almost all of Japan in order to obtain aerosol information in regional scale over Japanese islands. It was determined from the DRAGON-Japan campaign that the values of aerosol optical thickness (AOT) decrease from west to east during an aerosol episode. In fact, the highest AOT was recorded at Fukue Island at the western end of the network, and the value was much higher than that of urban areas. The latter network (DRAGON-Osaka) was set as a dense instrument network in the megalopolis of Osaka, with a population of 12 million, to better understand local aerosol dynamics in urban areas. AOT was further measured with a mobile sun photometer attached to a car. This transect information showed that aerosol concentrations rapidly changed in time and space together when most of the Osaka area was covered with moderate LRT aerosols. The combined use of the dense instrument network (DRAGON-Osaka) and high-frequency measurements provides the motion of aerosol advection, which coincides with the wind vector around the layer between 700 and 850 hPa as provided by the reanalysis data of the National Centers for Environmental Prediction (NCEP).

  10. Inequality measures perform differently in global and local assessments: An exploratory computational experiment

    NASA Astrophysics Data System (ADS)

    Chiang, Yen-Sheng

    2015-11-01

    Inequality measures are widely used in both the academia and public media to help us understand how incomes and wealth are distributed. They can be used to assess the distribution of a whole society-global inequality-as well as inequality of actors' referent networks-local inequality. How different is local inequality from global inequality? Formalizing the structure of reference groups as a network, the paper conducted a computational experiment to see how the structure of complex networks influences the difference between global and local inequality assessed by a selection of inequality measures. It was found that local inequality tends to be higher than global inequality when population size is large; network is dense and heterophilously assorted, and income distribution is less dispersed. The implications of the simulation findings are discussed.

  11. Reconstruction of in-plane strain maps using hybrid dense sensor network composed of sensing skin

    NASA Astrophysics Data System (ADS)

    Downey, Austin; Laflamme, Simon; Ubertini, Filippo

    2016-12-01

    The authors have recently developed a soft-elastomeric capacitive (SEC)-based thin film sensor for monitoring strain on mesosurfaces. Arranged in a network configuration, the sensing system is analogous to a biological skin, where local strain can be monitored over a global area. Under plane stress conditions, the sensor output contains the additive measurement of the two principal strain components over the monitored surface. In applications where the evaluation of strain maps is useful, in structural health monitoring for instance, such signal must be decomposed into linear strain components along orthogonal directions. Previous work has led to an algorithm that enabled such decomposition by leveraging a dense sensor network configuration with the addition of assumed boundary conditions. Here, we significantly improve the algorithm’s accuracy by leveraging mature off-the-shelf solutions to create a hybrid dense sensor network (HDSN) to improve on the boundary condition assumptions. The system’s boundary conditions are enforced using unidirectional RSGs and assumed virtual sensors. Results from an extensive experimental investigation demonstrate the good performance of the proposed algorithm and its robustness with respect to sensors’ layout. Overall, the proposed algorithm is seen to effectively leverage the advantages of a hybrid dense network for application of the thin film sensor to reconstruct surface strain fields over large surfaces.

  12. A range-based predictive localization algorithm for WSID networks

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Chen, Junjie; Li, Gang

    2017-11-01

    Most studies on localization algorithms are conducted on the sensor networks with densely distributed nodes. However, the non-localizable problems are prone to occur in the network with sparsely distributed sensor nodes. To solve this problem, a range-based predictive localization algorithm (RPLA) is proposed in this paper for the wireless sensor networks syncretizing the RFID (WSID) networks. The Gaussian mixture model is established to predict the trajectory of a mobile target. Then, the received signal strength indication is used to reduce the residence area of the target location based on the approximate point-in-triangulation test algorithm. In addition, collaborative localization schemes are introduced to locate the target in the non-localizable situations. Simulation results verify that the RPLA achieves accurate localization for the network with sparsely distributed sensor nodes. The localization accuracy of the RPLA is 48.7% higher than that of the APIT algorithm, 16.8% higher than that of the single Gaussian model-based algorithm and 10.5% higher than that of the Kalman filtering-based algorithm.

  13. Measuring distance through dense weighted networks: The case of hospital-associated pathogens

    PubMed Central

    Smieszek, Timo; Henderson, Katherine L.; Johnson, Alan P.

    2017-01-01

    Hospital networks, formed by patients visiting multiple hospitals, affect the spread of hospital-associated infections, resulting in differences in risks for hospitals depending on their network position. These networks are increasingly used to inform strategies to prevent and control the spread of hospital-associated pathogens. However, many studies only consider patients that are received directly from the initial hospital, without considering the effect of indirect trajectories through the network. We determine the optimal way to measure the distance between hospitals within the network, by reconstructing the English hospital network based on shared patients in 2014–2015, and simulating the spread of a hospital-associated pathogen between hospitals, taking into consideration that each intermediate hospital conveys a delay in the further spread of the pathogen. While the risk of transferring a hospital-associated pathogen between directly neighbouring hospitals is a direct reflection of the number of shared patients, the distance between two hospitals far-away in the network is determined largely by the number of intermediate hospitals in the network. Because the network is dense, most long distance transmission chains in fact involve only few intermediate steps, spreading along the many weak links. The dense connectivity of hospital networks, together with a strong regional structure, causes hospital-associated pathogens to spread from the initial outbreak in a two-step process: first, the directly surrounding hospitals are affected through the strong connections, second all other hospitals receive introductions through the multitude of weaker links. Although the strong connections matter for local spread, weak links in the network can offer ideal routes for hospital-associated pathogens to travel further faster. This hold important implications for infection prevention and control efforts: if a local outbreak is not controlled in time, colonised patients will appear in other regions, irrespective of the distance to the initial outbreak, making import screening ever more difficult. PMID:28771581

  14. Joint Inversion of Earthquake Source Parameters with local and teleseismic body waves

    NASA Astrophysics Data System (ADS)

    Chen, W.; Ni, S.; Wang, Z.

    2011-12-01

    In the classical source parameter inversion algorithm of CAP (Cut and Paste method, by Zhao and Helmberger), waveform data at near distances (typically less than 500km) are partitioned into Pnl and surface waves to account for uncertainties in the crustal models and different amplitude weight of body and surface waves. The classical CAP algorithms have proven effective for resolving source parameters (focal mechanisms, depth and moment) for earthquakes well recorded on relatively dense seismic network. However for regions covered with sparse stations, it is challenging to achieve precise source parameters . In this case, a moderate earthquake of ~M6 is usually recorded on only one or two local stations with epicentral distances less than 500 km. Fortunately, an earthquake of ~M6 can be well recorded on global seismic networks. Since the ray paths for teleseismic and local body waves sample different portions of the focal sphere, combination of teleseismic and local body wave data helps constrain source parameters better. Here we present a new CAP mothod (CAPjoint), which emploits both teleseismic body waveforms (P and SH waves) and local waveforms (Pnl, Rayleigh and Love waves) to determine source parameters. For an earthquake in Nevada that is well recorded with dense local network (USArray stations), we compare the results from CAPjoint with those from the traditional CAP method involving only of local waveforms , and explore the efficiency with bootstraping statistics to prove the results derived by CAPjoint are stable and reliable. Even with one local station included in joint inversion, accuracy of source parameters such as moment and strike can be much better improved.

  15. Is the seismicity swarm at long-dormant Jailolo volcano (Indonesia) a signature of a magmatic unrest?

    NASA Astrophysics Data System (ADS)

    Passarelli, Luigi; Cesca, Simone; Heryandoko, Nova; Lopez Comino, Jose Angel; Strollo, Angelo; Rivalta, Eleonora; Rohadi, Supryianto; Dahm, Torsten; Milkereit, Claus

    2017-04-01

    Magmatic unrest is challenging to detect when monitoring is sparse and there is little knowledge about the volcano. This is especially true for long-dormant volcanoes. Geophysical observables like seismicity, deformation, temperature and gas emission are reliable indicators of ongoing volcanic unrest caused by magma movements. Jailolo volcano is a Holocene volcano belonging to the Halmahera volcanic arc in the Northern Moluccas Islands, Indonesia. Global databases of volcanic eruptions have no records of its eruptive activity and no geological investigation has been carried out to better assess the past eruptive activity at Jailolo. It probably sits on the northern rim of an older caldera which now forms the Jailolo bay. Hydrothermal activity is intense with several hot-springs and steaming ground spots around the Jailolo volcano. In November 2015 an energetic seismic swarm started and lasted until late February 2016 with four earthquakes with M>5 recorded by global seismic networks. At the time of the swarm no close geophysical monitoring network was available around Jailolo volcano except for a broadband station at 30km distant. We installed last summer a local dense multi-parametric monitoring network with 36 seismic stations, 6 GPS and 2 gas monitoring stations around Jailolo volcano. We revised the focal mechanisms of the larger events and used single station location methods in order to exploit the little information available at the time of the swarm activity. We also combined the old sparse data with our local dense network. Migration of hypocenters and inversion of the local stress field derived by focal mechanisms analysis indicate that the Nov-Feb seismicity swarm may be related to a magmatic intrusion at shallow depth. Data from our dense network confirms ongoing micro-seismic activity underneath Jailolo volcano but there are no indications of new magma intrusion. Our findings indicate that magmatic unrest occurred at Jailolo volcano and call for a revision of the volcanic hazard.

  16. Seismicity and Crustal Anisotropy Beneath the Western Segment of the North Anatolian Fault: Results from a Dense Seismic Array

    NASA Astrophysics Data System (ADS)

    Turkelli, N.; Teoman, U.; Altuncu Poyraz, S.; Cambaz, D.; Mutlu, A. K.; Kahraman, M.; Houseman, G. A.; Rost, S.; Thompson, D. A.; Cornwell, D. G.; Utkucu, M.; Gülen, L.

    2013-12-01

    The North Anatolian Fault (NAF) is one of the major strike slip fault systems on Earth comparable to San Andreas Fault in some ways. Devastating earthquakes have occurred along this system causing major damage and casualties. In order to comprehensively investigate the shallow and deep crustal structure beneath the western segment of NAF, a temporary dense seismic network for North Anatolia (DANA) consisting of 73 broadband sensors was deployed in early May 2012 surrounding a rectangular grid of by 70 km and a nominal station spacing of 7 km with the aim of further enhancing the detection capability of this dense seismic array. This joint project involves researchers from University of Leeds, UK, Bogazici University Kandilli Observatory and Earthquake Research Institute (KOERI), and University of Sakarya and primarily focuses on upper crustal studies such as earthquake locations (especially micro-seismic activity), receiver functions, moment tensor inversions, shear wave splitting, and ambient noise correlations. To begin with, we obtained the hypocenter locations of local earthquakes that occured within the DANA network. The dense 2-D grid geometry considerably enhanced the earthquake detection capability which allowed us to precisely locate events with local magnitudes (Ml) less than 1.0. Accurate earthquake locations will eventually lead to high resolution images of the upper crustal structure beneath the northern and southern branches of NAF in Sakarya region. In order to put additional constraints on the active tectonics of the western part of NAF, we also determined fault plane solutions using Regional Moment Tensor Inversion (RMT) and P wave first motion methods. For the analysis of high quality fault plane solutions, data from KOERI and the DANA project were merged. Furthermore, with the aim of providing insights on crustal anisotropy, shear wave splitting parameters such as lag time and fast polarization direction were obtained for local events recorded within the seismic network with magnitudes larger than 2.5.

  17. Livermore Big Artificial Neural Network Toolkit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Essen, Brian Van; Jacobs, Sam; Kim, Hyojin

    2016-07-01

    LBANN is a toolkit that is designed to train artificial neural networks efficiently on high performance computing architectures. It is optimized to take advantages of key High Performance Computing features to accelerate neural network training. Specifically it is optimized for low-latency, high bandwidth interconnects, node-local NVRAM, node-local GPU accelerators, and high bandwidth parallel file systems. It is built on top of the open source Elemental distributed-memory dense and spars-direct linear algebra and optimization library that is released under the BSD license. The algorithms contained within LBANN are drawn from the academic literature and implemented to work within a distributed-memory framework.

  18. A bandwidth-efficient service for local information dissemination in sparse to dense roadways.

    PubMed

    Garcia-Lozano, Estrella; Campo, Celeste; Garcia-Rubio, Carlos; Cortes-Martin, Alberto; Rodriguez-Carrion, Alicia; Noriega-Vivas, Patricia

    2013-07-05

    Thanks to the research on Vehicular Ad Hoc Networks (VANETs), we will be able to deploy applications on roadways that will contribute to energy efficiency through a better planning of long trips. With this goal in mind, we have designed a gas/charging station advertising system, which takes advantage of the broadcast nature of the network. We have found that reducing the number of total sent packets is important, as it allows for a better use of the available bandwidth. We have designed improvements for a distance-based flooding scheme, so that it can support the advertising application with good results in sparse to dense roadway scenarios.

  19. A Bandwidth-Efficient Service for Local Information Dissemination in Sparse to Dense Roadways

    PubMed Central

    Garcia-Lozano, Estrella; Campo, Celeste; Garcia-Rubio, Carlos; Cortes-Martin, Alberto; Rodriguez-Carrion, Alicia; Noriega-Vivas, Patricia

    2013-01-01

    Thanks to the research on Vehicular Ad Hoc Networks (VANETs), we will be able to deploy applications on roadways that will contribute to energy efficiency through a better planning of long trips. With this goal in mind, we have designed a gas/charging station advertising system, which takes advantage of the broadcast nature of the network. We have found that reducing the number of total sent packets is important, as it allows for a better use of the available bandwidth. We have designed improvements for a distance-based flooding scheme, so that it can support the advertising application with good results in sparse to dense roadway scenarios. PMID:23881130

  20. Characterization of Localized Filament Corrosion Products at the Anodic Head on a Model Mg-Zn-Zr Alloy Surface

    DOE PAGES

    Rossouw, David; Fu, Dong; Leonard, Donovan N.; ...

    2017-02-15

    In this study, localized filament corrosion products at the anodic head on a model Mg-1%Zn-0.4%Zr alloy surface were characterized by electron microscopy techniques of site-specific lamella prepared by focused ion beam milling. It is revealed that the anodic head propagates underneath a largely intact thin and dense MgO surface film and comprises dense aggregates of nano-crystalline MgO within a nano-porous Mg(OH) 2 network. In conclusion, the findings contribute new supportive direct imaging insight into the source of the enhanced H 2 evolution that accompanies anodic dissolution of Mg and its alloys.

  1. Characterization of Localized Filament Corrosion Products at the Anodic Head on a Model Mg-Zn-Zr Alloy Surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossouw, David; Fu, Dong; Leonard, Donovan N.

    In this study, localized filament corrosion products at the anodic head on a model Mg-1%Zn-0.4%Zr alloy surface were characterized by electron microscopy techniques of site-specific lamella prepared by focused ion beam milling. It is revealed that the anodic head propagates underneath a largely intact thin and dense MgO surface film and comprises dense aggregates of nano-crystalline MgO within a nano-porous Mg(OH) 2 network. In conclusion, the findings contribute new supportive direct imaging insight into the source of the enhanced H 2 evolution that accompanies anodic dissolution of Mg and its alloys.

  2. Global Mapping of the Yeast Genetic Interaction Network

    NASA Astrophysics Data System (ADS)

    Tong, Amy Hin Yan; Lesage, Guillaume; Bader, Gary D.; Ding, Huiming; Xu, Hong; Xin, Xiaofeng; Young, James; Berriz, Gabriel F.; Brost, Renee L.; Chang, Michael; Chen, YiQun; Cheng, Xin; Chua, Gordon; Friesen, Helena; Goldberg, Debra S.; Haynes, Jennifer; Humphries, Christine; He, Grace; Hussein, Shamiza; Ke, Lizhu; Krogan, Nevan; Li, Zhijian; Levinson, Joshua N.; Lu, Hong; Ménard, Patrice; Munyana, Christella; Parsons, Ainslie B.; Ryan, Owen; Tonikian, Raffi; Roberts, Tania; Sdicu, Anne-Marie; Shapiro, Jesse; Sheikh, Bilal; Suter, Bernhard; Wong, Sharyl L.; Zhang, Lan V.; Zhu, Hongwei; Burd, Christopher G.; Munro, Sean; Sander, Chris; Rine, Jasper; Greenblatt, Jack; Peter, Matthias; Bretscher, Anthony; Bell, Graham; Roth, Frederick P.; Brown, Grant W.; Andrews, Brenda; Bussey, Howard; Boone, Charles

    2004-02-01

    A genetic interaction network containing ~1000 genes and ~4000 interactions was mapped by crossing mutations in 132 different query genes into a set of ~4700 viable gene yeast deletion mutants and scoring the double mutant progeny for fitness defects. Network connectivity was predictive of function because interactions often occurred among functionally related genes, and similar patterns of interactions tended to identify components of the same pathway. The genetic network exhibited dense local neighborhoods; therefore, the position of a gene on a partially mapped network is predictive of other genetic interactions. Because digenic interactions are common in yeast, similar networks may underlie the complex genetics associated with inherited phenotypes in other organisms.

  3. A dense Black Carbon network in the region of Paris, France: Implementation, objectives, and first results

    NASA Astrophysics Data System (ADS)

    Sciare, Jean; Petit, Jean-Eudes; Sarda-Esteve, Roland; Bonnaire, Nicolas; Gros, Valérie; Pernot, Pierre; Ghersi, Véronique; Ampe, Christophe; Songeur, Charlotte; Brugge, Benjamin; Debert, Christophe; Favez, Olivier; Le Priol, Tiphaine; Mocnik, Grisa

    2013-04-01

    Motivations. Road traffic and domestic wood burning emissions are two major contributors of particulate pollution in our cities. These two sources emit ultra-fine, soot containing, particles in the atmosphere, affecting health adversely, increasing morbidity and mortality from cardiovascular and respiratory conditions and casing lung cancer. A better characterization of soot containing aerosol sources in our major cities provides useful information for policy makers for assessment, implementation and monitoring of strategies to tackle air pollution issues affecting human health with additional benefits for climate change. Objectives. This study on local sources of primary Particulate Matter (PM) in the megacity of Paris is a follow-up of several programs (incl. EU-FP7-MEGAPOLI) that have shown that fine PM - in the Paris background atmosphere - is mostly secondary and imported. A network of 14 stations of Black Carbon has been implemented in the larger region of Paris to provide highly spatially resolved long term survey of local combustion aerosols. To our best knowledge, this is the first time that such densely BC network is operating over a large urban area, providing novel information on the spatial/temporal distribution of combustion aerosols within a post-industrialized megacity. Experimental. As part of the PRIMEQUAL "PREQUALIF" project, a dense Black Carbon network (of 14 stations) has been installed over the city of Paris beginning of 2012 in order to produce spatially resolved Equivalent Black Carbon (EBC) concentration maps with high time resolution through modeling and data assimilation. This network is composed of various real-time instruments (Multi-Angle Absorption Photometer, MAAP by THERMO; Multi-wavelength Aethalometers by MAGEE Scientific) implemented in contrasted sites (rural background, urban background, traffic) complementing the regulated measurements (PM, NOx) in the local air quality network AIRPARIF (http://www.airparif.asso.fr/). Contribution of imported versus local EBC is calculated using the "Lenschow" methodology (Lenschow et al., 2001), whereas the influence of domestic wood burning EBC (vs traffic) over the region of Paris is evaluated using the Aethalometer model developed by Sandradewi et al. (2008). Results and discussion. First results of this BC network are presented here including the temporal variations of EBC from wood burning (domestic heating) and fossil fuel (traffic) for the various sites (1-year observation for rural background and traffic sites; 4-year observations for urban background). The local versus imported contributions of EBC are also presented and discussed for these 2 sources. References. Lenschow, P., et al., Some ideas about the sources of PM10, Atmospheric Environment 35 Supplement No. 1 (2001) S23-S33 Sandradewi, J., et al., Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter, Environ. Sci. Technol., 42, 3316-3323, 2008

  4. Techno-Economic Analysis of FiWi Access Networks Based on 802.11ac WLAN and NG-PON2 Networks

    NASA Astrophysics Data System (ADS)

    Breskovic, Damir; Begusic, Dinko

    2017-05-01

    In this article, techno-economic analysis of a fiber-wireless access network is presented. With high bandwidth capacity of the gigabit passive optical network and with cost-effectiveness of very high throughput 802.11ac wireless local area networks that enable user mobility in the wireless segment, fiber-wireless access networks can be considered as an alternative to the fiber-to-the-home architecture for next generation access networks. Analysis based on the proposed scenario here, shows that a fiber-wireless access network is a more cost-effective solution in densely populated areas, but with some introduced improvements, even other geotypes can be considered as a commercially-viable solution.

  5. Estimating seismic site response in Christchurch City (New Zealand) from dense low-cost aftershock arrays

    USGS Publications Warehouse

    Kaiser, Anna E.; Benites, Rafael A.; Chung, Angela I.; Haines, A. John; Cochran, Elizabeth S.; Fry, Bill

    2011-01-01

    The Mw 7.1 September 2010 Darfield earthquake, New Zealand, produced widespread damage and liquefaction ~40 km from the epicentre in Christchurch city. It was followed by the even more destructive Mw 6.2 February 2011 Christchurch aftershock directly beneath the city’s southern suburbs. Seismic data recorded during the two large events suggest that site effects contributed to the variations in ground motion observed throughout Christchurch city. We use densely-spaced aftershock recordings of the Darfield earthquake to investigate variations in local seismic site response within the Christchurch urban area. Following the Darfield main shock we deployed a temporary array of ~180 low-cost 14-bit MEMS accelerometers linked to the global Quake-Catcher Network (QCN). These instruments provided dense station coverage (spacing ~2 km) to complement existing New Zealand national network strong motion stations (GeoNet) within Christchurch city. Well-constrained standard spectral ratios were derived for GeoNet stations using a reference station on Miocene basalt rock in the south of the city. For noisier QCN stations, the method was adapted to find a maximum likelihood estimate of spectral ratio amplitude taking into account the variance of noise at the respective stations. Spectral ratios for QCN stations are similar to nearby GeoNet stations when the maximum likelihood method is used. Our study suggests dense low-cost accelerometer aftershock arrays can provide useful information on local-scale ground motion properties for use in microzonation. Preliminary results indicate higher amplifications north of the city centre and strong high-frequency amplification in the small, shallower basin of Heathcote Valley.

  6. A network model framework for prioritizing wetland conservation in the Great Plains

    USGS Publications Warehouse

    Albanese, Gene; Haukos, David A.

    2017-01-01

    ContextPlaya wetlands are the primary habitat for numerous wetland-dependent species in the Southern Great Plains of North America. Plant and wildlife populations that inhabit these wetlands are reciprocally linked through the dispersal of individuals, propagules and ultimately genes among local populations.ObjectiveTo develop and implement a framework using network models for conceptualizing, representing and analyzing potential biological flows among 48,981 spatially discrete playa wetlands in the Southern Great Plains.MethodsWe examined changes in connectivity patterns and assessed the relative importance of wetlands to maintaining these patterns by targeting wetlands for removal based on network centrality metrics weighted by estimates of habitat quality and probability of inundation.ResultsWe identified several distinct, broad-scale sub networks and phase transitions among playa wetlands in the Southern Plains. In particular, for organisms that can disperse >2 km a dense and expansive wetland sub network emerges in the Southern High Plains. This network was characterized by localized, densely connected wetland clusters at link distances (h) >2 km but <5 km and was most sensitive to changes in wetland availability (p) and configuration when h = 4 km, and p = 0.2–0.4. It transitioned to a single, large connected wetland system at broader spatial scales even when the proportion of inundated wetland was relatively low (p = 0.2).ConclusionsOur findings suggest that redundancy in the potential for broad and fine-scale movements insulates this system from damage and facilitates system-wide connectivity among populations with different dispersal capacities.

  7. Bridge damage detection using spatiotemporal patterns extracted from dense sensor network

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Gong, Yongqiang; Laflamme, Simon; Phares, Brent; Sarkar, Soumik

    2017-01-01

    The alarmingly degrading state of transportation infrastructures combined with their key societal and economic importance calls for automatic condition assessment methods to facilitate smart management of maintenance and repairs. With the advent of ubiquitous sensing and communication capabilities, scalable data-driven approaches is of great interest, as it can utilize large volume of streaming data without requiring detailed physical models that can be inaccurate and computationally expensive to run. Properly designed, a data-driven methodology could enable fast and automatic evaluation of infrastructures, discovery of causal dependencies among various sub-system dynamic responses, and decision making with uncertainties and lack of labeled data. In this work, a spatiotemporal pattern network (STPN) strategy built on symbolic dynamic filtering (SDF) is proposed to explore spatiotemporal behaviors in a bridge network. Data from strain gauges installed on two bridges are generated using finite element simulation for three types of sensor networks from a density perspective (dense, nominal, sparse). Causal relationships among spatially distributed strain data streams are extracted and analyzed for vehicle identification and detection, and for localization of structural degradation in bridges. Multiple case studies show significant capabilities of the proposed approach in: (i) capturing spatiotemporal features to discover causality between bridges (geographically close), (ii) robustness to noise in data for feature extraction, (iii) detecting and localizing damage via comparison of bridge responses to similar vehicle loads, and (iv) implementing real-time health monitoring and decision making work flow for bridge networks. Also, the results demonstrate increased sensitivity in detecting damages and higher reliability in quantifying the damage level with increase in sensor network density.

  8. Local Crystalline Structure in an Amorphous Protein Dense Phase

    PubMed Central

    Greene, Daniel G.; Modla, Shannon; Wagner, Norman J.; Sandler, Stanley I.; Lenhoff, Abraham M.

    2015-01-01

    Proteins exhibit a variety of dense phases ranging from gels, aggregates, and precipitates to crystalline phases and dense liquids. Although the structure of the crystalline phase is known in atomistic detail, little attention has been paid to noncrystalline protein dense phases, and in many cases the structures of these phases are assumed to be fully amorphous. In this work, we used small-angle neutron scattering, electron microscopy, and electron tomography to measure the structure of ovalbumin precipitate particles salted out with ammonium sulfate. We found that the ovalbumin phase-separates into core-shell particles with a core radius of ∼2 μm and shell thickness of ∼0.5 μm. Within this shell region, nanostructures comprised of crystallites of ovalbumin self-assemble into a well-defined bicontinuous network with branches ∼12 nm thick. These results demonstrate that the protein gel is comprised in part of nanocrystalline protein. PMID:26488663

  9. Local communities obstruct global consensus: Naming game on multi-local-world networks

    NASA Astrophysics Data System (ADS)

    Lou, Yang; Chen, Guanrong; Fan, Zhengping; Xiang, Luna

    2018-02-01

    Community structure is essential for social communications, where individuals belonging to the same community are much more actively interacting and communicating with each other than those in different communities within the human society. Naming game, on the other hand, is a social communication model that simulates the process of learning a name of an object within a community of humans, where the individuals can generally reach global consensus asymptotically through iterative pair-wise conversations. The underlying network indicates the relationships among the individuals. In this paper, three typical topologies, namely random-graph, small-world and scale-free networks, are employed, which are embedded with the multi-local-world community structure, to study the naming game. Simulations show that (1) the convergence process to global consensus is getting slower as the community structure becomes more prominent, and eventually might fail; (2) if the inter-community connections are sufficiently dense, neither the number nor the size of the communities affects the convergence process; and (3) for different topologies with the same (or similar) average node-degree, local clustering of individuals obstruct or prohibit global consensus to take place. The results reveal the role of local communities in a global naming game in social network studies.

  10. Dense module enumeration in biological networks

    NASA Astrophysics Data System (ADS)

    Tsuda, Koji; Georgii, Elisabeth

    2009-12-01

    Analysis of large networks is a central topic in various research fields including biology, sociology, and web mining. Detection of dense modules (a.k.a. clusters) is an important step to analyze the networks. Though numerous methods have been proposed to this aim, they often lack mathematical rigorousness. Namely, there is no guarantee that all dense modules are detected. Here, we present a novel reverse-search-based method for enumerating all dense modules. Furthermore, constraints from additional data sources such as gene expression profiles or customer profiles can be integrated, so that we can systematically detect dense modules with interesting profiles. We report successful applications in human protein interaction network analyses.

  11. The Community Seismic Network: Enabling Observations Through Citizen Science Participation

    NASA Astrophysics Data System (ADS)

    Kohler, M. D.; Clayton, R. W.; Heaton, T. H.; Bunn, J.; Guy, R.; Massari, A.; Chandy, K. M.

    2017-12-01

    The Community Seismic Network is a dense accelerometer array deployed in the greater Los Angeles area and represents the future of densely instrumented urban cities where localized vibration measurements are collected continuously throughout the free-field and built environment. The hardware takes advantage of developments in the semiconductor industry in the form of inexpensive MEMS accelerometers that are each coupled with a single board computer. The data processing and archival architecture borrows from developments in cloud computing and network connectedness. The ability to deploy densely in the free field and in upper stories of mid/high-rise buildings is enabled by community hosts for sensor locations. To this end, CSN has partnered with the Los Angeles Unified School District (LAUSD), the NASA-Jet Propulsion Laboratory (JPL), and commercial and civic building owners to host sensors. At these sites, site amplification estimates from RMS noise measurements illustrate the lateral variation in amplification over length scales of 100 m or less, that correlate with gradients in the local geology such as sedimentary basins that abut crystalline rock foothills. This is complemented by high-resolution, shallow seismic velocity models obtained using an H/V method. In addition, noise statistics are used to determine the reliability of sites for ShakeMap and earthquake early warning data. The LAUSD and JPL deployments are examples of how situational awareness and centralized warning products such as ShakeMap and ShakeCast are enabled by citizen science participation. Several buildings have been instrumented with at least one triaxial accelerometer per floor, providing measurements for real-time structural health monitoring through local, customized displays. For real-time and post-event evaluation, the free-field and built environment CSN data and products illustrate the feasibility of order-of-magnitude higher spatial resolution mapping compared to what is currently possible with traditional, regional seismic networks. The JPL experiment in particular represents a miniature prototype for city-wide earthquake monitoring that combines free-field measurements for ground shaking intensities, with mid-rise building response through advanced fragility curve computations.

  12. From Discrete Breathers to Many Body Localization and Flatbands

    NASA Astrophysics Data System (ADS)

    Flach, Sergej

    Discrete breathers (DB) and intrinsic localized modes (ILM) are synonymic dynamical states on nonlinear lattices - periodic in time and localized in space, and widely observed in many applications. I will discuss the connections between DBs and many-body localization (MBL) and the properties of DBs on flatband networks. A dense quantized gas of strongly excited DBs can lead to a MBL phase in a variety of different lattice models. Its classical counterpart corresponds to a 'nonergodic metal' in the MBL language, or to a nonGibbsean selftrapped state in the language of nonlinear dynamics. Flatband networks are lattices with small amplitude waves exhibiting macroscopic degeneracy in their band structure due to local symmetries, destructive interference, compact localized eigenstates and horizontal flat bands. DBs can preserve the compactness of localization in the presence of nonlinearity with properly tuned internal phase relationships, making them promising tools for control of the phase coherence of waves. Also at New Zealand Institute of Advanced Study, Massey University, Auckland, New Zealand.

  13. Monitoring of persistent organic pollutants in Africa. Part 2: design of a network to monitor the continental and intercontinental background.

    PubMed

    Lammel, G; Dobrovolný, P; Dvorská, A; Chromá, K; Brázdil, R; Holoubek, I; Hosek, J

    2009-11-01

    A network for the study of long-term trends of the continental background in Africa and the intercontinental background of persistent organic pollutants as resulting from long-range transport of contaminants from European, South Asian, and other potential source regions, as well as by watching supposedly pristine regions, i.e. the Southern Ocean and Antarctica is designed. The results of a pilot phase sampling programme in 2008 and meteorological and climatological information from the period 1961-2007 was used to apply objective criteria for the selection of stations for the monitoring network: out the original 26 stations six have been rejected because of suggested strong local sources of POPs and three others because of local meteorological effects, which may prevent part of the time long-range transported air to reach the sampling site. Representativeness of the meteorological patterns during the pilot phase with respect to climatology was assessed by comparison of the more local airflow situation as given by climatological vs. observed wind roses and by comparison of backward trajectories with the climatological wind (NCEP/NCAR re-analyses). With minor exceptions advection to nine inspected stations was typical for present-day climate during the pilot phase, 2008. Six to nine stations would cover satisfyingly large and densely populated regions of North-eastern, West and East Africa and its neighbouring seas, the Mediterranean, Northern and Equatorial Atlantic Ocean, the Western Indian Ocean and the Southern Ocean. Among the more densely populated areas Southern Cameroon, parts of the Abessinian plateau and most of the Great Lakes area would not be covered. The potential of the network is not hampered by on-going long-term changes of the advection to the selected stations, as these do hardly affect the coverage of target areas.

  14. Analysing Local Sparseness in the Macaque Brain Network

    PubMed Central

    Singh, Raghavendra; Nagar, Seema; Nanavati, Amit A.

    2015-01-01

    Understanding the network structure of long distance pathways in the brain is a necessary step towards developing an insight into the brain’s function, organization and evolution. Dense global subnetworks of these pathways have often been studied, primarily due to their functional implications. Instead we study sparse local subnetworks of the pathways to establish the role of a brain area in enabling shortest path communication between its non-adjacent topological neighbours. We propose a novel metric to measure the topological communication load on a vertex due to its immediate neighbourhood, and show that in terms of distribution of this local communication load, a network of Macaque long distance pathways is substantially different from other real world networks and random graph models. Macaque network contains the entire range of local subnetworks, from star-like networks to clique-like networks, while other networks tend to contain a relatively small range of subnetworks. Further, sparse local subnetworks in the Macaque network are not only found across topographical super-areas, e.g., lobes, but also within a super-area, arguing that there is conservation of even relatively short-distance pathways. To establish the communication role of a vertex we borrow the concept of brokerage from social science, and present the different types of brokerage roles that brain areas play, highlighting that not only the thalamus, but also cingulate gyrus and insula often act as “relays” for areas in the neocortex. These and other analysis of communication load and roles of the sparse subnetworks of the Macaque brain provide new insights into the organisation of its pathways. PMID:26437077

  15. Dense power-law networks and simplicial complexes

    NASA Astrophysics Data System (ADS)

    Courtney, Owen T.; Bianconi, Ginestra

    2018-05-01

    There is increasing evidence that dense networks occur in on-line social networks, recommendation networks and in the brain. In addition to being dense, these networks are often also scale-free, i.e., their degree distributions follow P (k ) ∝k-γ with γ ∈(1 ,2 ] . Models of growing networks have been successfully employed to produce scale-free networks using preferential attachment, however these models can only produce sparse networks as the numbers of links and nodes being added at each time step is constant. Here we present a modeling framework which produces networks that are both dense and scale-free. The mechanism by which the networks grow in this model is based on the Pitman-Yor process. Variations on the model are able to produce undirected scale-free networks with exponent γ =2 or directed networks with power-law out-degree distribution with tunable exponent γ ∈(1 ,2 ) . We also extend the model to that of directed two-dimensional simplicial complexes. Simplicial complexes are generalization of networks that can encode the many body interactions between the parts of a complex system and as such are becoming increasingly popular to characterize different data sets ranging from social interacting systems to the brain. Our model produces dense directed simplicial complexes with power-law distribution of the generalized out-degrees of the nodes.

  16. Data assimilation experiment of precipitable water vapor observed by a hyper-dense GNSS receiver network using a nested NHM-LETKF system

    NASA Astrophysics Data System (ADS)

    Oigawa, Masanori; Tsuda, Toshitaka; Seko, Hiromu; Shoji, Yoshinori; Realini, Eugenio

    2018-05-01

    We studied the assimilation of high-resolution precipitable water vapor (PWV) data derived from a hyper-dense global navigation satellite system network around Uji city, Kyoto, Japan, which had a mean inter-station distance of about 1.7 km. We focused on a heavy rainfall event that occurred on August 13-14, 2012, around Uji city. We employed a local ensemble transform Kalman filter as the data assimilation method. The inhomogeneity of the observed PWV increased on a scale of less than 10 km in advance of the actual rainfall detected by the rain gauge. Zenith wet delay data observed by the Uji network showed that the characteristic length scale of water vapor distribution during the rainfall ranged from 1.9 to 3.5 km. It is suggested that the assimilation of PWV data with high horizontal resolution (a few km) improves the forecast accuracy. We conducted the assimilation experiment of high-resolution PWV data, using both small horizontal localization radii and a conventional horizontal localization radius. We repeated the sensitivity experiment, changing the mean horizontal spacing of the PWV data from 1.7 to 8.0 km. When the horizontal spacing of assimilated PWV data was decreased from 8.0 to 3.5 km, the accuracy of the simulated hourly rainfall amount worsened in the experiment that used the conventional localization radius for the assimilation of PWV. In contrast, the accuracy of hourly rainfall amounts improved when we applied small horizontal localization radii. In the experiment that used the small horizontal localization radii, the accuracy of the hourly rainfall amount was most improved when the horizontal resolution of the assimilated PWV data was 3.5 km. The optimum spatial resolution of PWV data was related to the characteristic length scale of water vapor variability.[Figure not available: see fulltext.

  17. Efficient local behavioral-change strategies to reduce the spread of epidemics in networks

    NASA Astrophysics Data System (ADS)

    Bu, Yilei; Gregory, Steve; Mills, Harriet L.

    2013-10-01

    It has recently become established that the spread of infectious diseases between humans is affected not only by the pathogen itself but also by changes in behavior as the population becomes aware of the epidemic, for example, social distancing. It is also well known that community structure (the existence of relatively densely connected groups of vertices) in contact networks influences the spread of disease. We propose a set of local strategies for social distancing, based on community structure, that can be employed in the event of an epidemic to reduce the epidemic size. Unlike most social distancing methods, ours do not require individuals to know the disease state (infected or susceptible, etc.) of others, and we do not make the unrealistic assumption that the structure of the entire contact network is known. Instead, the recommended behavior change is based only on an individual's local view of the network. Each individual avoids contact with a fraction of his/her contacts, using knowledge of his/her local network to decide which contacts should be avoided. If the behavior change occurs only when an individual becomes ill or aware of the disease, these strategies can substantially reduce epidemic size with a relatively small cost, measured by the number of contacts avoided.

  18. A comparative study of theoretical graph models for characterizing structural networks of human brain.

    PubMed

    Li, Xiaojin; Hu, Xintao; Jin, Changfeng; Han, Junwei; Liu, Tianming; Guo, Lei; Hao, Wei; Li, Lingjiang

    2013-01-01

    Previous studies have investigated both structural and functional brain networks via graph-theoretical methods. However, there is an important issue that has not been adequately discussed before: what is the optimal theoretical graph model for describing the structural networks of human brain? In this paper, we perform a comparative study to address this problem. Firstly, large-scale cortical regions of interest (ROIs) are localized by recently developed and validated brain reference system named Dense Individualized Common Connectivity-based Cortical Landmarks (DICCCOL) to address the limitations in the identification of the brain network ROIs in previous studies. Then, we construct structural brain networks based on diffusion tensor imaging (DTI) data. Afterwards, the global and local graph properties of the constructed structural brain networks are measured using the state-of-the-art graph analysis algorithms and tools and are further compared with seven popular theoretical graph models. In addition, we compare the topological properties between two graph models, namely, stickiness-index-based model (STICKY) and scale-free gene duplication model (SF-GD), that have higher similarity with the real structural brain networks in terms of global and local graph properties. Our experimental results suggest that among the seven theoretical graph models compared in this study, STICKY and SF-GD models have better performances in characterizing the structural human brain network.

  19. Sexual networks, surveillance, and geographical space during syphilis outbreaks in rural North Carolina.

    PubMed

    Doherty, Irene A; Serre, Marc L; Gesink, Dionne; Adimora, Adaora A; Muth, Stephen Q; Leone, Peter A; Miller, William C

    2012-11-01

    Sexually transmitted infections (STIs) spread along sexual networks whose structural characteristics promote transmission that routine surveillance may not capture. Cases who have partners from multiple localities may operate as spatial network bridges, thereby facilitating geographical dissemination. We investigated how surveillance, sexual networks, and spatial bridges relate to each other for syphilis outbreaks in rural counties of North Carolina. We selected from the state health department's surveillance database cases diagnosed with primary, secondary, or early latent syphilis during October 1998 to December 2002 and who resided in central and southeastern North Carolina, along with their sex partners and their social contacts irrespective of infection status. We applied matching algorithms to eliminate duplicate names and create a unique roster of partnerships from which networks were compiled and graphed. Network members were differentiated by disease status and county of residence. In the county most affected by the outbreak, densely connected networks indicative of STI outbreaks were consistent with increased incidence and a large case load. In other counties, the case loads were low with fluctuating incidence, but network structures suggested the presence of outbreaks. In a county with stable, low incidence and a high number of cases, the networks were sparse and dendritic, indicative of endemic spread. Outbreak counties exhibited densely connected networks within well-defined geographic boundaries and low connectivity between counties; spatial bridges did not seem to facilitate transmission. Simple visualization of sexual networks can provide key information to identify communities most in need of resources for outbreak investigation and disease control.

  20. Development of real time monitor system displaying seismic waveform data observed at seafloor seismic network, DONET, for disaster management information

    NASA Astrophysics Data System (ADS)

    Horikawa, H.; Takaesu, M.; Sueki, K.; Takahashi, N.; Sonoda, A.; Miura, S.; Tsuboi, S.

    2014-12-01

    Mega-thrust earthquakes are anticipated to occur in the Nankai Trough in southwest Japan. In the source areas, we have deployed seafloor seismic network, DONET (Dense Ocean-floor Network System for Earthquake and Tsunamis), in 2010 in order to monitor seismicity, crustal deformations, and tsunamis. DONET system consists of totally 20 stations, which is composed of six kinds of sensors, including strong-motion seismometers and quartz pressure gauges. Those stations are densely distributed with an average spatial interval of 15-20 km and cover near the trench axis to coastal areas. Observed data are transferred to a land station through a fiber-optical cable and then to JAMSTEC (Japan Agency for Marine-Earth Science and Technology) data management center through a private network in real time. After 2011 off the Pacific coast of Tohoku Earthquake, each local government close to Nankai Trough try to plan disaster prevention scheme. JAMSTEC will disseminate DONET data combined with research accomplishment so that they will be widely recognized as important earthquake information. In order to open DONET data observed for research to local government, we have developed a web application system, REIS (Real-time Earthquake Information System). REIS is providing seismic waveform data to some local governments close to Nankai Trough as a pilot study. As soon as operation of DONET is ready, REIS will start full-scale operation. REIS can display seismic waveform data of DONET in real-time, users can select strong motion and pressure data, and configure the options of trace view arrangement, time scale, and amplitude. In addition to real-time monitoring, REIS can display past seismic waveform data and show earthquake epicenters on the map. In this presentation, we briefly introduce DONET system and then show our web application system. We also discuss our future plans for further developments of REIS.

  1. Using Network Theory to Understand Seismic Noise in Dense Arrays

    NASA Astrophysics Data System (ADS)

    Riahi, N.; Gerstoft, P.

    2015-12-01

    Dense seismic arrays offer an opportunity to study anthropogenic seismic noise sources with unprecedented detail. Man-made sources typically have high frequency, low intensity, and propagate as surface waves. As a result attenuation restricts their measurable footprint to a small subset of sensors. Medium heterogeneities can further introduce wave front perturbations that limit processing based on travel time. We demonstrate a non-parametric technique that can reliably identify very local events within the array as a function of frequency and time without using travel-times. The approach estimates the non-zero support of the array covariance matrix and then uses network analysis tools to identify clusters of sensors that are sensing a common source. We verify the method on simulated data and then apply it to the Long Beach (CA) geophone array. The method exposes a helicopter traversing the array, oil production facilities with different characteristics, and the fact that noise sources near roads tend to be around 10-20 Hz.

  2. Locating sources within a dense sensor array using graph clustering

    NASA Astrophysics Data System (ADS)

    Gerstoft, P.; Riahi, N.

    2017-12-01

    We develop a model-free technique to identify weak sources within dense sensor arrays using graph clustering. No knowledge about the propagation medium is needed except that signal strengths decay to insignificant levels within a scale that is shorter than the aperture. We then reinterpret the spatial coherence matrix of a wave field as a matrix whose support is a connectivity matrix of a graph with sensors as vertices. In a dense network, well-separated sources induce clusters in this graph. The geographic spread of these clusters can serve to localize the sources. The support of the covariance matrix is estimated from limited-time data using a hypothesis test with a robust phase-only coherence test statistic combined with a physical distance criterion. The latter criterion ensures graph sparsity and thus prevents clusters from forming by chance. We verify the approach and quantify its reliability on a simulated dataset. The method is then applied to data from a dense 5200 element geophone array that blanketed of the city of Long Beach (CA). The analysis exposes a helicopter traversing the array and oil production facilities.

  3. A Global Protein Kinase and Phosphatase Interaction Network in Yeast

    PubMed Central

    Breitkreutz, Ashton; Choi, Hyungwon; Sharom, Jeffrey R.; Boucher, Lorrie; Neduva, Victor; Larsen, Brett; Lin, Zhen-Yuan; Breitkreutz, Bobby-Joe; Stark, Chris; Liu, Guomin; Ahn, Jessica; Dewar-Darch, Danielle; Reguly, Teresa; Tang, Xiaojing; Almeida, Ricardo; Qin, Zhaohui Steve; Pawson, Tony; Gingras, Anne-Claude; Nesvizhskii, Alexey I.; Tyers, Mike

    2011-01-01

    The interactions of protein kinases and phosphatases with their regulatory subunits and substrates underpin cellular regulation. We identified a kinase and phosphatase interaction (KPI) network of 1844 interactions in budding yeast by mass spectrometric analysis of protein complexes. The KPI network contained many dense local regions of interactions that suggested new functions. Notably, the cell cycle phosphatase Cdc14 associated with multiple kinases that revealed roles for Cdc14 in mitogen-activated protein kinase signaling, the DNA damage response, and metabolism, whereas interactions of the target of rapamycin complex 1 (TORC1) uncovered new effector kinases in nitrogen and carbon metabolism. An extensive backbone of kinase-kinase interactions cross-connects the proteome and may serve to coordinate diverse cellular responses. PMID:20489023

  4. Localization of lung fields in HRCT images using a deep convolution neural network

    NASA Astrophysics Data System (ADS)

    Kumar, Abhishek; Agarwala, Sunita; Dhara, Ashis Kumar; Mukhopadhyay, Sudipta; Nandi, Debashis; Garg, Mandeep; Khandelwal, Niranjan; Kalra, Naveen

    2018-02-01

    Lung field segmentation is a prerequisite step for the development of a computer-aided diagnosis system for interstitial lung diseases observed in chest HRCT images. Conventional methods of lung field segmentation rely on a large gray value contrast between lung fields and surrounding tissues. These methods fail on lung HRCT images with dense and diffused pathology. An efficient prepro- cessing could improve the accuracy of segmentation of pathological lung field in HRCT images. In this paper, a convolution neural network is used for localization of lung fields in HRCT images. The proposed method provides an optimal bounding box enclosing the lung fields irrespective of the presence of diffuse pathology. The performance of the proposed algorithm is validated on 330 lung HRCT images obtained from MedGift database on ZF and VGG networks. The model achieves a mean average precision of 0.94 with ZF net and a slightly better performance giving a mean average precision of 0.95 in case of VGG net.

  5. Community Detection in Complex Networks via Clique Conductance.

    PubMed

    Lu, Zhenqi; Wahlström, Johan; Nehorai, Arye

    2018-04-13

    Network science plays a central role in understanding and modeling complex systems in many areas including physics, sociology, biology, computer science, economics, politics, and neuroscience. One of the most important features of networks is community structure, i.e., clustering of nodes that are locally densely interconnected. Communities reveal the hierarchical organization of nodes, and detecting communities is of great importance in the study of complex systems. Most existing community-detection methods consider low-order connection patterns at the level of individual links. But high-order connection patterns, at the level of small subnetworks, are generally not considered. In this paper, we develop a novel community-detection method based on cliques, i.e., local complete subnetworks. The proposed method overcomes the deficiencies of previous similar community-detection methods by considering the mathematical properties of cliques. We apply the proposed method to computer-generated graphs and real-world network datasets. When applied to networks with known community structure, the proposed method detects the structure with high fidelity and sensitivity. When applied to networks with no a priori information regarding community structure, the proposed method yields insightful results revealing the organization of these complex networks. We also show that the proposed method is guaranteed to detect near-optimal clusters in the bipartition case.

  6. Community Seismic Network (CSN)

    NASA Astrophysics Data System (ADS)

    Clayton, R. W.; Heaton, T. H.; Kohler, M. D.; Cheng, M.; Guy, R.; Chandy, M.; Krause, A.; Bunn, J.; Olson, M.; Faulkner, M.

    2011-12-01

    The CSN is a network of low-cost accelerometers deployed in the Pasadena, CA region. It is a prototype network with the goal of demonstrating the importance of dense measurements in determining the rapid lateral variations in ground motion due to earthquakes. The main product of the CSN is a map of peak ground produced within seconds of significant local earthquakes that can be used as a proxy for damage. Examples of this are shown using data from a temporary network in Long Beach, CA. Dense measurements in buildings are also being used to determine the state of health of structures. In addition to fixed sensors, portable sensors such as smart phones are also used in the network. The CSN has necessitated several changes in the standard design of a seismic network. The first is that the data collection and processing is done in the "cloud" (Google cloud in this case) for robustness and the ability to handle large impulsive loads (earthquakes). Second, the database is highly de-normalized (i.e. station locations are part of waveform and event-detection meta data) because of the mobile nature of the sensors. Third, since the sensors are hosted and/or owned by individuals, the privacy of the data is very important. The location of fixed sensors is displayed on maps as sensor counts in block-wide cells, and mobile sensors are shown in a similar way, with the additional requirement to inhibit tracking that at least two must be present in a particular cell before any are shown. The raw waveform data are only released to users outside of the network after a felt earthquake.

  7. Structure-function relationship of biological gels revealed by multiple-particle tracking and differential interference contrast microscopy: The case of human lamin networks

    NASA Astrophysics Data System (ADS)

    Panorchan, Porntula; Wirtz, Denis; Tseng, Yiider

    2004-10-01

    Lamin B1 filaments organize into a thin dense meshwork underlying the nucleoplasmic side of the nuclear envelope. Recent experiments in vivo suggest that lamin B1 plays a key structural role in the nuclear envelope, but the intrinsic mechanical properties of lamin B1 networks remain unknown. To assess the potential mechanical contribution of lamin B1 in maintaining the integrity and providing structural support to the nucleus, we measured the micromechanical properties and examined the ultrastructural distribution of lamin B1 networks in vitro using particle tracking methods and differential interference contrast (DIC) microscopy. We exploit various surface chemistries of the probe microspheres (carboxylated, polyethylene glycol-coated, and amine-modified) to differentiate lamin-rich from lamin-poor regions and to rigorously extract local viscoelastic moduli from the mean-squared displacements of noninteracting particles. Our results show that human lamin B1 can, even in the absence of auxiliary proteins, form stiff and yet extremely porous networks that are well suited to provide structural strength to the nuclear lamina. Combining DIC microscopy and particle tracking allows us to relate directly the local organization of a material to its local mechanical properties, a general methodology that can be extended to living cells.

  8. Local Infrasound Variability Related to In Situ Atmospheric Observation

    NASA Astrophysics Data System (ADS)

    Kim, Keehoon; Rodgers, Arthur; Seastrand, Douglas

    2018-04-01

    Local infrasound is widely used to constrain source parameters of near-surface events (e.g., chemical explosions and volcanic eruptions). While atmospheric conditions are critical to infrasound propagation and source parameter inversion, local atmospheric variability is often ignored by assuming homogeneous atmospheres, and their impact on the source inversion uncertainty has never been accounted for due to the lack of quantitative understanding of infrasound variability. We investigate atmospheric impacts on local infrasound propagation by repeated explosion experiments with a dense acoustic network and in situ atmospheric measurement. We perform full 3-D waveform simulations with local atmospheric data and numerical weather forecast model to quantify atmosphere-dependent infrasound variability and address the advantage and restriction of local weather data/numerical weather model for sound propagation simulation. Numerical simulations with stochastic atmosphere models also showed nonnegligible influence of atmospheric heterogeneity on infrasound amplitude, suggesting an important role of local turbulence.

  9. Electrical conductivity modeling and experimental study of densely packed SWCNT networks.

    PubMed

    Jack, D A; Yeh, C-S; Liang, Z; Li, S; Park, J G; Fielding, J C

    2010-05-14

    Single-walled carbon nanotube (SWCNT) networks have become a subject of interest due to their ability to support structural, thermal and electrical loadings, but to date their application has been hindered due, in large part, to the inability to model macroscopic responses in an industrial product with any reasonable confidence. This paper seeks to address the relationship between macroscale electrical conductivity and the nanostructure of a dense network composed of SWCNTs and presents a uniquely formulated physics-based computational model for electrical conductivity predictions. The proposed model incorporates physics-based stochastic parameters for the individual nanotubes to construct the nanostructure such as: an experimentally obtained orientation distribution function, experimentally derived length and diameter distributions, and assumed distributions of chirality and registry of individual CNTs. Case studies are presented to investigate the relationship between macroscale conductivity and nanostructured variations in the bulk stochastic length, diameter and orientation distributions. Simulation results correspond nicely with those available in the literature for case studies of conductivity versus length and conductivity versus diameter. In addition, predictions for the increasing anisotropy of the bulk conductivity as a function of the tube orientation distribution are in reasonable agreement with our experimental results. Examples are presented to demonstrate the importance of incorporating various stochastic characteristics in bulk conductivity predictions. Finally, a design consideration for industrial applications is discussed based on localized network power emission considerations and may lend insight to the design engineer to better predict network failure under high current loading applications.

  10. Energy-efficient STDP-based learning circuits with memristor synapses

    NASA Astrophysics Data System (ADS)

    Wu, Xinyu; Saxena, Vishal; Campbell, Kristy A.

    2014-05-01

    It is now accepted that the traditional von Neumann architecture, with processor and memory separation, is ill suited to process parallel data streams which a mammalian brain can efficiently handle. Moreover, researchers now envision computing architectures which enable cognitive processing of massive amounts of data by identifying spatio-temporal relationships in real-time and solving complex pattern recognition problems. Memristor cross-point arrays, integrated with standard CMOS technology, are expected to result in massively parallel and low-power Neuromorphic computing architectures. Recently, significant progress has been made in spiking neural networks (SNN) which emulate data processing in the cortical brain. These architectures comprise of a dense network of neurons and the synapses formed between the axons and dendrites. Further, unsupervised or supervised competitive learning schemes are being investigated for global training of the network. In contrast to a software implementation, hardware realization of these networks requires massive circuit overhead for addressing and individually updating network weights. Instead, we employ bio-inspired learning rules such as the spike-timing-dependent plasticity (STDP) to efficiently update the network weights locally. To realize SNNs on a chip, we propose to use densely integrating mixed-signal integrate-andfire neurons (IFNs) and cross-point arrays of memristors in back-end-of-the-line (BEOL) of CMOS chips. Novel IFN circuits have been designed to drive memristive synapses in parallel while maintaining overall power efficiency (<1 pJ/spike/synapse), even at spike rate greater than 10 MHz. We present circuit design details and simulation results of the IFN with memristor synapses, its response to incoming spike trains and STDP learning characterization.

  11. Emergent Adaptive Noise Reduction from Communal Cooperation of Sensor Grid

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H.; Jones, Michael G.; Nark, Douglas M.; Lodding, Kenneth N.

    2010-01-01

    In the last decade, the realization of small, inexpensive, and powerful devices with sensors, computers, and wireless communication has promised the development of massive sized sensor networks with dense deployments over large areas capable of high fidelity situational assessments. However, most management models have been based on centralized control and research has concentrated on methods for passing data from sensor devices to the central controller. Most implementations have been small but, as it is not scalable, this methodology is insufficient for massive deployments. Here, a specific application of a large sensor network for adaptive noise reduction demonstrates a new paradigm where communities of sensor/computer devices assess local conditions and make local decisions from which emerges a global behaviour. This approach obviates many of the problems of centralized control as it is not prone to single point of failure and is more scalable, efficient, robust, and fault tolerant

  12. An iterative network partition algorithm for accurate identification of dense network modules

    PubMed Central

    Sun, Siqi; Dong, Xinran; Fu, Yao; Tian, Weidong

    2012-01-01

    A key step in network analysis is to partition a complex network into dense modules. Currently, modularity is one of the most popular benefit functions used to partition network modules. However, recent studies suggested that it has an inherent limitation in detecting dense network modules. In this study, we observed that despite the limitation, modularity has the advantage of preserving the primary network structure of the undetected modules. Thus, we have developed a simple iterative Network Partition (iNP) algorithm to partition a network. The iNP algorithm provides a general framework in which any modularity-based algorithm can be implemented in the network partition step. Here, we tested iNP with three modularity-based algorithms: multi-step greedy (MSG), spectral clustering and Qcut. Compared with the original three methods, iNP achieved a significant improvement in the quality of network partition in a benchmark study with simulated networks, identified more modules with significantly better enrichment of functionally related genes in both yeast protein complex network and breast cancer gene co-expression network, and discovered more cancer-specific modules in the cancer gene co-expression network. As such, iNP should have a broad application as a general method to assist in the analysis of biological networks. PMID:22121225

  13. Mapping and mining interictal pathological gamma (30–100 Hz) oscillations with clinical intracranial EEG in patients with epilepsy

    PubMed Central

    Smart, Otis; Maus, Douglas; Marsh, Eric; Dlugos, Dennis; Litt, Brian; Meador, Kimford

    2012-01-01

    Localizing an epileptic network is essential for guiding neurosurgery and antiepileptic medical devices as well as elucidating mechanisms that may explain seizure-generation and epilepsy. There is increasing evidence that pathological oscillations may be specific to diseased networks in patients with epilepsy and that these oscillations may be a key biomarker for generating and indentifying epileptic networks. We present a semi-automated method that detects, maps, and mines pathological gamma (30–100 Hz) oscillations (PGOs) in human epileptic brain to possibly localize epileptic networks. We apply the method to standard clinical iEEG (<100 Hz) with interictal PGOs and seizures from six patients with medically refractory epilepsy. We demonstrate that electrodes with consistent PGO discharges do not always coincide with clinically determined seizure onset zone (SOZ) electrodes but at times PGO-dense electrodes include secondary seizure-areas (SS) or even areas without seizures (NS). In 4/5 patients with epilepsy surgery, we observe poor (Engel Class 4) post-surgical outcomes and identify more PGO-activity in SS or NS than in SOZ. Additional studies are needed to further clarify the role of PGOs in epileptic brain. PMID:23105174

  14. Investigation of Alien Wavelength Quality in Live Multi-Domain, Multi-Vendor Link Using Advanced Simulation Tool

    NASA Astrophysics Data System (ADS)

    Nordal Petersen, Martin; Nuijts, Roeland; Lange Bjørn, Lars

    2014-05-01

    This article presents an advanced optical model for simulation of alien wavelengths in multi-domain and multi-vendor dense wavelength-division multiplexing networks. The model aids optical network planners with a better understanding of the non-linear effects present in dense wavelength-division multiplexing systems and better utilization of alien wavelengths in future applications. The limiting physical effects for alien wavelengths are investigated in relation to power levels, channel spacing, and other factors. The simulation results are verified through experimental setup in live multi-domain dense wavelength-division multiplexing systems between two national research networks: SURFnet in Holland and NORDUnet in Denmark.

  15. Unofficial Road Building in the Brazilian Amazon: Dilemmas and Models for Road Governance

    NASA Technical Reports Server (NTRS)

    Perz, Stephen G.; Overdevest, Christine; Caldas, Marcellus M.; Walker, Robert T.; Arima, Eugenio Y.

    2007-01-01

    Unofficial roads form dense networks in landscapes, generating a litany of negative ecological outcomes, but unofficial roads in frontier areas are also instrumental in local livelihoods and community development. This trade-off poses dilemmas for the governance of unofficial roads. Unofficial road building in frontier areas of the Brazilian Amazon illustrates the challenges of 'road governance.' Both state-based and community based governance models exhibit important liabilities for governing unofficial roads. Whereas state-based governance has experienced difficulties in adapting to specific local contexts and interacting effectively with local interest groups, community-based governance has a mixed record owing to social inequalities and conflicts among local interest groups. A state-community hybrid model may offer more effective governance of unofficial road building by combining the oversight capacity of the state with locally grounded community management via participatory decision-making.

  16. Seismic Source Locations and Parameters for Sparce Networks by Matching Observed Seismograms to Semi-Empirical Synthetic Seismograms

    NASA Astrophysics Data System (ADS)

    Marshall, M. E.; Salzberg, D. H.

    2006-05-01

    The purpose of this study is to further demonstrate the accuracy of full-waveform earthquake location method using semi-empirical synthetic waveforms and received data from two or more regional stations. To test the method, well-constrained events from southern and central California are being used as a testbed. A suite of regional California events is being processed. Our focus is on aftershocks of the Parkfield event, the Hector Mine event, and the San Simian event. In all three cases, the aftershock locations are known to within 1 km. For Parkfield, with its extremely dense local network, the events are located to within 300 m or better. We are processing the data using a grid spacing of 0.5 km in three dimensions. Often, the minimum in residual from the semi-empirical waveform matching is within one grid point of the 'ground truth' location, which is as good as can be expected. We will present the results and compare those to the event locations reported in catalogs using the dense local seismic networks that are present in California. The preliminary results indicate that matched-waveform locations are able to resolve the locations with accuracies better than GT5, and possibly approaching GT1. These results only require two stations at regional distances and differing azimuths. One of the disadvantages of the California testbed is that all of the earthquakes in a particular region typically have very similar focal mechanisms. In theory, the semi-empirical approach should allow us to generate the well-matched synthetic waveforms regardless of the varying mechanisms. To verify this aspect, we apply the technique to relocate and simulate the JUNCTION nuclear test (March 26, 1992) using waveforms from the Little Skull Mountain mainshock.

  17. Neighbor Discovery Algorithm in Wireless Local Area Networks Using Multi-beam Directional Antennas

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Peng, Wei; Liu, Song

    2017-10-01

    Neighbor discovery is an important step for Wireless Local Area Networks (WLAN) and the use of multi-beam directional antennas can greatly improve the network performance. However, most neighbor discovery algorithms in WLAN, based on multi-beam directional antennas, can only work effectively in synchronous system but not in asynchro-nous system. And collisions at AP remain a bottleneck for neighbor discovery. In this paper, we propose two asynchrono-us neighbor discovery algorithms: asynchronous hierarchical scanning (AHS) and asynchronous directional scanning (ADS) algorithm. Both of them are based on three-way handshaking mechanism. AHS and ADS reduce collisions at AP to have a good performance in a hierarchical way and directional way respectively. In the end, the performance of the AHS and ADS are tested on OMNeT++. Moreover, it is analyzed that different application scenarios and the factors how to affect the performance of these algorithms. The simulation results show that AHS is suitable for the densely populated scenes around AP while ADS is suitable for that most of the neighborhood nodes are far from AP.

  18. Regional and transported aerosols during DRAGON-Japan experiment

    NASA Astrophysics Data System (ADS)

    Sano, I.; Holben, B. N.; Mukai, S.; Nakata, M.; Nakaguchi, Y.; Sugimoto, N.; Hatakeyama, S.; Nishizawa, T.; Takamura, T.; Takemura, T.; Yonemitsu, M.; Fujito, T.; Schafer, J.; Eck, T. F.; Sorokin, M.; Kenny, P.; Goto, M.; Hiraki, T.; Iguchi, N.; Kouzai, K.; KUJI, M.; Muramatsu, K.; Okada, Y.; Sadanaga, Y.; Tohno, S.; Toyazaki, Y.; Yamamoto, K.

    2013-12-01

    Aerosol properties over Japan have been monitored by AERONET sun / sky photometers since 2000. These measurements provides us with long term information of local aerosols, which are influenced by transported aerosols, such as Asian dusts or anthropogenic pollutants due to rapid increasing of energy consumption in Asian countries. A new aerosol monitoring experiment, Distributed Regional Aerosol Gridded Observation Networks (DRAGON) - Japan is operated in spring of 2012. The main instrument of DRAGON network is AERONET sun/sky radiometers. Some of them are sparsely set along the Japanese coast and some others make a dense network in Osaka, which is the second-largest city in Japan and famous for manufacturing town. Several 2ch NIES-LIDAR systems are also co-located with AERONET instrument to monitor Asian dusts throughout the campaign. The objects of Dragon-Japan are to characterize local aerosols as well as transported ones from the continent of China, and to acquire the detailed aerosol information for validating satellite data with high resolved spatial scale. This work presents the comprehensive results of aerosol properties with respect to regional- and/or transported- scale during DRAGON-Japan experiments.

  19. Self-diffusion in dense granular shear flows.

    PubMed

    Utter, Brian; Behringer, R P

    2004-03-01

    Diffusivity is a key quantity in describing velocity fluctuations in granular materials. These fluctuations are the basis of many thermodynamic and hydrodynamic models which aim to provide a statistical description of granular systems. We present experimental results on diffusivity in dense, granular shear flows in a two-dimensional Couette geometry. We find that self-diffusivities D are proportional to the local shear rate gamma; with diffusivities along the direction of the mean flow approximately twice as large as those in the perpendicular direction. The magnitude of the diffusivity is D approximately gamma;a(2), where a is the particle radius. However, the gradient in shear rate, coupling to the mean flow, and strong drag at the moving boundary lead to particle displacements that can appear subdiffusive or superdiffusive. In particular, diffusion appears to be superdiffusive along the mean flow direction due to Taylor dispersion effects and subdiffusive along the perpendicular direction due to the gradient in shear rate. The anisotropic force network leads to an additional anisotropy in the diffusivity that is a property of dense systems and has no obvious analog in rapid flows. Specifically, the diffusivity is suppressed along the direction of the strong force network. A simple random walk simulation reproduces the key features of the data, such as the apparent superdiffusive and subdiffusive behavior arising from the mean velocity field, confirming the underlying diffusive motion. The additional anisotropy is not observed in the simulation since the strong force network is not included. Examples of correlated motion, such as transient vortices, and Lévy flights are also observed. Although correlated motion creates velocity fields which are qualitatively different from collisional Brownian motion and can introduce nondiffusive effects, on average the system appears simply diffusive.

  20. A Low Collision and High Throughput Data Collection Mechanism for Large-Scale Super Dense Wireless Sensor Networks.

    PubMed

    Lei, Chunyang; Bie, Hongxia; Fang, Gengfa; Gaura, Elena; Brusey, James; Zhang, Xuekun; Dutkiewicz, Eryk

    2016-07-18

    Super dense wireless sensor networks (WSNs) have become popular with the development of Internet of Things (IoT), Machine-to-Machine (M2M) communications and Vehicular-to-Vehicular (V2V) networks. While highly-dense wireless networks provide efficient and sustainable solutions to collect precise environmental information, a new channel access scheme is needed to solve the channel collision problem caused by the large number of competing nodes accessing the channel simultaneously. In this paper, we propose a space-time random access method based on a directional data transmission strategy, by which collisions in the wireless channel are significantly decreased and channel utility efficiency is greatly enhanced. Simulation results show that our proposed method can decrease the packet loss rate to less than 2 % in large scale WSNs and in comparison with other channel access schemes for WSNs, the average network throughput can be doubled.

  1. An Adaptive Channel Access Method for Dynamic Super Dense Wireless Sensor Networks.

    PubMed

    Lei, Chunyang; Bie, Hongxia; Fang, Gengfa; Zhang, Xuekun

    2015-12-03

    Super dense and distributed wireless sensor networks have become very popular with the development of small cell technology, Internet of Things (IoT), Machine-to-Machine (M2M) communications, Vehicular-to-Vehicular (V2V) communications and public safety networks. While densely deployed wireless networks provide one of the most important and sustainable solutions to improve the accuracy of sensing and spectral efficiency, a new channel access scheme needs to be designed to solve the channel congestion problem introduced by the high dynamics of competing nodes accessing the channel simultaneously. In this paper, we firstly analyzed the channel contention problem using a novel normalized channel contention analysis model which provides information on how to tune the contention window according to the state of channel contention. We then proposed an adaptive channel contention window tuning algorithm in which the contention window tuning rate is set dynamically based on the estimated channel contention level. Simulation results show that our proposed adaptive channel access algorithm based on fast contention window tuning can achieve more than 95 % of the theoretical optimal throughput and 0 . 97 of fairness index especially in dynamic and dense networks.

  2. Diagenetic Features in Yellowknife Bay, Gale Crater, Mars: Implications for Substrate Rheology and Potential Gas Release

    NASA Technical Reports Server (NTRS)

    Kah, L. C.; Stack, K; Siebach, K.; Grotzinger, J.; Summer, D.; Farien, A.; Oehler, D.; Schieber, J.; Leville, R.; Edgar, L; hide

    2014-01-01

    Multiple diagenetic features have been observed in clay­-bearing mudstone exposed within Yellowknife Bay, Gale Crater, Mars. These features occurred during at least two separate episodes: an early generation of spheroidal concretions that co-­occur with a dense networks of mineralized fractures, and a later generation of mineralized veins. Concretions consist of mm-sized spheroids (0.4 to 8.0 mm, mean diameter of 1.2 mm) that are distinctly more resistant than the encompassing mudstone. Dissected spheroids suggest an origin via compaction and incipient lithification of the substrate at the perimeter of syndepositional void space. Concretions are generally patchy in their distribution within clay--bearing mudstone, but in places can be the dominant fabric element. Locally dense networks of mineralized fractures occur in regions of low concretion abundance. These consist of short (< 50 cm), curvilinear to planar mineralized voids that occur across a range of orientations from vertical to subhorizontal. Fractures are filled by multi-phase cement consisting of two isopachous, erosionally resistant outer bands, and a central less resistant fill. Physical relationships suggests that original fractures may have formed as both interconnected voids and as discrete cross--cutting features. Co--occurrence of early diagenetic concretions and fracture networks suggests a common origin via gas release within a subaqueous, shallow substrate. We suggest that gas release within weakly cohesive subsurface sediments resulted in substrate dewatering and an increase in the cohesive strength of the substrate. Local differences in substrate strength and rate of gas production would have result in formation of either discrete voids or fracture networks. A second generation of mineralized veins is characterized by a regionally low spatial density, predominantly vertical or horizontal orientations, and a single phase of Ca--sulfate mineral fill. These veins cross-cut the early diagenetic elements and intersect a greater thickness of stratigraphy within Yellowknife Bay, suggesting a later--diagenetic origin via hydraulic fracturing.

  3. A generalised significance test for individual communities in networks.

    PubMed

    Kojaku, Sadamori; Masuda, Naoki

    2018-05-09

    Many empirical networks have community structure, in which nodes are densely interconnected within each community (i.e., a group of nodes) and sparsely across different communities. Like other local and meso-scale structure of networks, communities are generally heterogeneous in various aspects such as the size, density of edges, connectivity to other communities and significance. In the present study, we propose a method to statistically test the significance of individual communities in a given network. Compared to the previous methods, the present algorithm is unique in that it accepts different community-detection algorithms and the corresponding quality function for single communities. The present method requires that a quality of each community can be quantified and that community detection is performed as optimisation of such a quality function summed over the communities. Various community detection algorithms including modularity maximisation and graph partitioning meet this criterion. Our method estimates a distribution of the quality function for randomised networks to calculate a likelihood of each community in the given network. We illustrate our algorithm by synthetic and empirical networks.

  4. Topological distortion and reorganized modular structure of gut microbial co-occurrence networks in inflammatory bowel disease

    NASA Astrophysics Data System (ADS)

    Baldassano, Steven N.; Bassett, Danielle S.

    2016-05-01

    The gut microbiome plays a key role in human health, and alterations of the normal gut flora are associated with a variety of distinct disease states. Yet, the natural dependencies between microbes in healthy and diseased individuals remain far from understood. Here we use a network-based approach to characterize microbial co-occurrence in individuals with inflammatory bowel disease (IBD) and healthy (non-IBD control) individuals. We find that microbial networks in patients with IBD differ in both global structure and local connectivity patterns. While a “core” microbiome is preserved, network topology of other densely interconnected microbe modules is distorted, with potent inflammation-mediating organisms assuming roles as integrative and highly connected inter-modular hubs. We show that while both networks display a rich-club organization, in which a small set of microbes commonly co-occur, the healthy network is more easily disrupted by elimination of a small number of key species. Further investigation of network alterations in disease might offer mechanistic insights into the specific pathogens responsible for microbiome-mediated inflammation in IBD.

  5. Design and first tests of a Macroseismic Sensor System

    NASA Astrophysics Data System (ADS)

    Brueckl, Ewald; Polydor, Stefan; Ableitinger, Klaus; Rafeiner-Magor, Walter; Kristufek, Werner; Mertl, Stefan; Lenhardt, Wolfgang

    2017-04-01

    Seismic observatories are located in remote, low-noise areas for good reason and do not probe areas of dense and sensitive infrastructure. Complementary macroseismic data provide dense, qualitative information on ground motion in populated areas. Motivated by the QCN (Quake Catcher Network), a new low-cost sensor system (Macroseismic Sensor System = MSS) has been developed to support the evaluation of macroseismic data with quantitative information on ground movement in populated and industrial areas. Scholars, alumni and teachers from a technical high school contributed substantially to this development within the Sparkling Science project Schools & Quakes and the Citizen Science project QuakeWatch Austria. The MSS uses horizontal 4.5 Hz geophones and 16Bit AD conversion, and 100 Hz sampling, formatting to MiniSeed, and continuous data transmission via LAN or WLAN to a server are controlled by an integrated microcomputer (Raspberry Pi). Real-time generation of shake and source maps (based on proxies of the PGV in successive time windows) allows for differentiation between local seismic events (e.g., traffic noise, shock close to the sensor) and signals from earthquakes or quarry blasts. The inherent noise of the MSS is about 1% of the PGV corresponding to the lower boundary of intensity I = 2, which is below the ambient noise level at stations in highly populated or industrial areas. The MSS is already being tested at locations around a quarry with regular production blasts. An expansion to a local network in the Vienna Basin will be the next step.

  6. Using algebra for massively parallel processor design and utilization

    NASA Technical Reports Server (NTRS)

    Campbell, Lowell; Fellows, Michael R.

    1990-01-01

    This paper summarizes the author's advances in the design of dense processor networks. Within is reported a collection of recent constructions of dense symmetric networks that provide the largest know values for the number of nodes that can be placed in a network of a given degree and diameter. The constructions are in the range of current potential engineering significance and are based on groups of automorphisms of finite-dimensional vector spaces.

  7. RESIF Seismology Datacentre : Recently Released Data and New Services. Computing with Dense Seisimic Networks Data.

    NASA Astrophysics Data System (ADS)

    Volcke, P.; Pequegnat, C.; Grunberg, M.; Lecointre, A.; Bzeznik, B.; Wolyniec, D.; Engels, F.; Maron, C.; Cheze, J.; Pardo, C.; Saurel, J. M.; André, F.

    2015-12-01

    RESIF is a nationwide french project aimed at building a high quality observation system to observe and understand the inner earth. RESIF deals with permanent seismic networks data as well as mobile networks data, including dense/semi-dense arrays. RESIF project is distributed among different nodes providing qualified data to the main datacentre in Université Grenoble Alpes, France. Data control and qualification is performed by each individual nodes : the poster will provide some insights on RESIF broadband seismic component data quality control. We will then present data that has been recently made publicly available. Data is distributed through worldwide FDSN and european EIDA standards protocols. A new web portal is now opened to explore and download seismic data and metadata. The RESIF datacentre is also now connected to Grenoble University High Performance Computing (HPC) facility : a typical use-case will be presented using iRODS technologies. The use of dense observation networks is increasing, bringing challenges in data growth and handling : we will present an example where HDF5 data format was used as an alternative to usual seismology data formats.

  8. Module discovery by exhaustive search for densely connected, co-expressed regions in biomolecular interaction networks.

    PubMed

    Colak, Recep; Moser, Flavia; Chu, Jeffrey Shih-Chieh; Schönhuth, Alexander; Chen, Nansheng; Ester, Martin

    2010-10-25

    Computational prediction of functionally related groups of genes (functional modules) from large-scale data is an important issue in computational biology. Gene expression experiments and interaction networks are well studied large-scale data sources, available for many not yet exhaustively annotated organisms. It has been well established, when analyzing these two data sources jointly, modules are often reflected by highly interconnected (dense) regions in the interaction networks whose participating genes are co-expressed. However, the tractability of the problem had remained unclear and methods by which to exhaustively search for such constellations had not been presented. We provide an algorithmic framework, referred to as Densely Connected Biclustering (DECOB), by which the aforementioned search problem becomes tractable. To benchmark the predictive power inherent to the approach, we computed all co-expressed, dense regions in physical protein and genetic interaction networks from human and yeast. An automatized filtering procedure reduces our output which results in smaller collections of modules, comparable to state-of-the-art approaches. Our results performed favorably in a fair benchmarking competition which adheres to standard criteria. We demonstrate the usefulness of an exhaustive module search, by using the unreduced output to more quickly perform GO term related function prediction tasks. We point out the advantages of our exhaustive output by predicting functional relationships using two examples. We demonstrate that the computation of all densely connected and co-expressed regions in interaction networks is an approach to module discovery of considerable value. Beyond confirming the well settled hypothesis that such co-expressed, densely connected interaction network regions reflect functional modules, we open up novel computational ways to comprehensively analyze the modular organization of an organism based on prevalent and largely available large-scale datasets. Software and data sets are available at http://www.sfu.ca/~ester/software/DECOB.zip.

  9. Cooperative Game-Based Energy Efficiency Management over Ultra-Dense Wireless Cellular Networks

    PubMed Central

    Li, Ming; Chen, Pengpeng; Gao, Shouwan

    2016-01-01

    Ultra-dense wireless cellular networks have been envisioned as a promising technique for handling the explosive increase of wireless traffic volume. With the extensive deployment of small cells in wireless cellular networks, the network spectral efficiency (SE) is improved with the use of limited frequency. However, the mutual inter-tier and intra-tier interference between or among small cells and macro cells becomes serious. On the other hand, more chances for potential cooperation among different cells are introduced. Energy efficiency (EE) has become one of the most important problems for future wireless networks. This paper proposes a cooperative bargaining game-based method for comprehensive EE management in an ultra-dense wireless cellular network, which highlights the complicated interference influence on energy-saving challenges and the power-coordination process among small cells and macro cells. Especially, a unified EE utility with the consideration of the interference mitigation is proposed to jointly address the SE, the deployment efficiency (DE), and the EE. In particular, closed-form power-coordination solutions for the optimal EE are derived to show the convergence property of the algorithm. Moreover, a simplified algorithm is presented to reduce the complexity of the signaling overhead, which is significant for ultra-dense small cells. Finally, numerical simulations are provided to illustrate the efficiency of the proposed cooperative bargaining game-based and simplified schemes. PMID:27649170

  10. Cooperative Game-Based Energy Efficiency Management over Ultra-Dense Wireless Cellular Networks.

    PubMed

    Li, Ming; Chen, Pengpeng; Gao, Shouwan

    2016-09-13

    Ultra-dense wireless cellular networks have been envisioned as a promising technique for handling the explosive increase of wireless traffic volume. With the extensive deployment of small cells in wireless cellular networks, the network spectral efficiency (SE) is improved with the use of limited frequency. However, the mutual inter-tier and intra-tier interference between or among small cells and macro cells becomes serious. On the other hand, more chances for potential cooperation among different cells are introduced. Energy efficiency (EE) has become one of the most important problems for future wireless networks. This paper proposes a cooperative bargaining game-based method for comprehensive EE management in an ultra-dense wireless cellular network, which highlights the complicated interference influence on energy-saving challenges and the power-coordination process among small cells and macro cells. Especially, a unified EE utility with the consideration of the interference mitigation is proposed to jointly address the SE, the deployment efficiency (DE), and the EE. In particular, closed-form power-coordination solutions for the optimal EE are derived to show the convergence property of the algorithm. Moreover, a simplified algorithm is presented to reduce the complexity of the signaling overhead, which is significant for ultra-dense small cells. Finally, numerical simulations are provided to illustrate the efficiency of the proposed cooperative bargaining game-based and simplified schemes.

  11. Elastic properties of compressed emulsions

    NASA Astrophysics Data System (ADS)

    Jorjadze, Ivane; Brujic, Jasna

    2012-02-01

    Visualizing the packing of a dense emulsion in 3D as a function of the external pressure allows us to characterize the geometry and the local stress distribution inside this jammed system. We first test the scaling laws of the pressure and average coordination number over two orders of magnitude in density. We find deviations from theoretical exponents due to the non-affine motion of the particles. Second, we observe that the distribution of forces changes from a broad exponential at the jamming point to a narrower Gaussian-like distribution under high compression. Finally, we calculate the density of states from the measured force network in the approximation of a harmonic potential. Close to jamming, the number of low frequency modes is high, while the application of pressure shifts the distribution to higher frequencies, indicative of a rigid network. The confocal images reveal the structural features associated with the low frequency modes, as well as their localization within the packing. These data are then compared with published results from numerical simulations.

  12. Overspill avalanching in a dense reservoir network

    PubMed Central

    Mamede, George L.; Araújo, Nuno A. M.; Schneider, Christian M.; de Araújo, José Carlos; Herrmann, Hans J.

    2012-01-01

    Sustainability of communities, agriculture, and industry is strongly dependent on an effective storage and supply of water resources. In some regions the economic growth has led to a level of water demand that can only be accomplished through efficient reservoir networks. Such infrastructures are not always planned at larger scale but rather made by farmers according to their local needs of irrigation during droughts. Based on extensive data from the upper Jaguaribe basin, one of the world’s largest system of reservoirs, located in the Brazilian semiarid northeast, we reveal that surprisingly it self-organizes into a scale-free network exhibiting also a power-law in the distribution of the lakes and avalanches of discharges. With a new self-organized-criticality-type model we manage to explain the novel critical exponents. Implementing a flow model we are able to reproduce the measured overspill evolution providing a tool for catastrophe mitigation and future planning. PMID:22529343

  13. A Graph theoretical approach to study the organization of the cortical networks during different mathematical tasks.

    PubMed

    Klados, Manousos A; Kanatsouli, Kassia; Antoniou, Ioannis; Babiloni, Fabio; Tsirka, Vassiliki; Bamidis, Panagiotis D; Micheloyannis, Sifis

    2013-01-01

    The two core systems of mathematical processing (subitizing and retrieval) as well as their functionality are already known and published. In this study we have used graph theory to compare the brain network organization of these two core systems in the cortical layer during difficult calculations. We have examined separately all the EEG frequency bands in healthy young individuals and we found that the network organization at rest, as well as during mathematical tasks has the characteristics of Small World Networks for all the bands, which is the optimum organization required for efficient information processing. The different mathematical stimuli provoked changes in the graph parameters of different frequency bands, especially the low frequency bands. More specific, in Delta band the induced network increases it's local and global efficiency during the transition from subitizing to retrieval system, while results suggest that difficult mathematics provoke networks with higher cliquish organization due to more specific demands. The network of the Theta band follows the same pattern as before, having high nodal and remote organization during difficult mathematics. Also the spatial distribution of the network's weights revealed more prominent connections in frontoparietal regions, revealing the working memory load due to the engagement of the retrieval system. The cortical networks of the alpha brainwaves were also more efficient, both locally and globally, during difficult mathematics, while the fact that alpha's network was more dense on the frontparietal regions as well, reveals the engagement of the retrieval system again. Concluding, this study gives more evidences regarding the interaction of the two core systems, exploiting the produced functional networks of the cerebral cortex, especially for the difficult mathematics.

  14. Empirical Bayes conditional independence graphs for regulatory network recovery.

    PubMed

    Mahdi, Rami; Madduri, Abishek S; Wang, Guoqing; Strulovici-Barel, Yael; Salit, Jacqueline; Hackett, Neil R; Crystal, Ronald G; Mezey, Jason G

    2012-08-01

    Computational inference methods that make use of graphical models to extract regulatory networks from gene expression data can have difficulty reconstructing dense regions of a network, a consequence of both computational complexity and unreliable parameter estimation when sample size is small. As a result, identification of hub genes is of special difficulty for these methods. We present a new algorithm, Empirical Light Mutual Min (ELMM), for large network reconstruction that has properties well suited for recovery of graphs with high-degree nodes. ELMM reconstructs the undirected graph of a regulatory network using empirical Bayes conditional independence testing with a heuristic relaxation of independence constraints in dense areas of the graph. This relaxation allows only one gene of a pair with a putative relation to be aware of the network connection, an approach that is aimed at easing multiple testing problems associated with recovering densely connected structures. Using in silico data, we show that ELMM has better performance than commonly used network inference algorithms including GeneNet, ARACNE, FOCI, GENIE3 and GLASSO. We also apply ELMM to reconstruct a network among 5492 genes expressed in human lung airway epithelium of healthy non-smokers, healthy smokers and individuals with chronic obstructive pulmonary disease assayed using microarrays. The analysis identifies dense sub-networks that are consistent with known regulatory relationships in the lung airway and also suggests novel hub regulatory relationships among a number of genes that play roles in oxidative stress and secretion. Software for running ELMM is made available at http://mezeylab.cb.bscb.cornell.edu/Software.aspx. ramimahdi@yahoo.com or jgm45@cornell.edu Supplementary data are available at Bioinformatics online.

  15. Extensive excitatory network interactions shape temporal processing of communication signals in a model sensory system.

    PubMed

    Ma, Xiaofeng; Kohashi, Tsunehiko; Carlson, Bruce A

    2013-07-01

    Many sensory brain regions are characterized by extensive local network interactions. However, we know relatively little about the contribution of this microcircuitry to sensory coding. Detailed analyses of neuronal microcircuitry are usually performed in vitro, whereas sensory processing is typically studied by recording from individual neurons in vivo. The electrosensory pathway of mormyrid fish provides a unique opportunity to link in vitro studies of synaptic physiology with in vivo studies of sensory processing. These fish communicate by actively varying the intervals between pulses of electricity. Within the midbrain posterior exterolateral nucleus (ELp), the temporal filtering of afferent spike trains establishes interval tuning by single neurons. We characterized pairwise neuronal connectivity among ELp neurons with dual whole cell recording in an in vitro whole brain preparation. We found a densely connected network in which single neurons influenced the responses of other neurons throughout the network. Similarly tuned neurons were more likely to share an excitatory synaptic connection than differently tuned neurons, and synaptic connections between similarly tuned neurons were stronger than connections between differently tuned neurons. We propose a general model for excitatory network interactions in which strong excitatory connections both reinforce and adjust tuning and weak excitatory connections make smaller modifications to tuning. The diversity of interval tuning observed among this population of neurons can be explained, in part, by each individual neuron receiving a different complement of local excitatory inputs.

  16. A measure of the denseness of a phylogenetic network. [by sequenced proteins from extant species

    NASA Technical Reports Server (NTRS)

    Holmquist, R.

    1978-01-01

    An objective measure of phylogenetic denseness is developed to examine various phylogenetic criteria: alpha- and beta-hemoglobin, myoglobin, cytochrome c, and the parvalbumin family. Attention is given to the number of nucleotide replacements separating homologous sequences, and to the topology of the network (in other words, to the qualitative nature of the network as defined by how closely the studied species are related). Applications include quantitative comparisons of species origin, relation, and rates of evolution.

  17. Topology of genetic associations between regional gray matter volume and intellectual ability: Evidence for a high capacity network.

    PubMed

    Bohlken, Marc M; Brouwer, Rachel M; Mandl, René C W; Hedman, Anna M; van den Heuvel, Martijn P; van Haren, Neeltje E M; Kahn, René S; Hulshoff Pol, Hilleke E

    2016-01-01

    Intelligence is associated with a network of distributed gray matter areas including the frontal and parietal higher association cortices and primary processing areas of the temporal and occipital lobes. Efficient information transfer between gray matter regions implicated in intelligence is thought to be critical for this trait to emerge. Genetic factors implicated in intelligence and gray matter may promote a high capacity for information transfer. Whether these genetic factors act globally or on local gray matter areas separately is not known. Brain maps of phenotypic and genetic associations between gray matter volume and intelligence were made using structural equation modeling of 3T MRI T1-weighted scans acquired in 167 adult twins of the newly acquired U-TWIN cohort. Subsequently, structural connectivity analyses (DTI) were performed to test the hypothesis that gray matter regions associated with intellectual ability form a densely connected core. Gray matter regions associated with intellectual ability were situated in the right prefrontal, bilateral temporal, bilateral parietal, right occipital and subcortical regions. Regions implicated in intelligence had high structural connectivity density compared to 10,000 reference networks (p=0.031). The genetic association with intelligence was for 39% explained by a genetic source unique to these regions (independent of total brain volume), this source specifically implicated the right supramarginal gyrus. Using a twin design, we show that intelligence is genetically represented in a spatially distributed and densely connected network of gray matter regions providing a high capacity infrastructure. Although genes for intelligence have overlap with those for total brain volume, we present evidence that there are genes for intelligence that act specifically on the subset of brain areas that form an efficient brain network. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Counting motifs in dynamic networks.

    PubMed

    Mukherjee, Kingshuk; Hasan, Md Mahmudul; Boucher, Christina; Kahveci, Tamer

    2018-04-11

    A network motif is a sub-network that occurs frequently in a given network. Detection of such motifs is important since they uncover functions and local properties of the given biological network. Finding motifs is however a computationally challenging task as it requires solving the costly subgraph isomorphism problem. Moreover, the topology of biological networks change over time. These changing networks are called dynamic biological networks. As the network evolves, frequency of each motif in the network also changes. Computing the frequency of a given motif from scratch in a dynamic network as the network topology evolves is infeasible, particularly for large and fast evolving networks. In this article, we design and develop a scalable method for counting the number of motifs in a dynamic biological network. Our method incrementally updates the frequency of each motif as the underlying network's topology evolves. Our experiments demonstrate that our method can update the frequency of each motif in orders of magnitude faster than counting the motif embeddings every time the network changes. If the network evolves more frequently, the margin with which our method outperforms the existing static methods, increases. We evaluated our method extensively using synthetic and real datasets, and show that our method is highly accurate(≥ 96%) and that it can be scaled to large dense networks. The results on real data demonstrate the utility of our method in revealing interesting insights on the evolution of biological processes.

  19. Locating overlapping dense subgraphs in gene (protein) association networks and predicting novel protein functional groups among these subgraphs

    NASA Astrophysics Data System (ADS)

    Palla, Gergely; Derenyi, Imre; Farkas, Illes J.; Vicsek, Tamas

    2006-03-01

    Most tasks in a cell are performed not by individual proteins, but by functional groups of proteins (either physically interacting with each other or associated in other ways). In gene (protein) association networks these groups show up as sets of densely connected nodes. In the yeast, Saccharomyces cerevisiae, known physically interacting groups of proteins (called protein complexes) strongly overlap: the total number of proteins contained by these complexes by far underestimates the sum of their sizes (2750 vs. 8932). Thus, most functional groups of proteins, both physically interacting and other, are likely to share many of their members with other groups. However, current algorithms searching for dense groups of nodes in networks usually exclude overlaps. With the aim to discover both novel functions of individual proteins and novel protein functional groups we combine in protein association networks (i) a search for overlapping dense subgraphs based on the Clique Percolation Method (CPM) (Palla, G., et.al. Nature 435, 814-818 (2005), http://angel.elte.hu/clustering), which explicitly allows for overlaps among the groups, and (ii) a verification and characterization of the identified groups of nodes (proteins) with the help of standard annotation databases listing known functions.

  20. Extracting Communities from Complex Networks by the k-Dense Method

    NASA Astrophysics Data System (ADS)

    Saito, Kazumi; Yamada, Takeshi; Kazama, Kazuhiro

    To understand the structural and functional properties of large-scale complex networks, it is crucial to efficiently extract a set of cohesive subnetworks as communities. There have been proposed several such community extraction methods in the literature, including the classical k-core decomposition method and, more recently, the k-clique based community extraction method. The k-core method, although computationally efficient, is often not powerful enough for uncovering a detailed community structure and it produces only coarse-grained and loosely connected communities. The k-clique method, on the other hand, can extract fine-grained and tightly connected communities but requires a substantial amount of computational load for large-scale complex networks. In this paper, we present a new notion of a subnetwork called k-dense, and propose an efficient algorithm for extracting k-dense communities. We applied our method to the three different types of networks assembled from real data, namely, from blog trackbacks, word associations and Wikipedia references, and demonstrated that the k-dense method could extract communities almost as efficiently as the k-core method, while the qualities of the extracted communities are comparable to those obtained by the k-clique method.

  1. Challenges to social capacity building in flood-affected areas of southern Poland

    NASA Astrophysics Data System (ADS)

    Działek, J.; Biernacki, W.; Bokwa, A.

    2013-10-01

    Various aspects of beliefs, behaviour and expectations of at-risk populations were analysed in four case study localities in southern Poland that were affected by flooding in 1997 and 2001. They represent localities of different sizes and are characterised by different paths of historical development. Two of them are deep-rooted communities with dense, strong family and neighbourhood ties, while the other two experienced an almost total replacement of their population due to decisions taken after World War II and still suffer from less developed social networks. Historical events also resulted in the disruption of local memories of flooding and transmission of knowledge about natural hazards. A questionnaire survey was conducted in late autumn 2006, followed by structured telephone interviews and focus group interviews in spring 2008. The results of the survey and interviews were analysed with reference to the social capacity framework and its five dimensions: knowledge, motivational, network, economic and governance capacities. Network capacities, that is resources of bonding and bridging social capital, were considered a key notion when analysing and interpreting the results. The differences in the local resources and abilities available in each of the localities to prepare a response to natural hazards were revealed. Consequently, challenges faced in the process of building and strengthening social capacity were identified as well as ways to address these challenges. It was concluded that there are general trends and tendencies that need to be considered in risk management strategies, however the different starting points of each case study community calls for different means and approaches, as well as producing somewhat different expected outcomes.

  2. Functional connectivity changes detected with magnetoencephalography after mild traumatic brain injury

    PubMed Central

    Dimitriadis, Stavros I.; Zouridakis, George; Rezaie, Roozbeh; Babajani-Feremi, Abbas; Papanicolaou, Andrew C.

    2015-01-01

    Mild traumatic brain injury (mTBI) may affect normal cognition and behavior by disrupting the functional connectivity networks that mediate efficient communication among brain regions. In this study, we analyzed brain connectivity profiles from resting state Magnetoencephalographic (MEG) recordings obtained from 31 mTBI patients and 55 normal controls. We used phase-locking value estimates to compute functional connectivity graphs to quantify frequency-specific couplings between sensors at various frequency bands. Overall, normal controls showed a dense network of strong local connections and a limited number of long-range connections that accounted for approximately 20% of all connections, whereas mTBI patients showed networks characterized by weak local connections and strong long-range connections that accounted for more than 60% of all connections. Comparison of the two distinct general patterns at different frequencies using a tensor representation for the connectivity graphs and tensor subspace analysis for optimal feature extraction showed that mTBI patients could be separated from normal controls with 100% classification accuracy in the alpha band. These encouraging findings support the hypothesis that MEG-based functional connectivity patterns may be used as biomarkers that can provide more accurate diagnoses, help guide treatment, and monitor effectiveness of intervention in mTBI. PMID:26640764

  3. A Graph Theoretical Approach to Study the Organization of the Cortical Networks during Different Mathematical Tasks

    PubMed Central

    Klados, Manousos A.; Kanatsouli, Kassia; Antoniou, Ioannis; Babiloni, Fabio; Tsirka, Vassiliki; Bamidis, Panagiotis D.; Micheloyannis, Sifis

    2013-01-01

    The two core systems of mathematical processing (subitizing and retrieval) as well as their functionality are already known and published. In this study we have used graph theory to compare the brain network organization of these two core systems in the cortical layer during difficult calculations. We have examined separately all the EEG frequency bands in healthy young individuals and we found that the network organization at rest, as well as during mathematical tasks has the characteristics of Small World Networks for all the bands, which is the optimum organization required for efficient information processing. The different mathematical stimuli provoked changes in the graph parameters of different frequency bands, especially the low frequency bands. More specific, in Delta band the induced network increases it’s local and global efficiency during the transition from subitizing to retrieval system, while results suggest that difficult mathematics provoke networks with higher cliquish organization due to more specific demands. The network of the Theta band follows the same pattern as before, having high nodal and remote organization during difficult mathematics. Also the spatial distribution of the network’s weights revealed more prominent connections in frontoparietal regions, revealing the working memory load due to the engagement of the retrieval system. The cortical networks of the alpha brainwaves were also more efficient, both locally and globally, during difficult mathematics, while the fact that alpha’s network was more dense on the frontparietal regions as well, reveals the engagement of the retrieval system again. Concluding, this study gives more evidences regarding the interaction of the two core systems, exploiting the produced functional networks of the cerebral cortex, especially for the difficult mathematics. PMID:23990992

  4. Analyzing milestoning networks for molecular kinetics: definitions, algorithms, and examples.

    PubMed

    Viswanath, Shruthi; Kreuzer, Steven M; Cardenas, Alfredo E; Elber, Ron

    2013-11-07

    Network representations are becoming increasingly popular for analyzing kinetic data from techniques like Milestoning, Markov State Models, and Transition Path Theory. Mapping continuous phase space trajectories into a relatively small number of discrete states helps in visualization of the data and in dissecting complex dynamics to concrete mechanisms. However, not only are molecular networks derived from molecular dynamics simulations growing in number, they are also getting increasingly complex, owing partly to the growth in computer power that allows us to generate longer and better converged trajectories. The increased complexity of the networks makes simple interpretation and qualitative insight of the molecular systems more difficult to achieve. In this paper, we focus on various network representations of kinetic data and algorithms to identify important edges and pathways in these networks. The kinetic data can be local and partial (such as the value of rate coefficients between states) or an exact solution to kinetic equations for the entire system (such as the stationary flux between vertices). In particular, we focus on the Milestoning method that provides fluxes as the main output. We proposed Global Maximum Weight Pathways as a useful tool for analyzing molecular mechanism in Milestoning networks. A closely related definition was made in the context of Transition Path Theory. We consider three algorithms to find Global Maximum Weight Pathways: Recursive Dijkstra's, Edge-Elimination, and Edge-List Bisection. The asymptotic efficiency of the algorithms is analyzed and numerical tests on finite networks show that Edge-List Bisection and Recursive Dijkstra's algorithms are most efficient for sparse and dense networks, respectively. Pathways are illustrated for two examples: helix unfolding and membrane permeation. Finally, we illustrate that networks based on local kinetic information can lead to incorrect interpretation of molecular mechanisms.

  5. Group Velocity Dispersion Curves from Wigner-Ville Distributions

    NASA Astrophysics Data System (ADS)

    Lloyd, Simon; Bokelmann, Goetz; Sucic, Victor

    2013-04-01

    With the widespread adoption of ambient noise tomography, and the increasing number of local earthquakes recorded worldwide due to dense seismic networks and many very dense temporary experiments, we consider it worthwhile to evaluate alternative Methods to measure surface wave group velocity dispersions curves. Moreover, the increased computing power of even a simple desktop computer makes it feasible to routinely use methods other than the typically employed multiple filtering technique (MFT). To that end we perform tests with synthetic and observed seismograms using the Wigner-Ville distribution (WVD) frequency time analysis, and compare dispersion curves measured with WVD and MFT with each other. Initial results suggest WVD to be at least as good as MFT at measuring dispersion, albeit at a greater computational expense. We therefore need to investigate if, and under which circumstances, WVD yields better dispersion curves than MFT, before considering routinely applying the method. As both MFT and WVD generally work well for teleseismic events and at longer periods, we explore how well the WVD method performs at shorter periods and for local events with smaller epicentral distances. Such dispersion information could potentially be beneficial for improving velocity structure resolution within the crust.

  6. Predicting protein complexes using a supervised learning method combined with local structural information.

    PubMed

    Dong, Yadong; Sun, Yongqi; Qin, Chao

    2018-01-01

    The existing protein complex detection methods can be broadly divided into two categories: unsupervised and supervised learning methods. Most of the unsupervised learning methods assume that protein complexes are in dense regions of protein-protein interaction (PPI) networks even though many true complexes are not dense subgraphs. Supervised learning methods utilize the informative properties of known complexes; they often extract features from existing complexes and then use the features to train a classification model. The trained model is used to guide the search process for new complexes. However, insufficient extracted features, noise in the PPI data and the incompleteness of complex data make the classification model imprecise. Consequently, the classification model is not sufficient for guiding the detection of complexes. Therefore, we propose a new robust score function that combines the classification model with local structural information. Based on the score function, we provide a search method that works both forwards and backwards. The results from experiments on six benchmark PPI datasets and three protein complex datasets show that our approach can achieve better performance compared with the state-of-the-art supervised, semi-supervised and unsupervised methods for protein complex detection, occasionally significantly outperforming such methods.

  7. A characterization of the coupled evolution of grain fabric and pore space using complex networks: Pore connectivity and optimized flows in the presence of shear bands

    NASA Astrophysics Data System (ADS)

    Russell, Scott; Walker, David M.; Tordesillas, Antoinette

    2016-03-01

    A framework for the multiscale characterization of the coupled evolution of the solid grain fabric and its associated pore space in dense granular media is developed. In this framework, a pseudo-dual graph transformation of the grain contact network produces a graph of pores which can be readily interpreted as a pore space network. Survivability, a new metric succinctly summarizing the connectivity of the solid grain and pore space networks, measures material robustness. The size distribution and the connectivity of pores can be characterized quantitatively through various network properties. Assortativity characterizes the pore space with respect to the parity of the number of particles enclosing the pore. Multiscale clusters of odd parity versus even parity contact cycles alternate spatially along the shear band: these represent, respectively, local jamming and unjamming regions that continually switch positions in time throughout the failure regime. Optimal paths, established using network shortest paths in favor of large pores, provide clues on preferential paths for interstitial matter transport. In systems with higher rolling resistance at contacts, less tortuous shortest paths thread through larger pores in shear bands. Notably the structural patterns uncovered in the pore space suggest that more robust models of interstitial pore flow through deforming granular systems require a proper consideration of the evolution of in situ shear band and fracture patterns - not just globally, but also inside these localized failure zones.

  8. Dense Matching Comparison Between Census and a Convolutional Neural Network Algorithm for Plant Reconstruction

    NASA Astrophysics Data System (ADS)

    Xia, Y.; Tian, J.; d'Angelo, P.; Reinartz, P.

    2018-05-01

    3D reconstruction of plants is hard to implement, as the complex leaf distribution highly increases the difficulty level in dense matching. Semi-Global Matching has been successfully applied to recover the depth information of a scene, but may perform variably when different matching cost algorithms are used. In this paper two matching cost computation algorithms, Census transform and an algorithm using a convolutional neural network, are tested for plant reconstruction based on Semi-Global Matching. High resolution close-range photogrammetric images from a handheld camera are used for the experiment. The disparity maps generated based on the two selected matching cost methods are comparable with acceptable quality, which shows the good performance of Census and the potential of neural networks to improve the dense matching.

  9. Concentrations of hormones, pharmaceuticals and other micropollutants in groundwater affected by septic systems in New England and New York.

    PubMed

    Phillips, P J; Schubert, C; Argue, D; Fisher, I; Furlong, E T; Foreman, W; Gray, J; Chalmers, A

    2015-04-15

    Septic-system discharges can be an important source of micropollutants (including pharmaceuticals and endocrine active compounds) to adjacent groundwater and surface water systems. Groundwater samples were collected from well networks tapping glacial till in New England (NE) and sandy surficial aquifer New York (NY) during one sampling round in 2011. The NE network assesses the effect of a single large septic system that receives discharge from an extended health care facility for the elderly. The NY network assesses the effect of many small septic systems used seasonally on a densely populated portion of Fire Island. The data collected from these two networks indicate that hydrogeologic and demographic factors affect micropollutant concentrations in these systems. The highest micropollutant concentrations from the NE network were present in samples collected from below the leach beds and in a well downgradient of the leach beds. Total concentrations for personal care/domestic use compounds, pharmaceutical compounds and plasticizer compounds generally ranged from 1 to over 20 μg/L in the NE network samples. High tris(2-butoxyethyl phosphate) plasticizer concentrations in wells beneath and downgradient of the leach beds (>20 μg/L) may reflect the presence of this compound in cleaning agents at the extended health-care facility. The highest micropollutant concentrations for the NY network were present in the shoreline wells and reflect groundwater that is most affected by septic system discharges. One of the shoreline wells had personal care/domestic use, pharmaceutical, and plasticizer concentrations ranging from 0.4 to 5.7 μg/L. Estradiol equivalency quotient concentrations were also highest in a shoreline well sample (3.1 ng/L). Most micropollutant concentrations increase with increasing specific conductance and total nitrogen concentrations for shoreline well samples. These findings suggest that septic systems serving institutional settings and densely populated areas in coastal settings may be locally important sources of micropollutants to adjacent aquifer and marine systems. Published by Elsevier B.V.

  10. Strain field reconstruction on composite spars based on the identification of equivalent load conditions

    NASA Astrophysics Data System (ADS)

    Airoldi, A.; Marelli, L.; Bettini, P.; Sala, G.; Apicella, A.

    2017-04-01

    Technologies based on optical fibers provide the possibility of installing relatively dense networks of sensors that can perform effective strain sensing functions during the operational life of structures. A contemporary trend is the increasing adoption of composite materials in aerospace constructions, which leads to structural architectures made of large monolithic elements. The paper is aimed at showing the feasibility of a detailed reconstruction of the strain field in a composite spar, which is based on the development of reference finite element models and the identification of load modes, consisting of a parameterized set of forces. The procedure is described and assessed in ideal conditions. Thereafter, a surrogate model is used to obtain realistic representation of the data acquired by the strain sensing system, so that the developed procedure is evaluated considering local effects due to the introduction of loads, significant modelling discrepancy in the development of the reference model and the presence of measurement noise. Results show that the method can obtain a robust and quite detailed reconstruction of strain fields, even at the level of local distributions, of the internal forces in the spars and of the displacements, by identifying an equivalent set of load parameters. Finally, the trade-off between the number of sensor and the accuracy, and the optimal position of the sensors for a given maximum number of sensors is evaluated by performing a multi-objective optimization, thus showing that even a relative dense network of externally applied sensors can be used to achieve good quality results.

  11. A likely universal model of fracture scaling and its consequence for crustal hydromechanics

    NASA Astrophysics Data System (ADS)

    Davy, P.; Le Goc, R.; Darcel, C.; Bour, O.; de Dreuzy, J. R.; Munier, R.

    2010-10-01

    We argue that most fracture systems are spatially organized according to two main regimes: a "dilute" regime for the smallest fractures, where they can grow independently of each other, and a "dense" regime for which the density distribution is controlled by the mechanical interactions between fractures. We derive a density distribution for the dense regime by acknowledging that, statistically, fractures do not cross a larger one. This very crude rule, which expresses the inhibiting role of large fractures against smaller ones but not the reverse, actually appears be a very strong control on the eventual fracture density distribution since it results in a self-similar distribution whose exponents and density term are fully determined by the fractal dimension D and a dimensionless parameter γ that encompasses the details of fracture correlations and orientations. The range of values for D and γ appears to be extremely limited, which makes this model quite universal. This theory is supported by quantitative data on either fault or joint networks. The transition between the dilute and dense regimes occurs at about a few tenths of a kilometer for faults systems and a few meters for joints. This remarkable difference between both processes is likely due to a large-scale control (localization) of the fracture growth for faulting that does not exist for jointing. Finally, we discuss the consequences of this model on the flow properties and show that these networks are in a critical state, with a large number of nodes carrying a large amount of flow.

  12. Automatic Ship Detection in Remote Sensing Images from Google Earth of Complex Scenes Based on Multiscale Rotation Dense Feature Pyramid Networks

    NASA Astrophysics Data System (ADS)

    Yang, Xue; Sun, Hao; Fu, Kun; Yang, Jirui; Sun, Xian; Yan, Menglong; Guo, Zhi

    2018-01-01

    Ship detection has been playing a significant role in the field of remote sensing for a long time but it is still full of challenges. The main limitations of traditional ship detection methods usually lie in the complexity of application scenarios, the difficulty of intensive object detection and the redundancy of detection region. In order to solve such problems above, we propose a framework called Rotation Dense Feature Pyramid Networks (R-DFPN) which can effectively detect ship in different scenes including ocean and port. Specifically, we put forward the Dense Feature Pyramid Network (DFPN), which is aimed at solving the problem resulted from the narrow width of the ship. Compared with previous multi-scale detectors such as Feature Pyramid Network (FPN), DFPN builds the high-level semantic feature-maps for all scales by means of dense connections, through which enhances the feature propagation and encourages the feature reuse. Additionally, in the case of ship rotation and dense arrangement, we design a rotation anchor strategy to predict the minimum circumscribed rectangle of the object so as to reduce the redundant detection region and improve the recall. Furthermore, we also propose multi-scale ROI Align for the purpose of maintaining the completeness of semantic and spatial information. Experiments based on remote sensing images from Google Earth for ship detection show that our detection method based on R-DFPN representation has a state-of-the-art performance.

  13. Class network routing

    DOEpatents

    Bhanot, Gyan [Princeton, NJ; Blumrich, Matthias A [Ridgefield, CT; Chen, Dong [Croton On Hudson, NY; Coteus, Paul W [Yorktown Heights, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Steinmacher-Burow, Burkhard D [Mount Kisco, NY; Takken, Todd E [Mount Kisco, NY; Vranas, Pavlos M [Bedford Hills, NY

    2009-09-08

    Class network routing is implemented in a network such as a computer network comprising a plurality of parallel compute processors at nodes thereof. Class network routing allows a compute processor to broadcast a message to a range (one or more) of other compute processors in the computer network, such as processors in a column or a row. Normally this type of operation requires a separate message to be sent to each processor. With class network routing pursuant to the invention, a single message is sufficient, which generally reduces the total number of messages in the network as well as the latency to do a broadcast. Class network routing is also applied to dense matrix inversion algorithms on distributed memory parallel supercomputers with hardware class function (multicast) capability. This is achieved by exploiting the fact that the communication patterns of dense matrix inversion can be served by hardware class functions, which results in faster execution times.

  14. A Novel Characterization of Amalgamated Networks in Natural Systems

    PubMed Central

    Barranca, Victor J.; Zhou, Douglas; Cai, David

    2015-01-01

    Densely-connected networks are prominent among natural systems, exhibiting structural characteristics often optimized for biological function. To reveal such features in highly-connected networks, we introduce a new network characterization determined by a decomposition of network-connectivity into low-rank and sparse components. Based on these components, we discover a new class of networks we define as amalgamated networks, which exhibit large functional groups and dense connectivity. Analyzing recent experimental findings on cerebral cortex, food-web, and gene regulatory networks, we establish the unique importance of amalgamated networks in fostering biologically advantageous properties, including rapid communication among nodes, structural stability under attacks, and separation of network activity into distinct functional modules. We further observe that our network characterization is scalable with network size and connectivity, thereby identifying robust features significant to diverse physical systems, which are typically undetectable by conventional characterizations of connectivity. We expect that studying the amalgamation properties of biological networks may offer new insights into understanding their structure-function relationships. PMID:26035066

  15. Jammed Clusters and Non-locality in Dense Granular Flows

    NASA Astrophysics Data System (ADS)

    Kharel, Prashidha; Rognon, Pierre

    We investigate the micro-mechanisms underpinning dense granular flow behaviour from a series of DEM simulations of pure shear flows of dry grains. We observe the development of transient clusters of jammed particles within the flow. Typical size of such clusters is found to scale with the inertial number with a power law that is similar to the scaling of shear-rate profile relaxation lengths observed previously. Based on the simple argument that transient clusters of size l exist in the dense flow regime, the formulation of steady state condition for non-homogeneous shear flow results in a general non-local relation, which is similar in form to the non-local relation conjectured for soft glassy flows. These findings suggest the formation of jammed clusters to be the key micro-mechanism underpinning non-local behaviour in dense granular flows. Particles and Grains Laboratory, School of Civil Engineering, The University of Sydney, Sydney, NSW 2006, Australia.

  16. Chimera-like states in structured heterogeneous networks

    NASA Astrophysics Data System (ADS)

    Li, Bo; Saad, David

    2017-04-01

    Chimera-like states are manifested through the coexistence of synchronous and asynchronous dynamics and have been observed in various systems. To analyze the role of network topology in giving rise to chimera-like states, we study a heterogeneous network model comprising two groups of nodes, of high and low degrees of connectivity. The architecture facilitates the analysis of the system, which separates into a densely connected coherent group of nodes, perturbed by their sparsely connected drifting neighbors. It describes a synchronous behavior of the densely connected group and scaling properties of the induced perturbations.

  17. HID-1 controls formation of large dense core vesicles by influencing cargo sorting and trans-Golgi network acidification

    PubMed Central

    Hummer, Blake H.; de Leeuw, Noah F.; Burns, Christian; Chen, Lan; Joens, Matthew S.; Hosford, Bethany; Fitzpatrick, James A. J.; Asensio, Cedric S.

    2017-01-01

    Large dense core vesicles (LDCVs) mediate the regulated release of neuropeptides and peptide hormones. They form at the trans-Golgi network (TGN), where their soluble content aggregates to form a dense core, but the mechanisms controlling biogenesis are still not completely understood. Recent studies have implicated the peripheral membrane protein HID-1 in neuropeptide sorting and insulin secretion. Using CRISPR/Cas9, we generated HID-1 KO rat neuroendocrine cells, and we show that the absence of HID-1 results in specific defects in peptide hormone and monoamine storage and regulated secretion. Loss of HID-1 causes a reduction in the number of LDCVs and affects their morphology and biochemical properties, due to impaired cargo sorting and dense core formation. HID-1 KO cells also exhibit defects in TGN acidification together with mislocalization of the Golgi-enriched vacuolar H+-ATPase subunit isoform a2. We propose that HID-1 influences early steps in LDCV formation by controlling dense core formation at the TGN. PMID:29074564

  18. Local community detection as pattern restoration by attractor dynamics of recurrent neural networks.

    PubMed

    Okamoto, Hiroshi

    2016-08-01

    Densely connected parts in networks are referred to as "communities". Community structure is a hallmark of a variety of real-world networks. Individual communities in networks form functional modules of complex systems described by networks. Therefore, finding communities in networks is essential to approaching and understanding complex systems described by networks. In fact, network science has made a great deal of effort to develop effective and efficient methods for detecting communities in networks. Here we put forward a type of community detection, which has been little examined so far but will be practically useful. Suppose that we are given a set of source nodes that includes some (but not all) of "true" members of a particular community; suppose also that the set includes some nodes that are not the members of this community (i.e., "false" members of the community). We propose to detect the community from this "imperfect" and "inaccurate" set of source nodes using attractor dynamics of recurrent neural networks. Community detection by the proposed method can be viewed as restoration of the original pattern from a deteriorated pattern, which is analogous to cue-triggered recall of short-term memory in the brain. We demonstrate the effectiveness of the proposed method using synthetic networks and real social networks for which correct communities are known. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. An Ad-hoc Satellite Network to Measure Filamentary Current Structures in the Auroral Zone

    NASA Astrophysics Data System (ADS)

    Nabong, C.; Fritz, T. A.; Semeter, J. L.

    2014-12-01

    An ad-hoc cubesat-based satellite network project known as ANDESITE is under development at Boston University. It aims to develop a dense constellation of easy-to-use, rapidly-deployable low-cost wireless sensor nodes in space. The objectives of the project are threefold: 1) Demonstrate viability of satellite based sensor networks by deploying an 8-node miniature sensor network to study the filamentation of the field aligned currents in the auroral zones of the Earth's magnetosphere. 2) Test the scalability of proposed protocols, including localization techniques, tracking, data aggregation, and routing, for a 3 dimensional wireless sensor network using a "flock" of nodes. 3) Construct a 6U Cube-sat running the Android OS as an integrated constellation manager, data mule and sensor node deplorer. This small network of sensor nodes will resolve current densities at different spatial resolutions in the near-Earth magnetosphere using measurements from magnetometers with 1-nT sensitivities and 0.2 nT/√Hz self-noise. Mapping of these currents will provide new constraints for models of auroral particle acceleration, wave-particle interactions, ionospheric destabilization, and other kinetic processes operating in the low-beta plasma of the near Earth magnetosphere.

  20. Nanoscopic imaging of thick heterogeneous soft-matter structures in aqueous solution

    PubMed Central

    Bartsch, Tobias F.; Kochanczyk, Martin D.; Lissek, Emanuel N.; Lange, Janina R.; Florin, Ernst-Ludwig

    2016-01-01

    Precise nanometre-scale imaging of soft structures at room temperature poses a major challenge to any type of microscopy because fast thermal fluctuations lead to significant motion blur if the position of the structure is measured with insufficient bandwidth. Moreover, precise localization is also affected by optical heterogeneities, which lead to deformations in the imaged local geometry, the severity depending on the sample and its thickness. Here we introduce quantitative thermal noise imaging, a three-dimensional scanning probe technique, as a method for imaging soft, optically heterogeneous and porous matter with submicroscopic spatial resolution in aqueous solution. By imaging both individual microtubules and collagen fibrils in a network, we demonstrate that structures can be localized with a precision of ∼10 nm and that their local dynamics can be quantified with 50 kHz bandwidth and subnanometre amplitudes. Furthermore, we show how image distortions caused by optically dense structures can be corrected for. PMID:27596919

  1. Social Networks, Social Circles, and Job Satisfaction.

    ERIC Educational Resources Information Center

    Hurlbert, Jeanne S.

    1991-01-01

    Tests the hypothesis that social networks serve as a social resource that effects job satisfaction through the provision of social support. Argues that three types of networks are likely to affect job satisfaction: dense networks, social circles composed of co-workers, and kin-centered networks. (JOW)

  2. Dense deconvolution net: Multi path fusion and dense deconvolution for high resolution skin lesion segmentation.

    PubMed

    He, Xinzi; Yu, Zhen; Wang, Tianfu; Lei, Baiying; Shi, Yiyan

    2018-01-01

    Dermoscopy imaging has been a routine examination approach for skin lesion diagnosis. Accurate segmentation is the first step for automatic dermoscopy image assessment. The main challenges for skin lesion segmentation are numerous variations in viewpoint and scale of skin lesion region. To handle these challenges, we propose a novel skin lesion segmentation network via a very deep dense deconvolution network based on dermoscopic images. Specifically, the deep dense layer and generic multi-path Deep RefineNet are combined to improve the segmentation performance. The deep representation of all available layers is aggregated to form the global feature maps using skip connection. Also, the dense deconvolution layer is leveraged to capture diverse appearance features via the contextual information. Finally, we apply the dense deconvolution layer to smooth segmentation maps and obtain final high-resolution output. Our proposed method shows the superiority over the state-of-the-art approaches based on the public available 2016 and 2017 skin lesion challenge dataset and achieves the accuracy of 96.0% and 93.9%, which obtained a 6.0% and 1.2% increase over the traditional method, respectively. By utilizing Dense Deconvolution Net, the average time for processing one testing images with our proposed framework was 0.253 s.

  3. Plate motions and deformations from geologic and geodetic data

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas H.

    1989-01-01

    The very long baseline interferometry (VLBI) measurements made in the western U.S. since 1979 provide discrete samples of the temporal and spatial deformation field. The interpretation of the VLBI derived rates of deformation requires an examination of geologic information and more densely sampled ground based geodetic data. Triangulation and trilateration data measured on two regional networks, one in the central Mojave Desert and one in the Coast Ranges east of the San Andreas fault, were processed. At the spatial scales spanned by these local geodetic networks, auxiliary geologic and geophysical data were utilized to examine the relation between measured incremental strain and the accommodation of strain seen in local geologic structures, strain release in earthquakes, and principal stress directions inferred from in situ measurements. VLBI data was also processed from stations distributed across the Pacific-North America plate boundary zone in the western U.S. The VLBI data were used to constrain the integrated rate of deformation across portions of the continental plate boundary in California and to provide a tectonic framework to interpret regional geodetic and geologic studies.

  4. Deploying Monitoring Trails for Fault Localization in All- Optical Networks and Radio-over-Fiber Passive Optical Networks

    NASA Astrophysics Data System (ADS)

    Maamoun, Khaled Mohamed

    Fault localization is the process of realizing the true source of a failure from a set of collected failure notifications. Isolating failure recovery within the network optical domain is necessary to resolve alarm storm problems. The introduction of the monitoring trail (m-trail) has been proven to deliver better performance by employing monitoring resources in a form of optical trails - a monitoring framework that generalizes all the previously reported counterparts. In this dissertation, the m-trail design is explored and a focus is given to the analysis on using m-trails with established lightpaths to achieve fault localization. This process saves network resources by reducing the number of the m-trails required for fault localization and therefore the number of wavelengths used in the network. A novel approach based on Geographic Midpoint Technique, an adapted version of the Chinese Postman's Problem (CPP) solution and an adapted version of the Traveling Salesman's Problem (TSP) solution algorithms is introduced. The desirable features of network architectures and the enabling of innovative technologies for delivering future millimeter-waveband (mm-WB) Radio-over-Fiber (RoF) systems for wireless services integrated in a Dense Wavelength Division Multiplexing (DWDM) is proposed in this dissertation. For the conceptual illustration, a DWDM RoF system with channel spacing of 12.5 GHz is considered. The mm-WB Radio Frequency (RF) signal is obtained at each Optical Network Unit (ONU) by simultaneously using optical heterodyning photo detection between two optical carriers. The generated RF modulated signal has a frequency of 12.5 GHz. This RoF system is easy, cost-effective, resistant to laser phase noise and also reduces maintenance needs, in principle. A revision of related RoF network proposals and experiments is also included. A number of models for Passive Optical Networks (PON)/ RoF-PON that combine both innovative and existing ideas along with a number of solutions for m-trail design problem of these models are proposed. The comparison between these models uses the expected survivability function which proved that these models are liable to be implemented in the new and existing PON/ RoF-PON systems. This dissertation is followed by recommendation of possible directions for future research in this area.

  5. Mobility-Aware Caching and Computation Offloading in 5G Ultra-Dense Cellular Networks

    PubMed Central

    Chen, Min; Hao, Yixue; Qiu, Meikang; Song, Jeungeun; Wu, Di; Humar, Iztok

    2016-01-01

    Recent trends show that Internet traffic is increasingly dominated by content, which is accompanied by the exponential growth of traffic. To cope with this phenomena, network caching is introduced to utilize the storage capacity of diverse network devices. In this paper, we first summarize four basic caching placement strategies, i.e., local caching, Device-to-Device (D2D) caching, Small cell Base Station (SBS) caching and Macrocell Base Station (MBS) caching. However, studies show that so far, much of the research has ignored the impact of user mobility. Therefore, taking the effect of the user mobility into consideration, we proposes a joint mobility-aware caching and SBS density placement scheme (MS caching). In addition, differences and relationships between caching and computation offloading are discussed. We present a design of a hybrid computation offloading and support it with experimental results, which demonstrate improved performance in terms of energy cost. Finally, we discuss the design of an incentive mechanism by considering network dynamics, differentiated user’s quality of experience (QoE) and the heterogeneity of mobile terminals in terms of caching and computing capabilities. PMID:27347975

  6. Metal-superconductor transition in low-dimensional superconducting clusters embedded in two-dimensional electron systems

    NASA Astrophysics Data System (ADS)

    Bucheli, D.; Caprara, S.; Castellani, C.; Grilli, M.

    2013-02-01

    Motivated by recent experimental data on thin film superconductors and oxide interfaces, we propose a random-resistor network apt to describe the occurrence of a metal-superconductor transition in a two-dimensional electron system with disorder on the mesoscopic scale. We consider low-dimensional (e.g. filamentary) structures of a superconducting cluster embedded in the two-dimensional network and we explore the separate effects and the interplay of the superconducting structure and of the statistical distribution of local critical temperatures. The thermal evolution of the resistivity is determined by a numerical calculation of the random-resistor network and, for comparison, a mean-field approach called effective medium theory (EMT). Our calculations reveal the relevance of the distribution of critical temperatures for clusters with low connectivity. In addition, we show that the presence of spatial correlations requires a modification of standard EMT to give qualitative agreement with the numerical results. Applying the present approach to an LaTiO3/SrTiO3 oxide interface, we find that the measured resistivity curves are compatible with a network of spatially dense but loosely connected superconducting islands.

  7. Mobility-Aware Caching and Computation Offloading in 5G Ultra-Dense Cellular Networks.

    PubMed

    Chen, Min; Hao, Yixue; Qiu, Meikang; Song, Jeungeun; Wu, Di; Humar, Iztok

    2016-06-25

    Recent trends show that Internet traffic is increasingly dominated by content, which is accompanied by the exponential growth of traffic. To cope with this phenomena, network caching is introduced to utilize the storage capacity of diverse network devices. In this paper, we first summarize four basic caching placement strategies, i.e., local caching, Device-to-Device (D2D) caching, Small cell Base Station (SBS) caching and Macrocell Base Station (MBS) caching. However, studies show that so far, much of the research has ignored the impact of user mobility. Therefore, taking the effect of the user mobility into consideration, we proposes a joint mobility-aware caching and SBS density placement scheme (MS caching). In addition, differences and relationships between caching and computation offloading are discussed. We present a design of a hybrid computation offloading and support it with experimental results, which demonstrate improved performance in terms of energy cost. Finally, we discuss the design of an incentive mechanism by considering network dynamics, differentiated user's quality of experience (QoE) and the heterogeneity of mobile terminals in terms of caching and computing capabilities.

  8. Physician social networks and variation in prostate cancer treatment in three cities.

    PubMed

    Pollack, Craig Evan; Weissman, Gary; Bekelman, Justin; Liao, Kaijun; Armstrong, Katrina

    2012-02-01

    To examine whether physician social networks are associated with variation in treatment for men with localized prostate cancer. 2004-2005 Surveillance, Epidemiology and End Results-Medicare data from three cities. We identified the physicians who care for patients with prostate cancer and created physician networks for each city based on shared patients. Subgroups of urologists were defined as physicians with dense connections with one another via shared patients. Subgroups varied widely in their unadjusted rates of prostatectomy and the racial/ethnic and socioeconomic composition of their patients. There was an association between urologist subgroup and receipt of prostatectomy. In city A, four subgroups had significantly lower odds of prostatectomy compared with the subgroup with the highest rates of prostatectomy after adjusting for patient clinical and sociodemographic characteristics. Similarly, in cities B and C, subgroups had significantly lower odds of prostatectomy compared with the baseline. Using claims data to identify physician networks may provide an insight into the observed variation in treatment patterns for men with prostate cancer. © Health Research and Educational Trust.

  9. Deterministic quantum dense coding networks

    NASA Astrophysics Data System (ADS)

    Roy, Saptarshi; Chanda, Titas; Das, Tamoghna; Sen(De), Aditi; Sen, Ujjwal

    2018-07-01

    We consider the scenario of deterministic classical information transmission between multiple senders and a single receiver, when they a priori share a multipartite quantum state - an attempt towards building a deterministic dense coding network. Specifically, we prove that in the case of two or three senders and a single receiver, generalized Greenberger-Horne-Zeilinger (gGHZ) states are not beneficial for sending classical information deterministically beyond the classical limit, except when the shared state is the GHZ state itself. On the other hand, three- and four-qubit generalized W (gW) states with specific parameters as well as the four-qubit Dicke states can provide a quantum advantage of sending the information in deterministic dense coding. Interestingly however, numerical simulations in the three-qubit scenario reveal that the percentage of states from the GHZ-class that are deterministic dense codeable is higher than that of states from the W-class.

  10. Real-time indoor monitoring system based on wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Wu, Zhengzhong; Liu, Zilin; Huang, Xiaowei; Liu, Jun

    2008-10-01

    Wireless sensor networks (WSN) greatly extend our ability to monitor and control the physical world. It can collaborate and aggregate a huge amount of sensed data to provide continuous and spatially dense observation of environment. The control and monitoring of indoor atmosphere conditions represents an important task with the aim of ensuring suitable working and living spaces to people. However, the comprehensive air quality, which includes monitoring of humidity, temperature, gas concentrations, etc., is not so easy to be monitored and controlled. In this paper an indoor WSN monitoring system was developed. In the system several sensors such as temperature sensor, humidity sensor, gases sensor, were built in a RF transceiver board for monitoring indoor environment conditions. The indoor environmental monitoring parameters can be transmitted by wireless to database server and then viewed throw PC or PDA accessed to the local area networks by administrators. The system, which was also field-tested and showed a reliable and robust characteristic, is significant and valuable to people.

  11. A likely-universal model of fracture density and scaling justified by both data and theory. Consequences for crustal hydro-mechanics

    NASA Astrophysics Data System (ADS)

    Davy, P.; Darcel, C.; Le Goc, R.; Bour, O.

    2011-12-01

    We discuss the parameters that control fracture density on the Earth. We argue that most of fracture systems are spatially organized according to two main regimes. The smallest fractures can grow independently of each others, defining a "dilute" regime controlled by nuclei occurrence rate and individual fracture growth law. Above a certain length, fractures stop growing due to mechanical interactions between fractures. For this "dense" regime, we derive the fracture density distribution by acknowledging that, statistically, fractures do not cross a larger one. This very crude rule, which expresses the inhibiting role of large fractures against smaller ones but not the reverse, actually appears be a very strong control on the eventual fracture density distribution since it results in a self-similar distribution whose exponents and density term are fully determined by the fractal dimension D and a dimensionless parameter γ that encompasses the details of fracture correlations and orientations. The range of values for D and γ appears to be extremely limited, which makes this model quite universal. This theory is supported by quantitative data on either fault or joint networks. The transition between the dilute and dense regimes occurs at about a few tenths of kilometers for faults systems, and a few meters for joints. This remarkable difference between both processes is likely due to a large-scale control (localization) of the fracture growth for faulting that does not exist for jointing. Finally, we discuss the consequences of this model on both flow and mechanical properties. In the dense regime, networks appears to be very close to a critical state.

  12. Pairwise graphical models for structural health monitoring with dense sensor arrays

    NASA Astrophysics Data System (ADS)

    Mohammadi Ghazi, Reza; Chen, Justin G.; Büyüköztürk, Oral

    2017-09-01

    Through advances in sensor technology and development of camera-based measurement techniques, it has become affordable to obtain high spatial resolution data from structures. Although measured datasets become more informative by increasing the number of sensors, the spatial dependencies between sensor data are increased at the same time. Therefore, appropriate data analysis techniques are needed to handle the inference problem in presence of these dependencies. In this paper, we propose a novel approach that uses graphical models (GM) for considering the spatial dependencies between sensor measurements in dense sensor networks or arrays to improve damage localization accuracy in structural health monitoring (SHM) application. Because there are always unobserved damaged states in this application, the available information is insufficient for learning the GMs. To overcome this challenge, we propose an approximated model that uses the mutual information between sensor measurements to learn the GMs. The study is backed by experimental validation of the method on two test structures. The first is a three-story two-bay steel model structure that is instrumented by MEMS accelerometers. The second experimental setup consists of a plate structure and a video camera to measure the displacement field of the plate. Our results show that considering the spatial dependencies by the proposed algorithm can significantly improve damage localization accuracy.

  13. High resolution depth reconstruction from monocular images and sparse point clouds using deep convolutional neural network

    NASA Astrophysics Data System (ADS)

    Dimitrievski, Martin; Goossens, Bart; Veelaert, Peter; Philips, Wilfried

    2017-09-01

    Understanding the 3D structure of the environment is advantageous for many tasks in the field of robotics and autonomous vehicles. From the robot's point of view, 3D perception is often formulated as a depth image reconstruction problem. In the literature, dense depth images are often recovered deterministically from stereo image disparities. Other systems use an expensive LiDAR sensor to produce accurate, but semi-sparse depth images. With the advent of deep learning there have also been attempts to estimate depth by only using monocular images. In this paper we combine the best of the two worlds, focusing on a combination of monocular images and low cost LiDAR point clouds. We explore the idea that very sparse depth information accurately captures the global scene structure while variations in image patches can be used to reconstruct local depth to a high resolution. The main contribution of this paper is a supervised learning depth reconstruction system based on a deep convolutional neural network. The network is trained on RGB image patches reinforced with sparse depth information and the output is a depth estimate for each pixel. Using image and point cloud data from the KITTI vision dataset we are able to learn a correspondence between local RGB information and local depth, while at the same time preserving the global scene structure. Our results are evaluated on sequences from the KITTI dataset and our own recordings using a low cost camera and LiDAR setup.

  14. Generation of dense statistical connectomes from sparse morphological data

    PubMed Central

    Egger, Robert; Dercksen, Vincent J.; Udvary, Daniel; Hege, Hans-Christian; Oberlaender, Marcel

    2014-01-01

    Sensory-evoked signal flow, at cellular and network levels, is primarily determined by the synaptic wiring of the underlying neuronal circuitry. Measurements of synaptic innervation, connection probabilities and subcellular organization of synaptic inputs are thus among the most active fields of research in contemporary neuroscience. Methods to measure these quantities range from electrophysiological recordings over reconstructions of dendrite-axon overlap at light-microscopic levels to dense circuit reconstructions of small volumes at electron-microscopic resolution. However, quantitative and complete measurements at subcellular resolution and mesoscopic scales to obtain all local and long-range synaptic in/outputs for any neuron within an entire brain region are beyond present methodological limits. Here, we present a novel concept, implemented within an interactive software environment called NeuroNet, which allows (i) integration of sparsely sampled (sub)cellular morphological data into an accurate anatomical reference frame of the brain region(s) of interest, (ii) up-scaling to generate an average dense model of the neuronal circuitry within the respective brain region(s) and (iii) statistical measurements of synaptic innervation between all neurons within the model. We illustrate our approach by generating a dense average model of the entire rat vibrissal cortex, providing the required anatomical data, and illustrate how to measure synaptic innervation statistically. Comparing our results with data from paired recordings in vitro and in vivo, as well as with reconstructions of synaptic contact sites at light- and electron-microscopic levels, we find that our in silico measurements are in line with previous results. PMID:25426033

  15. IrisDenseNet: Robust Iris Segmentation Using Densely Connected Fully Convolutional Networks in the Images by Visible Light and Near-Infrared Light Camera Sensors

    PubMed Central

    Arsalan, Muhammad; Naqvi, Rizwan Ali; Kim, Dong Seop; Nguyen, Phong Ha; Owais, Muhammad; Park, Kang Ryoung

    2018-01-01

    The recent advancements in computer vision have opened new horizons for deploying biometric recognition algorithms in mobile and handheld devices. Similarly, iris recognition is now much needed in unconstraint scenarios with accuracy. These environments make the acquired iris image exhibit occlusion, low resolution, blur, unusual glint, ghost effect, and off-angles. The prevailing segmentation algorithms cannot cope with these constraints. In addition, owing to the unavailability of near-infrared (NIR) light, iris recognition in visible light environment makes the iris segmentation challenging with the noise of visible light. Deep learning with convolutional neural networks (CNN) has brought a considerable breakthrough in various applications. To address the iris segmentation issues in challenging situations by visible light and near-infrared light camera sensors, this paper proposes a densely connected fully convolutional network (IrisDenseNet), which can determine the true iris boundary even with inferior-quality images by using better information gradient flow between the dense blocks. In the experiments conducted, five datasets of visible light and NIR environments were used. For visible light environment, noisy iris challenge evaluation part-II (NICE-II selected from UBIRIS.v2 database) and mobile iris challenge evaluation (MICHE-I) datasets were used. For NIR environment, the institute of automation, Chinese academy of sciences (CASIA) v4.0 interval, CASIA v4.0 distance, and IIT Delhi v1.0 iris datasets were used. Experimental results showed the optimal segmentation of the proposed IrisDenseNet and its excellent performance over existing algorithms for all five datasets. PMID:29748495

  16. IrisDenseNet: Robust Iris Segmentation Using Densely Connected Fully Convolutional Networks in the Images by Visible Light and Near-Infrared Light Camera Sensors.

    PubMed

    Arsalan, Muhammad; Naqvi, Rizwan Ali; Kim, Dong Seop; Nguyen, Phong Ha; Owais, Muhammad; Park, Kang Ryoung

    2018-05-10

    The recent advancements in computer vision have opened new horizons for deploying biometric recognition algorithms in mobile and handheld devices. Similarly, iris recognition is now much needed in unconstraint scenarios with accuracy. These environments make the acquired iris image exhibit occlusion, low resolution, blur, unusual glint, ghost effect, and off-angles. The prevailing segmentation algorithms cannot cope with these constraints. In addition, owing to the unavailability of near-infrared (NIR) light, iris recognition in visible light environment makes the iris segmentation challenging with the noise of visible light. Deep learning with convolutional neural networks (CNN) has brought a considerable breakthrough in various applications. To address the iris segmentation issues in challenging situations by visible light and near-infrared light camera sensors, this paper proposes a densely connected fully convolutional network (IrisDenseNet), which can determine the true iris boundary even with inferior-quality images by using better information gradient flow between the dense blocks. In the experiments conducted, five datasets of visible light and NIR environments were used. For visible light environment, noisy iris challenge evaluation part-II (NICE-II selected from UBIRIS.v2 database) and mobile iris challenge evaluation (MICHE-I) datasets were used. For NIR environment, the institute of automation, Chinese academy of sciences (CASIA) v4.0 interval, CASIA v4.0 distance, and IIT Delhi v1.0 iris datasets were used. Experimental results showed the optimal segmentation of the proposed IrisDenseNet and its excellent performance over existing algorithms for all five datasets.

  17. Local Groups Online: Political Learning and Participation

    NASA Astrophysics Data System (ADS)

    Kavanaugh, Andrea; Zin, Thanthan; Schmitz, Joseph; Rosson, Mary Beth; Kim, B. Joon; Carroll, John M.

    Voluntary associations serve crucial roles in local communities and within our larger democratic society. They aggregate shared interests, collective will, and cultivate civic competencies that nurture democratic participation. People active in multiple local groups frequently act as opinion leaders and create “weak” social ties across groups. In Blacksburg and surrounding Montgomery County, Virginia, the Blacksburg Electronic Village (BEV) community computer network has helped to foster nearly universal Internet penetration. Set in this dense Internet context, the present study investigated whether and how personal affiliation with local groups enhanced political participation in this high information and communication technology environment. This paper presents findings from longitudinal survey data which indicate that as individuals’ uses of information technology within local formal groups increase over time, so do their levels and types of involvement in the group. Furthermore, these increases most often appear among people who serve as opinion leaders and maintain weak social ties in their communities. Individuals’ changes in community participation, interests and activities, and Internet use suggest ways in which group members act upon political motivations and interests across various group types.

  18. Air quality measurements and monitoring network in the Republic of Latvia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grinman, A.; Lyulko, J.; Dubrovskaja, R.

    1996-12-31

    The territory of Latvia is covered with a wide environmental monitoring network, that falls under 2 main categories: (1) regional network featuring the region and involved in international monitoring programs, including EMEP, GAW, IM; (2) state network providing for local pollution monitoring of the atmosphere (19 posts), precipitation (5 station) and radioactivity (46 station). In 1994, measurements were made at 20 stationary posts located in Daugavpils (2), Jekabpils (2), Jurmala, (2), Liepaja (2), Nigrande (1), Olaine (1), Rezekne (1), Riga (5), Valn-dera (2), Ventspils (2). This atmospheric air observation network covers mostly towns densely populated with industrial objects and othermore » pollutant emitting sources. Thus, the observation programs encompass measurements of pollutants that have higher concentrations in the ambient air. Results indicate that the annual pollution dynamics are closely connected with concentration fluctuations in the seasons. The sulfur dioxide and nitrogen dioxide concentrations increased during the heating season in Jekabpils, Jurmala and Valmiera, i.e., in the town that have many small heating installations. The data obtained allow to trace a dependence of measurement values upon the location of the observational posts vis-a-vis the pollutant emitting sources.« less

  19. Basic data features and results from a spatially dense seismic array on the San Jacinto fault zone

    NASA Astrophysics Data System (ADS)

    Ben-Zion, Yehuda; Vernon, Frank L.; Ozakin, Yaman; Zigone, Dimitri; Ross, Zachary E.; Meng, Haoran; White, Malcolm; Reyes, Juan; Hollis, Dan; Barklage, Mitchell

    2015-07-01

    We discuss several outstanding aspects of seismograms recorded during >4 weeks by a spatially dense Nodal array, straddling the damage zone of the San Jacinto fault in southern California, and some example results. The waveforms contain numerous spikes and bursts of high-frequency waves (up to the recorded 200 Hz) produced in part by minute failure events in the shallow crust. The high spatial density of the array facilitates the detection of 120 small local earthquakes in a single day, most of which not detected by the surrounding ANZA and regional southern California networks. Beamforming results identify likely ongoing cultural noise sources dominant in the frequency range 1-10 Hz and likely ongoing earthquake sources dominant in the frequency range 20-40 Hz. Matched-field processing and back-projection of seismograms provide alternate event location. The median noise levels during the experiment at different stations, waves generated by Betsy gunshots, and wavefields from nearby earthquakes point consistently to several structural units across the fault. Seismic trapping structure and local sedimentary basin produce localized motion amplification and stronger attenuation than adjacent regions. Cross correlations of high-frequency noise recorded at closely spaced stations provide a structural image of the subsurface material across the fault zone. The high spatial density and broad frequency range of the data can be used for additional high resolution studies of structure and source properties in the shallow crust.

  20. Spatial Variability of AERONET Aerosol Optical Properties and Satellite Data in South Korea during NASA DRAGON-Asia Campaign.

    PubMed

    Lee, Hyung Joo; Son, Youn-Suk

    2016-04-05

    We investigated spatial variability in aerosol optical properties, including aerosol optical depth (AOD), fine-mode fraction (FMF), and single scattering albedo (SSA), observed at 21 Aerosol Robotic Network (AERONET) sites and satellite remote sensing data in South Korea during the spring of 2012. These dense AERONET networks established in a National Aeronautics and Space Administration (NASA) field campaign enabled us to examine the spatially detailed aerosol size distribution and composition as well as aerosol levels. The springtime particle air quality was characterized by high background aerosol levels and high contributions of coarse-mode aerosols to total aerosols. We found that between-site correlations and coefficient of divergence for AOD and FMF strongly relied on the distance between sites, particularly in the south-north direction. Higher AOD was related to higher population density and lower distance from highways, and the aerosol size distribution and composition reflected source-specific characteristics. The ratios of satellite NO2 to AOD, which indicate the relative contributions of local combustion sources to aerosol levels, represented higher local contributions in metropolitan Seoul and Pusan. Our study demonstrates that the aerosol levels were determined by both local and regional pollution and that the relative contributions of these pollutions to aerosols generated spatial heterogeneity in the particle air quality.

  1. Building Ventilation as an Effective Disease Intervention Strategy in a Dense Indoor Contact Network in an Ideal City.

    PubMed

    Gao, Xiaolei; Wei, Jianjian; Lei, Hao; Xu, Pengcheng; Cowling, Benjamin J; Li, Yuguo

    2016-01-01

    Emerging diseases may spread rapidly through dense and large urban contact networks, especially they are transmitted by the airborne route, before new vaccines can be made available. Airborne diseases may spread rapidly as people visit different indoor environments and are in frequent contact with others. We constructed a simple indoor contact model for an ideal city with 7 million people and 3 million indoor spaces, and estimated the probability and duration of contact between any two individuals during one day. To do this, we used data from actual censuses, social behavior surveys, building surveys, and ventilation measurements in Hong Kong to define eight population groups and seven indoor location groups. Our indoor contact model was integrated with an existing epidemiological Susceptible, Exposed, Infectious, and Recovered (SEIR) model to estimate disease spread and with the Wells-Riley equation to calculate local infection risks, resulting in an integrated indoor transmission network model. This model was used to estimate the probability of an infected individual infecting others in the city and to study the disease transmission dynamics. We predicted the infection probability of each sub-population under different ventilation systems in each location type in the case of a hypothetical airborne disease outbreak, which is assumed to have the same natural history and infectiousness as smallpox. We compared the effectiveness of controlling ventilation in each location type with other intervention strategies. We conclude that increasing building ventilation rates using methods such as natural ventilation in classrooms, offices, and homes is a relatively effective strategy for airborne diseases in a large city.

  2. Development of an event search and download system for analyzing waveform data observed at seafloor seismic network, DONET

    NASA Astrophysics Data System (ADS)

    Takaesu, M.; Horikawa, H.; Sueki, K.; Kamiya, S.; Nakamura, T.; Nakano, M.; Takahashi, N.; Sonoda, A.; Tsuboi, S.

    2014-12-01

    Mega-thrust earthquakes are anticipated to occur in the Nankai Trough in southwest Japan. In the source areas, we installed seafloor seismic network, DONET (Dense Ocean-floor Network System for Earthquake and Tsunamis), in 2010 in order to monitor seismicity, crustal deformations, and tsunamis. DONET system consists of totally 20 stations, which is composed of six kinds of sensors; strong-motion and broadband seismometers, quartz and differential pressure gauges, hydrophone, and thermometer. The stations are densely distributed with an average spatial interval of 15-20 km and cover near coastal areas to the trench axis. Observed data are transferred to a land station through a fiber-optical cable and then to JAMSTEC (Japan Agency for Marine-Earth Science and Technology) data management center through a private network in real time. The data are based on WIN32 format in the private network and finally archived in SEED format in the management center to combine waveform data with related metadata. We are developing a web-based application system to easily download seismic waveform data of DONET. In this system, users can select 20 Hz broadband (BH type) and 200 Hz strong-motion (EH type) data and download them in SEED. Users can also search events from the options of time periods, magnitude, source area and depth in a GUI platform. Event data are produced referring to event catalogues from USGS and JMA (Japan Meteorological Agency). The thresholds of magnitudes for the production are M6 for far-field and M4 for local events using the USGS and JMA lists, respectively. Available data lengths depend on magnitudes and epicentral distances. In this presentation, we briefly introduce DONET stations and then show our developed application system. We open DONET data through the system and want them to be widely recognized so that many users analyze. We also discuss next plans for further developments of the system.

  3. ClueNet: Clustering a temporal network based on topological similarity rather than denseness.

    PubMed

    Crawford, Joseph; Milenković, Tijana

    2018-01-01

    Network clustering is a very popular topic in the network science field. Its goal is to divide (partition) the network into groups (clusters or communities) of "topologically related" nodes, where the resulting topology-based clusters are expected to "correlate" well with node label information, i.e., metadata, such as cellular functions of genes/proteins in biological networks, or age or gender of people in social networks. Even for static data, the problem of network clustering is complex. For dynamic data, the problem is even more complex, due to an additional dimension of the data-their temporal (evolving) nature. Since the problem is computationally intractable, heuristic approaches need to be sought. Existing approaches for dynamic network clustering (DNC) have drawbacks. First, they assume that nodes should be in the same cluster if they are densely interconnected within the network. We hypothesize that in some applications, it might be of interest to cluster nodes that are topologically similar to each other instead of or in addition to requiring the nodes to be densely interconnected. Second, they ignore temporal information in their early steps, and when they do consider this information later on, they do so implicitly. We hypothesize that capturing temporal information earlier in the clustering process and doing so explicitly will improve results. We test these two hypotheses via our new approach called ClueNet. We evaluate ClueNet against six existing DNC methods on both social networks capturing evolving interactions between individuals (such as interactions between students in a high school) and biological networks capturing interactions between biomolecules in the cell at different ages. We find that ClueNet is superior in over 83% of all evaluation tests. As more real-world dynamic data are becoming available, DNC and thus ClueNet will only continue to gain importance.

  4. Dense modifiable interconnections utilizing photorefractive volume holograms

    NASA Astrophysics Data System (ADS)

    Psaltis, Demetri; Qiao, Yong

    1990-11-01

    This report describes an experimental two-layer optical neural network built at Caltech. The system uses photorefractive volume holograms to implement dense, modifiable synaptic interconnections and liquid crystal light valves (LCVS) to perform nonlinear thresholding operations. Kanerva's Sparse, Distributed Memory was implemented using this network and its ability to recognize handwritten character-alphabet (A-Z) has been demonstrated experimentally. According to Kanerva's model, the first layer has fixed, random weights of interconnections and the second layer is trained by sum-of-outer-products rule. After training, the recognition rates of the network on the training set (104 patterns) and test set (520 patterns) are 100 and 50 percent, respectively.

  5. Enterprise virtual private network (VPN) with dense wavelength division multiplexing (DWDM) design

    NASA Astrophysics Data System (ADS)

    Carranza, Aparicio

    An innovative computer simulation and modeling tool for metropolitan area optical data communication networks is presented. These models address the unique requirements of Virtual Private Networks for enterprise data centers, which may comprise a mixture of protocols including ESCON, FICON, Fibre Channel, Sysplex protocols (ETR, CLO, ISC); and other links interconnected over dark fiber using Dense Wavelength Division Multiplexing (DWDM). Our models have the capability of designing a network with minimal inputs; to compute optical link budgets; suggest alternative configurations; and also optimize the design based on user-defined performance metrics. The models make use of Time Division Multiplexing (TDM) wherever possible for lower data rate traffics. Simulation results for several configurations are presented and they have been validated by means of experiments conducted on the IBM enterprise network testbed in Poughkeepsie, N.Y.

  6. Mesonet Programs - Needs and Best Practices

    NASA Astrophysics Data System (ADS)

    Usher, J.; Doherty, J.

    2010-09-01

    Authors: Jeremy Usher Managing Director, Europe WeatherBug® Professional John Doherty Senior Vice President Sales & Marketing WeatherBug® Professional There are many well documented and compelling needs for significant improvements in mesoscale meteorological observations throughout many parts of the world. This is evidenced by the fact that the vast majority of severe weather impacts and related life, property and economic losses are associated with mesoscale events such as tornados, thunderstorms, fronts, squall lines, etc. Additionally, the looming impacts of climate change are likely to vary substantially on a regional basis requiring more detailed information on a finer scale. Hence, development of comprehensive densely spaced observing systems can establish the critical information repositories needed to improve: short- and medium-term weather and wind forecasting down to local scales, climate monitoring on a regional basis, as well as decision support capabilities including plume dispersion modeling and air quality forecasting, to name a few. It is imperative that governmental/public/private/academic partnerships are formed to leverage the collective expertise, assets and technological know-how of each sector. Collaboration of this type is particularly germane given that many existing mesonets (weather networks) have been deployed by local organizations with local considerations in mind. These stakeholders maintain the capacity to react quickly and efficiently and are best positioned to recommend future network evolution within their domains. Additionally, coordination will go a long way toward avoiding duplication of effort and promote both a robust private sector and wise expenditure of public funds. This presentation will outline the major building blocks of a mesonet program and discuss best practices for a multi-tiered, multi-faceted "network of networks" approach that maximizes the value derived from leveraging existing assets and serves multiple needs. On-going activities within the U.S. National Mesonet Program will be highlighted.

  7. Shell-corona microgels from double interpenetrating networks.

    PubMed

    Rudyak, Vladimir Yu; Gavrilov, Alexey A; Kozhunova, Elena Yu; Chertovich, Alexander V

    2018-04-18

    Polymer microgels with a dense outer shell offer outstanding features as universal carriers for different guest molecules. In this paper, microgels formed by an interpenetrating network comprised of collapsed and swollen subnetworks are investigated using dissipative particle dynamics (DPD) computer simulations, and it is found that such systems can form classical core-corona structures, shell-corona structures, and core-shell-corona structures, depending on the subchain length and molecular mass of the system. The core-corona structures consisting of a dense core and soft corona are formed at small microgel sizes when the subnetworks are able to effectively separate in space. The most interesting shell-corona structures consist of a soft cavity in a dense shell surrounded with a loose corona, and are found at intermediate gel sizes; the area of their existence depends on the subchain length and the corresponding mesh size. At larger molecular masses the collapsing network forms additional cores inside the soft cavity, leading to the core-shell-corona structure.

  8. Efficient Usage of Dense GNSS Networks in Central Europe for the Visualization and Investigation of Ionospheric TEC Variations

    PubMed Central

    Zanimonskiy, Yevgen M.; Yampolski, Yuri M.; Figurski, Mariusz

    2017-01-01

    The technique of the orthogonal projection of ionosphere electronic content variations for mapping total electron content (TEC) allows us to visualize ionospheric irregularities. For the reconstruction of global ionospheric characteristics, numerous global navigation satellite system (GNSS) receivers located in different regions of the Earth are used as sensors. We used dense GNSS networks in central Europe to detect and investigate a special type of plasma inhomogeneities, called travelling ionospheric disturbances (TID). Such use of GNSS sensors allows us to reconstruct the main TID parameters, such as spatial dimensions, velocities, and directions of their movement. The paper gives examples of the restoration of dynamic characteristics of ionospheric irregularities for quiet and disturbed geophysical conditions. Special attention is paid to the dynamics of ionospheric disturbances stimulated by the magnetic storms of two St. Patrick’s Days (17 March 2013 and 2015). Additional opportunities for the remote sensing of the ionosphere with the use of dense regional networks of GNSS receiving sensors have been noted too. PMID:28994718

  9. Efficient Usage of Dense GNSS Networks in Central Europe for the Visualization and Investigation of Ionospheric TEC Variations.

    PubMed

    Nykiel, Grzegorz; Zanimonskiy, Yevgen M; Yampolski, Yuri M; Figurski, Mariusz

    2017-10-10

    The technique of the orthogonal projection of ionosphere electronic content variations for mapping total electron content (TEC) allows us to visualize ionospheric irregularities. For the reconstruction of global ionospheric characteristics, numerous global navigation satellite system (GNSS) receivers located in different regions of the Earth are used as sensors. We used dense GNSS networks in central Europe to detect and investigate a special type of plasma inhomogeneities, called travelling ionospheric disturbances (TID). Such use of GNSS sensors allows us to reconstruct the main TID parameters, such as spatial dimensions, velocities, and directions of their movement. The paper gives examples of the restoration of dynamic characteristics of ionospheric irregularities for quiet and disturbed geophysical conditions. Special attention is paid to the dynamics of ionospheric disturbances stimulated by the magnetic storms of two St. Patrick's Days (17 March 2013 and 2015). Additional opportunities for the remote sensing of the ionosphere with the use of dense regional networks of GNSS receiving sensors have been noted too.

  10. Mechano-genetic DNA hydrogels as a simple, reconstituted model to probe the effect of active fluctuations on gene transcription

    NASA Astrophysics Data System (ADS)

    Nguyen, Dan; Saleh, Omar

    Active fluctuations - non-directed fluctuations attributable, not to thermal energy, but to non-equilibrium processes - are thought to influence biology by increasing the diffusive motion of biomolecules. Dense DNA regions within cells (i.e. chromatin) are expected to exhibit such phenomena, as they are cross-linked networks that continually experience propagating forces arising from dynamic cellular activity. Additional agitation within these gene-encoding DNA networks could have potential genetic consequences. By changing the local mobility of transcriptional machinery and regulatory proteins towards/from their binding sites, and thereby influencing transcription rates, active fluctuations could prove to be a physical means of modulating gene expression. To begin probing this effect, we construct genetic DNA hydrogels, as a simple, reconstituted model of chromatin, and quantify transcriptional output from these hydrogels in the presence/absence of active fluctuations.

  11. The role of local stress perturbation on the simultaneous opening of orthogonal fractures

    NASA Astrophysics Data System (ADS)

    Boersma, Quinten; Hardebol, Nico; Barnhoorn, Auke; Bertotti, Giovanni; Drury, Martyn

    2016-04-01

    Orthogonal fracture networks (ladder-like networks) are arrangements that are commonly observed in outcrop studies. They form a particularly dense and well connected network which can play an important role in the effective permeability of tight hydrocarbon or geothermal reservoirs. One issue is the extent to which both the long systematic and smaller cross fractures can be simultaneously critically stressed under a given stress condition. Fractures in an orthogonal network form by opening mode-I displacements in which the main component is separation of the two fracture walls. This opening is driven by effective tensile stresses as the smallest principle stress acting perpendicular to the fracture wall, which accords with linear elastic fracture mechanics. What has been well recognized in previous field and modelling studies is how both the systematic fractures and perpendicular cross fractures require the minimum principle stress to act perpendicular to the fracture wall. Thus, these networks either require a rotation of the regional stress field or local perturbations in stress field. Using a mechanical finite element modelling software, a geological case of layer perpendicular systematic mode I opening fractures is generated. New in our study is that we not only address tensile stresses at the boundary, but also address models using pore fluid pressure. The local stress in between systematic fractures is then assessed in order to derive the probability and orientation of micro crack propagation using the theory of sub critical crack growth and Griffith's theory. Under effective tensile conditions, the results indicate that in between critically spaced systematic fractures, local effective tensile stresses flip. Therefore the orientation of the least principle stress will rotate 90°, hence an orthogonal fracture is more likely to form. Our new findings for models with pore fluid pressures instead of boundary tension show that the magnitude of effective tension in between systematic fractures is reduced but does not remove the occurring stress flip. However, putting effective tension on the boundaries will give overestimates in the reduction of the local effective tensile stress perpendicular to the larger systematic fractures and therefore the magnitude of the stress flip. In conclusion, both model approaches indicate that orthogonal fractures can form while experiencing one regional stress regime. This also means that under these specific loading and locally perturbed stress conditions both sets of orthogonal fractures stay open and can provide a pathway for fluid circulation.

  12. On the reliability of Quake-Catcher Network earthquake detections

    USGS Publications Warehouse

    Yildirim, Battalgazi; Cochran, Elizabeth S.; Chung, Angela I.; Christensen, Carl M.; Lawrence, Jesse F.

    2015-01-01

    Over the past two decades, there have been several initiatives to create volunteer‐based seismic networks. The Personal Seismic Network, proposed around 1990, used a short‐period seismograph to record earthquake waveforms using existing phone lines (Cranswick and Banfill, 1990; Cranswicket al., 1993). NetQuakes (Luetgert et al., 2010) deploys triaxial Micro‐Electromechanical Systems (MEMS) sensors in private homes, businesses, and public buildings where there is an Internet connection. Other seismic networks using a dense array of low‐cost MEMS sensors are the Community Seismic Network (Clayton et al., 2012; Kohler et al., 2013) and the Home Seismometer Network (Horiuchi et al., 2009). One main advantage of combining low‐cost MEMS sensors and existing Internet connection in public and private buildings over the traditional networks is the reduction in installation and maintenance costs (Koide et al., 2006). In doing so, it is possible to create a dense seismic network for a fraction of the cost of traditional seismic networks (D’Alessandro and D’Anna, 2013; D’Alessandro, 2014; D’Alessandro et al., 2014).

  13. Automatic data processing and analysis system for monitoring region around a planned nuclear power plant

    NASA Astrophysics Data System (ADS)

    Kortström, Jari; Tiira, Timo; Kaisko, Outi

    2016-03-01

    The Institute of Seismology of University of Helsinki is building a new local seismic network, called OBF network, around planned nuclear power plant in Northern Ostrobothnia, Finland. The network will consist of nine new stations and one existing station. The network should be dense enough to provide azimuthal coverage better than 180° and automatic detection capability down to ML -0.1 within a radius of 25 km from the site.The network construction work began in 2012 and the first four stations started operation at the end of May 2013. We applied an automatic seismic signal detection and event location system to a network of 13 stations consisting of the four new stations and the nearest stations of Finnish and Swedish national seismic networks. Between the end of May and December 2013 the network detected 214 events inside the predefined area of 50 km radius surrounding the planned nuclear power plant site. Of those detections, 120 were identified as spurious events. A total of 74 events were associated with known quarries and mining areas. The average location error, calculated as a difference between the announced location from environment authorities and companies and the automatic location, was 2.9 km. During the same time period eight earthquakes between magnitude range 0.1-1.0 occurred within the area. Of these seven could be automatically detected. The results from the phase 1 stations of the OBF network indicates that the planned network can achieve its goals.

  14. Insights into failed lexical retrieval from network science.

    PubMed

    Vitevitch, Michael S; Chan, Kit Ying; Goldstein, Rutherford

    2014-02-01

    Previous network analyses of the phonological lexicon (Vitevitch, 2008) observed a web-like structure that exhibited assortative mixing by degree: words with dense phonological neighborhoods tend to have as neighbors words that also have dense phonological neighborhoods, and words with sparse phonological neighborhoods tend to have as neighbors words that also have sparse phonological neighborhoods. Given the role that assortative mixing by degree plays in network resilience, we examined instances of real and simulated lexical retrieval failures in computer simulations, analysis of a slips-of-the-ear corpus, and three psycholinguistic experiments for evidence of this network characteristic in human behavior. The results of the various analyses support the hypothesis that the structure of words in the mental lexicon influences lexical processing. The implications of network science for current models of spoken word recognition, language processing, and cognitive psychology more generally are discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Insights into failed lexical retrieval from network science

    PubMed Central

    Vitevitch, Michael S.; Chan, Kit Ying; Goldstein, Rutherford

    2013-01-01

    Previous network analyses of the phonological lexicon (Vitevitch, 2008) observed a web-like structure that exhibited assortative mixing by degree: words with dense phonological neighborhoods tend to have as neighbors words that also have dense phonological neighborhoods, and words with sparse phonological neighborhoods tend to have as neighbors words that also have sparse phonological neighborhoods. Given the role that assortative mixing by degree plays in network resilience, we examined instances of real and simulated lexical retrieval failures in computer simulations, analysis of a slips-of-the-ear corpus, and three psycholinguistic experiments for evidence of this network characteristic in human behavior. The results of the various analyses support the hypothesis that the structure of words in the mental lexicon influences lexical processing. The implications of network science for current models of spoken word recognition, language processing, and cognitive psychology more generally are discussed. PMID:24269488

  16. Birmingham Urban Climate Laboratory (BUCL): Experiences, Challenges and Applications of an Urban Temperature Network

    NASA Astrophysics Data System (ADS)

    Muller, Catherine; Chapman, Lee; Young, Duick; Grimmond, Sue; Cai, Xiaoming

    2013-04-01

    The Birmingham Urban Climate Laboratory (BUCL) has recently been established by the University of Birmingham. BUCL is an in-situ, real-time urban network that will incorporate 3 nested networks - a wide-array of 25 weather stations, a dense array of 131 low-cost air temperature sensors and a fine-array of temperature sensor across the city-centre (50/km^2) - with the primary aim of monitoring air temperatures across a morphologically-heterogeneous urban conurbation for a variety of applications. During its installation there have been a number of challenges to overcome, including siting equipment in suitable urban locations, ensuring that the measurements were 'representative' of the local-scale climate, managing a large, near real-time data set and implementing QA/QC procedures. From these experiences, the establishment of a standardised urban meteorological network metadata protocol has been proposed in order to improve data quality, to ensure the end-user has access to all the supplementary information they would require for conducting valid analyses and to encourage the adequate recording and documentation of any changes to in-situ urban networks over time. This paper will provide an introduction to the BUCL in-situ network, give an overview of the challenges and experiences gained from its implementation, and finally discuss the proposed applications of the network, including its use in remote sensing observations of urban temperatures, as well as health and infrastructure applications.

  17. Tools to Perform Local Dense 3D Reconstruction of Shallow Water Seabed ‡

    PubMed Central

    Avanthey, Loïca; Beaudoin, Laurent; Gademer, Antoine; Roux, Michel

    2016-01-01

    Tasks such as distinguishing or identifying individual objects of interest require the production of dense local clouds at the scale of these individual objects of interest. Due to the physical and dynamic properties of an underwater environment, the usual dense matching algorithms must be rethought in order to be adaptive. These properties also imply that the scene must be observed at close range. Classic robotized acquisition systems are oversized for local studies in shallow water while the systematic acquisition of data is not guaranteed with divers. We address these two major issues through a multidisciplinary approach. To efficiently acquire on-demand stereoscopic pairs using simple logistics in small areas of shallow water, we devised an agile light-weight dedicated system which is easy to reproduce. To densely match two views in a reliable way, we devised a reconstruction algorithm that automatically accounts for the dynamics, variability and light absorption of the underwater environment. Field experiments in the Mediterranean Sea were used to assess the results. PMID:27196913

  18. Enzyme localization, crowding, and buffers collectively modulate diffusion-influenced signal transduction: Insights from continuum diffusion modeling

    PubMed Central

    Kekenes-Huskey, Peter M.; Eun, Changsun; McCammon, J. A.

    2015-01-01

    Biochemical reaction networks consisting of coupled enzymes connect substrate signaling events with biological function. Substrates involved in these reactions can be strongly influenced by diffusion “barriers” arising from impenetrable cellular structures and macromolecules, as well as interactions with biomolecules, especially within crowded environments. For diffusion-influenced reactions, the spatial organization of diffusion barriers arising from intracellular structures, non-specific crowders, and specific-binders (buffers) strongly controls the temporal and spatial reaction kinetics. In this study, we use two prototypical biochemical reactions, a Goodwin oscillator, and a reaction with a periodic source/sink term to examine how a diffusion barrier that partitions substrates controls reaction behavior. Namely, we examine how conditions representative of a densely packed cytosol, including reduced accessible volume fraction, non-specific interactions, and buffers, impede diffusion over nanometer length-scales. We find that diffusion barriers can modulate the frequencies and amplitudes of coupled diffusion-influenced reaction networks, as well as give rise to “compartments” of decoupled reactant populations. These effects appear to be intensified in the presence of buffers localized to the diffusion barrier. These findings have strong implications for the role of the cellular environment in tuning the dynamics of signaling pathways. PMID:26342355

  19. Geodetic measurement of deformation in California. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Sauber, Jeanne Marie

    1988-01-01

    The very long baseline interferometry (VLBI) measurements made in the western U.S. since 1979 as part of the NASA Crustal Dynamics Project provide discrete samples of the temporal and spatial deformation field. The interpretation of the VLBI-derived rates of deformation requires an examination of geologic information and more densely sampled ground-based geodetic data. In the first two of three related studies embodying this thesis triangulation and trilateration data measured on two regional networks are processed, one in the central Mojave Desert and one in the Coast Ranges east of the San Andreas fault. At the spatial scales spanned by these local geodetic networks, auxiliary geologic and geophysical data have been utilized to examine the relation between measured incremental strain and the accommodation of strain seen in local geological structures, strain release in earthquakes, and principal stress directions inferred from in situ measurements. In the third study, VLBI data from stations distributed across the Pacific - North American plate boundary zone in the western United States are processed. The VLBI data have been used to constrain the integrated rate of deformation across portions of the continental plate boundary in California and to provide a tectonic framework to interpret regional geodetic and geologic studies.

  20. Geodetic measurement of deformation in California. Ph.D. Thesis - Massachusetts Inst. of Technology

    NASA Technical Reports Server (NTRS)

    Sauber, Jeanne

    1989-01-01

    The very long baseline interferometry (VLBI) measurements made in the western U.S. since 1979 as part of the NASA Crustal Dynamics Project provide discrete samples of the temporal and spatial deformation field. The interpretation of the VLBI-derived rates of deformation requires an examination of geologic information and more densely sampled ground-based geodetic data. In the first two of three related studies, triangulation and trilateration data measured on two regional networks, one in the central Mojave Desert and one in the Coast Ranges east of the San Andreas fault, have been processed. At the spatial scales spanned by these local geodetic networks, auxiliary geologic and geophysical data have been utilized to examine the relation between measured incremental strain and the accommodation of strain seen in local geological structures, strain release in earthquakes, and principal stress directions inferred from in situ measurements. In a third study, the geocentric position vectors from a set of 77 VLBI experiments beginning in October 1982 have been used to estimate the tangential rate of change of station positions in the western U.S. in a North-America-Fixed reference frame.

  1. Communication, advice exchange and job satisfaction of nursing staff: a social network analyses of 35 long-term care units.

    PubMed

    van Beek, Adriana P A; Wagner, Cordula; Spreeuwenberg, Peter P M; Frijters, Dinnus H M; Ribbe, Miel W; Groenewegen, Peter P

    2011-06-01

    The behaviour of individuals is affected by the social networks in which they are embedded. Networks are also important for the diffusion of information and the influence of employees in organisations. Yet, at the moment little is known about the social networks of nursing staff in healthcare settings. This is the first study that investigates informal communication and advice networks of nursing staff in long-term care. We examine the structure of the networks, how they are related to the size of units and characteristics of nursing staff, and their relationship with job satisfaction. We collected social network data of 380 nursing staff of 35 units in group projects and psychogeriatric units in nursing homes and residential homes in the Netherlands. Communication and advice networks were analyzed in a social network application (UCINET), focusing on the number of contacts (density) between nursing staff on the units. We then studied the correlation between the density of networks, size of the units and characteristics of nursing staff. We used multilevel analyses to investigate the relationship between social networks and job satisfaction of nursing staff, taking characteristics of units and nursing staff into account. Both communication and advice networks were negatively related to the number of residents and the number of nursing staff of the units. Communication and advice networks were more dense when more staff worked part-time. Furthermore, density of communication networks was positively related to the age of nursing staff of the units. Multilevel analyses showed that job satisfaction differed significantly between individual staff members and units and was influenced by the number of nursing staff of the units. However, this relationship disappeared when density of communication networks was added to the model. Overall, communication and advice networks of nursing staff in long-term care are relatively dense. This fits with the high level of cooperation that is needed to provide good care to residents. Social networks are more dense in small units and are also shaped by characteristics of staff members. The results furthermore show that communication networks are important for staff's job satisfaction.

  2. Communication, advice exchange and job satisfaction of nursing staff: a social network analyses of 35 long-term care units

    PubMed Central

    2011-01-01

    Background The behaviour of individuals is affected by the social networks in which they are embedded. Networks are also important for the diffusion of information and the influence of employees in organisations. Yet, at the moment little is known about the social networks of nursing staff in healthcare settings. This is the first study that investigates informal communication and advice networks of nursing staff in long-term care. We examine the structure of the networks, how they are related to the size of units and characteristics of nursing staff, and their relationship with job satisfaction. Methods We collected social network data of 380 nursing staff of 35 units in group projects and psychogeriatric units in nursing homes and residential homes in the Netherlands. Communication and advice networks were analyzed in a social network application (UCINET), focusing on the number of contacts (density) between nursing staff on the units. We then studied the correlation between the density of networks, size of the units and characteristics of nursing staff. We used multilevel analyses to investigate the relationship between social networks and job satisfaction of nursing staff, taking characteristics of units and nursing staff into account. Results Both communication and advice networks were negatively related to the number of residents and the number of nursing staff of the units. Communication and advice networks were more dense when more staff worked part-time. Furthermore, density of communication networks was positively related to the age of nursing staff of the units. Multilevel analyses showed that job satisfaction differed significantly between individual staff members and units and was influenced by the number of nursing staff of the units. However, this relationship disappeared when density of communication networks was added to the model. Conclusions Overall, communication and advice networks of nursing staff in long-term care are relatively dense. This fits with the high level of cooperation that is needed to provide good care to residents. Social networks are more dense in small units and are also shaped by characteristics of staff members. The results furthermore show that communication networks are important for staff's job satisfaction. PMID:21631936

  3. Multi-criteria anomaly detection in urban noise sensor networks.

    PubMed

    Dauwe, Samuel; Oldoni, Damiano; De Baets, Bernard; Van Renterghem, Timothy; Botteldooren, Dick; Dhoedt, Bart

    2014-01-01

    The growing concern of citizens about the quality of their living environment and the emergence of low-cost microphones and data acquisition systems triggered the deployment of numerous noise monitoring networks spread over large geographical areas. Due to the local character of noise pollution in an urban environment, a dense measurement network is needed in order to accurately assess the spatial and temporal variations. The use of consumer grade microphones in this context appears to be very cost-efficient compared to the use of measurement microphones. However, the lower reliability of these sensing units requires a strong quality control of the measured data. To automatically validate sensor (microphone) data, prior to their use in further processing, a multi-criteria measurement quality assessment model for detecting anomalies such as microphone breakdowns, drifts and critical outliers was developed. Each of the criteria results in a quality score between 0 and 1. An ordered weighted average (OWA) operator combines these individual scores into a global quality score. The model is validated on datasets acquired from a real-world, extensive noise monitoring network consisting of more than 50 microphones. Over a period of more than a year, the proposed approach successfully detected several microphone faults and anomalies.

  4. A Hyper-Dense GNSS Receiver Network for Monitoring Time and Spatial Variations of Precipitable Water Vapor (PWV)

    NASA Astrophysics Data System (ADS)

    Tsuda, T.; Ito, N.; Takeda, Y.; Realini, E.; Shinbori, A.

    2016-12-01

    We employ the GNSS meteorology technique to measure precipitable water vapor (PWV) from the propagation delay of GNSS signal in the atmosphere. We installed a hyper-dense GNSS network using 15 receivers with a horizontal spacing of 1-2 km in Uji, Japan (Uji network). We also obtained precipitation with a rain gauge at a nearby operational weather station and rain cloud distribution by an X-band radar. We selected 40 days from April 2011 to March 2013, when considerable precipitation was detected. Difference in PWV within 10 km was 3-10 mm during a heavy rain. We found PWV increased 10-20 minutes before a passage of a rain cloud. The maximum value of PWV correlated well with the amount of precipitation on the ground. The variance of PWV between the GNSS sites was enhanced during a heavy rain. For a future practical hyper-dense GNSS network system with many receivers, we consider to use inexpensive single frequency (SF) receivers. Because SF receiver cannot eliminate the ionospheric delay by itself, we interpolate the delay referring the delay measured by the nearby dual frequency (DF) receivers. We investigated ionospheric delay by the Uji network, taking advantages of Quasi-Zenith Satellite System (QZSS) that gives signals at high elevation angles. During a travelling ionospheric disturbance (TID), a wavy structure with a horizontal scale of several tens km was recognized. The ionospheric delay was compensated by a linear and quadratic interpolation, then the resulting error of PWV compared with DF solution was about 1.50 mm in RMS. For a real-time estimation of PWV, we used real-time satellite clock information corrected by GEONET. Difference of PWV between the real-time analysis and the post processing with the final orbit was 0.7 mm in RMS. We estimated an overall error of PWV with a dense SF-receiver network on a real-time basis was 1.7 mm in RMS.

  5. Boosting CNN performance for lung texture classification using connected filtering

    NASA Astrophysics Data System (ADS)

    Tarando, Sebastián. Roberto; Fetita, Catalin; Kim, Young-Wouk; Cho, Hyoun; Brillet, Pierre-Yves

    2018-02-01

    Infiltrative lung diseases describe a large group of irreversible lung disorders requiring regular follow-up with CT imaging. Quantifying the evolution of the patient status imposes the development of automated classification tools for lung texture. This paper presents an original image pre-processing framework based on locally connected filtering applied in multiresolution, which helps improving the learning process and boost the performance of CNN for lung texture classification. By removing the dense vascular network from images used by the CNN for lung classification, locally connected filters provide a better discrimination between different lung patterns and help regularizing the classification output. The approach was tested in a preliminary evaluation on a 10 patient database of various lung pathologies, showing an increase of 10% in true positive rate (on average for all the cases) with respect to the state of the art cascade of CNNs for this task.

  6. Metal-in-metal localized surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Smith, G. B.; Earp, A. A.

    2010-01-01

    Anomalous strong resonances in silver and gold nanoporous thin films which conduct are found to arise from isolated metal nano-islands separated from the surrounding percolating metal network by a thin loop of insulator. This observed resonant optical response is modelled. The observed peak position is in agreement with the observed average dimensions of the silver core and insulator shell. As the insulating ring thickness shrinks, the resonance moves to longer wavelengths and strengthens. This structure is the Babinet's principle counterpart of dielectric core-metal shell nanoparticles embedded in dielectric. Like for the latter, tuning of resonant absorption is possible, but here the matrix reflects rather than transmits, and tuning to longer wavelengths is more practical. A new class of metal mirror occurring as a single thin layer is identified using the same resonances in dense metal mirrors. Narrow band deep localized dips in reflectance result.

  7. Rural health network development: public policy issues and state initiatives.

    PubMed

    Casey, M M; Wellever, A; Moscovice, I

    1997-02-01

    Rural health networks are a potential way for rural health care systems to improve access to care, reduce costs, and enhance quality of care. Networks provide a means for rural providers to contract with managed care organizations, develop their own managed care entities, share resources, and structure practice opportunities to support recruitment and retention of rural physicians and other health care professionals. The results of early network development initiatives indicate a need for state officials and others interested in encouraging network development to agree on common rural health network definitions, to identify clearly the goals of network development programs, and to document and analyze program outcomes. Future network development efforts need to be much more comprehensive if they are to have a significant impact on rural health care. This article analyzes public policy issues related to integrated rural health network development, discusses current efforts to encourage network development in rural areas, and suggests actions that states may take if they desire to support rural health network development. These actions include adopting a formal rural health network definition, providing networks with alternatives to certain regulatory requirements, and providing incentives such as matching grants, loans, or technical assistance. Without public sector support for networks, managed care options may continue to be unavailable in many less densely populated rural areas of the country, and locally controlled rural health networks are unlikely to develop as an alternative to the dominant pattern of managed care expansion by large urban entities. Implementation of Medicare reform legislation could provide significant incentives for the development of rural health networks, depending on the reimbursement provisions, financial solvency standards, and antitrust exemptions for provider-sponsored networks in the final legislation and federal regulations.

  8. High Resolution Vp and Vp/Vs Local Earthquake Tomography of the Val d'Agri Region (Southern Apennines, Italy).

    NASA Astrophysics Data System (ADS)

    Improta, L.; Bagh, S.; De Gori, P.; Pastori, M.; Piccinini, D.; Valoroso, L.; Anselmi, M.; Buttinelli, M.; Chiarabba, C.

    2015-12-01

    The Val d'Agri (VA) Quaternary basin in the southern Apennines extensional belt hosts the largest oilfield in onshore Europe and normal-fault systems with high (up to M7) seismogenic potential. Frequent small-magnitude swarms related to both active crustal extension and anthropogenic activity have occurred in the region. Causal factors for induced seismicity are a water impoundment with severe seasonal oscillations and a high-rate wastewater injection well. We analyzed around 1200 earthquakes (ML<3.3) occurred in the VA and surrounding regions between 2001-2014. We integrated waveforms recorded at 46 seismic stations belonging to 3 different networks: a dense temporary network installed by INGV in 2005-2006, the permanent national network of INGV, and the trigger-mode monitoring network managed by the local operator ENI petroleum company. We used local earthquake tomography to investigate static and transient features of the crustal velocity structure and to accurately locate earthquakes. Vp and Vp/Vs models are parameterized by a 3x3x2 km spacing and well resolved down to about 12 km depth. The complex Vp model illuminates broad antiformal structures corresponding to wide ramp-anticlines involving Mesozoic carbonates of the Apulia hydrocarbon reservoir, and NW-SE trending low Vp regions related to thrust-sheet-top clastic basins. The VA basin corresponds to shallow low-Vp region. Focal mechanisms show normal faulting kinematics with minor strike slip solutions in agreement with the local extensional regime. Earthquake locations and focal solutions depict shallow (< 5 km depth) E-dipping extensional structures beneath the artificial lake located in the southern sector of the basin, and along the western margin of the VA. A few swarms define relatively deep transfer structures accommodating the differential extension between main normal faults. The spatio-temporal distribution of around 220 events correlates with wastewater disposal activity, illuminating a NE-dipping fault between 2-5 km depth in the carbonate reservoir. The fault measures 5 km along dip and corresponds to a pre-existing thrust fault favorably oriented with respect to the local extensional field.

  9. Dynamic Balance of Excitation and Inhibition in Human and Monkey Neocortex

    NASA Astrophysics Data System (ADS)

    Dehghani, Nima; Peyrache, Adrien; Telenczuk, Bartosz; Le van Quyen, Michel; Halgren, Eric; Cash, Sydney S.; Hatsopoulos, Nicholas G.; Destexhe, Alain

    2016-03-01

    Balance of excitation and inhibition is a fundamental feature of in vivo network activity and is important for its computations. However, its presence in the neocortex of higher mammals is not well established. We investigated the dynamics of excitation and inhibition using dense multielectrode recordings in humans and monkeys. We found that in all states of the wake-sleep cycle, excitatory and inhibitory ensembles are well balanced, and co-fluctuate with slight instantaneous deviations from perfect balance, mostly in slow-wave sleep. Remarkably, these correlated fluctuations are seen for many different temporal scales. The similarity of these computational features with a network model of self-generated balanced states suggests that such balanced activity is essentially generated by recurrent activity in the local network and is not due to external inputs. Finally, we find that this balance breaks down during seizures, where the temporal correlation of excitatory and inhibitory populations is disrupted. These results show that balanced activity is a feature of normal brain activity, and break down of the balance could be an important factor to define pathological states.

  10. Real-Time Large-Scale Dense Mapping with Surfels

    PubMed Central

    Fu, Xingyin; Zhu, Feng; Wu, Qingxiao; Sun, Yunlei; Lu, Rongrong; Yang, Ruigang

    2018-01-01

    Real-time dense mapping systems have been developed since the birth of consumer RGB-D cameras. Currently, there are two commonly used models in dense mapping systems: truncated signed distance function (TSDF) and surfel. The state-of-the-art dense mapping systems usually work fine with small-sized regions. The generated dense surface may be unsatisfactory around the loop closures when the system tracking drift grows large. In addition, the efficiency of the system with surfel model slows down when the number of the model points in the map becomes large. In this paper, we propose to use two maps in the dense mapping system. The RGB-D images are integrated into a local surfel map. The old surfels that reconstructed in former times and far away from the camera frustum are moved from the local map to the global map. The updated surfels in the local map when every frame arrives are kept bounded. Therefore, in our system, the scene that can be reconstructed is very large, and the frame rate of our system remains high. We detect loop closures and optimize the pose graph to distribute system tracking drift. The positions and normals of the surfels in the map are also corrected using an embedded deformation graph so that they are consistent with the updated poses. In order to deal with large surface deformations, we propose a new method for constructing constraints with system trajectories and loop closure keyframes. The proposed new method stabilizes large-scale surface deformation. Experimental results show that our novel system behaves better than the prior state-of-the-art dense mapping systems. PMID:29747450

  11. ClueNet: Clustering a temporal network based on topological similarity rather than denseness

    PubMed Central

    Milenković, Tijana

    2018-01-01

    Network clustering is a very popular topic in the network science field. Its goal is to divide (partition) the network into groups (clusters or communities) of “topologically related” nodes, where the resulting topology-based clusters are expected to “correlate” well with node label information, i.e., metadata, such as cellular functions of genes/proteins in biological networks, or age or gender of people in social networks. Even for static data, the problem of network clustering is complex. For dynamic data, the problem is even more complex, due to an additional dimension of the data—their temporal (evolving) nature. Since the problem is computationally intractable, heuristic approaches need to be sought. Existing approaches for dynamic network clustering (DNC) have drawbacks. First, they assume that nodes should be in the same cluster if they are densely interconnected within the network. We hypothesize that in some applications, it might be of interest to cluster nodes that are topologically similar to each other instead of or in addition to requiring the nodes to be densely interconnected. Second, they ignore temporal information in their early steps, and when they do consider this information later on, they do so implicitly. We hypothesize that capturing temporal information earlier in the clustering process and doing so explicitly will improve results. We test these two hypotheses via our new approach called ClueNet. We evaluate ClueNet against six existing DNC methods on both social networks capturing evolving interactions between individuals (such as interactions between students in a high school) and biological networks capturing interactions between biomolecules in the cell at different ages. We find that ClueNet is superior in over 83% of all evaluation tests. As more real-world dynamic data are becoming available, DNC and thus ClueNet will only continue to gain importance. PMID:29738568

  12. Locating and Modeling Regional Earthquakes with Broadband Waveform Data

    NASA Astrophysics Data System (ADS)

    Tan, Y.; Zhu, L.; Helmberger, D.

    2003-12-01

    Retrieving source parameters of small earthquakes (Mw < 4.5), including mechanism, depth, location and origin time, relies on local and regional seismic data. Although source characterization for such small events achieves a satisfactory stage in some places with a dense seismic network, such as TriNet, Southern California, a worthy revisit to the historical events in these places or an effective, real-time investigation of small events in many other places, where normally only a few local waveforms plus some short-period recordings are available, is still a problem. To address this issue, we introduce a new type of approach that estimates location, depth, origin time and fault parameters based on 3-component waveform matching in terms of separated Pnl, Rayleigh and Love waves. We show that most local waveforms can be well modeled by a regionalized 1-D model plus different timing corrections for Pnl, Rayleigh and Love waves at relatively long periods, i.e., 4-100 sec for Pnl, and 8-100 sec for surface waves, except for few anomalous paths involving greater structural complexity, meanwhile, these timing corrections reveal similar azimuthal patterns for well-located cluster events, despite their different focal mechanisms. Thus, we can calibrate the paths separately for Pnl, Rayleigh and Love waves with the timing corrections from well-determined events widely recorded by a dense modern seismic network or a temporary PASSCAL experiment. In return, we can locate events and extract their fault parameters by waveform matching for available waveform data, which could be as less as from two stations, assuming timing corrections from the calibration. The accuracy of the obtained source parameters is subject to the error carried by the events used for the calibration. The detailed method requires a Green­_s function library constructed from a regionalized 1-D model together with necessary calibration information, and adopts a grid search strategy for both hypercenter and focal mechanism. We show that the whole process can be easily automated and routinely provide reliable source parameter estimates with a couple of broadband stations. Two applications in the Tibet Plateau and Southern California will be presented along with comparisons of results against other methods.

  13. Monitoring the Restart of a High-Rate Wastewater Disposal Well in the Val d'Agri Oilfield (Italy)

    NASA Astrophysics Data System (ADS)

    De Gori, P.; Improta, L.; Moretti, M.; Colasanti, G.; Criscuoli, F.

    2015-12-01

    The Val d'Agri Quaternary basin in the Southern Apennine range of Italy hosts the largest inland oil field in Europe. Wastewater coming from the oil exploitation is re-injected by a high-rate disposal well into strongly fractured limestones of the hydrocarbon carbonate reservoir. Disposal activity has induced micro-seismicity since the beginning of injection in June 2006. Around 220 small magnitude events (ML < 2.3) were recorded between 2006 and 2013 by the trigger-mode monitoring local network managed by the oil company and by the National Seismic Network of Istituto Nazionale di Geofisica e Vulcanologia. The induced micro-seismicity illuminated a pre-existing high-angle fault located 1 km below the well. Since June 2006, wastewater has been re-injected with only short interruptions due acid stimulations. In January 2015 disposal activity was halted due to technical operations in the oil refinery and wastewater injection restarted after two weeks. We installed 5 short-period stations within 10 km of the disposal well to carefully monitor the re-start phase and the subsequent 3 months of disposal activity. This temporary network was complemented by stations of the National Seismic Network giving this final configuration:9 stations within 10 km of the well with the closest station 2 km apart, 13 stations within 20 km. Here we report on the preliminary analysis of the local earthquake recorded during the survey focusing on the events occurred in the injection area. The seismicity rate is compared with injection data.In spite of the dense network, we found that the rate of induced seismicity (both the number and energy of events) is very low when compared to the seismicity recorded during the first 5 years of injection activity carried out with comparable rate and pressure.

  14. Binary patterns encoded convolutional neural networks for texture recognition and remote sensing scene classification

    NASA Astrophysics Data System (ADS)

    Anwer, Rao Muhammad; Khan, Fahad Shahbaz; van de Weijer, Joost; Molinier, Matthieu; Laaksonen, Jorma

    2018-04-01

    Designing discriminative powerful texture features robust to realistic imaging conditions is a challenging computer vision problem with many applications, including material recognition and analysis of satellite or aerial imagery. In the past, most texture description approaches were based on dense orderless statistical distribution of local features. However, most recent approaches to texture recognition and remote sensing scene classification are based on Convolutional Neural Networks (CNNs). The de facto practice when learning these CNN models is to use RGB patches as input with training performed on large amounts of labeled data (ImageNet). In this paper, we show that Local Binary Patterns (LBP) encoded CNN models, codenamed TEX-Nets, trained using mapped coded images with explicit LBP based texture information provide complementary information to the standard RGB deep models. Additionally, two deep architectures, namely early and late fusion, are investigated to combine the texture and color information. To the best of our knowledge, we are the first to investigate Binary Patterns encoded CNNs and different deep network fusion architectures for texture recognition and remote sensing scene classification. We perform comprehensive experiments on four texture recognition datasets and four remote sensing scene classification benchmarks: UC-Merced with 21 scene categories, WHU-RS19 with 19 scene classes, RSSCN7 with 7 categories and the recently introduced large scale aerial image dataset (AID) with 30 aerial scene types. We demonstrate that TEX-Nets provide complementary information to standard RGB deep model of the same network architecture. Our late fusion TEX-Net architecture always improves the overall performance compared to the standard RGB network on both recognition problems. Furthermore, our final combination leads to consistent improvement over the state-of-the-art for remote sensing scene classification.

  15. Seasonality of Shallow Icequakes at Mount Erebus Volcano, Antarctica

    NASA Astrophysics Data System (ADS)

    Knox, H. A.; Aster, R. C.; Kyle, P. R.

    2010-12-01

    Background (non-eruptive) seismicity at Mount Erebus Volcano is dominated by icequake activity on its extensive ice fields and glaciers. We examine icequake seismograms recorded by both long-running and temporary densification deployments spanning seven years (2003-2009) to assess event frequency, size, apparent seasonality, event mechanism, and geographic distribution. In addition to generally investigating mountain glacial ice seismicity in cold and dry glacial environments, we also hope to exploit icequakes as local sources for tomographic imaging of the volcano’s interior in conjunction with 2008-2010 active source and explosive volcanism data. Using Antelope-based methodologies, we determined the distribution and magnitude of a subset of well-recorded icequakes using data from the long-running Mount Erebus Volcano Network (MEVO) network, as well as two dense IRIS PASSCAL supported temporary networks deployed during 2008 and 2009 (the MEVO network consists of six broadband and nine short period stations with environmental data streams; the dense arrays consisted of 24 broadband stations arranged in two concentric rings around the volcano and 99 short period stations deployed near the summit of Erebus volcano and along the Terror-Erebus axis of Ross Island). During each of the seven years, we note a number of large icequake swarms (up to many hundreds of events per day). We hypothesize that many of these events occur in very shallow ice, based on the apparent ambient temperature-driven seasonality of the events. Specifically, approximately 43% of the events occur between March and May and approximately 30% occur between October and December. Each of these times feature rapidly changing ambient air temperatures due to the high latitude appearance/disappearance of the sun. A shallow mechanism is predicted by 1-D thermal skin depth calculations that show that annual temperature fluctuations decay by 1/e within the top few meters of ice.

  16. Natural language acquisition in large scale neural semantic networks

    NASA Astrophysics Data System (ADS)

    Ealey, Douglas

    This thesis puts forward the view that a purely signal- based approach to natural language processing is both plausible and desirable. By questioning the veracity of symbolic representations of meaning, it argues for a unified, non-symbolic model of knowledge representation that is both biologically plausible and, potentially, highly efficient. Processes to generate a grounded, neural form of this model-dubbed the semantic filter-are discussed. The combined effects of local neural organisation, coincident with perceptual maturation, are used to hypothesise its nature. This theoretical model is then validated in light of a number of fundamental neurological constraints and milestones. The mechanisms of semantic and episodic development that the model predicts are then used to explain linguistic properties, such as propositions and verbs, syntax and scripting. To mimic the growth of locally densely connected structures upon an unbounded neural substrate, a system is developed that can grow arbitrarily large, data- dependant structures composed of individual self- organising neural networks. The maturational nature of the data used results in a structure in which the perception of concepts is refined by the networks, but demarcated by subsequent structure. As a consequence, the overall structure shows significant memory and computational benefits, as predicted by the cognitive and neural models. Furthermore, the localised nature of the neural architecture also avoids the increasing error sensitivity and redundancy of traditional systems as the training domain grows. The semantic and episodic filters have been demonstrated to perform as well, or better, than more specialist networks, whilst using significantly larger vocabularies, more complex sentence forms and more natural corpora.

  17. Integration and Analysis of Neighbor Discovery and Link Quality Estimation in Wireless Sensor Networks

    PubMed Central

    Radi, Marjan; Dezfouli, Behnam; Abu Bakar, Kamalrulnizam; Abd Razak, Shukor

    2014-01-01

    Network connectivity and link quality information are the fundamental requirements of wireless sensor network protocols to perform their desired functionality. Most of the existing discovery protocols have only focused on the neighbor discovery problem, while a few number of them provide an integrated neighbor search and link estimation. As these protocols require a careful parameter adjustment before network deployment, they cannot provide scalable and accurate network initialization in large-scale dense wireless sensor networks with random topology. Furthermore, performance of these protocols has not entirely been evaluated yet. In this paper, we perform a comprehensive simulation study on the efficiency of employing adaptive protocols compared to the existing nonadaptive protocols for initializing sensor networks with random topology. In this regard, we propose adaptive network initialization protocols which integrate the initial neighbor discovery with link quality estimation process to initialize large-scale dense wireless sensor networks without requiring any parameter adjustment before network deployment. To the best of our knowledge, this work is the first attempt to provide a detailed simulation study on the performance of integrated neighbor discovery and link quality estimation protocols for initializing sensor networks. This study can help system designers to determine the most appropriate approach for different applications. PMID:24678277

  18. Examining the Acquisition of Phonological Word Forms with Computational Experiments

    ERIC Educational Resources Information Center

    Vitevitch, Michael S.; Storkel, Holly L.

    2013-01-01

    It has been hypothesized that known words in the lexicon strengthen newly formed representations of novel words, resulting in words with dense neighborhoods being learned more quickly than words with sparse neighborhoods. Tests of this hypothesis in a connectionist network showed that words with dense neighborhoods were learned better than words…

  19. Influence of galactic arm scale dynamics on the molecular composition of the cold and dense ISM. I. Observed abundance gradients in dense clouds

    NASA Astrophysics Data System (ADS)

    Ruaud, M.; Wakelam, V.; Gratier, P.; Bonnell, I. A.

    2018-04-01

    Aim. We study the effect of large scale dynamics on the molecular composition of the dense interstellar medium during the transition between diffuse to dense clouds. Methods: We followed the formation of dense clouds (on sub-parsec scales) through the dynamics of the interstellar medium at galactic scales. We used results from smoothed particle hydrodynamics (SPH) simulations from which we extracted physical parameters that are used as inputs for our full gas-grain chemical model. In these simulations, the evolution of the interstellar matter is followed for 50 Myr. The warm low-density interstellar medium gas flows into spiral arms where orbit crowding produces the shock formation of dense clouds, which are held together temporarily by the external pressure. Results: We show that depending on the physical history of each SPH particle, the molecular composition of the modeled dense clouds presents a high dispersion in the computed abundances even if the local physical properties are similar. We find that carbon chains are the most affected species and show that these differences are directly connected to differences in (1) the electronic fraction, (2) the C/O ratio, and (3) the local physical conditions. We argue that differences in the dynamical evolution of the gas that formed dense clouds could account for the molecular diversity observed between and within these clouds. Conclusions: This study shows the importance of past physical conditions in establishing the chemical composition of the dense medium.

  20. Structural Transitions in Densifying Networks

    NASA Astrophysics Data System (ADS)

    Lambiotte, R.; Krapivsky, P. L.; Bhat, U.; Redner, S.

    2016-11-01

    We introduce a minimal generative model for densifying networks in which a new node attaches to a randomly selected target node and also to each of its neighbors with probability p . The networks that emerge from this copying mechanism are sparse for p <1/2 and dense (average degree increasing with number of nodes N ) for p ≥1/2 . The behavior in the dense regime is especially rich; for example, individual network realizations that are built by copying are disparate and not self-averaging. Further, there is an infinite sequence of structural anomalies at p =2/3 , 3/4 , 4/5 , etc., where the N dependences of the number of triangles (3-cliques), 4-cliques, undergo phase transitions. When linking to second neighbors of the target can occur, the probability that the resulting graph is complete—all nodes are connected—is nonzero as N →∞ .

  1. Impact of branching on the elasticity of actin networks

    PubMed Central

    Pujol, Thomas; du Roure, Olivia; Fermigier, Marc; Heuvingh, Julien

    2012-01-01

    Actin filaments play a fundamental role in cell mechanics: assembled into networks by a large number of partners, they ensure cell integrity, deformability, and migration. Here we focus on the mechanics of the dense branched network found at the leading edge of a crawling cell. We develop a new technique based on the dipolar attraction between magnetic colloids to measure mechanical properties of branched actin gels assembled around the colloids. This technique allows us to probe a large number of gels and, through the study of different networks, to access fundamental relationships between their microscopic structure and their mechanical properties. We show that the architecture does regulate the elasticity of the network: increasing both capping and branching concentrations strongly stiffens the networks. These effects occur at protein concentrations that can be regulated by the cell. In addition, the dependence of the elastic modulus on the filaments’ flexibility and on increasing internal stress has been studied. Our overall results point toward an elastic regime dominated by enthalpic rather than entropic deformations. This result strongly differs from the elasticity of diluted cross-linked actin networks and can be explained by the dense dendritic structure of lamellipodium-like networks. PMID:22689953

  2. [Specific features of feeding of the Amur tiger Panthera tigris altaica (Carnivora, Felidae) in a densely populated locality (with reference to Bol'shekhekhtsirskii Reserve and its environs)].

    PubMed

    2012-01-01

    Specific features of feeding of the Amur tiger (Panthera tigris altaica) in the Bol'shekhekhtsirskii Reserve located in a densely populated locality (only 15 km to the north of it is the city of Khabarovsk) have been investigated. For a long time (1992-2000) the diet of tigers consisted 100% of wild animals, although the accessibility of domestic animals, dogs, in particular, was high. From 2000 to 2007, in their feeding, the proportion of dogs increased (up to 47%), and the proportion of wild animals decreased (50.8%). Tigers attacking dogs were physically weakened (broken fangs, wounds, inflicted by humans, diseases). Thus, even in a densely populated locality, the tiger's diet includes domestic animals only at exposure to different negative factors.

  3. Pore-scale Modeling of CO2 Local Trapping in Heterogeneous Porous Media with Inter-granular Cements

    NASA Astrophysics Data System (ADS)

    Wang, D.; Li, Y.

    2017-12-01

    Based on pore-scale modeling of CO2/brine multiphase flow in heterogeneous porous media with inter-granular cements, we numerically analyze the effects of cement-modified pore structure on CO2 local trapping. Results indicate: 1) small pore throat is the main reason for causing CO2 local trapping in front of low-porosity layers (namely dense layers) formed by inter-granular cements; 2) in the case of the same pore throat size, the smaller particle size can increase the number of flow paths for CO2 plume and equivalently enhances local permeability, which may counteract the impediment of high capillary pressure on CO2 migration to some extent and consequently disables CO2 local capillary trapping; 3) the isolated pores by inter-granular cements can lead to dramatic reduction of CO2 saturation inside the dense layers, whereas the change of connectivity of some pores due to the cements can increase CO2 accumulation in front of the dense layers by lowering the displacement area of CO2 plume.

  4. Two Novel Rab2 Interactors Regulate Dense-core Vesicle Maturation

    PubMed Central

    Ailion, Michael; Hannemann, Mandy; Dalton, Susan; Pappas, Andrea; Watanabe, Shigeki; Hegermann, Jan; Liu, Qiang; Han, Hsiao-Fen; Gu, Mingyu; Goulding, Morgan Q.; Sasidharan, Nikhil; Schuske, Kim; Hullett, Patrick; Eimer, Stefan; Jorgensen, Erik M.

    2014-01-01

    Summary Peptide neuromodulators are released from a unique organelle: the dense-core vesicle. Dense-core vesicles are generated at the trans-Golgi, and then sort cargo during maturation before being secreted. To identify proteins that act in this pathway, we performed a genetic screen in Caenorhabditis elegans for mutants defective in dense-core vesicle function. We identified two conserved Rab2-binding proteins: RUND-1, a RUN domain protein, and CCCP-1, a coiled-coil protein. RUND-1 and CCCP-1 colocalize with RAB-2 at the Golgi, and rab-2, rund-1 and cccp-1 mutants have similar defects in sorting soluble and transmembrane dense-core vesicle cargos. RUND-1 also interacts with the Rab2 GAP protein TBC-8 and the BAR domain protein RIC-19, a RAB-2 effector. In summary, a new pathway of conserved proteins controls the maturation of dense-core vesicles at the trans-Golgi network. PMID:24698274

  5. Seismic Interferometry at a Large, Dense Array: Capturing the Wavefield at the Source Physics Experiment

    NASA Astrophysics Data System (ADS)

    Matzel, E.; Mellors, R. J.; Magana-Zook, S. A.

    2016-12-01

    Seismic interferometry is based on the observation that the Earth's background wavefield includes coherent energy, which can be recovered by observing over long time periods, allowing the incoherent energy to cancel out. The cross correlation of the energy recorded at a pair of stations results in an estimate of the Green's Function (GF) and is equivalent to the record of a simple source located at one of the stations as recorded by the other. This allows high resolution imagery beneath dense seismic networks even in areas of low seismicity. The power of these inter-station techniques increases rapidly as the number of seismometers in a network increases. For large networks the number of correlations computed can run into the millions and this becomes a "big-data" problem where data-management dominates the efficiency of the computations. In this study, we use several methods of seismic interferometry to obtain highly detailed images at the site of the Source Physics Experiment (SPE). The objective of SPE is to obtain a physics-based understanding of how seismic waves are created at and scattered near the source. In 2015, a temporary deployment of 1,000 closely spaced geophones was added to the main network of instruments at the site. We focus on three interferometric techniques: Shot interferometry (SI) uses the SPE shots as rich sources of high frequency, high signal energy. Coda interferometry (CI) isolates the energy from the scattered wavefield of distant earthquakes. Ambient noise correlation (ANC) uses the energy of the ambient background field. In each case, the data recorded at one seismometer are correlated with the data recorded at another to obtain an estimate of the GF between the two. The large network of mixed geophone and broadband instruments at the SPE allows us to calculate over 500,000 GFs, which we use to characterize the site and measure the localized wavefield. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

  6. Flood Monitoring using X-band Dual-polarization Radar Network

    NASA Astrophysics Data System (ADS)

    Chandrasekar, V.; Wang, Y.; Maki, M.; Nakane, K.

    2009-09-01

    A dense weather radar network is an emerging concept advanced by the Center for Collaborative Adaptive Sensing of the Atmosphere (CASA). Using multiple radars observing over a common will create different data outcomes depending on the characteristics of the radar units employed and the network topology. To define this a general framework is developed to describe the radar network space, and formulations are obtained that can be used for weather radar network characterization. Current weather radar surveillance networks are based upon conventional sensing paradigm of widely-separated, standalone sensing systems using long range radars that operate at wavelengths in 5-10 cm range. Such configuration has limited capability to observe close to the surface of the earth because of the earth's curvature but also has poorer resolution at far ranges. The dense network radar system, observes and measures weather phenomenon such as rainfall and severe weather close to the ground at higher spatial and temporal resolution compared to the current paradigm. In addition the dense network paradigm also is easily adaptable to complex terrain. Flooding is one of the most common natural hazards in the world. Especially, excessive development decreases the response time of urban watersheds and complex terrain to rainfall and increases the chance of localized flooding events over a small spatial domain. Successful monitoring of urban floods requires high spatiotemporal resolution, accurate precipitation estimation because of the rapid flood response as well as the complex hydrologic and hydraulic characteristics in an urban environment. This paper reviews various aspects in radar rainfall mapping in urban coverage using dense X-band dual-polarization radar networks. By reducing the maximum range and operating at X-band, one can ensure good azimuthal resolution with a small-size antenna and keep the radar beam closer to the ground. The networked topology helps to achieve satisfactory sensitivity and fast temporal update across the coverage. Strong clutter is expected from buildings in the neighborhood which act as perfect reflectors. The reduction in radar size enables flexible deployment, such as rooftop installation, with small infrastructure requirement, which is critical in a metropolitan region. Dual-polarization based technologies can be implemented for real-time mitigation of rain attenuations and accurate estimation of rainfall. The NSF Engineering Research Center for Collaborative Adaptive Sensing of the Atmosphere (CASA) is developing the technologies and the systems for network centric weather observation. The Differential propagation phase (Kdp) has higher sensitivity at X-band compared to S and C band. It is attractive to use Kdp to derive Quantitative Precipitation Estimation (QPE) because it is immune to rain attenuation, calibration biases, partial beam blockage, and hail contamination. Despite the advantage of Kdp for radar QPE, the estimation of Kdp itself is a challenge as the range derivative of the differential propagation phase profiles. An adaptive Kdp algorithm was implemented in the CASA IP1 testbed that substantially reduces the fluctuation in light rain and the bias at heavy rain. The Kdp estimation also benefits from the higher resolution in the IP1 radar network. The performance of the IP1 QPE product was evaluated for all major rain events against the USDA Agriculture Research Service's gauge network (MicroNet) in the Little Washita watershed, which comprises 20 weather stations in the center of the test bed. The cross-comparison with gauge measurements shows excellent agreement for the storm events during the Spring Experiments of 2007 and 2008. The hourly rainfall estimates compared to the gauge measurements have a very small bias of few percent and a normalized standard error of 21%. The IP1 testbed was designed with overlapping coverage among its radar nodes. The study area is covered by multiple radars and the aspect of network composition is also evaluated. The independence of Kdp on the radar calibration enables flexibility in combining the collocated Kdp estimates from all the radar nodes. Radar QPE can be improved from the composite Kdp field from the radar with lowest beam height and nearest slant range, or from the radar with the best Kdp estimates. More importantly, the data availability is greatly enhanced by the overlapped topology in cases of heavy rainfall, demonstrating the operational strength of the network centric radar system. The National Research Institute for Earth Science and Disaster Prevention (NIED), Japan, is in the process of establishing an X-band radar network (X-Net) in Metropolitan Tokyo area. Colorado State University and NIED have formed a partnership to initiate a joint program for urban flood monitoring using X-band dual-polarization radar network. This paper will also present some preliminary plans for this program.

  7. Non-equilibrium fluctuations of a semi-flexible filament driven by active cross-linkers

    NASA Astrophysics Data System (ADS)

    Weber, I.; Appert-Rolland, C.; Schehr, G.; Santen, L.

    2017-11-01

    The cytoskeleton is an inhomogeneous network of semi-flexible filaments, which are involved in a wide variety of active biological processes. Although the cytoskeletal filaments can be very stiff and embedded in a dense and cross-linked network, it has been shown that, in cells, they typically exhibit significant bending on all length scales. In this work we propose a model of a semi-flexible filament deformed by different types of cross-linkers for which one can compute and investigate the bending spectrum. Our model allows to couple the evolution of the deformation of the semi-flexible polymer with the stochastic dynamics of linkers which exert transversal forces onto the filament. We observe a q-2 dependence of the bending spectrum for some biologically relevant parameters and in a certain range of wave numbers q, as observed in some experiments. However, generically, the spatially localized forcing and the non-thermal dynamics both introduce deviations from the thermal-like q-2 spectrum.

  8. Release kinetics of esterified p-coumaric acid and ferulic acid from rice straw in mild alkaline solution.

    PubMed

    Linh, Tran Ngoc; Fujita, Hirokata; Sakoda, Akiyoshi

    2017-05-01

    The release kinetics of esterified p-coumaric acid (PCA) and ferulic acid (FA) from rice straw under a mild alkaline condition were investigated to collect fundamental data for the design of a recovery process. The results showed that the straw size, NaOH concentration, and temperature were the key parameters governing release kinetics. The analysis demonstrated that FA is released considerably faster than PCA. The close relationship between lignin and the PCA dissolution indicates a reciprocal and/or simultaneous release. Moreover, PCA is broadly distributed in the lignin network but tends to be located more densely in the lignin fraction which is not easily solubilized by alkaline treatment. In contrast, the release of FA is strongly affected by removal of lignin fraction which is easily solubilized. These results suggest that the release kinetics are controlled by the accessibility of NaOH to their ester sites in the lignin/hemicellulose network, and by their localization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Dense Gas, Dynamical Equilibrium Pressure, and Star Formation in Nearby Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Gallagher, Molly J.; Leroy, Adam K.; Bigiel, Frank; Cormier, Diane; Jiménez-Donaire, María J.; Ostriker, Eve; Usero, Antonio; Bolatto, Alberto D.; García-Burillo, Santiago; Hughes, Annie; Kepley, Amanda A.; Krumholz, Mark; Meidt, Sharon E.; Meier, David S.; Murphy, Eric J.; Pety, Jérôme; Rosolowsky, Erik; Schinnerer, Eva; Schruba, Andreas; Walter, Fabian

    2018-05-01

    We use new ALMA observations to investigate the connection between dense gas fraction, star formation rate (SFR), and local environment across the inner region of four local galaxies showing a wide range of molecular gas depletion times. We map HCN (1–0), HCO+ (1–0), CS (2–1), 13CO (1–0), and C18O (1–0) across the inner few kiloparsecs of each target. We combine these data with short-spacing information from the IRAM large program EMPIRE, archival CO maps, tracers of stellar structure and recent star formation, and recent HCN surveys by Bigiel et al. and Usero et al. We test the degree to which changes in the dense gas fraction drive changes in the SFR. {I}HCN}/{I}CO} (tracing the dense gas fraction) correlates strongly with I CO (tracing molecular gas surface density), stellar surface density, and dynamical equilibrium pressure, P DE. Therefore, {I}HCN}/{I}CO} becomes very low and HCN becomes very faint at large galactocentric radii, where ratios as low as {I}HCN}/{I}CO}∼ 0.01 become common. The apparent ability of dense gas to form stars, {{{Σ }}}SFR}/{{{Σ }}}dense} (where Σdense is traced by the HCN intensity and the star formation rate is traced by a combination of Hα and 24 μm emission), also depends on environment. {{{Σ }}}SFR}/{{{Σ }}}dense} decreases in regions of high gas surface density, high stellar surface density, and high P DE. Statistically, these correlations between environment and both {{{Σ }}}SFR}/{{{Σ }}}dense} and {I}HCN}/{I}CO} are stronger than that between apparent dense gas fraction ({I}HCN}/{I}CO}) and the apparent molecular gas star formation efficiency {{{Σ }}}SFR}/{{{Σ }}}mol}. We show that these results are not specific to HCN.

  10. Scale-chiral symmetry, ω meson, and dense baryonic matter

    NASA Astrophysics Data System (ADS)

    Ma, Yong-Liang; Rho, Mannque

    2018-05-01

    It is shown that explicitly broken scale symmetry is essential for dense skyrmion matter in hidden local symmetry theory. Consistency with the vector manifestation fixed point for the hidden local symmetry of the lowest-lying vector mesons and the dilaton limit fixed point for scale symmetry in dense matter is found to require that the anomalous dimension (|γG2| ) of the gluon field strength tensor squared (G2 ) that represents the quantum trace anomaly should be 1.0 ≲|γG2|≲3.5 . The magnitude of |γG2| estimated here will be useful for studying hadron and nuclear physics based on the scale-chiral effective theory. More significantly, that the dilaton limit fixed point can be arrived at with γG2≠0 at some high density signals that scale symmetry can arise in dense medium as an "emergent" symmetry.

  11. A Multilevel Gamma-Clustering Layout Algorithm for Visualization of Biological Networks

    PubMed Central

    Hruz, Tomas; Lucas, Christoph; Laule, Oliver; Zimmermann, Philip

    2013-01-01

    Visualization of large complex networks has become an indispensable part of systems biology, where organisms need to be considered as one complex system. The visualization of the corresponding network is challenging due to the size and density of edges. In many cases, the use of standard visualization algorithms can lead to high running times and poorly readable visualizations due to many edge crossings. We suggest an approach that analyzes the structure of the graph first and then generates a new graph which contains specific semantic symbols for regular substructures like dense clusters. We propose a multilevel gamma-clustering layout visualization algorithm (MLGA) which proceeds in three subsequent steps: (i) a multilevel γ-clustering is used to identify the structure of the underlying network, (ii) the network is transformed to a tree, and (iii) finally, the resulting tree which shows the network structure is drawn using a variation of a force-directed algorithm. The algorithm has a potential to visualize very large networks because it uses modern clustering heuristics which are optimized for large graphs. Moreover, most of the edges are removed from the visual representation which allows keeping the overview over complex graphs with dense subgraphs. PMID:23864855

  12. Dense wavelength division multiplexing devices for metropolitan-area datacom and telecom networks

    NASA Astrophysics Data System (ADS)

    DeCusatis, Casimer M.; Priest, David G.

    2000-12-01

    Large data processing environments in use today can require multi-gigabyte or terabyte capacity in the data communication infrastructure; these requirements are being driven by storage area networks with access to petabyte data bases, new architecture for parallel processing which require high bandwidth optical links, and rapidly growing network applications such as electronic commerce over the Internet or virtual private networks. These datacom applications require high availability, fault tolerance, security, and the capacity to recover from any single point of failure without relying on traditional SONET-based networking. These requirements, coupled with fiber exhaust in metropolitan areas, are driving the introduction of dense optical wavelength division multiplexing (DWDM) in data communication systems, particularly for large enterprise servers or mainframes. In this paper, we examine the technical requirements for emerging nextgeneration DWDM systems. Protocols for storage area networks and computer architectures such as Parallel Sysplex are presented, including their fiber bandwidth requirements. We then describe two commercially available DWDM solutions, a first generation 10 channel system and a recently announced next generation 32 channel system. Technical requirements, network management and security, fault tolerant network designs, new network topologies enabled by DWDM, and the role of time division multiplexing in the network are all discussed. Finally, we present a description of testing conducted on these networks and future directions for this technology.

  13. The role of social networks in the governance of health systems: the case of eye care systems in Ghana.

    PubMed

    Blanchet, Karl; James, Philip

    2013-03-01

    Efforts have been increasingly invested to improve local health systems' capacities in developing countries. We describe the application of innovative methods based on a social network analysis approach. The findings presented refer to a study carried out between July 2008 and January 2010 in the Brong Ahafo region of Ghana. Social network analysis methods were applied in five different districts using the software package Ucinet to calculate the various properties of the social network of eye care providers. The study focused on the managerial decisions made by Ghanaian district hospital managers about the governance of the health system. The study showed that the health system in the Brong Ahafo region experienced significant changes specifically after a key shock, the departure of an international organization. Several other actors at different levels of the network disappeared, the positions of nurses and hospital managers changed, creating new relationships and power balances that resulted in a change in the general structure of the network. The system shifted from a centralized and dense hierarchical network towards an enclaved network composed of five sub-networks. The new structure was less able to respond to shocks, circulate information and knowledge across scales and implement multi-scale solutions than that which it replaced. Although the network became less resilient, it responded better to the management needs of the hospital managers who now had better access to information, even if this information was partial. The change of the network over time also showed the influence of the international organization on generating links and creating connections between actors from different levels. The findings of the study reveal the importance of creating international health connections between actors working in different spatial scales of the health system.

  14. Detection of small earthquakes with dense array data: example from the San Jacinto fault zone, southern California

    NASA Astrophysics Data System (ADS)

    Meng, Haoran; Ben-Zion, Yehuda

    2018-01-01

    We present a technique to detect small earthquakes not included in standard catalogues using data from a dense seismic array. The technique is illustrated with continuous waveforms recorded in a test day by 1108 vertical geophones in a tight array on the San Jacinto fault zone. Waveforms are first stacked without time-shift in nine non-overlapping subarrays to increase the signal-to-noise ratio. The nine envelope functions of the stacked records are then multiplied with each other to suppress signals associated with sources affecting only some of the nine subarrays. Running a short-term moving average/long-term moving average (STA/LTA) detection algorithm on the product leads to 723 triggers in the test day. Using a local P-wave velocity model derived for the surface layer from Betsy gunshot data, 5 s long waveforms of all sensors around each STA/LTA trigger are beamformed for various incident directions. Of the 723 triggers, 220 are found to have localized energy sources and 103 of these are confirmed as earthquakes by verifying their observation at 4 or more stations of the regional seismic network. This demonstrates the general validity of the method and allows processing further the validated events using standard techniques. The number of validated events in the test day is >5 times larger than that in the standard catalogue. Using these events as templates can lead to additional detections of many more earthquakes.

  15. Spatial analysis of storm depths from an Arizona raingage network

    NASA Technical Reports Server (NTRS)

    Fennessey, N. M.; Eagleson, P. S.; Qinliang, W.; Rodriguez-Iturbe, I.

    1986-01-01

    Eight years of summer rainstorm observations are analyzed by a dense network of 93 raingages operated by the U.S. Department of Agriculture, Agricultural Research Service, in the 150 km Walnut Gulch experimental catchment near Tucson, Arizona. Storms are defined by the total depths collected at each raingage during the noon-to-noon period for which there was depth recorded at any of the gages. For each of the resulting 428 storm days, the gage depths are interpolated onto a dense grid and the resulting random field analyzed to obtain moments, isohyetal plots, spatial correlation function, variance function, and the spatial distribution of storm depth.

  16. Statistical analysis of modal properties of a cable-stayed bridge through long-term structural health monitoring with wireless smart sensor networks

    NASA Astrophysics Data System (ADS)

    Asadollahi, Parisa; Li, Jian

    2016-04-01

    Understanding the dynamic behavior of complex structures such as long-span bridges requires dense deployment of sensors. Traditional wired sensor systems are generally expensive and time-consuming to install due to cabling. With wireless communication and on-board computation capabilities, wireless smart sensor networks have the advantages of being low cost, easy to deploy and maintain and therefore facilitate dense instrumentation for structural health monitoring. A long-term monitoring project was recently carried out for a cable-stayed bridge in South Korea with a dense array of 113 smart sensors, which feature the world's largest wireless smart sensor network for civil structural monitoring. This paper presents a comprehensive statistical analysis of the modal properties including natural frequencies, damping ratios and mode shapes of the monitored cable-stayed bridge. Data analyzed in this paper is composed of structural vibration signals monitored during a 12-month period under ambient excitations. The correlation between environmental temperature and the modal frequencies is also investigated. The results showed the long-term statistical structural behavior of the bridge, which serves as the basis for Bayesian statistical updating for the numerical model.

  17. Mechanisms for Prolonging Network Lifetime in Wireless Sensor Networks

    ERIC Educational Resources Information Center

    Yang, Yinying

    2010-01-01

    Sensors are used to monitor and control the physical environment. A Wireless Sensor Network (WSN) is composed of a large number of sensor nodes that are densely deployed either inside the phenomenon or very close to it [18][5]. Sensor nodes measure various parameters of the environment and transmit data collected to one or more sinks, using…

  18. The preBötzinger complex as a hub for network activity along the ventral respiratory column in the neonate rat.

    PubMed

    Gourévitch, Boris; Mellen, Nicholas

    2014-09-01

    In vertebrates, respiratory control is ascribed to heterogeneous respiration-modulated neurons along the Ventral Respiratory Column (VRC) in medulla, which includes the preBötzinger Complex (preBötC), the putative respiratory rhythm generator. Here, the functional anatomy of the VRC was characterized via optical recordings in the sagittaly sectioned neonate rat hindbrain, at sampling rates permitting coupling estimation between neuron pairs, so that each neuron was described using unitary, neuron-system, and coupling attributes. Structured coupling relations in local networks, significantly oriented coupling in the peri-inspiratory interval detected in pooled data, and significant correlations between firing rate and expiratory duration in subsets of neurons revealed network regulation at multiple timescales. Spatially averaged neuronal attributes, including coupling vectors, revealed a sharp boundary at the rostral margin of the preBötC, as well as other functional anatomical features congruent with identified structures, including the parafacial respiratory group and the nucleus ambiguus. Cluster analysis of attributes identified two spatially compact, homogenous groups: the first overlapped with the preBötC, and was characterized by strong respiratory modulation and dense bidirectional coupling with itself and other groups, consistent with a central role for the preBötC in respiratory control; the second lay between preBötC and the facial nucleus, and was characterized by weak respiratory modulation and weak coupling with other respiratory neurons, which is congruent with cardiovascular regulatory networks that are found in this region. Other groups identified using cluster analysis suggested that networks along VRC regulated expiratory duration, and the transition to and from inspiration, but these groups were heterogeneous and anatomically dispersed. Thus, by recording local networks in parallel, this study found evidence for respiratory regulation at multiple timescales along the VRC, as well as a role for the preBötC in the integration of functionally disparate respiratory neurons. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Concentrations of hormones, pharmaceuticals and other micropollutants in groundwater affected by septic systems in New England and New York

    USGS Publications Warehouse

    Phillips, Patrick J.; Schubert, Christopher E.; Argue, Denise M.; Fisher, Irene J.; Furlong, Edward T.; Foreman, William T.; Gray, James L.; Chalmers, Ann T.

    2015-01-01

    The highest micropollutant concentrations for the NY network were present in the shoreline wells and reflect groundwater that is most affected by septic system discharges. One of the shoreline wells had personal care/domestic use, pharmaceutical, and plasticizer concentrations ranging from 0.4 to 5.7 μg/L. Estradiol equivalency quotient concentrations were also highest in a shoreline well sample (3.1 ng/L). Most micropollutant concentrations increase with increasing specific conductance and total nitrogen concentrations for shoreline well samples. These findings suggest that septic systems serving institutional settings and densely populated areas in coastal settings may be locally important sources of micropollutants to adjacent aquifer and marine systems.

  20. Early Development of Functional Network Segregation Revealed by Connectomic Analysis of the Preterm Human Brain.

    PubMed

    Cao, Miao; He, Yong; Dai, Zhengjia; Liao, Xuhong; Jeon, Tina; Ouyang, Minhui; Chalak, Lina; Bi, Yanchao; Rollins, Nancy; Dong, Qi; Huang, Hao

    2017-03-01

    Human brain functional networks are topologically organized with nontrivial connectivity characteristics such as small-worldness and densely linked hubs to support highly segregated and integrated information processing. However, how they emerge and change at very early developmental phases remains poorly understood. Here, we used resting-state functional MRI and voxel-based graph theory analysis to systematically investigate the topological organization of whole-brain networks in 40 infants aged around 31 to 42 postmenstrual weeks. The functional connectivity strength and heterogeneity increased significantly in primary motor, somatosensory, visual, and auditory regions, but much less in high-order default-mode and executive-control regions. The hub and rich-club structures in primary regions were already present at around 31 postmenstrual weeks and exhibited remarkable expansions with age, accompanied by increased local clustering and shortest path length, indicating a transition from a relatively random to a more organized configuration. Moreover, multivariate pattern analysis using support vector regression revealed that individual brain maturity of preterm babies could be predicted by the network connectivity patterns. Collectively, we highlighted a gradually enhanced functional network segregation manner in the third trimester, which is primarily driven by the rapid increases of functional connectivity of the primary regions, providing crucial insights into the topological development patterns prior to birth. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Efficient Graph-Based Resource Allocation Scheme Using Maximal Independent Set for Randomly- Deployed Small Star Networks

    PubMed Central

    Zhou, Jian; Wang, Lusheng; Wang, Weidong; Zhou, Qingfeng

    2017-01-01

    In future scenarios of heterogeneous and dense networks, randomly-deployed small star networks (SSNs) become a key paradigm, whose system performance is restricted to inter-SSN interference and requires an efficient resource allocation scheme for interference coordination. Traditional resource allocation schemes do not specifically focus on this paradigm and are usually too time consuming in dense networks. In this article, a very efficient graph-based scheme is proposed, which applies the maximal independent set (MIS) concept in graph theory to help divide SSNs into almost interference-free groups. We first construct an interference graph for the system based on a derived distance threshold indicating for any pair of SSNs whether there is intolerable inter-SSN interference or not. Then, SSNs are divided into MISs, and the same resource can be repetitively used by all the SSNs in each MIS. Empirical parameters and equations are set in the scheme to guarantee high performance. Finally, extensive scenarios both dense and nondense are randomly generated and simulated to demonstrate the performance of our scheme, indicating that it outperforms the classical max K-cut-based scheme in terms of system capacity, utility and especially time cost. Its achieved system capacity, utility and fairness can be close to the near-optimal strategy obtained by a time-consuming simulated annealing search. PMID:29113109

  2. A decade of passive seismic monitoring experiments with local networks in four Italian regions

    NASA Astrophysics Data System (ADS)

    Chiaraluce, L.; Valoroso, L.; Anselmi, M.; Bagh, S.; Chiarabba, C.

    2009-10-01

    We report on four seismic monitoring experiments that in the past ten years we carried out with dense local networks in seismically active Italian areas where for at least a year, tens of three component seismic stations were set up to record microseismicity. The areas observed are Alpago-Cansiglio, located in the Venetian Alps, Città di Castello in the Northern Apennines, Marsica in the Central Apennines and Val d'Agri located in the Southern Apennines. We produced homogeneous catalogues regarding earthquake locations and local magnitudes to investigate seismicity patterns during an inter-seismic period. The four regions are characterised by different kinematics, strain rates and historical/recent seismicity. We investigate earthquake distribution in space, time and size obtaining reference seismic rates and parameters of the Gutenberg and Richter law. We declustered the catalogues to look for coherent signs in the background seismic activity. Despite a difference in the catalogues magnitudes of completeness due both to the diverse detection threshold of the local networks and different seismic release, we detect and observe two common main behaviours: a) The Alpago-Cansiglio and Marsica regions are characterised by a relatively lower rate of seismic release associated to the episodic occurrence of seismic sequences with the largest event being 3 < ML < 4. In these areas the seismicity is not localised around the main faults. b) The Città di Castello and Val d'Agri regions have a relatively high rate of seismicity release almost continuously with time, and the increase in earthquake production is not clearly related to seismic sequences. In these areas the seismicity nucleates around defined fault systems and is usually lower than ML < 3. We suggest that the presence of over-pressured fluids in the Città di Castello and Val d'Agri uppermost crustal volume may favour and mould the higher rate of microseismic release.

  3. Optoelectronic Integrated Circuits For Neural Networks

    NASA Technical Reports Server (NTRS)

    Psaltis, D.; Katz, J.; Kim, Jae-Hoon; Lin, S. H.; Nouhi, A.

    1990-01-01

    Many threshold devices placed on single substrate. Integrated circuits containing optoelectronic threshold elements developed for use as planar arrays of artificial neurons in research on neural-network computers. Mounted with volume holograms recorded in photorefractive crystals serving as dense arrays of variable interconnections between neurons.

  4. Maturation State and Matrix Microstructure Regulate Interstitial Cell Migration in Dense Connective Tissues.

    PubMed

    Qu, Feini; Li, Qing; Wang, Xiao; Cao, Xuan; Zgonis, Miltiadis H; Esterhai, John L; Shenoy, Vivek B; Han, Lin; Mauck, Robert L

    2018-02-19

    Few regenerative approaches exist for the treatment of injuries to adult dense connective tissues. Compared to fetal tissues, adult connective tissues are hypocellular and show limited healing after injury. We hypothesized that robust repair can occur in fetal tissues with an immature extracellular matrix (ECM) that is conducive to cell migration, and that this process fails in adults due to the biophysical barriers imposed by the mature ECM. Using the knee meniscus as a platform, we evaluated the evolving micromechanics and microstructure of fetal and adult tissues, and interrogated the interstitial migratory capacity of adult meniscal cells through fetal and adult tissue microenvironments with or without partial enzymatic digestion. To integrate our findings, a computational model was implemented to determine how changing biophysical parameters impact cell migration through these dense networks. Our results show that the micromechanics and microstructure of the adult meniscus ECM sterically hinder cell mobility, and that modulation of these ECM attributes via an exogenous matrix-degrading enzyme permits migration through this otherwise impenetrable network. By addressing the inherent limitations to repair imposed by the mature ECM, these studies may define new clinical strategies to promote repair of damaged dense connective tissues in adults.

  5. Optimization of return electrodes in neurostimulating arrays

    NASA Astrophysics Data System (ADS)

    Flores, Thomas; Goetz, Georges; Lei, Xin; Palanker, Daniel

    2016-06-01

    Objective. High resolution visual prostheses require dense stimulating arrays with localized inputs of individual electrodes. We study the electric field produced by multielectrode arrays in electrolyte to determine an optimal configuration of return electrodes and activation sequence. Approach. To determine the boundary conditions for computation of the electric field in electrolyte, we assessed current dynamics using an equivalent circuit of a multielectrode array with interleaved return electrodes. The electric field modeled with two different boundary conditions derived from the equivalent circuit was then compared to measurements of electric potential in electrolyte. To assess the effect of return electrode configuration on retinal stimulation, we transformed the computed electric fields into retinal response using a model of neural network-mediated stimulation. Main results. Electric currents at the capacitive electrode-electrolyte interface redistribute over time, so that boundary conditions transition from equipotential surfaces at the beginning of the pulse to uniform current density in steady state. Experimental measurements confirmed that, in steady state, the boundary condition corresponds to a uniform current density on electrode surfaces. Arrays with local return electrodes exhibit improved field confinement and can elicit stronger network-mediated retinal response compared to those with a common remote return. Connecting local return electrodes enhances the field penetration depth and allows reducing the return electrode area. Sequential activation of the pixels in large monopolar arrays reduces electrical cross-talk and improves the contrast in pattern stimulation. Significance. Accurate modeling of multielectrode arrays helps optimize the electrode configuration to maximize the spatial resolution, contrast and dynamic range of retinal prostheses.

  6. Association of Symptom Network Structure With the Course of [corrected] Depression.

    PubMed

    van Borkulo, Claudia; Boschloo, Lynn; Borsboom, Denny; Penninx, Brenda W J H; Waldorp, Lourens J; Schoevers, Robert A

    2015-12-01

    Major depressive disorder (MDD) is a heterogeneous condition in terms of symptoms, course, and underlying disease mechanisms. Current classifications do not adequately address this complexity. In novel network approaches to psychopathology, psychiatric disorders are conceptualized as complex dynamic systems of mutually interacting symptoms. This perspective implies that a more densely connected network of symptoms is indicative of a poorer prognosis, but, to date, no previous study has examined whether network structure is indeed associated with the longitudinal course of MDD. To examine whether the baseline network structure of MDD symptoms is associated with the longitudinal course of MDD. In this prospective study, in which remittent and persistent MDD was defined on the basis of a follow-up assessment after 2 years, 515 patients from the Netherlands Study of Depression and Anxiety with past-year MDD (established with the Composite International Diagnostic Interview) and at least moderate depressive symptoms (assessed with the Inventory of Depressive Symptomatology [IDS]) at baseline were studied. Baseline starting and ending dates were September 1, 2004, through February 28, 2007. Follow-up starting and ending dates were September 1, 2006, through February 28, 2009. Analysis was conducted August 2015. The MDD was considered persistent if patients had at least moderate depressive symptoms (IDS) at 2-year follow-up; otherwise, the MDD was considered remitted. Sparse network structures of baseline MDD symptoms assessed via IDS were computed. Global and local connectivity of network structures were compared across persisters and remitters using a permutation test. Among the 515 patients, 335 (65.1%) were female, mead (SD) age was 40.9 (12.1) years, and 253 (49.1%) had persistent MDD at 2-year follow-up. Persisters (n = 253) had a higher baseline IDS sum score than remitters (n = 262) (mean [SD] score, 40.2 [8.9] vs 35.1 [7.1]; the test statistic for the difference in IDS sum score was 22 027; P < .001). The test statistic for the difference in network connectivity was 1.79 (P = .01) for the original data, 1.55 for data matched on IDS sum score (P = .04), and 1.65 for partialed out data (P = .02). At the symptom level, fatigue or loss of energy and feeling guilty had the largest difference in importance in persisters' network compared with that of remitters (Cohen d = 1.13 and 1.18, respectively). This study reports that symptom networks of patients with MDD are related to longitudinal course: persisters exhibited a more densely connected network at baseline than remitters. More pronounced associations between symptoms may be an important determinant of persistence in MDD.

  7. On Connection Between Topology and Memory Loss in Sheared Granular Materials

    NASA Astrophysics Data System (ADS)

    Kovalcinova, Lenka; Kramar, Miro; Mischaikow, Konstantin; Kondic, Lou

    We present combined results of discrete element simulations and topological data analysis that allows us to characterize the geometrical properties of force networks. Our numerical setup consists of the system of cylindrical particles placed inside rectangular box with periodic boundary conditions along the horizontal direction. System dynamics is driven by constant shearing speed of the top and bottom walls (in the opposite directions) and pressure applied on the top wall in a dense flow regime. Our study reveals the origin of memory loss in granular systems through local rapid changes in force networks. To understand these rapid events we analyze the evolution of the largest Lyapunov exponent in a simpler case of granular system without inter-particle friction and explore a correlation with topological measures. Surprisingly, our results suggest that the memory loss is driven mainly by pressure even in the case of fixed inertial number. We conclude that the interplay between physical properties of the granular system and force network geometry is a key to understand the dynamics of the sheared systems. This research was supported by NSF Grant No. DMS-1521717 and DARPA No. HR0011-16-2-0033.

  8. Ionospheric Modification from Under-Dense Heating by High-Power HF Transmitter

    DTIC Science & Technology

    2011-03-03

    Auroral Research Program ( HAARP ) is a HF transmitter, which delivers 0.36 to 3.6 GW effective isotropic radiated powers (F.IRP) for the radiation...dense heating, the EIRP of the HAARP heater can be increased significantly by increasing the heater frequency. With higher heater frequency, the loss...1304 local time) and on 13 April from 0812 to 0844 UTC (0012 to 0044 local time), using the HAARP transmitter facility at Gakona, AK, at full power

  9. A light and faster regional convolutional neural network for object detection in optical remote sensing images

    NASA Astrophysics Data System (ADS)

    Ding, Peng; Zhang, Ye; Deng, Wei-Jian; Jia, Ping; Kuijper, Arjan

    2018-07-01

    Detection of objects from satellite optical remote sensing images is very important for many commercial and governmental applications. With the development of deep convolutional neural networks (deep CNNs), the field of object detection has seen tremendous advances. Currently, objects in satellite remote sensing images can be detected using deep CNNs. In general, optical remote sensing images contain many dense and small objects, and the use of the original Faster Regional CNN framework does not yield a suitably high precision. Therefore, after careful analysis we adopt dense convoluted networks, a multi-scale representation and various combinations of improvement schemes to enhance the structure of the base VGG16-Net for improving the precision. We propose an approach to reduce the test-time (detection time) and memory requirements. To validate the effectiveness of our approach, we perform experiments using satellite remote sensing image datasets of aircraft and automobiles. The results show that the improved network structure can detect objects in satellite optical remote sensing images more accurately and efficiently.

  10. Digital services using quadrature amplitude modulation (QAM) over CATV analog DWDM system

    NASA Astrophysics Data System (ADS)

    Yeh, JengRong; Selker, Mark D.; Trail, J.; Piehler, David; Levi, Israel

    2000-04-01

    Dense Wavelength Division Multiplexing (DWDM) has recently gained great popularity as it provides a cost effective way to increase the transmission capacity of the existing fiber cable plant. For a long time, Dense WDM was exclusively used for baseband digital applications, predominantly in terrestrial long haul networks and in some cases in metropolitan and enterprise networks. Recently, the performance of DWDM components and frequency-stabilized lasers has substantially improved while the costs have down significantly. This makes a variety of new optical network architectures economically viable. The first commercial 8- wavelength DWDM system designed for Hybrid Fiber Coax networks was reported in 1998. This type of DWDM system utilizes Sub-Carrier Multiplexing (SCM) of Quadrature Amplitude Modulated (QAM) signals to transport IP data digital video broadcast and Video on Demand on ITU grid lightwave carriers. The ability of DWDM to provide scalable transmission capacity in the optical layer with SCM granularity is now considered by many to be the most promising technology for future transport and distribution of broadband multimedia services.

  11. Studies of infrasound propagation using the USArray seismic network (Invited)

    NASA Astrophysics Data System (ADS)

    Hedlin, M. A.; Degroot-Hedlin, C. D.; Walker, K. T.

    2010-12-01

    Although there are currently ~ 100 infrasound arrays worldwide, more than ever before, the station density is still insufficient to provide validation for detailed propagation modeling. Much structure in the atmosphere is short-lived and occurs at spatial scales much smaller than the average distance between infrasound stations. Relatively large infrasound signals can be observed on seismic channels due to coupling at the Earth's surface. Recent research, using data from the 70-km spaced 400-station USArray and other seismic network deployments, has shown the value of dense seismic network data for filling in the gaps between infrasound arrays. The dense sampling of the infrasound wavefield has allowed us to observe complete travel-time branches of infrasound signals and shed more light on the nature of infrasound propagation. We present early results from our studies of impulsive atmospheric sources, such as series of UTTR rocket motor detonations in Utah. The Utah blasts have been well recorded by USArray seismic stations and infrasound arrays in Nevada and Washington State. Recordings of seismic signals from a series of six events in 2007 are used to pinpoint the shot times to < 1 second. Variations in the acoustic branches and signal arrival times at the arrays are used to probe variations in atmospheric structure. Although we currently use coupled signals we anticipate studying dense acoustic network recordings as the USArray is currently being upgraded with infrasound microphones. These new sensors will allow us to make semi-continental scale network recordings of infrasound signals free of concerns about how the signals observed on seismic channels were modified when being coupled to seismic.

  12. Nonlinear decoding of a complex movie from the mammalian retina

    PubMed Central

    Deny, Stéphane; Martius, Georg

    2018-01-01

    Retina is a paradigmatic system for studying sensory encoding: the transformation of light into spiking activity of ganglion cells. The inverse problem, where stimulus is reconstructed from spikes, has received less attention, especially for complex stimuli that should be reconstructed “pixel-by-pixel”. We recorded around a hundred neurons from a dense patch in a rat retina and decoded movies of multiple small randomly-moving discs. We constructed nonlinear (kernelized and neural network) decoders that improved significantly over linear results. An important contribution to this was the ability of nonlinear decoders to reliably separate between neural responses driven by locally fluctuating light signals, and responses at locally constant light driven by spontaneous-like activity. This improvement crucially depended on the precise, non-Poisson temporal structure of individual spike trains, which originated in the spike-history dependence of neural responses. We propose a general principle by which downstream circuitry could discriminate between spontaneous and stimulus-driven activity based solely on higher-order statistical structure in the incoming spike trains. PMID:29746463

  13. Stereoscopic determination of all-sky altitude map of aurora using two ground-based Nikon DSLR cameras

    NASA Astrophysics Data System (ADS)

    Kataoka, R.; Miyoshi, Y.; Shigematsu, K.; Hampton, D.; Mori, Y.; Kubo, T.; Yamashita, A.; Tanaka, M.; Takahei, T.; Nakai, T.; Miyahara, H.; Shiokawa, K.

    2013-09-01

    A new stereoscopic measurement technique is developed to obtain an all-sky altitude map of aurora using two ground-based digital single-lens reflex (DSLR) cameras. Two identical full-color all-sky cameras were set with an 8 km separation across the Chatanika area in Alaska (Poker Flat Research Range and Aurora Borealis Lodge) to find localized emission height with the maximum correlation of the apparent patterns in the localized pixels applying a method of the geographical coordinate transform. It is found that a typical ray structure of discrete aurora shows the broad altitude distribution above 100 km, while a typical patchy structure of pulsating aurora shows the narrow altitude distribution of less than 100 km. Because of its portability and low cost of the DSLR camera systems, the new technique may open a unique opportunity not only for scientists but also for night-sky photographers to complementarily attend the aurora science to potentially form a dense observation network.

  14. Core-periphery structure requires something else in the network

    NASA Astrophysics Data System (ADS)

    Kojaku, Sadamori; Masuda, Naoki

    2018-04-01

    A network with core-periphery structure consists of core nodes that are densely interconnected. In contrast to a community structure, which is a different meso-scale structure of networks, core nodes can be connected to peripheral nodes and peripheral nodes are not densely interconnected. Although core-periphery structure sounds reasonable, we argue that it is merely accounted for by heterogeneous degree distributions, if one partitions a network into a single core block and a single periphery block, which the famous Borgatti–Everett algorithm and many succeeding algorithms assume. In other words, there is a strong tendency that high-degree and low-degree nodes are judged to be core and peripheral nodes, respectively. To discuss core-periphery structure beyond the expectation of the node’s degree (as described by the configuration model), we propose that one needs to assume at least one block of nodes apart from the focal core-periphery structure, such as a different core-periphery pair, community or nodes not belonging to any meso-scale structure. We propose a scalable algorithm to detect pairs of core and periphery in networks, controlling for the effect of the node’s degree. We illustrate our algorithm using various empirical networks.

  15. Along-strike Variations in the Himalayas Illuminated by the Aftershock Sequence of the 2015 Mw 7.8 Gorkha Earthquake Using the NAMASTE Local Seismic Network

    NASA Astrophysics Data System (ADS)

    Mendoza, M.; Ghosh, A.; Karplus, M. S.; Nabelek, J.; Sapkota, S. N.; Adhikari, L. B.; Klemperer, S. L.; Velasco, A. A.

    2016-12-01

    As a result of the 2015 Mw 7.8 Gorkha earthquake, more than 8,000 people were killed from a combination of infrastructure failure and triggered landslides. This earthquake produced 4 m of peak co-seismic slip as the fault ruptured 130 km east under densely populated cities, such as Kathmandu. To understand earthquake dynamics in this part of the Himalayas and help mitigate similar future calamities by the next destructive event, it is imperative to study earthquake activities in detail and improve our understanding of the source and structural complexities. In response to the Gorkha event, multiple institutions developed and deployed a 10-month long dense seismic network called NAMASTE. It blanketed a 27,650 km2 area, mainly covering the rupture area of the Gorkha earthquake, in order to capture the dynamic sequence of aftershock behavior. The network consisted of a mix of 45 broadband, short-period, and strong motion sensors, with an average spacing of 20 km. From the first 6 months of data, starting approximately 1.5 after the mainshock, we develop a robust catalog containing over 3,000 precise earthquake locations, and local magnitudes that range between 0.3 and 4.9. The catalog has a magnitude of completeness of 1.5, and an overall low b-value of 0.78. Using the HypoDD algorithm, we relocate earthquake hypocenters with high precision, and thus illustrate the fault geometry down to depths of 25 km where we infer the location of the gently-dipping Main Frontal Thrust (MFT). Above the MFT, the aftershocks illuminate complex structure produced by relatively steeply dipping faults. Interestingly, we observe sharp along-strike change in the seismicity pattern. The eastern part of the aftershock area is significantly more active than the western part. The change in seismicity may reflect structural and/or frictional lateral heterogeneity in this part of the Himalayan fault system. Such along-strike variations play an important role in rupture complexities and arresting the mainshock from rupturing further east. This catalog serves as a starting point for not only identifying the physical processes controlling the earthquake cycles, but also areas of increased stress, in this segment of the Himalayas.

  16. Clustering-based energy-saving algorithm in ultra-dense network

    NASA Astrophysics Data System (ADS)

    Huang, Junwei; Zhou, Pengguang; Teng, Deyang; Zhang, Renchi; Xu, Hao

    2017-06-01

    In Ultra-dense Networks (UDN), dense deployment of low power small base stations will cause serious small cells interference and a large amount of energy consumption. The purpose of this paper is to explore the method of reducing small cells interference and energy saving system in UDN, and we innovatively propose a sleep-waking-active (SWA) scheme. The scheme decreases the user outage causing by failure to detect users’ service requests, shortens the opening time of active base stations directly switching to sleep mode; we further proposes a Vertex Surrounding Clustering(VSC) algorithm, which first colours the small cells with the most strongest interference and next extends to the adjacent small cells. VSC algorithm can use the least colour to stain the small cell, reduce the number of iterations and promote the efficiency of colouring. The simulation results show that SWA scheme can effectively improve the system Energy Efficiency (EE), the VSC algorithm can reduce the small cells interference and optimize the users’ Spectrum Efficiency (SE) and throughput.

  17. Detection of mass regions in mammograms by bilateral analysis adapted to breast density using similarity indexes and convolutional neural networks.

    PubMed

    Bandeira Diniz, João Otávio; Bandeira Diniz, Pedro Henrique; Azevedo Valente, Thales Levi; Corrêa Silva, Aristófanes; de Paiva, Anselmo Cardoso; Gattass, Marcelo

    2018-03-01

    The processing of medical image is an important tool to assist in minimizing the degree of uncertainty of the specialist, while providing specialists with an additional source of detect and diagnosis information. Breast cancer is the most common type of cancer that affects the female population around the world. It is also the most deadly type of cancer among women. It is the second most common type of cancer among all others. The most common examination to diagnose breast cancer early is mammography. In the last decades, computational techniques have been developed with the purpose of automatically detecting structures that maybe associated with tumors in mammography examination. This work presents a computational methodology to automatically detection of mass regions in mammography by using a convolutional neural network. The materials used in this work is the DDSM database. The method proposed consists of two phases: training phase and test phase. The training phase has 2 main steps: (1) create a model to classify breast tissue into dense and non-dense (2) create a model to classify regions of breast into mass and non-mass. The test phase has 7 step: (1) preprocessing; (2) registration; (3) segmentation; (4) first reduction of false positives; (5) preprocessing of regions segmented; (6) density tissue classification (7) second reduction of false positives where regions will be classified into mass and non-mass. The proposed method achieved 95.6% of accuracy in classify non-dense breasts tissue and 97,72% accuracy in classify dense breasts. To detect regions of mass in non-dense breast, the method achieved a sensitivity value of 91.5%, and specificity value of 90.7%, with 91% accuracy. To detect regions in dense breasts, our method achieved 90.4% of sensitivity and 96.4% of specificity, with accuracy of 94.8%. According to the results achieved by CNN, we demonstrate the feasibility of using convolutional neural networks on medical image processing techniques for classification of breast tissue and mass detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Estimating Snow Water Equivalent over the American River in the Sierra Nevada Basin Using Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Welch, S. C.; Kerkez, B.; Glaser, S. D.; Bales, R. C.; Rice, R.

    2011-12-01

    We have designed a basin-scale (>2000 km2) instrument cluster, made up of 20 local-scale (1-km footprint) wireless sensor networks (WSNs), to measure patterns of snow depth and snow water equivalent (SWE) across the main snowmelt producing area within the American River basin. Each of the 20 WSNs has on the order of 25 wireless nodes, with over 10 nodes actively sensing snow depth, and thus snow accumulation and melt. When combined with existing snow density measurements and full-basin satellite snowcover data, these measurements are designed to provide dense ground-truth snow properties for research and real-time SWE for water management. The design of this large-scale network is based on rigorous testing of previous, smaller-scale studies, permitting for the development of methods to significantly, and efficiently scale up network operations. Recent advances in WSN technology have resulted in a modularized strategy that permits rapid future network deployment. To select network and sensor locations, various sensor placement approaches were compared, including random placement, placement of WSNs in locations that have captured the historical basin mean, as well as a placement algorithm leveraging the covariance structure of the SWE distribution. We show that that the optimal network locations do not exhibit a uniform grid, but rather follow strategic patterns based on physiographic terrain parameters. Uncertainty estimates are also provided to assess the confidence in the placement approach. To ensure near-optimal coverage of the full basin, we validated each placement approach with a multi-year record of SWE derived from reconstruction of historical satellite measurements.

  19. Interactions among human behavior, social networks, and societal infrastructures: A Case Study in Computational Epidemiology

    NASA Astrophysics Data System (ADS)

    Barrett, Christopher L.; Bisset, Keith; Chen, Jiangzhuo; Eubank, Stephen; Lewis, Bryan; Kumar, V. S. Anil; Marathe, Madhav V.; Mortveit, Henning S.

    Human behavior, social networks, and the civil infrastructures are closely intertwined. Understanding their co-evolution is critical for designing public policies and decision support for disaster planning. For example, human behaviors and day to day activities of individuals create dense social interactions that are characteristic of modern urban societies. These dense social networks provide a perfect fabric for fast, uncontrolled disease propagation. Conversely, people’s behavior in response to public policies and their perception of how the crisis is unfolding as a result of disease outbreak can dramatically alter the normally stable social interactions. Effective planning and response strategies must take these complicated interactions into account. In this chapter, we describe a computer simulation based approach to study these issues using public health and computational epidemiology as an illustrative example. We also formulate game-theoretic and stochastic optimization problems that capture many of the problems that we study empirically.

  20. Determining the sub-cellular localization of proteins within Caenorhabditis elegans body wall muscle.

    PubMed

    Meissner, Barbara; Rogalski, Teresa; Viveiros, Ryan; Warner, Adam; Plastino, Lorena; Lorch, Adam; Granger, Laure; Segalat, Laurent; Moerman, Donald G

    2011-01-01

    Determining the sub-cellular localization of a protein within a cell is often an essential step towards understanding its function. In Caenorhabditis elegans, the relatively large size of the body wall muscle cells and the exquisite organization of their sarcomeres offer an opportunity to identify the precise position of proteins within cell substructures. Our goal in this study is to generate a comprehensive "localizome" for C. elegans body wall muscle by GFP-tagging proteins expressed in muscle and determining their location within the cell. For this project, we focused on proteins that we know are expressed in muscle and are orthologs or at least homologs of human proteins. To date we have analyzed the expression of about 227 GFP-tagged proteins that show localized expression in the body wall muscle of this nematode (e.g. dense bodies, M-lines, myofilaments, mitochondria, cell membrane, nucleus or nucleolus). For most proteins analyzed in this study no prior data on sub-cellular localization was available. In addition to discrete sub-cellular localization we observe overlapping patterns of localization including the presence of a protein in the dense body and the nucleus, or the dense body and the M-lines. In total we discern more than 14 sub-cellular localization patterns within nematode body wall muscle. The localization of this large set of proteins within a muscle cell will serve as an invaluable resource in our investigation of muscle sarcomere assembly and function.

  1. Prediction of a Densely Loaded Particle-Laden Jet using a Euler-Lagrange Dense Spray Model

    NASA Astrophysics Data System (ADS)

    Pakseresht, Pedram; Apte, Sourabh V.

    2017-11-01

    Modeling of a dense spray regime using an Euler-Lagrange discrete-element approach is challenging because of local high volume loading. A subgrid cluster of droplets can lead to locally high void fractions for the disperse phase. Under these conditions, spatio-temporal changes in the carrier phase volume fractions, which are commonly neglected in spray simulations in an Euler-Lagrange two-way coupling model, could become important. Accounting for the carrier phase volume fraction variations, leads to zero-Mach number, variable density governing equations. Using pressure-based solvers, this gives rise to a source term in the pressure Poisson equation and a non-divergence free velocity field. To test the validity and predictive capability of such an approach, a round jet laden with solid particles is investigated using Direct Numerical Simulation and compared with available experimental data for different loadings. Various volume fractions spanning from dilute to dense regimes are investigated with and without taking into account the volume displacement effects. The predictions of the two approaches are compared and analyzed to investigate the effectiveness of the dense spray model. Financial support was provided by National Aeronautics and Space Administration (NASA).

  2. Cell Selection Game for Densely-Deployed Sensor and Mobile Devices In 5G Networks Integrating Heterogeneous Cells and the Internet of Things.

    PubMed

    Wang, Lusheng; Wang, Yamei; Ding, Zhizhong; Wang, Xiumin

    2015-09-18

    With the rapid development of wireless networking technologies, the Internet of Things and heterogeneous cellular networks (HCNs) tend to be integrated to form a promising wireless network paradigm for 5G. Hyper-dense sensor and mobile devices will be deployed under the coverage of heterogeneous cells, so that each of them could freely select any available cell covering it and compete for resource with others selecting the same cell, forming a cell selection (CS) game between these devices. Since different types of cells usually share the same portion of the spectrum, devices selecting overlapped cells can experience severe inter-cell interference (ICI). In this article, we study the CS game among a large amount of densely-deployed sensor and mobile devices for their uplink transmissions in a two-tier HCN. ICI is embedded with the traditional congestion game (TCG), forming a congestion game with ICI (CGI) and a congestion game with capacity (CGC). For the three games above, we theoretically find the circular boundaries between the devices selecting the macrocell and those selecting the picocells, indicated by the pure strategy Nash equilibria (PSNE). Meanwhile, through a number of simulations with different picocell radii and different path loss exponents, the collapse of the PSNE impacted by severe ICI (i.e., a large number of picocell devices change their CS preferences to the macrocell) is profoundly revealed, and the collapse points are identified.

  3. Cell Selection Game for Densely-Deployed Sensor and Mobile Devices In 5G Networks Integrating Heterogeneous Cells and the Internet of Things

    PubMed Central

    Wang, Lusheng; Wang, Yamei; Ding, Zhizhong; Wang, Xiumin

    2015-01-01

    With the rapid development of wireless networking technologies, the Internet of Things and heterogeneous cellular networks (HCNs) tend to be integrated to form a promising wireless network paradigm for 5G. Hyper-dense sensor and mobile devices will be deployed under the coverage of heterogeneous cells, so that each of them could freely select any available cell covering it and compete for resource with others selecting the same cell, forming a cell selection (CS) game between these devices. Since different types of cells usually share the same portion of the spectrum, devices selecting overlapped cells can experience severe inter-cell interference (ICI). In this article, we study the CS game among a large amount of densely-deployed sensor and mobile devices for their uplink transmissions in a two-tier HCN. ICI is embedded with the traditional congestion game (TCG), forming a congestion game with ICI (CGI) and a congestion game with capacity (CGC). For the three games above, we theoretically find the circular boundaries between the devices selecting the macrocell and those selecting the picocells, indicated by the pure strategy Nash equilibria (PSNE). Meanwhile, through a number of simulations with different picocell radii and different path loss exponents, the collapse of the PSNE impacted by severe ICI (i.e., a large number of picocell devices change their CS preferences to the macrocell) is profoundly revealed, and the collapse points are identified. PMID:26393617

  4. Life of Lambda

    ERIC Educational Resources Information Center

    Futhey, Tracy

    2005-01-01

    In this column, the author discusses the four key questions related to the National LambdaRail (NLR) networking technology. NLR uses Dense Wave Division Multiplexing (DWDM) to enable multiple networks to coexist on a national fiber footprint, and is owned and operated not by carriers, but by the research and education community. The NLR Board…

  5. GRA12, a Toxoplasma dense granule protein associated with the intravacuolar membranous nanotubular network.

    PubMed

    Michelin, Adeline; Bittame, Amina; Bordat, Yann; Travier, Laetitia; Mercier, Corinne; Dubremetz, Jean-François; Lebrun, Maryse

    2009-02-01

    The intracellular protozoan parasite Toxoplasma gondii develops within the parasitophorous vacuole (PV), an intracellular niche in which it secretes proteins from secretory organelles named dense granules and rhoptries. Here, we describe a new dense granule protein that should now be referred to as GRA12, and that displays no homology with other proteins. Immunofluorescence and immuno-electron microscopy showed that GRA12 behaves similarly to both GRA2 and GRA6. It is secreted into the PV from the anterior pole of the parasite soon after the beginning of invasion, transits to the posterior invaginated pocket of the parasite where a membranous tubulovesicular network is first assembled, and finally resides throughout the vacuolar space, associated with the mature membranous nanotubular network. GRA12 fails to localise at the parasite posterior end in the absence of GRA2. Within the vacuolar space, like the other GRA proteins, GRA12 exists in both a soluble and a membrane-associated form. Using affinity chromatography experiments, we showed that in both the parasite and the PV soluble fractions, GRA12 is purified with the complex of GRA proteins associated with a tagged version of GRA2 and that this association is lost in the PV membranous fraction.

  6. Modeling propagation of infrasound signals observed by a dense seismic network.

    PubMed

    Chunchuzov, I; Kulichkov, S; Popov, O; Hedlin, M

    2014-01-01

    The long-range propagation of infrasound from a surface explosion with an explosive yield of about 17.6 t TNT that occurred on June 16, 2008 at the Utah Test and Training Range (UTTR) in the western United States is simulated using an atmospheric model that includes fine-scale layered structure of the wind velocity and temperature fields. Synthetic signal parameters (waveforms, amplitudes, and travel times) are calculated using parabolic equation and ray-tracing methods for a number of ranges between 100 and 800 km from the source. The simulation shows the evolution of several branches of stratospheric and thermospheric signals with increasing range from the source. Infrasound signals calculated using a G2S (ground-to-space) atmospheric model perturbed by small-scale layered wind velocity and temperature fluctuations are shown to agree well with recordings made by the dense High Lava Plains seismic network located at an azimuth of 300° from UTTR. The waveforms of calculated infrasound arrivals are compared with those of seismic recordings. This study illustrates the utility of dense seismic networks for mapping an infrasound field with high spatial resolution. The parabolic equation calculations capture both the effect of scattering of infrasound into geometric acoustic shadow zones and significant temporal broadening of the arrivals.

  7. Evaluating the Reverse Time Migration Method on the dense Lapnet / Polenet seismic array in Europe

    NASA Astrophysics Data System (ADS)

    Dupont, Aurélien; Le Pichon, Alexis

    2013-04-01

    In this study, results are obtained using the reverse time migration method used as benchmark to evaluate the implemented method by Walker et al., (2010, 2011). Explosion signals recorded by the USArray and extracted from the TAIRED catalogue (TA Infrasound Reference Event Database user community / Vernon et al., 2012) are investigated. The first one is an explosion at Camp Minden, Louisiana (2012-10-16 04:25:00 UTC) and the second one is a natural gas explosion near Price, Utah (2012-11-20 15:20:00 UTC). We compare our results to automatic solutions (www.iris.edu/spud/infrasoundevent). The good agreement between both solutions validates our detection method. In a second time, we analyse data from the Lapnet / Polenet dense seismic network (Kozlovskaya et al., 2008). Detection and location in two-dimensional space and time of infrasound events presumably due to acoustic-to-seismic coupling, during the 2007-2009 period in Europe, are presented. The aim of this work is to integrate near-real time network performance predictions at regional scales to improve automatic detection of infrasonic sources. The use of dense seismic networks provides a valuable tool to monitor infrasonic phenomena, since seismic location has recently proved to be more accurate than infrasound locations due to the large number of seismic sensors.

  8. Histamine-immunoreactive local neurons in the antennal lobes of the Hymenoptera

    PubMed Central

    Dacks, Andrew M.; Reisenman, Carolina E.; Paulk, Angelique C.; Nighorn, Alan J.

    2010-01-01

    Neural networks receive input which is transformed before being sent as output to higher centers of processing. These transformations are often mediated by local interneurons (LNs) that influence output based on activity across the network. In primary olfactory centers, the LNs that mediate these lateral interactions are extremely diverse. For instance, the antennal lobes (ALs) of bumble bees possess both GABA and histamine-immunoreactive (HA-ir) LNs, and both are neurotransmitters associated with fast forms of inhibition. Although the GABAergic network of the AL has been extensively studied, we sought to examine the anatomical features of the HA-ir LNs in relation to the other cellular elements of the bumble bee AL. As a population, HA-ir LNs densely innervate the glomerular core while sparsely arborizing in the outer glomerular rind, overlapping with the terminals of olfactory receptor neurons. Individual fills of HA-ir LNs revealed heavy arborization of the outer ring of a single “principal” glomerulus and sparse arborization in the core of other glomeruli. In contrast, projection neurons, and GABA-immunoreactive LNs project throughout the glomerular volume. To provide insight as to the selective pressures that resulted in the evolution of HA-ir LNs, we determined the phylogenetic distribution of HA-ir LNs in the AL. HA-ir LNs were present in all but the most basal hymenopteran examined, although there were significant morphological differences between major groups within the Hymenoptera. The ALs of other insect taxa examined lacked HA-ir LNs, suggesting that this population of LNs arose within the Hymenoptera and underwent extensive morphological modification. PMID:20533353

  9. Improving weather modeling in South America through IDD-Brasil

    NASA Astrophysics Data System (ADS)

    Chagas, G. O.

    2007-05-01

    The IDD-Brasil constitutes of an international collaboration among Universidade Federal do Rio de Janeiro (LPM/UFRJ), Centro de Previsão de Tempo e Estudos Climáticos (CPTEC/INPE) and the Unidata Program Center (Unidata/UCAR), which connects several universities and research centers across the Americas in a network to share real-time hydro meteorological data. Using this network as a new path to deliver and acquire observational data, IDD-Brazil participants are capable of receiving observational data from GTS (Global Telecommunication System), locally ingested data from several automatic weather stations networks (mesonets) from INPE, the entire array of METAR and SYNOP observations, and several model outputs and satellite imagery. During recent years Numerical Models have been used constantly, especially in mesoscale research, but the lack of a dense observational network in South America leads to several constraints during the data assimilation and model validation. Since the IDD-Brasil offers an improved and simple method to have new datasets readily accessible, it has been used continuously as a new manner to distribute surface observations that are not currently available in GTS, such as several mesonets in Brazil that account for an increase in data density. Through the usage of data ingested in IDD-Brasil as guess fields it is possible to study how the assimilation in several global models frequently used as initial conditions for mesoscale simulations can be affected, since in certain areas in Brazil the density of data nearly doubles if compared to GTS. Therefore it is also possible to better validate the results generated in mesoscale simulations, in view of the fact that the network has an improved spatial distribution. It is expected that the increase of locally held numerical model output from South American institutions in IDD- Brasil leads to an increased awareness of the need to constantly validate these results with observational data, thus improving mesoscale research.

  10. Development of low-cost meteorological observation system based on wireless network for poor-visibility occurred by snowstorm

    NASA Astrophysics Data System (ADS)

    Kobayashi, Y.; Watanabe, K.; Imai, M.; Watanabe, K.; Naruse, N.; Takahashi, Y.

    2016-12-01

    Hyper-densely monitoring for poor-visibility occurred by snowstorm is needed to make an alert system, because the snowstorm is difficult to predict from the observation only at a representative point. There are some problems in the previous approaches for the poor-visibility monitoring using video analyses or visibility meters; these require a wired network monitoring (a large amount of data: 10MB/sec at least) and the system cost is high (10,000 at each point). Thus, the risk of poor-visibility has been mainly measured at specific point such as airport and mountain pass, and estimated by simulation two dimensionally. To predict it two dimensionally and accurately, we have developed a low-cost meteorological system to observe the snowstorm hyper-densely. We have developed a low-cost visibility meter which works as the reduced intensity of semiconducting laser light when snow particles block off. Our developed system also has a capability of extending a hyper-densely observation in real-time on wireless network using Zigbee; A/D conversion and wireless data sent from temperature and illuminance sensors. We use a semiconducting laser chip (5) for the light source and a reflection mechanism by the use of three mirrors so as to send the light to a non-sensitive illuminance sensor directly. Thus, our visibility detecting system ($500) becomes much cheaper than previous one. We have checked the correlation between the reduced intensity taken by our system and the visibility recorded by conventional video camera. The value for the correlation coefficient was -0.67, which indicates a strong correlation. It means that our developed system is practical. In conclusion, we have developed low-cost meteorological detecting system to observe poor-visibility occurred by snowstorm, having a potential of hyper-densely monitoring on wireless network, and have made sure the practicability.

  11. Mining connected global and local dense subgraphs for bigdata

    NASA Astrophysics Data System (ADS)

    Wu, Bo; Shen, Haiying

    2016-01-01

    The problem of discovering connected dense subgraphs of natural graphs is important in data analysis. Discovering dense subgraphs that do not contain denser subgraphs or are not contained in denser subgraphs (called significant dense subgraphs) is also critical for wide-ranging applications. In spite of many works on discovering dense subgraphs, there are no algorithms that can guarantee the connectivity of the returned subgraphs or discover significant dense subgraphs. Hence, in this paper, we define two subgraph discovery problems to discover connected and significant dense subgraphs, propose polynomial-time algorithms and theoretically prove their validity. We also propose an algorithm to further improve the time and space efficiency of our basic algorithm for discovering significant dense subgraphs in big data by taking advantage of the unique features of large natural graphs. In the experiments, we use massive natural graphs to evaluate our algorithms in comparison with previous algorithms. The experimental results show the effectiveness of our algorithms for the two problems and their efficiency. This work is also the first that reveals the physical significance of significant dense subgraphs in natural graphs from different domains.

  12. Wireless Sensor Platform for Cultural Heritage Monitoring and Modeling System

    PubMed Central

    Bermudez, Sergio A.; Schrott, Alejandro G.; Tsukada, Masahiko; Kargere, Lucretia; Marianno, Fernando; Hamann, Hendrik F.; López, Vanessa; Leona, Marco

    2017-01-01

    Results from three years of continuous monitoring of environmental conditions using a wireless sensor platform installed at The Cloisters, the medieval branch of the New York Metropolitan Museum of Art, are presented. The platform comprises more than 200 sensors that were distributed in five galleries to assess temperature and air flow and to quantify microclimate changes using physics-based and statistical models. The wireless sensor network data shows a very stable environment within the galleries, while the dense monitoring enables localized monitoring of subtle changes in air quality trends and impact of visitors on the microclimate conditions. The high spatial and temporal resolution data serves as a baseline study to understand the impact of visitors and building operations on the long-term preservation of art objects. PMID:28858223

  13. Wireless Sensor Platform for Cultural Heritage Monitoring and Modeling System.

    PubMed

    Klein, Levente J; Bermudez, Sergio A; Schrott, Alejandro G; Tsukada, Masahiko; Dionisi-Vici, Paolo; Kargere, Lucretia; Marianno, Fernando; Hamann, Hendrik F; López, Vanessa; Leona, Marco

    2017-08-31

    Results from three years of continuous monitoring of environmental conditions using a wireless sensor platform installed at The Cloisters, the medieval branch of the New York Metropolitan Museum of Art, are presented. The platform comprises more than 200 sensors that were distributed in five galleries to assess temperature and air flow and to quantify microclimate changes using physics-based and statistical models. The wireless sensor network data shows a very stable environment within the galleries, while the dense monitoring enables localized monitoring of subtle changes in air quality trends and impact of visitors on the microclimate conditions. The high spatial and temporal resolution data serves as a baseline study to understand the impact of visitors and building operations on the long-term preservation of art objects.

  14. NY-uHMT: A dense hydro-meteorological network to characterize urban land-atmosphere interactions

    NASA Astrophysics Data System (ADS)

    Ramamurthy, P.; Lakhankar, T.; Khanbilvardi, R.; Devineni, N.

    2016-12-01

    Most people in the US live in large Metropolitan areas that have a dense urban core in the center, dominated by built surfaces and surrounded by residential/suburban areas that consist a mix of built, vegetated and permeable surfaces. This creates a gradient in the hydro-meteorological environment giving rise to complex land-atmosphere interactions. Current modeling platforms and observational techniques like tower measurements do not adequately account for the underlying heterogeneity. To address this critical gap in our understanding we have instituted a dense network of sensors in the New York Metropolitan area. This unique urban sensor network consists of instrumentation to monitor soil moisture at multiple depths along with air temperature, relative humidity and precipitation, with room to add additional sensors in the future. The network is autonomous and connected to a centralized server using cellular towers. Apart from describing the spatial variability in hydro-meteorological quantities the network will also aid in conducting high-resolution numerical simulations to study and forecast urban weather and climate. In one such simulation conducted to partition the influence of storage flux, wind pattern and circulation and soil moisture deficit on urban heat island intensity (UHI), we found that the daily variability in UHI in NYC was sensitive to available energy and wind pattern. The long-term trend in UHI was however related to soil moisture deficit. In fact a prolonged heat wave period witnessed during summer 2006 correlated well with an extended dry period and the daily UHI in NYC almost doubled. Moreover, the urban soils also suffered from high degree of dessication, owing to drier urban boundary layer.

  15. Systems-level analysis of risk genes reveals the modular nature of schizophrenia.

    PubMed

    Liu, Jiewei; Li, Ming; Luo, Xiong-Jian; Su, Bing

    2018-05-19

    Schizophrenia (SCZ) is a complex mental disorder with high heritability. Genetic studies (especially recent genome-wide association studies) have identified many risk genes for schizophrenia. However, the physical interactions among the proteins encoded by schizophrenia risk genes remain elusive and it is not known whether the identified risk genes converge on common molecular networks or pathways. Here we systematically investigated the network characteristics of schizophrenia risk genes using the high-confidence protein-protein interactions (PPI) from the human interactome. We found that schizophrenia risk genes encode a densely interconnected PPI network (P = 4.15 × 10 -31 ). Compared with the background genes, the schizophrenia risk genes in the interactome have significantly higher degree (P = 5.39 × 10 -11 ), closeness centrality (P = 7.56 × 10 -11 ), betweeness centrality (P = 1.29 × 10 -11 ), clustering coefficient (P = 2.22 × 10 -2 ), and shorter average shortest path length (P = 7.56 × 10 -11 ). Based on the densely interconnected PPI network, we identified 48 hub genes and 4 modules formed by highly interconnected schizophrenia genes. We showed that the proteins encoded by schizophrenia hub genes have significantly more direct physical interactions. Gene ontology (GO) analysis revealed that cell adhesion, cell cycle, immune system response, and GABR-receptor complex categories were enriched in the modules formed by highly interconnected schizophrenia risk genes. Our study reveals that schizophrenia risk genes encode a densely interconnected molecular network and demonstrates the modular nature of schizophrenia. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. 2D PWV monitoring of a wide and orographically complex area with a low dense GNSS network

    NASA Astrophysics Data System (ADS)

    Ferrando, Ilaria; Federici, Bianca; Sguerso, Domenico

    2018-04-01

    This study presents an innovative procedure to monitor the precipitable water vapor (PWV) content of a wide and orographically complex area with low-density networks. The procedure, termed G4M (global navigation satellite system, GNSS, for Meteorology), has been developed in a geographic information system (GIS) environment using the free and open source GRASS GIS software (https://grass.osgeo.org). The G4M input data are zenith total delay estimates obtained from GNSS permanent stations network adjustment and pressure ( P) and temperature ( T) observations using existing infrastructure networks with different geographic distributions in the study area. In spite of the wide sensor distribution, the procedure produces 2D maps with high spatiotemporal resolution (up to 250 m and 6 min) based on a simplified mathematical model including data interpolation, which was conceived by the authors to describe the atmosphere's physics. In addition to PWV maps, the procedure provides ΔPWV and heterogeneity index maps: the former represents PWV variations with respect to a "calm" moment, which are useful for monitoring the PWV evolution; and the latter are promising indicators to localize severe meteorological events in time and space. This innovative procedure is compared with meteorological simulations in this paper; in addition, an application to a severe event that occurred in Genoa (Italy) is presented.[Figure not available: see fulltext.

  17. Immunocytochemical analysis of the subcellular distribution of ferritin in Imperata cylindrica (L.) Raeuschel, an iron hyperaccumulator plant.

    PubMed

    de la Fuente, Vicenta; Rodríguez, Nuria; Amils, Ricardo

    2012-05-01

    Ferritin is of interest at the structural and functional level not only as storage for iron, a critical element, but also as a means to prevent cell damage produced by oxidative stress. The main objective of this work was to confirm by immunocytochemistry the presence and the subcellular distribution of the ferritin detected by Mösbauer spectroscopy in Imperata cylindrica, a plant which accumulates large amounts of iron. The localization of ferritin was performed in epidermal, parenchymal and vascular tissues of shoots and leaves of I. cylindrica. The highest density of immunolabeling in shoots appeared in the intracellular space of cell tissues, near the cell walls and in the cytoplasm. In leaves, ferritin was detected in the proximity of the dense network of the middle lamella of cell walls, following a similar path to that observed in shoots. Immunolabeling was also localized in chloroplasts. The abundance of immunogold labelling in mitochondria for I. cylindrica was rather low, probably because the study dealt with tissues from old plants. These results further expand the localization of ferritin in cell components other than chloroplasts and mitochondria in plants. Copyright © 2011 Elsevier GmbH. All rights reserved.

  18. L(p) approximation capabilities of sum-of-product and sigma-pi-sigma neural networks.

    PubMed

    Long, Jinling; Wu, Wei; Nan, Dong

    2007-10-01

    This paper studies the L(p) approximation capabilities of sum-of-product (SOPNN) and sigma-pi-sigma (SPSNN) neural networks. It is proved that the set of functions that are generated by the SOPNN with its activation function in $L_{loc};p(\\mathcal{R})$ is dense in $L;p(\\mathcal{K})$ for any compact set $\\mathcal{K}\\subset \\mathcal{R};N$, if and only if the activation function is not a polynomial almost everywhere. It is also shown that if the activation function of the SPSNN is in ${L_{loc};\\infty(\\mathcal{R})}$, then the functions generated by the SPSNN are dense in $L;p(\\mathcal{K})$ if and only if the activation function is not a constant (a.e.).

  19. Dense gas and star formation in individual Giant Molecular Clouds in M31

    NASA Astrophysics Data System (ADS)

    Viaene, S.; Forbrich, J.; Fritz, J.

    2018-04-01

    Studies both of entire galaxies and of local Galactic star formation indicate a dependency of a molecular cloud's star formation rate (SFR) on its dense gas mass. In external galaxies, such measurements are derived from HCN(1-0) observations, usually encompassing many Giant Molecular Clouds (GMCs) at once. The Andromeda galaxy (M31) is a unique laboratory to study the relation of the SFR and HCN emission down to GMC scales at solar-like metallicities. In this work, we correlate our composite SFR determinations with archival HCN, HCO+, and CO observations, resulting in a sample of nine reasonably representative GMCs. We find that, at the scale of individual clouds, it is important to take into account both obscured and unobscured star formation to determine the SFR. When correlated against the dense-gas mass from HCN, we find that the SFR is low, in spite of these refinements. We nevertheless retrieve an SFR-dense-gas mass correlation, confirming that these SFR tracers are still meaningful on GMC scales. The correlation improves markedly when we consider the HCN/CO ratio instead of HCN by itself. This nominally indicates a dependency of the SFR on the dense-gas fraction, in contradiction to local studies. However, we hypothesize that this partly reflects the limited dynamic range in dense-gas mass, and partly that the ratio of single-pointing HCN and CO measurements may be less prone to systematics like sidelobes. In this case, the HCN/CO ratio would importantly be a better empirical measure of the dense-gas content itself.

  20. Connectome sensitivity or specificity: which is more important?

    PubMed

    Zalesky, Andrew; Fornito, Alex; Cocchi, Luca; Gollo, Leonardo L; van den Heuvel, Martijn P; Breakspear, Michael

    2016-11-15

    Connectomes with high sensitivity and high specificity are unattainable with current axonal fiber reconstruction methods, particularly at the macro-scale afforded by magnetic resonance imaging. Tensor-guided deterministic tractography yields sparse connectomes that are incomplete and contain false negatives (FNs), whereas probabilistic methods steered by crossing-fiber models yield dense connectomes, often with low specificity due to false positives (FPs). Densely reconstructed probabilistic connectomes are typically thresholded to improve specificity at the cost of a reduction in sensitivity. What is the optimal tradeoff between connectome sensitivity and specificity? We show empirically and theoretically that specificity is paramount. Our evaluations of the impact of FPs and FNs on empirical connectomes indicate that specificity is at least twice as important as sensitivity when estimating key properties of brain networks, including topological measures of network clustering, network efficiency and network modularity. Our asymptotic analysis of small-world networks with idealized modular structure reveals that as the number of nodes grows, specificity becomes exactly twice as important as sensitivity to the estimation of the clustering coefficient. For the estimation of network efficiency, the relative importance of specificity grows linearly with the number of nodes. The greater importance of specificity is due to FPs occurring more prevalently between network modules rather than within them. These spurious inter-modular connections have a dramatic impact on network topology. We argue that efforts to maximize the sensitivity of connectome reconstruction should be realigned with the need to map brain networks with high specificity. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. VISIONET: intuitive visualisation of overlapping transcription factor networks, with applications in cardiogenic gene discovery.

    PubMed

    Nim, Hieu T; Furtado, Milena B; Costa, Mauro W; Rosenthal, Nadia A; Kitano, Hiroaki; Boyd, Sarah E

    2015-05-01

    Existing de novo software platforms have largely overlooked a valuable resource, the expertise of the intended biologist users. Typical data representations such as long gene lists, or highly dense and overlapping transcription factor networks often hinder biologists from relating these results to their expertise. VISIONET, a streamlined visualisation tool built from experimental needs, enables biologists to transform large and dense overlapping transcription factor networks into sparse human-readable graphs via numerically filtering. The VISIONET interface allows users without a computing background to interactively explore and filter their data, and empowers them to apply their specialist knowledge on far more complex and substantial data sets than is currently possible. Applying VISIONET to the Tbx20-Gata4 transcription factor network led to the discovery and validation of Aldh1a2, an essential developmental gene associated with various important cardiac disorders, as a healthy adult cardiac fibroblast gene co-regulated by cardiogenic transcription factors Gata4 and Tbx20. We demonstrate with experimental validations the utility of VISIONET for expertise-driven gene discovery that opens new experimental directions that would not otherwise have been identified.

  2. Probing Allosteric Inhibition Mechanisms of the Hsp70 Chaperone Proteins Using Molecular Dynamics Simulations and Analysis of the Residue Interaction Networks.

    PubMed

    Stetz, Gabrielle; Verkhivker, Gennady M

    2016-08-22

    Although molecular mechanisms of allosteric regulation in the Hsp70 chaperones have been extensively studied at both structural and functional levels, the current understanding of allosteric inhibition of chaperone activities by small molecules is still lacking. In the current study, using a battery of computational approaches, we probed allosteric inhibition mechanisms of E. coli Hsp70 (DnaK) and human Hsp70 proteins by small molecule inhibitors PET-16 and novolactone. Molecular dynamics simulations and binding free energy analysis were combined with network-based modeling of residue interactions and allosteric communications to systematically characterize and compare molecular signatures of the apo form, substrate-bound, and inhibitor-bound chaperone complexes. The results suggested a mechanism by which the allosteric inhibitors may leverage binding energy hotspots in the interaction networks to stabilize a specific conformational state and impair the interdomain allosteric control. Using the network-based centrality analysis and community detection, we demonstrated that substrate binding may strengthen the connectivity of local interaction communities, leading to a dense interaction network that can promote an efficient allosteric communication. In contrast, binding of PET-16 to DnaK may induce significant dynamic changes and lead to a fractured interaction network and impaired allosteric communications in the DnaK complex. By using a mechanistic-based analysis of distance fluctuation maps and allosteric propensities of protein residues, we determined that the allosteric network in the PET-16 complex may be small and localized due to the reduced communication and low cooperativity of the substrate binding loops, which may promote the higher rates of substrate dissociation and the decreased substrate affinity. In comparison with the significant effect of PET-16, binding of novolactone to HSPA1A may cause only moderate network changes and preserve allosteric coupling between the allosteric pocket and the substrate binding region. The impact of novolactone on the conformational dynamics and allosteric communications in the HSPA1A complex was comparable to the substrate effect, which is consistent with the experimental evidence that PET-16, but not novolactone binding, can significantly decrease substrate affinity. We argue that the unique dynamic and network signatures of PET-16 and novolactone may be linked with the experimentally observed functional effects of these inhibitors on allosteric regulation and substrate binding.

  3. Lavoisier: A Low Altitude Balloon Network for Probing the Deep Atmosphere and Surface of Venus

    NASA Technical Reports Server (NTRS)

    Chaasefiere, E.; Berthelier, J. J.; Bertaux, J.-L.; Quemerais, E.; Pommereau, J.-P.; Rannou, P.; Raulin, F.; Coll, P.; Coscia, D.; Jambon, A.; hide

    2005-01-01

    The in-situ exploration of the low atmosphere and surface of Venus is clearly the next step of Venus exploration. Understanding the geochemistry of the low atmosphere, interacting with rocks, and the way the integrated Venus system evolved, under the combined effects of inner planet cooling and intense atmospheric greenhouse, is a major challenge of modern planetology. Due to the dense atmosphere (95 bars at the surface), balloon platforms offer an interesting means to transport and land in-situ measurement instruments. Due to the large Archimede force, a 2 cubic meter He-pressurized balloon floating at 10 km altitude may carry up to 60 kg of payload. LAVOISIER is a project submitted to ESA in 2000, in the follow up and spirit of the balloon deployed at cloud level by the Russian Vega mission in 1986. It is composed of a descent probe, for detailed noble gas and atmosphere composition analysis, and of a network of 3 balloons for geochemical and geophysical investigations at local, regional and global scales.

  4. Geodetic monitoring of subrosion-induced subsidence processes in urban areas

    NASA Astrophysics Data System (ADS)

    Kersten, Tobias; Kobe, Martin; Gabriel, Gerald; Timmen, Ludger; Schön, Steffen; Vogel, Detlef

    2017-03-01

    The research project SIMULTAN applies an advanced combination of geophysical, geodetic, and modelling techniques to gain a better understanding of the evolution and characteristics of sinkholes. Sinkholes are inherently related to surface deformation and, thus, of increasing societal relevance, especially in dense populated urban areas. One work package of SIMULTAN investigates an integrated approach to monitor sinkhole-related mass translations and surface deformations induced by salt dissolution. Datasets from identical and adjacent points are used for a consistent combination of geodetic and geophysical techniques. Monitoring networks are established in Hamburg and Bad Frankenhausen (Thuringia). Levelling surveys indicate subsidence rates of about 4-5 mm per year in the main subsidence areas of Bad Frankenhausen with a local maximum of 10 mm per year around the leaning church tower. Here, the concept of combining geodetic and gravimetric techniques to monitor and characterise geological processes on and below the Earth's surface is exemplary discussed for the focus area Bad Frankenhausen. For the different methods (levelling, GNSS, relative/absolute gravimetry) stable network results at identical points are obtained by the first campaigns, i.e., the results are generally in agreement.

  5. Localization Strategies in WSNs as applied to Landslide Monitoring (Invited)

    NASA Astrophysics Data System (ADS)

    Massa, A.; Robol, F.; Polo, A.; Giarola, E.; Viani, F.

    2013-12-01

    In the last years, heterogeneous integrated smart systems based on wireless sensor network (WSN) technology have been developed at the ELEDIA Research Center of the University of Trento [1]. One of the key features of WSNs as applied to distributed monitoring is that, while the capabilities of each single sensor node is limited, the implementation of cooperative schemes throughout the whole network enables the solution of even complex tasks, as the landslide monitoring. The capability of localizing targets respect to the position of the sensor nodes turns out to be fundamental in those application fields where relative movements arise. The main properties like the target typology, the movement characteristics, and the required localization resolution are different changing the reference scenario. However, the common key issue is still the localization of moving targets within the area covered by the sensor network. Many experiences were preparatory for the challenging activities in the field of landslide monitoring where the basic idea is mostly that of detecting slight soil movements. Among them, some examples of WSN-based systems experimentally applied to the localization of people [2] and wildlife [3] have been proposed. More recently, the WSN backbone as well as the investigated sensing technologies have been customized for monitoring superficial movements of the soil. The relative positions of wireless sensor nodes deployed where high probability of landslide exists is carefully monitored to forecast dangerous events. Multiple sensors like ultrasound, laser, high precision GPS, for the precise measurement of relative distances between the nodes of the network and the absolute positions respect to reference targets have been integrated in a prototype system. The millimeter accuracy in the position estimation enables the detection of small soil modifications and to infer the superficial evolution profile of the landslide. This information locally acquired also represent a fine tuning of large scale satellite acquisitions, usually adopted for remote sensing of landslides. The integration of dense and frequent WSN data within satellite image analysis will enhance the sensing capabilities leading to a multi-resolution and an highly space-time calibrated system. The WSN-based system has been preliminary tested in controlled environments in the ELEDIA laboratories and is now installed in a real test site where an active landslide is evolving. Preliminary data are here presented to assess the feasibility of the investigated solution in landslide monitoring and event forecasting. REFERENCES [1] M. Benedetti, L. Ioriatti, M. Martinelli, and F. Viani, 'Wireless sensor network: a pervasive technology for earth observation,' in IEEE Journal of Selected Topics in App. Earth Obs. And Remote Sens., vol. 3, no. 4, pp. 488-497, 2010. [2] F. Viani, M. Donelli, P. Rocca, G. Oliveri, D. Trinchero, and A. Massa, 'Localization, tracking and imaging of targets in wireless sensor networks,' Radio Science, vol. 46, no. 5, 2011. [3] F. Viani, F. Robol, M. Salucci, E. Giarola, S. De Vigili, M. Rocca, F. Boldrini, G. Benedetti, and A. Massa, 'WSN-based early alert system for preventing wildlife-vehicle collisions in Alps regions - From the laboratory test to the real-world implementation,' 7th European Conference on Antennas and Propagation 2013 (EUCAP2013), Gothenburg, Sweden, April 8-12, 2013.

  6. A quasi-dense matching approach and its calibration application with Internet photos.

    PubMed

    Wan, Yanli; Miao, Zhenjiang; Wu, Q M Jonathan; Wang, Xifu; Tang, Zhen; Wang, Zhifei

    2015-03-01

    This paper proposes a quasi-dense matching approach to the automatic acquisition of camera parameters, which is required for recovering 3-D information from 2-D images. An affine transformation-based optimization model and a new matching cost function are used to acquire quasi-dense correspondences with high accuracy in each pair of views. These correspondences can be effectively detected and tracked at the sub-pixel level in multiviews with our neighboring view selection strategy. A two-layer iteration algorithm is proposed to optimize 3-D quasi-dense points and camera parameters. In the inner layer, different optimization strategies based on local photometric consistency and a global objective function are employed to optimize the 3-D quasi-dense points and camera parameters, respectively. In the outer layer, quasi-dense correspondences are resampled to guide a new estimation and optimization process of the camera parameters. We demonstrate the effectiveness of our algorithm with several experiments.

  7. Talking the talk, walking the walk: social network norms, communication patterns, and condom use among the male partners of female sex workers in La Romana, Dominican Republic.

    PubMed

    Barrington, Clare; Latkin, Carl; Sweat, Michael D; Moreno, Luis; Ellen, Jonathan; Kerrigan, Deanna

    2009-06-01

    Male partners of female sex workers are rarely targeted by HIV prevention interventions in the commercial sex industry, despite recognition of their central role and power in condom use negotiation. Social networks offer a naturally existing social structure to increase male participation in preventing HIV. The purpose of this study was to explore the relationship between social network norms and condom use among male partners of female sex workers in La Romana, Dominican Republic. Male partners (N =318) were recruited from 36 sex establishments to participate in a personal network survey. Measures of social network norms included 1) perceived condom use by male social network members and 2) encouragement to use condoms from social network members. Other social network characteristics included composition, density, social support, and communication. The primary behavioral outcome was consistent condom use by male partners with their most recent female sex worker partner during the last 3 months. In general, men reported small, dense networks with high levels of communication about condoms and consistent condom use. Multivariate logistic regression revealed consistent condom use was significantly more likely among male partners who perceived that some or all of their male social network members used condoms consistently. Perceived condom use was, in turn, significantly associated with dense networks, expressing dislike for condoms, and encouragement to use condoms from social network members. Findings suggest that the tight social networks of male partners may help to explain the high level of condom use and could provide an entry point for HIV prevention efforts with men. Such efforts should tap into existing social dynamics and patterns of communication to promote pro-condom norms and reduce HIV-related vulnerability among men and their sexual partners.

  8. UFCN: a fully convolutional neural network for road extraction in RGB imagery acquired by remote sensing from an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Kestur, Ramesh; Farooq, Shariq; Abdal, Rameen; Mehraj, Emad; Narasipura, Omkar; Mudigere, Meenavathi

    2018-01-01

    Road extraction in imagery acquired by low altitude remote sensing (LARS) carried out using an unmanned aerial vehicle (UAV) is presented. LARS is carried out using a fixed wing UAV with a high spatial resolution vision spectrum (RGB) camera as the payload. Deep learning techniques, particularly fully convolutional network (FCN), are adopted to extract roads by dense semantic segmentation. The proposed model, UFCN (U-shaped FCN) is an FCN architecture, which is comprised of a stack of convolutions followed by corresponding stack of mirrored deconvolutions with the usage of skip connections in between for preserving the local information. The limited dataset (76 images and their ground truths) is subjected to real-time data augmentation during training phase to increase the size effectively. Classification performance is evaluated using precision, recall, accuracy, F1 score, and brier score parameters. The performance is compared with support vector machine (SVM) classifier, a one-dimensional convolutional neural network (1D-CNN) model, and a standard two-dimensional CNN (2D-CNN). The UFCN model outperforms the SVM, 1D-CNN, and 2D-CNN models across all the performance parameters. Further, the prediction time of the proposed UFCN model is comparable with SVM, 1D-CNN, and 2D-CNN models.

  9. Protein complexes and functional modules in molecular networks

    NASA Astrophysics Data System (ADS)

    Spirin, Victor; Mirny, Leonid A.

    2003-10-01

    Proteins, nucleic acids, and small molecules form a dense network of molecular interactions in a cell. Molecules are nodes of this network, and the interactions between them are edges. The architecture of molecular networks can reveal important principles of cellular organization and function, similarly to the way that protein structure tells us about the function and organization of a protein. Computational analysis of molecular networks has been primarily concerned with node degree [Wagner, A. & Fell, D. A. (2001) Proc. R. Soc. London Ser. B 268, 1803-1810; Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabasi, A. L. (2000) Nature 407, 651-654] or degree correlation [Maslov, S. & Sneppen, K. (2002) Science 296, 910-913], and hence focused on single/two-body properties of these networks. Here, by analyzing the multibody structure of the network of protein-protein interactions, we discovered molecular modules that are densely connected within themselves but sparsely connected with the rest of the network. Comparison with experimental data and functional annotation of genes showed two types of modules: (i) protein complexes (splicing machinery, transcription factors, etc.) and (ii) dynamic functional units (signaling cascades, cell-cycle regulation, etc.). Discovered modules are highly statistically significant, as is evident from comparison with random graphs, and are robust to noise in the data. Our results provide strong support for the network modularity principle introduced by Hartwell et al. [Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. (1999) Nature 402, C47-C52], suggesting that found modules constitute the "building blocks" of molecular networks.

  10. Improved Detection of Local Earthquakes in the Vienna Basin (Austria), using Subspace Detectors

    NASA Astrophysics Data System (ADS)

    Apoloner, Maria-Theresia; Caffagni, Enrico; Bokelmann, Götz

    2016-04-01

    The Vienna Basin in Eastern Austria is densely populated and highly-developed; it is also a region of low to moderate seismicity, yet the seismological network coverage is relatively sparse. This demands improving our capability of earthquake detection by testing new methods, enlarging the existing local earthquake catalogue. This contributes to imaging tectonic fault zones for better understanding seismic hazard, also through improved earthquake statistics (b-value, magnitude of completeness). Detection of low-magnitude earthquakes or events for which the highest amplitudes slightly exceed the signal-to-noise-ratio (SNR), may be possible by using standard methods like the short-term over long-term average (STA/LTA). However, due to sparse network coverage and high background noise, such a technique may not detect all potentially recoverable events. Yet, earthquakes originating from the same source region and relatively close to each other, should be characterized by similarity in seismic waveforms, at a given station. Therefore, waveform similarity can be exploited by using specific techniques such as correlation-template based (also known as matched filtering) or subspace detection methods (based on the subspace theory). Matching techniques basically require a reference or template event, usually characterized by high waveform coherence in the array receivers, and high SNR, which is cross-correlated with the continuous data. Instead, subspace detection methods overcome in principle the necessity of defining template events as single events, but use a subspace extracted from multiple events. This approach theoretically should be more robust in detecting signals that exhibit a strong variability (e.g. because of source or magnitude). In this study we scan the continuous data recorded in the Vienna Basin with a subspace detector to identify additional events. This will allow us to estimate the increase of the seismicity rate in the local earthquake catalogue, therefore providing an evaluation of network performance and efficiency of the method.

  11. SegAN: Adversarial Network with Multi-scale L1 Loss for Medical Image Segmentation.

    PubMed

    Xue, Yuan; Xu, Tao; Zhang, Han; Long, L Rodney; Huang, Xiaolei

    2018-05-03

    Inspired by classic Generative Adversarial Networks (GANs), we propose a novel end-to-end adversarial neural network, called SegAN, for the task of medical image segmentation. Since image segmentation requires dense, pixel-level labeling, the single scalar real/fake output of a classic GAN's discriminator may be ineffective in producing stable and sufficient gradient feedback to the networks. Instead, we use a fully convolutional neural network as the segmentor to generate segmentation label maps, and propose a novel adversarial critic network with a multi-scale L 1 loss function to force the critic and segmentor to learn both global and local features that capture long- and short-range spatial relationships between pixels. In our SegAN framework, the segmentor and critic networks are trained in an alternating fashion in a min-max game: The critic is trained by maximizing a multi-scale loss function, while the segmentor is trained with only gradients passed along by the critic, with the aim to minimize the multi-scale loss function. We show that such a SegAN framework is more effective and stable for the segmentation task, and it leads to better performance than the state-of-the-art U-net segmentation method. We tested our SegAN method using datasets from the MICCAI BRATS brain tumor segmentation challenge. Extensive experimental results demonstrate the effectiveness of the proposed SegAN with multi-scale loss: on BRATS 2013 SegAN gives performance comparable to the state-of-the-art for whole tumor and tumor core segmentation while achieves better precision and sensitivity for Gd-enhance tumor core segmentation; on BRATS 2015 SegAN achieves better performance than the state-of-the-art in both dice score and precision.

  12. The effects of neuron morphology on graph theoretic measures of network connectivity: the analysis of a two-level statistical model.

    PubMed

    Aćimović, Jugoslava; Mäki-Marttunen, Tuomo; Linne, Marja-Leena

    2015-01-01

    We developed a two-level statistical model that addresses the question of how properties of neurite morphology shape the large-scale network connectivity. We adopted a low-dimensional statistical description of neurites. From the neurite model description we derived the expected number of synapses, node degree, and the effective radius, the maximal distance between two neurons expected to form at least one synapse. We related these quantities to the network connectivity described using standard measures from graph theory, such as motif counts, clustering coefficient, minimal path length, and small-world coefficient. These measures are used in a neuroscience context to study phenomena from synaptic connectivity in the small neuronal networks to large scale functional connectivity in the cortex. For these measures we provide analytical solutions that clearly relate different model properties. Neurites that sparsely cover space lead to a small effective radius. If the effective radius is small compared to the overall neuron size the obtained networks share similarities with the uniform random networks as each neuron connects to a small number of distant neurons. Large neurites with densely packed branches lead to a large effective radius. If this effective radius is large compared to the neuron size, the obtained networks have many local connections. In between these extremes, the networks maximize the variability of connection repertoires. The presented approach connects the properties of neuron morphology with large scale network properties without requiring heavy simulations with many model parameters. The two-steps procedure provides an easier interpretation of the role of each modeled parameter. The model is flexible and each of its components can be further expanded. We identified a range of model parameters that maximizes variability in network connectivity, the property that might affect network capacity to exhibit different dynamical regimes.

  13. Application of texture analysis method for mammogram density classification

    NASA Astrophysics Data System (ADS)

    Nithya, R.; Santhi, B.

    2017-07-01

    Mammographic density is considered a major risk factor for developing breast cancer. This paper proposes an automated approach to classify breast tissue types in digital mammogram. The main objective of the proposed Computer-Aided Diagnosis (CAD) system is to investigate various feature extraction methods and classifiers to improve the diagnostic accuracy in mammogram density classification. Texture analysis methods are used to extract the features from the mammogram. Texture features are extracted by using histogram, Gray Level Co-Occurrence Matrix (GLCM), Gray Level Run Length Matrix (GLRLM), Gray Level Difference Matrix (GLDM), Local Binary Pattern (LBP), Entropy, Discrete Wavelet Transform (DWT), Wavelet Packet Transform (WPT), Gabor transform and trace transform. These extracted features are selected using Analysis of Variance (ANOVA). The features selected by ANOVA are fed into the classifiers to characterize the mammogram into two-class (fatty/dense) and three-class (fatty/glandular/dense) breast density classification. This work has been carried out by using the mini-Mammographic Image Analysis Society (MIAS) database. Five classifiers are employed namely, Artificial Neural Network (ANN), Linear Discriminant Analysis (LDA), Naive Bayes (NB), K-Nearest Neighbor (KNN), and Support Vector Machine (SVM). Experimental results show that ANN provides better performance than LDA, NB, KNN and SVM classifiers. The proposed methodology has achieved 97.5% accuracy for three-class and 99.37% for two-class density classification.

  14. Ionospheric modifications detected by a dense network of single frequency GNSS receivers

    NASA Astrophysics Data System (ADS)

    Mrak, S.; Semeter, J. L.

    2017-12-01

    It has been predicted that the region of totality during a total solar eclipse can launch atmospheric gravity waves with large enough amplitude to cause traveling ionospheric disturbances (TIDs). We report initial results from a remote sensing campaign involving a dense hybrid network of single- and dual-frequency GNSS receivers deployed underneath the 21 August 2017 solar eclipse. The campaign took place in central Missouri, involving 84 Trimble dual-frequency receivers, complemented by 2 additional 50 Hz dual-frequency receivers and 15 single-frequency receivers, together constructing 100 receivers with average mutual separation of less than 25 km and with a time resolution of 1 second or better. The initial results show a crescent shaped enhancement bulge in front of region of totality, extending all the way from Canada to Gulf of Mexico. In addition, in the path of totality is noticed a great depletion region, followed by a pair of transverse waves propagating in west-east direction. In the following months, we will explore the transition region carried by the totality by a virtue of hyper dense network of GNSS receivers with 1 second resolution. In addition to TEC data decomposition we will explore effects of the totality on the raw measurements (phase, code and signal intensity), and to the navigation solution which is likely to be effected by a different propagation conditions with respect to other days.

  15. SIMULATING LOCAL DENSE AREAS USING PMMA TO ASSESS AUTOMATIC EXPOSURE CONTROL IN DIGITAL MAMMOGRAPHY.

    PubMed

    Bouwman, R W; Binst, J; Dance, D R; Young, K C; Broeders, M J M; den Heeten, G J; Veldkamp, W J H; Bosmans, H; van Engen, R E

    2016-06-01

    Current digital mammography (DM) X-ray systems are equipped with advanced automatic exposure control (AEC) systems, which determine the exposure factors depending on breast composition. In the supplement of the European guidelines for quality assurance in breast cancer screening and diagnosis, a phantom-based test is included to evaluate the AEC response to local dense areas in terms of signal-to-noise ratio (SNR). This study evaluates the proposed test in terms of SNR and dose for four DM systems. The glandular fraction represented by the local dense area was assessed by analytic calculations. It was found that the proposed test simulates adipose to fully glandular breast compositions in attenuation. The doses associated with the phantoms were found to match well with the patient dose distribution. In conclusion, after some small adaptations, the test is valuable for the assessment of the AEC performance in terms of both SNR and dose. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Development of GPS/A Seafloor Geodetic Network Along Japan Trench and Onset of Its Operation

    NASA Astrophysics Data System (ADS)

    Kido, M.; Fujimoto, H.; Osada, Y.; Ohta, Y.; Yamamoto, J.; Tadokoro, K.; Okuda, T.; Watanabe, T.; Nagai, S.; Kenji, Y.

    2012-12-01

    The Tohoku-oki earthquake in 2011 revealed that an M9-class giant earthquake could occur even in the old subduction zone and that coseismic slip can reach its frontal wedge, where we considered no significant stress had been accumulated in. One of the leading figure of such finding is in situ seafloor geodetic measurement, such as GPS/A technique for horizontal displacement and pressure gauge for vertical displacement. Japan Coast Guard and Japanese university group had developed several GPS/A sites near the source region of the Tohoku-oki earthquake and detected quite large coseismic movements over 20 m in there. Displacement vectors observed these sites showed systematic variation, i.e., mainly confined in the off-Miyagi area and getting larger near the trench. However, subsequent post-seismic deformation shows inexplicable distribution. In order to elucidate this complex feature, MEXT Japan has decided to construct dense and widely-extended GPS/A network along Japan trench, including deep area (~6000m). We, Tohoku and Nagoya universities, have firstly developed high-powered seafloor transponders with an omnidirectional acoustic unit that works at 6000 m deep ocean and enable acoustic ranging over 13 km slant length. In addition, using high-energy density battery, its lifetime is expected 10 years with normal operation. Secondly, we examined the optimal distribution of GPS/A sites forming a network, taken pre-existing sites into consideration. The new network consists of 20 sites (roughly four transponders at a single site and 86 transponders in total). The distribution is dense near the area of complex post-seismic deformation and extended over 400 km to cover the adjacent area of the source region, in where induced earthquake may be expected. The largest obstacle to draw network plan is seafloor topography. Because a GPS/A site is a seafloor benchmark, its installation must be on flat and locally stable spot. Since a single GPS/A site consists of three or more transponders in an area extending roughly the same dimension of its depth, flat spot is quite limited especially near the trench. The positions of the 20 sites were carefully determined using a high-definition bathymetry map. We already have constructed two sites, one of which is 5500 m depth, and successfully obtained acoustic data. In September, we will install rest of the sites (18 sites) and begin initial campaign survey. The second campaign is planned in November. We will introduce details of the network and report updated result in the talk.

  17. Assessing the weather monitoring capabilities of cellular microwave link networks

    NASA Astrophysics Data System (ADS)

    Fencl, Martin; Vrzba, Miroslav; Rieckermann, Jörg; Bareš, Vojtěch

    2016-04-01

    Using of microwave links for rainfall monitoring was suggested already by (Atlas and Ulbrich, 1977). However, this technique attracted broader attention of scientific community only in the recent decade, with the extensive growth of cellular microwave link (CML) networks, which form the backbone of today's cellular telecommunication infrastructure. Several studies have already shown that CMLs can be conveniently used as weather sensors and have potential to provide near-ground path-integrated observations of rainfall but also humidity or fog. However, although research is still focusing on algorithms to improve the weather sensing capabilities (Fencl et al., 2015), it is not clear how to convince cellular operators to provide the power levels of their network. One step in this direction is to show in which regions or municipalities the networks are sufficiently dense to provide/develop good services. In this contribution we suggest a standardized approach to evaluate CML networks in terms of rainfall observation and to identify suitable regions for CML rainfall monitoring. We estimate precision of single CML based on its sensitivity to rainfall, i.e. as a function of frequency, polarization and path length. Capability of a network to capture rainfall spatial patterns is estimated from the CML coverage and path lengths considering that single CML provides path-integrated rain rates. We also search for suitable predictors for regions where no network topologies are available. We test our approach on several European networks and discuss the results. Our results show that CMLs are very dense in urban areas (> 1 CML/km2), but less in rural areas (< 0.02 CML/km2). We found a strong correlation between a population and CML network density (e.g. R2 = 0.97 in Czech Republic), thus population could be a simple proxy to identify suitable regions for CML weather monitoring. To enable a simple and efficient assessment of the CML monitoring potential for any region worldwide, we are currently integrating our approach into open source online tool. In summary, our results demonstrate that CML represent promising environmental observation network, suitable especially for urban rainfall monitoring. The developed approach integrated into an open source online tool can be conveniently used e.g. by local operators or authorities to evaluate the suitability of their region for CML weather monitoring and estimate the credible spatial-resolution of a CML weather monitoring product. Atlas, D. and Ulbrich, C. W. (1977) Path- and Area-Integrated Rainfall Measurement by Microwave Attenuation in the 1-3 cm Band. Journal of Applied Meteorology, 16(12), 1322-1331. Fencl, M., Rieckermann, J., Sýkora, P., Stránský, D., and Bareš, V. (2015) Commercial microwave links instead of rain gauges: fiction or reality? Water Science & Technology, 71(1), 31. Acknowledgements to Czech Science Foundation project No. 14-22978S and Czech Technical University in Prague project No. SGS15/050/OHK1/1T/11.

  18. Coherent ultra dense wavelength division multiplexing passive optical networks

    NASA Astrophysics Data System (ADS)

    Shahpari, Ali; Ferreira, Ricardo; Ribeiro, Vitor; Sousa, Artur; Ziaie, Somayeh; Tavares, Ana; Vujicic, Zoran; Guiomar, Fernando P.; Reis, Jacklyn D.; Pinto, Armando N.; Teixeira, António

    2015-12-01

    In this paper, we firstly review the progress in ultra-dense wavelength division multiplexing passive optical network (UDWDM-PON), by making use of the key attributes of this technology in the context of optical access and metro networks. Besides the inherit properties of coherent technology, we explore different modulation formats and pulse shaping. The performance is experimentally demonstrated through a 12 × 10 Gb/s bidirectional UDWDM-PON over hybrid 80 km standard single mode fiber (SSMF) and optical wireless link. High density, 6.25 GHz grid, Nyquist shaped 16-ary quadrature amplitude modulation (16QAM) and digital frequency shifting are some of the properties exploited together in the tests. Also, bidirectional transmission in fiber, relevant in the context, is analyzed in terms of nonlinear and back-reflection effects on receiver sensitivity. In addition, as a basis for the discussion on market readiness, we experimentally demonstrate real-time detection of a Nyquist-shaped quaternary phase-shift keying (QPSK) signal using simple 8-bit digital signal processing (DSP) on a field-programmable gate array (FPGA).

  19. A Framework for Real-Time Collection, Analysis, and Classification of Ubiquitous Infrasound Data

    NASA Astrophysics Data System (ADS)

    Christe, A.; Garces, M. A.; Magana-Zook, S. A.; Schnurr, J. M.

    2015-12-01

    Traditional infrasound arrays are generally expensive to install and maintain. There are ~10^3 infrasound channels on Earth today. The amount of data currently provided by legacy architectures can be processed on a modest server. However, the growing availability of low-cost, ubiquitous, and dense infrasonic sensor networks presents a substantial increase in the volume, velocity, and variety of data flow. Initial data from a prototype ubiquitous global infrasound network is already pushing the boundaries of traditional research server and communication systems, in particular when serving data products over heterogeneous, international network topologies. We present a scalable, cloud-based approach for capturing and analyzing large amounts of dense infrasonic data (>10^6 channels). We utilize Akka actors with WebSockets to maintain data connections with infrasound sensors. Apache Spark provides streaming, batch, machine learning, and graph processing libraries which will permit signature classification, cross-correlation, and other analytics in near real time. This new framework and approach provide significant advantages in scalability and cost.

  20. Coupled flow and deformations in granular systems beyond the pendular regime

    NASA Astrophysics Data System (ADS)

    Yuan, Chao; Chareyre, Bruno; Darve, Felix

    2017-06-01

    A pore-scale numerical model is proposed for simulating the quasi-static primary drainage and the hydro-mechanical couplings in multiphase granular systems. The solid skeleton is idealized to a dense random packing of polydisperse spheres by DEM. The fluids (nonwetting and wetting phases) space is decomposed to a network of tetrahedral pores based on the Regular Triangulation method. The local drainage rules and invasion logic are defined. The fluid forces acting on solid grains are formulated. The model can simulate the hydraulic evolution from a fully saturated state to a low level of saturation but beyond the pendular regime. The features of wetting phase entrapments and capillary fingering can also be reproduced. Finally, a primary drainage test is performed on a 40,000 spheres of sample. The water retention curve is obtained. The solid skeleton first shrinks then swells.

  1. A Model-Based Approach to Infer Shifts in Regional Fire Regimes Over Time Using Sediment Charcoal Records

    NASA Astrophysics Data System (ADS)

    Itter, M.; Finley, A. O.; Hooten, M.; Higuera, P. E.; Marlon, J. R.; McLachlan, J. S.; Kelly, R.

    2016-12-01

    Sediment charcoal records are used in paleoecological analyses to identify individual local fire events and to estimate fire frequency and regional biomass burned at centennial to millenial time scales. Methods to identify local fire events based on sediment charcoal records have been well developed over the past 30 years, however, an integrated statistical framework for fire identification is still lacking. We build upon existing paleoecological methods to develop a hierarchical Bayesian point process model for local fire identification and estimation of fire return intervals. The model is unique in that it combines sediment charcoal records from multiple lakes across a region in a spatially-explicit fashion leading to estimation of a joint, regional fire return interval in addition to lake-specific local fire frequencies. Further, the model estimates a joint regional charcoal deposition rate free from the effects of local fires that can be used as a measure of regional biomass burned over time. Finally, the hierarchical Bayesian approach allows for tractable error propagation such that estimates of fire return intervals reflect the full range of uncertainty in sediment charcoal records. Specific sources of uncertainty addressed include sediment age models, the separation of local versus regional charcoal sources, and generation of a composite charcoal record The model is applied to sediment charcoal records from a dense network of lakes in the Yukon Flats region of Alaska. The multivariate joint modeling approach results in improved estimates of regional charcoal deposition with reduced uncertainty in the identification of individual fire events and local fire return intervals compared to individual lake approaches. Modeled individual-lake fire return intervals range from 100 to 500 years with a regional interval of roughly 200 years. Regional charcoal deposition to the network of lakes is correlated up to 50 kilometers. Finally, the joint regional charcoal deposition rate exhibits changes over time coincident with major climatic and vegetation shifts over the past 10,000 years. Ongoing work will use the regional charcoal deposition rate to estimate changes in biomass burned as a function of climate variability and regional vegetation pattern.

  2. A New Strategy to Land Precisely on the Northern Plains of Mars

    NASA Technical Reports Server (NTRS)

    Cheng, Yang; Huertas, Andres

    2010-01-01

    During the Phoenix mission landing site selection process, the Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment (HiRISE) images revealed widely spread and dense rock fields in the northern plains. Automatic rock mapping and subsequent statistical analyses showed 30-90% CFA (cumulative fractional area) covered by rocks larger than 1 meter in dense rock fields around craters. Less dense rock fields had 5-30% rock coverage in terrain away from craters. Detectable meter-scale boulders were found nearly everywhere. These rocks present a risk to spacecraft safety during landing. However, they are the most salient topographic features in this region, and can be good landmarks for spacecraft localization during landing. In this paper we present a novel strategy that uses abundance of rocks in northern plains for spacecraft localization. The paper discusses this approach in three sections: a rock-based landmark terrain relative navigation (TRN) algorithm; the TRN algorithm feasibility; and conclusions.

  3. Pics d'accélération du mouvement sismique observés lors du séisme de Chichi à Taiwan : application à l'estimation de l'aléa sismiqueAnalysis of peak ground accelerations during the Chichi earthquake, Taiwan: application to seismic hazard evaluation

    NASA Astrophysics Data System (ADS)

    Chang, Tsui-Yu; Cotton, Fabrice; Angelier, Jacques; Shin, Tzay-Chyn

    2001-07-01

    Attenuation laws are widely used in order to estimate the peak ground acceleration that may occur at a given locality during an earthquake, for hazard evaluation purposes. However, these simplified laws should be regarded acceptable only in the first approximation, because numerous significant parameters at the local and regional scales are often ignored. We examined the relationship between distance and peak acceleration based on examples from the dense accelerometric network of Taiwan, specifically for the Chichi destructive earthquake. We thus observed significant discrepancies between the predicted and observed accelerations, resulting from (1) near-field saturation, (2) amplification in sedimentary basins, and (3) hanging wall effect. We mapped the residual accelerations (difference between observed and predicted peak ground accelerations). This highlights the role of the regional structure, independently revealed by the geological analysis, as a significant factor that controls the transmission of the seismic accelerations.

  4. Accretionary nature of the crust of Central and East Java (Indonesia) revealed by local earthquake travel-time tomography

    NASA Astrophysics Data System (ADS)

    Haberland, Christian; Bohm, Mirjam; Asch, Günter

    2014-12-01

    Reassessment of travel time data from an exceptionally dense, amphibious, temporary seismic network on- and offshore Central and Eastern Java (MERAMEX) confirms the accretionary nature of the crust in this segment of the Sunda subduction zone (109.5-111.5E). Traveltime data of P- and S-waves of 244 local earthquakes were tomographically inverted, following a staggered inversion approach. The resolution of the inversion was inspected by utilizing synthetic recovery tests and analyzing the model resolution matrix. The resulting images show a highly asymmetrical crustal structure. The images can be interpreted to show a continental fragment of presumably Gondwana origin in the coastal area (east of 110E), which has been accreted to the Sundaland margin. An interlaced anomaly of high seismic velocities indicating mafic material can be interpreted to be the mantle part of the continental fragment, or part of obducted oceanic lithosphere. Lower than average crustal velocities of the Java crust are likely to reflect ophiolitic and metamorphic rocks of a subduction melange.

  5. Seismic monitoring at Cascade Volcanic Centers, 2004?status and recommendations

    USGS Publications Warehouse

    Moran, Seth C.

    2004-01-01

    The purpose of this report is to assess the current (May, 2004) status of seismic monitoring networks at the 13 major Cascade volcanic centers. Included in this assessment are descriptions of each network, analyses of the ability of each network to detect and to locate seismic activity, identification of specific weaknesses in each network, and a prioritized list of those networks that are most in need of additional seismic stations. At the outset it should be recognized that no Cascade volcanic center currently has an adequate seismic network relative to modern-day networks at Usu Volcano (Japan) or Etna and Stromboli volcanoes (Italy). For a system the size of Three Sisters, for example, a modern-day, cutting-edge seismic network would ideally consist of a minimum of 10 to 12 short-period three-component seismometers (for determining particle motions, reliable S-wave picks, moment tensor inversions, fault-plane solutions, and other important seismic parameters) and 7 to 10 broadband sensors (which, amongst other considerations, enable detection and location of very long period (VLP) and other low-frequency events, moment tensor inversions, and, because of their wide dynamic range, on-scale recording of large-amplitude events). Such a dense, multi component seismic network would give the ability to, for example, detect in near-real-time earthquake migrations over a distance of ~0.5km or less, locate tremor sources, determine the nature of a seismic source (that is, pure shear, implosive, explosive), provide on-scale recordings of very small and very large-amplitude seismic signals, and detect localized changes in seismic stress tensor orientations caused by movement of magma bodies. However, given that programmatic resources are currently limited, installation of such networks at this time is unrealistic. Instead, this report focuses on identifying what additional stations are needed to guarantee that anomalous seismicity associated with volcanic unrest will be detected in a timely manner and, in the case of magnitude = 1 earthquakes, reliably located.

  6. A non-local structural derivative model for characterization of ultraslow diffusion in dense colloids

    NASA Astrophysics Data System (ADS)

    Liang, Yingjie; Chen, Wen

    2018-03-01

    Ultraslow diffusion has been observed in numerous complicated systems. Its mean squared displacement (MSD) is not a power law function of time, but instead a logarithmic function, and in some cases grows even more slowly than the logarithmic rate. The distributed-order fractional diffusion equation model simply does not work for the general ultraslow diffusion. Recent study has used the local structural derivative to describe ultraslow diffusion dynamics by using the inverse Mittag-Leffler function as the structural function, in which the MSD is a function of inverse Mittag-Leffler function. In this study, a new stretched logarithmic diffusion law and its underlying non-local structural derivative diffusion model are proposed to characterize the ultraslow diffusion in aging dense colloidal glass at both the short and long waiting times. It is observed that the aging dynamics of dense colloids is a class of the stretched logarithmic ultraslow diffusion processes. Compared with the power, the logarithmic, and the inverse Mittag-Leffler diffusion laws, the stretched logarithmic diffusion law has better precision in fitting the MSD of the colloidal particles at high densities. The corresponding non-local structural derivative diffusion equation manifests clear physical mechanism, and its structural function is equivalent to the first-order derivative of the MSD.

  7. Shear-induced organization of forces in dense suspensions: signatures of discontinuous shear thickening

    NASA Astrophysics Data System (ADS)

    Sarkar, Sumantra; Shatoff, Elan; Ramola, Kabir; Mari, Romain; Morris, Jeffrey; Chakraborty, Bulbul

    2017-06-01

    Dense suspensions can exhibit an abrupt change in their viscosity in response to increasing shear rate. The origin of this discontinuous shear thickening (DST) has been ascribed to the transformation of lubricated contacts to frictional, particle-on-particle contacts. Recent research on the flowing and jamming behavior of dense suspensions has explored the intersection of ideas from granular physics and Stokesian fluid dynamics to better understand this transition from lubricated to frictional rheology. DST is reminiscent of classical phase transitions, and a key question is how interactions between the microscopic constituents give rise to a macroscopic transition. In this paper, we extend a formalism that has proven to be successful in understanding shear jamming of dry grains to dense suspensions. Quantitative analysis of the collective evolution of the contactforce network accompanying the DST transition demonstrates clear changes in the distribution of microscopic variables, and leads to the identification of an "order parameter" characterizing DST.

  8. Cortical Dynamics in Presence of Assemblies of Densely Connected Weight-Hub Neurons

    PubMed Central

    Setareh, Hesam; Deger, Moritz; Petersen, Carl C. H.; Gerstner, Wulfram

    2017-01-01

    Experimental measurements of pairwise connection probability of pyramidal neurons together with the distribution of synaptic weights have been used to construct randomly connected model networks. However, several experimental studies suggest that both wiring and synaptic weight structure between neurons show statistics that differ from random networks. Here we study a network containing a subset of neurons which we call weight-hub neurons, that are characterized by strong inward synapses. We propose a connectivity structure for excitatory neurons that contain assemblies of densely connected weight-hub neurons, while the pairwise connection probability and synaptic weight distribution remain consistent with experimental data. Simulations of such a network with generalized integrate-and-fire neurons display regular and irregular slow oscillations akin to experimentally observed up/down state transitions in the activity of cortical neurons with a broad distribution of pairwise spike correlations. Moreover, stimulation of a model network in the presence or absence of assembly structure exhibits responses similar to light-evoked responses of cortical layers in optogenetically modified animals. We conclude that a high connection probability into and within assemblies of excitatory weight-hub neurons, as it likely is present in some but not all cortical layers, changes the dynamics of a layer of cortical microcircuitry significantly. PMID:28690508

  9. A Gap-Filling Procedure for Hydrologic Data Based on Kalman Filtering and Expectation Maximization: Application to Data from the Wireless Sensor Networks of the Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Coogan, A.; Avanzi, F.; Akella, R.; Conklin, M. H.; Bales, R. C.; Glaser, S. D.

    2017-12-01

    Automatic meteorological and snow stations provide large amounts of information at dense temporal resolution, but data quality is often compromised by noise and missing values. We present a new gap-filling and cleaning procedure for networks of these stations based on Kalman filtering and expectation maximization. Our method utilizes a multi-sensor, regime-switching Kalman filter to learn a latent process that captures dependencies between nearby stations and handles sharp changes in snowfall rate. Since the latent process is inferred using observations across working stations in the network, it can be used to fill in large data gaps for a malfunctioning station. The procedure was tested on meteorological and snow data from Wireless Sensor Networks (WSN) in the American River basin of the Sierra Nevada. Data include air temperature, relative humidity, and snow depth from dense networks of 10 to 12 stations within 1 km2 swaths. Both wet and dry water years have similar data issues. Data with artificially created gaps was used to quantify the method's performance. Our multi-sensor approach performs better than a single-sensor one, especially with large data gaps, as it learns and exploits the dominant underlying processes in snowpack at each site.

  10. Fast algorithm for automatically computing Strahler stream order

    USGS Publications Warehouse

    Lanfear, Kenneth J.

    1990-01-01

    An efficient algorithm was developed to determine Strahler stream order for segments of stream networks represented in a Geographic Information System (GIS). The algorithm correctly assigns Strahler stream order in topologically complex situations such as braided streams and multiple drainage outlets. Execution time varies nearly linearly with the number of stream segments in the network. This technique is expected to be particularly useful for studying the topology of dense stream networks derived from digital elevation model data.

  11. A Contribution For The Understanding of The Deformation Pattern Across The Terceira Axis

    NASA Astrophysics Data System (ADS)

    Navarro, A.; Catalão, J.; Miranda, J. M.

    In spite of several geodynamics studies performed in the Azores region, little is known about the deformation pattern of the tectonically more active sector around the Ter- ceira Axis. GPS campaigns performed in the area, in the last few years, were mainly concerned to the study of the relative motions between the Eurasian, African and North-American plates. This study, developed in the scope of the STAMINA project, has as main purpose the establishment of a dense GPS network to study the crustal deformation pattern in the area between the North Hirondelle basin and the East Gra- ciosa basin. The GPS network consists of 20 stations uniformly distributed throughout the island. The first GPS survey was carried out during days 90 to 98 of 2001. TERC and TCAT stations were used as reference stations, recording continuously throughout the survey. All the other stations were occupied for at least three sessions, except for cases of receiver malfunction, each session has a duration of 12 to 24 hours. The GPS data processing approach consisted of three main steps: (1) first, all sessions were processed separately using GAMIT in order to obtain a daily solution for two local sites (TERC and TCAT) and six global tracking stations (CCV3, RABT, SAV1, SFER, STJO and WSRT) using precise orbits from the IGS; (2) then, all stations of the local network are processed together and (3) finally, all station, including the global tracking ones, are reprocessed again. Precise orbits from the IGS were used in the processing. In each step a compensation program was used to compute a least squares network adjusted solution for the campaign, where all sessions are combined to yield estimates of improved station coordinates. The final solution achieved with the described methodology is documented in this paper. Further geodetic observations are needed in order to estimate the stations ve- locities and displacements and consequently to determine the rate of deformation of the island.

  12. Weak synchronization and large-scale collective oscillation in dense bacterial suspensions

    NASA Astrophysics Data System (ADS)

    Chen, Chong; Liu, Song; Shi, Xia-Qing; Chaté, Hugues; Wu, Yilin

    2017-01-01

    Collective oscillatory behaviour is ubiquitous in nature, having a vital role in many biological processes from embryogenesis and organ development to pace-making in neuron networks. Elucidating the mechanisms that give rise to synchronization is essential to the understanding of biological self-organization. Collective oscillations in biological multicellular systems often arise from long-range coupling mediated by diffusive chemicals, by electrochemical mechanisms, or by biomechanical interaction between cells and their physical environment. In these examples, the phase of some oscillatory intracellular degree of freedom is synchronized. Here, in contrast, we report the discovery of a weak synchronization mechanism that does not require long-range coupling or inherent oscillation of individual cells. We find that millions of motile cells in dense bacterial suspensions can self-organize into highly robust collective oscillatory motion, while individual cells move in an erratic manner, without obvious periodic motion but with frequent, abrupt and random directional changes. So erratic are individual trajectories that uncovering the collective oscillations of our micrometre-sized cells requires individual velocities to be averaged over tens or hundreds of micrometres. On such large scales, the oscillations appear to be in phase and the mean position of cells typically describes a regular elliptic trajectory. We found that the phase of the oscillations is organized into a centimetre-scale travelling wave. We present a model of noisy self-propelled particles with strictly local interactions that accounts faithfully for our observations, suggesting that self-organized collective oscillatory motion results from spontaneous chiral and rotational symmetry breaking. These findings reveal a previously unseen type of long-range order in active matter systems (those in which energy is spent locally to produce non-random motion). This mechanism of collective oscillation may inspire new strategies to control the self-organization of active matter and swarming robots.

  13. Weak synchronization and large-scale collective oscillation in dense bacterial suspensions.

    PubMed

    Chen, Chong; Liu, Song; Shi, Xia-Qing; Chaté, Hugues; Wu, Yilin

    2017-02-09

    Collective oscillatory behaviour is ubiquitous in nature, having a vital role in many biological processes from embryogenesis and organ development to pace-making in neuron networks. Elucidating the mechanisms that give rise to synchronization is essential to the understanding of biological self-organization. Collective oscillations in biological multicellular systems often arise from long-range coupling mediated by diffusive chemicals, by electrochemical mechanisms, or by biomechanical interaction between cells and their physical environment. In these examples, the phase of some oscillatory intracellular degree of freedom is synchronized. Here, in contrast, we report the discovery of a weak synchronization mechanism that does not require long-range coupling or inherent oscillation of individual cells. We find that millions of motile cells in dense bacterial suspensions can self-organize into highly robust collective oscillatory motion, while individual cells move in an erratic manner, without obvious periodic motion but with frequent, abrupt and random directional changes. So erratic are individual trajectories that uncovering the collective oscillations of our micrometre-sized cells requires individual velocities to be averaged over tens or hundreds of micrometres. On such large scales, the oscillations appear to be in phase and the mean position of cells typically describes a regular elliptic trajectory. We found that the phase of the oscillations is organized into a centimetre-scale travelling wave. We present a model of noisy self-propelled particles with strictly local interactions that accounts faithfully for our observations, suggesting that self-organized collective oscillatory motion results from spontaneous chiral and rotational symmetry breaking. These findings reveal a previously unseen type of long-range order in active matter systems (those in which energy is spent locally to produce non-random motion). This mechanism of collective oscillation may inspire new strategies to control the self-organization of active matter and swarming robots.

  14. Memory-Efficient Analysis of Dense Functional Connectomes.

    PubMed

    Loewe, Kristian; Donohue, Sarah E; Schoenfeld, Mircea A; Kruse, Rudolf; Borgelt, Christian

    2016-01-01

    The functioning of the human brain relies on the interplay and integration of numerous individual units within a complex network. To identify network configurations characteristic of specific cognitive tasks or mental illnesses, functional connectomes can be constructed based on the assessment of synchronous fMRI activity at separate brain sites, and then analyzed using graph-theoretical concepts. In most previous studies, relatively coarse parcellations of the brain were used to define regions as graphical nodes. Such parcellated connectomes are highly dependent on parcellation quality because regional and functional boundaries need to be relatively consistent for the results to be interpretable. In contrast, dense connectomes are not subject to this limitation, since the parcellation inherent to the data is used to define graphical nodes, also allowing for a more detailed spatial mapping of connectivity patterns. However, dense connectomes are associated with considerable computational demands in terms of both time and memory requirements. The memory required to explicitly store dense connectomes in main memory can render their analysis infeasible, especially when considering high-resolution data or analyses across multiple subjects or conditions. Here, we present an object-based matrix representation that achieves a very low memory footprint by computing matrix elements on demand instead of explicitly storing them. In doing so, memory required for a dense connectome is reduced to the amount needed to store the underlying time series data. Based on theoretical considerations and benchmarks, different matrix object implementations and additional programs (based on available Matlab functions and Matlab-based third-party software) are compared with regard to their computational efficiency. The matrix implementation based on on-demand computations has very low memory requirements, thus enabling analyses that would be otherwise infeasible to conduct due to insufficient memory. An open source software package containing the created programs is available for download.

  15. Memory-Efficient Analysis of Dense Functional Connectomes

    PubMed Central

    Loewe, Kristian; Donohue, Sarah E.; Schoenfeld, Mircea A.; Kruse, Rudolf; Borgelt, Christian

    2016-01-01

    The functioning of the human brain relies on the interplay and integration of numerous individual units within a complex network. To identify network configurations characteristic of specific cognitive tasks or mental illnesses, functional connectomes can be constructed based on the assessment of synchronous fMRI activity at separate brain sites, and then analyzed using graph-theoretical concepts. In most previous studies, relatively coarse parcellations of the brain were used to define regions as graphical nodes. Such parcellated connectomes are highly dependent on parcellation quality because regional and functional boundaries need to be relatively consistent for the results to be interpretable. In contrast, dense connectomes are not subject to this limitation, since the parcellation inherent to the data is used to define graphical nodes, also allowing for a more detailed spatial mapping of connectivity patterns. However, dense connectomes are associated with considerable computational demands in terms of both time and memory requirements. The memory required to explicitly store dense connectomes in main memory can render their analysis infeasible, especially when considering high-resolution data or analyses across multiple subjects or conditions. Here, we present an object-based matrix representation that achieves a very low memory footprint by computing matrix elements on demand instead of explicitly storing them. In doing so, memory required for a dense connectome is reduced to the amount needed to store the underlying time series data. Based on theoretical considerations and benchmarks, different matrix object implementations and additional programs (based on available Matlab functions and Matlab-based third-party software) are compared with regard to their computational efficiency. The matrix implementation based on on-demand computations has very low memory requirements, thus enabling analyses that would be otherwise infeasible to conduct due to insufficient memory. An open source software package containing the created programs is available for download. PMID:27965565

  16. Spatial and temporal variation of water temperature regimes on the Snoqualmie River network

    Treesearch

    Ashley E. Steel; Colin Sowder; Erin E. Peterson

    2016-01-01

    Although mean temperatures change annually and are highly correlated with elevation, the entire thermal regime on the Snoqualmie River, Washington, USA does not simply shift with elevation or season. Particular facets of the thermal regime have unique spatial patterns on the river network and at particular times of the year. We used a spatially and temporally dense...

  17. Weak Ties and Self-Regulation in Job Search: The Effects of Goal Orientation on Networking

    ERIC Educational Resources Information Center

    Hatala, John-Paul; Yamkovenko, Bogdan

    2016-01-01

    The purpose of this study is to empirically investigate the relationship between the self-regulatory variable of goal orientation and the extent to which job seekers reach out to and use weak ties in their job search. Weak ties, as defined by Granovettor, are connections to densely knit networks outside the individual's direct contacts who could…

  18. 3D morphometry of valley networks on Mars from HRSC/MEX DEMs: Implications for climatic evolution through time

    NASA Astrophysics Data System (ADS)

    Ansan, V.; Mangold, N.

    2013-09-01

    valley networks have been identified mainly in the Noachian heavily cratered uplands. Eight dense branching valley networks were studied in Noachian terrains of Huygens, Newcomb and Kepler craters, south Tyrrhena Terra, and Thaumasia, in Hesperian terrains of Echus Plateau and west Eberswalde craters, and in Amazonian terrains of Alba Patera, using images and digital elevation models from the Mars Express High Resolution Stereo Camera to determine 2D and 3D morphometric parameters. Extracted geomorphic parameters show similar geometry to terrestrial valleys: drainage densities, organization from bifurcation ratios and lengths ratios, Hack exponent consistent with terrestrial values of ~0.6, and progressive deepening of valleys with increasing Strahler order. In addition, statistics on valley depths indicate a deeper incision of Noachian valleys compared to younger post-Noachian valleys (<25 m for Amazonian ones compared to >100 m for Noachian ones), showing a strong difference in fluvial erosion. These characteristics show that dense Martian valley networks formed by overland flows in relation to a global atmospheric water cycle in Noachian epoch and confirm that the later stages of activity may be related to shorter duration of activity, distinct climatic conditions, and/or regional processes, or conditions.

  19. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation.

    PubMed

    Kamnitsas, Konstantinos; Ledig, Christian; Newcombe, Virginia F J; Simpson, Joanna P; Kane, Andrew D; Menon, David K; Rueckert, Daniel; Glocker, Ben

    2017-02-01

    We propose a dual pathway, 11-layers deep, three-dimensional Convolutional Neural Network for the challenging task of brain lesion segmentation. The devised architecture is the result of an in-depth analysis of the limitations of current networks proposed for similar applications. To overcome the computational burden of processing 3D medical scans, we have devised an efficient and effective dense training scheme which joins the processing of adjacent image patches into one pass through the network while automatically adapting to the inherent class imbalance present in the data. Further, we analyze the development of deeper, thus more discriminative 3D CNNs. In order to incorporate both local and larger contextual information, we employ a dual pathway architecture that processes the input images at multiple scales simultaneously. For post-processing of the network's soft segmentation, we use a 3D fully connected Conditional Random Field which effectively removes false positives. Our pipeline is extensively evaluated on three challenging tasks of lesion segmentation in multi-channel MRI patient data with traumatic brain injuries, brain tumours, and ischemic stroke. We improve on the state-of-the-art for all three applications, with top ranking performance on the public benchmarks BRATS 2015 and ISLES 2015. Our method is computationally efficient, which allows its adoption in a variety of research and clinical settings. The source code of our implementation is made publicly available. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  20. The Global Geodetic Observing System: Space Geodesy Networks for the Future

    NASA Technical Reports Server (NTRS)

    Pearlman, Michael; Pavlis, Erricos; Ma, Chopo; Altamini, Zuheir; Noll, Carey; Stowers, David

    2011-01-01

    Ground-based networks of co-located space geodetic techniques (VLBI, SLR, GNSS. and DORIS) are the basis for the development and maintenance of the International Terrestrial Reference frame (ITRF), which is our metric of reference for measurements of global change, The Global Geodetic Observing System (GGOS) of the International Association of Geodesy (IAG) has established a task to develop a strategy to design, integrate and maintain the fundamental geodetic network and supporting infrastructure in a sustainable way to satisfy the long-term requirements for the reference frame. The GGOS goal is an origin definition at 1 mm or better and a temporal stability on the order of 0.1 mm/y, with similar numbers for the scale and orientation components. These goals are based on scientific requirements to address sea level rise with confidence, but other applications are not far behind. Recent studies including one by the US National Research Council has strongly stated the need and the urgency for the fundamental space geodesy network. Simulations are underway to examining accuracies for origin, scale and orientation of the resulting ITRF based on various network designs and system performance to determine the optimal global network to achieve this goal. To date these simulations indicate that 24 - 32 co-located stations are adequate to define the reference frame and a more dense GNSS and DORIS network will be required to distribute the reference frame to users anywhere on Earth. Stations in the new global network will require geologically stable sites with good weather, established infrastructure, and local support and personnel. GGOS wil seek groups that are interested in participation. GGOS intends to issues a Call for Participation of groups that would like to contribute in the network implementation and operation. Some examples of integrated stations currently in operation or under development will be presented. We will examine necessary conditions and challenges in designing a co-location station.

  1. Focal Mechanisms of Recent Earthquakes in the Southern Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Park, J.; Kim, W.; Chung, T.; Baag, C.; Ree, J.

    2005-12-01

    There has been a lack of seismic data in the Korean Peninsula mainly because it is in a seismically stable area within the Eurasian plate (or Amurian microplate) and because a network of seismic stations has been poor until recently. Consequently, first motion studies on the peninsula showed a large uncertainty or covered only local areas. Also, a tectonic province map constructed based on pre-Cenozoic tectonic events in Korea has been used for a seismic zonation. To solve these problems, we made focal mechanism solutions for 71 earthquakes (ML = 1.9 to 5.2) occurred in and around the peninsula from 1999 to 2004 and collected by a new dense seismic network established since 1995. For this, we relocated the hypocenters and obtained fault plane solutions with errors of fault parameter less than 15° from the data set of 1,270 clear P-wave polarities and from 46 SH/P amplitude ratios. The focal mechanism solutions show that subhorizontal ENE P- and subhorizontal NNW T-axes are predominant, representing the common direction of P- and T-axes within the Amurian plate. The faulting mechanisms are mostly strike-slip faulting or strike-slip-dominant-oblique-slip faulting with a reverse-slip component, although normal-slip-dominant-oblique-slip faultings occur locally probably due to a local reorientation of stress. These results incorporated with those from the kinematic studies of the Quaternary faults imply that NNE-striking faults (dextral strike-slip or oblique-slip with a reverse-slip component) are highly likely to generate earthquakes in South Korea. The spatial distribution of the maximum horizontal stress direction and faulting types does not correlate with the preexisting tectonic province map of Korea, and a new construction of seismic zonation map is required for a better seismic evaluation.

  2. Experimental wind tunnel study of a smart sensing skin for condition evaluation of a wind turbine blade

    NASA Astrophysics Data System (ADS)

    Downey, Austin; Laflamme, Simon; Ubertini, Filippo

    2017-12-01

    Condition evaluation of wind turbine blades is difficult due to their large size, complex geometry and lack of economic and scalable sensing technologies capable of detecting, localizing, and quantifying faults over a blade’s global area. A solution is to deploy inexpensive large area electronics over strategic areas of the monitored component, analogous to sensing skin. The authors have previously proposed a large area electronic consisting of a soft elastomeric capacitor (SEC). The SEC is highly scalable due to its low cost and ease of fabrication, and can, therefore, be used for monitoring large-scale components. A single SEC is a strain sensor that measures the additive strain over a surface. Recently, its application in a hybrid dense sensor network (HDSN) configuration has been studied, where a network of SECs is augmented with a few off-the-shelf strain gauges to measure boundary conditions and decompose the additive strain to obtain unidirectional surface strain maps. These maps can be analyzed to detect, localize, and quantify faults. In this work, we study the performance of the proposed sensing skin at conducting condition evaluation of a wind turbine blade model in an operational environment. Damage in the form of changing boundary conditions and cuts in the monitored substrate are induced into the blade. An HDSN is deployed onto the interior surface of the substrate, and the blade excited in a wind tunnel. Results demonstrate the capability of the HDSN and associated algorithms to detect, localize, and quantify damage. These results show promise for the future deployment of fully integrated sensing skins deployed inside wind turbine blades for condition evaluation.

  3. Improved phase arrival estimate and location for local earthquakes in South Korea

    NASA Astrophysics Data System (ADS)

    Morton, E. A.; Rowe, C. A.; Begnaud, M. L.

    2012-12-01

    The Korean Institute of Geoscience and Mineral Resources (KIGAM) and the Korean Meteorological Agency (KMA) regularly report local (distance < ~1200 km) seismicity recorded with their networks; we obtain preliminary event location estimates as well as waveform data, but no phase arrivals are reported, so the data are not immediately useful for earthquake location. Our goal is to identify seismic events that are sufficiently well-located to provide accurate seismic travel-time information for events within the KIGAM and KMA networks, and also recorded by some regional stations. Toward that end, we are using a combination of manual phase identification and arrival-time picking, with waveform cross-correlation, to cluster events that have occurred in close proximity to one another, which allows for improved phase identification by comparing the highly correlating waveforms. We cross-correlate the known events with one another on 5 seismic stations and cluster events that correlate above a correlation coefficient threshold of 0.7, which reveals few clusters containing few events each. The small number of repeating events suggests that the online catalogs have had mining and quarry blasts removed before publication, as these can contribute significantly to repeating seismic sources in relatively aseismic regions such as South Korea. The dispersed source locations in our catalog, however, are ideal for seismic velocity modeling by providing superior sampling through the dense seismic station arrangement, which produces favorable event-to-station ray path coverage. Following careful manual phase picking on 104 events chosen to provide adequate ray coverage, we re-locate the events to obtain improved source coordinates. The re-located events are used with Thurber's Simul2000 pseudo-bending local tomography code to estimate the crustal structure on the Korean Peninsula, which is an important contribution to ongoing calibration for events of interest in the region.

  4. Resident CAPS on dense-core vesicles docks and primes vesicles for fusion

    PubMed Central

    Kabachinski, Greg; Kielar-Grevstad, D. Michelle; Zhang, Xingmin; James, Declan J.; Martin, Thomas F. J.

    2016-01-01

    The Ca2+-dependent exocytosis of dense-core vesicles in neuroendocrine cells requires a priming step during which SNARE protein complexes assemble. CAPS (aka CADPS) is one of several factors required for vesicle priming; however, the localization and dynamics of CAPS at sites of exocytosis in live neuroendocrine cells has not been determined. We imaged CAPS before, during, and after single-vesicle fusion events in PC12 cells by TIRF micro­scopy. In addition to being a resident on cytoplasmic dense-core vesicles, CAPS was present in clusters of approximately nine molecules near the plasma membrane that corresponded to docked/tethered vesicles. CAPS accompanied vesicles to the plasma membrane and was present at all vesicle exocytic events. The knockdown of CAPS by shRNA eliminated the VAMP-2–dependent docking and evoked exocytosis of fusion-competent vesicles. A CAPS(ΔC135) protein that does not localize to vesicles failed to rescue vesicle docking and evoked exocytosis in CAPS-depleted cells, showing that CAPS residence on vesicles is essential. Our results indicate that dense-core vesicles carry CAPS to sites of exocytosis, where CAPS promotes vesicle docking and fusion competence, probably by initiating SNARE complex assembly. PMID:26700319

  5. Data analysis of a dense GPS network operated during the ESCOMPTE campaign: first results

    NASA Astrophysics Data System (ADS)

    Walpersdorf, A.; Bock, O.; Doerflinger, E.; Masson, F.; van Baelen, J.; Somieski, A.; Bürki, B.

    The experiment GPS/H 2O involving 17 GPS receivers has been operated for two weeks in June 2001 in a dense network around Marseille. This project was integrated into the ESCOMPTE campaign. This paper will focus on the GPS analysis in preparation of the tomographic inversion of GPS slant delays. As first results, GPS tropospheric parameters zenith delays and horizontal gradients have been extracted. For a first visualization of the humidity field overlying the network, zenith delays have been transformed into precipitable water. Successive humidity fields are presented for a period of sudden drop in humidity, indicating some spatial resolution in the small network. The time series of horizontal gradients evaluated at individual sites are compared to correlated zenith delay variations over the whole network (horizontal gradient of zenith delays), showing that in the small size network horizontal atmospheric structure is reflected by both types of parameters. To compare these two quantities, scaling of zenith delays due to different station altitudes was necessary. In this way, a GPS internal validation of the individual gradients by comparison with the horizontal gradient of zenith delays has been established. Differential features along transects across the network indicate a good spatial resolution of tropospheric phenomena, encouraging for the further tomographic exploitation of the data. Moreover, individual and zenith delay gradients weight differently atmospheric horizontal gradients occurring at different heights. This different sensitivity has been used for a first identification of a vertical atmospheric structure from GPS tropospheric delays, by observing an inclined frontal zone crossing the network.

  6. Improving rainfall estimation from commercial microwave links using METEOSAT SEVIRI cloud cover information

    NASA Astrophysics Data System (ADS)

    Boose, Yvonne; Doumounia, Ali; Chwala, Christian; Moumouni, Sawadogo; Zougmoré, François; Kunstmann, Harald

    2017-04-01

    The number of rain gauges is declining worldwide. A recent promising method for alternative precipitation measurements is to derive rain rates from the attenuation of the microwave signal between remote antennas of mobile phone base stations, so called commercial microwave links (CMLs). In European countries, such as Germany, the CML technique can be used as a complementary method to the existing gauge and radar networks improving their products, for example, in mountainous terrain and urban areas. In West African countries, where a dense gauge or radar network is absent, the number of mobile phone users is rapidly increasing and so are the CML networks. Hence, the CML-derived precipitation measurements have high potential for applications such as flood warning and support of agricultural planning in this region. For typical CML bandwidths (10-40 GHz), the relationship of attenuation to rain rate is quasi-linear. However, also humidity, wet antennas or electronic noise can lead to signal interference. To distinguish these fluctuations from actual attenuation due to rain, a temporal wet (rain event occurred)/ dry (no rain event) classification is usually necessary. In dense CML networks this is possible by correlating neighboring CML time series. Another option is to use the correlation between signal time series of different frequencies or bidirectional signals. The CML network in rural areas is typically not dense enough for correlation analysis and often only one polarization and one frequency are available along a CML. In this work we therefore use cloud cover information derived from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) radiometer onboard the geostationary satellite METEOSAT for a wet (pixels along link are cloud covered)/ dry (no cloud along link) classification. We compare results for CMLs in Burkina Faso and Germany, which differ meteorologically (rain rate and duration, droplet size distributions) and technically (CML frequencies, lengths, signal level) and use rain gauge data as ground truth for validation.

  7. Strategy of thunderstorm measurement with super dense ground-based observation network

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Sato, M.

    2014-12-01

    It's not easy to understand the inside structure and developing process of thunderstorm only with existing meteorological instruments since its horizontal extent of the storm cell is sometimes smaller than an order of 10 km while one of the densest ground network in Japan, AMEDAS, consists of sites located every 17 km in average and the resolution of meteorological radar is 1-2 km in general. Even the X-band radar realizes the resolution of 250 m or larger. Here we suggest a new super dense observation network with simple and low cost sensors that can be used for measurement both of raindrop and vertical electric field change caused by cloud-to-ground lightning discharge. This sensor consists of two aluminum plates with a diameter of 10-20 cm. We carried out an observation campaign in summer of 2013 in the foothills of Mt. Yastugatake, Yamanashi and Nagano prefectures in Japan, installing 6 plate-type sensors at a distance of about 4 km. Horizontal location, height and charge amount of each lightning discharge are estimated successfully based on the information of electric field changes at several observing sites. Moreover, it was found that the thunderstorm has a very narrow structure well smaller than 300 m that cannot be measured by any other ways, counting the positive and negative pulses caused by attachment of raindrop to the sensor plate, respectively. We plan to construct a new super dense observation network in the north Kanto region, Japan, where the lightning activity is most prominent in summer Japan, distributing more than several tens of sensors at every 4 km or shorter, such as an order of 100 m at minimum. This kind of new type network will reveal the unknown fine structures of thunderstorms and open the door for constructing real time alert system of torrential rainfall and lightning stroke especially in the city area.

  8. Accounting for spatiotemporal errors of gauges: A critical step to evaluate gridded precipitation products

    NASA Astrophysics Data System (ADS)

    Tang, Guoqiang; Behrangi, Ali; Long, Di; Li, Changming; Hong, Yang

    2018-04-01

    Rain gauge observations are commonly used to evaluate the quality of satellite precipitation products. However, the inherent difference between point-scale gauge measurements and areal satellite precipitation, i.e. a point of space in time accumulation v.s. a snapshot of time in space aggregation, has an important effect on the accuracy and precision of qualitative and quantitative evaluation results. This study aims to quantify the uncertainty caused by various combinations of spatiotemporal scales (0.1°-0.8° and 1-24 h) of gauge network designs in the densely gauged and relatively flat Ganjiang River basin, South China, in order to evaluate the state-of-the-art satellite precipitation, the Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG). For comparison with the dense gauge network serving as "ground truth", 500 sparse gauge networks are generated through random combinations of gauge numbers at each set of spatiotemporal scales. Results show that all sparse gauge networks persistently underestimate the performance of IMERG according to most metrics. However, the probability of detection is overestimated because hit and miss events are more likely fewer than the reference numbers derived from dense gauge networks. A nonlinear error function of spatiotemporal scales and the number of gauges in each grid pixel is developed to estimate the errors of using gauges to evaluate satellite precipitation. Coefficients of determination of the fitting are above 0.9 for most metrics. The error function can also be used to estimate the required minimum number of gauges in each grid pixel to meet a predefined error level. This study suggests that the actual quality of satellite precipitation products could be better than conventionally evaluated or expected, and hopefully enables non-subject-matter-expert researchers to have better understanding of the explicit uncertainties when using point-scale gauge observations to evaluate areal products.

  9. Community structure and scale-free collections of Erdős-Rényi graphs.

    PubMed

    Seshadhri, C; Kolda, Tamara G; Pinar, Ali

    2012-05-01

    Community structure plays a significant role in the analysis of social networks and similar graphs, yet this structure is little understood and not well captured by most models. We formally define a community to be a subgraph that is internally highly connected and has no deeper substructure. We use tools of combinatorics to show that any such community must contain a dense Erdős-Rényi (ER) subgraph. Based on mathematical arguments, we hypothesize that any graph with a heavy-tailed degree distribution and community structure must contain a scale-free collection of dense ER subgraphs. These theoretical observations corroborate well with empirical evidence. From this, we propose the Block Two-Level Erdős-Rényi (BTER) model, and demonstrate that it accurately captures the observable properties of many real-world social networks.

  10. Studies Of Infrasonic Propagation Using Dense Seismic Networks

    NASA Astrophysics Data System (ADS)

    Hedlin, M. A.; deGroot-Hedlin, C. D.; Drob, D. P.

    2011-12-01

    Although there are approximately 100 infrasonic arrays worldwide, more than ever before, the station density is still insufficient to provide validation for detailed propagation modeling. Relatively large infrasonic signals can be observed on seismic channels due to coupling at the Earth's surface. Recent research, using data from the 70-km spaced 400-station USArray and other seismic network deployments, has shown the value of dense seismic network data for filling in the gaps between infrasonic arrays. The dense sampling of the infrasonic wavefield has allowed us to observe complete travel-time branches of infrasound and address important research problems in infrasonic propagation. We present our analysis of infrasound created by a series of rocket motor detonations that occurred at the UTTR facility in Utah in 2007. These data were well recorded by the USArray seismometers. We use the precisely located blasts to assess the utility of G2S mesoscale models and methods to synthesize infrasonic propagation. We model the travel times of the branches using a ray-based approach and the complete wavefield using a FDTD algorithm. Although results from both rays and FDTD approaches predict the travel times to within several seconds, only about 40% of signals are predicted using rays largely due to penetration of sound into shadow zones. FDTD predicts some sound penetration into the shadow zone, but the observed shadow zones, as defined by the seismic data, have considerably narrower spatial extent than either method predicts, perhaps due to un-modeled small-scale structure in the atmosphere.

  11. Mobile Robot Self-Localization by Matching Range Maps Using a Hausdorff Measure

    NASA Technical Reports Server (NTRS)

    Olson, C. F.

    1997-01-01

    This paper examines techniques for a mobile robot to perform self-localization in natural terrain by comparing a dense range map computed from stereo imagery to a range map in a known frame of reference.

  12. Social Experiments in Tokyo Metropolitan Area Convection Study for Extreme Weather Resilient Cities(TOMACS)

    NASA Astrophysics Data System (ADS)

    Tsuyoshi, Nakatani; Nakamura, Isao; MIsumi, Ryohei; Shoji, Yoshinori

    2015-04-01

    Introduction TOMACS research project has been started since 2010 July in order to develop the elementary technologies which are required for the adaptation of societies to future global warming impacts that cannot be avoided by the reduction of greenhouse gases. In collaboration with related government institutions, local governments, private companies, and residents, more than 25 organizations and over 100 people are participated. TOMACS consists of the following three research themes: Theme 1: Studies on extreme weather with dense meteorological observations Theme 2: Development of the extreme weather early detection and prediction system Theme 3: Social experiments on extreme weather resilient cities Theme 1 aims to understand the initiation, development, and dissipation processes of convective precipitation in order to clarify the mechanism of localized heavy rainfall which are potential causes of flooding and landslides. Theme 2 aims to establish the monitoring and prediction system of extreme phenomena which can process real-time data from dense meteorological observation networks, advanced X-band radar network systems and predict localized heavy rainfalls and strong winds. Through social experiments, theme 3 aims to establish a method to use information obtained by the monitoring system of extreme phenomena to disaster prevention operations in order to prevent disasters and reduce damage. Social Experiments Toyo University is the core university for the social experiments accomplishment. And following organizations are participating in this research theme: NIED, the Tokyo Metropolitan Research Institute for Environmental Protection (TMRIEP), University of Tokyo, Tokyo Fire Department (TFD), Edogawa Ward in Tokyo, Yokohama City, Fujisawa City and Minamiashigara City in Kanagawa, East Japan Railway Company, Central Japan Railway Company, Obayashi Corporation, and Certified and Accredited Meteorologists of Japan(CAMJ). The social experiments have carried out in four different disaster prevention disciplines, i.e. rescue services, risk managements, infrastructure, and life and education as follows; (1) Rescue Service, conducted by TDF (2) Risk Managements, conducted by Edogawa Ward of Tokyo, Yokohama City, Fujisawa City, and MinamiAshigara City (3) Infrastructures, conducted by East Japan Railway Company, Central Japan Railway Company, and Obayashi Corporation. (4) Life and Education, conducted by Toyo University, University of Tokyo, TMRIEP, and CAMJ Each participant has different purposes. For example, the main objective of the social experiment at Edogawa ward is to provide easy-to-understand information of heavy rain to the local residents. Tokyo Fire Department set up the dedicated website and have been used as an early information collection tools during a localized heavy rain and inland flood dameges. East Japan Railway Company and Central Japan Railway Company have studied to be used as additional information for managing the safe operation of the railway. Obayashi Corporation have taken an advantage of the information to ensure the safety of the construction site and so on. In the paper, overview of TOMACS and some of social experiments results are presented and difficulties of social experiments will be discussed as well.

  13. Deployment of a Testbed in a Brazilian Research Network using IPv6 and Optical Access Technologies

    NASA Astrophysics Data System (ADS)

    Martins, Luciano; Ferramola Pozzuto, João; Olimpio Tognolli, João; Chaves, Niudomar Siqueira De A.; Reggiani, Atilio Eduardo; Hortêncio, Claudio Antonio

    2012-04-01

    This article presents the implementation of a testbed and the experimental results obtained with it on the Brazilian Experimental Network of the government-sponsored "GIGA Project." The use of IPv6 integrated to current and emerging optical architectures and technologies, such as dense wavelength division multiplexing and 10-gigabit Ethernet on the core and gigabit capable passive optical network and optical distribution network on access, were tested. These protocols, architectures, and optical technologies are promising and part of a brand new worldwide technological scenario that has being fairly adopted in the networks of enterprises and providers of the world.

  14. Preparation and characterization of injectable fibrillar type I collagen and evaluation for pseudoaneurysm treatment in a pig model.

    PubMed

    Geutjes, Paul J; van der Vliet, J Adam; Faraj, Kaeuis A; de Vries, Noes; van Moerkerk, Herman T B; Wismans, Ronnie G; Hendriks, Thijs; Daamen, Willeke F; van Kuppevelt, Toin H

    2010-11-01

    Despite the efficacy of collagen in femoral artery pseudoaneurysm treatment, as reported in one patient study, its use has not yet gained wide acceptance in clinical practice. In this particular study, the collagen was not described in detail. To further investigate the potential of collagen preparations, we prepared and characterized highly purified injectable fibrillar type I collagen and evaluated its use for femoral artery pseudoaneurysm (PSA) treatment in vivo using a pig model. Purified fibrillar type I collagen was characterized using electron microscopy. The effect of three different sterilization procedures, ie, hydrogen peroxide gas plasma (H2O2), ethylene oxide gas (EtO), and gamma irradiation, was studied on both SDS-PAGE and platelet aggregation. Different collagen injectables were prepared (3%, 4%, and 5%) and tested using an injection force test applying a 21-gauge needle. To evaluate the network characteristics of the injectable collagen, the collagen was suspended in phosphate buffered saline (PBS) at 37°C and studied both macroscopically and electron microscopically. To determine whether the collagen induced hemostasis in vivo, a pig PSA model was used applying a 4% EtO sterilized collagen injectable, and evaluation by angiography and routine histology. Electron microscopy of the purified type I collagen revealed intact fibrils with a distinct striated pattern and a length<300 μm. Both SDS-PAGE and platelet aggregation analysis of the sterilized collagen indicated no major differences between EtO and H2O2 sterilization, although gamma-irradiated collagen showed degradation products. Both 3% and 4% (w/v) collagen suspensions were acceptable with respect to the force used (<50 N). The 4% suspension was selected as the preferred injectable collagen, which formed a dense network under physiologic conditions. Testing the collagen in vivo (n=5), the angiograms revealed that the PSA partly or completely coagulated. Histology confirmed the network formation, which was surrounded by thrombus. Collagen injectables were prepared and EtO sterilized without major loss of structural integrity and platelet activity. In vivo, the injectable collagen formed a dense network and triggered (partial) local hemostasis. Although optimization is needed, an injectable collagen may be used as a therapeutic agent for femoral PSA treatment. Copyright © 2010 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  15. Star polymers as unit cells for coarse-graining cross-linked networks

    NASA Astrophysics Data System (ADS)

    Molotilin, Taras Y.; Maduar, Salim R.; Vinogradova, Olga I.

    2018-03-01

    Reducing the complexity of cross-linked polymer networks by preserving their main macroscale properties is key to understanding them, and a crucial issue is to relate individual properties of the polymer constituents to those of the reduced network. Here we study polymer networks in a good solvent, by considering star polymers as their unit elements, and first quantify the interaction between their centers of masses. We then reduce the complexity of a network by replacing sets of its bridged star polymers by equivalent effective soft particles with dense cores. Our coarse graining allows us to approximate complex polymer networks by much simpler ones, keeping their relevant mechanical properties, as illustrated in computer experiments.

  16. Dense flow around a sphere moving into a cloud of grains

    NASA Astrophysics Data System (ADS)

    Gondret, Philippe; Faure, Sylvain; Lefebvre-Lepot, Aline; Seguin, Antoine

    2017-06-01

    A bidimensional simulation of a sphere moving at constant velocity into a cloud of smaller spherical grains without gravity is presented with a non-smooth contact dynamics method. A dense granular "cluster" zone of about constant solid fraction builds progressively around the moving sphere until a stationary regime appears with a constant upstream cluster size that increases with the initial solid fraction ϕ0 of the cloud. A detailed analysis of the local strain rate and local stress fields inside the cluster reveals that, despite different spatial variations of strain and stresses, the local friction coeffcient μ appears to depend only on the local inertial number I as well as the local solid fraction ϕ, which means that a local rheology does exist in the present non parallel flow. The key point is that the spatial variations of I inside the cluster does not depend on the sphere velocity and explore only a small range between about 10-2 and 10-1. The influence of sidewalls is then investigated on the flow and the forces.

  17. Natural flood risk management in flashy headwater catchments: managing runoff peaks, timing, water quality and sediment regimes

    NASA Astrophysics Data System (ADS)

    Wilkinson, Mark; Addy, Steve; Ghimire, Sohan; Kenyon, Wendy; Nicholson, Alex; Quinn, Paul; Stutter, Marc; Watson, Helen

    2013-04-01

    Over the past decade many European catchments have experienced an unusually high number of flood events. A large number of these events are the result of intense rainfall in small headwater catchments which are dominated by surface runoff generation, resulting in flash flooding of local communities. Soil erosion and related water quality issues, among others, are typically associated with such rapid runoff generation. The hazard of flooding is increasing owing to impacts of changing climatic patterns (including more intense summer storms), intensification of agriculture within rural catchments and continued pressure to build on floodplains. Concurrently, the cost of constructing and maintaining traditional flood defences in small communities outweigh the potential benefits. Hence, there is a growing interest in more cost effective natural approaches that also have multipurpose benefits in terms of sediment, water quality, and habitat creation. Many catchments in Europe are intensively farmed and there is great potential for agriculture to be part of the solution to flood risk management. Natural flood management (NFM) is the alteration, restoration or use of landscape features with the aim of reducing flood risk by slowing down, storing (and filtering) rapid surface runoff. NFM includes measures such as temporarily storing water in ponds/wetlands, increasing soil infiltration, planting trees on floodplains and within catchments, re-meandering and wood placements in streams/ditches. In this presentation we highlight case studies from densely instrumented research sites across the UK (which could be typical of many European catchments) where NFM measures have been installed in small scale flashy catchments. The presentation will give an overview of the function of these measures in these catchments and how other multiple benefits are being accrued. Study catchments include the headwater catchments of the Bowmont (3 to 8 km2) and Belford Burn (6 km2) catchments. These catchments are known for their rapid runoff generation and have downstream local communities at risk of flash flooding. In Bowmont, NFM measures are currently being put in place to restore river bars and to store water more effectively on the flood plains during these flashy events. For example, Apex engineered wood structure in the river channel and riparian zones are designed to trap sediment and log bank protection structures are being installed to stop bank erosion. Tree planting in the catchment is also taking place. In the Belford catchment storage ponds and woody debris have been installed over the past five years to help to reduce the flood risk to the village of Belford. A dense instrumentation network has provided data for analysis and modelling which shows evidence of local scale flood peak reductions along with the collection of large amounts of sediment. A modelling study carried out (using a pond network model) during an intense summer storm showed that 30 small scale pond features used in sequence could reduce the flood peak by ~35% at the local scale. Findings show that managing surface runoff and local ditch flow at local scale headwater catchments is a cost effective way of managing flashy catchment for flood risk and sediment control. Working with catchment stakeholders is vital. Information given by the local community post flooding has been useful in placing NFM measures throughout the catchments. Involving the local communities in these projects and giving them access to the data and model outputs has helped to develop these projects further.

  18. Totally opportunistic routing algorithm (TORA) for underwater wireless sensor network

    PubMed Central

    Hashim, Fazirulhisyam; Rasid, Mohd Fadlee A.; Othman, Mohamed

    2018-01-01

    Underwater Wireless Sensor Network (UWSN) has emerged as promising networking techniques to monitor and explore oceans. Research on acoustic communication has been conducted for decades, but had focused mostly on issues related to physical layer such as high latency, low bandwidth, and high bit error. However, data gathering process is still severely limited in UWSN due to channel impairment. One way to improve data collection in UWSN is the design of routing protocol. Opportunistic Routing (OR) is an emerging technique that has the ability to improve the performance of wireless network, notably acoustic network. In this paper, we propose an anycast, geographical and totally opportunistic routing algorithm for UWSN, called TORA. Our proposed scheme is designed to avoid horizontal transmission, reduce end to end delay, overcome the problem of void nodes and maximize throughput and energy efficiency. We use TOA (Time of Arrival) and range based equation to localize nodes recursively within a network. Once nodes are localized, their location coordinates and residual energy are used as a matrix to select the best available forwarder. All data packets may or may not be acknowledged based on the status of sender and receiver. Thus, the number of acknowledgments for a particular data packet may vary from zero to 2-hop. Extensive simulations were performed to evaluate the performance of the proposed scheme for high network traffic load under very sparse and very dense network scenarios. Simulation results show that TORA significantly improves the network performance when compared to some relevant existing routing protocols, such as VBF, HHVBF, VAPR, and H2DAB, for energy consumption, packet delivery ratio, average end-to-end delay, average hop-count and propagation deviation factor. TORA reduces energy consumption by an average of 35% of VBF, 40% of HH-VBF, 15% of VAPR, and 29% of H2DAB, whereas the packet delivery ratio has been improved by an average of 43% of VBF, 26% of HH-VBF, 15% of VAPR, and 25% of H2DAB. Moreover, the average end-to-end delay has been reduced by 70% of VBF, 69% of HH-VBF, 46% of VAPR, and 73% of H2DAB. Furthermore, average hope-count has been improved by 57%, 53%, 16% and 31% as compared to VBF, HHVBF, VAPR, and H2DAB, respectively. Also, propagation delay has been reduced by 34%, 30%, 15% and 23% as compared to VBF, HHVBF, VAPR, and H2DAB, respectively. PMID:29874237

  19. Totally opportunistic routing algorithm (TORA) for underwater wireless sensor network.

    PubMed

    Rahman, Ziaur; Hashim, Fazirulhisyam; Rasid, Mohd Fadlee A; Othman, Mohamed

    2018-01-01

    Underwater Wireless Sensor Network (UWSN) has emerged as promising networking techniques to monitor and explore oceans. Research on acoustic communication has been conducted for decades, but had focused mostly on issues related to physical layer such as high latency, low bandwidth, and high bit error. However, data gathering process is still severely limited in UWSN due to channel impairment. One way to improve data collection in UWSN is the design of routing protocol. Opportunistic Routing (OR) is an emerging technique that has the ability to improve the performance of wireless network, notably acoustic network. In this paper, we propose an anycast, geographical and totally opportunistic routing algorithm for UWSN, called TORA. Our proposed scheme is designed to avoid horizontal transmission, reduce end to end delay, overcome the problem of void nodes and maximize throughput and energy efficiency. We use TOA (Time of Arrival) and range based equation to localize nodes recursively within a network. Once nodes are localized, their location coordinates and residual energy are used as a matrix to select the best available forwarder. All data packets may or may not be acknowledged based on the status of sender and receiver. Thus, the number of acknowledgments for a particular data packet may vary from zero to 2-hop. Extensive simulations were performed to evaluate the performance of the proposed scheme for high network traffic load under very sparse and very dense network scenarios. Simulation results show that TORA significantly improves the network performance when compared to some relevant existing routing protocols, such as VBF, HHVBF, VAPR, and H2DAB, for energy consumption, packet delivery ratio, average end-to-end delay, average hop-count and propagation deviation factor. TORA reduces energy consumption by an average of 35% of VBF, 40% of HH-VBF, 15% of VAPR, and 29% of H2DAB, whereas the packet delivery ratio has been improved by an average of 43% of VBF, 26% of HH-VBF, 15% of VAPR, and 25% of H2DAB. Moreover, the average end-to-end delay has been reduced by 70% of VBF, 69% of HH-VBF, 46% of VAPR, and 73% of H2DAB. Furthermore, average hope-count has been improved by 57%, 53%, 16% and 31% as compared to VBF, HHVBF, VAPR, and H2DAB, respectively. Also, propagation delay has been reduced by 34%, 30%, 15% and 23% as compared to VBF, HHVBF, VAPR, and H2DAB, respectively.

  20. Sources of high frequency seismic noise: insights from a dense network of ~250 stations in northern Alsace (France)

    NASA Astrophysics Data System (ADS)

    Vergne, Jerome; Blachet, Antoine; Lehujeur, Maximilien

    2015-04-01

    Monitoring local or regional seismic activity requires stations having a low level of background seismic noise at frequencies higher than few tenths of Hertz. Network operators are well aware that the seismic quality of a site depends on several aspects, among them its geological setting and the proximity of roads, railways, industries or trees. Often, the impact of each noise source is only qualitatively known which precludes estimating the quality of potential future sites before they are tested or installed. Here, we want to take advantage of a very dense temporary network deployed in Northern Alsace (France) to assess the effect of various kinds of potential sources on the level of seismic noise observed in the frequency range 0.2-50 Hz. In September 2014, more than 250 seismic stations (FairfieldNodal@ Zland nodes with 10Hz vertical geophone) have been installed every 1.5 km over a ~25km diameter disc centred on the deep geothermal sites of Soultz-sous-Forêts and Rittershoffen. This region exhibits variable degrees of human imprints from quite remote areas to sectors with high traffic roads and big villages. It also encompasses both the deep sedimentary basin of the Rhine graben and the piedmont of the Vosges massif with exposed bedrock. For each site we processed the continuous data to estimate probability density functions of the power spectral densities. At frequencies higher than 1 Hz most sites show a clear temporal modulation of seismic noise related to human activity with the well-known variations between day and night and between weekdays and weekends. Moreover we observe a clear evolution of the spatial distribution of seismic noise levels with frequency. Basically, between 0.5 and 4 Hz the geological setting modulates the level of seismic noise. At higher frequencies, the amplitude of seismic noise appears mostly related to the distance to nearby roads. Based on road maps and traffic estimation, a forward approach is performed to model the induced seismic noise. Effects of other types of seismic sources, such as industries or wind, are also observed but usually have a more limited spatial extension and a specific signature in the spectrograms.

  1. Mahali: Space Weather Monitoring Using Multicore Mobile Devices

    NASA Astrophysics Data System (ADS)

    Pankratius, V.; Lind, F. D.; Coster, A. J.; Erickson, P. J.; Semeter, J. L.

    2013-12-01

    Analysis of Total Electron Content (TEC) measurements derived from Global Positioning System (GPS) signals has led to revolutionary new data products for space weather monitoring and ionospheric research. However, the current sensor network is sparse, especially over the oceans and in regions like Africa and Siberia, and the full potential of dense, global, real-time TEC monitoring remains to be realized. The Mahali project will prototype a revolutionary architecture that uses mobile devices, such as phones and tablets, to form a global space weather monitoring network. Mahali exploits the existing GPS infrastructure - more specifically, delays in multi-frequency GPS signals observed at the ground - to acquire a vast set of global TEC projections, with the goal of imaging multi-scale variability in the global ionosphere at unprecedented spatial and temporal resolution. With connectivity available worldwide, mobile devices are excellent candidates to establish crowd sourced global relays that feed multi-frequency GPS sensor data into a cloud processing environment. Once the data is within the cloud, it is relatively straightforward to reconstruct the structure of the space environment, and its dynamic changes. This vision is made possible owing to advances in multicore technology that have transformed mobile devices into parallel computers with several processors on a chip. For example, local data can be pre-processed, validated with other sensors nearby, and aggregated when transmission is temporarily unavailable. Intelligent devices can also autonomously decide the most practical way of transmitting data with in any given context, e.g., over cell networks or Wifi, depending on availability, bandwidth, cost, energy usage, and other constraints. In the long run, Mahali facilitates data collection from remote locations such as deserts or on oceans. For example, mobile devices on ships could collect time-tagged measurements that are transmitted at a later point in time when some connectivity is available. Our concept of the overall Mahali system will employ both auto-tuning and machine learning techniques to cope with the opportunistic nature of data collection, computational load distribution on mobile devices and in the cloud, and fault-tolerance in a dynamically changing network. "Kila Mahali" means "everywhere" in the Swahili language. This project will follow that spirit by enabling space weather data collection even in the most remote places, resulting in dramatic improvements in observational gaps that exist in space weather research today. The dense network may enable the use of the entire ionosphere as a sensor to monitor geophysical events from earthquakes to tsunamis, and other natural disasters.

  2. Alterations in the Ventral Attention Network During the Stop-Signal Task in Children With ADHD: An Event-Related Potential Source Imaging Study.

    PubMed

    Janssen, Tieme W P; Heslenfeld, Dirk J; van Mourik, Rosa; Geladé, Katleen; Maras, Athanasios; Oosterlaan, Jaap

    2018-05-01

    Deficits in response inhibition figure prominently in models of ADHD; however, attentional deficiencies may better explain previous findings of impaired response inhibition in ADHD. We tested this hypothesis at the neurophysiological level. Dense array ERPs (event-related potentials) were obtained for 46 children with ADHD and 51 controls using the stop-signal task (SST). Early and late components were compared between groups. N2 and P3 components were localized with LAURA distributed linear inverse solution. A success-related N1 modulation was only apparent in the ADHD group. N2 and P3 amplitudes were reduced in ADHD. During the successful inhibition N2, the ADHD group showed reduced activation in right inferior frontal gyrus (rIFG), supplementary motor area (SMA), and right temporoparietal junction (rTPJ), and during failed inhibition in the rIFG. During the successful inhibition P3, reduced activation was found in anterior cingulate cortex (ACC) and SMA. Impairments in the ventral attention network contribute to the psychopathology of ADHD and challenge the dominant view that ADHD is underpinned by impaired inhibitory control.

  3. Stream network analysis from orbital and suborbital imagery, Colorado River Basin, Texas

    NASA Technical Reports Server (NTRS)

    Baker, V. R. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Orbital SL-2 imagery (earth terrain camera S-190B), received September 5, 1973, was subjected to quantitative network analysis and compared to 7.5 minute topographic mapping (scale: 1/24,000) and U.S.D.A. conventional black and white aerial photography (scale: 1/22,200). Results can only be considered suggestive because detail on the SL-2 imagery was badly obscured by heavy cloud cover. The upper Bee Creek basin was chosen for analysis because it appeared in a relatively cloud-free portion of the orbital imagery. Drainage maps were drawn from the three sources digitized into a computer-compatible format, and analyzed by the WATER system computer program. Even at its small scale (1/172,000) and with bad haze the orbital photo showed much drainage detail. The contour-like character of the Glen Rose Formation's resistant limestone units allowed channel definition. The errors in pattern recognition can be attributed to local areas of dense vegetation and to other areas of very high albedo caused by surficial exposure of caliche. The latter effect caused particular difficulty in the determination of drainage divides.

  4. TreePlus: interactive exploration of networks with enhanced tree layouts.

    PubMed

    Lee, Bongshin; Parr, Cynthia S; Plaisant, Catherine; Bederson, Benjamin B; Veksler, Vladislav D; Gray, Wayne D; Kotfila, Christopher

    2006-01-01

    Despite extensive research, it is still difficult to produce effective interactive layouts for large graphs. Dense layout and occlusion make food webs, ontologies, and social networks difficult to understand and interact with. We propose a new interactive Visual Analytics component called TreePlus that is based on a tree-style layout. TreePlus reveals the missing graph structure with visualization and interaction while maintaining good readability. To support exploration of the local structure of the graph and gathering of information from the extensive reading of labels, we use a guiding metaphor of "Plant a seed and watch it grow." It allows users to start with a node and expand the graph as needed, which complements the classic overview techniques that can be effective at (but often limited to) revealing clusters. We describe our design goals, describe the interface, and report on a controlled user study with 28 participants comparing TreePlus with a traditional graph interface for six tasks. In general, the advantage of TreePlus over the traditional interface increased as the density of the displayed data increased. Participants also reported higher levels of confidence in their answers with TreePlus and most of them preferred TreePlus.

  5. A novel approach for detection and classification of mammographic microcalcifications using wavelet analysis and extreme learning machine.

    PubMed

    Malar, E; Kandaswamy, A; Chakravarthy, D; Giri Dharan, A

    2012-09-01

    The objective of this paper is to reveal the effectiveness of wavelet based tissue texture analysis for microcalcification detection in digitized mammograms using Extreme Learning Machine (ELM). Microcalcifications are tiny deposits of calcium in the breast tissue which are potential indicators for early detection of breast cancer. The dense nature of the breast tissue and the poor contrast of the mammogram image prohibit the effectiveness in identifying microcalcifications. Hence, a new approach to discriminate the microcalcifications from the normal tissue is done using wavelet features and is compared with different feature vectors extracted using Gray Level Spatial Dependence Matrix (GLSDM) and Gabor filter based techniques. A total of 120 Region of Interests (ROIs) extracted from 55 mammogram images of mini-Mias database, including normal and microcalcification images are used in the current research. The network is trained with the above mentioned features and the results denote that ELM produces relatively better classification accuracy (94%) with a significant reduction in training time than the other artificial neural networks like Bayesnet classifier, Naivebayes classifier, and Support Vector Machine. ELM also avoids problems like local minima, improper learning rate, and over fitting. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Macrofouling of deep-sea instrumentation after three years at 3690 m depth in the Charlie Gibbs fracture zone, mid-Atlantic ridge, with emphasis on hydroids (Cnidaria: Hydrozoa)

    NASA Astrophysics Data System (ADS)

    Blanco, R.; Shields, M. A.; Jamieson, A. J.

    2013-12-01

    Macrofouling is a common problem when deploying underwater instrumentation for long periods of time. It is a problem which can effect scientific experiments and monitoring missions though the creation of artificial reefs (thus increasing local biological activity) and reduce the quality of scientific data. Macrofouling is an issue typically considered to be restricted to the photic zones and is absent or negligible in the deep sea. To the contrary, the recovery of an accidentally lost deep-sea lander after 3 years submergence at 3960 m on the Mid-Atlantic Ridge (North Atlantic) revealed dense colonisation of macrofouling organisms. These organisms were found attached to all surfaces of the lander regardless of orientation and materials. The occurrence of such deep-sea macrofouling should be carefully investigated given the recent developments in long-term deep-sea observatory networks.

  7. Two-dimensional plasmons in lateral carbon nanotube network structures and their effect on the terahertz radiation detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryzhii, V.; Institute of Ultra High Frequency Semiconductor Electronics of RAS, Moscow 117105; Center for Photonics and Infrared Engineering, Bauman Moscow State Technical University, Moscow 111005

    2016-07-28

    We consider the carrier transport and plasmonic phenomena in the lateral carbon nanotube (CNT) networks forming the device channel with asymmetric electrodes. One electrode is the Ohmic contact to the CNT network and the other contact is the Schottky contact. These structures can serve as detectors of the terahertz (THz) radiation. We develop the device model for collective response of the lateral CNT networks which comprise a mixture of randomly oriented semiconductor CNTs (s-CNTs) and quasi-metal CNTs (m-CNTs). The proposed model includes the concept of the collective two-dimensional (2D) plasmons in relatively dense networks of randomly oriented CNTs (CNT “felt”)more » and predicts the detector responsivity spectral characteristics exhibiting sharp resonant peaks at the signal frequencies corresponding to the 2D plasmonic resonances. The detection mechanism is the rectification of the ac current due the nonlinearity of the Schottky contact current-voltage characteristics under the conditions of a strong enhancement of the potential drop at this contact associated with the plasmon excitation. The detector responsivity depends on the fractions of the s- and m-CNTs. The burning of the near-contact regions of the m-CNTs or destruction of these CNTs leads to a marked increase in the responsivity in agreement with our experimental data. The resonant THz detectors with sufficiently dense lateral CNT networks can compete and surpass other THz detectors using plasmonic effects at room temperatures.« less

  8. Two problems in multiphase biological flows: Blood flow and particulate transport in microvascular network, and pseudopod-driven motility of amoeboid cells

    NASA Astrophysics Data System (ADS)

    Bagchi, Prosenjit

    2016-11-01

    In this talk, two problems in multiphase biological flows will be discussed. The first is the direct numerical simulation of whole blood and drug particulates in microvascular networks. Blood in microcirculation behaves as a dense suspension of heterogeneous cells. The erythrocytes are extremely deformable, while inactivated platelets and leukocytes are nearly rigid. A significant progress has been made in recent years in modeling blood as a dense cellular suspension. However, many of these studies considered the blood flow in simple geometry, e.g., straight tubes of uniform cross-section. In contrast, the architecture of a microvascular network is very complex with bifurcating, merging and winding vessels, posing a further challenge to numerical modeling. We have developed an immersed-boundary-based method that can consider blood cell flow in physiologically realistic and complex microvascular network. In addition to addressing many physiological issues related to network hemodynamics, this tool can be used to optimize the transport properties of drug particulates for effective organ-specific delivery. Our second problem is pseudopod-driven motility as often observed in metastatic cancer cells and other amoeboid cells. We have developed a multiscale hydrodynamic model to simulate such motility. We study the effect of cell stiffness on motility as the former has been considered as a biomarker for metastatic potential. Funded by the National Science Foundation.

  9. Self Sealing Magmas

    NASA Astrophysics Data System (ADS)

    von Aulock, Felix W.; Wadsworth, Fabian B.; Kennedy, Ben M.; Lavallee, Yan

    2015-04-01

    During ascent of magma, pressure decreases and bubbles form. If the volume increases more rapidly than the relaxation timescale, the magma fragments catastrophically. If a permeable network forms, the magma degasses non-violently. This process is generally assumed to be unidirectional, however, recent studies have shown how shear and compaction can drive self sealing. Here, we additionally constrain skin formation during degassing and sintering. We heated natural samples of obsidian in a dry atmosphere and monitored foaming and impermeable skin formation. We suggest a model for skin formation that is controlled by diffusional loss of water and bubble collapse at free surfaces. We heated synthetic glass beads in a hydrous atmosphere to measure the timescale of viscous sintering. The beads sinter at drastically shorter timescales as water vapour rehydrates an otherwise degassed melt, reducing viscosity and glass transition temperatures. Both processes can produce dense inhomogeneities within the timescales of magma ascent and effectively disturb permeabilities and form barriers, particularly at the margins of the conduit, where strain localisation takes place. Localised ash in failure zones (i.e. Tuffisite) then becomes associated with water vapour fluxes and alow rapid rehydration and sintering. When measuring permeabilities in laboratory and field, and when discussing shallow degassing in volcanoes, local barriers for degassing should be taken into account. Highlighting the processes that lead to the formation of such dense skins and sintered infills of cavities can help understanding the bulk permeabilities of volcanic systems.

  10. A Spiking Neural Simulator Integrating Event-Driven and Time-Driven Computation Schemes Using Parallel CPU-GPU Co-Processing: A Case Study.

    PubMed

    Naveros, Francisco; Luque, Niceto R; Garrido, Jesús A; Carrillo, Richard R; Anguita, Mancia; Ros, Eduardo

    2015-07-01

    Time-driven simulation methods in traditional CPU architectures perform well and precisely when simulating small-scale spiking neural networks. Nevertheless, they still have drawbacks when simulating large-scale systems. Conversely, event-driven simulation methods in CPUs and time-driven simulation methods in graphic processing units (GPUs) can outperform CPU time-driven methods under certain conditions. With this performance improvement in mind, we have developed an event-and-time-driven spiking neural network simulator suitable for a hybrid CPU-GPU platform. Our neural simulator is able to efficiently simulate bio-inspired spiking neural networks consisting of different neural models, which can be distributed heterogeneously in both small layers and large layers or subsystems. For the sake of efficiency, the low-activity parts of the neural network can be simulated in CPU using event-driven methods while the high-activity subsystems can be simulated in either CPU (a few neurons) or GPU (thousands or millions of neurons) using time-driven methods. In this brief, we have undertaken a comparative study of these different simulation methods. For benchmarking the different simulation methods and platforms, we have used a cerebellar-inspired neural-network model consisting of a very dense granular layer and a Purkinje layer with a smaller number of cells (according to biological ratios). Thus, this cerebellar-like network includes a dense diverging neural layer (increasing the dimensionality of its internal representation and sparse coding) and a converging neural layer (integration) similar to many other biologically inspired and also artificial neural networks.

  11. Association of childhood abuse with homeless women's social networks.

    PubMed

    Green, Harold D; Tucker, Joan S; Wenzel, Suzanne L; Golinelli, Daniela; Kennedy, David P; Ryan, Gery W; Zhou, Annie J

    2012-01-01

    Childhood abuse has been linked to negative sequelae for women later in life including drug and alcohol use and violence as victim or perpetrator and may also affect the development of women's social networks. Childhood abuse is prevalent among at-risk populations of women (such as the homeless) and thus may have a stronger impact on their social networks. We conducted a study to: (a) develop a typology of sheltered homeless women's social networks; (b) determine whether childhood abuse was associated with the social networks of sheltered homeless women; and (c) determine whether those associations remained after accounting for past-year substance abuse and recent intimate partner abuse. A probability sample of 428 homeless women from temporary shelter settings in Los Angeles County completed a personal network survey that provided respondent information as well as information about their network members' demographics and level of interaction with each other. Cluster analyses identified groups of women who shared specific social network characteristics. Multinomial logistic regressions revealed variables associated with group membership. We identified three groups of women with differing social network characteristics: low-risk networks, densely connected risky networks (dense, risky), and sparsely connected risky networks (sparse, risky). Multinomial logistic regressions indicated that membership in the sparse, risky network group, when compared to the low-risk group, was associated with history of childhood physical abuse (but not sexual or emotional abuse). Recent drug abuse was associated with membership in both risky network groups; however, the association of childhood physical abuse with sparse, risky network group membership remained. Although these findings support theories proposing that the experience of childhood abuse can shape women's social networks, they suggest that it may be childhood physical abuse that has the most impact among homeless women. The effects of childhood physical abuse should be more actively investigated in clinical settings, especially those frequented by homeless women, particularly with respect to the formation of social networks in social contexts that may expose these women to greater risks. Copyright © 2012. Published by Elsevier Ltd.

  12. Building a Successful Technology Cluster

    EPA Science Inventory

    Silicon Valley is the iconic cluster—a dense regional network of companies, universities, research institutions, and other stakeholders involved in a single industry. Many regions have sought to replicate the success of Silicon Valley, which has produced technological innov...

  13. Effect of soil temperature on optical frequency transfer through unidirectional dense-wavelength-division-multiplexing fiber-optic links.

    PubMed

    Pinkert, T J; Böll, O; Willmann, L; Jansen, G S M; Dijck, E A; Groeneveld, B G H M; Smets, R; Bosveld, F C; Ubachs, W; Jungmann, K; Eikema, K S E; Koelemeij, J C J

    2015-02-01

    Results of optical frequency transfer over a carrier-grade dense-wavelength-division-multiplexing (DWDM) optical fiber network are presented. The relation between soil temperature changes on a buried optical fiber and frequency changes of an optical carrier through the fiber is modeled. Soil temperatures, measured at various depths by the Royal Netherlands Meteorology Institute (KNMI) are compared with observed frequency variations through this model. A comparison of a nine-day record of optical frequency measurements through the 2×298  km fiber link with soil temperature data shows qualitative agreement. A soil temperature model is used to predict the link stability over longer periods (days-months-years). We show that optical frequency dissemination is sufficiently stable to distribute and compare, e.g., rubidium frequency standards over standard DWDM optical fiber networks using unidirectional fibers.

  14. Assessing the detection capability of a dense infrasound network in the southern Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Che, Il-Young; Le Pichon, Alexis; Kim, Kwangsu; Shin, In-Cheol

    2017-08-01

    The Korea Infrasound Network (KIN) is a dense seismoacoustic array network consisting of eight small-aperture arrays with an average interarray spacing of ∼100 km. The processing of the KIN historical recordings over 10 yr in the 0.05-5 Hz frequency band shows that the dominant sources of signals are microbaroms and human activities. The number of detections correlates well with the seasonal and daily variability of the stratospheric wind dynamics. The quantification of the spatiotemporal variability of the KIN detection performance is simulated using a frequency-dependent semi-empirical propagation modelling technique. The average detection thresholds predicted for the region of interest by using both the KIN arrays and the International Monitoring System (IMS) infrasound station network at a given frequency of 1.6 Hz are estimated to be 5.6 and 10.0 Pa for two- and three-station coverage, respectively, which was about three times lower than the thresholds predicted by using only the IMS stations. The network performance is significantly enhanced from May to August, with detection thresholds being one order of magnitude lower than the rest of the year due to prevailing steady stratospheric winds. To validate the simulations, the amplitudes of ground-truth repeated surface mining explosions at an open-pit limestone mine were measured over a 19-month period. Focusing on the spatiotemporal variability of the stratospheric winds which control to first order where infrasound signals are expected to be detected, the predicted detectable signal amplitude at the mine and the detection capability at one KIN array located at a distance of 175 km are found to be in good agreement with the observations from the measurement campaign. The detection threshold in summer is ∼2 Pa and increases up to ∼300 Pa in winter. Compared with the low and stable thresholds in summer, the high temporal variability of the KIN performance is well predicted throughout the year. Simulations show that the performance of the global infrasound network of the IMS is significantly improved by adding KIN. This study shows the usefulness of dense regional networks to enhance detection capability in regions of interest in the context of future verification of the Comprehensive Nuclear-Test-Ban Treaty.

  15. Discovering Social Circles in Ego Networks (Author’s Manuscript)

    DTIC Science & Technology

    2013-01-10

    ego-network. We expect that circles are formed by densely-connected sets of alters ( Newman , 2006). However, different circles overlap heavily, i.e...umbrella of community detection (Lancichinetti and Fortunato, 2009a; Schaeffer, 2007; Leskovec et al., 2010; Porter et al., 2009; Newman , 2004). While...MCMC) sampler ( Newman and Barkema, 1999) which efficiently updates node-community memberships by ‘collapsing’ nodes that have common features and

  16. Nonvolatile Ionic Two-Terminal Memory Device

    NASA Technical Reports Server (NTRS)

    Williams, Roger M.

    1990-01-01

    Conceptual solid-state memory device nonvolatile and erasable and has only two terminals. Proposed device based on two effects: thermal phase transition and reversible intercalation of ions. Transfer of sodium ions between source of ions and electrical switching element increases or decreases electrical conductance of element, turning switch "on" or "off". Used in digital computers and neural-network computers. In neural networks, many small, densely packed switches function as erasable, nonvolatile synaptic elements.

  17. Exploration of the integration of care for persons with a traumatic brain injury using social network analysis methodology.

    PubMed

    Lamontagne, Marie-Eve

    2013-01-01

    Integration is a popular strategy to increase the quality of care within systems of care. However, there is no common language, approach or tool allowing for a valid description, comparison and evaluation of integrated care. Social network analysis could be a viable methodology to provide an objective picture of integrated networks. To illustrate social network analysis use in the context of systems of care for traumatic brain injury. We surveyed members of a network using a validated questionnaire to determine the links between them. We determined the density, centrality, multiplexity, and quality of the links reported. The network was described as moderately dense (0.6), the most prevalent link was knowledge, and four organisation members of a consortium were central to the network. Social network analysis allowed us to create a graphic representation of the network. Social network analysis is a useful methodology to objectively characterise integrated networks.

  18. Multi-Dimensional Prioritization of Dental Caries Candidate Genes and Its Enriched Dense Network Modules

    PubMed Central

    Wang, Quan; Jia, Peilin; Cuenco, Karen T.; Feingold, Eleanor; Marazita, Mary L.; Wang, Lily; Zhao, Zhongming

    2013-01-01

    A number of genetic studies have suggested numerous susceptibility genes for dental caries over the past decade with few definite conclusions. The rapid accumulation of relevant information, along with the complex architecture of the disease, provides a challenging but also unique opportunity to review and integrate the heterogeneous data for follow-up validation and exploration. In this study, we collected and curated candidate genes from four major categories: association studies, linkage scans, gene expression analyses, and literature mining. Candidate genes were prioritized according to the magnitude of evidence related to dental caries. We then searched for dense modules enriched with the prioritized candidate genes through their protein-protein interactions (PPIs). We identified 23 modules comprising of 53 genes. Functional analyses of these 53 genes revealed three major clusters: cytokine network relevant genes, matrix metalloproteinases (MMPs) family, and transforming growth factor-beta (TGF-β) family, all of which have been previously implicated to play important roles in tooth development and carious lesions. Through our extensive data collection and an integrative application of gene prioritization and PPI network analyses, we built a dental caries-specific sub-network for the first time. Our study provided insights into the molecular mechanisms underlying dental caries. The framework we proposed in this work can be applied to other complex diseases. PMID:24146904

  19. Finding Hierarchical and Overlapping Dense Subgraphs using Nucleus Decompositions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seshadhri, Comandur; Pinar, Ali; Sariyuce, Ahmet Erdem

    Finding dense substructures in a graph is a fundamental graph mining operation, with applications in bioinformatics, social networks, and visualization to name a few. Yet most standard formulations of this problem (like clique, quasiclique, k-densest subgraph) are NP-hard. Furthermore, the goal is rarely to nd the \\true optimum", but to identify many (if not all) dense substructures, understand their distribution in the graph, and ideally determine a hierarchical structure among them. Current dense subgraph nding algorithms usually optimize some objective, and only nd a few such subgraphs without providing any hierarchy. It is also not clear how to account formore » overlaps in dense substructures. We de ne the nucleus decomposition of a graph, which represents the graph as a forest of nuclei. Each nucleus is a subgraph where smaller cliques are present in many larger cliques. The forest of nuclei is a hierarchy by containment, where the edge density increases as we proceed towards leaf nuclei. Sibling nuclei can have limited intersections, which allows for discovery of overlapping dense subgraphs. With the right parameters, the nuclear decomposition generalizes the classic notions of k-cores and k-trusses. We give provable e cient algorithms for nuclear decompositions, and empirically evaluate their behavior in a variety of real graphs. The tree of nuclei consistently gives a global, hierarchical snapshot of dense substructures, and outputs dense subgraphs of higher quality than other state-of-theart solutions. Our algorithm can process graphs with tens of millions of edges in less than an hour.« less

  20. Toward the prevention of childhood undernutrition: diet diversity strategies using locally produced food can overcome gaps in nutrient supply.

    PubMed

    Parlesak, Alexandr; Geelhoed, Diederike; Robertson, Aileen

    2014-06-01

    Chronic undernutrition is prevalent in Mozambique, where children suffer from stunting, vitamin A deficiency, anemia, and other nutrition-related disorders. Complete diet formulation products (CDFPs) are increasingly promoted to prevent chronic undernutrition. Using linear programming, to investigate whether diet diversification using local foods should be prioritized in order to reduce the prevalence of chronic undernutrition. Market prices of local foods were collected in Tete City, Mozambique. Linear programming was applied to calculate the cheapest possible fully nutritious food baskets (FNFB) by stepwise addition of micronutrient-dense localfoods. Only the top quintile of Mozambican households, using average expenditure data, could afford the FNFB that was designed using linear programming from a spectrum of local standard foods. The addition of beef heart or liver, dried fish and fresh moringa leaves, before applying linear programming decreased the price by a factor of up to 2.6. As a result, the top three quintiles could afford the FNFB optimized using both diversification strategy and linear programming. CDFPs, when added to the baskets, were unable to overcome the micronutrient gaps without greatly exceeding recommended energy intakes, due to their high ratio of energy to micronutrient density. Dietary diversification strategies using local, low-cost, nutrient-dense foods can meet all micronutrient recommendations and overcome all micronutrient gaps. The success of linear programming to identify a low-cost FNFB depends entirely on the investigators' ability to select appropriate micronutrient-dense foods. CDFPs added to food baskets are unable to overcome micronutrient gaps without greatly exceeding recommended energy intake.

  1. First demonstration and field trial on multi-user UDWDM-PON full duplex PSK-PSK with single monolithic integrated dual-output-DFB-SOA based ONUs.

    PubMed

    Chu, GuangYong; Maho, Anaëlle; Cano, Iván; Polo, Victor; Brenot, Romain; Debrégeas, Hélène; Prat, Josep

    2016-10-15

    We demonstrate a monolithically integrated dual-output DFB-SOA, and conduct the field trial on a multi-user bidirectional coherent ultradense wavelength division multiplexing-passive optical network (UDWDM-PON). To the best of our knowledge, this is the first achievement of simplified single integrated laser-based neighboring coherent optical network units (ONUs) with a 12.5 GHz channel spaced ultra-dense access network, including both downstream and upstream, taking the benefits of low footprint and low-temperature dependence.

  2. Water-resources data network evaluation for Monterey County, California; Phase 2, northern and coastal areas of Monterey County

    USGS Publications Warehouse

    Templin, W.E.; Smith, P.E.; DeBortoli, M.L.; Schluter, R.C.

    1995-01-01

    This report presents an evaluation of water- resources data-collection networks in the northern and coastal areas of Monterey County, California. This evaluation was done by the U.S. Geological Survey in cooperation with the Monterey County Flood Control and Water Conservation District to evaluate precipitation, surface water, and ground water monitoring networks. This report describes existing monitoring networks in the study areas and areas where possible additional data-collection is needed. During this study, 106 precipitation-quantity gages were identified, of which 84 were active; however, no precipitation-quality gages were identified in the study areas. The precipitaion-quantity gages were concentrated in the Monterey Peninsula and the northern part of the county. If the number of gages in these areas were reduced, coverage would still be adequate to meet most objectives; however, additional gages could improve coverage in the Tularcitos Creek basin and in the coastal areas south of Carmel to the county boundary. If collection of precipitation data were expanded to include monitoring precipitation quality, this expanded monitoring also could include monitoring precipitation for acid rain and pesticides. Eleven continuous streamflow-gaging stations were identified during this study, of which seven were active. To meet the objectives of the streamflow networks outlined in this report, the seven active stations would need to be continued, four stations would need to be reactivated, and an additional six streamflow-gaging stations would need to be added. Eleven stations that routinely were sampled for chemical constituents were identified in the study areas. Surface water in the lower Big Sur River basin was sampled annually for total coli- form and fecal coliform bacteria, and the Big Sur River was sampled monthly at 16 stations for these bacteria. Routine sampling for chemical constituents also was done in the Big Sur River basin. The Monterey County Flood Control and Water Conservation District maintained three networks in the study areas to measure ground-water levels: (1) the summer network, (2) the monthly network, and (3) the annual autumn network. The California American Water Company also did some ground-water-level monitoring in these areas. Well coverage for ground-water monitoring was dense in the seawater-intrusion area north of Moss Landing (possibly because of multiple overlying aquifers), but sparse in other parts of the study areas. During the study, 44 sections were identified as not monitored for ground-water levels. In an ideal ground-water-level network, wells would be evenly spaced, except where local conditions or correlations of wells make monitoring unnecessary. A total of 384 wells that monitor ground-water levels and/or ground-water quality were identified during this study. The Monterey County Flood Control and Water Conservation District sampled ground-water quality monthly during the irrigation season to monitor seawater intrusion. Once each year (during the summer), the wells in this network were monitored for chlorides, specific conductance, and nitrates. Additional samples were collected from each well once every 5 years for complete mineral analysis. The California Department of Health Services, the California American Water Company, the U.S. Army Health Service at Ford Ord, and the Monterey Peninsula Water Management District also monitored ground-water quality in wells in the study areas. Well coverage for the ground-water- quality networks was dense in the seawater- intrusion area north of Moss Landing, but sparse in the rest of the study areas. During this study, 54 sections were identified as not monitored for water quality.

  3. Epidemic spreading on complex networks with community structures

    PubMed Central

    Stegehuis, Clara; van der Hofstad, Remco; van Leeuwaarden, Johan S. H.

    2016-01-01

    Many real-world networks display a community structure. We study two random graph models that create a network with similar community structure as a given network. One model preserves the exact community structure of the original network, while the other model only preserves the set of communities and the vertex degrees. These models show that community structure is an important determinant of the behavior of percolation processes on networks, such as information diffusion or virus spreading: the community structure can both enforce as well as inhibit diffusion processes. Our models further show that it is the mesoscopic set of communities that matters. The exact internal structures of communities barely influence the behavior of percolation processes across networks. This insensitivity is likely due to the relative denseness of the communities. PMID:27440176

  4. Directed network modules

    NASA Astrophysics Data System (ADS)

    Palla, Gergely; Farkas, Illés J.; Pollner, Péter; Derényi, Imre; Vicsek, Tamás

    2007-06-01

    A search technique locating network modules, i.e. internally densely connected groups of nodes in directed networks is introduced by extending the clique percolation method originally proposed for undirected networks. After giving a suitable definition for directed modules we investigate their percolation transition in the Erdos-Rényi graph both analytically and numerically. We also analyse four real-world directed networks, including Google's own web-pages, an email network, a word association graph and the transcriptional regulatory network of the yeast Saccharomyces cerevisiae. The obtained directed modules are validated by additional information available for the nodes. We find that directed modules of real-world graphs inherently overlap and the investigated networks can be classified into two major groups in terms of the overlaps between the modules. Accordingly, in the word-association network and Google's web-pages, overlaps are likely to contain in-hubs, whereas the modules in the email and transcriptional regulatory network tend to overlap via out-hubs.

  5. Coalescence preference in densely packed microbubbles

    DOE PAGES

    Kim, Yeseul; Lim, Su Jin; Gim, Bopil; ...

    2015-01-13

    A bubble merged from two parent bubbles with different size tends to be placed closer to the larger parent. This phenomenon is known as the coalescence preference. Here we demonstrate that the coalescence preference can be blocked inside a densely packed cluster of bubbles. We utilized high-speed high-resolution X-ray microscopy to clearly visualize individual coalescence events inside densely packed microbubbles with a local packing fraction of ~40%. Thus, the surface energy release theory predicts an exponent of 5 in a relation between the relative coalescence position and the parent size ratio, whereas our observation for coalescence in densely packed microbubblesmore » shows a different exponent of 2. We believe that this result would be important to understand the reality of coalescence dynamics in a variety of packing situations of soft matter.« less

  6. Coalescence preference in densely packed microbubbles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yeseul; Lim, Su Jin; Gim, Bopil

    A bubble merged from two parent bubbles with different size tends to be placed closer to the larger parent. This phenomenon is known as the coalescence preference. Here we demonstrate that the coalescence preference can be blocked inside a densely packed cluster of bubbles. We utilized high-speed high-resolution X-ray microscopy to clearly visualize individual coalescence events inside densely packed microbubbles with a local packing fraction of ~40%. Thus, the surface energy release theory predicts an exponent of 5 in a relation between the relative coalescence position and the parent size ratio, whereas our observation for coalescence in densely packed microbubblesmore » shows a different exponent of 2. We believe that this result would be important to understand the reality of coalescence dynamics in a variety of packing situations of soft matter.« less

  7. The JCMT Gould Belt Survey: Dense Core Clusters in Orion B

    NASA Astrophysics Data System (ADS)

    Kirk, H.; Johnstone, D.; Di Francesco, J.; Lane, J.; Buckle, J.; Berry, D. S.; Broekhoven-Fiene, H.; Currie, M. J.; Fich, M.; Hatchell, J.; Jenness, T.; Mottram, J. C.; Nutter, D.; Pattle, K.; Pineda, J. E.; Quinn, C.; Salji, C.; Tisi, S.; Hogerheijde, M. R.; Ward-Thompson, D.; The JCMT Gould Belt Survey Team

    2016-04-01

    The James Clerk Maxwell Telescope Gould Belt Legacy Survey obtained SCUBA-2 observations of dense cores within three sub-regions of Orion B: LDN 1622, NGC 2023/2024, and NGC 2068/2071, all of which contain clusters of cores. We present an analysis of the clustering properties of these cores, including the two-point correlation function and Cartwright’s Q parameter. We identify individual clusters of dense cores across all three regions using a minimal spanning tree technique, and find that in each cluster, the most massive cores tend to be centrally located. We also apply the independent M-Σ technique and find a strong correlation between core mass and the local surface density of cores. These two lines of evidence jointly suggest that some amount of mass segregation in clusters has happened already at the dense core stage.

  8. Prediction-based association control scheme in dense femtocell networks.

    PubMed

    Sung, Nak Woon; Pham, Ngoc-Thai; Huynh, Thong; Hwang, Won-Joo; You, Ilsun; Choo, Kim-Kwang Raymond

    2017-01-01

    The deployment of large number of femtocell base stations allows us to extend the coverage and efficiently utilize resources in a low cost manner. However, the small cell size of femtocell networks can result in frequent handovers to the mobile user, and consequently throughput degradation. Thus, in this paper, we propose predictive association control schemes to improve the system's effective throughput. Our design focuses on reducing handover frequency without impacting on throughput. The proposed schemes determine handover decisions that contribute most to the network throughput and are proper for distributed implementations. The simulation results show significant gains compared with existing methods in terms of handover frequency and network throughput perspective.

  9. Localization of multilayer networks by optimized single-layer rewiring.

    PubMed

    Jalan, Sarika; Pradhan, Priodyuti

    2018-04-01

    We study localization properties of principal eigenvectors (PEVs) of multilayer networks (MNs). Starting with a multilayer network corresponding to a delocalized PEV, we rewire the network edges using an optimization technique such that the PEV of the rewired multilayer network becomes more localized. The framework allows us to scrutinize structural and spectral properties of the networks at various localization points during the rewiring process. We show that rewiring only one layer is enough to attain a MN having a highly localized PEV. Our investigation reveals that a single edge rewiring of the optimized MN can lead to the complete delocalization of a highly localized PEV. This sensitivity in the localization behavior of PEVs is accompanied with the second largest eigenvalue lying very close to the largest one. This observation opens an avenue to gain a deeper insight into the origin of PEV localization of networks. Furthermore, analysis of multilayer networks constructed using real-world social and biological data shows that the localization properties of these real-world multilayer networks are in good agreement with the simulation results for the model multilayer network. This paper is relevant to applications that require understanding propagation of perturbation in multilayer networks.

  10. Localization of multilayer networks by optimized single-layer rewiring

    NASA Astrophysics Data System (ADS)

    Jalan, Sarika; Pradhan, Priodyuti

    2018-04-01

    We study localization properties of principal eigenvectors (PEVs) of multilayer networks (MNs). Starting with a multilayer network corresponding to a delocalized PEV, we rewire the network edges using an optimization technique such that the PEV of the rewired multilayer network becomes more localized. The framework allows us to scrutinize structural and spectral properties of the networks at various localization points during the rewiring process. We show that rewiring only one layer is enough to attain a MN having a highly localized PEV. Our investigation reveals that a single edge rewiring of the optimized MN can lead to the complete delocalization of a highly localized PEV. This sensitivity in the localization behavior of PEVs is accompanied with the second largest eigenvalue lying very close to the largest one. This observation opens an avenue to gain a deeper insight into the origin of PEV localization of networks. Furthermore, analysis of multilayer networks constructed using real-world social and biological data shows that the localization properties of these real-world multilayer networks are in good agreement with the simulation results for the model multilayer network. This paper is relevant to applications that require understanding propagation of perturbation in multilayer networks.

  11. Controllability of structural brain networks

    NASA Astrophysics Data System (ADS)

    Gu, Shi; Pasqualetti, Fabio; Cieslak, Matthew; Telesford, Qawi K.; Yu, Alfred B.; Kahn, Ari E.; Medaglia, John D.; Vettel, Jean M.; Miller, Michael B.; Grafton, Scott T.; Bassett, Danielle S.

    2015-10-01

    Cognitive function is driven by dynamic interactions between large-scale neural circuits or networks, enabling behaviour. However, fundamental principles constraining these dynamic network processes have remained elusive. Here we use tools from control and network theories to offer a mechanistic explanation for how the brain moves between cognitive states drawn from the network organization of white matter microstructure. Our results suggest that densely connected areas, particularly in the default mode system, facilitate the movement of the brain to many easily reachable states. Weakly connected areas, particularly in cognitive control systems, facilitate the movement of the brain to difficult-to-reach states. Areas located on the boundary between network communities, particularly in attentional control systems, facilitate the integration or segregation of diverse cognitive systems. Our results suggest that structural network differences between cognitive circuits dictate their distinct roles in controlling trajectories of brain network function.

  12. Localized stress fluctuations drive shear thickening in dense suspensions

    NASA Astrophysics Data System (ADS)

    Rathee, Vikram; Blair, Daniel L.; Urbach, Jeffrey S.

    2017-08-01

    Dense particulate suspensions exhibit a dramatic increase in average viscosity above a critical, material-dependent shear stress. This thickening changes from continuous to discontinuous as the concentration is increased. Using direct measurements of spatially resolved surface stresses in the continuous thickening regime, we report the existence of clearly defined dynamic localized regions of substantially increased stress that appear intermittently at stresses above the critical stress. With increasing applied stress, these regions occupy an increasing fraction of the system, and the increase accounts quantitatively for the observed shear thickening. The regions represent high-viscosity fluid phases, with a size determined by the distance between the shearing surfaces and a viscosity that is nearly independent of shear rate but that increases rapidly with concentration. Thus, we find that continuous shear thickening arises from increasingly frequent localized discontinuous transitions between distinct fluid phases with widely differing viscosities.

  13. Internal structure of the San Jacinto fault zone in the trifurcation area southeast of Anza, California, from data of dense seismic arrays

    NASA Astrophysics Data System (ADS)

    Qin, L.; Ben-Zion, Y.; Qiu, H.; Share, P.-E.; Ross, Z. E.; Vernon, F. L.

    2018-04-01

    We image the internal structure of the San Jacinto fault zone (SJFZ) in the trifurcation area southeast of Anza, California, with seismic records from dense linear and rectangular arrays. The examined data include recordings from more than 20 000 local earthquakes and nine teleseismic events. Automatic detection algorithms and visual inspection are used to identify P and S body waves, along with P- and S-types fault zone trapped waves (FZTW). The location at depth of the main branch of the SJFZ, the Clark fault, is identified from systematic waveform changes across lines of sensors within the dense rectangular array. Delay times of P arrivals from teleseismic and local events indicate damage asymmetry across the fault, with higher damage to the NE, producing a local reversal of the velocity contrast in the shallow crust with respect to the large-scale structure. A portion of the damage zone between the main fault and a second mapped surface trace to the NE generates P- and S-types FZTW. Inversions of high-quality S-type FZTW indicate that the most likely parameters of the trapping structure are width of ˜70 m, S-wave velocity reduction of 60 per cent, Q value of 60 and depth of ˜2 km. The local reversal of the shallow velocity contrast across the fault with respect to large-scale structure is consistent with preferred propagation of earthquake ruptures in the area to the NW.

  14. Rapid changes in synaptic vesicle cytochemistry after depolarization of cultured cholinergic sympathetic neurons

    PubMed Central

    1985-01-01

    Sympathetic neurons taken from rat superior cervical ganglia and grown in culture acquire cholinergic function under certain conditions. These cholinergic sympathetic neurons, however, retain a number of adrenergic properties, including the enzymes involved in the synthesis of norepinephrine (NE) and the storage of measurable amounts of NE. These neurons also retain a high affinity uptake system for NE; despite this, the majority of the synaptic vesicles remain clear even after incubation in catecholamines. The present study shows, however, that if these neurons are depolarized before incubation in catecholamine, the synaptic vesicles acquire dense cores indicative of amine storage. These manipulations are successful when cholinergic function is induced with either a medium that contains human placental serum and embryo extract or with heart-conditioned medium, and when the catecholamine is either NE or 5-hydroxydopamine. In some experiments, neurons are grown at low densities and shown to have cholinergic function by electrophysiological criteria. After incubation in NE, only 6% of the synaptic vesicles have dense cores. In contrast, similar neurons depolarized (80 mM K+) before incubation in catecholamine contain 82% dense-cored vesicles. These results are confirmed in network cultures where the percentage of dense-cored vesicles is increased 2.5 to 6.5 times by depolarizing the neurons before incubation with catecholamine. In both single neurons and in network cultures, the vesicle reloading is inhibited by reducing vesicle release during depolarization with an increased Mg++/Ca++ ratio or by blocking NE uptake either at the plasma membrane (desipramine) or at the vesicle membrane (reserpine). In addition, choline appears to play a competitive role because its presence during incubation in NE or after reloading results in decreased numbers of dense-cored vesicles. We conclude that the depolarization step preceding catecholamine incubation acts to empty the vesicles of acetylcholine, thus allowing them to reload with catecholamine. These data also suggest that the same vesicles may contain both neurotransmitters simultaneously. PMID:4008529

  15. Satellite relay telemetry in the surveillance of active volcanoes and major fault zones

    NASA Technical Reports Server (NTRS)

    Eaton, J. P.; Ward, P. L.

    1972-01-01

    A review was made of efforts to develop a dense telemetered microearthquake network to study earthquake mechanics along the San Andreas fault and the strain mechanics of the Kilauea Volcano. The principle elements and objectives of the ERTS-A proposal are outlined. Some of the aspects of the earthquake network and the results obtained from it as well as some promising experiments in computerized record processing are discussed.

  16. A Dynamic Optimization Technique for Siting the NASA-Clark Atlanta Urban Rain Gauge Network (NCURN)

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Taylor, Layi

    2003-01-01

    NASA satellites and ground instruments have indicated that cities like Atlanta, Georgia may create or alter rainfall. Scientists speculate that the urban heat island caused by man-made surfaces in cities impact the heat and wind patterns that form clouds and rainfall. However, more conclusive evidence is required to substantiate findings from satellites. NASA, along with scientists at Clark Atlanta University, are implementing a dense, urban rain gauge network in the metropolitan Atlanta area to support a satellite validation program called Studies of PRecipitation Anomalies from Widespread Urban Landuse (SPRAWL). SPRAWL will be conducted during the summer of 2003 to further identify and understand the impact of urban Atlanta on precipitation variability. The paper provides an. overview of SPRAWL, which represents one of the more comprehensive efforts in recent years to focus exclusively on urban-impacted rainfall. The paper also introduces a novel technique for deploying rain gauges for SPRAWL. The deployment of the dense Atlanta network is unique because it utilizes Geographic Information Systems (GIS) and Decision Support Systems (DSS) to optimize deployment of the rain gauges. These computer aided systems consider access to roads, drainage systems, tree cover, and other factors in guiding the deployment of the gauge network. GIS and DSS also provide decision-makers with additional resources and flexibility to make informed decisions while considering numerous factors. Also, the new Atlanta network and SPRAWL provide a unique opportunity to merge the high-resolution, urban rain gauge network with satellite-derived rainfall products to understand how cities are changing rainfall patterns, and possibly climate.

  17. Imaging the atmosphere using volcanic infrasound recorded on a dense local sensor network

    NASA Astrophysics Data System (ADS)

    Marcillo, O. E.; Johnson, J. B.; Johnson, R.

    2010-12-01

    We deployed a 47-node infrasound sensor network around Kilauea’s Halemaumau Vent to image the atmospheric conditions of the near-surface. This active vent is a persistent radiator of energetic infrasound enabling us to probe atmospheric winds and temperatures. This research builds upon a previous experiment that recorded infrasound on a three-node network, to determine relative phase delay and invert for atmospheric wind. The technique developed for this previous analysis assumed the intrinsic sound speed and was able to track the evolution of the average wind field in a large area (around 10 km2) and was largely insensitive to local meteorological effects, caused by topography and vegetation. The results of this previous experiment showed the potential of this technique for atmospheric studies and called for a following experiment with a denser sensor network over a larger area. During the summer 2010, we returned to Kilauea and deployed a 47-sensor network in three different configurations around Kilauea summit and down the volcano’s flanks. Persistent infrasonic tremor was ‘loud’ with excess pressures up to 10 Pa (when scaled to 1 km) and periods of high acoustic emissions that lasted from hours to days. The instrumentation for this experiment was composed of single-channel RefTek RT125A Texan digitizers and InfraNMT infrasound sensors. The Texan digitizers provide high-resolution 24-bit analog to digital conversion and can operate continuously for approximately five days with two D-cell batteries. The InfraNMT sensor is based on a piezo-electric transducer and was developed at the Infrasound Laboratory at New Mexico Tech. This sensor features low power (< 3 mA at 9 V) and flat response between 0.02 to 50 Hz. Three different network topologies were tested during this two-week experiment. For the first and second topologies, the sensors were deployed along established roads on two almost perpendicular sensor lines centered at the Halema’uma’u crater. The furthest sensors were located at ~24 km and ~10 km from the vent respectively. Numerical analysis indicates that these two configurations will be able to probe the atmospheric conditions up to 2 km above the ground. The third topology featured most of the sensors on the summit crater at similar radial distances (2-4 km) and different azimuths. The data collected with the third topology is expected to provide detailed information of the very-local infrasonic field. Each configuration was on the ground and operational for around 84 hours. This full dataset will provide an opportunity to investigate source phenomenology and/or propagation effects of the infrasonic field. Tomographic studies of the atmosphere are expected to provide meteorological data that will be of value for ash and gas propagation models.

  18. Monitoring Bloom Dynamics of a Common Coastal Bioluminescent Ctenophore

    DTIC Science & Technology

    2010-09-30

    photodiodes. IMPACT/APPLICATIONS More frequent and more rapidly developing jellyfish blooms, especially Mnemiopsis leidyi as well as Harmful Algal...To meet the need for a bioluminescent jellyfish monitoring and forecasting system, predictive models will depend upon dense networks of sensor

  19. Extrapolating regional probability of drying of headwater streams using discrete observations and gauging networks

    NASA Astrophysics Data System (ADS)

    Beaufort, Aurélien; Lamouroux, Nicolas; Pella, Hervé; Datry, Thibault; Sauquet, Eric

    2018-05-01

    Headwater streams represent a substantial proportion of river systems and many of them have intermittent flows due to their upstream position in the network. These intermittent rivers and ephemeral streams have recently seen a marked increase in interest, especially to assess the impact of drying on aquatic ecosystems. The objective of this paper is to quantify how discrete (in space and time) field observations of flow intermittence help to extrapolate over time the daily probability of drying (defined at the regional scale). Two empirical models based on linear or logistic regressions have been developed to predict the daily probability of intermittence at the regional scale across France. Explanatory variables were derived from available daily discharge and groundwater-level data of a dense gauging/piezometer network, and models were calibrated using discrete series of field observations of flow intermittence. The robustness of the models was tested using an independent, dense regional dataset of intermittence observations and observations of the year 2017 excluded from the calibration. The resulting models were used to extrapolate the daily regional probability of drying in France: (i) over the period 2011-2017 to identify the regions most affected by flow intermittence; (ii) over the period 1989-2017, using a reduced input dataset, to analyse temporal variability of flow intermittence at the national level. The two empirical regression models performed equally well between 2011 and 2017. The accuracy of predictions depended on the number of continuous gauging/piezometer stations and intermittence observations available to calibrate the regressions. Regions with the highest performance were located in sedimentary plains, where the monitoring network was dense and where the regional probability of drying was the highest. Conversely, the worst performances were obtained in mountainous regions. Finally, temporal projections (1989-2016) suggested the highest probabilities of intermittence (> 35 %) in 1989-1991, 2003 and 2005. A high density of intermittence observations improved the information provided by gauging stations and piezometers to extrapolate the temporal variability of intermittent rivers and ephemeral streams.

  20. A biological approach to assembling tissue modules through endothelial capillary network formation.

    PubMed

    Riesberg, Jeremiah J; Shen, Wei

    2015-09-01

    To create functional tissues having complex structures, bottom-up approaches to assembling small tissue modules into larger constructs have been emerging. Most of these approaches are based on chemical reactions or physical interactions at the interface between tissue modules. Here we report a biological assembly approach to integrate small tissue modules through endothelial capillary network formation. When adjacent tissue modules contain appropriate extracellular matrix materials and cell types that support robust endothelial capillary network formation, capillary tubules form and grow across the interface, resulting in assembly of the modules into a single, larger construct. It was shown that capillary networks formed in modules of dense fibrin gels seeded with human umbilical vein endothelial cells (HUVECs) and mesenchymal stem cells (MSCs); adjacent modules were firmly assembled into an integrated construct having a strain to failure of 117 ± 26%, a tensile strength of 2208 ± 83 Pa and a Young's modulus of 2548 ± 574 Pa. Under the same culture conditions, capillary networks were absent in modules of dense fibrin gels seeded with either HUVECs or MSCs alone; adjacent modules disconnected even when handled gently. This biological assembly approach eliminates the need for chemical reactions or physical interactions and their associated limitations. In addition, the integrated constructs are prevascularized, and therefore this bottom-up assembly approach may also help address the issue of vascularization, another key challenge in tissue engineering. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Thunderstorm monitoring with VLF network and super dense meteorological observation system

    NASA Astrophysics Data System (ADS)

    Takahashi, Yukihiro; Sato, Mitsuteru

    2015-04-01

    It's not easy to understand the inside structure and developing process of thunderstorm only with existing meteorological instruments since its horizontal extent of the storm cell is sometimes smaller than an order of 10 km while one of the densest ground network in Japan, AMEDAS, consists of sites located every 17 km in average and the resolution of meteorological radar is 1-2 km in general. Even the X-band radar realizes the resolution of 250 m or larger. Here we suggest a thunderstorm monitoring system consisting of the network of VLF radio wave receivers and the super dense meteorological observation system with simple and low cost plate-type sensors that can be used for measurement both of raindrop and vertical electric field change caused by cloud-to-ground lightning discharge, adding to basic equipments for meteorological measurements. The plate-type sensor consists of two aluminum plates with a diameter of 10-20 cm. We carried out an observation campaign in summer of 2013 in the foothills of Mt. Yastugatake, Yamanashi and Nagano prefectures in Japan, installing 6 plate-type sensors at a distance of about 4 km. Horizontal location, height and charge amount of each lightning discharge are estimated successfully based on the information of electric field changes at several observing sites. Moreover, it was found that the thunderstorm has a very narrow structure smaller than 300 m that cannot be measured by any other ways, counting the positive and negative pulses caused by attachment of raindrop to the sensor plate, respectively. We plan to construct a new super dense observation network in the north Kanto region, Japan, where the lightning activity is most prominent in summer Japan and surrounded by our VLF systems developed for detecting sferics from lightning discharge, distributing more than several tens of sensors at every 4 km or shorter, such as an order of 100 m at minimum. This kind of new type network will reveal the unknown fine structures of thunderstorms and open the door for constructing real time alert system of torrential rainfall and lightning stroke especially in the city area.

  2. The functional morphology of color changing in a spider: development of ommochrome pigment granules.

    PubMed

    Insausti, Teresita C; Casas, Jérôme

    2008-03-01

    Studies on the formation of ommochrome pigment granules are very few, despite their generalized occurrence as screening pigments in insect eyes. This is particularly true for ommochrome granules responsible for epidermal coloration. The aims of this study were to characterize the localization of major body pigments in a color changing mimetic spider, Misumena vatia (Thomisidae), and to describe the formation and location of ommochrome pigment granules responsible for the spider's color change from white to yellow. The unpigmented cuticula of this spider is transparent. Both the guanine localized in guanine cells in the opisthosoma and the uric acid localized in epidermis cells in the prosoma are responsible for the white coloration. The bright yellow color is due to the combination of ommochrome pigment granules and the white reflectance from coincident guanine and/or uric acid. The formation of ommochrome pigment granules in epidermis cells proceeds via three distinctive steps. Translucent, UV fluorescent, progranules (type I) are produced by a dense network of endoplasmic reticulum associated with numerous mitochondria and glycogen rosettes. These progranules are present in white spiders only, and regularly distributed in the cytoplasm. The merging of several progranules of type I into a transient state (progranule type II) leads to the formation of granules (type III) characterized by their lack of fluorescence, their spherical sections and their osmophilic-electron-dense contents. They are found in yellow spiders and in the red stripes on the body sides. Their color varies from yellow to red. Thus, white spiders contain only type I granules, yellow tinted spiders contain type II and III granules and bright yellow spiders contain only type III granules. We present a synthetic view of the ontogeny of ommochrome granules. We discuss the physiology of color changing and the nature of the chemical compounds in the different types of granules. Extended studies on the ultrastructural modification and physiological processes associated with color change are required before any statement about the adaptiveness of the color change can be made.

  3. Radial chromatin positioning is shaped by local gene density, not by gene expression

    PubMed Central

    2009-01-01

    G- and R-bands of metaphase chromosomes are characterized by profound differences in gene density, CG content, replication timing, and chromatin compaction. The preferential localization of gene-dense, transcriptionally active, and early replicating chromatin in the nuclear interior and of gene-poor, later replicating chromatin at the nuclear envelope has been demonstrated to be evolutionary-conserved in various cell types. Yet, the impact of different local chromatin features on the radial nuclear arrangement of chromatin is still not well understood. In particular, it is not known whether radial chromatin positioning is preferentially shaped by local gene density per se or by other related parameters such as replication timing or transcriptional activity. The interdependence of these distinct chromatin features on the linear deoxyribonucleic acid (DNA) sequence precludes a simple dissection of these parameters with respect to their importance for the reorganization of the linear DNA organization into the distinct radial chromatin arrangements observed in the nuclear space. To analyze this problem, we generated probe sets of pooled bacterial artificial chromosome (BAC) clones from HSA 11, 12, 18, and 19 representing R/G-band-assigned chromatin, segments with different gene density and gene loci with different expression levels. Using multicolor 3D flourescent in situ hybridization (FISH) and 3D image analysis, we determined their localization in the nucleus and their positions within or outside the corresponding chromosome territory (CT). For each BAC data on local gene density within 2- and 10-Mb windows, as well as GC (guanine and cytosine) content, replication timing and expression levels were determined. A correlation analysis of these parameters with nuclear positioning revealed regional gene density as the decisive parameter determining the radial positioning of chromatin in the nucleus in contrast to band assignment, replication timing, and transcriptional activity. We demonstrate a polarized distribution of gene-dense vs gene-poor chromatin within CTs with respect to the nuclear border. Whereas we confirm previous reports that a particular gene-dense and transcriptionally highly active region of about 2 Mb on 11p15.5 often loops out from the territory surface, gene-dense and highly expressed sequences were not generally found preferentially at the CT surface as previously suggested. PMID:17333233

  4. Non-local rheology for dense granular flows in avalanches

    NASA Astrophysics Data System (ADS)

    Izzet, Adrien; Clement, Eric; Andreotti, Bruno

    A local constitutive relation was proposed to describe dense granular flows (GDR MiDi, EPJE 2004). It provides a rather good prediction of the flowing regime but does not foresee the existence of a ``creep regime'' as observed by Komatsu et al. (PRL 2001). In the context of a 2D shear cell, a relaxation length for the velocity profile was measured (Bouzid et al., PRL 2013) which confirmed the existence of a flow below the standard Coulomb yield threshold. A correction for the local rheology was proposed. To test further this non-local constitutive relation, we built an inclined narrow channel within which we monitor the flow from the side. We managed to observe the ``creep regime'' over five orders of magnitude in velocity and fit the velocity profiles in the depth with an asymptotic solution of the non-local equation. However, the boundary condition at the free surface needs to be selected in order to calibrate the non-local rheology over the whole range of stresses in the system. In this perspective, we complement the experimental results with 2D simulations of hard and frictional discs on an inclined plane in which we introduce a surface friction force proportional to the effective pressure in the granular. We analyze these results in the light of the non-local rheology.

  5. Community structure in networks

    NASA Astrophysics Data System (ADS)

    Newman, Mark

    2004-03-01

    Many networked systems, including physical, biological, social, and technological networks, appear to contain ``communities'' -- groups of nodes within which connections are dense, but between which they are sparser. The ability to find such communities in an automated fashion could be of considerable use. Communities in a web graph for instance might correspond to sets of web sites dealing with related topics, while communities in a biochemical network or an electronic circuit might correspond to functional units of some kind. We present a number of new methods for community discovery, including methods based on ``betweenness'' measures and methods based on modularity optimization. We also give examples of applications of these methods to both computer-generated and real-world network data, and show how our techniques can be used to shed light on the sometimes dauntingly complex structure of networked systems.

  6. A statistical intercomparison between "urban" and "rural" precipitation chemistry data from greater Manchester and two nearby secondary national network sites in the United Kingdom

    NASA Astrophysics Data System (ADS)

    Lee, David S.; Longhurst, James W. S.

    Precipitation chemistry data from a dense urban monitoring network in Greater Manchester, northwest England, were compared with interpolated values from the U.K. secondary national acid deposition monitoring network for the year 1988. Differences were found to be small. However, when data from individual sites from the Greater Manchester network were compared with data from the two nearest secondary national network sites, significant differences were found using simple and complex statistical analyses. Precipitation chemistry at rural sites could be similar to that at urban sites, but the sources of some ions were thought to be different. The synoptic-scale gradients of precipitation chemistry, as shown by the secondary national network, also accounted for some of the differences.

  7. Structure of the Social Support Network of Patients with Severe and Persistent Psychiatric Disorders in Follow-Ups to Primary Health Care.

    PubMed

    de Souza, Jacqueline; de Almeida, Letícia Yamawaka; Moll, Marciana Fernandes; Silva, Lucas Duarte; Ventura, Carla Aparecida Arena

    2016-02-01

    The objective of this study is to analyze the characteristics of social support networks of patients with psychiatric disorders at follow-up to primary care. This is a cross-sectional qualitative research study. Forty-five interviews were held with patients and their supporters. The results showed small and dense networks, with a strong emphasis on the bonds with formal supporters and a scant network of informal supporters. It is recommended to develop strategies to improve social support networks and use this as an outcome indicator related to social integration of these patients and to the quality of services involved with outpatient healthcare. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Discovering Network Structure Beyond Communities

    NASA Astrophysics Data System (ADS)

    Nishikawa, Takashi; Motter, Adilson E.

    2011-11-01

    To understand the formation, evolution, and function of complex systems, it is crucial to understand the internal organization of their interaction networks. Partly due to the impossibility of visualizing large complex networks, resolving network structure remains a challenging problem. Here we overcome this difficulty by combining the visual pattern recognition ability of humans with the high processing speed of computers to develop an exploratory method for discovering groups of nodes characterized by common network properties, including but not limited to communities of densely connected nodes. Without any prior information about the nature of the groups, the method simultaneously identifies the number of groups, the group assignment, and the properties that define these groups. The results of applying our method to real networks suggest the possibility that most group structures lurk undiscovered in the fast-growing inventory of social, biological, and technological networks of scientific interest.

  9. An empirical evaluation of lightweight random walk based routing protocol in duty cycle aware wireless sensor networks.

    PubMed

    Mian, Adnan Noor; Fatima, Mehwish; Khan, Raees; Prakash, Ravi

    2014-01-01

    Energy efficiency is an important design paradigm in Wireless Sensor Networks (WSNs) and its consumption in dynamic environment is even more critical. Duty cycling of sensor nodes is used to address the energy consumption problem. However, along with advantages, duty cycle aware networks introduce some complexities like synchronization and latency. Due to their inherent characteristics, many traditional routing protocols show low performance in densely deployed WSNs with duty cycle awareness, when sensor nodes are supposed to have high mobility. In this paper we first present a three messages exchange Lightweight Random Walk Routing (LRWR) protocol and then evaluate its performance in WSNs for routing low data rate packets. Through NS-2 based simulations, we examine the LRWR protocol by comparing it with DYMO, a widely used WSN protocol, in both static and dynamic environments with varying duty cycles, assuming the standard IEEE 802.15.4 in lower layers. Results for the three metrics, that is, reliability, end-to-end delay, and energy consumption, show that LRWR protocol outperforms DYMO in scalability, mobility, and robustness, showing this protocol as a suitable choice in low duty cycle and dense WSNs.

  10. Local foods can meet micronutrient needs for women in urban Burkina Faso, but only if rarely consumed micronutrient-dense foods are included in daily diets: A linear programming exercise.

    PubMed

    Arimond, Mary; Vitta, Bineti S; Martin-Prével, Yves; Moursi, Mourad; Dewey, Kathryn G

    2018-01-01

    Women of reproductive age are at nutritional risk due to their need for nutrient-dense diets. Risk is further elevated in resource-poor environments. In one such environment, we evaluated feasibility of meeting micronutrient needs of women of reproductive age using local foods alone or using local foods and supplements, while minimizing cost. Based on dietary recall data from Ouagadougou, we used linear programming to identify the lowest cost options for meeting 10 micronutrient intake recommendations, while also meeting energy needs and following an acceptable macronutrient intake pattern. We modeled scenarios with maximum intake per food item constrained at the 75th percentile of reported intake and also with more liberal maxima based on recommended portions per day, with and without the addition of supplements. Some scenarios allowed only commonly consumed foods (reported on at least 10% of recall days). We modeled separately for pregnant, lactating, and nonpregnant, nonlactating women. With maxima constrained to the 75th percentile, all micronutrient needs could be met with local foods but only when several nutrient-dense but rarely consumed items were included in daily diets. When only commonly consumed foods were allowed, micronutrient needs could not be met without supplements. When larger amounts of common animal-source foods were allowed, all needs could be met for nonpregnant, nonlactating women but not for pregnant or lactating women, without supplements. We conclude that locally available foods could meet micronutrient needs but that to achieve this, strategies would be needed to increase consistent availability in markets, consistent economic access, and demand. © 2017 John Wiley & Sons Ltd.

  11. Earthquake Monitoring: SeisComp3 at the Swiss National Seismic Network

    NASA Astrophysics Data System (ADS)

    Clinton, J. F.; Diehl, T.; Cauzzi, C.; Kaestli, P.

    2011-12-01

    The Swiss Seismological Service (SED) has an ongoing responsibility to improve the seismicity monitoring capability for Switzerland. This is a crucial issue for a country with low background seismicity but where a large M6+ earthquake is expected in the next decades. With over 30 stations with spacing of ~25km, the SED operates one of the densest broadband networks in the world, which is complimented by ~ 50 realtime strong motion stations. The strong motion network is expected to grow with an additional ~80 stations over the next few years. Furthermore, the backbone of the network is complemented by broadband data from surrounding countries and temporary sub-networks for local monitoring of microseismicity (e.g. at geothermal sites). The variety of seismic monitoring responsibilities as well as the anticipated densifications of our network demands highly flexible processing software. We are transitioning all software to the SeisComP3 (SC3) framework. SC3 is a fully featured automated real-time earthquake monitoring software developed by GeoForschungZentrum Potsdam in collaboration with commercial partner, gempa GmbH. It is in its core open source, and becoming a community standard software for earthquake detection and waveform processing for regional and global networks across the globe. SC3 was originally developed for regional and global rapid monitoring of potentially tsunamagenic earthquakes. In order to fulfill the requirements of a local network recording moderate seismicity, SED has tuned configurations and added several modules. In this contribution, we present our SC3 implementation strategy, focusing on the detection and identification of seismicity on different scales. We operate several parallel processing "pipelines" to detect and locate local, regional and global seismicity. Additional pipelines with lower detection thresholds can be defined to monitor seismicity within dense subnets of the network. To be consistent with existing processing procedures, the nonlinloc algorithm was implemented for manual and automatic locations using 1D and 3D velocity models; plugins for improved automatic phase picking and Ml computation were developed; and the graphical user interface for manual review was extended (including pick uncertainty definition; first motion focal mechanisms; interactive review of station magnitude waveforms; full inclusion of strong motion data). SC3 locations are fully compatible with those derived from the existing in-house processing tools and are stored in a database derived from the QuakeML data model. The database is shared with the SED alerting software, which merges origins from both SC3 and external sources in realtime and handles the alerting procedure. With the monitoring software being transitioned to SeisComp3, acquisition, archival and dissemination of SED waveform data now conforms to the seedlink and ArcLink protocols and continuous archives can be accessed via SED and all EIDA (European Integrated Data Archives) web-sites. Further, a SC3 module for waveform parameterisation has been developed, allowing rapid computation of peak values of ground motion and other engineering parameters within minutes of a new event. An output of this module is USGS ShakeMap XML. n minutes of a new event. An output of this module is USGS ShakeMap XML.

  12. A cloud collision model for water maser excitation.

    PubMed

    Tarter, J C; Welch, W J

    1986-06-01

    High-velocity collisions between small, dense, neutral clouds or between a dense cloud and a dense shell can provide the energy source required to excite H2O maser emission. The radiative precursor from the surface of the collisional shock front rapidly diffuses through the cloud, heating the dust grains but leaving the H2 molecules cool. Transient maser emission occurs as the conditions for the Goldreich and Kwan "hot-dust cold-gas" maser pump scheme are realized locally within the cloud. In time the local maser action quenches due to the heating of the H2 molecules by collisions against the grains. Although this model cannot explain the very long-lived steady maser features, it is quite successful in explaining a number of the observed properties of the high-velocity features in such sources as Orion, W51, and W49. In particular, it provides a natural explanation for the rapid time variations, the narrow line widths, juxtaposition of high- and low-velocity features, and the short lifetimes which are frequently observed for the so-called high-velocity maser "bullets" thought to be accelerated by strong stellar winds.

  13. Neuroendocrine cells in the gills of the bowfin Amia calva. An ultrastructural and immunocytochemical study.

    PubMed

    Goniakowska-Witalińska, L; Zaccone, G; Fasulo, S; Mauceri, A; Licata, A; Youson, J

    1995-01-01

    Neuroendocrine (NE) cells were localized by electron microscopy and immunocytochemistry in the gill epithelium of bowfin Amia calva. The NE cells are dispersed in whole epithelium of the gill as solitary cells without intraepithelial innervation. All the observed NE cells do not reach the surface of the epithelium. The NE cells are characterized by a large nucleus with patches of condensed chromatin, numerous mitochondria, a well developed Golgi apparatus and a few dense core vesicles of various size scattered in the cytoplasm. Dense core vesicles range from 100 to 560 nm in diameter, while a clear space between the electron dense core ant the limiting membrane ranges from 20 to 240 nm. Immunocytochemical observations reveal the presence of general neuroendocrine markers such as neuro-specific enolase and bioactive substances: serotonin, leu-enkephalin and met-enkephalin. we demonstrated the presence of endothelin - for the first time in fish - and suggested a local paracrine role for the NE cells. Some ultrastructural aspects and the immunocytochemical characteristics of NE cells of bowfin gills are common with those encountered in such cells of other lower vertebrate species.

  14. Development and utilization of new diagnostics for dense-phase pneumatic transport. Quarterly technical progress report, October 1-December 31, 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louge, M. Y.; Jenkins, J. T.

    The main objective of this work is to develop probes for local measurements of solid velocity and holdup in dense gas-solid flows. In particular, capacitance probes are designed to measure local, time-dependent particle concentrations. In addition, a new optical fiber probe based on laser-induced-phosphorescence is developed to measure particle velocities. The principles for the capacitance and optical diagnostics were given in our first and second quarterly reports. In this reporting period, we have demonstrated with success the feasibility of the optical fiber probe. Another objective of this work is to develop a model of dense-phase conveying and to test thismore » model in a setup that incorporates our diagnostics. In this period, as a prelude to these modeling efforts scheduled for the third year of the contract, we have carried out additional computer simulations of rapid granular flows to verify the theories of Jenkins and Richman (1988) on the anisotropy of the second moment in simple shear. 2 refs., 5 figs.« less

  15. Development and utilization of new diagnostics for dense-phase pneumatic transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louge, M.Y.; Jenkins, J.T.

    Dense-phase pneumatic transport is an attractive means of conveying solids. Unfortunately, because of the high solid concentrations, this transport method is a difficult regime in which to carry out detailed measurements. Hence most details of the flow are unknown. In this context, the main objective of this work is to develop probes for local measurements of solid velocity and holdup in dense gas-solid flows. In particular, the authors have designed capacitance probes to measure local, time-dependent particle concentrations, and a new optical fiber probe based on laser-induced-phosphorescence to measure particle velocities. The principles for the capacitance and optical diagnostics weremore » given in the first and second quarterly reports. A final version of the optical fiber probe was designed in the previous reporting period. Because granular flows depends strongly on the nature of their interaction with a boundary, the authors have sought in the present reporting period to verify the boundary conditions recently calculated by Jenkins (J. Appl. Mech., in press (1991)) using computer simulations. 2 refs., 2 figs.« less

  16. Ultra-Dense Optical Mass Storage

    DTIC Science & Technology

    1991-02-11

    Technologies develops equipment for telephone company central offices which allows users within a local area to have personal mailboxes for voicemail and FAX...externally applied stress field can alter the energy level of a molecule by slightly dis- torting the local environment surrounding the photochemical...permit us to raise the temperature even further during part of the channel creation process. It is probably reasonable to assume that local heating

  17. Optimal Base Station Density of Dense Network: From the Viewpoint of Interference and Load.

    PubMed

    Feng, Jianyuan; Feng, Zhiyong

    2017-09-11

    Network densification is attracting increasing attention recently due to its ability to improve network capacity by spatial reuse and relieve congestion by offloading. However, excessive densification and aggressive offloading can also cause the degradation of network performance due to problems of interference and load. In this paper, with consideration of load issues, we study the optimal base station density that maximizes the throughput of the network. The expected link rate and the utilization ratio of the contention-based channel are derived as the functions of base station density using the Poisson Point Process (PPP) and Markov Chain. They reveal the rules of deployment. Based on these results, we obtain the throughput of the network and indicate the optimal deployment density under different network conditions. Extensive simulations are conducted to validate our analysis and show the substantial performance gain obtained by the proposed deployment scheme. These results can provide guidance for the network densification.

  18. A user exposure based approach for non-structural road network vulnerability analysis

    PubMed Central

    Jin, Lei; Wang, Haizhong; Yu, Le; Liu, Lin

    2017-01-01

    Aiming at the dense urban road network vulnerability without structural negative consequences, this paper proposes a novel non-structural road network vulnerability analysis framework. Three aspects of the framework are mainly described: (i) the rationality of non-structural road network vulnerability, (ii) the metrics for negative consequences accounting for variant road conditions, and (iii) the introduction of a new vulnerability index based on user exposure. Based on the proposed methodology, a case study in the Sioux Falls network which was usually threatened by regular heavy snow during wintertime is detailedly discussed. The vulnerability ranking of links of Sioux Falls network with respect to heavy snow scenario is identified. As a result of non-structural consequences accompanied by conceivable degeneration of network, there are significant increases in generalized travel time costs which are measurements for “emotionally hurt” of topological road network. PMID:29176832

  19. Cardiac myocyte diversity and a fibroblast network in the junctional region of the zebrafish heart revealed by transmission and serial block-face scanning electron microscopy.

    PubMed

    Lafontant, Pascal J; Behzad, Ali R; Brown, Evelyn; Landry, Paul; Hu, Norman; Burns, Alan R

    2013-01-01

    The zebrafish has emerged as an important model of heart development and regeneration. While the structural characteristics of the developing and adult zebrafish ventricle have been previously studied, little attention has been paid to the nature of the interface between the compact and spongy myocardium. Here we describe how these two distinct layers are structurally and functionally integrated. We demonstrate by transmission electron microscopy that this interface is complex and composed primarily of a junctional region occupied by collagen, as well as a population of fibroblasts that form a highly complex network. We also describe a continuum of uniquely flattened transitional cardiac myocytes that form a circumferential plate upon which the radially-oriented luminal trabeculae are anchored. In addition, we have uncovered within the transitional ring a subpopulation of markedly electron dense cardiac myocytes. At discrete intervals the transitional cardiac myocytes form contact bridges across the junctional space that are stabilized through localized desmosomes and fascia adherentes junctions with adjacent compact cardiac myocytes. Finally using serial block-face scanning electron microscopy, segmentation and volume reconstruction, we confirm the three-dimensional nature of the junctional region as well as the presence of the sheet-like fibroblast network. These ultrastructural studies demonstrate the previously unrecognized complexity with which the compact and spongy layers are structurally integrated, and provide a new basis for understanding development and regeneration in the zebrafish heart.

  20. Nowcast of thunderstorm and typhoon activity based on lightning detection and flexible operation of micro-satellites

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.

    2016-12-01

    It has become known that lightning activity represents the thunderstorm activity, namely, the intensity and area of precipitation and/or updraft. Thunderstorm is also important as a proxy of the energy input from ocean to atmosphere in typhoon, meaning that if we could monitor the thunderstorm with lightning we could predict the maximum wind velocity near the typhoon center by one or two days before. Constructing ELF and VLF radio wave observation network in Southeast Asia (AVON) and a regional dense network of automated weather station in a big city, we plan to establish the monitoring system for thunderstorm development in western pacific warm pool (WPWP) where typhoon is formed and in detail in big city area. On the other hand, some developing countries in SE-Asia are going to own micro-satellites dedicated to meteorological remote sensing. Making use of the lightning activity data measured by the ground-based networks, and information on 3-D structures of thunderclouds observed by the flexible on-demand operation of the remote-sensing micro-satellites, we would establish a new methodology to obtain very detail semi-real time information that cannot be achieved only with existing observation facilities, such as meteorological radar or large meteorological satellite. Using this new system we try to issue nowcast for the local thunderstorm and for typhoons. The first attempt will be carried out in Metro Manila in Philippines and WPWP as one of the SATREPS projects.

  1. Fault structure in the Nepal Himalaya as illuminated by aftershocks of the 2015 Mw 7.8 Gorkha earthquake recorded by the local NAMASTE network

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; Mendoza, M.; LI, B.; Karplus, M. S.; Nabelek, J.; Sapkota, S. N.; Adhikari, L. B.; Klemperer, S. L.; Velasco, A. A.

    2017-12-01

    Geometry of the Main Himalayan Thrust (MHT), that accommodates majority of the plate motion between Indian and Eurasian plate, is being debated for a long time. Different models have been proposed; some of them are significantly different from others. Obtaining a well constrained geometry of the MHT is challenging mainly because of the lack of high quality data, inherent low resolution and non-uniqueness of the models. We used a dense local seismic network - NAMASTE - to record and analyze a prolific aftershock sequence following the 2015 Mw 7.8 Gorkha earthquake, and determine geometry of the MHT constrained by precisely located well-constrained aftershocks. We detected and located more than 15,000 aftershocks of the Gorkha earthquake using Hypoinverse and then relatively relocated using HypoDD algorithm. We selected about 7,000 earthquakes that are particularly well constrained to analyze the geometry of the megathrust. They illuminate fault structure in this part of the Himalaya with unprecedented detail. The MHT shows two subhorizontal planes connected by a duplex structure. The duplex structure is characterized by multiple steeply dipping planes. In addition, we used four large-aperture continental-scale seismic arrays at teleseismic distances to backproject high-frequency seismic radiation. Moreover, we combined all arrays to significantly increase the resolution and detectability. We imaged rupture propagation of the mainshock showing complexity near the end of the rupture that might help arresting of the rupture to the east. Furthermore, we continuously scanned teleseismic data for two weeks starting from immediately after the mainshock to detect and locate aftershock activity only using the arrays. Spatial pattern of the aftershocks was similar to the existing global catalog using conventional seismic network and technique. However, we detected more than twice as many aftershocks using the array technique compared to the global catalog including many aftershocks that were undetected by the global network. This method might provide new tool to rapidly detect aftershock activity immediately after a large damaging earthquake to guide fast and more effective disaster response.

  2. Anthropogenic changes to the tidal channel network, sediment rerouting, and social implications in southwest Bangladesh

    NASA Astrophysics Data System (ADS)

    Wilson, C.; Goodbred, S. L., Jr.; Sams, S.; Small, C.

    2015-12-01

    The tidal channel network in southwest Bangladesh has been undergoing major adjustment in response to anthropogenic modification over the past few decades. Densely inhabited, agricultural islands that have been embanked to protect against inundation by tides, river flooding, and storm surges (i.e., polders) preclude tidal exchange and sedimentation. Studies reveal this results in elevation deficits relative to mean high water, endangering local communities when embankment failures occur (e.g., during storms, lateral channel erosion). In addition, many studies suggest that the decrease in tidal prism and associated change in hydrodynamics from poldering causes shoaling in remaining tidal channels, which can cause a disruption in transportation. The widespread closure and conversion of tidal channel areas to profitable shrimp aquaculture is also prevalent in this region. In this study, we quantify the direct closure of tidal channels due to poldering and shrimp aquaculture using historical Landsat and Google Earth imagery, and analyze the morphologic adjustment of the tidal channel network due to these perturbations. In the natural Sundarbans mangrove forest, the tidal channel network has remained relatively constant since the 1970s. In contrast, construction of polders removed >1000 km of primary tidal creeks and >90 km2 has been reclaimed outside of polders through infilling and closure of formerly-active, higher order conduit channels now used for shrimp aquaculture. Field validation confirm tidal restriction by large sluice gates is prevalent, favoring local channel siltation at rates up to 20cm/yr. With the impoundment of primary creeks and closure of 30-60% of conduit channels in the study area, an estimated 1,400 x 106 m3 of water has been removed from the tidal prism and potentially redirected within remaining channels. This has significant implications for tidal amplification in this region. Further, we estimate that 12.3 x 106 MT of sediment annually infills remaining channels, which amounts to ~12% of the total annual sediment load supplied to the tidal deltaplain. This suggests that significant sediment is available in the system for elevation remediation of polders, however the hydrodynamic feasibility of reopening clogged channels and effective sediment dispersal is questionable

  3. Computation and Learning in Neural Networks With Binary Weights

    DTIC Science & Technology

    1992-11-28

    alternatively, the total number of component updates before convergence is 0(n 3 ). We follow this with an average case analysis, similar in flavour to...anecdotal evidence in support of it in ’Well, maybe an imp. I I situations where the network has a more "distributed" flavour with relatively dense...Within the hipocampus, there is a three stage sequence of processing consisting of granule cells (which 3 receive from the entorhinal cortex), the CA3

  4. Local network assessment

    NASA Astrophysics Data System (ADS)

    Glen, D. V.

    1985-04-01

    Local networks, related standards activities of the Institute of Electrical and Electronics Engineers the American National Standards Institute and other elements are presented. These elements include: (1) technology choices such as topology, transmission media, and access protocols; (2) descriptions of standards for the 802 local area networks (LAN's); high speed local networks (HSLN's) and military specification local networks; and (3) intra- and internetworking using bridges and gateways with protocols Interconnection (OSI) reference model. The convergence of LAN/PBX technology is also described.

  5. Prediction-based association control scheme in dense femtocell networks

    PubMed Central

    Pham, Ngoc-Thai; Huynh, Thong; Hwang, Won-Joo; You, Ilsun; Choo, Kim-Kwang Raymond

    2017-01-01

    The deployment of large number of femtocell base stations allows us to extend the coverage and efficiently utilize resources in a low cost manner. However, the small cell size of femtocell networks can result in frequent handovers to the mobile user, and consequently throughput degradation. Thus, in this paper, we propose predictive association control schemes to improve the system’s effective throughput. Our design focuses on reducing handover frequency without impacting on throughput. The proposed schemes determine handover decisions that contribute most to the network throughput and are proper for distributed implementations. The simulation results show significant gains compared with existing methods in terms of handover frequency and network throughput perspective. PMID:28328992

  6. Contagion on complex networks with persuasion

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Min; Zhang, Li-Jie; Xu, Xin-Jian; Fu, Xinchu

    2016-03-01

    The threshold model has been widely adopted as a classic model for studying contagion processes on social networks. We consider asymmetric individual interactions in social networks and introduce a persuasion mechanism into the threshold model. Specifically, we study a combination of adoption and persuasion in cascading processes on complex networks. It is found that with the introduction of the persuasion mechanism, the system may become more vulnerable to global cascades, and the effects of persuasion tend to be more significant in heterogeneous networks than those in homogeneous networks: a comparison between heterogeneous and homogeneous networks shows that under weak persuasion, heterogeneous networks tend to be more robust against random shocks than homogeneous networks; whereas under strong persuasion, homogeneous networks are more stable. Finally, we study the effects of adoption and persuasion threshold heterogeneity on systemic stability. Though both heterogeneities give rise to global cascades, the adoption heterogeneity has an overwhelmingly stronger impact than the persuasion heterogeneity when the network connectivity is sufficiently dense.

  7. Contagion on complex networks with persuasion

    PubMed Central

    Huang, Wei-Min; Zhang, Li-Jie; Xu, Xin-Jian; Fu, Xinchu

    2016-01-01

    The threshold model has been widely adopted as a classic model for studying contagion processes on social networks. We consider asymmetric individual interactions in social networks and introduce a persuasion mechanism into the threshold model. Specifically, we study a combination of adoption and persuasion in cascading processes on complex networks. It is found that with the introduction of the persuasion mechanism, the system may become more vulnerable to global cascades, and the effects of persuasion tend to be more significant in heterogeneous networks than those in homogeneous networks: a comparison between heterogeneous and homogeneous networks shows that under weak persuasion, heterogeneous networks tend to be more robust against random shocks than homogeneous networks; whereas under strong persuasion, homogeneous networks are more stable. Finally, we study the effects of adoption and persuasion threshold heterogeneity on systemic stability. Though both heterogeneities give rise to global cascades, the adoption heterogeneity has an overwhelmingly stronger impact than the persuasion heterogeneity when the network connectivity is sufficiently dense. PMID:27029498

  8. Contagion on complex networks with persuasion.

    PubMed

    Huang, Wei-Min; Zhang, Li-Jie; Xu, Xin-Jian; Fu, Xinchu

    2016-03-31

    The threshold model has been widely adopted as a classic model for studying contagion processes on social networks. We consider asymmetric individual interactions in social networks and introduce a persuasion mechanism into the threshold model. Specifically, we study a combination of adoption and persuasion in cascading processes on complex networks. It is found that with the introduction of the persuasion mechanism, the system may become more vulnerable to global cascades, and the effects of persuasion tend to be more significant in heterogeneous networks than those in homogeneous networks: a comparison between heterogeneous and homogeneous networks shows that under weak persuasion, heterogeneous networks tend to be more robust against random shocks than homogeneous networks; whereas under strong persuasion, homogeneous networks are more stable. Finally, we study the effects of adoption and persuasion threshold heterogeneity on systemic stability. Though both heterogeneities give rise to global cascades, the adoption heterogeneity has an overwhelmingly stronger impact than the persuasion heterogeneity when the network connectivity is sufficiently dense.

  9. Exploration of the integration of care for persons with a traumatic brain injury using social network analysis methodology

    PubMed Central

    Lamontagne, Marie-Eve

    2013-01-01

    Introduction Integration is a popular strategy to increase the quality of care within systems of care. However, there is no common language, approach or tool allowing for a valid description, comparison and evaluation of integrated care. Social network analysis could be a viable methodology to provide an objective picture of integrated networks. Goal of the article To illustrate social network analysis use in the context of systems of care for traumatic brain injury. Method We surveyed members of a network using a validated questionnaire to determine the links between them. We determined the density, centrality, multiplexity, and quality of the links reported. Results The network was described as moderately dense (0.6), the most prevalent link was knowledge, and four organisation members of a consortium were central to the network. Social network analysis allowed us to create a graphic representation of the network. Conclusion Social network analysis is a useful methodology to objectively characterise integrated networks. PMID:24250281

  10. Global Network Connectivity Assessment via Local Data Exchange for Underwater Acoustic Sensor Networks

    DTIC Science & Technology

    2014-03-31

    Network Connectivity Assessment via Local Data Exchange for Underwater Acoustic Sensor Networks M.M. Asadi H. Mahboubi A...2014 Global Network Connectivity Assessment via Local Data Exchange for Underwater Acoustic Sensor Networks Contract Report # AMBUSH.1.1 Contract...pi j /= 0. The sensor network considered in this work is composed of underwater sensors , which use acoustic waves for

  11. A novel deep learning-based approach to high accuracy breast density estimation in digital mammography

    NASA Astrophysics Data System (ADS)

    Ahn, Chul Kyun; Heo, Changyong; Jin, Heongmin; Kim, Jong Hyo

    2017-03-01

    Mammographic breast density is a well-established marker for breast cancer risk. However, accurate measurement of dense tissue is a difficult task due to faint contrast and significant variations in background fatty tissue. This study presents a novel method for automated mammographic density estimation based on Convolutional Neural Network (CNN). A total of 397 full-field digital mammograms were selected from Seoul National University Hospital. Among them, 297 mammograms were randomly selected as a training set and the rest 100 mammograms were used for a test set. We designed a CNN architecture suitable to learn the imaging characteristic from a multitudes of sub-images and classify them into dense and fatty tissues. To train the CNN, not only local statistics but also global statistics extracted from an image set were used. The image set was composed of original mammogram and eigen-image which was able to capture the X-ray characteristics in despite of the fact that CNN is well known to effectively extract features on original image. The 100 test images which was not used in training the CNN was used to validate the performance. The correlation coefficient between the breast estimates by the CNN and those by the expert's manual measurement was 0.96. Our study demonstrated the feasibility of incorporating the deep learning technology into radiology practice, especially for breast density estimation. The proposed method has a potential to be used as an automated and quantitative assessment tool for mammographic breast density in routine practice.

  12. Mechanical properties of highly defective graphene: from brittle rupture to ductile fracture.

    PubMed

    Xu, Lanqing; Wei, Ning; Zheng, Yongping

    2013-12-20

    Defects are generally believed to deteriorate the superlative performance of graphene-based devices but may also be useful when carefully engineered to tailor the local properties and achieve new functionalities. Central to most defect-associated applications is the defect coverage and arrangement. In this work, we investigate, by molecular dynamics simulations, the mechanical properties and fracture dynamics of graphene sheets with randomly distributed vacancies or Stone-Wales defects under tensile deformations over a wide defect coverage range. With defects presented, an sp-sp(2) bonding network and an sp-sp(2)-sp(3) bonding network are observed in vacancy-defected and Stone-Wales-defected graphene, respectively. The ultimate strength degrades gradually with increasing defect coverage and saturates in the high-ratio regime, whereas the fracture strain presents an unusual descending-saturating-improving trend. In the dense vacancy defect situation, the fracture becomes more plastic and super-ductility is observed. Further fracture dynamics analysis reveals that the crack trapping by sp-sp(2) and sp-sp(2)-sp(3) rings and the crack-tip blunting account for the ductile fracture, whereas geometric rearrangement on the entire sheet for vacancy defects and geometric rearrangement on the specific defect sites for Stone-Wales defects account for their distinctive rules of the evolution of the fracture strain.

  13. Sound source localization and segregation with internally coupled ears: the treefrog model

    PubMed Central

    Christensen-Dalsgaard, Jakob

    2016-01-01

    Acoustic signaling plays key roles in mediating many of the reproductive and social behaviors of anurans (frogs and toads). Moreover, acoustic signaling often occurs at night, in structurally complex habitats, such as densely vegetated ponds, and in dense breeding choruses characterized by high levels of background noise and acoustic clutter. Fundamental to anuran behavior is the ability of the auditory system to determine accurately the location from where sounds originate in space (sound source localization) and to assign specific sounds in the complex acoustic milieu of a chorus to their correct sources (sound source segregation). Here, we review anatomical, biophysical, neurophysiological, and behavioral studies aimed at identifying how the internally coupled ears of frogs contribute to sound source localization and segregation. Our review focuses on treefrogs in the genus Hyla, as they are the most thoroughly studied frogs in terms of sound source localization and segregation. They also represent promising model systems for future work aimed at understanding better how internally coupled ears contribute to sound source localization and segregation. We conclude our review by enumerating directions for future research on these animals that will require the collaborative efforts of biologists, physicists, and roboticists. PMID:27730384

  14. Conduit dynamics in transitional rhyolitic activity recorded by tuffisite vein textures from the 2008-2009 Chaitén eruption

    NASA Astrophysics Data System (ADS)

    Saubin, Elodie; Tuffen, Hugh; Gurioli, Lucia; Owen, Jacqueline; Castro, Jonathan; Berlo, Kim; McGowan, Ellen; Schipper, C. Ian; Wehbe, Katia

    2016-04-01

    Conduit processes govern the mechanisms of hazardous silicic eruptions, but our understanding of complex conduit behaviour is far from complete. Observations of recent Chilean rhyolite eruptions have revealed the importance of hybrid activity, involving simultaneous explosive and effusive emissions from a common vent[1]. Such behaviour hinges upon the ability of gas to decouple from magma in the shallow conduit. Tuffisite veins are increasingly suspected to be a key facilitator of outgassing, as they repeatedly provide a transient permeable escape route for volcanic gases. However, we have limited insights into the interactions between tuffisites and foams that appear critical to efficient outgassing[2], and into how heterogeneous conduit magma responds to pressure perturbations related to repeated disruption or slip of dense magma plugs. Here we provide a detailed characterization of an exceptionally large tuffisite vein within a rhyolitic obsidian bomb ejected during transitional explosive-effusive activity at volcán Chaitén, Chile in May 2008. Vein textures and chemistry provide a time-integrated record of the invasion of a dense upper conduit plug by deeper fragmented magma. Quantitative textural analysis reveals diverse vesiculation histories of varied juvenile clast types. Using vesicle size distributions, bubble number densities, zones of diffusive water depletion, and glass H2O concentrations, we propose a multi-step degassing/fragmentation history, spanning deep degassing to explosive bomb ejection. Rapid decompression events of ~3-4 MPa are associated with fragmentation of foam and dense magma at ~200-300 metres depth in the conduit, permitting vertical gas and pyroclast mobility over >100-200 metres. Permeable pathway occlusion in the dense conduit plug by pyroclast accumulation and sintering preceded ultimate bomb ejection, which triggered a final bubble nucleation event. Our results highlight how the vesiculation response of magma to decompression events is highly sensitive to the local melt volatile concentration, which is strongly spatially heterogeneous. Repeated opening of pervasive tuffisite vein networks promotes this heterogeneity, allowing juxtaposition of variably volatile-rich magma fragments that are derived from a wide range of depths in the conduit. This process enables efficient but explosive removal of gas from rhyolitic magma and creates a complex textural collage within dense rhyolitic lava, in which neighbouring fused clasts may have experienced vastly different degassing histories. [1] Schipper CI et al 2013 JVGR 262, 25-37. [2] Castro JM et al 2012 EPSL 333, 63-69.

  15. Low-rank network decomposition reveals structural characteristics of small-world networks

    NASA Astrophysics Data System (ADS)

    Barranca, Victor J.; Zhou, Douglas; Cai, David

    2015-12-01

    Small-world networks occur naturally throughout biological, technological, and social systems. With their prevalence, it is particularly important to prudently identify small-world networks and further characterize their unique connection structure with respect to network function. In this work we develop a formalism for classifying networks and identifying small-world structure using a decomposition of network connectivity matrices into low-rank and sparse components, corresponding to connections within clusters of highly connected nodes and sparse interconnections between clusters, respectively. We show that the network decomposition is independent of node indexing and define associated bounded measures of connectivity structure, which provide insight into the clustering and regularity of network connections. While many existing network characterizations rely on constructing benchmark networks for comparison or fail to describe the structural properties of relatively densely connected networks, our classification relies only on the intrinsic network structure and is quite robust with respect to changes in connection density, producing stable results across network realizations. Using this framework, we analyze several real-world networks and reveal new structural properties, which are often indiscernible by previously established characterizations of network connectivity.

  16. Local order and crystallization of dense polydisperse hard spheres

    NASA Astrophysics Data System (ADS)

    Coslovich, Daniele; Ozawa, Misaki; Berthier, Ludovic

    2018-04-01

    Computer simulations give precious insight into the microscopic behavior of supercooled liquids and glasses, but their typical time scales are orders of magnitude shorter than the experimentally relevant ones. We recently closed this gap for a class of models of size polydisperse fluids, which we successfully equilibrate beyond laboratory time scales by means of the swap Monte Carlo algorithm. In this contribution, we study the interplay between compositional and geometric local orders in a model of polydisperse hard spheres equilibrated with this algorithm. Local compositional order has a weak state dependence, while local geometric order associated to icosahedral arrangements grows more markedly but only at very high density. We quantify the correlation lengths and the degree of sphericity associated to icosahedral structures and compare these results to those for the Wahnström Lennard-Jones mixture. Finally, we analyze the structure of very dense samples that partially crystallized following a pattern incompatible with conventional fractionation scenarios. The crystal structure has the symmetry of aluminum diboride and involves a subset of small and large particles with size ratio approximately equal to 0.5.

  17. Micro-structure and motion of two-dimensional dense short spherocylinder liquids

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Lin, Jyun-Ting; Su, Yen-Shuo; I, Lin

    2018-03-01

    We numerically investigate the micro-structure and motion of 2D liquids composed of dense short spherocylinders, by reducing the shape aspect ratio from 3. It is found that reducing shape aspect ratio from 3 causes a smooth transition from heterogeneous structures composed of crystalline ordered domains with good tetratic alignment order to those with good hexagonal bond-orientational order at an aspect ratio equaling 1.35. In the intermediate regime, both structural orders are strongly deteriorated, and the translational hopping rate reaches a maximum due to the poor particle interlocking of the disordered structure. Shortening rod length allows easier rotation, induces monotonic increase of rotational hopping rates, and resumes the separation of rotational and translational hopping time scales at the small aspect ratio end, after the crossover of their rates in the intermediate regime. At the large shape aspect ratio end, the poor local tetratic order has the same positive effects on facilitating local rotational and translational hopping. In contrast, at the small shape aspect ratio end, the poor local bond orientational order has the opposite effects on facilitating local rotational and translational hopping.

  18. Setting up a new CZO in the Ganga basin: instrumentation, stakeholder engagement and preliminary observations

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Tripathi, S.; Sinha, R.; Karumanchi, S. H.; Paul, D.; Tripathi, S. N.; Sen, I. S.; Dash, S. K.

    2017-12-01

    The Ganga plains represent the abode of more than 400 million people and a region of severe anthropogenic disturbance to natural processes. Changing agricultural practices, inefficient use of water, contamination of groundwater systems, and decrease in soil fertility are some of the issues that have affected the long-term resilience of hydrological processes. The quantification of these processes demands a network of hydro-meteorological instrumentation, low-cost sensors, continuous engagement of stakeholders and real time data transmission at a fine interval. We have therefore set up a Critical Zone Observatory (CZO) in a small watershed (35km2) that forms an intensively managed rural landscape consisting of 92% of agricultural land in the Pandu River Basin (a small tributary of the Ganga River). Apart from setting up a hydro-meteorological observatory, the major science questions we want to address relate to development of water balance model, understanding the soil-water interaction and estimation of nutrient fluxes in the watershed. This observatory currently has various types of sensors that are divided into three categories: (a) spatially not dense but temporally fine data, (b) spatially dense but temporally not fine data and(c) spatially dense and temporally fine data. The first category represent high-cost sensors namely automatic weather stations that are deployed at two locations and provide data at 15-minute interval. The second category includes portable soil moisture, discharge and groundwater level at weekly/ biweekly interval. The third category comprises low-cost sensors including automatic surface and groundwater level sensors installed on open wells to monitor the continuous fluctuation of water level at every 15 minutes. In addition to involving the local communities in data collection (e.g. manual rainfall measurement, water and soil sampling), this CZO also aims to provide relevant information to them for improving their sustainability. The preliminary results show significant heterogeneity in soil type, cropping system, fertilizer application, water quality, irrigation source etc. within a small catchment.

  19. Dyadic Interactions in Service Encounter: Bayesian SEM Approach

    NASA Astrophysics Data System (ADS)

    Sagan, Adam; Kowalska-Musiał, Magdalena

    Dyadic interactions are an important aspects in service encounters. They may be observed in B2B distribution channels, professional services, buying centers, family decision making or WOM communications. The networks consist of dyadic bonds that form dense but weak ties among the actors.

  20. Application distribution model and related security attacks in VANET

    NASA Astrophysics Data System (ADS)

    Nikaein, Navid; Kanti Datta, Soumya; Marecar, Irshad; Bonnet, Christian

    2013-03-01

    In this paper, we present a model for application distribution and related security attacks in dense vehicular ad hoc networks (VANET) and sparse VANET which forms a delay tolerant network (DTN). We study the vulnerabilities of VANET to evaluate the attack scenarios and introduce a new attacker`s model as an extension to the work done in [6]. Then a VANET model has been proposed that supports the application distribution through proxy app stores on top of mobile platforms installed in vehicles. The steps of application distribution have been studied in detail. We have identified key attacks (e.g. malware, spamming and phishing, software attack and threat to location privacy) for dense VANET and two attack scenarios for sparse VANET. It has been shown that attacks can be launched by distributing malicious applications and injecting malicious codes to On Board Unit (OBU) by exploiting OBU software security holes. Consequences of such security attacks have been described. Finally, countermeasures including the concepts of sandbox have also been presented in depth.

  1. Low latency network and distributed storage for next generation HPC systems: the ExaNeSt project

    NASA Astrophysics Data System (ADS)

    Ammendola, R.; Biagioni, A.; Cretaro, P.; Frezza, O.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Paolucci, P. S.; Pastorelli, E.; Pisani, F.; Simula, F.; Vicini, P.; Navaridas, J.; Chaix, F.; Chrysos, N.; Katevenis, M.; Papaeustathiou, V.

    2017-10-01

    With processor architecture evolution, the HPC market has undergone a paradigm shift. The adoption of low-cost, Linux-based clusters extended the reach of HPC from its roots in modelling and simulation of complex physical systems to a broader range of industries, from biotechnology, cloud computing, computer analytics and big data challenges to manufacturing sectors. In this perspective, the near future HPC systems can be envisioned as composed of millions of low-power computing cores, densely packed — meaning cooling by appropriate technology — with a tightly interconnected, low latency and high performance network and equipped with a distributed storage architecture. Each of these features — dense packing, distributed storage and high performance interconnect — represents a challenge, made all the harder by the need to solve them at the same time. These challenges lie as stumbling blocks along the road towards Exascale-class systems; the ExaNeSt project acknowledges them and tasks itself with investigating ways around them.

  2. Spatial evolutionary public goods game on complete graph and dense complex networks

    NASA Astrophysics Data System (ADS)

    Kim, Jinho; Chae, Huiseung; Yook, Soon-Hyung; Kim, Yup

    2015-03-01

    We study the spatial evolutionary public goods game (SEPGG) with voluntary or optional participation on a complete graph (CG) and on dense networks. Based on analyses of the SEPGG rate equation on finite CG, we find that SEPGG has two stable states depending on the value of multiplication factor r, illustrating how the ``tragedy of the commons'' and ``an anomalous state without any active participants'' occurs in real-life situations. When r is low (), the state with only loners is stable, and the state with only defectors is stable when r is high (). We also derive the exact scaling relation for r*. All of the results are confirmed by numerical simulation. Furthermore, we find that a cooperator-dominant state emerges when the number of participants or the mean degree, , decreases. We also investigate the scaling dependence of the emergence of cooperation on r and . These results show how ``tragedy of the commons'' disappears when cooperation between egoistic individuals without any additional socioeconomic punishment increases.

  3. Scrg1, a novel protein of the CNS is targeted to the large dense-core vesicles in neuronal cells.

    PubMed

    Dandoy-Dron, Françoise; Griffond, Bernadette; Mishal, Zohar; Tovey, Michael G; Dron, Michel

    2003-11-01

    Scrapie responsive gene one (Scrg1) is a novel transcript discovered through identification of the genes associated with or responsible for the neurodegenerative changes observed in transmissible spongiform encephalopathies. Scrg1 mRNA is distributed principally in the central nervous system and the cDNA sequence predicts a small cysteine-rich protein 98 amino acids in length, with a N-terminal signal peptide. In this study, we have generated antibodies against the predicted protein and revealed expression of a predominant immunoreactive protein of 10 kDa in mouse brain by Western blot analysis. We have established CAD neuronal cell lines stably expressing Scrg1 to determine its subcellular localization. Several lines of evidence show that the protein is targeted to dense-core vesicles in these cells. (i) Scrg1 is detected by immunocytochemistry as very punctate signals especially in the Golgi apparatus and tips of neurites, suggesting a vesicular localization for the protein. Moreover, Scrg1 exhibits a high degree of colocalization with secretogranin II, a dense-core vesicle marker and a very limited colocalization with markers for small synaptic vesicles. (ii) Scrg1 immunoreactivity is associated with large secretory granules/dense-core vesicles, as indicated by immuno-electron microscopy. (iii) Scrg1 is enriched in fractions of sucrose density gradient where synaptotagmin V, a dense-core vesicle-associated protein, is also enriched. The characteristic punctate immunostaining of Scrg1 is observed in N2A cells transfected with Scrg1 and for the endogenous protein in cultured primary neurons, attesting to the generality of the observations. Our findings strongly suggest that Scrg1 is associated with the secretory pathway of neuronal cells.

  4. Combined BC/MD approach to the evaluation of damage from fast neutrons and its implementation for beryllium irradiation in a fusion reactor

    NASA Astrophysics Data System (ADS)

    Borodin, V. A.; Vladimirov, P. V.

    2017-12-01

    The determination of primary damage production efficiency in metals irradiated with fast neutrons is a complex problem. Typically, the majority of atoms are displaced from their lattice positions not by neutrons themselves, but by energetic primary recoils, that can produce both single Frenkel pairs and dense localized cascades. Though a number of codes are available for the calculation of displacement damage from fast ions, they commonly use binary collision (BC) approximation, which is unreliable for dense cascades and thus tend to overestimate the number of created displacements. In order to amend the radiation damage predictions, this work suggests a combined approach, where the BC approximation is used for counting single Frenkel pairs only, whereas the secondary recoils able to produce localized dense cascades are stored for later processing, but not followed explicitly. The displacement production in dense cascades is then determined independently from molecular dynamics (MD) simulations. Combining contributions from different calculations, one gets the total number of displacements created by particular neutron spectrum. The approach is applied here to the case of beryllium irradiation in a fusion reactor. Using a relevant calculated energy spectrum of primary knocked-on atoms (PKAs), it is demonstrated that more than a half of the primary point defects (˜150/PKA) is produced by low-energy recoils in the form of single Frenkel pairs. The contribution to the damage from the dense cascades as predicted using the mixed BC/MD scheme, i.e. ˜110/PKA, is remarkably lower than the value deduced from uncorrected SRIM calculations (˜145/PKA), so that in the studied case SRIM tends to overpredict the total primary damage level.

  5. Testing continuous earthquake detection and location in Alentejo (South Portugal) by waveform coherency analysis

    NASA Astrophysics Data System (ADS)

    Matos, Catarina; Grigoli, Francesco; Cesca, Simone; Custódio, Susana

    2015-04-01

    In the last decade a permanent seismic network of 30 broadband stations, complemented by dense temporary deployments, covered Portugal. This extraordinary network coverage enables now the computation of a high-resolution image of the seismicity of Portugal, which in turn will shed light on the seismotectonics of Portugal. The large data volumes available cannot be analyzed by traditional time-consuming manual location procedures. In this presentation we show first results on the automatic detection and location of earthquakes occurred in a selected region in the south of Portugal Our main goal is to implement an automatic earthquake detection and location routine in order to have a tool to quickly process large data sets, while at the same time detecting low magnitude earthquakes (i.e., lowering the detection threshold). We present a modified version of the automatic seismic event location by waveform coherency analysis developed by Grigoli et al. (2013, 2014), designed to perform earthquake detections and locations in continuous data. The event detection is performed by continuously computing the short-term-average/long-term-average of two different characteristic functions (CFs). For the P phases we used a CF based on the vertical energy trace, while for S phases we used a CF based on the maximum eigenvalue of the instantaneous covariance matrix (Vidale 1991). Seismic event detection and location is obtained by performing waveform coherence analysis scanning different hypocentral coordinates. We apply this technique to earthquakes in the Alentejo region (South Portugal), taking advantage from a small aperture seismic network installed in the south of Portugal for two years (2010 - 2011) during the DOCTAR experiment. In addition to the good network coverage, the Alentejo region was chosen for its simple tectonic setting and also because the relationship between seismicity, tectonics and local lithospheric structure is intriguing and still poorly understood. Inside the target area the seismicity clusters mainly within two clouds, oriented SE-NW and SW-NE. Should these clusters be seen as the expression of local active faults? Are they associated to lithological transitions? Or do the locations obtained from the previously sparse permanent network have large errors and generate fake clusters? We present preliminary results from this study, and compare them with manual locations. This work is supported by project QuakeLoc, reference: PTDC/GEO-FIQ/3522/2012

  6. An interactional network of genes involved in chitin synthesis in Saccharomyces cerevisiae.

    PubMed

    Lesage, Guillaume; Shapiro, Jesse; Specht, Charles A; Sdicu, Anne-Marie; Ménard, Patrice; Hussein, Shamiza; Tong, Amy Hin Yan; Boone, Charles; Bussey, Howard

    2005-02-16

    In S. cerevisiae the beta-1,4-linked N-acetylglucosamine polymer, chitin, is synthesized by a family of 3 specialized but interacting chitin synthases encoded by CHS1, CHS2 and CHS3. Chs2p makes chitin in the primary septum, while Chs3p makes chitin in the lateral cell wall and in the bud neck, and can partially compensate for the lack of Chs2p. Chs3p requires a pathway of Bni4p, Chs4p, Chs5p, Chs6p and Chs7p for its localization and activity. Chs1p is thought to have a septum repair function after cell separation. To further explore interactions in the chitin synthase family and to find processes buffering chitin synthesis, we compiled a genetic interaction network of genes showing synthetic interactions with CHS1, CHS3 and genes involved in Chs3p localization and function and made a phenotypic analysis of their mutants. Using deletion mutants in CHS1, CHS3, CHS4, CHS5, CHS6, CHS7 and BNI4 in a synthetic genetic array analysis we assembled a network of 316 interactions among 163 genes. The interaction network with CHS3, CHS4, CHS5, CHS6, CHS7 or BNI4 forms a dense neighborhood, with many genes functioning in cell wall assembly or polarized secretion. Chitin levels were altered in 54 of the mutants in individually deleted genes, indicating a functional relationship between them and chitin synthesis. 32 of these mutants triggered the chitin stress response, with elevated chitin levels and a dependence on CHS3. A large fraction of the CHS1-interaction set was distinct from that of the CHS3 network, indicating broad roles for Chs1p in buffering both Chs2p function and more global cell wall robustness. Based on their interaction patterns and chitin levels we group interacting mutants into functional categories. Genes interacting with CHS3 are involved in the amelioration of cell wall defects and in septum or bud neck chitin synthesis, and we newly assign a number of genes to these functions. Our genetic analysis of genes not interacting with CHS3 indicate expanded roles for Chs4p, Chs5p and Chs6p in secretory protein trafficking and of Bni4p in bud neck organization.

  7. Sociometric network structure and its association with methamphetamine use norms among homeless youth

    PubMed Central

    Barman-Adhikari, Anamika; Begun, Stephanie; Rice, Eric; Yoshioka-Maxwell, Amanda; Perez-Portillo, Andrea

    2016-01-01

    Homeless youths' social networks are consistently linked with their substance use. Social networks influence behavior through several mechanisms, especially social norms. This study used sociometric analyses to understand whether social norms of drug use behaviors are clustered in network structures and whether these perceived norms (descriptive and injunctive) influence youths' drug use behaviors. An event-based approach was used to delineate boundaries of the two sociometric networks of homeless youth, one in Los Angeles, CA (n = 160) and the other in Santa Monica, CA (n = 130). Network characteristics included centrality (i.e., popularity) and cohesiveness (location in dense subnetworks). The primary outcome was recent methamphetamine use. Results revealed that both descriptive and injunctive norms influenced methamphetamine use. Network cohesion was found to be associated with perception of both descriptive and injunctive norms in both networks, however in opposite directions. Network interventions therefore might be effective if designed to capitalize on social influence that naturally occurs in cohesive parts of networks. PMID:27194667

  8. Short-term memory capacity in networks via the restricted isometry property.

    PubMed

    Charles, Adam S; Yap, Han Lun; Rozell, Christopher J

    2014-06-01

    Cortical networks are hypothesized to rely on transient network activity to support short-term memory (STM). In this letter, we study the capacity of randomly connected recurrent linear networks for performing STM when the input signals are approximately sparse in some basis. We leverage results from compressed sensing to provide rigorous nonasymptotic recovery guarantees, quantifying the impact of the input sparsity level, the input sparsity basis, and the network characteristics on the system capacity. Our analysis demonstrates that network memory capacities can scale superlinearly with the number of nodes and in some situations can achieve STM capacities that are much larger than the network size. We provide perfect recovery guarantees for finite sequences and recovery bounds for infinite sequences. The latter analysis predicts that network STM systems may have an optimal recovery length that balances errors due to omission and recall mistakes. Furthermore, we show that the conditions yielding optimal STM capacity can be embodied in several network topologies, including networks with sparse or dense connectivities.

  9. Stable solitary waves in super dense plasmas at external magnetic fields

    NASA Astrophysics Data System (ADS)

    Ghaani, Azam; Javidan, Kurosh; Sarbishaei, Mohsen

    2015-07-01

    Propagation of localized waves in a Fermi-Dirac distributed super dense matter at the presence of strong external magnetic fields is studied using the reductive perturbation method. We have shown that stable solitons can be created in such non-relativistic fluids in the presence of an external magnetic field. Such solitary waves are governed by the Zakharov-Kuznetsov (ZK) equation. Properties of solitonic solutions are studied in media with different values of background mass density and strength of magnetic field.

  10. Minimal camera networks for 3D image based modeling of cultural heritage objects.

    PubMed

    Alsadik, Bashar; Gerke, Markus; Vosselman, George; Daham, Afrah; Jasim, Luma

    2014-03-25

    3D modeling of cultural heritage objects like artifacts, statues and buildings is nowadays an important tool for virtual museums, preservation and restoration. In this paper, we introduce a method to automatically design a minimal imaging network for the 3D modeling of cultural heritage objects. This becomes important for reducing the image capture time and processing when documenting large and complex sites. Moreover, such a minimal camera network design is desirable for imaging non-digitally documented artifacts in museums and other archeological sites to avoid disturbing the visitors for a long time and/or moving delicate precious objects to complete the documentation task. The developed method is tested on the Iraqi famous statue "Lamassu". Lamassu is a human-headed winged bull of over 4.25 m in height from the era of Ashurnasirpal II (883-859 BC). Close-range photogrammetry is used for the 3D modeling task where a dense ordered imaging network of 45 high resolution images were captured around Lamassu with an object sample distance of 1 mm. These images constitute a dense network and the aim of our study was to apply our method to reduce the number of images for the 3D modeling and at the same time preserve pre-defined point accuracy. Temporary control points were fixed evenly on the body of Lamassu and measured by using a total station for the external validation and scaling purpose. Two network filtering methods are implemented and three different software packages are used to investigate the efficiency of the image orientation and modeling of the statue in the filtered (reduced) image networks. Internal and external validation results prove that minimal image networks can provide highly accurate records and efficiency in terms of visualization, completeness, processing time (>60% reduction) and the final accuracy of 1 mm.

  11. Minimal Camera Networks for 3D Image Based Modeling of Cultural Heritage Objects

    PubMed Central

    Alsadik, Bashar; Gerke, Markus; Vosselman, George; Daham, Afrah; Jasim, Luma

    2014-01-01

    3D modeling of cultural heritage objects like artifacts, statues and buildings is nowadays an important tool for virtual museums, preservation and restoration. In this paper, we introduce a method to automatically design a minimal imaging network for the 3D modeling of cultural heritage objects. This becomes important for reducing the image capture time and processing when documenting large and complex sites. Moreover, such a minimal camera network design is desirable for imaging non-digitally documented artifacts in museums and other archeological sites to avoid disturbing the visitors for a long time and/or moving delicate precious objects to complete the documentation task. The developed method is tested on the Iraqi famous statue “Lamassu”. Lamassu is a human-headed winged bull of over 4.25 m in height from the era of Ashurnasirpal II (883–859 BC). Close-range photogrammetry is used for the 3D modeling task where a dense ordered imaging network of 45 high resolution images were captured around Lamassu with an object sample distance of 1 mm. These images constitute a dense network and the aim of our study was to apply our method to reduce the number of images for the 3D modeling and at the same time preserve pre-defined point accuracy. Temporary control points were fixed evenly on the body of Lamassu and measured by using a total station for the external validation and scaling purpose. Two network filtering methods are implemented and three different software packages are used to investigate the efficiency of the image orientation and modeling of the statue in the filtered (reduced) image networks. Internal and external validation results prove that minimal image networks can provide highly accurate records and efficiency in terms of visualization, completeness, processing time (>60% reduction) and the final accuracy of 1 mm. PMID:24670718

  12. Fine structure of the vapor field in evaporating dense sprays

    NASA Astrophysics Data System (ADS)

    Villermaux, Emmanuel; Moutte, Alexandre; Amielh, Muriel; Meunier, Patrice

    2017-11-01

    Making use of an original technique which permits the simultaneous measurement of both the displacement field of evaporating droplets in a spray, and of their vapor, we investigate the relevance of a scenario introduced earlier to describe the evaporation dynamics of dense sprays. A plume of dense acetone droplets evaporating in air is studied, for which the stirring field is measured by particle image velocimetry of the droplets, and the vapor field is imaged quantitatively by laser-induced fluorescence. We show, thanks to these unique in situ measurements, that the spray boundary with the diluting environment is slaved to the dynamics of its saturating vapor concentration field, whose structure is analyzed for different well defined local flow topologies.

  13. Measurement of charged-particle stopping in warm-dense plasma

    DOE PAGES

    Zylstra, A.  B.; Frenje, J.  A.; Grabowski, P. E.; ...

    2015-05-27

    We measured the stopping of energetic protons in an isochorically-heated solid-density Be plasma with an electron temperature of ~32 eV, corresponding to moderately-coupled [(e²/a/(k BT e + E F ) ~ 0.3] and moderately-degenerate [k BT e/E F ~2] 'warm dense matter' (WDM) conditions. We present the first high-accuracy measurements of charged-particle energy loss through dense plasma, which shows an increased loss relative to cold matter, consistent with a reduced mean ionization potential. The data agree with stopping models based on an ad-hoc treatment of free and bound electrons, as well as the average-atom local-density approximation; this work is themore » first test of these theories in WDM plasma.« less

  14. Excitonic effects in dense media: breakdown of intrinsic optical bistability

    NASA Astrophysics Data System (ADS)

    Yudson, V. I.; Reineker, P.

    1994-12-01

    The steady-state nonlinear response to optical excitation is studied for a thin layer containing “two-level-atoms” (TLA). For a high density of TLAs their dipole-dipole interaction and finite excitonic bandwidth effects become important. We demonstrate that the commonly used local-field approximation ignoring excitonic band effects breaks down. Considering a system of ordered TLAs corresponding to Frenkel excitons in molecular crystals we show that excitonic effects cause an instability of spatially uniform solutions and decrease drastically the existence range of the intrinsic optical bistability of a layer. The possibility of “fast instability”, developing with an increment large in comparison with relaxation rates and the Rabi frequency, also raises the question whether the local field approximation still holds for the description of transient optical phenomena in dense media.

  15. Excitonic effects in dense media: breakdown of intrinsic optical bistability

    NASA Astrophysics Data System (ADS)

    Yudson, V. I.; Reineker, P.

    The steady-state nonlinear response to optical excitation is studied for a thin layer containing “two-level-atoms” (TLA). For a high density of TLAs their dipole-dipole interaction and finite excitonic bandwidth effects become important. We demonstrate that the commonly used local-field approximation ignoring excitonic band effects breaks down. Considering a system of ordered TLAs corresponding to Frenkel excitons in molecular crystals we show that excitonic effects cause an instability of spatially uniform solutions and decrease drastically the existence range of the intrinsic optical bistability of a layer. The possibility of “fast instability”, developing with an increment large in comparison with relaxation rates and the Rabi frequency, also raises the question whether the local field approximation still holds for the description of transient optical phenomena in dense media.

  16. Design of a stateless low-latency router architecture for green software-defined networking

    NASA Astrophysics Data System (ADS)

    Saldaña Cercós, Silvia; Ramos, Ramon M.; Ewald Eller, Ana C.; Martinello, Magnos; Ribeiro, Moisés. R. N.; Manolova Fagertun, Anna; Tafur Monroy, Idelfonso

    2015-01-01

    Expanding software defined networking (SDN) to transport networks requires new strategies to deal with the large number of flows that future core networks will have to face. New south-bound protocols within SDN have been proposed to benefit from having control plane detached from the data plane offering a cost- and energy-efficient forwarding engine. This paper presents an overview of a new approach named KeyFlow to simultaneously reduce latency, jitter, and power consumption in core network nodes. Results on an emulation platform indicate that round trip time (RTT) can be reduced above 50% compared to the reference protocol OpenFlow, specially when flow tables are densely populated. Jitter reduction has been demonstrated experimentally on a NetFPGA-based platform, and 57.3% power consumption reduction has been achieved.

  17. On the sufficiency of pairwise interactions in maximum entropy models of networks

    NASA Astrophysics Data System (ADS)

    Nemenman, Ilya; Merchan, Lina

    Biological information processing networks consist of many components, which are coupled by an even larger number of complex multivariate interactions. However, analyses of data sets from fields as diverse as neuroscience, molecular biology, and behavior have reported that observed statistics of states of some biological networks can be approximated well by maximum entropy models with only pairwise interactions among the components. Based on simulations of random Ising spin networks with p-spin (p > 2) interactions, here we argue that this reduction in complexity can be thought of as a natural property of some densely interacting networks in certain regimes, and not necessarily as a special property of living systems. This work was supported in part by James S. McDonnell Foundation Grant No. 220020321.

  18. Information jet: Handling noisy big data from weakly disconnected network

    NASA Astrophysics Data System (ADS)

    Aurongzeb, Deeder

    Sudden aggregation (information jet) of large amount of data is ubiquitous around connected social networks, driven by sudden interacting and non-interacting events, network security threat attacks, online sales channel etc. Clustering of information jet based on time series analysis and graph theory is not new but little work is done to connect them with particle jet statistics. We show pre-clustering based on context can element soft network or network of information which is critical to minimize time to calculate results from noisy big data. We show difference between, stochastic gradient boosting and time series-graph clustering. For disconnected higher dimensional information jet, we use Kallenberg representation theorem (Kallenberg, 2005, arXiv:1401.1137) to identify and eliminate jet similarities from dense or sparse graph.

  19. Water Catchment and Storage Monitoring

    NASA Astrophysics Data System (ADS)

    Bruenig, Michael; Dunbabin, Matt; Moore, Darren

    2010-05-01

    Sensors and Sensor Networks technologies provide the means for comprehensive understanding of natural processes in the environment by radically increasing the availability of empirical data about the natural world. This step change is achieved through a dramatic reduction in the cost of data acquisition and many orders of magnitude increase in the spatial and temporal granularity of measurements. Australia's Commonwealth Scientific and Industrial Research Organisation (CSIRO) is undertaking a strategic research program developing wireless sensor network technology for environmental monitoring. As part of this research initiative, we are engaging with government agencies to densely monitor water catchments and storages, thereby enhancing understanding of the environmental processes that affect water quality. In the Gold Coast hinterland in Queensland, Australia, we are building sensor networks to monitor restoration of rainforest within the catchment, and to monitor methane flux release and water quality in the water storages. This poster will present our ongoing work in this region of eastern Australia. The Springbrook plateau in the Gold Coast hinterland lies within a World Heritage listed area, has uniquely high rainfall, hosts a wide range of environmental gradients, and forms part of the catchment for Gold Coast's water storages. Parts of the plateau are being restored from agricultural grassland to native rainforest vegetation. Since April 2008, we have had a 10-node, multi-hop sensor network deployed there to monitor microclimate variables. This network will be expanded to 50-nodes in February 2010, and to around 200-nodes and 1000 sensors by mid-2011, spread over an area of approximately 0.8 square kilometers. The extremely dense microclimate sensing will enhance knowledge of the environmental factors that enhance or inhibit the regeneration of native rainforest. The final network will also include nodes with acoustic and image sensing capability for monitoring higher level parameters such as fauna diversity. The regenerating rainforest environment presents a number of interesting challenges for wireless sensor networks related to energy harvesting and to reliable low-power wireless communications through dense and wet vegetation. Located downstream from the Springbrook plateau, the Little Nerang and Hinze dams are the two major water supply storages for the Gold Coast region. In September 2009 we fitted methane, light, wind, and sonar sensors to our autonomous electric boat platform and successfully demonstrated autonomous collection of methane flux release data on Little Nerang Dam. Sensor and boat status data were relayed back to a human operator on the shore of the dam via a small network of our Fleck™ nodes. The network also included 4 floating nodes each fitted with a string of 6 temperature sensors for profiling temperature at different water depths. We plan to expand the network further during 2010 to incorporate floating methane nodes, additional temperature sensing nodes, as well as land-based microclimate nodes. The overall monitoring system will provide significant data to understand the connected catchment-to-storage system and will provide continuous data to monitor and understand change trends within this world heritage area.

  20. Analysing ecological networks of species interactions.

    PubMed

    Delmas, Eva; Besson, Mathilde; Brice, Marie-Hélène; Burkle, Laura A; Dalla Riva, Giulio V; Fortin, Marie-Josée; Gravel, Dominique; Guimarães, Paulo R; Hembry, David H; Newman, Erica A; Olesen, Jens M; Pires, Mathias M; Yeakel, Justin D; Poisot, Timothée

    2018-06-20

    Network approaches to ecological questions have been increasingly used, particularly in recent decades. The abstraction of ecological systems - such as communities - through networks of interactions between their components indeed provides a way to summarize this information with single objects. The methodological framework derived from graph theory also provides numerous approaches and measures to analyze these objects and can offer new perspectives on established ecological theories as well as tools to address new challenges. However, prior to using these methods to test ecological hypotheses, it is necessary that we understand, adapt, and use them in ways that both allow us to deliver their full potential and account for their limitations. Here, we attempt to increase the accessibility of network approaches by providing a review of the tools that have been developed so far, with - what we believe to be - their appropriate uses and potential limitations. This is not an exhaustive review of all methods and metrics, but rather, an overview of tools that are robust, informative, and ecologically sound. After providing a brief presentation of species interaction networks and how to build them in order to summarize ecological information of different types, we then classify methods and metrics by the types of ecological questions that they can be used to answer from global to local scales, including methods for hypothesis testing and future perspectives. Specifically, we show how the organization of species interactions in a community yields different network structures (e.g., more or less dense, modular or nested), how different measures can be used to describe and quantify these emerging structures, and how to compare communities based on these differences in structures. Within networks, we illustrate metrics that can be used to describe and compare the functional and dynamic roles of species based on their position in the network and the organization of their interactions as well as associated new methods to test the significance of these results. Lastly, we describe potential fruitful avenues for new methodological developments to address novel ecological questions. © 2018 Cambridge Philosophical Society.

  1. Advancing the application of systems thinking in health: analysing the contextual and social network factors influencing the use of sustainability indicators in a health system--a comparative study in Nepal and Somaliland.

    PubMed

    Blanchet, Karl; Palmer, Jennifer; Palanchowke, Raju; Boggs, Dorothy; Jama, Ali; Girois, Susan

    2014-08-26

    Health systems strengthening is becoming a key component of development agendas for low-income countries worldwide. Systems thinking emphasizes the role of diverse stakeholders in designing solutions to system problems, including sustainability. The objective of this paper is to compare the definition and use of sustainability indicators developed through the Sustainability Analysis Process in two rehabilitation sectors, one in Nepal and one in Somaliland, and analyse the contextual factors (including the characteristics of system stakeholder networks) influencing the use of sustainability data. Using the Sustainability Analysis Process, participants collectively clarified the boundaries of their respective systems, defined sustainability, and identified sustainability indicators. Baseline indicator data was gathered, where possible, and then researched again 2 years later. As part of the exercise, system stakeholder networks were mapped at baseline and at the 2-year follow-up. We compared stakeholder networks and interrelationships with baseline and 2-year progress toward self-defined sustainability goals. Using in-depth interviews and observations, additional contextual factors affecting the use of sustainability data were identified. Differences in the selection of sustainability indicators selected by local stakeholders from Nepal and Somaliland reflected differences in the governance and structure of the present rehabilitation system. At 2 years, differences in the structure of social networks were more marked. In Nepal, the system stakeholder network had become more dense and decentralized. Financial support by an international organization facilitated advancement toward self-identified sustainability goals. In Somaliland, the small, centralised stakeholder network suffered a critical rupture between the system's two main information brokers due to competing priorities and withdrawal of international support to one of these. Progress toward self-defined sustainability was nil. The structure of the rehabilitation system stakeholder network characteristics in Nepal and Somaliland evolved over time and helped understand the changing nature of relationships between actors and their capacity to work as a system rather than a sum of actors. Creating consensus on a common vision of sustainability requires additional system-level interventions such as identification of and support to stakeholders who promote systems thinking above individual interests.

  2. Ionospheric variation observed in Oregon Real-time GNSS network during the total eclipse of 21 August 2017

    NASA Astrophysics Data System (ADS)

    Shahbazi, A.; Park, J.; Kim, S.; Oberg, R.

    2017-12-01

    As the ionospheric behavior is highly related to the solar activity, the total eclipse passing across the North America on 21 August 2017 is expected to significantly affect the electron density in the ionosphere along the path. Taking advantage of GNSS capability for observing total electron content (TEC), this study demonstrates the impact of the total eclipse not only on the TEC variation during the period of the event but also on GNSS positioning. Oregon Department of Transportation (ODOT) runs a dense real time GNSS network, referred to as Oregon Real-time GNSS network (ORGN). From the dual frequency GPS and GLONASS observations in ORGN, the TEC over the network area can be extracted. We observe the vertical TEC (VTEC) from the ORGN for analyzing the ionospheric condition in the local area affected by the eclipse. To observe the temporal variation, we also observe the slant TEC (STEC) in each ray path and analyze the short term variation in different geometry of each ray path. Although the STEC is dependent quantity upon the changing geometry of a satellite, this approach provides insight to the ionospheric behavior of the total eclipse because the STEC does not involve the projection error, which is generated by VTEC computation. During the period of eclipse, the abnormal variations on VTEC and STEC are expected. The experimental results will be presented in time series plots for selected stations as well as the regional TEC map in Oregon. In addition to the TEC monitoring, we also test the positioning result of ORGN stations through Precise Point Positioning (PPP) and relative positioning. The expected result is that the both positioning results are degraded during the solar eclipse due to the instable ionospheric condition over short time.

  3. Children inhibit global information when the forest is dense and local information when the forest is sparse.

    PubMed

    Krakowski, Claire-Sara; Borst, Grégoire; Vidal, Julie; Houdé, Olivier; Poirel, Nicolas

    2018-09-01

    Visual environments are composed of global shapes and local details that compete for attentional resources. In adults, the global level is processed more rapidly than the local level, and global information must be inhibited in order to process local information when the local information and global information are in conflict. Compared with adults, children present less of a bias toward global visual information and appear to be more sensitive to the density of local elements that constitute the global level. The current study aimed, for the first time, to investigate the key role of inhibition during global/local processing in children. By including two different conditions of global saliency during a negative priming procedure, the results showed that when the global level was salient (dense hierarchical figures), 7-year-old children and adults needed to inhibit the global level to process the local information. However, when the global level was less salient (sparse hierarchical figures), only children needed to inhibit the local level to process the global information. These results confirm a weaker global bias and the greater impact of saliency in children than in adults. Moreover, the results indicate that, regardless of age, inhibition of the most salient hierarchical level is systematically required to select the less salient but more relevant level. These findings have important implications for future research in this area. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Matching of Ground-Based LiDAR and Aerial Image Data For Mobile Robot Localization in Densely Forested Environments

    DTIC Science & Technology

    2013-11-01

    for rovers operating in close proximity to points of interest. Techniques such as Simultaneous Localization and Mapping ( SLAM ) have been utilized...successfully to localize rovers in a variety of settings and scenarios [3,4]. SLAM focuses on building a local map of landmarks as observed by a rover...more landmarks are observed and errors filtered. SLAM therefore does not require a priori knowledge of the locations of landmarks or that of the rover

  5. Competition between global and local online social networks

    NASA Astrophysics Data System (ADS)

    Kleineberg, Kaj-Kolja; Boguñá, Marián

    2016-04-01

    The overwhelming success of online social networks, the key actors in the Web 2.0 cosmos, has reshaped human interactions globally. To help understand the fundamental mechanisms which determine the fate of online social networks at the system level, we describe the digital world as a complex ecosystem of interacting networks. In this paper, we study the impact of heterogeneity in network fitnesses on the competition between an international network, such as Facebook, and local services. The higher fitness of international networks is induced by their ability to attract users from all over the world, which can then establish social interactions without the limitations of local networks. In other words, inter-country social ties lead to increased fitness of the international network. To study the competition between an international network and local ones, we construct a 1:1000 scale model of the digital world, consisting of the 80 countries with the most Internet users. Under certain conditions, this leads to the extinction of local networks; whereas under different conditions, local networks can persist and even dominate completely. In particular, our model suggests that, with the parameters that best reproduce the empirical overtake of Facebook, this overtake could have not taken place with a significant probability.

  6. Competition between global and local online social networks.

    PubMed

    Kleineberg, Kaj-Kolja; Boguñá, Marián

    2016-04-27

    The overwhelming success of online social networks, the key actors in the Web 2.0 cosmos, has reshaped human interactions globally. To help understand the fundamental mechanisms which determine the fate of online social networks at the system level, we describe the digital world as a complex ecosystem of interacting networks. In this paper, we study the impact of heterogeneity in network fitnesses on the competition between an international network, such as Facebook, and local services. The higher fitness of international networks is induced by their ability to attract users from all over the world, which can then establish social interactions without the limitations of local networks. In other words, inter-country social ties lead to increased fitness of the international network. To study the competition between an international network and local ones, we construct a 1:1000 scale model of the digital world, consisting of the 80 countries with the most Internet users. Under certain conditions, this leads to the extinction of local networks; whereas under different conditions, local networks can persist and even dominate completely. In particular, our model suggests that, with the parameters that best reproduce the empirical overtake of Facebook, this overtake could have not taken place with a significant probability.

  7. Describing the Neuron Axons Network of the Human Brain by Continuous Flow Models

    NASA Astrophysics Data System (ADS)

    Hizanidis, J.; Katsaloulis, P.; Verganelakis, D. A.; Provata, A.

    2014-12-01

    The multifractal spectrum Dq (Rényi dimensions) is used for the analysis and comparison between the Neuron Axons Network (NAN) of healthy and pathological human brains because it conveys information about the statistics in many scales, from the very rare to the most frequent network configurations. Comparison of the Fractional Anisotropy Magnetic Resonance Images between healthy and pathological brains is performed with and without noise reduction. Modelling the complex structure of the NAN in the human brain is undertaken using the dynamics of the Lorenz model in the chaotic regime. The Lorenz multifractal spectra capture well the human brain characteristics in the large negative q's which represent the rare network configurations. In order to achieve a closer approximation in the positive part of the spectrum (q > 0) two independent modifications are considered: a) redistribution of the dense parts of the Lorenz model's phase space into their neighbouring areas and b) inclusion of additive uniform noise in the Lorenz model. Both modifications, independently, drive the Lorenz spectrum closer to the human NAN one in the positive q region without destroying the already good correspondence of the negative spectra. The modelling process shows that the unmodified Lorenz model in its full chaotic regime has a phase space distribution with high fluctuations in its dense parts, while the fluctuations in the human brain NAN are smoother. The induced modifications (phase space redistribution or additive noise) moderate the fluctuations only in the positive part of the Lorenz spectrum leading to a faithful representation of the human brain axons network in all scales.

  8. Data Verification Tools for Minimizing Management Costs of Dense Air-Quality Monitoring Networks.

    PubMed

    Miskell, Georgia; Salmond, Jennifer; Alavi-Shoshtari, Maryam; Bart, Mark; Ainslie, Bruce; Grange, Stuart; McKendry, Ian G; Henshaw, Geoff S; Williams, David E

    2016-01-19

    Aiming at minimizing the costs, both of capital expenditure and maintenance, of an extensive air-quality measurement network, we present simple statistical methods that do not require extensive training data sets for automated real-time verification of the reliability of data delivered by a spatially dense hybrid network of both low-cost and reference ozone measurement instruments. Ozone is a pollutant that has a relatively smooth spatial spread over a large scale although there can be significant small-scale variations. We take advantage of these characteristics and demonstrate detection of instrument calibration drift within a few days using a rolling 72 h comparison of hourly averaged data from the test instrument with that from suitably defined proxies. We define the required characteristics of the proxy measurements by working from a definition of the network purpose and specification, in this case reliable determination of the proportion of hourly averaged ozone measurements that are above a threshold in any given day, and detection of calibration drift of greater than ±30% in slope or ±5 parts-per-billion in offset. By analyzing results of a study of an extensive deployment of low-cost instruments in the Lower Fraser Valley, we demonstrate that proxies can be established using land-use criteria and that simple statistical comparisons can identify low-cost instruments that are not stable and therefore need replacing. We propose that a minimal set of compliant reference instruments can be used to verify the reliability of data from a much more extensive network of low-cost devices.

  9. Properties of Localized Protons in Neutron Star Matter at Finite Temperatures

    NASA Astrophysics Data System (ADS)

    Szmaglinski, A.; Kubis, S.; Wójcik, W.

    2014-02-01

    We study properties of the proton component of neutron star matter for realistic nuclear models. Vanishing of the nuclear symmetry energy implies proton-neutron separation in dense nuclear matter. Protons which form admixture tend to be localized in potential wells. Here, we extend the description of proton localization to finite temperatures. It appears that the protons are still localized at temperatures typical for hot neutron stars. That fact has important astrophysical consequences. Moreover, the temperature inclusion leads to unexpected results for the behavior of the proton localized state.

  10. Picking vs Waveform based detection and location methods for induced seismicity monitoring

    NASA Astrophysics Data System (ADS)

    Grigoli, Francesco; Boese, Maren; Scarabello, Luca; Diehl, Tobias; Weber, Bernd; Wiemer, Stefan; Clinton, John F.

    2017-04-01

    Microseismic monitoring is a common operation in various industrial activities related to geo-resouces, such as oil and gas and mining operations or geothermal energy exploitation. In microseismic monitoring we generally deal with large datasets from dense monitoring networks that require robust automated analysis procedures. The seismic sequences being monitored are often characterized by very many events with short inter-event times that can even provide overlapped seismic signatures. In these situations, traditional approaches that identify seismic events using dense seismic networks based on detections, phase identification and event association can fail, leading to missed detections and/or reduced location resolution. In recent years, to improve the quality of automated catalogues, various waveform-based methods for the detection and location of microseismicity have been proposed. These methods exploit the coherence of the waveforms recorded at different stations and do not require any automated picking procedure. Although this family of methods have been applied to different induced seismicity datasets, an extensive comparison with sophisticated pick-based detection and location methods is still lacking. We aim here to perform a systematic comparison in term of performance using the waveform-based method LOKI and the pick-based detection and location methods (SCAUTOLOC and SCANLOC) implemented within the SeisComP3 software package. SCANLOC is a new detection and location method specifically designed for seismic monitoring at local scale. Although recent applications have proved an extensive test with induced seismicity datasets have been not yet performed. This method is based on a cluster search algorithm to associate detections to one or many potential earthquake sources. On the other hand, SCAUTOLOC is more a "conventional" method and is the basic tool for seismic event detection and location in SeisComp3. This approach was specifically designed for regional and teleseismic applications, thus its performance with microseismic data might be limited. We analyze the performance of the three methodologies for a synthetic dataset with realistic noise conditions as well as for the first hour of continuous waveform data, including the Ml 3.5 St. Gallen earthquake, recorded by a microseismic network deployed in the area. We finally compare the results obtained all these three methods with a manually revised catalogue.

  11. 43 CFR 2806.43 - How does BLM calculate rent for passive reflectors and local exchange networks?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... reflectors and local exchange networks? 2806.43 Section 2806.43 Public Lands: Interior Regulations Relating...-Of-Way § 2806.43 How does BLM calculate rent for passive reflectors and local exchange networks? (a) BLM calculates rent for passive reflectors and local exchange networks by using the same rent...

  12. Introduction to Local Area Networks for Microcomputers — Characteristics, Costs, Implementation Considerations

    PubMed Central

    Haney, James P.

    1984-01-01

    The essence of a local area network (LAN) is that the whole is greater than the sum of its parts. A local area network can save in hardware costs when expensive peripherals are shared; it can save time when large blocks of data are rapidly exchanged among users. The need for more cost-effective and capable communications has inspired the emergence of rapidly developing markets and technologies for local area networks. The purpose of this paper is to provide an understanding of the characteristics, components, costs, and implementation considerations of local area networks. The paper does not compare or define specific vendor offerings; however, recent IBM announcements regarding local area networks are summarized in the last section of the paper.

  13. Grass-Roots Leadership in Appalachia: A Contradiction in Terms?

    ERIC Educational Resources Information Center

    Salstrom, Paul

    1991-01-01

    The cultural values of rural Appalachia have been antithetical to the explicit leadership needed in activist movements for social change. "Subsistence, barter, and borrow" economic systems, pervasive in Appalachia, are based on nonmonetary, voluntary reciprocity within dense insider networks, not the formal contracts of both capitalist…

  14. Water vapour tomography using GPS phase observations: Results from the ESCOMPTE experiment

    NASA Astrophysics Data System (ADS)

    Nilsson, T.; Gradinarsky, L.; Elgered, G.

    2007-10-01

    Global Positioning System (GPS) tomography is a technique for estimating the 3-D structure of the atmospheric water vapour using data from a dense local network of GPS receivers. Several current methods utilize estimates of slant wet delays between the GPS satellites and the receivers on the ground, which are difficult to obtain with millimetre accuracy from the GPS observations. We present results of applying a new tomographic method to GPS data from the Expériance sur site pour contraindre les modèles de pollution atmosphérique et de transport d'emissions (ESCOMPTE) experiment in southern France. This method does not rely on any slant wet delay estimates, instead it uses the GPS phase observations directly. We show that the estimated wet refractivity profiles estimated by this method is on the same accuracy level or better compared to other tomographic methods. The results are in agreement with earlier simulations, for example the profile information is limited above 4 km.

  15. The role of myosin II in glioma invasion: A mathematical model

    PubMed Central

    Lee, Wanho; Lim, Sookkyung; Kim, Yangjin

    2017-01-01

    Gliomas are malignant tumors that are commonly observed in primary brain cancer. Glioma cells migrate through a dense network of normal cells in microenvironment and spread long distances within brain. In this paper we present a two-dimensional multiscale model in which a glioma cell is surrounded by normal cells and its migration is controlled by cell-mechanical components in the microenvironment via the regulation of myosin II in response to chemoattractants. Our simulation results show that the myosin II plays a key role in the deformation of the cell nucleus as the glioma cell passes through the narrow intercellular space smaller than its nuclear diameter. We also demonstrate that the coordination of biochemical and mechanical components within the cell enables a glioma cell to take the mode of amoeboid migration. This study sheds lights on the understanding of glioma infiltration through the narrow intercellular spaces and may provide a potential approach for the development of anti-invasion strategies via the injection of chemoattractants for localization. PMID:28166231

  16. Weather monitoring and forecasting over eastern Attica (Greece) in the frame of FLIRE project

    NASA Astrophysics Data System (ADS)

    Kotroni, Vassiliki; Lagouvardos, Konstantinos; Chrysoulakis, Nektarios; Makropoulos, Christtos; Mimikou, Maria; Papathanasiou, Chrysoula; Poursanidis, Dimitris

    2015-04-01

    In the frame of FLIRE project a Decision Support System has been built with the aim to support decision making of Civil Protection Agencies and local stakeholders in the area of east Attica (Greece), in the cases of forest fires and floods. In this presentation we focus on a specific action that focuses on the provision of high resolution short-term weather forecasting data as well as of dense meteorological observations over the study area. Both weather forecasts and observations serve as an input in the Weather Information Management Tool (WIMT) of the Decision Support System. We focus on: (a) the description of the adopted strategy for setting-up the operational weather forecasting chain that provides the weather forecasts for the FLIRE project needs, (b) the presentation of the surface network station that provides real-time weather monitoring of the study area and (c) the strategy adopted for issuing smart alerts for thunderstorm forecasting based of real-time lightning observations as well as satellite observations.

  17. Cholinergic neurons and fibres in the rat visual cortex.

    PubMed

    Parnavelas, J G; Kelly, W; Franke, E; Eckenstein, F

    1986-06-01

    Choline acetyltransferase (ChAT), the acetylcholine synthesizing enzyme, was localized immunocytochemically in neurons and fibres in the rat visual cortex using a monoclonal antibody. ChAT-labelled cells were non-pyramidal neurons, primarily of the bipolar form, distributed in layers II through VI but concentrated in layers II & III. Their perikarya contained a large nucleus and a small amount of perinuclear cytoplasm. The somata and dendrites of all labelled cells received Gray's type I and type II synapses. ChAT-stained axons formed a dense and diffuse network throughout the visual cortex and particularly in layer V. Electron microscopy revealed that the great majority formed type II synaptic contacts with dendrites of various sizes, unlabelled non-pyramidal somata and, on a few occasions, with ChAT-labelled cells. However, a very small number of terminals appeared to form type I synaptic contacts. This study describes the morphological organization of the cholinergic system in the visual cortex, the function of which has been under extensive investigation.

  18. Automata network models of galaxy evolution

    NASA Technical Reports Server (NTRS)

    Chappell, David; Scalo, John

    1993-01-01

    Two ideas appear frequently in theories of star formation and galaxy evolution: (1) star formation is nonlocally excitatory, stimulating star formation in neighboring regions by propagation of a dense fragmenting shell or the compression of preexisting clouds; and (2) star formation is nonlocally inhibitory, making H2 regions and explosions which can create low-density and/or high temperature regions and increase the macroscopic velocity dispersion of the cloudy gas. Since it is not possible, given the present state of hydrodynamic modeling, to estimate whether one of these effects greatly dominates the other, it is of interest to investigate the predicted spatial pattern of star formation and its temporal behavior in simple models which incorporate both effects in a controlled manner. The present work presents preliminary results of such a study which is based on lattice galaxy models with various types of nonlocal inhibitory and excitatory couplings of the local SFR to the gas density, temperature, and velocity field meant to model a number of theoretical suggestions.

  19. Hybrid metal organic scintillator materials system and particle detector

    DOEpatents

    Bauer, Christina A.; Allendorf, Mark D.; Doty, F. Patrick; Simmons, Blake A.

    2011-07-26

    We describe the preparation and characterization of two zinc hybrid luminescent structures based on the flexible and emissive linker molecule, trans-(4-R,4'-R') stilbene, where R and R' are mono- or poly-coordinating groups, which retain their luminescence within these solid materials. For example, reaction of trans-4,4'-stilbenedicarboxylic acid and zinc nitrate in the solvent dimethylformamide (DMF) yielded a dense 2-D network featuring zinc in both octahedral and tetrahedral coordination environments connected by trans-stilbene links. Similar reaction in diethylformamide (DEF) at higher temperatures resulted in a porous, 3-D framework structure consisting of two interpenetrating cubic lattices, each featuring basic to zinc carboxylate vertices joined by trans-stilbene, analogous to the isoreticular MOF (IRMOF) series. We demonstrate that the optical properties of both embodiments correlate directly with the local ligand environments observed in the crystal structures. We further demonstrate that these materials produce high luminescent response to proton radiation and high radiation tolerance relative to prior scintillators. These features can be used to create sophisticated scintillating detection sensors.

  20. Surface protection of light metals by one-step laser cladding with oxide ceramics

    NASA Astrophysics Data System (ADS)

    Nowotny, S.; Richter, A.; Tangermann, K.

    1999-06-01

    Today, intricate problems of surface treatment can be solved through precision cladding using advanced laser technology. Metallic and carbide coatings have been produced with high-power lasers for years, and current investigations show that laser cladding is also a promising technique for the production of dense and precisely localized ceramic layers. In the present work, powders based on Al2O3 and ZrO2 were used to clad aluminum and titanium light alloys. The compact layers are up to 1 mm thick and show a nonporous cast structure as well as a homogeneous network of vertical cracks. The high adhesive strength is due to several chemical and mechanical bonding mechanisms and can exceed that of plasmasprayed coatings. Compared to thermal spray techniques, the material deposition is strictly focused onto small functional areas of the workpiece. Thus, being a precision technique, laser cladding is not recommended for large-area coatings. Examples of applications are turbine components and filigree parts of pump casings.

  1. Ultra-Rapid serial visual presentation reveals dynamics of feedforward and feedback processes in the ventral visual pathway.

    PubMed

    Mohsenzadeh, Yalda; Qin, Sheng; Cichy, Radoslaw M; Pantazis, Dimitrios

    2018-06-21

    Human visual recognition activates a dense network of overlapping feedforward and recurrent neuronal processes, making it hard to disentangle processing in the feedforward from the feedback direction. Here, we used ultra-rapid serial visual presentation to suppress sustained activity that blurs the boundaries of processing steps, enabling us to resolve two distinct stages of processing with MEG multivariate pattern classification. The first processing stage was the rapid activation cascade of the bottom-up sweep, which terminated early as visual stimuli were presented at progressively faster rates. The second stage was the emergence of categorical information with peak latency that shifted later in time with progressively faster stimulus presentations, indexing time-consuming recurrent processing. Using MEG-fMRI fusion with representational similarity, we localized recurrent signals in early visual cortex. Together, our findings segregated an initial bottom-up sweep from subsequent feedback processing, and revealed the neural signature of increased recurrent processing demands for challenging viewing conditions. © 2018, Mohsenzadeh et al.

  2. Monitoring of heavy metal concentrations in home outdoor air using moss bags.

    PubMed

    Rivera, Marcela; Zechmeister, Harald; Medina-Ramón, Mercedes; Basagaña, Xavier; Foraster, Maria; Bouso, Laura; Moreno, Teresa; Solanas, Pascual; Ramos, Rafael; Köllensperger, Gunda; Deltell, Alexandre; Vizcaya, David; Künzli, Nino

    2011-04-01

    One monitoring station is insufficient to characterize the high spatial variation of traffic-related heavy metals within cities. We tested moss bags (Hylocomium splendens), deployed in a dense network, for the monitoring of metals in outdoor air and characterized metals' long-term spatial distribution and its determinants in Girona, Spain. Mosses were exposed outside 23 homes for two months; NO₂ was monitored for comparison. Metals were not highly correlated with NO₂ and showed higher spatial variation than NO₂. Regression models explained 61-85% of Cu, Cr, Mo, Pb, Sb, Sn, and Zn and 72% of NO₂ variability. Metals were strongly associated with the number of bus lines in the nearest street. Heavy metals are an alternative traffic-marker to NO₂ given their toxicological relevance, stronger association with local traffic and higher spatial variability. Monitoring heavy metals with mosses is appealing, particularly for long-term exposure assessment, as mosses can remain on site many months without maintenance. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Probing star formation relations of mergers and normal galaxies across the CO ladder

    NASA Astrophysics Data System (ADS)

    Greve, Thomas R.

    We examine integrated luminosity relations between the IR continuum and the CO rotational ladder observed for local (ultra) luminous infra-red galaxies ((U)LIRGs, L IR >= 1011 M⊙) and normal star forming galaxies in the context of radiation pressure regulated star formation proposed by Andrews & Thompson (2011). This can account for the normalization and linear slopes of the luminosity relations (log L IR = α log L'CO + β) of both low- and high-J CO lines observed for normal galaxies. Super-linear slopes occur for galaxy samples with significantly different dense gas fractions. Local (U)LIRGs are observed to have sub-linear high-J (J up > 6) slopes or, equivalently, increasing L COhigh-J /L IR with L IR. In the extreme ISM conditions of local (U)LIRGs, the high-J CO lines no longer trace individual hot spots of star formation (which gave rise to the linear slopes for normal galaxies) but a more widespread warm and dense gas phase mechanically heated by powerful supernovae-driven turbulence and shocks.

  4. Multisector Health Policy Networks in 15 Large US Cities.

    PubMed

    Harris, Jenine K; Leider, J P; Carothers, Bobbi J; Castrucci, Brian C; Hearne, Shelley

    2016-01-01

    Local health departments (LHDs) have historically not prioritized policy development, although it is one of the 3 core areas they address. One strategy that may influence policy in LHD jurisdictions is the formation of partnerships across sectors to work together on local public health policy. We used a network approach to examine LHD local health policy partnerships across 15 large cities from the Big Cities Health Coalition. We surveyed the health departments and their partners about their working relationships in 5 policy areas: core local funding, tobacco control, obesity and chronic disease, violence and injury prevention, and infant mortality. Drawing on prior literature linking network structures with performance, we examined network density, transitivity, centralization and centrality, member diversity, and assortativity of ties. Networks included an average of 21.8 organizations. Nonprofits and government agencies made up the largest proportions of the networks, with 28.8% and 21.7% of network members, whereas for-profits and foundations made up the smallest proportions in all of the networks, with just 1.2% and 2.4% on average. Mean values of density, transitivity, diversity, assortativity, centralization, and centrality showed similarity across policy areas and most LHDs. The tobacco control and obesity/chronic disease networks were densest and most diverse, whereas the infant mortality policy networks were the most centralized and had the highest assortativity. Core local funding policy networks had lower scores than other policy area networks by most network measures. Urban LHDs partner with organizations from diverse sectors to conduct local public health policy work. Network structures are similar across policy areas jurisdictions. Obesity and chronic disease, tobacco control, and infant mortality networks had structures consistent with higher performing networks, whereas core local funding networks had structures consistent with lower performing networks.

  5. Multisector Health Policy Networks in 15 Large US Cities

    PubMed Central

    Leider, J. P.; Carothers, Bobbi J.; Castrucci, Brian C.; Hearne, Shelley

    2016-01-01

    Context: Local health departments (LHDs) have historically not prioritized policy development, although it is one of the 3 core areas they address. One strategy that may influence policy in LHD jurisdictions is the formation of partnerships across sectors to work together on local public health policy. Design: We used a network approach to examine LHD local health policy partnerships across 15 large cities from the Big Cities Health Coalition. Setting/Participants: We surveyed the health departments and their partners about their working relationships in 5 policy areas: core local funding, tobacco control, obesity and chronic disease, violence and injury prevention, and infant mortality. Outcome Measures: Drawing on prior literature linking network structures with performance, we examined network density, transitivity, centralization and centrality, member diversity, and assortativity of ties. Results: Networks included an average of 21.8 organizations. Nonprofits and government agencies made up the largest proportions of the networks, with 28.8% and 21.7% of network members, whereas for-profits and foundations made up the smallest proportions in all of the networks, with just 1.2% and 2.4% on average. Mean values of density, transitivity, diversity, assortativity, centralization, and centrality showed similarity across policy areas and most LHDs. The tobacco control and obesity/chronic disease networks were densest and most diverse, whereas the infant mortality policy networks were the most centralized and had the highest assortativity. Core local funding policy networks had lower scores than other policy area networks by most network measures. Conclusion: Urban LHDs partner with organizations from diverse sectors to conduct local public health policy work. Network structures are similar across policy areas jurisdictions. Obesity and chronic disease, tobacco control, and infant mortality networks had structures consistent with higher performing networks, whereas core local funding networks had structures consistent with lower performing networks. PMID:26910868

  6. Understanding the influence of all nodes in a network

    PubMed Central

    Lawyer, Glenn

    2015-01-01

    Centrality measures such as the degree, k-shell, or eigenvalue centrality can identify a network's most influential nodes, but are rarely usefully accurate in quantifying the spreading power of the vast majority of nodes which are not highly influential. The spreading power of all network nodes is better explained by considering, from a continuous-time epidemiological perspective, the distribution of the force of infection each node generates. The resulting metric, the expected force, accurately quantifies node spreading power under all primary epidemiological models across a wide range of archetypical human contact networks. When node power is low, influence is a function of neighbor degree. As power increases, a node's own degree becomes more important. The strength of this relationship is modulated by network structure, being more pronounced in narrow, dense networks typical of social networking and weakening in broader, looser association networks such as the Internet. The expected force can be computed independently for individual nodes, making it applicable for networks whose adjacency matrix is dynamic, not well specified, or overwhelmingly large. PMID:25727453

  7. Structure and function of complex brain networks

    PubMed Central

    Sporns, Olaf

    2013-01-01

    An increasing number of theoretical and empirical studies approach the function of the human brain from a network perspective. The analysis of brain networks is made feasible by the development of new imaging acquisition methods as well as new tools from graph theory and dynamical systems. This review surveys some of these methodological advances and summarizes recent findings on the architecture of structural and functional brain networks. Studies of the structural connectome reveal several modules or network communities that are interlinked by hub regions mediating communication processes between modules. Recent network analyses have shown that network hubs form a densely linked collective called a “rich club,” centrally positioned for attracting and dispersing signal traffic. In parallel, recordings of resting and task-evoked neural activity have revealed distinct resting-state networks that contribute to functions in distinct cognitive domains. Network methods are increasingly applied in a clinical context, and their promise for elucidating neural substrates of brain and mental disorders is discussed. PMID:24174898

  8. Dynamic relationship between ocean bottom pressure and bathymetry around northern part of Hikurangi

    NASA Astrophysics Data System (ADS)

    Muramoto, T.; Inazu, D.; Ito, Y.; Hino, R.; Suzuki, S.

    2017-12-01

    In recent years, observation using ocean bottom pressure recorders for the purpose of the evaluation of sea floor crustal deformation is in great vogue. The observation network set up for the observation of sea floor is densely spaced compared with the instrument network for the observation of ocean. Therefore, it has the characteristic that it can observe phenomena on a local scale. In this study, by using these in situ data, we discuss ocean phenomena on a local scale. In this study, we use a high-resolution ocean model (Inazu Ocean Model) driven by surface air pressure and surface wind vector published by the Japan Meteorological Agency. We perform a hindcast experiment for ocean bottom pressure anomaly from April 2013 to June 2017. Then, we compare these results with in situ data. In this study, we use observed pressure records which were recorded by autonomous type instrument spanning a period from April 2013 to June 2017 off the coast of North Island in New Zealand. Consequently, we found this model can simulate not only the amplitude but also phase of non-tidal oceanic variation of East Cape Current (ECC) off the coast of North Island of New Zealand. Then, we calculate cross-correlation coefficient between the data at the OBP sites. We revealed that the ocean bottom pressure shows different behavior on the west side from the east side of edge of the continental shelf. This result implies that the submarine slope induces a dynamic effect and contributes to the seasonal variation of ocean bottom pressure. In addition, we calculate the velocity of the surface current in this area using our model, and consider the relationship between it and ocean bottom pressure variation. Taken together, we can say that the barotropic flow in the direction of south-west extends to the bottom of the sea in this area. Therefore, the existence of local cross-isobath currents is suggested. Our result indicates bathymetry has dynamic effect to ocean circulation on local scale and at the same time the surface ocean circulation contributes to ocean bottom pressure considerably.

  9. Earthquake Swarm in Armutlu Peninsula, Eastern Marmara Region, Turkey

    NASA Astrophysics Data System (ADS)

    Yavuz, Evrim; Çaka, Deniz; Tunç, Berna; Serkan Irmak, T.; Woith, Heiko; Cesca, Simone; Lühr, Birger-Gottfried; Barış, Şerif

    2015-04-01

    The most active fault system of Turkey is North Anatolian Fault Zone and caused two large earthquakes in 1999. These two earthquakes affected the eastern Marmara region destructively. Unbroken part of the North Anatolian Fault Zone crosses north of Armutlu Peninsula on east-west direction. This branch has been also located quite close to Istanbul known as a megacity with its high population, economic and social aspects. A new cluster of microseismic activity occurred in the direct vicinity southeastern of the Yalova Termal area. Activity started on August 2, 2014 with a series of micro events, and then on August 3, 2014 a local magnitude is 4.1 event occurred, more than 1000 in the followed until August 31, 2014. Thus we call this tentatively a swarm-like activity. Therefore, investigation of the micro-earthquake activity of the Armutlu Peninsula has become important to understand the relationship between the occurrence of micro-earthquakes and the tectonic structure of the region. For these reasons, Armutlu Network (ARNET), installed end of 2005 and equipped with currently 27 active seismic stations operating by Kocaeli University Earth and Space Sciences Research Center (ESSRC) and Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum (GFZ), is a very dense network tool able to record even micro-earthquakes in this region. In the 30 days period of August 02 to 31, 2014 Kandilli Observatory and Earthquake Research Institute (KOERI) announced 120 local earthquakes ranging magnitudes between 0.7 and 4.1, but ARNET provided more than 1000 earthquakes for analyzes at the same time period. In this study, earthquakes of the swarm area and vicinity regions determined by ARNET were investigated. The focal mechanism of the August 03, 2014 22:22:42 (GMT) earthquake with local magnitude (Ml) 4.0 is obtained by the moment tensor solution. According to the solution, it discriminates a normal faulting with dextral component. The obtained focal mechanism solution is conformable with the features of local faults in the region. The spatial vicinity of the earthquake swarm and the Yalova geothermal area may suggest a physical link between the ongoing exploitation of the reservoir and the earthquake activity. Keywords: Earthquake swarm, Armutlu Peninsula, ARNET, geothermal activity

  10. Local-Area-Network Simulator

    NASA Technical Reports Server (NTRS)

    Gibson, Jim; Jordan, Joe; Grant, Terry

    1990-01-01

    Local Area Network Extensible Simulator (LANES) computer program provides method for simulating performance of high-speed local-area-network (LAN) technology. Developed as design and analysis software tool for networking computers on board proposed Space Station. Load, network, link, and physical layers of layered network architecture all modeled. Mathematically models according to different lower-layer protocols: Fiber Distributed Data Interface (FDDI) and Star*Bus. Written in FORTRAN 77.

  11. THE GREEN BANK TELESCOPE MAPS THE DENSE, STAR-FORMING GAS IN THE NEARBY STARBURST GALAXY M82

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kepley, Amanda A.; Frayer, David; Leroy, Adam K.

    Observations of the Milky Way and nearby galaxies show that dense molecular gas correlates with recent star formation, suggesting that the formation of this gas phase may help regulate star formation. A key test of this idea requires wide-area, high-resolution maps of dense molecular gas in galaxies to explore how local physical conditions drive dense gas formation, but these observations have been limited because of the faintness of dense gas tracers like HCN and HCO{sup +}. Here we demonstrate the power of the Robert C. Byrd Green Bank Telescope (GBT)—the largest single-dish millimeter radio telescope—for mapping dense gas in galaxiesmore » by presenting the most sensitive maps yet of HCN and HCO{sup +} in the starburst galaxy M82. The HCN and HCO{sup +} in the disk of this galaxy correlates with both recent star formation and more diffuse molecular gas and shows kinematics consistent with a rotating torus. The HCO{sup +} emission extending to the north and south of the disk is coincident with the outflow previously identified in CO and traces the eastern edge of the hot outflowing gas. The central starburst region has a higher ratio of star formation to dense gas than the outer regions, pointing to the starburst as a key driver of this relationship. These results establish that the GBT can efficiently map the dense molecular gas at 90 GHz in nearby galaxies, a capability that will increase further with the 16 element feed array under construction.« less

  12. WDM PONs based on colorless technology

    NASA Astrophysics Data System (ADS)

    Saliou, Fabienne; Simon, Gael; Chanclou, Philippe; Pizzinat, Anna; Lin, Huafeng; Zhou, Enyu; Xu, Zhiguang

    2015-12-01

    Wavelength Division Multiplexing (WDM) Passive Optical Network (PON) is foreseen to be part of the Next Generation Passive Optical Networks. Business and mobile fronthaul networks already express the need to develop WDM PONs in the access segment. Fixed wavelength transceivers based on Coarse WDM are already available to respond to today's market needs but Dense WDM technologies will be needed and colorless technologies are essential to provide simple and cost-effective WDM PON systems. We propose in this paper to demonstrate the capabilities of a DWDM PON system prototype based on self-seeded RSOAs and designed to transmit CPRI over 60 km of fiber at 2.5 Gbit/s.

  13. Spatial spreading of infectious disease via local and national mobility networks in South Korea

    NASA Astrophysics Data System (ADS)

    Kwon, Okyu; Son, Woo-Sik

    2017-12-01

    We study the spread of infectious disease based on local- and national-scale mobility networks. We construct a local mobility network using data on urban bus services to estimate local-scale movement of people. We also construct a national mobility network from orientation-destination data of vehicular traffic between highway tollgates to evaluate national-scale movement of people. A metapopulation model is used to simulate the spread of epidemics. Thus, the number of infected people is simulated using a susceptible-infectious-recovered (SIR) model within the administrative division, and inter-division spread of infected people is determined through local and national mobility networks. In this paper, we consider two scenarios for epidemic spread. In the first, the infectious disease only spreads through local-scale movement of people, that is, the local mobility network. In the second, it spreads via both local and national mobility networks. For the former, the simulation results show infected people sequentially spread to neighboring divisions. Yet for the latter, we observe a faster spreading pattern to distant divisions. Thus, we confirm the national mobility network enhances synchronization among the incidence profiles of all administrative divisions.

  14. A global interaction network maps a wiring diagram of cellular function

    PubMed Central

    Costanzo, Michael; VanderSluis, Benjamin; Koch, Elizabeth N.; Baryshnikova, Anastasia; Pons, Carles; Tan, Guihong; Wang, Wen; Usaj, Matej; Hanchard, Julia; Lee, Susan D.; Pelechano, Vicent; Styles, Erin B.; Billmann, Maximilian; van Leeuwen, Jolanda; van Dyk, Nydia; Lin, Zhen-Yuan; Kuzmin, Elena; Nelson, Justin; Piotrowski, Jeff S.; Srikumar, Tharan; Bahr, Sondra; Chen, Yiqun; Deshpande, Raamesh; Kurat, Christoph F.; Li, Sheena C.; Li, Zhijian; Usaj, Mojca Mattiazzi; Okada, Hiroki; Pascoe, Natasha; Luis, Bryan-Joseph San; Sharifpoor, Sara; Shuteriqi, Emira; Simpkins, Scott W.; Snider, Jamie; Suresh, Harsha Garadi; Tan, Yizhao; Zhu, Hongwei; Malod-Dognin, Noel; Janjic, Vuk; Przulj, Natasa; Troyanskaya, Olga G.; Stagljar, Igor; Xia, Tian; Ohya, Yoshikazu; Gingras, Anne-Claude; Raught, Brian; Boutros, Michael; Steinmetz, Lars M.; Moore, Claire L.; Rosebrock, Adam P.; Caudy, Amy A.; Myers, Chad L.; Andrews, Brenda; Boone, Charles

    2017-01-01

    We generated a global genetic interaction network for Saccharomyces cerevisiae, constructing over 23 million double mutants, identifying ~550,000 negative and ~350,000 positive genetic interactions. This comprehensive network maps genetic interactions for essential gene pairs, highlighting essential genes as densely connected hubs. Genetic interaction profiles enabled assembly of a hierarchical model of cell function, including modules corresponding to protein complexes and pathways, biological processes, and cellular compartments. Negative interactions connected functionally related genes, mapped core bioprocesses, and identified pleiotropic genes, whereas positive interactions often mapped general regulatory connections among gene pairs, rather than shared functionality. The global network illustrates how coherent sets of genetic interactions connect protein complex and pathway modules to map a functional wiring diagram of the cell. PMID:27708008

  15. Enhancement of Beaconless Location-Based Routing with Signal Strength Assistance for Ad-Hoc Networks

    NASA Astrophysics Data System (ADS)

    Chen, Guowei; Itoh, Kenichi; Sato, Takuro

    Routing in Ad-hoc networks is unreliable due to the mobility of the nodes. Location-based routing protocols, unlike other protocols which rely on flooding, excel in network scalability. Furthermore, new location-based routing protocols, like, e. g. BLR [1], IGF [2], & CBF [3] have been proposed, with the feature of not requiring beacons in MAC-layer, which improve more in terms of scalability. Such beaconless routing protocols can work efficiently in dense network areas. However, these protocols' algorithms have no ability to avoid from routing into sparse areas. In this article, historical signal strength has been added as a factor into the BLR algorithm, which avoids routing into sparse area, and consequently improves the global routing efficiency.

  16. High-Resolution Source Parameter and Site Characteristics Using Near-Field Recordings - Decoding the Trade-off Problems Between Site and Source

    NASA Astrophysics Data System (ADS)

    Chen, X.; Abercrombie, R. E.; Pennington, C.

    2017-12-01

    Recorded seismic waveforms include contributions from earthquake source properties and propagation effects, leading to long-standing trade-off problems between site/path effects and source effects. With near-field recordings, the path effect is relatively small, so the trade-off problem can be simplified to between source and site effects (commonly referred as "kappa value"). This problem is especially significant for small earthquakes where the corner frequencies are within similar ranges of kappa values, so direct spectrum fitting often leads to systematic biases due to corner frequency and magnitude. In response to the significantly increased seismicity rate in Oklahoma, several local networks have been deployed following major earthquakes: the Prague, Pawnee and Fairview earthquakes. Each network provides dense observations within 20 km surrounding the fault zone, recording tens of thousands of aftershocks between M1 to M3. Using near-field recordings in the Prague area, we apply a stacking approach to separate path/site and source effects. The resulting source parameters are consistent with parameters derived from ground motion and spectral ratio methods from other studies; they exhibit spatial coherence within the fault zone for different fault patches. We apply these source parameter constraints in an analysis of kappa values for stations within 20 km of the fault zone. The resulting kappa values show significantly reduced variability compared to those from direct spectral fitting without constraints on the source spectrum; they are not biased by earthquake magnitudes. With these improvements, we plan to apply the stacking analysis to other local arrays to analyze source properties and site characteristics. For selected individual earthquakes, we will also use individual-pair empirical Green's function (EGF) analysis to validate the source parameter estimations.

  17. Mitigation of Flood Hazards Through Modification of Urban Channels and Floodplains

    NASA Astrophysics Data System (ADS)

    Miller, A. J.; Lee, G.; Bledsoe, B. P.; Stephens, T.

    2017-12-01

    Small urban watersheds with high percent impervious cover and dense road and storm-drain networks are highly responsive to short-duration high-intensity rainfall events that lead to flash floods. The Baltimore metropolitan area has some of the flashiest urban watersheds in the conterminous U.S., high frequency of channel incision in affected areas, and a large number of watershed restoration projects designed to restore ecosystem services through reconnection of the channel with the floodplain. A question of key importance in these and other urban watersheds is to what extent we can mitigate flood hazards and urban stream syndrome through restoration activities that modify the channel and valley floor. Local and state governments have invested resources in repairing damage caused by extreme events like the July 30, 2016 Ellicott City flood in the Tiber River watershed, as well as more frequent high flows in other local urban streams. Recent reports have investigated how much flood mitigation may be achieved through modification of the channel and floodplain to enhance short-term storage of flood waters on the valley floor or in other subsurface structures, as compared with increasing stormwater management in the headwaters. Ongoing research conducted as part of the UWIN (Urban Water Innovation Network) program utilizes high-resolution topographic point clouds derived by processing of photographs from hand-held cameras or video frames from drone overflights. These are used both to track geomorphic change and to assess flood response with 2d hydraulic modeling tools under alternative mitigation scenarios. Assessment metrics include variations in inundation extent, water depth, hydrograph attenuation, and temporal and spatial characteristics of the 2d depth-averaged velocity field. Examples from diverse urban watersheds are presented to illustrate the range of anticipated outcomes and potential constraints on the effectiveness of downstream vs. headwater mitigation efforts.

  18. Loading effects beneath the Gotvand-e Olya Reservoir (south-west of Iran) deduced from ambient noise tomography

    NASA Astrophysics Data System (ADS)

    Ebrahimi, M.; Tatar, M.; Aoudia, A.; Guidarelli, M.

    2018-01-01

    In order to define the precise shallow velocity structure beneath the second largest dam reservoir in Iran and to understand the loading effects on the underlying crust, the shear wave velocity of the shallow structure beneath the Gotvand-e Olya (hereinafter referred to as Gotvand) reservoir is determined through the inversion of group velocities obtained from seismic ambient noise tomography, using continuous data from 10 stations of a local network, installed to monitor the induced seismicity in the region surrounding the Gotvand and Masjed Soleyman dams for potential hazard. We obtained Rayleigh waves from cross-correlation of waveforms recorded 10 months before and the same duration after impoundment of the Gotvand reservoir and calculated the group velocity from dispersion analysis in the period range 2-8 s. The group velocity dispersion curves are used to produce 2-D group velocity tomographic maps. The resulting tomographic maps at short periods are well correlated with subsurface geological features and delineate distinct low- and high-velocity zones separated mainly by geological boundaries. The 3-D shear wave velocity structure provides detailed information about the crustal features underneath the reservoir. The results are consistent with the lithology of the region, and attest that ambient noise tomography (ANT) can be used for detailed studies of the velocity structure and lithology at shallow depths using continuous data from a dense local seismic network. An increase of shear wave velocity is observed at the deep parts (4-6 km) underneath the reservoir after impoundment of the dam, which could be caused by the changes in rocks properties after impoundment. However, at shallow depths (2-4 km), a decrease of Vs velocity is observed that can be associated to the penetration of water after the impoundment.

  19. Designing a low-cost effective network for monitoring large scale regional seismicity in a soft-soil region (Alsace, France)

    NASA Astrophysics Data System (ADS)

    Bès de Berc, M.; Doubre, C.; Wodling, H.; Jund, H.; Hernandez, A.; Blumentritt, H.

    2015-12-01

    The Seismological Observatory of the North-East of France (ObSNEF) is developing its monitoring network within the framework of several projects. Among these project, RESIF (Réseau sismologique et géodésique français) allows the instrumentation of broad-band seismic stations, separated by 50-100 km. With the recent and future development of geothermal industrial projects in the Alsace region, the ObSNEF is responsible for designing, building and operating a dense regional seismic network in order to detect and localize earthquakes with both a completeness magnitude of 1.5 and no clipping for M6.0. The realization of the project has to be done prior to the summer 2016Several complex technical and financial constraints constitute such a projet. First, most of the Alsace Région (150x150 km2), particularly the whole Upper Rhine Graben, is a soft-soil plain where seismic signals are dominated by a high frequency noise level. Second, all the signals have to be transmitted in near real-time. And finally, the total cost of the project must not exceed $450,000.Regarding the noise level in Alsace, in order to make a reduction of 40 dB for frequencies above 1Hz, we program to instrument into 50m deep well with post-hole sensor for 5 stations out of 8 plane new stations. The 3 remaining would be located on bedrock along the Vosges piedmont. In order to be sensitive to low-magnitude regional events, we plan to install a low-noise short-period post-hole velocimeter. In order to avoid saturation for high potentiel local events (M6.0 at 10km), this velocimeter will be coupled with a surface strong-motion sensor. Regarding the connectivity, these stations will have no wired network, which reduces linking costs and delays. We will therefore use solar panels and a 3G/GPRS network. The infrastructure will be minimal and reduced to an outdoor box on a secured parcel of land. In addition to the data-logger, we will use a 12V ruggedized computer, hosting a seed-link server for near real-time transmission and a rsync daemon for delayed-time transmission.We plan to install and validate our first pilot station during the fall of 2015, and have an effective network by the summer of 2016.

  20. A Modeling Framework for Inference of Surface Emissions Using Mobile Observations

    NASA Astrophysics Data System (ADS)

    Fasoli, B.; Mitchell, L.; Crosman, E.; Mendoza, D. L.; Lin, J. C.

    2016-12-01

    Our ability to quantify surface emissions depends on the precision of observations and the spatial density of measurement networks. Mobile measurement techniques offer a cost effective strategy for quantifying atmospheric conditions over space without requiring a dense network of in-situ sites. However, interpretation of these data and inversion of dispersed measurements to estimate surface emissions can be difficult. We introduce a framework using the Stochastic Time-Inverted Lagrangian Transport (STILT) model that assimilates both spatially resolved observations and an emissions inventory to better estimate surface fluxes. Salt Lake City is a unique laboratory for the study of urban carbon emissions. It is the only U.S. city that utilizes light-rail trains to continuously measure high frequency carbon dioxide (CO2) and methane (CH4); it is home to one of the longest and most spatially resolved high precision CO2 measurement networks (air.utah.edu); and it is one of four cities in the world for which the Hestia anthropogenic emissions inventory has been produced which characterizes CO2 emissions at the scale of individual buildings and roadways. Using these data and modeling resources, we evaluate spatially resolved CO2 measurements and transported CO2 emissions on hourly timescales at a dense spatial resolution across Salt Lake City.

  1. SPECTRE (www.noveltis.fr/spectre): a web Service for Ionospheric Products

    NASA Astrophysics Data System (ADS)

    Jeansou, E.; Crespon, F.; Garcia, R.; Helbert, J.; Moreaux, G.; Lognonne, P.

    2005-12-01

    The dense GPS networks developed for geodesic applications appear to be very efficient ionospheric sensors because of interaction between plasma and electromagnetic waves. Indeed, the dual frequency receivers provide data from which the Slant Total Electron Content (STEC) can be easily extracted to compute Vertical Total Electron Content (VTEC) maps. The SPECTRE project, Service and Products for ionospheric Electron Content and Tropospheric Refractivity over Europe, is currently a pre-operational service providing VTEC maps with high time and space resolution after 3 days time delay (http://www.noveltis.fr/spectre and http://ganymede.ipgp.jussieu.fr/spectre). This project is a part of SWENET, SpaceWeather European Network, initiated by the European Space Agency. The SPECTRE data products are useful for many applications. We will present these applications in term of interest for the scientific community with a special focus on spaceweather and transient ionospheric perturbations related to Earthquakes. Moreover, the pre-operational extensions of SPECTRE to the californian (SCIGN/BARD) and japanese (GEONET) dense GPS networks will be presented. Then the method of 3D tomography of the electron density from GPS data will be presented and its resolution discussed. The expected improvements of the 3D tomographic images by new tomographic reconstruction algorithms and by the advent of the Galileo system will conclude the presentation.

  2. Embedded 100 Gbps Photonic Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuznia, Charlie

    This innovation to fiber optic component technology increases the performance, reduces the size and reduces the power consumption of optical communications within dense network systems, such as advanced distributed computing systems and data centers. VCSEL technology is enabling short-reach (< 100 m) and >100 Gbps optical interconnections over multi-mode fiber in commercial applications.

  3. Deaf Sociality and the Deaf Lutheran Church in Adamorobe, Ghana

    ERIC Educational Resources Information Center

    Kusters, Annelies

    2014-01-01

    This article provides an ethnographic analysis of "deaf sociality" in Adamorobe, a village in Ghana, where the relatively high prevalence of hereditary deafness has led to dense social and spatial connections. Deaf people are part of their hearing environment particularly through family networks, and produce deaf sociality through many…

  4. Class, Kinship Density, and Conjugal Role Segregation.

    ERIC Educational Resources Information Center

    Hill, Malcolm D.

    1988-01-01

    Studied conjugal role segregation in 150 married women from intact families in working-class community. Found that, although involvement in dense kinship networks was associated with conjugal role segregation, respondents' attitudes toward marital roles and phase of family cycle when young children were present were more powerful predictors of…

  5. Synopsis of the D- and E-regions during the energy budget campaign

    NASA Technical Reports Server (NTRS)

    Friedrich, M.; Baker, K. D.; Dickinson, P. H. G.; Dumbs, A.; Grandal, B.; Andreassen, O.; Thrane, E. V.; Smith, L. G.; Stauning, P.; Torkar, K. M.

    1985-01-01

    Electron density profiles derived from rocket-borne measurements are presented. These data were obtained at two different sites in northern Scandinavia under various degrees of geophysical disturbance. The observed electron density profiles are related to ionospheric absorption as observed with the dense riometer network in that area.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedrich, M.; Baker, K.D.; Brekke, A.

    Electron density profiles from ground-based and rocket-borne measurements conducted at three sites in northern Scandinavia under various degrees of geophysical disturbances are presented. These data are checked against an instantaneous picture of the ionospheric absorption obtained via the dense riometer network. A map of the riometer absorption and measured electron densities over Scandinavia is given.

  7. Computation of Surface Laplacian for tri-polar ring electrodes on high-density realistic geometry head model.

    PubMed

    Junwei Ma; Han Yuan; Sunderam, Sridhar; Besio, Walter; Lei Ding

    2017-07-01

    Neural activity inside the human brain generate electrical signals that can be detected on the scalp. Electroencephalograph (EEG) is one of the most widely utilized techniques helping physicians and researchers to diagnose and understand various brain diseases. Due to its nature, EEG signals have very high temporal resolution but poor spatial resolution. To achieve higher spatial resolution, a novel tri-polar concentric ring electrode (TCRE) has been developed to directly measure Surface Laplacian (SL). The objective of the present study is to accurately calculate SL for TCRE based on a realistic geometry head model. A locally dense mesh was proposed to represent the head surface, where the local dense parts were to match the small structural components in TCRE. Other areas without dense mesh were used for the purpose of reducing computational load. We conducted computer simulations to evaluate the performance of the proposed mesh and evaluated possible numerical errors as compared with a low-density model. Finally, with achieved accuracy, we presented the computed forward lead field of SL for TCRE for the first time in a realistic geometry head model and demonstrated that it has better spatial resolution than computed SL from classic EEG recordings.

  8. Conduit dynamics in transitional rhyolitic activity recorded by tuffisite vein textures from the 2008-2009 Chaitén eruption

    NASA Astrophysics Data System (ADS)

    Saubin, Elodie; Tuffen, Hugh; Gurioli, Lucia; Owen, Jacqueline; Castro, Jonathan; Berlo, Kim; McGowan, Ellen; Schipper, C.; Wehbe, Katia

    2016-05-01

    The mechanisms of hazardous silicic eruptions are controlled by complex, poorly-understood conduit processes. Observations of recent Chilean rhyolite eruptions have revealed the importance of hybrid activity, involving simultaneous explosive and effusive emissions from a common vent. Such behaviour hinges upon the ability of gas to decouple from magma in the shallow conduit. Tuffisite veins are increasingly suspected to be a key facilitator of outgassing, as they repeatedly provide a transient permeable escape route for volcanic gases. Intersection of foam domains by tuffisite veins appears critical to efficient outgassing. However, knowledge is currently lacking into textural heterogeneities within shallow conduits, their relationship with tuffisite vein propagation, and the implications for fragmentation and degassing processes. Similarly, the magmatic vesiculation response to upper conduit pressure perturbations, such as those related to the slip of dense magma plugs, remains largely undefined. Here we provide a detailed characterization of an exceptionally large tuffisite vein within a rhyolitic obsidian bomb ejected during transitional explosive-effusive activity at Chaitén, Chile in May 2008. Vein textures and chemistry provide a time-integrated record of the invasion of a dense upper conduit plug by deeper fragmented magma. Quantitative textural analysis reveals diverse vesiculation histories of various juvenile clast types. Using vesicle size distributions, bubble number densities, zones of diffusive water depletion, and glass H2O concentrations, we propose a multi-step degassing/fragmentation history, spanning deep degassing to explosive bomb ejection. Rapid decompression events of ~3-4 MPa are associated with fragmentation of foam and dense magma at ~200-350 metres depth in the conduit, permitting vertical gas and pyroclast mobility over hundreds of metres. Permeable pathway occlusion in the dense conduit plug by pyroclast accumulation and sintering preceded ultimate bomb ejection, which then triggered a final bubble nucleation event. Our results highlight how the vesiculation response of magma to decompression events is highly sensitive to the local melt volatile concentration, which is strongly spatially heterogeneous. Repeated opening of pervasive tuffisite vein networks promotes this heterogeneity, allowing juxtaposition of variably volatile-rich magma fragments that are derived from a wide range of depths in the conduit. This process enables efficient but explosive removal of gas from rhyolitic

  9. Self-organization of synchronous activity propagation in neuronal networks driven by local excitation

    PubMed Central

    Bayati, Mehdi; Valizadeh, Alireza; Abbassian, Abdolhossein; Cheng, Sen

    2015-01-01

    Many experimental and theoretical studies have suggested that the reliable propagation of synchronous neural activity is crucial for neural information processing. The propagation of synchronous firing activity in so-called synfire chains has been studied extensively in feed-forward networks of spiking neurons. However, it remains unclear how such neural activity could emerge in recurrent neuronal networks through synaptic plasticity. In this study, we investigate whether local excitation, i.e., neurons that fire at a higher frequency than the other, spontaneously active neurons in the network, can shape a network to allow for synchronous activity propagation. We use two-dimensional, locally connected and heterogeneous neuronal networks with spike-timing dependent plasticity (STDP). We find that, in our model, local excitation drives profound network changes within seconds. In the emergent network, neural activity propagates synchronously through the network. This activity originates from the site of the local excitation and propagates through the network. The synchronous activity propagation persists, even when the local excitation is removed, since it derives from the synaptic weight matrix. Importantly, once this connectivity is established it remains stable even in the presence of spontaneous activity. Our results suggest that synfire-chain-like activity can emerge in a relatively simple way in realistic neural networks by locally exciting the desired origin of the neuronal sequence. PMID:26089794

  10. Cross-Disciplinary Network Comparison: Matchmaking Between Hairballs

    PubMed Central

    Yan, Koon-Kiu; Wang, Daifeng; Sethi, Anurag; Muir, Paul; Kitchen, Robert; Cheng, Chao; Gerstein, Mark

    2016-01-01

    Biological systems are complex. In particular, the interactions between molecular components often form dense networks that, more often than not, are criticized for being inscrutable ‘hairballs’. We argue that one way of untangling these hairballs is through cross-disciplinary network comparison—leveraging advances in other disciplines to obtain new biological insights. In some cases, such comparisons enable the direct transfer of mathematical formalism between disciplines, precisely describing the abstract associations between entities and allowing us to apply a variety of sophisticated formalisms to biology. In cases where the detailed structure of the network does not permit the transfer of complete formalisms between disciplines, comparison of mechanistic interactions in systems for which we have significant day-to-day experience can provide analogies for interpreting relatively more abstruse biological networks. Here, we illustrate how these comparisons benefit the field with a few specific examples related to network growth, organizational hierarchies, and the evolution of adaptive systems. PMID:27047991

  11. Unveiling the molecular mechanism of self-healing in a telechelic, supramolecular polymer network

    PubMed Central

    Yan, Tingzi; Schröter, Klaus; Herbst, Florian; Binder, Wolfgang H.; Thurn-Albrecht, Thomas

    2016-01-01

    Reversible polymeric networks can show self-healing properties due to their ability to reassemble after application of stress and fracture, but typically the relation between equilibrium molecular dynamics and self-healing kinetics has been difficult to disentangle. Here we present a well-characterized, self-assembled bulk network based on supramolecular assemblies, that allows a clear distinction between chain dynamics and network relaxation. Small angle x-ray scattering and rheological measurements provide evidence for a structurally well-defined, dense network of interconnected aggregates giving mechanical strength to the material. Different from a covalent network, the dynamic character of the supramolecular bonds enables macroscopic flow on a longer time scale and the establishment of an equilibrium structure. A combination of linear and nonlinear rheological measurements clearly identifies the terminal relaxation process as being responsible for the process of self-healing. PMID:27581380

  12. Relating Topological Determinants of Complex Networks to Their Spectral Properties: Structural and Dynamical Effects

    NASA Astrophysics Data System (ADS)

    Castellano, Claudio; Pastor-Satorras, Romualdo

    2017-10-01

    The largest eigenvalue of a network's adjacency matrix and its associated principal eigenvector are key elements for determining the topological structure and the properties of dynamical processes mediated by it. We present a physically grounded expression relating the value of the largest eigenvalue of a given network to the largest eigenvalue of two network subgraphs, considered as isolated: the hub with its immediate neighbors and the densely connected set of nodes with maximum K -core index. We validate this formula by showing that it predicts, with good accuracy, the largest eigenvalue of a large set of synthetic and real-world topologies. We also present evidence of the consequences of these findings for broad classes of dynamics taking place on the networks. As a by-product, we reveal that the spectral properties of heterogeneous networks built according to the linear preferential attachment model are qualitatively different from those of their static counterparts.

  13. Network analysis of physics discussion forums and links to course success

    NASA Astrophysics Data System (ADS)

    Traxler, Adrienne; Gavrin, Andrew; Lindell, Rebecca

    2017-01-01

    Large introductory science courses tend to isolate students, with negative consequences for long-term retention in college. Many active learning courses build collaboration and community among students as an explicit goal, and social network analysis has been used to track the development and beneficial effects of these collaborations. Here we supplement such work by conducting network analysis of online course discussion forums in two semesters of an introductory physics class. Online forums provide a tool for engaging students with each other outside of class, and offer new opportunities to commuter or non-traditional students with limited on-campus time. We look for correlations between position in the forum network (centrality) and final course grades. Preliminary investigation has shown weak correlations in the very dense full-semester network, so we will consider reduced ''backbone'' networks that highlight the most consistent links between students. Future work and implications for instruction will also be discussed.

  14. On the feasibility of measuring urban air pollution by wireless distributed sensor networks.

    PubMed

    Moltchanov, Sharon; Levy, Ilan; Etzion, Yael; Lerner, Uri; Broday, David M; Fishbain, Barak

    2015-01-01

    Accurate evaluation of air pollution on human-wellbeing requires high-resolution measurements. Standard air quality monitoring stations provide accurate pollution levels but due to their sparse distribution they cannot capture the highly resolved spatial variations within cities. Similarly, dedicated field campaigns can use tens of measurement devices and obtain highly dense spatial coverage but normally deployment has been limited to short periods of no more than few weeks. Nowadays, advances in communication and sensory technologies enable the deployment of dense grids of wireless distributed air monitoring nodes, yet their sensor ability to capture the spatiotemporal pollutant variability at the sub-neighborhood scale has never been thoroughly tested. This study reports ambient measurements of gaseous air pollutants by a network of six wireless multi-sensor miniature nodes that have been deployed in three urban sites, about 150 m apart. We demonstrate the network's capability to capture spatiotemporal concentration variations at an exceptional fine resolution but highlight the need for a frequent in-situ calibration to maintain the consistency of some sensors. Accordingly, a procedure for a field calibration is proposed and shown to improve the system's performance. Overall, our results support the compatibility of wireless distributed sensor networks for measuring urban air pollution at a sub-neighborhood spatial resolution, which suits the requirement for highly spatiotemporal resolved measurements at the breathing-height when assessing exposure to urban air pollution. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Towards Integrated Marmara Strong Motion Network

    NASA Astrophysics Data System (ADS)

    Durukal, E.; Erdik, M.; Safak, E.; Ansal, A.; Ozel, O.; Alcik, H.; Mert, A.; Kafadar, N.; Korkmaz, A.; Kurtulus, A.

    2009-04-01

    Istanbul has a 65% chance of having a magnitude 7 or above earthquake within the next 30 years. As part of the preparations for the future earthquake, strong motion networks have been installed in and around Istanbul. The Marmara Strong Motion Network, operated by the Department of Earthquake Engineering of Kandilli Observatory and Earthquake Research Institute, encompasses permanent systems outlined below. It is envisaged that the networks will be run by a single entity responsible for technical management and maintanence, as well as for data management, archiving and dissemination through dedicated web-based interfaces. • Istanbul Earthquake Rapid Response and Early Warning System - IERREWS (one hundred 18-bit accelerometers for rapid response; ten 24-bit accelerometers for early warning) • IGDAŞ Gas Shutoff Network (100 accelerometers to be installed in 2010 and integrated with IERREWS) • Structural Monitoring Arrays - Fatih Sultan Mehmet Suspension Bridge (1200m-long suspension bridge across the Bosphorus, five 3-component accelerometers + GPS sensors) - Hagia Sophia Array (1500-year-old historical edifice, 9 accelerometers) - Süleymaniye Mosque Array (450-year-old historical edifice,9 accelerometers) - Fatih Mosque Array (237-year-old historical edifice, 9 accelerometers) - Kanyon Building Array (high-rise office building, 5 accelerometers) - Isbank Tower Array (high-rise office building, 5 accelerometers) - ENRON Array (power generation facility, 4 acelerometers) - Mihrimah Sultan Mosque Array (450-year-old historical edifice,9 accelerometers + tiltmeters, to be installed in 2009) - Sultanahmet Mosque Array, (390-year-old historical edifice, 9 accelerometers + tiltmeters, to be installed in 2009) • Special Arrays - Atakoy Vertical Array (four 3-component accelerometers at 25, 50, 75, and 150 m depths) - Marmara Tube Tunnel (1400 m long submerged tunnel, 128 ch. accelerometric data, 24 ch. strain data, to be installed in 2010) - Air-Force Academy Array (72 ch. dense accelerometric array to be installed in 2010) - Gemlik Array (a dense basin array of 8 stations, to be installed in 2010) The objectives of these systems and networks are: (1) to produce rapid earthquake intensity, damage and loss assessment information after an earthquake (in the case of IERREWS), (2) to monitor conditions of structural systems, (3) to develop real-time data processing, analysis, and damage detection and location tools (in the case of structural networks) after an extreme event, (4) to assess spatial properties of strong ground motion and ground strain, and to characterise basin response (in the case of special arrays), (5) to investigate site response and wave propagation (in the case of vertical array). Ground motion data obtained from these strong motion networks have and are being used for investigations of attenuation, spatial variation (coherence), simulation benchmarking, source modeling, site response, seismic microzonation, system identification and structural model verification and structural health control. In addition to the systems and networks outlined above there are two temporary networks: KIMNET - a dense urban noise and microtremor network consisting of 50 broadband stations expected to be operational in mid 2009, and SOSEWIN - a 20-station, self-organizing structural integrated array at Ataköy in Istanbul.

  16. Real-time network traffic classification technique for wireless local area networks based on compressed sensing

    NASA Astrophysics Data System (ADS)

    Balouchestani, Mohammadreza

    2017-05-01

    Network traffic or data traffic in a Wireless Local Area Network (WLAN) is the amount of network packets moving across a wireless network from each wireless node to another wireless node, which provide the load of sampling in a wireless network. WLAN's Network traffic is the main component for network traffic measurement, network traffic control and simulation. Traffic classification technique is an essential tool for improving the Quality of Service (QoS) in different wireless networks in the complex applications such as local area networks, wireless local area networks, wireless personal area networks, wireless metropolitan area networks, and wide area networks. Network traffic classification is also an essential component in the products for QoS control in different wireless network systems and applications. Classifying network traffic in a WLAN allows to see what kinds of traffic we have in each part of the network, organize the various kinds of network traffic in each path into different classes in each path, and generate network traffic matrix in order to Identify and organize network traffic which is an important key for improving the QoS feature. To achieve effective network traffic classification, Real-time Network Traffic Classification (RNTC) algorithm for WLANs based on Compressed Sensing (CS) is presented in this paper. The fundamental goal of this algorithm is to solve difficult wireless network management problems. The proposed architecture allows reducing False Detection Rate (FDR) to 25% and Packet Delay (PD) to 15 %. The proposed architecture is also increased 10 % accuracy of wireless transmission, which provides a good background for establishing high quality wireless local area networks.

  17. Weighted networks as randomly reinforced urn processes

    NASA Astrophysics Data System (ADS)

    Caldarelli, Guido; Chessa, Alessandro; Crimaldi, Irene; Pammolli, Fabio

    2013-02-01

    We analyze weighted networks as randomly reinforced urn processes, in which the edge-total weights are determined by a reinforcement mechanism. We develop a statistical test and a procedure based on it to study the evolution of networks over time, detecting the “dominance” of some edges with respect to the others and then assessing if a given instance of the network is taken at its steady state or not. Distance from the steady state can be considered as a measure of the relevance of the observed properties of the network. Our results are quite general, in the sense that they are not based on a particular probability distribution or functional form of the random weights. Moreover, the proposed tool can be applied also to dense networks, which have received little attention by the network community so far, since they are often problematic. We apply our procedure in the context of the International Trade Network, determining a core of “dominant edges.”

  18. Modeling the coevolution of topology and traffic on weighted technological networks

    NASA Astrophysics Data System (ADS)

    Xie, Yan-Bo; Wang, Wen-Xu; Wang, Bing-Hong

    2007-02-01

    For many technological networks, the network structures and the traffic taking place on them mutually interact. The demands of traffic increment spur the evolution and growth of the networks to maintain their normal and efficient functioning. In parallel, a change of the network structure leads to redistribution of the traffic. In this paper, we perform an extensive numerical and analytical study, extending results of Wang [Phys. Rev. Lett. 94, 188702 (2005)]. By introducing a general strength-coupling interaction driven by the traffic increment between any pair of vertices, our model generates networks of scale-free distributions of strength, weight, and degree. In particular, the obtained nonlinear correlation between vertex strength and degree, and the disassortative property demonstrate that the model is capable of characterizing weighted technological networks. Moreover, the generated graphs possess both dense clustering structures and an anticorrelation between vertex clustering and degree, which are widely observed in real-world networks. The corresponding theoretical predictions are well consistent with simulation results.

  19. Comparison of weak-wind characteristics across different Surface Types in stable stratification

    NASA Astrophysics Data System (ADS)

    Freundorfer, Anita; Rehberg, Ingo; Thomas, Christoph

    2017-04-01

    Atmospheric transport in weak winds and very stable conditions is often characterized by phenomena collectively referred to as submeso motions since their time and spatial scales exceed those of turbulence, but are smaller than synoptic motions. Evidence is mounting that submeso motions invalidate models for turbulent dispersion and diffusion since their physics are not captured by current similarity theories. Typical phenomena in the weak-wind stable boundary layer include meandering motions, quasi two-dimensional pancake-vortices or wavelike motions. These motions may be subject to non-local forcing and sensitive to small topographic undulations. The invalidity of Taylor's hypothesis of frozen turbulence for submeso motions requires the use of sensor networks to provide observations in both time and space domains simultaneously. We present the results from the series of Advanced Resolution Canopy Flow Observations (ARCFLO) experiments using a sensor network consisting of 12 sonic anemometers and 12 thermohygrometers. The objective of ARCFLO was to observe the flow and the turbulent and submeso transport at a high spatial and temporal resolution at 4 different sites in the Pacific Northwest, USA. These sites represented a variable degree of terrain complexity (flat to mountainous) and vegetation architecture (grass to forest, open to dense). In our study, a distinct weak-wind regime was identified for each site using the threshold velocity at which the friction velocity becomes dependent upon the mean horizontal wind speed. Here we used the scalar mean of the wind speed because the friction velocity showed a clearer dependence on the scalar mean compared to the vector mean of the wind velocity. It was found that the critical speed for the weak wind regime is higher in denser vegetation. For an open agricultural area (Botany and Plant Pathology Farm) we found a critical wind speed of v_crit= (0.24±0.05) ms-1 while for a very dense forest (Mary's River Douglas Fir site) with a Leaf Area Index of LAI=9.4 m2m-2, the critical wind speed measures v_crit= (1.0±0.1) ms-1. Further analyses include developing an identification scheme to sample submeso motions using their quasi two-dimensional nature. Once separated from turbulence the properties of submeso motions and the impact of different canopy densities on those motions can be explored. We hypothesize that submeso motions are the main generating mechanism for the locally confined and intermittent turbulence in the weak-wind and stable boundary layers.

  20. Coalescence preference in dense packing of bubbles

    NASA Astrophysics Data System (ADS)

    Kim, Yeseul; Gim, Bopil; Gim, Bopil; Weon, Byung Mook

    2015-11-01

    Coalescence preference is the tendency that a merged bubble from the contact of two original bubbles (parent) tends to be near to the bigger parent. Here, we show that the coalescence preference can be blocked by densely packing of neighbor bubbles. We use high-speed high-resolution X-ray microscopy to clearly visualize individual coalescence phenomenon which occurs in micro scale seconds and inside dense packing of microbubbles with a local packing fraction of ~40%. Previous theory and experimental evidence predict a power of -5 between the relative coalescence position and the parent size. However, our new observation for coalescence preference in densely packed microbubbles shows a different power of -2. We believe that this result may be important to understand coalescence dynamics in dense packing of soft matter. This work (NRF-2013R1A22A04008115) was supported by Mid-career Researcher Program through NRF grant funded by the MEST and also was supported by Ministry of Science, ICT and Future Planning (2009-0082580) and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry and Education, Science and Technology (NRF-2012R1A6A3A04039257).

  1. Development of the brain's structural network efficiency in early adolescence: A longitudinal DTI twin study.

    PubMed

    Koenis, Marinka M G; Brouwer, Rachel M; van den Heuvel, Martijn P; Mandl, René C W; van Soelen, Inge L C; Kahn, René S; Boomsma, Dorret I; Hulshoff Pol, Hilleke E

    2015-12-01

    The brain is a network and our intelligence depends in part on the efficiency of this network. The network of adolescents differs from that of adults suggesting developmental changes. However, whether the network changes over time at the individual level and, if so, how this relates to intelligence, is unresolved in adolescence. In addition, the influence of genetic factors in the developing network is not known. Therefore, in a longitudinal study of 162 healthy adolescent twins and their siblings (mean age at baseline 9.9 [range 9.0-15.0] years), we mapped local and global structural network efficiency of cerebral fiber pathways (weighted with mean FA and streamline count) and assessed intelligence over a three-year interval. We find that the efficiency of the brain's structural network is highly heritable (locally up to 74%). FA-based local and global efficiency increases during early adolescence. Streamline count based local efficiency both increases and decreases, and global efficiency reorganizes to a net decrease. Local FA-based efficiency was correlated to IQ. Moreover, increases in FA-based network efficiency (global and local) and decreases in streamline count based local efficiency are related to increases in intellectual functioning. Individual changes in intelligence and local FA-based efficiency appear to go hand in hand in frontal and temporal areas. More widespread local decreases in streamline count based efficiency (frontal cingulate and occipital) are correlated with increases in intelligence. We conclude that the teenage brain is a network in progress in which individual differences in maturation relate to level of intellectual functioning. © 2015 Wiley Periodicals, Inc.

  2. A symmetric multivariate leakage correction for MEG connectomes

    PubMed Central

    Colclough, G.L.; Brookes, M.J.; Smith, S.M.; Woolrich, M.W.

    2015-01-01

    Ambiguities in the source reconstruction of magnetoencephalographic (MEG) measurements can cause spurious correlations between estimated source time-courses. In this paper, we propose a symmetric orthogonalisation method to correct for these artificial correlations between a set of multiple regions of interest (ROIs). This process enables the straightforward application of network modelling methods, including partial correlation or multivariate autoregressive modelling, to infer connectomes, or functional networks, from the corrected ROIs. Here, we apply the correction to simulated MEG recordings of simple networks and to a resting-state dataset collected from eight subjects, before computing the partial correlations between power envelopes of the corrected ROItime-courses. We show accurate reconstruction of our simulated networks, and in the analysis of real MEGresting-state connectivity, we find dense bilateral connections within the motor and visual networks, together with longer-range direct fronto-parietal connections. PMID:25862259

  3. AFLPs and Mitochondrial Haplotypes Reveal Local Adaptation to Extreme Thermal Environments in a Freshwater Gastropod

    PubMed Central

    Quintela, María; Johansson, Magnus P.; Kristjánsson, Bjarni K.; Barreiro, Rodolfo; Laurila, Anssi

    2014-01-01

    The way environmental variation shapes neutral and adaptive genetic variation in natural populations is a key issue in evolutionary biology. Genome scans allow the identification of the genetic basis of local adaptation without previous knowledge of genetic variation or traits under selection. Candidate loci for divergent adaptation are expected to show higher FST than neutral loci influenced solely by random genetic drift, migration and mutation. The comparison of spatial patterns of neutral markers and loci under selection may help disentangle the effects of gene flow, genetic drift and selection among populations living in contrasting environments. Using the gastropod Radix balthica as a system, we analyzed 376 AFLP markers and 25 mtDNA COI haplotypes for candidate loci and associations with local adaptation among contrasting thermal environments in Lake Mývatn, a volcanic lake in northern Iceland. We found that 2% of the analysed AFLP markers were under directional selection and 12% of the mitochondrial haplotypes correlated with differing thermal habitats. The genetic networks were concordant for AFLP markers and mitochondrial haplotypes, depicting distinct topologies at neutral and candidate loci. Neutral topologies were characterized by intense gene flow revealed by dense nets with edges connecting contrasting thermal habitats, whereas the connections at candidate loci were mostly restricted to populations within each thermal habitat and the number of edges decreased with temperature. Our results suggest microgeographic adaptation within Lake Mývatn and highlight the utility of genome scans in detecting adaptive divergence. PMID:25007329

  4. Thermal footprints in groundwater of central European cities

    NASA Astrophysics Data System (ADS)

    Bayer, P.; Menberg, K.; Blum, P.

    2014-12-01

    Atmospheric thermal pollution in densely populated areas is recognized as a severe problem with consequences for human health, and considerable efforts are being taken to mitigate heat stress in cities. However, anthropogenic activities also influence the thermal environment beneath the ground level, with commonly growing temperatures that affect groundwater ecology and geothermal use efficiency. In our work, we identify the controlling mechanisms for the long-term evolution of such urban heat islands. The shallow groundwater temperatures in several central European cities such as Cologne, Karlsruhe, Munich, Berlin and Zurich were mapped at high spatial and temporal resolution. Thermal anomalies were found to be highly heterogeneous with local hot spots showing temperatures of more than 20°C. Accordingly, these urban regions show a considerable groundwater warming in comparison to undisturbed temperatures of 8-11°C. Examination of potential heat sources by analytical modelling reveals that increased ground surface temperatures and basements of buildings act as dominant drivers for the anthropogenic heat input into the groundwater. The factors are revealed to be case-specific and they may have pronounced local or regional effects. Typical local factors are for example buried district heating networks. In selected cities we find that the average urban heat flux is around one order of magnitude higher than the elevated ground heat flux due to recent climate change. Additionally, such as observed in Zurich, naturally controlled temperature variations can be substantial and they are shown to wash out anthropogenic thermal footprints.

  5. Absence of Rapid Propagation through the Purkinje Network as a Potential Cause of Line Block in the Human Heart with Left Bundle Branch Block.

    PubMed

    Okada, Jun-Ichi; Washio, Takumi; Nakagawa, Machiko; Watanabe, Masahiro; Kadooka, Yoshimasa; Kariya, Taro; Yamashita, Hiroshi; Yamada, Yoko; Momomura, Shin-Ichi; Nagai, Ryozo; Hisada, Toshiaki; Sugiura, Seiryo

    2018-01-01

    Background: Cardiac resynchronization therapy is an effective device therapy for heart failure patients with conduction block. However, a problem with this invasive technique is the nearly 30% of non-responders. A number of studies have reported a functional line of block of cardiac excitation propagation in responders. However, this can only be detected using non-contact endocardial mapping. Further, although the line of block is considered a sign of responders to therapy, the mechanism remains unclear. Methods: Herein, we created two patient-specific heart models with conduction block and simulated the propagation of excitation based on a cellmodel of electrophysiology. In one model with a relatively narrow QRS width (176 ms), we modeled the Purkinje network using a thin endocardial layer with rapid conduction. To reproduce a wider QRS complex (200 ms) in the second model, we eliminated the Purkinje network, and we simulated the endocardial mapping by solving the inverse problem according to the actual mapping system. Results: We successfully observed the line of block using non-contact mapping in the model without the rapid propagation of excitation through the Purkinje network, although the excitation in the wall propagated smoothly. This model of slow conduction also reproduced the characteristic properties of the line of block, including dense isochronal lines and fractionated local electrocardiograms. Further, simulation of ventricular pacing from the lateral wall shifted the location of the line of block. By contrast, in the model with the Purkinje network, propagation of excitation in the endocardial map faithfully followed the actual propagation in the wall, without showing the line of block. Finally, switching the mode of propagation between the two models completely reversed these findings. Conclusions: Our simulation data suggest that the absence of rapid propagation of excitation through the Purkinje network is the major cause of the functional line of block recorded by non-contact endocardial mapping. The line of block can be used to identify responders as these patients loose rapid propagation through the Purkinje network.

  6. Minutia Tensor Matrix: A New Strategy for Fingerprint Matching

    PubMed Central

    Fu, Xiang; Feng, Jufu

    2015-01-01

    Establishing correspondences between two minutia sets is a fundamental issue in fingerprint recognition. This paper proposes a new tensor matching strategy. First, the concept of minutia tensor matrix (simplified as MTM) is proposed. It describes the first-order features and second-order features of a matching pair. In the MTM, the diagonal elements indicate similarities of minutia pairs and non-diagonal elements indicate pairwise compatibilities between minutia pairs. Correct minutia pairs are likely to establish both large similarities and large compatibilities, so they form a dense sub-block. Minutia matching is then formulated as recovering the dense sub-block in the MTM. This is a new tensor matching strategy for fingerprint recognition. Second, as fingerprint images show both local rigidity and global nonlinearity, we design two different kinds of MTMs: local MTM and global MTM. Meanwhile, a two-level matching algorithm is proposed. For local matching level, the local MTM is constructed and a novel local similarity calculation strategy is proposed. It makes full use of local rigidity in fingerprints. For global matching level, the global MTM is constructed to calculate similarities of entire minutia sets. It makes full use of global compatibility in fingerprints. Proposed method has stronger description ability and better robustness to noise and nonlinearity. Experiments conducted on Fingerprint Verification Competition databases (FVC2002 and FVC2004) demonstrate the effectiveness and the efficiency. PMID:25822489

  7. The effect of short ground vegetation on terrestrial laser scans at a local scale

    NASA Astrophysics Data System (ADS)

    Fan, Lei; Powrie, William; Smethurst, Joel; Atkinson, Peter M.; Einstein, Herbert

    2014-09-01

    Terrestrial laser scanning (TLS) can record a large amount of accurate topographical information with a high spatial accuracy over a relatively short period of time. These features suggest it is a useful tool for topographical survey and surface deformation detection. However, the use of TLS to survey a terrain surface is still challenging in the presence of dense ground vegetation. The bare ground surface may not be illuminated due to signal occlusion caused by vegetation. This paper investigates vegetation-induced elevation error in TLS surveys at a local scale and its spatial pattern. An open, relatively flat area vegetated with dense grass was surveyed repeatedly under several scan conditions. A total station was used to establish an accurate representation of the bare ground surface. Local-highest-point and local-lowest-point filters were applied to the point clouds acquired for deriving vegetation height and vegetation-induced elevation error, respectively. The effects of various factors (for example, vegetation height, edge effects, incidence angle, scan resolution and location) on the error caused by vegetation are discussed. The results are of use in the planning and interpretation of TLS surveys of vegetated areas.

  8. Reorganization of a dense granular assembly: The unjamming response function

    NASA Astrophysics Data System (ADS)

    Kolb, Évelyne; Cviklinski, Jean; Lanuza, José; Claudin, Philippe; Clément, Éric

    2004-03-01

    We investigate the mechanical properties of a static dense granular assembly in response to a local forcing. To this end, a small cyclic displacement is applied on a grain in the bulk of a two-dimensional disordered packing under gravity and the displacement fields are monitored. We evidence a dominant long range radial response in the upper half part above the solicitation and after a large number of cycles the response is “quasireversible” with a remanent dissipation field exhibiting long range streams and vortexlike symmetry.

  9. The deeper structure of the southern Dead Sea basin derived from neural network analysis of velocity and attenuation tomography

    NASA Astrophysics Data System (ADS)

    Braeuer, Benjamin; Haberland, Christian; Bauer, Klaus; Weber, Michael

    2014-05-01

    The Dead Sea basin is a pull-apart basin at the Dead Sea transform fault, the boundary between the African and the Arabian plates. Though the DSB has been studied for a long time, the available knowledge - based mainly on surface geology, drilling and seismic reflection surveys - gives only a partial picture of its shallow structure. Therefore, within the framework of the international DESIRE (DEad Sea Integrated REsearch) project, a dense temporary local seismological network was operated in the southern Dead Sea area. Within 18 month of recording 650 events were detected. In addition to an already published tomography study revealing the distribution of P velocities and the Vp/Vs ratios a 2D P-wave attenuation tomography (parameter Qp) was performed. The neural network technique of Self-organizing maps (SOM) is used for the joint interpretation of these three parameters (Vp, Vp/Vs, Qp). The resulting clusters in the petrophysical parameter space are assigned to the main lithological units below the southern part of the Dead Sea basin: (1) The basin sediments characterized by strong attenuation, high vp/vs ratios and low P velocities. (2) The pre-basin sediments characterized by medium to strong attenuation, low Vp/Vs ratios and medium P velocities. (3) The basement characterized by low to moderate attenuation, medium vp/vs ratios and high P velocities. Thus, the asymmetric southern Dead Sea basin is filled with basin sediments down to depth of 7 to 12 km. Below the basin sediments, the pre-basin sediments are extending to a depth between 13 and 18 km.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garlapati, Shravan K; Kuruganti, Phani Teja; Buehrer, Richard M

    The deployment of advanced metering infrastructure by the electric utilities poses unique communication challenges, particularly as the number of meters per aggregator increases. During a power outage, a smart meter tries to report it instantaneously to the electric utility. In a densely populated residential/industrial locality, it is possible that a large number of smart meters simultaneously try to get access to the communication network to report the power outage. If the number of smart meters is very high of the order of tens of thousands (metropolitan areas), the power outage data flooding can lead to Random Access CHannel (RACH) congestion.more » Several utilities are considering the use of cellular network for smart meter communications. In 3G/4G cellular networks, RACH congestion not only leads to collisions, retransmissions and increased RACH delays, but also has the potential to disrupt the dedicated traffic flow by increasing the interference levels (3G CDMA). In order to overcome this problem, in this paper we propose a Time Hierarchical Scheme (THS) that reduces the intensity of power outage data flooding and power outage reporting delay by 6/7th, and 17/18th when compared to their respective values without THS. Also, we propose an Optimum Transmission Rate Adaptive (OTRA) MAC to optimize the latency in power outage data collection. The analysis and simulation results presented in this paper show that both the OTRA and THS features of the proposed MAC results in a Power Outage Data Collection Latency (PODCL) that is 1/10th of the 4G LTE PODCL.« less

  11. Condition of Development of Channeled Flow in Analogue Partially Molten Medium

    NASA Astrophysics Data System (ADS)

    Takashima, S.; Kumagai, I.; Kurita, K.

    2003-12-01

    Melt migration in partially molten medium is conceptually classified into two contrasting models; homogeneous permeable flow and localized channeled flow. The transition from homogeneous flow to localized one is promoted with advance of melting and deformation of the medium, but the physics behind this transition is not yet clarified well. Here we show two kinds of experimental results which are mutually related. One is a development of the channeled flow in a so-called Rayleigh-Taylor Instability experiments. Dense viscous fluid is poured at the top of the matrix fluid; homogeneous mixture of soft transparent gel and viscous fluid having equal density. Liquid fraction is varied for this matrix fluid to see how the fraction controls the development. At the intermediate gel fraction (between70% to about 40%) the dense fluid at first migrates through the grain boundary as permeable flow. But local heterogeneity in the gel fraction induces relative movement of solid phase, which in turns enhances the localization of the flow and deformation. We measured the motion of fluid phase and solid phase separately by PIV/PTV methods. Estimated relative motion and divergence of velocity field of the solid phase show that the state in the relative movement of the solid phase could cause heterogeneous distribution of the solid fraction. The deformation-induced compaction plays an important role. The second experimental result is rheology of the dense suspension of soft gel and viscous fluid. Deformation experiment with concentric cylinders shows that the mixture system has yield strength at the intermediate gel fraction. In the stress state above the yield strength the region where deformation rate is large has low viscosity and its internal structure evolves to the state in heterogeneous distribution of viscosity. We would like to show that this nature is critical in the development of flow from homogeneous one to localized one.

  12. On the Inference of the Cosmic-ray Ionization Rate ζ from the HCO+-to-DCO+ Abundance Ratio: The Effect of Nuclear Spin

    NASA Astrophysics Data System (ADS)

    Shingledecker, Christopher N.; Bergner, Jennifer B.; Le Gal, Romane; Öberg, Karin I.; Hincelin, Ugo; Herbst, Eric

    2016-10-01

    The chemistry of dense interstellar regions was analyzed using a time-dependent gas-grain astrochemical simulation and a new chemical network that incorporates deuterated chemistry, taking into account nuclear spin states for the hydrogen chemistry and its deuterated isotopologues. With this new network, the utility of the [HCO+]/[DCO+] abundance ratio as a probe of the cosmic-ray ionization rate has been re-examined, with special attention paid to the effect of the initial value of the ortho-to-para ratio (OPR) of molecular hydrogen. After discussing the use of the probe for cold cores, we compare our results with previous theoretical and observational results for a molecular cloud close to the supernova remnant W51C, which is thought to have an enhanced cosmic-ray ionization rate ζ caused by the nearby γ-ray source. In addition, we attempt to use our approach to estimate the cosmic-ray ionization rate for L1174, a dense core with an embedded star. Beyond the previously known sensitivity of [HCO+]/[DCO+] to ζ, we demonstrate its additional dependence on the initial OPR and, secondarily, on the age of the source, its temperature, and its density. We conclude that the usefulness of the [HCO+]/[DCO+] abundance ratio in constraining the cosmic-ray ionization rate in dense regions increases with the age of the source and the ionization rate as the ratio becomes far less sensitive to the initial value of the OPR.

  13. Effect of Grain Size on Differential Desorption of Volatile Species and on Non-ideal MHD Diffusivity

    NASA Astrophysics Data System (ADS)

    Zhao, Bo; Caselli, Paola; Li, Zhi-Yun

    2018-05-01

    We developed a chemical network for modeling the chemistry and non-ideal MHD effects from the collapsing dense molecular clouds to protostellar disks. First, we re-formulated the cosmic-ray desorption rate by considering the variations of desorption rate over the grain size distribution. We find that the differential desorption of volatile species is amplified by the grains larger than 0.1 μm, because larger grains are heated to a lower temperature by cosmic-rays and hence more sensitive to the variations in binding energies. As a result, atomic nitrogen N is ˜2 orders of magnitude more abundant than CO; N2H+ also becomes a few times more abundant than HCO+ due to the increased gas-phase N2. However, the changes in ionization fraction due to freeze-out and desorption only have minor effects on the non-ideal MHD diffusivities. Our chemical network confirms that the very small grains (VSGs: below a few 100 Å) weakens the efficiency of both ambipolar diffusion and Hall effect. In collapsing dense cores, a maximum ambipolar diffusion is achieved when truncating the MRN size distribution at 0.1 μm, and for a maximum Hall effect, the truncation occurs at 0.04 μm. We conclude that the grain size distribution is crucial to the differential depletion between CO and N2 related molecules, as well as to the non-ideal MHD diffusivities in dense cores.

  14. Left ventricular strain and its pattern estimated from cine CMR and validation with DENSE

    NASA Astrophysics Data System (ADS)

    Gao, Hao; Allan, Andrew; McComb, Christie; Luo, Xiaoyu; Berry, Colin

    2014-07-01

    Measurement of local strain provides insight into the biomechanical significance of viable myocardium. We attempted to estimate myocardial strain from cine cardiovascular magnetic resonance (CMR) images by using a b-spline deformable image registration method. Three healthy volunteers and 41 patients with either recent or chronic myocardial infarction (MI) were studied at 1.5 Tesla with both cine and DENSE CMR. Regional circumferential and radial left ventricular strains were estimated from cine and DENSE acquisitions. In all healthy volunteers, there was no difference for peak circumferential strain (- 0.18 ± 0.04 versus - 0.18 ± 0.03, p = 0.76) between cine and DENSE CMR, however peak radial strain was overestimated from cine (0.84 ± 0.37 versus 0.49 ± 0.2, p < 0.01). In the patient study, the peak strain patterns predicted by cine were similar to the patterns from DENSE, including the strain evolution related to recovery time and strain patterns related to MI scar extent. Furthermore, cine-derived strain disclosed different strain patterns in MI and non-MI regions, and regions with transmural and non-transmural MI as DENSE. Although there were large variations with radial strain measurements from cine CMR images, useful circumferential strain information can be obtained from routine clinical CMR imaging. Cine strain analysis has potential to improve the diagnostic yield from routine CMR imaging in clinical practice.

  15. Sociometric network structure and its association with methamphetamine use norms among homeless youth.

    PubMed

    Barman-Adhikari, Anamika; Begun, Stephanie; Rice, Eric; Yoshioka-Maxwell, Amanda; Perez-Portillo, Andrea

    2016-07-01

    Homeless youths' social networks are consistently linked with their substance use. Social networks influence behavior through several mechanisms, especially social norms. This study used sociometric analyses to understand whether social norms of drug use behaviors are clustered in network structures and whether these perceived norms (descriptive and injunctive) influence youths' drug use behaviors. An event-based approach was used to delineate boundaries of the two sociometric networks of homeless youth, one in Los Angeles, CA (n = 160) and the other in Santa Monica, CA (n = 130). Network characteristics included centrality (i.e., popularity) and cohesiveness (location in dense subnetworks). The primary outcome was recent methamphetamine use. Results revealed that both descriptive and injunctive norms influenced methamphetamine use. Network cohesion was found to be associated with perception of both descriptive and injunctive norms in both networks, however in opposite directions. Network interventions therefore might be effective if designed to capitalize on social influence that naturally occurs in cohesive parts of networks. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Motif formation and industry specific topologies in the Japanese business firm network

    NASA Astrophysics Data System (ADS)

    Maluck, Julian; Donner, Reik V.; Takayasu, Hideki; Takayasu, Misako

    2017-05-01

    Motifs and roles are basic quantities for the characterization of interactions among 3-node subsets in complex networks. In this work, we investigate how the distribution of 3-node motifs can be influenced by modifying the rules of an evolving network model while keeping the statistics of simpler network characteristics, such as the link density and the degree distribution, invariant. We exemplify this problem for the special case of the Japanese Business Firm Network, where a well-studied and relatively simple yet realistic evolving network model is available, and compare the resulting motif distribution in the real-world and simulated networks. To better approximate the motif distribution of the real-world network in the model, we introduce both subgraph dependent and global additional rules. We find that a specific rule that allows only for the merging process between nodes with similar link directionality patterns reduces the observed excess of densely connected motifs with bidirectional links. Our study improves the mechanistic understanding of motif formation in evolving network models to better describe the characteristic features of real-world networks with a scale-free topology.

  17. Predicting the cumulative effect of multiple disturbances on seagrass connectivity.

    PubMed

    Grech, Alana; Hanert, Emmanuel; McKenzie, Len; Rasheed, Michael; Thomas, Christopher; Tol, Samantha; Wang, Mingzhu; Waycott, Michelle; Wolter, Jolan; Coles, Rob

    2018-03-15

    The rate of exchange, or connectivity, among populations effects their ability to recover after disturbance events. However, there is limited information on the extent to which populations are connected or how multiple disturbances affect connectivity, especially in coastal and marine ecosystems. We used network analysis and the outputs of a biophysical model to measure potential functional connectivity and predict the impact of multiple disturbances on seagrasses in the central Great Barrier Reef World Heritage Area (GBRWHA), Australia. The seagrass networks were densely connected, indicating that seagrasses are resilient to the random loss of meadows. Our analysis identified discrete meadows that are important sources of seagrass propagules and that serve as stepping stones connecting various different parts of the network. Several of these meadows were close to urban areas or ports and likely to be at risk from coastal development. Deep water meadows were highly connected to coastal meadows and may function as a refuge, but only for non-foundation species. We evaluated changes to the structure and functioning of the seagrass networks when one or more discrete meadows were removed due to multiple disturbance events. The scale of disturbance required to disconnect the seagrass networks into two or more components was on average >245 km, about half the length of the metapopulation. The densely connected seagrass meadows of the central GBRWHA are not limited by the supply of propagules; therefore, management should focus on improving environmental conditions that support natural seagrass recruitment and recovery processes. Our study provides a new framework for assessing the impact of global change on the connectivity and persistence of coastal and marine ecosystems. Without this knowledge, management actions, including coastal restoration, may prove unnecessary and be unsuccessful. © 2018 John Wiley & Sons Ltd.

  18. Informatics technology mimics ecology: dense, mutualistic collaboration networks are associated with higher publication rates.

    PubMed

    Sorani, Marco D

    2012-01-01

    Information technology (IT) adoption enables biomedical research. Publications are an accepted measure of research output, and network models can describe the collaborative nature of publication. In particular, ecological networks can serve as analogies for publication and technology adoption. We constructed network models of adoption of bioinformatics programming languages and health IT (HIT) from the literature.We selected seven programming languages and four types of HIT. We performed PubMed searches to identify publications since 2001. We calculated summary statistics and analyzed spatiotemporal relationships. Then, we assessed ecological models of specialization, cooperativity, competition, evolution, biodiversity, and stability associated with publications.Adoption of HIT has been variable, while scripting languages have experienced rapid adoption. Hospital systems had the largest HIT research corpus, while Perl had the largest language corpus. Scripting languages represented the largest connected network components. The relationship between edges and nodes was linear, though Bioconductor had more edges than expected and Perl had fewer. Spatiotemporal relationships were weak. Most languages shared a bioinformatics specialization and appeared mutualistic or competitive. HIT specializations varied. Specialization was highest for Bioconductor and radiology systems. Specialization and cooperativity were positively correlated among languages but negatively correlated among HIT. Rates of language evolution were similar. Biodiversity among languages grew in the first half of the decade and stabilized, while diversity among HIT was variable but flat. Compared with publications in 2001, correlation with publications one year later was positive while correlation after ten years was weak and negative.Adoption of new technologies can be unpredictable. Spatiotemporal relationships facilitate adoption but are not sufficient. As with ecosystems, dense, mutualistic, specialized co-habitation is associated with faster growth. There are rapidly changing trends in external technological and macroeconomic influences. We propose that a better understanding of how technologies are adopted can facilitate their development.

  19. Long reach DWDM-PON with 12.5 GHz channel spacing based on comb source seeding

    NASA Astrophysics Data System (ADS)

    Zhou, Zhao; Nie, Hai-tao; Wang, Yao-jun

    2016-07-01

    A long reach dense wavelength division multiplexing passive optical network (DWDM-PON) with 12.5 GHz channel spacing is proposed and experimentally demonstrated. An optical frequency comb source is used to provide the multiwavelength seeding light, while reflective semiconductor optical amplifiers (RSOAs) are installed in both optical line terminal (OLT) and optical network units (ONUs) as colorless transmitter. The experimental results show that the bidirectional transmission for 1.2 Gbit/s data rate is achieved over 80 km single mode fiber (SMF).

  20. Increased segregation of brain networks in focal epilepsy: An fMRI graph theory finding.

    PubMed

    Pedersen, Mangor; Omidvarnia, Amir H; Walz, Jennifer M; Jackson, Graeme D

    2015-01-01

    Focal epilepsy is conceived of as activating local areas of the brain as well as engaging regional brain networks. Graph theory represents a powerful quantitative framework for investigation of brain networks. Here we investigate whether functional network changes are present in extratemporal focal epilepsy. Task-free functional magnetic resonance imaging data from 15 subjects with extratemporal epilepsy and 26 age and gender matched healthy controls were used for analysis. Local network properties were calculated using local efficiency, clustering coefficient and modularity metrics. Global network properties were assessed with global efficiency and betweenness centrality metrics. Cost-efficiency of the networks at both local and global levels was evaluated by estimating the physical distance between functionally connected nodes, in addition to the overall numbers of connections in the network. Clustering coefficient, local efficiency and modularity were significantly higher in individuals with focal epilepsy than healthy control subjects, while global efficiency and betweenness centrality were not significantly different between the two groups. Local network properties were also highly efficient, at low cost, in focal epilepsy subjects compared to healthy controls. Our results show that functional networks in focal epilepsy are altered in a way that the nodes of the network are more isolated. We postulate that network regularity, or segregation of the nodes of the networks, may be an adaptation that inhibits the conversion of the interictal state to seizures. It remains possible that this may be part of the epileptogenic process or an effect of medications.

  1. Increased segregation of brain networks in focal epilepsy: An fMRI graph theory finding

    PubMed Central

    Pedersen, Mangor; Omidvarnia, Amir H.; Walz, Jennifer M.; Jackson, Graeme D.

    2015-01-01

    Focal epilepsy is conceived of as activating local areas of the brain as well as engaging regional brain networks. Graph theory represents a powerful quantitative framework for investigation of brain networks. Here we investigate whether functional network changes are present in extratemporal focal epilepsy. Task-free functional magnetic resonance imaging data from 15 subjects with extratemporal epilepsy and 26 age and gender matched healthy controls were used for analysis. Local network properties were calculated using local efficiency, clustering coefficient and modularity metrics. Global network properties were assessed with global efficiency and betweenness centrality metrics. Cost-efficiency of the networks at both local and global levels was evaluated by estimating the physical distance between functionally connected nodes, in addition to the overall numbers of connections in the network. Clustering coefficient, local efficiency and modularity were significantly higher in individuals with focal epilepsy than healthy control subjects, while global efficiency and betweenness centrality were not significantly different between the two groups. Local network properties were also highly efficient, at low cost, in focal epilepsy subjects compared to healthy controls. Our results show that functional networks in focal epilepsy are altered in a way that the nodes of the network are more isolated. We postulate that network regularity, or segregation of the nodes of the networks, may be an adaptation that inhibits the conversion of the interictal state to seizures. It remains possible that this may be part of the epileptogenic process or an effect of medications. PMID:26110111

  2. Fault properties, rheology and interseismic deformation in Southern California from high-precision space geodesy

    NASA Astrophysics Data System (ADS)

    Lindsey, Eric Ostrom

    This dissertation presents the collection and processing of dense high-precision geode- tic data across major faults throughout Southern California. The results are used to inform numerical models of the long-term slip rate and interseismic behavior of these faults, as well as their frictional and rheological properties at shallow depths. The data include campaign surveys of dense networks of GPS monuments crossing the faults, and Interferometric Synthetic Aperture Radar (InSAR) observations from ENVISAT. Using a Bayesian framework, we first assess to what extent these data constrain relative fault slip rates on the San Andreas and San Jacinto faults, and show that the inferred parameters depend critically on the assumed fault geometry. We next look in detail at near-field observations of strain across the San Jacinto fault, and show that the source of this strain may be either deep anomalous creep or a new form of shallow, distributed yielding in the top few kilometers of the crust. On the San Andreas fault, we show that this type of shallow yielding does occur, and its presence or absence is controlled by variations in the local normal stress that result from subtle bends in the fault. Finally, we investigate shallow creep on the Imperial fault, and show that thanks to observations from all parts of the earthquake cycle it is now possible to obtain a strong constraint on the shallow frictional rheology and depth of the material responsible for creep. The results also suggest activity on a hidden fault to the West, whose existence has been previously suggested but never confirmed.

  3. Analysis of double stub tuner control stability in a many element phased array antenna with strong cross-coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, G. M.; Fitzgerald, E.; Johnson, D. K.

    2014-02-12

    Active stub tuning with a fast ferrite tuner (FFT) allows for the system to respond dynamically to changes in the plasma impedance such as during the L-H transition or edge localized modes (ELMs), and has greatly increased the effectiveness of fusion ion cyclotron range of frequency systems. A high power waveguide double-stub tuner is under development for use with the Alcator C-Mod lower hybrid current drive (LHCD) system. Exact impedance matching with a double-stub is possible for a single radiating element under most load conditions, with the reflection coefficient reduced from Γ to Γ{sup 2} in the “forbidden region.” Themore » relative phase shift between adjacent columns of a LHCD antenna is critical for control of the launched n{sub ∥} spectrum. Adding a double-stub tuning network will perturb the phase of the forward wave particularly if the unmatched reflection coefficient is high. This effect can be compensated by adjusting the phase of the low power microwave drive for each klystron amplifier. Cross-coupling of the reflected power between columns of the launcher must also be considered. The problem is simulated by cascading a scattering matrix for the plasma provided by a linear coupling model with the measured launcher scattering matrix and that of the FFTs. The solution is advanced in an iterative manner similar to the time-dependent behavior of the real system. System performance is presented under a range of edge density conditions from under-dense to over-dense and a range of launched n{sub ∥}.« less

  4. Multiple-predators-based capture process on complex networks

    NASA Astrophysics Data System (ADS)

    Ramiz Sharafat, Rajput; Pu, Cunlai; Li, Jie; Chen, Rongbin; Xu, Zhongqi

    2017-03-01

    The predator/prey (capture) problem is a prototype of many network-related applications. We study the capture process on complex networks by considering multiple predators from multiple sources. In our model, some lions start from multiple sources simultaneously to capture the lamb by biased random walks, which are controlled with a free parameter $\\alpha$. We derive the distribution of the lamb's lifetime and the expected lifetime $\\left\\langle T\\right\\rangle $. Through simulation, we find that the expected lifetime drops substantially with the increasing number of lions. We also study how the underlying topological structure affects the capture process, and obtain that locating on small-degree nodes is better than large-degree nodes to prolong the lifetime of the lamb. Moreover, dense or homogeneous network structures are against the survival of the lamb.

  5. Possible Climate Change Influences on Continued Reduction of Dense Fog in Southern California

    NASA Astrophysics Data System (ADS)

    Ladochy, S.; Witiw, M.

    2010-07-01

    Dense fog appears to be decreasing in many parts of the world, especially in cities. An earlier study showed that dense fog (visibility < 400 m) was disappearing in the urban southern California area as well. Using hourly data from 1948 to the present, we looked at the relationship between fog events and contributing factors in the region along with trends over time. We showed that the decrease in dense fog events could be explained mainly by declining particulate levels, Pacific SSTs, and increased urban warming. Dense fog is most prevalent along the coast and decreases rapidly inland, so the influence of the Pacific should be large. In particular, the Pacific Decadal Oscillation (PDO) and the Southern Oscillation signals can be seen in fog frequencies as well as in the contributing factors. Results show a decrease in the occurrence of dense fog at two airports in close proximity to the Pacific Ocean, LAX and LGB. Occurrence of the frequency of low visibilities at these two locations was highly correlated with the phases of the PDO. While examining data from LAX, we saw a frequency of dense fog that reached over 300 hours in 1950, but occurrence was down to zero in 1997. Since 1997, there has been a bit of a recovery with both 2008 and 2009 recording over 30 hours of dense fog each. In the present study, we continue to examine the relationships that control the frequency of dense fog in coastal southern California. To remove urban influence, we also included Vandenberg Air Force Base, located in a relatively sparsely populated area. While particulates, urban heat island and Pacific SSTs are all contributing factors, we now speculate on the direct and indirect influences of climate change on continued decreases in dense fog. Case studies of local and regional dense fog in southern California point to the importance of strong, low inversions and to a lesser contributor, Santa Ana winds. Both are associated with large-scale atmospheric circulation patterns, which have changed markedly over the period of study.

  6. A Solution to the Mysteries of Morality

    ERIC Educational Resources Information Center

    DeScioli, Peter; Kurzban, Robert

    2013-01-01

    We propose that moral condemnation functions to guide bystanders to choose the same side as other bystanders in disputes. Humans interact in dense social networks, and this poses a problem for bystanders when conflicts arise: which side, if any, to support. Choosing sides is a difficult strategic problem because the outcome of a conflict…

  7. Variability of winds and temperature in the Bergen area

    NASA Astrophysics Data System (ADS)

    Schönbein, Daniel; Ólafsson, Haraldur; Asle Olseth, Jan; Furevik, Birgitte

    2017-04-01

    In recent years, observations have been made by a dense network of automatic weather stations in the Bergen area in W-Norway (Bergen School of Meteorology). Here, cases are presented that feature large spatial variability in winds and temperature and the ability of a numerical model to reproduce this variability is assessed.

  8. Suppressing turbulence of self-propelling rods by strongly coupled passive particles.

    PubMed

    Su, Yen-Shuo; Wang, Hao-Chen; I, Lin

    2015-03-01

    The strong turbulence suppression, mainly for large-scale modes, of two-dimensional self-propelling rods, by increasing the long-range coupling strength Γ of low-concentration passive particles, is numerically demonstrated. It is found that large-scale collective rod motion in forms of swirls or jets is mainly contributed from well-aligned dense patches, which can push small poorly aligned rod patches and uncoupled passive particles. The more efficient momentum transfer and dissipation through increasing passive particle coupling leads to the formation of a more ordered and slowed down network of passive particles, which competes with coherent dense active rod clusters. The frustration of active rod alignment ordering and coherent motion by the passive particle network, which interrupt the inverse cascading of forming large-scale swirls, is the key for suppressing collective rod motion with scales beyond the interpassive distance, even in the liquid phase of passive particles. The loosely packed active rods are weakly affected by increasing passive particle coupling due to the weak rod-particle interaction. They mainly contribute to the small-scale modes and high-speed motion.

  9. Protein-protein interaction networks (PPI) and complex diseases

    PubMed Central

    Safari-Alighiarloo, Nahid; Taghizadeh, Mohammad; Rezaei-Tavirani, Mostafa; Goliaei, Bahram

    2014-01-01

    The physical interaction of proteins which lead to compiling them into large densely connected networks is a noticeable subject to investigation. Protein interaction networks are useful because of making basic scientific abstraction and improving biological and biomedical applications. Based on principle roles of proteins in biological function, their interactions determine molecular and cellular mechanisms, which control healthy and diseased states in organisms. Therefore, such networks facilitate the understanding of pathogenic (and physiologic) mechanisms that trigger the onset and progression of diseases. Consequently, this knowledge can be translated into effective diagnostic and therapeutic strategies. Furthermore, the results of several studies have proved that the structure and dynamics of protein networks are disturbed in complex diseases such as cancer and autoimmune disorders. Based on such relationship, a novel paradigm is suggested in order to confirm that the protein interaction networks can be the target of therapy for treatment of complex multi-genic diseases rather than individual molecules with disrespect the network. PMID:25436094

  10. Protein complex prediction in large ontology attributed protein-protein interaction networks.

    PubMed

    Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian; Li, Yanpeng; Xu, Bo

    2013-01-01

    Protein complexes are important for unraveling the secrets of cellular organization and function. Many computational approaches have been developed to predict protein complexes in protein-protein interaction (PPI) networks. However, most existing approaches focus mainly on the topological structure of PPI networks, and largely ignore the gene ontology (GO) annotation information. In this paper, we constructed ontology attributed PPI networks with PPI data and GO resource. After constructing ontology attributed networks, we proposed a novel approach called CSO (clustering based on network structure and ontology attribute similarity). Structural information and GO attribute information are complementary in ontology attributed networks. CSO can effectively take advantage of the correlation between frequent GO annotation sets and the dense subgraph for protein complex prediction. Our proposed CSO approach was applied to four different yeast PPI data sets and predicted many well-known protein complexes. The experimental results showed that CSO was valuable in predicting protein complexes and achieved state-of-the-art performance.

  11. Identifying protein complexes in PPI network using non-cooperative sequential game.

    PubMed

    Maulik, Ujjwal; Basu, Srinka; Ray, Sumanta

    2017-08-21

    Identifying protein complexes from protein-protein interaction (PPI) network is an important and challenging task in computational biology as it helps in better understanding of cellular mechanisms in various organisms. In this paper we propose a noncooperative sequential game based model for protein complex detection from PPI network. The key hypothesis is that protein complex formation is driven by mechanism that eventually optimizes the number of interactions within the complex leading to dense subgraph. The hypothesis is drawn from the observed network property named small world. The proposed multi-player game model translates the hypothesis into the game strategies. The Nash equilibrium of the game corresponds to a network partition where each protein either belong to a complex or form a singleton cluster. We further propose an algorithm to find the Nash equilibrium of the sequential game. The exhaustive experiment on synthetic benchmark and real life yeast networks evaluates the structural as well as biological significance of the network partitions.

  12. A community detection algorithm based on structural similarity

    NASA Astrophysics Data System (ADS)

    Guo, Xuchao; Hao, Xia; Liu, Yaqiong; Zhang, Li; Wang, Lu

    2017-09-01

    In order to further improve the efficiency and accuracy of community detection algorithm, a new algorithm named SSTCA (the community detection algorithm based on structural similarity with threshold) is proposed. In this algorithm, the structural similarities are taken as the weights of edges, and the threshold k is considered to remove multiple edges whose weights are less than the threshold, and improve the computational efficiency. Tests were done on the Zachary’s network, Dolphins’ social network and Football dataset by the proposed algorithm, and compared with GN and SSNCA algorithm. The results show that the new algorithm is superior to other algorithms in accuracy for the dense networks and the operating efficiency is improved obviously.

  13. Atypical language laterality is associated with large-scale disruption of network integration in children with intractable focal epilepsy.

    PubMed

    Ibrahim, George M; Morgan, Benjamin R; Doesburg, Sam M; Taylor, Margot J; Pang, Elizabeth W; Donner, Elizabeth; Go, Cristina Y; Rutka, James T; Snead, O Carter

    2015-04-01

    Epilepsy is associated with disruption of integration in distributed networks, together with altered localization for functions such as expressive language. The relation between atypical network connectivity and altered localization is unknown. In the current study we tested whether atypical expressive language laterality was associated with the alteration of large-scale network integration in children with medically-intractable localization-related epilepsy (LRE). Twenty-three right-handed children (age range 8-17) with medically-intractable LRE performed a verb generation task in fMRI. Language network activation was identified and the Laterality index (LI) was calculated within the pars triangularis and pars opercularis. Resting-state data from the same cohort were subjected to independent component analysis. Dual regression was used to identify associations between resting-state integration and LI values. Higher positive values of the LI, indicating typical language localization were associated with stronger functional integration of various networks including the default mode network (DMN). The normally symmetric resting-state networks showed a pattern of lateralized connectivity mirroring that of language function. The association between atypical language localization and network integration implies a widespread disruption of neural network development. These findings may inform the interpretation of localization studies by providing novel insights into reorganization of neural networks in epilepsy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Upper Crustal Structure of Taiwan Constrained by the Ellipticity of the Noise-derived Rayleigh Waves

    NASA Astrophysics Data System (ADS)

    Chien, C. C.; Chen, Y. N.; Gung, Y.; Liang, W. T.

    2016-12-01

    In the last decade, the noise interferometry has been a popular technique, and widely applied to constraint the crust and uppermost mantle structure, bringing in revolutionary resolution in area with dense seismic network, including Taiwan. However, limited by the available frequency band of the noise-derived surface waves, the near surface (<5km) structure is much less resolved as compared to the rest of the crust in Taiwan. Such limitation may be lifted by using the ZH ratio of Rayleigh waves, because, for the same period, the ZH ratio of Rayleigh waves is much more sensitive to the shallower structure than those provided by the corresponding phase or group velocities. In this study, aiming to better constraint the seismic structure of the shallow crust of Taiwan, we measure the ZH ratios of the Rayleigh waves derived by noise interferometry. Continuous records from two major seismic networks in Taiwan are used. In total, data from 63 short period stations and 48 broadband stations are used to derived the four combinations (ZZ, ZR, RZ, RR) of cross-correlation functions (CCF). We then measure the ZH ratios of the derived Rayleigh waves. We present the measured results, invert for the local 1-D structure for sites with stable measurements. We then compare the results with the published tomographic models and discuss their geological implications.

  15. Changes in P3b Latency and Amplitude Reflect Expertise Acquisition in a Football Visuomotor Learning Task.

    PubMed

    Morgan, Kyle K; Luu, Phan; Tucker, Don M

    2016-01-01

    Learning is not a unitary phenomenon. Rather, learning progresses through stages, with the stages reflecting different challenges that require the support of specific cognitive processes that reflect the functions of different brain networks. A theory of general learning proposes that learning can be divided into early and late stages controlled by corticolimbic networks located in frontal and posterior brain regions, respectively. Recent human studies using dense-array EEG (dEEG) support these results by showing progressive increases in P3b amplitude (an Event Related Potential with estimated sources in posterior cingulate cortex and hippocampus) as participants acquire a new visuomotor skill. In the present study, the P3b was used to track the learning and performance of participants as they identify defensive football formations and make an appropriate response. Participants acquired the task over three days, and P3b latency and amplitude significantly changed when participants learned the task. As participants demonstrated further proficiency with extensive training, amplitude and latency changes in the P3b continued to closely mirror performance improvements. Source localization results across all days suggest that an important source generator of the P3b is located in the posterior cingulate cortex. Results from the study support prior findings and further suggest that the careful analysis of covert learning mechanisms and their underlying electrical signatures are a robust index of task competency.

  16. Seismic activity offshore Martinique and Dominica islands (Central Lesser Antilles subduction zone) from temporary onshore and offshore seismic networks

    NASA Astrophysics Data System (ADS)

    Ruiz, M.; Galve, A.; Monfret, T.; Sapin, M.; Charvis, P.; Laigle, M.; Evain, M.; Hirn, A.; Flueh, E.; Gallart, J.; Diaz, J.; Lebrun, J. F.

    2013-09-01

    This work focuses on the analysis of a unique set of seismological data recorded by two temporary networks of seismometers deployed onshore and offshore in the Central Lesser Antilles Island Arc from Martinique to Guadeloupe islands. During the whole recording period, extending from January to the end of August 2007, more than 1300 local seismic events were detected in this area. A subset of 769 earthquakes was located precisely by using HypoEllipse. We also computed focal mechanisms using P-wave polarities of the best azimuthally constrained earthquakes. We detected earthquakes beneath the Caribbean forearc and in the Atlantic oceanic plate as well. At depth seismicity delineates the Wadati-Benioff Zone down to 170 km depth. The main seismic activity is concentrated in the lower crust and in the mantle wedge, close to the island arc beneath an inner forearc domain in comparison to an outer forearc domain where little seismicity is observed. We propose that the difference of the seismicity beneath the inner and the outer forearc is related to a difference of crustal structure between the inner forearc interpreted as a dense, thick and rigid crustal block and the lighter and more flexible outer forearc. Seismicity is enhanced beneath the inner forearc because it likely increases the vertical stress applied to the subducting plate.

  17. Spatial and temporal analysis of the total electron content over China during 2011-2014

    NASA Astrophysics Data System (ADS)

    Zheng, Jianchang; Zhao, Biqiang; Xiong, Bo; Wan, Weixing

    2016-06-01

    In the present work we investigate variations of ionospheric total electron content (TEC) with empirical orthogonal function (EOF) analysis, the four-year TEC data are derived from ∼250 GPS observations of the crustal movement observation network of China (CMONOC) over East Asian area (30-55°N, 70-140°E) during the period from 2011, January to 2014, December. The first two EOF components together account for ∼93.78% of total variance of the original TEC data set, and it is found that the first EOF component represents a spatial variability of semi-annual variation and the second EOF component exhibits pronounced east-west longitudinal difference with respect to zero valued geomagnetic declination line. In addition, climatology of the vertical plasma drift velocity vdz induced by HWM zonal wind field (∼300 km) are studied in the paper. Results shows vdz displays significant east-west longitudinal difference at 10:00 LT and 20:00 LT, and its daytime temporal variation is consistent with the second EOF principal component, which suggests that the east-west longitudinal variability is partly caused by the thermospheric zonal wind and geomagnetic declination. It is expected that with this dense GPS network, local ionospheric variability can be described more accurately and a more realistic ionospheric model can be constructed and used for the satellite navigation and radio propagation.

  18. Limits of social mobilization

    PubMed Central

    Rutherford, Alex; Cebrian, Manuel; Dsouza, Sohan; Moro, Esteban; Pentland, Alex; Rahwan, Iyad

    2013-01-01

    The Internet and social media have enabled the mobilization of large crowds to achieve time-critical feats, ranging from mapping crises in real time, to organizing mass rallies, to conducting search-and-rescue operations over large geographies. Despite significant success, selection bias may lead to inflated expectations of the efficacy of social mobilization for these tasks. What are the limits of social mobilization, and how reliable is it in operating at these limits? We build on recent results on the spatiotemporal structure of social and information networks to elucidate the constraints they pose on social mobilization. We use the DARPA Network Challenge as our working scenario, in which social media were used to locate 10 balloons across the United States. We conduct high-resolution simulations for referral-based crowdsourcing and obtain a statistical characterization of the population recruited, geography covered, and time to completion. Our results demonstrate that the outcome is plausible without the presence of mass media but lies at the limit of what time-critical social mobilization can achieve. Success relies critically on highly connected individuals willing to mobilize people in distant locations, overcoming the local trapping of diffusion in highly dense areas. However, even under these highly favorable conditions, the risk of unsuccessful search remains significant. These findings have implications for the design of better incentive schemes for social mobilization. They also call for caution in estimating the reliability of this capability. PMID:23576719

  19. Resident CAPS on dense-core vesicles docks and primes vesicles for fusion.

    PubMed

    Kabachinski, Greg; Kielar-Grevstad, D Michelle; Zhang, Xingmin; James, Declan J; Martin, Thomas F J

    2016-02-15

    The Ca(2+)-dependent exocytosis of dense-core vesicles in neuroendocrine cells requires a priming step during which SNARE protein complexes assemble. CAPS (aka CADPS) is one of several factors required for vesicle priming; however, the localization and dynamics of CAPS at sites of exocytosis in live neuroendocrine cells has not been determined. We imaged CAPS before, during, and after single-vesicle fusion events in PC12 cells by TIRF micro-scopy. In addition to being a resident on cytoplasmic dense-core vesicles, CAPS was present in clusters of approximately nine molecules near the plasma membrane that corresponded to docked/tethered vesicles. CAPS accompanied vesicles to the plasma membrane and was present at all vesicle exocytic events. The knockdown of CAPS by shRNA eliminated the VAMP-2-dependent docking and evoked exocytosis of fusion-competent vesicles. A CAPS(ΔC135) protein that does not localize to vesicles failed to rescue vesicle docking and evoked exocytosis in CAPS-depleted cells, showing that CAPS residence on vesicles is essential. Our results indicate that dense-core vesicles carry CAPS to sites of exocytosis, where CAPS promotes vesicle docking and fusion competence, probably by initiating SNARE complex assembly. © 2016 Kabachinski, Kielar-Grevstad, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  20. Percolation of localized attack on isolated and interdependent random networks

    NASA Astrophysics Data System (ADS)

    Shao, Shuai; Huang, Xuqing; Stanley, H. Eugene; Havlin, Shlomo

    2014-03-01

    Percolation properties of isolated and interdependent random networks have been investigated extensively. The focus of these studies has been on random attacks where each node in network is attacked with the same probability or targeted attack where each node is attacked with a probability being a function of its centrality, such as degree. Here we discuss a new type of realistic attacks which we call a localized attack where a group of neighboring nodes in the networks are attacked. We attack a randomly chosen node, its neighbors, and its neighbor of neighbors and so on, until removing a fraction (1 - p) of the network. This type of attack reflects damages due to localized disasters, such as earthquakes, floods and war zones in real-world networks. We study, both analytically and by simulations the impact of localized attack on percolation properties of random networks with arbitrary degree distributions and discuss in detail random regular (RR) networks, Erdős-Rényi (ER) networks and scale-free (SF) networks. We extend and generalize our theoretical and simulation results of single isolated networks to networks formed of interdependent networks.

  1. Increasing social capital via local networks: analysis in the context of a surgical practice.

    PubMed

    Thakur, Anjani; Yang, Isaac; Lee, Michael Y; Goel, Arpan; Ashok, Ashwin; Fonkalsrud, Eric W

    2002-09-01

    The relationship between social capital (support, trust, patient awareness, and increased practice revenue) and local networks (university hospital) in communities has received little attention. The development of computer-based communication networks (social networks) has added a new dimension to the argument, posing the question of whether local networks can (re-)create social capital in local communities. This relationship is examined through a review of the literature on local networks and social capital and a surgeon's practice management from 1990 to 2001 with respect to repair of pectus chest deformities. With respect to pectus repair there was a consistent but small number of new referrals (15-20 new patients/year), lack of patient awareness (eight to 12 self-referred patients/year), and modest practice revenue. Since the inception of an Internet website (social network) dedicated to pectus repair in 1996 there has been increased social participation (n = 630 hits/year to the website); facilitation of spread of information through E-mail messages (n = 430 messages/year); and a greater participation of groups such as women, minorities, adults, and those with disability (n = 120 patients/year). The dissemination of information via the local network has also allowed an "outward movement" with increased participation by interconnecting communities (n = 698,300 global Internet participants based on statistical ratios). We conclude that local networks have enhanced social networks providing new grounds for the development of relationships based on choice and shared interest.

  2. Effect of correlations on controllability transition in network control

    PubMed Central

    Nie, Sen; Wang, Xu-Wen; Wang, Bing-Hong; Jiang, Luo-Luo

    2016-01-01

    The network control problem has recently attracted an increasing amount of attention, owing to concerns including the avoidance of cascading failures of power-grids and the management of ecological networks. It has been proven that numerical control can be achieved if the number of control inputs exceeds a certain transition point. In the present study, we investigate the effect of degree correlation on the numerical controllability in networks whose topological structures are reconstructed from both real and modeling systems, and we find that the transition point of the number of control inputs depends strongly on the degree correlation in both undirected and directed networks with moderately sparse links. More interestingly, the effect of the degree correlation on the transition point cannot be observed in dense networks for numerical controllability, which contrasts with the corresponding result for structural controllability. In particular, for directed random networks and scale-free networks, the influence of the degree correlation is determined by the types of correlations. Our approach provides an understanding of control problems in complex sparse networks. PMID:27063294

  3. Astrophysical Nuclear Reaction Rates in the Dense Metallic Environments

    NASA Astrophysics Data System (ADS)

    Kilic, Ali Ihsan

    2017-09-01

    Nuclear reaction rates can be enhanced by many orders of magnitude in dense and relatively cold astrophysical plasmas such as in white dwarfs, brown dwarfs, and giant planets. Similar conditions are also present in supernova explosions where the ignition conditions are vital for cosmological models. White dwarfs are compact objects that have both extremely high interior densities and very strong local magnetic fields. For the first time, a new formula has been developed to explain cross section and reaction rate quantities for light elements that includes not only the nuclear component but also the material dependence, magnetic field, and crystal structure dependency in dense metallic environments. I will present the impact of the developed formula on the cross section and reaction rates for light elements. This could have possible technological applications in energy production using nuclear fusion reactions.

  4. Direct observation of impact propagation and absorption in dense colloidal monolayers

    NASA Astrophysics Data System (ADS)

    Buttinoni, Ivo; Cha, Jinwoong; Lin, Wei-Hsun; Job, Stéphane; Daraio, Chiara; Isa, Lucio

    2017-11-01

    Dense colloidal suspensions can propagate and absorb large mechanical stresses, including impacts and shocks. The wave transport stems from the delicate interplay between the spatial arrangement of the structural units and solvent-mediated effects. For dynamic microscopic systems, elastic deformations of the colloids are usually disregarded due to the damping imposed by the surrounding fluid. Here, we study the propagation of localized mechanical pulses in aqueous monolayers of micron-sized particles of controlled microstructure. We generate extreme localized deformation rates by exciting a target particle via pulsed-laser ablation. In crystalline monolayers, stress propagation fronts take place, where fast-moving particles (V approximately a few meters per second) are aligned along the symmetry axes of the lattice. Conversely, more viscous solvents and disordered structures lead to faster and isotropic energy absorption. Our results demonstrate the accessibility of a regime where elastic collisions also become relevant for suspensions of microscopic particles, behaving as “billiard balls” in a liquid, in analogy with regular packings of macroscopic spheres. We furthermore quantify the scattering of an impact as a function of the local structural disorder.

  5. Direct observation of impact propagation and absorption in dense colloidal monolayers

    PubMed Central

    Cha, Jinwoong; Lin, Wei-Hsun; Job, Stéphane; Daraio, Chiara

    2017-01-01

    Dense colloidal suspensions can propagate and absorb large mechanical stresses, including impacts and shocks. The wave transport stems from the delicate interplay between the spatial arrangement of the structural units and solvent-mediated effects. For dynamic microscopic systems, elastic deformations of the colloids are usually disregarded due to the damping imposed by the surrounding fluid. Here, we study the propagation of localized mechanical pulses in aqueous monolayers of micron-sized particles of controlled microstructure. We generate extreme localized deformation rates by exciting a target particle via pulsed-laser ablation. In crystalline monolayers, stress propagation fronts take place, where fast-moving particles (V approximately a few meters per second) are aligned along the symmetry axes of the lattice. Conversely, more viscous solvents and disordered structures lead to faster and isotropic energy absorption. Our results demonstrate the accessibility of a regime where elastic collisions also become relevant for suspensions of microscopic particles, behaving as “billiard balls” in a liquid, in analogy with regular packings of macroscopic spheres. We furthermore quantify the scattering of an impact as a function of the local structural disorder. PMID:29087329

  6. Using GPS TEC measurements to probe ionospheric spatial spectra at mid-latitudes

    NASA Astrophysics Data System (ADS)

    Lay, E. H.; Parker, P. A.; Light, M. E.; Carrano, C. S.; Debchoudhury, S.; Haaser, R. A.

    2017-12-01

    The physics of how random ionospheric structure causes signal degradation is well understood as weak forward scattering through an effective diffraction grating created by plasma irregularities in the ionosphere. However, the spatial scale spectrum of those irregularities required for input into scintillation models and models of traveling ionospheric disturbances is poorly characterized, particularly at the kilometer to tens of kilometer scale lengths important for very-high-frequency (VHF) scintillation prediction. Furthermore, the majority of characterization studies have been performed in low-latitude or high-latitude regions where geomagnetic activity dominates the physical processes. At mid-latitudes, tropospheric and geomagnetic phenomena compete in disturbing the ionosphere, and it is not well understood how these multiple sources affect the drivers that influence the spatial spectrum. In this study, we are interested in mid-latitude electron density irregularities on the order of 10s of kilometers that would affect VHF signals. Data from the GPS networks Japan GEONET and the Plate Boundary Observatory (PBO, UNAVCO) in the western United States were analyzed for this study. Japan GEONET is a dense network of GPS receivers (station spacing of tens of km), with fairly evenly spaced positions over all of Japan. The PBO, on the other hand, has several pockets of extremely dense coverage (station spacing within a few km), but is less dense on average. We analyze a day with a large solar storm (2015/03/17, St. Patrick's Day Storm) to allow high scintillation potential at mid-latitudes, a day with low geomagnetic activity and low thunderstorm activity (2016/01/31), and a day with low geomagnetic activity and high thunderstorm activity (2015/08/02). We then perform two-dimensional spatial analyses on the TEC data from these two networks on scale lengths of 20 to 200 km to infer the spatial scale spectra.

  7. Graph Theory-Based Analysis of the Lymph Node Fibroblastic Reticular Cell Network.

    PubMed

    Novkovic, Mario; Onder, Lucas; Bocharov, Gennady; Ludewig, Burkhard

    2017-01-01

    Secondary lymphoid organs have developed segregated niches that are able to initiate and maintain effective immune responses. Such global organization requires tight control of diverse cellular components, specifically those that regulate lymphocyte trafficking. Fibroblastic reticular cells (FRCs) form a densely interconnected network in lymph nodes and provide key factors necessary for T cell migration and retention, and foster subsequent interactions between T cells and dendritic cells. Development of integrative systems biology approaches has made it possible to elucidate this multilevel complexity of the immune system. Here, we present a graph theory-based analysis of the FRC network in murine lymph nodes, where generation of the network topology is performed using high-resolution confocal microscopy and 3D reconstruction. This approach facilitates the analysis of physical cell-to-cell connectivity, and estimation of topological robustness and global behavior of the network when it is subjected to perturbation in silico.

  8. Effects of Cultural Tightness-Looseness and Social Network Density on Expression of Positive and Negative Emotions: A Large-Scale Study of Impression Management by Facebook Users.

    PubMed

    Liu, Pan; Chan, David; Qiu, Lin; Tov, William; Tong, Victor Joo Chuan

    2018-05-01

    Using data from 13,789 Facebook users across U.S. states, this study examined the main effects of societal-level cultural tightness-looseness and its interaction effects with individuals' social network density on impression management (IM) in terms of online emotional expression. Results showed that individuals from culturally tight (vs. loose) states were more likely to express positive emotions and less likely to express negative emotions. Meanwhile, for positive emotional expression, there was a tightness-looseness by social network density interaction effect. In culturally tight states, individuals with dense (vs. sparse) networks were more likely to express positive emotions, while in culturally loose states this pattern was reversed. For negative emotional expression, however, no such interaction was observed. Our findings highlight the influence of cultural norms and social network structure on emotional expressions as IM strategies.

  9. Modular analysis of the probabilistic genetic interaction network.

    PubMed

    Hou, Lin; Wang, Lin; Qian, Minping; Li, Dong; Tang, Chao; Zhu, Yunping; Deng, Minghua; Li, Fangting

    2011-03-15

    Epistatic Miniarray Profiles (EMAP) has enabled the mapping of large-scale genetic interaction networks; however, the quantitative information gained from EMAP cannot be fully exploited since the data are usually interpreted as a discrete network based on an arbitrary hard threshold. To address such limitations, we adopted a mixture modeling procedure to construct a probabilistic genetic interaction network and then implemented a Bayesian approach to identify densely interacting modules in the probabilistic network. Mixture modeling has been demonstrated as an effective soft-threshold technique of EMAP measures. The Bayesian approach was applied to an EMAP dataset studying the early secretory pathway in Saccharomyces cerevisiae. Twenty-seven modules were identified, and 14 of those were enriched by gold standard functional gene sets. We also conducted a detailed comparison with state-of-the-art algorithms, hierarchical cluster and Markov clustering. The experimental results show that the Bayesian approach outperforms others in efficiently recovering biologically significant modules.

  10. Locating influential nodes in complex networks

    PubMed Central

    Malliaros, Fragkiskos D.; Rossi, Maria-Evgenia G.; Vazirgiannis, Michalis

    2016-01-01

    Understanding and controlling spreading processes in networks is an important topic with many diverse applications, including information dissemination, disease propagation and viral marketing. It is of crucial importance to identify which entities act as influential spreaders that can propagate information to a large portion of the network, in order to ensure efficient information diffusion, optimize available resources or even control the spreading. In this work, we capitalize on the properties of the K-truss decomposition, a triangle-based extension of the core decomposition of graphs, to locate individual influential nodes. Our analysis on real networks indicates that the nodes belonging to the maximal K-truss subgraph show better spreading behavior compared to previously used importance criteria, including node degree and k-core index, leading to faster and wider epidemic spreading. We further show that nodes belonging to such dense subgraphs, dominate the small set of nodes that achieve the optimal spreading in the network. PMID:26776455

  11. Traffic on complex networks: Towards understanding global statistical properties from microscopic density fluctuations

    NASA Astrophysics Data System (ADS)

    Tadić, Bosiljka; Thurner, Stefan; Rodgers, G. J.

    2004-03-01

    We study the microscopic time fluctuations of traffic load and the global statistical properties of a dense traffic of particles on scale-free cyclic graphs. For a wide range of driving rates R the traffic is stationary and the load time series exhibits antipersistence due to the regulatory role of the superstructure associated with two hub nodes in the network. We discuss how the superstructure affects the functioning of the network at high traffic density and at the jamming threshold. The degree of correlations systematically decreases with increasing traffic density and eventually disappears when approaching a jamming density Rc. Already before jamming we observe qualitative changes in the global network-load distributions and the particle queuing times. These changes are related to the occurrence of temporary crises in which the network-load increases dramatically, and then slowly falls back to a value characterizing free flow.

  12. Uncovering the community structure in signed social networks based on greedy optimization

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Yan, Jiaqi; Yang, Yu; Chen, Junhua

    2017-05-01

    The formality of signed relationships has been recently adopted in a lot of complicated systems. The relations among these entities are complicated and multifarious. We cannot indicate these relationships only by positive links, and signed networks have been becoming more and more universal in the study of social networks when community is being significant. In this paper, to identify communities in signed networks, we exploit a new greedy algorithm, taking signs and the density of these links into account. The main idea of the algorithm is the initial procedure of signed modularity and the corresponding update rules. Specially, we employ the “Asymmetric and Constrained Belief Evolution” procedure to evaluate the optimal number of communities. According to the experimental results, the algorithm is proved to be able to run well. More specifically, the proposed algorithm is very efficient for these networks with medium size, both dense and sparse.

  13. BDNF and its pro-peptide are stored in presynaptic dense core vesicles in brain neurons

    PubMed Central

    Dieni, Sandra; Matsumoto, Tomoya; Dekkers, Martijn; Rauskolb, Stefanie; Ionescu, Mihai S.; Deogracias, Ruben; Gundelfinger, Eckart D.; Kojima, Masami; Nestel, Sigrun; Frotscher, Michael

    2012-01-01

    Although brain-derived neurotrophic factor (BDNF) regulates numerous and complex biological processes including memory retention, its extremely low levels in the mature central nervous system have greatly complicated attempts to reliably localize it. Using rigorous specificity controls, we found that antibodies reacting either with BDNF or its pro-peptide both stained large dense core vesicles in excitatory presynaptic terminals of the adult mouse hippocampus. Both moieties were ∼10-fold more abundant than pro-BDNF. The lack of postsynaptic localization was confirmed in Bassoon mutants, a seizure-prone mouse line exhibiting markedly elevated levels of BDNF. These findings challenge previous conclusions based on work with cultured neurons, which suggested activity-dependent dendritic synthesis and release of BDNF. They instead provide an ultrastructural basis for an anterograde mode of action of BDNF, contrasting with the long-established retrograde model derived from experiments with nerve growth factor in the peripheral nervous system. PMID:22412021

  14. a Weighted Local-World Evolving Network Model Based on the Edge Weights Preferential Selection

    NASA Astrophysics Data System (ADS)

    Li, Ping; Zhao, Qingzhen; Wang, Haitang

    2013-05-01

    In this paper, we use the edge weights preferential attachment mechanism to build a new local-world evolutionary model for weighted networks. It is different from previous papers that the local-world of our model consists of edges instead of nodes. Each time step, we connect a new node to two existing nodes in the local-world through the edge weights preferential selection. Theoretical analysis and numerical simulations show that the scale of the local-world affect on the weight distribution, the strength distribution and the degree distribution. We give the simulations about the clustering coefficient and the dynamics of infectious diseases spreading. The weight dynamics of our network model can portray the structure of realistic networks such as neural network of the nematode C. elegans and Online Social Network.

  15. Networking CD-ROMs: The Decision Maker's Guide to Local Area Network Solutions.

    ERIC Educational Resources Information Center

    Elshami, Ahmed M.

    In an era when patrons want access to CD-ROM resources but few libraries can afford to buy multiple copies, CD-ROM local area networks (LANs) are emerging as a cost-effective way to provide shared access. To help librarians make informed decisions, this manual offers information on: (1) the basics of LANs, a "local area network primer";…

  16. Support for School-to-School Networks: How Networking Teachers Perceive Support Activities of a Local Coordinating Agency

    ERIC Educational Resources Information Center

    Sartory, Katharina; Jungermann, Anja-Kristin; Järvinen, Hanna

    2017-01-01

    External support by a local coordinating agency facilitates the work of school-to-school networks. This study provides an innovative theoretical framework to analyse how support provided by local education offices for school-to-school networks is perceived by the participating teachers. Based on a quantitative survey and qualitative interview data…

  17. Localization and Spreading of Diseases in Complex Networks

    NASA Astrophysics Data System (ADS)

    Goltsev, A. V.; Dorogovtsev, S. N.; Oliveira, J. G.; Mendes, J. F. F.

    2012-09-01

    Using the susceptible-infected-susceptible model on unweighted and weighted networks, we consider the disease localization phenomenon. In contrast to the well-recognized point of view that diseases infect a finite fraction of vertices right above the epidemic threshold, we show that diseases can be localized on a finite number of vertices, where hubs and edges with large weights are centers of localization. Our results follow from the analysis of standard models of networks and empirical data for real-world networks.

  18. Advanced Algorithms for Local Routing Strategy on Complex Networks

    PubMed Central

    Lin, Benchuan; Chen, Bokui; Gao, Yachun; Tse, Chi K.; Dong, Chuanfei; Miao, Lixin; Wang, Binghong

    2016-01-01

    Despite the significant improvement on network performance provided by global routing strategies, their applications are still limited to small-scale networks, due to the need for acquiring global information of the network which grows and changes rapidly with time. Local routing strategies, however, need much less local information, though their transmission efficiency and network capacity are much lower than that of global routing strategies. In view of this, three algorithms are proposed and a thorough investigation is conducted in this paper. These algorithms include a node duplication avoidance algorithm, a next-nearest-neighbor algorithm and a restrictive queue length algorithm. After applying them to typical local routing strategies, the critical generation rate of information packets Rc increases by over ten-fold and the average transmission time 〈T〉 decreases by 70–90 percent, both of which are key physical quantities to assess the efficiency of routing strategies on complex networks. More importantly, in comparison with global routing strategies, the improved local routing strategies can yield better network performance under certain circumstances. This is a revolutionary leap for communication networks, because local routing strategy enjoys great superiority over global routing strategy not only in terms of the reduction of computational expense, but also in terms of the flexibility of implementation, especially for large-scale networks. PMID:27434502

  19. Advanced Algorithms for Local Routing Strategy on Complex Networks.

    PubMed

    Lin, Benchuan; Chen, Bokui; Gao, Yachun; Tse, Chi K; Dong, Chuanfei; Miao, Lixin; Wang, Binghong

    2016-01-01

    Despite the significant improvement on network performance provided by global routing strategies, their applications are still limited to small-scale networks, due to the need for acquiring global information of the network which grows and changes rapidly with time. Local routing strategies, however, need much less local information, though their transmission efficiency and network capacity are much lower than that of global routing strategies. In view of this, three algorithms are proposed and a thorough investigation is conducted in this paper. These algorithms include a node duplication avoidance algorithm, a next-nearest-neighbor algorithm and a restrictive queue length algorithm. After applying them to typical local routing strategies, the critical generation rate of information packets Rc increases by over ten-fold and the average transmission time 〈T〉 decreases by 70-90 percent, both of which are key physical quantities to assess the efficiency of routing strategies on complex networks. More importantly, in comparison with global routing strategies, the improved local routing strategies can yield better network performance under certain circumstances. This is a revolutionary leap for communication networks, because local routing strategy enjoys great superiority over global routing strategy not only in terms of the reduction of computational expense, but also in terms of the flexibility of implementation, especially for large-scale networks.

  20. Brain networks predict metabolism, diagnosis and prognosis at the bedside in disorders of consciousness.

    PubMed

    Chennu, Srivas; Annen, Jitka; Wannez, Sarah; Thibaut, Aurore; Chatelle, Camille; Cassol, Helena; Martens, Géraldine; Schnakers, Caroline; Gosseries, Olivia; Menon, David; Laureys, Steven

    2017-08-01

    Recent advances in functional neuroimaging have demonstrated novel potential for informing diagnosis and prognosis in the unresponsive wakeful syndrome and minimally conscious states. However, these technologies come with considerable expense and difficulty, limiting the possibility of wider clinical application in patients. Here, we show that high density electroencephalography, collected from 104 patients measured at rest, can provide valuable information about brain connectivity that correlates with behaviour and functional neuroimaging. Using graph theory, we visualize and quantify spectral connectivity estimated from electroencephalography as a dense brain network. Our findings demonstrate that key quantitative metrics of these networks correlate with the continuum of behavioural recovery in patients, ranging from those diagnosed as unresponsive, through those who have emerged from minimally conscious, to the fully conscious locked-in syndrome. In particular, a network metric indexing the presence of densely interconnected central hubs of connectivity discriminated behavioural consciousness with accuracy comparable to that achieved by expert assessment with positron emission tomography. We also show that this metric correlates strongly with brain metabolism. Further, with classification analysis, we predict the behavioural diagnosis, brain metabolism and 1-year clinical outcome of individual patients. Finally, we demonstrate that assessments of brain networks show robust connectivity in patients diagnosed as unresponsive by clinical consensus, but later rediagnosed as minimally conscious with the Coma Recovery Scale-Revised. Classification analysis of their brain network identified each of these misdiagnosed patients as minimally conscious, corroborating their behavioural diagnoses. If deployed at the bedside in the clinical context, such network measurements could complement systematic behavioural assessment and help reduce the high misdiagnosis rate reported in these patients. These metrics could also identify patients in whom further assessment is warranted using neuroimaging or conventional clinical evaluation. Finally, by providing objective characterization of states of consciousness, repeated assessments of network metrics could help track individual patients longitudinally, and also assess their neural responses to therapeutic and pharmacological interventions. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.

Top