NASA Astrophysics Data System (ADS)
Volcke, P.; Pequegnat, C.; Grunberg, M.; Lecointre, A.; Bzeznik, B.; Wolyniec, D.; Engels, F.; Maron, C.; Cheze, J.; Pardo, C.; Saurel, J. M.; André, F.
2015-12-01
RESIF is a nationwide french project aimed at building a high quality observation system to observe and understand the inner earth. RESIF deals with permanent seismic networks data as well as mobile networks data, including dense/semi-dense arrays. RESIF project is distributed among different nodes providing qualified data to the main datacentre in Université Grenoble Alpes, France. Data control and qualification is performed by each individual nodes : the poster will provide some insights on RESIF broadband seismic component data quality control. We will then present data that has been recently made publicly available. Data is distributed through worldwide FDSN and european EIDA standards protocols. A new web portal is now opened to explore and download seismic data and metadata. The RESIF datacentre is also now connected to Grenoble University High Performance Computing (HPC) facility : a typical use-case will be presented using iRODS technologies. The use of dense observation networks is increasing, bringing challenges in data growth and handling : we will present an example where HDF5 data format was used as an alternative to usual seismology data formats.
Chimera-like states in structured heterogeneous networks
NASA Astrophysics Data System (ADS)
Li, Bo; Saad, David
2017-04-01
Chimera-like states are manifested through the coexistence of synchronous and asynchronous dynamics and have been observed in various systems. To analyze the role of network topology in giving rise to chimera-like states, we study a heterogeneous network model comprising two groups of nodes, of high and low degrees of connectivity. The architecture facilitates the analysis of the system, which separates into a densely connected coherent group of nodes, perturbed by their sparsely connected drifting neighbors. It describes a synchronous behavior of the densely connected group and scaling properties of the induced perturbations.
An iterative network partition algorithm for accurate identification of dense network modules
Sun, Siqi; Dong, Xinran; Fu, Yao; Tian, Weidong
2012-01-01
A key step in network analysis is to partition a complex network into dense modules. Currently, modularity is one of the most popular benefit functions used to partition network modules. However, recent studies suggested that it has an inherent limitation in detecting dense network modules. In this study, we observed that despite the limitation, modularity has the advantage of preserving the primary network structure of the undetected modules. Thus, we have developed a simple iterative Network Partition (iNP) algorithm to partition a network. The iNP algorithm provides a general framework in which any modularity-based algorithm can be implemented in the network partition step. Here, we tested iNP with three modularity-based algorithms: multi-step greedy (MSG), spectral clustering and Qcut. Compared with the original three methods, iNP achieved a significant improvement in the quality of network partition in a benchmark study with simulated networks, identified more modules with significantly better enrichment of functionally related genes in both yeast protein complex network and breast cancer gene co-expression network, and discovered more cancer-specific modules in the cancer gene co-expression network. As such, iNP should have a broad application as a general method to assist in the analysis of biological networks. PMID:22121225
From sparse to dense and from assortative to disassortative in online social networks
Li, Menghui; Guan, Shuguang; Wu, Chensheng; Gong, Xiaofeng; Li, Kun; Wu, Jinshan; Di, Zengru; Lai, Choy-Heng
2014-01-01
Inspired by the analysis of several empirical online social networks, we propose a simple reaction-diffusion-like coevolving model, in which individuals are activated to create links based on their states, influenced by local dynamics and their own intention. It is shown that the model can reproduce the remarkable properties observed in empirical online social networks; in particular, the assortative coefficients are neutral or negative, and the power law exponents γ are smaller than 2. Moreover, we demonstrate that, under appropriate conditions, the model network naturally makes transition(s) from assortative to disassortative, and from sparse to dense in their characteristics. The model is useful in understanding the formation and evolution of online social networks. PMID:24798703
From sparse to dense and from assortative to disassortative in online social networks.
Li, Menghui; Guan, Shuguang; Wu, Chensheng; Gong, Xiaofeng; Li, Kun; Wu, Jinshan; Di, Zengru; Lai, Choy-Heng
2014-05-06
Inspired by the analysis of several empirical online social networks, we propose a simple reaction-diffusion-like coevolving model, in which individuals are activated to create links based on their states, influenced by local dynamics and their own intention. It is shown that the model can reproduce the remarkable properties observed in empirical online social networks; in particular, the assortative coefficients are neutral or negative, and the power law exponents γ are smaller than 2. Moreover, we demonstrate that, under appropriate conditions, the model network naturally makes transition(s) from assortative to disassortative, and from sparse to dense in their characteristics. The model is useful in understanding the formation and evolution of online social networks.
NASA Astrophysics Data System (ADS)
Kobayashi, Y.; Watanabe, K.; Imai, M.; Watanabe, K.; Naruse, N.; Takahashi, Y.
2016-12-01
Hyper-densely monitoring for poor-visibility occurred by snowstorm is needed to make an alert system, because the snowstorm is difficult to predict from the observation only at a representative point. There are some problems in the previous approaches for the poor-visibility monitoring using video analyses or visibility meters; these require a wired network monitoring (a large amount of data: 10MB/sec at least) and the system cost is high (10,000 at each point). Thus, the risk of poor-visibility has been mainly measured at specific point such as airport and mountain pass, and estimated by simulation two dimensionally. To predict it two dimensionally and accurately, we have developed a low-cost meteorological system to observe the snowstorm hyper-densely. We have developed a low-cost visibility meter which works as the reduced intensity of semiconducting laser light when snow particles block off. Our developed system also has a capability of extending a hyper-densely observation in real-time on wireless network using Zigbee; A/D conversion and wireless data sent from temperature and illuminance sensors. We use a semiconducting laser chip (5) for the light source and a reflection mechanism by the use of three mirrors so as to send the light to a non-sensitive illuminance sensor directly. Thus, our visibility detecting system ($500) becomes much cheaper than previous one. We have checked the correlation between the reduced intensity taken by our system and the visibility recorded by conventional video camera. The value for the correlation coefficient was -0.67, which indicates a strong correlation. It means that our developed system is practical. In conclusion, we have developed low-cost meteorological detecting system to observe poor-visibility occurred by snowstorm, having a potential of hyper-densely monitoring on wireless network, and have made sure the practicability.
A Novel Characterization of Amalgamated Networks in Natural Systems
Barranca, Victor J.; Zhou, Douglas; Cai, David
2015-01-01
Densely-connected networks are prominent among natural systems, exhibiting structural characteristics often optimized for biological function. To reveal such features in highly-connected networks, we introduce a new network characterization determined by a decomposition of network-connectivity into low-rank and sparse components. Based on these components, we discover a new class of networks we define as amalgamated networks, which exhibit large functional groups and dense connectivity. Analyzing recent experimental findings on cerebral cortex, food-web, and gene regulatory networks, we establish the unique importance of amalgamated networks in fostering biologically advantageous properties, including rapid communication among nodes, structural stability under attacks, and separation of network activity into distinct functional modules. We further observe that our network characterization is scalable with network size and connectivity, thereby identifying robust features significant to diverse physical systems, which are typically undetectable by conventional characterizations of connectivity. We expect that studying the amalgamation properties of biological networks may offer new insights into understanding their structure-function relationships. PMID:26035066
Studies of infrasound propagation using the USArray seismic network (Invited)
NASA Astrophysics Data System (ADS)
Hedlin, M. A.; Degroot-Hedlin, C. D.; Walker, K. T.
2010-12-01
Although there are currently ~ 100 infrasound arrays worldwide, more than ever before, the station density is still insufficient to provide validation for detailed propagation modeling. Much structure in the atmosphere is short-lived and occurs at spatial scales much smaller than the average distance between infrasound stations. Relatively large infrasound signals can be observed on seismic channels due to coupling at the Earth's surface. Recent research, using data from the 70-km spaced 400-station USArray and other seismic network deployments, has shown the value of dense seismic network data for filling in the gaps between infrasound arrays. The dense sampling of the infrasound wavefield has allowed us to observe complete travel-time branches of infrasound signals and shed more light on the nature of infrasound propagation. We present early results from our studies of impulsive atmospheric sources, such as series of UTTR rocket motor detonations in Utah. The Utah blasts have been well recorded by USArray seismic stations and infrasound arrays in Nevada and Washington State. Recordings of seismic signals from a series of six events in 2007 are used to pinpoint the shot times to < 1 second. Variations in the acoustic branches and signal arrival times at the arrays are used to probe variations in atmospheric structure. Although we currently use coupled signals we anticipate studying dense acoustic network recordings as the USArray is currently being upgraded with infrasound microphones. These new sensors will allow us to make semi-continental scale network recordings of infrasound signals free of concerns about how the signals observed on seismic channels were modified when being coupled to seismic.
Strategy of thunderstorm measurement with super dense ground-based observation network
NASA Astrophysics Data System (ADS)
Takahashi, Y.; Sato, M.
2014-12-01
It's not easy to understand the inside structure and developing process of thunderstorm only with existing meteorological instruments since its horizontal extent of the storm cell is sometimes smaller than an order of 10 km while one of the densest ground network in Japan, AMEDAS, consists of sites located every 17 km in average and the resolution of meteorological radar is 1-2 km in general. Even the X-band radar realizes the resolution of 250 m or larger. Here we suggest a new super dense observation network with simple and low cost sensors that can be used for measurement both of raindrop and vertical electric field change caused by cloud-to-ground lightning discharge. This sensor consists of two aluminum plates with a diameter of 10-20 cm. We carried out an observation campaign in summer of 2013 in the foothills of Mt. Yastugatake, Yamanashi and Nagano prefectures in Japan, installing 6 plate-type sensors at a distance of about 4 km. Horizontal location, height and charge amount of each lightning discharge are estimated successfully based on the information of electric field changes at several observing sites. Moreover, it was found that the thunderstorm has a very narrow structure well smaller than 300 m that cannot be measured by any other ways, counting the positive and negative pulses caused by attachment of raindrop to the sensor plate, respectively. We plan to construct a new super dense observation network in the north Kanto region, Japan, where the lightning activity is most prominent in summer Japan, distributing more than several tens of sensors at every 4 km or shorter, such as an order of 100 m at minimum. This kind of new type network will reveal the unknown fine structures of thunderstorms and open the door for constructing real time alert system of torrential rainfall and lightning stroke especially in the city area.
Insights into failed lexical retrieval from network science.
Vitevitch, Michael S; Chan, Kit Ying; Goldstein, Rutherford
2014-02-01
Previous network analyses of the phonological lexicon (Vitevitch, 2008) observed a web-like structure that exhibited assortative mixing by degree: words with dense phonological neighborhoods tend to have as neighbors words that also have dense phonological neighborhoods, and words with sparse phonological neighborhoods tend to have as neighbors words that also have sparse phonological neighborhoods. Given the role that assortative mixing by degree plays in network resilience, we examined instances of real and simulated lexical retrieval failures in computer simulations, analysis of a slips-of-the-ear corpus, and three psycholinguistic experiments for evidence of this network characteristic in human behavior. The results of the various analyses support the hypothesis that the structure of words in the mental lexicon influences lexical processing. The implications of network science for current models of spoken word recognition, language processing, and cognitive psychology more generally are discussed. Copyright © 2013 Elsevier Inc. All rights reserved.
Insights into failed lexical retrieval from network science
Vitevitch, Michael S.; Chan, Kit Ying; Goldstein, Rutherford
2013-01-01
Previous network analyses of the phonological lexicon (Vitevitch, 2008) observed a web-like structure that exhibited assortative mixing by degree: words with dense phonological neighborhoods tend to have as neighbors words that also have dense phonological neighborhoods, and words with sparse phonological neighborhoods tend to have as neighbors words that also have sparse phonological neighborhoods. Given the role that assortative mixing by degree plays in network resilience, we examined instances of real and simulated lexical retrieval failures in computer simulations, analysis of a slips-of-the-ear corpus, and three psycholinguistic experiments for evidence of this network characteristic in human behavior. The results of the various analyses support the hypothesis that the structure of words in the mental lexicon influences lexical processing. The implications of network science for current models of spoken word recognition, language processing, and cognitive psychology more generally are discussed. PMID:24269488
NASA Astrophysics Data System (ADS)
Beaufort, Aurélien; Lamouroux, Nicolas; Pella, Hervé; Datry, Thibault; Sauquet, Eric
2018-05-01
Headwater streams represent a substantial proportion of river systems and many of them have intermittent flows due to their upstream position in the network. These intermittent rivers and ephemeral streams have recently seen a marked increase in interest, especially to assess the impact of drying on aquatic ecosystems. The objective of this paper is to quantify how discrete (in space and time) field observations of flow intermittence help to extrapolate over time the daily probability of drying (defined at the regional scale). Two empirical models based on linear or logistic regressions have been developed to predict the daily probability of intermittence at the regional scale across France. Explanatory variables were derived from available daily discharge and groundwater-level data of a dense gauging/piezometer network, and models were calibrated using discrete series of field observations of flow intermittence. The robustness of the models was tested using an independent, dense regional dataset of intermittence observations and observations of the year 2017 excluded from the calibration. The resulting models were used to extrapolate the daily regional probability of drying in France: (i) over the period 2011-2017 to identify the regions most affected by flow intermittence; (ii) over the period 1989-2017, using a reduced input dataset, to analyse temporal variability of flow intermittence at the national level. The two empirical regression models performed equally well between 2011 and 2017. The accuracy of predictions depended on the number of continuous gauging/piezometer stations and intermittence observations available to calibrate the regressions. Regions with the highest performance were located in sedimentary plains, where the monitoring network was dense and where the regional probability of drying was the highest. Conversely, the worst performances were obtained in mountainous regions. Finally, temporal projections (1989-2016) suggested the highest probabilities of intermittence (> 35 %) in 1989-1991, 2003 and 2005. A high density of intermittence observations improved the information provided by gauging stations and piezometers to extrapolate the temporal variability of intermittent rivers and ephemeral streams.
Dense module enumeration in biological networks
NASA Astrophysics Data System (ADS)
Tsuda, Koji; Georgii, Elisabeth
2009-12-01
Analysis of large networks is a central topic in various research fields including biology, sociology, and web mining. Detection of dense modules (a.k.a. clusters) is an important step to analyze the networks. Though numerous methods have been proposed to this aim, they often lack mathematical rigorousness. Namely, there is no guarantee that all dense modules are detected. Here, we present a novel reverse-search-based method for enumerating all dense modules. Furthermore, constraints from additional data sources such as gene expression profiles or customer profiles can be integrated, so that we can systematically detect dense modules with interesting profiles. We report successful applications in human protein interaction network analyses.
Spatial analysis of storm depths from an Arizona raingage network
NASA Technical Reports Server (NTRS)
Fennessey, N. M.; Eagleson, P. S.; Qinliang, W.; Rodriguez-Iturbe, I.
1986-01-01
Eight years of summer rainstorm observations are analyzed by a dense network of 93 raingages operated by the U.S. Department of Agriculture, Agricultural Research Service, in the 150 km Walnut Gulch experimental catchment near Tucson, Arizona. Storms are defined by the total depths collected at each raingage during the noon-to-noon period for which there was depth recorded at any of the gages. For each of the resulting 428 storm days, the gage depths are interpolated onto a dense grid and the resulting random field analyzed to obtain moments, isohyetal plots, spatial correlation function, variance function, and the spatial distribution of storm depth.
Dense power-law networks and simplicial complexes
NASA Astrophysics Data System (ADS)
Courtney, Owen T.; Bianconi, Ginestra
2018-05-01
There is increasing evidence that dense networks occur in on-line social networks, recommendation networks and in the brain. In addition to being dense, these networks are often also scale-free, i.e., their degree distributions follow P (k ) ∝k-γ with γ ∈(1 ,2 ] . Models of growing networks have been successfully employed to produce scale-free networks using preferential attachment, however these models can only produce sparse networks as the numbers of links and nodes being added at each time step is constant. Here we present a modeling framework which produces networks that are both dense and scale-free. The mechanism by which the networks grow in this model is based on the Pitman-Yor process. Variations on the model are able to produce undirected scale-free networks with exponent γ =2 or directed networks with power-law out-degree distribution with tunable exponent γ ∈(1 ,2 ) . We also extend the model to that of directed two-dimensional simplicial complexes. Simplicial complexes are generalization of networks that can encode the many body interactions between the parts of a complex system and as such are becoming increasingly popular to characterize different data sets ranging from social interacting systems to the brain. Our model produces dense directed simplicial complexes with power-law distribution of the generalized out-degrees of the nodes.
Community structure and scale-free collections of Erdős-Rényi graphs.
Seshadhri, C; Kolda, Tamara G; Pinar, Ali
2012-05-01
Community structure plays a significant role in the analysis of social networks and similar graphs, yet this structure is little understood and not well captured by most models. We formally define a community to be a subgraph that is internally highly connected and has no deeper substructure. We use tools of combinatorics to show that any such community must contain a dense Erdős-Rényi (ER) subgraph. Based on mathematical arguments, we hypothesize that any graph with a heavy-tailed degree distribution and community structure must contain a scale-free collection of dense ER subgraphs. These theoretical observations corroborate well with empirical evidence. From this, we propose the Block Two-Level Erdős-Rényi (BTER) model, and demonstrate that it accurately captures the observable properties of many real-world social networks.
Studies Of Infrasonic Propagation Using Dense Seismic Networks
NASA Astrophysics Data System (ADS)
Hedlin, M. A.; deGroot-Hedlin, C. D.; Drob, D. P.
2011-12-01
Although there are approximately 100 infrasonic arrays worldwide, more than ever before, the station density is still insufficient to provide validation for detailed propagation modeling. Relatively large infrasonic signals can be observed on seismic channels due to coupling at the Earth's surface. Recent research, using data from the 70-km spaced 400-station USArray and other seismic network deployments, has shown the value of dense seismic network data for filling in the gaps between infrasonic arrays. The dense sampling of the infrasonic wavefield has allowed us to observe complete travel-time branches of infrasound and address important research problems in infrasonic propagation. We present our analysis of infrasound created by a series of rocket motor detonations that occurred at the UTTR facility in Utah in 2007. These data were well recorded by the USArray seismometers. We use the precisely located blasts to assess the utility of G2S mesoscale models and methods to synthesize infrasonic propagation. We model the travel times of the branches using a ray-based approach and the complete wavefield using a FDTD algorithm. Although results from both rays and FDTD approaches predict the travel times to within several seconds, only about 40% of signals are predicted using rays largely due to penetration of sound into shadow zones. FDTD predicts some sound penetration into the shadow zone, but the observed shadow zones, as defined by the seismic data, have considerably narrower spatial extent than either method predicts, perhaps due to un-modeled small-scale structure in the atmosphere.
Thunderstorm monitoring with VLF network and super dense meteorological observation system
NASA Astrophysics Data System (ADS)
Takahashi, Yukihiro; Sato, Mitsuteru
2015-04-01
It's not easy to understand the inside structure and developing process of thunderstorm only with existing meteorological instruments since its horizontal extent of the storm cell is sometimes smaller than an order of 10 km while one of the densest ground network in Japan, AMEDAS, consists of sites located every 17 km in average and the resolution of meteorological radar is 1-2 km in general. Even the X-band radar realizes the resolution of 250 m or larger. Here we suggest a thunderstorm monitoring system consisting of the network of VLF radio wave receivers and the super dense meteorological observation system with simple and low cost plate-type sensors that can be used for measurement both of raindrop and vertical electric field change caused by cloud-to-ground lightning discharge, adding to basic equipments for meteorological measurements. The plate-type sensor consists of two aluminum plates with a diameter of 10-20 cm. We carried out an observation campaign in summer of 2013 in the foothills of Mt. Yastugatake, Yamanashi and Nagano prefectures in Japan, installing 6 plate-type sensors at a distance of about 4 km. Horizontal location, height and charge amount of each lightning discharge are estimated successfully based on the information of electric field changes at several observing sites. Moreover, it was found that the thunderstorm has a very narrow structure smaller than 300 m that cannot be measured by any other ways, counting the positive and negative pulses caused by attachment of raindrop to the sensor plate, respectively. We plan to construct a new super dense observation network in the north Kanto region, Japan, where the lightning activity is most prominent in summer Japan and surrounded by our VLF systems developed for detecting sferics from lightning discharge, distributing more than several tens of sensors at every 4 km or shorter, such as an order of 100 m at minimum. This kind of new type network will reveal the unknown fine structures of thunderstorms and open the door for constructing real time alert system of torrential rainfall and lightning stroke especially in the city area.
Synopsis of the D- and E-regions during the energy budget campaign
NASA Technical Reports Server (NTRS)
Friedrich, M.; Baker, K. D.; Dickinson, P. H. G.; Dumbs, A.; Grandal, B.; Andreassen, O.; Thrane, E. V.; Smith, L. G.; Stauning, P.; Torkar, K. M.
1985-01-01
Electron density profiles derived from rocket-borne measurements are presented. These data were obtained at two different sites in northern Scandinavia under various degrees of geophysical disturbance. The observed electron density profiles are related to ionospheric absorption as observed with the dense riometer network in that area.
Experimental study of thin film sensor networks for wind turbine blade damage detection
NASA Astrophysics Data System (ADS)
Downey, A.; Laflamme, S.; Ubertini, F.; Sauder, H.; Sarkar, P.
2017-02-01
Damage detection of wind turbine blades is difficult due to their complex geometry and large size, for which large deployment of sensing systems is typically not economical. A solution is to develop and deploy dedicated sensor networks fabricated from inexpensive materials and electronics. The authors have recently developed a novel skin-type strain gauge for measuring strain over very large surfaces. The skin, a type of large-area electronics, is constituted from a network of soft elastomeric capacitors. The sensing system is analogous to a biological skin, where local strain can be monitored over a global area. In this paper, we propose the utilization of a dense network of soft elastomeric capacitors to detect, localize, and quantify damage on wind turbine blades. We also leverage mature off-the-shelf technologies, in particular resistive strain gauges, to augment such dense sensor network with high accuracy data at key locations, therefore constituting a hybrid dense sensor network. The proposed hybrid dense sensor network is installed inside a wind turbine blade model, and tested in a wind tunnel to simulate an operational environment. Results demonstrate the ability of the hybrid dense sensor network to detect, localize, and quantify damage.
NASA Astrophysics Data System (ADS)
Sano, Itaru; Mukai, Sonoyo; Nakata, Makiko; Holben, Brent N.
2016-11-01
Aerosol mass concentrations are affected by local emissions as well as long-range transboundary (LRT) aerosols. This work investigates regional and local variations of aerosols based on Distributed Regional Aerosol Gridded Observation Networks (DRAGON). We constructed DRAGON-Japan and DRAGON-Osaka in spring of 2012. The former network covers almost all of Japan in order to obtain aerosol information in regional scale over Japanese islands. It was determined from the DRAGON-Japan campaign that the values of aerosol optical thickness (AOT) decrease from west to east during an aerosol episode. In fact, the highest AOT was recorded at Fukue Island at the western end of the network, and the value was much higher than that of urban areas. The latter network (DRAGON-Osaka) was set as a dense instrument network in the megalopolis of Osaka, with a population of 12 million, to better understand local aerosol dynamics in urban areas. AOT was further measured with a mobile sun photometer attached to a car. This transect information showed that aerosol concentrations rapidly changed in time and space together when most of the Osaka area was covered with moderate LRT aerosols. The combined use of the dense instrument network (DRAGON-Osaka) and high-frequency measurements provides the motion of aerosol advection, which coincides with the wind vector around the layer between 700 and 850 hPa as provided by the reanalysis data of the National Centers for Environmental Prediction (NCEP).
NASA Technical Reports Server (NTRS)
Sano, Itaru; Mukai, Sonoyo; Nakata, Makiko; Holben, Brent N.
2016-01-01
Aerosol mass concentrations are affected by local emissions as well as long-range transboundary (LRT) aerosols. This work investigates regional and local variations of aerosols based on Distributed Regional Aerosol Gridded Observation Networks (DRAGON).We constructed DRAGON-Japan and DRAGON-Osaka in spring of 2012. The former network covers almost all of Japan in order to obtain aerosol information in regional scale over Japanese islands. It was determined from the DRAGON-Japan campaign that the values of aerosol optical thickness (AOT) decrease from west to east during an aerosol episode. In fact, the highest AOT was recorded at Fukue Island at the western end of the network, and the value was much higher than that of urban areas. The latter network (DRAGON-Osaka) was set as a dense instrument network in the megalopolis of Osaka, with a population of 12 million, to better understand local aerosol dynamics in urban areas. AOT was further measured with a mobile sun photometer attached to a car. This transect information showed that aerosol concentrations rapidly changed in time and space together when most of the Osaka area was covered with moderate LRT aerosols. The combined use of the dense instrument network (DRAGON-Osaka) and high-frequency measurements provides the motion of aerosol advection, which coincides with the wind vector around the layer between 700 and 850 hPa as provided by the reanalysis data of the National Centers for Environmental Prediction (NCEP).
A Modeling Framework for Inference of Surface Emissions Using Mobile Observations
NASA Astrophysics Data System (ADS)
Fasoli, B.; Mitchell, L.; Crosman, E.; Mendoza, D. L.; Lin, J. C.
2016-12-01
Our ability to quantify surface emissions depends on the precision of observations and the spatial density of measurement networks. Mobile measurement techniques offer a cost effective strategy for quantifying atmospheric conditions over space without requiring a dense network of in-situ sites. However, interpretation of these data and inversion of dispersed measurements to estimate surface emissions can be difficult. We introduce a framework using the Stochastic Time-Inverted Lagrangian Transport (STILT) model that assimilates both spatially resolved observations and an emissions inventory to better estimate surface fluxes. Salt Lake City is a unique laboratory for the study of urban carbon emissions. It is the only U.S. city that utilizes light-rail trains to continuously measure high frequency carbon dioxide (CO2) and methane (CH4); it is home to one of the longest and most spatially resolved high precision CO2 measurement networks (air.utah.edu); and it is one of four cities in the world for which the Hestia anthropogenic emissions inventory has been produced which characterizes CO2 emissions at the scale of individual buildings and roadways. Using these data and modeling resources, we evaluate spatially resolved CO2 measurements and transported CO2 emissions on hourly timescales at a dense spatial resolution across Salt Lake City.
Dyadic Interactions in Service Encounter: Bayesian SEM Approach
NASA Astrophysics Data System (ADS)
Sagan, Adam; Kowalska-Musiał, Magdalena
Dyadic interactions are an important aspects in service encounters. They may be observed in B2B distribution channels, professional services, buying centers, family decision making or WOM communications. The networks consist of dyadic bonds that form dense but weak ties among the actors.
NASA Astrophysics Data System (ADS)
Tang, Guoqiang; Behrangi, Ali; Long, Di; Li, Changming; Hong, Yang
2018-04-01
Rain gauge observations are commonly used to evaluate the quality of satellite precipitation products. However, the inherent difference between point-scale gauge measurements and areal satellite precipitation, i.e. a point of space in time accumulation v.s. a snapshot of time in space aggregation, has an important effect on the accuracy and precision of qualitative and quantitative evaluation results. This study aims to quantify the uncertainty caused by various combinations of spatiotemporal scales (0.1°-0.8° and 1-24 h) of gauge network designs in the densely gauged and relatively flat Ganjiang River basin, South China, in order to evaluate the state-of-the-art satellite precipitation, the Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG). For comparison with the dense gauge network serving as "ground truth", 500 sparse gauge networks are generated through random combinations of gauge numbers at each set of spatiotemporal scales. Results show that all sparse gauge networks persistently underestimate the performance of IMERG according to most metrics. However, the probability of detection is overestimated because hit and miss events are more likely fewer than the reference numbers derived from dense gauge networks. A nonlinear error function of spatiotemporal scales and the number of gauges in each grid pixel is developed to estimate the errors of using gauges to evaluate satellite precipitation. Coefficients of determination of the fitting are above 0.9 for most metrics. The error function can also be used to estimate the required minimum number of gauges in each grid pixel to meet a predefined error level. This study suggests that the actual quality of satellite precipitation products could be better than conventionally evaluated or expected, and hopefully enables non-subject-matter-expert researchers to have better understanding of the explicit uncertainties when using point-scale gauge observations to evaluate areal products.
Modeling propagation of infrasound signals observed by a dense seismic network.
Chunchuzov, I; Kulichkov, S; Popov, O; Hedlin, M
2014-01-01
The long-range propagation of infrasound from a surface explosion with an explosive yield of about 17.6 t TNT that occurred on June 16, 2008 at the Utah Test and Training Range (UTTR) in the western United States is simulated using an atmospheric model that includes fine-scale layered structure of the wind velocity and temperature fields. Synthetic signal parameters (waveforms, amplitudes, and travel times) are calculated using parabolic equation and ray-tracing methods for a number of ranges between 100 and 800 km from the source. The simulation shows the evolution of several branches of stratospheric and thermospheric signals with increasing range from the source. Infrasound signals calculated using a G2S (ground-to-space) atmospheric model perturbed by small-scale layered wind velocity and temperature fluctuations are shown to agree well with recordings made by the dense High Lava Plains seismic network located at an azimuth of 300° from UTTR. The waveforms of calculated infrasound arrivals are compared with those of seismic recordings. This study illustrates the utility of dense seismic networks for mapping an infrasound field with high spatial resolution. The parabolic equation calculations capture both the effect of scattering of infrasound into geometric acoustic shadow zones and significant temporal broadening of the arrivals.
NASA Technical Reports Server (NTRS)
Fennessey, N. M.; Eagleson, P. S.; Qinliang, W.; Rodrigues-Iturbe, I.
1986-01-01
Eight years of summer raingage observations are analyzed for a dense, 93 gage, network operated by the U. S. Department of Agriculture, Agricultural Research Service, in their 150 sq km Walnut Gulch catchment near Tucson, Arizona. Storms are defined by the total depths collected at each raingage during the noon to noon period for which there was depth recorded at any of the gages. For each of the resulting 428 storms, the 93 gage depths are interpolated onto a dense grid and the resulting random field is anlyzed. Presented are: storm depth isohyets at 2 mm contour intervals, first three moments of point storm depth, spatial correlation function, spatial variance function, and the spatial distribution of total rainstorm depth.
Dynamic Tsunami Data Assimilation (DTDA) Based on Green's Function: Theory and Application
NASA Astrophysics Data System (ADS)
Wang, Y.; Satake, K.; Gusman, A. R.; Maeda, T.
2017-12-01
Tsunami data assimilation estimates the tsunami arrival time and height at Points of Interest (PoIs) by assimilating tsunami data observed offshore into a numerical simulation, without the need of calculating initial sea surface height at the source (Maeda et al., 2015). The previous tsunami data assimilation has two main problems: one is that it requires quite large calculating time because the tsunami wavefield of the whole interested region is computed continuously; another is that it relies on dense observation network such as Dense Oceanfloor Network system for Earthquakes and Tsunamis (DONET) in Japan or Cascadia Initiative (CI) in North America (Gusman et al., 2016), which is not practical for some area. Here we propose a new approach based on Green's function to speed up the tsunami data assimilation process and to solve the problem of sparse observation: Dynamic Tsunami Data Assimilation (DTDA). If the residual between the observed and calculated tsunami height is not zero, there will be an assimilation response around the station, usually a Gaussian-distributed sea surface displacement. The Green's function Gi,j is defined as the tsunami waveform at j-th grid caused by the propagation of assimilation response at i-th station. Hence, the forecasted waveforms at PoIs are calculated as the superposition of the Green's functions. In case of sparse observation, we could use the aircraft and satellite observations. The previous assimilation approach is not practical because it costs much time to assimilate moving observation, and to compute the tsunami wavefield of the interested region. In contrast, DTDA synthesizes the waveforms quickly as long as the Green's functions are calculated in advance. We apply our method to a hypothetic earthquake off the west coast of Sumatra Island similar to the 2004 Indian Ocean earthquake. Currently there is no dense observation network in that area, making it difficult for the previous assimilation approach. We used DTDA with aircraft and satellite observation above the Indian Ocean, to forecast the tsunami in Sri Lanka, India and Thailand. It shows that DTDA provides reliable tsunami forecasting for these countries, and the tsunami early warning can be issued half an hour before the tsunami arrives to reduce the damage along the coast.
Variability of winds and temperature in the Bergen area
NASA Astrophysics Data System (ADS)
Schönbein, Daniel; Ólafsson, Haraldur; Asle Olseth, Jan; Furevik, Birgitte
2017-04-01
In recent years, observations have been made by a dense network of automatic weather stations in the Bergen area in W-Norway (Bergen School of Meteorology). Here, cases are presented that feature large spatial variability in winds and temperature and the ability of a numerical model to reproduce this variability is assessed.
NY-uHMT: A dense hydro-meteorological network to characterize urban land-atmosphere interactions
NASA Astrophysics Data System (ADS)
Ramamurthy, P.; Lakhankar, T.; Khanbilvardi, R.; Devineni, N.
2016-12-01
Most people in the US live in large Metropolitan areas that have a dense urban core in the center, dominated by built surfaces and surrounded by residential/suburban areas that consist a mix of built, vegetated and permeable surfaces. This creates a gradient in the hydro-meteorological environment giving rise to complex land-atmosphere interactions. Current modeling platforms and observational techniques like tower measurements do not adequately account for the underlying heterogeneity. To address this critical gap in our understanding we have instituted a dense network of sensors in the New York Metropolitan area. This unique urban sensor network consists of instrumentation to monitor soil moisture at multiple depths along with air temperature, relative humidity and precipitation, with room to add additional sensors in the future. The network is autonomous and connected to a centralized server using cellular towers. Apart from describing the spatial variability in hydro-meteorological quantities the network will also aid in conducting high-resolution numerical simulations to study and forecast urban weather and climate. In one such simulation conducted to partition the influence of storage flux, wind pattern and circulation and soil moisture deficit on urban heat island intensity (UHI), we found that the daily variability in UHI in NYC was sensitive to available energy and wind pattern. The long-term trend in UHI was however related to soil moisture deficit. In fact a prolonged heat wave period witnessed during summer 2006 correlated well with an extended dry period and the daily UHI in NYC almost doubled. Moreover, the urban soils also suffered from high degree of dessication, owing to drier urban boundary layer.
NASA Astrophysics Data System (ADS)
Nordal Petersen, Martin; Nuijts, Roeland; Lange Bjørn, Lars
2014-05-01
This article presents an advanced optical model for simulation of alien wavelengths in multi-domain and multi-vendor dense wavelength-division multiplexing networks. The model aids optical network planners with a better understanding of the non-linear effects present in dense wavelength-division multiplexing systems and better utilization of alien wavelengths in future applications. The limiting physical effects for alien wavelengths are investigated in relation to power levels, channel spacing, and other factors. The simulation results are verified through experimental setup in live multi-domain dense wavelength-division multiplexing systems between two national research networks: SURFnet in Holland and NORDUnet in Denmark.
Self-diffusion in dense granular shear flows.
Utter, Brian; Behringer, R P
2004-03-01
Diffusivity is a key quantity in describing velocity fluctuations in granular materials. These fluctuations are the basis of many thermodynamic and hydrodynamic models which aim to provide a statistical description of granular systems. We present experimental results on diffusivity in dense, granular shear flows in a two-dimensional Couette geometry. We find that self-diffusivities D are proportional to the local shear rate gamma; with diffusivities along the direction of the mean flow approximately twice as large as those in the perpendicular direction. The magnitude of the diffusivity is D approximately gamma;a(2), where a is the particle radius. However, the gradient in shear rate, coupling to the mean flow, and strong drag at the moving boundary lead to particle displacements that can appear subdiffusive or superdiffusive. In particular, diffusion appears to be superdiffusive along the mean flow direction due to Taylor dispersion effects and subdiffusive along the perpendicular direction due to the gradient in shear rate. The anisotropic force network leads to an additional anisotropy in the diffusivity that is a property of dense systems and has no obvious analog in rapid flows. Specifically, the diffusivity is suppressed along the direction of the strong force network. A simple random walk simulation reproduces the key features of the data, such as the apparent superdiffusive and subdiffusive behavior arising from the mean velocity field, confirming the underlying diffusive motion. The additional anisotropy is not observed in the simulation since the strong force network is not included. Examples of correlated motion, such as transient vortices, and Lévy flights are also observed. Although correlated motion creates velocity fields which are qualitatively different from collisional Brownian motion and can introduce nondiffusive effects, on average the system appears simply diffusive.
Pinkert, T J; Böll, O; Willmann, L; Jansen, G S M; Dijck, E A; Groeneveld, B G H M; Smets, R; Bosveld, F C; Ubachs, W; Jungmann, K; Eikema, K S E; Koelemeij, J C J
2015-02-01
Results of optical frequency transfer over a carrier-grade dense-wavelength-division-multiplexing (DWDM) optical fiber network are presented. The relation between soil temperature changes on a buried optical fiber and frequency changes of an optical carrier through the fiber is modeled. Soil temperatures, measured at various depths by the Royal Netherlands Meteorology Institute (KNMI) are compared with observed frequency variations through this model. A comparison of a nine-day record of optical frequency measurements through the 2×298 km fiber link with soil temperature data shows qualitative agreement. A soil temperature model is used to predict the link stability over longer periods (days-months-years). We show that optical frequency dissemination is sufficiently stable to distribute and compare, e.g., rubidium frequency standards over standard DWDM optical fiber networks using unidirectional fibers.
NASA Astrophysics Data System (ADS)
Turner, Alexander J.; Shusterman, Alexis A.; McDonald, Brian C.; Teige, Virginia; Harley, Robert A.; Cohen, Ronald C.
2016-11-01
The majority of anthropogenic CO2 emissions are attributable to urban areas. While the emissions from urban electricity generation often occur in locations remote from consumption, many of the other emissions occur within the city limits. Evaluating the effectiveness of strategies for controlling these emissions depends on our ability to observe urban CO2 emissions and attribute them to specific activities. Cost-effective strategies for doing so have yet to be described. Here we characterize the ability of a prototype measurement network, modeled after the Berkeley Atmospheric CO2 Observation Network (BEACO2N) in California's Bay Area, in combination with an inverse model based on the coupled Weather Research and Forecasting/Stochastic Time-Inverted Lagrangian Transport (WRF-STILT) to improve our understanding of urban emissions. The pseudo-measurement network includes 34 sites at roughly 2 km spacing covering an area of roughly 400 km2. The model uses an hourly 1 × 1 km2 emission inventory and 1 × 1 km2 meteorological calculations. We perform an ensemble of Bayesian atmospheric inversions to sample the combined effects of uncertainties of the pseudo-measurements and the model. We vary the estimates of the combined uncertainty of the pseudo-observations and model over a range of 20 to 0.005 ppm and vary the number of sites from 1 to 34. We use these inversions to develop statistical models that estimate the efficacy of the combined model-observing system in reducing uncertainty in CO2 emissions. We examine uncertainty in estimated CO2 fluxes on the urban scale, as well as for sources embedded within the city such as a line source (e.g., a highway) or a point source (e.g., emissions from the stacks of small industrial facilities). Using our inversion framework, we find that a dense network with moderate precision is the preferred setup for estimating area, line, and point sources from a combined uncertainty and cost perspective. The dense network considered here (modeled after the BEACO2N network with an assumed mismatch error of 1 ppm at an hourly temporal resolution) could estimate weekly CO2 emissions from an urban region with less than 5 % error, given our characterization of the combined observation and model uncertainty.
Turner, Alexander J.; Shusterman, Alexis A.; McDonald, Brian C.; ...
2016-11-01
The majority of anthropogenic CO 2 emissions are attributable to urban areas. While the emissions from urban electricity generation often occur in locations remote from consumption, many of the other emissions occur within the city limits. Evaluating the effectiveness of strategies for controlling these emissions depends on our ability to observe urban CO 2 emissions and attribute them to specific activities. Cost-effective strategies for doing so have yet to be described. Here we characterize the ability of a prototype measurement network, modeled after the Berkeley Atmospheric CO 2 Observation Network (BEACO 2N) in California's Bay Area, in combination with anmore » inverse model based on the coupled Weather Research and Forecasting/Stochastic Time-Inverted Lagrangian Transport (WRF-STILT) to improve our understanding of urban emissions. The pseudo-measurement network includes 34 sites at roughly 2 km spacing covering an area of roughly 400 km 2. The model uses an hourly 1 × 1 km 2 emission inventory and 1 × 1 km 2 meteorological calculations. We perform an ensemble of Bayesian atmospheric inversions to sample the combined effects of uncertainties of the pseudo-measurements and the model. We vary the estimates of the combined uncertainty of the pseudo-observations and model over a range of 20 to 0.005 ppm and vary the number of sites from 1 to 34. We use these inversions to develop statistical models that estimate the efficacy of the combined model–observing system in reducing uncertainty in CO 2 emissions. We examine uncertainty in estimated CO 2 fluxes on the urban scale, as well as for sources embedded within the city such as a line source (e.g., a highway) or a point source (e.g., emissions from the stacks of small industrial facilities). Using our inversion framework, we find that a dense network with moderate precision is the preferred setup for estimating area, line, and point sources from a combined uncertainty and cost perspective. The dense network considered here (modeled after the BEACO 2N network with an assumed mismatch error of 1 ppm at an hourly temporal resolution) could estimate weekly CO 2 emissions from an urban region with less than 5 % error, given our characterization of the combined observation and model uncertainty.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, Alexander J.; Shusterman, Alexis A.; McDonald, Brian C.
The majority of anthropogenic CO 2 emissions are attributable to urban areas. While the emissions from urban electricity generation often occur in locations remote from consumption, many of the other emissions occur within the city limits. Evaluating the effectiveness of strategies for controlling these emissions depends on our ability to observe urban CO 2 emissions and attribute them to specific activities. Cost-effective strategies for doing so have yet to be described. Here we characterize the ability of a prototype measurement network, modeled after the Berkeley Atmospheric CO 2 Observation Network (BEACO 2N) in California's Bay Area, in combination with anmore » inverse model based on the coupled Weather Research and Forecasting/Stochastic Time-Inverted Lagrangian Transport (WRF-STILT) to improve our understanding of urban emissions. The pseudo-measurement network includes 34 sites at roughly 2 km spacing covering an area of roughly 400 km 2. The model uses an hourly 1 × 1 km 2 emission inventory and 1 × 1 km 2 meteorological calculations. We perform an ensemble of Bayesian atmospheric inversions to sample the combined effects of uncertainties of the pseudo-measurements and the model. We vary the estimates of the combined uncertainty of the pseudo-observations and model over a range of 20 to 0.005 ppm and vary the number of sites from 1 to 34. We use these inversions to develop statistical models that estimate the efficacy of the combined model–observing system in reducing uncertainty in CO 2 emissions. We examine uncertainty in estimated CO 2 fluxes on the urban scale, as well as for sources embedded within the city such as a line source (e.g., a highway) or a point source (e.g., emissions from the stacks of small industrial facilities). Using our inversion framework, we find that a dense network with moderate precision is the preferred setup for estimating area, line, and point sources from a combined uncertainty and cost perspective. The dense network considered here (modeled after the BEACO 2N network with an assumed mismatch error of 1 ppm at an hourly temporal resolution) could estimate weekly CO 2 emissions from an urban region with less than 5 % error, given our characterization of the combined observation and model uncertainty.« less
Cortical Dynamics in Presence of Assemblies of Densely Connected Weight-Hub Neurons
Setareh, Hesam; Deger, Moritz; Petersen, Carl C. H.; Gerstner, Wulfram
2017-01-01
Experimental measurements of pairwise connection probability of pyramidal neurons together with the distribution of synaptic weights have been used to construct randomly connected model networks. However, several experimental studies suggest that both wiring and synaptic weight structure between neurons show statistics that differ from random networks. Here we study a network containing a subset of neurons which we call weight-hub neurons, that are characterized by strong inward synapses. We propose a connectivity structure for excitatory neurons that contain assemblies of densely connected weight-hub neurons, while the pairwise connection probability and synaptic weight distribution remain consistent with experimental data. Simulations of such a network with generalized integrate-and-fire neurons display regular and irregular slow oscillations akin to experimentally observed up/down state transitions in the activity of cortical neurons with a broad distribution of pairwise spike correlations. Moreover, stimulation of a model network in the presence or absence of assembly structure exhibits responses similar to light-evoked responses of cortical layers in optogenetically modified animals. We conclude that a high connection probability into and within assemblies of excitatory weight-hub neurons, as it likely is present in some but not all cortical layers, changes the dynamics of a layer of cortical microcircuitry significantly. PMID:28690508
NASA Astrophysics Data System (ADS)
Coogan, A.; Avanzi, F.; Akella, R.; Conklin, M. H.; Bales, R. C.; Glaser, S. D.
2017-12-01
Automatic meteorological and snow stations provide large amounts of information at dense temporal resolution, but data quality is often compromised by noise and missing values. We present a new gap-filling and cleaning procedure for networks of these stations based on Kalman filtering and expectation maximization. Our method utilizes a multi-sensor, regime-switching Kalman filter to learn a latent process that captures dependencies between nearby stations and handles sharp changes in snowfall rate. Since the latent process is inferred using observations across working stations in the network, it can be used to fill in large data gaps for a malfunctioning station. The procedure was tested on meteorological and snow data from Wireless Sensor Networks (WSN) in the American River basin of the Sierra Nevada. Data include air temperature, relative humidity, and snow depth from dense networks of 10 to 12 stations within 1 km2 swaths. Both wet and dry water years have similar data issues. Data with artificially created gaps was used to quantify the method's performance. Our multi-sensor approach performs better than a single-sensor one, especially with large data gaps, as it learns and exploits the dominant underlying processes in snowpack at each site.
Atmospheric Responses from Radiosonde Observations of the 2017 Total Solar Eclipse
NASA Astrophysics Data System (ADS)
Fowler, J.
2017-12-01
The Atmospheric Responses from Radiosonde Observations project during the August 21st, 2017 Total Solar Eclipse was to observe the atmospheric response under the shadow of the Moon using both research and operational earth science instruments run primarily by undergraduate students not formally trained in atmospheric science. During the eclipse, approximately 15 teams across the path of totality launched radiosonde balloon platforms in very rapid, serial sonde deployment. Our strategy was to combine a dense ground observation network with multiple radiosonde sites, located within and along the margins of the path of totality. This can demonstrate how dense observation networks leveraged among various programs can "fill the gaps" in data sparse regions allowing research ideas and questions that previously could not be approached with courser resolution data and improving the scientific understanding and prediction of geophysical and hazardous phenomenon. The core scientific objectives are (1) to make high-resolution surface and upper air observations in several sites along the eclipse path (2) to quantitatively study atmospheric responses to the rapid disappearance of the Sun across the United States, and (3) to assess the performance of high-resolution weather forecasting models in simulating the observed response. Such a scientific campaign, especially unique during a total solar eclipse, provides a rare but life-altering opportunity to attract and enable next-generation of observational scientists. It was an ideal "laboratory" for graduate, undergraduate, citizen scientists and k-12 students and staff to learn, explore and research in STEM.
Lei, Chunyang; Bie, Hongxia; Fang, Gengfa; Gaura, Elena; Brusey, James; Zhang, Xuekun; Dutkiewicz, Eryk
2016-07-18
Super dense wireless sensor networks (WSNs) have become popular with the development of Internet of Things (IoT), Machine-to-Machine (M2M) communications and Vehicular-to-Vehicular (V2V) networks. While highly-dense wireless networks provide efficient and sustainable solutions to collect precise environmental information, a new channel access scheme is needed to solve the channel collision problem caused by the large number of competing nodes accessing the channel simultaneously. In this paper, we propose a space-time random access method based on a directional data transmission strategy, by which collisions in the wireless channel are significantly decreased and channel utility efficiency is greatly enhanced. Simulation results show that our proposed method can decrease the packet loss rate to less than 2 % in large scale WSNs and in comparison with other channel access schemes for WSNs, the average network throughput can be doubled.
An Adaptive Channel Access Method for Dynamic Super Dense Wireless Sensor Networks.
Lei, Chunyang; Bie, Hongxia; Fang, Gengfa; Zhang, Xuekun
2015-12-03
Super dense and distributed wireless sensor networks have become very popular with the development of small cell technology, Internet of Things (IoT), Machine-to-Machine (M2M) communications, Vehicular-to-Vehicular (V2V) communications and public safety networks. While densely deployed wireless networks provide one of the most important and sustainable solutions to improve the accuracy of sensing and spectral efficiency, a new channel access scheme needs to be designed to solve the channel congestion problem introduced by the high dynamics of competing nodes accessing the channel simultaneously. In this paper, we firstly analyzed the channel contention problem using a novel normalized channel contention analysis model which provides information on how to tune the contention window according to the state of channel contention. We then proposed an adaptive channel contention window tuning algorithm in which the contention window tuning rate is set dynamically based on the estimated channel contention level. Simulation results show that our proposed adaptive channel access algorithm based on fast contention window tuning can achieve more than 95 % of the theoretical optimal throughput and 0 . 97 of fairness index especially in dynamic and dense networks.
Rate Dependence in Force Networks of Sheared Granular Materials
NASA Astrophysics Data System (ADS)
Hartley, Robert; Behringer, Robert P.
2003-03-01
We describe experiments that explore rate dependence in force networks of dense granular materials undergoing slow deformation by shear and by compression. The experiments were carried out using 2D photoelastic particles so that it was possible to visualize forces at the grain scale. Shear experiments were carried out in a Couette geometry with a rate Ω. Compression experiments were carried out by repetitive compaction via a piston in a rigid chamber at comparable rates to the shear experiments. Under shearing the mean stress/force grew logarithmically with Ω for at least four decades. For compression, no dependence of the mean stress on rate was observed. In related measurements, we observed relaxation of stress in static samples that had been sheared and where the shearing was abruptly stopped. Relaxation of the force network occured over time scales of days. No relaxation of the force network was observable for uniformly compressed static samples. These results are of particular interest because they provide insight into creep and failure in granular materials.
Using algebra for massively parallel processor design and utilization
NASA Technical Reports Server (NTRS)
Campbell, Lowell; Fellows, Michael R.
1990-01-01
This paper summarizes the author's advances in the design of dense processor networks. Within is reported a collection of recent constructions of dense symmetric networks that provide the largest know values for the number of nodes that can be placed in a network of a given degree and diameter. The constructions are in the range of current potential engineering significance and are based on groups of automorphisms of finite-dimensional vector spaces.
Colak, Recep; Moser, Flavia; Chu, Jeffrey Shih-Chieh; Schönhuth, Alexander; Chen, Nansheng; Ester, Martin
2010-10-25
Computational prediction of functionally related groups of genes (functional modules) from large-scale data is an important issue in computational biology. Gene expression experiments and interaction networks are well studied large-scale data sources, available for many not yet exhaustively annotated organisms. It has been well established, when analyzing these two data sources jointly, modules are often reflected by highly interconnected (dense) regions in the interaction networks whose participating genes are co-expressed. However, the tractability of the problem had remained unclear and methods by which to exhaustively search for such constellations had not been presented. We provide an algorithmic framework, referred to as Densely Connected Biclustering (DECOB), by which the aforementioned search problem becomes tractable. To benchmark the predictive power inherent to the approach, we computed all co-expressed, dense regions in physical protein and genetic interaction networks from human and yeast. An automatized filtering procedure reduces our output which results in smaller collections of modules, comparable to state-of-the-art approaches. Our results performed favorably in a fair benchmarking competition which adheres to standard criteria. We demonstrate the usefulness of an exhaustive module search, by using the unreduced output to more quickly perform GO term related function prediction tasks. We point out the advantages of our exhaustive output by predicting functional relationships using two examples. We demonstrate that the computation of all densely connected and co-expressed regions in interaction networks is an approach to module discovery of considerable value. Beyond confirming the well settled hypothesis that such co-expressed, densely connected interaction network regions reflect functional modules, we open up novel computational ways to comprehensively analyze the modular organization of an organism based on prevalent and largely available large-scale datasets. Software and data sets are available at http://www.sfu.ca/~ester/software/DECOB.zip.
NASA Astrophysics Data System (ADS)
Walterscheid, R. L.; Azeem, S. I.
2017-12-01
Acoustic waves generated in the lower atmosphere may become an important source of variably in the upper atmosphere. Although they are excited with small amplitudes they are minimally subject to viscous dissipation and may reach significant amplitudes at F-region altitudes. A number of studies in the 1970s showed clear signatures in ionosonde data in the infrasonic period range attributable to thunder storm activity. We have examined Total Electron Content data from a dense network of over 4000 ground-based GPS receivers over the continental United States during an outbreak of severe weather, including tornados, over Kansas in May 2015. A sequence of GPS TEC images showed clear Traveling Ionospheric Disturbances (TIDs) in the form of concentric rings moving outward from the center of the storm region. The characteristics of the disturbance (phase speed and frequency) were consistent with acoustic waves in the infrasonic range. We have modeled the disturbance by including a tropospheric heat source representing latent heat release from a large thunderstorm. The disturbance at ionospheric altitudes resembles the observed disturbance in terms of phase speed, frequency and horizontal wavelength. We conclude that the observed TIDs in TEC were caused by an acoustic wave generated by deep convection.
Cooperative Game-Based Energy Efficiency Management over Ultra-Dense Wireless Cellular Networks
Li, Ming; Chen, Pengpeng; Gao, Shouwan
2016-01-01
Ultra-dense wireless cellular networks have been envisioned as a promising technique for handling the explosive increase of wireless traffic volume. With the extensive deployment of small cells in wireless cellular networks, the network spectral efficiency (SE) is improved with the use of limited frequency. However, the mutual inter-tier and intra-tier interference between or among small cells and macro cells becomes serious. On the other hand, more chances for potential cooperation among different cells are introduced. Energy efficiency (EE) has become one of the most important problems for future wireless networks. This paper proposes a cooperative bargaining game-based method for comprehensive EE management in an ultra-dense wireless cellular network, which highlights the complicated interference influence on energy-saving challenges and the power-coordination process among small cells and macro cells. Especially, a unified EE utility with the consideration of the interference mitigation is proposed to jointly address the SE, the deployment efficiency (DE), and the EE. In particular, closed-form power-coordination solutions for the optimal EE are derived to show the convergence property of the algorithm. Moreover, a simplified algorithm is presented to reduce the complexity of the signaling overhead, which is significant for ultra-dense small cells. Finally, numerical simulations are provided to illustrate the efficiency of the proposed cooperative bargaining game-based and simplified schemes. PMID:27649170
An automated method for finding molecular complexes in large protein interaction networks
Bader, Gary D; Hogue, Christopher WV
2003-01-01
Background Recent advances in proteomics technologies such as two-hybrid, phage display and mass spectrometry have enabled us to create a detailed map of biomolecular interaction networks. Initial mapping efforts have already produced a wealth of data. As the size of the interaction set increases, databases and computational methods will be required to store, visualize and analyze the information in order to effectively aid in knowledge discovery. Results This paper describes a novel graph theoretic clustering algorithm, "Molecular Complex Detection" (MCODE), that detects densely connected regions in large protein-protein interaction networks that may represent molecular complexes. The method is based on vertex weighting by local neighborhood density and outward traversal from a locally dense seed protein to isolate the dense regions according to given parameters. The algorithm has the advantage over other graph clustering methods of having a directed mode that allows fine-tuning of clusters of interest without considering the rest of the network and allows examination of cluster interconnectivity, which is relevant for protein networks. Protein interaction and complex information from the yeast Saccharomyces cerevisiae was used for evaluation. Conclusion Dense regions of protein interaction networks can be found, based solely on connectivity data, many of which correspond to known protein complexes. The algorithm is not affected by a known high rate of false positives in data from high-throughput interaction techniques. The program is available from . PMID:12525261
Cooperative Game-Based Energy Efficiency Management over Ultra-Dense Wireless Cellular Networks.
Li, Ming; Chen, Pengpeng; Gao, Shouwan
2016-09-13
Ultra-dense wireless cellular networks have been envisioned as a promising technique for handling the explosive increase of wireless traffic volume. With the extensive deployment of small cells in wireless cellular networks, the network spectral efficiency (SE) is improved with the use of limited frequency. However, the mutual inter-tier and intra-tier interference between or among small cells and macro cells becomes serious. On the other hand, more chances for potential cooperation among different cells are introduced. Energy efficiency (EE) has become one of the most important problems for future wireless networks. This paper proposes a cooperative bargaining game-based method for comprehensive EE management in an ultra-dense wireless cellular network, which highlights the complicated interference influence on energy-saving challenges and the power-coordination process among small cells and macro cells. Especially, a unified EE utility with the consideration of the interference mitigation is proposed to jointly address the SE, the deployment efficiency (DE), and the EE. In particular, closed-form power-coordination solutions for the optimal EE are derived to show the convergence property of the algorithm. Moreover, a simplified algorithm is presented to reduce the complexity of the signaling overhead, which is significant for ultra-dense small cells. Finally, numerical simulations are provided to illustrate the efficiency of the proposed cooperative bargaining game-based and simplified schemes.
On the sufficiency of pairwise interactions in maximum entropy models of networks
NASA Astrophysics Data System (ADS)
Nemenman, Ilya; Merchan, Lina
Biological information processing networks consist of many components, which are coupled by an even larger number of complex multivariate interactions. However, analyses of data sets from fields as diverse as neuroscience, molecular biology, and behavior have reported that observed statistics of states of some biological networks can be approximated well by maximum entropy models with only pairwise interactions among the components. Based on simulations of random Ising spin networks with p-spin (p > 2) interactions, here we argue that this reduction in complexity can be thought of as a natural property of some densely interacting networks in certain regimes, and not necessarily as a special property of living systems. This work was supported in part by James S. McDonnell Foundation Grant No. 220020321.
Data analysis of a dense GPS network operated during the ESCOMPTE campaign: first results
NASA Astrophysics Data System (ADS)
Walpersdorf, A.; Bock, O.; Doerflinger, E.; Masson, F.; van Baelen, J.; Somieski, A.; Bürki, B.
The experiment GPS/H 2O involving 17 GPS receivers has been operated for two weeks in June 2001 in a dense network around Marseille. This project was integrated into the ESCOMPTE campaign. This paper will focus on the GPS analysis in preparation of the tomographic inversion of GPS slant delays. As first results, GPS tropospheric parameters zenith delays and horizontal gradients have been extracted. For a first visualization of the humidity field overlying the network, zenith delays have been transformed into precipitable water. Successive humidity fields are presented for a period of sudden drop in humidity, indicating some spatial resolution in the small network. The time series of horizontal gradients evaluated at individual sites are compared to correlated zenith delay variations over the whole network (horizontal gradient of zenith delays), showing that in the small size network horizontal atmospheric structure is reflected by both types of parameters. To compare these two quantities, scaling of zenith delays due to different station altitudes was necessary. In this way, a GPS internal validation of the individual gradients by comparison with the horizontal gradient of zenith delays has been established. Differential features along transects across the network indicate a good spatial resolution of tropospheric phenomena, encouraging for the further tomographic exploitation of the data. Moreover, individual and zenith delay gradients weight differently atmospheric horizontal gradients occurring at different heights. This different sensitivity has been used for a first identification of a vertical atmospheric structure from GPS tropospheric delays, by observing an inclined frontal zone crossing the network.
Experimental damage detection of wind turbine blade using thin film sensor array
NASA Astrophysics Data System (ADS)
Downey, Austin; Laflamme, Simon; Ubertini, Filippo; Sarkar, Partha
2017-04-01
Damage detection of wind turbine blades is difficult due to their large sizes and complex geometries. Additionally, economic restraints limit the viability of high-cost monitoring methods. While it is possible to monitor certain global signatures through modal analysis, obtaining useful measurements over a blade's surface using off-the-shelf sensing technologies is difficult and typically not economical. A solution is to deploy dedicated sensor networks fabricated from inexpensive materials and electronics. The authors have recently developed a novel large-area electronic sensor measuring strain over very large surfaces. The sensing system is analogous to a biological skin, where local strain can be monitored over a global area. In this paper, we propose the utilization of a hybrid dense sensor network of soft elastomeric capacitors to detect, localize, and quantify damage, and resistive strain gauges to augment such dense sensor network with high accuracy data at key locations. The proposed hybrid dense sensor network is installed inside a wind turbine blade model and tested in a wind tunnel to simulate an operational environment. Damage in the form of changing boundary conditions is introduced into the monitored section of the blade. Results demonstrate the ability of the hybrid dense sensor network, and associated algorithms, to detect, localize, and quantify damage.
Reconstruction of in-plane strain maps using hybrid dense sensor network composed of sensing skin
NASA Astrophysics Data System (ADS)
Downey, Austin; Laflamme, Simon; Ubertini, Filippo
2016-12-01
The authors have recently developed a soft-elastomeric capacitive (SEC)-based thin film sensor for monitoring strain on mesosurfaces. Arranged in a network configuration, the sensing system is analogous to a biological skin, where local strain can be monitored over a global area. Under plane stress conditions, the sensor output contains the additive measurement of the two principal strain components over the monitored surface. In applications where the evaluation of strain maps is useful, in structural health monitoring for instance, such signal must be decomposed into linear strain components along orthogonal directions. Previous work has led to an algorithm that enabled such decomposition by leveraging a dense sensor network configuration with the addition of assumed boundary conditions. Here, we significantly improve the algorithm’s accuracy by leveraging mature off-the-shelf solutions to create a hybrid dense sensor network (HDSN) to improve on the boundary condition assumptions. The system’s boundary conditions are enforced using unidirectional RSGs and assumed virtual sensors. Results from an extensive experimental investigation demonstrate the good performance of the proposed algorithm and its robustness with respect to sensors’ layout. Overall, the proposed algorithm is seen to effectively leverage the advantages of a hybrid dense network for application of the thin film sensor to reconstruct surface strain fields over large surfaces.
NASA Astrophysics Data System (ADS)
Bagchi, Prosenjit
2016-11-01
In this talk, two problems in multiphase biological flows will be discussed. The first is the direct numerical simulation of whole blood and drug particulates in microvascular networks. Blood in microcirculation behaves as a dense suspension of heterogeneous cells. The erythrocytes are extremely deformable, while inactivated platelets and leukocytes are nearly rigid. A significant progress has been made in recent years in modeling blood as a dense cellular suspension. However, many of these studies considered the blood flow in simple geometry, e.g., straight tubes of uniform cross-section. In contrast, the architecture of a microvascular network is very complex with bifurcating, merging and winding vessels, posing a further challenge to numerical modeling. We have developed an immersed-boundary-based method that can consider blood cell flow in physiologically realistic and complex microvascular network. In addition to addressing many physiological issues related to network hemodynamics, this tool can be used to optimize the transport properties of drug particulates for effective organ-specific delivery. Our second problem is pseudopod-driven motility as often observed in metastatic cancer cells and other amoeboid cells. We have developed a multiscale hydrodynamic model to simulate such motility. We study the effect of cell stiffness on motility as the former has been considered as a biomarker for metastatic potential. Funded by the National Science Foundation.
Empirical Bayes conditional independence graphs for regulatory network recovery.
Mahdi, Rami; Madduri, Abishek S; Wang, Guoqing; Strulovici-Barel, Yael; Salit, Jacqueline; Hackett, Neil R; Crystal, Ronald G; Mezey, Jason G
2012-08-01
Computational inference methods that make use of graphical models to extract regulatory networks from gene expression data can have difficulty reconstructing dense regions of a network, a consequence of both computational complexity and unreliable parameter estimation when sample size is small. As a result, identification of hub genes is of special difficulty for these methods. We present a new algorithm, Empirical Light Mutual Min (ELMM), for large network reconstruction that has properties well suited for recovery of graphs with high-degree nodes. ELMM reconstructs the undirected graph of a regulatory network using empirical Bayes conditional independence testing with a heuristic relaxation of independence constraints in dense areas of the graph. This relaxation allows only one gene of a pair with a putative relation to be aware of the network connection, an approach that is aimed at easing multiple testing problems associated with recovering densely connected structures. Using in silico data, we show that ELMM has better performance than commonly used network inference algorithms including GeneNet, ARACNE, FOCI, GENIE3 and GLASSO. We also apply ELMM to reconstruct a network among 5492 genes expressed in human lung airway epithelium of healthy non-smokers, healthy smokers and individuals with chronic obstructive pulmonary disease assayed using microarrays. The analysis identifies dense sub-networks that are consistent with known regulatory relationships in the lung airway and also suggests novel hub regulatory relationships among a number of genes that play roles in oxidative stress and secretion. Software for running ELMM is made available at http://mezeylab.cb.bscb.cornell.edu/Software.aspx. ramimahdi@yahoo.com or jgm45@cornell.edu Supplementary data are available at Bioinformatics online.
A measure of the denseness of a phylogenetic network. [by sequenced proteins from extant species
NASA Technical Reports Server (NTRS)
Holmquist, R.
1978-01-01
An objective measure of phylogenetic denseness is developed to examine various phylogenetic criteria: alpha- and beta-hemoglobin, myoglobin, cytochrome c, and the parvalbumin family. Attention is given to the number of nucleotide replacements separating homologous sequences, and to the topology of the network (in other words, to the qualitative nature of the network as defined by how closely the studied species are related). Applications include quantitative comparisons of species origin, relation, and rates of evolution.
NASA Astrophysics Data System (ADS)
Palla, Gergely; Derenyi, Imre; Farkas, Illes J.; Vicsek, Tamas
2006-03-01
Most tasks in a cell are performed not by individual proteins, but by functional groups of proteins (either physically interacting with each other or associated in other ways). In gene (protein) association networks these groups show up as sets of densely connected nodes. In the yeast, Saccharomyces cerevisiae, known physically interacting groups of proteins (called protein complexes) strongly overlap: the total number of proteins contained by these complexes by far underestimates the sum of their sizes (2750 vs. 8932). Thus, most functional groups of proteins, both physically interacting and other, are likely to share many of their members with other groups. However, current algorithms searching for dense groups of nodes in networks usually exclude overlaps. With the aim to discover both novel functions of individual proteins and novel protein functional groups we combine in protein association networks (i) a search for overlapping dense subgraphs based on the Clique Percolation Method (CPM) (Palla, G., et.al. Nature 435, 814-818 (2005), http://angel.elte.hu/clustering), which explicitly allows for overlaps among the groups, and (ii) a verification and characterization of the identified groups of nodes (proteins) with the help of standard annotation databases listing known functions.
Extracting Communities from Complex Networks by the k-Dense Method
NASA Astrophysics Data System (ADS)
Saito, Kazumi; Yamada, Takeshi; Kazama, Kazuhiro
To understand the structural and functional properties of large-scale complex networks, it is crucial to efficiently extract a set of cohesive subnetworks as communities. There have been proposed several such community extraction methods in the literature, including the classical k-core decomposition method and, more recently, the k-clique based community extraction method. The k-core method, although computationally efficient, is often not powerful enough for uncovering a detailed community structure and it produces only coarse-grained and loosely connected communities. The k-clique method, on the other hand, can extract fine-grained and tightly connected communities but requires a substantial amount of computational load for large-scale complex networks. In this paper, we present a new notion of a subnetwork called k-dense, and propose an efficient algorithm for extracting k-dense communities. We applied our method to the three different types of networks assembled from real data, namely, from blog trackbacks, word associations and Wikipedia references, and demonstrated that the k-dense method could extract communities almost as efficiently as the k-core method, while the qualities of the extracted communities are comparable to those obtained by the k-clique method.
Flood Monitoring using X-band Dual-polarization Radar Network
NASA Astrophysics Data System (ADS)
Chandrasekar, V.; Wang, Y.; Maki, M.; Nakane, K.
2009-09-01
A dense weather radar network is an emerging concept advanced by the Center for Collaborative Adaptive Sensing of the Atmosphere (CASA). Using multiple radars observing over a common will create different data outcomes depending on the characteristics of the radar units employed and the network topology. To define this a general framework is developed to describe the radar network space, and formulations are obtained that can be used for weather radar network characterization. Current weather radar surveillance networks are based upon conventional sensing paradigm of widely-separated, standalone sensing systems using long range radars that operate at wavelengths in 5-10 cm range. Such configuration has limited capability to observe close to the surface of the earth because of the earth's curvature but also has poorer resolution at far ranges. The dense network radar system, observes and measures weather phenomenon such as rainfall and severe weather close to the ground at higher spatial and temporal resolution compared to the current paradigm. In addition the dense network paradigm also is easily adaptable to complex terrain. Flooding is one of the most common natural hazards in the world. Especially, excessive development decreases the response time of urban watersheds and complex terrain to rainfall and increases the chance of localized flooding events over a small spatial domain. Successful monitoring of urban floods requires high spatiotemporal resolution, accurate precipitation estimation because of the rapid flood response as well as the complex hydrologic and hydraulic characteristics in an urban environment. This paper reviews various aspects in radar rainfall mapping in urban coverage using dense X-band dual-polarization radar networks. By reducing the maximum range and operating at X-band, one can ensure good azimuthal resolution with a small-size antenna and keep the radar beam closer to the ground. The networked topology helps to achieve satisfactory sensitivity and fast temporal update across the coverage. Strong clutter is expected from buildings in the neighborhood which act as perfect reflectors. The reduction in radar size enables flexible deployment, such as rooftop installation, with small infrastructure requirement, which is critical in a metropolitan region. Dual-polarization based technologies can be implemented for real-time mitigation of rain attenuations and accurate estimation of rainfall. The NSF Engineering Research Center for Collaborative Adaptive Sensing of the Atmosphere (CASA) is developing the technologies and the systems for network centric weather observation. The Differential propagation phase (Kdp) has higher sensitivity at X-band compared to S and C band. It is attractive to use Kdp to derive Quantitative Precipitation Estimation (QPE) because it is immune to rain attenuation, calibration biases, partial beam blockage, and hail contamination. Despite the advantage of Kdp for radar QPE, the estimation of Kdp itself is a challenge as the range derivative of the differential propagation phase profiles. An adaptive Kdp algorithm was implemented in the CASA IP1 testbed that substantially reduces the fluctuation in light rain and the bias at heavy rain. The Kdp estimation also benefits from the higher resolution in the IP1 radar network. The performance of the IP1 QPE product was evaluated for all major rain events against the USDA Agriculture Research Service's gauge network (MicroNet) in the Little Washita watershed, which comprises 20 weather stations in the center of the test bed. The cross-comparison with gauge measurements shows excellent agreement for the storm events during the Spring Experiments of 2007 and 2008. The hourly rainfall estimates compared to the gauge measurements have a very small bias of few percent and a normalized standard error of 21%. The IP1 testbed was designed with overlapping coverage among its radar nodes. The study area is covered by multiple radars and the aspect of network composition is also evaluated. The independence of Kdp on the radar calibration enables flexibility in combining the collocated Kdp estimates from all the radar nodes. Radar QPE can be improved from the composite Kdp field from the radar with lowest beam height and nearest slant range, or from the radar with the best Kdp estimates. More importantly, the data availability is greatly enhanced by the overlapped topology in cases of heavy rainfall, demonstrating the operational strength of the network centric radar system. The National Research Institute for Earth Science and Disaster Prevention (NIED), Japan, is in the process of establishing an X-band radar network (X-Net) in Metropolitan Tokyo area. Colorado State University and NIED have formed a partnership to initiate a joint program for urban flood monitoring using X-band dual-polarization radar network. This paper will also present some preliminary plans for this program.
NASA Astrophysics Data System (ADS)
Xia, Y.; Tian, J.; d'Angelo, P.; Reinartz, P.
2018-05-01
3D reconstruction of plants is hard to implement, as the complex leaf distribution highly increases the difficulty level in dense matching. Semi-Global Matching has been successfully applied to recover the depth information of a scene, but may perform variably when different matching cost algorithms are used. In this paper two matching cost computation algorithms, Census transform and an algorithm using a convolutional neural network, are tested for plant reconstruction based on Semi-Global Matching. High resolution close-range photogrammetric images from a handheld camera are used for the experiment. The disparity maps generated based on the two selected matching cost methods are comparable with acceptable quality, which shows the good performance of Census and the potential of neural networks to improve the dense matching.
NASA Astrophysics Data System (ADS)
Passarelli, Luigi; Cesca, Simone; Heryandoko, Nova; Lopez Comino, Jose Angel; Strollo, Angelo; Rivalta, Eleonora; Rohadi, Supryianto; Dahm, Torsten; Milkereit, Claus
2017-04-01
Magmatic unrest is challenging to detect when monitoring is sparse and there is little knowledge about the volcano. This is especially true for long-dormant volcanoes. Geophysical observables like seismicity, deformation, temperature and gas emission are reliable indicators of ongoing volcanic unrest caused by magma movements. Jailolo volcano is a Holocene volcano belonging to the Halmahera volcanic arc in the Northern Moluccas Islands, Indonesia. Global databases of volcanic eruptions have no records of its eruptive activity and no geological investigation has been carried out to better assess the past eruptive activity at Jailolo. It probably sits on the northern rim of an older caldera which now forms the Jailolo bay. Hydrothermal activity is intense with several hot-springs and steaming ground spots around the Jailolo volcano. In November 2015 an energetic seismic swarm started and lasted until late February 2016 with four earthquakes with M>5 recorded by global seismic networks. At the time of the swarm no close geophysical monitoring network was available around Jailolo volcano except for a broadband station at 30km distant. We installed last summer a local dense multi-parametric monitoring network with 36 seismic stations, 6 GPS and 2 gas monitoring stations around Jailolo volcano. We revised the focal mechanisms of the larger events and used single station location methods in order to exploit the little information available at the time of the swarm activity. We also combined the old sparse data with our local dense network. Migration of hypocenters and inversion of the local stress field derived by focal mechanisms analysis indicate that the Nov-Feb seismicity swarm may be related to a magmatic intrusion at shallow depth. Data from our dense network confirms ongoing micro-seismic activity underneath Jailolo volcano but there are no indications of new magma intrusion. Our findings indicate that magmatic unrest occurred at Jailolo volcano and call for a revision of the volcanic hazard.
Air quality measurements and monitoring network in the Republic of Latvia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grinman, A.; Lyulko, J.; Dubrovskaja, R.
1996-12-31
The territory of Latvia is covered with a wide environmental monitoring network, that falls under 2 main categories: (1) regional network featuring the region and involved in international monitoring programs, including EMEP, GAW, IM; (2) state network providing for local pollution monitoring of the atmosphere (19 posts), precipitation (5 station) and radioactivity (46 station). In 1994, measurements were made at 20 stationary posts located in Daugavpils (2), Jekabpils (2), Jurmala, (2), Liepaja (2), Nigrande (1), Olaine (1), Rezekne (1), Riga (5), Valn-dera (2), Ventspils (2). This atmospheric air observation network covers mostly towns densely populated with industrial objects and othermore » pollutant emitting sources. Thus, the observation programs encompass measurements of pollutants that have higher concentrations in the ambient air. Results indicate that the annual pollution dynamics are closely connected with concentration fluctuations in the seasons. The sulfur dioxide and nitrogen dioxide concentrations increased during the heating season in Jekabpils, Jurmala and Valmiera, i.e., in the town that have many small heating installations. The data obtained allow to trace a dependence of measurement values upon the location of the observational posts vis-a-vis the pollutant emitting sources.« less
NASA Astrophysics Data System (ADS)
Yang, Xue; Sun, Hao; Fu, Kun; Yang, Jirui; Sun, Xian; Yan, Menglong; Guo, Zhi
2018-01-01
Ship detection has been playing a significant role in the field of remote sensing for a long time but it is still full of challenges. The main limitations of traditional ship detection methods usually lie in the complexity of application scenarios, the difficulty of intensive object detection and the redundancy of detection region. In order to solve such problems above, we propose a framework called Rotation Dense Feature Pyramid Networks (R-DFPN) which can effectively detect ship in different scenes including ocean and port. Specifically, we put forward the Dense Feature Pyramid Network (DFPN), which is aimed at solving the problem resulted from the narrow width of the ship. Compared with previous multi-scale detectors such as Feature Pyramid Network (FPN), DFPN builds the high-level semantic feature-maps for all scales by means of dense connections, through which enhances the feature propagation and encourages the feature reuse. Additionally, in the case of ship rotation and dense arrangement, we design a rotation anchor strategy to predict the minimum circumscribed rectangle of the object so as to reduce the redundant detection region and improve the recall. Furthermore, we also propose multi-scale ROI Align for the purpose of maintaining the completeness of semantic and spatial information. Experiments based on remote sensing images from Google Earth for ship detection show that our detection method based on R-DFPN representation has a state-of-the-art performance.
Bhanot, Gyan [Princeton, NJ; Blumrich, Matthias A [Ridgefield, CT; Chen, Dong [Croton On Hudson, NY; Coteus, Paul W [Yorktown Heights, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Steinmacher-Burow, Burkhard D [Mount Kisco, NY; Takken, Todd E [Mount Kisco, NY; Vranas, Pavlos M [Bedford Hills, NY
2009-09-08
Class network routing is implemented in a network such as a computer network comprising a plurality of parallel compute processors at nodes thereof. Class network routing allows a compute processor to broadcast a message to a range (one or more) of other compute processors in the computer network, such as processors in a column or a row. Normally this type of operation requires a separate message to be sent to each processor. With class network routing pursuant to the invention, a single message is sufficient, which generally reduces the total number of messages in the network as well as the latency to do a broadcast. Class network routing is also applied to dense matrix inversion algorithms on distributed memory parallel supercomputers with hardware class function (multicast) capability. This is achieved by exploiting the fact that the communication patterns of dense matrix inversion can be served by hardware class functions, which results in faster execution times.
Kaiser, Anna E.; Benites, Rafael A.; Chung, Angela I.; Haines, A. John; Cochran, Elizabeth S.; Fry, Bill
2011-01-01
The Mw 7.1 September 2010 Darfield earthquake, New Zealand, produced widespread damage and liquefaction ~40 km from the epicentre in Christchurch city. It was followed by the even more destructive Mw 6.2 February 2011 Christchurch aftershock directly beneath the city’s southern suburbs. Seismic data recorded during the two large events suggest that site effects contributed to the variations in ground motion observed throughout Christchurch city. We use densely-spaced aftershock recordings of the Darfield earthquake to investigate variations in local seismic site response within the Christchurch urban area. Following the Darfield main shock we deployed a temporary array of ~180 low-cost 14-bit MEMS accelerometers linked to the global Quake-Catcher Network (QCN). These instruments provided dense station coverage (spacing ~2 km) to complement existing New Zealand national network strong motion stations (GeoNet) within Christchurch city. Well-constrained standard spectral ratios were derived for GeoNet stations using a reference station on Miocene basalt rock in the south of the city. For noisier QCN stations, the method was adapted to find a maximum likelihood estimate of spectral ratio amplitude taking into account the variance of noise at the respective stations. Spectral ratios for QCN stations are similar to nearby GeoNet stations when the maximum likelihood method is used. Our study suggests dense low-cost accelerometer aftershock arrays can provide useful information on local-scale ground motion properties for use in microzonation. Preliminary results indicate higher amplifications north of the city centre and strong high-frequency amplification in the small, shallower basin of Heathcote Valley.
Weighted networks as randomly reinforced urn processes
NASA Astrophysics Data System (ADS)
Caldarelli, Guido; Chessa, Alessandro; Crimaldi, Irene; Pammolli, Fabio
2013-02-01
We analyze weighted networks as randomly reinforced urn processes, in which the edge-total weights are determined by a reinforcement mechanism. We develop a statistical test and a procedure based on it to study the evolution of networks over time, detecting the “dominance” of some edges with respect to the others and then assessing if a given instance of the network is taken at its steady state or not. Distance from the steady state can be considered as a measure of the relevance of the observed properties of the network. Our results are quite general, in the sense that they are not based on a particular probability distribution or functional form of the random weights. Moreover, the proposed tool can be applied also to dense networks, which have received little attention by the network community so far, since they are often problematic. We apply our procedure in the context of the International Trade Network, determining a core of “dominant edges.”
Modeling the coevolution of topology and traffic on weighted technological networks
NASA Astrophysics Data System (ADS)
Xie, Yan-Bo; Wang, Wen-Xu; Wang, Bing-Hong
2007-02-01
For many technological networks, the network structures and the traffic taking place on them mutually interact. The demands of traffic increment spur the evolution and growth of the networks to maintain their normal and efficient functioning. In parallel, a change of the network structure leads to redistribution of the traffic. In this paper, we perform an extensive numerical and analytical study, extending results of Wang [Phys. Rev. Lett. 94, 188702 (2005)]. By introducing a general strength-coupling interaction driven by the traffic increment between any pair of vertices, our model generates networks of scale-free distributions of strength, weight, and degree. In particular, the obtained nonlinear correlation between vertex strength and degree, and the disassortative property demonstrate that the model is capable of characterizing weighted technological networks. Moreover, the generated graphs possess both dense clustering structures and an anticorrelation between vertex clustering and degree, which are widely observed in real-world networks. The corresponding theoretical predictions are well consistent with simulation results.
Hummer, Blake H.; de Leeuw, Noah F.; Burns, Christian; Chen, Lan; Joens, Matthew S.; Hosford, Bethany; Fitzpatrick, James A. J.; Asensio, Cedric S.
2017-01-01
Large dense core vesicles (LDCVs) mediate the regulated release of neuropeptides and peptide hormones. They form at the trans-Golgi network (TGN), where their soluble content aggregates to form a dense core, but the mechanisms controlling biogenesis are still not completely understood. Recent studies have implicated the peripheral membrane protein HID-1 in neuropeptide sorting and insulin secretion. Using CRISPR/Cas9, we generated HID-1 KO rat neuroendocrine cells, and we show that the absence of HID-1 results in specific defects in peptide hormone and monoamine storage and regulated secretion. Loss of HID-1 causes a reduction in the number of LDCVs and affects their morphology and biochemical properties, due to impaired cargo sorting and dense core formation. HID-1 KO cells also exhibit defects in TGN acidification together with mislocalization of the Golgi-enriched vacuolar H+-ATPase subunit isoform a2. We propose that HID-1 influences early steps in LDCV formation by controlling dense core formation at the TGN. PMID:29074564
Lopez-Coto, Israel; Ghosh, Subhomoy; Prasad, Kuldeep; Whetstone, James
2017-09-01
The North-East Corridor (NEC) Testbed project is the 3rd of three NIST (National Institute of Standards and Technology) greenhouse gas emissions testbeds designed to advance greenhouse gas measurements capabilities. A design approach for a dense observing network combined with atmospheric inversion methodologies is described. The Advanced Research Weather Research and Forecasting Model with the Stochastic Time-Inverted Lagrangian Transport model were used to derive the sensitivity of hypothetical observations to surface greenhouse gas emissions (footprints). Unlike other network design algorithms, an iterative selection algorithm, based on a k -means clustering method, was applied to minimize the similarities between the temporal response of each site and maximize sensitivity to the urban emissions contribution. Once a network was selected, a synthetic inversion Bayesian Kalman filter was used to evaluate observing system performance. We present the performances of various measurement network configurations consisting of differing numbers of towers and tower locations. Results show that an overly spatially compact network has decreased spatial coverage, as the spatial information added per site is then suboptimal as to cover the largest possible area, whilst networks dispersed too broadly lose capabilities of constraining flux uncertainties. In addition, we explore the possibility of using a very high density network of lower cost and performance sensors characterized by larger uncertainties and temporal drift. Analysis convergence is faster with a large number of observing locations, reducing the response time of the filter. Larger uncertainties in the observations implies lower values of uncertainty reduction. On the other hand, the drift is a bias in nature, which is added to the observations and, therefore, biasing the retrieved fluxes.
NASA Astrophysics Data System (ADS)
Lopez-Coto, Israel; Ghosh, Subhomoy; Prasad, Kuldeep; Whetstone, James
2017-09-01
The North-East Corridor (NEC) Testbed project is the 3rd of three NIST (National Institute of Standards and Technology) greenhouse gas emissions testbeds designed to advance greenhouse gas measurements capabilities. A design approach for a dense observing network combined with atmospheric inversion methodologies is described. The Advanced Research Weather Research and Forecasting Model with the Stochastic Time-Inverted Lagrangian Transport model were used to derive the sensitivity of hypothetical observations to surface greenhouse gas emissions (footprints). Unlike other network design algorithms, an iterative selection algorithm, based on a k-means clustering method, was applied to minimize the similarities between the temporal response of each site and maximize sensitivity to the urban emissions contribution. Once a network was selected, a synthetic inversion Bayesian Kalman filter was used to evaluate observing system performance. We present the performances of various measurement network configurations consisting of differing numbers of towers and tower locations. Results show that an overly spatially compact network has decreased spatial coverage, as the spatial information added per site is then suboptimal as to cover the largest possible area, whilst networks dispersed too broadly lose capabilities of constraining flux uncertainties. In addition, we explore the possibility of using a very high density network of lower cost and performance sensors characterized by larger uncertainties and temporal drift. Analysis convergence is faster with a large number of observing locations, reducing the response time of the filter. Larger uncertainties in the observations implies lower values of uncertainty reduction. On the other hand, the drift is a bias in nature, which is added to the observations and, therefore, biasing the retrieved fluxes.
Liu, Pan; Chan, David; Qiu, Lin; Tov, William; Tong, Victor Joo Chuan
2018-05-01
Using data from 13,789 Facebook users across U.S. states, this study examined the main effects of societal-level cultural tightness-looseness and its interaction effects with individuals' social network density on impression management (IM) in terms of online emotional expression. Results showed that individuals from culturally tight (vs. loose) states were more likely to express positive emotions and less likely to express negative emotions. Meanwhile, for positive emotional expression, there was a tightness-looseness by social network density interaction effect. In culturally tight states, individuals with dense (vs. sparse) networks were more likely to express positive emotions, while in culturally loose states this pattern was reversed. For negative emotional expression, however, no such interaction was observed. Our findings highlight the influence of cultural norms and social network structure on emotional expressions as IM strategies.
NASA Astrophysics Data System (ADS)
Tadić, Bosiljka; Thurner, Stefan; Rodgers, G. J.
2004-03-01
We study the microscopic time fluctuations of traffic load and the global statistical properties of a dense traffic of particles on scale-free cyclic graphs. For a wide range of driving rates R the traffic is stationary and the load time series exhibits antipersistence due to the regulatory role of the superstructure associated with two hub nodes in the network. We discuss how the superstructure affects the functioning of the network at high traffic density and at the jamming threshold. The degree of correlations systematically decreases with increasing traffic density and eventually disappears when approaching a jamming density Rc. Already before jamming we observe qualitative changes in the global network-load distributions and the particle queuing times. These changes are related to the occurrence of temporary crises in which the network-load increases dramatically, and then slowly falls back to a value characterizing free flow.
NASA Astrophysics Data System (ADS)
Yatagai, A. I.; Yasutomi, N.; Hamada, A.; Kamiguchi, K.; Arakawa, O.
2009-12-01
A daily gridded precipitation dataset for 1961-2007 is created by collecting rain gauge observation data across Asia through the activities of the Asian Precipitation--Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources (APHRODITE) project. We have already released APHRODITE’s daily gridded precipitation (APHRO_V0902) product for 1961-2004 (Yatagai et al., 2009), and our number of valid stations was between 5000 and 12,000, representing 2.3 to 4.5 times the data available through the Global Telecommunication System network, which were used for most daily grid precipitation products. APHRO_V0902 is the only long-term (1961 onward) continental-scale daily product that contains a dense network of daily rain gauge data for Asia including the Himalayas and mountainous areas in the Middle East. The product has already contributed to studies such as the evaluation of Asian water resources, diagnosis of climate change, statistical downscaling, and verification of numerical model simulation and high-resolution precipitation estimates using satellites. We are currently improving quality control (QC) schemes and interpolation algorithms, and make continuous efforts in data collection. In addition, we have undertaken capacity building activities, such as training seminars by inviting researchers/programmers from some Asian meteorological organizations who provided the observation data for us. Furthermore, we feed the errata (QC) information back to the above organizations and/or data centers. The next version of the algorithm will be fixed in December 2009 (APHRO_V0912), and we will update the product up to 2007. Our progress and advantage of the next products will be shown at the AGU fall meeting in 2009.
Social Networks, Social Circles, and Job Satisfaction.
ERIC Educational Resources Information Center
Hurlbert, Jeanne S.
1991-01-01
Tests the hypothesis that social networks serve as a social resource that effects job satisfaction through the provision of social support. Argues that three types of networks are likely to affect job satisfaction: dense networks, social circles composed of co-workers, and kin-centered networks. (JOW)
NASA Astrophysics Data System (ADS)
Horikawa, H.; Takaesu, M.; Sueki, K.; Takahashi, N.; Sonoda, A.; Miura, S.; Tsuboi, S.
2014-12-01
Mega-thrust earthquakes are anticipated to occur in the Nankai Trough in southwest Japan. In the source areas, we have deployed seafloor seismic network, DONET (Dense Ocean-floor Network System for Earthquake and Tsunamis), in 2010 in order to monitor seismicity, crustal deformations, and tsunamis. DONET system consists of totally 20 stations, which is composed of six kinds of sensors, including strong-motion seismometers and quartz pressure gauges. Those stations are densely distributed with an average spatial interval of 15-20 km and cover near the trench axis to coastal areas. Observed data are transferred to a land station through a fiber-optical cable and then to JAMSTEC (Japan Agency for Marine-Earth Science and Technology) data management center through a private network in real time. After 2011 off the Pacific coast of Tohoku Earthquake, each local government close to Nankai Trough try to plan disaster prevention scheme. JAMSTEC will disseminate DONET data combined with research accomplishment so that they will be widely recognized as important earthquake information. In order to open DONET data observed for research to local government, we have developed a web application system, REIS (Real-time Earthquake Information System). REIS is providing seismic waveform data to some local governments close to Nankai Trough as a pilot study. As soon as operation of DONET is ready, REIS will start full-scale operation. REIS can display seismic waveform data of DONET in real-time, users can select strong motion and pressure data, and configure the options of trace view arrangement, time scale, and amplitude. In addition to real-time monitoring, REIS can display past seismic waveform data and show earthquake epicenters on the map. In this presentation, we briefly introduce DONET system and then show our web application system. We also discuss our future plans for further developments of REIS.
Identifying protein complexes in PPI network using non-cooperative sequential game.
Maulik, Ujjwal; Basu, Srinka; Ray, Sumanta
2017-08-21
Identifying protein complexes from protein-protein interaction (PPI) network is an important and challenging task in computational biology as it helps in better understanding of cellular mechanisms in various organisms. In this paper we propose a noncooperative sequential game based model for protein complex detection from PPI network. The key hypothesis is that protein complex formation is driven by mechanism that eventually optimizes the number of interactions within the complex leading to dense subgraph. The hypothesis is drawn from the observed network property named small world. The proposed multi-player game model translates the hypothesis into the game strategies. The Nash equilibrium of the game corresponds to a network partition where each protein either belong to a complex or form a singleton cluster. We further propose an algorithm to find the Nash equilibrium of the sequential game. The exhaustive experiment on synthetic benchmark and real life yeast networks evaluates the structural as well as biological significance of the network partitions.
He, Xinzi; Yu, Zhen; Wang, Tianfu; Lei, Baiying; Shi, Yiyan
2018-01-01
Dermoscopy imaging has been a routine examination approach for skin lesion diagnosis. Accurate segmentation is the first step for automatic dermoscopy image assessment. The main challenges for skin lesion segmentation are numerous variations in viewpoint and scale of skin lesion region. To handle these challenges, we propose a novel skin lesion segmentation network via a very deep dense deconvolution network based on dermoscopic images. Specifically, the deep dense layer and generic multi-path Deep RefineNet are combined to improve the segmentation performance. The deep representation of all available layers is aggregated to form the global feature maps using skip connection. Also, the dense deconvolution layer is leveraged to capture diverse appearance features via the contextual information. Finally, we apply the dense deconvolution layer to smooth segmentation maps and obtain final high-resolution output. Our proposed method shows the superiority over the state-of-the-art approaches based on the public available 2016 and 2017 skin lesion challenge dataset and achieves the accuracy of 96.0% and 93.9%, which obtained a 6.0% and 1.2% increase over the traditional method, respectively. By utilizing Dense Deconvolution Net, the average time for processing one testing images with our proposed framework was 0.253 s.
FRIPON, the French fireball network
NASA Astrophysics Data System (ADS)
Colas, F.; Zanda, B.; Bouley, S.; Vaubaillon, J.; Marmo, C.; Audureau, Y.; Kwon, M. K.; Rault, J. L.; Caminade, S.; Vernazza, P.; Gattacceca, J.; Birlan, M.; Maquet, L.; Egal, A.; Rotaru, M.; Gruson-Daniel, Y.; Birnbaum, C.; Cochard, F.; Thizy, O.
2015-10-01
FRIPON (Fireball Recovery and InterPlanetary Observation Network) [4](Colas et al, 2014) was recently founded by ANR (Agence Nationale de la Recherche). Its aim is to connect meteoritical science with asteroidal and cometary science in order to better understand solar system formation and evolution. The main idea is to set up an observation network covering all the French territory to collect a large number of meteorites (one or two per year) with accurate orbits, allowing us to pinpoint possible parent bodies. 100 all-sky cameras will be installed at the end of 2015 forming a dense network with an average distance of 100km between stations. To maximize the accuracy of orbit determination, we will mix our optical data with radar data from the GRAVES beacon received by 25 stations [5](Rault et al, 2015). As both the setting up of the network and the creation of search teams for meteorites will need manpower beyond our small team of professionals, we are developing a citizen science network called Vigie-Ciel [6](Zanda et al, 2015). The public at large will thus be able to simply use our data, participate in search campaigns or even setup their own cameras.
SONG China project - participating in the global network
NASA Astrophysics Data System (ADS)
Deng, Licai; Xin, Yu; Zhang, Xiaobin; Li, Yan; Jiang, Xiaojun; Wang, Guomin; Wang, Kun; Zhou, Jilin; Yan, Zhengzhou; Luo, Zhiquan
2013-01-01
SONG (Stellar Observations Network Goup) is a low-cost ground based international collaboration aimed at two cutting edge problems in contemporary astrophysics in the time-domain: 1) Direct diagnostics of the internal structure of stars and 2) looking for and studying extra solar planets, possibly in the habitable zone. The general plan is to set up a network of 1m telescopes uniformly distributed in geographic latitude (in both hemispheres). China jointed the collaboration (initiated by Danish astronomers) at the very beginning. In addition to SONG's original plan (http://song.phys.au.dk), the Chinese team proposed a parallel photometry subnet work in the northern hemisphere, namely 50BiN (50cm Binocular Network, previously known as mini-SONG), to enable a large field photometric capability for the network, therefore maximising the potential of the network platform. The network will be able to produce nearly continuous time series observations of a number of selected objects with high resolution spectroscopy (SONG) and accurate photometry (50BiN), and to produce ultra-high accuracy photometry in dense field to look for micro-lensing events caused by planetary systems. This project has great synergy with Chinese Astronomical activities in Antarctica (Dome A), and other similar networks (e.g. LCOGT). The plan and current status of the project are overviewed in this poster.
Motif formation and industry specific topologies in the Japanese business firm network
NASA Astrophysics Data System (ADS)
Maluck, Julian; Donner, Reik V.; Takayasu, Hideki; Takayasu, Misako
2017-05-01
Motifs and roles are basic quantities for the characterization of interactions among 3-node subsets in complex networks. In this work, we investigate how the distribution of 3-node motifs can be influenced by modifying the rules of an evolving network model while keeping the statistics of simpler network characteristics, such as the link density and the degree distribution, invariant. We exemplify this problem for the special case of the Japanese Business Firm Network, where a well-studied and relatively simple yet realistic evolving network model is available, and compare the resulting motif distribution in the real-world and simulated networks. To better approximate the motif distribution of the real-world network in the model, we introduce both subgraph dependent and global additional rules. We find that a specific rule that allows only for the merging process between nodes with similar link directionality patterns reduces the observed excess of densely connected motifs with bidirectional links. Our study improves the mechanistic understanding of motif formation in evolving network models to better describe the characteristic features of real-world networks with a scale-free topology.
Deterministic quantum dense coding networks
NASA Astrophysics Data System (ADS)
Roy, Saptarshi; Chanda, Titas; Das, Tamoghna; Sen(De), Aditi; Sen, Ujjwal
2018-07-01
We consider the scenario of deterministic classical information transmission between multiple senders and a single receiver, when they a priori share a multipartite quantum state - an attempt towards building a deterministic dense coding network. Specifically, we prove that in the case of two or three senders and a single receiver, generalized Greenberger-Horne-Zeilinger (gGHZ) states are not beneficial for sending classical information deterministically beyond the classical limit, except when the shared state is the GHZ state itself. On the other hand, three- and four-qubit generalized W (gW) states with specific parameters as well as the four-qubit Dicke states can provide a quantum advantage of sending the information in deterministic dense coding. Interestingly however, numerical simulations in the three-qubit scenario reveal that the percentage of states from the GHZ-class that are deterministic dense codeable is higher than that of states from the W-class.
NASA Astrophysics Data System (ADS)
Sciare, Jean; Petit, Jean-Eudes; Sarda-Esteve, Roland; Bonnaire, Nicolas; Gros, Valérie; Pernot, Pierre; Ghersi, Véronique; Ampe, Christophe; Songeur, Charlotte; Brugge, Benjamin; Debert, Christophe; Favez, Olivier; Le Priol, Tiphaine; Mocnik, Grisa
2013-04-01
Motivations. Road traffic and domestic wood burning emissions are two major contributors of particulate pollution in our cities. These two sources emit ultra-fine, soot containing, particles in the atmosphere, affecting health adversely, increasing morbidity and mortality from cardiovascular and respiratory conditions and casing lung cancer. A better characterization of soot containing aerosol sources in our major cities provides useful information for policy makers for assessment, implementation and monitoring of strategies to tackle air pollution issues affecting human health with additional benefits for climate change. Objectives. This study on local sources of primary Particulate Matter (PM) in the megacity of Paris is a follow-up of several programs (incl. EU-FP7-MEGAPOLI) that have shown that fine PM - in the Paris background atmosphere - is mostly secondary and imported. A network of 14 stations of Black Carbon has been implemented in the larger region of Paris to provide highly spatially resolved long term survey of local combustion aerosols. To our best knowledge, this is the first time that such densely BC network is operating over a large urban area, providing novel information on the spatial/temporal distribution of combustion aerosols within a post-industrialized megacity. Experimental. As part of the PRIMEQUAL "PREQUALIF" project, a dense Black Carbon network (of 14 stations) has been installed over the city of Paris beginning of 2012 in order to produce spatially resolved Equivalent Black Carbon (EBC) concentration maps with high time resolution through modeling and data assimilation. This network is composed of various real-time instruments (Multi-Angle Absorption Photometer, MAAP by THERMO; Multi-wavelength Aethalometers by MAGEE Scientific) implemented in contrasted sites (rural background, urban background, traffic) complementing the regulated measurements (PM, NOx) in the local air quality network AIRPARIF (http://www.airparif.asso.fr/). Contribution of imported versus local EBC is calculated using the "Lenschow" methodology (Lenschow et al., 2001), whereas the influence of domestic wood burning EBC (vs traffic) over the region of Paris is evaluated using the Aethalometer model developed by Sandradewi et al. (2008). Results and discussion. First results of this BC network are presented here including the temporal variations of EBC from wood burning (domestic heating) and fossil fuel (traffic) for the various sites (1-year observation for rural background and traffic sites; 4-year observations for urban background). The local versus imported contributions of EBC are also presented and discussed for these 2 sources. References. Lenschow, P., et al., Some ideas about the sources of PM10, Atmospheric Environment 35 Supplement No. 1 (2001) S23-S33 Sandradewi, J., et al., Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter, Environ. Sci. Technol., 42, 3316-3323, 2008
NASA Astrophysics Data System (ADS)
Nan, Hanqing; Liang, Long; Chen, Guo; Liu, Liyu; Liu, Ruchuan; Jiao, Yang
2018-03-01
Three-dimensional (3D) collective cell migration in a collagen-based extracellular matrix (ECM) is among one of the most significant topics in developmental biology, cancer progression, tissue regeneration, and immune response. Recent studies have suggested that collagen-fiber mediated force transmission in cellularized ECM plays an important role in stress homeostasis and regulation of collective cellular behaviors. Motivated by the recent in vitro observation that oriented collagen can significantly enhance the penetration of migrating breast cancer cells into dense Matrigel which mimics the intravasation process in vivo [Han et al. Proc. Natl. Acad. Sci. USA 113, 11208 (2016), 10.1073/pnas.1610347113], we devise a procedure for generating realizations of highly heterogeneous 3D collagen networks with prescribed microstructural statistics via stochastic optimization. Specifically, a collagen network is represented via the graph (node-bond) model and the microstructural statistics considered include the cross-link (node) density, valence distribution, fiber (bond) length distribution, as well as fiber orientation distribution. An optimization problem is formulated in which the objective function is defined as the squared difference between a set of target microstructural statistics and the corresponding statistics for the simulated network. Simulated annealing is employed to solve the optimization problem by evolving an initial network via random perturbations to generate realizations of homogeneous networks with randomly oriented fibers, homogeneous networks with aligned fibers, heterogeneous networks with a continuous variation of fiber orientation along a prescribed direction, as well as a binary system containing a collagen region with aligned fibers and a dense Matrigel region with randomly oriented fibers. The generation and propagation of active forces in the simulated networks due to polarized contraction of an embedded ellipsoidal cell and a small group of cells are analyzed by considering a nonlinear fiber model incorporating strain hardening upon large stretching and buckling upon compression. Our analysis shows that oriented fibers can significantly enhance long-range force transmission in the network. Moreover, in the oriented-collagen-Matrigel system, the forces generated by a polarized cell in collagen can penetrate deeply into the Matrigel region. The stressed Matrigel fibers could provide contact guidance for the migrating cell cells, and thus enhance their penetration into Matrigel. This suggests a possible mechanism for the observed enhanced intravasation by oriented collagen.
NASA Astrophysics Data System (ADS)
Goto, Hiroyuki; Mitsunaga, Hitoshi; Inatani, Masayuki; Iiyama, Kahori; Hada, Koji; Ikeda, Takaaki; Takaya, Toshiyasu; Kimura, Sayaka; Akiyama, Ryohei; Sawada, Sumio; Morikawa, Hitoshi
2017-11-01
We conducted single-site and array observations of microtremors in order to revise the shallow subsurface structure of the Furukawa district, Miyagi, Japan, where severe residential damage was reported during the Great Eastern Japan Earthquake of 2011, off the Pacific coast of Tohoku. The phase velocities of Rayleigh waves are estimated from array observations at three sites, and S-wave velocity models are established. The spatial distribution of predominant periods is estimated for the surface layer, on the basis of the spectral ratio of horizontal and vertical components (H/V) of microtremors obtained from single-site observations. We then compared ground motion records from a dense seismometer network with results of microtremor observations, and revised a model of the shallow (~100 m) subsurface structure in the Furukawa district. The model implies that slower near-surface S-wave velocity and deeper basement are to be found in the southern and eastern areas. It was found that the damage in residential structures was concentrated in an area where the average value for the transfer functions in the frequency range of 2 to 4 Hz was large.
Three-dimensional mosaicking of the South Korean radar network
NASA Astrophysics Data System (ADS)
Berenguer, Marc; Sempere-Torres, Daniel; Lee, GyuWon
2016-04-01
Dense radar networks offer the possibility of improved Quantitative Precipitation Estimation thanks to the additional information collected in the overlapping areas, which allows mitigating errors associated with the Vertical Profile of Reflectivity or path attenuation by intense rain. With this aim, Roca-Sancho et al. (2014) proposed a technique to generate 3-D reflectivity mosaics from the multiple radars of a network. The technique is based on an inverse method that simulates the radar sampling of the atmosphere considering the characteristics (location, frequency and scanning protocol) of each individual radar. This technique has been applied to mosaic the observations of the radar network of South Korea (composed of 14 S-band radars), and integrate the observations of the small X-band network which to be installed near Seoul in the framework of a project funded by the Korea Agency for Infrastructure Technology Advancement (KAIA). The evaluation of the generated 3-D mosaics has been done by comparison with point measurements (i.e. rain gauges and disdrometers) and with the observations of independent radars. Reference: Roca-Sancho, J., M. Berenguer, and D. Sempere-Torres (2014), An inverse method to retrieve 3D radar reflectivity composites, Journal of Hydrology, 519, 947-965, doi: 10.1016/j.jhydrol.2014.07.039.
Assessing the detection capability of a dense infrasound network in the southern Korean Peninsula
NASA Astrophysics Data System (ADS)
Che, Il-Young; Le Pichon, Alexis; Kim, Kwangsu; Shin, In-Cheol
2017-08-01
The Korea Infrasound Network (KIN) is a dense seismoacoustic array network consisting of eight small-aperture arrays with an average interarray spacing of ∼100 km. The processing of the KIN historical recordings over 10 yr in the 0.05-5 Hz frequency band shows that the dominant sources of signals are microbaroms and human activities. The number of detections correlates well with the seasonal and daily variability of the stratospheric wind dynamics. The quantification of the spatiotemporal variability of the KIN detection performance is simulated using a frequency-dependent semi-empirical propagation modelling technique. The average detection thresholds predicted for the region of interest by using both the KIN arrays and the International Monitoring System (IMS) infrasound station network at a given frequency of 1.6 Hz are estimated to be 5.6 and 10.0 Pa for two- and three-station coverage, respectively, which was about three times lower than the thresholds predicted by using only the IMS stations. The network performance is significantly enhanced from May to August, with detection thresholds being one order of magnitude lower than the rest of the year due to prevailing steady stratospheric winds. To validate the simulations, the amplitudes of ground-truth repeated surface mining explosions at an open-pit limestone mine were measured over a 19-month period. Focusing on the spatiotemporal variability of the stratospheric winds which control to first order where infrasound signals are expected to be detected, the predicted detectable signal amplitude at the mine and the detection capability at one KIN array located at a distance of 175 km are found to be in good agreement with the observations from the measurement campaign. The detection threshold in summer is ∼2 Pa and increases up to ∼300 Pa in winter. Compared with the low and stable thresholds in summer, the high temporal variability of the KIN performance is well predicted throughout the year. Simulations show that the performance of the global infrasound network of the IMS is significantly improved by adding KIN. This study shows the usefulness of dense regional networks to enhance detection capability in regions of interest in the context of future verification of the Comprehensive Nuclear-Test-Ban Treaty.
Arsalan, Muhammad; Naqvi, Rizwan Ali; Kim, Dong Seop; Nguyen, Phong Ha; Owais, Muhammad; Park, Kang Ryoung
2018-01-01
The recent advancements in computer vision have opened new horizons for deploying biometric recognition algorithms in mobile and handheld devices. Similarly, iris recognition is now much needed in unconstraint scenarios with accuracy. These environments make the acquired iris image exhibit occlusion, low resolution, blur, unusual glint, ghost effect, and off-angles. The prevailing segmentation algorithms cannot cope with these constraints. In addition, owing to the unavailability of near-infrared (NIR) light, iris recognition in visible light environment makes the iris segmentation challenging with the noise of visible light. Deep learning with convolutional neural networks (CNN) has brought a considerable breakthrough in various applications. To address the iris segmentation issues in challenging situations by visible light and near-infrared light camera sensors, this paper proposes a densely connected fully convolutional network (IrisDenseNet), which can determine the true iris boundary even with inferior-quality images by using better information gradient flow between the dense blocks. In the experiments conducted, five datasets of visible light and NIR environments were used. For visible light environment, noisy iris challenge evaluation part-II (NICE-II selected from UBIRIS.v2 database) and mobile iris challenge evaluation (MICHE-I) datasets were used. For NIR environment, the institute of automation, Chinese academy of sciences (CASIA) v4.0 interval, CASIA v4.0 distance, and IIT Delhi v1.0 iris datasets were used. Experimental results showed the optimal segmentation of the proposed IrisDenseNet and its excellent performance over existing algorithms for all five datasets. PMID:29748495
Arsalan, Muhammad; Naqvi, Rizwan Ali; Kim, Dong Seop; Nguyen, Phong Ha; Owais, Muhammad; Park, Kang Ryoung
2018-05-10
The recent advancements in computer vision have opened new horizons for deploying biometric recognition algorithms in mobile and handheld devices. Similarly, iris recognition is now much needed in unconstraint scenarios with accuracy. These environments make the acquired iris image exhibit occlusion, low resolution, blur, unusual glint, ghost effect, and off-angles. The prevailing segmentation algorithms cannot cope with these constraints. In addition, owing to the unavailability of near-infrared (NIR) light, iris recognition in visible light environment makes the iris segmentation challenging with the noise of visible light. Deep learning with convolutional neural networks (CNN) has brought a considerable breakthrough in various applications. To address the iris segmentation issues in challenging situations by visible light and near-infrared light camera sensors, this paper proposes a densely connected fully convolutional network (IrisDenseNet), which can determine the true iris boundary even with inferior-quality images by using better information gradient flow between the dense blocks. In the experiments conducted, five datasets of visible light and NIR environments were used. For visible light environment, noisy iris challenge evaluation part-II (NICE-II selected from UBIRIS.v2 database) and mobile iris challenge evaluation (MICHE-I) datasets were used. For NIR environment, the institute of automation, Chinese academy of sciences (CASIA) v4.0 interval, CASIA v4.0 distance, and IIT Delhi v1.0 iris datasets were used. Experimental results showed the optimal segmentation of the proposed IrisDenseNet and its excellent performance over existing algorithms for all five datasets.
NASA Astrophysics Data System (ADS)
Takaesu, M.; Horikawa, H.; Sueki, K.; Kamiya, S.; Nakamura, T.; Nakano, M.; Takahashi, N.; Sonoda, A.; Tsuboi, S.
2014-12-01
Mega-thrust earthquakes are anticipated to occur in the Nankai Trough in southwest Japan. In the source areas, we installed seafloor seismic network, DONET (Dense Ocean-floor Network System for Earthquake and Tsunamis), in 2010 in order to monitor seismicity, crustal deformations, and tsunamis. DONET system consists of totally 20 stations, which is composed of six kinds of sensors; strong-motion and broadband seismometers, quartz and differential pressure gauges, hydrophone, and thermometer. The stations are densely distributed with an average spatial interval of 15-20 km and cover near coastal areas to the trench axis. Observed data are transferred to a land station through a fiber-optical cable and then to JAMSTEC (Japan Agency for Marine-Earth Science and Technology) data management center through a private network in real time. The data are based on WIN32 format in the private network and finally archived in SEED format in the management center to combine waveform data with related metadata. We are developing a web-based application system to easily download seismic waveform data of DONET. In this system, users can select 20 Hz broadband (BH type) and 200 Hz strong-motion (EH type) data and download them in SEED. Users can also search events from the options of time periods, magnitude, source area and depth in a GUI platform. Event data are produced referring to event catalogues from USGS and JMA (Japan Meteorological Agency). The thresholds of magnitudes for the production are M6 for far-field and M4 for local events using the USGS and JMA lists, respectively. Available data lengths depend on magnitudes and epicentral distances. In this presentation, we briefly introduce DONET stations and then show our developed application system. We open DONET data through the system and want them to be widely recognized so that many users analyze. We also discuss next plans for further developments of the system.
Effect of correlations on controllability transition in network control
Nie, Sen; Wang, Xu-Wen; Wang, Bing-Hong; Jiang, Luo-Luo
2016-01-01
The network control problem has recently attracted an increasing amount of attention, owing to concerns including the avoidance of cascading failures of power-grids and the management of ecological networks. It has been proven that numerical control can be achieved if the number of control inputs exceeds a certain transition point. In the present study, we investigate the effect of degree correlation on the numerical controllability in networks whose topological structures are reconstructed from both real and modeling systems, and we find that the transition point of the number of control inputs depends strongly on the degree correlation in both undirected and directed networks with moderately sparse links. More interestingly, the effect of the degree correlation on the transition point cannot be observed in dense networks for numerical controllability, which contrasts with the corresponding result for structural controllability. In particular, for directed random networks and scale-free networks, the influence of the degree correlation is determined by the types of correlations. Our approach provides an understanding of control problems in complex sparse networks. PMID:27063294
Modulation of attentional networks by food-related disinhibition.
Hege, Maike A; Stingl, Krunoslav T; Veit, Ralf; Preissl, Hubert
2017-07-01
The risk of weight gain is especially related to disinhibition, which indicates the responsiveness to external food stimuli with associated disruptions in eating control. We adapted a food-related version of the attention network task and used functional magnetic resonance imaging to study the effects of disinhibition on attentional networks in 19 normal-weight participants. High disinhibition scores were associated with a rapid reorienting response to food pictures after invalid cueing and with an enhanced alerting effect of a warning cue signalizing the upcoming appearance of a food picture. Imaging data revealed activation of a right-lateralized ventral attention network during reorienting. The faster the reorienting and the higher the disinhibition score, the less activation of this network was observed. The alerting contrast showed activation in visual, temporo-parietal and anterior sites. These modulations of attentional networks by food-related disinhibition might be related to an attentional bias to energy dense and palatable food and increased intake of food in disinhibited individuals. Copyright © 2017 Elsevier Inc. All rights reserved.
ClueNet: Clustering a temporal network based on topological similarity rather than denseness.
Crawford, Joseph; Milenković, Tijana
2018-01-01
Network clustering is a very popular topic in the network science field. Its goal is to divide (partition) the network into groups (clusters or communities) of "topologically related" nodes, where the resulting topology-based clusters are expected to "correlate" well with node label information, i.e., metadata, such as cellular functions of genes/proteins in biological networks, or age or gender of people in social networks. Even for static data, the problem of network clustering is complex. For dynamic data, the problem is even more complex, due to an additional dimension of the data-their temporal (evolving) nature. Since the problem is computationally intractable, heuristic approaches need to be sought. Existing approaches for dynamic network clustering (DNC) have drawbacks. First, they assume that nodes should be in the same cluster if they are densely interconnected within the network. We hypothesize that in some applications, it might be of interest to cluster nodes that are topologically similar to each other instead of or in addition to requiring the nodes to be densely interconnected. Second, they ignore temporal information in their early steps, and when they do consider this information later on, they do so implicitly. We hypothesize that capturing temporal information earlier in the clustering process and doing so explicitly will improve results. We test these two hypotheses via our new approach called ClueNet. We evaluate ClueNet against six existing DNC methods on both social networks capturing evolving interactions between individuals (such as interactions between students in a high school) and biological networks capturing interactions between biomolecules in the cell at different ages. We find that ClueNet is superior in over 83% of all evaluation tests. As more real-world dynamic data are becoming available, DNC and thus ClueNet will only continue to gain importance.
Dense modifiable interconnections utilizing photorefractive volume holograms
NASA Astrophysics Data System (ADS)
Psaltis, Demetri; Qiao, Yong
1990-11-01
This report describes an experimental two-layer optical neural network built at Caltech. The system uses photorefractive volume holograms to implement dense, modifiable synaptic interconnections and liquid crystal light valves (LCVS) to perform nonlinear thresholding operations. Kanerva's Sparse, Distributed Memory was implemented using this network and its ability to recognize handwritten character-alphabet (A-Z) has been demonstrated experimentally. According to Kanerva's model, the first layer has fixed, random weights of interconnections and the second layer is trained by sum-of-outer-products rule. After training, the recognition rates of the network on the training set (104 patterns) and test set (520 patterns) are 100 and 50 percent, respectively.
Enterprise virtual private network (VPN) with dense wavelength division multiplexing (DWDM) design
NASA Astrophysics Data System (ADS)
Carranza, Aparicio
An innovative computer simulation and modeling tool for metropolitan area optical data communication networks is presented. These models address the unique requirements of Virtual Private Networks for enterprise data centers, which may comprise a mixture of protocols including ESCON, FICON, Fibre Channel, Sysplex protocols (ETR, CLO, ISC); and other links interconnected over dark fiber using Dense Wavelength Division Multiplexing (DWDM). Our models have the capability of designing a network with minimal inputs; to compute optical link budgets; suggest alternative configurations; and also optimize the design based on user-defined performance metrics. The models make use of Time Division Multiplexing (TDM) wherever possible for lower data rate traffics. Simulation results for several configurations are presented and they have been validated by means of experiments conducted on the IBM enterprise network testbed in Poughkeepsie, N.Y.
NASA Astrophysics Data System (ADS)
Buhari, S. M.; Tsunoda, R. T.; Abdullah, M.; Hasbi, A. M.; Otsuka, Y.; Yokoyama, T.; Nishioka, M.; Tsugawa, T.
2014-12-01
Equatorial plasma bubbles (EPBs) are three-dimensional structures of depleted plasma density that are often observed in the nighttime equatorial ionosphere. They are initiated near the magnetic dip equator, in the bottomside of the F layer, and develop with time, upward in altitude and poleward in latitude (into both hemispheres), taking the form of longitudinally-narrow, vertically-extended wedges that penetrate deep into the topside of the F layer. Moreover, these structures drift zonally as they evolve in time. Much of what is not yet known about EPBs stems from our inability (1) to capture spatial descriptions of these structures, and (2) to monitor their evolution as a function of time. An objective of this presentation is to report the existence and availability of total electron content (TEC) data from densely-clustered networks of GPS receivers that are capable of providing time-continuous descriptions of EPBs with both high spatial resolution and broad geographical coverage. The networks include the Malaysia Real-Time Kinematics GNSS Network (MyRTKnet), Sumatera GPS Array (SUGAR) network and International GNSS Service (IGS) located in Southeast Asia (SEA). These networks contain 127 GPS receivers with average spacing of about 50 to 100 km. With the ability to resolve space-time ambiguities, we are able to follow the temporal evolution of EPB structures over an extended longitude sector (90 to 120 degrees, East longitude). We will present results from a case study (April 5, 2011) in which 16 EPBs were detected in longitude and tracked in time. We show, for the first time, that the births of 10 out of 16 observed EPBs coincided with the time of passage of the solar terminator across the longitude of birth. The distance between birth locations varied between 100 and 550 km with 10-minute interval. These EPBs were found to persist for 50 minutes to 7 hours, while drifting eastward at a speed of 92 to 150 ms-1. The finding that as many as 16 EPBs can be generated in a continuous sequence over 30 degree of longitude is new. The implications of these findings in terms of seeding and amplification will be discussed.
Strong Sporadic E Occurrence Detected by Ground-Based GNSS
NASA Astrophysics Data System (ADS)
Sun, Wenjie; Ning, Baiqi; Yue, Xinan; Li, Guozhu; Hu, Lianhuan; Chang, Shoumin; Lan, Jiaping; Zhu, Zhengping; Zhao, Biqiang; Lin, Jian
2018-04-01
The ionospheric sporadic E (Es) layer has significant impact on radio wave propagation. The traditional techniques employed for Es layer observation, for example, ionosondes, are not dense enough to resolve the morphology and dynamics of Es layer in spatial distribution. The ground-based Global Navigation Satellite Systems (GNSS) technique is expected to shed light on the understanding of regional strong Es occurrence, owing to the facts that the critical frequency (foEs) of strong Es structure is usually high enough to cause pulse-like disturbances in GNSS total electron content (TEC), and a large number of GNSS receivers have been deployed all over the world. Based on the Chinese ground-based GNSS networks, including the Crustal Movement Observation Network of China and the Beidou Ionospheric Observation Network, a large-scale strong Es event was observed in the middle latitude of China. The strong Es shown as a band-like structure in the southwest-northeast direction extended more than 1,000 km. By making a comparative analysis of Es occurrences identified from the simultaneous observations by ionosondes and GNSS TEC receivers over China middle latitude statistically, we found that GNSS TEC can be well employed to observe strong Es occurrence with a threshold value of foEs, 14 MHz.
Structural network efficiency is associated with cognitive impairment in small-vessel disease.
Lawrence, Andrew J; Chung, Ai Wern; Morris, Robin G; Markus, Hugh S; Barrick, Thomas R
2014-07-22
To characterize brain network connectivity impairment in cerebral small-vessel disease (SVD) and its relationship with MRI disease markers and cognitive impairment. A cross-sectional design applied graph-based efficiency analysis to deterministic diffusion tensor tractography data from 115 patients with lacunar infarction and leukoaraiosis and 50 healthy individuals. Structural connectivity was estimated between 90 cortical and subcortical brain regions and efficiency measures of resulting graphs were analyzed. Networks were compared between SVD and control groups, and associations between efficiency measures, conventional MRI disease markers, and cognitive function were tested. Brain diffusion tensor tractography network connectivity was significantly reduced in SVD: networks were less dense, connection weights were lower, and measures of network efficiency were significantly disrupted. The degree of brain network disruption was associated with MRI measures of disease severity and cognitive function. In multiple regression models controlling for confounding variables, associations with cognition were stronger for network measures than other MRI measures including conventional diffusion tensor imaging measures. A total mediation effect was observed for the association between fractional anisotropy and mean diffusivity measures and executive function and processing speed. Brain network connectivity in SVD is disturbed, this disturbance is related to disease severity, and within a mediation framework fully or partly explains previously observed associations between MRI measures and SVD-related cognitive dysfunction. These cross-sectional results highlight the importance of network disruption in SVD and provide support for network measures as a disease marker in treatment studies. © 2014 American Academy of Neurology.
Structural network efficiency is associated with cognitive impairment in small-vessel disease
Chung, Ai Wern; Morris, Robin G.; Markus, Hugh S.; Barrick, Thomas R.
2014-01-01
Objective: To characterize brain network connectivity impairment in cerebral small-vessel disease (SVD) and its relationship with MRI disease markers and cognitive impairment. Methods: A cross-sectional design applied graph-based efficiency analysis to deterministic diffusion tensor tractography data from 115 patients with lacunar infarction and leukoaraiosis and 50 healthy individuals. Structural connectivity was estimated between 90 cortical and subcortical brain regions and efficiency measures of resulting graphs were analyzed. Networks were compared between SVD and control groups, and associations between efficiency measures, conventional MRI disease markers, and cognitive function were tested. Results: Brain diffusion tensor tractography network connectivity was significantly reduced in SVD: networks were less dense, connection weights were lower, and measures of network efficiency were significantly disrupted. The degree of brain network disruption was associated with MRI measures of disease severity and cognitive function. In multiple regression models controlling for confounding variables, associations with cognition were stronger for network measures than other MRI measures including conventional diffusion tensor imaging measures. A total mediation effect was observed for the association between fractional anisotropy and mean diffusivity measures and executive function and processing speed. Conclusions: Brain network connectivity in SVD is disturbed, this disturbance is related to disease severity, and within a mediation framework fully or partly explains previously observed associations between MRI measures and SVD-related cognitive dysfunction. These cross-sectional results highlight the importance of network disruption in SVD and provide support for network measures as a disease marker in treatment studies. PMID:24951477
Shell-corona microgels from double interpenetrating networks.
Rudyak, Vladimir Yu; Gavrilov, Alexey A; Kozhunova, Elena Yu; Chertovich, Alexander V
2018-04-18
Polymer microgels with a dense outer shell offer outstanding features as universal carriers for different guest molecules. In this paper, microgels formed by an interpenetrating network comprised of collapsed and swollen subnetworks are investigated using dissipative particle dynamics (DPD) computer simulations, and it is found that such systems can form classical core-corona structures, shell-corona structures, and core-shell-corona structures, depending on the subchain length and molecular mass of the system. The core-corona structures consisting of a dense core and soft corona are formed at small microgel sizes when the subnetworks are able to effectively separate in space. The most interesting shell-corona structures consist of a soft cavity in a dense shell surrounded with a loose corona, and are found at intermediate gel sizes; the area of their existence depends on the subchain length and the corresponding mesh size. At larger molecular masses the collapsing network forms additional cores inside the soft cavity, leading to the core-shell-corona structure.
Zanimonskiy, Yevgen M.; Yampolski, Yuri M.; Figurski, Mariusz
2017-01-01
The technique of the orthogonal projection of ionosphere electronic content variations for mapping total electron content (TEC) allows us to visualize ionospheric irregularities. For the reconstruction of global ionospheric characteristics, numerous global navigation satellite system (GNSS) receivers located in different regions of the Earth are used as sensors. We used dense GNSS networks in central Europe to detect and investigate a special type of plasma inhomogeneities, called travelling ionospheric disturbances (TID). Such use of GNSS sensors allows us to reconstruct the main TID parameters, such as spatial dimensions, velocities, and directions of their movement. The paper gives examples of the restoration of dynamic characteristics of ionospheric irregularities for quiet and disturbed geophysical conditions. Special attention is paid to the dynamics of ionospheric disturbances stimulated by the magnetic storms of two St. Patrick’s Days (17 March 2013 and 2015). Additional opportunities for the remote sensing of the ionosphere with the use of dense regional networks of GNSS receiving sensors have been noted too. PMID:28994718
Nykiel, Grzegorz; Zanimonskiy, Yevgen M; Yampolski, Yuri M; Figurski, Mariusz
2017-10-10
The technique of the orthogonal projection of ionosphere electronic content variations for mapping total electron content (TEC) allows us to visualize ionospheric irregularities. For the reconstruction of global ionospheric characteristics, numerous global navigation satellite system (GNSS) receivers located in different regions of the Earth are used as sensors. We used dense GNSS networks in central Europe to detect and investigate a special type of plasma inhomogeneities, called travelling ionospheric disturbances (TID). Such use of GNSS sensors allows us to reconstruct the main TID parameters, such as spatial dimensions, velocities, and directions of their movement. The paper gives examples of the restoration of dynamic characteristics of ionospheric irregularities for quiet and disturbed geophysical conditions. Special attention is paid to the dynamics of ionospheric disturbances stimulated by the magnetic storms of two St. Patrick's Days (17 March 2013 and 2015). Additional opportunities for the remote sensing of the ionosphere with the use of dense regional networks of GNSS receiving sensors have been noted too.
NASA Astrophysics Data System (ADS)
Yang, C.-C.; Wu, Y.-H.; Chao, B. F.; Yu, S.-B.
2009-04-01
Present-day GPS network have been extensively used to monitor crustal deformation due to various geodynamic mechanisms. Situated among the Pacific Ring of Fire on the suture zone of Eurasian and Philippine Sea Plates, the island of Taiwan with a dense continuous GPS network since ~1996 and now over 300 stations sees plenty of geophysical phenomena including particularly prominent crustal motions. We assessed daily solution of each station's coordinate time series, and made the routine corrections, such as orbital, EOP, atmospheric and tidal corrections, using GAMIT/GLOBK software (with ITRF05). We then employ the Quasi-Observation Combination Analysis (QOCA) package to obtain the variability and trend after removing occasional earthquake "disruptions". Preliminary results show strong seasonal variations. We then utilize the numerical method of Empirical Orthogonal Function (EOF) to analysis the geophysical signals from the continuous and dense GPS vertical crustal motion observations. We wish to be able to characterize both the seasonal and non-seasonal variability in the vertical crustal motion, in terms of the EOF modes in the spatial domain over Taiwan (plus a few offshore islets) with time evolution spanning the entire period of time. Corraborating with time-variable gravity data from the geodetic satellite mission GRACE, we can further obtain vertical components of both mass-induced loading with respect to the precipitation minus evaporation and the crustal motion caused by the active tectonic processes on Taiwan.
On the reliability of Quake-Catcher Network earthquake detections
Yildirim, Battalgazi; Cochran, Elizabeth S.; Chung, Angela I.; Christensen, Carl M.; Lawrence, Jesse F.
2015-01-01
Over the past two decades, there have been several initiatives to create volunteer‐based seismic networks. The Personal Seismic Network, proposed around 1990, used a short‐period seismograph to record earthquake waveforms using existing phone lines (Cranswick and Banfill, 1990; Cranswicket al., 1993). NetQuakes (Luetgert et al., 2010) deploys triaxial Micro‐Electromechanical Systems (MEMS) sensors in private homes, businesses, and public buildings where there is an Internet connection. Other seismic networks using a dense array of low‐cost MEMS sensors are the Community Seismic Network (Clayton et al., 2012; Kohler et al., 2013) and the Home Seismometer Network (Horiuchi et al., 2009). One main advantage of combining low‐cost MEMS sensors and existing Internet connection in public and private buildings over the traditional networks is the reduction in installation and maintenance costs (Koide et al., 2006). In doing so, it is possible to create a dense seismic network for a fraction of the cost of traditional seismic networks (D’Alessandro and D’Anna, 2013; D’Alessandro, 2014; D’Alessandro et al., 2014).
NASA Astrophysics Data System (ADS)
Shingledecker, Christopher N.; Bergner, Jennifer B.; Le Gal, Romane; Öberg, Karin I.; Hincelin, Ugo; Herbst, Eric
2016-10-01
The chemistry of dense interstellar regions was analyzed using a time-dependent gas-grain astrochemical simulation and a new chemical network that incorporates deuterated chemistry, taking into account nuclear spin states for the hydrogen chemistry and its deuterated isotopologues. With this new network, the utility of the [HCO+]/[DCO+] abundance ratio as a probe of the cosmic-ray ionization rate has been re-examined, with special attention paid to the effect of the initial value of the ortho-to-para ratio (OPR) of molecular hydrogen. After discussing the use of the probe for cold cores, we compare our results with previous theoretical and observational results for a molecular cloud close to the supernova remnant W51C, which is thought to have an enhanced cosmic-ray ionization rate ζ caused by the nearby γ-ray source. In addition, we attempt to use our approach to estimate the cosmic-ray ionization rate for L1174, a dense core with an embedded star. Beyond the previously known sensitivity of [HCO+]/[DCO+] to ζ, we demonstrate its additional dependence on the initial OPR and, secondarily, on the age of the source, its temperature, and its density. We conclude that the usefulness of the [HCO+]/[DCO+] abundance ratio in constraining the cosmic-ray ionization rate in dense regions increases with the age of the source and the ionization rate as the ratio becomes far less sensitive to the initial value of the OPR.
Twig, Gilad; Graf, Solomon A; Wikstrom, Jakob D; Mohamed, Hibo; Haigh, Sarah E; Elorza, Alvaro; Deutsch, Motti; Zurgil, Naomi; Reynolds, Nicole; Shirihai, Orian S
2006-07-01
Assembly of mitochondria into networks supports fuel metabolism and calcium transport and is involved in the cellular response to apoptotic stimuli. A mitochondrial network is defined as a continuous matrix lumen whose boundaries limit molecular diffusion. Observation of individual networks has proven challenging in live cells that possess dense populations of mitochondria. Investigation into the electrical and morphological properties of mitochondrial networks has therefore not yielded consistent conclusions. In this study we used matrix-targeted, photoactivatable green fluorescent protein to tag single mitochondrial networks. This approach, coupled with real-time monitoring of mitochondrial membrane potential, permitted the examination of matrix lumen continuity and fusion and fission events over time. We found that adjacent and intertwined mitochondrial structures often represent a collection of distinct networks. We additionally found that all areas of a single network are invariably equipotential, suggesting that a heterogeneous pattern of membrane potential within a cell's mitochondria represents differences between discrete networks. Interestingly, fission events frequently occurred without any gross morphological changes and particularly without fragmentation. These events, which are invisible under standard confocal microscopy, redefine the mitochondrial network boundaries and result in electrically disconnected daughter units.
Autonomous telemetry system by using mobile networks for a long-term seismic observation
NASA Astrophysics Data System (ADS)
Hirahara, S.; Uchida, N.; Nakajima, J.
2012-04-01
When a large earthquake occurs, it is important to know the detailed distribution of aftershocks immediately after the main shock for the estimation of the fault plane. The large amount of seismic data is also required to determine the three-dimensional seismic velocity structure around the focal area. We have developed an autonomous telemetry system using mobile networks, which is specialized for aftershock observations. Because the newly developed system enables a quick installation and real-time data transmission by using mobile networks, we can construct a dense online seismic network even in mountain areas where conventional wired networks are not available. This system is equipped with solar panels that charge lead-acid battery, and enables a long-term seismic observation without maintenance. Furthermore, this system enables a continuous observation at low costs with flat-rate or prepaid Internet access. We have tried to expand coverage areas of mobile communication and back up Internet access by configuring plural mobile carriers. A micro server embedded with Linux consists of automatic control programs of the Internet connection and data transmission. A status monitoring and remote maintenance are available via the Internet. In case of a communication failure, an internal storage can back up data for two years. The power consumption of communication device ranges from 2.5 to 4.0 W. With a 50 Ah lead-acid battery, this system continues to record data for four days if the battery charging by solar panels is temporarily unavailable.
van Beek, Adriana P A; Wagner, Cordula; Spreeuwenberg, Peter P M; Frijters, Dinnus H M; Ribbe, Miel W; Groenewegen, Peter P
2011-06-01
The behaviour of individuals is affected by the social networks in which they are embedded. Networks are also important for the diffusion of information and the influence of employees in organisations. Yet, at the moment little is known about the social networks of nursing staff in healthcare settings. This is the first study that investigates informal communication and advice networks of nursing staff in long-term care. We examine the structure of the networks, how they are related to the size of units and characteristics of nursing staff, and their relationship with job satisfaction. We collected social network data of 380 nursing staff of 35 units in group projects and psychogeriatric units in nursing homes and residential homes in the Netherlands. Communication and advice networks were analyzed in a social network application (UCINET), focusing on the number of contacts (density) between nursing staff on the units. We then studied the correlation between the density of networks, size of the units and characteristics of nursing staff. We used multilevel analyses to investigate the relationship between social networks and job satisfaction of nursing staff, taking characteristics of units and nursing staff into account. Both communication and advice networks were negatively related to the number of residents and the number of nursing staff of the units. Communication and advice networks were more dense when more staff worked part-time. Furthermore, density of communication networks was positively related to the age of nursing staff of the units. Multilevel analyses showed that job satisfaction differed significantly between individual staff members and units and was influenced by the number of nursing staff of the units. However, this relationship disappeared when density of communication networks was added to the model. Overall, communication and advice networks of nursing staff in long-term care are relatively dense. This fits with the high level of cooperation that is needed to provide good care to residents. Social networks are more dense in small units and are also shaped by characteristics of staff members. The results furthermore show that communication networks are important for staff's job satisfaction.
2011-01-01
Background The behaviour of individuals is affected by the social networks in which they are embedded. Networks are also important for the diffusion of information and the influence of employees in organisations. Yet, at the moment little is known about the social networks of nursing staff in healthcare settings. This is the first study that investigates informal communication and advice networks of nursing staff in long-term care. We examine the structure of the networks, how they are related to the size of units and characteristics of nursing staff, and their relationship with job satisfaction. Methods We collected social network data of 380 nursing staff of 35 units in group projects and psychogeriatric units in nursing homes and residential homes in the Netherlands. Communication and advice networks were analyzed in a social network application (UCINET), focusing on the number of contacts (density) between nursing staff on the units. We then studied the correlation between the density of networks, size of the units and characteristics of nursing staff. We used multilevel analyses to investigate the relationship between social networks and job satisfaction of nursing staff, taking characteristics of units and nursing staff into account. Results Both communication and advice networks were negatively related to the number of residents and the number of nursing staff of the units. Communication and advice networks were more dense when more staff worked part-time. Furthermore, density of communication networks was positively related to the age of nursing staff of the units. Multilevel analyses showed that job satisfaction differed significantly between individual staff members and units and was influenced by the number of nursing staff of the units. However, this relationship disappeared when density of communication networks was added to the model. Conclusions Overall, communication and advice networks of nursing staff in long-term care are relatively dense. This fits with the high level of cooperation that is needed to provide good care to residents. Social networks are more dense in small units and are also shaped by characteristics of staff members. The results furthermore show that communication networks are important for staff's job satisfaction. PMID:21631936
Measuring distance through dense weighted networks: The case of hospital-associated pathogens
Smieszek, Timo; Henderson, Katherine L.; Johnson, Alan P.
2017-01-01
Hospital networks, formed by patients visiting multiple hospitals, affect the spread of hospital-associated infections, resulting in differences in risks for hospitals depending on their network position. These networks are increasingly used to inform strategies to prevent and control the spread of hospital-associated pathogens. However, many studies only consider patients that are received directly from the initial hospital, without considering the effect of indirect trajectories through the network. We determine the optimal way to measure the distance between hospitals within the network, by reconstructing the English hospital network based on shared patients in 2014–2015, and simulating the spread of a hospital-associated pathogen between hospitals, taking into consideration that each intermediate hospital conveys a delay in the further spread of the pathogen. While the risk of transferring a hospital-associated pathogen between directly neighbouring hospitals is a direct reflection of the number of shared patients, the distance between two hospitals far-away in the network is determined largely by the number of intermediate hospitals in the network. Because the network is dense, most long distance transmission chains in fact involve only few intermediate steps, spreading along the many weak links. The dense connectivity of hospital networks, together with a strong regional structure, causes hospital-associated pathogens to spread from the initial outbreak in a two-step process: first, the directly surrounding hospitals are affected through the strong connections, second all other hospitals receive introductions through the multitude of weaker links. Although the strong connections matter for local spread, weak links in the network can offer ideal routes for hospital-associated pathogens to travel further faster. This hold important implications for infection prevention and control efforts: if a local outbreak is not controlled in time, colonised patients will appear in other regions, irrespective of the distance to the initial outbreak, making import screening ever more difficult. PMID:28771581
The preparatory phase of the April 6th 2009, Mw 6.3, L’Aquila earthquake: Seismological observations
NASA Astrophysics Data System (ADS)
Lucente, F. P.; de Gori, P.; Margheriti, L.; Piccinini, D.; Dibona, M.; Chiarabba, C.; Piana Agostinetti, N.
2009-12-01
Few decades ago, the dilatancy-diffusion hypothesis held great promise as a physical basis for developing earthquakes prediction techniques, but the potential never become reality, as the result of too few observations consistent with the theory. One of the main problems has been the lack of detailed monitoring records of small earthquakes swarms spatio-temporally close to the incoming major earthquakes. In fact, the recognition of dilatancy-related effects requires the use of very dense network of three-component seismographs, which, in turn, implies the a-priori knowledge of major earthquakes location, i.e., actually a paradox. The deterministic prediction of earthquakes remains a long time, hard task to accomplish. Nevertheless, for seismologists, the understanding of the processes that preside over the earthquakes nucleation and the mechanics of faulting represents a big step toward the ability to predict earthquakes. Here we describe a set of seismological observations done on the foreshock sequence that preceded the April 6th 2009, Mw 6.3, L’Aquila earthquake. In this occasion, the dense configuration of the seismic network in the area gave us the unique opportunity for a detailed reconstruction of the preparatory phase of the main shock. We show that measurable precursory effects, as changes of the seismic waves velocity and of the anisotropic parameters in the crust, occurred before the main shock. From our observations we infer that fluids play a key role in the fault failure process, and, most significantly, that the elastic properties of the rock volume surrounding the main shock nucleation area undergo a dramatic change about a week before the main shock occurrence.
NASA Astrophysics Data System (ADS)
Tsuda, T.; Ito, N.; Takeda, Y.; Realini, E.; Shinbori, A.
2016-12-01
We employ the GNSS meteorology technique to measure precipitable water vapor (PWV) from the propagation delay of GNSS signal in the atmosphere. We installed a hyper-dense GNSS network using 15 receivers with a horizontal spacing of 1-2 km in Uji, Japan (Uji network). We also obtained precipitation with a rain gauge at a nearby operational weather station and rain cloud distribution by an X-band radar. We selected 40 days from April 2011 to March 2013, when considerable precipitation was detected. Difference in PWV within 10 km was 3-10 mm during a heavy rain. We found PWV increased 10-20 minutes before a passage of a rain cloud. The maximum value of PWV correlated well with the amount of precipitation on the ground. The variance of PWV between the GNSS sites was enhanced during a heavy rain. For a future practical hyper-dense GNSS network system with many receivers, we consider to use inexpensive single frequency (SF) receivers. Because SF receiver cannot eliminate the ionospheric delay by itself, we interpolate the delay referring the delay measured by the nearby dual frequency (DF) receivers. We investigated ionospheric delay by the Uji network, taking advantages of Quasi-Zenith Satellite System (QZSS) that gives signals at high elevation angles. During a travelling ionospheric disturbance (TID), a wavy structure with a horizontal scale of several tens km was recognized. The ionospheric delay was compensated by a linear and quadratic interpolation, then the resulting error of PWV compared with DF solution was about 1.50 mm in RMS. For a real-time estimation of PWV, we used real-time satellite clock information corrected by GEONET. Difference of PWV between the real-time analysis and the post processing with the final orbit was 0.7 mm in RMS. We estimated an overall error of PWV with a dense SF-receiver network on a real-time basis was 1.7 mm in RMS.
Effect of high-flux H/He plasma exposure on tungsten damage due to transient heat loads
NASA Astrophysics Data System (ADS)
De Temmerman, G.; Morgan, T. W.; van Eden, G. G.; de Kruif, T.; Wirtz, M.; Matejicek, J.; Chraska, T.; Pitts, R. A.; Wright, G. M.
2015-08-01
The thermal shock behaviour of tungsten exposed to high-flux plasma is studied using a high-power laser. The cases of laser-only, sequential laser and hydrogen (H) plasma and simultaneous laser plus H plasma exposure are studied. H plasma exposure leads to an embrittlement of the material and the appearance of a crack network originating from the centre of the laser spot. Under simultaneous loading, significant surface melting is observed. In general, H plasma exposure lowers the heat flux parameter (FHF) for the onset of surface melting by ∼25%. In the case of He-modified (fuzzy) surfaces, strong surface deformations are observed already after 1000 laser pulses at moderate FHF = 19 MJ m-2 s-1/2, and a dense network of fine cracks is observed. These results indicate that high-fluence ITER-like plasma exposure influences the thermal shock properties of tungsten, lowering the permissible transient energy density beyond which macroscopic surface modifications begin to occur.
NASA Astrophysics Data System (ADS)
Oigawa, Masanori; Tsuda, Toshitaka; Seko, Hiromu; Shoji, Yoshinori; Realini, Eugenio
2018-05-01
We studied the assimilation of high-resolution precipitable water vapor (PWV) data derived from a hyper-dense global navigation satellite system network around Uji city, Kyoto, Japan, which had a mean inter-station distance of about 1.7 km. We focused on a heavy rainfall event that occurred on August 13-14, 2012, around Uji city. We employed a local ensemble transform Kalman filter as the data assimilation method. The inhomogeneity of the observed PWV increased on a scale of less than 10 km in advance of the actual rainfall detected by the rain gauge. Zenith wet delay data observed by the Uji network showed that the characteristic length scale of water vapor distribution during the rainfall ranged from 1.9 to 3.5 km. It is suggested that the assimilation of PWV data with high horizontal resolution (a few km) improves the forecast accuracy. We conducted the assimilation experiment of high-resolution PWV data, using both small horizontal localization radii and a conventional horizontal localization radius. We repeated the sensitivity experiment, changing the mean horizontal spacing of the PWV data from 1.7 to 8.0 km. When the horizontal spacing of assimilated PWV data was decreased from 8.0 to 3.5 km, the accuracy of the simulated hourly rainfall amount worsened in the experiment that used the conventional localization radius for the assimilation of PWV. In contrast, the accuracy of hourly rainfall amounts improved when we applied small horizontal localization radii. In the experiment that used the small horizontal localization radii, the accuracy of the hourly rainfall amount was most improved when the horizontal resolution of the assimilated PWV data was 3.5 km. The optimum spatial resolution of PWV data was related to the characteristic length scale of water vapor variability.[Figure not available: see fulltext.
ClueNet: Clustering a temporal network based on topological similarity rather than denseness
Milenković, Tijana
2018-01-01
Network clustering is a very popular topic in the network science field. Its goal is to divide (partition) the network into groups (clusters or communities) of “topologically related” nodes, where the resulting topology-based clusters are expected to “correlate” well with node label information, i.e., metadata, such as cellular functions of genes/proteins in biological networks, or age or gender of people in social networks. Even for static data, the problem of network clustering is complex. For dynamic data, the problem is even more complex, due to an additional dimension of the data—their temporal (evolving) nature. Since the problem is computationally intractable, heuristic approaches need to be sought. Existing approaches for dynamic network clustering (DNC) have drawbacks. First, they assume that nodes should be in the same cluster if they are densely interconnected within the network. We hypothesize that in some applications, it might be of interest to cluster nodes that are topologically similar to each other instead of or in addition to requiring the nodes to be densely interconnected. Second, they ignore temporal information in their early steps, and when they do consider this information later on, they do so implicitly. We hypothesize that capturing temporal information earlier in the clustering process and doing so explicitly will improve results. We test these two hypotheses via our new approach called ClueNet. We evaluate ClueNet against six existing DNC methods on both social networks capturing evolving interactions between individuals (such as interactions between students in a high school) and biological networks capturing interactions between biomolecules in the cell at different ages. We find that ClueNet is superior in over 83% of all evaluation tests. As more real-world dynamic data are becoming available, DNC and thus ClueNet will only continue to gain importance. PMID:29738568
The Community Seismic Network: Enabling Observations Through Citizen Science Participation
NASA Astrophysics Data System (ADS)
Kohler, M. D.; Clayton, R. W.; Heaton, T. H.; Bunn, J.; Guy, R.; Massari, A.; Chandy, K. M.
2017-12-01
The Community Seismic Network is a dense accelerometer array deployed in the greater Los Angeles area and represents the future of densely instrumented urban cities where localized vibration measurements are collected continuously throughout the free-field and built environment. The hardware takes advantage of developments in the semiconductor industry in the form of inexpensive MEMS accelerometers that are each coupled with a single board computer. The data processing and archival architecture borrows from developments in cloud computing and network connectedness. The ability to deploy densely in the free field and in upper stories of mid/high-rise buildings is enabled by community hosts for sensor locations. To this end, CSN has partnered with the Los Angeles Unified School District (LAUSD), the NASA-Jet Propulsion Laboratory (JPL), and commercial and civic building owners to host sensors. At these sites, site amplification estimates from RMS noise measurements illustrate the lateral variation in amplification over length scales of 100 m or less, that correlate with gradients in the local geology such as sedimentary basins that abut crystalline rock foothills. This is complemented by high-resolution, shallow seismic velocity models obtained using an H/V method. In addition, noise statistics are used to determine the reliability of sites for ShakeMap and earthquake early warning data. The LAUSD and JPL deployments are examples of how situational awareness and centralized warning products such as ShakeMap and ShakeCast are enabled by citizen science participation. Several buildings have been instrumented with at least one triaxial accelerometer per floor, providing measurements for real-time structural health monitoring through local, customized displays. For real-time and post-event evaluation, the free-field and built environment CSN data and products illustrate the feasibility of order-of-magnitude higher spatial resolution mapping compared to what is currently possible with traditional, regional seismic networks. The JPL experiment in particular represents a miniature prototype for city-wide earthquake monitoring that combines free-field measurements for ground shaking intensities, with mid-rise building response through advanced fragility curve computations.
NASA Astrophysics Data System (ADS)
Ubink, J.; Enache, M.; Stöhr, M.
2018-05-01
Using the tip of a scanning tunneling microscope, an electric field-induced reversible phase transition between two planar porous structures ("chickenwire" and "flower") of trimesic acid was accomplished at the nonanoic acid/highly oriented pyrolytic graphite interface. The chickenwire structure was exclusively observed for negative sample bias, while for positive sample bias only the more densely packed flower structure was found. We suggest that the slightly negatively charged carboxyl groups of the trimesic acid molecule are the determining factor for this observation: their adsorption behavior varies with the sample bias and is thus responsible for the switching behavior.
NASA Astrophysics Data System (ADS)
Matzel, E.; Mellors, R. J.; Magana-Zook, S. A.
2016-12-01
Seismic interferometry is based on the observation that the Earth's background wavefield includes coherent energy, which can be recovered by observing over long time periods, allowing the incoherent energy to cancel out. The cross correlation of the energy recorded at a pair of stations results in an estimate of the Green's Function (GF) and is equivalent to the record of a simple source located at one of the stations as recorded by the other. This allows high resolution imagery beneath dense seismic networks even in areas of low seismicity. The power of these inter-station techniques increases rapidly as the number of seismometers in a network increases. For large networks the number of correlations computed can run into the millions and this becomes a "big-data" problem where data-management dominates the efficiency of the computations. In this study, we use several methods of seismic interferometry to obtain highly detailed images at the site of the Source Physics Experiment (SPE). The objective of SPE is to obtain a physics-based understanding of how seismic waves are created at and scattered near the source. In 2015, a temporary deployment of 1,000 closely spaced geophones was added to the main network of instruments at the site. We focus on three interferometric techniques: Shot interferometry (SI) uses the SPE shots as rich sources of high frequency, high signal energy. Coda interferometry (CI) isolates the energy from the scattered wavefield of distant earthquakes. Ambient noise correlation (ANC) uses the energy of the ambient background field. In each case, the data recorded at one seismometer are correlated with the data recorded at another to obtain an estimate of the GF between the two. The large network of mixed geophone and broadband instruments at the SPE allows us to calculate over 500,000 GFs, which we use to characterize the site and measure the localized wavefield. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
Radi, Marjan; Dezfouli, Behnam; Abu Bakar, Kamalrulnizam; Abd Razak, Shukor
2014-01-01
Network connectivity and link quality information are the fundamental requirements of wireless sensor network protocols to perform their desired functionality. Most of the existing discovery protocols have only focused on the neighbor discovery problem, while a few number of them provide an integrated neighbor search and link estimation. As these protocols require a careful parameter adjustment before network deployment, they cannot provide scalable and accurate network initialization in large-scale dense wireless sensor networks with random topology. Furthermore, performance of these protocols has not entirely been evaluated yet. In this paper, we perform a comprehensive simulation study on the efficiency of employing adaptive protocols compared to the existing nonadaptive protocols for initializing sensor networks with random topology. In this regard, we propose adaptive network initialization protocols which integrate the initial neighbor discovery with link quality estimation process to initialize large-scale dense wireless sensor networks without requiring any parameter adjustment before network deployment. To the best of our knowledge, this work is the first attempt to provide a detailed simulation study on the performance of integrated neighbor discovery and link quality estimation protocols for initializing sensor networks. This study can help system designers to determine the most appropriate approach for different applications. PMID:24678277
Examining the Acquisition of Phonological Word Forms with Computational Experiments
ERIC Educational Resources Information Center
Vitevitch, Michael S.; Storkel, Holly L.
2013-01-01
It has been hypothesized that known words in the lexicon strengthen newly formed representations of novel words, resulting in words with dense neighborhoods being learned more quickly than words with sparse neighborhoods. Tests of this hypothesis in a connectionist network showed that words with dense neighborhoods were learned better than words…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shingledecker, Christopher N.; Le Gal, Romane; Hincelin, Ugo
2016-10-20
The chemistry of dense interstellar regions was analyzed using a time-dependent gas–grain astrochemical simulation and a new chemical network that incorporates deuterated chemistry, taking into account nuclear spin states for the hydrogen chemistry and its deuterated isotopologues. With this new network, the utility of the [HCO{sup +}]/[DCO{sup +}] abundance ratio as a probe of the cosmic-ray ionization rate has been re-examined, with special attention paid to the effect of the initial value of the ortho-to-para ratio (OPR) of molecular hydrogen. After discussing the use of the probe for cold cores, we compare our results with previous theoretical and observational resultsmore » for a molecular cloud close to the supernova remnant W51C, which is thought to have an enhanced cosmic-ray ionization rate ζ caused by the nearby γ -ray source. In addition, we attempt to use our approach to estimate the cosmic-ray ionization rate for L1174, a dense core with an embedded star. Beyond the previously known sensitivity of [HCO{sup +}]/[DCO{sup +}] to ζ , we demonstrate its additional dependence on the initial OPR and, secondarily, on the age of the source, its temperature, and its density. We conclude that the usefulness of the [HCO{sup +}]/[DCO{sup +}] abundance ratio in constraining the cosmic-ray ionization rate in dense regions increases with the age of the source and the ionization rate as the ratio becomes far less sensitive to the initial value of the OPR.« less
Belchansky, G.I.; Douglas, David C.; Eremeev, V.A.; Platonov, Nikita G.
2005-01-01
A 26-year (1979-2004) observational record of January multiyear sea ice distributions, derived from neural network analysis of SMMR-SSM/I passive microwave satellite data, reveals dense and persistent cover in the central Arctic basin surrounded by expansive regions of highly fluctuating interannual cover. Following a decade of quasi equilibrium, precipitous declines in multiyear ice area commenced in 1989 when the Arctic Oscillation shifted to a pronounced positive phase. Although extensive survival of first-year ice during autumn 1996 fully replenished the area of multiyear ice, a subsequent and accelerated decline returned the depletion to record lows. The most dramatic multiyear sea ice declines occurred in the East Siberian, Chukchi, and Beaufort Seas.
Chen, Sheng; Liu, Huijuan; You, Yalei; Mullens, Esther; Hu, Junjun; Yuan, Ye; Huang, Mengyu; He, Li; Luo, Yongming; Zeng, Xingji; Tang, Guoqiang; Hong, Yang
2014-01-01
Satellite-based precipitation estimates products, CMORPH and PERSIANN-CCS, were evaluated with a dense rain gauge network over Beijing and adjacent regions for an extremely heavy precipitation event on July 21 2012. CMORPH and PEERSIANN-CSS misplaced the region of greatest rainfall accumulation, and failed to capture the spatial pattern of precipitation, evidenced by a low spatial correlation coefficient (CC). CMORPH overestimated the daily accumulated rainfall by 22.84% while PERSIANN-CCS underestimated by 72.75%. In the rainfall center, both CMORPH and PERSIANN-CCS failed to capture the temporal variation of the rainfall, and underestimated rainfall amounts by 43.43% and 87.26%, respectively. Based on our results, caution should be exercised when using CMORPH and PERSIANN-CCS as input for monitoring and forecasting floods in Beijing urban areas, and the potential for landslides in the mountainous zones west and north of Beijing. PMID:24691358
Chen, Sheng; Liu, Huijuan; You, Yalei; Mullens, Esther; Hu, Junjun; Yuan, Ye; Huang, Mengyu; He, Li; Luo, Yongming; Zeng, Xingji; Tang, Guoqiang; Hong, Yang
2014-01-01
Satellite-based precipitation estimates products, CMORPH and PERSIANN-CCS, were evaluated with a dense rain gauge network over Beijing and adjacent regions for an extremely heavy precipitation event on July 21 2012. CMORPH and PEERSIANN-CSS misplaced the region of greatest rainfall accumulation, and failed to capture the spatial pattern of precipitation, evidenced by a low spatial correlation coefficient (CC). CMORPH overestimated the daily accumulated rainfall by 22.84% while PERSIANN-CCS underestimated by 72.75%. In the rainfall center, both CMORPH and PERSIANN-CCS failed to capture the temporal variation of the rainfall, and underestimated rainfall amounts by 43.43% and 87.26%, respectively. Based on our results, caution should be exercised when using CMORPH and PERSIANN-CCS as input for monitoring and forecasting floods in Beijing urban areas, and the potential for landslides in the mountainous zones west and north of Beijing.
Structural Transitions in Densifying Networks
NASA Astrophysics Data System (ADS)
Lambiotte, R.; Krapivsky, P. L.; Bhat, U.; Redner, S.
2016-11-01
We introduce a minimal generative model for densifying networks in which a new node attaches to a randomly selected target node and also to each of its neighbors with probability p . The networks that emerge from this copying mechanism are sparse for p <1/2 and dense (average degree increasing with number of nodes N ) for p ≥1/2 . The behavior in the dense regime is especially rich; for example, individual network realizations that are built by copying are disparate and not self-averaging. Further, there is an infinite sequence of structural anomalies at p =2/3 , 3/4 , 4/5 , etc., where the N dependences of the number of triangles (3-cliques), 4-cliques, undergo phase transitions. When linking to second neighbors of the target can occur, the probability that the resulting graph is complete—all nodes are connected—is nonzero as N →∞ .
Intra-Urban Movement Flow Estimation Using Location Based Social Networking Data
NASA Astrophysics Data System (ADS)
Kheiri, A.; Karimipour, F.; Forghani, M.
2015-12-01
In recent years, there has been a rapid growth of location-based social networking services, such as Foursquare and Facebook, which have attracted an increasing number of users and greatly enriched their urban experience. Location-based social network data, as a new travel demand data source, seems to be an alternative or complement to survey data in the study of mobility behavior and activity analysis because of its relatively high access and low cost. In this paper, three OD estimation models have been utilized in order to investigate their relative performance when using Location-Based Social Networking (LBSN) data. For this, the Foursquare LBSN data was used to analyze the intra-urban movement behavioral patterns for the study area, Manhattan, the most densely populated of the five boroughs of New York city. The outputs of models are evaluated using real observations based on different criterions including distance distribution, destination travel constraints. The results demonstrate the promising potential of using LBSN data for urban travel demand analysis and monitoring.
Optical vector network analysis of ultranarrow transitions in 166Er3+ : 7LiYF4 crystal.
Kukharchyk, N; Sholokhov, D; Morozov, O; Korableva, S L; Cole, J H; Kalachev, A A; Bushev, P A
2018-02-15
We present optical vector network analysis (OVNA) of an isotopically purified Er166 3+ :LiYF 4 7 crystal. The OVNA method is based on generation and detection of a modulated optical sideband by using a radio-frequency vector network analyzer. This technique is widely used in the field of microwave photonics for the characterization of optical responses of optical devices such as filters and high-Q resonators. However, dense solid-state atomic ensembles induce a large phase shift on one of the optical sidebands that results in the appearance of extra features on the measured transmission response. We present a simple theoretical model that accurately describes the observed spectra and helps to reconstruct the absorption profile of a solid-state atomic ensemble as well as corresponding change of the refractive index in the vicinity of atomic resonances.
Impact of branching on the elasticity of actin networks
Pujol, Thomas; du Roure, Olivia; Fermigier, Marc; Heuvingh, Julien
2012-01-01
Actin filaments play a fundamental role in cell mechanics: assembled into networks by a large number of partners, they ensure cell integrity, deformability, and migration. Here we focus on the mechanics of the dense branched network found at the leading edge of a crawling cell. We develop a new technique based on the dipolar attraction between magnetic colloids to measure mechanical properties of branched actin gels assembled around the colloids. This technique allows us to probe a large number of gels and, through the study of different networks, to access fundamental relationships between their microscopic structure and their mechanical properties. We show that the architecture does regulate the elasticity of the network: increasing both capping and branching concentrations strongly stiffens the networks. These effects occur at protein concentrations that can be regulated by the cell. In addition, the dependence of the elastic modulus on the filaments’ flexibility and on increasing internal stress has been studied. Our overall results point toward an elastic regime dominated by enthalpic rather than entropic deformations. This result strongly differs from the elasticity of diluted cross-linked actin networks and can be explained by the dense dendritic structure of lamellipodium-like networks. PMID:22689953
Assessing the weather monitoring capabilities of cellular microwave link networks
NASA Astrophysics Data System (ADS)
Fencl, Martin; Vrzba, Miroslav; Rieckermann, Jörg; Bareš, Vojtěch
2016-04-01
Using of microwave links for rainfall monitoring was suggested already by (Atlas and Ulbrich, 1977). However, this technique attracted broader attention of scientific community only in the recent decade, with the extensive growth of cellular microwave link (CML) networks, which form the backbone of today's cellular telecommunication infrastructure. Several studies have already shown that CMLs can be conveniently used as weather sensors and have potential to provide near-ground path-integrated observations of rainfall but also humidity or fog. However, although research is still focusing on algorithms to improve the weather sensing capabilities (Fencl et al., 2015), it is not clear how to convince cellular operators to provide the power levels of their network. One step in this direction is to show in which regions or municipalities the networks are sufficiently dense to provide/develop good services. In this contribution we suggest a standardized approach to evaluate CML networks in terms of rainfall observation and to identify suitable regions for CML rainfall monitoring. We estimate precision of single CML based on its sensitivity to rainfall, i.e. as a function of frequency, polarization and path length. Capability of a network to capture rainfall spatial patterns is estimated from the CML coverage and path lengths considering that single CML provides path-integrated rain rates. We also search for suitable predictors for regions where no network topologies are available. We test our approach on several European networks and discuss the results. Our results show that CMLs are very dense in urban areas (> 1 CML/km2), but less in rural areas (< 0.02 CML/km2). We found a strong correlation between a population and CML network density (e.g. R2 = 0.97 in Czech Republic), thus population could be a simple proxy to identify suitable regions for CML weather monitoring. To enable a simple and efficient assessment of the CML monitoring potential for any region worldwide, we are currently integrating our approach into open source online tool. In summary, our results demonstrate that CML represent promising environmental observation network, suitable especially for urban rainfall monitoring. The developed approach integrated into an open source online tool can be conveniently used e.g. by local operators or authorities to evaluate the suitability of their region for CML weather monitoring and estimate the credible spatial-resolution of a CML weather monitoring product. Atlas, D. and Ulbrich, C. W. (1977) Path- and Area-Integrated Rainfall Measurement by Microwave Attenuation in the 1-3 cm Band. Journal of Applied Meteorology, 16(12), 1322-1331. Fencl, M., Rieckermann, J., Sýkora, P., Stránský, D., and Bareš, V. (2015) Commercial microwave links instead of rain gauges: fiction or reality? Water Science & Technology, 71(1), 31. Acknowledgements to Czech Science Foundation project No. 14-22978S and Czech Technical University in Prague project No. SGS15/050/OHK1/1T/11.
NASA Astrophysics Data System (ADS)
Kang, T.; Lee, J. M.; Kim, W.; Jo, B. G.; Chung, T.; Choi, S.
2012-12-01
A few tens of surface traces indicating movements in Quaternary were found in the southeastern part of the Korean Peninsula. Following both the geological and engineering definitions, those features are classified into "active", in geology, or "capable", in engineering, faults. On the other hand, the present-day seismicity of the region over a couple of thousand years is indistinguishable on the whole with the rest of the Korean Peninsula. It is therefore of great interest whether the present seismic activity is related to the neotectonic features or not. Either of conclusions is not intuitive in terms of the present state of seismic monitoring network in the region. Thus much interest in monitoring seismicity to provide an improved observation resolution and to lower the event-detection threshold has increased with many observations of the Quaternary faults. We installed a remote, wireless seismograph network which is composed of 20 stations with an average spacing of 10 km. Each station is equipped with a three-component Trillium Compact seismometer and Taurus digitizer. Instrumentation and analysis advancements are now offering better tools for this monitoring. This network is scheduled to be in operation over about one and a half year. In spite of the relatively short observation period, we expect that the high density of the network enables us to monitor seismic events with much lower magnitude threshold compared to the preexisting seismic network in the region. Following the Gutenberg-Richter relationship, the number of events with low magnitude is logarithmically larger than that with high magnitude. Following this rule, we can expect that many of microseismic events may reveal behavior of their causative faults, if any. We report the results of observation which has been performed over a year up to now.
Two Novel Rab2 Interactors Regulate Dense-core Vesicle Maturation
Ailion, Michael; Hannemann, Mandy; Dalton, Susan; Pappas, Andrea; Watanabe, Shigeki; Hegermann, Jan; Liu, Qiang; Han, Hsiao-Fen; Gu, Mingyu; Goulding, Morgan Q.; Sasidharan, Nikhil; Schuske, Kim; Hullett, Patrick; Eimer, Stefan; Jorgensen, Erik M.
2014-01-01
Summary Peptide neuromodulators are released from a unique organelle: the dense-core vesicle. Dense-core vesicles are generated at the trans-Golgi, and then sort cargo during maturation before being secreted. To identify proteins that act in this pathway, we performed a genetic screen in Caenorhabditis elegans for mutants defective in dense-core vesicle function. We identified two conserved Rab2-binding proteins: RUND-1, a RUN domain protein, and CCCP-1, a coiled-coil protein. RUND-1 and CCCP-1 colocalize with RAB-2 at the Golgi, and rab-2, rund-1 and cccp-1 mutants have similar defects in sorting soluble and transmembrane dense-core vesicle cargos. RUND-1 also interacts with the Rab2 GAP protein TBC-8 and the BAR domain protein RIC-19, a RAB-2 effector. In summary, a new pathway of conserved proteins controls the maturation of dense-core vesicles at the trans-Golgi network. PMID:24698274
Dynamics of the middle atmosphere as observed by the ARISE project
NASA Astrophysics Data System (ADS)
Blanc, E.
2015-12-01
It has been strongly demonstrated that variations in the circulation of the middle atmosphere influence weather and climate all the way to the Earth's surface. A key part of this coupling occurs through the propagation and breaking of planetary and gravity waves. However, limited observations prevent to faithfully reproduce the dynamics of the middle atmosphere in numerical weather prediction and climate models. The main challenge of the ARISE (Atmospheric dynamics InfraStructure in Europe) project is to combine existing national and international observation networks including: the International infrasound monitoring system developed for the CTBT (Comprehensive nuclear-Test-Ban Treaty) verification, the NDACC (Network for the Detection of Atmospheric Composition Changes) lidar network, European observation infrastructures at mid latitudes (OHP observatory), tropics (Maïdo observatory), high latitudes (ALOMAR and EISCAT), infrasound stations which form a dense European network and satellites. The ARISE network is unique by its coverage (polar to equatorial regions in the European longitude sector), its altitude range (from troposphere to mesosphere and ionosphere) and the involved scales both in time (from seconds to tens of years) and space (from tens of meters to thousands of kilometers). Advanced data products are produced with the scope to assimilate data in the Weather Prediction models to improve future forecasts over weeks and seasonal time scales. ARISE observations are especially relevant for the monitoring of extreme events such as thunderstorms, volcanoes, meteors and at larger scales, deep convection and stratospheric warming events for physical processes description and study of long term evolution with climate change. Among the applications, ARISE fosters integration of innovative methods for remote detection of non-instrumented volcanoes including distant eruption characterization to provide notifications with reliable confidence indices to the civil aviation.
Honegger, Thibault; Thielen, Moritz I; Feizi, Soheil; Sanjana, Neville E; Voldman, Joel
2016-06-22
The central nervous system is a dense, layered, 3D interconnected network of populations of neurons, and thus recapitulating that complexity for in vitro CNS models requires methods that can create defined topologically-complex neuronal networks. Several three-dimensional patterning approaches have been developed but none have demonstrated the ability to control the connections between populations of neurons. Here we report a method using AC electrokinetic forces that can guide, accelerate, slow down and push up neurites in un-modified collagen scaffolds. We present a means to create in vitro neural networks of arbitrary complexity by using such forces to create 3D intersections of primary neuronal populations that are plated in a 2D plane. We report for the first time in vitro basic brain motifs that have been previously observed in vivo and show that their functional network is highly decorrelated to their structure. This platform can provide building blocks to reproduce in vitro the complexity of neural circuits and provide a minimalistic environment to study the structure-function relationship of the brain circuitry.
NASA Astrophysics Data System (ADS)
Honegger, Thibault; Thielen, Moritz I.; Feizi, Soheil; Sanjana, Neville E.; Voldman, Joel
2016-06-01
The central nervous system is a dense, layered, 3D interconnected network of populations of neurons, and thus recapitulating that complexity for in vitro CNS models requires methods that can create defined topologically-complex neuronal networks. Several three-dimensional patterning approaches have been developed but none have demonstrated the ability to control the connections between populations of neurons. Here we report a method using AC electrokinetic forces that can guide, accelerate, slow down and push up neurites in un-modified collagen scaffolds. We present a means to create in vitro neural networks of arbitrary complexity by using such forces to create 3D intersections of primary neuronal populations that are plated in a 2D plane. We report for the first time in vitro basic brain motifs that have been previously observed in vivo and show that their functional network is highly decorrelated to their structure. This platform can provide building blocks to reproduce in vitro the complexity of neural circuits and provide a minimalistic environment to study the structure-function relationship of the brain circuitry.
Fritts, Karen R.; Kilb, Debi
2009-01-01
It has been traditionally held that aftershocks occur within one to two fault lengths of the mainshock. Here we demonstrate that this perception has been shaped by the sensitivity of seismic networks. The 31 October 2001 Mw 5.0 and 12 June 2005 Mw 5.2 Anza mainshocks in southern California occurred in the middle of the densely instrumented ANZA seismic network and thus were unusually well recorded. For the June 2005 event, aftershocks as small as M 0.0 could be observed stretching for at least 50 km along the San Jacinto fault even though the mainshock fault was only ∼4.5 km long. It was hypothesized that an observed aseismic slipping patch produced a spatially extended aftershock-triggering source, presumably slowing the decay of aftershock density with distance and leading to a broader aftershock zone. We find, however, the decay of aftershock density with distance for both Anza sequences to be similar to that observed elsewhere in California. This indicates there is no need for an additional triggering mechanism and suggests that given widespread dense instrumentation, aftershock sequences would routinely have footprints much larger than currently expected. Despite the large 2005 aftershock zone, we find that the probability that the 2005 Anza mainshock triggered the M 4.9 Yucaipa mainshock, which occurred 4.2 days later and 72 km away, to be only 14%±1%. This probability is a strong function of the time delay; had the earthquakes been separated by only an hour, the probability of triggering would have been 89%.
A Multilevel Gamma-Clustering Layout Algorithm for Visualization of Biological Networks
Hruz, Tomas; Lucas, Christoph; Laule, Oliver; Zimmermann, Philip
2013-01-01
Visualization of large complex networks has become an indispensable part of systems biology, where organisms need to be considered as one complex system. The visualization of the corresponding network is challenging due to the size and density of edges. In many cases, the use of standard visualization algorithms can lead to high running times and poorly readable visualizations due to many edge crossings. We suggest an approach that analyzes the structure of the graph first and then generates a new graph which contains specific semantic symbols for regular substructures like dense clusters. We propose a multilevel gamma-clustering layout visualization algorithm (MLGA) which proceeds in three subsequent steps: (i) a multilevel γ-clustering is used to identify the structure of the underlying network, (ii) the network is transformed to a tree, and (iii) finally, the resulting tree which shows the network structure is drawn using a variation of a force-directed algorithm. The algorithm has a potential to visualize very large networks because it uses modern clustering heuristics which are optimized for large graphs. Moreover, most of the edges are removed from the visual representation which allows keeping the overview over complex graphs with dense subgraphs. PMID:23864855
NASA Astrophysics Data System (ADS)
Kim, G.; Che, I. Y.
2017-12-01
We evaluated relationship among source parameters of underground nuclear tests in northern Korean Peninsula using regional seismic data. Dense global and regional seismic networks are incorporated to measure locations and origin times precisely. Location analyses show that distance among the locations is tiny on a regional scale. The tiny location-differences validate a linear model assumption. We estimated source spectral ratios by excluding path effects based spectral ratios of the observed seismograms. We estimated empirical relationship among depth of burials and yields based on theoretical source models.
NASA Astrophysics Data System (ADS)
Deng, Xueliang; Nie, Suping; Deng, Weitao; Cao, Weihua
2018-04-01
In this study, we compared the following four different gridded monthly precipitation products: the National Centers for Environmental Prediction version 2 (NCEP-2) reanalysis data, the satellite-based Climate Prediction Center Morphing technique (CMORPH) data, the merged satellite-gauge Global Precipitation Climatology Project (GPCP) data, and the merged satellite-gauge-model data from the Beijing Climate Center Merged Estimation of Precipitation (BMEP). We evaluated the performances of these products using monthly precipitation observations spanning the period of January 2003 to December 2013 from a dense, national, rain gauge network in China. Our assessment involved several statistical techniques, including spatial pattern, temporal variation, bias, root-mean-square error (RMSE), and correlation coefficient (CC) analysis. The results show that NCEP-2, GPCP, and BMEP generally overestimate monthly precipitation at the national scale and CMORPH underestimates it. However, all of the datasets successfully characterized the northwest to southeast increase in the monthly precipitation over China. Because they include precipitation gauge information from the Global Telecommunication System (GTS) network, GPCP and BMEP have much smaller biases, lower RMSEs, and higher CCs than NCEP-2 and CMORPH. When the seasonal and regional variations are considered, NCEP-2 has a larger error over southern China during the summer. CMORPH poorly reproduces the magnitude of the precipitation over southeastern China and the temporal correlation over western and northwestern China during all seasons. BMEP has a lower RMSE and higher CC than GPCP over eastern and southern China, where the station network is dense. In contrast, BMEP has a lower CC than GPCP over western and northwestern China, where the gauge network is relatively sparse.
Lammel, G; Dobrovolný, P; Dvorská, A; Chromá, K; Brázdil, R; Holoubek, I; Hosek, J
2009-11-01
A network for the study of long-term trends of the continental background in Africa and the intercontinental background of persistent organic pollutants as resulting from long-range transport of contaminants from European, South Asian, and other potential source regions, as well as by watching supposedly pristine regions, i.e. the Southern Ocean and Antarctica is designed. The results of a pilot phase sampling programme in 2008 and meteorological and climatological information from the period 1961-2007 was used to apply objective criteria for the selection of stations for the monitoring network: out the original 26 stations six have been rejected because of suggested strong local sources of POPs and three others because of local meteorological effects, which may prevent part of the time long-range transported air to reach the sampling site. Representativeness of the meteorological patterns during the pilot phase with respect to climatology was assessed by comparison of the more local airflow situation as given by climatological vs. observed wind roses and by comparison of backward trajectories with the climatological wind (NCEP/NCAR re-analyses). With minor exceptions advection to nine inspected stations was typical for present-day climate during the pilot phase, 2008. Six to nine stations would cover satisfyingly large and densely populated regions of North-eastern, West and East Africa and its neighbouring seas, the Mediterranean, Northern and Equatorial Atlantic Ocean, the Western Indian Ocean and the Southern Ocean. Among the more densely populated areas Southern Cameroon, parts of the Abessinian plateau and most of the Great Lakes area would not be covered. The potential of the network is not hampered by on-going long-term changes of the advection to the selected stations, as these do hardly affect the coverage of target areas.
Dense wavelength division multiplexing devices for metropolitan-area datacom and telecom networks
NASA Astrophysics Data System (ADS)
DeCusatis, Casimer M.; Priest, David G.
2000-12-01
Large data processing environments in use today can require multi-gigabyte or terabyte capacity in the data communication infrastructure; these requirements are being driven by storage area networks with access to petabyte data bases, new architecture for parallel processing which require high bandwidth optical links, and rapidly growing network applications such as electronic commerce over the Internet or virtual private networks. These datacom applications require high availability, fault tolerance, security, and the capacity to recover from any single point of failure without relying on traditional SONET-based networking. These requirements, coupled with fiber exhaust in metropolitan areas, are driving the introduction of dense optical wavelength division multiplexing (DWDM) in data communication systems, particularly for large enterprise servers or mainframes. In this paper, we examine the technical requirements for emerging nextgeneration DWDM systems. Protocols for storage area networks and computer architectures such as Parallel Sysplex are presented, including their fiber bandwidth requirements. We then describe two commercially available DWDM solutions, a first generation 10 channel system and a recently announced next generation 32 channel system. Technical requirements, network management and security, fault tolerant network designs, new network topologies enabled by DWDM, and the role of time division multiplexing in the network are all discussed. Finally, we present a description of testing conducted on these networks and future directions for this technology.
NASA Astrophysics Data System (ADS)
Ballas, Gregory; Soliva, Roger; Sizun, Jean-Pierre; Fossen, Haakon; Benedicto, Antonio; Skurtveit, Elin
2013-02-01
Field observations of highly porous and permeable sandstone in the Orange area (S-E Basin, France) show that networks of shear-enhanced compaction bands can form in a contractional regime at burial depths of about 400 m ± 100 m. These bands show equal compaction and shear displacements, are organized in conjugate and densely distributed networks, and are restricted to the coarse-grained (mean grain diameter of 0.6 ± 0.1 mm) and less porous (porosity of 26 ± 2%) sand layers. The bands are crush microbreccia with limited grain comminution and high grain microfracture density. They show reductions of permeability (mD) ranging from 0 to little more than 1 order of magnitude. They show no control on the alteration products related to meteoric water flow, which suggests that these shear-enhanced compaction bands have no or only negligible influence on subsurface fluid flow. Their selective occurrence and small (20%) reduction in transmissibility in densely populated layers prevented them from compartmentalizing the sandstone reservoirs. A comparison with compaction-band populations in the Navajo and Aztec sandtsones (western U.S.) emphasizes the role of burial depth and the presence of chemical compaction processes for the sealing potential of deformation bands.
NASA Astrophysics Data System (ADS)
Asadollahi, Parisa; Li, Jian
2016-04-01
Understanding the dynamic behavior of complex structures such as long-span bridges requires dense deployment of sensors. Traditional wired sensor systems are generally expensive and time-consuming to install due to cabling. With wireless communication and on-board computation capabilities, wireless smart sensor networks have the advantages of being low cost, easy to deploy and maintain and therefore facilitate dense instrumentation for structural health monitoring. A long-term monitoring project was recently carried out for a cable-stayed bridge in South Korea with a dense array of 113 smart sensors, which feature the world's largest wireless smart sensor network for civil structural monitoring. This paper presents a comprehensive statistical analysis of the modal properties including natural frequencies, damping ratios and mode shapes of the monitored cable-stayed bridge. Data analyzed in this paper is composed of structural vibration signals monitored during a 12-month period under ambient excitations. The correlation between environmental temperature and the modal frequencies is also investigated. The results showed the long-term statistical structural behavior of the bridge, which serves as the basis for Bayesian statistical updating for the numerical model.
Mechanisms for Prolonging Network Lifetime in Wireless Sensor Networks
ERIC Educational Resources Information Center
Yang, Yinying
2010-01-01
Sensors are used to monitor and control the physical environment. A Wireless Sensor Network (WSN) is composed of a large number of sensor nodes that are densely deployed either inside the phenomenon or very close to it [18][5]. Sensor nodes measure various parameters of the environment and transmit data collected to one or more sinks, using…
Zhou, Jian; Wang, Lusheng; Wang, Weidong; Zhou, Qingfeng
2017-01-01
In future scenarios of heterogeneous and dense networks, randomly-deployed small star networks (SSNs) become a key paradigm, whose system performance is restricted to inter-SSN interference and requires an efficient resource allocation scheme for interference coordination. Traditional resource allocation schemes do not specifically focus on this paradigm and are usually too time consuming in dense networks. In this article, a very efficient graph-based scheme is proposed, which applies the maximal independent set (MIS) concept in graph theory to help divide SSNs into almost interference-free groups. We first construct an interference graph for the system based on a derived distance threshold indicating for any pair of SSNs whether there is intolerable inter-SSN interference or not. Then, SSNs are divided into MISs, and the same resource can be repetitively used by all the SSNs in each MIS. Empirical parameters and equations are set in the scheme to guarantee high performance. Finally, extensive scenarios both dense and nondense are randomly generated and simulated to demonstrate the performance of our scheme, indicating that it outperforms the classical max K-cut-based scheme in terms of system capacity, utility and especially time cost. Its achieved system capacity, utility and fairness can be close to the near-optimal strategy obtained by a time-consuming simulated annealing search. PMID:29113109
Optoelectronic Integrated Circuits For Neural Networks
NASA Technical Reports Server (NTRS)
Psaltis, D.; Katz, J.; Kim, Jae-Hoon; Lin, S. H.; Nouhi, A.
1990-01-01
Many threshold devices placed on single substrate. Integrated circuits containing optoelectronic threshold elements developed for use as planar arrays of artificial neurons in research on neural-network computers. Mounted with volume holograms recorded in photorefractive crystals serving as dense arrays of variable interconnections between neurons.
Estimating topological properties of weighted networks from limited information
NASA Astrophysics Data System (ADS)
Gabrielli, Andrea; Cimini, Giulio; Garlaschelli, Diego; Squartini, Angelo
A typical problem met when studying complex systems is the limited information available on their topology, which hinders our understanding of their structural and dynamical properties. A paramount example is provided by financial networks, whose data are privacy protected. Yet, the estimation of systemic risk strongly depends on the detailed structure of the interbank network. The resulting challenge is that of using aggregate information to statistically reconstruct a network and correctly predict its higher-order properties. Standard approaches either generate unrealistically dense networks, or fail to reproduce the observed topology by assigning homogeneous link weights. Here we develop a reconstruction method, based on statistical mechanics concepts, that exploits the empirical link density in a highly non-trivial way. Technically, our approach consists in the preliminary estimation of node degrees from empirical node strengths and link density, followed by a maximum-entropy inference based on a combination of empirical strengths and estimated degrees. Our method is successfully tested on the international trade network and the interbank money market, and represents a valuable tool for gaining insights on privacy-protected or partially accessible systems. Acknoweledgement to ``Growthcom'' ICT - EC project (Grant No: 611272) and ``Crisislab'' Italian Project.
Qu, Feini; Li, Qing; Wang, Xiao; Cao, Xuan; Zgonis, Miltiadis H; Esterhai, John L; Shenoy, Vivek B; Han, Lin; Mauck, Robert L
2018-02-19
Few regenerative approaches exist for the treatment of injuries to adult dense connective tissues. Compared to fetal tissues, adult connective tissues are hypocellular and show limited healing after injury. We hypothesized that robust repair can occur in fetal tissues with an immature extracellular matrix (ECM) that is conducive to cell migration, and that this process fails in adults due to the biophysical barriers imposed by the mature ECM. Using the knee meniscus as a platform, we evaluated the evolving micromechanics and microstructure of fetal and adult tissues, and interrogated the interstitial migratory capacity of adult meniscal cells through fetal and adult tissue microenvironments with or without partial enzymatic digestion. To integrate our findings, a computational model was implemented to determine how changing biophysical parameters impact cell migration through these dense networks. Our results show that the micromechanics and microstructure of the adult meniscus ECM sterically hinder cell mobility, and that modulation of these ECM attributes via an exogenous matrix-degrading enzyme permits migration through this otherwise impenetrable network. By addressing the inherent limitations to repair imposed by the mature ECM, these studies may define new clinical strategies to promote repair of damaged dense connective tissues in adults.
Information processing architecture of functionally defined clusters in the macaque cortex.
Shen, Kelly; Bezgin, Gleb; Hutchison, R Matthew; Gati, Joseph S; Menon, Ravi S; Everling, Stefan; McIntosh, Anthony R
2012-11-28
Computational and empirical neuroimaging studies have suggested that the anatomical connections between brain regions primarily constrain their functional interactions. Given that the large-scale organization of functional networks is determined by the temporal relationships between brain regions, the structural limitations may extend to the global characteristics of functional networks. Here, we explored the extent to which the functional network community structure is determined by the underlying anatomical architecture. We directly compared macaque (Macaca fascicularis) functional connectivity (FC) assessed using spontaneous blood oxygen level-dependent functional magnetic resonance imaging (BOLD-fMRI) to directed anatomical connectivity derived from macaque axonal tract tracing studies. Consistent with previous reports, FC increased with increasing strength of anatomical connection, and FC was also present between regions that had no direct anatomical connection. We observed moderate similarity between the FC of each region and its anatomical connectivity. Notably, anatomical connectivity patterns, as described by structural motifs, were different within and across functional modules: partitioning of the functional network was supported by dense bidirectional anatomical connections within clusters and unidirectional connections between clusters. Together, our data directly demonstrate that the FC patterns observed in resting-state BOLD-fMRI are dictated by the underlying neuroanatomical architecture. Importantly, we show how this architecture contributes to the global organizational principles of both functional specialization and integration.
Atmospheric boundary layer effects induced by the 20 March 2015 solar eclipse
NASA Astrophysics Data System (ADS)
Gray, Suzanne L.; Harrison, R. Giles
2016-04-01
The British Isles benefits from dense meteorological observation networks, enabling insights into the still-unresolved effects of solar eclipse events on the near-surface wind field. The near-surface effects of the solar eclipse of 20 March 2015 are derived through comparison of output from the Met Office's operational weather forecast model (which is ignorant of the eclipse) with data from two meteorological networks: the Met Office's land surface station (MIDAS) network and a roadside measurement network operated by Vaisala. Synoptic-evolution relative calculations reveal the cooling and increase in relative humidity almost universally attributed to eclipse events. In addition, a slackening of wind speeds by up to about 2 knots in already weak winds and backing in wind direction of about 20 degrees under clear skies across middle England are attributed to the eclipse event. The slackening of wind speed is consistent with the previously reported boundary layer stabilisation during eclipse events. Wind direction changes have previously been attributed to a large-scale `eclipse-induced cold-cored cyclone', mountain slope flows, and changes in the strength of sea breezes. A new explanation is proposed here by analogy with nocturnal wind changes at sunset and shown to predict direction changes consistent with those observed.
NASA Astrophysics Data System (ADS)
Shahbazi, A.; Park, J.; Kim, S.; Oberg, R.
2017-12-01
As the ionospheric behavior is highly related to the solar activity, the total eclipse passing across the North America on 21 August 2017 is expected to significantly affect the electron density in the ionosphere along the path. Taking advantage of GNSS capability for observing total electron content (TEC), this study demonstrates the impact of the total eclipse not only on the TEC variation during the period of the event but also on GNSS positioning. Oregon Department of Transportation (ODOT) runs a dense real time GNSS network, referred to as Oregon Real-time GNSS network (ORGN). From the dual frequency GPS and GLONASS observations in ORGN, the TEC over the network area can be extracted. We observe the vertical TEC (VTEC) from the ORGN for analyzing the ionospheric condition in the local area affected by the eclipse. To observe the temporal variation, we also observe the slant TEC (STEC) in each ray path and analyze the short term variation in different geometry of each ray path. Although the STEC is dependent quantity upon the changing geometry of a satellite, this approach provides insight to the ionospheric behavior of the total eclipse because the STEC does not involve the projection error, which is generated by VTEC computation. During the period of eclipse, the abnormal variations on VTEC and STEC are expected. The experimental results will be presented in time series plots for selected stations as well as the regional TEC map in Oregon. In addition to the TEC monitoring, we also test the positioning result of ORGN stations through Precise Point Positioning (PPP) and relative positioning. The expected result is that the both positioning results are degraded during the solar eclipse due to the instable ionospheric condition over short time.
Yadav, Deepak; Ghosh, Tarini Shankar; Mande, Sharmila S
2016-01-01
Factors like ethnicity, diet and age of an individual have been hypothesized to play a role in determining the makeup of gut microbiome. In order to investigate the gut microbiome structure as well as the inter-microbial associations present therein, we have performed a comprehensive global comparative profiling of the structure (composition, relative heterogeneity and diversity) and the inter-microbial networks in the gut microbiomes of 399 individuals of eight different nationalities. The study identified certain geography-specific trends with respect to composition, intra-group heterogeneity and diversity of the gut microbiomes. Interestingly, the gut microbial association/mutual-exlusion networks were observed to exhibit several cross-geography trends. It was seen that though the composition of gut microbiomes of the American and European individuals were similar, there were distinct patterns in their microbial interaction networks. Amongst European gut-microbiomes, the co-occurrence network obtained for the Danish population was observed to be most dense. Distinct patterns were also observed within Chinese, Japanese and Indian datasets. While performing an age-wise comparison, it was observed that the microbial interactions increased with the age of individuals. Furthermore, certain bacterial groups were identified to be present only in the older age groups. The trends observed in gut microbial networks could be due to the inherent differences in the diet of individuals belonging to different nationalities. For example, the higher number of microbial associations in the Danish population as compared to the Spanish population, may be attributed to the evenly distributed diet of the later. This is in line with previously reported findings which indicate an increase in functional interdependency of microbes in individuals with higher nutritional status. To summarise, the present study identifies geography and age specific patterns in the composition as well as microbial interactions in gut microbiomes.
NASA Astrophysics Data System (ADS)
Ding, Peng; Zhang, Ye; Deng, Wei-Jian; Jia, Ping; Kuijper, Arjan
2018-07-01
Detection of objects from satellite optical remote sensing images is very important for many commercial and governmental applications. With the development of deep convolutional neural networks (deep CNNs), the field of object detection has seen tremendous advances. Currently, objects in satellite remote sensing images can be detected using deep CNNs. In general, optical remote sensing images contain many dense and small objects, and the use of the original Faster Regional CNN framework does not yield a suitably high precision. Therefore, after careful analysis we adopt dense convoluted networks, a multi-scale representation and various combinations of improvement schemes to enhance the structure of the base VGG16-Net for improving the precision. We propose an approach to reduce the test-time (detection time) and memory requirements. To validate the effectiveness of our approach, we perform experiments using satellite remote sensing image datasets of aircraft and automobiles. The results show that the improved network structure can detect objects in satellite optical remote sensing images more accurately and efficiently.
Digital services using quadrature amplitude modulation (QAM) over CATV analog DWDM system
NASA Astrophysics Data System (ADS)
Yeh, JengRong; Selker, Mark D.; Trail, J.; Piehler, David; Levi, Israel
2000-04-01
Dense Wavelength Division Multiplexing (DWDM) has recently gained great popularity as it provides a cost effective way to increase the transmission capacity of the existing fiber cable plant. For a long time, Dense WDM was exclusively used for baseband digital applications, predominantly in terrestrial long haul networks and in some cases in metropolitan and enterprise networks. Recently, the performance of DWDM components and frequency-stabilized lasers has substantially improved while the costs have down significantly. This makes a variety of new optical network architectures economically viable. The first commercial 8- wavelength DWDM system designed for Hybrid Fiber Coax networks was reported in 1998. This type of DWDM system utilizes Sub-Carrier Multiplexing (SCM) of Quadrature Amplitude Modulated (QAM) signals to transport IP data digital video broadcast and Video on Demand on ITU grid lightwave carriers. The ability of DWDM to provide scalable transmission capacity in the optical layer with SCM granularity is now considered by many to be the most promising technology for future transport and distribution of broadband multimedia services.
Non-equilibrium fluctuations of a semi-flexible filament driven by active cross-linkers
NASA Astrophysics Data System (ADS)
Weber, I.; Appert-Rolland, C.; Schehr, G.; Santen, L.
2017-11-01
The cytoskeleton is an inhomogeneous network of semi-flexible filaments, which are involved in a wide variety of active biological processes. Although the cytoskeletal filaments can be very stiff and embedded in a dense and cross-linked network, it has been shown that, in cells, they typically exhibit significant bending on all length scales. In this work we propose a model of a semi-flexible filament deformed by different types of cross-linkers for which one can compute and investigate the bending spectrum. Our model allows to couple the evolution of the deformation of the semi-flexible polymer with the stochastic dynamics of linkers which exert transversal forces onto the filament. We observe a q-2 dependence of the bending spectrum for some biologically relevant parameters and in a certain range of wave numbers q, as observed in some experiments. However, generically, the spatially localized forcing and the non-thermal dynamics both introduce deviations from the thermal-like q-2 spectrum.
Application and API for Real-time Visualization of Ground-motions and Tsunami
NASA Astrophysics Data System (ADS)
Aoi, S.; Kunugi, T.; Suzuki, W.; Kubo, T.; Nakamura, H.; Azuma, H.; Fujiwara, H.
2015-12-01
Due to the recent progress of seismograph and communication environment, real-time and continuous ground-motion observation becomes technically and economically feasible. K-NET and KiK-net, which are nationwide strong motion networks operated by NIED, cover all Japan by about 1750 stations in total. More than half of the stations transmit the ground-motion indexes and/or waveform data in every second. Traditionally, strong-motion data were recorded by event-triggering based instruments with non-continues telephone line which is connected only after an earthquake. Though the data from such networks mainly contribute to preparations for future earthquakes, huge amount of real-time data from dense network are expected to directly contribute to the mitigation of ongoing earthquake disasters through, e.g., automatic shutdown plants and helping decision-making for initial response. By generating the distribution map of these indexes and uploading them to the website, we implemented the real-time ground motion monitoring system, Kyoshin (strong-motion in Japanese) monitor. This web service (www.kyoshin.bosai.go.jp) started in 2008 and anyone can grasp the current ground motions of Japan. Though this service provides only ground-motion map in GIF format, to take full advantage of real-time strong-motion data to mitigate the ongoing disasters, digital data are important. We have developed a WebAPI to provide real-time data and related information such as ground motions (5 km-mesh) and arrival times estimated from EEW (earthquake early warning). All response data from this WebAPI are in JSON format and are easy to parse. We also developed Kyoshin monitor application for smartphone, 'Kmoni view' using the API. In this application, ground motions estimated from EEW are overlapped on the map with the observed one-second-interval indexes. The application can playback previous earthquakes for demonstration or disaster drill. In mobile environment, data traffic and battery are limited and it is not practical to regularly visualize all the data. The application has automatic starting (pop-up) function triggered by EEW. Similar WebAPI and application for tsunami are being prepared using the pressure data recorded by dense offshore observation network (S-net), which is under construction along the Japan Trench.
Core-periphery structure requires something else in the network
NASA Astrophysics Data System (ADS)
Kojaku, Sadamori; Masuda, Naoki
2018-04-01
A network with core-periphery structure consists of core nodes that are densely interconnected. In contrast to a community structure, which is a different meso-scale structure of networks, core nodes can be connected to peripheral nodes and peripheral nodes are not densely interconnected. Although core-periphery structure sounds reasonable, we argue that it is merely accounted for by heterogeneous degree distributions, if one partitions a network into a single core block and a single periphery block, which the famous Borgatti–Everett algorithm and many succeeding algorithms assume. In other words, there is a strong tendency that high-degree and low-degree nodes are judged to be core and peripheral nodes, respectively. To discuss core-periphery structure beyond the expectation of the node’s degree (as described by the configuration model), we propose that one needs to assume at least one block of nodes apart from the focal core-periphery structure, such as a different core-periphery pair, community or nodes not belonging to any meso-scale structure. We propose a scalable algorithm to detect pairs of core and periphery in networks, controlling for the effect of the node’s degree. We illustrate our algorithm using various empirical networks.
NASA Astrophysics Data System (ADS)
Yamamoto, N.; Aoi, S.; Hirata, K.; Suzuki, W.; Kunugi, T.; Nakamura, H.
2015-12-01
We started to develop a new methodology for real-time tsunami inundation forecast system (Aoi et al., 2015, this meeting) using densely offshore tsunami observations of the Seafloor Observation Network for Earthquakes and Tsunamis (S-net), which is under construction along the Japan Trench (Kanazawa et al., 2012, JpGU; Uehira et al., 2015, IUGG). In our method, the most important concept is involving any type and/or form uncertainties in the tsunami forecast, which cannot be dealt with any of standard linear/nonlinear least square approaches. We first prepare a Tsunami Scenario Bank (TSB), which contains offshore tsunami waveforms at the S-net stations and tsunami inundation information calculated from any possible tsunami source. We then quickly select several acceptable tsunami scenarios that can explain offshore observations by using multiple indices and appropriate thresholds, after a tsunami occurrence. At that time, possible tsunami inundations coupled with selected scenarios are forecasted (Yamamoto et al., 2014, AGU). Currently, we define three indices: correlation coefficient and two variance reductions, whose L2-norm part is normalized either by observations or calculations (Suzuki et al., 2015, JpGU; Yamamoto et al., 2015, IUGG). In this study, we construct the TSB, which contains various tsunami source models prepared for the probabilistic tsunami hazard assessment in the Japan Trench region (Hirata et al., 2014, AGU). To evaluate the propriety of our method, we adopt the fault model based on the 2011 Tohoku earthquake as a pseudo "observation". We also calculate three indices using coastal maximum tsunami height distributions between observation and calculation. We then obtain the correlation between coastal and offshore indices. We notice that the index value of coastal maximum tsunami heights is closer to 1 than the index value of offshore waveforms, i.e., the coastal maximum tsunami height may be predictable within appropriate thresholds defined for offshore indices. We also investigate the effect of rise-time. This work was partially supported by the Council for Science, Technology and Innovation (CSTI) through the Cross-ministerial Strategic Innovation Promotion Program (SIP), titled "Enhancement of societal resiliency against natural disasters" (Funding agency: JST).
HODGE, A J; MARTIN, E M; MORTON, R K
1957-01-25
1. Electron micrographs of thin sections of material fixed with buffered osmium tetroxide have been used for comparison of the fine structure of isolated cytoplasmic particles from silver beet petioles and roots of germinating wheat with that of the cytoplasm of the intact cells. 2. Mitochondria of wheat roots have an external double membrane and poorly oriented internal double membranes. As compared with the structures seen in situ, the isolated mitochondria showed evidence of some disorganisation of the fine internal structure, probably due to osmotic effects. The possible influence of such changes on the enzymic properties of the isolated mitochondria is discussed. 3. The isolated plant microsomes are mainly spherical vesicular structures consisting of (a) an outer membrane enclosing (b) either an homogeneous slightly dense material (wheat root microsomes) or some granular dense material (silver beet microsomes) and (c) small dense particles, mostly associated with the vesicle membranes. 4. The cytoplasm of the wheat root cells does not contain any structures similar to the isolated microsomes but has a very dense reticular network, consisting of membranes with associated small dense particles, here called the endoplasmic reticulum. The observations indicate that the isolated microsomes arise mainly by rupture and transformation of the membranes of this structure. The effects of such extensive changes in the lipoprotein membranes on the enzymic activities of the endoplasmic reticulum, as studied in isolated microsomes, is discussed. 5. Meristematic wheat root cells contain structures which consist of smooth membranes with associated vacuoles and are similar to the Golgi zones of animal cells. The membranes of these zones probably contribute to the microsomal fraction under the conditions of preparation used for the enzymic and chemical studies previously reported.
Hodge, A. J.; Martin, E. M.; Morton, R. K.
1957-01-01
1. Electron micrographs of thin sections of material fixed with buffered osmium tetroxide have been used for comparison of the fine structure of isolated cytoplasmic particles from silver beet petioles and roots of germinating wheat with that of the cytoplasm of the intact cells. 2. Mitochondria of wheat roots have an external double membrane and poorly oriented internal double membranes. As compared with the structures seen in situ, the isolated mitochondria showed evidence of some disorganisation of the fine internal structure, probably due to osmotic effects. The possible influence of such changes on the enzymic properties of the isolated mitochondria is discussed. 3. The isolated plant microsomes are mainly spherical vesicular structures consisting of (a) an outer membrane enclosing (b) either an homogeneous slightly dense material (wheat root microsomes) or some granular dense material (silver beet microsomes) and (c) small dense particles, mostly associated with the vesicle membranes. 4. The cytoplasm of the wheat root cells does not contain any structures similar to the isolated microsomes but has a very dense reticular network, consisting of membranes with associated small dense particles, here called the endoplasmic reticulum. The observations indicate that the isolated microsomes arise mainly by rupture and transformation of the membranes of this structure. The effects of such extensive changes in the lipoprotein membranes on the enzymic activities of the endoplasmic reticulum, as studied in isolated microsomes, is discussed. 5. Meristematic wheat root cells contain structures which consist of smooth membranes with associated vacuoles and are similar to the Golgi zones of animal cells. The membranes of these zones probably contribute to the microsomal fraction under the conditions of preparation used for the enzymic and chemical studies previously reported. PMID:13416311
Clustering-based energy-saving algorithm in ultra-dense network
NASA Astrophysics Data System (ADS)
Huang, Junwei; Zhou, Pengguang; Teng, Deyang; Zhang, Renchi; Xu, Hao
2017-06-01
In Ultra-dense Networks (UDN), dense deployment of low power small base stations will cause serious small cells interference and a large amount of energy consumption. The purpose of this paper is to explore the method of reducing small cells interference and energy saving system in UDN, and we innovatively propose a sleep-waking-active (SWA) scheme. The scheme decreases the user outage causing by failure to detect users’ service requests, shortens the opening time of active base stations directly switching to sleep mode; we further proposes a Vertex Surrounding Clustering(VSC) algorithm, which first colours the small cells with the most strongest interference and next extends to the adjacent small cells. VSC algorithm can use the least colour to stain the small cell, reduce the number of iterations and promote the efficiency of colouring. The simulation results show that SWA scheme can effectively improve the system Energy Efficiency (EE), the VSC algorithm can reduce the small cells interference and optimize the users’ Spectrum Efficiency (SE) and throughput.
Bandeira Diniz, João Otávio; Bandeira Diniz, Pedro Henrique; Azevedo Valente, Thales Levi; Corrêa Silva, Aristófanes; de Paiva, Anselmo Cardoso; Gattass, Marcelo
2018-03-01
The processing of medical image is an important tool to assist in minimizing the degree of uncertainty of the specialist, while providing specialists with an additional source of detect and diagnosis information. Breast cancer is the most common type of cancer that affects the female population around the world. It is also the most deadly type of cancer among women. It is the second most common type of cancer among all others. The most common examination to diagnose breast cancer early is mammography. In the last decades, computational techniques have been developed with the purpose of automatically detecting structures that maybe associated with tumors in mammography examination. This work presents a computational methodology to automatically detection of mass regions in mammography by using a convolutional neural network. The materials used in this work is the DDSM database. The method proposed consists of two phases: training phase and test phase. The training phase has 2 main steps: (1) create a model to classify breast tissue into dense and non-dense (2) create a model to classify regions of breast into mass and non-mass. The test phase has 7 step: (1) preprocessing; (2) registration; (3) segmentation; (4) first reduction of false positives; (5) preprocessing of regions segmented; (6) density tissue classification (7) second reduction of false positives where regions will be classified into mass and non-mass. The proposed method achieved 95.6% of accuracy in classify non-dense breasts tissue and 97,72% accuracy in classify dense breasts. To detect regions of mass in non-dense breast, the method achieved a sensitivity value of 91.5%, and specificity value of 90.7%, with 91% accuracy. To detect regions in dense breasts, our method achieved 90.4% of sensitivity and 96.4% of specificity, with accuracy of 94.8%. According to the results achieved by CNN, we demonstrate the feasibility of using convolutional neural networks on medical image processing techniques for classification of breast tissue and mass detection. Copyright © 2018 Elsevier B.V. All rights reserved.
Markova, Maya Dyankova
2004-10-01
The extraction for nuclear matrix and intermediate filaments (NM-IF) is used to reveal, isolate and study these highly resistant structures in different cell types. We applied for the first time this chemical dissection to human spermatozoa and observed them as whole-mounts by unembedded electron microscopy. The general appearance of NM-IF extracted sperm cells was preserved, showing the intermediate filament-like properties of their cytoskeletal components. In most heads, a network was observed in subacrosomal position, consisting of hubs interconnected by filaments. It seemed to be overlaid on another, finer network. The neck retained its integrity, allowing observations of the three-dimensional structure of the segmented columns. More distally, axoneme and outer dense fibres were covered by submitochondrial cytoskeleton in the middle piece and fibrous sheath in the principal piece, with the annulus usually detached from the fibrous sheath. End piece microtubules were retained in most cells and showed a tendency of cohesion, remaining in a parallel bundle or forming flat sheets. In conclusion, our results provided additional structural details of human sperm cytoskeleton and demonstrated the advantages of combining different methodological approaches in ultrastructural research.
A bandwidth-efficient service for local information dissemination in sparse to dense roadways.
Garcia-Lozano, Estrella; Campo, Celeste; Garcia-Rubio, Carlos; Cortes-Martin, Alberto; Rodriguez-Carrion, Alicia; Noriega-Vivas, Patricia
2013-07-05
Thanks to the research on Vehicular Ad Hoc Networks (VANETs), we will be able to deploy applications on roadways that will contribute to energy efficiency through a better planning of long trips. With this goal in mind, we have designed a gas/charging station advertising system, which takes advantage of the broadcast nature of the network. We have found that reducing the number of total sent packets is important, as it allows for a better use of the available bandwidth. We have designed improvements for a distance-based flooding scheme, so that it can support the advertising application with good results in sparse to dense roadway scenarios.
A Bandwidth-Efficient Service for Local Information Dissemination in Sparse to Dense Roadways
Garcia-Lozano, Estrella; Campo, Celeste; Garcia-Rubio, Carlos; Cortes-Martin, Alberto; Rodriguez-Carrion, Alicia; Noriega-Vivas, Patricia
2013-01-01
Thanks to the research on Vehicular Ad Hoc Networks (VANETs), we will be able to deploy applications on roadways that will contribute to energy efficiency through a better planning of long trips. With this goal in mind, we have designed a gas/charging station advertising system, which takes advantage of the broadcast nature of the network. We have found that reducing the number of total sent packets is important, as it allows for a better use of the available bandwidth. We have designed improvements for a distance-based flooding scheme, so that it can support the advertising application with good results in sparse to dense roadway scenarios. PMID:23881130
Improving weather modeling in South America through IDD-Brasil
NASA Astrophysics Data System (ADS)
Chagas, G. O.
2007-05-01
The IDD-Brasil constitutes of an international collaboration among Universidade Federal do Rio de Janeiro (LPM/UFRJ), Centro de Previsão de Tempo e Estudos Climáticos (CPTEC/INPE) and the Unidata Program Center (Unidata/UCAR), which connects several universities and research centers across the Americas in a network to share real-time hydro meteorological data. Using this network as a new path to deliver and acquire observational data, IDD-Brazil participants are capable of receiving observational data from GTS (Global Telecommunication System), locally ingested data from several automatic weather stations networks (mesonets) from INPE, the entire array of METAR and SYNOP observations, and several model outputs and satellite imagery. During recent years Numerical Models have been used constantly, especially in mesoscale research, but the lack of a dense observational network in South America leads to several constraints during the data assimilation and model validation. Since the IDD-Brasil offers an improved and simple method to have new datasets readily accessible, it has been used continuously as a new manner to distribute surface observations that are not currently available in GTS, such as several mesonets in Brazil that account for an increase in data density. Through the usage of data ingested in IDD-Brasil as guess fields it is possible to study how the assimilation in several global models frequently used as initial conditions for mesoscale simulations can be affected, since in certain areas in Brazil the density of data nearly doubles if compared to GTS. Therefore it is also possible to better validate the results generated in mesoscale simulations, in view of the fact that the network has an improved spatial distribution. It is expected that the increase of locally held numerical model output from South American institutions in IDD- Brasil leads to an increased awareness of the need to constantly validate these results with observational data, thus improving mesoscale research.
NASA Astrophysics Data System (ADS)
Vergne, Jerome; Blachet, Antoine; Lehujeur, Maximilien
2015-04-01
Monitoring local or regional seismic activity requires stations having a low level of background seismic noise at frequencies higher than few tenths of Hertz. Network operators are well aware that the seismic quality of a site depends on several aspects, among them its geological setting and the proximity of roads, railways, industries or trees. Often, the impact of each noise source is only qualitatively known which precludes estimating the quality of potential future sites before they are tested or installed. Here, we want to take advantage of a very dense temporary network deployed in Northern Alsace (France) to assess the effect of various kinds of potential sources on the level of seismic noise observed in the frequency range 0.2-50 Hz. In September 2014, more than 250 seismic stations (FairfieldNodal@ Zland nodes with 10Hz vertical geophone) have been installed every 1.5 km over a ~25km diameter disc centred on the deep geothermal sites of Soultz-sous-Forêts and Rittershoffen. This region exhibits variable degrees of human imprints from quite remote areas to sectors with high traffic roads and big villages. It also encompasses both the deep sedimentary basin of the Rhine graben and the piedmont of the Vosges massif with exposed bedrock. For each site we processed the continuous data to estimate probability density functions of the power spectral densities. At frequencies higher than 1 Hz most sites show a clear temporal modulation of seismic noise related to human activity with the well-known variations between day and night and between weekdays and weekends. Moreover we observe a clear evolution of the spatial distribution of seismic noise levels with frequency. Basically, between 0.5 and 4 Hz the geological setting modulates the level of seismic noise. At higher frequencies, the amplitude of seismic noise appears mostly related to the distance to nearby roads. Based on road maps and traffic estimation, a forward approach is performed to model the induced seismic noise. Effects of other types of seismic sources, such as industries or wind, are also observed but usually have a more limited spatial extension and a specific signature in the spectrograms.
Physician social networks and variation in prostate cancer treatment in three cities.
Pollack, Craig Evan; Weissman, Gary; Bekelman, Justin; Liao, Kaijun; Armstrong, Katrina
2012-02-01
To examine whether physician social networks are associated with variation in treatment for men with localized prostate cancer. 2004-2005 Surveillance, Epidemiology and End Results-Medicare data from three cities. We identified the physicians who care for patients with prostate cancer and created physician networks for each city based on shared patients. Subgroups of urologists were defined as physicians with dense connections with one another via shared patients. Subgroups varied widely in their unadjusted rates of prostatectomy and the racial/ethnic and socioeconomic composition of their patients. There was an association between urologist subgroup and receipt of prostatectomy. In city A, four subgroups had significantly lower odds of prostatectomy compared with the subgroup with the highest rates of prostatectomy after adjusting for patient clinical and sociodemographic characteristics. Similarly, in cities B and C, subgroups had significantly lower odds of prostatectomy compared with the baseline. Using claims data to identify physician networks may provide an insight into the observed variation in treatment patterns for men with prostate cancer. © Health Research and Educational Trust.
NASA Astrophysics Data System (ADS)
Barrett, Christopher L.; Bisset, Keith; Chen, Jiangzhuo; Eubank, Stephen; Lewis, Bryan; Kumar, V. S. Anil; Marathe, Madhav V.; Mortveit, Henning S.
Human behavior, social networks, and the civil infrastructures are closely intertwined. Understanding their co-evolution is critical for designing public policies and decision support for disaster planning. For example, human behaviors and day to day activities of individuals create dense social interactions that are characteristic of modern urban societies. These dense social networks provide a perfect fabric for fast, uncontrolled disease propagation. Conversely, people’s behavior in response to public policies and their perception of how the crisis is unfolding as a result of disease outbreak can dramatically alter the normally stable social interactions. Effective planning and response strategies must take these complicated interactions into account. In this chapter, we describe a computer simulation based approach to study these issues using public health and computational epidemiology as an illustrative example. We also formulate game-theoretic and stochastic optimization problems that capture many of the problems that we study empirically.
NASA Astrophysics Data System (ADS)
Kröhnert, M.; Anderson, R.; Bumberger, J.; Dietrich, P.; Harpole, W. S.; Maas, H.-G.
2018-05-01
Grassland ecology experiments in remote locations requiring quantitative analysis of the biomass in defined plots are becoming increasingly widespread, but are still limited by manual sampling methodologies. To provide a cost-effective automated solution for biomass determination, several photogrammetric techniques are examined to generate 3D point cloud representations of plots as a basis, to estimate aboveground biomass on grassland plots, which is a key ecosystem variable used in many experiments. Methods investigated include Structure from Motion (SfM) techniques for camera pose estimation with posterior dense matching as well as the usage of a Time of Flight (TOF) 3D camera, a laser light sheet triangulation system and a coded light projection system. In this context, plants of small scales (herbage) and medium scales are observed. In the first pilot study presented here, the best results are obtained by applying dense matching after SfM, ideal for integration into distributed experiment networks.
Wang, Lusheng; Wang, Yamei; Ding, Zhizhong; Wang, Xiumin
2015-09-18
With the rapid development of wireless networking technologies, the Internet of Things and heterogeneous cellular networks (HCNs) tend to be integrated to form a promising wireless network paradigm for 5G. Hyper-dense sensor and mobile devices will be deployed under the coverage of heterogeneous cells, so that each of them could freely select any available cell covering it and compete for resource with others selecting the same cell, forming a cell selection (CS) game between these devices. Since different types of cells usually share the same portion of the spectrum, devices selecting overlapped cells can experience severe inter-cell interference (ICI). In this article, we study the CS game among a large amount of densely-deployed sensor and mobile devices for their uplink transmissions in a two-tier HCN. ICI is embedded with the traditional congestion game (TCG), forming a congestion game with ICI (CGI) and a congestion game with capacity (CGC). For the three games above, we theoretically find the circular boundaries between the devices selecting the macrocell and those selecting the picocells, indicated by the pure strategy Nash equilibria (PSNE). Meanwhile, through a number of simulations with different picocell radii and different path loss exponents, the collapse of the PSNE impacted by severe ICI (i.e., a large number of picocell devices change their CS preferences to the macrocell) is profoundly revealed, and the collapse points are identified.
Wang, Lusheng; Wang, Yamei; Ding, Zhizhong; Wang, Xiumin
2015-01-01
With the rapid development of wireless networking technologies, the Internet of Things and heterogeneous cellular networks (HCNs) tend to be integrated to form a promising wireless network paradigm for 5G. Hyper-dense sensor and mobile devices will be deployed under the coverage of heterogeneous cells, so that each of them could freely select any available cell covering it and compete for resource with others selecting the same cell, forming a cell selection (CS) game between these devices. Since different types of cells usually share the same portion of the spectrum, devices selecting overlapped cells can experience severe inter-cell interference (ICI). In this article, we study the CS game among a large amount of densely-deployed sensor and mobile devices for their uplink transmissions in a two-tier HCN. ICI is embedded with the traditional congestion game (TCG), forming a congestion game with ICI (CGI) and a congestion game with capacity (CGC). For the three games above, we theoretically find the circular boundaries between the devices selecting the macrocell and those selecting the picocells, indicated by the pure strategy Nash equilibria (PSNE). Meanwhile, through a number of simulations with different picocell radii and different path loss exponents, the collapse of the PSNE impacted by severe ICI (i.e., a large number of picocell devices change their CS preferences to the macrocell) is profoundly revealed, and the collapse points are identified. PMID:26393617
ERIC Educational Resources Information Center
Futhey, Tracy
2005-01-01
In this column, the author discusses the four key questions related to the National LambdaRail (NLR) networking technology. NLR uses Dense Wave Division Multiplexing (DWDM) to enable multiple networks to coexist on a national fiber footprint, and is owned and operated not by carriers, but by the research and education community. The NLR Board…
Long-range acoustic observations of the Eyjafjallajökull eruption, Iceland, April-May 2010
NASA Astrophysics Data System (ADS)
Matoza, Robin S.; Vergoz, Julien; Le Pichon, Alexis; Ceranna, Lars; Green, David N.; Evers, Läslo G.; Ripepe, Maurizio; Campus, Paola; Liszka, Ludwik; Kvaerna, Tormod; Kjartansson, Einar; Höskuldsson, Ármann
2011-03-01
The April-May 2010 summit eruption of Eyjafjallajökull, Iceland, was recorded by 14 atmospheric infrasound sensor arrays at ranges between 1,700 and 3,700 km, indicating that infrasound from modest-size eruptions can propagate for thousands of kilometers in atmospheric waveguides. Although variations in both atmospheric propagation conditions and background noise levels at the sensors generate fluctuations in signal-to-noise ratios and signal detectability, array processing techniques successfully discriminate between volcanic infrasound and ambient coherent and incoherent noise. The current global infrasound network is significantly more dense and sensitive than any previously operated network and signals from large volcanic explosions are routinely recorded. Because volcanic infrasound is generated during the explosive release of fluid into the atmosphere, it is a strong indicator that an eruption has occurred. Therefore, long-range infrasonic monitoring may aid volcanic explosion detection by complementing other monitoring technologies, especially in remote regions with sparse ground-based instrument networks.
Localization of lung fields in HRCT images using a deep convolution neural network
NASA Astrophysics Data System (ADS)
Kumar, Abhishek; Agarwala, Sunita; Dhara, Ashis Kumar; Mukhopadhyay, Sudipta; Nandi, Debashis; Garg, Mandeep; Khandelwal, Niranjan; Kalra, Naveen
2018-02-01
Lung field segmentation is a prerequisite step for the development of a computer-aided diagnosis system for interstitial lung diseases observed in chest HRCT images. Conventional methods of lung field segmentation rely on a large gray value contrast between lung fields and surrounding tissues. These methods fail on lung HRCT images with dense and diffused pathology. An efficient prepro- cessing could improve the accuracy of segmentation of pathological lung field in HRCT images. In this paper, a convolution neural network is used for localization of lung fields in HRCT images. The proposed method provides an optimal bounding box enclosing the lung fields irrespective of the presence of diffuse pathology. The performance of the proposed algorithm is validated on 330 lung HRCT images obtained from MedGift database on ZF and VGG networks. The model achieves a mean average precision of 0.94 with ZF net and a slightly better performance giving a mean average precision of 0.95 in case of VGG net.
Real-time indoor monitoring system based on wireless sensor networks
NASA Astrophysics Data System (ADS)
Wu, Zhengzhong; Liu, Zilin; Huang, Xiaowei; Liu, Jun
2008-10-01
Wireless sensor networks (WSN) greatly extend our ability to monitor and control the physical world. It can collaborate and aggregate a huge amount of sensed data to provide continuous and spatially dense observation of environment. The control and monitoring of indoor atmosphere conditions represents an important task with the aim of ensuring suitable working and living spaces to people. However, the comprehensive air quality, which includes monitoring of humidity, temperature, gas concentrations, etc., is not so easy to be monitored and controlled. In this paper an indoor WSN monitoring system was developed. In the system several sensors such as temperature sensor, humidity sensor, gases sensor, were built in a RF transceiver board for monitoring indoor environment conditions. The indoor environmental monitoring parameters can be transmitted by wireless to database server and then viewed throw PC or PDA accessed to the local area networks by administrators. The system, which was also field-tested and showed a reliable and robust characteristic, is significant and valuable to people.
Michelin, Adeline; Bittame, Amina; Bordat, Yann; Travier, Laetitia; Mercier, Corinne; Dubremetz, Jean-François; Lebrun, Maryse
2009-02-01
The intracellular protozoan parasite Toxoplasma gondii develops within the parasitophorous vacuole (PV), an intracellular niche in which it secretes proteins from secretory organelles named dense granules and rhoptries. Here, we describe a new dense granule protein that should now be referred to as GRA12, and that displays no homology with other proteins. Immunofluorescence and immuno-electron microscopy showed that GRA12 behaves similarly to both GRA2 and GRA6. It is secreted into the PV from the anterior pole of the parasite soon after the beginning of invasion, transits to the posterior invaginated pocket of the parasite where a membranous tubulovesicular network is first assembled, and finally resides throughout the vacuolar space, associated with the mature membranous nanotubular network. GRA12 fails to localise at the parasite posterior end in the absence of GRA2. Within the vacuolar space, like the other GRA proteins, GRA12 exists in both a soluble and a membrane-associated form. Using affinity chromatography experiments, we showed that in both the parasite and the PV soluble fractions, GRA12 is purified with the complex of GRA proteins associated with a tagged version of GRA2 and that this association is lost in the PV membranous fraction.
Evaluating the Reverse Time Migration Method on the dense Lapnet / Polenet seismic array in Europe
NASA Astrophysics Data System (ADS)
Dupont, Aurélien; Le Pichon, Alexis
2013-04-01
In this study, results are obtained using the reverse time migration method used as benchmark to evaluate the implemented method by Walker et al., (2010, 2011). Explosion signals recorded by the USArray and extracted from the TAIRED catalogue (TA Infrasound Reference Event Database user community / Vernon et al., 2012) are investigated. The first one is an explosion at Camp Minden, Louisiana (2012-10-16 04:25:00 UTC) and the second one is a natural gas explosion near Price, Utah (2012-11-20 15:20:00 UTC). We compare our results to automatic solutions (www.iris.edu/spud/infrasoundevent). The good agreement between both solutions validates our detection method. In a second time, we analyse data from the Lapnet / Polenet dense seismic network (Kozlovskaya et al., 2008). Detection and location in two-dimensional space and time of infrasound events presumably due to acoustic-to-seismic coupling, during the 2007-2009 period in Europe, are presented. The aim of this work is to integrate near-real time network performance predictions at regional scales to improve automatic detection of infrasonic sources. The use of dense seismic networks provides a valuable tool to monitor infrasonic phenomena, since seismic location has recently proved to be more accurate than infrasound locations due to the large number of seismic sensors.
Naranjo, Ramon C.
2017-01-01
Groundwater-flow models are often calibrated using a limited number of observations relative to the unknown inputs required for the model. This is especially true for models that simulate groundwater surface-water interactions. In this case, subsurface temperature sensors can be an efficient means for collecting long-term data that capture the transient nature of physical processes such as seepage losses. Continuous and spatially dense network of diverse observation data can be used to improve knowledge of important physical drivers, conceptualize and calibrate variably saturated groundwater flow models. An example is presented for which the results of such analysis were used to help guide irrigation districts and water management decisions on costly upgrades to conveyance systems to improve water usage, farm productivity and restoration efforts to improve downstream water quality and ecosystems.
Systems-level analysis of risk genes reveals the modular nature of schizophrenia.
Liu, Jiewei; Li, Ming; Luo, Xiong-Jian; Su, Bing
2018-05-19
Schizophrenia (SCZ) is a complex mental disorder with high heritability. Genetic studies (especially recent genome-wide association studies) have identified many risk genes for schizophrenia. However, the physical interactions among the proteins encoded by schizophrenia risk genes remain elusive and it is not known whether the identified risk genes converge on common molecular networks or pathways. Here we systematically investigated the network characteristics of schizophrenia risk genes using the high-confidence protein-protein interactions (PPI) from the human interactome. We found that schizophrenia risk genes encode a densely interconnected PPI network (P = 4.15 × 10 -31 ). Compared with the background genes, the schizophrenia risk genes in the interactome have significantly higher degree (P = 5.39 × 10 -11 ), closeness centrality (P = 7.56 × 10 -11 ), betweeness centrality (P = 1.29 × 10 -11 ), clustering coefficient (P = 2.22 × 10 -2 ), and shorter average shortest path length (P = 7.56 × 10 -11 ). Based on the densely interconnected PPI network, we identified 48 hub genes and 4 modules formed by highly interconnected schizophrenia genes. We showed that the proteins encoded by schizophrenia hub genes have significantly more direct physical interactions. Gene ontology (GO) analysis revealed that cell adhesion, cell cycle, immune system response, and GABR-receptor complex categories were enriched in the modules formed by highly interconnected schizophrenia risk genes. Our study reveals that schizophrenia risk genes encode a densely interconnected molecular network and demonstrates the modular nature of schizophrenia. Copyright © 2018 Elsevier B.V. All rights reserved.
Soil resources, land cover changes and rural areas: towards a spatial mismatch?
Ferrara, Agostino; Salvati, Luca; Sabbi, Alberto; Colantoni, Andrea
2014-04-15
The present study analyzes the impact of long-term urban expansion on soil depletion in Emilia-Romagna, an agricultural-specialized region of northern Italy. Using settlement density maps at three points in time (1945, 1971 and 2001) dense and diffused urbanization trends were assessed and correlated with soil quality. Non-urbanized land decreased from 11.8% in 1945 to 6.3% in 2001. Urbanization dynamics between 1945 and 1971 reflect the increase of dense settlements around pre-existing urban centers. To the contrary, a discontinuous, low- and medium-density urban expansion along the road network and in the most fertile lowland areas was observed between 1971 and 2001. Overall, urbanization consumed soils with progressively higher quality. However, a diverging trend was observed in the two investigated time intervals: soil with high quality was occupied by compact and dense settlements during 1945-1971 and by discontinuous, medium- and low-density settlements during 1971-2001. These findings document the polarization in areas with low and high soil capital and may reflect disparities in agricultural production and increasing environmental degradation. Moreover, the analysis shows a diverging trend between land and soil consumption patterns suggesting that the edification of pervious land is an unreliable indicator of soil quality depletion. Taken together, the results of this study illustrate the (increasing) spatial mismatch between agricultural land and high-quality soils as a consequence of urbanization-driven landscape transformations and may inform measures to contain soil depletion driven by economic growth. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Theys, Nicolas; Barrière, Julien; Oth, Adrien; Brenot, Hugues; Van Roozendael, Michel; Kervyn, François
2017-04-01
The Kivu region is a densely populated area hosting two very active volcanoes, Nyiragongo and Nyamulagira, which require continuous surveillance using the widest means of observation as possible. This study presents a 12-year dataset of satellite observations of SO2 over North Kivu from the OMI instrument. Short- and long-term changes in volcanic SO2 emissions are investigated and satellite data oversampling is used to discriminate the volcanic sources for the full OMI mission. As the same SO2 retrieval algorithm will be applied operationally to the forthcoming TROPOMI instrument (onboard the ESA Sentinel-5 Precursor platform), the observational time series will expand in the future, with enhanced quality. For the years 2014-2016, the satellite SO2 dataset is combined with seismic observations from a 11-stations network that operated continuously during that period. The variations of seismic activity and SO2 degassing display a high-level of consistency and we present a multidisciplinary tracking approach by combining the two types of observational data. This methodology allows for a robust discrimination of magma migration into and out of the shallow plumbing system, improving our ability to interpret signs of volcanic unrest on a daily time scale.
The Terceira island (Azores) crustal deformations from GPS data
NASA Astrophysics Data System (ADS)
Navarro, A.; Catalão, J.; Fernandes, R.; Miranda, M.; Bastos, L.
2003-04-01
Several GPS campaigns performed, for the last few years, in the Azores region have proved the utility of GPS data in the evaluation of the relative motion among the Eurasian, North-American and African plates. The study here presented was developed in the scope of the STAMINA project. This project main intention is the study of the deformation pattern of the area along the Terceira Axis, which is considered nowadays as the most active tectonic area of the Azores region. To achieve that, a dense GPS network was implemented on the Terceira Island in October 2000. The network has 23 stations spread uniformly throughout the island, ten of which had already been implemented on 1999 (1 in 1988) in the scope of the TANGO project. These 10 stations were observed for the first time in 1999 and re-observed in 2000 and 2001. The complete network was observed for the first time in March/April of 2001. GPS data from 2 epochs, 1999 and 2001, were used to evaluate the horizontal deformation of the Island for a period of one and a half year. Both campaigns last for 9 days, each station being observed for at least 3 sessions of 12 to 24 hours. One of the stations, located at the Terceira Astronomic Observatory (TERC), was continuously measured during both campaigns. The data processing was performed using the GAMIT and FONDA software. Data from six IGS/EUREF permanent stations were considered to link the local network to the ITRF97 reference system. Precise orbits from the IGS were used in the GPS data processing. The results exhibit repeatabilities of about 3 mm and 2 mm for both components of the horizontal position, respectively for 1999 and 2001. The resulting estimation of the main strain rates for the Island indicates N, NNE and NE directions for the extension of the Island. However, these results are not yet conclusive due to the poor geometry of the 10 stations network and to the short interval of observation. To establish a more reliable deformation pattern for the Island, the 23 stations network are intended to be re-observed during 2003.
Estimating topological properties of weighted networks from limited information.
Cimini, Giulio; Squartini, Tiziano; Gabrielli, Andrea; Garlaschelli, Diego
2015-10-01
A problem typically encountered when studying complex systems is the limitedness of the information available on their topology, which hinders our understanding of their structure and of the dynamical processes taking place on them. A paramount example is provided by financial networks, whose data are privacy protected: Banks publicly disclose only their aggregate exposure towards other banks, keeping individual exposures towards each single bank secret. Yet, the estimation of systemic risk strongly depends on the detailed structure of the interbank network. The resulting challenge is that of using aggregate information to statistically reconstruct a network and correctly predict its higher-order properties. Standard approaches either generate unrealistically dense networks, or fail to reproduce the observed topology by assigning homogeneous link weights. Here, we develop a reconstruction method, based on statistical mechanics concepts, that makes use of the empirical link density in a highly nontrivial way. Technically, our approach consists in the preliminary estimation of node degrees from empirical node strengths and link density, followed by a maximum-entropy inference based on a combination of empirical strengths and estimated degrees. Our method is successfully tested on the international trade network and the interbank money market, and represents a valuable tool for gaining insights on privacy-protected or partially accessible systems.
Estimating topological properties of weighted networks from limited information
NASA Astrophysics Data System (ADS)
Cimini, Giulio; Squartini, Tiziano; Gabrielli, Andrea; Garlaschelli, Diego
2015-10-01
A problem typically encountered when studying complex systems is the limitedness of the information available on their topology, which hinders our understanding of their structure and of the dynamical processes taking place on them. A paramount example is provided by financial networks, whose data are privacy protected: Banks publicly disclose only their aggregate exposure towards other banks, keeping individual exposures towards each single bank secret. Yet, the estimation of systemic risk strongly depends on the detailed structure of the interbank network. The resulting challenge is that of using aggregate information to statistically reconstruct a network and correctly predict its higher-order properties. Standard approaches either generate unrealistically dense networks, or fail to reproduce the observed topology by assigning homogeneous link weights. Here, we develop a reconstruction method, based on statistical mechanics concepts, that makes use of the empirical link density in a highly nontrivial way. Technically, our approach consists in the preliminary estimation of node degrees from empirical node strengths and link density, followed by a maximum-entropy inference based on a combination of empirical strengths and estimated degrees. Our method is successfully tested on the international trade network and the interbank money market, and represents a valuable tool for gaining insights on privacy-protected or partially accessible systems.
Controlling nosocomial infection based on structure of hospital social networks.
Ueno, Taro; Masuda, Naoki
2008-10-07
Nosocomial infection (i.e. infection in healthcare facilities) raises a serious public health problem, as implied by the existence of pathogens characteristic to healthcare facilities such as methicillin-resistant Staphylococcus aureus and hospital-mediated outbreaks of influenza and severe acute respiratory syndrome. For general communities, epidemic modeling based on social networks is being recognized as a useful tool. However, disease propagation may occur in a healthcare facility in a manner different from that in a urban community setting due to different network architecture. We simulate stochastic susceptible-infected-recovered dynamics on social networks, which are based on observations in a hospital in Tokyo, to explore effective containment strategies against nosocomial infection. The observed social networks in the hospital have hierarchical and modular structure in which dense substructure such as departments, wards, and rooms, are globally but only loosely connected, and do not reveal extremely right-skewed distributions of the number of contacts per individual. We show that healthcare workers, particularly medical doctors, are main vectors (i.e. transmitters) of diseases on these networks. Intervention methods that restrict interaction between medical doctors and their visits to different wards shrink the final epidemic size more than intervention methods that directly protect patients, such as isolating patients in single rooms. By the same token, vaccinating doctors with priority rather than patients or nurses is more effective. Finally, vaccinating individuals with large betweenness centrality (frequency of mediating connection between pairs of individuals along the shortest paths) is superior to vaccinating ones with large connectedness to others or randomly chosen individuals, which was suggested by previous model studies.
Constraining storm-scale forecasts of deep convective initiation with surface weather observations
NASA Astrophysics Data System (ADS)
Madaus, Luke
Successfully forecasting when and where individual convective storms will form remains an elusive goal for short-term numerical weather prediction. In this dissertation, the convective initiation (CI) challenge is considered as a problem of insufficiently resolved initial conditions and dense surface weather observations are explored as a possible solution. To better quantify convective-scale surface variability in numerical simulations of discrete convective initiation, idealized ensemble simulations of a variety of environments where CI occurs in response to boundary-layer processes are examined. Coherent features 1-2 hours prior to CI are found in all surface fields examined. While some features were broadly expected, such as positive temperature anomalies and convergent winds, negative temperature anomalies due to cloud shadowing are the largest surface anomaly seen prior to CI. Based on these simulations, several hypotheses about the required characteristics of a surface observing network to constrain CI forecasts are developed. Principally, these suggest that observation spacings of less than 4---5 km would be required, based on correlation length scales. Furthermore, it is anticipated that 2-m temperature and 10-m wind observations would likely be more relevant for effectively constraining variability than surface pressure or 2-m moisture observations based on the magnitudes of observed anomalies relative to observation error. These hypotheses are tested with a series of observing system simulation experiments (OSSEs) using a single CI-capable environment. The OSSE results largely confirm the hypotheses, and with 4-km and particularly 1-km surface observation spacing, skillful forecasts of CI are possible, but only within two hours of CI time. Several facets of convective-scale assimilation, including the need for properly-calibrated localization and problems from non-Gaussian ensemble estimates of the cloud field are discussed. Finally, the characteristics of one candidate dense surface observing network are examined: smartphone pressure observations. Available smartphone pressure observations (and 1-hr pressure tendency observations) are tested by assimilating them into convective-allowing ensemble forecasts for a three-day active convective period in the eastern United States. Although smartphone observations contain noise and internal disagreement, they are effective at reducing short-term forecast errors in surface pressure, wind and precipitation. The results suggest that smartphone pressure observations could become a viable mesoscale observation platform, but more work is needed to enhance their density and reduce error. This work concludes by reviewing and suggesting other novel candidate observation platforms with a potential to improve convective-scale forecasts of CI.
L(p) approximation capabilities of sum-of-product and sigma-pi-sigma neural networks.
Long, Jinling; Wu, Wei; Nan, Dong
2007-10-01
This paper studies the L(p) approximation capabilities of sum-of-product (SOPNN) and sigma-pi-sigma (SPSNN) neural networks. It is proved that the set of functions that are generated by the SOPNN with its activation function in $L_{loc};p(\\mathcal{R})$ is dense in $L;p(\\mathcal{K})$ for any compact set $\\mathcal{K}\\subset \\mathcal{R};N$, if and only if the activation function is not a polynomial almost everywhere. It is also shown that if the activation function of the SPSNN is in ${L_{loc};\\infty(\\mathcal{R})}$, then the functions generated by the SPSNN are dense in $L;p(\\mathcal{K})$ if and only if the activation function is not a constant (a.e.).
NASA Astrophysics Data System (ADS)
Choi, J.; Jo, J.
2016-09-01
The optical satellite tracking data obtained by the first Korean optical satellite tracking system, Optical Wide-field patrol - Network (OWL-Net), had been examined for precision orbit determination. During the test observation at Israel site, we have successfully observed a satellite with Laser Retro Reflector (LRR) to calibrate the angle-only metric data. The OWL observation system is using a chopper equipment to get dense observation data in one-shot over 100 points for the low Earth orbit objects. After several corrections, orbit determination process was done with validated metric data. The TLE with the same epoch of the end of the first arc was used for the initial orbital parameter. Orbit Determination Tool Kit (ODTK) was used for an analysis of a performance of orbit estimation using the angle-only measurements. We have been developing batch style orbit estimator.
Eclipse-induced wind changes over the British Isles on the 20 March 2015
2016-01-01
The British Isles benefits from dense meteorological observation networks, enabling insights into the still-unresolved effects of solar eclipse events on the near-surface wind field. The near-surface effects of the solar eclipse of 20 March 2015 are derived through comparison of output from the Met Office’s operational weather forecast model (which is ignorant of the eclipse) with data from two meteorological networks: the Met Office’s land surface station (MIDAS) network and a roadside measurement network operated by Vaisala. Synoptic-evolution relative calculations reveal the cooling and increase in relative humidity almost universally attributed to eclipse events. In addition, a slackening of wind speeds by up to about 2 knots in already weak winds and backing in wind direction of about 20° under clear skies across middle England are attributed to the eclipse event. The slackening of wind speed is consistent with the previously reported boundary layer stabilization during eclipse events. Wind direction changes have previously been attributed to a large-scale ‘eclipse-induced cold-cored cyclone’, mountain slope flows, and changes in the strength of sea breezes. A new explanation is proposed here by analogy with nocturnal wind changes at sunset and shown to predict direction changes consistent with those observed. This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’. PMID:27550759
Connectome sensitivity or specificity: which is more important?
Zalesky, Andrew; Fornito, Alex; Cocchi, Luca; Gollo, Leonardo L; van den Heuvel, Martijn P; Breakspear, Michael
2016-11-15
Connectomes with high sensitivity and high specificity are unattainable with current axonal fiber reconstruction methods, particularly at the macro-scale afforded by magnetic resonance imaging. Tensor-guided deterministic tractography yields sparse connectomes that are incomplete and contain false negatives (FNs), whereas probabilistic methods steered by crossing-fiber models yield dense connectomes, often with low specificity due to false positives (FPs). Densely reconstructed probabilistic connectomes are typically thresholded to improve specificity at the cost of a reduction in sensitivity. What is the optimal tradeoff between connectome sensitivity and specificity? We show empirically and theoretically that specificity is paramount. Our evaluations of the impact of FPs and FNs on empirical connectomes indicate that specificity is at least twice as important as sensitivity when estimating key properties of brain networks, including topological measures of network clustering, network efficiency and network modularity. Our asymptotic analysis of small-world networks with idealized modular structure reveals that as the number of nodes grows, specificity becomes exactly twice as important as sensitivity to the estimation of the clustering coefficient. For the estimation of network efficiency, the relative importance of specificity grows linearly with the number of nodes. The greater importance of specificity is due to FPs occurring more prevalently between network modules rather than within them. These spurious inter-modular connections have a dramatic impact on network topology. We argue that efforts to maximize the sensitivity of connectome reconstruction should be realigned with the need to map brain networks with high specificity. Copyright © 2016 Elsevier Inc. All rights reserved.
Doherty, Irene A; Serre, Marc L; Gesink, Dionne; Adimora, Adaora A; Muth, Stephen Q; Leone, Peter A; Miller, William C
2012-11-01
Sexually transmitted infections (STIs) spread along sexual networks whose structural characteristics promote transmission that routine surveillance may not capture. Cases who have partners from multiple localities may operate as spatial network bridges, thereby facilitating geographical dissemination. We investigated how surveillance, sexual networks, and spatial bridges relate to each other for syphilis outbreaks in rural counties of North Carolina. We selected from the state health department's surveillance database cases diagnosed with primary, secondary, or early latent syphilis during October 1998 to December 2002 and who resided in central and southeastern North Carolina, along with their sex partners and their social contacts irrespective of infection status. We applied matching algorithms to eliminate duplicate names and create a unique roster of partnerships from which networks were compiled and graphed. Network members were differentiated by disease status and county of residence. In the county most affected by the outbreak, densely connected networks indicative of STI outbreaks were consistent with increased incidence and a large case load. In other counties, the case loads were low with fluctuating incidence, but network structures suggested the presence of outbreaks. In a county with stable, low incidence and a high number of cases, the networks were sparse and dendritic, indicative of endemic spread. Outbreak counties exhibited densely connected networks within well-defined geographic boundaries and low connectivity between counties; spatial bridges did not seem to facilitate transmission. Simple visualization of sexual networks can provide key information to identify communities most in need of resources for outbreak investigation and disease control.
Nim, Hieu T; Furtado, Milena B; Costa, Mauro W; Rosenthal, Nadia A; Kitano, Hiroaki; Boyd, Sarah E
2015-05-01
Existing de novo software platforms have largely overlooked a valuable resource, the expertise of the intended biologist users. Typical data representations such as long gene lists, or highly dense and overlapping transcription factor networks often hinder biologists from relating these results to their expertise. VISIONET, a streamlined visualisation tool built from experimental needs, enables biologists to transform large and dense overlapping transcription factor networks into sparse human-readable graphs via numerically filtering. The VISIONET interface allows users without a computing background to interactively explore and filter their data, and empowers them to apply their specialist knowledge on far more complex and substantial data sets than is currently possible. Applying VISIONET to the Tbx20-Gata4 transcription factor network led to the discovery and validation of Aldh1a2, an essential developmental gene associated with various important cardiac disorders, as a healthy adult cardiac fibroblast gene co-regulated by cardiogenic transcription factors Gata4 and Tbx20. We demonstrate with experimental validations the utility of VISIONET for expertise-driven gene discovery that opens new experimental directions that would not otherwise have been identified.
NASA Astrophysics Data System (ADS)
Mamouri, Rodanthi-Elisavet; Ansmann, Albert; Nisantzi, Argyro; Solomos, Stavros; Kallos, George; Hadjimitsis, Diofantos G.
2016-11-01
A record-breaking dust storm originating from desert regions in northern Syria and Iraq occurred over the eastern Mediterranean in September 2015. In this contribution of a series of two articles (part 1, observations; part 2, atmospheric modeling), we provide a comprehensive overview of the aerosol conditions during this extreme dust outbreak in the Cyprus region. These observations are based on satellite observations (MODIS, moderate resolution imaging spectroradiometer) of aerosol optical thickness (AOT) and Ångström exponent, surface particle mass (PM10) concentrations measured at four sites in Cyprus, visibility observations at three airports in southern Cyprus and corresponding conversion products (particle extinction coefficient, dust mass concentrations), EARLINET (European Aerosol Research Lidar Network) lidar observations of dust vertical layering over Limassol, particle optical properties (backscatter, extinction, lidar ratio, linear depolarization ratio), and derived profiles of dust mass concentrations. Maximum 550 nm AOT exceeded values of 5.0, according to MODIS, and the mass loads were correspondingly > 10 g m-2 over Larnaca and Limassol during the passage of an extremely dense dust front on 8 September 2015. Hourly mean PM10 values were close to 8000 µg m-3 and the observed meteorological optical range (visibility) was reduced to 300-750 m at Larnaca and Limassol. The visibility observations suggest peak values of the near-surface total suspended particle (TSP) extinction coefficients of 6000 Mm-1 and thus TSP mass concentrations of 10 000 µg m-3. The Raman polarization lidar observations mainly indicated a double layer structure of the dust plumes (reaching to about 4 km height), pointing to at least two different dust source regions. Dust particle extinction coefficients (532 nm) already exceeded 1000 Mm-1 and the mass concentrations reached 2000 µg m-3 in the elevated dust layers on 7 September, more than 12 h before the peak dust front on 8 September reached the Limassol lidar station around local noon. Typical Middle Eastern dust lidar ratios around 40 sr were observed in the dense dust plumes. The particle depolarization ratio decreased from around 0.3 in the lofted dense dust layers to 0.2 at the end of the dust period (11 September), indicating an increasing impact of anthropogenic haze.
Rossin, Elizabeth J.; Lage, Kasper; Raychaudhuri, Soumya; Xavier, Ramnik J.; Tatar, Diana; Benita, Yair
2011-01-01
Genome-wide association studies (GWAS) have defined over 150 genomic regions unequivocally containing variation predisposing to immune-mediated disease. Inferring disease biology from these observations, however, hinges on our ability to discover the molecular processes being perturbed by these risk variants. It has previously been observed that different genes harboring causal mutations for the same Mendelian disease often physically interact. We sought to evaluate the degree to which this is true of genes within strongly associated loci in complex disease. Using sets of loci defined in rheumatoid arthritis (RA) and Crohn's disease (CD) GWAS, we build protein–protein interaction (PPI) networks for genes within associated loci and find abundant physical interactions between protein products of associated genes. We apply multiple permutation approaches to show that these networks are more densely connected than chance expectation. To confirm biological relevance, we show that the components of the networks tend to be expressed in similar tissues relevant to the phenotypes in question, suggesting the network indicates common underlying processes perturbed by risk loci. Furthermore, we show that the RA and CD networks have predictive power by demonstrating that proteins in these networks, not encoded in the confirmed list of disease associated loci, are significantly enriched for association to the phenotypes in question in extended GWAS analysis. Finally, we test our method in 3 non-immune traits to assess its applicability to complex traits in general. We find that genes in loci associated to height and lipid levels assemble into significantly connected networks but did not detect excess connectivity among Type 2 Diabetes (T2D) loci beyond chance. Taken together, our results constitute evidence that, for many of the complex diseases studied here, common genetic associations implicate regions encoding proteins that physically interact in a preferential manner, in line with observations in Mendelian disease. PMID:21249183
Barrington, Clare; Latkin, Carl; Sweat, Michael D; Moreno, Luis; Ellen, Jonathan; Kerrigan, Deanna
2009-06-01
Male partners of female sex workers are rarely targeted by HIV prevention interventions in the commercial sex industry, despite recognition of their central role and power in condom use negotiation. Social networks offer a naturally existing social structure to increase male participation in preventing HIV. The purpose of this study was to explore the relationship between social network norms and condom use among male partners of female sex workers in La Romana, Dominican Republic. Male partners (N =318) were recruited from 36 sex establishments to participate in a personal network survey. Measures of social network norms included 1) perceived condom use by male social network members and 2) encouragement to use condoms from social network members. Other social network characteristics included composition, density, social support, and communication. The primary behavioral outcome was consistent condom use by male partners with their most recent female sex worker partner during the last 3 months. In general, men reported small, dense networks with high levels of communication about condoms and consistent condom use. Multivariate logistic regression revealed consistent condom use was significantly more likely among male partners who perceived that some or all of their male social network members used condoms consistently. Perceived condom use was, in turn, significantly associated with dense networks, expressing dislike for condoms, and encouragement to use condoms from social network members. Findings suggest that the tight social networks of male partners may help to explain the high level of condom use and could provide an entry point for HIV prevention efforts with men. Such efforts should tap into existing social dynamics and patterns of communication to promote pro-condom norms and reduce HIV-related vulnerability among men and their sexual partners.
CAOS: the nested catchment soil-vegetation-atmosphere observation platform
NASA Astrophysics Data System (ADS)
Weiler, Markus; Blume, Theresa
2016-04-01
Most catchment based observations linking hydrometeorology, ecohydrology, soil hydrology and hydrogeology are typically not integrated with each other and lack a consistent and appropriate spatial-temporal resolution. Within the research network CAOS (Catchments As Organized Systems), we have initiated and developed a novel and integrated observation platform in several catchments in Luxembourg. In 20 nested catchments covering three distinct geologies the subscale processes at the bedrock-soil-vegetation-atmosphere interface are being monitored at 46 sensor cluster locations. Each sensor cluster is designed to observe a variety of different fluxes and state variables above and below ground, in the saturated and unsaturated zone. The numbers of sensors are chosen to capture the spatial variability as well the average dynamics. At each of these sensor clusters three soil moisture profiles with sensors at different depths, four soil temperature profiles as well as matric potential, air temperature, relative humidity, global radiation, rainfall/throughfall, sapflow and shallow groundwater and stream water levels are measured continuously. In addition, most sensors also measure temperature (water, soil, atmosphere) and electrical conductivity. This setup allows us to determine the local water and energy balance at each of these sites. The discharge gauging sites in the nested catchments are also equipped with automatic water samplers to monitor water quality and water stable isotopes continuously. Furthermore, water temperature and electrical conductivity observations are extended to over 120 locations distributed across the entire stream network to capture the energy exchange between the groundwater, stream water and atmosphere. The measurements at the sensor clusters are complemented by hydrometeorological observations (rain radar, network of distrometers and dense network of precipitation gauges) and linked with high resolution meteorological models. In this presentation, we will highlight the potential of this integrated observation platform to estimate energy and water exchange between the terrestrial and aquatic systems and the atmosphere, to trace water flow pathways in the unsaturated and saturated zone, and to understand the organization of processes and fluxes and thus runoff generation at different temporal and spatial scales.
NASA Astrophysics Data System (ADS)
Nothnagel, A.; Artz, T.; Behrend, D.; Malkin, Z.
2017-07-01
The International VLBI Service for Geodesy and Astrometry (IVS) regularly produces high-quality Earth orientation parameters from observing sessions employing extensive networks or individual baselines. The master schedule is designed according to the telescope days committed by the stations and by the need for dense sampling of the Earth orientation parameters (EOP). In the pre-2011 era, the network constellations with their number of telescopes participating were limited by the playback and baseline capabilities of the hardware (Mark4) correlators. This limitation was overcome by the advent of software correlators, which can now accommodate many more playback units in a flexible configuration. In this paper, we describe the current operations of the IVS with special emphasis on the quality of the polar motion results since these are the only EOP components which can be validated against independent benchmarks. The polar motion results provided by the IVS have improved continuously over the years, now providing an agreement with IGS results at the level of 20-25 μas in a WRMS sense. At the end of the paper, an outlook is given for the realization of the VLBI Global Observing System.
[Observation on eggs of Oncomelania hupensis hupensis with scanning electron microscope].
Xia, Q B; Yuan, Y B; Liu, B; Tan, P P
2001-01-01
To observe the structure of the mud hull packed Oncomelania eggs and the surface structure of colloid membrane called the third grade membrane of eggs. Scanning electron microscopy was used to observe Oncomelania snail eggs with integral mud hull collected from eastern Dongting Lake. The mud hull of eggs was made of unshapen small humification combined with earth granules with a diameter of 2.6-9.2 microns. The mud hull in 60 um thickness was honeycomb-like in shape with many small holes and small folds on the wall. There were many round or irregularly round hollownesses on the inner layer of mud hull that contacts colloid membrane but no hole through mud hull. There were some protein fiber networks covering on the colloid membrane and apophysis. The structure of the mud hull showed that the exchange of matter was maintained between eggs and outside, and the mud hull is of great importance to regulating temperature and moisture for the growth of eggs by preventing hydrosoluble substances from penetrating into eggs. The protein fiber networks act on gluing mud hull and buffering outside power. The dense glue membrane might be a main barricade to prevent pharmaceutical molecules from penetrating into eggs.
Protein complexes and functional modules in molecular networks
NASA Astrophysics Data System (ADS)
Spirin, Victor; Mirny, Leonid A.
2003-10-01
Proteins, nucleic acids, and small molecules form a dense network of molecular interactions in a cell. Molecules are nodes of this network, and the interactions between them are edges. The architecture of molecular networks can reveal important principles of cellular organization and function, similarly to the way that protein structure tells us about the function and organization of a protein. Computational analysis of molecular networks has been primarily concerned with node degree [Wagner, A. & Fell, D. A. (2001) Proc. R. Soc. London Ser. B 268, 1803-1810; Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabasi, A. L. (2000) Nature 407, 651-654] or degree correlation [Maslov, S. & Sneppen, K. (2002) Science 296, 910-913], and hence focused on single/two-body properties of these networks. Here, by analyzing the multibody structure of the network of protein-protein interactions, we discovered molecular modules that are densely connected within themselves but sparsely connected with the rest of the network. Comparison with experimental data and functional annotation of genes showed two types of modules: (i) protein complexes (splicing machinery, transcription factors, etc.) and (ii) dynamic functional units (signaling cascades, cell-cycle regulation, etc.). Discovered modules are highly statistically significant, as is evident from comparison with random graphs, and are robust to noise in the data. Our results provide strong support for the network modularity principle introduced by Hartwell et al. [Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. (1999) Nature 402, C47-C52], suggesting that found modules constitute the "building blocks" of molecular networks.
NASA Astrophysics Data System (ADS)
Muller, Catherine; Chapman, Lee; Young, Duick; Grimmond, Sue; Cai, Xiaoming
2013-04-01
The Birmingham Urban Climate Laboratory (BUCL) has recently been established by the University of Birmingham. BUCL is an in-situ, real-time urban network that will incorporate 3 nested networks - a wide-array of 25 weather stations, a dense array of 131 low-cost air temperature sensors and a fine-array of temperature sensor across the city-centre (50/km^2) - with the primary aim of monitoring air temperatures across a morphologically-heterogeneous urban conurbation for a variety of applications. During its installation there have been a number of challenges to overcome, including siting equipment in suitable urban locations, ensuring that the measurements were 'representative' of the local-scale climate, managing a large, near real-time data set and implementing QA/QC procedures. From these experiences, the establishment of a standardised urban meteorological network metadata protocol has been proposed in order to improve data quality, to ensure the end-user has access to all the supplementary information they would require for conducting valid analyses and to encourage the adequate recording and documentation of any changes to in-situ urban networks over time. This paper will provide an introduction to the BUCL in-situ network, give an overview of the challenges and experiences gained from its implementation, and finally discuss the proposed applications of the network, including its use in remote sensing observations of urban temperatures, as well as health and infrastructure applications.
Baek, Jiwon; Hur, Nam Wook; Kim, Hyeon Chang; Youm, Yoosik
2016-07-01
Hypertension is a common chronic disease among older adults, and is associated with medical complications and mortality. This study aimed to examine the effects of social network characteristics on the prevalence, awareness, and control of hypertension among older adults. The Korean Social Life, Health, and Aging Project (KSHAP) interviewed 814 ≥ 60-year-old residents and their spouses from a rural township between December 2011 and March 2012 (response rate: 95%). We evaluated the data from 595 participants. Multivariate logistic regression models were used to assess the effects of network characteristics on hypertension. We observed strong sex-specific network effects on the prevalence, awareness, and control of hypertension. Among older women, network density was associated with hypertension awareness [odds ratio (OR): 2.63, 95% confidence interval (CI): 1.03-5.37] and control (OR: 1.72; 95% CI: 0.94-3.13). Among older men, large networks were associated with a lower prevalence of hypertension (OR: 0.75; 95% CI: 0.58-0.96). Compared to older women, older men with coarse networks exhibited better hypertension awareness (OR: 0.37; 95% CI: 0.14-0.95) and control (OR: 0.42; 95% CI: 0.19-0.91). Network size interacted with density for hypertension control (P = 0.051), with controlled hypertension being associated with large and course networks. A large network was associated with a lower risk for hypertension, and a coarse network was associated with hypertension awareness and control among older men. Older women with dense networks were most likely to exhibit hypertension awareness and control.
NASA Astrophysics Data System (ADS)
Marshall, M. E.; Salzberg, D. H.
2006-05-01
The purpose of this study is to further demonstrate the accuracy of full-waveform earthquake location method using semi-empirical synthetic waveforms and received data from two or more regional stations. To test the method, well-constrained events from southern and central California are being used as a testbed. A suite of regional California events is being processed. Our focus is on aftershocks of the Parkfield event, the Hector Mine event, and the San Simian event. In all three cases, the aftershock locations are known to within 1 km. For Parkfield, with its extremely dense local network, the events are located to within 300 m or better. We are processing the data using a grid spacing of 0.5 km in three dimensions. Often, the minimum in residual from the semi-empirical waveform matching is within one grid point of the 'ground truth' location, which is as good as can be expected. We will present the results and compare those to the event locations reported in catalogs using the dense local seismic networks that are present in California. The preliminary results indicate that matched-waveform locations are able to resolve the locations with accuracies better than GT5, and possibly approaching GT1. These results only require two stations at regional distances and differing azimuths. One of the disadvantages of the California testbed is that all of the earthquakes in a particular region typically have very similar focal mechanisms. In theory, the semi-empirical approach should allow us to generate the well-matched synthetic waveforms regardless of the varying mechanisms. To verify this aspect, we apply the technique to relocate and simulate the JUNCTION nuclear test (March 26, 1992) using waveforms from the Little Skull Mountain mainshock.
Communication efficiency and congestion of signal traffic in large-scale brain networks.
Mišić, Bratislav; Sporns, Olaf; McIntosh, Anthony R
2014-01-01
The complex connectivity of the cerebral cortex suggests that inter-regional communication is a primary function. Using computational modeling, we show that anatomical connectivity may be a major determinant for global information flow in brain networks. A macaque brain network was implemented as a communication network in which signal units flowed between grey matter nodes along white matter paths. Compared to degree-matched surrogate networks, information flow on the macaque brain network was characterized by higher loss rates, faster transit times and lower throughput, suggesting that neural connectivity may be optimized for speed rather than fidelity. Much of global communication was mediated by a "rich club" of hub regions: a sub-graph comprised of high-degree nodes that are more densely interconnected with each other than predicted by chance. First, macaque communication patterns most closely resembled those observed for a synthetic rich club network, but were less similar to those seen in a synthetic small world network, suggesting that the former is a more fundamental feature of brain network topology. Second, rich club regions attracted the most signal traffic and likewise, connections between rich club regions carried more traffic than connections between non-rich club regions. Third, a number of rich club regions were significantly under-congested, suggesting that macaque connectivity actively shapes information flow, funneling traffic towards some nodes and away from others. Together, our results indicate a critical role of the rich club of hub nodes in dynamic aspects of global brain communication.
Construction of monomer-free, highly crosslinked, water-compatible polymers.
Dailing, E A; Lewis, S H; Barros, M D; Stansbury, J W
2014-12-01
Polymeric dental adhesives require the formation of densely crosslinked network structures to best ensure mechanical strength and durability in clinical service. Monomeric precursors to these materials typically consist of mixtures of hydrophilic and hydrophobic components that potentially undergo phase separation in the presence of low concentrations of water, which is detrimental to material performance and has motivated significant investigation into formulations that reduce this effect. We have investigated an approach to network formation based on nanogels that are dispersed in inert solvent and directly polymerized into crosslinked polymers. Monomers of various hydrophilic or hydrophobic characteristics were copolymerized into particulate nanogels bearing internal and external polymerizable functionality. Nanogel dispersions were stable at high concentrations in acetone or, with some exceptions, in water and produced networks with a wide range of mechanical properties. Networks formed rapidly upon light activation and reached high conversion with extremely low volumetric shrinkage. Prepolymerizing monomers into reactive nanostructures significantly changes how hydrophobic materials respond to water compared with networks obtained from polymerizations involving free monomer. The modulus of fully hydrated networks formed solely from nanogels was shown to equal or exceed the modulus in the dry state for networks based on nanogels containing a hydrophobic dimethacrylate and hydrophilic monomethacrylate, a result that was not observed in a hydroxyethyl methacrylate (HEMA) homopolymer or in networks formed from nanogels copolymerized with HEMA. These results highlight the unique approach to network development from nanoscale precursors and properties that have direct implications in functional dental materials. © International & American Associations for Dental Research.
Communication Efficiency and Congestion of Signal Traffic in Large-Scale Brain Networks
Mišić, Bratislav; Sporns, Olaf; McIntosh, Anthony R.
2014-01-01
The complex connectivity of the cerebral cortex suggests that inter-regional communication is a primary function. Using computational modeling, we show that anatomical connectivity may be a major determinant for global information flow in brain networks. A macaque brain network was implemented as a communication network in which signal units flowed between grey matter nodes along white matter paths. Compared to degree-matched surrogate networks, information flow on the macaque brain network was characterized by higher loss rates, faster transit times and lower throughput, suggesting that neural connectivity may be optimized for speed rather than fidelity. Much of global communication was mediated by a “rich club” of hub regions: a sub-graph comprised of high-degree nodes that are more densely interconnected with each other than predicted by chance. First, macaque communication patterns most closely resembled those observed for a synthetic rich club network, but were less similar to those seen in a synthetic small world network, suggesting that the former is a more fundamental feature of brain network topology. Second, rich club regions attracted the most signal traffic and likewise, connections between rich club regions carried more traffic than connections between non-rich club regions. Third, a number of rich club regions were significantly under-congested, suggesting that macaque connectivity actively shapes information flow, funneling traffic towards some nodes and away from others. Together, our results indicate a critical role of the rich club of hub nodes in dynamic aspects of global brain communication. PMID:24415931
Ionospheric modifications detected by a dense network of single frequency GNSS receivers
NASA Astrophysics Data System (ADS)
Mrak, S.; Semeter, J. L.
2017-12-01
It has been predicted that the region of totality during a total solar eclipse can launch atmospheric gravity waves with large enough amplitude to cause traveling ionospheric disturbances (TIDs). We report initial results from a remote sensing campaign involving a dense hybrid network of single- and dual-frequency GNSS receivers deployed underneath the 21 August 2017 solar eclipse. The campaign took place in central Missouri, involving 84 Trimble dual-frequency receivers, complemented by 2 additional 50 Hz dual-frequency receivers and 15 single-frequency receivers, together constructing 100 receivers with average mutual separation of less than 25 km and with a time resolution of 1 second or better. The initial results show a crescent shaped enhancement bulge in front of region of totality, extending all the way from Canada to Gulf of Mexico. In addition, in the path of totality is noticed a great depletion region, followed by a pair of transverse waves propagating in west-east direction. In the following months, we will explore the transition region carried by the totality by a virtue of hyper dense network of GNSS receivers with 1 second resolution. In addition to TEC data decomposition we will explore effects of the totality on the raw measurements (phase, code and signal intensity), and to the navigation solution which is likely to be effected by a different propagation conditions with respect to other days.
NASA Technical Reports Server (NTRS)
Kah, L. C.; Stack, K; Siebach, K.; Grotzinger, J.; Summer, D.; Farien, A.; Oehler, D.; Schieber, J.; Leville, R.; Edgar, L;
2014-01-01
Multiple diagenetic features have been observed in clay-bearing mudstone exposed within Yellowknife Bay, Gale Crater, Mars. These features occurred during at least two separate episodes: an early generation of spheroidal concretions that co-occur with a dense networks of mineralized fractures, and a later generation of mineralized veins. Concretions consist of mm-sized spheroids (0.4 to 8.0 mm, mean diameter of 1.2 mm) that are distinctly more resistant than the encompassing mudstone. Dissected spheroids suggest an origin via compaction and incipient lithification of the substrate at the perimeter of syndepositional void space. Concretions are generally patchy in their distribution within clay--bearing mudstone, but in places can be the dominant fabric element. Locally dense networks of mineralized fractures occur in regions of low concretion abundance. These consist of short (< 50 cm), curvilinear to planar mineralized voids that occur across a range of orientations from vertical to subhorizontal. Fractures are filled by multi-phase cement consisting of two isopachous, erosionally resistant outer bands, and a central less resistant fill. Physical relationships suggests that original fractures may have formed as both interconnected voids and as discrete cross--cutting features. Co--occurrence of early diagenetic concretions and fracture networks suggests a common origin via gas release within a subaqueous, shallow substrate. We suggest that gas release within weakly cohesive subsurface sediments resulted in substrate dewatering and an increase in the cohesive strength of the substrate. Local differences in substrate strength and rate of gas production would have result in formation of either discrete voids or fracture networks. A second generation of mineralized veins is characterized by a regionally low spatial density, predominantly vertical or horizontal orientations, and a single phase of Ca--sulfate mineral fill. These veins cross-cut the early diagenetic elements and intersect a greater thickness of stratigraphy within Yellowknife Bay, suggesting a later--diagenetic origin via hydraulic fracturing.
Breeding and Genetics Symposium: networks and pathways to guide genomic selection.
Snelling, W M; Cushman, R A; Keele, J W; Maltecca, C; Thomas, M G; Fortes, M R S; Reverter, A
2013-02-01
Many traits affecting profitability and sustainability of meat, milk, and fiber production are polygenic, with no single gene having an overwhelming influence on observed variation. No knowledge of the specific genes controlling these traits has been needed to make substantial improvement through selection. Significant gains have been made through phenotypic selection enhanced by pedigree relationships and continually improving statistical methodology. Genomic selection, recently enabled by assays for dense SNP located throughout the genome, promises to increase selection accuracy and accelerate genetic improvement by emphasizing the SNP most strongly correlated to phenotype although the genes and sequence variants affecting phenotype remain largely unknown. These genomic predictions theoretically rely on linkage disequilibrium (LD) between genotyped SNP and unknown functional variants, but familial linkage may increase effectiveness when predicting individuals related to those in the training data. Genomic selection with functional SNP genotypes should be less reliant on LD patterns shared by training and target populations, possibly allowing robust prediction across unrelated populations. Although the specific variants causing polygenic variation may never be known with certainty, a number of tools and resources can be used to identify those most likely to affect phenotype. Associations of dense SNP genotypes with phenotype provide a 1-dimensional approach for identifying genes affecting specific traits; in contrast, associations with multiple traits allow defining networks of genes interacting to affect correlated traits. Such networks are especially compelling when corroborated by existing functional annotation and established molecular pathways. The SNP occurring within network genes, obtained from public databases or derived from genome and transcriptome sequences, may be classified according to expected effects on gene products. As illustrated by functionally informed genomic predictions being more accurate than naive whole-genome predictions of beef tenderness, coupling evidence from livestock genotypes, phenotypes, gene expression, and genomic variants with existing knowledge of gene functions and interactions may provide greater insight into the genes and genomic mechanisms affecting polygenic traits and facilitate functional genomic selection for economically important traits.
NASA Astrophysics Data System (ADS)
Chauhan, A.; Sarkar, S.; Singh, R. P.
2017-12-01
The coastal areas have dense onshore and marine observation network and are also routinely monitored by constellation of satellites. The monitoring of ocean, land and atmosphere through a range of meteorological parameters, provides information about the land and ocean surface. Satellite data also provide information at different pressure levels that help to access the development of tropical storms and formation of hurricanes at different categories. Integration of ground, buoys, satellite and model data showing the changes in meteorological parameters during the landfall stages of hurricane Harvey will be discussed. Hurricane Harvey was one of the deadliest hurricanes at the Gulf coast which caused intense flooding from the precipitation. The various observation networks helped city administrators to evacuate the coastal areas, that minimized the loss of lives compared to the Galveston hurricane of 1900 which took 10,000 lives. Comparison of meteorological parameters derived from buoys, ground stations and satellites associated with Harvey and 2005 Katrina hurricane present some of the interesting features of the two hurricanes.
Seismic activity of Tokyo area and Philippine Sea plate under Japanese Islands
NASA Astrophysics Data System (ADS)
Sakai, S.; Nakagawa, S.; Nanjo, K.; Kasahara, K.; Panayotopoulos, Y.; Tsuruoka, H.; Kurashimo, E.; Obara, K.; Hirata, N.; Kimura, H.; Honda, R.
2012-12-01
The Japanese government has estimated the probability of earthquake occurrence with magnitude 7-class during the next 30 years as 70 %. This estimation is based on five earthquakes that occurred in this area in the late 120 years. However, it has been revealed that this region is lying on more complicated tectonic condition due to the two subducted plates and the various types of earthquakes which have been caused by. Therefore, it is necessary to classify these earthquakes into inter-plate earthquakes and intra-plate ones. Then, we have been constructing a seismic observation network since 5 years ago. Tokyo Metropolitan area is a densely populated region of about 40 million people. It is the center of Japan both in politics and in economy. So that human activities have been conducting quite busily, this region is unsuitable for seismic observation. Then, we have decided to make an ultra high dense seismic observation network. We named it the Metropolitan Seismometer Observation Network; MeSO-net. MeSO-net consists of 296 seismic stations. Minimum interval is about 2km and average interval is about 5km.We picked the P- and S-wave arrival times manually. We applied double-difference tomography method to the dataset and estimated the velocity structure. We depicted the plate boundaries from the newly developed velocity model. And, we referred to the locations of the repeating earthquakes, the distributions of normal hypocenters and the focal mechanisms. Our plate model became relatively flat and a little shallower than previous one.Seismicity of Metropolitan area after the M9 event was compared to the one before M9 event. The seismic activity is about 4 times as high as before the M9 event occurred. We examined spatial distribution of the activated seismicity with respect to the newly developed plate configuration. The activated events are located on upper boundaries and they have almost thrust type mechanisms. Recently, a slow slip event has occurred on October in 2011. This observation suggests that shear stresses on the plate boundaries have increased due to eastwards movement of the eastern Japan driven by post-seismic slip of the M9.0 Tohoku-oki event. The present study is supported by two Special Projects for Earthquake Disaster Mitigation in Tokyo Metropolitan Area and reducing vulnerability for urban mega earthquake disasters from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.
Coherent ultra dense wavelength division multiplexing passive optical networks
NASA Astrophysics Data System (ADS)
Shahpari, Ali; Ferreira, Ricardo; Ribeiro, Vitor; Sousa, Artur; Ziaie, Somayeh; Tavares, Ana; Vujicic, Zoran; Guiomar, Fernando P.; Reis, Jacklyn D.; Pinto, Armando N.; Teixeira, António
2015-12-01
In this paper, we firstly review the progress in ultra-dense wavelength division multiplexing passive optical network (UDWDM-PON), by making use of the key attributes of this technology in the context of optical access and metro networks. Besides the inherit properties of coherent technology, we explore different modulation formats and pulse shaping. The performance is experimentally demonstrated through a 12 × 10 Gb/s bidirectional UDWDM-PON over hybrid 80 km standard single mode fiber (SSMF) and optical wireless link. High density, 6.25 GHz grid, Nyquist shaped 16-ary quadrature amplitude modulation (16QAM) and digital frequency shifting are some of the properties exploited together in the tests. Also, bidirectional transmission in fiber, relevant in the context, is analyzed in terms of nonlinear and back-reflection effects on receiver sensitivity. In addition, as a basis for the discussion on market readiness, we experimentally demonstrate real-time detection of a Nyquist-shaped quaternary phase-shift keying (QPSK) signal using simple 8-bit digital signal processing (DSP) on a field-programmable gate array (FPGA).
Dense fibrillar collagen is a potent inducer of invadopodia via a specific signaling network
Swatkoski, Stephen; Matsumoto, Kazue; Campbell, Catherine B.; Petrie, Ryan J.; Dimitriadis, Emilios K.; Li, Xin; Mueller, Susette C.; Bugge, Thomas H.; Gucek, Marjan
2015-01-01
Cell interactions with the extracellular matrix (ECM) can regulate multiple cellular activities and the matrix itself in dynamic, bidirectional processes. One such process is local proteolytic modification of the ECM. Invadopodia of tumor cells are actin-rich proteolytic protrusions that locally degrade matrix molecules and mediate invasion. We report that a novel high-density fibrillar collagen (HDFC) matrix is a potent inducer of invadopodia, both in carcinoma cell lines and in primary human fibroblasts. In carcinoma cells, HDFC matrix induced formation of invadopodia via a specific integrin signaling pathway that did not require growth factors or even altered gene and protein expression. In contrast, phosphoproteomics identified major changes in a complex phosphosignaling network with kindlin2 serine phosphorylation as a key regulatory element. This kindlin2-dependent signal transduction network was required for efficient induction of invadopodia on dense fibrillar collagen and for local degradation of collagen. This novel phosphosignaling mechanism regulates cell surface invadopodia via kindlin2 for local proteolytic remodeling of the ECM. PMID:25646088
A Framework for Real-Time Collection, Analysis, and Classification of Ubiquitous Infrasound Data
NASA Astrophysics Data System (ADS)
Christe, A.; Garces, M. A.; Magana-Zook, S. A.; Schnurr, J. M.
2015-12-01
Traditional infrasound arrays are generally expensive to install and maintain. There are ~10^3 infrasound channels on Earth today. The amount of data currently provided by legacy architectures can be processed on a modest server. However, the growing availability of low-cost, ubiquitous, and dense infrasonic sensor networks presents a substantial increase in the volume, velocity, and variety of data flow. Initial data from a prototype ubiquitous global infrasound network is already pushing the boundaries of traditional research server and communication systems, in particular when serving data products over heterogeneous, international network topologies. We present a scalable, cloud-based approach for capturing and analyzing large amounts of dense infrasonic data (>10^6 channels). We utilize Akka actors with WebSockets to maintain data connections with infrasound sensors. Apache Spark provides streaming, batch, machine learning, and graph processing libraries which will permit signature classification, cross-correlation, and other analytics in near real time. This new framework and approach provide significant advantages in scalability and cost.
The permeability evolution of tuffisites and outgassing from dense rhyolitic magma
NASA Astrophysics Data System (ADS)
Heap, M. J.; Tuffen, H.; Wadsworth, F. B.; Reuschlé, T.; Castro, J. M.; Schipper, C. I.
2017-12-01
Recent observations of rhyolitic lava effusion from eruptions in Chile indicate that simultaneous pyroclastic venting facilitates outgassing. Venting from conduit-plugging lava domes is pulsatory and occurs through shallow fracture networks that deliver pyroclastic debris and exsolved gases to the surface. However, these fractures become blocked as the particulate fracture infill sinters viscously, thus drastically reducing permeability. Tuffisites, fossilized debris-filled fractures of this venting process, are abundant in pyroclastic material ejected during hybrid explosive-effusive activity. Dense tuffisite-hosting obsidian bombs ejected from Volcán Chaitén (Chile) in 2008 afford an opportunity to better understand the permeability evolution of tuffisites within low-permeability conduit plugs, wherein gas mobility is reliant upon fracture pathways. We use laboratory measurements of the permeability and porosity of tuffisites that preserve different degrees of sintering, combined with a grainsize-based sintering model and constraints on pressure-time paths from H2O diffusion, to place first-order constraints on tuffisite permeability evolution. Inferred timescales of sintering-driven tuffisite compaction and permeability loss, spanning minutes to hours, coincide with observed vent pulsations during hybrid rhyolitic activity and, more broadly, timescales of pressurization accompanying silicic lava dome extrusion. We therefore conclude that sintering exerts a first-order control on fracture-assisted outgassing from low-permeability, conduit-plugging silicic magma.
Temporal motifs reveal homophily, gender-specific patterns, and group talk in call sequences.
Kovanen, Lauri; Kaski, Kimmo; Kertész, János; Saramäki, Jari
2013-11-05
Recent studies on electronic communication records have shown that human communication has complex temporal structure. We study how communication patterns that involve multiple individuals are affected by attributes such as sex and age. To this end, we represent the communication records as a colored temporal network where node color is used to represent individuals' attributes, and identify patterns known as temporal motifs. We then construct a null model for the occurrence of temporal motifs that takes into account the interaction frequencies and connectivity between nodes of different colors. This null model allows us to detect significant patterns in call sequences that cannot be observed in a static network that uses interaction frequencies as link weights. We find sex-related differences in communication patterns in a large dataset of mobile phone records and show the existence of temporal homophily, the tendency of similar individuals to participate in communication patterns beyond what would be expected on the basis of their average interaction frequencies. We also show that temporal patterns differ between dense and sparse neighborhoods in the network. Because also this result is independent of interaction frequencies, it can be seen as an extension of Granovetter's hypothesis to temporal networks.
Temporal motifs reveal homophily, gender-specific patterns, and group talk in call sequences
Kovanen, Lauri; Kaski, Kimmo; Kertész, János; Saramäki, Jari
2013-01-01
Recent studies on electronic communication records have shown that human communication has complex temporal structure. We study how communication patterns that involve multiple individuals are affected by attributes such as sex and age. To this end, we represent the communication records as a colored temporal network where node color is used to represent individuals’ attributes, and identify patterns known as temporal motifs. We then construct a null model for the occurrence of temporal motifs that takes into account the interaction frequencies and connectivity between nodes of different colors. This null model allows us to detect significant patterns in call sequences that cannot be observed in a static network that uses interaction frequencies as link weights. We find sex-related differences in communication patterns in a large dataset of mobile phone records and show the existence of temporal homophily, the tendency of similar individuals to participate in communication patterns beyond what would be expected on the basis of their average interaction frequencies. We also show that temporal patterns differ between dense and sparse neighborhoods in the network. Because also this result is independent of interaction frequencies, it can be seen as an extension of Granovetter’s hypothesis to temporal networks. PMID:24145424
Smart, Otis; Maus, Douglas; Marsh, Eric; Dlugos, Dennis; Litt, Brian; Meador, Kimford
2012-01-01
Localizing an epileptic network is essential for guiding neurosurgery and antiepileptic medical devices as well as elucidating mechanisms that may explain seizure-generation and epilepsy. There is increasing evidence that pathological oscillations may be specific to diseased networks in patients with epilepsy and that these oscillations may be a key biomarker for generating and indentifying epileptic networks. We present a semi-automated method that detects, maps, and mines pathological gamma (30–100 Hz) oscillations (PGOs) in human epileptic brain to possibly localize epileptic networks. We apply the method to standard clinical iEEG (<100 Hz) with interictal PGOs and seizures from six patients with medically refractory epilepsy. We demonstrate that electrodes with consistent PGO discharges do not always coincide with clinically determined seizure onset zone (SOZ) electrodes but at times PGO-dense electrodes include secondary seizure-areas (SS) or even areas without seizures (NS). In 4/5 patients with epilepsy surgery, we observe poor (Engel Class 4) post-surgical outcomes and identify more PGO-activity in SS or NS than in SOZ. Additional studies are needed to further clarify the role of PGOs in epileptic brain. PMID:23105174
NASA Astrophysics Data System (ADS)
Tanioka, Yuichiro
2017-04-01
After tsunami disaster due to the 2011 Tohoku-oki great earthquake, improvement of the tsunami forecast has been an urgent issue in Japan. National Institute of Disaster Prevention is installing a cable network system of earthquake and tsunami observation (S-NET) at the ocean bottom along the Japan and Kurile trench. This cable system includes 125 pressure sensors (tsunami meters) which are separated by 30 km. Along the Nankai trough, JAMSTEC already installed and operated the cable network system of seismometers and pressure sensors (DONET and DONET2). Those systems are the most dense observation network systems on top of source areas of great underthrust earthquakes in the world. Real-time tsunami forecast has depended on estimation of earthquake parameters, such as epicenter, depth, and magnitude of earthquakes. Recently, tsunami forecast method has been developed using the estimation of tsunami source from tsunami waveforms observed at the ocean bottom pressure sensors. However, when we have many pressure sensors separated by 30km on top of the source area, we do not need to estimate the tsunami source or earthquake source to compute tsunami. Instead, we can initiate a tsunami simulation from those dense tsunami observed data. Observed tsunami height differences with a time interval at the ocean bottom pressure sensors separated by 30 km were used to estimate tsunami height distribution at a particular time. In our new method, tsunami numerical simulation was initiated from those estimated tsunami height distribution. In this paper, the above method is improved and applied for the tsunami generated by the 2011 Tohoku-oki great earthquake. Tsunami source model of the 2011 Tohoku-oki great earthquake estimated using observed tsunami waveforms, coseimic deformation observed by GPS and ocean bottom sensors by Gusman et al. (2012) is used in this study. The ocean surface deformation is computed from the source model and used as an initial condition of tsunami simulation. By assuming that this computed tsunami is a real tsunami and observed at ocean bottom sensors, new tsunami simulation is carried out using the above method. The station distribution (each station is separated by 15 min., about 30 km) observed tsunami waveforms which were actually computed from the source model. Tsunami height distributions are estimated from the above method at 40, 80, and 120 seconds after the origin time of the earthquake. The Near-field Tsunami Inundation forecast method (Gusman et al. 2014) was used to estimate the tsunami inundation along the Sanriku coast. The result shows that the observed tsunami inundation was well explained by those estimated inundation. This also shows that it takes about 10 minutes to estimate the tsunami inundation from the origin time of the earthquake. This new method developed in this paper is very effective for a real-time tsunami forecast.
Global Mapping of the Yeast Genetic Interaction Network
NASA Astrophysics Data System (ADS)
Tong, Amy Hin Yan; Lesage, Guillaume; Bader, Gary D.; Ding, Huiming; Xu, Hong; Xin, Xiaofeng; Young, James; Berriz, Gabriel F.; Brost, Renee L.; Chang, Michael; Chen, YiQun; Cheng, Xin; Chua, Gordon; Friesen, Helena; Goldberg, Debra S.; Haynes, Jennifer; Humphries, Christine; He, Grace; Hussein, Shamiza; Ke, Lizhu; Krogan, Nevan; Li, Zhijian; Levinson, Joshua N.; Lu, Hong; Ménard, Patrice; Munyana, Christella; Parsons, Ainslie B.; Ryan, Owen; Tonikian, Raffi; Roberts, Tania; Sdicu, Anne-Marie; Shapiro, Jesse; Sheikh, Bilal; Suter, Bernhard; Wong, Sharyl L.; Zhang, Lan V.; Zhu, Hongwei; Burd, Christopher G.; Munro, Sean; Sander, Chris; Rine, Jasper; Greenblatt, Jack; Peter, Matthias; Bretscher, Anthony; Bell, Graham; Roth, Frederick P.; Brown, Grant W.; Andrews, Brenda; Bussey, Howard; Boone, Charles
2004-02-01
A genetic interaction network containing ~1000 genes and ~4000 interactions was mapped by crossing mutations in 132 different query genes into a set of ~4700 viable gene yeast deletion mutants and scoring the double mutant progeny for fitness defects. Network connectivity was predictive of function because interactions often occurred among functionally related genes, and similar patterns of interactions tended to identify components of the same pathway. The genetic network exhibited dense local neighborhoods; therefore, the position of a gene on a partially mapped network is predictive of other genetic interactions. Because digenic interactions are common in yeast, similar networks may underlie the complex genetics associated with inherited phenotypes in other organisms.
NASA Astrophysics Data System (ADS)
Sarkar, Sumantra; Shatoff, Elan; Ramola, Kabir; Mari, Romain; Morris, Jeffrey; Chakraborty, Bulbul
2017-06-01
Dense suspensions can exhibit an abrupt change in their viscosity in response to increasing shear rate. The origin of this discontinuous shear thickening (DST) has been ascribed to the transformation of lubricated contacts to frictional, particle-on-particle contacts. Recent research on the flowing and jamming behavior of dense suspensions has explored the intersection of ideas from granular physics and Stokesian fluid dynamics to better understand this transition from lubricated to frictional rheology. DST is reminiscent of classical phase transitions, and a key question is how interactions between the microscopic constituents give rise to a macroscopic transition. In this paper, we extend a formalism that has proven to be successful in understanding shear jamming of dry grains to dense suspensions. Quantitative analysis of the collective evolution of the contactforce network accompanying the DST transition demonstrates clear changes in the distribution of microscopic variables, and leads to the identification of an "order parameter" characterizing DST.
Local Crystalline Structure in an Amorphous Protein Dense Phase
Greene, Daniel G.; Modla, Shannon; Wagner, Norman J.; Sandler, Stanley I.; Lenhoff, Abraham M.
2015-01-01
Proteins exhibit a variety of dense phases ranging from gels, aggregates, and precipitates to crystalline phases and dense liquids. Although the structure of the crystalline phase is known in atomistic detail, little attention has been paid to noncrystalline protein dense phases, and in many cases the structures of these phases are assumed to be fully amorphous. In this work, we used small-angle neutron scattering, electron microscopy, and electron tomography to measure the structure of ovalbumin precipitate particles salted out with ammonium sulfate. We found that the ovalbumin phase-separates into core-shell particles with a core radius of ∼2 μm and shell thickness of ∼0.5 μm. Within this shell region, nanostructures comprised of crystallites of ovalbumin self-assemble into a well-defined bicontinuous network with branches ∼12 nm thick. These results demonstrate that the protein gel is comprised in part of nanocrystalline protein. PMID:26488663
Fast algorithm for automatically computing Strahler stream order
Lanfear, Kenneth J.
1990-01-01
An efficient algorithm was developed to determine Strahler stream order for segments of stream networks represented in a Geographic Information System (GIS). The algorithm correctly assigns Strahler stream order in topologically complex situations such as braided streams and multiple drainage outlets. Execution time varies nearly linearly with the number of stream segments in the network. This technique is expected to be particularly useful for studying the topology of dense stream networks derived from digital elevation model data.
The Global Geodetic Observing System: Space Geodesy Networks for the Future
NASA Technical Reports Server (NTRS)
Pearlman, Michael; Pavlis, Erricos; Ma, Chopo; Altamini, Zuheir; Noll, Carey; Stowers, David
2011-01-01
Ground-based networks of co-located space geodetic techniques (VLBI, SLR, GNSS. and DORIS) are the basis for the development and maintenance of the International Terrestrial Reference frame (ITRF), which is our metric of reference for measurements of global change, The Global Geodetic Observing System (GGOS) of the International Association of Geodesy (IAG) has established a task to develop a strategy to design, integrate and maintain the fundamental geodetic network and supporting infrastructure in a sustainable way to satisfy the long-term requirements for the reference frame. The GGOS goal is an origin definition at 1 mm or better and a temporal stability on the order of 0.1 mm/y, with similar numbers for the scale and orientation components. These goals are based on scientific requirements to address sea level rise with confidence, but other applications are not far behind. Recent studies including one by the US National Research Council has strongly stated the need and the urgency for the fundamental space geodesy network. Simulations are underway to examining accuracies for origin, scale and orientation of the resulting ITRF based on various network designs and system performance to determine the optimal global network to achieve this goal. To date these simulations indicate that 24 - 32 co-located stations are adequate to define the reference frame and a more dense GNSS and DORIS network will be required to distribute the reference frame to users anywhere on Earth. Stations in the new global network will require geologically stable sites with good weather, established infrastructure, and local support and personnel. GGOS wil seek groups that are interested in participation. GGOS intends to issues a Call for Participation of groups that would like to contribute in the network implementation and operation. Some examples of integrated stations currently in operation or under development will be presented. We will examine necessary conditions and challenges in designing a co-location station.
Metal-in-metal localized surface plasmon resonance
NASA Astrophysics Data System (ADS)
Smith, G. B.; Earp, A. A.
2010-01-01
Anomalous strong resonances in silver and gold nanoporous thin films which conduct are found to arise from isolated metal nano-islands separated from the surrounding percolating metal network by a thin loop of insulator. This observed resonant optical response is modelled. The observed peak position is in agreement with the observed average dimensions of the silver core and insulator shell. As the insulating ring thickness shrinks, the resonance moves to longer wavelengths and strengthens. This structure is the Babinet's principle counterpart of dielectric core-metal shell nanoparticles embedded in dielectric. Like for the latter, tuning of resonant absorption is possible, but here the matrix reflects rather than transmits, and tuning to longer wavelengths is more practical. A new class of metal mirror occurring as a single thin layer is identified using the same resonances in dense metal mirrors. Narrow band deep localized dips in reflectance result.
Regional and transported aerosols during DRAGON-Japan experiment
NASA Astrophysics Data System (ADS)
Sano, I.; Holben, B. N.; Mukai, S.; Nakata, M.; Nakaguchi, Y.; Sugimoto, N.; Hatakeyama, S.; Nishizawa, T.; Takamura, T.; Takemura, T.; Yonemitsu, M.; Fujito, T.; Schafer, J.; Eck, T. F.; Sorokin, M.; Kenny, P.; Goto, M.; Hiraki, T.; Iguchi, N.; Kouzai, K.; KUJI, M.; Muramatsu, K.; Okada, Y.; Sadanaga, Y.; Tohno, S.; Toyazaki, Y.; Yamamoto, K.
2013-12-01
Aerosol properties over Japan have been monitored by AERONET sun / sky photometers since 2000. These measurements provides us with long term information of local aerosols, which are influenced by transported aerosols, such as Asian dusts or anthropogenic pollutants due to rapid increasing of energy consumption in Asian countries. A new aerosol monitoring experiment, Distributed Regional Aerosol Gridded Observation Networks (DRAGON) - Japan is operated in spring of 2012. The main instrument of DRAGON network is AERONET sun/sky radiometers. Some of them are sparsely set along the Japanese coast and some others make a dense network in Osaka, which is the second-largest city in Japan and famous for manufacturing town. Several 2ch NIES-LIDAR systems are also co-located with AERONET instrument to monitor Asian dusts throughout the campaign. The objects of Dragon-Japan are to characterize local aerosols as well as transported ones from the continent of China, and to acquire the detailed aerosol information for validating satellite data with high resolved spatial scale. This work presents the comprehensive results of aerosol properties with respect to regional- and/or transported- scale during DRAGON-Japan experiments.
Mahali: Space Weather Monitoring Using Multicore Mobile Devices
NASA Astrophysics Data System (ADS)
Pankratius, V.; Lind, F. D.; Coster, A. J.; Erickson, P. J.; Semeter, J. L.
2013-12-01
Analysis of Total Electron Content (TEC) measurements derived from Global Positioning System (GPS) signals has led to revolutionary new data products for space weather monitoring and ionospheric research. However, the current sensor network is sparse, especially over the oceans and in regions like Africa and Siberia, and the full potential of dense, global, real-time TEC monitoring remains to be realized. The Mahali project will prototype a revolutionary architecture that uses mobile devices, such as phones and tablets, to form a global space weather monitoring network. Mahali exploits the existing GPS infrastructure - more specifically, delays in multi-frequency GPS signals observed at the ground - to acquire a vast set of global TEC projections, with the goal of imaging multi-scale variability in the global ionosphere at unprecedented spatial and temporal resolution. With connectivity available worldwide, mobile devices are excellent candidates to establish crowd sourced global relays that feed multi-frequency GPS sensor data into a cloud processing environment. Once the data is within the cloud, it is relatively straightforward to reconstruct the structure of the space environment, and its dynamic changes. This vision is made possible owing to advances in multicore technology that have transformed mobile devices into parallel computers with several processors on a chip. For example, local data can be pre-processed, validated with other sensors nearby, and aggregated when transmission is temporarily unavailable. Intelligent devices can also autonomously decide the most practical way of transmitting data with in any given context, e.g., over cell networks or Wifi, depending on availability, bandwidth, cost, energy usage, and other constraints. In the long run, Mahali facilitates data collection from remote locations such as deserts or on oceans. For example, mobile devices on ships could collect time-tagged measurements that are transmitted at a later point in time when some connectivity is available. Our concept of the overall Mahali system will employ both auto-tuning and machine learning techniques to cope with the opportunistic nature of data collection, computational load distribution on mobile devices and in the cloud, and fault-tolerance in a dynamically changing network. "Kila Mahali" means "everywhere" in the Swahili language. This project will follow that spirit by enabling space weather data collection even in the most remote places, resulting in dramatic improvements in observational gaps that exist in space weather research today. The dense network may enable the use of the entire ionosphere as a sensor to monitor geophysical events from earthquakes to tsunamis, and other natural disasters.
Memory-Efficient Analysis of Dense Functional Connectomes.
Loewe, Kristian; Donohue, Sarah E; Schoenfeld, Mircea A; Kruse, Rudolf; Borgelt, Christian
2016-01-01
The functioning of the human brain relies on the interplay and integration of numerous individual units within a complex network. To identify network configurations characteristic of specific cognitive tasks or mental illnesses, functional connectomes can be constructed based on the assessment of synchronous fMRI activity at separate brain sites, and then analyzed using graph-theoretical concepts. In most previous studies, relatively coarse parcellations of the brain were used to define regions as graphical nodes. Such parcellated connectomes are highly dependent on parcellation quality because regional and functional boundaries need to be relatively consistent for the results to be interpretable. In contrast, dense connectomes are not subject to this limitation, since the parcellation inherent to the data is used to define graphical nodes, also allowing for a more detailed spatial mapping of connectivity patterns. However, dense connectomes are associated with considerable computational demands in terms of both time and memory requirements. The memory required to explicitly store dense connectomes in main memory can render their analysis infeasible, especially when considering high-resolution data or analyses across multiple subjects or conditions. Here, we present an object-based matrix representation that achieves a very low memory footprint by computing matrix elements on demand instead of explicitly storing them. In doing so, memory required for a dense connectome is reduced to the amount needed to store the underlying time series data. Based on theoretical considerations and benchmarks, different matrix object implementations and additional programs (based on available Matlab functions and Matlab-based third-party software) are compared with regard to their computational efficiency. The matrix implementation based on on-demand computations has very low memory requirements, thus enabling analyses that would be otherwise infeasible to conduct due to insufficient memory. An open source software package containing the created programs is available for download.
Memory-Efficient Analysis of Dense Functional Connectomes
Loewe, Kristian; Donohue, Sarah E.; Schoenfeld, Mircea A.; Kruse, Rudolf; Borgelt, Christian
2016-01-01
The functioning of the human brain relies on the interplay and integration of numerous individual units within a complex network. To identify network configurations characteristic of specific cognitive tasks or mental illnesses, functional connectomes can be constructed based on the assessment of synchronous fMRI activity at separate brain sites, and then analyzed using graph-theoretical concepts. In most previous studies, relatively coarse parcellations of the brain were used to define regions as graphical nodes. Such parcellated connectomes are highly dependent on parcellation quality because regional and functional boundaries need to be relatively consistent for the results to be interpretable. In contrast, dense connectomes are not subject to this limitation, since the parcellation inherent to the data is used to define graphical nodes, also allowing for a more detailed spatial mapping of connectivity patterns. However, dense connectomes are associated with considerable computational demands in terms of both time and memory requirements. The memory required to explicitly store dense connectomes in main memory can render their analysis infeasible, especially when considering high-resolution data or analyses across multiple subjects or conditions. Here, we present an object-based matrix representation that achieves a very low memory footprint by computing matrix elements on demand instead of explicitly storing them. In doing so, memory required for a dense connectome is reduced to the amount needed to store the underlying time series data. Based on theoretical considerations and benchmarks, different matrix object implementations and additional programs (based on available Matlab functions and Matlab-based third-party software) are compared with regard to their computational efficiency. The matrix implementation based on on-demand computations has very low memory requirements, thus enabling analyses that would be otherwise infeasible to conduct due to insufficient memory. An open source software package containing the created programs is available for download. PMID:27965565
Spatial and temporal variation of water temperature regimes on the Snoqualmie River network
Ashley E. Steel; Colin Sowder; Erin E. Peterson
2016-01-01
Although mean temperatures change annually and are highly correlated with elevation, the entire thermal regime on the Snoqualmie River, Washington, USA does not simply shift with elevation or season. Particular facets of the thermal regime have unique spatial patterns on the river network and at particular times of the year. We used a spatially and temporally dense...
Weak Ties and Self-Regulation in Job Search: The Effects of Goal Orientation on Networking
ERIC Educational Resources Information Center
Hatala, John-Paul; Yamkovenko, Bogdan
2016-01-01
The purpose of this study is to empirically investigate the relationship between the self-regulatory variable of goal orientation and the extent to which job seekers reach out to and use weak ties in their job search. Weak ties, as defined by Granovettor, are connections to densely knit networks outside the individual's direct contacts who could…
NASA Astrophysics Data System (ADS)
Miura, S.; Ohta, Y.; Ohzono, M.; Kita, S.; Iinuma, T.; Demachi, T.; Tachibana, K.; Nakayama, T.; Hirahara, S.; Suzuki, S.; Sato, T.; Uchida, N.; Hasegawa, A.; Umino, N.
2011-12-01
We propose a source fault model of the large intraslab earthquake with M7.1 deduced from a dense GPS network. The coseismic displacements obtained by GPS data analysis clearly show the spatial pattern specific to intraslab earthquakes not only in the horizontal components but also the vertical ones. A rectangular fault with uniform slip was estimated by a non-linear inversion approach. The results indicate that the simple rectangular fault model can explain the overall features of the observations. The amount of moment released is equivalent to Mw 7.17. The hypocenter depth of the main shock estimated by the Japan Meteorological Agency is slightly deeper than the neutral plane between down-dip compression (DC) and down-dip extension (DE) stress zones of the double-planed seismic zone. This suggests that the depth of the neutral plane was deepened by the huge slip of the 2011 M9.0 Tohoku earthquake, and the rupture of the thrust M7.1 earthquake was initiated at that depth, although more investigations are required to confirm this idea. The estimated fault plane has an angle of ~60 degrees from the surface of subducting Pacific plate. It is consistent with the hypothesis that intraslab earthquakes are thought to be reactivation of the preexisting hydrated weak zones made in bending process of oceanic plates around outer-rise regions.
NASA Astrophysics Data System (ADS)
Ansan, V.; Mangold, N.
2013-09-01
valley networks have been identified mainly in the Noachian heavily cratered uplands. Eight dense branching valley networks were studied in Noachian terrains of Huygens, Newcomb and Kepler craters, south Tyrrhena Terra, and Thaumasia, in Hesperian terrains of Echus Plateau and west Eberswalde craters, and in Amazonian terrains of Alba Patera, using images and digital elevation models from the Mars Express High Resolution Stereo Camera to determine 2D and 3D morphometric parameters. Extracted geomorphic parameters show similar geometry to terrestrial valleys: drainage densities, organization from bifurcation ratios and lengths ratios, Hack exponent consistent with terrestrial values of ~0.6, and progressive deepening of valleys with increasing Strahler order. In addition, statistics on valley depths indicate a deeper incision of Noachian valleys compared to younger post-Noachian valleys (<25 m for Amazonian ones compared to >100 m for Noachian ones), showing a strong difference in fluvial erosion. These characteristics show that dense Martian valley networks formed by overland flows in relation to a global atmospheric water cycle in Noachian epoch and confirm that the later stages of activity may be related to shorter duration of activity, distinct climatic conditions, and/or regional processes, or conditions.
Overlapping communities from dense disjoint and high total degree clusters
NASA Astrophysics Data System (ADS)
Zhang, Hongli; Gao, Yang; Zhang, Yue
2018-04-01
Community plays an important role in the field of sociology, biology and especially in domains of computer science, where systems are often represented as networks. And community detection is of great importance in the domains. A community is a dense subgraph of the whole graph with more links between its members than between its members to the outside nodes, and nodes in the same community probably share common properties or play similar roles in the graph. Communities overlap when nodes in a graph belong to multiple communities. A vast variety of overlapping community detection methods have been proposed in the literature, and the local expansion method is one of the most successful techniques dealing with large networks. The paper presents a density-based seeding method, in which dense disjoint local clusters are searched and selected as seeds. The proposed method selects a seed by the total degree and density of local clusters utilizing merely local structures of the network. Furthermore, this paper proposes a novel community refining phase via minimizing the conductance of each community, through which the quality of identified communities is largely improved in linear time. Experimental results in synthetic networks show that the proposed seeding method outperforms other seeding methods in the state of the art and the proposed refining method largely enhances the quality of the identified communities. Experimental results in real graphs with ground-truth communities show that the proposed approach outperforms other state of the art overlapping community detection algorithms, in particular, it is more than two orders of magnitude faster than the existing global algorithms with higher quality, and it obtains much more accurate community structure than the current local algorithms without any priori information.
NASA Astrophysics Data System (ADS)
Singh, R. P.; Prasad, A. K.; Kafatos, M.
2005-12-01
The Indo-Gangetic (IG) basin is one of the largest basins in the world which is densely populated and suffers with dense fog, haze and smog during winter season. About 500 million people live in the IG basin and due to the dense fog, haze and smog day to day life suffers. India is the third largest producer of the coal in the world and a large share is used in power and industrial sector. The coal used in the power plants is of poor quality (mostly E-F grade or lignite) with high ash content (35-50%) and low calorific value. India's energy consumption has increased 208% from 4.16 quadrillion Btu (quads) in 1980 to 12.8 quads in 2001 with a coal share of ~50.9%. Recent studies using satellite (Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging SpectroRadiometer (MISR)) and AERONET measurements show high aerosol optical depth (AOD) representing the intense air pollution over the IG basin that persists throughout the year. Such high concentrations of AOD show spatial and temporal variations which are controlled by the meteorological conditions (wind pattern, relative humidity, air temperature etc.) and topography. The high AOD observed over the IG basin is attributed to the emissions of fossil fuel SO2 and black carbon which has increased about 6 fold since 1930. The high AOD over the IG basin is attributed to the huge emission from the dense network of coal based thermal power plants in the IG basin and its surroundings that may be the probable cause for the atmospheric brown clouds (ABC). The impact of aerosol parameters on the climatic conditions will be discussed.
Techno-Economic Analysis of FiWi Access Networks Based on 802.11ac WLAN and NG-PON2 Networks
NASA Astrophysics Data System (ADS)
Breskovic, Damir; Begusic, Dinko
2017-05-01
In this article, techno-economic analysis of a fiber-wireless access network is presented. With high bandwidth capacity of the gigabit passive optical network and with cost-effectiveness of very high throughput 802.11ac wireless local area networks that enable user mobility in the wireless segment, fiber-wireless access networks can be considered as an alternative to the fiber-to-the-home architecture for next generation access networks. Analysis based on the proposed scenario here, shows that a fiber-wireless access network is a more cost-effective solution in densely populated areas, but with some introduced improvements, even other geotypes can be considered as a commercially-viable solution.
NASA Astrophysics Data System (ADS)
Nagai, S.; Hirata, N.; Sato, H.
2008-12-01
The island of Taiwan is located in the site of ongoing arc-continent collision zone between the Philippine Sea Plate (PSP) and the Eurasian Plate (EUP). Numerous geophysical and geological studies are done in and around Taiwan to develop various models to explain the tectonic processes in the Taiwan region. However, their details have not been known enough, especially under the Central Range. We suggest a new orogenic model for Taiwan orogeny, named 'Upper Crustal Stacking Model', inferred from our tomographic images using three temporary seismic networks with the Central Weather Bureau Seismic Network. These three temporary networks are the aftershock observation after the 1999 Chi-Chi Taiwan earthquake and two dense array observations across central and southern Taiwan, respectively. Tomographic images by the double-difference tomography [Zhang and Thurber, 2003] show a lateral alternate variation of high- and low-velocity, which are well correlated to surface geology and separated by east-dipping boundaries. These images have reliable high-resolution by dense arrays to be able to discuss this alternate variation. We found three high-velocity zones (> 6.0km/s). The westernmost zone corresponds to the subducting EUP. Other two zones are located beneath the Hsuehshan Range and the Eastern Central Range with trends of eastward dipping, respectively. And, we could image low-velocity zone located beneath Backbone Range between the two high-velocity zones clearly. We interpret that these east-dipping high- and low-velocity zones can be divided into two layered blocks and the subducting EUP, each of which consists of a high-velocity body under low-velocity one. Layered blocks can be interpreted as stacked thrust sheets between the subducting EUP and the Northern Luzon Arc, a part of PSP. These thrust sheets are parts of upper- and mid-crust detached from the subducting EUP. The model of continental subduction followed by buoyancy-driven exhumation can explain the existence of stacked thrust sheets. Thus we propose a new orogenic model, as referred to as the 'Upper Crustal Stacking Model'.
NASA Astrophysics Data System (ADS)
Takahashi, Y.
2016-12-01
It has become known that lightning activity represents the thunderstorm activity, namely, the intensity and area of precipitation and/or updraft. Thunderstorm is also important as a proxy of the energy input from ocean to atmosphere in typhoon, meaning that if we could monitor the thunderstorm with lightning we could predict the maximum wind velocity near the typhoon center by one or two days before. Constructing ELF and VLF radio wave observation network in Southeast Asia (AVON) and a regional dense network of automated weather station in a big city, we plan to establish the monitoring system for thunderstorm development in western pacific warm pool (WPWP) where typhoon is formed and in detail in big city area. On the other hand, some developing countries in SE-Asia are going to own micro-satellites dedicated to meteorological remote sensing. Making use of the lightning activity data measured by the ground-based networks, and information on 3-D structures of thunderclouds observed by the flexible on-demand operation of the remote-sensing micro-satellites, we would establish a new methodology to obtain very detail semi-real time information that cannot be achieved only with existing observation facilities, such as meteorological radar or large meteorological satellite. Using this new system we try to issue nowcast for the local thunderstorm and for typhoons. The first attempt will be carried out in Metro Manila in Philippines and WPWP as one of the SATREPS projects.
Detection and analysis of a transient energy burst with beamforming of multiple teleseismic phases
NASA Astrophysics Data System (ADS)
Retailleau, Lise; Landès, Matthieu; Gualtieri, Lucia; Shapiro, Nikolai M.; Campillo, Michel; Roux, Philippe; Guilbert, Jocelyn
2018-01-01
Seismological detection methods are traditionally based on picking techniques. These methods cannot be used to analyse emergent signals where the arrivals cannot be picked. Here, we detect and locate seismic events by applying a beamforming method that combines multiple body-wave phases to USArray data. This method explores the consistency and characteristic behaviour of teleseismic body waves that are recorded by a large-scale, still dense, seismic network. We perform time-slowness analysis of the signals and correlate this with the time-slowness equivalent of the different body-wave phases predicted by a global traveltime calculator, to determine the occurrence of an event with no a priori information about it. We apply this method continuously to one year of data to analyse the different events that generate signals reaching the USArray network. In particular, we analyse in detail a low-frequency secondary microseismic event that occurred on 2010 February 1. This event, that lasted 1 d, has a narrow frequency band around 0.1 Hz, and it occurred at a distance of 150° to the USArray network, South of Australia. We show that the most energetic phase observed is the PKPab phase. Direct amplitude analysis of regional seismograms confirms the occurrence of this event. We compare the seismic observations with models of the spectral density of the pressure field generated by the interferences between oceanic waves. We attribute the observed signals to a storm-generated microseismic event that occurred along the South East Indian Ridge.
NASA Astrophysics Data System (ADS)
Commerçon, B.; Hennebelle, P.; Levrier, F.; Launhardt, R.; Henning, Th.
2012-03-01
I will present radiation-magneto-hydrodynamics calculations of low-mass and massive dense core collapse, focusing on the first collapse and the first hydrostatic core (first Larson core) formation. The influence of magnetic field and initial mass on the fragmentation properties will be investigated. In the first part reporting low mass dense core collapse calculations, synthetic observations of spectral energy distributions will be derived, as well as classical observational quantities such as bolometric temperature and luminosity. I will show how the dust continuum can help to target first hydrostatic cores and to state about the nature of VeLLOs. Last, I will present synthetic ALMA observation predictions of first hydrostatic cores which may give an answer, if not definitive, to the fragmentation issue at the early Class 0 stage. In the second part, I will report the results of radiation-magneto-hydrodynamics calculations in the context of high mass star formation, using for the first time a self-consistent model for photon emission (i.e. via thermal emission and in radiative shocks) and with the high resolution necessary to resolve properly magnetic braking effects and radiative shocks on scales <100 AU (Commercon, Hennebelle & Henning ApJL 2011). In this study, we investigate the combined effects of magnetic field, turbulence, and radiative transfer on the early phases of the collapse and the fragmentation of massive dense cores (M=100 M_⊙). We identify a new mechanism that inhibits initial fragmentation of massive dense cores, where magnetic field and radiative transfer interplay. We show that this interplay becomes stronger as the magnetic field strength increases. We speculate that highly magnetized massive dense cores are good candidates for isolated massive star formation, while moderately magnetized massive dense cores are more appropriate to form OB associations or small star clusters. Finally we will also present synthetic observations of these collapsing massive dense cores.
NASA Astrophysics Data System (ADS)
Boose, Yvonne; Doumounia, Ali; Chwala, Christian; Moumouni, Sawadogo; Zougmoré, François; Kunstmann, Harald
2017-04-01
The number of rain gauges is declining worldwide. A recent promising method for alternative precipitation measurements is to derive rain rates from the attenuation of the microwave signal between remote antennas of mobile phone base stations, so called commercial microwave links (CMLs). In European countries, such as Germany, the CML technique can be used as a complementary method to the existing gauge and radar networks improving their products, for example, in mountainous terrain and urban areas. In West African countries, where a dense gauge or radar network is absent, the number of mobile phone users is rapidly increasing and so are the CML networks. Hence, the CML-derived precipitation measurements have high potential for applications such as flood warning and support of agricultural planning in this region. For typical CML bandwidths (10-40 GHz), the relationship of attenuation to rain rate is quasi-linear. However, also humidity, wet antennas or electronic noise can lead to signal interference. To distinguish these fluctuations from actual attenuation due to rain, a temporal wet (rain event occurred)/ dry (no rain event) classification is usually necessary. In dense CML networks this is possible by correlating neighboring CML time series. Another option is to use the correlation between signal time series of different frequencies or bidirectional signals. The CML network in rural areas is typically not dense enough for correlation analysis and often only one polarization and one frequency are available along a CML. In this work we therefore use cloud cover information derived from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) radiometer onboard the geostationary satellite METEOSAT for a wet (pixels along link are cloud covered)/ dry (no cloud along link) classification. We compare results for CMLs in Burkina Faso and Germany, which differ meteorologically (rain rate and duration, droplet size distributions) and technically (CML frequencies, lengths, signal level) and use rain gauge data as ground truth for validation.
Wang, Sheng-Jun; Hilgetag, Claus C.; Zhou, Changsong
2010-01-01
Cerebral cortical brain networks possess a number of conspicuous features of structure and dynamics. First, these networks have an intricate, non-random organization. In particular, they are structured in a hierarchical modular fashion, from large-scale regions of the whole brain, via cortical areas and area subcompartments organized as structural and functional maps to cortical columns, and finally circuits made up of individual neurons. Second, the networks display self-organized sustained activity, which is persistent in the absence of external stimuli. At the systems level, such activity is characterized by complex rhythmical oscillations over a broadband background, while at the cellular level, neuronal discharges have been observed to display avalanches, indicating that cortical networks are at the state of self-organized criticality (SOC). We explored the relationship between hierarchical neural network organization and sustained dynamics using large-scale network modeling. Previously, it was shown that sparse random networks with balanced excitation and inhibition can sustain neural activity without external stimulation. We found that a hierarchical modular architecture can generate sustained activity better than random networks. Moreover, the system can simultaneously support rhythmical oscillations and SOC, which are not present in the respective random networks. The mechanism underlying the sustained activity is that each dense module cannot sustain activity on its own, but displays SOC in the presence of weak perturbations. Therefore, the hierarchical modular networks provide the coupling among subsystems with SOC. These results imply that the hierarchical modular architecture of cortical networks plays an important role in shaping the ongoing spontaneous activity of the brain, potentially allowing the system to take advantage of both the sensitivity of critical states and the predictability and timing of oscillations for efficient information processing. PMID:21852971
A deep learning model observer for use in alterative forced choice virtual clinical trials
NASA Astrophysics Data System (ADS)
Alnowami, M.; Mills, G.; Awis, M.; Elangovanr, P.; Patel, M.; Halling-Brown, M.; Young, K. C.; Dance, D. R.; Wells, K.
2018-03-01
Virtual clinical trials (VCTs) represent an alternative assessment paradigm that overcomes issues of dose, high cost and delay encountered in conventional clinical trials for breast cancer screening. However, to fully utilize the potential benefits of VCTs requires a machine-based observer that can rapidly and realistically process large numbers of experimental conditions. To address this, a Deep Learning Model Observer (DLMO) was developed and trained to identify lesion targets from normal tissue in small (200 x 200 pixel) image segments, as used in Alternative Forced Choice (AFC) studies. The proposed network consists of 5 convolutional layers with 2x2 kernels and ReLU (Rectified Linear Unit) activations, followed by max pooling with size equal to the size of the final feature maps and three dense layers. The class outputs weights from the final fully connected dense layer are used to consider sets of n images in an n-AFC paradigm to determine the image most likely to contain a target. To examine the DLMO performance on clinical data, a training set of 2814 normal and 2814 biopsy-confirmed malignant mass targets were used. This produced a sensitivity of 0.90 and a specificity of 0.92 when presented with a test data set of 800 previously unseen clinical images. To examine the DLMOs minimum detectable contrast, a second dataset of 630 simulated backgrounds and 630 images with simulated lesion and spherical targets (4mm and 6mm diameter), produced contrast thresholds equivalent to/better than human observer performance for spherical targets, and comparable (12 % difference) for lesion targets.
Deployment of a Testbed in a Brazilian Research Network using IPv6 and Optical Access Technologies
NASA Astrophysics Data System (ADS)
Martins, Luciano; Ferramola Pozzuto, João; Olimpio Tognolli, João; Chaves, Niudomar Siqueira De A.; Reggiani, Atilio Eduardo; Hortêncio, Claudio Antonio
2012-04-01
This article presents the implementation of a testbed and the experimental results obtained with it on the Brazilian Experimental Network of the government-sponsored "GIGA Project." The use of IPv6 integrated to current and emerging optical architectures and technologies, such as dense wavelength division multiplexing and 10-gigabit Ethernet on the core and gigabit capable passive optical network and optical distribution network on access, were tested. These protocols, architectures, and optical technologies are promising and part of a brand new worldwide technological scenario that has being fairly adopted in the networks of enterprises and providers of the world.
A Multi-Method Approach for Proteomic Network Inference in 11 Human Cancers.
Şenbabaoğlu, Yasin; Sümer, Selçuk Onur; Sánchez-Vega, Francisco; Bemis, Debra; Ciriello, Giovanni; Schultz, Nikolaus; Sander, Chris
2016-02-01
Protein expression and post-translational modification levels are tightly regulated in neoplastic cells to maintain cellular processes known as 'cancer hallmarks'. The first Pan-Cancer initiative of The Cancer Genome Atlas (TCGA) Research Network has aggregated protein expression profiles for 3,467 patient samples from 11 tumor types using the antibody based reverse phase protein array (RPPA) technology. The resultant proteomic data can be utilized to computationally infer protein-protein interaction (PPI) networks and to study the commonalities and differences across tumor types. In this study, we compare the performance of 13 established network inference methods in their capacity to retrieve the curated Pathway Commons interactions from RPPA data. We observe that no single method has the best performance in all tumor types, but a group of six methods, including diverse techniques such as correlation, mutual information, and regression, consistently rank highly among the tested methods. We utilize the high performing methods to obtain a consensus network; and identify four robust and densely connected modules that reveal biological processes as well as suggest antibody-related technical biases. Mapping the consensus network interactions to Reactome gene lists confirms the pan-cancer importance of signal transduction pathways, innate and adaptive immune signaling, cell cycle, metabolism, and DNA repair; and also suggests several biological processes that may be specific to a subset of tumor types. Our results illustrate the utility of the RPPA platform as a tool to study proteomic networks in cancer.
Star polymers as unit cells for coarse-graining cross-linked networks
NASA Astrophysics Data System (ADS)
Molotilin, Taras Y.; Maduar, Salim R.; Vinogradova, Olga I.
2018-03-01
Reducing the complexity of cross-linked polymer networks by preserving their main macroscale properties is key to understanding them, and a crucial issue is to relate individual properties of the polymer constituents to those of the reduced network. Here we study polymer networks in a good solvent, by considering star polymers as their unit elements, and first quantify the interaction between their centers of masses. We then reduce the complexity of a network by replacing sets of its bridged star polymers by equivalent effective soft particles with dense cores. Our coarse graining allows us to approximate complex polymer networks by much simpler ones, keeping their relevant mechanical properties, as illustrated in computer experiments.
Weather monitoring and forecasting over eastern Attica (Greece) in the frame of FLIRE project
NASA Astrophysics Data System (ADS)
Kotroni, Vassiliki; Lagouvardos, Konstantinos; Chrysoulakis, Nektarios; Makropoulos, Christtos; Mimikou, Maria; Papathanasiou, Chrysoula; Poursanidis, Dimitris
2015-04-01
In the frame of FLIRE project a Decision Support System has been built with the aim to support decision making of Civil Protection Agencies and local stakeholders in the area of east Attica (Greece), in the cases of forest fires and floods. In this presentation we focus on a specific action that focuses on the provision of high resolution short-term weather forecasting data as well as of dense meteorological observations over the study area. Both weather forecasts and observations serve as an input in the Weather Information Management Tool (WIMT) of the Decision Support System. We focus on: (a) the description of the adopted strategy for setting-up the operational weather forecasting chain that provides the weather forecasts for the FLIRE project needs, (b) the presentation of the surface network station that provides real-time weather monitoring of the study area and (c) the strategy adopted for issuing smart alerts for thunderstorm forecasting based of real-time lightning observations as well as satellite observations.
NASA Astrophysics Data System (ADS)
Dixon, Kenneth
A lightning data assimilation technique is developed for use with observations from the World Wide Lightning Location Network (WWLLN). The technique nudges the water vapor mixing ratio toward saturation within 10 km of a lightning observation. This technique is applied to deterministic forecasts of convective events on 29 June 2012, 17 November 2013, and 19 April 2011 as well as an ensemble forecast of the 29 June 2012 event using the Weather Research and Forecasting (WRF) model. Lightning data are assimilated over the first 3 hours of the forecasts, and the subsequent impact on forecast quality is evaluated. The nudged deterministic simulations for all events produce composite reflectivity fields that are closer to observations. For the ensemble forecasts of the 29 June 2012 event, the improvement in forecast quality from lightning assimilation is more subtle than for the deterministic forecasts, suggesting that the lightning assimilation may improve ensemble convective forecasts where conventional observations (e.g., aircraft, surface, radiosonde, satellite) are less dense or unavailable.
Assimilation of glider and mooring data into a coastal ocean model
NASA Astrophysics Data System (ADS)
Jones, Emlyn M.; Oke, Peter R.; Rizwi, Farhan; Murray, Lawrence M.
We have applied an ensemble optimal interpolation (EnOI) data assimilation system to a high resolution coastal ocean model of south-east Tasmania, Australia. The region is characterised by a complex coastline with water masses influenced by riverine input and the interaction between two offshore current systems. Using a large static ensemble to estimate the systems background error covariance, data from a coastal observing network of fixed moorings and a Slocum glider are assimilated into the model at daily intervals. We demonstrate that the EnOI algorithm can successfully correct a biased high resolution coastal model. In areas with dense observations, the assimilation scheme reduces the RMS difference between the model and independent GHRSST observations by 90%, while the domain-wide RMS difference is reduced by a more modest 40%. Our findings show that errors introduced by surface forcing and boundary conditions can be identified and reduced by a relatively sparse observing array using an inexpensive ensemble-based data assimilation system.
NASA Astrophysics Data System (ADS)
Turkelli, N.; Teoman, U.; Altuncu Poyraz, S.; Cambaz, D.; Mutlu, A. K.; Kahraman, M.; Houseman, G. A.; Rost, S.; Thompson, D. A.; Cornwell, D. G.; Utkucu, M.; Gülen, L.
2013-12-01
The North Anatolian Fault (NAF) is one of the major strike slip fault systems on Earth comparable to San Andreas Fault in some ways. Devastating earthquakes have occurred along this system causing major damage and casualties. In order to comprehensively investigate the shallow and deep crustal structure beneath the western segment of NAF, a temporary dense seismic network for North Anatolia (DANA) consisting of 73 broadband sensors was deployed in early May 2012 surrounding a rectangular grid of by 70 km and a nominal station spacing of 7 km with the aim of further enhancing the detection capability of this dense seismic array. This joint project involves researchers from University of Leeds, UK, Bogazici University Kandilli Observatory and Earthquake Research Institute (KOERI), and University of Sakarya and primarily focuses on upper crustal studies such as earthquake locations (especially micro-seismic activity), receiver functions, moment tensor inversions, shear wave splitting, and ambient noise correlations. To begin with, we obtained the hypocenter locations of local earthquakes that occured within the DANA network. The dense 2-D grid geometry considerably enhanced the earthquake detection capability which allowed us to precisely locate events with local magnitudes (Ml) less than 1.0. Accurate earthquake locations will eventually lead to high resolution images of the upper crustal structure beneath the northern and southern branches of NAF in Sakarya region. In order to put additional constraints on the active tectonics of the western part of NAF, we also determined fault plane solutions using Regional Moment Tensor Inversion (RMT) and P wave first motion methods. For the analysis of high quality fault plane solutions, data from KOERI and the DANA project were merged. Furthermore, with the aim of providing insights on crustal anisotropy, shear wave splitting parameters such as lag time and fast polarization direction were obtained for local events recorded within the seismic network with magnitudes larger than 2.5.
Fibers in the NGC 1333 proto-cluster
NASA Astrophysics Data System (ADS)
Hacar, A.; Tafalla, M.; Alves, J.
2017-10-01
Are the initial conditions for clustered star formation the same as for non-clustered star formation? To investigate the initial gas properties in young proto-clusters we carried out a comprehensive and high-sensitivity study of the internal structure, density, temperature, and kinematics of the dense gas content of the NGC 1333 region in Perseus, one of the nearest and best studied embedded clusters. The analysis of the gas velocities in the position-position-velocity space reveals an intricate underlying gas organization both in space and velocity. We identified a total of 14 velocity-coherent, (tran-)sonic structures within NGC 1333, with similar physical and kinematic properties than those quiescent, star-forming (aka fertile) fibers previously identified in low-mass star-forming clouds. These fibers are arranged in a complex spatial network, build-up the observed total column density, and contain the dense cores and protostars in this cloud. Our results demonstrate that the presence of fibers is not restricted to low-mass clouds but can be extended to regions of increasing mass and complexity. We propose that the observational dichotomy between clustered and non-clustered star-forming regions might be naturally explained by the distinct spatial density of fertile fibers in these environments. Based on observations carried out under project number 169-11 with the IRAM 30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Based on observations with the 100-m telescope of the MPIfR (Max-Planck-Institut für Radioastronomie) at Effelsberg.Molecular line observations (spectral cubes) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A123
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryzhii, V.; Institute of Ultra High Frequency Semiconductor Electronics of RAS, Moscow 117105; Center for Photonics and Infrared Engineering, Bauman Moscow State Technical University, Moscow 111005
2016-07-28
We consider the carrier transport and plasmonic phenomena in the lateral carbon nanotube (CNT) networks forming the device channel with asymmetric electrodes. One electrode is the Ohmic contact to the CNT network and the other contact is the Schottky contact. These structures can serve as detectors of the terahertz (THz) radiation. We develop the device model for collective response of the lateral CNT networks which comprise a mixture of randomly oriented semiconductor CNTs (s-CNTs) and quasi-metal CNTs (m-CNTs). The proposed model includes the concept of the collective two-dimensional (2D) plasmons in relatively dense networks of randomly oriented CNTs (CNT “felt”)more » and predicts the detector responsivity spectral characteristics exhibiting sharp resonant peaks at the signal frequencies corresponding to the 2D plasmonic resonances. The detection mechanism is the rectification of the ac current due the nonlinearity of the Schottky contact current-voltage characteristics under the conditions of a strong enhancement of the potential drop at this contact associated with the plasmon excitation. The detector responsivity depends on the fractions of the s- and m-CNTs. The burning of the near-contact regions of the m-CNTs or destruction of these CNTs leads to a marked increase in the responsivity in agreement with our experimental data. The resonant THz detectors with sufficiently dense lateral CNT networks can compete and surpass other THz detectors using plasmonic effects at room temperatures.« less
Community Seismic Network (CSN)
NASA Astrophysics Data System (ADS)
Clayton, R. W.; Heaton, T. H.; Kohler, M. D.; Cheng, M.; Guy, R.; Chandy, M.; Krause, A.; Bunn, J.; Olson, M.; Faulkner, M.
2011-12-01
The CSN is a network of low-cost accelerometers deployed in the Pasadena, CA region. It is a prototype network with the goal of demonstrating the importance of dense measurements in determining the rapid lateral variations in ground motion due to earthquakes. The main product of the CSN is a map of peak ground produced within seconds of significant local earthquakes that can be used as a proxy for damage. Examples of this are shown using data from a temporary network in Long Beach, CA. Dense measurements in buildings are also being used to determine the state of health of structures. In addition to fixed sensors, portable sensors such as smart phones are also used in the network. The CSN has necessitated several changes in the standard design of a seismic network. The first is that the data collection and processing is done in the "cloud" (Google cloud in this case) for robustness and the ability to handle large impulsive loads (earthquakes). Second, the database is highly de-normalized (i.e. station locations are part of waveform and event-detection meta data) because of the mobile nature of the sensors. Third, since the sensors are hosted and/or owned by individuals, the privacy of the data is very important. The location of fixed sensors is displayed on maps as sensor counts in block-wide cells, and mobile sensors are shown in a similar way, with the additional requirement to inhibit tracking that at least two must be present in a particular cell before any are shown. The raw waveform data are only released to users outside of the network after a felt earthquake.
Naveros, Francisco; Luque, Niceto R; Garrido, Jesús A; Carrillo, Richard R; Anguita, Mancia; Ros, Eduardo
2015-07-01
Time-driven simulation methods in traditional CPU architectures perform well and precisely when simulating small-scale spiking neural networks. Nevertheless, they still have drawbacks when simulating large-scale systems. Conversely, event-driven simulation methods in CPUs and time-driven simulation methods in graphic processing units (GPUs) can outperform CPU time-driven methods under certain conditions. With this performance improvement in mind, we have developed an event-and-time-driven spiking neural network simulator suitable for a hybrid CPU-GPU platform. Our neural simulator is able to efficiently simulate bio-inspired spiking neural networks consisting of different neural models, which can be distributed heterogeneously in both small layers and large layers or subsystems. For the sake of efficiency, the low-activity parts of the neural network can be simulated in CPU using event-driven methods while the high-activity subsystems can be simulated in either CPU (a few neurons) or GPU (thousands or millions of neurons) using time-driven methods. In this brief, we have undertaken a comparative study of these different simulation methods. For benchmarking the different simulation methods and platforms, we have used a cerebellar-inspired neural-network model consisting of a very dense granular layer and a Purkinje layer with a smaller number of cells (according to biological ratios). Thus, this cerebellar-like network includes a dense diverging neural layer (increasing the dimensionality of its internal representation and sparse coding) and a converging neural layer (integration) similar to many other biologically inspired and also artificial neural networks.
Hypernuclei and the hyperon problem in neutron stars
Bedaque, Paulo F.; Steiner, Andrew W.
2015-08-17
The likely presence ofmore » $$\\Lambda$$ baryons in dense hadronic matter tends to soften the equation of state to an extend that the observed heaviest neutron stars are difficult to explain. Here we analyze this "hyperon problem" with a phenomenological approach. First, we review what can be learned about the interaction of $$\\Lambda$$ particle with dense matter from the observed hypernuclei and extend this phenomenological analysis to asymmetric matter. We add to this the current knowledge on non-strange dense matter, including its uncertainties, to conclude that the interaction between $$\\Lambda$$s and dense matter has to become repulsive at densities below three times the nuclear saturation density.« less
Fundamental structures of dynamic social networks.
Sekara, Vedran; Stopczynski, Arkadiusz; Lehmann, Sune
2016-09-06
Social systems are in a constant state of flux, with dynamics spanning from minute-by-minute changes to patterns present on the timescale of years. Accurate models of social dynamics are important for understanding the spreading of influence or diseases, formation of friendships, and the productivity of teams. Although there has been much progress on understanding complex networks over the past decade, little is known about the regularities governing the microdynamics of social networks. Here, we explore the dynamic social network of a densely-connected population of ∼1,000 individuals and their interactions in the network of real-world person-to-person proximity measured via Bluetooth, as well as their telecommunication networks, online social media contacts, geolocation, and demographic data. These high-resolution data allow us to observe social groups directly, rendering community detection unnecessary. Starting from 5-min time slices, we uncover dynamic social structures expressed on multiple timescales. On the hourly timescale, we find that gatherings are fluid, with members coming and going, but organized via a stable core of individuals. Each core represents a social context. Cores exhibit a pattern of recurring meetings across weeks and months, each with varying degrees of regularity. Taken together, these findings provide a powerful simplification of the social network, where cores represent fundamental structures expressed with strong temporal and spatial regularity. Using this framework, we explore the complex interplay between social and geospatial behavior, documenting how the formation of cores is preceded by coordination behavior in the communication networks and demonstrating that social behavior can be predicted with high precision.
Fundamental structures of dynamic social networks
Sekara, Vedran; Stopczynski, Arkadiusz; Lehmann, Sune
2016-01-01
Social systems are in a constant state of flux, with dynamics spanning from minute-by-minute changes to patterns present on the timescale of years. Accurate models of social dynamics are important for understanding the spreading of influence or diseases, formation of friendships, and the productivity of teams. Although there has been much progress on understanding complex networks over the past decade, little is known about the regularities governing the microdynamics of social networks. Here, we explore the dynamic social network of a densely-connected population of ∼1,000 individuals and their interactions in the network of real-world person-to-person proximity measured via Bluetooth, as well as their telecommunication networks, online social media contacts, geolocation, and demographic data. These high-resolution data allow us to observe social groups directly, rendering community detection unnecessary. Starting from 5-min time slices, we uncover dynamic social structures expressed on multiple timescales. On the hourly timescale, we find that gatherings are fluid, with members coming and going, but organized via a stable core of individuals. Each core represents a social context. Cores exhibit a pattern of recurring meetings across weeks and months, each with varying degrees of regularity. Taken together, these findings provide a powerful simplification of the social network, where cores represent fundamental structures expressed with strong temporal and spatial regularity. Using this framework, we explore the complex interplay between social and geospatial behavior, documenting how the formation of cores is preceded by coordination behavior in the communication networks and demonstrating that social behavior can be predicted with high precision. PMID:27555584
Association of childhood abuse with homeless women's social networks.
Green, Harold D; Tucker, Joan S; Wenzel, Suzanne L; Golinelli, Daniela; Kennedy, David P; Ryan, Gery W; Zhou, Annie J
2012-01-01
Childhood abuse has been linked to negative sequelae for women later in life including drug and alcohol use and violence as victim or perpetrator and may also affect the development of women's social networks. Childhood abuse is prevalent among at-risk populations of women (such as the homeless) and thus may have a stronger impact on their social networks. We conducted a study to: (a) develop a typology of sheltered homeless women's social networks; (b) determine whether childhood abuse was associated with the social networks of sheltered homeless women; and (c) determine whether those associations remained after accounting for past-year substance abuse and recent intimate partner abuse. A probability sample of 428 homeless women from temporary shelter settings in Los Angeles County completed a personal network survey that provided respondent information as well as information about their network members' demographics and level of interaction with each other. Cluster analyses identified groups of women who shared specific social network characteristics. Multinomial logistic regressions revealed variables associated with group membership. We identified three groups of women with differing social network characteristics: low-risk networks, densely connected risky networks (dense, risky), and sparsely connected risky networks (sparse, risky). Multinomial logistic regressions indicated that membership in the sparse, risky network group, when compared to the low-risk group, was associated with history of childhood physical abuse (but not sexual or emotional abuse). Recent drug abuse was associated with membership in both risky network groups; however, the association of childhood physical abuse with sparse, risky network group membership remained. Although these findings support theories proposing that the experience of childhood abuse can shape women's social networks, they suggest that it may be childhood physical abuse that has the most impact among homeless women. The effects of childhood physical abuse should be more actively investigated in clinical settings, especially those frequented by homeless women, particularly with respect to the formation of social networks in social contexts that may expose these women to greater risks. Copyright © 2012. Published by Elsevier Ltd.
Salsberg, Jon; Macridis, Soultana; Garcia Bengoechea, Enrique; Macaulay, Ann C; Moore, Spencer
2017-06-01
. Community based participatory research (CBPR) is often initiated by academic researchers, yet relies on meaningful community engagement and ownership to have lasting impact. Little is understood about how ownership shifts from academic to community partners. . We examined a CBPR project over its life course and asked: what does the evolution of ownership look like from project initiation by an academic (non-community) champion (T1); to maturation-when the intervention is ready to be deployed (T2); to independence-the time when the original champion steps aside (T3); and finally, to its maintenance-when the community has had an opportunity to function independently of the original academic champion (T4)? . Using sociometric (whole network) social network analysis, knowledge leadership was measured using 'in-degree centrality'. Stakeholder network structure was measured using 'centralisation' and 'core-periphery analysis'. Friedman rank sum test was used to measure change in actor roles over time from T1 to T4. . Project stakeholder roles were observed to shift significantly (P < 0.005) from initiation (T1) to project maintenance (T4). Community stakeholders emerged into positions of knowledge leadership, while the roles of academic partners diminished in importance. The overall stakeholder network demonstrated a structural shift towards a core of densely interacting community stakeholders. . This was the first study to use Social network analysis to document a shift in ownership from academic to community partners, indicating community self-determination over the research process. Further analysis of qualitative data will determine which participatory actions or strategies were responsible for this observed change. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Cennamo, Gilda; Rossi, Claudia; Ruggiero, Pasquale; de Crecchio, Giuseppe; Cennamo, Giovanni
2017-04-01
To evaluate the radial peripapillary capillary network with optical coherence tomography angiography (angio-OCT) in morning glory syndrome (MGS), optic disc colobomas, and optic disc pits, and to explore possible correlations between the neural vascular structure and the pathogenesis of congenital optic disc anomalies. Prospective observational comparative case series. Fifteen eyes of 15 patients with congenital optic disc anomalies were enrolled in this study. All patients underwent angio-OCT. The scans were centered on optic discs. The mean age at presentation was 33 years (range: 19-50 years). Congenital optic disc anomalies were identified in all 15 eyes. Three eyes had the characteristic funduscopic signs of MGS, and angio-OCT scans of the peripapillary retina revealed a dense microvascular network. Optic disc colobomas were found in 5 eyes, and the characteristic funduscopic signs of optic pits were found in 7 eyes. Angio-OCT showed the absence of a radial peripapillary microvascular network in these 12 eyes. The finding that angio-OCT scans confirmed the presence of a peripapillary microvascular network only in MGS cases supports the hypothesis that a primary neuroectodermal abnormality and a secondary mesenchymal abnormality leads to MGS. Angio-OCT is a safe, rapid imaging technique that could shed light on the pathogenesis of rare diseases of the optic disc. Copyright © 2016 Elsevier Inc. All rights reserved.
Ma, Xiaofeng; Kohashi, Tsunehiko; Carlson, Bruce A
2013-07-01
Many sensory brain regions are characterized by extensive local network interactions. However, we know relatively little about the contribution of this microcircuitry to sensory coding. Detailed analyses of neuronal microcircuitry are usually performed in vitro, whereas sensory processing is typically studied by recording from individual neurons in vivo. The electrosensory pathway of mormyrid fish provides a unique opportunity to link in vitro studies of synaptic physiology with in vivo studies of sensory processing. These fish communicate by actively varying the intervals between pulses of electricity. Within the midbrain posterior exterolateral nucleus (ELp), the temporal filtering of afferent spike trains establishes interval tuning by single neurons. We characterized pairwise neuronal connectivity among ELp neurons with dual whole cell recording in an in vitro whole brain preparation. We found a densely connected network in which single neurons influenced the responses of other neurons throughout the network. Similarly tuned neurons were more likely to share an excitatory synaptic connection than differently tuned neurons, and synaptic connections between similarly tuned neurons were stronger than connections between differently tuned neurons. We propose a general model for excitatory network interactions in which strong excitatory connections both reinforce and adjust tuning and weak excitatory connections make smaller modifications to tuning. The diversity of interval tuning observed among this population of neurons can be explained, in part, by each individual neuron receiving a different complement of local excitatory inputs.
Building a Successful Technology Cluster
Silicon Valley is the iconic cluster—a dense regional network of companies, universities, research institutions, and other stakeholders involved in a single industry. Many regions have sought to replicate the success of Silicon Valley, which has produced technological innov...
NASA Astrophysics Data System (ADS)
Matoza, R. S.; Jolly, A. D.; Fee, D.; Johnson, R.; Kilgour, G.; Christenson, B. W.; Garaebiti, E.; Iezzi, A. M.; Austin, A.; Kennedy, B.; Fitzgerald, R.; Key, N.
2016-12-01
Seismo-acoustic wavefields at volcanoes contain rich information on shallow magma transport and subaerial eruption processes. Acoustic wavefields from eruptions are predicted to be directional, but sampling this wavefield directivity is challenging because infrasound sensors are usually deployed on the ground surface. We attempt to overcome this observational limitation using a novel deployment of infrasound sensors on tethered balloons in tandem with a suite of dense ground-based seismo-acoustic, geochemical, and eruption imaging instrumentation. We present preliminary results from a field experiment at Yasur Volcano, Vanuatu from July 26th to August 4th 2016. Our observations include data from a temporary network of 11 broadband seismometers, 6 single infrasonic microphones, 7 small-aperture 3-element infrasound arrays, 2 infrasound sensor packages on tethered balloons, an FTIR, a FLIR, 2 scanning Flyspecs, and various visual imaging data. An introduction to the dataset and preliminary analysis of the 3D seismo-acoustic wavefield and source process will be presented. This unprecedented dataset should provide a unique window into processes operating in the shallow magma plumbing system and their relation to subaerial eruption dynamics.
High-frequency waves following PKP-CDIFF at distances greater than 155°
NASA Astrophysics Data System (ADS)
Nakanishi, Ichiro
1990-04-01
Using a seismic network in Hokkaido-Tohoku region, Japan we observe PKP waves in the distance range 152 to 157°from a deep earthquake in Argentina. The seismic network consists of 26 stations and provides us with a data set of dense distance sampling. The examination of amplitude variation of PKP-BC and PKP-Cdiff with distance locates the C-cusp at about 155.5° for a surface source for the path from Argentina to Japan. This C-cusp position suggests a P velocity of 10.27 km/s at the bottom of the outer core. The bandpass filtering of the data shows that high-frequency waves are observed following PKP-Cdiff at distances beyond the C-cusp. The waves are characterized by a dominant frequency of about 2 to 3 Hz, a long duration of oscillation until the arrival of PKP-AB, and an apparent onset slowness of about 4 s/deg, which is approximately equal to that of PKP-AB in the distance range. The onset time of the high-frequency waves seems to be consistent with the least time of the scattering of PKP-BC on the receiver side near the bottom of the upper mantle.
NASA Astrophysics Data System (ADS)
Contractor, S.; Donat, M.; Alexander, L. V.
2017-12-01
Reliable observations of precipitation are necessary to determine past changes in precipitation and validate models, allowing for reliable future projections. Existing gauge based gridded datasets of daily precipitation and satellite based observations contain artefacts and have a short length of record, making them unsuitable to analyse precipitation extremes. The largest limiting factor for the gauge based datasets is a dense and reliable station network. Currently, there are two major data archives of global in situ daily rainfall data, first is Global Historical Station Network (GHCN-Daily) hosted by National Oceanic and Atmospheric Administration (NOAA) and the other by Global Precipitation Climatology Centre (GPCC) part of the Deutsche Wetterdienst (DWD). We combine the two data archives and use automated quality control techniques to create a reliable long term network of raw station data, which we then interpolate using block kriging to create a global gridded dataset of daily precipitation going back to 1950. We compare our interpolated dataset with existing global gridded data of daily precipitation: NOAA Climate Prediction Centre (CPC) Global V1.0 and GPCC Full Data Daily Version 1.0, as well as various regional datasets. We find that our raw station density is much higher than other datasets. To avoid artefacts due to station network variability, we provide multiple versions of our dataset based on various completeness criteria, as well as provide the standard deviation, kriging error and number of stations for each grid cell and timestep to encourage responsible use of our dataset. Despite our efforts to increase the raw data density, the in situ station network remains sparse in India after the 1960s and in Africa throughout the timespan of the dataset. Our dataset would allow for more reliable global analyses of rainfall including its extremes and pave the way for better global precipitation observations with lower and more transparent uncertainties.
NASA Astrophysics Data System (ADS)
Lakshmi Madhavan, Bomidi; Deneke, Hartwig; Witthuhn, Jonas; Macke, Andreas
2017-03-01
The time series of global radiation observed by a dense network of 99 autonomous pyranometers during the HOPE campaign around Jülich, Germany, are investigated with a multiresolution analysis based on the maximum overlap discrete wavelet transform and the Haar wavelet. For different sky conditions, typical wavelet power spectra are calculated to quantify the timescale dependence of variability in global transmittance. Distinctly higher variability is observed at all frequencies in the power spectra of global transmittance under broken-cloud conditions compared to clear, cirrus, or overcast skies. The spatial autocorrelation function including its frequency dependence is determined to quantify the degree of similarity of two time series measurements as a function of their spatial separation. Distances ranging from 100 m to 10 km are considered, and a rapid decrease of the autocorrelation function is found with increasing frequency and distance. For frequencies above 1/3 min-1 and points separated by more than 1 km, variations in transmittance become completely uncorrelated. A method is introduced to estimate the deviation between a point measurement and a spatially averaged value for a surrounding domain, which takes into account domain size and averaging period, and is used to explore the representativeness of a single pyranometer observation for its surrounding region. Two distinct mechanisms are identified, which limit the representativeness; on the one hand, spatial averaging reduces variability and thus modifies the shape of the power spectrum. On the other hand, the correlation of variations of the spatially averaged field and a point measurement decreases rapidly with increasing temporal frequency. For a grid box of 10 km × 10 km and averaging periods of 1.5-3 h, the deviation of global transmittance between a point measurement and an area-averaged value depends on the prevailing sky conditions: 2.8 (clear), 1.8 (cirrus), 1.5 (overcast), and 4.2 % (broken clouds). The solar global radiation observed at a single station is found to deviate from the spatial average by as much as 14-23 (clear), 8-26 (cirrus), 4-23 (overcast), and 31-79 W m-2 (broken clouds) from domain averages ranging from 1 km × 1 km to 10 km × 10 km in area.
Discovering Social Circles in Ego Networks (Author’s Manuscript)
2013-01-10
ego-network. We expect that circles are formed by densely-connected sets of alters ( Newman , 2006). However, different circles overlap heavily, i.e...umbrella of community detection (Lancichinetti and Fortunato, 2009a; Schaeffer, 2007; Leskovec et al., 2010; Porter et al., 2009; Newman , 2004). While...MCMC) sampler ( Newman and Barkema, 1999) which efficiently updates node-community memberships by ‘collapsing’ nodes that have common features and
Nonvolatile Ionic Two-Terminal Memory Device
NASA Technical Reports Server (NTRS)
Williams, Roger M.
1990-01-01
Conceptual solid-state memory device nonvolatile and erasable and has only two terminals. Proposed device based on two effects: thermal phase transition and reversible intercalation of ions. Transfer of sodium ions between source of ions and electrical switching element increases or decreases electrical conductance of element, turning switch "on" or "off". Used in digital computers and neural-network computers. In neural networks, many small, densely packed switches function as erasable, nonvolatile synaptic elements.
Lamontagne, Marie-Eve
2013-01-01
Integration is a popular strategy to increase the quality of care within systems of care. However, there is no common language, approach or tool allowing for a valid description, comparison and evaluation of integrated care. Social network analysis could be a viable methodology to provide an objective picture of integrated networks. To illustrate social network analysis use in the context of systems of care for traumatic brain injury. We surveyed members of a network using a validated questionnaire to determine the links between them. We determined the density, centrality, multiplexity, and quality of the links reported. The network was described as moderately dense (0.6), the most prevalent link was knowledge, and four organisation members of a consortium were central to the network. Social network analysis allowed us to create a graphic representation of the network. Social network analysis is a useful methodology to objectively characterise integrated networks.
Wang, Quan; Jia, Peilin; Cuenco, Karen T.; Feingold, Eleanor; Marazita, Mary L.; Wang, Lily; Zhao, Zhongming
2013-01-01
A number of genetic studies have suggested numerous susceptibility genes for dental caries over the past decade with few definite conclusions. The rapid accumulation of relevant information, along with the complex architecture of the disease, provides a challenging but also unique opportunity to review and integrate the heterogeneous data for follow-up validation and exploration. In this study, we collected and curated candidate genes from four major categories: association studies, linkage scans, gene expression analyses, and literature mining. Candidate genes were prioritized according to the magnitude of evidence related to dental caries. We then searched for dense modules enriched with the prioritized candidate genes through their protein-protein interactions (PPIs). We identified 23 modules comprising of 53 genes. Functional analyses of these 53 genes revealed three major clusters: cytokine network relevant genes, matrix metalloproteinases (MMPs) family, and transforming growth factor-beta (TGF-β) family, all of which have been previously implicated to play important roles in tooth development and carious lesions. Through our extensive data collection and an integrative application of gene prioritization and PPI network analyses, we built a dental caries-specific sub-network for the first time. Our study provided insights into the molecular mechanisms underlying dental caries. The framework we proposed in this work can be applied to other complex diseases. PMID:24146904
Finding Hierarchical and Overlapping Dense Subgraphs using Nucleus Decompositions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seshadhri, Comandur; Pinar, Ali; Sariyuce, Ahmet Erdem
Finding dense substructures in a graph is a fundamental graph mining operation, with applications in bioinformatics, social networks, and visualization to name a few. Yet most standard formulations of this problem (like clique, quasiclique, k-densest subgraph) are NP-hard. Furthermore, the goal is rarely to nd the \\true optimum", but to identify many (if not all) dense substructures, understand their distribution in the graph, and ideally determine a hierarchical structure among them. Current dense subgraph nding algorithms usually optimize some objective, and only nd a few such subgraphs without providing any hierarchy. It is also not clear how to account formore » overlaps in dense substructures. We de ne the nucleus decomposition of a graph, which represents the graph as a forest of nuclei. Each nucleus is a subgraph where smaller cliques are present in many larger cliques. The forest of nuclei is a hierarchy by containment, where the edge density increases as we proceed towards leaf nuclei. Sibling nuclei can have limited intersections, which allows for discovery of overlapping dense subgraphs. With the right parameters, the nuclear decomposition generalizes the classic notions of k-cores and k-trusses. We give provable e cient algorithms for nuclear decompositions, and empirically evaluate their behavior in a variety of real graphs. The tree of nuclei consistently gives a global, hierarchical snapshot of dense substructures, and outputs dense subgraphs of higher quality than other state-of-theart solutions. Our algorithm can process graphs with tens of millions of edges in less than an hour.« less
Chu, GuangYong; Maho, Anaëlle; Cano, Iván; Polo, Victor; Brenot, Romain; Debrégeas, Hélène; Prat, Josep
2016-10-15
We demonstrate a monolithically integrated dual-output DFB-SOA, and conduct the field trial on a multi-user bidirectional coherent ultradense wavelength division multiplexing-passive optical network (UDWDM-PON). To the best of our knowledge, this is the first achievement of simplified single integrated laser-based neighboring coherent optical network units (ONUs) with a 12.5 GHz channel spaced ultra-dense access network, including both downstream and upstream, taking the benefits of low footprint and low-temperature dependence.
From Discrete Breathers to Many Body Localization and Flatbands
NASA Astrophysics Data System (ADS)
Flach, Sergej
Discrete breathers (DB) and intrinsic localized modes (ILM) are synonymic dynamical states on nonlinear lattices - periodic in time and localized in space, and widely observed in many applications. I will discuss the connections between DBs and many-body localization (MBL) and the properties of DBs on flatband networks. A dense quantized gas of strongly excited DBs can lead to a MBL phase in a variety of different lattice models. Its classical counterpart corresponds to a 'nonergodic metal' in the MBL language, or to a nonGibbsean selftrapped state in the language of nonlinear dynamics. Flatband networks are lattices with small amplitude waves exhibiting macroscopic degeneracy in their band structure due to local symmetries, destructive interference, compact localized eigenstates and horizontal flat bands. DBs can preserve the compactness of localization in the presence of nonlinearity with properly tuned internal phase relationships, making them promising tools for control of the phase coherence of waves. Also at New Zealand Institute of Advanced Study, Massey University, Auckland, New Zealand.
Elastic properties of compressed emulsions
NASA Astrophysics Data System (ADS)
Jorjadze, Ivane; Brujic, Jasna
2012-02-01
Visualizing the packing of a dense emulsion in 3D as a function of the external pressure allows us to characterize the geometry and the local stress distribution inside this jammed system. We first test the scaling laws of the pressure and average coordination number over two orders of magnitude in density. We find deviations from theoretical exponents due to the non-affine motion of the particles. Second, we observe that the distribution of forces changes from a broad exponential at the jamming point to a narrower Gaussian-like distribution under high compression. Finally, we calculate the density of states from the measured force network in the approximation of a harmonic potential. Close to jamming, the number of low frequency modes is high, while the application of pressure shifts the distribution to higher frequencies, indicative of a rigid network. The confocal images reveal the structural features associated with the low frequency modes, as well as their localization within the packing. These data are then compared with published results from numerical simulations.
Camelo-Méndez, Gustavo A; Agama-Acevedo, Edith; Rosell, Cristina M; de J Perea-Flores, Maria; Bello-Pérez, Luis A
2018-10-15
The microstructure of cooked gluten-free pasta depends on the ingredients used, and this microstructure affects the starch hydrolysis (SH), the release of phenolic compounds (PC) and their antioxidant capacity (AC). The aim of this study was to evaluate the SD and bioaccessibility of PC during in vitro gastrointestinal digestion of gluten-free pasta and its relationship with the microstructure. The highest SH was during the intestinal phase (≈60%), but pasta with the highest content of unripe plantain and chickpea presented the lowest release of PC (≈60%). The insoluble dietary fibre could be responsible (≈12.5%) for these effects. The cooked pasta showed high AC in the intestinal phase. Regions with gelatinized starch granules in a less dense protein network and other regions with intact or swollen granules surrounded by a protein network were observed. The starch digestion and bioaccessibility of PC were related to the structure of the matrix. Copyright © 2018 Elsevier Ltd. All rights reserved.
First Evaluation of Rainfall Derived from Commercial Microwave Links in São Paulo, Brazil
NASA Astrophysics Data System (ADS)
Uijlenhoet, R.; Rios Gaona, M. F.; Overeem, A.; Leijnse, H.; Raupach, T.
2017-12-01
Rainfall estimation from commercial microwave link (CML) networks has gained a lot of attention from the hydrometeorological community in the last decade. Path-averaged rainfall intensities can be retrieved from the signal attenuation between cell phone towers. Such a technique offers rainfall retrievals at high spatiotemporal resolutions. High spatiotemporal rainfall measurements are highly important for urban hydrology, given the often deadly impact of flash floods to society. This study evaluates CML rainfall retrievals for a subtropical climate. Rainfall estimation for subtropical climates is highly relevant, since many countries with few surface rainfall observations are located in such areas. The evaluation is done for the Brazilian city of São Paulo. RAINLINK (the open-source algorithm) retrieves rainfall intensities from attenuation measurements. We evaluated CMLs in the São Paulo metropolitan area for 81 days between October 2014 and January 2015. The evaluation was done against a dense automatic gauge network. High correlations (>0.9) and low biases ( 30%) are obtained, especially for short CMLs.
A study of infrasonic anisotropy and multipathing in the atmosphere using seismic networks.
Hedlin, Michael A H; Walker, Kristoffer T
2013-02-13
We discuss the use of reverse time migration (RTM) with dense seismic networks for the detection and location of sources of atmospheric infrasound. Seismometers measure the response of the Earth's surface to infrasound through acoustic-to-seismic coupling. RTM has recently been applied to data from the USArray network to create a catalogue of infrasonic sources in the western US. Specifically, several hundred sources were detected in 2007-2008, many of which were not observed by regional infrasonic arrays. The influence of the east-west stratospheric zonal winds is clearly seen in the seismic data with most detections made downwind of the source. We study this large-scale anisotropy of infrasonic propagation, using a winter and summer source in Idaho. The bandpass-filtered (1-5 Hz) seismic waveforms reveal in detail the two-dimensional spread of the infrasonic wavefield across the Earth's surface within approximately 800 km of the source. Using three-dimensional ray tracing, we find that the stratospheric winds above 30 km altitude in the ground-to-space (G2S) atmospheric model explain well the observed anisotropy pattern. We also analyse infrasound from well-constrained explosions in northern Utah with a denser IRIS PASSCAL seismic network. The standard G2S model correctly predicts the anisotropy of the stratospheric duct, but it incorrectly predicts the dimensions of the shadow zones in the downwind direction. We show that the inclusion of finer-scale structure owing to internal gravity waves infills the shadow zones and predicts the observed time durations of the signals. From the success of this method in predicting the observations, we propose that multipathing owing to fine scale, layer-cake structure is the primary mechanism governing propagation for frequencies above approximately 1 Hz and infer that stochastic approaches incorporating internal gravity waves are a useful improvement to the standard G2S model for infrasonic propagation modelling.
Epidemic spreading on complex networks with community structures
Stegehuis, Clara; van der Hofstad, Remco; van Leeuwaarden, Johan S. H.
2016-01-01
Many real-world networks display a community structure. We study two random graph models that create a network with similar community structure as a given network. One model preserves the exact community structure of the original network, while the other model only preserves the set of communities and the vertex degrees. These models show that community structure is an important determinant of the behavior of percolation processes on networks, such as information diffusion or virus spreading: the community structure can both enforce as well as inhibit diffusion processes. Our models further show that it is the mesoscopic set of communities that matters. The exact internal structures of communities barely influence the behavior of percolation processes across networks. This insensitivity is likely due to the relative denseness of the communities. PMID:27440176
Sub-kilometer Numerical Weather Prediction in complex urban areas
NASA Astrophysics Data System (ADS)
Leroyer, S.; Bélair, S.; Husain, S.; Vionnet, V.
2013-12-01
A Sub-kilometer atmospheric modeling system with grid-spacings of 2.5 km, 1 km and 250 m and including urban processes is currently being developed at the Meteorological Service of Canada (MSC) in order to provide more accurate weather forecasts at the city scale. Atmospheric lateral boundary conditions are provided with the 15-km Canadian Regional Deterministic Prediction System (RDPS). Surface physical processes are represented with the Town Energy Balance (TEB) model for the built-up covers and with the Interactions between the Surface, Biosphere, and Atmosphere (ISBA) land surface model for the natural covers. In this study, several research experiments over large metropolitan areas and using observational networks at the urban scale are presented, with a special emphasis on the representation of local atmospheric circulations and their impact on extreme weather forecasting. First, numerical simulations are performed over the Vancouver metropolitan area during a summertime Intense Observing Period (IOP of 14-15 August 2008) of the Environmental Prediction in Canadian Cities (EPiCC) observational network. The influence of the horizontal resolution on the fine-scale representation of the sea-breeze development over the city is highlighted (Leroyer et al., 2013). Then severe storms cases occurring in summertime within the Greater Toronto Area (GTA) are simulated. In view of supporting the 2015 PanAmerican and Para-Pan games to be hold in GTA, a dense observational network has been recently deployed over this region to support model evaluations at the urban and meso scales. In particular, simulations are conducted for the case of 8 July 2013 when exceptional rainfalls were recorded. Leroyer, S., S. Bélair, J. Mailhot, S.Z. Husain, 2013: Sub-kilometer Numerical Weather Prediction in an Urban Coastal Area: A case study over the Vancouver Metropolitan Area, submitted to Journal of Applied Meteorology and Climatology.
Validation of in vivo 2D displacements from spiral cine DENSE at 3T.
Wehner, Gregory J; Suever, Jonathan D; Haggerty, Christopher M; Jing, Linyuan; Powell, David K; Hamlet, Sean M; Grabau, Jonathan D; Mojsejenko, Walter Dimitri; Zhong, Xiaodong; Epstein, Frederick H; Fornwalt, Brandon K
2015-01-30
Displacement Encoding with Stimulated Echoes (DENSE) encodes displacement into the phase of the magnetic resonance signal. Due to the stimulated echo, the signal is inherently low and fades through the cardiac cycle. To compensate, a spiral acquisition has been used at 1.5T. This spiral sequence has not been validated at 3T, where the increased signal would be valuable, but field inhomogeneities may result in measurement errors. We hypothesized that spiral cine DENSE is valid at 3T and tested this hypothesis by measuring displacement errors at both 1.5T and 3T in vivo. Two-dimensional spiral cine DENSE and tagged imaging of the left ventricle were performed on ten healthy subjects at 3T and six healthy subjects at 1.5T. Intersection points were identified on tagged images near end-systole. Displacements from the DENSE images were used to project those points back to their origins. The deviation from a perfect grid was used as a measure of accuracy and quantified as root-mean-squared error. This measure was compared between 3T and 1.5T with the Wilcoxon rank sum test. Inter-observer variability of strains and torsion quantified by DENSE and agreement between DENSE and harmonic phase (HARP) were assessed by Bland-Altman analyses. The signal to noise ratio (SNR) at each cardiac phase was compared between 3T and 1.5T with the Wilcoxon rank sum test. The displacement accuracy of spiral cine DENSE was not different between 3T and 1.5T (1.2 ± 0.3 mm and 1.2 ± 0.4 mm, respectively). Both values were lower than the DENSE pixel spacing of 2.8 mm. There were no substantial differences in inter-observer variability of DENSE or agreement of DENSE and HARP between 3T and 1.5T. Relative to 1.5T, the SNR at 3T was greater by a factor of 1.4 ± 0.3. The spiral cine DENSE acquisition that has been used at 1.5T to measure cardiac displacements can be applied at 3T with equivalent accuracy. The inter-observer variability and agreement of DENSE-derived peak strains and torsion with HARP is also comparable at both field strengths. Future studies with spiral cine DENSE may take advantage of the additional SNR at 3T.
Precipitation Estimation from the ARM Distributed Radar Network during the MC3E Campaign
Giangrande, Scott E.; Collis, Scott; Theisen, Adam K.; ...
2014-09-12
This study presents radar-based precipitation estimates collected during the two-month DOE ARM - NASA Midlatitude Continental Convective Clouds Experiment (MC3E). Emphasis is on the usefulness of radar observations from the C-band and X-band scanning ARM precipitation radars (CSAPR, XSAPR) for rainfall estimation products to distances within 100 km of the Oklahoma SGP facility. A dense collection of collocated ARM, NASA GPM and nearby surface Oklahoma Mesonet gauge records are consulted to evaluate potential ARM radar-based hourly rainfall products and campaign optimized methods over individual gauge and areal characterizations. Rainfall products are evaluated against the performance of the regional operational NWSmore » NEXRAD S-band radar polarimetric product. Results indicate that the ARM C-band system may achieve similar point and areal-gauge bias and root mean square (rms) error performance to the NEXRAD standard for the variety of MC3E deep convective events sampled when capitalizing on differential phase measurements. The best campaign rainfall performance was achieved when applying radar relations capitalizing on estimates of the specific attenuation from the CSAPR system. The ARM X-band systems only demonstrate solid capabilities as compared to NEXRAD standards for hourly point and areal rainfall accumulations under 10 mm. Here, all methods exhibit a factor of 1.5 to 2.5 reduction in rms errors for areal accumulations over a 15 km2 NASA dense network housing 16 sites having collocated bucket gauges, with the higher error reductions best associated with polarimetric methods.« less
Precipitation Estimation from the ARM Distributed Radar Network during the MC3E Campaign
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giangrande, Scott E.; Collis, Scott; Theisen, Adam K.
This study presents radar-based precipitation estimates collected during the two-month DOE ARM - NASA Midlatitude Continental Convective Clouds Experiment (MC3E). Emphasis is on the usefulness of radar observations from the C-band and X-band scanning ARM precipitation radars (CSAPR, XSAPR) for rainfall estimation products to distances within 100 km of the Oklahoma SGP facility. A dense collection of collocated ARM, NASA GPM and nearby surface Oklahoma Mesonet gauge records are consulted to evaluate potential ARM radar-based hourly rainfall products and campaign optimized methods over individual gauge and areal characterizations. Rainfall products are evaluated against the performance of the regional operational NWSmore » NEXRAD S-band radar polarimetric product. Results indicate that the ARM C-band system may achieve similar point and areal-gauge bias and root mean square (rms) error performance to the NEXRAD standard for the variety of MC3E deep convective events sampled when capitalizing on differential phase measurements. The best campaign rainfall performance was achieved when applying radar relations capitalizing on estimates of the specific attenuation from the CSAPR system. The ARM X-band systems only demonstrate solid capabilities as compared to NEXRAD standards for hourly point and areal rainfall accumulations under 10 mm. Here, all methods exhibit a factor of 1.5 to 2.5 reduction in rms errors for areal accumulations over a 15 km2 NASA dense network housing 16 sites having collocated bucket gauges, with the higher error reductions best associated with polarimetric methods.« less
Collocated ionosonde and dense GPS/GLONASS network measurements of midlatitude MSTIDs
NASA Astrophysics Data System (ADS)
Sherstyukov, R. O.; Akchurin, A. D.; Sherstyukov, O. N.
2018-04-01
To analyze midlatitude medium-scale travelling ionospheric disturbances (MSTIDs) over Kazan (55.5°N, 49°E), Russia, the sufficiently dense network of GNSS receivers (more than 150 ground-based stations) were used. For the first time, daytime MSTIDs in the form of their main signature (band structure) on high-resolution two-dimensional maps of the total electron content perturbation (TEC maps) are compared with ionosonde data with a high temporal resolution. For a pair of events, a relationship between southwestward TEC perturbations and evolution of F2 layer traces was established. So F2 peak frequency varied in antiphase to TEC perturbations. The ionograms show that during the movement of plasma depletion band (overhead ionosonde) the F2 peak frequency is the highest, and vice versa, for the plasma enhancement band, the F2 peak frequency is the lowest. One possible explanation may be a greater inclination of the radio beam from the vertical during the placement of a plasma enhancement band above the ionosonde, as evidenced by the absence of multiple reflections and the increased occurrence rate of additional cusp trace. Another possible explanation may be the redistribution of the electron content in the topside ionosphere with a small decrease in the F peak concentration of the layer with a small increase in TEC along the line-of-sight. Analysis of F2 peak frequency variation shows that observed peak-to-peak values of TEC perturbation equal to 0.4 and 1 TECU correspond to the values of ΔN/N equal to 13% and 28%. The need for further research is evident.
NASA Astrophysics Data System (ADS)
Palla, Gergely; Farkas, Illés J.; Pollner, Péter; Derényi, Imre; Vicsek, Tamás
2007-06-01
A search technique locating network modules, i.e. internally densely connected groups of nodes in directed networks is introduced by extending the clique percolation method originally proposed for undirected networks. After giving a suitable definition for directed modules we investigate their percolation transition in the Erdos-Rényi graph both analytically and numerically. We also analyse four real-world directed networks, including Google's own web-pages, an email network, a word association graph and the transcriptional regulatory network of the yeast Saccharomyces cerevisiae. The obtained directed modules are validated by additional information available for the nodes. We find that directed modules of real-world graphs inherently overlap and the investigated networks can be classified into two major groups in terms of the overlaps between the modules. Accordingly, in the word-association network and Google's web-pages, overlaps are likely to contain in-hubs, whereas the modules in the email and transcriptional regulatory network tend to overlap via out-hubs.
Prediction-based association control scheme in dense femtocell networks.
Sung, Nak Woon; Pham, Ngoc-Thai; Huynh, Thong; Hwang, Won-Joo; You, Ilsun; Choo, Kim-Kwang Raymond
2017-01-01
The deployment of large number of femtocell base stations allows us to extend the coverage and efficiently utilize resources in a low cost manner. However, the small cell size of femtocell networks can result in frequent handovers to the mobile user, and consequently throughput degradation. Thus, in this paper, we propose predictive association control schemes to improve the system's effective throughput. Our design focuses on reducing handover frequency without impacting on throughput. The proposed schemes determine handover decisions that contribute most to the network throughput and are proper for distributed implementations. The simulation results show significant gains compared with existing methods in terms of handover frequency and network throughput perspective.
NASA Astrophysics Data System (ADS)
Ruaud, M.; Wakelam, V.; Gratier, P.; Bonnell, I. A.
2018-04-01
Aim. We study the effect of large scale dynamics on the molecular composition of the dense interstellar medium during the transition between diffuse to dense clouds. Methods: We followed the formation of dense clouds (on sub-parsec scales) through the dynamics of the interstellar medium at galactic scales. We used results from smoothed particle hydrodynamics (SPH) simulations from which we extracted physical parameters that are used as inputs for our full gas-grain chemical model. In these simulations, the evolution of the interstellar matter is followed for 50 Myr. The warm low-density interstellar medium gas flows into spiral arms where orbit crowding produces the shock formation of dense clouds, which are held together temporarily by the external pressure. Results: We show that depending on the physical history of each SPH particle, the molecular composition of the modeled dense clouds presents a high dispersion in the computed abundances even if the local physical properties are similar. We find that carbon chains are the most affected species and show that these differences are directly connected to differences in (1) the electronic fraction, (2) the C/O ratio, and (3) the local physical conditions. We argue that differences in the dynamical evolution of the gas that formed dense clouds could account for the molecular diversity observed between and within these clouds. Conclusions: This study shows the importance of past physical conditions in establishing the chemical composition of the dense medium.
Controllability of structural brain networks
NASA Astrophysics Data System (ADS)
Gu, Shi; Pasqualetti, Fabio; Cieslak, Matthew; Telesford, Qawi K.; Yu, Alfred B.; Kahn, Ari E.; Medaglia, John D.; Vettel, Jean M.; Miller, Michael B.; Grafton, Scott T.; Bassett, Danielle S.
2015-10-01
Cognitive function is driven by dynamic interactions between large-scale neural circuits or networks, enabling behaviour. However, fundamental principles constraining these dynamic network processes have remained elusive. Here we use tools from control and network theories to offer a mechanistic explanation for how the brain moves between cognitive states drawn from the network organization of white matter microstructure. Our results suggest that densely connected areas, particularly in the default mode system, facilitate the movement of the brain to many easily reachable states. Weakly connected areas, particularly in cognitive control systems, facilitate the movement of the brain to difficult-to-reach states. Areas located on the boundary between network communities, particularly in attentional control systems, facilitate the integration or segregation of diverse cognitive systems. Our results suggest that structural network differences between cognitive circuits dictate their distinct roles in controlling trajectories of brain network function.
GNSS Observations of Ionospheric Variations During the 21 August 2017 Solar Eclipse
NASA Astrophysics Data System (ADS)
Coster, Anthea J.; Goncharenko, Larisa; Zhang, Shun-Rong; Erickson, Philip J.; Rideout, William; Vierinen, Juha
2017-12-01
On 21 August 2017, during daytime hours, a total solar eclipse with a narrow ˜160 km wide umbral shadow occurred across the continental United States. Totality was observed from the Oregon coast at ˜9:15 local standard time (LST) (17:20 UT) to the South Carolina coast at ˜13:27 LST (18:47 UT). A dense network of Global Navigation Satellite Systems (GNSS) receivers was utilized to produce total electron content (TEC) and differential TEC. These data were analyzed for the latitudinal and longitudinal response of the TEC and for the presence of traveling ionospheric disturbances (TIDs) during eclipse passage. A significant TEC depletion, in some cases greater than 60%, was observed associated with the eclipse shadow, exceeding initial model predictions of 35%. Evidence of enhanced large-scale TID activity was detected over the United States prior to and following the large TEC depletion observed near the time of totality. Signatures of enhanced TEC structures were observed over the Rocky Mountain chain during the main period of TEC depletion.
Ultrastructural networks in growth cones and neurites of cultured central nervous system neurons.
Tsui, H C; Ris, H; Klein, W L
1983-09-01
We have examined growth cones and neurites of cultured central nervous system neurons by high-voltage electron microscopy. Embryonic chicken retina cells were cultured on polylysine-treated and Formvar-coated gold grids for 2-6 days, fixed, and critical point dried. Growth cones and neurites were examined as unembedded whole mounts. Three-dimensional images from stereo-pair electron micrographs of these regions showed a high degree of ultrastructural articulation, with distinct, non-tapering filaments (5-9 nm in diameter) joining both cytoskeletal and membranous components. In the central regions of growth cones, interconnected structures included microtubules, large membranous sacs (up to 400 nm), and irregular vesicles (25-75 nm). A denser filamentous network was prevalent at the edges of growth cones. This network, which frequently adjoined the surface membrane, linked vesicles of uniform size (35-40 nm). Such vesicles often were seen densely packed in growth cone protrusions that were about the size of small synaptic boutons. Prevalent structural interconnections within growth cones conceivably could play a logistic role in specific membrane assembly, intracellular transport, endocytosis, and secretion. Because such processes are not unique to growth cones, the extensive linkages we have observed may have implications for cytoplasmic structure in general.
Rainfall estimation from microwave links in São Paulo, Brazil.
NASA Astrophysics Data System (ADS)
Rios Gaona, Manuel Felipe; Overeem, Aart; Leijnse, Hidde; Uijlenhoet, Remko
2017-04-01
Rainfall estimation from microwave link networks has been successfully demonstrated in countries such as the Netherlands, Israel and Germany. The path-averaged rainfall intensity can be computed from the signal attenuation between cell phone towers. Although this technique is still in development, it offers great opportunities to retrieve rainfall rates at high spatiotemporal resolutions very close to the ground surface. High spatiotemporal resolutions and closer-to-ground measurements are highly appreciated, especially in urban catchments where high-impact events such as flash-floods develop in short time scales. We evaluate here this rainfall measurement technique for a tropical climate, something that has hardly been done previously. This is highly relevant since many countries with few surface rainfall observations are located in the tropics. The test-bed is the Brazilian city of São Paulo. The performance of 16 microwave links was evaluated, from a network of 200 links, for the last 3 months of 2014. The open software package RAINLINK was employed to obtain link rainfall estimates. The evaluation was done through a dense automatic gauge network. Results are promising and encouraging, especially for short links for which a high correlation (> 0.9) and a low bias (< 5%) were obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merwe, Celia van der, E-mail: celiavdm@sun.ac.za; Loos, Ben; Swart, Chrisna
Highlights: • Mitochondrial dysfunction observed in patients with parkin-null mutations. • Mitochondrial ATP levels were decreased. • Electron-dense vacuoles were observed in the patients. • Mitochondria from muscle biopsies appeared within normal limits. • One patient did not show these defects possibly due to compensatory mechanisms. - Abstract: Parkinson’s disease (PD), defined as a neurodegenerative disorder, is characterized by the loss of dopaminergic neurons in the substantia nigra in the midbrain. Loss-of-function mutations in the parkin gene are a major cause of autosomal recessive, early-onset PD. Parkin has been implicated in the maintenance of healthy mitochondria, although previous studies showmore » conflicting findings regarding mitochondrial abnormalities in fibroblasts from patients harboring parkin-null mutations. The aim of the present study was to determine whether South African PD patients with parkin mutations exhibit evidence for mitochondrial dysfunction. Fibroblasts were cultured from skin biopsies obtained from three patients with homozygous parkin-null mutations, two heterozygous mutation carriers and two wild-type controls. Muscle biopsies were obtained from two of the patients. The muscle fibers showed subtle abnormalities such as slightly swollen mitochondria in focal areas of the fibers and some folding of the sarcolemma. Although no differences in the degree of mitochondrial network branching were found in the fibroblasts, ultrastructural abnormalities were observed including the presence of electron-dense vacuoles. Moreover, decreased ATP levels which are consistent with mitochondrial dysfunction were observed in the patients’ fibroblasts compared to controls. Remarkably, these defects did not manifest in one patient, which may be due to possible compensatory mechanisms. These results suggest that parkin-null patients exhibit features of mitochondrial dysfunction. Involvement of mitochondria as a key role player in PD pathogenesis will have important implications for the design of new and more effective therapies.« less
Group Velocity Dispersion Curves from Wigner-Ville Distributions
NASA Astrophysics Data System (ADS)
Lloyd, Simon; Bokelmann, Goetz; Sucic, Victor
2013-04-01
With the widespread adoption of ambient noise tomography, and the increasing number of local earthquakes recorded worldwide due to dense seismic networks and many very dense temporary experiments, we consider it worthwhile to evaluate alternative Methods to measure surface wave group velocity dispersions curves. Moreover, the increased computing power of even a simple desktop computer makes it feasible to routinely use methods other than the typically employed multiple filtering technique (MFT). To that end we perform tests with synthetic and observed seismograms using the Wigner-Ville distribution (WVD) frequency time analysis, and compare dispersion curves measured with WVD and MFT with each other. Initial results suggest WVD to be at least as good as MFT at measuring dispersion, albeit at a greater computational expense. We therefore need to investigate if, and under which circumstances, WVD yields better dispersion curves than MFT, before considering routinely applying the method. As both MFT and WVD generally work well for teleseismic events and at longer periods, we explore how well the WVD method performs at shorter periods and for local events with smaller epicentral distances. Such dispersion information could potentially be beneficial for improving velocity structure resolution within the crust.
Systematic observations of the slip pulse properties of large earthquake ruptures
Melgar, Diego; Hayes, Gavin
2017-01-01
In earthquake dynamics there are two end member models of rupture: propagating cracks and self-healing pulses. These arise due to different properties of faults and have implications for seismic hazard; rupture mode controls near-field strong ground motions. Past studies favor the pulse-like mode of rupture; however, due to a variety of limitations, it has proven difficult to systematically establish their kinematic properties. Here we synthesize observations from a database of >150 rupture models of earthquakes spanning M7–M9 processed in a uniform manner and show the magnitude scaling properties of these slip pulses indicates self-similarity. Further, we find that large and very large events are statistically distinguishable relatively early (at ~15 s) in the rupture process. This suggests that with dense regional geophysical networks strong ground motions from a large rupture can be identified before their onset across the source region.
Genus Distichopora (Cnidaria, Hydrozoa): from primary cyclosystem to adult pore organisation
NASA Astrophysics Data System (ADS)
Puce, S.; Pica, D.; Brun, F.; Mancini, L.; Bavestrello, G.
2012-09-01
This investigation provides the first detailed description of the growth stages of two Distichopora species showing the formation of a primary cyclosystem and explaining the growth process leading from primary cyclosystem to adult pore organisation. The earliest observed stage is an oval calcareous disc from which, at a later stage, a primary cyclosystem raises up. Then, the addition of new gastropores and dactylopores leads to the pore rows typical of the genus. Using X-ray computed microtomography, we are able to visualise the dense canal network that permeates the coenosteum and envelops the gastropores and the dactylopores in all the observed growth stages. In both species, the thin canals surrounding the gastropores are responsible for the formation of the new gastropores that originate between the old ones, while the thin canals placed on the external side of the dactylopore rows produce the new dactylopores.
NASA Astrophysics Data System (ADS)
Altuncu Poyraz, Selda; Teoman, M. Uğur; Türkelli, Niyazi; Kahraman, Metin; Cambaz, Didem; Mutlu, Ahu; Rost, Sebastian; Houseman, Gregory A.; Thompson, David A.; Cornwell, David; Utkucu, Murat; Gülen, Levent
2015-08-01
With the aim of extensively investigating the crustal structure beneath the western segment of the North Anatolian Fault Zone where it splays into northern and southern branches, a temporary seismic network (dense array for North Anatolia-DANA) consisting of 70 stations was deployed in early May 2012 and operated for 18 months in the Sakarya region during the FaultLab experiment. Out of 2437 events contaminated by explosions, we extracted 1371 well located earthquakes. The enhanced station coverage having a nominal station spacing of 7 km, lead to a minimum magnitude calculation of 0.1. Horizontal and vertical location uncertainties within the array do not exceed 0.8 km and 0.9 km, respectively. We observe considerable seismic activity along both branches of the fault where the depth of the seismogenic zone was mostly confined to 15 km. Using our current earthquake catalog we obtained a b-value of 1. We also mapped the b-value variation with depth and observed a gradual decrease. Furthermore, we determined the source parameters of 41 earthquakes with magnitudes greater than 1.8 using P-wave first motion polarity method. Regional Moment Tensor Inversion method was also applied to earthquakes with magnitudes greater than 3.0. Focal mechanism solutions confirm that Sakarya and its vicinity is stressed by a compressional regime showing a primarily oblique-slip motion character. Stress tensor analysis indicates that the maximum principal stress is aligned in WNW-ESE direction and the tensional axis is aligned in NNE-SSW direction.
NASA Astrophysics Data System (ADS)
Lindsey, Eric Ostrom
This dissertation presents the collection and processing of dense high-precision geode- tic data across major faults throughout Southern California. The results are used to inform numerical models of the long-term slip rate and interseismic behavior of these faults, as well as their frictional and rheological properties at shallow depths. The data include campaign surveys of dense networks of GPS monuments crossing the faults, and Interferometric Synthetic Aperture Radar (InSAR) observations from ENVISAT. Using a Bayesian framework, we first assess to what extent these data constrain relative fault slip rates on the San Andreas and San Jacinto faults, and show that the inferred parameters depend critically on the assumed fault geometry. We next look in detail at near-field observations of strain across the San Jacinto fault, and show that the source of this strain may be either deep anomalous creep or a new form of shallow, distributed yielding in the top few kilometers of the crust. On the San Andreas fault, we show that this type of shallow yielding does occur, and its presence or absence is controlled by variations in the local normal stress that result from subtle bends in the fault. Finally, we investigate shallow creep on the Imperial fault, and show that thanks to observations from all parts of the earthquake cycle it is now possible to obtain a strong constraint on the shallow frictional rheology and depth of the material responsible for creep. The results also suggest activity on a hidden fault to the West, whose existence has been previously suggested but never confirmed.
1985-01-01
Sympathetic neurons taken from rat superior cervical ganglia and grown in culture acquire cholinergic function under certain conditions. These cholinergic sympathetic neurons, however, retain a number of adrenergic properties, including the enzymes involved in the synthesis of norepinephrine (NE) and the storage of measurable amounts of NE. These neurons also retain a high affinity uptake system for NE; despite this, the majority of the synaptic vesicles remain clear even after incubation in catecholamines. The present study shows, however, that if these neurons are depolarized before incubation in catecholamine, the synaptic vesicles acquire dense cores indicative of amine storage. These manipulations are successful when cholinergic function is induced with either a medium that contains human placental serum and embryo extract or with heart-conditioned medium, and when the catecholamine is either NE or 5-hydroxydopamine. In some experiments, neurons are grown at low densities and shown to have cholinergic function by electrophysiological criteria. After incubation in NE, only 6% of the synaptic vesicles have dense cores. In contrast, similar neurons depolarized (80 mM K+) before incubation in catecholamine contain 82% dense-cored vesicles. These results are confirmed in network cultures where the percentage of dense-cored vesicles is increased 2.5 to 6.5 times by depolarizing the neurons before incubation with catecholamine. In both single neurons and in network cultures, the vesicle reloading is inhibited by reducing vesicle release during depolarization with an increased Mg++/Ca++ ratio or by blocking NE uptake either at the plasma membrane (desipramine) or at the vesicle membrane (reserpine). In addition, choline appears to play a competitive role because its presence during incubation in NE or after reloading results in decreased numbers of dense-cored vesicles. We conclude that the depolarization step preceding catecholamine incubation acts to empty the vesicles of acetylcholine, thus allowing them to reload with catecholamine. These data also suggest that the same vesicles may contain both neurotransmitters simultaneously. PMID:4008529
Satellite relay telemetry in the surveillance of active volcanoes and major fault zones
NASA Technical Reports Server (NTRS)
Eaton, J. P.; Ward, P. L.
1972-01-01
A review was made of efforts to develop a dense telemetered microearthquake network to study earthquake mechanics along the San Andreas fault and the strain mechanics of the Kilauea Volcano. The principle elements and objectives of the ERTS-A proposal are outlined. Some of the aspects of the earthquake network and the results obtained from it as well as some promising experiments in computerized record processing are discussed.
A Dynamic Optimization Technique for Siting the NASA-Clark Atlanta Urban Rain Gauge Network (NCURN)
NASA Technical Reports Server (NTRS)
Shepherd, J. Marshall; Taylor, Layi
2003-01-01
NASA satellites and ground instruments have indicated that cities like Atlanta, Georgia may create or alter rainfall. Scientists speculate that the urban heat island caused by man-made surfaces in cities impact the heat and wind patterns that form clouds and rainfall. However, more conclusive evidence is required to substantiate findings from satellites. NASA, along with scientists at Clark Atlanta University, are implementing a dense, urban rain gauge network in the metropolitan Atlanta area to support a satellite validation program called Studies of PRecipitation Anomalies from Widespread Urban Landuse (SPRAWL). SPRAWL will be conducted during the summer of 2003 to further identify and understand the impact of urban Atlanta on precipitation variability. The paper provides an. overview of SPRAWL, which represents one of the more comprehensive efforts in recent years to focus exclusively on urban-impacted rainfall. The paper also introduces a novel technique for deploying rain gauges for SPRAWL. The deployment of the dense Atlanta network is unique because it utilizes Geographic Information Systems (GIS) and Decision Support Systems (DSS) to optimize deployment of the rain gauges. These computer aided systems consider access to roads, drainage systems, tree cover, and other factors in guiding the deployment of the gauge network. GIS and DSS also provide decision-makers with additional resources and flexibility to make informed decisions while considering numerous factors. Also, the new Atlanta network and SPRAWL provide a unique opportunity to merge the high-resolution, urban rain gauge network with satellite-derived rainfall products to understand how cities are changing rainfall patterns, and possibly climate.
Energy-efficient STDP-based learning circuits with memristor synapses
NASA Astrophysics Data System (ADS)
Wu, Xinyu; Saxena, Vishal; Campbell, Kristy A.
2014-05-01
It is now accepted that the traditional von Neumann architecture, with processor and memory separation, is ill suited to process parallel data streams which a mammalian brain can efficiently handle. Moreover, researchers now envision computing architectures which enable cognitive processing of massive amounts of data by identifying spatio-temporal relationships in real-time and solving complex pattern recognition problems. Memristor cross-point arrays, integrated with standard CMOS technology, are expected to result in massively parallel and low-power Neuromorphic computing architectures. Recently, significant progress has been made in spiking neural networks (SNN) which emulate data processing in the cortical brain. These architectures comprise of a dense network of neurons and the synapses formed between the axons and dendrites. Further, unsupervised or supervised competitive learning schemes are being investigated for global training of the network. In contrast to a software implementation, hardware realization of these networks requires massive circuit overhead for addressing and individually updating network weights. Instead, we employ bio-inspired learning rules such as the spike-timing-dependent plasticity (STDP) to efficiently update the network weights locally. To realize SNNs on a chip, we propose to use densely integrating mixed-signal integrate-andfire neurons (IFNs) and cross-point arrays of memristors in back-end-of-the-line (BEOL) of CMOS chips. Novel IFN circuits have been designed to drive memristive synapses in parallel while maintaining overall power efficiency (<1 pJ/spike/synapse), even at spike rate greater than 10 MHz. We present circuit design details and simulation results of the IFN with memristor synapses, its response to incoming spike trains and STDP learning characterization.
A network model framework for prioritizing wetland conservation in the Great Plains
Albanese, Gene; Haukos, David A.
2017-01-01
ContextPlaya wetlands are the primary habitat for numerous wetland-dependent species in the Southern Great Plains of North America. Plant and wildlife populations that inhabit these wetlands are reciprocally linked through the dispersal of individuals, propagules and ultimately genes among local populations.ObjectiveTo develop and implement a framework using network models for conceptualizing, representing and analyzing potential biological flows among 48,981 spatially discrete playa wetlands in the Southern Great Plains.MethodsWe examined changes in connectivity patterns and assessed the relative importance of wetlands to maintaining these patterns by targeting wetlands for removal based on network centrality metrics weighted by estimates of habitat quality and probability of inundation.ResultsWe identified several distinct, broad-scale sub networks and phase transitions among playa wetlands in the Southern Plains. In particular, for organisms that can disperse >2 km a dense and expansive wetland sub network emerges in the Southern High Plains. This network was characterized by localized, densely connected wetland clusters at link distances (h) >2 km but <5 km and was most sensitive to changes in wetland availability (p) and configuration when h = 4 km, and p = 0.2–0.4. It transitioned to a single, large connected wetland system at broader spatial scales even when the proportion of inundated wetland was relatively low (p = 0.2).ConclusionsOur findings suggest that redundancy in the potential for broad and fine-scale movements insulates this system from damage and facilitates system-wide connectivity among populations with different dispersal capacities.
Bridge damage detection using spatiotemporal patterns extracted from dense sensor network
NASA Astrophysics Data System (ADS)
Liu, Chao; Gong, Yongqiang; Laflamme, Simon; Phares, Brent; Sarkar, Soumik
2017-01-01
The alarmingly degrading state of transportation infrastructures combined with their key societal and economic importance calls for automatic condition assessment methods to facilitate smart management of maintenance and repairs. With the advent of ubiquitous sensing and communication capabilities, scalable data-driven approaches is of great interest, as it can utilize large volume of streaming data without requiring detailed physical models that can be inaccurate and computationally expensive to run. Properly designed, a data-driven methodology could enable fast and automatic evaluation of infrastructures, discovery of causal dependencies among various sub-system dynamic responses, and decision making with uncertainties and lack of labeled data. In this work, a spatiotemporal pattern network (STPN) strategy built on symbolic dynamic filtering (SDF) is proposed to explore spatiotemporal behaviors in a bridge network. Data from strain gauges installed on two bridges are generated using finite element simulation for three types of sensor networks from a density perspective (dense, nominal, sparse). Causal relationships among spatially distributed strain data streams are extracted and analyzed for vehicle identification and detection, and for localization of structural degradation in bridges. Multiple case studies show significant capabilities of the proposed approach in: (i) capturing spatiotemporal features to discover causality between bridges (geographically close), (ii) robustness to noise in data for feature extraction, (iii) detecting and localizing damage via comparison of bridge responses to similar vehicle loads, and (iv) implementing real-time health monitoring and decision making work flow for bridge networks. Also, the results demonstrate increased sensitivity in detecting damages and higher reliability in quantifying the damage level with increase in sensor network density.
Water vapour tomography using GPS phase observations: Results from the ESCOMPTE experiment
NASA Astrophysics Data System (ADS)
Nilsson, T.; Gradinarsky, L.; Elgered, G.
2007-10-01
Global Positioning System (GPS) tomography is a technique for estimating the 3-D structure of the atmospheric water vapour using data from a dense local network of GPS receivers. Several current methods utilize estimates of slant wet delays between the GPS satellites and the receivers on the ground, which are difficult to obtain with millimetre accuracy from the GPS observations. We present results of applying a new tomographic method to GPS data from the Expériance sur site pour contraindre les modèles de pollution atmosphérique et de transport d'emissions (ESCOMPTE) experiment in southern France. This method does not rely on any slant wet delay estimates, instead it uses the GPS phase observations directly. We show that the estimated wet refractivity profiles estimated by this method is on the same accuracy level or better compared to other tomographic methods. The results are in agreement with earlier simulations, for example the profile information is limited above 4 km.
Assimilation of SMOS Soil Moisture Retrievals in the Land Information System
NASA Technical Reports Server (NTRS)
Blankenship, Clay; Case, Jonathan L.; Zavodsky, Brad
2014-01-01
Soil moisture is a crucial variable for weather prediction because of its influence on evaporation. It is of critical importance for drought and flood monitoring and prediction and for public health applications. The NASA Short-term Prediction Research and Transition Center (SPoRT) has implemented a new module in the NASA Land Information System (LIS) to assimilate observations from the ESA's Soil Moisture and Ocean Salinity (SMOS) satellite. SMOS Level 2 retrievals from the Microwave Imaging Radiometer using Aperture Synthesis (MIRAS) instrument are assimilated into the Noah LSM within LIS via an Ensemble Kalman Filter. The retrievals have a target volumetric accuracy of 4% at a resolution of 35-50 km. Parallel runs with and without SMOS assimilation are performed with precipitation forcing from intentionally degraded observations, and then validated against a model run using the best available precipitation data, as well as against selected station observations. The goal is to demonstrate how SMOS data assimilation can improve modeled soil states in the absence of dense rain gauge and radar networks.
Monitoring Bloom Dynamics of a Common Coastal Bioluminescent Ctenophore
2010-09-30
photodiodes. IMPACT/APPLICATIONS More frequent and more rapidly developing jellyfish blooms, especially Mnemiopsis leidyi as well as Harmful Algal...To meet the need for a bioluminescent jellyfish monitoring and forecasting system, predictive models will depend upon dense networks of sensor
Surface modification of GC and HOPG with diazonium, amine, azide, and olefin derivatives.
Tanaka, Mutsuo; Sawaguchi, Takahiro; Sato, Yukari; Yoshioka, Kyoko; Niwa, Osamu
2011-01-04
Surface modification of glassy carbon (GC) and highly oriented pyrolytic graphite (HOPG) was carried out with diazonium, amine, azide, and olefin derivatives bearing ferrocene as an electroactive moiety. Features of the modified surfaces were evaluated by surface concentrations of immobilized molecule, blocking effect of the modified surface against redox reaction, and surface observation using cyclic voltammetry and electrochemical scanning tunneling microscope (EC-STM). The measurement of surface concentrations of immobilized molecule revealed the following three aspects: (i) Diazonium and olefin derivatives could modify substrates with the dense-monolayer concentration. (ii) The surface concentration of immobilized amine derivative did not reach to the dense-monolayer concentration reflecting their low reactivity. (iii) The surface modification with the dense-monolayer concentration was also possible with azide derivative, but the modified surface contained some oligomers produced by the photoreaction of azides. Besides, the blocking effect against redox reaction was observed for GC modified with diazonium derivative and for HOPG modified with diazonium and azide derivatives, suggesting fabrication of a densely modified surface. Finally, the surface observation for HOPG modified with diazonium derivative by EC-STM showed a typical monolayer structure, in which the ferrocene moieties were packed densely at random. On the basis of those results, it was demonstrated that surface modification of carbon substrates with diazonium could afford a dense monolayer similar to the self-assembled monolayer (SAM) formation.
A biological approach to assembling tissue modules through endothelial capillary network formation.
Riesberg, Jeremiah J; Shen, Wei
2015-09-01
To create functional tissues having complex structures, bottom-up approaches to assembling small tissue modules into larger constructs have been emerging. Most of these approaches are based on chemical reactions or physical interactions at the interface between tissue modules. Here we report a biological assembly approach to integrate small tissue modules through endothelial capillary network formation. When adjacent tissue modules contain appropriate extracellular matrix materials and cell types that support robust endothelial capillary network formation, capillary tubules form and grow across the interface, resulting in assembly of the modules into a single, larger construct. It was shown that capillary networks formed in modules of dense fibrin gels seeded with human umbilical vein endothelial cells (HUVECs) and mesenchymal stem cells (MSCs); adjacent modules were firmly assembled into an integrated construct having a strain to failure of 117 ± 26%, a tensile strength of 2208 ± 83 Pa and a Young's modulus of 2548 ± 574 Pa. Under the same culture conditions, capillary networks were absent in modules of dense fibrin gels seeded with either HUVECs or MSCs alone; adjacent modules disconnected even when handled gently. This biological assembly approach eliminates the need for chemical reactions or physical interactions and their associated limitations. In addition, the integrated constructs are prevascularized, and therefore this bottom-up assembly approach may also help address the issue of vascularization, another key challenge in tissue engineering. Copyright © 2015 John Wiley & Sons, Ltd.
Electrical conductivity modeling and experimental study of densely packed SWCNT networks.
Jack, D A; Yeh, C-S; Liang, Z; Li, S; Park, J G; Fielding, J C
2010-05-14
Single-walled carbon nanotube (SWCNT) networks have become a subject of interest due to their ability to support structural, thermal and electrical loadings, but to date their application has been hindered due, in large part, to the inability to model macroscopic responses in an industrial product with any reasonable confidence. This paper seeks to address the relationship between macroscale electrical conductivity and the nanostructure of a dense network composed of SWCNTs and presents a uniquely formulated physics-based computational model for electrical conductivity predictions. The proposed model incorporates physics-based stochastic parameters for the individual nanotubes to construct the nanostructure such as: an experimentally obtained orientation distribution function, experimentally derived length and diameter distributions, and assumed distributions of chirality and registry of individual CNTs. Case studies are presented to investigate the relationship between macroscale conductivity and nanostructured variations in the bulk stochastic length, diameter and orientation distributions. Simulation results correspond nicely with those available in the literature for case studies of conductivity versus length and conductivity versus diameter. In addition, predictions for the increasing anisotropy of the bulk conductivity as a function of the tube orientation distribution are in reasonable agreement with our experimental results. Examples are presented to demonstrate the importance of incorporating various stochastic characteristics in bulk conductivity predictions. Finally, a design consideration for industrial applications is discussed based on localized network power emission considerations and may lend insight to the design engineer to better predict network failure under high current loading applications.
NASA Astrophysics Data System (ADS)
Araki, E.; Saffer, D. M.; Kopf, A.; To, A.; Ide, S.; Nakano, M.; Kimura, T.; Machida, Y.
2016-12-01
Seismic behavior of the thrust zone in trench side of the seismically coupled plate interface in the Nankai Trough is poorly understood because shore based seismic and geodetic observation does not have enough sensitivity to detect slow activity in the area. In these years, we constructed dense seafloor observation network in combination with pore-fluid pressure, strain, and seismic sensing in IODP deep boreholes (C0002G and C0010A) and 20+ seafloor broadband seismometers cabled to the observation network called DONET for long-term continuous observation in the To-Nankai area of the Nankai Trough, south of Japan. Analysis of the seismic records from DONET seafloor seismometer and pore-fluid pressure records from the boreholes in the period from Jan. 2011 to Apr. 2016 revealed the activities of the slow slip events (SSE), low frequency tremor (LFT), and very low frequency earthquakes (VLFE) in the observation network, detecting seven sequence of pore-fluid pressure transients in these boreholes representing SSEs and many LFT and VLFEs from seismic records. Some of the SSE sequence accompanies active LFT swarms in the regions offshore of the locked seismogenic zone. Some of the pressure transient initiate precedent to the LFT swarms, as well as some does not accompany obvious LFT activity, as if the SSE occurs "silently", suggesting LFT does not express SSE but LFT seems activated by the SSE. This is also supported by change of SSE pressure transient rate in accordance with LFT activity, observed in sequences in Mar. 2011, Oct. 2015, and April 2016. In the Oct. 2015 sequence, observed pressure transient in two boreholes indicates the slip propagates updip in the shallow subduction zone. In many sequences including this sequence, we ientify that the LFT swarm tends to migrate updip direction. The pressure transient in Apr. 2016 also followed this tendency, initiating from co-seismic compression by Apr. 1 earthquake occurred downdip side of the boreholes, followed by further compression due to the after slip, and slow release of the pressure suggesting SSE along with very active LFT and VLFE activities migrating offshore direction in the following two weeks period. The SSE seemed further activated by teleseismic events Kumamoto earthquake in Apr. 17.
Community structure in networks
NASA Astrophysics Data System (ADS)
Newman, Mark
2004-03-01
Many networked systems, including physical, biological, social, and technological networks, appear to contain ``communities'' -- groups of nodes within which connections are dense, but between which they are sparser. The ability to find such communities in an automated fashion could be of considerable use. Communities in a web graph for instance might correspond to sets of web sites dealing with related topics, while communities in a biochemical network or an electronic circuit might correspond to functional units of some kind. We present a number of new methods for community discovery, including methods based on ``betweenness'' measures and methods based on modularity optimization. We also give examples of applications of these methods to both computer-generated and real-world network data, and show how our techniques can be used to shed light on the sometimes dauntingly complex structure of networked systems.
NASA Astrophysics Data System (ADS)
Lee, David S.; Longhurst, James W. S.
Precipitation chemistry data from a dense urban monitoring network in Greater Manchester, northwest England, were compared with interpolated values from the U.K. secondary national acid deposition monitoring network for the year 1988. Differences were found to be small. However, when data from individual sites from the Greater Manchester network were compared with data from the two nearest secondary national network sites, significant differences were found using simple and complex statistical analyses. Precipitation chemistry at rural sites could be similar to that at urban sites, but the sources of some ions were thought to be different. The synoptic-scale gradients of precipitation chemistry, as shown by the secondary national network, also accounted for some of the differences.
NASA Astrophysics Data System (ADS)
Jousset, Philippe; Reinsch, Thomas; Henninges, Jan; Blanck, Hanna; Ryberg, Trond
2016-04-01
The fibre optic distributed acoustic sensing technology (DAS) is a "new" sensing system for exploring earth crustal elastic properties and monitoring both strain and seismic waves with unprecedented acquisition characteristics. The DAS technology principle lies in sending successive and coherent pulses of light in an optical fibre and measuring the back-scattered light issued from elastic scattering at random defaults within the fibre. The read-out unit includes an interferometer, which measures light interference patterns continuously. The changes are related to the distance between such defaults and therefore the strain within the fibre can be detected. Along an optical fibre, DAS can be used to acquire acoustic signals with a high spatial (every meter over kilometres) and high temporal resolution (thousand of Hz). Fibre optic technologies were, up to now, mainly applied in perimeter surveillance applications and pipeline monitoring and in boreholes. Previous experiments in boreholes have shown that the DAS technology is well suited for probing subsurface elastic properties, showing new ways for cheaper VSP investigations of the Earth crust. Here, we demonstrate that a cable deployed at ground surface can also help in exploring subsurface properties at crustal scale and monitor earthquake activity in a volcanic environment. Within the framework of the EC funded project IMAGE, we observed a >15 km-long fibre optic cable at the surface connected to a DAS read-out unit. Acoustic data was acquired continuously for 9 days. Hammer shots were performed along the surface cable in order to locate individual acoustic traces and calibrate the spatial distribution of the acoustic information. During the monitoring period both signals from on- and offshore explosive sources and natural seismic events could be recorded. We compare the fibre optic data to conventional seismic records from a dense seismic network deployed on Reykjanes. We show that we can probe and monitor earth crust subsurface with dense acquisition of the ground motion, both in space and in time and over a broad band frequency range.
de Souza, Jacqueline; de Almeida, Letícia Yamawaka; Moll, Marciana Fernandes; Silva, Lucas Duarte; Ventura, Carla Aparecida Arena
2016-02-01
The objective of this study is to analyze the characteristics of social support networks of patients with psychiatric disorders at follow-up to primary care. This is a cross-sectional qualitative research study. Forty-five interviews were held with patients and their supporters. The results showed small and dense networks, with a strong emphasis on the bonds with formal supporters and a scant network of informal supporters. It is recommended to develop strategies to improve social support networks and use this as an outcome indicator related to social integration of these patients and to the quality of services involved with outpatient healthcare. Copyright © 2015 Elsevier Inc. All rights reserved.
Discovering Network Structure Beyond Communities
NASA Astrophysics Data System (ADS)
Nishikawa, Takashi; Motter, Adilson E.
2011-11-01
To understand the formation, evolution, and function of complex systems, it is crucial to understand the internal organization of their interaction networks. Partly due to the impossibility of visualizing large complex networks, resolving network structure remains a challenging problem. Here we overcome this difficulty by combining the visual pattern recognition ability of humans with the high processing speed of computers to develop an exploratory method for discovering groups of nodes characterized by common network properties, including but not limited to communities of densely connected nodes. Without any prior information about the nature of the groups, the method simultaneously identifies the number of groups, the group assignment, and the properties that define these groups. The results of applying our method to real networks suggest the possibility that most group structures lurk undiscovered in the fast-growing inventory of social, biological, and technological networks of scientific interest.
Mian, Adnan Noor; Fatima, Mehwish; Khan, Raees; Prakash, Ravi
2014-01-01
Energy efficiency is an important design paradigm in Wireless Sensor Networks (WSNs) and its consumption in dynamic environment is even more critical. Duty cycling of sensor nodes is used to address the energy consumption problem. However, along with advantages, duty cycle aware networks introduce some complexities like synchronization and latency. Due to their inherent characteristics, many traditional routing protocols show low performance in densely deployed WSNs with duty cycle awareness, when sensor nodes are supposed to have high mobility. In this paper we first present a three messages exchange Lightweight Random Walk Routing (LRWR) protocol and then evaluate its performance in WSNs for routing low data rate packets. Through NS-2 based simulations, we examine the LRWR protocol by comparing it with DYMO, a widely used WSN protocol, in both static and dynamic environments with varying duty cycles, assuming the standard IEEE 802.15.4 in lower layers. Results for the three metrics, that is, reliability, end-to-end delay, and energy consumption, show that LRWR protocol outperforms DYMO in scalability, mobility, and robustness, showing this protocol as a suitable choice in low duty cycle and dense WSNs.
A model of metastable dynamics during ongoing and evoked cortical activity
NASA Astrophysics Data System (ADS)
La Camera, Giancarlo
The dynamics of simultaneously recorded spike trains in alert animals often evolve through temporal sequences of metastable states. Little is known about the network mechanisms responsible for the genesis of such sequences, or their potential role in neural coding. In the gustatory cortex of alert rates, state sequences can be observed also in the absence of overt sensory stimulation, and thus form the basis of the so-called `ongoing activity'. This activity is characterized by a partial degree of coordination among neurons, sharp transitions among states, and multi-stability of single neurons' firing rates. A recurrent spiking network model with clustered topology can account for both the spontaneous generation of state sequences and the (network-generated) multi-stability. In the model, each network state results from the activation of specific neural clusters with potentiated intra-cluster connections. A mean field solution of the model shows a large number of stable states, each characterized by a subset of simultaneously active clusters. The firing rate in each cluster during ongoing activity depends on the number of active clusters, so that the same neuron can have different firing rates depending on the state of the network. Because of dense intra-cluster connectivity and recurrent inhibition, in finite networks the stable states lose stability due to finite size effects. Simulations of the dynamics show that the model ensemble activity continuously hops among the different states, reproducing the ongoing dynamics observed in the data. Moreover, when probed with external stimuli, the model correctly predicts the quenching of single neuron multi-stability into bi-stability, the reduction of dimensionality of the population activity, the reduction of trial-to-trial variability, and a potential role for metastable states in the anticipation of expected events. Altogether, these results provide a unified mechanistic model of ongoing and evoked cortical dynamics. NSF IIS-1161852, NIDCD K25-DC013557, NIDCD R01-DC010389.
NASA Astrophysics Data System (ADS)
Xia, H.; Song, X.; Wang, T.
2014-12-01
The Earth's inner core possesses strong cylindrical anisotropy with the fast symmetry axis parallel to the rotation axis. However, recent study has suggested that the inner part of the inner core has a fast symmetry axis near the equator with a different form of anisotropy from the outer part (Wang et al., this session). To confirm the observation, we use data from dense seismic arrays of the China Regional Seismic Networks. We perform autocorrelation (ACC) of the coda after major earthquakes (Mw>=7.0) at each station and then stack the ACCs at each cluster of stations. The PKIKP2 and PKIIKP2 phases (round-trip phase from the Earth's surface reflections) can be clearly extracted from the stacked empirical Green's functions. We observe systematic variation of the differential times between PKIKP2 and PKIIKP2 phases, which are sensitive to the bulk anisotropy of the inner core. The differential times show large variations with both latitudes and longitudes, even though our ray paths are not polar (with our stations at mid-range latitudes of about 20 to 45 degrees). The observations cannot be explained by an averaged anisotropy model with the fast axis along the rotation axis. The pattern appears consistent with an inner inner core that has a fast axis near the equator.
Optimal Base Station Density of Dense Network: From the Viewpoint of Interference and Load.
Feng, Jianyuan; Feng, Zhiyong
2017-09-11
Network densification is attracting increasing attention recently due to its ability to improve network capacity by spatial reuse and relieve congestion by offloading. However, excessive densification and aggressive offloading can also cause the degradation of network performance due to problems of interference and load. In this paper, with consideration of load issues, we study the optimal base station density that maximizes the throughput of the network. The expected link rate and the utilization ratio of the contention-based channel are derived as the functions of base station density using the Poisson Point Process (PPP) and Markov Chain. They reveal the rules of deployment. Based on these results, we obtain the throughput of the network and indicate the optimal deployment density under different network conditions. Extensive simulations are conducted to validate our analysis and show the substantial performance gain obtained by the proposed deployment scheme. These results can provide guidance for the network densification.
A user exposure based approach for non-structural road network vulnerability analysis
Jin, Lei; Wang, Haizhong; Yu, Le; Liu, Lin
2017-01-01
Aiming at the dense urban road network vulnerability without structural negative consequences, this paper proposes a novel non-structural road network vulnerability analysis framework. Three aspects of the framework are mainly described: (i) the rationality of non-structural road network vulnerability, (ii) the metrics for negative consequences accounting for variant road conditions, and (iii) the introduction of a new vulnerability index based on user exposure. Based on the proposed methodology, a case study in the Sioux Falls network which was usually threatened by regular heavy snow during wintertime is detailedly discussed. The vulnerability ranking of links of Sioux Falls network with respect to heavy snow scenario is identified. As a result of non-structural consequences accompanied by conceivable degeneration of network, there are significant increases in generalized travel time costs which are measurements for “emotionally hurt” of topological road network. PMID:29176832
Development of GPS/A Seafloor Geodetic Network Along Japan Trench and Onset of Its Operation
NASA Astrophysics Data System (ADS)
Kido, M.; Fujimoto, H.; Osada, Y.; Ohta, Y.; Yamamoto, J.; Tadokoro, K.; Okuda, T.; Watanabe, T.; Nagai, S.; Kenji, Y.
2012-12-01
The Tohoku-oki earthquake in 2011 revealed that an M9-class giant earthquake could occur even in the old subduction zone and that coseismic slip can reach its frontal wedge, where we considered no significant stress had been accumulated in. One of the leading figure of such finding is in situ seafloor geodetic measurement, such as GPS/A technique for horizontal displacement and pressure gauge for vertical displacement. Japan Coast Guard and Japanese university group had developed several GPS/A sites near the source region of the Tohoku-oki earthquake and detected quite large coseismic movements over 20 m in there. Displacement vectors observed these sites showed systematic variation, i.e., mainly confined in the off-Miyagi area and getting larger near the trench. However, subsequent post-seismic deformation shows inexplicable distribution. In order to elucidate this complex feature, MEXT Japan has decided to construct dense and widely-extended GPS/A network along Japan trench, including deep area (~6000m). We, Tohoku and Nagoya universities, have firstly developed high-powered seafloor transponders with an omnidirectional acoustic unit that works at 6000 m deep ocean and enable acoustic ranging over 13 km slant length. In addition, using high-energy density battery, its lifetime is expected 10 years with normal operation. Secondly, we examined the optimal distribution of GPS/A sites forming a network, taken pre-existing sites into consideration. The new network consists of 20 sites (roughly four transponders at a single site and 86 transponders in total). The distribution is dense near the area of complex post-seismic deformation and extended over 400 km to cover the adjacent area of the source region, in where induced earthquake may be expected. The largest obstacle to draw network plan is seafloor topography. Because a GPS/A site is a seafloor benchmark, its installation must be on flat and locally stable spot. Since a single GPS/A site consists of three or more transponders in an area extending roughly the same dimension of its depth, flat spot is quite limited especially near the trench. The positions of the 20 sites were carefully determined using a high-definition bathymetry map. We already have constructed two sites, one of which is 5500 m depth, and successfully obtained acoustic data. In September, we will install rest of the sites (18 sites) and begin initial campaign survey. The second campaign is planned in November. We will introduce details of the network and report updated result in the talk.
Locating sources within a dense sensor array using graph clustering
NASA Astrophysics Data System (ADS)
Gerstoft, P.; Riahi, N.
2017-12-01
We develop a model-free technique to identify weak sources within dense sensor arrays using graph clustering. No knowledge about the propagation medium is needed except that signal strengths decay to insignificant levels within a scale that is shorter than the aperture. We then reinterpret the spatial coherence matrix of a wave field as a matrix whose support is a connectivity matrix of a graph with sensors as vertices. In a dense network, well-separated sources induce clusters in this graph. The geographic spread of these clusters can serve to localize the sources. The support of the covariance matrix is estimated from limited-time data using a hypothesis test with a robust phase-only coherence test statistic combined with a physical distance criterion. The latter criterion ensures graph sparsity and thus prevents clusters from forming by chance. We verify the approach and quantify its reliability on a simulated dataset. The method is then applied to data from a dense 5200 element geophone array that blanketed of the city of Long Beach (CA). The analysis exposes a helicopter traversing the array and oil production facilities.
Structure of Saturn's Rings from Cassini Diametric Radio Occultations
NASA Astrophysics Data System (ADS)
Marouf, E.; French, R.; Rappaport, N.; Kliore, A.; Flasar, M.; Nagy, A.; McGhee, C.; Schinder, P.; Anabtawi, A.; Asmar, S.; Barbinis, E.; Fleischman, D.; Goltz, G.; Johnston, D.; Rochblatt, D.; Thomson, F.; Wong, K.
2005-08-01
Cassini orbits around Saturn were designed to provide eight optimized radio occultation observations of Saturn's rings during summer, 2005. Three monochromatic radio signals (0.94, 3.6, and 13 cm-wavelength) were transmitted by Cassini through the rings and observed at multiple stations of the NASA Deep Space Network. A rich data set has been collected. Detailed structure of Ring B is revealed for the first time, including multi-feature dense ''core'' ˜ 6,000 km wide of normal optical depth > 4.3, a ˜ 5,500 km region of oscillations in optical depth ( ˜ 1.7 to ˜ 3.4) over characteristic radial scales of few hundred kilometers interior to the core, and a ˜ 5,000 km region exterior to the core of similar nature but smaller optical depth fluctuation ( ˜ 2.2 to ˜ 3.3). The innermost ˜ 7,000 km region is the thinnest (mean optical depth ˜ 1.2), and includes two unusually uniform regions and a prominent density wave. With few exceptions, the structure is nearly identical for the three radio signals (when detectable), indicating that Ring B is relatively devoid of centimeters and smaller size particles. The structure is largely circularly symmetric, except for radius > ˜ 116,600 km. In Ring A, numerous (> 40) density waves are clearly observed at multiple longitudes, different average background optical depth is observed among different occultations suggesting that the azimuthal asymmetry extends over most Ring A, and strong dependence of the observed structure on wavelength implies increase in the abundance of centimeter and smaller size particles with increasing radius. Multiple longitude observations of Ring C and the Cassini Division structure reveal remarkable variability of gaps and their embedded narrow eccentric ringlets, and a wake/wave like feature interior to the gap at ˜ 118,200 km (embedded moonlet?). Wavelength dependent structure of Ring C implies abundance of centimeter size particles everywhere and sorting by size within dense embedded features.
International postseismic response after the Mw=7.8 April 16, 2016 Pedernales Earthquake in Ecuador
NASA Astrophysics Data System (ADS)
Font, Y.; Ruiz, M. C.; Alvarado, A. P.; Mercerat, D.; Beck, S. L.; Leon Rios, S.; Meltzer, A.; Charvis, P.; Regnier, M. M.; Jarrin, P.; Rietbrock, A.; Vasconez, F.; Dionicio, V.; Calvache, M. L.; Singaucho, J. C.; Pazmino, A.; Rolandone, F.; Mothes, P. A.; Nocquet, J. M.; Martin, X.; Viracucha, C.; Audin, L.; Saillard, M.; Laurendeau, A.; Perrault, M.; Garth, T.; Pernoud, M.; Barros, J. G.; Yates, B.; Malengros, D.; Oregioni, D.; Villegas Lanza, J. C.; Cisneros, D.; Gomez, J.; Montes, L.; Beauval, C. M.; Bertrand, E.; Delouis, B.; Ruiz Paspuel, A. G.; Freymueller, J. T.; Williams, K.; La Femina, P.; Fuenzalida, A.; Mariniere, J.; Cheze, J.; Gueguen, P.; Maron, C.; Michaud, F.; Yepes, H. A.; Palacios, P.; Vallee, M.; Deschamps, A.; Gabriela, P.; Ambrois, D.; Ramos, C.; Courboulex, F.
2016-12-01
The Pedernales earthquake is a large Mw7.8 subduction earthquake caused by the relative convergence between the Nazca and South American plates. It occured north of the city of Pedernales, at 21 km depth and struck the coastal and densely populated Manabi Province, causing many casualties, structural damages and widespread surficial deformation. The 2016 epicenter was located near the Mw 7.8 1942 epicenter. Both events are similar in size and probably ruptured the same segment, which also corresponds to the southern part of the 1906 Mw8.8 Ecuador-Colombia megathrust rupture zone. Immediately after the earthquake, an international team from Ecuador, France, Colombia, the United Kingdom, Peru and the United States coordinated a scientific response with the respective financial support of EPN, IRD and CNRS, SGC, NERC and NSF. Equipment was provided by IGEPN, IRD, CEREMA, SGC, LIVERPOOL, IRIS PASSCAL and UNAVCO. Within a 1.5 month, the team progressively deployed a temporary seismic network of about 70 accelerometer and seismic stations, and 17 continuous GPS stations, complementing the permanent seismic, accelerometer and geodetic network of the IG-EPN. The dense network covers the 300 x 150 km wide area affected by the earthquake, including a trench-parallel line of 10 ocean bottom seismometers deployed by the R/V Orion of INOCAR for 6 months, assuring a minimized azimuthal gap. Intense seismicity is observed up to 150 km N- and S-ward from the rupture zone aligning mainly along 3 seismic strips roughly perpendicular to the trench and also near the rupture area. Peak ground and spectral accelerations are compared with existing ground-motion prediction equations (GMPEs) developed for interface earthquakes. Different soil investigations were realized to highlight soil characteristics in cities. The geodetic observations captured the immediate afterslip and will help determining the time history of afterslip and viscoelastic relaxation in response to this earthquake. A field survey was conducted on-land to describe the coseismic tectonic deformations and damages to buildings. At sea, a multibeam bathymetry survey of the margin over the rupture zone was conducted by the R/V Orion, making it possible to tentatively estimate and quantify sea-floor deformation after and before the earthquake.
Computation and Learning in Neural Networks With Binary Weights
1992-11-28
alternatively, the total number of component updates before convergence is 0(n 3 ). We follow this with an average case analysis, similar in flavour to...anecdotal evidence in support of it in ’Well, maybe an imp. I I situations where the network has a more "distributed" flavour with relatively dense...Within the hipocampus, there is a three stage sequence of processing consisting of granule cells (which 3 receive from the entorhinal cortex), the CA3
Knudson, M D; Desjarlais, M P; Becker, A; Lemke, R W; Cochrane, K R; Savage, M E; Bliss, D E; Mattsson, T R; Redmer, R
2015-06-26
Eighty years ago, it was proposed that solid hydrogen would become metallic at sufficiently high density. Despite numerous investigations, this transition has not yet been experimentally observed. More recently, there has been much interest in the analog of this predicted metallic transition in the dense liquid, due to its relevance to planetary science. Here, we show direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium. Experimental determination of the location of this transition provides a much-needed benchmark for theory and may constrain the region of hydrogen-helium immiscibility and the boundary-layer pressure in standard models of the internal structure of gas-giant planets. Copyright © 2015, American Association for the Advancement of Science.
Prediction-based association control scheme in dense femtocell networks
Pham, Ngoc-Thai; Huynh, Thong; Hwang, Won-Joo; You, Ilsun; Choo, Kim-Kwang Raymond
2017-01-01
The deployment of large number of femtocell base stations allows us to extend the coverage and efficiently utilize resources in a low cost manner. However, the small cell size of femtocell networks can result in frequent handovers to the mobile user, and consequently throughput degradation. Thus, in this paper, we propose predictive association control schemes to improve the system’s effective throughput. Our design focuses on reducing handover frequency without impacting on throughput. The proposed schemes determine handover decisions that contribute most to the network throughput and are proper for distributed implementations. The simulation results show significant gains compared with existing methods in terms of handover frequency and network throughput perspective. PMID:28328992
Dense matter in strong gravitational field of neutron star
NASA Astrophysics Data System (ADS)
Bhat, Sajad A.; Bandyopadhyay, Debades
2018-02-01
Mass, radius and moment of inertia are direct probes of compositions and Equation of State (EoS) of dense matter in neutron star interior. These are computed for novel phases of dense matter involving hyperons and antikaon condensate and their observable consequences are discussed in this article. Furthermore, the relationship between moment of inertia and quadrupole moment is also explored.
Contagion on complex networks with persuasion
NASA Astrophysics Data System (ADS)
Huang, Wei-Min; Zhang, Li-Jie; Xu, Xin-Jian; Fu, Xinchu
2016-03-01
The threshold model has been widely adopted as a classic model for studying contagion processes on social networks. We consider asymmetric individual interactions in social networks and introduce a persuasion mechanism into the threshold model. Specifically, we study a combination of adoption and persuasion in cascading processes on complex networks. It is found that with the introduction of the persuasion mechanism, the system may become more vulnerable to global cascades, and the effects of persuasion tend to be more significant in heterogeneous networks than those in homogeneous networks: a comparison between heterogeneous and homogeneous networks shows that under weak persuasion, heterogeneous networks tend to be more robust against random shocks than homogeneous networks; whereas under strong persuasion, homogeneous networks are more stable. Finally, we study the effects of adoption and persuasion threshold heterogeneity on systemic stability. Though both heterogeneities give rise to global cascades, the adoption heterogeneity has an overwhelmingly stronger impact than the persuasion heterogeneity when the network connectivity is sufficiently dense.
Contagion on complex networks with persuasion
Huang, Wei-Min; Zhang, Li-Jie; Xu, Xin-Jian; Fu, Xinchu
2016-01-01
The threshold model has been widely adopted as a classic model for studying contagion processes on social networks. We consider asymmetric individual interactions in social networks and introduce a persuasion mechanism into the threshold model. Specifically, we study a combination of adoption and persuasion in cascading processes on complex networks. It is found that with the introduction of the persuasion mechanism, the system may become more vulnerable to global cascades, and the effects of persuasion tend to be more significant in heterogeneous networks than those in homogeneous networks: a comparison between heterogeneous and homogeneous networks shows that under weak persuasion, heterogeneous networks tend to be more robust against random shocks than homogeneous networks; whereas under strong persuasion, homogeneous networks are more stable. Finally, we study the effects of adoption and persuasion threshold heterogeneity on systemic stability. Though both heterogeneities give rise to global cascades, the adoption heterogeneity has an overwhelmingly stronger impact than the persuasion heterogeneity when the network connectivity is sufficiently dense. PMID:27029498
Contagion on complex networks with persuasion.
Huang, Wei-Min; Zhang, Li-Jie; Xu, Xin-Jian; Fu, Xinchu
2016-03-31
The threshold model has been widely adopted as a classic model for studying contagion processes on social networks. We consider asymmetric individual interactions in social networks and introduce a persuasion mechanism into the threshold model. Specifically, we study a combination of adoption and persuasion in cascading processes on complex networks. It is found that with the introduction of the persuasion mechanism, the system may become more vulnerable to global cascades, and the effects of persuasion tend to be more significant in heterogeneous networks than those in homogeneous networks: a comparison between heterogeneous and homogeneous networks shows that under weak persuasion, heterogeneous networks tend to be more robust against random shocks than homogeneous networks; whereas under strong persuasion, homogeneous networks are more stable. Finally, we study the effects of adoption and persuasion threshold heterogeneity on systemic stability. Though both heterogeneities give rise to global cascades, the adoption heterogeneity has an overwhelmingly stronger impact than the persuasion heterogeneity when the network connectivity is sufficiently dense.
Lamontagne, Marie-Eve
2013-01-01
Introduction Integration is a popular strategy to increase the quality of care within systems of care. However, there is no common language, approach or tool allowing for a valid description, comparison and evaluation of integrated care. Social network analysis could be a viable methodology to provide an objective picture of integrated networks. Goal of the article To illustrate social network analysis use in the context of systems of care for traumatic brain injury. Method We surveyed members of a network using a validated questionnaire to determine the links between them. We determined the density, centrality, multiplexity, and quality of the links reported. Results The network was described as moderately dense (0.6), the most prevalent link was knowledge, and four organisation members of a consortium were central to the network. Social network analysis allowed us to create a graphic representation of the network. Conclusion Social network analysis is a useful methodology to objectively characterise integrated networks. PMID:24250281
Estimating National-scale Emissions using Dense Monitoring Networks
NASA Astrophysics Data System (ADS)
Ganesan, A.; Manning, A.; Grant, A.; Young, D.; Oram, D.; Sturges, W. T.; Moncrieff, J. B.; O'Doherty, S.
2014-12-01
The UK's DECC (Deriving Emissions linked to Climate Change) network consists of four greenhouse gas measurement stations that are situated to constrain emissions from the UK and Northwest Europe. These four stations are located in Mace Head (West Coast of Ireland), and on telecommunication towers at Ridge Hill (Western England), Tacolneston (Eastern England) and Angus (Eastern Scotland). With the exception of Angus, which currently only measures carbon dioxide (CO2) and methane (CH4), the remaining sites are additionally equipped to monitor nitrous oxide (N2O). We present an analysis of the network's CH4 and N2O observations from 2011-2013 and compare derived top-down regional emissions with bottom-up inventories, including a recently produced high-resolution inventory (UK National Atmospheric Emissions Inventory). As countries are moving toward national-level emissions estimation, we also address some of the considerations that need to be made when designing these national networks. One of the novel aspects of this work is that we use a hierarchical Bayesian inversion framework. This methodology, which has newly been applied to greenhouse gas emissions estimation, is designed to estimate temporally and spatially varying model-measurement uncertainties and correlation scales, in addition to fluxes. Through this analysis, we demonstrate the importance of characterizing these covariance parameters in order to properly use data from high-density monitoring networks. This UK case study highlights the ways in which this new inverse framework can be used to address some of the limitations of traditional Bayesian inverse methods.
NASA Astrophysics Data System (ADS)
Chang, Tsui-Yu; Cotton, Fabrice; Angelier, Jacques; Shin, Tzay-Chyn
2001-07-01
Attenuation laws are widely used in order to estimate the peak ground acceleration that may occur at a given locality during an earthquake, for hazard evaluation purposes. However, these simplified laws should be regarded acceptable only in the first approximation, because numerous significant parameters at the local and regional scales are often ignored. We examined the relationship between distance and peak acceleration based on examples from the dense accelerometric network of Taiwan, specifically for the Chichi destructive earthquake. We thus observed significant discrepancies between the predicted and observed accelerations, resulting from (1) near-field saturation, (2) amplification in sedimentary basins, and (3) hanging wall effect. We mapped the residual accelerations (difference between observed and predicted peak ground accelerations). This highlights the role of the regional structure, independently revealed by the geological analysis, as a significant factor that controls the transmission of the seismic accelerations.
Anderson, O R
1976-01-01
Collozoum inerme (Müller) is a colonial Radiolarian containing numerous cells bound in a common gelatinous matrix. The cells do not posses a skeleton as observed in many unicellular Radiolaria, but the cytoplasmic organization is similar. The cells are multinucleate and a complex system of cellular processes containing mitochondria, Golgi, and numerous vacuoles radiate out from the nuclear region. The endoplasm is connected to the ectoplasm across a double membrane boundary by thin cytoplasmic strands called fusules whose structure resemble those in unicellular Radiolaria. The ectoplasm contains a lacy network of vacuoles containing an osmiophilic substance. Rhizopodia emerge from the ectoplasmic sheath. Some are thin and densely granular. Larger diameter rhizopodia, containing less dense cytoplasm, sequester the zooxanthellae which present a typical dinoflagellate fine structure. Some of the zooxanthellae are apparently cultivated since they are sometimes observed dividing and persist in large numbers when colonies are cultivated under illumination for several weeks in the laboratory. However, colonies maintained in the dark have a decline in number of zooxanthellae and light microscopic examination shows they are being drawn into the ectoplasm of the radiolarian cells. Electron microscopic examination of zooxanthellae drawn into the ectoplasm sheath indicates they are digested. C. inerme is a remarkable example of a simple cellular aggregate that has exploited its colonial habit to culture algae and use them as food thus possibly enhancing the viability of the colony.
Low-rank network decomposition reveals structural characteristics of small-world networks
NASA Astrophysics Data System (ADS)
Barranca, Victor J.; Zhou, Douglas; Cai, David
2015-12-01
Small-world networks occur naturally throughout biological, technological, and social systems. With their prevalence, it is particularly important to prudently identify small-world networks and further characterize their unique connection structure with respect to network function. In this work we develop a formalism for classifying networks and identifying small-world structure using a decomposition of network connectivity matrices into low-rank and sparse components, corresponding to connections within clusters of highly connected nodes and sparse interconnections between clusters, respectively. We show that the network decomposition is independent of node indexing and define associated bounded measures of connectivity structure, which provide insight into the clustering and regularity of network connections. While many existing network characterizations rely on constructing benchmark networks for comparison or fail to describe the structural properties of relatively densely connected networks, our classification relies only on the intrinsic network structure and is quite robust with respect to changes in connection density, producing stable results across network realizations. Using this framework, we analyze several real-world networks and reveal new structural properties, which are often indiscernible by previously established characterizations of network connectivity.
2D PWV monitoring of a wide and orographically complex area with a low dense GNSS network
NASA Astrophysics Data System (ADS)
Ferrando, Ilaria; Federici, Bianca; Sguerso, Domenico
2018-04-01
This study presents an innovative procedure to monitor the precipitable water vapor (PWV) content of a wide and orographically complex area with low-density networks. The procedure, termed G4M (global navigation satellite system, GNSS, for Meteorology), has been developed in a geographic information system (GIS) environment using the free and open source GRASS GIS software (https://grass.osgeo.org). The G4M input data are zenith total delay estimates obtained from GNSS permanent stations network adjustment and pressure ( P) and temperature ( T) observations using existing infrastructure networks with different geographic distributions in the study area. In spite of the wide sensor distribution, the procedure produces 2D maps with high spatiotemporal resolution (up to 250 m and 6 min) based on a simplified mathematical model including data interpolation, which was conceived by the authors to describe the atmosphere's physics. In addition to PWV maps, the procedure provides ΔPWV and heterogeneity index maps: the former represents PWV variations with respect to a "calm" moment, which are useful for monitoring the PWV evolution; and the latter are promising indicators to localize severe meteorological events in time and space. This innovative procedure is compared with meteorological simulations in this paper; in addition, an application to a severe event that occurred in Genoa (Italy) is presented.[Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Kong, Shuo; Tan, Jonathan C.; Arce, Héctor G.; Caselli, Paola; Fontani, Francesco; Butler, Michael J.
2018-03-01
Stars are born from dense cores in molecular clouds. Observationally, it is crucial to capture the formation of cores in order to understand the necessary conditions and rate of the star formation process. The Atacama Large Millimeter/submillimeter Array (ALMA) is extremely powerful for identifying dense gas structures, including cores, at millimeter wavelengths via their dust continuum emission. Here, we use ALMA to carry out a survey of dense gas and cores in the central region of the massive (∼105 M ⊙) infrared dark cloud (IRDC) G28.37+0.07. The observation consists of a mosaic of 86 pointings of the 12 m array and produces an unprecedented view of the densest structures of this IRDC. In this first Letter about this data set, we focus on a comparison between the 1.3 mm continuum emission and a mid-infrared (MIR) extinction map of the IRDC. This allows estimation of the “dense gas” detection probability function (DPF), i.e., as a function of the local mass surface density, Σ, for various choices of thresholds of millimeter continuum emission to define “dense gas.” We then estimate the dense gas mass fraction, f dg, in the central region of the IRDC and, via extrapolation with the DPF and the known Σ probability distribution function, to the larger-scale surrounding regions, finding values of about 5% to 15% for the fiducial choice of threshold. We argue that this observed dense gas is a good tracer of the protostellar core population and, in this context, estimate a star formation efficiency per free-fall time in the central IRDC region of ɛ ff ∼ 10%, with approximately a factor of two systematic uncertainties.
Goldvaser, Hadar; Majeed, Habeeb; Ribnikar, Domen; Šeruga, Boštjan; Ocaña, Alberto; Cescon, David W; Amir, Eitan
2018-06-01
Results from clinical trials of adjuvant dose-dense chemotherapy in patients with breast cancer are inconsistent. A systematic search of MEDLINE identified studies comparing the efficacy of dose-dense adjuvant chemotherapy to a standard treatment. The primary analysis included studies that used identical regimens in the experimental and control groups, but varied only dose density. A secondary analysis included studies that used either different drugs or doses in the experimental and the control groups. Hazard ratios (HRs) and 95% confidence intervals were computed for disease-free survival (DFS) and overall survival (OS) and pooled in a meta-analysis. Subgroup analyses and meta-regression explored drug schedules utilized in control groups and the influence of clinicopathologic variables on benefit from dose-dense therapy. The primary analysis included 5 studies comprising 9819 patients while the secondary analysis included 6 studies comprising 9679 patients. Dose-dense treatment significantly improved DFS (HR 0.85, p < 0.001) and OS (HR 0.86, p = 0.008) in the primary analysis. Similar results were observed in the secondary analysis. Dose-dense schedule was important primarily in studies utilizing paclitaxel every 3 weeks as the control group (interaction p = 0.04 for DFS interaction p = 0.001 for OS). A significantly greater relative magnitude of benefit was observed in pre-menopausal women and those with nodal involvement, but there was no influence of hormone receptor status on results. Adjuvant dose-dense regimens improve breast cancer outcomes. It remains uncertain whether the observed benefit reflects the impact of dose density or the inferiority of paclitaxel every 3 weeks as a control group.
Application distribution model and related security attacks in VANET
NASA Astrophysics Data System (ADS)
Nikaein, Navid; Kanti Datta, Soumya; Marecar, Irshad; Bonnet, Christian
2013-03-01
In this paper, we present a model for application distribution and related security attacks in dense vehicular ad hoc networks (VANET) and sparse VANET which forms a delay tolerant network (DTN). We study the vulnerabilities of VANET to evaluate the attack scenarios and introduce a new attacker`s model as an extension to the work done in [6]. Then a VANET model has been proposed that supports the application distribution through proxy app stores on top of mobile platforms installed in vehicles. The steps of application distribution have been studied in detail. We have identified key attacks (e.g. malware, spamming and phishing, software attack and threat to location privacy) for dense VANET and two attack scenarios for sparse VANET. It has been shown that attacks can be launched by distributing malicious applications and injecting malicious codes to On Board Unit (OBU) by exploiting OBU software security holes. Consequences of such security attacks have been described. Finally, countermeasures including the concepts of sandbox have also been presented in depth.
Using Network Theory to Understand Seismic Noise in Dense Arrays
NASA Astrophysics Data System (ADS)
Riahi, N.; Gerstoft, P.
2015-12-01
Dense seismic arrays offer an opportunity to study anthropogenic seismic noise sources with unprecedented detail. Man-made sources typically have high frequency, low intensity, and propagate as surface waves. As a result attenuation restricts their measurable footprint to a small subset of sensors. Medium heterogeneities can further introduce wave front perturbations that limit processing based on travel time. We demonstrate a non-parametric technique that can reliably identify very local events within the array as a function of frequency and time without using travel-times. The approach estimates the non-zero support of the array covariance matrix and then uses network analysis tools to identify clusters of sensors that are sensing a common source. We verify the method on simulated data and then apply it to the Long Beach (CA) geophone array. The method exposes a helicopter traversing the array, oil production facilities with different characteristics, and the fact that noise sources near roads tend to be around 10-20 Hz.
Low latency network and distributed storage for next generation HPC systems: the ExaNeSt project
NASA Astrophysics Data System (ADS)
Ammendola, R.; Biagioni, A.; Cretaro, P.; Frezza, O.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Paolucci, P. S.; Pastorelli, E.; Pisani, F.; Simula, F.; Vicini, P.; Navaridas, J.; Chaix, F.; Chrysos, N.; Katevenis, M.; Papaeustathiou, V.
2017-10-01
With processor architecture evolution, the HPC market has undergone a paradigm shift. The adoption of low-cost, Linux-based clusters extended the reach of HPC from its roots in modelling and simulation of complex physical systems to a broader range of industries, from biotechnology, cloud computing, computer analytics and big data challenges to manufacturing sectors. In this perspective, the near future HPC systems can be envisioned as composed of millions of low-power computing cores, densely packed — meaning cooling by appropriate technology — with a tightly interconnected, low latency and high performance network and equipped with a distributed storage architecture. Each of these features — dense packing, distributed storage and high performance interconnect — represents a challenge, made all the harder by the need to solve them at the same time. These challenges lie as stumbling blocks along the road towards Exascale-class systems; the ExaNeSt project acknowledges them and tasks itself with investigating ways around them.
Spatial evolutionary public goods game on complete graph and dense complex networks
NASA Astrophysics Data System (ADS)
Kim, Jinho; Chae, Huiseung; Yook, Soon-Hyung; Kim, Yup
2015-03-01
We study the spatial evolutionary public goods game (SEPGG) with voluntary or optional participation on a complete graph (CG) and on dense networks. Based on analyses of the SEPGG rate equation on finite CG, we find that SEPGG has two stable states depending on the value of multiplication factor r, illustrating how the ``tragedy of the commons'' and ``an anomalous state without any active participants'' occurs in real-life situations. When r is low (), the state with only loners is stable, and the state with only defectors is stable when r is high (). We also derive the exact scaling relation for r*. All of the results are confirmed by numerical simulation. Furthermore, we find that a cooperator-dominant state emerges when the number of participants or the mean degree,
Mesonet Programs - Needs and Best Practices
NASA Astrophysics Data System (ADS)
Usher, J.; Doherty, J.
2010-09-01
Authors: Jeremy Usher Managing Director, Europe WeatherBug® Professional John Doherty Senior Vice President Sales & Marketing WeatherBug® Professional There are many well documented and compelling needs for significant improvements in mesoscale meteorological observations throughout many parts of the world. This is evidenced by the fact that the vast majority of severe weather impacts and related life, property and economic losses are associated with mesoscale events such as tornados, thunderstorms, fronts, squall lines, etc. Additionally, the looming impacts of climate change are likely to vary substantially on a regional basis requiring more detailed information on a finer scale. Hence, development of comprehensive densely spaced observing systems can establish the critical information repositories needed to improve: short- and medium-term weather and wind forecasting down to local scales, climate monitoring on a regional basis, as well as decision support capabilities including plume dispersion modeling and air quality forecasting, to name a few. It is imperative that governmental/public/private/academic partnerships are formed to leverage the collective expertise, assets and technological know-how of each sector. Collaboration of this type is particularly germane given that many existing mesonets (weather networks) have been deployed by local organizations with local considerations in mind. These stakeholders maintain the capacity to react quickly and efficiently and are best positioned to recommend future network evolution within their domains. Additionally, coordination will go a long way toward avoiding duplication of effort and promote both a robust private sector and wise expenditure of public funds. This presentation will outline the major building blocks of a mesonet program and discuss best practices for a multi-tiered, multi-faceted "network of networks" approach that maximizes the value derived from leveraging existing assets and serves multiple needs. On-going activities within the U.S. National Mesonet Program will be highlighted.
NASA Astrophysics Data System (ADS)
Wallace, L. M.; Araki, E.; Saffer, D.; Wang, X.; Roesner, A.; Kopf, A.; Nakanishi, A.; Power, W.; Kobayashi, R.; Kinoshita, C.; Toczko, S.; Kimura, T.; Machida, Y.; Carr, S.
2016-11-01
An Mw 6.0 earthquake struck 50 km offshore the Kii Peninsula of southwest Honshu, Japan on 1 April 2016. This earthquake occurred directly beneath a cabled offshore monitoring network at the Nankai Trough subduction zone and within 25-35 km of two borehole observatories installed as part of the International Ocean Discovery Program's NanTroSEIZE project. The earthquake's location close to the seafloor and subseafloor network offers a unique opportunity to evaluate dense seafloor geodetic and seismological data in the near field of a moderate-sized offshore earthquake. We use the offshore seismic network to locate the main shock and aftershocks, seafloor pressure sensors, and borehole observatory data to determine the detailed distribution of seafloor and subseafloor deformation, and seafloor pressure observations to model the resulting tsunami. Contractional strain estimated from formation pore pressure records in the borehole observatories (equivalent to 0.37 to 0.15 μstrain) provides a key to narrowing the possible range of fault plane solutions. Together, these data show that the rupture occurred on a landward dipping thrust fault at 9-10 km below the seafloor, most likely on the plate interface. Pore pressure changes recorded in one of the observatories also provide evidence for significant afterslip for at least a few days following the main shock. The earthquake and its aftershocks are located within the coseismic slip region of the 1944 Tonankai earthquake (Mw 8.0), and immediately downdip of swarms of very low frequency earthquakes in this region, illustrating the complex distribution of megathrust slip behavior at a dominantly locked seismogenic zone.
NASA Astrophysics Data System (ADS)
Kim, Jinsol; Shusterman, Alexis A.; Lieschke, Kaitlyn J.; Newman, Catherine; Cohen, Ronald C.
2018-04-01
The newest generation of air quality sensors is small, low cost, and easy to deploy. These sensors are an attractive option for developing dense observation networks in support of regulatory activities and scientific research. They are also of interest for use by individuals to characterize their home environment and for citizen science. However, these sensors are difficult to interpret. Although some have an approximately linear response to the target analyte, that response may vary with time, temperature, and/or humidity, and the cross-sensitivity to non-target analytes can be large enough to be confounding. Standard approaches to calibration that are sufficient to account for these variations require a quantity of equipment and labor that negates the attractiveness of the sensors' low cost. Here we describe a novel calibration strategy for a set of sensors, including CO, NO, NO2, and O3, that makes use of (1) multiple co-located sensors, (2) a priori knowledge about the chemistry of NO, NO2, and O3, (3) an estimate of mean emission factors for CO, and (4) the global background of CO. The strategy requires one or more well calibrated anchor points within the network domain, but it does not require direct calibration of any of the individual low-cost sensors. The procedure nonetheless accounts for temperature and drift, in both the sensitivity and zero offset. We demonstrate this calibration on a subset of the sensors comprising BEACO2N, a distributed network of approximately 50 sensor nodes
, each measuring CO2, CO, NO, NO2, O3 and particulate matter at 10 s time resolution and approximately 2 km spacing within the San Francisco Bay Area.
Barman-Adhikari, Anamika; Begun, Stephanie; Rice, Eric; Yoshioka-Maxwell, Amanda; Perez-Portillo, Andrea
2016-01-01
Homeless youths' social networks are consistently linked with their substance use. Social networks influence behavior through several mechanisms, especially social norms. This study used sociometric analyses to understand whether social norms of drug use behaviors are clustered in network structures and whether these perceived norms (descriptive and injunctive) influence youths' drug use behaviors. An event-based approach was used to delineate boundaries of the two sociometric networks of homeless youth, one in Los Angeles, CA (n = 160) and the other in Santa Monica, CA (n = 130). Network characteristics included centrality (i.e., popularity) and cohesiveness (location in dense subnetworks). The primary outcome was recent methamphetamine use. Results revealed that both descriptive and injunctive norms influenced methamphetamine use. Network cohesion was found to be associated with perception of both descriptive and injunctive norms in both networks, however in opposite directions. Network interventions therefore might be effective if designed to capitalize on social influence that naturally occurs in cohesive parts of networks. PMID:27194667
Short-term memory capacity in networks via the restricted isometry property.
Charles, Adam S; Yap, Han Lun; Rozell, Christopher J
2014-06-01
Cortical networks are hypothesized to rely on transient network activity to support short-term memory (STM). In this letter, we study the capacity of randomly connected recurrent linear networks for performing STM when the input signals are approximately sparse in some basis. We leverage results from compressed sensing to provide rigorous nonasymptotic recovery guarantees, quantifying the impact of the input sparsity level, the input sparsity basis, and the network characteristics on the system capacity. Our analysis demonstrates that network memory capacities can scale superlinearly with the number of nodes and in some situations can achieve STM capacities that are much larger than the network size. We provide perfect recovery guarantees for finite sequences and recovery bounds for infinite sequences. The latter analysis predicts that network STM systems may have an optimal recovery length that balances errors due to omission and recall mistakes. Furthermore, we show that the conditions yielding optimal STM capacity can be embodied in several network topologies, including networks with sparse or dense connectivities.
Fast Molecular Cloud Destruction Requires Fast Cloud Formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mac Low, Mordecai-Mark; Burkert, Andreas; Ibáñez-Mejía, Juan C., E-mail: mordecai@amnh.org, E-mail: burkert@usm.lmu.de, E-mail: ibanez@ph1.uni-koeln.de
A large fraction of the gas in the Galaxy is cold, dense, and molecular. If all this gas collapsed under the influence of gravity and formed stars in a local free-fall time, the star formation rate in the Galaxy would exceed that observed by more than an order of magnitude. Other star-forming galaxies behave similarly. Yet, observations and simulations both suggest that the molecular gas is indeed gravitationally collapsing, albeit hierarchically. Prompt stellar feedback offers a potential solution to the low observed star formation rate if it quickly disrupts star-forming clouds during gravitational collapse. However, this requires that molecular cloudsmore » must be short-lived objects, raising the question of how so much gas can be observed in the molecular phase. This can occur only if molecular clouds form as quickly as they are destroyed, maintaining a global equilibrium fraction of dense gas. We therefore examine cloud formation timescales. We first demonstrate that supernova and superbubble sweeping cannot produce dense gas at the rate required to match the cloud destruction rate. On the other hand, Toomre gravitational instability can reach the required production rate. We thus argue that, although dense, star-forming gas may last only around a single global free-fall time; the dense gas in star-forming galaxies can globally exist in a state of dynamic equilibrium between formation by gravitational instability and disruption by stellar feedback. At redshift z ≳ 2, the Toomre instability timescale decreases, resulting in a prediction of higher molecular gas fractions at early times, in agreement with the observations.« less
Joint inversion of surface wave dispersion and receiver functions for crustal structure in Oklahoma
NASA Astrophysics Data System (ADS)
Guo, Hao
The surge in seismicity in Oklahoma starting in 2008 raises questions about the actual locations of the earthquakes in the upper crust. The key to answering this is an improved crustal model that explains as many observations as possible. Love and Rayleigh wave dispersion, teleseismic P-wave receiver functions and some unique transverse motions observed at distances less than 100 km that are characteristics of rays reverberating in a basin provide data to derive the crustal model. The surface wave dispersion data set consists of over 300,000 Love/Rayleigh phase/group values obtained from ambient noise cross-correlation of BH channels of the 133 Transportable Array (TA) stations of Earthscope to periods as short as 2 seconds. Station coverage is dense enough to perform the tomography on a 25*25 km grid that should be able to image shallow geological structures. In addition, receiver functions were obtained using teleseismic data recorded from 3 US Geological Survey Networks (GS) stations and 6 Oklahoma Seismic Network (OK) stations from 2011 to 2014. The 1-D S-wave velocity models derived by the joint inversion of surface wave dispersion and receiver functions with geological constraints are tested by fitting the independent transverse seismograms. This test also provides constraints on the earthquake depths in relation to the geological structure.
Tsunami Simulation Method Assimilating Ocean Bottom Pressure Data Near a Tsunami Source Region
NASA Astrophysics Data System (ADS)
Tanioka, Yuichiro
2018-02-01
A new method was developed to reproduce the tsunami height distribution in and around the source area, at a certain time, from a large number of ocean bottom pressure sensors, without information on an earthquake source. A dense cabled observation network called S-NET, which consists of 150 ocean bottom pressure sensors, was installed recently along a wide portion of the seafloor off Kanto, Tohoku, and Hokkaido in Japan. However, in the source area, the ocean bottom pressure sensors cannot observe directly an initial ocean surface displacement. Therefore, we developed the new method. The method was tested and functioned well for a synthetic tsunami from a simple rectangular fault with an ocean bottom pressure sensor network using 10 arc-min, or 20 km, intervals. For a test case that is more realistic, ocean bottom pressure sensors with 15 arc-min intervals along the north-south direction and sensors with 30 arc-min intervals along the east-west direction were used. In the test case, the method also functioned well enough to reproduce the tsunami height field in general. These results indicated that the method could be used for tsunami early warning by estimating the tsunami height field just after a great earthquake without the need for earthquake source information.
Mechanical properties of highly defective graphene: from brittle rupture to ductile fracture.
Xu, Lanqing; Wei, Ning; Zheng, Yongping
2013-12-20
Defects are generally believed to deteriorate the superlative performance of graphene-based devices but may also be useful when carefully engineered to tailor the local properties and achieve new functionalities. Central to most defect-associated applications is the defect coverage and arrangement. In this work, we investigate, by molecular dynamics simulations, the mechanical properties and fracture dynamics of graphene sheets with randomly distributed vacancies or Stone-Wales defects under tensile deformations over a wide defect coverage range. With defects presented, an sp-sp(2) bonding network and an sp-sp(2)-sp(3) bonding network are observed in vacancy-defected and Stone-Wales-defected graphene, respectively. The ultimate strength degrades gradually with increasing defect coverage and saturates in the high-ratio regime, whereas the fracture strain presents an unusual descending-saturating-improving trend. In the dense vacancy defect situation, the fracture becomes more plastic and super-ductility is observed. Further fracture dynamics analysis reveals that the crack trapping by sp-sp(2) and sp-sp(2)-sp(3) rings and the crack-tip blunting account for the ductile fracture, whereas geometric rearrangement on the entire sheet for vacancy defects and geometric rearrangement on the specific defect sites for Stone-Wales defects account for their distinctive rules of the evolution of the fracture strain.
NASA Astrophysics Data System (ADS)
Kohler, M. D.; Castillo, J.; Massari, A.; Clayton, R. W.
2017-12-01
Earthquake-induced motions recorded by spatially dense seismic arrays in buildings located in the northern Los Angeles basin suggest the presence of complex, amplified surface wave effects on the seismic demand of mid-rise buildings. Several moderate earthquakes produced large-amplitude, seismic energy with slow shear-wave velocities that cannot be explained or accurately modeled by any published 3D seismic velocity models or by Vs30 values. Numerical experiments are conducted to determine if sedimentary basin features are responsible for these rarely modeled and poorly documented contributions to seismic demand computations. This is accomplished through a physics-based wave propagation examination of the effects of different sedimentary basin geometries on the nonlinear response of a mid-rise structural model based on an existing, instrumented building. Using two-dimensional finite-difference predictive modeling, we show that when an earthquake focal depth is near the vertical edge of an elongated and relatively shallow sedimentary basin, dramatically amplified and complex surface waves are generated as a result of the waveguide effect introduced by this velocity structure. In addition, for certain source-receiver distances and basin geometries, body waves convert to secondary Rayleigh waves that propagate both at the free-surface interface and along the depth interface of the basin that show up as multiple large-amplitude arrivals. This study is motivated by observations from the spatially dense, high-sample-rate acceleration data recorded by the Community Seismic Network, a community-hosted strong-motion network, currently consisting of hundreds of sensors located in the southern California area. The results provide quantitative insight into the causative relationship between a sedimentary basin shape and the generation of Rayleigh waves at depth, surface waves at the free surface, scattered seismic energy, and the sensitivity of building responses to each of these.
NASA Astrophysics Data System (ADS)
Hassan, S. M. Tanvir; Lubczynski, Maciek W.; Niswonger, Richard G.; Su, Zhongbo
2014-09-01
The structural and hydrological complexity of hard rock systems (HRSs) affects dynamics of surface-groundwater interactions. These complexities are not well described or understood by hydrogeologists because simplified analyses typically are used to study HRSs. A transient, integrated hydrologic model (IHM) GSFLOW (Groundwater and Surface water FLOW) was calibrated and post-audited using 18 years of daily groundwater head and stream discharge data to evaluate the surface-groundwater interactions in semi-arid, ∼80 km2 granitic Sardon hilly catchment in Spain characterized by shallow water table conditions, relatively low storage, dense drainage networks and frequent, high intensity rainfall. The following hydrological observations for the Sardon Catchment, and more generally for HRSs were made: (i) significant bi-directional vertical flows occur between surface water and groundwater throughout the HRSs; (ii) relatively large groundwater recharge represents 16% of precipitation (P, 562 mm.y-1) and large groundwater exfiltration (∼11% of P) results in short groundwater flow paths due to a dense network of streams, low permeability and hilly topographic relief; deep, long groundwater flow paths constitute a smaller component of the water budget (∼1% of P); quite high groundwater evapotranspiration (∼5% of P and ∼7% of total evapotranspiration); low permeability and shallow soils are the main reasons for relatively large components of Hortonian flow and interflow (15% and 11% of P, respectively); (iii) the majority of drainage from the catchment leaves as surface water; (iv) declining 18 years trend (4.44 mm.y-1) of groundwater storage; and (v) large spatio-temporal variability of water fluxes. This IHM study of HRSs provides greater understanding of these relatively unknown hydrologic systems that are widespread throughout the world and are important for water resources in many regions.
Hassan, S.M. Tanvir; Lubczynski, Maciek W.; Niswonger, Richard G.; Zhongbo, Su
2014-01-01
The structural and hydrological complexity of hard rock systems (HRSs) affects dynamics of surface–groundwater interactions. These complexities are not well described or understood by hydrogeologists because simplified analyses typically are used to study HRSs. A transient, integrated hydrologic model (IHM) GSFLOW (Groundwater and Surface water FLOW) was calibrated and post-audited using 18 years of daily groundwater head and stream discharge data to evaluate the surface–groundwater interactions in semi-arid, ∼80 km2 granitic Sardon hilly catchment in Spain characterized by shallow water table conditions, relatively low storage, dense drainage networks and frequent, high intensity rainfall. The following hydrological observations for the Sardon Catchment, and more generally for HRSs were made: (i) significant bi-directional vertical flows occur between surface water and groundwater throughout the HRSs; (ii) relatively large groundwater recharge represents 16% of precipitation (P, 562 mm.y−1) and large groundwater exfiltration (∼11% of P) results in short groundwater flow paths due to a dense network of streams, low permeability and hilly topographic relief; deep, long groundwater flow paths constitute a smaller component of the water budget (∼1% of P); quite high groundwater evapotranspiration (∼5% of P and ∼7% of total evapotranspiration); low permeability and shallow soils are the main reasons for relatively large components of Hortonian flow and interflow (15% and 11% of P, respectively); (iii) the majority of drainage from the catchment leaves as surface water; (iv) declining 18 years trend (4.44 mm.y−1) of groundwater storage; and (v) large spatio-temporal variability of water fluxes. This IHM study of HRSs provides greater understanding of these relatively unknown hydrologic systems that are widespread throughout the world and are important for water resources in many regions.
Cluster Analysis of Velocity Field Derived from Dense GNSS Network of Japan
NASA Astrophysics Data System (ADS)
Takahashi, A.; Hashimoto, M.
2015-12-01
Dense GNSS networks have been widely used to observe crustal deformation. Simpson et al. (2012) and Savage and Simpson (2013) have conducted cluster analyses of GNSS velocity field in the San Francisco Bay Area and Mojave Desert, respectively. They have successfully found velocity discontinuities. They also showed an advantage of cluster analysis for classifying GNSS velocity field. Since in western United States, strike-slip events are dominant, geometry is simple. However, the Japanese Islands are tectonically complicated due to subduction of oceanic plates. There are many types of crustal deformation such as slow slip event and large postseismic deformation. We propose a modified clustering method of GNSS velocity field in Japan to separate time variant and static crustal deformation. Our modification is performing cluster analysis every several months or years, then qualifying cluster member similarity. If a GNSS station moved differently from its neighboring GNSS stations, the station will not belong to in the cluster which includes its surrounding stations. With this method, time variant phenomena were distinguished. We applied our method to GNSS data of Japan from 1996 to 2015. According to the analyses, following conclusions were derived. The first is the clusters boundaries are consistent with known active faults. For examples, the Arima-Takatsuki-Hanaore fault system and the Shimane-Tottori segment proposed by Nishimura (2015) are recognized, though without using prior information. The second is improving detectability of time variable phenomena, such as a slow slip event in northern part of Hokkaido region detected by Ohzono et al. (2015). The last one is the classification of postseismic deformation caused by large earthquakes. The result suggested velocity discontinuities in postseismic deformation of the Tohoku-oki earthquake. This result implies that postseismic deformation is not continuously decaying proportional to distance from its epicenter.
Regional Characterization of Tokyo Metoropolitan area using a highly-dense seismic netwok(MeSO-net)
NASA Astrophysics Data System (ADS)
Hirata, N.; Nakagawa, S.; Sakai, S.; Panayotopoulos, Y.; Ishikawa, M.; Ishibe, T.; Kimura, H.; Honda, R.
2014-12-01
We have developed a dense seismic network, MeSO-net (Metropolitan Seismic Observation network), since 2007 in the greater Tokyo urban region under the Special Project for Earthquake Disaster Mitigation in Tokyo Metropolitan Area (FY2007-FY2011) and Special Project for Reducing Vulnerability for Urban Mega Earthquake Disasters (FY2012-FY2016)( Hirata et al., 2009). So far we have acquired more than 120TB continuous seismic data form MeSO-net which consists of about 300 seismic stations. Using MeSO-net data, we obtain clear P- and S- wave velocity tomograms (Nakagawa et al., 2010) and Qp, Qs tomograms (Panayotopoulos et al., 2014) which show a clear image of Philippine Sea Plate (PSP) and PAcific Plate (PAP). A depth to the top of PSP, 20 to 30 km beneath northern part of Tokyo bay, is about 10 km shallower than previous estimates based on the distribution of seismicity (Ishida, 1992). This shallower plate geometry changes estimations of strong ground motion for seismic hazards analysis within the Tokyo region. Based on elastic wave velocities of rocks and minerals, we interpreted the tomographic images as petrologic images. Tomographic images revealed the presence of two stepwise velocity increase of the top layer of the subducting PSP slab. Because strength of the serpentinized peridotite is not large enough for brittle fracture, if the area is smaller than previously estimated, a possible area of the large thrust fault on the upper surface of PSP can be larger than previously thought. Change of seismicity rate after the 2011 Tohoku-oki earthquake suggests change of stressing rate in greater Tokyo. Quantitative analysis of MeSO-net data shows significant increase of rate of earthquakes that have a fault orientation favorable to increasing Coulomb stress after the Tohoku-oki event.
Preliminary Obtained Data from Borehole Geodetic Measurements in Marmara Region, Turkey
NASA Astrophysics Data System (ADS)
Ozener, H.; Aktug, B.; Karabulut, H.; Ergintav, S.; Dogru, A.; Yilmaz, O.; Turgut, B.; Ahiska, B.; Mencin, D.; Mattioli, G. S.
2014-12-01
Dense continuous GPS networks quantify the time-dependent deformation field of the earthquake cycle. However the strainmeters can capture signals with superior precision at local spatial scales, in particular in the short-period, from minutes to a month. Many relatively small-scale events (e.i. SSEs, creeps) have been successfully determined on the subduction zones. Istanbul located near the most active parts of the North Anatolian Fault (NAF) has been monitored by different observing techniques such as seismic networks and continuous/survey-mode GPS networks for decades. However, it is still essential to observe deformation in a broad range of temporal and spatial scales (from seismology to geodesy and to geology). Borehole strainmeters are very sensitive to deformation in the range of less than a month. In this study, we present a new project, financially and technically supported by Istanbul Development Agency (ISTKA) and UNAVCO, respectively, which includes the installation of two borehole strainmeters are being deployed in European side of Istanbul in Marmara Region. Since these instruments can also respond to non-tectonic processes, it is necessary to have more instruments to increase spatial coherence and to have additional sensors to detect and model noise (such as barometric pressure, tides, or precipitation). The introduced monitoring system will provide significant insight about the creeping phenomenon and the possible SSE to our understanding of seismic hazards in active zones and possible precursors. Our long term objective is to build a borehole monitoring system in the region. By integrating various data obtained from borehole observations, we expect to get a better understanding of dynamics in the western NAF. In this presentation, we introduce data and ongoing analysis obtained with strainmeters.
NASA Astrophysics Data System (ADS)
Araszkiewicz, Andrzej; Figurski, Mariusz
2015-04-01
The potential that lies in the use of GNSS measurements for crustal deformation studies have already noticed in the beginning of the first of such a system (GPS). Today thanks to the development of satellite positioning techniques it is possible to detect displacement on the Earth surface with an accuracy less than 1 cm. With long-term observations we can determine the velocities even more accurately. Growing demand in the last years for GNSS applications, both for scientific and civil use, meant that new networks of the reference stations were created. Such a dense GNSS networks allow to conduct research in the field of crust deformation at a higher spatial resolution than before. In Europe most of the research focuses on Mediterranean regions, where we can monitor events resulting from the tectonic plates collision. But even in Central Europe we can see effect of Africa push. In our research we focused on Polish territory, where in the past 5 years a nearly 300 reference stations were established. With minimal movements that have been observed in Poland, a key issue in this type of research is to determine the geodynamic reliability of the estimated stations velocities. While the long-term observations enable us to determine the very accurate velocities, it hard to indicate how reliably they reflect actual tectonic movements is. In this paper we proposed a method for testing the reliability of stations velocities based on the strain rate field analysis. The method is based on the analysis of the distribution of the rate of deformation tensor components obtained for triangular elements built on the basis of assessed station. The paper presents the results of numerical simulations and initial use of the method for the Polish network of reference stations: ASG-EUPOS
Estimating surface soil moisture from SMAP observations using a Neural Network technique.
Kolassa, J; Reichle, R H; Liu, Q; Alemohammad, S H; Gentine, P; Aida, K; Asanuma, J; Bircher, S; Caldwell, T; Colliander, A; Cosh, M; Collins, C Holifield; Jackson, T J; Martínez-Fernández, J; McNairn, H; Pacheco, A; Thibeault, M; Walker, J P
2018-01-01
A Neural Network (NN) algorithm was developed to estimate global surface soil moisture for April 2015 to March 2017 with a 2-3 day repeat frequency using passive microwave observations from the Soil Moisture Active Passive (SMAP) satellite, surface soil temperatures from the NASA Goddard Earth Observing System Model version 5 (GEOS-5) land modeling system, and Moderate Resolution Imaging Spectroradiometer-based vegetation water content. The NN was trained on GEOS-5 soil moisture target data, making the NN estimates consistent with the GEOS-5 climatology, such that they may ultimately be assimilated into this model without further bias correction. Evaluated against in situ soil moisture measurements, the average unbiased root mean square error (ubRMSE), correlation and anomaly correlation of the NN retrievals were 0.037 m 3 m -3 , 0.70 and 0.66, respectively, against SMAP core validation site measurements and 0.026 m 3 m -3 , 0.58 and 0.48, respectively, against International Soil Moisture Network (ISMN) measurements. At the core validation sites, the NN retrievals have a significantly higher skill than the GEOS-5 model estimates and a slightly lower correlation skill than the SMAP Level-2 Passive (L2P) product. The feasibility of the NN method was reflected by a lower ubRMSE compared to the L2P retrievals as well as a higher skill when ancillary parameters in physically-based retrievals were uncertain. Against ISMN measurements, the skill of the two retrieval products was more comparable. A triple collocation analysis against Advanced Microwave Scanning Radiometer 2 (AMSR2) and Advanced Scatterometer (ASCAT) soil moisture retrievals showed that the NN and L2P retrieval errors have a similar spatial distribution, but the NN retrieval errors are generally lower in densely vegetated regions and transition zones.
Filamentation in the pinched column of the dense plasma focus
NASA Astrophysics Data System (ADS)
Kubes, P.; Paduch, M.; Cikhardt, J.; Cikhardtova, B.; Klir, D.; Kravarik, J.; Rezac, K.; Zielinska, E.; Sadowski, M. J.; Szymaszek, A.; Tomaszewski, K.; Zaloga, D.
2017-03-01
The paper describes the filamentary structure observed in the high-energy ultraviolet radiation for discharges performed at the hydrogen- or deuterium-filling and at the puffing of hydrogen, deuterium or helium, in a mega-ampere dense plasma-focus facility. The lifetime of this structure overcomes 50 ns. These filaments connect the surface of a pinched column with internal plasmoids formed at different combinations of filling and puffing gases and they should transport some current and plasma. During all the investigated deuterium shots, the fusion-produced neutrons were recorded. Therefore, deuterons should be present in the region of their acceleration, independent of the applied puffing of the gas. Simultaneously with the observed filaments, inside the dense plasma column small plasma-balls of mm-dimensions were observed, which had a similar lifetime (longer than the relaxation time) and quasi-stationary positions in the discharge volume. The observed filaments and balls might be a manifestation of the (i) discrete spatial structure of the current flowing through and around the dense plasma column and (ii) transport of the plasma from external layers to the central region. Their formation and visualization were easier due to the application of air admixtures in the puffed gas.
Minimal camera networks for 3D image based modeling of cultural heritage objects.
Alsadik, Bashar; Gerke, Markus; Vosselman, George; Daham, Afrah; Jasim, Luma
2014-03-25
3D modeling of cultural heritage objects like artifacts, statues and buildings is nowadays an important tool for virtual museums, preservation and restoration. In this paper, we introduce a method to automatically design a minimal imaging network for the 3D modeling of cultural heritage objects. This becomes important for reducing the image capture time and processing when documenting large and complex sites. Moreover, such a minimal camera network design is desirable for imaging non-digitally documented artifacts in museums and other archeological sites to avoid disturbing the visitors for a long time and/or moving delicate precious objects to complete the documentation task. The developed method is tested on the Iraqi famous statue "Lamassu". Lamassu is a human-headed winged bull of over 4.25 m in height from the era of Ashurnasirpal II (883-859 BC). Close-range photogrammetry is used for the 3D modeling task where a dense ordered imaging network of 45 high resolution images were captured around Lamassu with an object sample distance of 1 mm. These images constitute a dense network and the aim of our study was to apply our method to reduce the number of images for the 3D modeling and at the same time preserve pre-defined point accuracy. Temporary control points were fixed evenly on the body of Lamassu and measured by using a total station for the external validation and scaling purpose. Two network filtering methods are implemented and three different software packages are used to investigate the efficiency of the image orientation and modeling of the statue in the filtered (reduced) image networks. Internal and external validation results prove that minimal image networks can provide highly accurate records and efficiency in terms of visualization, completeness, processing time (>60% reduction) and the final accuracy of 1 mm.
Minimal Camera Networks for 3D Image Based Modeling of Cultural Heritage Objects
Alsadik, Bashar; Gerke, Markus; Vosselman, George; Daham, Afrah; Jasim, Luma
2014-01-01
3D modeling of cultural heritage objects like artifacts, statues and buildings is nowadays an important tool for virtual museums, preservation and restoration. In this paper, we introduce a method to automatically design a minimal imaging network for the 3D modeling of cultural heritage objects. This becomes important for reducing the image capture time and processing when documenting large and complex sites. Moreover, such a minimal camera network design is desirable for imaging non-digitally documented artifacts in museums and other archeological sites to avoid disturbing the visitors for a long time and/or moving delicate precious objects to complete the documentation task. The developed method is tested on the Iraqi famous statue “Lamassu”. Lamassu is a human-headed winged bull of over 4.25 m in height from the era of Ashurnasirpal II (883–859 BC). Close-range photogrammetry is used for the 3D modeling task where a dense ordered imaging network of 45 high resolution images were captured around Lamassu with an object sample distance of 1 mm. These images constitute a dense network and the aim of our study was to apply our method to reduce the number of images for the 3D modeling and at the same time preserve pre-defined point accuracy. Temporary control points were fixed evenly on the body of Lamassu and measured by using a total station for the external validation and scaling purpose. Two network filtering methods are implemented and three different software packages are used to investigate the efficiency of the image orientation and modeling of the statue in the filtered (reduced) image networks. Internal and external validation results prove that minimal image networks can provide highly accurate records and efficiency in terms of visualization, completeness, processing time (>60% reduction) and the final accuracy of 1 mm. PMID:24670718
Design of a stateless low-latency router architecture for green software-defined networking
NASA Astrophysics Data System (ADS)
Saldaña Cercós, Silvia; Ramos, Ramon M.; Ewald Eller, Ana C.; Martinello, Magnos; Ribeiro, Moisés. R. N.; Manolova Fagertun, Anna; Tafur Monroy, Idelfonso
2015-01-01
Expanding software defined networking (SDN) to transport networks requires new strategies to deal with the large number of flows that future core networks will have to face. New south-bound protocols within SDN have been proposed to benefit from having control plane detached from the data plane offering a cost- and energy-efficient forwarding engine. This paper presents an overview of a new approach named KeyFlow to simultaneously reduce latency, jitter, and power consumption in core network nodes. Results on an emulation platform indicate that round trip time (RTT) can be reduced above 50% compared to the reference protocol OpenFlow, specially when flow tables are densely populated. Jitter reduction has been demonstrated experimentally on a NetFPGA-based platform, and 57.3% power consumption reduction has been achieved.
Information jet: Handling noisy big data from weakly disconnected network
NASA Astrophysics Data System (ADS)
Aurongzeb, Deeder
Sudden aggregation (information jet) of large amount of data is ubiquitous around connected social networks, driven by sudden interacting and non-interacting events, network security threat attacks, online sales channel etc. Clustering of information jet based on time series analysis and graph theory is not new but little work is done to connect them with particle jet statistics. We show pre-clustering based on context can element soft network or network of information which is critical to minimize time to calculate results from noisy big data. We show difference between, stochastic gradient boosting and time series-graph clustering. For disconnected higher dimensional information jet, we use Kallenberg representation theorem (Kallenberg, 2005, arXiv:1401.1137) to identify and eliminate jet similarities from dense or sparse graph.
Water Catchment and Storage Monitoring
NASA Astrophysics Data System (ADS)
Bruenig, Michael; Dunbabin, Matt; Moore, Darren
2010-05-01
Sensors and Sensor Networks technologies provide the means for comprehensive understanding of natural processes in the environment by radically increasing the availability of empirical data about the natural world. This step change is achieved through a dramatic reduction in the cost of data acquisition and many orders of magnitude increase in the spatial and temporal granularity of measurements. Australia's Commonwealth Scientific and Industrial Research Organisation (CSIRO) is undertaking a strategic research program developing wireless sensor network technology for environmental monitoring. As part of this research initiative, we are engaging with government agencies to densely monitor water catchments and storages, thereby enhancing understanding of the environmental processes that affect water quality. In the Gold Coast hinterland in Queensland, Australia, we are building sensor networks to monitor restoration of rainforest within the catchment, and to monitor methane flux release and water quality in the water storages. This poster will present our ongoing work in this region of eastern Australia. The Springbrook plateau in the Gold Coast hinterland lies within a World Heritage listed area, has uniquely high rainfall, hosts a wide range of environmental gradients, and forms part of the catchment for Gold Coast's water storages. Parts of the plateau are being restored from agricultural grassland to native rainforest vegetation. Since April 2008, we have had a 10-node, multi-hop sensor network deployed there to monitor microclimate variables. This network will be expanded to 50-nodes in February 2010, and to around 200-nodes and 1000 sensors by mid-2011, spread over an area of approximately 0.8 square kilometers. The extremely dense microclimate sensing will enhance knowledge of the environmental factors that enhance or inhibit the regeneration of native rainforest. The final network will also include nodes with acoustic and image sensing capability for monitoring higher level parameters such as fauna diversity. The regenerating rainforest environment presents a number of interesting challenges for wireless sensor networks related to energy harvesting and to reliable low-power wireless communications through dense and wet vegetation. Located downstream from the Springbrook plateau, the Little Nerang and Hinze dams are the two major water supply storages for the Gold Coast region. In September 2009 we fitted methane, light, wind, and sonar sensors to our autonomous electric boat platform and successfully demonstrated autonomous collection of methane flux release data on Little Nerang Dam. Sensor and boat status data were relayed back to a human operator on the shore of the dam via a small network of our Fleck™ nodes. The network also included 4 floating nodes each fitted with a string of 6 temperature sensors for profiling temperature at different water depths. We plan to expand the network further during 2010 to incorporate floating methane nodes, additional temperature sensing nodes, as well as land-based microclimate nodes. The overall monitoring system will provide significant data to understand the connected catchment-to-storage system and will provide continuous data to monitor and understand change trends within this world heritage area.
Urban-Dome GHG Monitoring: Challenges and Perspectives from the INFLUX Project
NASA Astrophysics Data System (ADS)
Whetstone, J.; Shepson, P. B.; Davis, K. J.; Sweeney, C.; Gurney, K. R.; Miles, N. L.; Richardson, S.; Lauvaux, T.; Razlivanov, I.; Zhou, Y.; Song, Y.; Turnbull, J. C.; Karion, A.; Cambaliza, M. L.; Callahan, W.; Novakovskaia, E.; Crosson, E.; Rella, C.; Possolo, A.
2012-04-01
Quantification of carbon dynamics in urban areas using advanced and diverse observing systems enables the development of measurable, reportable, and verifiable (MRV) mitigation strategies as suggested in the Bali Action Plan, agreed upon at the 13th Conference of the Parties of the UNFCCC (COP 13, 2007). The National Institute of Standards and Technology (NIST), supports the Indianapolis Flux Experiment (INFLUX). INFLUX is focused on demonstrating the utility of dense, surface-based observing networks coupled with aircraft-based measurements, advanced atmospheric boundary layer observation and modeling to determine GHG emission source location and strength in urban areas. The ability to correctly model transport and mixing in the atmospheric boundary layer (ABL), responsible for carrying GHGs from their source to the point of measurement, is essential. The observing system design, using multiple instruments and observing methods, is intended to provide multi-scale measurements as a basis for mimicking the complex and evolving dynamics of a city. To better understand such a dynamic system, and incorporate this into models, reliable representations of horizontal and vertical transport, as well as ABL height, GHG mixing ratio measurements are planned for 11 tower locations, 2 are currently in operation with the remaining 9 planned for operational status in early to mid-2012. These observations are complimented by aircraft flights that measure mixing ratio as well as ABL parameters. Although measurements of ABL mixing heights and dynamics are presently only available intermittently, limiting efforts to evaluate ABL model performance and the uncertainties of GHG flux estimates, expansion of them is planned for the near future. INFLUX will significantly benefit from continuous, high resolution measurements of mixing depth, wind speed and direction, turbulence profiles in the boundary layer, as well as measurements of surface energy balance, momentum flux, and short and long wave radiation fluxes. NIST is working with partner institutions to develop the measurement science and measurement tools needed to improve the accuracy and comparability of surface-based measurement approaches for MRV purposes. The current project phase is focused on determination of emission source location with a spatial resolution of approximately 1 km2 and of sources strength to within 20% uncertainty, in part for comparison to inventories. Additionally, the demonstration of a robust, dense observing network methodology will provide a means to characterize urban GHG domes and provides a calibration method for remote sensing measurements whether taken by on-orbit, terrestrial, or airborne observations. The Indianapolis Flux experiment is the initial research effort to demonstrate this approach to emissions verification. Lessons learned in INFLUX are expected to be extensible to other urban and regional settings, suggesting further research to be conducted for areas having significantly different terrain and meteorology.
A Green Method for Processing Polymers using Dense Gas Technology
Yoganathan, Roshan B.; Mammucari, Raffaella; Foster, Neil R.
2010-01-01
Dense CO2 can be used as an environmentally-benign polymer processing medium because of its liquid-like densities and gas-like mass transfer properties.In this work, polymer bio-blends of polycarbonate (PC), a biocompatible polymer, and polycaprolactone (PCL), a biodegradable polymer were prepared. Dense CO2 was used as a reaction medium for the melt-phase PC polymerization in the presence of dense CO2-swollen PCL particles and this method was used to prepare porous PC/PCL blends. To extend the applicability of dense CO2 to the biomedical industry and polymer blend processing, the impregnation of ibuprofen into the blend was conducted and subsequent dissolution characteristics were observed.
Why P/OF should look for evidences of over-dense structures in solar flare hard X-ray sources
NASA Technical Reports Server (NTRS)
Neidig, D. F.; Kane, S. R.; Love, J. J.; Cliver, E. W.
1986-01-01
White-light and hard X-ray (HXR) observations of two white-light flares (WLFs) show that if the radiative losses in the optical continuum are powered by fast electrons directly heating the WLF source, then the column density constraints imposed by the finite range of the electrons requires that the WLF consist of an over-dense region in the chromosphere, with density exceeding 10 to the 14th power/cu cm. Thus, we recommend that P/OF search for evidences of over-dense structures in HXR images obtained simultaneously with optical observations of flares.
Describing the Neuron Axons Network of the Human Brain by Continuous Flow Models
NASA Astrophysics Data System (ADS)
Hizanidis, J.; Katsaloulis, P.; Verganelakis, D. A.; Provata, A.
2014-12-01
The multifractal spectrum Dq (Rényi dimensions) is used for the analysis and comparison between the Neuron Axons Network (NAN) of healthy and pathological human brains because it conveys information about the statistics in many scales, from the very rare to the most frequent network configurations. Comparison of the Fractional Anisotropy Magnetic Resonance Images between healthy and pathological brains is performed with and without noise reduction. Modelling the complex structure of the NAN in the human brain is undertaken using the dynamics of the Lorenz model in the chaotic regime. The Lorenz multifractal spectra capture well the human brain characteristics in the large negative q's which represent the rare network configurations. In order to achieve a closer approximation in the positive part of the spectrum (q > 0) two independent modifications are considered: a) redistribution of the dense parts of the Lorenz model's phase space into their neighbouring areas and b) inclusion of additive uniform noise in the Lorenz model. Both modifications, independently, drive the Lorenz spectrum closer to the human NAN one in the positive q region without destroying the already good correspondence of the negative spectra. The modelling process shows that the unmodified Lorenz model in its full chaotic regime has a phase space distribution with high fluctuations in its dense parts, while the fluctuations in the human brain NAN are smoother. The induced modifications (phase space redistribution or additive noise) moderate the fluctuations only in the positive part of the Lorenz spectrum leading to a faithful representation of the human brain axons network in all scales.
Data Verification Tools for Minimizing Management Costs of Dense Air-Quality Monitoring Networks.
Miskell, Georgia; Salmond, Jennifer; Alavi-Shoshtari, Maryam; Bart, Mark; Ainslie, Bruce; Grange, Stuart; McKendry, Ian G; Henshaw, Geoff S; Williams, David E
2016-01-19
Aiming at minimizing the costs, both of capital expenditure and maintenance, of an extensive air-quality measurement network, we present simple statistical methods that do not require extensive training data sets for automated real-time verification of the reliability of data delivered by a spatially dense hybrid network of both low-cost and reference ozone measurement instruments. Ozone is a pollutant that has a relatively smooth spatial spread over a large scale although there can be significant small-scale variations. We take advantage of these characteristics and demonstrate detection of instrument calibration drift within a few days using a rolling 72 h comparison of hourly averaged data from the test instrument with that from suitably defined proxies. We define the required characteristics of the proxy measurements by working from a definition of the network purpose and specification, in this case reliable determination of the proportion of hourly averaged ozone measurements that are above a threshold in any given day, and detection of calibration drift of greater than ±30% in slope or ±5 parts-per-billion in offset. By analyzing results of a study of an extensive deployment of low-cost instruments in the Lower Fraser Valley, we demonstrate that proxies can be established using land-use criteria and that simple statistical comparisons can identify low-cost instruments that are not stable and therefore need replacing. We propose that a minimal set of compliant reference instruments can be used to verify the reliability of data from a much more extensive network of low-cost devices.
Grass-Roots Leadership in Appalachia: A Contradiction in Terms?
ERIC Educational Resources Information Center
Salstrom, Paul
1991-01-01
The cultural values of rural Appalachia have been antithetical to the explicit leadership needed in activist movements for social change. "Subsistence, barter, and borrow" economic systems, pervasive in Appalachia, are based on nonmonetary, voluntary reciprocity within dense insider networks, not the formal contracts of both capitalist…
THE GREEN BANK TELESCOPE MAPS THE DENSE, STAR-FORMING GAS IN THE NEARBY STARBURST GALAXY M82
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kepley, Amanda A.; Frayer, David; Leroy, Adam K.
Observations of the Milky Way and nearby galaxies show that dense molecular gas correlates with recent star formation, suggesting that the formation of this gas phase may help regulate star formation. A key test of this idea requires wide-area, high-resolution maps of dense molecular gas in galaxies to explore how local physical conditions drive dense gas formation, but these observations have been limited because of the faintness of dense gas tracers like HCN and HCO{sup +}. Here we demonstrate the power of the Robert C. Byrd Green Bank Telescope (GBT)—the largest single-dish millimeter radio telescope—for mapping dense gas in galaxiesmore » by presenting the most sensitive maps yet of HCN and HCO{sup +} in the starburst galaxy M82. The HCN and HCO{sup +} in the disk of this galaxy correlates with both recent star formation and more diffuse molecular gas and shows kinematics consistent with a rotating torus. The HCO{sup +} emission extending to the north and south of the disk is coincident with the outflow previously identified in CO and traces the eastern edge of the hot outflowing gas. The central starburst region has a higher ratio of star formation to dense gas than the outer regions, pointing to the starburst as a key driver of this relationship. These results establish that the GBT can efficiently map the dense molecular gas at 90 GHz in nearby galaxies, a capability that will increase further with the 16 element feed array under construction.« less
NASA Astrophysics Data System (ADS)
Kumar, P.; Hamlington, B.; Thompson, P. R.; Han, W.
2016-12-01
Despite having some of the world's most densely populated and vulnerable coastal regions, sea level (SL) variability in the Indian Ocean (IO) has received considerably less attention than the Pacific Ocean. Differentiating the internal variability from the long-term trend in global mean sea level (GMSL) at decadal time-scales is vital for planning and mitigation efforts in the IO region. Understanding the dynamics of internal and anthropogenic SL change is essential for understanding the dynamic pathways that link the IO basin to terrestrial climates world-wide. With a sparse pre-satellite observational record of the IO, the Indo-Pacific internal climate variability is difficult to represent accurately. However, an improved representation of pre-satellite SL variability can be achieved by using a multivariate reconstruction technique. By using cyclostationary empirical orthogonal functions (CSEOFs) that can capture time-varying spatial patterns, gaps in the historical record when observations are sparse are filled using spatial relationships from time periods when the observational network is dense. This reconstruction method combines SL data and sea surface temperature (SST) to create a SL reconstruction that spans a period from 1900 to present, long enough to study climate signals over interannual to decadal time scales. This study aims at estimating the component of SL rise that relates to anthropogenic forcing by identifying and removing the fraction related to internal variability. An improved understanding of how the internal climate variability can affect the IO SL trend and variability, will provide an insight into the future SL changes. It is also important to study links between SL and climate variability in the past to understand how SL will respond to similar climatic events in the future and if this response will be influenced by the changing climate.
Understanding the influence of all nodes in a network
Lawyer, Glenn
2015-01-01
Centrality measures such as the degree, k-shell, or eigenvalue centrality can identify a network's most influential nodes, but are rarely usefully accurate in quantifying the spreading power of the vast majority of nodes which are not highly influential. The spreading power of all network nodes is better explained by considering, from a continuous-time epidemiological perspective, the distribution of the force of infection each node generates. The resulting metric, the expected force, accurately quantifies node spreading power under all primary epidemiological models across a wide range of archetypical human contact networks. When node power is low, influence is a function of neighbor degree. As power increases, a node's own degree becomes more important. The strength of this relationship is modulated by network structure, being more pronounced in narrow, dense networks typical of social networking and weakening in broader, looser association networks such as the Internet. The expected force can be computed independently for individual nodes, making it applicable for networks whose adjacency matrix is dynamic, not well specified, or overwhelmingly large. PMID:25727453
Structure and function of complex brain networks
Sporns, Olaf
2013-01-01
An increasing number of theoretical and empirical studies approach the function of the human brain from a network perspective. The analysis of brain networks is made feasible by the development of new imaging acquisition methods as well as new tools from graph theory and dynamical systems. This review surveys some of these methodological advances and summarizes recent findings on the architecture of structural and functional brain networks. Studies of the structural connectome reveal several modules or network communities that are interlinked by hub regions mediating communication processes between modules. Recent network analyses have shown that network hubs form a densely linked collective called a “rich club,” centrally positioned for attracting and dispersing signal traffic. In parallel, recordings of resting and task-evoked neural activity have revealed distinct resting-state networks that contribute to functions in distinct cognitive domains. Network methods are increasingly applied in a clinical context, and their promise for elucidating neural substrates of brain and mental disorders is discussed. PMID:24174898
Cytochemical study of the nucleolus of the slime mold Dictyostelium discoideum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benichou, J.C.; Quiviger, B.; Ryter, A.
1983-07-01
The nucleus of the slime mold Dictyostelium discoideum is characterized by the presence of several large dense masses which are all in tight contact with the nuclear membrane. These dense masses, considered as nucleoli, present a rather homogeneous texture, in which dense chromatin, fibrillar, and granular material are not easily detected. The autoradiographic study of (/sup 3/H)uridine pulse-labeled cells showed that the majority of the silver grains were located inside these masses. The use of EDTA regressive-staining, acetylation and enzymatic digestion indicated that they are mostly composed of RNP and are totally devoid of dense chromatin as the rest ofmore » the nucleus is. After treatment with actinomycin D, fibrillar and granular material segregated but no chromatin could be found. All these observations confirmed that the dense masses correspond to nucleoli despite their peculiar ultrastructure. It can also be concluded that this type of nucleoli cannot be considered as a taxonomic character of the slime molds because it does not exist in all slime molds and was observed in some dinoflagellates, and ascomycetes.« less
Jammed Clusters and Non-locality in Dense Granular Flows
NASA Astrophysics Data System (ADS)
Kharel, Prashidha; Rognon, Pierre
We investigate the micro-mechanisms underpinning dense granular flow behaviour from a series of DEM simulations of pure shear flows of dry grains. We observe the development of transient clusters of jammed particles within the flow. Typical size of such clusters is found to scale with the inertial number with a power law that is similar to the scaling of shear-rate profile relaxation lengths observed previously. Based on the simple argument that transient clusters of size l exist in the dense flow regime, the formulation of steady state condition for non-homogeneous shear flow results in a general non-local relation, which is similar in form to the non-local relation conjectured for soft glassy flows. These findings suggest the formation of jammed clusters to be the key micro-mechanism underpinning non-local behaviour in dense granular flows. Particles and Grains Laboratory, School of Civil Engineering, The University of Sydney, Sydney, NSW 2006, Australia.
WDM PONs based on colorless technology
NASA Astrophysics Data System (ADS)
Saliou, Fabienne; Simon, Gael; Chanclou, Philippe; Pizzinat, Anna; Lin, Huafeng; Zhou, Enyu; Xu, Zhiguang
2015-12-01
Wavelength Division Multiplexing (WDM) Passive Optical Network (PON) is foreseen to be part of the Next Generation Passive Optical Networks. Business and mobile fronthaul networks already express the need to develop WDM PONs in the access segment. Fixed wavelength transceivers based on Coarse WDM are already available to respond to today's market needs but Dense WDM technologies will be needed and colorless technologies are essential to provide simple and cost-effective WDM PON systems. We propose in this paper to demonstrate the capabilities of a DWDM PON system prototype based on self-seeded RSOAs and designed to transmit CPRI over 60 km of fiber at 2.5 Gbit/s.
Livermore Big Artificial Neural Network Toolkit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Essen, Brian Van; Jacobs, Sam; Kim, Hyojin
2016-07-01
LBANN is a toolkit that is designed to train artificial neural networks efficiently on high performance computing architectures. It is optimized to take advantages of key High Performance Computing features to accelerate neural network training. Specifically it is optimized for low-latency, high bandwidth interconnects, node-local NVRAM, node-local GPU accelerators, and high bandwidth parallel file systems. It is built on top of the open source Elemental distributed-memory dense and spars-direct linear algebra and optimization library that is released under the BSD license. The algorithms contained within LBANN are drawn from the academic literature and implemented to work within a distributed-memory framework.
Electron-ion temperature equilibration in warm dense tantalum
Doppner, T; LePape, S.; Ma, T.; ...
2014-11-05
We present measurements of electron-ion temperature equilibration in proton-heated tantalum, under warm dense matter conditions. Our results agree with theoretical predictions for metals calculated using input data from ab initio simulations. Furthermore, the fast relaxation observed in the experiment contrasts with much longer equilibration times found in proton heated carbon, indicating that the energy flow pathways in warm dense matter are far from being fully understood.
A global interaction network maps a wiring diagram of cellular function
Costanzo, Michael; VanderSluis, Benjamin; Koch, Elizabeth N.; Baryshnikova, Anastasia; Pons, Carles; Tan, Guihong; Wang, Wen; Usaj, Matej; Hanchard, Julia; Lee, Susan D.; Pelechano, Vicent; Styles, Erin B.; Billmann, Maximilian; van Leeuwen, Jolanda; van Dyk, Nydia; Lin, Zhen-Yuan; Kuzmin, Elena; Nelson, Justin; Piotrowski, Jeff S.; Srikumar, Tharan; Bahr, Sondra; Chen, Yiqun; Deshpande, Raamesh; Kurat, Christoph F.; Li, Sheena C.; Li, Zhijian; Usaj, Mojca Mattiazzi; Okada, Hiroki; Pascoe, Natasha; Luis, Bryan-Joseph San; Sharifpoor, Sara; Shuteriqi, Emira; Simpkins, Scott W.; Snider, Jamie; Suresh, Harsha Garadi; Tan, Yizhao; Zhu, Hongwei; Malod-Dognin, Noel; Janjic, Vuk; Przulj, Natasa; Troyanskaya, Olga G.; Stagljar, Igor; Xia, Tian; Ohya, Yoshikazu; Gingras, Anne-Claude; Raught, Brian; Boutros, Michael; Steinmetz, Lars M.; Moore, Claire L.; Rosebrock, Adam P.; Caudy, Amy A.; Myers, Chad L.; Andrews, Brenda; Boone, Charles
2017-01-01
We generated a global genetic interaction network for Saccharomyces cerevisiae, constructing over 23 million double mutants, identifying ~550,000 negative and ~350,000 positive genetic interactions. This comprehensive network maps genetic interactions for essential gene pairs, highlighting essential genes as densely connected hubs. Genetic interaction profiles enabled assembly of a hierarchical model of cell function, including modules corresponding to protein complexes and pathways, biological processes, and cellular compartments. Negative interactions connected functionally related genes, mapped core bioprocesses, and identified pleiotropic genes, whereas positive interactions often mapped general regulatory connections among gene pairs, rather than shared functionality. The global network illustrates how coherent sets of genetic interactions connect protein complex and pathway modules to map a functional wiring diagram of the cell. PMID:27708008
Enhancement of Beaconless Location-Based Routing with Signal Strength Assistance for Ad-Hoc Networks
NASA Astrophysics Data System (ADS)
Chen, Guowei; Itoh, Kenichi; Sato, Takuro
Routing in Ad-hoc networks is unreliable due to the mobility of the nodes. Location-based routing protocols, unlike other protocols which rely on flooding, excel in network scalability. Furthermore, new location-based routing protocols, like, e. g. BLR [1], IGF [2], & CBF [3] have been proposed, with the feature of not requiring beacons in MAC-layer, which improve more in terms of scalability. Such beaconless routing protocols can work efficiently in dense network areas. However, these protocols' algorithms have no ability to avoid from routing into sparse areas. In this article, historical signal strength has been added as a factor into the BLR algorithm, which avoids routing into sparse area, and consequently improves the global routing efficiency.
Ultrastructural networks in growth cones and neurites of cultured central nervous system neurons.
Tsui, H C; Ris, H; Klein, W L
1983-01-01
We have examined growth cones and neurites of cultured central nervous system neurons by high-voltage electron microscopy. Embryonic chicken retina cells were cultured on polylysine-treated and Formvar-coated gold grids for 2-6 days, fixed, and critical point dried. Growth cones and neurites were examined as unembedded whole mounts. Three-dimensional images from stereo-pair electron micrographs of these regions showed a high degree of ultrastructural articulation, with distinct, non-tapering filaments (5-9 nm in diameter) joining both cytoskeletal and membranous components. In the central regions of growth cones, interconnected structures included microtubules, large membranous sacs (up to 400 nm), and irregular vesicles (25-75 nm). A denser filamentous network was prevalent at the edges of growth cones. This network, which frequently adjoined the surface membrane, linked vesicles of uniform size (35-40 nm). Such vesicles often were seen densely packed in growth cone protrusions that were about the size of small synaptic boutons. Prevalent structural interconnections within growth cones conceivably could play a logistic role in specific membrane assembly, intracellular transport, endocytosis, and secretion. Because such processes are not unique to growth cones, the extensive linkages we have observed may have implications for cytoplasmic structure in general. Images PMID:6577454
Waite, David W; Dsouza, Melissa; Sekiguchi, Yuji; Hugenholtz, Philip; Taylor, Michael W
2018-05-25
The kakapo is a critically endangered, herbivorous parrot endemic to New Zealand. The kakapo hindgut hosts a dense microbial community of low taxonomic diversity, typically dominated by Escherichia fergusonii, and has proven to be a remarkably stable ecosystem, displaying little variation in core membership over years of study. To elucidate mechanisms underlying this robustness, we performed 16S rRNA gene-based co-occurrence network analysis to identify potential interactions between E. fergusonii and the wider bacterial community. Genomic and metagenomic sequencing were employed to facilitate interpretation of potential interactions observed in the network. E. fergusonii maintained very few correlations with other members of the microbiota, and isolates possessed genes for the generation of energy from a wide range of carbohydrate sources, including plant fibres such as cellulose. We surmise that this dominant microorganism is abundant not due to ecological interaction with other members of the microbiota, but its ability to metabolise a wide range of nutrients in the gut. This research represents the first concerted effort to understand the functional roles of the kakapo microbiota, and leverages metagenomic data to contextualise co-occurrence patterns. By combining these two techniques we provide a means for studying the diversity-stability hypothesis in the context of bacterial ecosystems.
NASA Astrophysics Data System (ADS)
Van De Giesen, N.; Hut, R.; Andreini, M.; Selker, J. S.
2013-12-01
The Trans-African Hydro-Meteorological Observatory (TAHMO) has a goal to design, build, install and operate a dense network of hydro-meteorological monitoring stations in sub-Saharan Africa; one every 35 km. This corresponds to a total of 20,000 stations. By applying ICT and innovative sensors, each station should cost not more than $500. The stations would be placed at schools and integrated in the environmental curriculum. Data will be combined with models and satellite observations to obtain a very complete insight into the distribution of water and energy stocks and fluxes. Within this project, we have built a prototype of an acoustic disdrometer (rain gauge) that can be produced for much less than the cost of a commercial equivalent with the same specifications. The disdrometer was developed in The Netherlands and tested in Tanzania for a total project cost of Euro 5000. First tests have been run at junior high schools in Ghana to incorporate hydro-meteorological measurements in the science curriculum. The latest activity concerns the organization of a crowdsourcing competitions across Africa to address business development and the design and building of new robust sensors. This has resulted in a wide network throughout the continent to bring this program forward.
Biosynthesis and Characterization of Nanocellulose-Gelatin Films
Taokaew, Siriporn; Seetabhawang, Sutasinee; Siripong, Pongpun; Phisalaphong, Muenduen
2013-01-01
A nanocellulose-gelatin (bacterial cellulose gelatin (BCG)) film was developed by a supplement of gelatin, at a concentration of 1%–10% w/v, in a coconut-water medium under the static cultivation of Acetobacter xylinum. The two polymers exhibited a certain degree of miscibility. The BCG film displayed dense and uniform homogeneous structures. The Fourier transform infrared spectroscopy (FTIR) results demonstrated interactions between the cellulose and gelatin. Incorporation of gelatin into a cellulose nanofiber network resulted in significantly improved optical transparency and water absorption capacity of the films. A significant drop in the mechanical strengths and a decrease in the porosity of the film were observed when the supplement of gelatin was more than 3% (w/v). The BCG films showed no cytotoxicity against Vero cells. PMID:28809339
Viscoinertial regime of immersed granular flows
NASA Astrophysics Data System (ADS)
Amarsid, L.; Delenne, J.-Y.; Mutabaruka, P.; Monerie, Y.; Perales, F.; Radjai, F.
2017-07-01
By means of extensive coupled molecular dynamics-lattice Boltzmann simulations, accounting for grain dynamics and subparticle resolution of the fluid phase, we analyze steady inertial granular flows sheared by a viscous fluid. We show that, for a broad range of system parameters (shear rate, confining stress, fluid viscosity, and relative fluid-grain density), the frictional strength and packing fraction can be described by a modified inertial number incorporating the fluid effect. In a dual viscous description, the effective viscosity diverges as the inverse square of the difference between the packing fraction and its jamming value, as observed in experiments. We also find that the fabric and force anisotropies extracted from the contact network are well described by the modified inertial number, thus providing clear evidence for the role of these key structural parameters in dense suspensions.
Gravity Anomalies and Isostasy Deduced From New Dense Gravimetry Around the Tsangpo Gorge, Tibet
NASA Astrophysics Data System (ADS)
Fu, Guangyu; She, Yawen
2017-10-01
We built the first dense gravity network including 107 stations around the Tsangpo Gorge, Tibet, one of the hardest places in the world to reach, and conducted a gravity and hybrid GPS observation campaign in 2016. We computed the Bouguer gravity anomalies (BGAs) and free-air gravity anomalies (FGAs) and increased the resolution of the FGAs by merging the in situ data with EIGEN-6C4 gravity model data. The BGAs around the Tsangpo Gorge are in general negative and gradually decrease from south (-360 mGal) to north (-480 mGal). They indicate a uniformly dipping Moho around the Tsangpo Gorge that sinks from south to north at an angle of 12°. We introduced a method to compute the vertical tectonic stress of the lithosphere, a quantitative expression of isostasy, using BGA and terrain data, and applied it to the area around the Tsangpo Gorge. We found that the lithosphere of the upstream of the Tsangpo Gorge is roughly in an isostatic state, but the lithosphere of the downstream exhibits vertical tectonic stress of 50 MPa, which indicates the loss of a large amount of surface material. This result does not support the deduction of the valley bottom before uplift of the Tsangpo Gorge by Wang et al. (2014).
Measuring the development of a common scientific lexicon in nanotechnology
NASA Astrophysics Data System (ADS)
Arora, Sanjay K.; Youtie, Jan; Carley, Stephen; Porter, Alan L.; Shapira, Philip
2014-01-01
Over the last two decades, nanotechnology has not only grown considerably but also evolved in its use of scientific terminology. This paper examines the growth in nano-prefixed terms in a corpus of nanotechnology scholarly publications over a 21-year time period. The percentage of publications using a nano-prefixed term has increased from <10 % in the early 1990s to nearly 80 % by 2010. A co-word analysis of nano-prefixed terms indicates that the network of these terms has moved from being densely organized around a few common nano-prefixed terms such as "nanostructure" in 2000 to becoming less dense and more differentiated in using additional nano-prefixed terms while continuing to coalesce around the common nano-prefixed terms by 2010. We further observe that the share of nanotechnology papers oriented toward biomedical and clinical medicine applications has risen from just over 5 % to more than 11 %. While these results cannot fully distinguish between the use of nano-prefixed terms in response to broader policy or societal influences, they do suggest that there are intellectual and scientific underpinnings to the growth of a collectively shared vocabulary. We consider whether our findings signify the maturation of a scientific field and the extent to which this denotes the emergence of a shared scientific understanding regarding nanotechnology.
SPECTRE (www.noveltis.fr/spectre): a web Service for Ionospheric Products
NASA Astrophysics Data System (ADS)
Jeansou, E.; Crespon, F.; Garcia, R.; Helbert, J.; Moreaux, G.; Lognonne, P.
2005-12-01
The dense GPS networks developed for geodesic applications appear to be very efficient ionospheric sensors because of interaction between plasma and electromagnetic waves. Indeed, the dual frequency receivers provide data from which the Slant Total Electron Content (STEC) can be easily extracted to compute Vertical Total Electron Content (VTEC) maps. The SPECTRE project, Service and Products for ionospheric Electron Content and Tropospheric Refractivity over Europe, is currently a pre-operational service providing VTEC maps with high time and space resolution after 3 days time delay (http://www.noveltis.fr/spectre and http://ganymede.ipgp.jussieu.fr/spectre). This project is a part of SWENET, SpaceWeather European Network, initiated by the European Space Agency. The SPECTRE data products are useful for many applications. We will present these applications in term of interest for the scientific community with a special focus on spaceweather and transient ionospheric perturbations related to Earthquakes. Moreover, the pre-operational extensions of SPECTRE to the californian (SCIGN/BARD) and japanese (GEONET) dense GPS networks will be presented. Then the method of 3D tomography of the electron density from GPS data will be presented and its resolution discussed. The expected improvements of the 3D tomographic images by new tomographic reconstruction algorithms and by the advent of the Galileo system will conclude the presentation.
Embedded 100 Gbps Photonic Components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuznia, Charlie
This innovation to fiber optic component technology increases the performance, reduces the size and reduces the power consumption of optical communications within dense network systems, such as advanced distributed computing systems and data centers. VCSEL technology is enabling short-reach (< 100 m) and >100 Gbps optical interconnections over multi-mode fiber in commercial applications.
Deaf Sociality and the Deaf Lutheran Church in Adamorobe, Ghana
ERIC Educational Resources Information Center
Kusters, Annelies
2014-01-01
This article provides an ethnographic analysis of "deaf sociality" in Adamorobe, a village in Ghana, where the relatively high prevalence of hereditary deafness has led to dense social and spatial connections. Deaf people are part of their hearing environment particularly through family networks, and produce deaf sociality through many…
Class, Kinship Density, and Conjugal Role Segregation.
ERIC Educational Resources Information Center
Hill, Malcolm D.
1988-01-01
Studied conjugal role segregation in 150 married women from intact families in working-class community. Found that, although involvement in dense kinship networks was associated with conjugal role segregation, respondents' attitudes toward marital roles and phase of family cycle when young children were present were more powerful predictors of…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedrich, M.; Baker, K.D.; Brekke, A.
Electron density profiles from ground-based and rocket-borne measurements conducted at three sites in northern Scandinavia under various degrees of geophysical disturbances are presented. These data are checked against an instantaneous picture of the ionospheric absorption obtained via the dense riometer network. A map of the riometer absorption and measured electron densities over Scandinavia is given.
NASA Astrophysics Data System (ADS)
Chang, K. L.; Petropavlovskikh, I. V.; Cooper, O. R.; Schultz, M.; Wang, T.
2017-12-01
Surface ozone is a greenhouse gas and pollutant detrimental to human health and crop and ecosystem productivity. The Tropospheric Ozone Assessment Report (TOAR) is designed to provide the research community with an up-to-date observation-based overview of tropospheric ozone's global distribution and trends. The TOAR Surface Ozone Database contains ozone metrics at thousands of monitoring sites around the world, densely clustered across mid-latitude North America, western Europe and East Asia. Calculating regional ozone trends across these locations is challenging due to the uneven spacing of the monitoring sites across urban and rural areas. To meet this challenge we conducted a spatial and temporal trend analysis of several TOAR ozone metrics across these three regions for summertime (April-September) 2000-2014, using the generalized additive mixed model (GAMM). Our analysis indicates that East Asia has the greatest human and plant exposure to ozone pollution among investigating regions, with increasing ozone levels through 2014. The results also show that ozone mixing ratios continue to decline significantly over eastern North America and Europe, however, there is less evidence for decreases of daytime average ozone at urban sites. The present-day spatial coverage of ozone monitors in East Asia (South Korea and Japan) and eastern North America is adequate for estimating regional trends by simply taking the average of the individual trends at each site. However the European network is more sparsely populated across its northern and eastern regions and therefore a simple average of the individual trends at each site does not yield an accurate regional trend. This analysis demonstrates that the GAMM technique can be used to assess the regional representativeness of existing monitoring networks, indicating those networks for which a regional trend can be obtained by simply averaging the trends of all individual sites and those networks that require a more sophisticated statistical approach.
Analysis of sensor network observations during some simulated landslide experiments
NASA Astrophysics Data System (ADS)
Scaioni, M.; Lu, P.; Feng, T.; Chen, W.; Wu, H.; Qiao, G.; Liu, C.; Tong, X.; Li, R.
2012-12-01
A multi-sensor network was tested during some experiments on a landslide simulation platform established at Tongji University (Shanghai, P.R. China). Here landslides were triggered by means of artificial rainfall (see Figure 1). The sensor network currently incorporates contact sensors and two imaging systems. This represent a novel solution, because the spatial sensor network incorporate either contact sensors and remote sensors (video-cameras). In future, these sensors will be installed on two real ground slopes in Sichuan province (South-West China), where Wenchuan earthquake occurred in 2008. This earthquake caused the immediate activation of several landslide, while other area became unstable and still are a menace for people and properties. The platform incorporates the reconstructed scale slope, sensor network, communication system, database and visualization system. Some landslide simulation experiments allowed ascertaining which sensors could be more suitable to be deployed in Wenchuan area. The poster will focus on the analysis of results coming from down scale simulations. Here the different steps of the landslide evolution can be followed on the basis of sensor observations. This include underground sensors to detect the water table level and the pressure in the ground, a set of accelerometers and two inclinometers. In the first part of the analysis the full data series are investigated to look for correlations and common patterns, as well as to link them to the physical processes. In the second, 4 subsets of sensors located in neighbor positions are analyzed. The analysis of low- and high-speed image sequences allowed to track a dense field of displacement on the slope surface. These outcomes have been compared to the ones obtained from accelerometers for cross-validation. Images were also used for the photogrammetric reconstruction of the slope topography during the experiment. Consequently, volume computation and mass movements could be evaluated on the basis of processed images.; Figure 1 - The landslide simulation platform at Tongji University at the end of an experiment. The picture shows the body of simulated landslide.
Cross-Disciplinary Network Comparison: Matchmaking Between Hairballs
Yan, Koon-Kiu; Wang, Daifeng; Sethi, Anurag; Muir, Paul; Kitchen, Robert; Cheng, Chao; Gerstein, Mark
2016-01-01
Biological systems are complex. In particular, the interactions between molecular components often form dense networks that, more often than not, are criticized for being inscrutable ‘hairballs’. We argue that one way of untangling these hairballs is through cross-disciplinary network comparison—leveraging advances in other disciplines to obtain new biological insights. In some cases, such comparisons enable the direct transfer of mathematical formalism between disciplines, precisely describing the abstract associations between entities and allowing us to apply a variety of sophisticated formalisms to biology. In cases where the detailed structure of the network does not permit the transfer of complete formalisms between disciplines, comparison of mechanistic interactions in systems for which we have significant day-to-day experience can provide analogies for interpreting relatively more abstruse biological networks. Here, we illustrate how these comparisons benefit the field with a few specific examples related to network growth, organizational hierarchies, and the evolution of adaptive systems. PMID:27047991
Unveiling the molecular mechanism of self-healing in a telechelic, supramolecular polymer network
Yan, Tingzi; Schröter, Klaus; Herbst, Florian; Binder, Wolfgang H.; Thurn-Albrecht, Thomas
2016-01-01
Reversible polymeric networks can show self-healing properties due to their ability to reassemble after application of stress and fracture, but typically the relation between equilibrium molecular dynamics and self-healing kinetics has been difficult to disentangle. Here we present a well-characterized, self-assembled bulk network based on supramolecular assemblies, that allows a clear distinction between chain dynamics and network relaxation. Small angle x-ray scattering and rheological measurements provide evidence for a structurally well-defined, dense network of interconnected aggregates giving mechanical strength to the material. Different from a covalent network, the dynamic character of the supramolecular bonds enables macroscopic flow on a longer time scale and the establishment of an equilibrium structure. A combination of linear and nonlinear rheological measurements clearly identifies the terminal relaxation process as being responsible for the process of self-healing. PMID:27581380
NASA Astrophysics Data System (ADS)
Castellano, Claudio; Pastor-Satorras, Romualdo
2017-10-01
The largest eigenvalue of a network's adjacency matrix and its associated principal eigenvector are key elements for determining the topological structure and the properties of dynamical processes mediated by it. We present a physically grounded expression relating the value of the largest eigenvalue of a given network to the largest eigenvalue of two network subgraphs, considered as isolated: the hub with its immediate neighbors and the densely connected set of nodes with maximum K -core index. We validate this formula by showing that it predicts, with good accuracy, the largest eigenvalue of a large set of synthetic and real-world topologies. We also present evidence of the consequences of these findings for broad classes of dynamics taking place on the networks. As a by-product, we reveal that the spectral properties of heterogeneous networks built according to the linear preferential attachment model are qualitatively different from those of their static counterparts.
Network analysis of physics discussion forums and links to course success
NASA Astrophysics Data System (ADS)
Traxler, Adrienne; Gavrin, Andrew; Lindell, Rebecca
2017-01-01
Large introductory science courses tend to isolate students, with negative consequences for long-term retention in college. Many active learning courses build collaboration and community among students as an explicit goal, and social network analysis has been used to track the development and beneficial effects of these collaborations. Here we supplement such work by conducting network analysis of online course discussion forums in two semesters of an introductory physics class. Online forums provide a tool for engaging students with each other outside of class, and offer new opportunities to commuter or non-traditional students with limited on-campus time. We look for correlations between position in the forum network (centrality) and final course grades. Preliminary investigation has shown weak correlations in the very dense full-semester network, so we will consider reduced ''backbone'' networks that highlight the most consistent links between students. Future work and implications for instruction will also be discussed.
On the feasibility of measuring urban air pollution by wireless distributed sensor networks.
Moltchanov, Sharon; Levy, Ilan; Etzion, Yael; Lerner, Uri; Broday, David M; Fishbain, Barak
2015-01-01
Accurate evaluation of air pollution on human-wellbeing requires high-resolution measurements. Standard air quality monitoring stations provide accurate pollution levels but due to their sparse distribution they cannot capture the highly resolved spatial variations within cities. Similarly, dedicated field campaigns can use tens of measurement devices and obtain highly dense spatial coverage but normally deployment has been limited to short periods of no more than few weeks. Nowadays, advances in communication and sensory technologies enable the deployment of dense grids of wireless distributed air monitoring nodes, yet their sensor ability to capture the spatiotemporal pollutant variability at the sub-neighborhood scale has never been thoroughly tested. This study reports ambient measurements of gaseous air pollutants by a network of six wireless multi-sensor miniature nodes that have been deployed in three urban sites, about 150 m apart. We demonstrate the network's capability to capture spatiotemporal concentration variations at an exceptional fine resolution but highlight the need for a frequent in-situ calibration to maintain the consistency of some sensors. Accordingly, a procedure for a field calibration is proposed and shown to improve the system's performance. Overall, our results support the compatibility of wireless distributed sensor networks for measuring urban air pollution at a sub-neighborhood spatial resolution, which suits the requirement for highly spatiotemporal resolved measurements at the breathing-height when assessing exposure to urban air pollution. Copyright © 2014 Elsevier B.V. All rights reserved.
Towards Integrated Marmara Strong Motion Network
NASA Astrophysics Data System (ADS)
Durukal, E.; Erdik, M.; Safak, E.; Ansal, A.; Ozel, O.; Alcik, H.; Mert, A.; Kafadar, N.; Korkmaz, A.; Kurtulus, A.
2009-04-01
Istanbul has a 65% chance of having a magnitude 7 or above earthquake within the next 30 years. As part of the preparations for the future earthquake, strong motion networks have been installed in and around Istanbul. The Marmara Strong Motion Network, operated by the Department of Earthquake Engineering of Kandilli Observatory and Earthquake Research Institute, encompasses permanent systems outlined below. It is envisaged that the networks will be run by a single entity responsible for technical management and maintanence, as well as for data management, archiving and dissemination through dedicated web-based interfaces. • Istanbul Earthquake Rapid Response and Early Warning System - IERREWS (one hundred 18-bit accelerometers for rapid response; ten 24-bit accelerometers for early warning) • IGDAŞ Gas Shutoff Network (100 accelerometers to be installed in 2010 and integrated with IERREWS) • Structural Monitoring Arrays - Fatih Sultan Mehmet Suspension Bridge (1200m-long suspension bridge across the Bosphorus, five 3-component accelerometers + GPS sensors) - Hagia Sophia Array (1500-year-old historical edifice, 9 accelerometers) - Süleymaniye Mosque Array (450-year-old historical edifice,9 accelerometers) - Fatih Mosque Array (237-year-old historical edifice, 9 accelerometers) - Kanyon Building Array (high-rise office building, 5 accelerometers) - Isbank Tower Array (high-rise office building, 5 accelerometers) - ENRON Array (power generation facility, 4 acelerometers) - Mihrimah Sultan Mosque Array (450-year-old historical edifice,9 accelerometers + tiltmeters, to be installed in 2009) - Sultanahmet Mosque Array, (390-year-old historical edifice, 9 accelerometers + tiltmeters, to be installed in 2009) • Special Arrays - Atakoy Vertical Array (four 3-component accelerometers at 25, 50, 75, and 150 m depths) - Marmara Tube Tunnel (1400 m long submerged tunnel, 128 ch. accelerometric data, 24 ch. strain data, to be installed in 2010) - Air-Force Academy Array (72 ch. dense accelerometric array to be installed in 2010) - Gemlik Array (a dense basin array of 8 stations, to be installed in 2010) The objectives of these systems and networks are: (1) to produce rapid earthquake intensity, damage and loss assessment information after an earthquake (in the case of IERREWS), (2) to monitor conditions of structural systems, (3) to develop real-time data processing, analysis, and damage detection and location tools (in the case of structural networks) after an extreme event, (4) to assess spatial properties of strong ground motion and ground strain, and to characterise basin response (in the case of special arrays), (5) to investigate site response and wave propagation (in the case of vertical array). Ground motion data obtained from these strong motion networks have and are being used for investigations of attenuation, spatial variation (coherence), simulation benchmarking, source modeling, site response, seismic microzonation, system identification and structural model verification and structural health control. In addition to the systems and networks outlined above there are two temporary networks: KIMNET - a dense urban noise and microtremor network consisting of 50 broadband stations expected to be operational in mid 2009, and SOSEWIN - a 20-station, self-organizing structural integrated array at Ataköy in Istanbul.
NASA Astrophysics Data System (ADS)
Gianturco, F. A.; Grassi, T.; Wester, R.
2016-10-01
The fairly recent detection of a variety of anions in the interstellar molecular clouds have underlined the importance of realistically modelling the processes governing their abundance. To pursue this task, our earlier calculations for the radiative electron attachment (REA) rates for C4H-, C6H-, and C8H- are employed in the present work, within a broad network of other concurrent reactions, to generate the corresponding column density ratios of anion/neutral (A/N) relative abundances. The latter are then compared with those obtained in recent years from observational measurements. The calculations involved the time-dependent solutions of a large network of chemical processes over an extended time interval and included a series of runs in which the values of REA rates were repeatedly scaled over several orders of magnitude. Macroscopic parameters for the Clouds’ modelling were also varied to cover a broad range of physical environments. It was found that, within the range and quality of the processes included in the present network,and selected from state-of-the-art astrophysical databases, the REA values required to match the observed A/N ratios needed to be reduced by orders of magnitude for C4H- case, while the same rates for C6H- and C8H- only needed to be scaled by much smaller factors. The results suggest that the generally proposed formation of interstellar anions by REA mechanism is overestimated by current models for the C4H- case, for which is likely to be an inefficient path to formation. This path is thus providing a rather marginal contribution to the observed abundances of C4H-, the latter being more likely to originate from other chemical processes in the network, as we discuss in some detail in the present work. Possible physical reasons for the much smaller differences against observations found instead for the values of the (A/N) ratios in two other, longer members of the series are put forward and analysed within the evolutionary modelling discussed in the present work.
[Triton X-100 induces heritable changes of morphological characters in Triticum aestivum L].
Makhmudova, K Kh; Bogdanova, E D; Levites, E V
2009-04-01
The effect of the nonionic detergent polyethylene glycol octylphenyl ester (Triton X-100, TX-100) on the spring common wheat cultivar Alem was studied under laboratory and field conditions. Treatment of seeds and vegetating plants with 0.1 or 0.01% TX-100 (aqueous solution) changed the spike morphology in all plants of the first posttreatment generation. The changes were inherited by the second generation without additional treatment with TX-100. Square-headed dense spikes with doubled spikelets of the duospiculum type (an additional spikelet at the top of the main one), elongate dense and lax spikes, mid-dense spikes, and fusiform spikes were observed. An epigenetic nature was assumed for the observed changes.
Phillips, P J; Schubert, C; Argue, D; Fisher, I; Furlong, E T; Foreman, W; Gray, J; Chalmers, A
2015-04-15
Septic-system discharges can be an important source of micropollutants (including pharmaceuticals and endocrine active compounds) to adjacent groundwater and surface water systems. Groundwater samples were collected from well networks tapping glacial till in New England (NE) and sandy surficial aquifer New York (NY) during one sampling round in 2011. The NE network assesses the effect of a single large septic system that receives discharge from an extended health care facility for the elderly. The NY network assesses the effect of many small septic systems used seasonally on a densely populated portion of Fire Island. The data collected from these two networks indicate that hydrogeologic and demographic factors affect micropollutant concentrations in these systems. The highest micropollutant concentrations from the NE network were present in samples collected from below the leach beds and in a well downgradient of the leach beds. Total concentrations for personal care/domestic use compounds, pharmaceutical compounds and plasticizer compounds generally ranged from 1 to over 20 μg/L in the NE network samples. High tris(2-butoxyethyl phosphate) plasticizer concentrations in wells beneath and downgradient of the leach beds (>20 μg/L) may reflect the presence of this compound in cleaning agents at the extended health-care facility. The highest micropollutant concentrations for the NY network were present in the shoreline wells and reflect groundwater that is most affected by septic system discharges. One of the shoreline wells had personal care/domestic use, pharmaceutical, and plasticizer concentrations ranging from 0.4 to 5.7 μg/L. Estradiol equivalency quotient concentrations were also highest in a shoreline well sample (3.1 ng/L). Most micropollutant concentrations increase with increasing specific conductance and total nitrogen concentrations for shoreline well samples. These findings suggest that septic systems serving institutional settings and densely populated areas in coastal settings may be locally important sources of micropollutants to adjacent aquifer and marine systems. Published by Elsevier B.V.
A symmetric multivariate leakage correction for MEG connectomes
Colclough, G.L.; Brookes, M.J.; Smith, S.M.; Woolrich, M.W.
2015-01-01
Ambiguities in the source reconstruction of magnetoencephalographic (MEG) measurements can cause spurious correlations between estimated source time-courses. In this paper, we propose a symmetric orthogonalisation method to correct for these artificial correlations between a set of multiple regions of interest (ROIs). This process enables the straightforward application of network modelling methods, including partial correlation or multivariate autoregressive modelling, to infer connectomes, or functional networks, from the corrected ROIs. Here, we apply the correction to simulated MEG recordings of simple networks and to a resting-state dataset collected from eight subjects, before computing the partial correlations between power envelopes of the corrected ROItime-courses. We show accurate reconstruction of our simulated networks, and in the analysis of real MEGresting-state connectivity, we find dense bilateral connections within the motor and visual networks, together with longer-range direct fronto-parietal connections. PMID:25862259
NASA Astrophysics Data System (ADS)
Cochran, E. S.; Lawrence, J. F.; Christensen, C. M.; Chung, A. I.; Neighbors, C.; Saltzman, J.
2010-12-01
The Quake-Catcher Network (QCN) involves the community in strong motion data collection by utilizing volunteer computing techniques and low-cost MEMS accelerometers. Volunteer computing provides a mechanism to expand strong-motion seismology with minimal infrastructure costs, while promoting community participation in science. Micro-Electro-Mechanical Systems (MEMS) triaxial accelerometers can be attached to a desktop computer via USB and are internal to many laptops. Preliminary shake table tests show the MEMS accelerometers can record high-quality seismic data with instrument response similar to research-grade strong-motion sensors. QCN began distributing sensors and software to K-12 schools and the general public in April 2008 and has grown to roughly 1500 stations worldwide. We also recently tested whether sensors could be quickly deployed as part of a Rapid Aftershock Mobilization Program (RAMP) following the 2010 M8.8 Maule, Chile earthquake. Volunteers are recruited through media reports, web-based sensor request forms, as well as social networking sites. Using data collected to date, we examine whether a distributed sensing network can provide valuable seismic data for earthquake detection and characterization while promoting community participation in earthquake science. We utilize client-side triggering algorithms to determine when significant ground shaking occurs and this metadata is sent to the main QCN server. On average, trigger metadata are received within 1-10 seconds from the observation of a trigger; the larger data latencies are correlated with greater server-station distances. When triggers are detected, we determine if the triggers correlate to others in the network using spatial and temporal clustering of incoming trigger information. If a minimum number of triggers are detected then a QCN-event is declared and an initial earthquake location and magnitude is estimated. Initial analysis suggests that the estimated locations and magnitudes are similar to those reported in regional and global catalogs. As the network expands, it will become increasingly important to provide volunteers access to the data they collect, both to encourage continued participation in the network and to improve community engagement in scientific discourse related to seismic hazard. In the future, we hope to provide access to both images and raw data from seismograms in formats accessible to the general public through existing seismic data archives (e.g. IRIS, SCSN) and/or through the QCN project website. While encouraging community participation in seismic data collection, we can extend the capabilities of existing seismic networks to rapidly detect and characterize strong motion events. In addition, the dense waveform observations may provide high-resolution ground shaking information to improve source imaging and seismic risk assessment.
NASA Astrophysics Data System (ADS)
van Tussenbroek, B. I.; van Katwijk, M. M.; Bouma, T. J.; van der Heide, T.; Govers, L. L.; Leuven, R. S. E. W.
2016-09-01
Seagrasses comprise 78 species and are rarely invasive. But the seagrass Halophila stipulacea, firstly recorded in the Caribbean in the year 2002, has spread quickly throughout the region. Previous works have described this species as invasive in the Caribbean, forming dense mats that exclude native seagrass species. During a reconnaissance field survey of Caribbean seagrass meadows at the islands of Bonaire and Sint Maarten in 2013, we observed that this species was only extremely dense at 5 out of 10 studied meadows. Compared to areas with sparse growth of H. stipulacea, these dense meadows showed consistently higher nutrient concentrations, as indicated by higher leaf tissue N contents of the seagrass Thalassia testudinum (dense when C:N < 22.5) and sediments (dense when %N > 11.3). Thus, the potential invasiveness of this non-native seagrass most likely depends on the environmental conditions, especially the nutrient concentrations.
Gravity-driven dense granular flows
NASA Astrophysics Data System (ADS)
Ertas, Deniz
2002-03-01
Despite their importance in many areas of science and technology, the emergent physics of hard granular systems remain largely obscure, especially when the packing density approaches that of a jammed system. In particular, I will focus on the rheology of gravity-driven dense granular flows on an incline with a ``rough" bottom in two and three dimensions. We have conducted large-scale molecular dynamics simulations of spheres that interact through linear damped spring or Hertzian force laws with a Coulomb failure criterion(D. Ertaş) et al., Europhys. Lett. 56, 214 (2001); L.E. Silbert et al., Phys. Rev. E 64, 051302 (2001).. This flow geometry produces a constant density profile, and reproduces key features of such flows that have been observed experimentally(O. Pouliquen, Phys. Fluids 11), 542 (1999), such as an angle of repose that depends on flow thickness, steady-state solutions at varying heights for a given inclination angle, and the scaling of the mean particle velocity with pile height (< v > ∝ H^3/2). These successes prompted us to carefully examine the rheology in the interior of the pile by measuring the full stress and strain tensors, which are generally unavailable through experiments. The type of force law has little impact on the behavior of the system. The bulk rheology can be approximately described in terms of extensions of Chapman-Enskog theory to dense packings(L. Bocquet et al.), cond-mat/0112072. However, close to the angle of repose, this description fails near the free surface, which exhibits a rheology dominated by normal stress differences that are small in the bulk. This change in rheology can be qualitatively understood in terms of stress-bearing force networks that are continuously formed by ``gravitational inelastic collapse" and destroyed by the imposed strain.
Geophysical anomalies of Osage County and its relationship to Oklahoma seismicity
NASA Astrophysics Data System (ADS)
Crain, K.; Chang, J. C.; Walter, J. I.
2017-12-01
Substantial increases in seismicity across northcentral Oklahoma in the last decade have been generally attributed to human activity. During the last oil and gas boom, the Cherokee Platform was generally targeted by many energy companies. However, these new production wells yielded sometimes as much as 90% (or more) formation saltwater, along with hydrocarbons, which was commonly disposed of into deeper formations of the Arbuckle Group. Wastewater injection into the Arbuckle group, which directly overlies crystalline basement, has been proposed to hydraulically or elastically perturb the stresses on basement faults, causing them to slip. An Oklahoma seismicity map shows Osage County as an anomalously "quiet" region. Seismicity in counties surrounding Osage County experienced hundreds of earthquakes during the past couple of years, yet the area of Osage experienced less than a dozen earthquakes in the decades-long history of the Oklahoma seismic network. This is surprising since the fundamental geologic settings and possible anthropogenic triggers are essentially the same for these seismically active and quiet areas. We present a possible geologic explanation for the anomalously quiescent Osage County. We model gravity and magnetics data to show that there are dense bodies beneath the study area, and use vitrinite reflectance data from the sedimentary strata to constrain the relative age of a possible intrusion event, which might have produced the dense bodies. We propose that the intrusion of dense bodies could have caused significant basement alteration thereby reducing the seismogenic potential for basement faults to host larger, detectable earthquakes such as is observed in other regions of Oklahoma. If our hypothesis is correct, researchers may be able to use geologic criteria to identify anthropogenic earthquake-triggering mechanisms, which in turn could help to delineate areas where wastewater injection is, or is not, expected to induce earthquakes.
Pixel switching of epitaxial Pd/YHx/CaF2 switchable mirrors
Kerssemakers; van der Molen SJ; Koeman; Gunther; Griessen
2000-08-03
Exposure of rare-earth films to hydrogen can induce a metal-insulator transition, accompanied by pronounced optical changes. This 'switchable mirror' effect has received considerable attention from theoretical, experimental and technological points of view. Most systems use polycrystalline films, but the synthesis of yttrium-based epitaxial switchable mirrors has also been reported. The latter form an extended self-organized ridge network during initial hydrogen loading, which results in the creation of micrometre-sized triangular domains. Here we observe homogeneous and essentially independent optical switching of individual domains in epitaxial switchable mirrors during hydrogen absorption. The optical switching is accompanied by topographical changes as the domains sequentially expand and contract; the ridges block lateral hydrogen diffusion and serve as a microscopic lubricant for the domain oscillations. We observe the correlated changes in topology and optical properties using in situ atomic force and optical microscopy. Single-domain phase switching is not observed in polycrystalline films, which are optically homogeneous. The ability to generate a tunable, dense pattern of switchable pixels is of technological relevance for solid-state displays based on switchable mirrors.
Laboratory Measurements and Astronomical Search of the Hso Radical
NASA Astrophysics Data System (ADS)
Cazzoli, Gabriele; Puzzarini, Cristina; Lattanzi, Valerio; Tercero, Belén; Cernicharo, Jose
2016-06-01
The sulphur chemistry in space is still quite puzzling although several S-bearing species have been detected in the interstellar medium (ISM) in our local system and outside our galaxy. In particular, we observe very large quantities of sulphur harbouring molecules, especially in high-mass star forming regions, that are in perfect accordance with its solar abundance, while in the cold, dense ISM a much lower abundance is observed compared to its solar one. To have a better understanding of the sulphur chemistry in space, it is crucial to derive the broadest picture of the chemical network involving the formation of sulphur species. In this work we report high-resolution spectra of a simple triatomic S-bearing molecule, the HSO radical, with experiments well into the THz region. Thanks to the spectroscopic results of this work, which provide accurate frequency predictions up to the THz, we have also performed a rigorous search for HSO in space. The main outcomes of our work will be briefly presented, showing in particular the synergy between the laboratory and the observations.
Seismic multiplet response triggered by melt at Blood Falls, Taylor Glacier, Antarctica
NASA Astrophysics Data System (ADS)
Carmichael, Joshua D.; Pettit, Erin C.; Hoffman, Matt; Fountain, Andrew; Hallet, Bernard
2012-09-01
Meltwater input often triggers a seismic response from glaciers and ice sheets. It is difficult, however, to measure melt production on glaciers directly, while subglacial water storage is not directly observable. Therefore, we document temporal changes in seismicity from a dry-based polar glacier (Taylor Glacier, Antarctica) during a melt season using a synthesis of seismic observation and melt modeling. We record icequakes using a dense six-receiver network of three-component geophones and compare this with melt input generated from a calibrated surface energy balance model. In the absence of modeled surface melt, we find that seismicity is well-described by a diurnal signal composed of microseismic events in lake and glacial ice. During melt events, the diurnal signal is suppressed and seismicity is instead characterized by large glacial icequakes. We perform network-based correlation and clustering analyses of seismic record sections and determine that 18% of melt-season icequakes are repetitive (multiplets). The epicentral locations for these multiplets suggest that they are triggered by meltwater produced near a brine seep known as Blood Falls. Our observations of the correspondingp-wave first motions are consistent with volumetric source mechanisms. We suggest that surface melt enables a persistent pathway through this cold ice to an englacial fracture system that is responsible for brine release episodes from the Blood Falls seep. The scalar moments for these events suggest that the volumetric increase at the source region can be explained by melt input.
Winkelman, Jonathan D; Suarez, Cristian; Hocky, Glen M; Harker, Alyssa J; Morganthaler, Alisha N; Christensen, Jenna R; Voth, Gregory A; Bartles, James R; Kovar, David R
2016-10-24
Cells assemble and maintain functionally distinct actin cytoskeleton networks with various actin filament organizations and dynamics through the coordinated action of different sets of actin-binding proteins. The biochemical and functional properties of diverse actin-binding proteins, both alone and in combination, have been increasingly well studied. Conversely, how different sets of actin-binding proteins properly sort to distinct actin filament networks in the first place is not nearly as well understood. Actin-binding protein sorting is critical for the self-organization of diverse dynamic actin cytoskeleton networks within a common cytoplasm. Using in vitro reconstitution techniques including biomimetic assays and single-molecule multi-color total internal reflection fluorescence microscopy, we discovered that sorting of the prominent actin-bundling proteins fascin and α-actinin to distinct networks is an intrinsic behavior, free of complicated cellular signaling cascades. When mixed, fascin and α-actinin mutually exclude each other by promoting their own recruitment and inhibiting recruitment of the other, resulting in the formation of distinct fascin- or α-actinin-bundled domains. Subdiffraction-resolution light microscopy and negative-staining electron microscopy revealed that fascin domains are densely packed, whereas α-actinin domains consist of widely spaced parallel actin filaments. Importantly, other actin-binding proteins such as fimbrin and espin show high specificity between these two bundle types within the same reaction. Here we directly observe that fascin and α-actinin intrinsically segregate to discrete bundled domains that are specifically recognized by other actin-binding proteins. Copyright © 2016 Elsevier Ltd. All rights reserved.
A novel new tsunami detection network using GNSS on commercial ships
NASA Astrophysics Data System (ADS)
Foster, J. H.; Ericksen, T.; Avery, J.
2015-12-01
Accurate and rapid detection and assessment of tsunamis in the open ocean is critical for predicting how they will impact distant coastlines, enabling appropriate mitigation efforts. The unexpectedly huge fault slip for the 2011 Tohoku, Japan earthquake, and the unanticipated type of slip for the 2012 event at Queen Charlotte Islands, Canada highlighted weaknesses in our understanding of earthquake and tsunami hazards, and emphasized the need for more densely-spaced observing capabilities. Crucially, when each sensor is extremely expensive to build, deploy, and maintain, only a limited network of them can be installed. Gaps in the coverage of the network as well as routine outages of instruments, limit the ability of the detection system to accurately characterize events. Ship-based geodetic GNSS has been demonstrated to be able to detect and measure the properties of tsunamis in the open ocean. Based on this approach, we have used commercial ships operating in the North Pacific to construct a pilot network of low-cost, tsunami sensors to augment the existing detection systems. Partnering with NOAA, Maersk and Matson Navigation, we have equipped 10 ships with high-accuracy GNSS systems running the Trimble RTX high-accuracy real-time positioning service. Satellite communications transmit the position data streams to our shore-side server for processing and analysis. We present preliminary analyses of this novel network, assessing the robustness of the system, the quality of the time-series and the effectiveness of various processing and filtering strategies for retrieving accurate estimates of sea surface height variations for triggering detection and characterization of tsunami in the open ocean.
Oh, Hyunsung; Jeong, Chung Hyeon
2017-10-01
Culture has been pinpointed as a culprit of disparities in health insurance coverage between Korean immigrants and other ethnic groups. This study explored specific mechanisms by which culture influences a decision to buy health insurance among self-employed Korean immigrants living in ethnic enclaves by focusing on the structure and functions of social networks. Between March and June 2015, we recruited 24 Korean immigrant adults (aged 18 or older) who identified as self-employed and being uninsured for substantial periods before 2014 in Southern California. Interviews were conducted in Korean, and Korean transcripts were translated into English by two bilingual interpreters. Using constant comparative analysis, we explored why participants didn't purchase health insurance after migrating to the United States and how their social networks influenced their decisions whether to purchase health insurance. Results indicate Korean immigrants sought health information from dense and homogeneous social networks whose members are mostly Korean immigrants embedded in similar social contexts. Social learning was frequently observed when people sought health care while uninsured. However, respondents often noted social ties do not provide helpful information about benefits, costs, and ways to use health insurance. "Koreans don't buy health insurance" was a dominant social norm reported by most respondents. Findings indicate that social learning and normative influence occur inside social networks and these mechanisms seemingly prevent purchasing of health insurance. In addition to the individual mandate in the Patient Protection and Affordable Care Act, more targeted approaches that consider the structure and functions of social networks could improve the public health of Korean immigrants. Copyright © 2017 Elsevier Ltd. All rights reserved.
PAGANI Toolkit: Parallel graph-theoretical analysis package for brain network big data.
Du, Haixiao; Xia, Mingrui; Zhao, Kang; Liao, Xuhong; Yang, Huazhong; Wang, Yu; He, Yong
2018-05-01
The recent collection of unprecedented quantities of neuroimaging data with high spatial resolution has led to brain network big data. However, a toolkit for fast and scalable computational solutions is still lacking. Here, we developed the PArallel Graph-theoretical ANalysIs (PAGANI) Toolkit based on a hybrid central processing unit-graphics processing unit (CPU-GPU) framework with a graphical user interface to facilitate the mapping and characterization of high-resolution brain networks. Specifically, the toolkit provides flexible parameters for users to customize computations of graph metrics in brain network analyses. As an empirical example, the PAGANI Toolkit was applied to individual voxel-based brain networks with ∼200,000 nodes that were derived from a resting-state fMRI dataset of 624 healthy young adults from the Human Connectome Project. Using a personal computer, this toolbox completed all computations in ∼27 h for one subject, which is markedly less than the 118 h required with a single-thread implementation. The voxel-based functional brain networks exhibited prominent small-world characteristics and densely connected hubs, which were mainly located in the medial and lateral fronto-parietal cortices. Moreover, the female group had significantly higher modularity and nodal betweenness centrality mainly in the medial/lateral fronto-parietal and occipital cortices than the male group. Significant correlations between the intelligence quotient and nodal metrics were also observed in several frontal regions. Collectively, the PAGANI Toolkit shows high computational performance and good scalability for analyzing connectome big data and provides a friendly interface without the complicated configuration of computing environments, thereby facilitating high-resolution connectomics research in health and disease. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Chandra*, Chandrasekar V.; the full DFW Team
2015-04-01
Currently, the National Weather Service (NWS) Next Generation Weather Radar (NEXRAD) provides observations updated every five-six minutes across the United States. However, at the maximum NEXRAD operating range of 230 km, the 0.5 degree radar beam (lowest tilt) height is about 5.4 km above ground level (AGL) because of the effect of Earth curvature. Consequently, much of the lower atmosphere (1-3 km AGL) cannot be observed by the NEXRAD. To overcome the fundamental coverage limitations of today's weather surveillance radars, and improve the spatial and temporal resolution issues, at urban scale, the National Science Foundation Engineering Research Center (NSF-ERC) for Collaborative Adaptive Sensing of the Atmosphere (CASA) has embarked the development of Dallas-Fort worth (DFW) urban remote sensing network to conduct high-resolution sensing in the lower atmosphere for a metropolitan environment, communicate high resolution observations and nowcasting of severe weather including flash floods, hail storms and high wind events. Being one of the largest inland metropolitan areas in the U.S., the DFW Metroplex is home to over 6.5 million people by 2012 according to the North Central Texas Council of Governments (NCTCOG). It experiences a wide range of natural weather hazards, including urban flash flood, high wind, tornado, and hail, etc. Successful monitoring of the rapid changing meteorological conditions in such a region is necessary for emergency management and decision making. Therefore, it is an ideal location to investigate the impacts of hazardous weather phenomena, to enhance resilience in an urban setting and demonstrate the CASA concept in a densely populated urban environment. The DFW radar network consists of 8 dual-polarization X-band weather radars and standard NEXRAD S-band radar, covering the greater DFW metropolitan region. This paper will present high resolution observation of tornado, urban flood, hail storm and damaging wind event all within the city.
Remote Imaging of Earthquake Characteristics Along Oceanic Transforms
NASA Astrophysics Data System (ADS)
Cleveland, M.; Ammon, C. J.
2014-12-01
Compared with subduction and continental transform systems, many characteristics of oceanic transform faults (OTF) are better defined (first-order structure and composition, thermal properties, etc.). Still, many aspects of earthquake behavior along OTFs remain poorly understood as a result of their relative remoteness. But the substantial aseismic deformation (averaging roughly 85%) that occurs along OTFs and the implied interaction of aseismic with seismic deformation is an opportunity to explore fundamental earthquake nucleation and rupture processes. However, the study of OTF earthquake properties is not easy because these faults are often located in remote regions, lacking nearby seismic networks. Thus, many standard network-based seismic approaches are infeasible, but some can be adapted to the effort. For example, double-difference methods applied to cross-correlation measured Rayleigh wave time shifts is an effective tool to provide greatly improved relative epicentroid locations, origin-time shifts, and relative event magnitudes for earthquakes in remote regions. The same comparative waveform measurements can provide insight into rupture directivity of the larger OTF events. In this study, we calculate improved relative earthquake locations and magnitudes of earthquakes along the Blanco Fracture Zone in the northeast Pacific Ocean and compare and contrast that work with a study of the more remote Menard Transform Fault (MTF), located in the southeast Pacific Ocean. For the Blanco, we work exclusively with Rayleigh (R1) observations exploiting the dense networks in the northern hemisphere. For the MTF, we combine R1 with Love (G1) observations to map and to analyze the distribution of strong asperities along this remote, 200-km-long fault. Specifically, we attempt to better define the relationship between observed near-transform normal and vertical strike-slip earthquakes in the vicinity of the MTF. We test our ability to use distant observations (the closest station is about 2,500 km distant) to constrain rupture characteristics of recent strong earthquakes in the region. We compare the seismicity characteristics along the faults to explore the relationship of fault age and morphology on rupture behavior.
Large-Scale Earthquake Countermeasures Act and the Earthquake Prediction Council in Japan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rikitake, T.
1979-08-07
The Large-Scale Earthquake Countermeasures Act was enacted in Japan in December 1978. This act aims at mitigating earthquake hazards by designating an area to be an area under intensified measures against earthquake disaster, such designation being based on long-term earthquake prediction information, and by issuing an earthquake warnings statement based on imminent prediction information, when possible. In an emergency case as defined by the law, the prime minister will be empowered to take various actions which cannot be taken at ordinary times. For instance, he may ask the Self-Defense Force to come into the earthquake-threatened area before the earthquake occurrence.more » A Prediction Council has been formed in order to evaluate premonitory effects that might be observed over the Tokai area, which was designated an area under intensified measures against earthquake disaster some time in June 1979. An extremely dense observation network has been constructed over the area.« less
Gămănuţ, Răzvan; Kennedy, Henry; Toroczkai, Zoltán; Ercsey-Ravasz, Mária; Van Essen, David C; Knoblauch, Kenneth; Burkhalter, Andreas
2018-02-07
The inter-areal wiring pattern of the mouse cerebral cortex was analyzed in relation to a refined parcellation of cortical areas. Twenty-seven retrograde tracer injections were made in 19 areas of a 47-area parcellation of the mouse neocortex. Flat mounts of the cortex and multiple histological markers enabled detailed counts of labeled neurons in individual areas. The observed log-normal distribution of connection weights to each cortical area spans 5 orders of magnitude and reveals a distinct connectivity profile for each area, analogous to that observed in macaques. The cortical network has a density of 97%, considerably higher than the 66% density reported in macaques. A weighted graph analysis reveals a similar global efficiency but weaker spatial clustering compared with that reported in macaques. The consistency, precision of the connectivity profile, density, and weighted graph analysis of the present data differ significantly from those obtained in earlier studies in the mouse. Copyright © 2017 Elsevier Inc. All rights reserved.
STS-55 Earth observation of agricultural development in northern Argentina
NASA Technical Reports Server (NTRS)
1993-01-01
STS-55 Earth observation taken aboard Columbia, Orbiter Vehicle (OV) 102, is of agricultural development in northern Argentina. This photograph is from a mapping strip of photographs acquired by the STS-55 crew. This mapping strip runs from the 'eyelash forests' of the Bolivian Andes, southeast across the Chaco Plains, and into the upper Parana River Basin of north-central Argentina. The formerly densely forested areas between the upper Rio Pilcomayo and the Rio Teuco of NW Argentina rest on deep, rich alluvial and loess deposits. These modern soils were carried into the region by rivers from the Andes and by dust storms from large playa areas of the Altiplano (high plains) of Peru and Boliva. In this scene, representative of the long mapping strip, the process of converting forests to agriculture is far advanced. The original road network, a series of grids laid out in the forest, has nearly coalesced into a farm and ranch landscape. Some few relict forests are still visible as distin
Temperature and heat in informal settlements in Nairobi
Misiani, Herbert; Okoth, Jerrim; Jordan, Asha; Gohlke, Julia; Ouma, Gilbert; Arrighi, Julie; Zaitchik, Ben F.; Jjemba, Eddie; Verjee, Safia; Waugh, Darryn W.
2017-01-01
Nairobi, Kenya exhibits a wide variety of micro-climates and heterogeneous surfaces. Paved roads and high-rise buildings interspersed with low vegetation typify the central business district, while large neighborhoods of informal settlements or “slums” are characterized by dense, tin housing, little vegetation, and limited access to public utilities and services. To investigate how heat varies within Nairobi, we deployed a high density observation network in 2015/2016 to examine summertime temperature and humidity. We show how temperature, humidity and heat index differ in several informal settlements, including in Kibera, the largest slum neighborhood in Africa, and find that temperature and a thermal comfort index known colloquially as the heat index regularly exceed measurements at the Dagoretti observation station by several degrees Celsius. These temperatures are within the range of temperatures previously associated with mortality increases of several percent in youth and elderly populations in informal settlements. We relate these changes to surface properties such as satellite-derived albedo, vegetation indices, and elevation. PMID:29107977
Temperature and heat in informal settlements in Nairobi.
Scott, Anna A; Misiani, Herbert; Okoth, Jerrim; Jordan, Asha; Gohlke, Julia; Ouma, Gilbert; Arrighi, Julie; Zaitchik, Ben F; Jjemba, Eddie; Verjee, Safia; Waugh, Darryn W
2017-01-01
Nairobi, Kenya exhibits a wide variety of micro-climates and heterogeneous surfaces. Paved roads and high-rise buildings interspersed with low vegetation typify the central business district, while large neighborhoods of informal settlements or "slums" are characterized by dense, tin housing, little vegetation, and limited access to public utilities and services. To investigate how heat varies within Nairobi, we deployed a high density observation network in 2015/2016 to examine summertime temperature and humidity. We show how temperature, humidity and heat index differ in several informal settlements, including in Kibera, the largest slum neighborhood in Africa, and find that temperature and a thermal comfort index known colloquially as the heat index regularly exceed measurements at the Dagoretti observation station by several degrees Celsius. These temperatures are within the range of temperatures previously associated with mortality increases of several percent in youth and elderly populations in informal settlements. We relate these changes to surface properties such as satellite-derived albedo, vegetation indices, and elevation.
Effect of Grain Size on Differential Desorption of Volatile Species and on Non-ideal MHD Diffusivity
NASA Astrophysics Data System (ADS)
Zhao, Bo; Caselli, Paola; Li, Zhi-Yun
2018-05-01
We developed a chemical network for modeling the chemistry and non-ideal MHD effects from the collapsing dense molecular clouds to protostellar disks. First, we re-formulated the cosmic-ray desorption rate by considering the variations of desorption rate over the grain size distribution. We find that the differential desorption of volatile species is amplified by the grains larger than 0.1 μm, because larger grains are heated to a lower temperature by cosmic-rays and hence more sensitive to the variations in binding energies. As a result, atomic nitrogen N is ˜2 orders of magnitude more abundant than CO; N2H+ also becomes a few times more abundant than HCO+ due to the increased gas-phase N2. However, the changes in ionization fraction due to freeze-out and desorption only have minor effects on the non-ideal MHD diffusivities. Our chemical network confirms that the very small grains (VSGs: below a few 100 Å) weakens the efficiency of both ambipolar diffusion and Hall effect. In collapsing dense cores, a maximum ambipolar diffusion is achieved when truncating the MRN size distribution at 0.1 μm, and for a maximum Hall effect, the truncation occurs at 0.04 μm. We conclude that the grain size distribution is crucial to the differential depletion between CO and N2 related molecules, as well as to the non-ideal MHD diffusivities in dense cores.
Rossouw, David; Fu, Dong; Leonard, Donovan N.; ...
2017-02-15
In this study, localized filament corrosion products at the anodic head on a model Mg-1%Zn-0.4%Zr alloy surface were characterized by electron microscopy techniques of site-specific lamella prepared by focused ion beam milling. It is revealed that the anodic head propagates underneath a largely intact thin and dense MgO surface film and comprises dense aggregates of nano-crystalline MgO within a nano-porous Mg(OH) 2 network. In conclusion, the findings contribute new supportive direct imaging insight into the source of the enhanced H 2 evolution that accompanies anodic dissolution of Mg and its alloys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossouw, David; Fu, Dong; Leonard, Donovan N.
In this study, localized filament corrosion products at the anodic head on a model Mg-1%Zn-0.4%Zr alloy surface were characterized by electron microscopy techniques of site-specific lamella prepared by focused ion beam milling. It is revealed that the anodic head propagates underneath a largely intact thin and dense MgO surface film and comprises dense aggregates of nano-crystalline MgO within a nano-porous Mg(OH) 2 network. In conclusion, the findings contribute new supportive direct imaging insight into the source of the enhanced H 2 evolution that accompanies anodic dissolution of Mg and its alloys.
Barman-Adhikari, Anamika; Begun, Stephanie; Rice, Eric; Yoshioka-Maxwell, Amanda; Perez-Portillo, Andrea
2016-07-01
Homeless youths' social networks are consistently linked with their substance use. Social networks influence behavior through several mechanisms, especially social norms. This study used sociometric analyses to understand whether social norms of drug use behaviors are clustered in network structures and whether these perceived norms (descriptive and injunctive) influence youths' drug use behaviors. An event-based approach was used to delineate boundaries of the two sociometric networks of homeless youth, one in Los Angeles, CA (n = 160) and the other in Santa Monica, CA (n = 130). Network characteristics included centrality (i.e., popularity) and cohesiveness (location in dense subnetworks). The primary outcome was recent methamphetamine use. Results revealed that both descriptive and injunctive norms influenced methamphetamine use. Network cohesion was found to be associated with perception of both descriptive and injunctive norms in both networks, however in opposite directions. Network interventions therefore might be effective if designed to capitalize on social influence that naturally occurs in cohesive parts of networks. Copyright © 2016 Elsevier Inc. All rights reserved.
Podkowa, Dagmara; Goniakowska-Witalińska, Lucyna
2002-01-01
A light and transmission electron microscopic study of the intestine of catfish C. aeneus shows that the anterior part of the intestine is a site of digestion and absorption and its structure is typical of that of other teleostean fishes. However, in this species the thin-walled posterior intestine is adapted to air breathing. In this region mucosa is smooth and lined with respiratory epithelium with capillary network. Several types of cells are observed in the epithelium: flattened respiratory epithelial cells with short microvili, goblet cells, scarce epithelial cells with numerous longer microvilli, and two types of endocrine cells (EC). The solitary brush cells with several long and thick microvilli described here are the first observation of such cells in the gastrointestinal tract of fishes. Bodies of respiratory epithelial cells lie between capillaries. Their cytoplasm, apart from typical organelles contains dense and lamellar bodies, which are a site of accumulation of surfactant. In regions where capillaries are covered by thin cytoplasmic sheets of respiratory epithelial cells, a thin (0.24-3.00 microm) air-blood barrier is formed, thus enabling gas exchange. Epithelial cells with longer microvilli do not participate in the formation of the air-blood barrier and are probably responsible for absorbtion. EC of the closed type are dispersed within the epithelium. Their cytoplasm contains characteristic round or oval dense core vesicles 69 to 230 nm in diameter. The role of EC and brush cells in the regulation of processes related to absorbtion, and to respiration, is disscused.
Predicting the cumulative effect of multiple disturbances on seagrass connectivity.
Grech, Alana; Hanert, Emmanuel; McKenzie, Len; Rasheed, Michael; Thomas, Christopher; Tol, Samantha; Wang, Mingzhu; Waycott, Michelle; Wolter, Jolan; Coles, Rob
2018-03-15
The rate of exchange, or connectivity, among populations effects their ability to recover after disturbance events. However, there is limited information on the extent to which populations are connected or how multiple disturbances affect connectivity, especially in coastal and marine ecosystems. We used network analysis and the outputs of a biophysical model to measure potential functional connectivity and predict the impact of multiple disturbances on seagrasses in the central Great Barrier Reef World Heritage Area (GBRWHA), Australia. The seagrass networks were densely connected, indicating that seagrasses are resilient to the random loss of meadows. Our analysis identified discrete meadows that are important sources of seagrass propagules and that serve as stepping stones connecting various different parts of the network. Several of these meadows were close to urban areas or ports and likely to be at risk from coastal development. Deep water meadows were highly connected to coastal meadows and may function as a refuge, but only for non-foundation species. We evaluated changes to the structure and functioning of the seagrass networks when one or more discrete meadows were removed due to multiple disturbance events. The scale of disturbance required to disconnect the seagrass networks into two or more components was on average >245 km, about half the length of the metapopulation. The densely connected seagrass meadows of the central GBRWHA are not limited by the supply of propagules; therefore, management should focus on improving environmental conditions that support natural seagrass recruitment and recovery processes. Our study provides a new framework for assessing the impact of global change on the connectivity and persistence of coastal and marine ecosystems. Without this knowledge, management actions, including coastal restoration, may prove unnecessary and be unsuccessful. © 2018 John Wiley & Sons Ltd.
Sorani, Marco D
2012-01-01
Information technology (IT) adoption enables biomedical research. Publications are an accepted measure of research output, and network models can describe the collaborative nature of publication. In particular, ecological networks can serve as analogies for publication and technology adoption. We constructed network models of adoption of bioinformatics programming languages and health IT (HIT) from the literature.We selected seven programming languages and four types of HIT. We performed PubMed searches to identify publications since 2001. We calculated summary statistics and analyzed spatiotemporal relationships. Then, we assessed ecological models of specialization, cooperativity, competition, evolution, biodiversity, and stability associated with publications.Adoption of HIT has been variable, while scripting languages have experienced rapid adoption. Hospital systems had the largest HIT research corpus, while Perl had the largest language corpus. Scripting languages represented the largest connected network components. The relationship between edges and nodes was linear, though Bioconductor had more edges than expected and Perl had fewer. Spatiotemporal relationships were weak. Most languages shared a bioinformatics specialization and appeared mutualistic or competitive. HIT specializations varied. Specialization was highest for Bioconductor and radiology systems. Specialization and cooperativity were positively correlated among languages but negatively correlated among HIT. Rates of language evolution were similar. Biodiversity among languages grew in the first half of the decade and stabilized, while diversity among HIT was variable but flat. Compared with publications in 2001, correlation with publications one year later was positive while correlation after ten years was weak and negative.Adoption of new technologies can be unpredictable. Spatiotemporal relationships facilitate adoption but are not sufficient. As with ecosystems, dense, mutualistic, specialized co-habitation is associated with faster growth. There are rapidly changing trends in external technological and macroeconomic influences. We propose that a better understanding of how technologies are adopted can facilitate their development.
Bohlken, Marc M; Brouwer, Rachel M; Mandl, René C W; Hedman, Anna M; van den Heuvel, Martijn P; van Haren, Neeltje E M; Kahn, René S; Hulshoff Pol, Hilleke E
2016-01-01
Intelligence is associated with a network of distributed gray matter areas including the frontal and parietal higher association cortices and primary processing areas of the temporal and occipital lobes. Efficient information transfer between gray matter regions implicated in intelligence is thought to be critical for this trait to emerge. Genetic factors implicated in intelligence and gray matter may promote a high capacity for information transfer. Whether these genetic factors act globally or on local gray matter areas separately is not known. Brain maps of phenotypic and genetic associations between gray matter volume and intelligence were made using structural equation modeling of 3T MRI T1-weighted scans acquired in 167 adult twins of the newly acquired U-TWIN cohort. Subsequently, structural connectivity analyses (DTI) were performed to test the hypothesis that gray matter regions associated with intellectual ability form a densely connected core. Gray matter regions associated with intellectual ability were situated in the right prefrontal, bilateral temporal, bilateral parietal, right occipital and subcortical regions. Regions implicated in intelligence had high structural connectivity density compared to 10,000 reference networks (p=0.031). The genetic association with intelligence was for 39% explained by a genetic source unique to these regions (independent of total brain volume), this source specifically implicated the right supramarginal gyrus. Using a twin design, we show that intelligence is genetically represented in a spatially distributed and densely connected network of gray matter regions providing a high capacity infrastructure. Although genes for intelligence have overlap with those for total brain volume, we present evidence that there are genes for intelligence that act specifically on the subset of brain areas that form an efficient brain network. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Milliner, C. W. D.; Burgmann, R.; Wang, T.; Inbal, A.; Bekaert, D. P.; Liang, C.; Fielding, E. J.
2017-12-01
Separating the contribution of shallow coseismic slip from rapidly decaying, postseismic afterslip in surface rupturing events has been difficult to resolve due to the typically sparse configuration of GPS networks and long-repeat time of InSAR acquisitions. Whether shallow fault motion along surface ruptures is a result of coseismic slip, or largely a product of rapid afterslip occurring within the first minutes to days, has significant implications for our understanding of the mechanics and frictional behavior of faulting in the shallow crust. To test this behavior in the case of a major surface rupturing event, we attempt to quantify the co- and postseismic slip of the 2016 Mw 7.1 Kumamoto earthquake sequence using a dense and continuous GPS network ( 10 km spacing), with short-repeat time, ALOS-2 InSAR data. Using the Network Inversion Filter method, we jointly invert the GPS and InSAR data to obtain a time history of afterslip in the first minutes to months following the mainshock. From our initial results, we find no clear evidence of significant shallow afterslip (i.e., no observable slip > 30 cm at depths of < 3 km, a minimum resolvable value), that could account for the 1 m of coseismic deficit of shallow slip inferred from our static finite-fault inversion. Our results show, aside from significant volumetric changes related to poroelastic processes, the majority of shallow fault slip was largely complete after rupture cessation. We also attempt to improve our coseismic slip model by implementing a method that inverts changes in seismicity rates for coseismic slip, helping constrain parts of the model space at depth where geodetic data loses resolving power. The use of geodetic data with the ability to resolve near-field, coseismic deformation and rapidly decaying postseismic processes will aid in our understanding of the frictional properties of shallow faulting, giving more reliable predictions for ground motion simulations and seismic hazard assessments.
Mechanisms of Plastic Deformation in Collagen Networks Induced by Cellular Forces.
Ban, Ehsan; Franklin, J Matthew; Nam, Sungmin; Smith, Lucas R; Wang, Hailong; Wells, Rebecca G; Chaudhuri, Ovijit; Liphardt, Jan T; Shenoy, Vivek B
2018-01-23
Contractile cells can reorganize fibrous extracellular matrices and form dense tracts of fibers between neighboring cells. These tracts guide the development of tubular tissue structures and provide paths for the invasion of cancer cells. Here, we studied the mechanisms of the mechanical plasticity of collagen tracts formed by contractile premalignant acinar cells and fibroblasts. Using fluorescence microscopy and second harmonic generation, we quantified the collagen densification, fiber alignment, and strains that remain within the tracts after cellular forces are abolished. We explained these observations using a theoretical fiber network model that accounts for the stretch-dependent formation of weak cross-links between nearby fibers. We tested the predictions of our model using shear rheology experiments. Both our model and rheological experiments demonstrated that increasing collagen concentration leads to substantial increases in plasticity. We also considered the effect of permanent elongation of fibers on network plasticity and derived a phase diagram that classifies the dominant mechanisms of plasticity based on the rate and magnitude of deformation and the mechanical properties of individual fibers. Plasticity is caused by the formation of new cross-links if moderate strains are applied at small rates or due to permanent fiber elongation if large strains are applied over short periods. Finally, we developed a coarse-grained model for plastic deformation of collagen networks that can be employed to simulate multicellular interactions in processes such as morphogenesis, cancer invasion, and fibrosis. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Sobrin, Lucia; Maller, Julian B; Neale, Benjamin M; Reynolds, Robyn C; Fagerness, Jesen A; Daly, Mark J; Seddon, Johanna M
2010-01-01
About 40% of the genetic variance of age-related macular degeneration (AMD) can be explained by a common variation at five common single-nucleotide polymorphisms (SNPs). We evaluated the degree to which these known variants explain the clustering of AMD in a group of densely affected families. We sought to determine whether the actual number of risk alleles at the five variants in densely affected families matched the expected number. Using data from 322 families with AMD, we used a simulation strategy to generate comparison groups of families and determined whether their genetic profile at the known AMD risk loci differed from the observed genetic profile, given the density of disease observed. Overall, the genotypic loads for the five SNPs in the families did not deviate significantly from the genotypic loads predicted by the simulation. However, for a subset of densely affected families, the mean genotypic load in the families was significantly lower than the expected load determined from the simulation. Given that these densely affected families may harbor rare, more penetrant variants for AMD, linkage analyses and resequencing targeting these families may be an effective approach to finding additional implicated genes. PMID:19844262
Long reach DWDM-PON with 12.5 GHz channel spacing based on comb source seeding
NASA Astrophysics Data System (ADS)
Zhou, Zhao; Nie, Hai-tao; Wang, Yao-jun
2016-07-01
A long reach dense wavelength division multiplexing passive optical network (DWDM-PON) with 12.5 GHz channel spacing is proposed and experimentally demonstrated. An optical frequency comb source is used to provide the multiwavelength seeding light, while reflective semiconductor optical amplifiers (RSOAs) are installed in both optical line terminal (OLT) and optical network units (ONUs) as colorless transmitter. The experimental results show that the bidirectional transmission for 1.2 Gbit/s data rate is achieved over 80 km single mode fiber (SMF).
Multiple-predators-based capture process on complex networks
NASA Astrophysics Data System (ADS)
Ramiz Sharafat, Rajput; Pu, Cunlai; Li, Jie; Chen, Rongbin; Xu, Zhongqi
2017-03-01
The predator/prey (capture) problem is a prototype of many network-related applications. We study the capture process on complex networks by considering multiple predators from multiple sources. In our model, some lions start from multiple sources simultaneously to capture the lamb by biased random walks, which are controlled with a free parameter $\\alpha$. We derive the distribution of the lamb's lifetime and the expected lifetime $\\left\\langle T\\right\\rangle $. Through simulation, we find that the expected lifetime drops substantially with the increasing number of lions. We also study how the underlying topological structure affects the capture process, and obtain that locating on small-degree nodes is better than large-degree nodes to prolong the lifetime of the lamb. Moreover, dense or homogeneous network structures are against the survival of the lamb.
NASA Astrophysics Data System (ADS)
Chiang, Yen-Sheng
2015-11-01
Inequality measures are widely used in both the academia and public media to help us understand how incomes and wealth are distributed. They can be used to assess the distribution of a whole society-global inequality-as well as inequality of actors' referent networks-local inequality. How different is local inequality from global inequality? Formalizing the structure of reference groups as a network, the paper conducted a computational experiment to see how the structure of complex networks influences the difference between global and local inequality assessed by a selection of inequality measures. It was found that local inequality tends to be higher than global inequality when population size is large; network is dense and heterophilously assorted, and income distribution is less dispersed. The implications of the simulation findings are discussed.
A Solution to the Mysteries of Morality
ERIC Educational Resources Information Center
DeScioli, Peter; Kurzban, Robert
2013-01-01
We propose that moral condemnation functions to guide bystanders to choose the same side as other bystanders in disputes. Humans interact in dense social networks, and this poses a problem for bystanders when conflicts arise: which side, if any, to support. Choosing sides is a difficult strategic problem because the outcome of a conflict…
Suppressing turbulence of self-propelling rods by strongly coupled passive particles.
Su, Yen-Shuo; Wang, Hao-Chen; I, Lin
2015-03-01
The strong turbulence suppression, mainly for large-scale modes, of two-dimensional self-propelling rods, by increasing the long-range coupling strength Γ of low-concentration passive particles, is numerically demonstrated. It is found that large-scale collective rod motion in forms of swirls or jets is mainly contributed from well-aligned dense patches, which can push small poorly aligned rod patches and uncoupled passive particles. The more efficient momentum transfer and dissipation through increasing passive particle coupling leads to the formation of a more ordered and slowed down network of passive particles, which competes with coherent dense active rod clusters. The frustration of active rod alignment ordering and coherent motion by the passive particle network, which interrupt the inverse cascading of forming large-scale swirls, is the key for suppressing collective rod motion with scales beyond the interpassive distance, even in the liquid phase of passive particles. The loosely packed active rods are weakly affected by increasing passive particle coupling due to the weak rod-particle interaction. They mainly contribute to the small-scale modes and high-speed motion.
Protein-protein interaction networks (PPI) and complex diseases
Safari-Alighiarloo, Nahid; Taghizadeh, Mohammad; Rezaei-Tavirani, Mostafa; Goliaei, Bahram
2014-01-01
The physical interaction of proteins which lead to compiling them into large densely connected networks is a noticeable subject to investigation. Protein interaction networks are useful because of making basic scientific abstraction and improving biological and biomedical applications. Based on principle roles of proteins in biological function, their interactions determine molecular and cellular mechanisms, which control healthy and diseased states in organisms. Therefore, such networks facilitate the understanding of pathogenic (and physiologic) mechanisms that trigger the onset and progression of diseases. Consequently, this knowledge can be translated into effective diagnostic and therapeutic strategies. Furthermore, the results of several studies have proved that the structure and dynamics of protein networks are disturbed in complex diseases such as cancer and autoimmune disorders. Based on such relationship, a novel paradigm is suggested in order to confirm that the protein interaction networks can be the target of therapy for treatment of complex multi-genic diseases rather than individual molecules with disrespect the network. PMID:25436094
Protein complex prediction in large ontology attributed protein-protein interaction networks.
Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian; Li, Yanpeng; Xu, Bo
2013-01-01
Protein complexes are important for unraveling the secrets of cellular organization and function. Many computational approaches have been developed to predict protein complexes in protein-protein interaction (PPI) networks. However, most existing approaches focus mainly on the topological structure of PPI networks, and largely ignore the gene ontology (GO) annotation information. In this paper, we constructed ontology attributed PPI networks with PPI data and GO resource. After constructing ontology attributed networks, we proposed a novel approach called CSO (clustering based on network structure and ontology attribute similarity). Structural information and GO attribute information are complementary in ontology attributed networks. CSO can effectively take advantage of the correlation between frequent GO annotation sets and the dense subgraph for protein complex prediction. Our proposed CSO approach was applied to four different yeast PPI data sets and predicted many well-known protein complexes. The experimental results showed that CSO was valuable in predicting protein complexes and achieved state-of-the-art performance.
Flash photoionization of gamma-ray burst environments
NASA Technical Reports Server (NTRS)
Band, David L.; Hartmann, Dieter H.
1992-01-01
The H-alpha line emission that a flash-photoionized region emits is calculated. Archival transients, as well as various theoretical predictions, suggest that there may be significant ionizing flux. The limits on the line flux which might be observable indicate that the density must be fairly high for the recombination radiation to be observable. The intense burst radiation is insufficient to melt the dust which will be present in such a dense medium. This dust may attenuate the observable line emission, but does not attenuate the ionizing radiation before it ionizes the neutral medium surrounding the burst source. The dust can also produce a light echo. If there are indeed gamma-ray bursts in dense clouds, then it is possible that the burst was triggered by Bondi-Hoyle accretion from the dense medium, although it is unlikely on statistical grounds that all bursts occur in clouds.
HCN and HCO(+) images of the photodissociation region in the Orion Bar
NASA Technical Reports Server (NTRS)
Youngowl, Rolaine C.; Meixner, Margaret; Tielens, Alexander G. G. M.; Tauber, Jan A.
1995-01-01
We present preliminary millimeter-wavelength images of the photodissociation region (PDR) in the Orion Bar, observed with the Berkeley- Illinois-Maryland array (BIMA). These new BIMA observations have attained 5 arc sec resolution in the J=l-O emission lines of HCO+ (formyl ion) and HCN (hydrogen cyanide). The results are compared with previous observations of the J=1-0 transition lines of (13)CO. We find that the HCO+ and HCN have different spatial distributions. HCN appears to lie primarily inside dense clumps of gas, which are defined by areas of intense (13)CO emission. However, the HCO+ emission appears to be only loosely associated with the surfaces of the gas clumps. We suggest that HCO+ abundance is enhanced by the presence of vibrationally excited H2 on the surfaces of dense clumps, and that the HCN abundance is attenuated by photo destruction outside the cores of dense clumps of gas.
Leptons from decay of mesons in the laser-induced particle pulse from ultra-dense protium p(0)
NASA Astrophysics Data System (ADS)
Holmlid, Leif
2016-10-01
Kaons and pions are observed by their characteristic decay times of 12, 52 and 26 ns after impact of relatively weak ns-long laser pulses on ultra-dense hydrogen H(0), as reported previously. The signal using an ultra-dense protium p(0) generator with natural hydrogen is now studied. Deflection in a weak magnetic field or penetration through metal foils cannot distinguish between the types of decaying mesons. The signals observed are thus not caused by the decaying mesons themselves, but by the fast particles often at >50MeV u-1 formed in their decay. The fast particles are concluded to be mainly muons from their relatively small magnetic deflection and strong penetration. This is further supported by published studies on the direct observation of the beta decay of muons in scintillators and solid converters using the same type of p(0) generator.
A community detection algorithm based on structural similarity
NASA Astrophysics Data System (ADS)
Guo, Xuchao; Hao, Xia; Liu, Yaqiong; Zhang, Li; Wang, Lu
2017-09-01
In order to further improve the efficiency and accuracy of community detection algorithm, a new algorithm named SSTCA (the community detection algorithm based on structural similarity with threshold) is proposed. In this algorithm, the structural similarities are taken as the weights of edges, and the threshold k is considered to remove multiple edges whose weights are less than the threshold, and improve the computational efficiency. Tests were done on the Zachary’s network, Dolphins’ social network and Football dataset by the proposed algorithm, and compared with GN and SSNCA algorithm. The results show that the new algorithm is superior to other algorithms in accuracy for the dense networks and the operating efficiency is improved obviously.
Dense gas and star formation in individual Giant Molecular Clouds in M31
NASA Astrophysics Data System (ADS)
Viaene, S.; Forbrich, J.; Fritz, J.
2018-04-01
Studies both of entire galaxies and of local Galactic star formation indicate a dependency of a molecular cloud's star formation rate (SFR) on its dense gas mass. In external galaxies, such measurements are derived from HCN(1-0) observations, usually encompassing many Giant Molecular Clouds (GMCs) at once. The Andromeda galaxy (M31) is a unique laboratory to study the relation of the SFR and HCN emission down to GMC scales at solar-like metallicities. In this work, we correlate our composite SFR determinations with archival HCN, HCO+, and CO observations, resulting in a sample of nine reasonably representative GMCs. We find that, at the scale of individual clouds, it is important to take into account both obscured and unobscured star formation to determine the SFR. When correlated against the dense-gas mass from HCN, we find that the SFR is low, in spite of these refinements. We nevertheless retrieve an SFR-dense-gas mass correlation, confirming that these SFR tracers are still meaningful on GMC scales. The correlation improves markedly when we consider the HCN/CO ratio instead of HCN by itself. This nominally indicates a dependency of the SFR on the dense-gas fraction, in contradiction to local studies. However, we hypothesize that this partly reflects the limited dynamic range in dense-gas mass, and partly that the ratio of single-pointing HCN and CO measurements may be less prone to systematics like sidelobes. In this case, the HCN/CO ratio would importantly be a better empirical measure of the dense-gas content itself.
PULSED AIR SPARGING IN AQUIFERS CONTAMINATED WITH DENSE NONAQUEOUS PHASE LIQUIDS
Air sparging was evaluated for remediation of tetrachloroethylene (PCE) present as dense nonaqueous phase liquid (DNAPL) in aquifers. A two-dimensional laboratory tank with a transparent front wall allowed for visual observation of DNAPL mobilization. A DNAPL zone 50 cm high was ...
Mobile Disdrometer Observations of Nocturnal Mesoscale Convective Systems During PECAN
NASA Astrophysics Data System (ADS)
Bodine, D. J.; Rasmussen, K. L.
2015-12-01
Understanding microphysical processes in nocturnal mesoscale convective systems (MCSs) is an important objective of the Plains Elevated Convection At Night (PECAN) experiment, which occurred from 1 June - 15 July 2015 in the central Great Plains region of the United States. Observations of MCSs were collected using a large array of mobile and fixed instrumentation, including ground-based radars, soundings, PECAN Integrated Sounding Arrays (PISAs), and aircraft. In addition to these observations, three mobile Parsivel disdrometers were deployed to obtain drop-size distribution (DSD) measurements to further explore microphysical processes in convective and stratiform regions of nocturnal MCSs. Disdrometers were deployed within close range of a multiple frequency network of mobile and fixed dual-polarization radars (5 - 30 km range), and near mobile sounding units and PISAs. Using mobile disdrometer and multiple-wavelength, dual-polarization radar data, microphysical properties of convective and stratiform regions of MCSs are investigated. The analysis will also examine coordinated Range-Height Indicator (RHI) scans over the disdrometers to elucidate vertical DSD structure. Analysis of dense observations obtained during PECAN in combination with mobile disdrometer DSD measurements contributes to a greater understanding of the structural characteristics and evolution of nocturnal MCSs.
PAH Formation in O-rich Evolved Stars
NASA Astrophysics Data System (ADS)
Guzman-Ramirez, L.; Lagadec, E.; Jones, D.; Zijlstra, A. A.; Gesicki, K.
2015-08-01
Polycyclic aromatic hydrocarbons (PAHs) have been observed in O-rich planetary nebulae. This combination of oxygen-rich and carbon-rich material, known as dual-dust or mixed chemistry, is not expected to be seen around these objects. We recently proposed that PAHs could be formed from the photodissociation of CO in dense tori. Using VISIR/VLT, we spatially resolved the emission of the PAH bands and ionised emission from the [S IV] line, confirming the presence of dense central tori in all the observed O-rich objects. Furthermore, we show that for most of the objects, PAHs are located at the outer edge of these dense/compact tori, while the ionised material is mostly present in the inner parts, consistent with our hypothesis for the formation of PAHs in these systems. The presence of a dense torus has been strongly associated with the action of a central binary star and, as such, the rich chemistry seen in these regions may also be related to the formation of exoplanets in post-common-envelope binary systems.
Numerical modeling of the early interaction of a planar shock with a dense particle field
NASA Astrophysics Data System (ADS)
Regele, Jonathan; Blanquart, Guillaume
2011-11-01
Dense compressible multiphase flows are of interest for multiphase turbomachinary and energetic material detonations. Still, there is little understanding of the detailed interaction mechanisms between shock waves and dense (particle volume fraction αd > 0 . 001) particle fields. A recent experimental study [Wagner et al, AIAA Aero. Sci., Orlando, 2011-188] has focused on the impingement of a planar shock wave on a dense particle curtain. In the present work, numerical solutions of the Euler equations in one and two dimensions are performed for a planar shock wave impinging on a fixed particle curtain and are compared to the experimental data for early times. Comparison of the one- and two-dimensional results demonstrate that the one-dimensional description captures the large scale flow behavior, but is inadequate to capture all the details observed in the experiments. The two-dimensional solutions are shown to reproduce the experimentally observed flow structures and provide insight into how these details originate.
Network-level accident-mapping: Distance based pattern matching using artificial neural network.
Deka, Lipika; Quddus, Mohammed
2014-04-01
The objective of an accident-mapping algorithm is to snap traffic accidents onto the correct road segments. Assigning accidents onto the correct segments facilitate to robustly carry out some key analyses in accident research including the identification of accident hot-spots, network-level risk mapping and segment-level accident risk modelling. Existing risk mapping algorithms have some severe limitations: (i) they are not easily 'transferable' as the algorithms are specific to given accident datasets; (ii) they do not perform well in all road-network environments such as in areas of dense road network; and (iii) the methods used do not perform well in addressing inaccuracies inherent in and type of road environment. The purpose of this paper is to develop a new accident mapping algorithm based on the common variables observed in most accident databases (e.g. road name and type, direction of vehicle movement before the accident and recorded accident location). The challenges here are to: (i) develop a method that takes into account uncertainties inherent to the recorded traffic accident data and the underlying digital road network data, (ii) accurately determine the type and proportion of inaccuracies, and (iii) develop a robust algorithm that can be adapted for any accident set and road network of varying complexity. In order to overcome these challenges, a distance based pattern-matching approach is used to identify the correct road segment. This is based on vectors containing feature values that are common in the accident data and the network data. Since each feature does not contribute equally towards the identification of the correct road segments, an ANN approach using the single-layer perceptron is used to assist in "learning" the relative importance of each feature in the distance calculation and hence the correct link identification. The performance of the developed algorithm was evaluated based on a reference accident dataset from the UK confirming that the accuracy is much better than other methods. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Figueiredo, C. A. O. B.; Wrasse, C. M.; Takahashi, H.; Otsuka, Y.; Shiokawa, K.; Barros, D.
2017-04-01
Large-scale traveling ionospheric disturbances (LSTIDs) were detected in both Northern and Southern Hemispheres over American sector during the geomagnetic storm on 17-18 March 2015, also known as the Saint Patrick's Day storm. Detrended total electronic content (dTEC) maps were made using dense GNSS network receiver data. The retrieved LSTIDs showed wavelengths of 1000 to 2000 km, phase velocity of 300-1000 m/s, and period of 30-50 min. Among them, three couples of LSTIDs were observed propagating from the polar regions to low latitudes. Two wave events observed in daytime showed the propagation direction of southwest in the Northern Hemisphere and northeast in the Southern Hemisphere, which means an asymmetric propagation against the geographic equator. The other wave event observed during the evening hour showed symmetric propagation direction, i.e., southwest in the Northern Hemisphere and northwest in the Southern Hemisphere, whereas their wavelength and phase velocity are significantly different between NH and SH. These observations indicate that the two groups of LSTID have different propagation conditions from polar to low-latitude regions. The observed asymmetric/symmetric propagation forms suggest asymmetric/symmetric auroral current activity between the northern and southern polar regions.
NASA Astrophysics Data System (ADS)
Zhang, Ke; Yang, Tao; Ye, Jinyin; Li, Zhijia; Yu, Zhongbo
2017-04-01
Soil moisture is a key variable that regulates exchanges of water and energy between land surface and atmosphere. Soil moisture retrievals based on microwave satellite remote sensing have made it possible to estimate global surface (up to about 10 cm in depth) soil moisture routinely. Although there are many satellites operating, including NASA's Soil Moisture Acitive Passive mission (SMAP), ESA's Soil Moisture and Ocean Salinity mission (SMOS), JAXA's Advanced Microwave Scanning Radiometer 2 mission (AMSR2), and China's Fengyun (FY) missions, key differences exist between different satellite-based soil moisture products. In this study, we applied a single-channel soil moisture retrieval model forced by multiple sources of satellite brightness temperature observations to estimate consistent daily surface soil moisture across China at a spatial resolution of 25 km. By utilizing observations from multiple satellites, we are able to estimate daily soil moisture across the whole domain of China. We further developed a daily soil moisture accounting model and applied it to downscale the 25-km satellite-based soil moisture to 5 km. By comparing our estimated soil moisture with observations from a dense observation network implemented in Anhui Province, China, our estimated soil moisture results show a reasonably good agreement with the observations (RMSE < 0.1 and r > 0.8).
NASA Astrophysics Data System (ADS)
Gargiulo, A.; Bolzonella, M.; Scodeggio, M.; Krywult, J.; De Lucia, G.; Guzzo, L.; Garilli, B.; Granett, B. R.; de la Torre, S.; Abbas, U.; Adami, C.; Arnouts, S.; Bottini, D.; Cappi, A.; Cucciati, O.; Davidzon, I.; Franzetti, P.; Fritz, A.; Haines, C.; Hawken, A. J.; Iovino, A.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; Moutard, T.; Polletta, M.; Pollo, A.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Zamorani, G.; Bel, J.; Branchini, E.; Coupon, J.; Ilbert, O.; Moscardini, L.; Peacock, J. A.
2017-10-01
We have used the final data from the VIPERS redshift survey to extract an unparalleled sample of more than 2000 massive ℳ≥1011 M⊙ passive galaxies (MPGs) at redshift 0.5≤z≤1.0, based on their NUVrK colours. This has enabled us to investigate how the population of these objects was built up over cosmic time. We find that the evolution of the number density depends on the galaxy mean surface stellar mass density, Σ. In particular, dense (Σ≥2000 M⊙ pc-2) MPGs show a constant comoving number density over this redshift range, whilst this increases by a factor of approximately four for the least dense objects, defined as having Σ < 1000 M⊙ pc-2. We estimated stellar ages for the MPG population both fitting the spectral energy distribution (SED) and through the D4000n index, obtaining results in good agreement. Our findings are consistent with passive ageing of the stellar content of dense MPGs. We show that at any redshift the less dense MPGs are younger than dense ones and that their stellar populations evolve at a slower rate than predicted by passive evolution. This points to a scenario in which the overall population of MPGs was built up over the cosmic time by continuous addition of less dense galaxies: on top of an initial population of dense objects that passively evolves, new, larger, and younger MPGs continuously join the population at later epochs. Finally, we demonstrate that the observed increase in the number density of MPGs is totally accounted for by the observed decrease in the number density of correspondingly massive star forming galaxies (I.e. all the non-passive ℳ≥1011 M⊙ objects). Such systems observed at z ≃ 1 in VIPERS, therefore, represent the most plausible progenitors of the subsequent emerging class of larger MPGs. Based on observations collected at the European Southern Observatory, Cerro Paranal, Chile, using the Very Large Telescope under programs 182.A-0886 and partly 070.A-9007. Also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. The VIPERS web site is http://www.vipers.inaf.it/
Using GPS TEC measurements to probe ionospheric spatial spectra at mid-latitudes
NASA Astrophysics Data System (ADS)
Lay, E. H.; Parker, P. A.; Light, M. E.; Carrano, C. S.; Debchoudhury, S.; Haaser, R. A.
2017-12-01
The physics of how random ionospheric structure causes signal degradation is well understood as weak forward scattering through an effective diffraction grating created by plasma irregularities in the ionosphere. However, the spatial scale spectrum of those irregularities required for input into scintillation models and models of traveling ionospheric disturbances is poorly characterized, particularly at the kilometer to tens of kilometer scale lengths important for very-high-frequency (VHF) scintillation prediction. Furthermore, the majority of characterization studies have been performed in low-latitude or high-latitude regions where geomagnetic activity dominates the physical processes. At mid-latitudes, tropospheric and geomagnetic phenomena compete in disturbing the ionosphere, and it is not well understood how these multiple sources affect the drivers that influence the spatial spectrum. In this study, we are interested in mid-latitude electron density irregularities on the order of 10s of kilometers that would affect VHF signals. Data from the GPS networks Japan GEONET and the Plate Boundary Observatory (PBO, UNAVCO) in the western United States were analyzed for this study. Japan GEONET is a dense network of GPS receivers (station spacing of tens of km), with fairly evenly spaced positions over all of Japan. The PBO, on the other hand, has several pockets of extremely dense coverage (station spacing within a few km), but is less dense on average. We analyze a day with a large solar storm (2015/03/17, St. Patrick's Day Storm) to allow high scintillation potential at mid-latitudes, a day with low geomagnetic activity and low thunderstorm activity (2016/01/31), and a day with low geomagnetic activity and high thunderstorm activity (2015/08/02). We then perform two-dimensional spatial analyses on the TEC data from these two networks on scale lengths of 20 to 200 km to infer the spatial scale spectra.
Pathogenesis of trimethyltin neuronal toxicity. Ultrastructural and cytochemical observations.
Bouldin, T. W.; Goines, N. D.; Bagnell, R. C.; Krigman, M. R.
1981-01-01
The ultrastructural cytopathologic and cytochemical effects of trimethyltin (TMT) neurotoxicity were delineated in hippocampal and pyriform neurons of acutely intoxicated adult rats. TMT produced neuronal necrosis that preferentially involved hippocampal formation pyriform cortex. The first subcellular alterations were multifocal collection of dense-cored vesicles and tubules and membrane-delimited vacuoles in the cytoplasm of the perikaryon and proximal dendrite. Ultrastructural cytochemical examination revealed that the vesicles and tubules had acid phosphatase activity analagous to Golgi-associated endoplasmic reticulum (GERL). Shortly after the appearance of the GERL-like vesicles and tubules, autophagic vacuoles and polymorphic dense bodies accumulated in the neuronal cytoplasm. Some dense bodies appeared to arise from the dense-cored tubules. Neuronal necrosis was characterized by increased electron density of the cytoplasm and large, electron-dense intranuclear masses. Alterations of mitochondria and other organelles were not observed in the early stages of cell injury. No light- or electron-microscopic alterations were found in liver or kidney. Comparable subcellular alterations were observed in adult and neonatal rats chronically intoxicated with TMT. A series of other trialkyl and tricyclic tins and dimethyltin did not produce similar pathologic findings. The GERL-like accumulations are unique in neuronal cytopathology. These findings suggests that GERL and autophagy play an important role in the pathogenesis of TMT-induced neuronal injury. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 PMID:7294153
Graph Theory-Based Analysis of the Lymph Node Fibroblastic Reticular Cell Network.
Novkovic, Mario; Onder, Lucas; Bocharov, Gennady; Ludewig, Burkhard
2017-01-01
Secondary lymphoid organs have developed segregated niches that are able to initiate and maintain effective immune responses. Such global organization requires tight control of diverse cellular components, specifically those that regulate lymphocyte trafficking. Fibroblastic reticular cells (FRCs) form a densely interconnected network in lymph nodes and provide key factors necessary for T cell migration and retention, and foster subsequent interactions between T cells and dendritic cells. Development of integrative systems biology approaches has made it possible to elucidate this multilevel complexity of the immune system. Here, we present a graph theory-based analysis of the FRC network in murine lymph nodes, where generation of the network topology is performed using high-resolution confocal microscopy and 3D reconstruction. This approach facilitates the analysis of physical cell-to-cell connectivity, and estimation of topological robustness and global behavior of the network when it is subjected to perturbation in silico.
Modular analysis of the probabilistic genetic interaction network.
Hou, Lin; Wang, Lin; Qian, Minping; Li, Dong; Tang, Chao; Zhu, Yunping; Deng, Minghua; Li, Fangting
2011-03-15
Epistatic Miniarray Profiles (EMAP) has enabled the mapping of large-scale genetic interaction networks; however, the quantitative information gained from EMAP cannot be fully exploited since the data are usually interpreted as a discrete network based on an arbitrary hard threshold. To address such limitations, we adopted a mixture modeling procedure to construct a probabilistic genetic interaction network and then implemented a Bayesian approach to identify densely interacting modules in the probabilistic network. Mixture modeling has been demonstrated as an effective soft-threshold technique of EMAP measures. The Bayesian approach was applied to an EMAP dataset studying the early secretory pathway in Saccharomyces cerevisiae. Twenty-seven modules were identified, and 14 of those were enriched by gold standard functional gene sets. We also conducted a detailed comparison with state-of-the-art algorithms, hierarchical cluster and Markov clustering. The experimental results show that the Bayesian approach outperforms others in efficiently recovering biologically significant modules.
Locating influential nodes in complex networks
Malliaros, Fragkiskos D.; Rossi, Maria-Evgenia G.; Vazirgiannis, Michalis
2016-01-01
Understanding and controlling spreading processes in networks is an important topic with many diverse applications, including information dissemination, disease propagation and viral marketing. It is of crucial importance to identify which entities act as influential spreaders that can propagate information to a large portion of the network, in order to ensure efficient information diffusion, optimize available resources or even control the spreading. In this work, we capitalize on the properties of the K-truss decomposition, a triangle-based extension of the core decomposition of graphs, to locate individual influential nodes. Our analysis on real networks indicates that the nodes belonging to the maximal K-truss subgraph show better spreading behavior compared to previously used importance criteria, including node degree and k-core index, leading to faster and wider epidemic spreading. We further show that nodes belonging to such dense subgraphs, dominate the small set of nodes that achieve the optimal spreading in the network. PMID:26776455
Uncovering the community structure in signed social networks based on greedy optimization
NASA Astrophysics Data System (ADS)
Chen, Yan; Yan, Jiaqi; Yang, Yu; Chen, Junhua
2017-05-01
The formality of signed relationships has been recently adopted in a lot of complicated systems. The relations among these entities are complicated and multifarious. We cannot indicate these relationships only by positive links, and signed networks have been becoming more and more universal in the study of social networks when community is being significant. In this paper, to identify communities in signed networks, we exploit a new greedy algorithm, taking signs and the density of these links into account. The main idea of the algorithm is the initial procedure of signed modularity and the corresponding update rules. Specially, we employ the “Asymmetric and Constrained Belief Evolution” procedure to evaluate the optimal number of communities. According to the experimental results, the algorithm is proved to be able to run well. More specifically, the proposed algorithm is very efficient for these networks with medium size, both dense and sparse.
Spatial and temporal analysis of the total electron content over China during 2011-2014
NASA Astrophysics Data System (ADS)
Zheng, Jianchang; Zhao, Biqiang; Xiong, Bo; Wan, Weixing
2016-06-01
In the present work we investigate variations of ionospheric total electron content (TEC) with empirical orthogonal function (EOF) analysis, the four-year TEC data are derived from ∼250 GPS observations of the crustal movement observation network of China (CMONOC) over East Asian area (30-55°N, 70-140°E) during the period from 2011, January to 2014, December. The first two EOF components together account for ∼93.78% of total variance of the original TEC data set, and it is found that the first EOF component represents a spatial variability of semi-annual variation and the second EOF component exhibits pronounced east-west longitudinal difference with respect to zero valued geomagnetic declination line. In addition, climatology of the vertical plasma drift velocity vdz induced by HWM zonal wind field (∼300 km) are studied in the paper. Results shows vdz displays significant east-west longitudinal difference at 10:00 LT and 20:00 LT, and its daytime temporal variation is consistent with the second EOF principal component, which suggests that the east-west longitudinal variability is partly caused by the thermospheric zonal wind and geomagnetic declination. It is expected that with this dense GPS network, local ionospheric variability can be described more accurately and a more realistic ionospheric model can be constructed and used for the satellite navigation and radio propagation.
NASA Astrophysics Data System (ADS)
Anagnostou, Marios N.; Kalogiros, John; Marzano, Frank S.; Anagnostou, Emmanouil N.; Baldini, Luca; Nikolopoulos, EfThymios; Montopoli, Mario; Picciotti, Errico
2014-05-01
The Mediterranean area concentrates the major natural risks related to the water cycle, including heavy precipitation and flash-flooding during the fall season. Every year in central and south Europe we witness several fatal and economical disasters from severe storm rainfall triggering Flash Floods, and its impacts are increasing worldwide, but remain very difficult to manage. The spatial scale of flash flood occurrence is such that its vulnerability is often focused on dispersed urbanization, transportation and tourism infrastructures (De Marchi and Scolobig 2012). Urbanized and industrialized areas shows peculiar hydrodynamic and meteo-oceanographic features and they concentrate the highest rates of flash floods and fatal disasters. The main causes of disturbance being littoral urban development and harbor activities, the building of littoral rail- and highways, and the presence of several polluted discharges. All the above mentioned characteristics limit our ability to issue timely flood warnings. Precipitation estimates based on raingauge networks are usually associated with low coverage density, particularly at high altitudes. On the other hand, operational weather radar networks may provide valuable information of precipitation at these regimes but reliability of their estimates is often limited due to retrieval (e.g. variability in the reflectivity-to-rainfall relationship) and spatial extent constrains (e.g. blockage issues, overshooting effects). As a result, we currently lack accurate precipitation estimates over urban complex terrain areas, which essentially means that we lack accurate knowledge of the triggering factor for a number of hazards like flash floods and debris flows/landslides occurring in those areas. A potential solution to overcome sampling as well as retrieval uncertainty limitations of current observational networks might be the use of network of low-power dual-polarization X-band radars as complement to raingauges and gap-filling to operational, low-frequency (C-band or S-ban) and high-power weather radars. The above hypothesis is examined using data collected during the HyMEX 2012 Special Observation Period (Nov-Feb) the urban and sub-urban complex terrain area in the Central Italy (CI). The area is densely populated and it includes the high-density populated urban and industrial area of Rome. The orography of CI is quite complex, going from sea level to nearly 3000 m in less than 150 km. The CI area involves many rivers, including two major basins: the Aniene-Tiber basin (1000 km long) and the Aterno-Pescara basin (300 km long), respectively on the west and on the east side of the Apennines ridge. Data include observations from i) the National Observatory of Athens' X-band polarimetric weather radar (XPOL), ii) two X-band miniradars (WR25X located in CNR, WR10X located in Rome Sapienza), iii) a dense network of raingauges and disdrometers (i.e. Parsivel type and 2D-video type). In addition, the experimental area is also covered from the nearby the National Research Council (CNR)'s C-band dual-polarization weather radar (Polar55C), which were involved also in the analysis. A number of storm events are selected and compared with the nearby C-band radar to investigate the potential of using high-resolution and microphysically-derived rainfall based on X-band polarimetric radar observations. Events have been discriminated on the basis of rainfall intensity and hydrological response. Results reveal that in contrast with the other two rainfall sources (in situ and C-band radar), X-band radar rainfall estimates offer an improved representation of the local precipitation variability, which turns to have a significant impact in simulating the peak flows associated with these events.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mészárosová, Hana; Karlický, Marian; Jelínek, Petr
Currently, there is a common endeavor to detect magnetoacoustic waves in solar flares. This paper contributes to this topic using an approach of numerical simulations. We studied a spatial and temporal evolution of impulsively generated fast and slow magnetoacoustic waves propagating along the dense slab and Harris current sheet using two-dimensional magnetohydrodynamic numerical models. Wave signals computed in numerical models were used for computations of the temporal and spatial wavelet spectra for their possible comparison with those obtained from observations. It is shown that these wavelet spectra allow us to estimate basic parameters of waveguides and perturbations. It was foundmore » that the wavelet spectra of waves in the dense slab and current sheet differ in additional wavelet components that appear in association with the main tadpole structure. These additional components are new details in the wavelet spectrum of the signal. While in the dense slab this additional component is always delayed after the tadpole head, in the current sheet this component always precedes the tadpole head. It could help distinguish a type of the waveguide in observed data. We present a technique based on wavelets that separates wave structures according to their spatial scales. This technique shows not only how to separate the magnetoacoustic waves and waveguide structure in observed data, where the waveguide structure is not known, but also how propagating magnetoacoustic waves would appear in observations with limited spatial resolutions. The possibilities detecting these waves in observed data are mentioned.« less
1985-06-01
Research on this grant has focused on plasma focus experiments in the areas of particle beam generation and as a potential repetitive opening switch...as were scaling laws for the increase of electron energy and current with input energy. The potential of the plasma focus as an opening switch was...delay line technique. The observed frequencies were most consistent with the lower hybrid frequency. Keywords include: Dense Plasma Focus , Particle Beam Generation, Opening Switch, Load Experiments, Pulsed Power.
NASA Technical Reports Server (NTRS)
Fennessey, N. M.; Eagleson, P. S.; Qinliang, W.; Rodriguez-Iturbe, I.
1986-01-01
The parameters of the conceptual model are evaluated from the analysis of eight years of summer rainstorm data from the dense raingage network in the Walnut Gulch catchment near Tucson, Arizona. The occurrence of measurable rain at any one of the 93 gages during a noon to noon day defined a storm. The total rainfall at each of the gages during a storm day constituted the data set for a single storm. The data are interpolated onto a fine grid and analyzed to obtain: an isohyetal plot at 2 mm intervals, the first three moments of point storm depth, the spatial correlation function, the spatial variance function, and the spatial distribution of the total storm depth. The description of the data analysis and the computer programs necessary to read the associated data tapes are presented.
Chennu, Srivas; Annen, Jitka; Wannez, Sarah; Thibaut, Aurore; Chatelle, Camille; Cassol, Helena; Martens, Géraldine; Schnakers, Caroline; Gosseries, Olivia; Menon, David; Laureys, Steven
2017-08-01
Recent advances in functional neuroimaging have demonstrated novel potential for informing diagnosis and prognosis in the unresponsive wakeful syndrome and minimally conscious states. However, these technologies come with considerable expense and difficulty, limiting the possibility of wider clinical application in patients. Here, we show that high density electroencephalography, collected from 104 patients measured at rest, can provide valuable information about brain connectivity that correlates with behaviour and functional neuroimaging. Using graph theory, we visualize and quantify spectral connectivity estimated from electroencephalography as a dense brain network. Our findings demonstrate that key quantitative metrics of these networks correlate with the continuum of behavioural recovery in patients, ranging from those diagnosed as unresponsive, through those who have emerged from minimally conscious, to the fully conscious locked-in syndrome. In particular, a network metric indexing the presence of densely interconnected central hubs of connectivity discriminated behavioural consciousness with accuracy comparable to that achieved by expert assessment with positron emission tomography. We also show that this metric correlates strongly with brain metabolism. Further, with classification analysis, we predict the behavioural diagnosis, brain metabolism and 1-year clinical outcome of individual patients. Finally, we demonstrate that assessments of brain networks show robust connectivity in patients diagnosed as unresponsive by clinical consensus, but later rediagnosed as minimally conscious with the Coma Recovery Scale-Revised. Classification analysis of their brain network identified each of these misdiagnosed patients as minimally conscious, corroborating their behavioural diagnoses. If deployed at the bedside in the clinical context, such network measurements could complement systematic behavioural assessment and help reduce the high misdiagnosis rate reported in these patients. These metrics could also identify patients in whom further assessment is warranted using neuroimaging or conventional clinical evaluation. Finally, by providing objective characterization of states of consciousness, repeated assessments of network metrics could help track individual patients longitudinally, and also assess their neural responses to therapeutic and pharmacological interventions. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.
Extraction of tidal channel networks from airborne scanning laser altimetry
NASA Astrophysics Data System (ADS)
Mason, David C.; Scott, Tania R.; Wang, Hai-Jing
Tidal channel networks are important features of the inter-tidal zone, and play a key role in tidal propagation and in the evolution of salt marshes and tidal flats. The study of their morphology is currently an active area of research, and a number of theories related to networks have been developed which require validation using dense and extensive observations of network forms and cross-sections. The conventional method of measuring networks is cumbersome and subjective, involving manual digitisation of aerial photographs in conjunction with field measurement of channel depths and widths for selected parts of the network. This paper describes a semi-automatic technique developed to extract networks from high-resolution LiDAR data of the inter-tidal zone. A multi-level knowledge-based approach has been implemented, whereby low-level algorithms first extract channel fragments based mainly on image properties then a high-level processing stage improves the network using domain knowledge. The approach adopted at low level uses multi-scale edge detection to detect channel edges, then associates adjacent anti-parallel edges together to form channels. The higher level processing includes a channel repair mechanism. The algorithm may be extended to extract networks from aerial photographs as well as LiDAR data. Its performance is illustrated using LiDAR data of two study sites, the River Ems, Germany and the Venice Lagoon. For the River Ems data, the error of omission for the automatic channel extractor is 26%, partly because numerous small channels are lost because they fall below the edge threshold, though these are less than 10 cm deep and unlikely to be hydraulically significant. The error of commission is lower, at 11%. For the Venice Lagoon data, the error of omission is 14%, but the error of commission is 42%, due partly to the difficulty of interpreting channels in these natural scenes. As a benchmark, previous work has shown that this type of algorithm specifically designed for extracting tidal networks from LiDAR data is able to achieve substantially improved results compared with those obtained using standard algorithms for drainage network extraction from Digital Terrain Models.
NASA Astrophysics Data System (ADS)
Kauffmann, Jens; Goldsmith, Paul F.; Melnick, Gary; Tolls, Volker; Guzman, Andres; Menten, Karl M.
2017-09-01
Trends observed in galaxies, such as the Gao & Solomon relation, suggest a linear relationship between the star formation rate and the mass of dense gas available for star formation. Validation of such trends requires the establishment of reliable methods to trace the dense gas in galaxies. One frequent assumption is that the HCN (J = 1-0) transition is unambiguously associated with gas at H2 densities ≫ 104 cm-3. If so, the mass of gas at densities ≫ 104 cm-3 could be inferred from the luminosity of this emission line, LHCN (1-0). Here we use observations of the Orion A molecular cloud to show that the HCN (J = 1-0) line traces much lower densities 103 cm-3 in cold sections of this molecular cloud, corresponding to visual extinctions AV ≈ 6 mag. We also find that cold and dense gas in a cloud like Orion produces too little HCN emission to explain LHCN (1-0) in star forming galaxies, suggesting that galaxies might contain a hitherto unknown source of HCN emission. In our sample of molecules observed at frequencies near 100 GHz (also including 12CO, 13CO, C18O, CN, and CCH), N2H+ is the only species clearly associated with relatively dense gas.
NASA Astrophysics Data System (ADS)
Protti, M.; Alfaro-Diaz, R.; Brenn, G. R.; Fasola, S.; Murillo, A.; Marshall, J. S.; Gardner, T. W.
2013-12-01
Over a two weeks period and as part of a Keck Geology Consortium summer research project, we installed a dense broad band seismic array directly over the rupture zone of the Nicoya, September 5th, 2012, Mw=7.6 earthquake. The network consisted of 5 Trillium compact seismometers and Taurus digitizers from Nanometrics, defining a triangular area of ~20 km per side. Also located within this area are 3 stations of the Nicoya permanent broadband network. One side of the triangular area, along the west coast of the Nicoya peninsula, is parallel to the trench and the apex lies 15 km landward. The plate interface and rupture zone of the Nicoya 2012 earthquake are located 16 km below the trench-parallel side and 25 km below the apex of this triangular footprint. Station spacing ranged from 3 to 14 km. This dense array operated from July 2nd to July 17th, 2013. On June 23rd, eight days before we installed this array, an Mw=5.4 aftershock (one of the only 5 aftershocks of the Nicoya Mw=7.6 earthquake with magnitudes above 5.0) occurred directly beneath the area of our temporary network. Preliminary analysis of the data shows that we recorded several identical aftershocks with magnitudes below 1.0 that locate some 18 km below our network. We will present detailed locations of these small aftershocks and their relationship with the June 23rd, 2013 aftershock and the September 5th, 2012, mainshock.
NASA Astrophysics Data System (ADS)
Tian, Yunfeng; Shen, Zheng-Kang
2016-02-01
We develop a spatial filtering method to remove random noise and extract the spatially correlated transients (i.e., common-mode component (CMC)) that deviate from zero mean over the span of detrended position time series of a continuous Global Positioning System (CGPS) network. The technique utilizes a weighting scheme that incorporates two factors—distances between neighboring sites and their correlations of long-term residual position time series. We use a grid search algorithm to find the optimal thresholds for deriving the CMC that minimizes the root-mean-square (RMS) of the filtered residual position time series. Comparing to the principal component analysis technique, our method achieves better (>13% on average) reduction of residual position scatters for the CGPS stations in western North America, eliminating regional transients of all spatial scales. It also has advantages in data manipulation: less intervention and applicable to a dense network of any spatial extent. Our method can also be used to detect CMC irrespective of its origins (i.e., tectonic or nontectonic), if such signals are of particular interests for further study. By varying the filtering distance range, the long-range CMC related to atmospheric disturbance can be filtered out, uncovering CMC associated with transient tectonic deformation. A correlation-based clustering algorithm is adopted to identify stations cluster that share the common regional transient characteristics.
The Benefits of Using Dense Temperature Sensor Networks to Monitor Urban Warming
NASA Astrophysics Data System (ADS)
Twine, T. E.; Snyder, P. K.; Kucharik, C. J.; Schatz, J.
2015-12-01
Urban heat islands (UHIs) occur when urban and suburban areas experience temperatures that are elevated relative to their rural surroundings because of differences in the fraction of gray and green infrastructure. Studies have shown that communities most at risk for impacts from climate-related disasters (i.e., lower median incomes, higher poverty, lower education, and minorities) tend to live in the hottest areas of cities. Development of adequate climate adaptation tools for cities relies on knowledge of how temperature varies across space and time. Traditionally, a city's urban heat island has been quantified using near-surface air temperature measurements from a few sites. This methodology assumes (1) that the UHI can be characterized by the difference in air temperature from a small number of points, and (2) that these few points represent the urban and rural signatures of the region. This methodology ignores the rich information that could be gained from measurements across the urban to rural transect. This transect could traverse elevations, water bodies, vegetation fraction, and other land surface properties. Two temperature sensor networks were designed and implemented in the Minneapolis-Saint Paul, MN and Madison, WI metropolitan areas beginning in 2011 and 2012, respectively. Both networks use the same model sensor and record temperature every 15 minutes from ~150 sensors. Data from each network has produced new knowledge of how temperature varies diurnally and seasonally across the cities and how the UHI magnitude is influenced by weather phenomena (e.g., wind, snow cover, heat waves) and land surface characteristics such as proximity to inland lakes. However, the two metropolitan areas differ in size, population, structure, and orientation to water bodies. In addition, the sensor networks were established in very different manners. We describe these differences and present lessons learned from the design and ongoing efforts of these two dense networks located in the Midwest USA.
NASA Astrophysics Data System (ADS)
Suzuki, K.; Nakano, M.; Hori, T.; Takahashi, N.
2015-12-01
The Japan Agency for Marine-Earth Science and Technology installed permanent ocean bottom observation network called Dense Oceanfloor Network System for Earthquakes and Tsunamis (DONET) off the Kii Peninsula, southwest of Japan, to monitor earthquakes and tsunamis. We detected the long-term vertical displacements of sea floor from the ocean-bottom pressure records, starting from March 2013, at several DONET stations (Suzuki et al., 2014). We consider that these displacements were caused by the crustal deformation due to a slow slip event (SSE). We estimated the fault geometry of the SSE by using the observed ocean-bottom displacements. The ocean-bottom displacements were obtained by removing the tidal components from the pressure records. We also subtracted the average of pressure changes taken over the records at stations connected to each science node from each record in order to remove the contributions due to atmospheric pressure changes and non-tidal ocean dynamic mass variations. Therefore we compared observed displacements with the theoretical ones that was subtracted the average displacement in the fault geometry estimation. We also compared observed and theoretical average displacements for the model evaluation. In this study, the observed average displacements were assumed to be zero. Although there are nine parameters in the fault model, we observed vertical displacements at only four stations. Therefore we assumed three fault geometries; (1) a reverse fault slip along the plate boundary, (2) a strike slip along a splay fault, and (3) a reverse fault slip along the splay fault. We obtained that the model (3) gives the smallest residual between observed and calculated displacements. We also observed that this SSE was synchronized with a decrease in the background seismicity within the area of a nearby earthquake cluster. In the future, we will investigate the relationship between the SSE and the seismicity change.
Estimating dynamic permeability in fractal pore network saturated by Maxwellian fluid
NASA Astrophysics Data System (ADS)
Sun, W.
2017-12-01
The frequency dependent flow of fluid in porous media is an important issue in geophysical prospecting. Oscillating flow in pipe leads to frequency dependent dynamic permeability and has been studied in pore network containing Newtonian fluid. But there is little work on oscillating complex fluid in pipe network, especially in irregular network. Here we formulated frequency dependent permeability for Maxwellian fluid and estimated the permeability in three-dimensional fractal network model. We consider an infinitely long cylindrical pipe with rigid solid wall. The pipe is filled with Maxwellian fluids. Based on the mass conservation equation, the equilibrium equation of force and Maxwell constitutive relationship, we formulated the flux by integration of axial velocity component over the pipe's cross section. Then we extend single pipe formulation to a 3D irregular network. Flux balance condition yields a set of linear equations whose unknowns are the fluid pressure at each node. By evaluating the total flow flux through the network, the dynamic permeability can be calculated.We investigated the dynamic permeability of brine and CPyCl/NaSal in a 3D porous sample with a cubic side length 1 cm. The pore network is created by a Voronoi cell filling method. The porosity, i.e., volume ratio between pore/pipe network and the overall cubic, is set as 0.1. The irregular pore network has a fractal structure. The dimension d of the pore network is defined by the relation between node number M within a sphere and the radius r of the sphere,M=rd.The results show that both brine and Maxwellian fluid's permeability maintain a stable value at low frequency, then decreases with fluctuating peaks. The dynamic permeability in pore networks saturated by Maxwellian fluid (CPyCl/NaSal (60 mM)) show larger peaks during the decline process at high frequency, which represents the typical resonance behavior. Dynamic permeability shows clear dependence on the dimension of the fractal network. Small-scale network has higher dimension than large-scale networks. The reason is that in larger networks pore and inter-pore connections are so dense that the probability P(r) to have a neighboring pore at distance r decays faster. The proposed model may be used to explain velocity dispersion in unconventional reservoir rocks observed in laboratory.
NASA Astrophysics Data System (ADS)
McIntire, John P.; Osesina, O. Isaac; Bartley, Cecilia; Tudoreanu, M. Eduard; Havig, Paul R.; Geiselman, Eric E.
2012-06-01
Ensuring the proper and effective ways to visualize network data is important for many areas of academia, applied sciences, the military, and the public. Fields such as social network analysis, genetics, biochemistry, intelligence, cybersecurity, neural network modeling, transit systems, communications, etc. often deal with large, complex network datasets that can be difficult to interact with, study, and use. There have been surprisingly few human factors performance studies on the relative effectiveness of different graph drawings or network diagram techniques to convey information to a viewer. This is particularly true for weighted networks which include the strength of connections between nodes, not just information about which nodes are linked to other nodes. We describe a human factors study in which participants performed four separate network analysis tasks (finding a direct link between given nodes, finding an interconnected node between given nodes, estimating link strengths, and estimating the most densely interconnected nodes) on two different network visualizations: an adjacency matrix with a heat-map versus a node-link diagram. The results should help shed light on effective methods of visualizing network data for some representative analysis tasks, with the ultimate goal of improving usability and performance for viewers of network data displays.
Understanding Charge Transport in Mixed Networks of Semiconducting Carbon Nanotubes
2016-01-01
The ability to select and enrich semiconducting single-walled carbon nanotubes (SWNT) with high purity has led to a fast rise of solution-processed nanotube network field-effect transistors (FETs) with high carrier mobilities and on/off current ratios. However, it remains an open question whether it is best to use a network of only one nanotube species (monochiral) or whether a mix of purely semiconducting nanotubes but with different bandgaps is sufficient for high performance FETs. For a range of different polymer-sorted semiconducting SWNT networks, we demonstrate that a very small amount of narrow bandgap nanotubes within a dense network of large bandgap nanotubes can dominate the transport and thus severely limit on-currents and effective carrier mobility. Using gate-voltage-dependent electroluminescence, we spatially and spectrally reveal preferential charge transport that does not depend on nominal network density but on the energy level distribution within the network and carrier density. On the basis of these results, we outline rational guidelines for the use of mixed SWNT networks to obtain high performance FETs while reducing the cost for purification. PMID:26867006
Tensor Toolbox for MATLAB v. 3.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kola, Tamara; Bader, Brett W.; Acar Ataman, Evrim NMN
Tensors (also known as multidimensional arrays or N-way arrays) are used in a variety of applications ranging from chemometrics to network analysis. The Tensor Toolbox provides classes for manipulating dense, sparse, and structured tensors using MATLAB's object-oriented features. It also provides algorithms for tensor decomposition and factorization, algorithms for computing tensor eigenvalues, and methods for visualization of results.
Radar Resource Management in a Dense Target Environment
2014-03-01
problem faced by networked MFRs . While relaxing our assumptions concerning information gain presents numerous challenges worth exploring, future research...linear programming MFR multifunction phased array radar MILP mixed integer linear programming NATO North Atlantic Treaty Organization PDF probability...1: INTRODUCTION Multifunction phased array radars ( MFRs ) are capable of performing various tasks in rapid succession. The performance of target search
The impact of roads on the timber rattlesnake (Crotalus horridus) in eastern Texas
D. Craig Rudolph; Shirley J. Burgdorf; Richard N. Conner; James G. Dickson
1998-01-01
Roads and associated vehicular traffic have the potential to significantly impact vertebrate populations. In eastern Texas we compared the densities of paved and unpaved roads within 2 and 4 km radii of timber rattlesnake (Crotalus horridus) ocations and of random points. Road networks were significantly more dense at random points than at snake...
A range-based predictive localization algorithm for WSID networks
NASA Astrophysics Data System (ADS)
Liu, Yuan; Chen, Junjie; Li, Gang
2017-11-01
Most studies on localization algorithms are conducted on the sensor networks with densely distributed nodes. However, the non-localizable problems are prone to occur in the network with sparsely distributed sensor nodes. To solve this problem, a range-based predictive localization algorithm (RPLA) is proposed in this paper for the wireless sensor networks syncretizing the RFID (WSID) networks. The Gaussian mixture model is established to predict the trajectory of a mobile target. Then, the received signal strength indication is used to reduce the residence area of the target location based on the approximate point-in-triangulation test algorithm. In addition, collaborative localization schemes are introduced to locate the target in the non-localizable situations. Simulation results verify that the RPLA achieves accurate localization for the network with sparsely distributed sensor nodes. The localization accuracy of the RPLA is 48.7% higher than that of the APIT algorithm, 16.8% higher than that of the single Gaussian model-based algorithm and 10.5% higher than that of the Kalman filtering-based algorithm.
Mani, Dalhia; Moody, James
2014-01-01
A central theme of economic sociology has been to highlight the complexity and diversity of real world markets, but many network models of economic social structure ignore this feature and rely instead on stylized one-dimensional characterizations. Here, the authors return to the basic insight of structural diversity in economic sociology. Using the Indian interorganizational ownership network as their case, they discover a composite—or “hybrid”—model of economic networks that combines elements of prior stylized models. The network contains a disconnected periphery conforming closely to a “transactional” model; a semiperiphery characterized by small, dense clusters with sporadic links, as predicted in “small-world” models; and finally a nested core composed of clusters connected via multiple independent paths. The authors then show how a firm’s position within the mesolevel structure is associated with demographic features such as age and industry and differences in the extent to which firms engage in multiplex and high-value exchanges. PMID:25418990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ching, Tao-Chung; Lai, Shih-Ping; Zhang, Qizhou
We present Submillimeter Array 880 μ m dust polarization observations of six massive dense cores in the DR21 filament. The dust polarization shows complex magnetic field structures in the massive dense cores with sizes of 0.1 pc, in contrast to the ordered magnetic fields of the parsec-scale filament. The major axes of the massive dense cores appear to be aligned either parallel or perpendicular to the magnetic fields of the filament, indicating that the parsec-scale magnetic fields play an important role in the formation of the massive dense cores. However, the correlation between the major axes of the cores andmore » the magnetic fields of the cores is less significant, suggesting that during the core formation, the magnetic fields below 0.1 pc scales become less important than the magnetic fields above 0.1 pc scales in supporting a core against gravity. Our analysis of the angular dispersion functions of the observed polarization segments yields a plane-of-sky magnetic field strength of 0.4–1.7 mG for the massive dense cores. We estimate the kinematic, magnetic, and gravitational virial parameters of the filament and the cores. The virial parameters show that the gravitational energy in the filament dominates magnetic and kinematic energies, while the kinematic energy dominates in the cores. Our work suggests that although magnetic fields may play an important role in a collapsing filament, the kinematics arising from gravitational collapse must become more important than magnetic fields during the evolution from filaments to massive dense cores.« less
Cascaded multiplexed optical link on a telecommunication network for frequency dissemination.
Lopez, Olivier; Haboucha, Adil; Kéfélian, Fabien; Jiang, Haifeng; Chanteau, Bruno; Roncin, Vincent; Chardonnet, Christian; Amy-Klein, Anne; Santarelli, Giorgio
2010-08-02
We demonstrate a cascaded optical link for ultrastable frequency dissemination comprised of two compensated links of 150 km and a repeater station. Each link includes 114 km of Internet fiber simultaneously carrying data traffic through a dense wavelength division multiplexing technology, and passes through two routing centers of the telecommunication network. The optical reference signal is inserted in and extracted from the communication network using bidirectional optical add-drop multiplexers. The repeater station operates autonomously ensuring noise compensation on the two links and the ultra-stable signal optical regeneration. The compensated link shows a fractional frequency instability of 3 x 10(-15) at one second measurement time and 5 x 10(-20) at 20 hours. This work paves the way to a wide dissemination of ultra-stable optical clock signals between distant laboratories via the Internet network.
NASA Astrophysics Data System (ADS)
Bailey, Monika E.; Isaac, George A.; Gultepe, Ismail; Heckman, Ivan; Reid, Janti
2014-01-01
An automated short-range forecasting system, adaptive blending of observations and model (ABOM), was tested in real time during the 2010 Vancouver Olympic and Paralympic Winter Games in British Columbia. Data at 1-min time resolution were available from a newly established, dense network of surface observation stations. Climatological data were not available at these new stations. This, combined with output from new high-resolution numerical models, provided a unique and exciting setting to test nowcasting systems in mountainous terrain during winter weather conditions. The ABOM method blends extrapolations in time of recent local observations with numerical weather predictions (NWP) model predictions to generate short-range point forecasts of surface variables out to 6 h. The relative weights of the model forecast and the observation extrapolation are based on performance over recent history. The average performance of ABOM nowcasts during February and March 2010 was evaluated using standard scores and thresholds important for Olympic events. Significant improvements over the model forecasts alone were obtained for continuous variables such as temperature, relative humidity and wind speed. The small improvements to forecasts of variables such as visibility and ceiling, subject to discontinuous changes, are attributed to the persistence component of ABOM.
A likely universal model of fracture scaling and its consequence for crustal hydromechanics
NASA Astrophysics Data System (ADS)
Davy, P.; Le Goc, R.; Darcel, C.; Bour, O.; de Dreuzy, J. R.; Munier, R.
2010-10-01
We argue that most fracture systems are spatially organized according to two main regimes: a "dilute" regime for the smallest fractures, where they can grow independently of each other, and a "dense" regime for which the density distribution is controlled by the mechanical interactions between fractures. We derive a density distribution for the dense regime by acknowledging that, statistically, fractures do not cross a larger one. This very crude rule, which expresses the inhibiting role of large fractures against smaller ones but not the reverse, actually appears be a very strong control on the eventual fracture density distribution since it results in a self-similar distribution whose exponents and density term are fully determined by the fractal dimension D and a dimensionless parameter γ that encompasses the details of fracture correlations and orientations. The range of values for D and γ appears to be extremely limited, which makes this model quite universal. This theory is supported by quantitative data on either fault or joint networks. The transition between the dilute and dense regimes occurs at about a few tenths of a kilometer for faults systems and a few meters for joints. This remarkable difference between both processes is likely due to a large-scale control (localization) of the fracture growth for faulting that does not exist for jointing. Finally, we discuss the consequences of this model on the flow properties and show that these networks are in a critical state, with a large number of nodes carrying a large amount of flow.
Site characterization in densely fractured dolomite: Comparison of methods
Muldoon, M.; Bradbury, K.R.
2005-01-01
One of the challenges in characterizing fractured-rock aquifers is determining whether the equivalent porous medium approximation is valid at the problem scale. Detailed hydrogeologic characterization completed at a small study site in a densely fractured dolomite has yielded an extensive data set that was used to evaluate the utility of the continuum and discrete-fracture approaches to aquifer characterization. There are two near-vertical sets of fractures at the site; near-horizontal bedding-plane partings constitute a third fracture set. Eighteen boreholes, including five coreholes, were drilled to a depth of ???10.6 m. Borehole geophysical logs revealed several laterally extensive horizontal fractures and dissolution zones. Flowmeter and short-interval packer testing identified which of these features were hydraulically important. A monitoring system, consisting of short-interval piezometers and multilevel samplers, was designed to monitor four horizontal fractures and two dissolution zones. The resulting network consisted of >70 sampling points and allowed detailed monitoring of head distributions in three dimensions. Comparison of distributions of hydraulic head - and hydraulic conductivity determined by these two approaches suggests that even in a densely fractured-carbonate aquifer, a characterization approach using traditional long-interval monitoring wells is inadequate to characterize ground water movement for the purposes of regulatory monitoring or site remediation. In addition, traditional multiwell pumping tests yield an average or bulk hydraulic conductivity that is not adequate for predicting rapid ground water travel times through the fracture network, and the pumping test response does not appear to be an adequate tool for assessing whether the porous medium approximation is valid. Copyright ?? 2005 National Ground Water Association.
NASA Astrophysics Data System (ADS)
Vierling, L. A.; Garrity, S. R.; Campbell, G.; Coops, N. C.; Eitel, J.; Gamon, J. A.; Hilker, T.; Krofcheck, D. J.; Litvak, M. E.; Naupari, J. A.; Richardson, A. D.; Sonnentag, O.; van Leeuwen, M.
2011-12-01
Increasing the spatial and temporal density of automated environmental sensing networks is necessary to quantify shifts in plant structure (e.g., leaf area index) and function (e.g., photosynthesis). Improving detection sensitivity can facilitate a mechanistic understanding by better linking plant processes to environmental change. Spectral radiometer measurements can be highly useful for tracking plant structure and function from diurnal to seasonal time scales and calibrating and validating satellite- and aircraft-based spectral measurements. However, dense ground networks of such instruments are challenging to establish due to the cost and complexity of automated instrument deployment. We therefore developed simple to operate, lightweight and inexpensive narrowband (~10nm bandwidth) spectral instruments capable of continuously measuring four to six discrete bands that have proven capacity to describe key physiological processes and structural features of plant canopies. These bands are centered at 530, 570, 675, 800, 880, and 970 nm to enable calculation of the physiological reflectance index (PRI), normalized difference vegetation index (NDVI), green NDVI (gNDVI), and water band index (WBI) collected above and within vegetation canopies. To date, measurements have been collected above grassland, semi-arid shrub steppe, piñon-juniper woodland, dense conifer forest, mixed deciduous-conifer forest, and cropland canopies, with additional measurements collected along vertical transects through a temperate conifer rainforest. Findings from this work indicate not only that key shifts in plant phenology, physiology, and structure can be captured using such instruments, but that the temporally dense nature of the measurements can help to disentangle heretofore unreported complexities of simultaneous phenological and structural change on canopy reflectance.
Aerial Images and Convolutional Neural Network for Cotton Bloom Detection.
Xu, Rui; Li, Changying; Paterson, Andrew H; Jiang, Yu; Sun, Shangpeng; Robertson, Jon S
2017-01-01
Monitoring flower development can provide useful information for production management, estimating yield and selecting specific genotypes of crops. The main goal of this study was to develop a methodology to detect and count cotton flowers, or blooms, using color images acquired by an unmanned aerial system. The aerial images were collected from two test fields in 4 days. A convolutional neural network (CNN) was designed and trained to detect cotton blooms in raw images, and their 3D locations were calculated using the dense point cloud constructed from the aerial images with the structure from motion method. The quality of the dense point cloud was analyzed and plots with poor quality were excluded from data analysis. A constrained clustering algorithm was developed to register the same bloom detected from different images based on the 3D location of the bloom. The accuracy and incompleteness of the dense point cloud were analyzed because they affected the accuracy of the 3D location of the blooms and thus the accuracy of the bloom registration result. The constrained clustering algorithm was validated using simulated data, showing good efficiency and accuracy. The bloom count from the proposed method was comparable with the number counted manually with an error of -4 to 3 blooms for the field with a single plant per plot. However, more plots were underestimated in the field with multiple plants per plot due to hidden blooms that were not captured by the aerial images. The proposed methodology provides a high-throughput method to continuously monitor the flowering progress of cotton.
Site characterization in densely fractured dolomite: comparison of methods.
Muldoon, Maureen; Bradbury, Ken R
2005-01-01
One of the challenges in characterizing fractured-rock aquifers is determining whether the equivalent porous medium approximation is valid at the problem scale. Detailed hydrogeologic characterization completed at a small study site in a densely fractured dolomite has yielded an extensive data set that was used to evaluate the utility of the continuum and discrete-fracture approaches to aquifer characterization. There are two near-vertical sets of fractures at the site; near-horizontal bedding-plane partings constitute a third fracture set. Eighteen boreholes, including five coreholes, were drilled to a depth of approximately 10.6 m. Borehole geophysical logs revealed several laterally extensive horizontal fractures and dissolution zones. Flowmeter and short-interval packer testing identified which of these features were hydraulically important. A monitoring system, consisting of short-interval piezometers and multilevel samplers, was designed to monitor four horizontal fractures and two dissolution zones. The resulting network consisted of >70 sampling points and allowed detailed monitoring of head distributions in three dimensions. Comparison of distributions of hydraulic head and hydraulic conductivity determined by these two approaches suggests that even in a densely fractured-carbonate aquifer, a characterization approach using traditional long-interval monitoring wells is inadequate to characterize ground water movement for the purposes of regulatory monitoring or site remediation. In addition, traditional multiwell pumping tests yield an average or bulk hydraulic conductivity that is not adequate for predicting rapid ground water travel times through the fracture network, and the pumping test response does not appear to be an adequate tool for assessing whether the porous medium approximation is valid.
Mesons from Laser-Induced Processes in Ultra-Dense Hydrogen H(0)
2017-01-01
Large signals of charged light mesons are observed in the laser-induced particle flux from ultra-dense hydrogen H(0) layers. The mesons are formed in such layers on metal surfaces using < 200 mJ laser pulse-energy. The time variation of the signal to metal foil collectors and the magnetic deflection to a movable pin collector are now studied. Relativistic charged particles with velocity up to 500 MeV u-1 thus 0.75 c are observed. Characteristic decay time constants for meson decay are observed, for charged and neutral kaons and also for charged pions. Magnetic deflections agree with charged pions and kaons. Theoretical predictions of the decay chains from kaons to muons in the particle beam agree with the results. Muons are detected separately by standard scintillation detectors in laser-induced processes in ultra-dense hydrogen H(0) as published previously. The muons formed do not decay appreciably within the flight distances used here. Most of the laser-ejected particle flux with MeV energy is not deflected by the magnetic fields and is thus neutral, either being neutral kaons or the ultra-dense HN(0) precursor clusters. Photons give only a minor part of the detected signals. PACS: 67.63.Gh, 14.40.-n, 79.20.Ds, 52.57.-z. PMID:28081199
Mammographic breast density patterns in asymptomatic mexican women.
Calderón-Garcidueñas, Ana Laura; Sanabria-Mondragón, Mónica; Hernández-Beltrán, Lourdes; López-Amador, Noé; Cerda-Flores, Ricardo M
2012-01-01
Breast density (BD) is a risk factor for breast cancer. Aims. To describe BD patterns in asymptomatic Mexican women and the pathological mammographic findings. Methods and Material. Prospective, descriptive, and comparative study. Women answered a questionnaire and their mammograms were analyzed according to BI-RADS. Univariate (χ(2)) and conditional logistic regression analyses were performed. Results. In 300 women studied the BD patterns were fat 56.7% (170), fibroglandular 29% (87), heterogeneously dense 5.7% (17), and dense pattern 8.6% (26). Prevalence of fat pattern was significantly different in women under 50 years (37.6%, 44/117) and older than 50 (68.8%, 126/183). Patterns of high breast density (BD) (dense + heterogeneously dense) were observed in 25.6% (30/117) of women ≤50 years and 7.1% (13/183) of women >50. Asymmetry in BD was observed in 22% (66/300). Compression cone ruled out underlying disease in 56 cases. In the remaining 10, biopsy revealed one fibroadenoma, one complex cyst, and 6 invasive and 2 intraductal carcinomas. 2.6% (8/300) of patients had non-palpable carcinomas. Benign lesions were observed in 63.3% (190/300) of cases, vascular calcification in 150 cases (78.9%), and fat necrosis in 38 cases (20%). Conclusions. Mexican women have a low percentage of high-density patterns.
NASA Astrophysics Data System (ADS)
Callegati, Franco; Aracil, Javier; López, Víctor
At the present time, optical transmission systems are capable of sending data over hundreds of wavelengths on a single fiber thanks to dense wavelength division multiplexing (DWDM) technologies, reaching bit rates on the order of gigabits per second per wavelength and terabits per second per fiber. In the last decade the availability of such a huge bandwidth caused transport networks to be considered as having infinite capacity. The recent massive deployment of Asymmetric Digital Subscriber Line (ADSL) and broadband wireless access solutions, as well as the outburst of new multimedia network services (such as Skype, YouTube, Joost, etc.) caused a significant increase of end user traffic and bandwidth demands. Therefore, the apparently “infinite” capacity of optical networks appears much more “finite” today, despite the latest developments in photonic transmission.
A Global Protein Kinase and Phosphatase Interaction Network in Yeast
Breitkreutz, Ashton; Choi, Hyungwon; Sharom, Jeffrey R.; Boucher, Lorrie; Neduva, Victor; Larsen, Brett; Lin, Zhen-Yuan; Breitkreutz, Bobby-Joe; Stark, Chris; Liu, Guomin; Ahn, Jessica; Dewar-Darch, Danielle; Reguly, Teresa; Tang, Xiaojing; Almeida, Ricardo; Qin, Zhaohui Steve; Pawson, Tony; Gingras, Anne-Claude; Nesvizhskii, Alexey I.; Tyers, Mike
2011-01-01
The interactions of protein kinases and phosphatases with their regulatory subunits and substrates underpin cellular regulation. We identified a kinase and phosphatase interaction (KPI) network of 1844 interactions in budding yeast by mass spectrometric analysis of protein complexes. The KPI network contained many dense local regions of interactions that suggested new functions. Notably, the cell cycle phosphatase Cdc14 associated with multiple kinases that revealed roles for Cdc14 in mitogen-activated protein kinase signaling, the DNA damage response, and metabolism, whereas interactions of the target of rapamycin complex 1 (TORC1) uncovered new effector kinases in nitrogen and carbon metabolism. An extensive backbone of kinase-kinase interactions cross-connects the proteome and may serve to coordinate diverse cellular responses. PMID:20489023
Atomic switch networks as complex adaptive systems
NASA Astrophysics Data System (ADS)
Scharnhorst, Kelsey S.; Carbajal, Juan P.; Aguilera, Renato C.; Sandouk, Eric J.; Aono, Masakazu; Stieg, Adam Z.; Gimzewski, James K.
2018-03-01
Complexity is an increasingly crucial aspect of societal, environmental and biological phenomena. Using a dense unorganized network of synthetic synapses it is shown that a complex adaptive system can be physically created on a microchip built especially for complex problems. These neuro-inspired atomic switch networks (ASNs) are a dynamic system with inherent and distributed memory, recurrent pathways, and up to a billion interacting elements. We demonstrate key parameters describing self-organized behavior such as non-linearity, power law dynamics, and multistate switching regimes. Device dynamics are then investigated using a feedback loop which provides control over current and voltage power-law behavior. Wide ranging prospective applications include understanding and eventually predicting future events that display complex emergent behavior in the critical regime.
All optical OFDM transmission for passive optical networks
NASA Astrophysics Data System (ADS)
Kachare, Nitin; Ashik T., J.; Bai, K. Kalyani; Kumar, D. Sriram
2017-06-01
This paper demonstrates the idea of data transmission at a very higher rate (Tbits/s) through optical fibers in a passive optical network using the most efficient data transmission technique widely used in wireless communication that is orthogonal frequency division multiplexing. With an increase in internet users, data traffic has also increased significantly and the current dense wavelength division multiplexing (DWDM) systems may not support the next generation passive optical networks (PONs) requirements. The approach discussed in this paper allows to increase the downstream data rate per user and extend the standard single-mode fiber reach for future long-haul applications. All-optical OFDM is a promising solution for terabit per second capable single wavelength transmission, with high spectral efficiency and high tolerance to chromatic dispersion.
Protocol Independent Adaptive Route Update for VANET
Rasheed, Asim; Qayyum, Amir
2014-01-01
High relative node velocity and high active node density have presented challenges to existing routing approaches within highly scaled ad hoc wireless networks, such as Vehicular Ad hoc Networks (VANET). Efficient routing requires finding optimum route with minimum delay, updating it on availability of a better one, and repairing it on link breakages. Current routing protocols are generally focused on finding and maintaining an efficient route, with very less emphasis on route update. Adaptive route update usually becomes impractical for dense networks due to large routing overheads. This paper presents an adaptive route update approach which can provide solution for any baseline routing protocol. The proposed adaptation eliminates the classification of reactive and proactive by categorizing them as logical conditions to find and update the route. PMID:24723807
Wicks, Charles; Thelen, W.; Weaver, C.; Gomberg, J.; Rohay, A.; Bodin, P.
2011-01-01
In 2009 a swarm of small shallow earthquakes occurred within the basalt flows of the Columbia River Basalt Group (CRBG). The swarm occurred within a dense seismic network in the U.S. Department of Energys Hanford Site. Data from the seismic network along with interferometric synthetic aperture radar (InSAR) data from the European Space Agencys (ESA) ENVISAT satellite provide insight into the nature of the swarm. By modeling the InSAR deformation data we constructed a model that consists of a shallow thrust fault and a near horizontal fault. We suggest that the near horizontal lying fault is a bedding-plane fault located between basalt flows. The geodetic moment of the modeled fault system is about eight times the cumulative seismic moment of the swarm. Precise location estimates of the swarm earthquakes indicate that the area of highest slip on the thrust fault, ???70mm of slip less than ???0.5km depth, was not located within the swarm cluster. Most of the slip on the faults appears to have progressed aseismically and we suggest that interbed sediments play a central role in the slip process. Copyright 2011 by the American Geophysical Union.
Multiple imputation of rainfall missing data in the Iberian Mediterranean context
NASA Astrophysics Data System (ADS)
Miró, Juan Javier; Caselles, Vicente; Estrela, María José
2017-11-01
Given the increasing need for complete rainfall data networks, in recent years have been proposed diverse methods for filling gaps in observed precipitation series, progressively more advanced that traditional approaches to overcome the problem. The present study has consisted in validate 10 methods (6 linear, 2 non-linear and 2 hybrid) that allow multiple imputation, i.e., fill at the same time missing data of multiple incomplete series in a dense network of neighboring stations. These were applied for daily and monthly rainfall in two sectors in the Júcar River Basin Authority (east Iberian Peninsula), which is characterized by a high spatial irregularity and difficulty of rainfall estimation. A classification of precipitation according to their genetic origin was applied as pre-processing, and a quantile-mapping adjusting as post-processing technique. The results showed in general a better performance for the non-linear and hybrid methods, highlighting that the non-linear PCA (NLPCA) method outperforms considerably the Self Organizing Maps (SOM) method within non-linear approaches. On linear methods, the Regularized Expectation Maximization method (RegEM) was the best, but far from NLPCA. Applying EOF filtering as post-processing of NLPCA (hybrid approach) yielded the best results.
D-DSC: Decoding Delay-based Distributed Source Coding for Internet of Sensing Things
Akan, Ozgur B.
2018-01-01
Spatial correlation between densely deployed sensor nodes in a wireless sensor network (WSN) can be exploited to reduce the power consumption through a proper source coding mechanism such as distributed source coding (DSC). In this paper, we propose the Decoding Delay-based Distributed Source Coding (D-DSC) to improve the energy efficiency of the classical DSC by employing the decoding delay concept which enables the use of the maximum correlated portion of sensor samples during the event estimation. In D-DSC, network is partitioned into clusters, where the clusterheads communicate their uncompressed samples carrying the side information, and the cluster members send their compressed samples. Sink performs joint decoding of the compressed and uncompressed samples and then reconstructs the event signal using the decoded sensor readings. Based on the observed degree of the correlation among sensor samples, the sink dynamically updates and broadcasts the varying compression rates back to the sensor nodes. Simulation results for the performance evaluation reveal that D-DSC can achieve reliable and energy-efficient event communication and estimation for practical signal detection/estimation applications having massive number of sensors towards the realization of Internet of Sensing Things (IoST). PMID:29538405
Detecting communities using asymptotical surprise
NASA Astrophysics Data System (ADS)
Traag, V. A.; Aldecoa, R.; Delvenne, J.-C.
2015-08-01
Nodes in real-world networks are repeatedly observed to form dense clusters, often referred to as communities. Methods to detect these groups of nodes usually maximize an objective function, which implicitly contains the definition of a community. We here analyze a recently proposed measure called surprise, which assesses the quality of the partition of a network into communities. In its current form, the formulation of surprise is rather difficult to analyze. We here therefore develop an accurate asymptotic approximation. This allows for the development of an efficient algorithm for optimizing surprise. Incidentally, this leads to a straightforward extension of surprise to weighted graphs. Additionally, the approximation makes it possible to analyze surprise more closely and compare it to other methods, especially modularity. We show that surprise is (nearly) unaffected by the well-known resolution limit, a particular problem for modularity. However, surprise may tend to overestimate the number of communities, whereas they may be underestimated by modularity. In short, surprise works well in the limit of many small communities, whereas modularity works better in the limit of few large communities. In this sense, surprise is more discriminative than modularity and may find communities where modularity fails to discern any structure.
D-DSC: Decoding Delay-based Distributed Source Coding for Internet of Sensing Things.
Aktas, Metin; Kuscu, Murat; Dinc, Ergin; Akan, Ozgur B
2018-01-01
Spatial correlation between densely deployed sensor nodes in a wireless sensor network (WSN) can be exploited to reduce the power consumption through a proper source coding mechanism such as distributed source coding (DSC). In this paper, we propose the Decoding Delay-based Distributed Source Coding (D-DSC) to improve the energy efficiency of the classical DSC by employing the decoding delay concept which enables the use of the maximum correlated portion of sensor samples during the event estimation. In D-DSC, network is partitioned into clusters, where the clusterheads communicate their uncompressed samples carrying the side information, and the cluster members send their compressed samples. Sink performs joint decoding of the compressed and uncompressed samples and then reconstructs the event signal using the decoded sensor readings. Based on the observed degree of the correlation among sensor samples, the sink dynamically updates and broadcasts the varying compression rates back to the sensor nodes. Simulation results for the performance evaluation reveal that D-DSC can achieve reliable and energy-efficient event communication and estimation for practical signal detection/estimation applications having massive number of sensors towards the realization of Internet of Sensing Things (IoST).
Reconstruction of Complex Network based on the Noise via QR Decomposition and Compressed Sensing.
Li, Lixiang; Xu, Dafei; Peng, Haipeng; Kurths, Jürgen; Yang, Yixian
2017-11-08
It is generally known that the states of network nodes are stable and have strong correlations in a linear network system. We find that without the control input, the method of compressed sensing can not succeed in reconstructing complex networks in which the states of nodes are generated through the linear network system. However, noise can drive the dynamics between nodes to break the stability of the system state. Therefore, a new method integrating QR decomposition and compressed sensing is proposed to solve the reconstruction problem of complex networks under the assistance of the input noise. The state matrix of the system is decomposed by QR decomposition. We construct the measurement matrix with the aid of Gaussian noise so that the sparse input matrix can be reconstructed by compressed sensing. We also discover that noise can build a bridge between the dynamics and the topological structure. Experiments are presented to show that the proposed method is more accurate and more efficient to reconstruct four model networks and six real networks by the comparisons between the proposed method and only compressed sensing. In addition, the proposed method can reconstruct not only the sparse complex networks, but also the dense complex networks.
Japan contribution to studies of low-latitude and equatorial ionosphere over Southeast Asia
NASA Astrophysics Data System (ADS)
Yamamoto, M.; Ishii, M.; Otsuka, Y.; Shiokawa, K.; Saito, A.; Tsuda, T.; Fukao, S.
2008-12-01
A dense observation network to study ionosphere is deployed over Southeast Asian countries of Indonesia, Thailand, and Vietnam. The Equatorial Atmosphere Radar (EAR) at Kototabang, Indonesia is the center facility, and supporting instruments, i.e., an ionosonde, a VHF ionosphere radar, an optical imager, a GPS scintillation receiver, a magnetometer, a meteor radar, etc. are collocated. NICT operates the ionosonde network SEALION (South East Asian Low-latitude IOnosonde Network) that meridionally extends from the EAR site to Chumphong and Chiang Mai in Thailand, and two more sites (Baq Liu and Phy Thuy) in Vietnam. Additional facilities are an MF radar at Pameungpeuk, Indonesia, and an optical imager at Darwin, Australia. We have been observing plasma bubbles since 2001, that, for example, contributed clarification of time- spatial structures of the phenomena, their relationship to the pre-reversal enhancement, control of bubble occurrence by the meridional winds, etc. We are starting studies of their seeding by means of atmospheric waves that propages from the lower atmosphere, too. In 2008, Nagoya University will soon install three Fabry-Perot interferometers at the EAR site, Chiang Mai, and Darwin. We also have a plan to install digital beacon receivers in some of these sites. Next research program that follows CPEA (Coupling Processes in the Equatorial Atmosphere, 2001-2007) is under planning now. Our main facilities cover ± 10° of geomagnetic latitude, where the magnetic declination is relatively small, and the geomagnetic equator is in the geographic northern hemisphere. We will review our achievements, and show on-going efforts and future plans. Collaboration with the C/NOFS satellite, and comparisons to results from the American sector should be beneficial for global-scale understanding of the equatorial ionosphere/atmosphere.