Sample records for dense plasma column

  1. Filamentation in the pinched column of the dense plasma focus

    NASA Astrophysics Data System (ADS)

    Kubes, P.; Paduch, M.; Cikhardt, J.; Cikhardtova, B.; Klir, D.; Kravarik, J.; Rezac, K.; Zielinska, E.; Sadowski, M. J.; Szymaszek, A.; Tomaszewski, K.; Zaloga, D.

    2017-03-01

    The paper describes the filamentary structure observed in the high-energy ultraviolet radiation for discharges performed at the hydrogen- or deuterium-filling and at the puffing of hydrogen, deuterium or helium, in a mega-ampere dense plasma-focus facility. The lifetime of this structure overcomes 50 ns. These filaments connect the surface of a pinched column with internal plasmoids formed at different combinations of filling and puffing gases and they should transport some current and plasma. During all the investigated deuterium shots, the fusion-produced neutrons were recorded. Therefore, deuterons should be present in the region of their acceleration, independent of the applied puffing of the gas. Simultaneously with the observed filaments, inside the dense plasma column small plasma-balls of mm-dimensions were observed, which had a similar lifetime (longer than the relaxation time) and quasi-stationary positions in the discharge volume. The observed filaments and balls might be a manifestation of the (i) discrete spatial structure of the current flowing through and around the dense plasma column and (ii) transport of the plasma from external layers to the central region. Their formation and visualization were easier due to the application of air admixtures in the puffed gas.

  2. Influence of the Al wire placed in the anode axis on the transformation of the deuterium plasma column in the plasma focus discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubes, P.; Cikhardtova, B.; Cikhardt, J.

    In this paper, we describe the influence of an Al wire of 270 μm in diameter placed along the anode axis on the transformation of the deuterium pinch column in a megaampere (MA) plasma focus device. The evolution of the pinched column and of the wire corona was investigated by means of the multiframe interferometry, neutron and X-ray diagnostics. The wire corona did not influence considerably on the evolution of dense plasma structures and neutron production, but it increased the plasma density and consequently, the currents around its surface. The distribution of the closed internal currents (ranging hundreds of kA) andmore » associated magnetic fields amounting to 5 T were also estimated in the dense plasma column and in plasmoidal structures at the near-equilibrium state. The description is based on the balance of the plasma pressure and the pressure of the internal poloidal and toroidal current components compressed by the external pinched column. The dominant number of fusion deuterium-deuterium (D-D) neutrons is produced during the evolution of instabilities, when the uninterrupted wire corona (containing deuterium) connects the dense structures of the pinch, and it did not allow the formation of a constriction of the sub-millimeter diameter.« less

  3. STELLARATOR INJECTOR

    DOEpatents

    Post, R.F.

    1962-09-01

    A method and means are described for injecting energetic neutral atoms or molecular ions into dense magnetically collimated plasma columns of stellarators and the like in such a manner that the atoms or ions are able to significantly penetrate the column before being ionized by collision with the plasma constituent particles. Penetration of the plasma column by the neutral atoms or molecular ions is facilitated by superposition of two closely spaced magnetic mirrors on the plasma confinement field. The mirrors are moved apart to magnetically sweep plasma from a region between the mirrors and establish a relatively low plasma density therein. By virture of the low density, neutral atoms or molecular ions injected into the region significantly penetrate the plasma column before being ionized. Thereafter, the mirrors are diminished to permit the injected material to admix with the plasma in the remainder of the column. (AEC)

  4. Beam-driven acceleration in ultra-dense plasma media

    DOE PAGES

    Shin, Young-Min

    2014-09-15

    Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 10 25 m -3 and 1.6 x 10 28 m -3 plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers 20 % higher acceleration gradient by enlargingmore » the channel radius (r) from 0.2 Ap to 0.6 .Ap in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g. nanotubes) of high electron plasma density.« less

  5. Characterization of fast deuterons involved in the production of fusion neutrons in a dense plasma focus

    NASA Astrophysics Data System (ADS)

    Kubes, P.; Paduch, M.; Sadowski, M. J.; Cikhardt, J.; Cikhardtova, B.; Klir, D.; Kravarik, J.; Munzar, V.; Rezac, K.; Zielinska, E.; Skladnik-Sadowska, E.; Szymaszek, A.; Tomaszewski, K.; Zaloga, D.

    2018-01-01

    This paper considers regions of a fast deuteron production in a correlation with an evolution of ordered structures inside a pinch column of a mega-ampere plasma focus discharge. Ion pinhole cameras equipped with plastic PM-355 track-detectors recorded fast deuterons escaping in the downstream and other directions (up to 60° to the z-axis). Time-integrated ion images made it possible to estimate sources of the deuteron acceleration at the known magnetic field and deuteron energy values. The images of the fast deuterons emitted in the solid angle ranging from 0° to 4° showed two forms: central spots and circular images. The spots of 1-2 cm in diameter were produced by deuterons from the central pinch regions. The circular-shaped images of a radius above 3 cm (or their parts) were formed by deuterons from the region surrounding the dense pinch column. The ion pinhole cameras placed at angles above 20° to the z-axis recorded the ion spots only, and the ring-images were missing. The central region of the deuteron acceleration could be associated mainly with plasmoids, and the circular images could be connected with ring-shaped regions of the radius corresponding to tops of the plasma lobules outside the dense pinch column. The deuteron tracks forming ring-shaped images of a smaller (0.5-1) cm radius could be produced by deflections of the fast deuterons, which were caused by a magnetic field inside the dense pinch column.

  6. Extreme degree of ionization in homogenous micro-capillary plasma columns heated by ultrafast current pulses.

    PubMed

    Avaria, G; Grisham, M; Li, J; Tomasel, F G; Shlyaptsev, V N; Busquet, M; Woolston, M; Rocca, J J

    2015-03-06

    Homogeneous plasma columns with ionization levels typical of megaampere discharges are created by rapidly heating gas-filled 520-μm-diameter channels with nanosecond rise time current pulses of 40 kA. Current densities of up to 0.3  GA cm^{-2} greatly increase Joule heating with respect to conventional capillary discharge Z pinches, reaching unprecedented degrees of ionization for a high-Z plasma column heated by a current pulse of remarkably low amplitude. Dense xenon plasmas are ionized to Xe^{28+}, while xenon impurities in hydrogen discharges reach Xe^{30+}. The unique characteristics of these hot, ∼300:1 length-to-diameter aspect ratio plasmas allow the observation of unexpected spectroscopic phenomena. Axial spectra show the unusual dominance of the intercombination line over the resonance line of He-like Al by nearly an order of magnitude, caused by differences in opacities in the axial and radial directions. These plasma columns could enable the development of sub-10-nm x-ray lasers.

  7. Experiments on the Expansion of a Dense Plasma into a Background Magnetoplasma

    NASA Astrophysics Data System (ADS)

    Gekelman, Walter; Vanzeeland, Mike; Vincena, Steve; Pribyl, Pat

    2003-10-01

    There are many situations, which occur in space (coronal mass ejections, or are man-made (upper atmospheric detonations) as well as the initial stages of a supernovae, in which a dense plasma expands into a background magnetized plasma, that can support Alfvèn waves. The upgraded LArge Plasma Device (LAPD) is a machine, at UCLA, in which Alfvèn wave propagation in homogeneous and inhomogeneous plasmas has been studied. We describe a series of experiments,which involve the expansion of a dense (initially, n_laser-plasma/n_0≫1) laser-produced plasma into an ambient highly magnetized background plasma capable of supporting Alfvèn waves will be presented. The 150 MW laser is pulsed at the same 1 Hz repetition rate as the plasma in a highly reproducible experiment. The interaction results in the production of intense shear Alfvèn waves, as well as large density perturbations. The waves propagate away from the target and are observed to become plasma column resonances. In the initial phase the background magnetic field is expelled from a plasma bubble. Currents in the main body of the plasma are generated to neutralize the positively charged bubble. The current system which results, becomes that of a spectrum of shear Alfvèn waves. Spatial patterns of the wave magnetic fields waves are measured at over 10^4 locations. As the dense plasma expands across the magnetic field it seeds the column with shear waves. Most of the Alfvèn wave energy is in shear waves, which become field line resonances after a machine transit time. The interplay between waves, currents, inductive electric fields and space charge is analyzed in great detail. Dramatic movies of the measured wave fields and their associated currents will be presented. Work supported by ONR, and DOE /NSF.

  8. Fluid modeling of radical species generation mechanism in dense methane-air mixture streamer discharge

    NASA Astrophysics Data System (ADS)

    Qian, Muyang; Li, Gui; Kang, Jinsong; Liu, Sanqiu; Ren, Chunsheng; Zhang, Jialiang; Wang, Dezhen

    2018-01-01

    Atmospheric dielectric barrier discharge (DBD) was found to be promising in the context of plasma chemistry, plasma medicine, and plasma-assisted combustion. In this paper, we present a detailed fluid modeling study of abundant radical species produced by a positive streamer in atmospheric dense methane-air DBD. A two-dimensional axisymmetric fluid model is constructed, in which 82 plasma chemical reactions and 30 different species are considered. Spatial and temporal density distributions of dominant radicals and ions are presented. We lay our emphasis on the effect of varying relative permittivity (ɛr = 2, 4.5, and 9) on the streamer dynamics in the plasma column, such as electric field behavior, production, and destruction pathways of dominant radical species. We find that higher relative permittivity promotes propagation of electric field and formation of conduction channel in the plasma column. The streamer discharge is sustained by the direct electron-impact ionization of methane molecule. Furthermore, the electron-impact dissociation of methane (e + CH4 = >e + H+CH3) is found to be the dominant reaction pathway to produce CH3 and H radicals. Similarly, the electron-impact dissociations of oxygen (e + O2 = >e + O+O(1D), e + O2 = >e + O+O) are the major routes for O production.

  9. Beam deviation method as a diagnostic tool for the plasma focus.

    PubMed

    Schmidt, H; Rückle, B

    1978-04-15

    The application of an optical method for density measurements in cylindrical plasmas is described. The angular deviation of a probing light beam sent through a plasma is proportional to the maximum of the density in the plasma column. The deviation does not depend on the plasma dimensions; however, it is influenced to a certain degree by the density profile. The method is successfully applied to the investigation of a dense plasma focus with a time resolution of 2 nsec and a spatial resolution (in axial direction) of 2 mm.

  10. Characterization of the column and autocellular junctions that define the vasculature of gill lamellae.

    PubMed

    Kato, Akira; Nakamura, Korefumi; Kudo, Hisayuki; Tran, Yen Ha; Yamamoto, Yoko; Doi, Hiroyuki; Hirose, Shigehisa

    2007-09-01

    Novel adhesion junctions have been characterized that are formed at the interface between pillar cells and collagen columns, both of which are essential constituents of the gill lamellae in fish. We termed these junctions the "column junction" and "autocellular junction" and determined their molecular compositions by immunofluorescence microscopy using pufferfish. We visualized collagen columns by concanavalin A staining and found that the components of integrin-mediated cell-matrix adhesion, such as talin, vinculin, paxillin, and fibronectin, were concentrated on plasma membranes surrounding collagen columns (column membranes). This connection is analogous to the focal adhesion of cultured mammalian cells, dense plaque of smooth muscle cells, and myotendinous junction of skeletal muscle cells. We named this connection the "column junction." In the cytoplasm near the column, actin fibers, actinin, and a phosphorylated myosin light chain of 20 kDa are densely located, suggesting the contractile nature of pillar cells. The membrane infoldings surrounding the collagen columns were found to be connected by the autocellular junction, whose components are highly tyrosine-phosphorylated and contain the tight junction protein ZO-1. This study represents the first molecular characterization and fluorescence visualization of the column and autocellular junctions involved in both maintaining structural integrity and the hemodynamics of the branchial lamellae.

  11. Gas arc constriction for plasma arc welding

    NASA Technical Reports Server (NTRS)

    McGee, William F. (Inventor); Rybicki, Daniel J. (Inventor)

    1994-01-01

    A welding torch for plasma arc welding apparatus has an inert gas applied circumferentially about the arc column externally of the constricting nozzle so as to apply a constricting force on the arc after it has exited the nozzle orifice and downstream of the auxiliary shielding gas. The constricting inert gas is supplied to a plenum chamber about the body of the torch and exits through a series of circumferentially disposed orifices in an annular wall forming a closure at the forward end of the constricting gas plenum chamber. The constricting force of the circumferential gas flow about the arc concentrates and focuses the arc column into a more narrow and dense column of energy after exiting the nozzle orifice so that the arc better retains its energy density prior to contacting the workpiece.

  12. Positron production by x rays emitted by betatron motion in a plasma wiggler.

    PubMed

    Johnson, D K; Auerbach, D; Blumenfeld, I; Barnes, C D; Clayton, C E; Decker, F J; Deng, S; Emma, P; Hogan, M J; Huang, C; Ischebeck, R; Iverson, R; Joshi, C; Katsouleas, T C; Kirby, N; Krejcik, P; Lu, W; Marsh, K A; Mori, W B; Muggli, P; O'Connell, C L; Oz, E; Siemann, R H; Walz, D; Zhou, M

    2006-10-27

    Positrons in the energy range of 3-30 MeV, produced by x rays emitted by betatron motion in a plasma wiggler of 28.5 GeV electrons from the SLAC accelerator, have been measured. The extremely high-strength plasma wiggler is an ion column induced by the electron beam as it propagates through and ionizes dense lithium vapor. X rays in the range of 1-50 MeV in a forward cone angle of 0.1 mrad collide with a 1.7 mm thick tungsten target to produce electron-positron pairs. The positron spectra are found to be strongly influenced by the plasma density and length as well as the electron bunch length. By characterizing the beam propagation in the ion column these influences are quantified and result in excellent agreement between the measured and calculated positron spectra.

  13. Alfvén Waves Generated by Expanding Plasmas in the Laboratory and in Space

    NASA Astrophysics Data System (ADS)

    Gekelman, W.; Vanzeeland, M.; Vincena, S.; Pribyl, P.

    2002-12-01

    There are many situations, which occur in space (coronal mass ejections, supernovas), or are man-made (upper atmospheric detonations) in which a dense plasma expands into a background magnetized plasma, that can support Alfvén waves. The LArge Plasma Device (LAPD) is a machine, at UCLA, in which Alfvén waves propagation in homogeneous and inhomogeneous plasmas has been studied. These will be briefly reviewed. Then a new class of experiments which involve the expansion of a dense (initially, n/no>>1) laser-produced plasma into an ambient highly magnetized background plasma capable of supporting Alfvén waves will be presented. The 150 MW laser is pulsed at the same 1 Hz repetition rate as the plasma in a highly reproducible experiment. The laser beam impacts a solid target such that the initial plasma burst is directed either along or across the magnetic field. The interaction results in the production of intense shear and compressional Alfvén waves, as well as large density perturbations. The waves propagate away from the target and are observed to become plasma column resonances. The magnetic fields of the waves are obtained with a 3-axis inductive probe. Spatial patterns of the magnetic fields associated with the waves and density perturbations are measured at over {10}4 locations and will be shown in dramatic movies. These are used to estimate the coupling efficiency of the laser energy and kinetic energy of the dense plasma into wave energy. The wave generation mechanism is due to field aligned return currents, which replace fast electrons escaping the initial blast. Work supported by ONR, DOE, and NSF

  14. Increase in the neutron yield from a dense plasma-focus experiment performed with a conical tip placed in the centre of the anode end

    NASA Astrophysics Data System (ADS)

    Kubes, P.; Paduch, M.; Cikhardt, J.; Cikhardtova, B.; Klir, D.; Kravarik, J.; Rezac, K.; Zielinska, E.; Sadowski, M. J.; Szymaszek, A.; Tomaszewski, K.; Zaloga, D.

    2017-09-01

    The paper describes the evolution of self-organized structures inside a pinched plasma column during the phase of the effective production of fusion neutrons, as observed in the mega-ampere plasma focus experiment performed with a conical tip placed in the centre of the anode face. In a comparison with the plane anode face configuration, the described anode shape facilitated transformations in the pinch column during the neutron production and increased the neutron yield several times. Simultaneously, it decreased the minimal diameter and the length of the pinched column, and it depressed the first neutron pulse. It also induced shorter pulses of X-rays and neutrons, which enabled the determination of a temporal difference between the emission of electron and deuteron beams. The fast electrons were produced mainly during a disruption of the pinch constriction, while the fast deuterons - during the formation and explosion of plasmoids. The paper also presents the temporal evolution of a current distribution in the plasmoid during the neutron production, as well as the appearance and stable positions of current filaments traces upon the surface of the conical anode tip.

  15. Portable rotating discharge plasma device

    NASA Astrophysics Data System (ADS)

    Dwyer, B. L.; Brooks, N. H.; Lee, R. L.

    2011-10-01

    We constructed two devices for the purpose of educational demonstration: a rotating tube containing media of two densities to demonstrate axial confinement and a similar device that uses pressure variation to convert a long plasma glow discharge into a long straight arc. In the first device, the buoyant force is countered by the centripetal force, which confines less dense materials to the center of the column. Similarly, a plasma arc heats the gas through which it passes, creating a hot gaseous bubble that is less dense than the surrounding medium. Rotating its containment envelope stabilizes this gas bubble in an analogous manner to an air bubble in a rotating tube of water. In addition to stabilization, the rotating discharge also exhibits a decrease in buoyancy-driven convection currents. This limits the power loss to the walls, which decreases the field strength requirement for maintaining the arc. These devices demonstrate principles of electrodynamics, plasma physics, and fluid mechanics. They are portable and safe for classroom use. Work supported by US DOE under DE-FC02-04ER54698 and the National Undergraduate Fellowship in Fusion Science and Engineering.

  16. Fast discharge in a plasma gun with hemispherical insulator

    NASA Astrophysics Data System (ADS)

    Antsiferov, P. S.; Dorokhin, L. A.; Sidelnikov, Yu. V.; Koshelev, K. N.

    2009-05-01

    A method of creation of hot dense plasma is proposed. It is based on cumulation of a shockwave, which originates on a hemispherical surface of insulator of plasma gun. The results of first experiments are presented. The shock wave is driven by fast electrical discharge (dI /dt>1012 A/s). The inductive storage with semiconductor opening switch is used as a current driver. Time resolved pin-hole images and vacuum ultraviolet (vuv) spectra are studied. Shockwaves from hemispherical insulator with 4 mm radius create plasma with a form of column about 1 mm diameter and 3-4 mm length. vuv spectra contain the lines of Ar ions that corresponds to the electron temperature about 20 eV. Possible practical application is discussed.

  17. Linear theory of plasma Čerenkov masers

    NASA Astrophysics Data System (ADS)

    Birau, M.

    1996-11-01

    A different theoretical model of Čerenkov instability in the linear amplification regime of plasma Čerenkov masers is developed. The model assumes a cold relativistic annular electron beam propagating through a column of cold dense plasma, the two bodies being immersed in an infinite magnetic guiding field inside a perfect cylindrical waveguide. In order to simplify the calculations, a radial rectangular distribution of plasma and beam density is assumed and only azimuthal symmetric modes are under investigation. The model's difference consists of taking into account the whole plasma and beam electromagnetic structures in the interpretation of the Čerenkov instability. This model leads to alternative results such as the possibility of emission at several frequencies. In addition, the electric field is calculated taking into account its radial phase dependence, so that a map of the field in the interaction region can be presented.

  18. Neutron angular distribution in a plasma focus obtained using nuclear track detectors.

    PubMed

    Castillo-Mejía, F; Herrera, J J E; Rangel, J; Golzarri, J I; Espinosa, G

    2002-01-01

    The dense plasma focus (DPF) is a coaxial plasma gun in which a high-density, high-temperature plasma is obtained in a focused column for a few nanoseconds. When the filling gas is deuterium, neutrons can be obtained from fusion reactions. These are partially due to a beam of deuterons which are accelerated against the background hot plasma by large electric fields originating from plasma instabilities. Due to a beam-target effect, the angular distribution of the neutron emission is anisotropic, peaked in the forward direction along the axis of the gun. The purpose of this work is to illustrate the use of CR-39 nuclear track detectors as a diagnostic tool in the determination of the time-integrated neutron angular distribution. For the case studied in this work, neutron emission is found to have a 70% contribution from isotropic radiation and a 30% contribution from anisotropic radiation.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vincena, Stephen

    The aim of the original proposal was a basic plasma study to experimentally investigate the fundamental physics of how dense, fast-flowing, and field-aligned jets of plasma couple energy and momentum to a much larger, ambient, magnetized plasma. Coupling channels that were explored included bulk plasma heating and flow generation; shock wave production; and wave radiation, particularly in the form of shear and compressional Alfvén waves. The wave radiation, particularly to shear Alfvén waves was successfully modeled using the 3D Particle-In-Cell code, OSIRIS. Experimentally, these jets were produced via pulsed Nd:YAG laser ablation of solid carbon (graphite) rods, which were immersedmore » in the main plasma column of the Large Plasma Device (LaPD) at UCLA’s Basic Plasma Science Facility (BaPSF.) The axial expansion of the laser-produced plasma (LPP) was supersonic and with parallel expansion speeds approximately equal to the Alfvén speed. The project was renewed and refocused efforts to then utilize the laser-produced plasmas as a tool for the disruption and reconnection of current sheets in magnetized plasmas« less

  20. Identification of a localized core mode in a helicon plasma

    NASA Astrophysics Data System (ADS)

    Green, Daniel A.; Chakraborty Thakur, Saikat; Tynan, George R.; Light, Adam D.

    2017-10-01

    We present imaging measurements of a newly observed mode in the core of the Controlled Shear Decorrelation Experiment - Upgrade (CSDX-U). CSDX-U is a well-characterized linear machine producing dense plasmas relevant to the tokamak edge (Te 3 eV, ne 1013 /cc). Typical fluctuations are dominated by electron drift waves, with evidence for Kelvin-Helmholtz vortices appearing near the plasma edge. A new mode has been observed using high-speed imaging that appears at high magnetic field strengths and is confined to the inner third of the plasma column. A cross-spectral phase technique allows direct visualization of dominant spatial structures as a function of frequency. Experimental dispersion curve estimates are constructed from imaging data alone, and allow direct comparison of theoretical dispersion relations to the observed mode. We present preliminary identification of the mode based on its dispersion curve, and compare the results with electrostatic probe measurements.

  1. Bilayer Suspension Plasma-Sprayed Thermal Barrier Coatings with Enhanced Thermal Cyclic Lifetime: Experiments and Modeling

    NASA Astrophysics Data System (ADS)

    Gupta, Mohit; Kumara, Chamara; Nylén, Per

    2017-08-01

    Suspension plasma spraying (SPS) has been shown as a promising process to produce porous columnar strain tolerant coatings for thermal barrier coatings (TBCs) in gas turbine engines. However, the highly porous structure is vulnerable to crack propagation, especially near the topcoat-bondcoat interface where high stresses are generated due to thermal cycling. A topcoat layer with high toughness near the topcoat-bondcoat interface could be beneficial to enhance thermal cyclic lifetime of SPS TBCs. In this work, a bilayer coating system consisting of first a dense layer near the topcoat-bondcoat interface followed by a porous columnar layer was fabricated by SPS using Yttria-stabilised zirconia suspension. The objective of this work was to investigate if the bilayer topcoat architecture could enhance the thermal cyclic lifetime of SPS TBCs through experiments and to understand the effect of the column gaps/vertical cracks and the dense layer on the generated stresses in the TBC during thermal cyclic loading through finite element modeling. The experimental results show that the bilayer TBC had significantly higher lifetime than the single-layer TBC. The modeling results show that the dense layer and vertical cracks are beneficial as they reduce the thermally induced stresses which thus increase the lifetime.

  2. Design and Construction of a Dense Plasma Focus Device

    DTIC Science & Technology

    1976-10-01

    This paper deals with the design of a dense plasma focus device as an engineering project. Essentially this approach can be summarized as follows...First, an introduction dealing with a general discussion of plasma devices focusing on the role of a dense plasma focus device as a useful tool in...future research; second, an explanation of the operation of the dense plasma focus ; third, a general design discussion of the dense plasma focus device

  3. Plasma Source Development for LAPD

    NASA Astrophysics Data System (ADS)

    Pribyl, P.; Gekelman, W.; Drandell, M.; Grunspen, S.; Nakamoto, M.; McBarron, A.

    2003-10-01

    The Large Plasma Device (LAPD) relies on an indirectly heated Barium Oxide (BaO) cathode to generate an extremely repeatable low-noise plasma. However there are two defects of this system: one is that the cathode is subject to oxygen poisoning in the event of accidental air leaks, requiring a lengthy recoating and regeneration process. Second, the indirect radiative heating is only about 50 % efficient, leading to a series of reliability issues. Alternate plasma sources are being investigated, including two types of directly heated BaO cathode and several configurations of inductively coupled RF plasmas. Direct heating for a cathode can be achieved either by embedding heaters within the nickel substrate, or by using inductive heating techniques to drive currents within the nickel itself. In both cases, the BaO coating still serves to emit the electrons and thus generate the plasma arc. An improved system would generate the plasma without the use of a "cathode" e.g. by inductively coupling energy directly into the plasma discharge. This technique is being investigated from the point of view of whether a) the bulk of the plasma column can be made sufficiently low-noise to be of experimental value and b) sufficiently dense plasmas can be formed.

  4. Angular distribution of fusion products and x rays emitted by a small dense plasma focus machine

    NASA Astrophysics Data System (ADS)

    Castillo, F.; Herrera, J. J. E.; Gamboa, Isabel; Rangel, J.; Golzarri, J. I.; Espinosa, G.

    2007-01-01

    Time integrated measurements of the angular distributions of fusion products and x rays in a small dense plasma focus machine are made inside the discharge chamber, using passive detectors. The machine is operated at 37kV with a stored energy of 4.8kJ and a deuterium filling pressure of 2.75torr. Distributions of protons and neutrons are measured with CR-39 Lantrack® nuclear track detectors, on 1.8×0.9cm2 chips, 500μm thick. A set of detectors was placed on a semicircular Teflon® holder, 13cm away from the plasma column, and covered with 15μm Al filters, thus eliminating tritium and helium-3 ions, but not protons and neutrons. A second set was placed on the opposite side of the holder, eliminating protons. The angular distribution of x rays is also studied within the chamber with TLD-200 dosimeters. While the neutron angular distributions can be fitted by Gaussian curves mounted on constant pedestals and the proton distributions are strongly peaked, falling rapidly after ±40°, the x-ray distributions show two maxima around the axis, presumably as a result of the collision of a collimated electron beam against the inner electrode, along the axis.

  5. Transformation of the ordered internal structures during the acceleration of fast charged particles in a dense plasma focus

    NASA Astrophysics Data System (ADS)

    Kubes, P.; Paduch, M.; Cikhardt, J.; Cikhardtova, B.; Klir, D.; Kravarik, J.; Rezac, K.; Zielinska, E.; Sadowski, M. J.; Szymaszek, A.; Tomaszewski, K.; Zaloga, D.

    2017-07-01

    The paper concerns important differences in the evolution of plasma column structures during the production of fusion neutrons in the first and subsequent neutron pulses, as observed for plasma-focus discharges performed with the deuterium filling. The first neutron pulse, of a more isotropic distribution, is usually produced during the formation of the first big plasmoid. The next neutron pulses can be generated by the fast deuterons moving dominantly in the downstream direction, at the instants of a disruption of the pinch constriction, when other plasmoids are formed during the constriction evolution. In both cases, the fusion neutrons are produced by a beam-target mechanism, and the acceleration of fast electron- and deuteron-beams can be interpreted by transformation and decay of the magnetic field associated with a filamentary structure of the current flow in the plasmoid.

  6. Analysis of double stub tuner control stability in a many element phased array antenna with strong cross-coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, G. M.; Fitzgerald, E.; Johnson, D. K.

    2014-02-12

    Active stub tuning with a fast ferrite tuner (FFT) allows for the system to respond dynamically to changes in the plasma impedance such as during the L-H transition or edge localized modes (ELMs), and has greatly increased the effectiveness of fusion ion cyclotron range of frequency systems. A high power waveguide double-stub tuner is under development for use with the Alcator C-Mod lower hybrid current drive (LHCD) system. Exact impedance matching with a double-stub is possible for a single radiating element under most load conditions, with the reflection coefficient reduced from Γ to Γ{sup 2} in the “forbidden region.” Themore » relative phase shift between adjacent columns of a LHCD antenna is critical for control of the launched n{sub ∥} spectrum. Adding a double-stub tuning network will perturb the phase of the forward wave particularly if the unmatched reflection coefficient is high. This effect can be compensated by adjusting the phase of the low power microwave drive for each klystron amplifier. Cross-coupling of the reflected power between columns of the launcher must also be considered. The problem is simulated by cascading a scattering matrix for the plasma provided by a linear coupling model with the measured launcher scattering matrix and that of the FFTs. The solution is advanced in an iterative manner similar to the time-dependent behavior of the real system. System performance is presented under a range of edge density conditions from under-dense to over-dense and a range of launched n{sub ∥}.« less

  7. An investigation of transient pressures and plasma properties in a pinched plasma column. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Stover, E. K.; York, T. M.

    1971-01-01

    The transient pinched plasma column generated in a linear Z-pinch was studied experimentally and analytically. The plasma column was investigated experimentally with several plasma diagnostics; they were: a rapid response pressure transducer, a magnetic field probe, a voltage probe, and discharge luminosity. Axial pressure profiles on the discharge chamber axis were used to identify three characteristic regions of plasma column behavior: (1) strong axial pressure asymmetry noted early in plasma column lifetime, (2) followed by plasma heating in which there is a rapid rise in static pressure, and (3) a slight decrease static pressure before plasma column breakup. Plasma column lifetime was approximately 5 microseconds. The axial pressure asymmetry was attributed to nonsimultaneous pinching of the imploding current sheet along the discharge chamber axis. The rapid heating could be attributed in part to viscous effects introduced by radial gradients in the axial streaming velocity.

  8. Vertically stabilized elongated cross-section tokamak

    DOEpatents

    Sheffield, George V.

    1977-01-01

    This invention provides a vertically stabilized, non-circular (minor) cross-section, toroidal plasma column characterized by an external separatrix. To this end, a specific poloidal coil means is added outside a toroidal plasma column containing an endless plasma current in a tokamak to produce a rectangular cross-section plasma column along the equilibrium axis of the plasma column. By elongating the spacing between the poloidal coil means the plasma cross-section is vertically elongated, while maintaining vertical stability, efficiently to increase the poloidal flux in linear proportion to the plasma cross-section height to achieve a much greater plasma volume than could be achieved with the heretofore known round cross-section plasma columns. Also, vertical stability is enhanced over an elliptical cross-section plasma column, and poloidal magnetic divertors are achieved.

  9. Hydrodynamic modelling of accretion impacts in classical T Tauri stars: radiative heating of the pre-shock plasma

    NASA Astrophysics Data System (ADS)

    Costa, G.; Orlando, S.; Peres, G.; Argiroffi, C.; Bonito, R.

    2017-01-01

    Context. It is generally accepted that, in classical T Tauri stars, the plasma from the circumstellar disc accretes onto the stellar surface with free-fall velocity and the impact generates a shock. The impact region is expected to contribute to emission in different spectral bands; many studies have confirmed that the X-rays arise from the post-shock plasma but, otherwise, there are no studies in the literature investigating the origin of the observed UV emission which is apparently correlated to accretion. Aims: We investigated the effect of radiative heating of the infalling material by the post-shock plasma at the base of the accretion stream, with the aim to identify in which region a significant part of the UV emission originates. Methods: We developed a one-dimensional hydrodynamic model describing the impact of an accretion stream onto the stellar surface; the model takes into account the gravity, the radiative cooling of an optically thin plasma, the thermal conduction, and the heating due to absorption of X-ray radiation. The latter term represents the heating of the infalling plasma due to the absorption of X-rays emitted from the post-shock region. Results: We found that the radiative heating of the pre-shock plasma plays a non-negligible role in the accretion phenomenon. In particular, the dense and cold plasma of the pre-shock accretion column is gradually heated up to a few 105K due to irradiation of X-rays arising from the shocked plasma at the impact region. This heating mechanism does not affect significantly the dynamics of the post-shock plasma. On the other hand, a region of radiatively heated gas (that we consider a precursor) forms in the unshocked accretion column and contributes significantly to UV emission. Our model naturally reproduces the luminosity of UV emission lines correlated to accretion and shows that most of the UV emission originates from the precursor.

  10. An investigation of transient pressure and plasma properties in a pinched plasma column. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Stover, E. K.; York, T. M.

    1971-01-01

    The transient pinched plasma column generated in a linear Z-pinch was studied experimentally and analytically. The plasma column was investigated experimentally with the following plasma diagnostics: a special rapid response pressure transducer, a magnetic field probe, a voltage probe and discharge luminosity. Axial pressure profiles on the discharge chamber axis were used to identify three characteristic regions of plasma column behavior; they were in temporal sequence: strong axial pressure asymmetry noted early in plasma column lifetime followed by plasma heating in which there is a rapid rise in static pressure and a slight decrease static pressure before plasma column breakup. Plasma column lifetime was approximately 5 microseconds. The axial pressure asymmetry was attributed to nonsimultaneous pinching of the imploding current sheet along the discharge chamber axis. The rapid heating is attributed in part to viscous effects introduced by radial gradients in the axial streaming velocity. Turbulent heating arising from discharge current excitation of the ion acoustic wave instability is also considered a possible heating mechanism.

  11. Long-range attraction of an ultrarelativistic electron beam by a column of neutral plasma

    NASA Astrophysics Data System (ADS)

    Adli, E.; Lindstrøm, C. A.; Allen, J.; Clarke, C. I.; Frederico, J.; Gessner, S. J.; Green, S. Z.; Hogan, M. J.; Litos, M. D.; O'Shea, B.; Yakimenko, V.; An, W.; Clayton, C. E.; Marsh, K. A.; Mori, W. B.; Joshi, C.; Vafaei-Najafabadi, N.; Corde, S.; Lu, W.

    2016-10-01

    We report on the experimental observation of the attraction of a beam of ultrarelativistic electrons towards a column of neutral plasma. In experiments performed at the FACET test facility at SLAC we observe that an electron beam moving parallel to a neutral plasma column, at an initial distance of many plasma column radii, is attracted into the column. Once the beam enters the plasma it drives a plasma wake similar to that of an electron beam entering the plasma column head-on. A simple analytical model is developed in order to capture the essential physics of the attractive force. The attraction is further studied by 3D particle-in-cell numerical simulations. The results are an important step towards better understanding of particle beam-plasma interactions in general and plasma wakefield accelerator technology in particular.

  12. Two-dimensional positive column structure with dust cloud: Experiment and nonlocal kinetic simulation

    NASA Astrophysics Data System (ADS)

    Zobnin, A. V.; Usachev, A. D.; Petrov, O. F.; Fortov, V. E.; Thoma, M. H.; Fink, M. A.

    2018-03-01

    The influence of a dust cloud on the structure of the positive column of a direct current gas discharge in a cylindrical glass tube under milligravity conditions has been studied both experimentally and numerically. The discharge was produced in neon at 60 Pa in a glass tube with a diameter of 30 mm at a discharge current 1 mA. Spherical monodisperse melamine formaldehyde dust particles with a diameter of 6.86 μm were injected into the positive column and formed there a uniform dust cloud with a maximum diameter of 14.4 mm. The shape of the cloud and the dust particle number density were measured. The cloud was stationary in the radial direction and slowly drifted in the axial direction. It was found that in the presence of the dust cloud, the intensity of the neon spectral line with a wavelength by 585.25 nm emitted by the discharge plasma increased by 2.3 times and 2 striations appeared on the anode side of the cloud. A numerical simulation of the discharge was performed using the 2D (quasi-3D) nonlocal self-consistent kinetic model of a longitudinally inhomogeneous axially symmetric positive column [Zobnin et al., Phys. Plasmas 21, 113503 (2014)], which was supplemented by a program module performing a self-consistent calculation of dust particle charges, the plasma recombination rate on dust particles, and ion scattering on dust particles. A new approach to the calculation of particle charges and the screening radius in dense dust clouds is proposed. The results of the simulation are presented, compared with experimental data and discussed. It is demonstrated that for the best agreement between simulated and experimental data, it is necessary to take into account the reflection of electrons from the dust particle surface in order to correctly describe the recombination rate in the cloud, its radial stability, and the dust particle charges.

  13. Long-range attraction of an ultrarelativistic electron beam by a column of neutral plasma

    DOE PAGES

    Adli, Erik; Lindstrom, C. A.; Allen, J.; ...

    2016-10-12

    Here, we report on the experimental observation of the attraction of a beam of ultrarelativistic electrons towards a column of neutral plasma. In experiments performed at the FACET test facility at SLAC we observe that an electron beam moving parallel to a neutral plasma column, at an initial distance of many plasma column radii, is attracted into the column. Once the beam enters the plasma it drives a plasma wake similar to that of an electron beam entering the plasma column head-on. A simple analytical model is developed in order to capture the essential physics of the attractive force. Themore » attraction is further studied by 3D particle-in-cell numerical simulations. The results are an important step towards better understanding of particle beam–plasma interactions in general and plasma wakefield accelerator technology in particular.« less

  14. Long-range attraction of an ultrarelativistic electron beam by a column of neutral plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adli, Erik; Lindstrom, C. A.; Allen, J.

    Here, we report on the experimental observation of the attraction of a beam of ultrarelativistic electrons towards a column of neutral plasma. In experiments performed at the FACET test facility at SLAC we observe that an electron beam moving parallel to a neutral plasma column, at an initial distance of many plasma column radii, is attracted into the column. Once the beam enters the plasma it drives a plasma wake similar to that of an electron beam entering the plasma column head-on. A simple analytical model is developed in order to capture the essential physics of the attractive force. Themore » attraction is further studied by 3D particle-in-cell numerical simulations. The results are an important step towards better understanding of particle beam–plasma interactions in general and plasma wakefield accelerator technology in particular.« less

  15. Nonlinear wave interaction in a plasma column

    NASA Technical Reports Server (NTRS)

    Larsen, J.

    1972-01-01

    Two particular cases of nonlinear wave interaction in a plasma column were investigated. The frequencies of the waves were on the order of magnitude of the electron plasma frequency, and ion motion was neglected. The nonlinear coupling of slow waves on a plasma column was studied by means of cold plasma theory, and the case of a plasma column surrounded by an infinite dielectric in the absence of a magnetic field was also examined. Nonlinear scattering from a plasma column in an electromagnetic field having it's magnetic field parallel to the axis of the column was investigated. Some experimental results on mode conversion in the presence of loss are presented along with some observations of nonlinear scattering, The effect of the earth's magnetic field and of discharge symmetry on the radiation pattern are discussed.

  16. Hard TiCx/SiC/a-C:H nanocomposite thin films using pulsed high energy density plasma focus device

    NASA Astrophysics Data System (ADS)

    Umar, Z. A.; Rawat, R. S.; Tan, K. S.; Kumar, A. K.; Ahmad, R.; Hussain, T.; Kloc, C.; Chen, Z.; Shen, L.; Zhang, Z.

    2013-04-01

    Thin films of TiCx/SiC/a-C:H were synthesized on Si substrates using a complex mix of high energy density plasmas and instability accelerated energetic ions of filling gas species, emanated from hot and dense pinched plasma column, in dense plasma focus device. The conventional hollow copper anode of Mather type plasma focus device was replaced by solid titanium anode for synthesis of TiCx/SiC/a-C:H nanocomposite thin films using CH4:Ar admixture of (1:9, 3:7 and 5:5) for fixed 20 focus shots as well as with different number of focus shots with fixed CH4:Ar admixture ratio 3:7. XRD results showed the formation of crystalline TiCx/SiC phases for thin film synthesized using different number of focus shots with CH4:Ar admixture ratio fixed at 3:7. SEM results showed that the synthesized thin films consist of nanoparticle agglomerates and the size of agglomerates depended on the CH4:Ar admixture ratio as well as on the number of focus shots. Raman analysis showed the formation of polycrystalline/amorphous Si, SiC and a-C for different CH4:Ar ratio as well as for different number of focus shots. The XPS analysis confirmed the formation of TiCx/SiC/a-C:H composite thin film. Nanoindentation results showed that the hardness and elastic modulus values of composite thin films increased with increasing number of focus shots. Maximum values of hardness and elastic modulus at the surface of the composite thin film were found to be about 22 and 305 GPa, respectively for 30 focus shots confirming the successful synthesis of hard composite TiCx/SiC/a-C:H coatings.

  17. First experimental demonstration of magnetic-field assisted fast heating of a dense plasma core

    NASA Astrophysics Data System (ADS)

    Fujioka, Shinsuke; Sakata, Shohei; Lee, Seung Ho; Matsuo, Kazuki; Sawada, Hiroshi; Iwasa, Yuki; Law, King Fai Farley; Morita, Hitoki; Kojima, Sadaoki; Abe, Yuki; Yao, Akira; Hata, Masayasu; Johzaki, Tomoyuki; Sunahara, Atsushi; Ozaki, Tetsuo; Sakagami, Hitoshi; Morace, Alessio; Arikawa, Yasunobu; Yogo, Akifumi; Nishimura, Hiroaki; Nakai, Mitsuo; Shiraga, Hiroyuki; Sentoku, Yasuhiko; Nagatomo, Hideo; Azechi, Hiroshi; Firex Project Team

    2016-10-01

    Fast heating of a dense plasma core by an energetic electron beam is being studied on GEKKO-LFEX laser facility. Here, we introduce a laser-driven kilo-tesla external magnetic field to guide the diverging electron beam to the dense plasma core. This involve placing a spherical target in the magnetic field, compressing it with the GEKKO-XII laser beams and then using the LFEX laser beams injected into the dense plasma to generate the electron beam which do the fast heating. Cu-Ka emission is used to visualize transport or heating processes of a dense plasma. X-ray spectrum from a highly ionized Cu ions indicates several keV of the temperature increment induced by the LFEX.

  18. Arbitrary electron acoustic waves in degenerate dense plasmas

    NASA Astrophysics Data System (ADS)

    Rahman, Ata-ur; Mushtaq, A.; Qamar, A.; Neelam, S.

    2017-05-01

    A theoretical investigation is carried out of the nonlinear dynamics of electron-acoustic waves in a collisionless and unmagnetized plasma whose constituents are non-degenerate cold electrons, ultra-relativistic degenerate electrons, and stationary ions. A dispersion relation is derived for linear EAWs. An energy integral equation involving the Sagdeev potential is derived, and basic properties of the large amplitude solitary structures are investigated in such a degenerate dense plasma. It is shown that only negative large amplitude EA solitary waves can exist in such a plasma system. The present analysis may be important to understand the collective interactions in degenerate dense plasmas, occurring in dense astrophysical environments as well as in laser-solid density plasma interaction experiments.

  19. Radiative accretion shocks along nonuniform stellar magnetic fields in classical T Tauri stars

    NASA Astrophysics Data System (ADS)

    Orlando, S.; Bonito, R.; Argiroffi, C.; Reale, F.; Peres, G.; Miceli, M.; Matsakos, T.; Stehlé, C.; Ibgui, L.; de Sa, L.; Chièze, J. P.; Lanz, T.

    2013-11-01

    Context. According to the magnetospheric accretion model, hot spots form on the surface of classical T Tauri stars (CTTSs) in regions where accreting disk material impacts the stellar surface at supersonic velocity, generating a shock. Aims: We investigate the dynamics and stability of postshock plasma that streams along nonuniform stellar magnetic fields at the impact region of accretion columns. We study how the magnetic field configuration and strength determine the structure, geometry, and location of the shock-heated plasma. Methods: We model the impact of an accretion stream onto the chromosphere of a CTTS by 2D axisymmetric magnetohydrodynamic simulations. Our model considers the gravity, the radiative cooling, and the magnetic-field-oriented thermal conduction (including the effects of heat flux saturation). We explore different configurations and strengths of the magnetic field. Results: The structure, stability, and location of the shocked plasma strongly depend on the configuration and strength of the magnetic field. In the case of weak magnetic fields (plasma β ≳ 1 in the postshock region), a large component of B may develop perpendicular to the stream at the base of the accretion column, which limits the sinking of the shocked plasma into the chromosphere and perturbs the overstable shock oscillations induced by radiative cooling. An envelope of dense and cold chromospheric material may also develop around the shocked column. For strong magnetic fields (β < 1 in the postshock region close to the chromosphere), the field configuration determines the position of the shock and its stand-off height. If the field is strongly tapered close to the chromosphere, an oblique shock may form well above the stellar surface at the height where the plasma β ≈ 1. In general, we find that a nonuniform magnetic field makes the distribution of emission measure vs. temperature of the postshock plasma at T > 106 K lower than when there is uniform magnetic field. Conclusions: The initial magnetic field strength and configuration in the region of impact of the stream are expected to influence the chromospheric absorption and, therefore, the observability of the shock-heated plasma in the X-ray band. In addition, the field strength and configuration also influence the energy balance of the shocked plasma with its emission measure at T > 106 K, which is lower than expected for a uniform field. The above effects contribute to underestimating the mass accretion rates derived in the X-ray band. Movies are available in electronic form at http://www.aanda.org

  20. Propulsion and Power Generation Capabilities of a Dense Plasma Focus (DPF) Fusion System for Future Military Aerospace Vehicles (POSTPRINT)

    DTIC Science & Technology

    2005-10-06

    The objective of this study was to perform a parametric evaluation of the performance and interface characteristics of a dense plasma focus (DPF...dense plasma focus (DPF) fusion power and propulsion technology, with advanced waverider-like airframe configurations utilizing air-breathing MHD

  1. Restrike Particle Beam Experiments on a Dense Plasma Focus. Opening Switch Research on a Dense Plasma Focus.

    DTIC Science & Technology

    1985-06-01

    Research on this grant has focused on plasma focus experiments in the areas of particle beam generation and as a potential repetitive opening switch...as were scaling laws for the increase of electron energy and current with input energy. The potential of the plasma focus as an opening switch was...delay line technique. The observed frequencies were most consistent with the lower hybrid frequency. Keywords include: Dense Plasma Focus , Particle Beam Generation, Opening Switch, Load Experiments, Pulsed Power.

  2. A two-phase flow model for submarine granular flows: With an application to collapse of deeply-submerged granular columns

    NASA Astrophysics Data System (ADS)

    Lee, Cheng-Hsien; Huang, Zhenhua

    2018-05-01

    The collapse process of a submerged granular column is strongly affected by its initial packing. Previous models for particle response time, which is used to quantify the drag force between the solid and liquid phases in rheology-based two-phase flow models, have difficulty in simulating the collapse process of granular columns with different initial concentrations (initial packing conditions). This study introduces a new model for particle response time, which enables us to satisfactorily model the drag force between the two phases for a wide range of volume concentration. The present model can give satisfactory results for both loose and dense packing conditions. The numerical results have shown that (i) the initial packing affects the occurrence of contractancy/diltancy behavior during the collapse process, (ii) the general buoyancy and drag force are strongly affected by the initial packing through contractancy and diltancy, and (iii) the general buoyancy and drag force can destabilize the granular material in loose packing condition but stabilize the granular material in dense packing condition. The results have shown that the collapse process of a densely-packed granular column is more sensitive to particle response time than that of a loosely-packed granular column.

  3. Study of scattering cross section of a plasma column using Green's function volume integral equation method

    NASA Astrophysics Data System (ADS)

    Soltanmoradi, Elmira; Shokri, Babak

    2017-05-01

    In this article, the electromagnetic wave scattering from plasma columns with inhomogeneous electron density distribution is studied by the Green's function volume integral equation method. Due to the ready production of such plasmas in the laboratories and their practical application in various technological fields, this study tries to find the effects of plasma parameters such as the electron density, radius, and pressure on the scattering cross-section of a plasma column. Moreover, the incident wave frequency influence of the scattering pattern is demonstrated. Furthermore, the scattering cross-section of a plasma column with an inhomogeneous collision frequency profile is calculated and the effect of this inhomogeneity is discussed first in this article. These results are especially used to determine the appropriate conditions for radar cross-section reduction purposes. It is shown that the radar cross-section of a plasma column reduces more for a larger collision frequency, for a relatively lower plasma frequency, and also for a smaller radius. Furthermore, it is found that the effect of the electron density on the scattering cross-section is more obvious in comparison with the effect of other plasma parameters. Also, the plasma column with homogenous collision frequency can be used as a better shielding in contrast to its inhomogeneous counterpart.

  4. Influence of the gas-flow Reynolds number on a plasma column in a glass tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Dong Jun; Uhm, Han S.; Cho, Guangsup

    2013-08-15

    Atmospheric-plasma generation inside a glass tube is influenced by gas stream behavior as described by the Reynolds number (Rn). In experiments with He, Ne, and Ar, the plasma column length increases with an increase in the gas flow rate under laminar flow characterized by Rn < 2000. The length of the plasma column decreases as the flow rate increases in the transition region of 2000 < Rn < 4000. For a turbulent flow beyond Rn > 4000, the length of the plasma column is short in front of the electrode, eventually leading to a shutdown.

  5. Scaling of Turbulence and Transport with ρ* in LAPD

    NASA Astrophysics Data System (ADS)

    Guice, Daniel; Carter, Troy; Rossi, Giovanni

    2014-10-01

    The plasma column size of the Large Plasma Device (LAPD) is varied in order to investigate the variation of turbulence and transport with ρ* =ρs / a . The data set includes plasmas produced by the standard BaO plasma source (straight field plasma radius a 30 cm) as well as the new higher density, higher temperature LaB6 plasma source (straight field plasma radius a 10 cm). The size of the plasma column is scaled in order to observe a Bohm to Gyro-Bohm diffusion transition. The main plasma column magnetic field is held fixed while the field in the cathode region is changed in order to map the cathode to different plasma column scales in the main chamber. Past experiments in the LAPD have shown a change in the observed diffusion but no transition to Gyro-Bohm diffusion. Results will be presented from an ongoing campaign to push the LAPD into the Gyro-Bohm diffusion regime.

  6. Density-driven transport of gas phase chemicals in unsaturated soils

    NASA Astrophysics Data System (ADS)

    Fen, Chiu-Shia; Sun, Yong-tai; Cheng, Yuen; Chen, Yuanchin; Yang, Whaiwan; Pan, Changtai

    2018-01-01

    Variations of gas phase density are responsible for advective and diffusive transports of organic vapors in unsaturated soils. Laboratory experiments were conducted to explore dense gas transport (sulfur hexafluoride, SF6) from different source densities through a nitrogen gas-dry soil column. Gas pressures and SF6 densities at transient state were measured along the soil column for three transport configurations (horizontal, vertically upward and vertically downward transport). These measurements and others reported in the literature were compared with simulation results obtained from two models based on different diffusion approaches: the dusty gas model (DGM) equations and a Fickian-type molar fraction-based diffusion expression. The results show that the DGM and Fickian-based models predicted similar dense gas density profiles which matched the measured data well for horizontal transport of dense gas at low to high source densities, despite the pressure variations predicted in the soil column were opposite to the measurements. The pressure evolutions predicted by both models were in trend similar to the measured ones for vertical transport of dense gas. However, differences between the dense gas densities predicted by the DGM and Fickian-based models were discernible for vertically upward transport of dense gas even at low source densities, as the DGM-based predictions matched the measured data better than the Fickian results did. For vertically downward transport, the dense gas densities predicted by both models were not greatly different from our experimental measurements, but substantially greater than the observations obtained from the literature, especially at high source densities. Further research will be necessary for exploring factors affecting downward transport of dense gas in soil columns. Use of the measured data to compute flux components of SF6 showed that the magnitudes of diffusive flux component based on the Fickian-type diffusion expressions in terms of molar concentration, molar fraction and mass density fraction gradient were almost the same. However, they were greater than the result computed with the mass fraction gradient for > 24% and the DGM-based result for more than one time. As a consequence, the DGM-based total flux of SF6 was in magnitude greatly less than the Fickian result not only for horizontal transport (diffusion-dominating) but also for vertical transport (advection and diffusion) of dense gas. Particularly, the Fickian-based total flux was more than two times in magnitude as much as the DGM result for vertically upward transport of dense gas.

  7. Generation of electromagnetic emission during the injection of dense supersonic plasma flows into arched magnetic field

    NASA Astrophysics Data System (ADS)

    Viktorov, Mikhail; Golubev, Sergey; Mansfeld, Dmitry; Vodopyanov, Alexander

    2016-04-01

    Interaction of dense supersonic plasma flows with an inhomogeneous arched magnetic field is one of the key problems in near-Earth and space plasma physics. It can influence on the energetic electron population formation in magnetosphere of the Earth, movement of plasma flows in magnetospheres of planets, energy release during magnetic reconnection, generation of electromagnetic radiation and particle precipitation during solar flares eruption. Laboratory study of this interaction is of big interest to determine the physical mechanisms of processes in space plasmas and their detailed investigation under reproducible conditions. In this work a new experimental approach is suggested to study interaction of supersonic (ion Mach number up to 2.7) dense (up to 1015 cm-3) plasma flows with inhomogeneous magnetic field (an arched magnetic trap with a field strength up to 3.3 T) which opens wide opportunities to model space plasma processes in laboratory conditions. Fully ionized plasma flows with density from 1013 cm-3 to 1015 cm-3 are created by plasma generator on the basis of pulsed vacuum arc discharge. Then plasma is injected in an arched open magnetic trap along or across magnetic field lines. The filling of the arched magnetic trap with dense plasma and further magnetic field lines break by dense plasma flow were experimentally demonstrated. The process of plasma deceleration during the injection of plasma flow across the magnetic field lines was experimentally demonstrated. Pulsed plasma microwave emission at the electron cyclotron frequency range was observed. It was shown that frequency spectrum of plasma emission is determined by position of deceleration region in the magnetic field of the magnetic arc, and is affected by plasma density. Frequency spectrum shifts to higher frequencies with increasing of arc current (plasma density) because the deceleration region of plasma flow moves into higher magnetic field. The observed emission can be related to the cyclotron mechanism of generation by non-equilibrium energetic electrons in dense plasma. The reported study was funded by RFBR, according to the research project No. 16-32-60056 mol_a_dk.

  8. Enhancement of soft X-ray lasing action with thin blade radiators

    DOEpatents

    Suckewer, Szymon; Skinner, Charles H.; Voorhees, David R.

    1988-01-01

    An enhancement of approximately 100 of stimulated emission over spontaneous emission of the CVI 182 Angstrom line was obtained in a recombining magnetically confined plasma column. The plasma was formed by focusing a CO.sub.2 laser beam on a carbon disc. A magnetic solenoid produced a strong magnetic field which confined the plasma to the shape of a column. A single thin carbon blade extended parallel to the plasma column and served to make the column axially more uniform and also acted as a heat sink. Axial and transverse measurements of the soft X-ray lasing action were made from locations off-set from the central axis of the plasma column. Multiple carbon blades located at equal intervals around the plasma column were also found to produce acceptable results. According to another embodiment 10 a thin coating of aluminum or magnesium was placed on the carbon disc and blade. The Z of the coating should preferably be at least 5 greater than the Z of the target. Measurements of the soft X-rays generated at 182 Angstroms showed a significant increase in intensity enhancement.

  9. Existence of a return direction for plasma escaping from a pinched column in a plasma focus discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubes, P.; Cikhardt, J.; Klir, D.

    2015-05-15

    The use of multi-frame interferometry used on the PF-1000 device with the deuterium filling showed the existence of a return motion of the top of several lobules of the pinched column formed at the pinched plasma column. This phenomenon was observed in the presence of an over-optimal mass in front of the anode, which depressed the intensity of the implosion and the smooth surface of the pinched plasma column. The observed evolution was explored through the use of closed poloidal currents transmitted outside the pinched plasma. This interpretation complements the scenario of the closed currents flowing within the structures insidemore » the pinched column, which has been published recently on the basis of observations from interferometry, neutron, and magnetic probe diagnostics on this device.« less

  10. Hugoniot measurements of double-shocked precompressed dense xenon plasmas

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Chen, Q. F.; Gu, Y. J.; Chen, Z. Y.

    2012-12-01

    The current partially ionized plasmas models for xenon show substantial differences since the description of pressure and thermal ionization region becomes a formidable task, prompting the need for an improved understanding of dense xenon plasmas behavior at above 100 GPa. We performed double-shock compression experiments on dense xenon to determine accurately the Hugoniot up to 172 GPa using a time-resolved optical radiation method. The planar strong shock wave was produced using a flyer plate impactor accelerated up to ˜6 km/s with a two-stage light-gas gun. The time-resolved optical radiation histories were acquired by using a multiwavelength channel optical transience radiance pyrometer. Shock velocity was measured and mass velocity was determined by the impedance-matching methods. The experimental equation of state of dense xenon plasmas are compared with the self-consistent fluid variational calculations of dense xenon in the region of partial ionization over a wide range of pressures and temperatures.

  11. The Properties of Planck Galactic Cold Clumps in the L1495 Dark Cloud

    NASA Astrophysics Data System (ADS)

    Tang, Mengyao; Liu, Tie; Qin, Sheng-Li; Kim, Kee-Tae; Wu, Yuefang; Tatematsu, Ken’ichi; Yuan, Jinghua; Wang, Ke; Parsons, Harriet; Koch, Patrick M.; Sanhueza, Patricio; Ward-Thompson, D.; Tóth, L. Viktor; Soam, Archana; Lee, Chang Won; Eden, David; Di Francesco, James; Rawlings, Jonathan; Rawlings, Mark G.; Montillaud, Julien; Zhang, Chuan-Peng; Cunningham, M. R.

    2018-04-01

    Planck Galactic Cold Clumps (PGCCs) possibly represent the early stages of star formation. To understand better the properties of PGCCs, we studied 16 PGCCs in the L1495 cloud with molecular lines and continuum data from Herschel, JCMT/SCUBA-2, and the PMO 13.7 m telescope. Thirty dense cores were identified in 16 PGCCs from 2D Gaussian fitting. The dense cores have dust temperatures of T d = 11–14 K, and H2 column densities of {N}{{{H}}2} = (0.36–2.5) × 1022 cm‑2. We found that not all PGCCs contain prestellar objects. In general, the dense cores in PGCCs are usually at their earliest evolutionary stages. All the dense cores have non-thermal velocity dispersions larger than the thermal velocity dispersions from molecular line data, suggesting that the dense cores may be turbulence-dominated. We have calculated the virial parameter α and found that 14 of the dense cores have α <2, while 16 of the dense cores have α >2. This suggests that some of the dense cores are not bound in the absence of external pressure and magnetic fields. The column density profiles of dense cores were fitted. The sizes of the flat regions and core radii decrease with the evolution of dense cores. CO depletion was found to occur in all the dense cores, but is more significant in prestellar core candidates than in protostellar or starless cores. The protostellar cores inside the PGCCs are still at a very early evolutionary stage, sharing similar physical and chemical properties with the prestellar core candidates.

  12. Electron injection and acceleration in the plasma bubble regime driven by an ultraintense laser pulse combined with using dense-plasma wall and block

    NASA Astrophysics Data System (ADS)

    Zhao, Xue-Yan; Xie, Bai-Song; Wu, Hai-Cheng; Zhang, Shan; Hong, Xue-Ren; Aimidula, Aimierding

    2012-03-01

    An optimizing and alternative scheme for electron injection and acceleration in the wake bubble driven by an ultraintense laser pulse is presented. In this scheme, the dense-plasma wall with an inner diameter matching the expected bubble size is placed along laser propagation direction. Meanwhile, a dense-plasma block dense-plasma is adhered inward transversely at some certain position of the wall. Particle-in-cell simulations are performed, which demonstrate that the block plays an important role in the first electron injection and acceleration. The result shows that a collimated electron bunch with a total number of about 4.04×108μm-1 can be generated and accelerated stably to 1.61 GeV peak energy with 2.6% energy spread. The block contributes about 50% to the accelerated electron injection bunch by tracing and sorting statistically the source.

  13. Electron-ion collision-frequency for x-ray Thomson scattering in dense plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faussurier, Gérald, E-mail: gerald.faussurier@cea.fr; Blancard, Christophe

    2016-01-15

    Two methods are presented to calculate the electron-ion collision-frequency in dense plasmas using an average-atom model. The first one is based on the Kubo-Greenwood approach. The second one uses the Born and Lenard-Balescu approximations. The two methods are used to calculate x-ray Thomson scattering spectra. Illustrations are shown for dense beryllium and aluminum plasmas. Comparisons with experiment are presented in the case of an x-ray Thomson scattering spectrum.

  14. Spatial structures arising along a surface wave produced plasma column: an experimental study

    NASA Astrophysics Data System (ADS)

    Atanassov, V.; Mateev, E.

    2007-04-01

    The formation of spatial structures in high-frequency and microwave discharges has been known for several decades. Nevertheless it still raises increased interest, probably due to the variety of the observed phenomena and the lack of adequate and systematic theoretical interpretation. In this paper we present preliminary results on observation of spatial structures appearing along a surface wave sustained plasma column. The experiments have been performed in noble gases (xenon and neon) at low to intermediate pressure and the surface wave has been launched by a surfatron. Under these conditions we have observed and documented: i) appearance of stationary plasma rings; ii) formation of standing-wave striationlike patterns; iii) contraction of the plasma column; iv) plasma column transition into moving plasma balls and filaments. Some of the existing theoretical considerations of these phenomena are reviewed and discussed.

  15. Microchannel cross load array with dense parallel input

    DOEpatents

    Swierkowski, Stefan P.

    2004-04-06

    An architecture or layout for microchannel arrays using T or Cross (+) loading for electrophoresis or other injection and separation chemistry that are performed in microfluidic configurations. This architecture enables a very dense layout of arrays of functionally identical shaped channels and it also solves the problem of simultaneously enabling efficient parallel shapes and biasing of the input wells, waste wells, and bias wells at the input end of the separation columns. One T load architecture uses circular holes with common rows, but not columns, which allows the flow paths for each channel to be identical in shape, using multiple mirror image pieces. Another T load architecture enables the access hole array to be formed on a biaxial, collinear grid suitable for EDM micromachining (square holes), with common rows and columns.

  16. Radial particle-size segregation during packing of particulates into cylindrical containers

    USGS Publications Warehouse

    Ripple, C.D.; James, R.V.; Rubin, J.

    1973-01-01

    In a series of experiments, soil materials were placed in long cylindrical containers, using various packing procedures. Soil columns produced by deposition and simultaneous vibratory compaction were dense and axially uniform, but showed significant radial segregation of particle sizes. Similar results were obtained with deposition and simultaneous impact-type compaction when the impacts resulted in significant container "bouncing". The latter procedure, modified to minimize "bouncing" produced dense, uniform soil columns, showing little radial particle-size segregation. Other procedures tested (deposition alone and deposition followed by compaction) did not result in radial segregation, but produced columns showing either relatively low or axially nonuniform densities. Current data suggest that radial particle-size segregation is mainly due to vibration-induced particle circulation in which particles of various sizes have different circulation rates and paths. ?? 1973.

  17. Phase transitions, interparticle correlations, and elementary processes in dense plasmas

    NASA Astrophysics Data System (ADS)

    Ichimaru, Setsuo

    2017-12-01

    Astrophysical dense plasmas are those we find in the interiors, surfaces, and outer envelopes of stellar objects such as neutron stars, white dwarfs, the Sun, and giant planets. Condensed plasmas in the laboratory settings include those in ultrahigh-pressure metal-physics experiments undertaken for realization of metallic hydrogen. We review basic physics issues studied in the past 60 some years on the phase transitions, the interparticle correlations, and the elementary processes in dense plasmas, through survey on scattering of electromagnetic waves, equations of state, phase diagrams, transport processes, stellar and planetary magnetisms, and thermo- and pycnonuclear reactions.

  18. Effects of weakly coupled and dense quantum plasmas environments on charge exchange and ionization processes in Na+ + Rb(5s) atom collisions

    NASA Astrophysics Data System (ADS)

    Pandey, Mukesh Kumar; Lin, Yen-Chang; Ho, Yew Kam

    2017-02-01

    The effects of weakly coupled or classical and dense quantum plasmas environment on charge exchange and ionization processes in Na+ + Rb(5s) atom collision at keV energy range have been investigated using classical trajectory Monte Carlo (CTMC) method. The interaction of three charged particles are described by the Debye-Hückel screen potential for weakly coupled plasma, whereas exponential cosine-screened Coulomb potential have been used for dense quantum plasma environment and the effects of both conditions on the cross sections are compared. It is found that screening effects on cross sections in high Debye length condition is quite small in both plasma environments. However, enhanced screening effects on cross sections are observed in dense quantum plasmas for low Debye length condition, which becomes more effective while decreasing the Debye length. Also, we have found that our calculated results for plasma-free case are comparable with the available theoretical results. These results are analyzed in light of available theoretical data with the choice of model potentials.

  19. A study of the methods for the production and confinement of high energy plasmas. [injection of dense plasma into long magnetic field

    NASA Technical Reports Server (NTRS)

    Cheng, D. Y.; Wang, P.

    1972-01-01

    The injection of dense plasmas into a B sub z long magnetic field from both ends of the field coil was investigated. Deflagration plasma guns and continuous flow Z-pinch are discussed along with the possibility of a continuous flow Z-pinch fusion reactor. The injection experiments are described with emphasis on the synchronization of the two plasma deflagration guns, the collision of the two plasma beams, and the determination of plasma density.

  20. Optical Pumping of High Power Lasers with an Array of Plasma Pinches.

    DTIC Science & Technology

    1986-04-01

    Two dense plasma focus systems, the hypocycloidal pinch and the Mather type were investigated as the potential excitation light sources for high...was also performed for the first time using the Mather type dense plasma focus (MDPF) sucsessfully. Results thus fare indicate that both HCP and MDPF

  1. Opening Switch Research on a Dense Plasma Focus.

    DTIC Science & Technology

    Several experiments were performed to enhance power coupling to the load by placing the load electrode opposite the muzzle end of the Dense Plasma ... Focus plasma gun. The impaler concept, whereby the current sheath is run into a knife edge insulator, was tested in two configurations. However, the

  2. Arbitrary amplitude electrostatic wave propagation in a magnetized dense plasma containing helium ions and degenerate electrons

    NASA Astrophysics Data System (ADS)

    Mahmood, S.; Sadiq, Safeer; Haque, Q.; Ali, Munazza Z.

    2016-06-01

    The obliquely propagating arbitrary amplitude electrostatic wave is studied in a dense magnetized plasma having singly and doubly charged helium ions with nonrelativistic and ultrarelativistic degenerate electrons pressures. The Fermi temperature for ultrarelativistic degenerate electrons described by N. M. Vernet [(Cambridge University Press, Cambridge, 2007), p. 57] is used to define ion acoustic speed in ultra-dense plasmas. The pseudo-potential approach is used to solve the fully nonlinear set of dynamic equations for obliquely propagating electrostatic waves in a dense magnetized plasma containing helium ions. The upper and lower Mach number ranges for the existence of electrostatic solitons are found which depends on the obliqueness of the wave propagation with respect to applied magnetic field and charge number of the helium ions. It is found that only compressive (hump) soliton structures are formed in all the cases and only subsonic solitons are formed for a singly charged helium ions plasma case with nonrelativistic degenerate electrons. Both subsonic and supersonic soliton hump structures are formed for doubly charged helium ions with nonrelativistic degenerate electrons and ultrarelativistic degenerate electrons plasma case containing singly as well as doubly charged helium ions. The effect of propagation direction on the soliton amplitude and width of the electrostatic waves is also presented. The numerical plots are also shown for illustration using dense plasma parameters of a compact star (white dwarf) from literature.

  3. MHD Instabilities and Toroidal Field Effects on Plasma Column Behavior in Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khorshid, Pejman; Plasma Physics Research Center, Islamic Azad University, 14665-678, Tehran; Wang, L.

    2006-12-04

    In the edge plasma of the CT-6B and IRAN-T1 tokamaks the shape of plasma column based on MHD behavior has been studied. The bulk of plasma behavior during plasma column rotation as non-rigid body plasma has been investigated. We found that mode number and rotation frequency of plasma column are different in angle position, so that the mode number detected from Mirnov coils array located in poloidal angle on the inner side of chamber is more than outer side which it can be because of toroidal magnetic field effects. The results of IR-T1 and CT-6B tokamaks compared with each other,more » so that in the CT-6B because of its coils number must be less, but because of its Iron core the effect of toroidal magnetic field became more effective with respect to IR-T1. In addition, it is shown that the plasma column behaves as non-Rigid body plasma so that the poloidal rotation velocity variation in CT-6B is more than IR-T1. A relative correction for island rotation frequency has been suggested in connection with IRAN-T1 and CT-6B tokamak results, which can be considered for optical measurement purposes and also for future advanced tokamak control design.« less

  4. Asymptotic regimes for the electrical and thermal conductivities in dense plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faussurier, G., E-mail: gerald.faussurier@cea.fr; Blancard, C.

    2015-04-15

    We study the asymptotic regimes for the electrical and thermal conductivities in dense plasmas obtained by combining the Chester–Thellung–Kubo–Greenwood approach and the Kramers approximation [Faussurier et al., Phys. Plasmas 21, 092706 (2014)]. Non-degenerate and degenerate situations are considered. The Wiedemann–Franz law is obtained in the degenerate case.

  5. A Plasma Ultraviolet Source for Short Wavelength Lasers.

    DTIC Science & Technology

    1986-03-10

    A high power blue-green laser was pumped with an array of the dense plasma focus . As the result of optimizing the operating conditions of the dense... plasma focus and laser system, the maximum untuned laser output exceeded 2.lmJ corresponding to the energy density 3J/cu cm which is much higher than

  6. X-ray Emission from the Interaction of a Macroscopic Particle with a Dense Plasma Focus.

    DTIC Science & Technology

    1976-10-01

    Recently the interest in dense plasma focus has greatly increased because of the possibility of developing the device into an intense, pulsed...using a macroscopic particle to interact with a plasma focus . A theoretical study was carried out to predict the relative amount of X-ray increase

  7. Plasma sheet density dependence on Interplanetary Magnetic Field and Solar Wind properties: statistical study using 9+ year of THEMIS data

    NASA Astrophysics Data System (ADS)

    Nykyri, K.; Chu, C.; Dimmock, A. P.

    2017-12-01

    Previous studies have shown that plasma sheet in tenuous and hot during southward IMF, whereas northward IMF conditions are associated with cold, dense plasma. The cold, dense plasma sheet (CDPS) has strong influence on magnetospheric dynamics. Closer to Earth, the CDPS could be formed via double high-latitude reconnection, while at increasing tailward distance reconnection, diffusion and kinetic Alfven waves in association with Kelvin-Helmholtz Instability are suggested as dominant source for cold-dense plasma sheet formation. In this paper we present statistical correlation study between Solar Wind, Magnetosheath and Plasma sheet properties using 9+ years of THEMIS data in aberrated GSM frame, and in a normalized coordinate system that takes into account the changes of the magnetopause and bow shock location with respect to changing solar wind conditions. We present statistical results of the plasma sheet density dependence on IMF orientation and other solar wind properties.

  8. Production of dense plasmas in a hypocycloidal pinch apparatus

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Mcfarland, D. R.; Hohl, F.

    1977-01-01

    A high-power pinch apparatus consisting of disk electrodes was developed, and diagnostic measurements to study its mechanism of dense plasma production have been made. The collapse fronts of the current sheets are well organized, and dense plasma foci are produced on the axis with radial stability in excess of 5 microsec. A plasma density greater than 10 to the 18th power per cu cm is determined with Stark broadening and CO2 laser absorption. Essentially complete absorption of a high-energy CO2 laser beam has been observed. A plasma temperature of approximately 1 keV is measured with differential transmission of soft X-rays through thin foils. The advantages of this apparatus over the coaxial plasma focus are improvements in (1) plasma volume, (2) stability, (3) containment time, (4) access to additional heating by laser or electron beams, and (5) the possibility of scaling up to a multiple array for high-power operation.

  9. Dense plasma focus production in a hypocycloidal pinch

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Mcfarland, D. R.; Hohl, F.

    1975-01-01

    A type of high-power pinch apparatus consisting of disk electrodes was developed, and diagnostic measurements to study its mechanism of dense plasma production were made. The collapse fronts of the current sheets are well organized, and dense plasma focuses are produced on the axis with radial stability in excess of 5 microns. A plasma density greater than 10 to the 18th power/cubic cm was determined with Stark broadening and CO2 laser absorption. A plasma temperature of approximately 1 keV was measured with differential transmission of soft X-rays through thin foils. Essentially complete absorption of a high-energy CO2 laser beam was observed. The advantages of this apparatus over the coaxial plasma focus are in (1) the plasma volume, (2) the stability, (3) the containment time, (4) the easy access to additional heating by laser or electron beams, and (5) the possibility of scaling up to a multiple array for high-power operation.

  10. Stability of a Plasma Column. Free-Particle Model; STABILITE D'UNE COLONNE DE PLASMA. MODELE DES PARTICULES LIBRES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troyon, F.

    1963-12-01

    The stability of a field-free homogeneous column of plasma confined to an axial static field and the sum of an alternating and static B/sub tt/ field is considered in the freeparticle model. Conditions for the existence of a positive average restoring force are derived, and it is shown that for small deformations the column is stable for sufficientiy high frequency. (auth)

  11. Hepatic Effects of Estrogen on Plasma Distribution of Small Dense Low-Density Lipoprotein and Free Radical Production in Postmenopausal Women.

    PubMed

    Nii, Shota; Shinohara, Koichi; Matsushita, Hiroshi; Noguchi, Yasuyuki; Watanabe, Kazushi; Wakatsuki, Akihiko

    2016-07-01

    Hepatic effects of estrogen therapy on low-density lipoprotein (LDL) subfraction or oxidative stress have not been previously evaluated. The purpose of the present study was to investigate whether the differential hepatic effects of estrogen affect plasma distribution of small dense LDL and free radical production in postmenopausal women. In all, 45 postmenopausal women were given 0.625 mg/day of oral conjugated equine estrogen (CEE) (n=15), 1.0 mg/day of oral 17β estradiol (E2) (n=15), or 50 μg/day of transdermal 17βE2 (n=15) for 3 months. Subjects received either estrogen alone or with dydrogesterone at 5 mg/day. Plasma concentrations of sex hormone-binding globulin (SHBG), lipids, metallic ions, and derivatives of reactive oxygen metabolites (d-ROMs) were measured. CEE, but not oral 17βE2, increased the plasma concentrations of triglyceride, copper (Cu), and d-ROMs and the ratio of small dense LDL/total LDL cholesterol, a marker for plasma distribution of small dense LDL. Transdermal 17βE2 decreased d-ROMs concentrations but did not significantly change other parameters. Plasma concentrations of SHBG increased in the 3 groups. Estrogen-induced changes in triglyceride correlated positively either with changes in SHBG (R=0.52, P=0.0002) or the ratio of small dense LDL/total LDL cholesterol (R=0.65, P<0.0001). Changes in Cu also correlated positively either with changes in SHBG (R=0.85, P<0.0001) or d-ROMs (R=0.86, P<0.0001). The hepatic effects of different routes or types of estrogen therapy may be associated with plasma distribution of small dense LDL and free radical production in postmenopausal women.

  12. Engineering Considerations for the Self-Energizing Magnetoplasmadynamic (MPD)-Type Fusion Plasma Thruster

    DTIC Science & Technology

    1992-02-01

    Feasibility studies Of dense plasma focus (DPF) device as a fusion propulsion thruster have been performed. Both conventional and spin-polarized D...uncertainties remain in the validity of scaling laws on capacitor mass at high current beyond 1 MA. Fusion Propulsion, Dense Plasma Focus , Magnetoplasmadynamic Thruster, Advanced Fuel, D-3He Fusion, Spin-Polarized Fusion.

  13. Arbitrary amplitude electrostatic wave propagation in a magnetized dense plasma containing helium ions and degenerate electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahmood, S., E-mail: shahzadm100@gmail.com; Sadiq, Safeer; Haque, Q.

    2016-06-15

    The obliquely propagating arbitrary amplitude electrostatic wave is studied in a dense magnetized plasma having singly and doubly charged helium ions with nonrelativistic and ultrarelativistic degenerate electrons pressures. The Fermi temperature for ultrarelativistic degenerate electrons described by N. M. Vernet [(Cambridge University Press, Cambridge, 2007), p. 57] is used to define ion acoustic speed in ultra-dense plasmas. The pseudo-potential approach is used to solve the fully nonlinear set of dynamic equations for obliquely propagating electrostatic waves in a dense magnetized plasma containing helium ions. The upper and lower Mach number ranges for the existence of electrostatic solitons are found whichmore » depends on the obliqueness of the wave propagation with respect to applied magnetic field and charge number of the helium ions. It is found that only compressive (hump) soliton structures are formed in all the cases and only subsonic solitons are formed for a singly charged helium ions plasma case with nonrelativistic degenerate electrons. Both subsonic and supersonic soliton hump structures are formed for doubly charged helium ions with nonrelativistic degenerate electrons and ultrarelativistic degenerate electrons plasma case containing singly as well as doubly charged helium ions. The effect of propagation direction on the soliton amplitude and width of the electrostatic waves is also presented. The numerical plots are also shown for illustration using dense plasma parameters of a compact star (white dwarf) from literature.« less

  14. PLASMA ENERGIZATION

    DOEpatents

    Furth, H.P.; Chambers, E.S.

    1962-03-01

    BS>A method is given for ion cyclotron resonance heatthg of a magnetically confined plasma by an applied radio-frequency field. In accordance with the invention, the radiofrequency energy is transferred to the plasma without the usual attendent self-shielding effect of plasma polarlzatlon, whereby the energy transfer is accomplished with superior efficiency. More explicitly, the invention includes means for applying a radio-frequency electric field radially to an end of a plasma column confined in a magnetic mirror field configuration. The radio-frequency field propagates hydromagnetic waves axially through the column with the waves diminishing in an intermediate region of the column at ion cyclotron resonance with the fleld frequency. In such region the wave energy is converted by viscous damping to rotational energy of the plasma ions. (AEC)

  15. Effect of Post-spray Shot Peening Treatment on the Corrosion Behavior of NiCr-Mo Coating by Plasma Spraying of the Shell-Core-Structured Powders

    NASA Astrophysics Data System (ADS)

    Tian, Jia-Jia; Wei, Ying-Kang; Li, Cheng-Xin; Yang, Guan-Jun; Li, Chang-Jiu

    2018-01-01

    Corrosion of metal plays a detrimental role in service lifetime of parts or systems. Therefore, coating a protective film which is fully dense and defects free on the base metal is an effective approach to protect the base metal from corrosion. In this study, a dense NiCr-20Mo coating with excellent lamellar interface bonding was deposited by plasma spraying of the novel shell-core-structured Mo-clad-NiCr powders, and then post-spray shot peening treatment by cold spraying of steel shots was applied to the plasma-sprayed NiCr-20Mo coating to obtain a fully dense coating through eliminating possibly existed pores and un-bonded interfaces within the NiCr-20Mo coating. Corrosion behaviors of the NiCr-20Mo coatings before and after shot peening were tested to investigate the effect of the post-spray shot peening on the corrosion behavior of the NiCr-20Mo coating. Results showed that a much dense and uniform plasma-sprayed NiCr-20Mo coating with perfect lamellar bonding at most of interfaces was deposited. However, the electrochemical tests revealed the existence of through-thickness pores in the as-plasma-sprayed NiCr-20Mo coating. Through the post-spray shot peening treatment, a completely dense top layer in the coating was formed, and with the increase in the shot peening intensity from one pass to three passes, the dense top layer became thicker from 100 μm to reach 300 μm of the whole coating thickness. Thus, a fully dense bulk-like coating was obtained. Corrosion test results showed that the dense coating layer resulting from densification of shot peening can act as an effective barrier coating to prevent the penetration of the corrosive medium and consequently protect the substrate from corrosion effectively. Therefore, a fully dense bulk-like NiCr-20Mo coating with excellent corrosion resistance can be achieved through the plasma spraying of Mo-clad-NiCr powders followed by appropriate post-spray shot peening treatment.

  16. Radial dependence of HF wave field strength in the BPD column. [Beam Plasma Discharge

    NASA Technical Reports Server (NTRS)

    Jost, R. J.; Anderson, H. R.; Bernstein, W.; Kellogg, P. J.

    1982-01-01

    The results of a recent set of RF frequency measurements of the beam plasma discharge (BPD) performed in order to determine a quantitative value for the field strength in the plasma frequency region of the spectrum are presented. The parallel and perpendicular components of the plasma wave electric fields inside the BPD column have comparable field strengths, on the order of 10 volts/m. The radial dependence of the field strength is very strong, decreasing by as much as 40 dB within one meter from the beam center, with the illumination or discharge column approximately one meter in diameter. The field strength inside the column increases as a function of distance along the beam at least for several meters from the gun aperture. The frequency and amplitude of the plasma wave increases with beam current. A particularly rapid increase in these parameters occurs as the beam current approaches the critical current.

  17. Harnessing mass differential confinement effects in magnetized rotating plasmas to address new separation needs

    NASA Astrophysics Data System (ADS)

    Gueroult, R.; Rax, J.-M.; Zweben, S. J.; Fisch, N. J.

    2018-01-01

    The ability to separate large volumes of mixed species based on atomic mass appears desirable for a variety of emerging applications with high societal impact. One possibility to meet this objective consists in leveraging mass differential effects in rotating plasmas. Beyond conventional centrifugation, rotating plasmas offer in principle additional ways to separate elements based on mass. Single ion orbits show that ion radial mass separation in a uniform magnetized plasma column can be achieved by applying a tailored electric potential profile across the column, or by driving a rotating magnetic field within the column. Furthermore, magnetic pressure and centrifugal effects can be combined in a non-uniform geometry to separate ions based on mass along the field lines. Practical application of these separation schemes hinges on the ability to produce the desirable electric and magnetic field configuration within the plasma column.

  18. [Spectral investigation of atmospheric pressure plasma column].

    PubMed

    Li, Xue-Chen; Chang, Yuan-Yuan; Xu, Long-Fei

    2012-07-01

    Atmospheric pressure plasma column has many important applications in plasma stealth for aircraft. In the present paper, a plasma column with a length of 65 cm was generated in argon at atmospheric pressure by using dielectric barrier discharge device with water electrodes in coaxial configurations. The discharge mechanism of the plasma column was studied by optical method and the result indicates that a moving layer of light emission propagates in the upstream region. The propagation velocity of the plasma bullet is about 0.6 x 10(5) m x s(-1) through optical measurement. Spectral intensity ratios as functions of the applied voltage and driving frequency were also investigated by spectroscopic method. The variation in spectral intensity ratio implies a change in the averaged electron energy. Results show that the averaged electron energy increases with the increase in the applied voltage and the driving frequency. These results have significant values for industrial applications of the atmospheric pressure discharge and have extensive application potentials in stealth for military aircraft.

  19. Analysis of interstellar fragmentation structure based on IRAS images

    NASA Technical Reports Server (NTRS)

    Scalo, John M.

    1989-01-01

    The goal of this project was to develop new tools for the analysis of the structure of densely sampled maps of interstellar star-forming regions. A particular emphasis was on the recognition and characterization of nested hierarchical structure and fractal irregularity, and their relation to the level of star formation activity. The panoramic IRAS images provided data with the required range in spatial scale, greater than a factor of 100, and in column density, greater than a factor of 50. In order to construct a densely sampled column density map of a cloud complex which is both self-gravitating and not (yet?) stirred up much by star formation, a column density image of the Taurus region has been constructed from IRAS data. The primary drawback to using the IRAS data for this purpose is that it contains no velocity information, and the possible importance of projection effects must be kept in mind.

  20. Two-dimensional cylindrical ion-acoustic solitary and rogue waves in ultrarelativistic plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ata-ur-Rahman; National Centre for Physics at QAU Campus, Shahdrah Valley Road, Islamabad 44000; Ali, S.

    2013-07-15

    The propagation of ion-acoustic (IA) solitary and rogue waves is investigated in a two-dimensional ultrarelativistic degenerate warm dense plasma. By using the reductive perturbation technique, the cylindrical Kadomtsev–Petviashvili (KP) equation is derived, which can be further transformed into a Korteweg–de Vries (KdV) equation. The latter admits a solitary wave solution. However, when the frequency of the carrier wave is much smaller than the ion plasma frequency, the KdV equation can be transferred to a nonlinear Schrödinger equation to study the nonlinear evolution of modulationally unstable modified IA wavepackets. The propagation characteristics of the IA solitary and rogue waves are stronglymore » influenced by the variation of different plasma parameters in an ultrarelativistic degenerate dense plasma. The present results might be helpful to understand the nonlinear electrostatic excitations in astrophysical degenerate dense plasmas.« less

  1. Dynamics of a Focussed Discharge.

    DTIC Science & Technology

    This report describes theoretical and experimental investigations on the dynamics of a dense plasma focus . The characteristics of the focus in terms...also described. The results of a preliminary theoretical investigation of the heating of a dense plasma focus by a laser is given.

  2. Generation of warm dense matter using an argon based capillary discharge laser

    NASA Astrophysics Data System (ADS)

    Rossall, A. K.; Tallents, G. J.

    2015-06-01

    Argon based capillary discharge lasers operating in the extreme ultra violet (EUV) at 46.9 nm with output up to 0.5 mJ energy per pulse and repetition rates up to 10 Hz are capable of focused irradiances of 109-1012 W cm-2 and can be used to generate plasma in the warm dense matter regime by irradiating solid material. To model the interaction between such an EUV laser and solid material, the 2D radiative-hydrodynamic code POLLUX has been modified to include absorption via direct photo-ionisation, a super-configuration model to describe the ionization-dependent electronic configurations and a calculation of plasma refractive indices for ray tracing of the incident EUV laser radiation. A simulation study is presented, demonstrating how capillary discharge lasers of 1200 ps pulse duration can be used to generate warm dense matter at close to solid densities with temperatures of a few eV and energy densities up to 1 × 105 J cm-3. Plasmas produced by EUV laser irradiation are shown to be useful for examining the properties of warm dense matter as, for example, plasma emission is not masked by hotter, less dense plasma emission that occurs with visible/infra-red laser target irradiation.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Gyeong Won; Shim, Jaewon; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr

    The influence of renormalization plasma screening on the entanglement fidelity for the elastic electron-atom scattering is investigated in partially ionized dense hydrogen plasmas. The partial wave analysis and effective interaction potential are employed to obtain the scattering entanglement fidelity in dense hydrogen plasmas as functions of the collision energy, the Debye length, and the renormalization parameter. It is found that the renormalization plasma shielding enhances the scattering entanglement fidelity. Hence, we show that the transmission of the quantum information can be increased about 10% due to the renormalization shielding effect in dense hydrogen plasmas. It is also found that themore » renormalization shielding effect on the entanglement fidelity for the electron-atom collision increases with an increase of the collision energy. In addition, the renormalization shielding function increases with increasing collision energy and saturates to the unity with an increase of the Debye length.« less

  4. Damped Kadomtsev-Petviashvili Equation for Weakly Dissipative Solitons in Dense Relativistic Degenerate Plasmas

    NASA Astrophysics Data System (ADS)

    Ahmad, S.; Ata-ur-Rahman; Khan, S. A.; Hadi, F.

    2017-12-01

    We have investigated the properties of three-dimensional electrostatic ion solitary structures in highly dense collisional plasma composed of ultra-relativistically degenerate electrons and non-relativistic degenerate ions. In the limit of low ion-neutral collision rate, we have derived a damped Kadomtsev-Petviashvili (KP) equation using perturbation analysis. Supplemented by vanishing boundary conditions, the time varying solution of damped KP equation leads to a weakly dissipative compressive soliton. The real frequency behavior and linear damping of solitary pulse due to ion-neutral collisions is discussed. In the presence of weak transverse perturbations, soliton evolution with damping parameter and plasma density is delineated pointing out the extent of propagation using typical parameters of dense plasma in the interior of white dwarfs.

  5. Measurement of charged-particle stopping in warm-dense plasma

    DOE PAGES

    Zylstra, A.  B.; Frenje, J.  A.; Grabowski, P. E.; ...

    2015-05-27

    We measured the stopping of energetic protons in an isochorically-heated solid-density Be plasma with an electron temperature of ~32 eV, corresponding to moderately-coupled [(e²/a/(k BT e + E F ) ~ 0.3] and moderately-degenerate [k BT e/E F ~2] 'warm dense matter' (WDM) conditions. We present the first high-accuracy measurements of charged-particle energy loss through dense plasma, which shows an increased loss relative to cold matter, consistent with a reduced mean ionization potential. The data agree with stopping models based on an ad-hoc treatment of free and bound electrons, as well as the average-atom local-density approximation; this work is themore » first test of these theories in WDM plasma.« less

  6. Operational Characteristics of a High Voltage Dense Plasma Focus.

    DTIC Science & Technology

    1985-11-01

    A high voltage dense plasma focus powered by a single-stage Marx bank was designed, built and operated. The maximum bank parameters are: voltage--120...kV, energy--20 kJ, short-circuit current--600kA. The bank impedance is about 200 millohms. The plasma focus center electrode diameter is 1.27 cm. The...about 50 milliohms. The context of this work is established with a review of previous plasma focus theoretical, experimental and computational work and

  7. Investigation of the helicon discharge plasma parameters in a hybrid RF plasma system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleksandrov, A. F.; Petrov, A. K., E-mail: alpetrov57@gmail.com; Vavilin, K. V.

    2016-03-15

    Results of an experimental study of the helicon discharge plasma parameters in a prototype of a hybrid RF plasma system equipped with a solenoidal antenna are described. It is shown that an increase in the external magnetic field leads to the formation of a plasma column and a shift of the maximum ion current along the discharge axis toward the bottom flange of the system. The shape of the plasma column can be controlled via varying the configuration of the magnetic field.

  8. The X-ray monitoring of the long-period colliding wind binaries

    NASA Astrophysics Data System (ADS)

    Sugawara, Y.; Maeda, Y.; Tsuboi, Y.

    2017-10-01

    We present the first results from XMM-Newton and Swift observations of two long-period colliding wind binaries WR19 and WR125 around periastron passages. Mass-loss is one of the most important and uncertain parameters in the evolution of a massive star. The X-ray spectrum off the colliding wind binary is the best measure of conditions in the hot postshock gas. By monitoring the changing of the X-ray luminosity and column density along with the orbital phases, we derive the mass-loss rates of these stars. It is known that WR19 (WC5+O9; P=10.1 yr) and WR125 (WC7+O9; P> 24.3 yr) are the dust-making binaries. Each periastron is expected to come in 2016-2017. Since 2016, we carry out on-going monitoring campaigns of WR19 and WR125 with XMM-Newton and Swift. On these observations, the X-rays from WR19 and WR125 were detected for the first time. In the case of WR19, as periastron approached, the column density increased, which indicates that the emission from the wind-wind collision plasma was absorbed by the dense Wolf-Rayet wind.

  9. Dense simple plasmas as high-temperature liquid simple metals

    NASA Technical Reports Server (NTRS)

    Perrot, F.

    1990-01-01

    The thermodynamic properties of dense plasmas considered as high-temperature liquid metals are studied. An attempt is made to show that the neutral pseudoatom picture of liquid simple metals may be extended for describing plasmas in ranges of densities and temperatures where their electronic structure remains 'simple'. The primary features of the model when applied to plasmas include the temperature-dependent self-consistent calculation of the electron charge density and the determination of a density and temperature-dependent ionization state.

  10. Coupled modes in magnetized dense plasma with relativistic-degenerate electrons

    NASA Astrophysics Data System (ADS)

    Khan, S. A.

    2012-01-01

    Low frequency electrostatic and electromagnetic waves are investigated in ultra-dense quantum magnetoplasma with relativistic-degenerate electron and non-degenerate ion fluids. The dispersion relation is derived for mobile as well as immobile ions by employing hydrodynamic equations for such plasma under the influence of electromagnetic forces and pressure gradient of relativistic-degenerate Fermi gas of electrons. The result shows the coexistence of shear Alfven and ion modes with relativistically modified dispersive properties. The relevance of results to the dense degenerate plasmas of astrophysical origin (for instance, white dwarf stars) is pointed out with brief discussion on ultra-relativistic and non-relativistic limits.

  11. Interpenetration and deflection phenomena in collisions between supersonic, magnetized, tungsten plasma flows diagnosed using high resolution optical Thomson scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swadling, G. F.; Lebedev, S. V.; Burdiak, G.

    An optical Thomson scattering diagnostic has been used to investigate collisions between supersonic, magnetized plasma flows, in particular the transition from collisionless to collisional interaction dynamics. These flows were produced using tungsten wire array z-pinches, driven by the 1.4 MA 240 ns Magpie generator at Imperial College London. Measurements of the collective-mode Thomson scattering ion-feature clearly indicate that the ablation flows are interpenetrating at 100 ns (after current start), and this interpenetration continues until at least 140 ns. The Thomson spectrum at 150 ns shows a clear change in the dynamics of the stream interactions, transitioning towards a collisional, shock-like interaction of the streamsmore » near the axis. The Thomson scattering data also provide indirect evidence of the presence of a significant toroidal magnetic field embedded in the “precursor” plasma near the axis of the array over the period 100–140 ns; these observations are in agreement with previous measurements [Swadling et al., Phys. Rev. Lett. 113, 035003 (2014)]. The Thomson scattering measurements at 150 ns suggest that this magnetic field must collapse at around the time the dense precursor column begins to form.« less

  12. A spatially resolved pyrometer for measuring the blackbody temperature of a warm dense plasma

    DOE PAGES

    Coleman, Joshua Eugene

    2016-12-30

    A pyrometer has been developed to spatially resolve the blackbody temperature of a radiatively cooling warm dense plasma. The pyrometer is composed of a lens coupled fiber array, Czerny-Turner visible spectrometer, and an intensified gated CCD for the detector. The radiatively cooling warm dense plasma is generated by a ~100-ns-long intense relativistic electron bunch with an energy of 19.1 MeV and a current of 0.2 kA interacting with 100-μm-thick low-Z foils. The continuum spectrum is measured over 250 nm with a low groove density grating. These plasmas emit visible light or blackbody radiation on relatively long time scales (~0.1 tomore » 100 μs). Finally, we presented the diagnostic layout, calibration, and proof-of-principle measurement of a radiatively cooling aluminum plasma, which includes a spatially resolved temperature gradient and the ability to temporally resolve it also.« less

  13. Unified concept of effective one component plasma for hot dense plasmas

    DOE PAGES

    Clerouin, Jean; Arnault, Philippe; Ticknor, Christopher; ...

    2016-03-17

    Orbital-free molecular dynamics simulations are used to benchmark two popular models for hot dense plasmas: the one component plasma (OCP) and the Yukawa model. A unified concept emerges where an effective OCP (EOCP) is constructed from the short-range structure of the plasma. An unambiguous ionization and the screening length can be defined and used for a Yukawa system, which reproduces the long-range structure with finite compressibility. Similarly, the dispersion relation of longitudinal waves is consistent with the screened model at vanishing wave number but merges with the OCP at high wave number. Additionally, the EOCP reproduces the overall relaxation timemore » scales of the correlation functions associated with ionic motion. Lastly, in the hot dense regime, this unified concept of EOCP can be fruitfully applied to deduce properties such as the equation of state, ionic transport coefficients, and the ion feature in x-ray Thomson scattering experiments.« less

  14. Theory and Experimental Program for p-B11 Fusion with the Dense Plasma Focus

    NASA Astrophysics Data System (ADS)

    Lerner, Eric J.; Krupakar Murali, S.; Haboub, A.

    2011-10-01

    Lawrenceville Plasma Physics Inc. has initiated a 2-year-long experimental project to test the scientific feasibility of achieving controlled fusion using the dense plasma focus (DPF) device with hydrogen-boron (p-B11) fuel. The goals of the experiment are: first, to confirm the achievement of high ion and electron energies observed in previous experiments from 2001; second, to greatly increase the efficiency of energy transfer into the plasmoid where the fusion reactions take place; third, to achieve the high magnetic fields (>1 GG) needed for the quantum magnetic field effect, which will reduce cooling of the plasma by X-ray emission; and finally, to use p-B11 fuel to demonstrate net energy gain. The experiments are being conducted with a newly constructed dense plasma focus in Middlesex, NJ which is expected to generate peak currents in excess of 2 MA. Some preliminary results are reported.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Shen; Kang, Wei, E-mail: weikang@pku.edu.cn; College of Engineering, Peking University, Beijing 100871

    An extended first-principles molecular dynamics (FPMD) method based on Kohn-Sham scheme is proposed to elevate the temperature limit of the FPMD method in the calculation of dense plasmas. The extended method treats the wave functions of high energy electrons as plane waves analytically and thus expands the application of the FPMD method to the region of hot dense plasmas without suffering from the formidable computational costs. In addition, the extended method inherits the high accuracy of the Kohn-Sham scheme and keeps the information of electronic structures. This gives an edge to the extended method in the calculation of mixtures ofmore » plasmas composed of heterogeneous ions, high-Z dense plasmas, lowering of ionization potentials, X-ray absorption/emission spectra, and opacities, which are of particular interest to astrophysics, inertial confinement fusion engineering, and laboratory astrophysics.« less

  16. Tripolar vortex formation in dense quantum plasma with ion-temperature-gradients

    NASA Astrophysics Data System (ADS)

    Qamar, Anisa; Ata-ur-Rahman, Mirza, Arshad M.

    2012-05-01

    We have derived system of nonlinear equations governing the dynamics of low-frequency electrostatic toroidal ion-temperature-gradient mode for dense quantum magnetoplasma. For some specific profiles of the equilibrium density, temperature, and ion velocity gradients, the nonlinear equations admit a stationary solution in the form of a tripolar vortex. These results are relevant to understand nonlinear structure formation in dense quantum plasmas in the presence of equilibrium ion-temperature and density gradients.

  17. Preionization Techniques in a kJ-Scale Dense Plasma Focus

    NASA Astrophysics Data System (ADS)

    Povilus, Alexander; Shaw, Brian; Chapman, Steve; Podpaly, Yuri; Cooper, Christopher; Falabella, Steve; Prasad, Rahul; Schmidt, Andrea

    2016-10-01

    A dense plasma focus (DPF) is a type of z-pinch device that uses a high current, coaxial plasma gun with an implosion phase to generate dense plasmas. These devices can accelerate a beam of ions to MeV-scale energies through strong electric fields generated by instabilities during the implosion of the plasma sheath. The formation of these instabilities, however, relies strongly on the history of the plasma sheath in the device, including the evolution of the gas breakdown in the device. In an effort to reduce variability in the performance of the device, we attempt to control the initial gas breakdown in the device by seeding the system with free charges before the main power pulse arrives. We report on the effectiveness of two techniques developed for a kJ-scale DPF at LLNL, a miniature primer spark gap and pulsed, 255nm LED illumination. Prepared by LLNL under Contract DE-AC52-07NA27344.

  18. Divertor for use in fusion reactors

    DOEpatents

    Christensen, Uffe R.

    1979-01-01

    A poloidal divertor for a toroidal plasma column ring having a set of poloidal coils co-axial with the plasma ring for providing a space for a thick shielding blanket close to the plasma along the entire length of the plasma ring cross section and all the way around the axis of rotation of the plasma ring. The poloidal coils of this invention also provide a stagnation point on the inside of the toroidal plasma column ring, gently curving field lines for vertical stability, an initial plasma current, and the shaping of the field lines of a separatrix up and around the shielding blanket.

  19. Radial Profiles of the Plasma Electron Characteristics in a 30 kW Arc Jet

    NASA Technical Reports Server (NTRS)

    Codron, Douglas A.; Nawaz, Anuscheh

    2013-01-01

    The present effort aims to strengthen modeling work conducted at the NASA Ames Research Center by measuring the critical plasma electron characteristics within and slightly outside of an arc jet plasma column. These characteristics are intended to give physical insights while assisting in the formulation of boundary conditions to validate full scale simulations. Single and triple Langmuir probes have been used to achieve estimates of the electron temperature (T(sub e)), electron number density (n(sub e)) and plasma potential (outside of the plasma column) as probing location is varied radially from the flow centerline. Both the electron temperature and electron number density measurements show a large dependence on radial distance from the plasma column centerline with T(sub e) approx. = (3 - 12 eV and n(sub e) approx. = 10(exp 12) - 10(exp 14)/cu cm.

  20. Free-free opacity in dense plasmas with an average atom model

    DOE PAGES

    Shaffer, Nathaniel R.; Ferris, Natalie G.; Colgan, James Patrick; ...

    2017-02-28

    A model for the free-free opacity of dense plasmas is presented. The model uses a previously developed average atom model, together with the Kubo-Greenwood model for optical conductivity. This, in turn, is used to calculate the opacity with the Kramers-Kronig dispersion relations. Furthermore, comparisons to other methods for dense deuterium results in excellent agreement with DFT-MD simulations, and reasonable agreement with a simple Yukawa screening model corrected to satisfy the conductivity sum rule.

  1. Free-free opacity in dense plasmas with an average atom model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaffer, Nathaniel R.; Ferris, Natalie G.; Colgan, James Patrick

    A model for the free-free opacity of dense plasmas is presented. The model uses a previously developed average atom model, together with the Kubo-Greenwood model for optical conductivity. This, in turn, is used to calculate the opacity with the Kramers-Kronig dispersion relations. Furthermore, comparisons to other methods for dense deuterium results in excellent agreement with DFT-MD simulations, and reasonable agreement with a simple Yukawa screening model corrected to satisfy the conductivity sum rule.

  2. Energy Flow in Dense Off-Equilibrium Plasma

    DTIC Science & Technology

    2016-07-15

    akT e in our system100 i e T T Teller 1966 Smoking Gun Experiment: Laser Breakdown in COLD gas In going from room to liquid Nitrogen temperature...oflaser breakdown have revealed a new phase of off-equilibrium plasma that has a tensile strength similar to a liquid , and reduced ion-electron...approved for public release. Part 1: Energy Balance in Sonoluminescing Dense Plasma Sonoluminescence occurs from rapid implosion of gas bubbles caused to

  3. Observations of nonlinear and nonuniform kink dynamics in a laboratory flux rope

    NASA Astrophysics Data System (ADS)

    Sears, J.; Intrator, T.; Feng, Y.; Swan, H.; Gao, K.; Chapdelaine, L.

    2013-12-01

    A plasma column with axial magnetic field and current has helically twisted field lines. When current density in the column exceeds the kink instability threshold this magnetic configuration becomes unstable. Flux ropes in the solar wind and some solar prominences exhibit this topology, with their dynamics strongly and nonlinearly coupled to the ratio of axial current to magnetic field. The current-driven kink mode is ubiquitous in laboratory plasmas and well suited to laboratory study. In the Reconnection Scaling Experiment (RSX), nonlinear stability properties beyond the simple perturbative kink model are observed and readily diagnosed. We use a plasma gun to generate a single plasma column 0.50 m in length, in which we then drive an axial plasma current at the limit of marginal kink stability. With plasma current maintained at this threshold, we observe a deformation to a new dynamic equilibrium with finite gyration amplitude, where the currents and magnetic fields that support the force balance have surprising axial structure. Three dimensional measurements of magnetic field, plasma density, plasma potential, and ion flow velocity in the deformed plasma column show variation in the axial direction of the instability parameter and in the terms of the momentum equation. Likewise the pitch of the kink is measured to be nonuniform over the column length. In addition there is a return current antiparallel to the driven plasma current at distances up to 0.30 m from the gun that also modifies the force balance. These axial inhomogeneities, which are not considered in the model of an ideal kink, may be the terms that allow the deformed equilibrium of the RSX plasma to exist. Supported by DOE Office of Fusion Energy Sciences under LANS contract DE-AC52-06NA25369, NASA Geospace NNHIOA044I, Basic. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  4. Non-linear wave interaction in a plasma column

    NASA Technical Reports Server (NTRS)

    Larsen, J.-M.; Crawford, F. W.

    1979-01-01

    Non-linear three-wave interaction is analysed for propagation along a cylindrical plasma column surrounded by an infinite dielectric, in the absence of a static magnetic field. An averaged-Lagrangian method is used, and the results are specialized to parametric interaction and mode conversion, assuming an undepleted pump wave. The theory for these two types of interactions is extended to include imperfect synchronism, and the effects of loss. Computations are presented indicating that parametric growth rates of the order of a fraction of a decibel per centimeter should be obtainable for plausible laboratory plasma column parameters.

  5. Bernstein modes in a non-neutral plasma column

    NASA Astrophysics Data System (ADS)

    Walsh, Daniel; Dubin, Daniel H. E.

    2018-05-01

    This paper presents theory and numerical calculations of electrostatic Bernstein modes in an inhomogeneous cylindrical plasma column. These modes rely on finite Larmor radius effects to propagate radially across the column until they are reflected when their frequency matches the upper hybrid frequency. This reflection sets up an internal normal mode on the column and also mode-couples to the electrostatic surface cyclotron wave (which allows the normal mode to be excited and observed using external electrodes). Numerical results predicting the mode spectra, using a novel linear Vlasov code on a cylindrical grid, are presented and compared to an analytical Wentzel Kramers Brillouin (WKB) theory. A previous version of the theory [D. H. E. Dubin, Phys. Plasmas 20(4), 042120 (2013)] expanded the plasma response in powers of 1/B, approximating the local upper hybrid frequency, and consequently, its frequency predictions are spuriously shifted with respect to the numerical results presented here. A new version of the WKB theory avoids this approximation using the exact cold fluid plasma response and does a better job of reproducing the numerical frequency spectrum. The effect of multiple ion species on the mode spectrum is also considered, to make contact with experiments that observe cyclotron modes in a multi-species pure ion plasma [M. Affolter et al., Phys. Plasmas 22(5), 055701 (2015)].

  6. Simultaneous determination of byak-angelicin and oxypeucedanin hydrate in rat plasma by column-switching high-performance liquid chromatography with ultraviolet detection.

    PubMed

    Ishihara, K; Fukutake, M; Asano, T; Mizuhara, Y; Wakui, Y; Yanagisawa, T; Kamei, H; Ohmori, S; Kitada, M

    2001-04-05

    A simple and sensitive column-switching HPLC method was developed for the simultaneous determination of two furocoumarin compounds, byak-angelicin and oxypeucedanin hydrate, which are the main components of hot water extract of Angelica dahurica root (AE), in rat plasma. Plasma sample was simply deproteinated with perchloric acid. After centrifugation, the supernatant was injected into a column-switching HPLC system consisting of a clean-up column (Symmetry Shield RP 8, 20x3.9 mm I.D.) and analytical column (Symmetry C18, 75x4.6 mm I.D.) which were connected with a six-port switching valve. The flow-rate of the mobile phase (acetonitrile-water, 20:80) was maintained at 1 ml/min. Detection was carried out at wavelength 260 nm with a UV detector. The column temperature was maintained at 40 degrees C. The calibration curves of byak-angelicin and oxypeucedanin hydrate were linear over the ranges 19.6 to 980 ng/ml (r2>0.997). The accuracy of these analytes was less than 4.4%. The intra- and inter-day relative standard deviations of byak-angelicin and oxypeucedanin hydrate were within 12.0% and 12.7%, respectively. The present method was applied for the analysis of plasma concentration from rats after administration of AE.

  7. Soft X-ray spectrometer design for warm dense plasma measurements on DARHT Axis-I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramey, Nicholas Bryan; Perry, John Oliver; Coleman, Joshua Eugene

    2017-07-11

    A preliminary design study is being performed on a soft X-ray spectrometer to measure K-shell spectra emitted by a warm dense plasma generated on Axis-I of the Dual-Axis Radiographic Hydrodynamic Testing (DARHT) facility at Los Alamos National Laboratory. The 100-ns-long intense, relativistic electron pulse with a beam current of 1.7 kA and energy of 19.8 MeV deposits energy into a thin metal foil heating it to a warm dense plasma. The collisional ionization of the target by the electron beam produces an anisotropic angular distribution of K-shell radiation and a continuum of both scattered electrons and Bremsstrahlung up to themore » beam energy of 19.8 MeV. The principal goal of this project is to characterize these angular distributions to determine the optimal location to deploy the soft X-ray spectrometer. In addition, a proof-of-principle design will be presented. The ultimate goal of the spectrometer is to obtain measurements of the plasma temperature and density to benchmark equation-of-state models of the warm dense matter regime.« less

  8. Tracing and separating plasma components causing matrix effects in hydrophilic interaction chromatography-electrospray ionization mass spectrometry.

    PubMed

    Ekdahl, Anja; Johansson, Maria C; Ahnoff, Martin

    2013-04-01

    Matrix effects on electrospray ionization were investigated for plasma samples analysed by hydrophilic interaction chromatography (HILIC) in gradient elution mode, and HILIC columns of different chemistries were tested for separation of plasma components and model analytes. By combining mass spectral data with post-column infusion traces, the following components of protein-precipitated plasma were identified and found to have significant effect on ionization: urea, creatinine, phosphocholine, lysophosphocholine, sphingomyelin, sodium ion, chloride ion, choline and proline betaine. The observed effect on ionization was both matrix-component and analyte dependent. The separation of identified plasma components and model analytes on eight columns was compared, using pair-wise linear correlation analysis and principal component analysis (PCA). Large changes in selectivity could be obtained by change of column, while smaller changes were seen when the mobile phase buffer was changed from ammonium formate pH 3.0 to ammonium acetate pH 4.5. While results from PCA and linear correlation analysis were largely in accord, linear correlation analysis was judged to be more straight-forward in terms of conduction and interpretation.

  9. Determination of erythromycin in human plasma, using column liquid chromatography with a polymeric packing material, alkaline mobile phase and amperometric detection.

    PubMed

    Nilsson, L G; Walldorf, B; Paulsen, O

    1987-12-25

    A method based on column liquid chromatography was developed for determination of plasma concentrations of erythromycin. PRP-1, a polymeric type of packing material suitable for chromatography and amperometric detection at high pH, was used. The effect of pH on the column performance and on the electrochemical response was studied. A pH of ca. 10 was found to be optimal. After extraction with tert.-butyl methyl ether, plasma concentrations down to 0.2 mumol/l could be measured, using automated sample injection. Oleandomycin was used as internal standard. The method was used for determination of plasma concentrations in a pharmacokinetic study under steady-state conditions.

  10. Reduction of the ionization energy for 1s-electrons in dense aluminum plasmas

    NASA Astrophysics Data System (ADS)

    Lin, C.; Reinholz, H.; Röpke, G.

    2017-02-01

    The properties of a bound multi-electron system immersed in a plasma environment are strongly modified by the surrounding plasma. In particular, the modification of the ionization energy is described by the electronic self-energy within the framework of the quantum statistical theory. We present the energy shift of the eigenstates and the lowering of the continuum edge of free electrons in a plasma. The reduction of the ionization potential is determined by their difference. This ionization potential depression for the 1s-levels in dense aluminum plasmas is calculated. Comparisons with other theories and the experimental data are shown for aluminum plasma at solid density 2.7 g/cm3.

  11. Non-linear wave interaction in a magnetoplasma column. I - Theory. II Experiment

    NASA Technical Reports Server (NTRS)

    Larsen, J.-M.; Crawford, F. W.

    1979-01-01

    The paper presents an analysis of non-linear three-wave interaction for propagation along a cylindrical plasma column surrounded either by a metallic boundary, or by an infinite dielectric, and immersed in an infinite, static, axial magnetic field. An averaged Lagrangian method is used and the results are specialized to parametric amplification and mode conversion, assuming an undepleted pump wave. Computations are presented for a magneto-plasma column surrounded by free space, indicating that parametric growth rates of the order of a fraction of a decibel per centimeter should be obtainable for plausible laboratory plasma parameters. In addition, experiments on non-linear mode conversion in a cylindrical magnetoplasma column are described. The results are compared with the theoretical predictions and good qualitative agreement is demonstrated.

  12. Electron Bernstein Wave Emission Studies on the TJ-II Stellarator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caughman, John B; Fernandez, A.; Cappa, A.

    2009-01-01

    Electron Bernstein Wave (EBW) heating is important for high-beta plasma experiments and will be used for heating over-dense plasmas on TJ-II. TJ-II is a medium sized Heliac operating at CIEMAT in Madrid, whose plasmas are created and heated by ECH via two 300 kW gyrotrons at second harmonic X-mode (53.2 GHz), with additional heating provided by two neutral beam injectors. Theoretical work has shown that the most suitable scheme for launching EBWs in TJ-II is O-X-B mode conversion, which has acceptable heating efficiency for central densities above 1.2 x 1019 m-3.[1] A system based on a 28 GHz-100ms diode gyrotronmore » will be used to deliver 300 kW through a corrugated waveguide. The microwave heating beam will be directed and focused by a steering mirror located inside the vacuum vessel. Prior to the heating experiments, measurement of the thermal EBW emission (EBE) from the plasma is being made to help determine the optimum launch angle for EBW mode conversion, and also to provide an indication of the electron temperature evolution in over-dense plasmas. A dual-polarized quad-ridged broadband horn is used to measure the EBW emission and polarization at 28 GHz. Initial measurements indicate that the emission in under-dense plasmas corresponds to oblique electron cyclotron emission (ECE) and then converts to EBE when the plasma becomes over-dense during neutral beam injection.« less

  13. THE JCMT GOULD BELT SURVEY: A FIRST LOOK AT DENSE CORES IN ORION B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirk, H.; Francesco, J. Di; Johnstone, D.

    2016-02-01

    We present a first look at the SCUBA-2 observations of three sub-regions of the Orion B molecular cloud: LDN 1622, NGC 2023/2024, and NGC 2068/2071, from the JCMT Gould Belt Legacy Survey. We identify 29, 564, and 322 dense cores in L1622, NGC 2023/2024, and NGC 2068/2071 respectively, using the SCUBA-2 850 μm map, and present their basic properties, including their peak fluxes, total fluxes, and sizes, and an estimate of the corresponding 450 μm peak fluxes and total fluxes, using the FellWalker source extraction algorithm. Assuming a constant temperature of 20 K, the starless dense cores have a mass function similar to that found inmore » previous dense core analyses, with a Salpeter-like slope at the high-mass end. The majority of cores appear stable to gravitational collapse when considering only thermal pressure; indeed, most of the cores which have masses above the thermal Jeans mass are already associated with at least one protostar. At higher cloud column densities, above 1–2 × 10{sup 23} cm{sup −2}, most of the mass is found within dense cores, while at lower cloud column densities, below 1 × 10{sup 23} cm{sup −2}, this fraction drops to 10% or lower. Overall, the fraction of dense cores associated with a protostar is quite small (<8%), but becomes larger for the densest and most centrally concentrated cores. NGC 2023/2024 and NGC 2068/2071 appear to be on the path to forming a significant number of stars in the future, while L1622 has little additional mass in dense cores to form many new stars.« less

  14. The JCMT Gould Belt Survey: A First Look at Dense Cores in Orion B

    NASA Astrophysics Data System (ADS)

    Kirk, H.; Di Francesco, J.; Johnstone, D.; Duarte-Cabral, A.; Sadavoy, S.; Hatchell, J.; Mottram, J. C.; Buckle, J.; Berry, D. S.; Broekhoven-Fiene, H.; Currie, M. J.; Fich, M.; Jenness, T.; Nutter, D.; Pattle, K.; Pineda, J. E.; Quinn, C.; Salji, C.; Tisi, S.; Hogerheijde, M. R.; Ward-Thompson, D.; Bastien, P.; Bresnahan, D.; Butner, H.; Chen, M.; Chrysostomou, A.; Coude, S.; Davis, C. J.; Drabek-Maunder, E.; Fiege, J.; Friberg, P.; Friesen, R.; Fuller, G. A.; Graves, S.; Greaves, J.; Gregson, J.; Holland, W.; Joncas, G.; Kirk, J. M.; Knee, L. B. G.; Mairs, S.; Marsh, K.; Matthews, B. C.; Moriarty-Schieven, G.; Mowat, C.; Rawlings, J.; Richer, J.; Robertson, D.; Rosolowsky, E.; Rumble, D.; Thomas, H.; Tothill, N.; Viti, S.; White, G. J.; Wouterloot, J.; Yates, J.; Zhu, M.

    2016-02-01

    We present a first look at the SCUBA-2 observations of three sub-regions of the Orion B molecular cloud: LDN 1622, NGC 2023/2024, and NGC 2068/2071, from the JCMT Gould Belt Legacy Survey. We identify 29, 564, and 322 dense cores in L1622, NGC 2023/2024, and NGC 2068/2071 respectively, using the SCUBA-2 850 μm map, and present their basic properties, including their peak fluxes, total fluxes, and sizes, and an estimate of the corresponding 450 μm peak fluxes and total fluxes, using the FellWalker source extraction algorithm. Assuming a constant temperature of 20 K, the starless dense cores have a mass function similar to that found in previous dense core analyses, with a Salpeter-like slope at the high-mass end. The majority of cores appear stable to gravitational collapse when considering only thermal pressure; indeed, most of the cores which have masses above the thermal Jeans mass are already associated with at least one protostar. At higher cloud column densities, above 1-2 × 1023 cm-2, most of the mass is found within dense cores, while at lower cloud column densities, below 1 × 1023 cm-2, this fraction drops to 10% or lower. Overall, the fraction of dense cores associated with a protostar is quite small (<8%), but becomes larger for the densest and most centrally concentrated cores. NGC 2023/2024 and NGC 2068/2071 appear to be on the path to forming a significant number of stars in the future, while L1622 has little additional mass in dense cores to form many new stars.

  15. Algebraic motion of vertically displacing plasmas

    NASA Astrophysics Data System (ADS)

    Pfefferlé, D.; Bhattacharjee, A.

    2018-02-01

    The vertical motion of a tokamak plasma is analytically modelled during its non-linear phase by a free-moving current-carrying rod inductively coupled to a set of fixed conducting wires or a cylindrical conducting shell. The solutions capture the leading term in a Taylor expansion of the Green's function for the interaction between the plasma column and the surrounding vacuum vessel. The plasma shape and profiles are assumed not to vary during the vertical drifting phase such that the plasma column behaves as a rigid body. In the limit of perfectly conducting structures, the plasma is prevented to come in contact with the wall due to steep effective potential barriers created by the induced Eddy currents. Resistivity in the wall allows the equilibrium point to drift towards the vessel on the slow timescale of flux penetration. The initial exponential motion of the plasma, understood as a resistive vertical instability, is succeeded by a non-linear "sinking" behaviour shown to be algebraic and decelerating. The acceleration of the plasma column often observed in experiments is thus concluded to originate from an early sharing of toroidal current between the core, the halo plasma, and the wall or from the thermal quench dynamics precipitating loss of plasma current.

  16. Plasma X-Ray Sources for Lithography

    DTIC Science & Technology

    1980-05-12

    in evaluating various plasma sources. In addition, a brief analysis is given of three devices, or systems, used to produce such plasmas: the electron beam- sliding spark, the dense plasma focus and the laser produced plasma.

  17. Extreme ultraviolet interferometry of warm dense matter in laser plasmas.

    PubMed

    Gartside, L M R; Tallents, G J; Rossall, A K; Wagenaars, E; Whittaker, D S; Kozlová, M; Nejdl, J; Sawicka, M; Polan, J; Kalal, M; Rus, B

    2010-11-15

    We demonstrate that interferometric probing with extreme ultraviolet (EUV) laser light enables determination of the degree of ionization of the "warm dense matter" produced between the critical and ablation surfaces of laser plasmas. Interferometry has been utilized to measure both transmission and phase information for an EUV laser beam at the photon energy of 58.5 eV, probing longitudinally through laser-irradiated plastic (parylene-N) targets (thickness 350 nm) irradiated by a 300 ps duration pulse of wavelength 438 nm and peak irradiance 10(12) W cm(-2). The transmission of the EUV probe beam provides a measure of the rate of target ablation, as ablated plasma becomes close to transparent when the photon energy is less than the ionization energy of the predominant ion species. We show that refractive indices η below the solid parylene N (η(solid) = 0.946) and expected plasma values are produced in the warm dense plasma created by laser irradiation due to bound-free absorption in C(+).

  18. Computationally efficient description of relativistic electron beam transport in dense plasma

    NASA Astrophysics Data System (ADS)

    Polomarov, Oleg; Sefkov, Adam; Kaganovich, Igor; Shvets, Gennady

    2006-10-01

    A reduced model of the Weibel instability and electron beam transport in dense plasma is developed. Beam electrons are modeled by macro-particles and the background plasma is represented by electron fluid. Conservation of generalized vorticity and quasineutrality of the plasma-beam system are used to simplify the governing equations. Our approach is motivated by the conditions of the FI scenario, where the beam density is likely to be much smaller than the plasma density and the beam energy is likely to be very high. For this case the growth rate of the Weibel instability is small, making the modeling of it by conventional PICs exceedingly time consuming. The present approach does not require resolving the plasma period and only resolves a plasma collisionless skin depth and is suitable for modeling a long-time behavior of beam-plasma interaction. An efficient code based on this reduced description is developed and benchmarked against the LSP PIC code. The dynamics of low and high current electron beams in dense plasma is simulated. Special emphasis is on peculiarities of its non-linear stages, such as filament formation and merger, saturation and post-saturation field and energy oscillations. *Supported by DOE Fusion Science through grant DE-FG02-05ER54840.

  19. Cold plasma technology close-up

    USDA-ARS?s Scientific Manuscript database

    This month’s column discusses cold plasma, an emerging technology that has potential applications as an antimicrobial process for fresh and fresh-cut fruits and vegetables, low-moisture foods, and food contact surfaces. Brendan A. Niemira, the coauthor of this month’s column, is the research leader ...

  20. High-throughput determination of faropenem in human plasma and urine by on-line solid-phase extraction coupled to high-performance liquid chromatography with UV detection and its application to the pharmacokinetic study.

    PubMed

    Xie, Rui; Wen, Jun; Wei, Hua; Fan, Guorong; Zhang, Dabing

    2010-05-01

    An automated system using on-line solid-phase extraction and HPLC with UV detection was developed for the determination of faropenem in human plasma and urine. Analytical process was performed isocratically with two reversed-phase columns connected by a switching valve. After simple pretreatment for plasma and urine with acetonitrile, a volume of 100microl upper layer of the plasma or urine samples was injected for on-line SPE column switching HPLC-UV analysis. The analytes were retained on the self-made trap column (Lichrospher C(18), 4.6mmx37mm, 25microm) with the loading solvent (20mM NaH(2)PO(4) adjusted pH 3.5) at flow rate of 2mlmin(-1), and most matrix materials were removed from the column to waste. After 0.5min washing, the valve was switched to another position so that the target analytes could be eluted from trap column to analytical column in the back-flush mode by the mobile phase (acetonitrile-20mM NaH(2)PO(4) adjusted pH 3.5, 16:84, v/v) at flow rate of 1.5mlmin(-1), and then separated on the analytical column (Ultimate XB-C(18), 4.6mmx50mm, 5microm).The complete cycle of the on-line SPE preconcentration purification and HPLC separation of the analytes was 5min. Calibration curves with good linearities (r=0.9994 for plasma sample and r=0.9988 for urine sample) were obtained in the range 0.02-5microgml(-1) in plasma and 0.05-10microg ml(-1) in urine for faropenem. The optimized method showed good performance in terms of specificity, linearity, detection and quantification limits, precision and accuracy. The method was successfully utilized to quantify faropenem in human plasma and urine to support the clinical pharmacokinetic studies. Copyright 2009 Elsevier B.V. All rights reserved.

  1. On the Crossover from Classical to Fermi Liquid Behavior in Dense Plasmas

    NASA Astrophysics Data System (ADS)

    Daligault, Jerome

    2017-10-01

    We explore the crossover from classical plasma to quantum Fermi liquid behavior of electrons in dense plasmas. To this end, we analyze the evolution with density and temperature of the momentum lifetime of a test electron introduced in a dense electron gas. This allows us 1) to determine the boundaries of the crossover region in the temperature-density plane and to shed light on the evolution of scattering properties across it, 2) to quantify the role of the fermionic nature of electrons on electronic collisions across the crossover region, and 3) to explain how the concept of Coulomb logarithm emerges at high enough temperature but disappears at low enough temperature. Work supported by LDRD Grant No. 20170490ER.

  2. Use of the TLX ultracentrifuge for the isolation of different density lipoproteins and effects of freeze/thawing of human plasma before ultracentrifugation.

    PubMed

    Charlton-Menys, Valentine; Chobotova, Jelena; Durrington, Paul N

    2008-01-01

    Isolation of different density lipoproteins by ultracentrifugation can require lengthy centrifugation times and freeze/thawing of plasma may influence recovery. We isolated a range of lipoproteins using a preparative ultracentrifuge and the TLX micro-ultracentrifuge and determined the effect of freeze/thawing of plasma beforehand. In fresh plasma, there was no significant difference in results for small-dense low-density lipoprotein apolipoprotein B (LDL apoB) (density >1.044 g/mL) or cholesterol at density >1.006 g/mL. Freeze/thawing had no effect on closely correlated results for small-dense LDL apoB (r=0.85; p<0.0001) or high-density lipoprotein (r=0.93; p<0.0001). The TLX micro-ultracentrifuge is a reliable alternative to the preparative ultracentrifuge and freeze/thawing has only a small effect on small-dense LDL apoB or high-density lipoprotein cholesterol.

  3. GigaGauss solenoidal magnetic field inside bubbles excited in under-dense plasma

    PubMed Central

    Lécz, Zs.; Konoplev, I. V.; Seryi, A.; Andreev, A.

    2016-01-01

    This paper proposes a novel and effective method for generating GigaGauss level, solenoidal quasi-static magnetic fields in under-dense plasma using screw-shaped high intensity laser pulses. This method produces large solenoidal fields that move with the driving laser pulse and are collinear with the accelerated electrons. This is in contrast with already known techniques which rely on interactions with over-dense or solid targets and generates radial or toroidal magnetic field localized at the stationary target. The solenoidal field is quasi-stationary in the reference frame of the laser pulse and can be used for guiding electron beams. It can also provide synchrotron radiation beam emittance cooling for laser-plasma accelerated electron and positron beams, opening up novel opportunities for designs of the light sources, free electron lasers, and high energy colliders based on laser plasma acceleration. PMID:27796327

  4. GigaGauss solenoidal magnetic field inside bubbles excited in under-dense plasma

    NASA Astrophysics Data System (ADS)

    Lécz, Zs.; Konoplev, I. V.; Seryi, A.; Andreev, A.

    2016-10-01

    This paper proposes a novel and effective method for generating GigaGauss level, solenoidal quasi-static magnetic fields in under-dense plasma using screw-shaped high intensity laser pulses. This method produces large solenoidal fields that move with the driving laser pulse and are collinear with the accelerated electrons. This is in contrast with already known techniques which rely on interactions with over-dense or solid targets and generates radial or toroidal magnetic field localized at the stationary target. The solenoidal field is quasi-stationary in the reference frame of the laser pulse and can be used for guiding electron beams. It can also provide synchrotron radiation beam emittance cooling for laser-plasma accelerated electron and positron beams, opening up novel opportunities for designs of the light sources, free electron lasers, and high energy colliders based on laser plasma acceleration.

  5. Laboratory measurements of resistivity in warm dense plasmas relevant to the microphysics of brown dwarfs

    DOE PAGES

    Booth, N.; Robinson, A. P. L.; Hakel, P.; ...

    2015-11-06

    Since the observation of the first brown dwarf in 1995, numerous studies have led to a better understanding of the structures of these objects. Here we present a method for studying material resistivity in warm dense plasmas in the laboratory, which we relate to the microphysics of brown dwarfs through viscosity and electron collisions. Here we use X-ray polarimetry to determine the resistivity of a sulphur-doped plastic target heated to Brown Dwarf conditions by an ultra-intense laser. The resistivity is determined by matching the plasma physics model to the atomic physics calculations of the measured large, positive, polarization. Furthermore, themore » inferred resistivity is larger than predicted using standard resistivity models, suggesting that these commonly used models will not adequately describe the resistivity of warm dense plasma related to the viscosity of brown dwarfs.« less

  6. Laser Heating in a Dense Plasma Focus.

    DTIC Science & Technology

    The report is divided in two parts. In the first part an account is given of the measurement of the momentum distribution of the deuterons ejected from a dense plasma focus . The results show the existence of a pronounced non-Maxwellian distribution and a small population of deuterons accelerated to the voltage of the condenser bank. In the second part theoretical calculation of laser heating establish the presence of large density gradient which probably accounts for the large currents detected in such plasmas. (Author)

  7. Trivelpiece-Gould modes in a uniform unbounded plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stenzel, R. L.; Urrutia, J. M.

    Trivelpiece-Gould (TG) modes originally described electrostatic surface waves on an axially magnetized cylindrical plasma column. Subsequent studies of electromagnetic waves in such plasma columns revealed two modes, a predominantly magnetic helicon mode (H) and the mixed magnetic and electrostatic Trivelpiece-Gould modes (TG). The latter are similar to whistler modes near the oblique cyclotron resonance in unbounded plasmas. The wave propagation in cylindrical geometry is assumed to be paraxial while the modes exhibit radial standing waves. The present work shows that TG modes also arise in a uniform plasma without radial standing waves. It is shown experimentally that oblique cyclotron resonancemore » arises in large mode number helicons. Their azimuthal wave number far exceeds the axial wave number which creates whistlers near the oblique cyclotron resonance. Cyclotron damping absorbs the TG mode and can energize electrons in the center of a plasma column rather than the edge of conventional TG modes. The angular orbital field momentum can produce new perpendicular wave-particle interactions.« less

  8. Plasma column and nano-powder generation from solid titanium by localized microwaves in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popescu, Simona; Jerby, Eli, E-mail: jerby@eng.tau.ac.il; Meir, Yehuda

    2015-07-14

    This paper studies the effect of a plasma column ejected from solid titanium by localized microwaves in an ambient air atmosphere. Nanoparticles of titanium dioxide (titania) are found to be directly synthesized in this plasma column maintained by the microwave energy in the cavity. The process is initiated by a hotspot induced by localized microwaves, which melts the titanium substrate locally. The molten hotspot emits ionized titanium vapors continuously into the stable plasma column, which may last for more than a minute duration. The characterization of the dusty plasma obtained is performed in-situ by small-angle X-ray scattering (SAXS), optical spectroscopy,more » and microwave reflection analyses. The deposited titania nanoparticles are structurally and morphologically analyzed by ex-situ optical and scanning-electron microscope observations, and also by X-ray diffraction. Using the Boltzmann plot method combined with the SAXS results, the electron temperature and density in the dusty plasma are estimated as ∼0.4 eV and ∼10{sup 19 }m{sup −3}, respectively. The analysis of the plasma product reveals nanoparticles of titania in crystalline phases of anatase, brookite, and rutile. These are spatially arranged in various spherical, cubic, lamellar, and network forms. Several applications are considered for this process of titania nano-powder production.« less

  9. Inelastic deformation of plasma polymerised thin films facilitated by transient dense plasma focus irradiation

    NASA Astrophysics Data System (ADS)

    Grant, Daniel S.; Rawat, Rajdeep S.; Bazaka, Kateryna; Jacob, Mohan V.

    2017-09-01

    The high degree of crosslinking present in plasma polymerised thin films, coupled with their high molecular weight, imbues these films with properties similar to those of thermosetting polymers. For instance, such films tend to be relatively hard, insoluble, and to date have not exhibited plasticity when subjected to elevated temperatures. In this paper it is demonstrated that plasma polymers can, in fact, undergo plastic deformation in response to the application of extremely short-lived thermal treatment delivered by a dense plasma focus device, as evidenced by the evolution of bubble-like structures from the thin film. This finding suggests new avenues for texturing plasma thin films, and synthesising cavities that may find utility as thermal insulators or domains for material encapsulation.

  10. Density functional theory calculations of continuum lowering in strongly coupled plasmas.

    PubMed

    Vinko, S M; Ciricosta, O; Wark, J S

    2014-03-24

    An accurate description of the ionization potential depression of ions in plasmas due to their interaction with the environment is a fundamental problem in plasma physics, playing a key role in determining the ionization balance, charge state distribution, opacity and plasma equation of state. Here we present a method to study the structure and position of the continuum of highly ionized dense plasmas using finite-temperature density functional theory in combination with excited-state projector augmented-wave potentials. The method is applied to aluminium plasmas created by intense X-ray irradiation, and shows excellent agreement with recently obtained experimental results. We find that the continuum lowering for ions in dense plasmas at intermediate temperatures is larger than predicted by standard plasma models and explain this effect through the electronic structure of the valence states in these strong-coupling conditions.

  11. Star-forming Filament Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, Philip C., E-mail: pmyers@cfa.harvard.edu

    2017-03-20

    New models of star-forming filamentary clouds are presented in order to quantify their properties and to predict their evolution. These 2D axisymmetric models describe filaments that have no core, one low-mass core, and one cluster-forming core. They are based on Plummer-like cylinders and spheroids that are bounded by a constant-density surface of finite extent. In contrast to 1D Plummer-like models, they have specific values of length and mass, they approximate observed column density maps, and their distributions of column density ( N -pdfs) are pole-free. Each model can estimate the star-forming potential of a core-filament system by identifying the zonemore » of gas dense enough to form low-mass stars and by counting the number of enclosed thermal Jeans masses. This analysis suggests that the Musca central filament may be near the start of its star-forming life, with enough dense gas to make its first ∼3 protostars, while the Coronet filament is near the midpoint of its star formation, with enough dense gas to add ∼8 protostars to its ∼20 known stars. In contrast, L43 appears to be near the end of its star-forming life, since it lacks enough dense gas to add any new protostars to the two young stellar objectsalready known.« less

  12. Separation of Albumin, Ceruloplasmin, and Transferrin from Human Plasma.

    ERIC Educational Resources Information Center

    Barnes, Grady; Frieden, Earl

    1982-01-01

    Procedures are provided for separating the principal metalloproteins (albumin, ceruloplasmin, and transferrin) from plasma using column chromatographic techniques. The experiment can be completed in two separate three-hour laboratory periods during which column chromatography is illustrated and the effect of pH on charge and affinity of a protein…

  13. Hot and dense plasma probing by soft X-ray lasers

    NASA Astrophysics Data System (ADS)

    Krůs, M.; Kozlová, M.; Nejdl, J.; Rus, B.

    2018-01-01

    Soft X-ray lasers, due to their short wavelength, its brightness, and good spatial coherence, are excellent sources for the diagnostics of dense plasmas (up to 1025 cm-3) which are relevant to e.g. inertial fusion. Several techniques and experimental results, which are obtained at the quasi-steady state scheme being collisionally pumped 21.2 nm neon-like zinc laser installed at PALS Research Center, are presented here; among them the plasma density measurement by a double Lloyd mirror interferometer, deflectometer based on Talbot effect measuring plasma density gradients itself, with a following ray tracing postprocessing. Moreover, the high spatial resolution (nm scale) plasma images can be obtained when soft X-ray lasers are used.

  14. XFEL resonant photo-pumping of dense plasmas and dynamic evolution of autoionizing core hole states

    NASA Astrophysics Data System (ADS)

    Rosmej, F. B.; Moinard, A.; Renner, O.; Galtier, E.; Lee, J. J.; Nagler, B.; Heimann, P. A.; Schlotter, W.; Turner, J. J.; Lee, R. W.; Makita, M.; Riley, D.; Seely, J.

    2016-03-01

    Similarly to the case of LIF (Laser-Induced Fluorescence), an equally revolutionary impact to science is expected from resonant X-ray photo-pumping. It will particularly contribute to a progress in high energy density science: pumped core hole states create X-ray transitions that can escape dense matter on a 10 fs-time scale without essential photoabsorption, thus providing a unique possibility to study matter under extreme conditions. In the first proof of principle experiment at the X-ray Free Electron Laser LCLS at SCLAC [Seely, J., Rosmej, F.B., Shepherd, R., Riley, D., Lee, R.W. Proposal to Perform the 1st High Energy Density Plasma Spectroscopic Pump/Probe Experiment”, approved LCLS proposal L332 (2010)] we have successfully pumped inner-shell X-ray transitions in dense plasmas. The plasma was generated with a YAG laser irradiating solid Al and Mg targets attached to a rotating cylinder. In parallel to the optical laser beam, the XFEL was focused into the plasma plume at different delay times and pump energies. Pumped X-ray transitions have been observed with a spherically bent crystal spectrometer coupled to a Princeton CCD. By using this experimental configuration, we have simultaneously achieved extremely high spectral (λ/δλ ≈ 5000) and spatial resolution (δx≈70 μm) while maintaining high luminosity and a large spectral range covered (6.90 - 8.35 Å). By precisely measuring the variations in spectra emitted from plasma under action of XFEL radiation, we have successfully demonstrated transient X- ray pumping in a dense plasma.

  15. Linear dependence of surface expansion speed on initial plasma temperature in warm dense matter

    DOE PAGES

    Bang, Woosuk; Albright, Brian James; Bradley, Paul Andrew; ...

    2016-07-12

    Recent progress in laser-driven quasi-monoenergetic ion beams enabled the production of uniformly heated warm dense matter. Matter heated rapidly with this technique is under extreme temperatures and pressures, and promptly expands outward. While the expansion speed of an ideal plasma is known to have a square-root dependence on temperature, computer simulations presented here show a linear dependence of expansion speed on initial plasma temperature in the warm dense matter regime. The expansion of uniformly heated 1–100 eV solid density gold foils was modeled with the RAGE radiation-hydrodynamics code, and the average surface expansion speed was found to increase linearly withmore » temperature. The origin of this linear dependence is explained by comparing predictions from the SESAME equation-of-state tables with those from the ideal gas equation-of-state. In conclusion, these simulations offer useful insight into the expansion of warm dense matter and motivate the application of optical shadowgraphy for temperature measurement.« less

  16. Dense Plasma Focus Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hui; Li, Shengtai; Jungman, Gerard

    2016-08-31

    The mechanisms for pinch formation in Dense Plasma Focus (DPF) devices, with the generation of high-energy ions beams and subsequent neutron production over a relatively short distance, are not fully understood. Here we report on high-fidelity 2D and 3D numerical magnetohydrodynamic (MHD) simulations using the LA-COMPASS code to study the pinch formation dynamics and its associated instabilities and neutron production.

  17. Algebraic motion of vertically displacing plasmas

    DOE PAGES

    Pfefferle, D.; Bhattacharjee, A.

    2018-02-27

    In this paper, the vertical motion of a tokamak plasma is analytically modelled during its non-linear phase by a free-moving current-carrying rod inductively coupled to a set of fixed conducting wires or a cylindrical conducting shell. The solutions capture the leading term in a Taylor expansion of the Green's function for the interaction between the plasma column and the surrounding vacuum vessel. The plasma shape and profiles are assumed not to vary during the vertical drifting phase such that the plasma column behaves as a rigid body. In the limit of perfectly conducting structures, the plasma is prevented to comemore » in contact with the wall due to steep effective potential barriers created by the induced Eddy currents. Resistivity in the wall allows the equilibrium point to drift towards the vessel on the slow timescale of flux penetration. The initial exponential motion of the plasma, understood as a resistive vertical instability, is succeeded by a non-linear “sinking” behaviour shown to be algebraic and decelerating. Finally, the acceleration of the plasma column often observed in experiments is thus concluded to originate from an early sharing of toroidal current between the core, the halo plasma, and the wall or from the thermal quench dynamics precipitating loss of plasma current.« less

  18. Algebraic motion of vertically displacing plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfefferle, D.; Bhattacharjee, A.

    In this paper, the vertical motion of a tokamak plasma is analytically modelled during its non-linear phase by a free-moving current-carrying rod inductively coupled to a set of fixed conducting wires or a cylindrical conducting shell. The solutions capture the leading term in a Taylor expansion of the Green's function for the interaction between the plasma column and the surrounding vacuum vessel. The plasma shape and profiles are assumed not to vary during the vertical drifting phase such that the plasma column behaves as a rigid body. In the limit of perfectly conducting structures, the plasma is prevented to comemore » in contact with the wall due to steep effective potential barriers created by the induced Eddy currents. Resistivity in the wall allows the equilibrium point to drift towards the vessel on the slow timescale of flux penetration. The initial exponential motion of the plasma, understood as a resistive vertical instability, is succeeded by a non-linear “sinking” behaviour shown to be algebraic and decelerating. Finally, the acceleration of the plasma column often observed in experiments is thus concluded to originate from an early sharing of toroidal current between the core, the halo plasma, and the wall or from the thermal quench dynamics precipitating loss of plasma current.« less

  19. Fluorescence and absorption spectroscopy for warm dense matter studies and ICF plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Hansen, S. B.; Harding, E. C.; Knapp, P. F.; Gomez, M. R.; Nagayama, T.; Bailey, J. E.

    2018-05-01

    The burning core of an inertial confinement fusion (ICF) plasma produces bright x-rays at stagnation that can directly diagnose core conditions essential for comparison to simulations and understanding fusion yields. These x-rays also backlight the surrounding shell of warm, dense matter, whose properties are critical to understanding the efficacy of the inertial confinement and global morphology. We show that the absorption and fluorescence spectra of mid-Z impurities or dopants in the warm dense shell can reveal the optical depth, temperature, and density of the shell and help constrain models of warm, dense matter. This is illustrated by the example of a high-resolution spectrum collected from an ICF plasma with a beryllium shell containing native iron impurities. Analysis of the iron K-edge provides model-independent diagnostics of the shell density (2.3 × 1024 e/cm3) and temperature (10 eV), while a 12-eV red shift in Kβ and 5-eV blue shift in the K-edge discriminate among models of warm dense matter: Both shifts are well described by a self-consistent field model based on density functional theory but are not fully consistent with isolated-atom models using ad-hoc density effects.

  20. Analysis of interstellar cloud structure based on IRAS images

    NASA Technical Reports Server (NTRS)

    Scalo, John M.

    1992-01-01

    The goal of this project was to develop new tools for the analysis of the structure of densely sampled maps of interstellar star-forming regions. A particular emphasis was on the recognition and characterization of nested hierarchical structure and fractal irregularity, and their relation to the level of star formation activity. The panoramic IRAS images provided data with the required range in spatial scale, greater than a factor of 100, and in column density, greater than a factor of 50. In order to construct densely sampled column density maps of star-forming clouds, column density images of four nearby cloud complexes were constructed from IRAS data. The regions have various degrees of star formation activity, and most of them have probably not been affected much by the disruptive effects of young massive stars. The largest region, the Scorpius-Ophiuchus cloud complex, covers about 1000 square degrees (it was subdivided into a few smaller regions for analysis). Much of the work during the early part of the project focused on an 80 square degree region in the core of the Taurus complex, a well-studied region of low-mass star formation.

  1. Plasma flow in peripheral region of detached plasma in linear plasma device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, Y., E-mail: hayashi-yuki13@ees.nagoya-u.ac.jp; Ohno, N.; Kajita, S.

    2016-01-15

    A plasma flow structure is investigated using a Mach probe under detached plasma condition in a linear plasma device NAGDIS-II. A reverse flow along the magnetic field is observed in a steady-state at far-peripheral region of the plasma column in the upstream side from the recombination front. These experimental results indicate that plasma near the recombination front should strongly diffuse across the magnetic field, and it should be transported along the magnetic field in the reverse flow direction. Furthermore, bursty plasma density fluctuations associated with intermittent convective plasma transport are observed in the far-peripheral region of the plasma column inmore » both upstream and downstream sides from the recombination front. Such a nondiffusive transport can contribute to the intermittent reverse plasma flow, and the experimental results indicate that intermittent transports are frequently produced near the recombination front.« less

  2. The application of selected radionuclides for monitoring of the D-D reactions produced by dense plasma-focus device.

    PubMed

    Jednorog, S; Szydlowski, A; Bienkowska, B; Prokopowicz, R

    The dense plasma focus (DPF) device-DPF-1000U which is operated at the Institute of Plasma Physics and Laser Microfusion is the largest that type plasma experiment in the world. The plasma that is formed in large plasma experiments is characterized by vast numbers of parameters. All of them need to be monitored. A neutron activation method occupies a high position among others plasma diagnostic methods. The above method is off-line, remote, and an integrated one. The plasma which has enough temperature to bring about nuclear fusion reactions is always a strong source of neutrons that leave the reactions area and take along energy and important information on plasma parameters and properties as well. Silver as activated material is used as an effective way of neutrons measurement, especially when they are emitted in the form of short pulses like as it happens from the plasma produced in Dense Plasma-Focus devices. Other elements such as beryllium and yttrium are newly introduced and currently tested at the Institute of Plasma Physics and Laser Microfusion to use them in suitable activation neutron detectors. Some specially designed massive indium samples have been recently adopted for angular neutrons distribution measurements (vertical and horizontal) and have been used in the recent plasma experiment conducted on the DPF-1000U device. This choice was substantiated by relatively long half-lives of the neutron induced isotopes and the threshold character of the 115 In(n,n') 115m In nuclear reaction.

  3. High performance liquid chromatographic method for the determination of cetirizine and ambroxol in human plasma and urine--a boxcar approach.

    PubMed

    Dharuman, J; Vasudhevan, M; Ajithlal, T

    2011-09-01

    A column switching high performance liquid chromatographic method with estimable sensitivity and accuracy was developed for the determination of cetirizine and ambroxol in human plasma using nebivolol as the internal standard. Plasma samples were prepared by liquid-liquid extraction in methylene chloride and a mixture of diethylether (80:20, v/v). The extracted samples were injected into a multifunctional clean-up column Supelcosil LCABZ (50 mm × 4.6 mm, 5 μm particle size) using mobile phase 1 comprising acetonitrile-phosphate buffer (pH 3.5; 20 mM) (20:80, v/v). The eluate of cetirizine and ambroxol were separated to an analytical Kromasil C(8) micro bore column (50 mm × 0.3 mm, 5 μm particle size) via a column switching device. A Kromasil C(18) analytical column (250 mm × 2.1 mm, 5 μm particle size) was used as a separation column. Mobile phase 2 consisting acetonitrile-triethylamine (0.5%) in phosphate buffer (pH 3.5; 20mM) (55:45, v/v) was used for the compound elution. The eluents were detected at 230 nm with photodiode array detector. An aliquot of 150 μl of plasma sample was introduced into the pretreatment column via the auto sampler using mobile phase 1 at a flow rate of 0.5 ml/min, column switching valve being positioned at A. The pretreatment column retained cetirizine, ambroxol and nebivolol (IS) in the column leaving the residual proteins of plasma eluted in void volume and drained out. The switching valve was shifted to position B at 7.5 min. Cetirizine, ambroxol and IS were eluted from the pretreatment column between 7. 5 and 11.5 min and introduced to the concentration column. Finally, cetirizine, ambroxol and IS were introduced to the separation column by switching valve using mobile phase 2 at a flow rate of 0.4 ml/min. During the analysis the pretreatment column was washed for the next analysis and resume to the position A. The total run time was 25 min for a sample. The procedure was repeated for urine analysis also. The method was linear from 2 to 450 ng/ml and 7-300 ng/ml for cetirizine and ambroxol respectively in plasma and 1-500 ng/ml and 5-400 ng/ml, respectively for cetirizine and ambroxol in urine. Intra-day and inter-day precision of cetirizine and ambroxol was below 15% in terms of coefficient of variation and accuracy of cetirizine and ambroxol was ranged from 94 to 101.6% and 91.1 to 100.2%, respectively. The method demonstrated high sensitivity and selectivity and therefore, applied to evaluate pharmacokinetics of cetirizine and ambroxol in healthy human volunteer after a single oral administration. Urine samples obtained from healthy human volunteers and clinical subjects with renal impairment have also been analyzed by the method to compare the elimination pattern. The method was precise and accurate for the estimation of cetirizine and ambroxol both in blood and in urine. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. A strong diffusive ion mode in dense ionized matter predicted by Langevin dynamics

    PubMed Central

    Mabey, P.; Richardson, S.; White, T. G.; Fletcher, L. B.; Glenzer, S. H.; Hartley, N. J.; Vorberger, J.; Gericke, D. O.; Gregori, G.

    2017-01-01

    The state and evolution of planets, brown dwarfs and neutron star crusts is determined by the properties of dense and compressed matter. Due to the inherent difficulties in modelling strongly coupled plasmas, however, current predictions of transport coefficients differ by orders of magnitude. Collective modes are a prominent feature, whose spectra may serve as an important tool to validate theoretical predictions for dense matter. With recent advances in free electron laser technology, X-rays with small enough bandwidth have become available, allowing the investigation of the low-frequency ion modes in dense matter. Here, we present numerical predictions for these ion modes and demonstrate significant changes to their strength and dispersion if dissipative processes are included by Langevin dynamics. Notably, a strong diffusive mode around zero frequency arises, which is not present, or much weaker, in standard simulations. Our results have profound consequences in the interpretation of transport coefficients in dense plasmas. PMID:28134338

  5. Compact Plasma Accelerator for Micropropulsion Applications

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2001-01-01

    There is a need for a low power, light-weight (compact), high specific impulse electric propulsion device to satisfy mission requirements for microsatellite (1 to 20 kg) class missions. Satisfying these requirements entails addressing the general problem of generating a sufficiently dense plasma within a relatively small volume and then accelerating it. In the work presented here, the feasibility of utilizing a magnetic cusp to generate a dense plasma over small length scales of order 1 mm is investigated. This approach could potentially mitigate scaling issues associated with conventional ion thruster plasma containment schemes. Plume and discharge characteristics were documented using a Faraday probe and a retarding potential analyzer.

  6. Electron transfer in proton-hydrogen collisions under dense quantum plasma

    NASA Astrophysics Data System (ADS)

    Nayek, Sujay; Bhattacharya, Arka; Kamali, Mohd Zahurin Mohamed; Ghoshal, Arijit; Ratnavelu, Kurunathan

    2017-09-01

    The effects of dense quantum plasma on 1 s → nlm charge transfer, for arbitrary n,l,m, in proton-hydrogen collisions have been studied by employing a distorted wave approximation. The interactions among the charged particles in the plasma have been represented by modified Debye-Huckel potentials. A detailed study has been made to explore the effects of background plasma environment on the differential and total cross sections for electron capture into different angular momentum states for the incident energy in the range 10-1000 keV. For the unscreened case, our results agree well with some of the most accurate results available in the literature.

  7. Interchange Reconnection Associated with a Confined Filament Eruption: Implications for the Source of Transient Cold-dense Plasma in Solar Winds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Ruisheng; Chen, Yao; Wang, Bing

    The cold-dense plasma is occasionally detected in the solar wind with in situ data, but the source of the cold-dense plasma remains illusive. Interchange reconnections (IRs) between closed fields and nearby open fields are known to contribute to the formation of solar winds. We present a confined filament eruption associated with a puff-like coronal mass ejection (CME) on 2014 December 24. The filament underwent successive activations and finally erupted, due to continuous magnetic flux cancelations and emergences. The confined erupting filament showed a clear untwist motion, and most of the filament material fell back. During the eruption, some tiny blobsmore » escaped from the confined filament body, along newly formed open field lines rooted around the south end of the filament, and some bright plasma flowed from the north end of the filament to remote sites at nearby open fields. The newly formed open field lines shifted southward with multiple branches. The puff-like CME also showed multiple bright fronts and a clear southward shift. All the results indicate an intermittent IR existed between closed fields of the confined erupting filament and nearby open fields, which released a portion of filament material (blobs) to form the puff-like CME. We suggest that the IR provides a possible source of cold-dense plasma in the solar wind.« less

  8. Space-Time Characterization of Laser Plasma Interactions in the Warm Dense Matter Regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, L F; Uschmann, I; Forster, E

    2008-04-30

    Laser plasma interaction experiments have been performed using a fs Titanium Sapphire laser. Plasmas have been generated from planar PMMA targets using single laser pulses with 3.3 mJ pulse energy, 50 fs pulse duration at 800 nm wavelength. The electron density distributions of the plasmas in different delay times have been characterized by means of Nomarski Interferometry. Experimental data were compared with hydrodynamic simulation. First results to characterize the plasma density and temperature as a function of space and time are obtained. This work aims to generate plasmas in the warm dense matter (WDM) regime at near solid-density in anmore » ultra-fast laser target interaction process. Plasmas under these conditions can serve as targets to develop x-ray Thomson scattering as a plasma diagnostic tool, e.g., using the VUV free-electron laser (FLASH) at DESY Hamburg.« less

  9. Nonlinear interactions between electromagnetic waves and electron plasma oscillations in quantum plasmas.

    PubMed

    Shukla, P K; Eliasson, B

    2007-08-31

    We consider nonlinear interactions between intense circularly polarized electromagnetic (CPEM) waves and electron plasma oscillations (EPOs) in a dense quantum plasma, taking into account the electron density response in the presence of the relativistic ponderomotive force and mass increase in the CPEM wave fields. The dynamics of the CPEM waves and EPOs is governed by the two coupled nonlinear Schrödinger equations and Poisson's equation. The nonlinear equations admit the modulational instability of an intense CPEM pump wave against EPOs, leading to the formation and trapping of localized CPEM wave pipes in the electron density hole that is associated with a positive potential distribution in our dense plasma. The relevance of our investigation to the next generation intense laser-solid density plasma interaction experiments is discussed.

  10. Time-Space Position of Warm Dense Matter in Laser Plasma Interaction Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, L F; Uschmann, I; Forster, E

    2006-09-25

    Laser plasma interaction experiments have been perform performed using an fs Titanium Sapphire laser. Plasmas have been generated from planar PMMA targets using single laser pulses with 3.3 mJ pulse energy, 50 fs pulse duration at 800 nm wavelength. Electron density distributions of the plasmas in different delay times have been characterized by means of Nomarski Interferometry. Experimental data were cautiously compared with relevant 1D numerical simulation. Finally these results provide a first experience of searching for the time-space position of the so-called warm dense plasma in an ultra fast laser target interaction process. These experiments aim to prepare nearmore » solid-density plasmas for Thomson scattering experiments using the short wavelength free-electron laser FLASH, DESY Hamburg.« less

  11. Quantitative analysis of retinoids in biological fluids by high-performance liquid chromatography using column switching. I. Determination of isotretinoin and tretinoin and their 4-oxo metabolites in plasma.

    PubMed

    Wyss, R; Bucheli, F

    1988-02-26

    A fully automated gradient high-performance liquid chromatographic method for the determination of isotretinoin, tretinoin and their 4-oxo metabolites in plasma was developed, using the column-switching technique. After dilution with an internal standard solution containing 20% acetonitrile, 0.5 ml of the sample was injected onto a precolumn (17 X 4.6 mm I.D.), filled with C18 Corasil 37-53 micron. Proteins and polar plasma components were washed out using 1% ammonium acetate-acetonitrile (9:1, v/v) as mobile phase 1. After valve switching, the retained components were transferred to the analytical column in the backflush mode, separated by gradient elution and detected at 360 nm by UV detection. Using two coupled reversed-phase columns (125 mm long), the separation of cis and trans isomers was possible, and all four compounds could be quantified down to 2 ng/ml of plasma. The inter-assay precision in the concentration range 20-100 ng/ml was between 1.0 and 4.7% for all compounds.

  12. Algebraic motion of vertically displacing plasmas

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Amitava; Pfefferle, David; Hirvijoki, Eero

    2017-10-01

    The vertical displacement of tokamak plasmas is modelled during the non-linear phase by a free-moving current-carrying rod coupled to a set of fixed conducting wires and a cylindrical conducting shell. The models capture the leading term in a Taylor expansion of the Green's function for the interaction between the plasma column and the vacuum vessel. The plasma is assumed not to vary during the VDE such that it behaves as a rigid body. In the limit of perfectly conducting structures, the plasma is prevented from coming in contact with the wall due to steep effective potential barriers by the eddy currents, and will hence oscillate at Alfvénic frequencies about a given force-free position. In addition to damping oscillations, resistivity allows for the column to drift towards the vessel on slow flux penetration timescales. The initial exponential motion of the plasma, i.e. the resistive vertical instability, is succeeded by a non-linear sinking behaviour, that is shown analytically to be algebraic and decelerative. The acceleration of the plasma column often observed in experiments is thus conjectured to originate from an early sharing of toroidal current between the core, the halo plasma and the wall or from the thermal quench dynamics precipitating loss of plasma current

  13. Ionization-potential depression and dynamical structure factor in dense plasmas

    NASA Astrophysics Data System (ADS)

    Lin, Chengliang; Röpke, Gerd; Kraeft, Wolf-Dietrich; Reinholz, Heidi

    2017-07-01

    The properties of a bound electron system immersed in a plasma environment are strongly modified by the surrounding plasma. The modification of an essential quantity, the ionization energy, is described by the electronic and ionic self-energies, including dynamical screening within the framework of the quantum statistical theory. Introducing the ionic dynamical structure factor as the indicator for the ionic microfield, we demonstrate that ionic correlations and fluctuations play a critical role in determining the ionization potential depression. This is, in particular, true for mixtures of different ions with large mass and charge asymmetry. The ionization potential depression is calculated for dense aluminum plasmas as well as for a CH plasma and compared to the experimental data and more phenomenological approaches used so far.

  14. Theoretical model of x-ray scattering as a dense matter probe.

    PubMed

    Gregori, G; Glenzer, S H; Rozmus, W; Lee, R W; Landen, O L

    2003-02-01

    We present analytical expressions for the dynamic structure factor, or form factor S(k,omega), which is the quantity describing the x-ray cross section from a dense plasma or a simple liquid. Our results, based on the random phase approximation for the treatment on the charged particle coupling, can be applied to describe scattering from either weakly coupled classical plasmas or degenerate electron liquids. Our form factor correctly reproduces the Compton energy down-shift and the known Fermi-Dirac electron velocity distribution for S(k,omega) in the case of a cold degenerate plasma. The usual concept of scattering parameter is also reinterpreted for the degenerate case in order to include the effect of the Thomas-Fermi screening. The results shown in this work can be applied to interpreting x-ray scattering in warm dense plasmas occurring in inertial confinement fusion experiments or for the modeling of solid density matter found in the interior of planets.

  15. Formation of H̅ in p̅-Ps collisions embedded in plasmas

    NASA Astrophysics Data System (ADS)

    Ratnavelu, Kuru; Ghoshal, Arijit; Nayek, Sujay; Bhattacharya, Arka; Mohamed Kamali, Mohd Zahurin

    2016-04-01

    Screening effects of plasmas on the formation of antihydrogen (H̅) in an arbitrary s-state from the ground state of the positronium atom (Ps) by antiproton (p̅) impact have been studied within the framework of charge-conjugation and time-reversal invariance. Two types of plasma environments have been considered, namely weakly coupled plasma and dense quantum plasma. For weakly coupled plasma, the interactions among the charged particles in plasma have been represented by Debye-Huckel screening model, whereas for dense quantum plasma, interactions among the charged particles in plasma have been represented by exponential cosine-screened Coulomb potentials. Effects of plasma screening on the antihydrogen formation cross section have been studied in the energy range 15-400 keV of incident antiproton. For the free atomic case, our results agree well with some of the most accurate results available in the literature. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  16. Computational study of hot electron generation and energy transport in intense laser produced hot dense matter

    NASA Astrophysics Data System (ADS)

    Mishra, Rohini

    Present ultra high power lasers are capable of producing high energy density (HED) plasmas, in controlled way, with a density greater than solid density and at a high temperature of keV (1 keV ˜ 11,000,000° K). Matter in such extreme states is particularly interesting for (HED) physics such as laboratory studies of planetary and stellar astrophysics, laser fusion research, pulsed neutron source etc. To date however, the physics in HED plasma, especially, the energy transport, which is crucial to realize applications, has not been understood well. Intense laser produced plasmas are complex systems involving two widely distinct temperature distributions and are difficult to model by a single approach. Both kinetic and collisional process are equally important to understand an entire process of laser-solid interaction. By implementing atomic physics models, such as collision, ionization, and radiation damping, self consistently, in state-of-the-art particle-in-cell code (PICLS) has enabled to explore the physics involved in the HED plasmas. Laser absorption, hot electron transport, and isochoric heating physics in laser produced hot dense plasmas are studied with a help of PICLS simulations. In particular, a novel mode of electron acceleration, namely DC-ponderomotive acceleration, is identified in the super intense laser regime which plays an important role in the coupling of laser energy to a dense plasma. Geometric effects on hot electron transport and target heating processes are examined in the reduced mass target experiments. Further, pertinent to fast ignition, laser accelerated fast electron divergence and transport in the experiments using warm dense matter (low temperature plasma) is characterized and explained.

  17. Aspartic acid incorporated monolithic columns for affinity glycoprotein purification.

    PubMed

    Armutcu, Canan; Bereli, Nilay; Bayram, Engin; Uzun, Lokman; Say, Rıdvan; Denizli, Adil

    2014-02-01

    Novel aspartic acid incorporated monolithic columns were prepared to efficiently affinity purify immunoglobulin G (IgG) from human plasma. The monolithic columns were synthesised in a stainless steel HPLC column (20 cm × 5 mm id) by in situ bulk polymerisation of N-methacryloyl-L-aspartic acid (MAAsp), a polymerisable derivative of L-aspartic acid, and 2-hydroxyethyl methacrylate (HEMA). Monolithic columns [poly(2-hydroxyethyl methacrylate-N-methacryloyl-L-aspartic acid) (PHEMAsp)] were characterised by swelling studies, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The monolithic columns were used for IgG adsorption/desorption from aqueous solutions and human plasma. The IgG adsorption depended on the buffer type, and the maximum IgG adsorption from aqueous solution in phosphate buffer was 0.085 mg/g at pH 6.0. The monolithic columns allowed for one-step IgG purification with a negligible capacity decrease after ten adsorption-desorption cycles. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Ionic and electronic transport properties in dense plasmas by orbital-free density functional theory

    DOE PAGES

    Sjostrom, Travis; Daligault, Jérôme

    2015-12-09

    We validate the application of our recent orbital-free density functional theory (DFT) approach, [Phys. Rev. Lett. 113, 155006 (2014)], for the calculation of ionic and electronic transport properties of dense plasmas. To this end, we calculate the self-diffusion coefficient, the viscosity coefficient, the electrical and thermal conductivities, and the reflectivity coefficient of hydrogen and aluminum plasmas. Very good agreement is found with orbital-based Kohn-Sham DFT calculations at lower temperatures. Because the computational costs of the method do not increase with temperature, we can produce results at much higher temperatures than is accessible by the Kohn-Sham method. Our results for warmmore » dense aluminum at solid density are inconsistent with the recent experimental results reported by Sperling et al. [Phys. Rev. Lett. 115, 115001 (2015)].« less

  19. Micro-column plasma emission liquid chromatograph

    DOEpatents

    Gay, Don D.

    1984-01-01

    In a direct current plasma emission spectrometer for use in combination with a micro-column liquid chromatograph, an improved plasma source unit. The plasma source unit includes a quartz capillary tube having an inlet means, outlet off gas means and a pair of spaced electrodes defining a plasma region in the tube. The inlet means is connected to and adapted to receive eluant of the liquid chromatograph along with a stream of plasma-forming gas. There is an opening through the wall of the capillary tube penetrating into the plasma region. A soft glass capillary light pipe is disposed at the opening, is connected to the spectrometer, and is adapted to transmit light passing from the plasma region to the spectrometer. There is also a source of electromotive force connected to the electrodes sufficient to initiate and sustain a plasma in the plasma region of the tube.

  20. Experimental identification of the kink instability as a poloidal flux amplification mechanism for coaxial gun spheromak formation.

    PubMed

    Hsu, S C; Bellan, P M

    2003-05-30

    The magnetohydrodynamic kink instability is observed and identified experimentally as a poloidal flux amplification mechanism for coaxial gun spheromak formation. Plasmas in this experiment fall into three distinct regimes which depend on the peak gun current to magnetic flux ratio, with (I) low values resulting in a straight plasma column with helical magnetic field, (II) intermediate values leading to kinking of the column axis, and (III) high values leading immediately to a detached plasma. Onset of column kinking agrees quantitatively with the Kruskal-Shafranov limit, and the kink acts as a dynamo which converts toroidal to poloidal flux. Regime II clearly leads to both poloidal flux amplification and the development of a spheromak configuration.

  1. Demonstration of separate phosphotyrosyl- and phosphoseryl- histone phosphatase activities in the plasma membranes of a human astrocytoma.

    PubMed

    Leis, J F; Knowles, A F; Kaplan, N O

    1985-06-01

    A plasma membrane preparation from a human astrocytoma contained p-nitrophenyl phosphate (pNPP), phosphotyrosyl histone, and phosphoseryl histone hydrolysis activities. The pNPPase and phosphotyrosyl histone phosphatase activities were inhibited by vanadate, whereas the phosphoseryl histone phosphatase activity was not; the latter activity was inhibited by pyrophosphate and nucleoside di- and triphosphates. When the membranes were solubilized by Triton X-100 and the solubilized proteins were subjected to column chromatography on DEAE-Sephadex, Sepharose 6B-C1, and wheat germ agglutinin-Sepharose 4B columns, the pNPPase activity from the phosphoseryl histone phosphatase activity. The results from column chromatography also indicated that there may be multiple phosphotyrosyl and phosphoseryl protein phosphatases in the plasma membranes.

  2. Differential coulometric oxidation following post column-switching high pressure liquid chromatography for fluorescence measurement of unmetabolized folic acid in human plasma.

    PubMed

    Bailey, Steven W; Ayling, June E

    2013-11-08

    Although many countries have fortified their grain supplies with folic acid (FA) to decrease the incidence of neural tube defects, others have not due to concerns that this synthetic folate might have some adverse effects. Persistent unmetabolized FA has been found even in plasma from fasted subjects. To facilitate measurement of low levels of folic acid in human plasma, post-column coulometric oxidative cleavage was used to convert poorly fluorescent FA into a highly fluorescent compound determined to be 6-formyl-pterin. To minimize sample work-up and maximize recovery, column-switching HPLC transferred a window of eluate containing the FA from the first column (C8) onto a second column (phenyl-hexyl). The pH of two mobile phases were adjusted to be above and then below a pK of the FA α-carboxyl group, thus promoting separation from compounds coeluting from the C8-column. This permitted sample preparation using only a simple high recovery protein precipitation. Definitive identification of FA in human plasma was accomplished by duplicate injections of sample with the electrochemical voltage set above and below its half-potential. The LOD (S/N=3) was 0.10 nM. The intra- and inter-assay CV's were 2.3% and 5%, respectively. Comparison of these results with those obtained by HPLC/MS/MS with stable isotope internal standard showed a slope of 1.00 ± 0.019. This simple, sensitive, and repeatable assay facilitates a more thorough investigation of the response of various human populations to folic acid intake. Post-column differential coulometric electrochemistry can expand the variety of compounds amenable to fluorescence detection. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. The Dense Plasma Focus Group of IFAS at Argentina: A brief history and recent direction of the investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milanese, Maria Magdalena; CONICET - 7000 Tandil

    2006-12-04

    This is a short review of the research done by the Dense Plasma Focus Group (GPDM) presently working in Tandil, Argentina, from its origin, more than three decades ago, as part of the Plasma Physics Laboratory of Buenos Aires University (the first one in Latin-America where experiments in plasma focus have been made) up to the present. The interest has been mainly experimental studies on plasma focus and, in general, fast electrical discharges. The plasma focus has extensively been studied as neutron producer, including its possibility to play a role in nuclear fusion. It was also researched not only formore » basic plasma studies, but also for other important applications. Conception, design, construction and study of devices and diagnostics suitable for each application have been made on basis of developed criteria.« less

  4. Excitation of THz hybrid modes in an elliptical dielectric rod waveguide with a cold collisionless unmagnetized plasma column by an annular electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahmani, Z., E-mail: z.rahmani@kashanu.ac.ir; Safari, S.; Heidari-Semiromi, E.

    2016-06-15

    The dispersion relation of electromagnetic waves propagating in an elliptical plasma waveguide with a cold collisionless unmagnetized plasma column and a dielectric rod is studied analytically. The frequency spectrum of the hybrid waves and the growth rate for excitation of the waves by a thin annular relativistic elliptical electron beam (TAREEB) is obtained. The effects of relative permittivity constant of dielectric rod, geometrical dimensions, plasma frequency, accelerating voltage, and current density of TAREEB on the growth rate and frequency spectra of the waveguide will be investigated.

  5. Study of the Anatomy of the X-Ray and Neutron Production Scaling Laws in the Plasma Focus (Particle Energy Spectrum and Optimization Criteria).

    DTIC Science & Technology

    1979-11-01

    plasma focus operations have been experimentally analyzed in terms of (A) The fine structure of the axial-current channel during maximum of compression. (B) Correlation coefficient, for neutron yield n (by D2 discharges) and the multiplicity of the electron beam pulses; (C) Different values of the electrode voltage. The current distribution near the axial plasma column during the explosive decay of the column has been monitored and correlated with the electron beam production. Plasma focus discharges by our mode of operation generate high-intensity

  6. Separation of actinides using capillary extraction chromatography-inductively coupled plasma mass spectrometry.

    PubMed

    Peterson, Dominic S; Montoya, Velma M

    2009-08-01

    Trace levels of actinides have been separated on capillary extraction chromatography columns. Detection of the actinides was achieved using an inductively coupled plasma mass spectrometer, which was coupled with the extraction chromatography system. In this study, we compare 30-cm long, 4.6 mm i.d. columns to capillary columns (750 microm i.d.) with lengths from 30 cm up to 150 cm. The columns that were tested were packed with TRU resin. We were able to separate a mixture of five actinides ((232)Th, (238)U, (237)Np, (239)Pu, and (241)Am). This work has application to rapid bioassay as well as automated separations of actinide materials.

  7. Dense Plasma Focus-Based Nanofabrication of III–V Semiconductors: Unique Features and Recent Advances

    PubMed Central

    Mangla, Onkar; Roy, Savita; Ostrikov, Kostya (Ken)

    2015-01-01

    The hot and dense plasma formed in modified dense plasma focus (DPF) device has been used worldwide for the nanofabrication of several materials. In this paper, we summarize the fabrication of III–V semiconductor nanostructures using the high fluence material ions produced by hot, dense and extremely non-equilibrium plasma generated in a modified DPF device. In addition, we present the recent results on the fabrication of porous nano-gallium arsenide (GaAs). The details of morphological, structural and optical properties of the fabricated nano-GaAs are provided. The effect of rapid thermal annealing on the above properties of porous nano-GaAs is studied. The study reveals that it is possible to tailor the size of pores with annealing temperature. The optical properties of these porous nano-GaAs also confirm the possibility to tailor the pore sizes upon annealing. Possible applications of the fabricated and subsequently annealed porous nano-GaAs in transmission-type photo-cathodes and visible optoelectronic devices are discussed. These results suggest that the modified DPF is an effective tool for nanofabrication of continuous and porous III–V semiconductor nanomaterials. Further opportunities for using the modified DPF device for the fabrication of novel nanostructures are discussed as well. PMID:28344261

  8. Dense Plasma Focus-Based Nanofabrication of III-V Semiconductors: Unique Features and Recent Advances.

    PubMed

    Mangla, Onkar; Roy, Savita; Ostrikov, Kostya Ken

    2015-12-29

    The hot and dense plasma formed in modified dense plasma focus (DPF) device has been used worldwide for the nanofabrication of several materials. In this paper, we summarize the fabrication of III-V semiconductor nanostructures using the high fluence material ions produced by hot, dense and extremely non-equilibrium plasma generated in a modified DPF device. In addition, we present the recent results on the fabrication of porous nano-gallium arsenide (GaAs). The details of morphological, structural and optical properties of the fabricated nano-GaAs are provided. The effect of rapid thermal annealing on the above properties of porous nano-GaAs is studied. The study reveals that it is possible to tailor the size of pores with annealing temperature. The optical properties of these porous nano-GaAs also confirm the possibility to tailor the pore sizes upon annealing. Possible applications of the fabricated and subsequently annealed porous nano-GaAs in transmission-type photo-cathodes and visible optoelectronic devices are discussed. These results suggest that the modified DPF is an effective tool for nanofabrication of continuous and porous III-V semiconductor nanomaterials. Further opportunities for using the modified DPF device for the fabrication of novel nanostructures are discussed as well.

  9. Focused electron and ion beam systems

    DOEpatents

    Leung, Ka-Ngo; Reijonen, Jani; Persaud, Arun; Ji, Qing; Jiang, Ximan

    2004-07-27

    An electron beam system is based on a plasma generator in a plasma ion source with an accelerator column. The electrons are extracted from a plasma cathode in a plasma ion source, e.g. a multicusp plasma ion source. The beam can be scanned in both the x and y directions, and the system can be operated with multiple beamlets. A compact focused ion or electron beam system has a plasma ion source and an all-electrostatic beam acceleration and focusing column. The ion source is a small chamber with the plasma produced by radio-frequency (RF) induction discharge. The RF antenna is wound outside the chamber and connected to an RF supply. Ions or electrons can be extracted from the source. A multi-beam system has several sources of different species and an electron beam source.

  10. Current drive for stability of thermonuclear plasma reactor

    NASA Astrophysics Data System (ADS)

    Amicucci, L.; Cardinali, A.; Castaldo, C.; Cesario, R.; Galli, A.; Panaccione, L.; Paoletti, F.; Schettini, G.; Spigler, R.; Tuccillo, A.

    2016-01-01

    To produce in a thermonuclear fusion reactor based on the tokamak concept a sufficiently high fusion gain together stability necessary for operations represent a major challenge, which depends on the capability of driving non-inductive current in the hydrogen plasma. This request should be satisfied by radio-frequency (RF) power suitable for producing the lower hybrid current drive (LHCD) effect, recently demonstrated successfully occurring also at reactor-graded high plasma densities. An LHCD-based tool should be in principle capable of tailoring the plasma current density in the outer radial half of plasma column, where other methods are much less effective, in order to ensure operations in the presence of unpredictably changes of the plasma pressure profiles. In the presence of too high electron temperatures even at the periphery of the plasma column, as envisaged in DEMO reactor, the penetration of the coupled RF power into the plasma core was believed for long time problematic and, only recently, numerical modelling results based on standard plasma wave theory, have shown that this problem should be solved by using suitable parameter of the antenna power spectrum. We show here further information on the new understanding of the RF power deposition profile dependence on antenna parameters, which supports the conclusion that current can be actively driven over a broad layer of the outer radial half of plasma column, thus enabling current profile control necessary for the stability of a reactor.

  11. Study of the characteristics of reconfigurable plasma antenna array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alias, Nur Salihah; Dagang, Ahmad Nazri; Ali, Mohd Tarmizi

    This paper presents a design and simulation of a reconfigurable array of plasma antenna. The plasma column is used as radiating elements instead of metal to create an antenna. The advantages of the plasma antenna over the conventional antenna are its possible to change the operating parameters, such as the working pressure, input power, radius of the discharge tube, resonant frequency, and length of the plasma column. In addition, plasma antenna can be reconfigurable with respect to shape, frequency and radiation parameters in a very short time. The plasma discharge tube was designed with a length of 200 mm, the radiusmore » of the plasma column was 2.5 mm and the coupling sleeve was connected to the SMA as the ground. This simulation was performed by using the simulation software Computer Simulation Technology (CST). The frequency is set in the range of 1 GHz to 10 GHz. The performance of the designed antenna was analyzed in term of return loss, gain and radiation pattern. For reconfigurable plasma antenna array, it shows that the gain is increase when the number of antenna element is increase. The combination of the discharge tube and metal rod as an antenna array has been done, and the result shows that an array with the plasma element can achieve higher gain.« less

  12. OBSERVATIONS AND MAGNETIC FIELD MODELING OF A SOLAR POLAR CROWN PROMINENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su Yingna; Van Ballegooijen, Adriaan, E-mail: ynsu@head.cfa.harvard.edu

    2012-10-01

    We present observations and magnetic field modeling of the large polar crown prominence that erupted on 2010 December 6. Combination of Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) and STEREO{sub B}ehind/EUVI allows us to see the fine structures of this prominence both at the limb and on the disk. We focus on the structures and dynamics of this prominence before the eruption. This prominence contains two parts: an active region part containing mainly horizontal threads and a quiet-Sun part containing mainly vertical threads. On the northern side of the prominence channel, both AIA and EUVI observe bright features which appearmore » to be the lower legs of loops that go above then join in the filament. Filament materials are observed to frequently eject horizontally from the active region part to the quiet-Sun part. This ejection results in the formation of a dense-column structure (concentration of dark vertical threads) near the border between the active region and the quiet Sun. Using the flux rope insertion method, we create nonlinear force-free field models based on SDO/Helioseismic and Magnetic Imager line-of-sight magnetograms. A key feature of these models is that the flux rope has connections with the surroundings photosphere, so its axial flux varies along the filament path. The height and location of the dips of field lines in our models roughly replicate those of the observed prominence. Comparison between model and observations suggests that the bright features on the northern side of the channel are the lower legs of the field lines that turn into the flux rope. We suggest that plasma may be injected into the prominence along these field lines. Although the models fit the observations quiet well, there are also some interesting differences. For example, the models do not reproduce the observed vertical threads and cannot explain the formation of the dense-column structure.« less

  13. Why P/OF should look for evidences of over-dense structures in solar flare hard X-ray sources

    NASA Technical Reports Server (NTRS)

    Neidig, D. F.; Kane, S. R.; Love, J. J.; Cliver, E. W.

    1986-01-01

    White-light and hard X-ray (HXR) observations of two white-light flares (WLFs) show that if the radiative losses in the optical continuum are powered by fast electrons directly heating the WLF source, then the column density constraints imposed by the finite range of the electrons requires that the WLF consist of an over-dense region in the chromosphere, with density exceeding 10 to the 14th power/cu cm. Thus, we recommend that P/OF search for evidences of over-dense structures in HXR images obtained simultaneously with optical observations of flares.

  14. Exploring warm dense matter using quantum molecular dynamics

    NASA Astrophysics Data System (ADS)

    Clérouin, J.; Mazevet, S.

    2006-06-01

    For dense plasmas produced in shock experiments, the influence of the media on the isolated atomic properties can no longer be treated as a perturbation and conventional atomic physics approaches usually fail. Recently, quantum molecular dynamics (QMD) has been used to successfully predict static, dynamical and optical properties in this regime within the framework of a first principle method. In this short report, we illustrate the usefulness of the method for dense plasmas with a few selected examples: the equation of state of liquid deuterium, the electrical properties of expanded metals, the optical properties of shocked insulators, and the interaction of femto-second lasers with gold thin films.

  15. Theory of interparticle correlations in dense, high-temperature plasmas. V - Electric and thermal conductivities

    NASA Technical Reports Server (NTRS)

    Ichimaru, S.; Tanaka, S.

    1985-01-01

    Ichimaru et al. (1985) have developed a general theory in which the interparticle correlations in dense, high-temperature multicomponent plasmas were formulated systematically over a wide range of plasma parameters. The present paper is concerned with an extension of this theory, taking into account the problems of the electronic transport in such high-density plasmas. It is shown that the resulting theory is capable of describing the transport coefficients accurately over a wide range of the density and temperature parameters. Attention is given to electric and thermal conductivities, generalized Coulomb logarithms, a comparison of the considered theory with other theories, and a comparison of the theory with experimental results.

  16. Radiative corrections to the Coulomb law and model of dense quantum plasmas: Dispersion of longitudinal waves in magnetized quantum plasmas

    NASA Astrophysics Data System (ADS)

    Andreev, Pavel A.

    2018-04-01

    Two kinds of quantum electrodynamic radiative corrections to electromagnetic interactions and their influence on the properties of highly dense quantum plasmas are considered. Linear radiative correction to the Coulomb interaction is considered. Its contribution in the spectrum of the Langmuir waves is presented. The second kind of radiative corrections are related to the nonlinearity of the Maxwell equations for the strong electromagnetic field. Their contribution in the spectrum of transverse waves of magnetized plasmas is briefly discussed. At the consideration of the Langmuir wave spectrum, we included the effect of different distributions of the spin-up and spin-down electrons revealing in the Fermi pressure shift.

  17. Fluorescence and absorption spectroscopy for warm dense matter studies and ICF plasma diagnostics

    DOE PAGES

    Hansen, Stephanie B.; Harding, Eric C.; Knapp, Patrick F.; ...

    2018-03-07

    The burning core of an inertial confinement fusion (ICF) plasma produces bright x-rays at stagnation that can directly diagnose core conditions essential for comparison to simulations and understanding fusion yields. These x-rays also backlight the surrounding shell of warm, dense matter, whose properties are critical to understanding the efficacy of the inertial confinement and global morphology. In this work, we show that the absorption and fluorescence spectra of mid-Z impurities or dopants in the warm dense shell can reveal the optical depth, temperature, and density of the shell and help constrain models of warm, dense matter. This is illustrated bymore » the example of a high-resolution spectrum collected from an ICF plasma with a beryllium shell containing native iron impurities. Lastly, analysis of the iron K-edge provides model-independent diagnostics of the shell density (2.3 × 10 24 e/cm 3) and temperature (10 eV), while a 12-eV red shift in Kβ and 5-eV blue shift in the K-edge discriminate among models of warm dense matter: Both shifts are well described by a self-consistent field model based on density functional theory but are not fully consistent with isolated-atom models using ad-hoc density effects.« less

  18. M = +1, ± 1 and ± 2 mode helicon wave excitation.

    NASA Astrophysics Data System (ADS)

    Kim, J.-H.; Yun, S.-M.; Chang, H.-Y.

    1996-11-01

    The characteristics of M=+1, ± 1 and ± 2 modes helicon wave excited using a solenoid antenna, Nagoya type III and quadrupole antenna respectively are first investigated. The solenoid antenna is constructed by winding a copper cable on a quartz discharge tube. Two dimensional cross-field measurements of ArII optical emission induced by hot electrons are made to investigate RF power deposition: Components of the wave magnetic field measured with a single-turn, coaxial magnetic probe were compared with the field patterns computed for M=+1, ± 1 and ± 2 modes. The M=+1 mode plasma produced by the solenoid antenna has a cylindrical high intensity plasma column, which center is empty. This cylindrical high intensity column results from the rotation of the cross-sectional electric field pattern (right hand circularly polarization). The radial plasma density profile has a peak at r=2.5cm with axisymmetry. It has been found that the radial profile of the plasma density is in good agreement with the computed power deposition profile. The radial profiles of the wave magnetic field are in good agreement with computations. The plasma excited by Nagoya type III antenna has two high intensity columns which results from the linear combination of M=+1 and -1 modes (i.e. plane polarization). The radial plasma density profile is in good agreement with emission intensity profile of ArII line (488nm). The plasma excited by quadrupole antenna has four high intensity columns which results from the linear combination of M=+2 and -2 modes (i.e. plane polarization). In the M=± 2 modes, the radial plasma density profile is also in good agreement with emission intensity profile of ArII line.

  19. Characterizing the plasma of the Rotating Wall Machine

    NASA Astrophysics Data System (ADS)

    Hannum, David A.

    The Rotating Wall Machine (RoWM) is a line-tied linear screw pinch built to study current-driven external kink modes. The plasma column is formed by an array of seven electrostatic washer guns which can also be biased to drive plasma current. The array allows independent control over the electron density ne and current density Jz profiles of the column. Internal measurements of the plasma have been made with singletip Langmuir and magnetic induction ("B-dot") probes for a range of bias currents (Ib = 0, 300, 500 A/gun). Streams from the individual guns are seen to merge at a distance of z ≈ 36 cm from the guns; the exact distance depends on the value of Ib. The density of the column is directly proportional to the Ohmic dissipation power, but the temperature stays at a low, uniform value (Te ≈ 3.5 eV) for each bias level. Electron densities are on the order of ne ˜10 20 m-3. The electron density expands radially (across the Bz guide field) as the plasma moves along the column, though the current density Jz mainly stays parallel to the field lines. The singletip Langmuir probe diagnostic is difficult to analyze for Ib = 500 A/gun plasmas and fails as Ib is raised beyond this level. Spectrographic analysis of the Halpha line indicates that the hydrogen plasmas are nearly fully ionized at each bias level. Azimuthal E x B rotation is axially and radially sheared; rotation slows as the plasma reaches the anode. Perpendicular diffusivity is consistent with the classical value, D⊥ ≈ 5 m2/sec, while parallel resistivity is seen to be twice the classical Spitzer value, 2 x 10-4 O m.

  20. Convex Curved Crystal Spectograph for Pulsed Plasma Sources.

    DTIC Science & Technology

    The geometry of a convex curved crystal spectrograph as applied to pulsed plasma sources is presented. Also presented are data from the dense plasma focus with particular emphasis on the absolute intensity of line radiations.

  1. Probing the local environment of the supernova remnant HESS J1731-347 with CO and CS observations

    NASA Astrophysics Data System (ADS)

    Maxted, N.; Burton, M.; Braiding, C.; Rowell, G.; Sano, H.; Voisin, F.; Capasso, M.; Pühlhofer, G.; Fukui, Y.

    2018-02-01

    The shell-type supernova remnant HESS J1731 - 347 emits TeV gamma-rays, and is a key object for the study of the cosmic ray acceleration potential of supernova remnants. We use 0.5-1 arcmin Mopra CO/CS(1-0) data in conjunction with H I data to calculate column densities towards the HESS J1731 - 347 region. We trace gas within at least four Galactic arms, typically tracing total (atomic+molecular) line-of-sight H column densities of 2-3× 1022 cm-2. Assuming standard X-factor values and that most of the H I/CO emission seen towards HESS J1731 - 347 is on the near-side of the Galaxy, X-ray absorption column densities are consistent with H I+CO-derived column densities foreground to, but not beyond, the Scutum-Crux Galactic arm, suggesting a kinematic distance of ˜3.2 kpc for HESS J1731 - 347. At this kinematic distance, we also find dense, infrared-dark gas traced by CS(1-0) emission coincident with the north of HESS J1731 - 347, the nearby H II region G353.43-0.37 and the nearby unidentified gamma-ray source HESS J1729 - 345. This dense gas lends weight to the idea that HESS J1729 - 345 and HESS J1731 - 347 are connected, perhaps via escaping cosmic-rays.

  2. Relationship between the column density distribution and evolutionary class of molecular clouds as viewed by ATLASGAL

    NASA Astrophysics Data System (ADS)

    Abreu-Vicente, J.; Kainulainen, J.; Stutz, A.; Henning, Th.; Beuther, H.

    2015-09-01

    We present the first study of the relationship between the column density distribution of molecular clouds within nearby Galactic spiral arms and their evolutionary status as measured from their stellar content. We analyze a sample of 195 molecular clouds located at distances below 5.5 kpc, identified from the ATLASGAL 870 μm data. We define three evolutionary classes within this sample: starless clumps, star-forming clouds with associated young stellar objects, and clouds associated with H ii regions. We find that the N(H2) probability density functions (N-PDFs) of these three classes of objects are clearly different: the N-PDFs of starless clumps are narrowest and close to log-normal in shape, while star-forming clouds and H ii regions exhibit a power-law shape over a wide range of column densities and log-normal-like components only at low column densities. We use the N-PDFs to estimate the evolutionary time-scales of the three classes of objects based on a simple analytic model from literature. Finally, we show that the integral of the N-PDFs, the dense gas mass fraction, depends on the total mass of the regions as measured by ATLASGAL: more massive clouds contain greater relative amounts of dense gas across all evolutionary classes. Appendices are available in electronic form at http://www.aanda.org

  3. Dense plasma formation on the surface of a ferroelectric induced by a driving pulse with a fast fall time

    NASA Astrophysics Data System (ADS)

    Chirko, K.; Krasik, Ya. E.; Sayapin, A.; Felsteiner, J.; Bernshtam, V.

    2003-08-01

    Experimental results are presented of dense plasma formation on the surface of a BaTi-based ferroelectric sample during the fall time of a driving pulse. A negative or positive driving pulse (⩽14 kV), with a slow rise time (˜450 ns) and a fast fall time (40-200 ns), was applied to the rear electrode of the ferroelectric. It was found by different electrical, optical, and spectroscopic diagnostics that this method allows one to form a plasma with a larger density (˜3×1013 cm-3) as compared with that formed by a driving pulse with a fast rise time (⩽4×1012 cm-3). It was shown that the shorter the fall time of the driving pulse the more intense plasma formation occurs. The most uniform and dense plasma formation occurs with a positive driving pulse. In addition, it was found that the shorter the fall time of the positive driving pulse the larger are the current amplitude, the energy, and the divergence of the emitted electrons. The obtained results are discussed in terms of the surface plasma formation and the compensation process of the polarization surface charge of the ferroelectric sample.

  4. Effect of magnetic quantization on ion acoustic waves ultra-relativistic dense plasma

    NASA Astrophysics Data System (ADS)

    Javed, Asif; Rasheed, A.; Jamil, M.; Siddique, M.; Tsintsadze, N. L.

    2017-11-01

    In this paper, we have studied the influence of magnetic quantization of orbital motion of the electrons on the profile of linear and nonlinear ion-acoustic waves, which are propagating in the ultra-relativistic dense magneto quantum plasmas. We have employed both Thomas Fermi and Quantum Magneto Hydrodynamic models (along with the Poisson equation) of quantum plasmas. To investigate the large amplitude nonlinear structure of the acoustic wave, Sagdeev-Pseudo-Potential approach has been adopted. The numerical analysis of the linear dispersion relation and the nonlinear acoustic waves has been presented by drawing their graphs that highlight the effects of plasma parameters on these waves in both the linear and the nonlinear regimes. It has been noticed that only supersonic ion acoustic solitary waves can be excited in the above mentioned quantum plasma even when the value of the critical Mach number is less than unity. Both width and depth of Sagdeev potential reduces on increasing the magnetic quantization parameter η. Whereas the amplitude of the ion acoustic soliton reduces on increasing η, its width appears to be directly proportional to η. The present work would be helpful to understand the excitation of nonlinear ion-acoustic waves in the dense astrophysical environments such as magnetars and in intense-laser plasma interactions.

  5. Use of a novel cation-exchange restricted-access material for automated sample clean-up prior to the determination of basic drugs in plasma by liquid chromatography.

    PubMed

    Chiap, P; Rbeida, O; Christiaens, B; Hubert, Ph; Lubda, D; Boos, K S; Crommen, J

    2002-10-25

    A new kind of silica-based restricted-access material (RAM) has been tested in pre-columns for the on-line solid-phase extraction (SPE) of basic drugs from directly injected plasma samples before their quantitative analysis by reversed-phase liquid chromatography (LC), using the column switching technique. The outer surface of the porous RAM particlescontains hydrophilic diol groups while sulphonic acid groups are bound to the internal surface, which gives the sorbent the properties of a strong cation exchanger towards low molecular mass compounds. Macromolecules such as proteins have no access to the internal surface of the pre-column due to their exclusion from the pores and are then flushed directly out. The retention capability of this novel packing material has been tested for some hydrophilic basic drugs, such as atropine, fenoterol, ipratropium, procaine, sotalol and terbutaline, used as model compounds. The influence of the composition of the washing liquid on the retention of the analytes in the pre-column has been investigated. The elution profiles of the different compounds and the plasma matrix as well as the time needed for the transfer of the analytes from the pre-column to the analytical column were determined in order to deduce the most suitable conditions for the clean-up step and develop on-line methods for the LC determination of these compounds in plasma. The cationic exchange sorbent was also compared to another RAM, namely RP-18 ADS (alkyl diol silica) sorbent with respect to retention capability towards basic analytes.

  6. Measuring the radiative properties of astrophysical matter using the Z X-ray source

    NASA Astrophysics Data System (ADS)

    Bailey, James; ZAPP Team

    2017-06-01

    The Z Astrophysical Plasma Properties (ZAPP) collaboration is staging Z experiments that simultaneously investigate multiple topics in radiative properties of hot dense matter. The four astrophysics questions presently guiding this research are: 1) Why can’t we predict the location of the convection zone base in the Sun?; 2) How does radiation transport affect spectrum formation in accretion-powered objects?; 3) Why doesn’t spectral fitting provide the correct properties for White Dwarfs?; and 4) Why can’t we predict the heating and charge state distribution in photoionized plasmas? Recent progress using Z, the most energetic x-ray source on earth, to address these questions will be described. We emphasize the first two topics. Opacity models are an essential ingredient of stellar models and are highly sophisticated, but laboratory opacity tests have only now become possible at the conditions existing inside stars. Our opacity research emphasizes measuring iron at conditions relevant to the base of the solar convection zone, where the electron temperature and density are believed to be 190 eV and 9x1022 e/cc, respectively. The results exhibit large disagreements between iron opacity measurements and models and ongoing research is aimed at testing hypotheses for this discrepancy. The second project is motivated by the fact that emission lines from L-shell ions are not observed from iron in black hole accretion disks, but are observed from silicon in x-ray binaries. These disparate observations may be explained by differences in the radiation transport within the plasmas, but models for the spectral line formation and transport in photoionized plasmas have never been tested. We investigate photoionized silicon plasmas using absorption spectroscopy to infer the plasma conditions and emission spectroscopy to determine the dependence of spectral emission on plasma column density.++Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

  7. Semi-micro high-performance liquid chromatographic analysis of tiropramide in human plasma using column-switching.

    PubMed

    Baek, Soo Kyoung; Lee, Seung Seok; Park, Eun Jeon; Sohn, Dong Hwan; Lee, Hye Suk

    2003-02-05

    A rapid and sensitive column-switching semi-micro high-performance liquid chromatography method was developed for the direct analysis of tiropramide in human plasma. The plasma sample (100 microl) was directly injected onto Capcell Pak MF Ph-1 precolumn where deproteinization and analyte fractionation occurred. Tiropramide was then eluted into an enrichment column (Capcell Pak UG C(18)) using acetonitrile-potassium phosphate (pH 7.0, 50 mM) (12:88, v/v) and was analyzed on a semi-micro C(18) analytical column using acetonitrile-potassium phosphate (pH 7.0, 10 mM) (50:50, v/v). The method showed excellent sensitivity (limit of quantification 5 ng/ml), and good precision (C.V.

  8. Development of a spectroscopic technique for simultaneous magnetic field, electron density, and temperature measurements in ICF-relevant plasmas.

    PubMed

    Dutra, E C; Koch, J A; Presura, R; Angermeier, W A; Darling, T; Haque, S; Mancini, R C; Covington, A M

    2016-11-01

    Spectroscopic techniques in the visible range are often used in plasma experiments to measure B-field induced Zeeman splitting, electron densities via Stark broadening, and temperatures from Doppler broadening. However, when electron densities and temperatures are sufficiently high, the broadening of the Stark and Doppler components can dominate the emission spectra and obscure the Zeeman component. In this research, we are developing a time-resolved multi-axial technique for measuring the Zeeman, Stark, and Doppler broadened line emission of dense magnetized plasmas for Z-pinch and Dense Plasma Focus (DPF) accelerators. The line emission is used to calculate the electron densities, temperatures, and B-fields. In parallel, we are developing a line-shape modeling code that incorporates the broadening effects due to Stark, Doppler, and Zeeman effects for dense magnetized plasma. This manuscript presents the details of the experimental setup and line shape code, along with the results obtained from an Al iii doublet at the University of Nevada, Reno at Nevada Terawatt Facility. Future tests are planned to further evaluate the technique and modeling on other material wire array, gas puff, and DPF platforms.

  9. The interstellar N2 abundance towards HD 124314 from far-ultraviolet observations.

    PubMed

    Knauth, David C; Andersson, B-G; McCandliss, Stephan R; Moos, H Warren

    2004-06-10

    The abundance of interstellar molecular nitrogen (N2) is of considerable importance: models of steady-state gas-phase interstellar chemistry, together with millimetre-wavelength observations of interstellar N2H+ in dense molecular clouds predict that N2 should be the most abundant nitrogen-bearing molecule in the interstellar medium. Previous attempts to detect N2 absorption in the far-ultraviolet or infrared (ice features) have hitherto been unsuccessful. Here we report the detection of interstellar N2 at far-ultraviolet wavelengths towards the moderately reddened star HD 124314 in the constellation of Centaurus. The N2 column density is larger than expected from models of diffuse clouds and significantly smaller than expected for dense molecular clouds. Moreover, the N2 abundance does not explain the observed variations in the abundance of atomic nitrogen (N I) towards high-column-density sightlines, implying that the models of nitrogen chemistry in the interstellar medium are incomplete.

  10. Directed self-assembly into low-density colloidal liquid crystal phases

    NASA Astrophysics Data System (ADS)

    Gao, Yongxiang; Romano, Flavio; Dullens, Roel P. A.; Doye, Jonathan K.; Aarts, Dirk G. A. L.

    2018-01-01

    Alignment of anisometric particles into liquid crystals (LCs) often results from an entropic competition between their rotational and translational degrees of freedom at dense packings. Here we show that by selectively functionalizing the heads of colloidal rods with magnetic nanoparticles this tendency can be broken to direct the particles into novel, low-density LC phases. Under an external magnetic field, the magnetic heads line up in columns whereas the nonmagnetic tails point out randomly in a plane perpendicular to the columns, forming bottle-brush-like objects; laterally, the bottle brushes are entropically stabilized against coalescence. Experiments and simulations show that upon increasing the particle density the system goes from a dilute gas to a dense two-dimensional liquid of bottle brushes with a density well below the zero-field nematic phase. Our findings offer a strategy for self-assembly into three-dimensional open phases that may find applications in switchable photonics, filtration, and light-weight materials.

  11. Influence of renormalization shielding on the electron-impact ionization process in dense partially ionized plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Mi-Young; Yoon, Jung-Sik; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr

    2015-04-15

    The renormalization shielding effects on the electron-impact ionization of hydrogen atom are investigated in dense partially ionized plasmas. The effective projectile-target interaction Hamiltonian and the semiclassical trajectory method are employed to obtain the transition amplitude as well as the ionization probability as functions of the impact parameter, the collision energy, and the renormalization parameter. It is found that the renormalization shielding effect suppresses the transition amplitude for the electron-impact ionization process in dense partially ionized plasmas. It is also found that the renormalization effect suppresses the differential ionization cross section in the peak impact parameter region. In addition, it ismore » found that the influence of renormalization shielding on the ionization cross section decreases with an increase of the relative collision energy. The variations of the renormalization shielding effects on the electron-impact ionization cross section are also discussed.« less

  12. Renormalization shielding effect on the Wannier-ridge mode for double-electron continua in partially ionized dense hydrogen plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590

    2016-01-15

    The influence of renormalization shielding on the Wannier threshold law for the double-electron escapes by the electron-impact ionization is investigated in partially ionized dense plasmas. The renormalized electron charge and Wannier exponent are obtained by considering the equation of motion in the Wannier-ridge including the renormalization shielding effect. It is found that the renormalization shielding effect reduces the magnitude of effective electron charge, especially, within the Bohr radius in partially ionized dense plasmas. The maximum position of the renormalized electron charge approaches to the center of the target atom with an increase of the renormalization parameter. In addition, the Wanniermore » exponent increases with an increase of the renormalization parameter. The variations of the renormalized electron charge and Wannier exponent due to the renormalization shielding effect are also discussed.« less

  13. AzTEC Survey of the Central Molecular Zone: Modeling Dust SEDs and N-PDF with Hierarchical Bayesian Analysis

    NASA Astrophysics Data System (ADS)

    Tang, Yuping; Wang, Daniel; Wilson, Grant; Gutermuth, Robert; Heyer, Mark

    2018-01-01

    We present the AzTEC/LMT survey of dust continuum at 1.1mm on the central ˜ 200pc (CMZ) of our Galaxy. A joint SED analysis of all existing dust continuum surveys on the CMZ is performed, from 160µm to 1.1mm. Our analysis follows a MCMC sampling strategy incorporating the knowledge of PSFs in different maps, which provides unprecedented spacial resolution on distributions of dust temperature, column density and emissivity index. The dense clumps in the CMZ typically show low dust temperature ( 20K), with no significant sign of buried star formation, and a weak evolution of higher emissivity index toward dense peak. A new model is proposed, allowing for varying dust temperature inside a cloud and self-shielding of dust emission, which leads to similar conclusions on dust temperature and grain properties. We further apply a hierarchical Bayesian analysis to infer the column density probability distribution function (N-PDF), while simultaneously removing the Galactic foreground and background emission. The N-PDF shows a steep power-law profile with α > 3, indicating that formation of dense structures are suppressed.

  14. Computing rank-revealing QR factorizations of dense matrices.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bischof, C. H.; Quintana-Orti, G.; Mathematics and Computer Science

    1998-06-01

    We develop algorithms and implementations for computing rank-revealing QR (RRQR) factorizations of dense matrices. First, we develop an efficient block algorithm for approximating an RRQR factorization, employing a windowed version of the commonly used Golub pivoting strategy, aided by incremental condition estimation. Second, we develop efficiently implementable variants of guaranteed reliable RRQR algorithms for triangular matrices originally suggested by Chandrasekaran and Ipsen and by Pan and Tang. We suggest algorithmic improvements with respect to condition estimation, termination criteria, and Givens updating. By combining the block algorithm with one of the triangular postprocessing steps, we arrive at an efficient and reliablemore » algorithm for computing an RRQR factorization of a dense matrix. Experimental results on IBM RS/6000 SGI R8000 platforms show that this approach performs up to three times faster that the less reliable QR factorization with column pivoting as it is currently implemented in LAPACK, and comes within 15% of the performance of the LAPACK block algorithm for computing a QR factorization without any column exchanges. Thus, we expect this routine to be useful in may circumstances where numerical rank deficiency cannot be ruled out, but currently has been ignored because of the computational cost of dealing with it.« less

  15. A strong diffusive ion mode in dense ionized matter predicted by Langevin dynamics

    DOE PAGES

    Mabey, P.; Richardson, S.; White, T. G.; ...

    2017-01-30

    We determined the state and evolution of planets, brown dwarfs and neutron star crusts by the properties of dense and compressed matter. Furthermore, due to the inherent difficulties in modelling strongly coupled plasmas, however, current predictions of transport coefficients differ by orders of magnitude. Collective modes are a prominent feature, whose spectra may serve as an important tool to validate theoretical predictions for dense matter. With recent advances in free electron laser technology, X-rays with small enough bandwidth have become available, allowing the investigation of the low-frequency ion modes in dense matter. Here, we present numerical predictions for these ionmore » modes and demonstrate significant changes to their strength and dispersion if dissipative processes are included by Langevin dynamics. Notably, a strong diffusive mode around zero frequency arises, which is not present, or much weaker, in standard simulations. These results have profound consequences in the interpretation of transport coefficients in dense plasmas.« less

  16. Cracks and nanodroplets produced on tungsten surface samples by dense plasma jets

    NASA Astrophysics Data System (ADS)

    Ticoş, C. M.; Galaţanu, M.; Galaţanu, A.; Luculescu, C.; Scurtu, A.; Udrea, N.; Ticoş, D.; Dumitru, M.

    2018-03-01

    Small samples of 12.5 mm in diameter made from pure tungsten were exposed to a dense plasma jet produced by a coaxial plasma gun operated at 2 kJ. The surface of the samples was analyzed using a scanning electron microscope (SEM) before and after applying consecutive plasma shots. Cracks and craters were produced in the surface due to surface tensions during plasma heating. Nanodroplets and micron size droplets could be observed on the samples surface. An energy-dispersive spectroscopy (EDS) analysis revealed that the composition of these droplets coincided with that of the gun electrode material. Four types of samples were prepared by spark plasma sintering from powders with the average particle size ranging from 70 nanometers up to 80 μm. The plasma power load to the sample surface was estimated to be ≈4.7 MJ m-2 s-1/2 per shot. The electron temperature and density in the plasma jet had peak values 17 eV and 1.6 × 1022 m-3, respectively.

  17. Double-pulse THz radiation bursts from laser-plasma acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosch, R. A.

    2006-11-15

    A model is presented for coherent THz radiation produced when an electron bunch undergoes laser-plasma acceleration and then exits axially from a plasma column. Radiation produced when the bunch is accelerated is superimposed with transition radiation from the bunch exiting the plasma. Computations give a double-pulse burst of radiation comparable to recent observations. The duration of each pulse very nearly equals the electron bunch length, while the time separation between pulses is proportional to the distance between the points where the bunch is accelerated and where it exits the plasma. The relative magnitude of the two pulses depends upon bymore » the radius of the plasma column. Thus, the radiation bursts may be useful in diagnosing the electron bunch length, the location of the bunch's acceleration, and the plasma radius.« less

  18. [Purification of arsenic-binding proteins in hamster plasma after oral administration of arsenite].

    PubMed

    Wang, Wenwen; Zhang, Min; Li, Chunhui; Qin, Yingjie; Hua, Naranmandura

    2013-01-01

    To purify the arsenic-binding proteins (As-BP) in hamster plasma after a single oral administration of arsenite (iAs(III)). Arsenite was given to hamsters in a single dose. Three types of HPLC columns, size exclusion, gel filtration and anion exchange columns, combined with an inductively coupled argon plasma mass spectrometer (ICP MS) were used to purify the As-BP in hamster plasma. SDS-PAGE was used to confirm the arsenic-binding proteins at each purification step. The three-step purification process successfully separated As-BP from other proteins (ie, arsenic unbound proteins) in hamster plasma. The molecular mass of purified As-BP in plasma was approximately 40-50 kD on SDS-PAGE. The three-step purification method is a simple and fast approach to purify the As-BP in plasma samples.

  19. A novel experimental setup for energy loss and charge state measurements in dense moderately coupled plasma using laser-heated hohlraum targets

    NASA Astrophysics Data System (ADS)

    Ortner, A.; Schumacher, D.; Cayzac, W.; Frank, A.; Basko, M. M.; Bedacht, S.; Blazevic, A.; Faik, S.; Kraus, D.; Rienecker, T.; Schaumann, G.; Tauschwitz, An.; Wagner, F.; Roth, M.

    2016-03-01

    We report on a new experimental setup for ion energy loss measurements in dense moderately coupled plasma which has recently been developed and tested at GSI Darmstadt. A partially ionized, moderately coupled carbon plasma (ne ≤ 0.8• 1022 cm-3, Te = 15 eV, z = 2.5, Γ = 0.5) is generated by volumetrical heating of two thin carbon foils with soft X-rays. This plasma is then probed by a bunched heavy ion beam. For that purpose, a special double gold hohlraum target of sub-millimeter size has been developed which efficiently converts intense laser light into thermal radiation and guarantees a gold-free interaction path for the ion beam traversing the carbon plasma. This setup allows to do precise energy loss measurements in non-ideal plasma at the level of 10 percent solid-state density.

  20. Determination of N-(trans-4-isopropylcyclohexylcarbonyl)-D-phenylalanine in human plasma by solid-phase extraction and column-switching high-performance liquid chromatography with ultraviolet detection.

    PubMed

    Ono, I; Matsuda, K; Kanno, S

    1996-04-12

    A column-switching high-performance liquid chromatography method with ultraviolet detection at 210 nm has been developed for the determination of N-(trans-4-isopropylcyclohexylcarbonyl)-D-phenylalanine (AY4166, I) in human plasma. Plasma samples were prepared by solid-phase extraction with Sep-Pak Light tC18, followed by HPLC. The calibration graph for I was linear in the range 0.1-20 micrograms/ml. The limit of quantitation of I, in plasma, was 0.05 microgram/ml. The recovery of spiked I (0.5 microgram/ml) to drug-free plasma was over 92% and the relative standard deviation of spiked I (0.5 microgram/ml) compared to drug-free plasma was 4.3% (n = 8).

  1. What are the limits of energy focusing in sonoluminescence?

    NASA Astrophysics Data System (ADS)

    Putterman, Seth; Camara, C.; Kappus, B.; Su, C. K.; Kirilov, E.

    2003-04-01

    Sonoluminescence [SL] is amazing for the extraordinary degree by which ultrasonic energy can be focused by a cavitating bubble. Local energy dissipation exceeds Kirkhoff's law by 1E15 and the acoustic energy density concentrates by 12 orders of magnitude to create picosecond flashes of broadband ultraviolet light. At the minimum bubble radius, the acceleration exceeds 1E11 g and a megabar level shock wave is emitted into the surrounding fluid. For single bubbles driven at 30 KHz, SL is nature's smallest blackbody. This implies that the bubble's interior is such a dense plasma that the photon-matter mean free path is shorter than the wavelength of light, and suggests that SL originates in an unusual state of matter. Excitation of a vertical column of fluid [~10 Hz] so as to create a water hammer leads to the upscaling of SL and generation of flashes of light with 3E8 photons and peak powers approaching 1 W. At 1 MHz, the spectrum resembles bremsstrahlung from a transparent plasma with a temperature ~1 MK. At 10 MHz the collapsed size of the SL bubble approaches 10 nm, which raises the possibility that the SL parameter space may extend to the domain of quantum mechanics. [Research supported by DARPA and DOE.

  2. Observation of helicon wave with m = 0 antenna in a weakly magnetized inductively coupled plasma source

    NASA Astrophysics Data System (ADS)

    Ellingboe, Bert; Sirse, Nishant; Moloney, Rachel; McCarthy, John

    2015-09-01

    Bounded whistler wave, called ``helicon wave,'' is known to produce high-density plasmas and has been exploited as a high density plasma source for many applications, including electric propulsion for spacecraft. In a helicon plasma source, an antenna wrapped around the magnetized plasma column launches a low frequency wave, ωce/2 >ωhelicon >ωce/100, in the plasma which is responsible for maintaining high density plasma. Several antenna designs have been proposed in order to match efficiently the wave modes. In our experiment, helicon wave mode is observed using an m = 0 antenna. A floating B dot probe, compensated to the capacitively coupled E field, is employed to measure axial-wave-field-profiles (z, r, and θ components) in the plasma at multiple radial positions as a function of rf power and pressure. The Bθ component of the rf-field is observed to be unaffected as the wave propagates in the axial direction. Power coupling between the antenna and the plasma column is identified and agrees with the E, H, and wave coupling regimes previously seen in M =1 antenna systems. That is, the Bz component of the rf-field is observed at low plasma density as the Bz component from the antenna penetrates the plasma. The Bz component becomes very small at medium density due to shielding at the centre of the plasma column; however, with increasing density, a sudden ``jump'' occurs in the Bz component above which a standing wave under the antenna with a propagating wave away from the antenna are observed.

  3. Glucose recruits K(ATP) channels via non-insulin-containing dense-core granules.

    PubMed

    Yang, Shao-Nian; Wenna, Nancy Dekki; Yu, Jia; Yang, Guang; Qiu, Hua; Yu, Lina; Juntti-Berggren, Lisa; Köhler, Martin; Berggren, Per-Olof

    2007-09-01

    beta cells rely on adenosine triphosphate-sensitive potassium (K(ATP)) channels to initiate and end glucose-stimulated insulin secretion through changes in membrane potential. These channels may also act as a constituent of the exocytotic machinery to mediate insulin release independent of their electrical function. However, the molecular mechanisms whereby the beta cell plasma membrane maintains an appropriate number of K(ATP) channels are not known. We now show that glucose increases K(ATP) current amplitude by increasing the number of K(ATP) channels in the beta cell plasma membrane. The effect was blocked by inhibition of protein kinase A (PKA) as well as by depletion of extracellular or intracellular Ca(2+). Furthermore, glucose promoted recruitment of the potassium inward rectifier 6.2 to the plasma membrane, and intracellular K(ATP) channels localized in chromogranin-positive/insulin-negative dense-core granules. Our data suggest that glucose can recruit K(ATP) channels to the beta cell plasma membrane via non-insulin-containing dense-core granules in a Ca(2+)- and PKA-dependent manner.

  4. Nonlinear extraordinary wave in dense plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasovitskiy, V. B., E-mail: krasovit@mail.ru; Turikov, V. A.

    2013-10-15

    Conditions for the propagation of a slow extraordinary wave in dense magnetized plasma are found. A solution to the set of relativistic hydrodynamic equations and Maxwell’s equations under the plasma resonance conditions, when the phase velocity of the nonlinear wave is equal to the speed of light, is obtained. The deviation of the wave frequency from the resonance frequency is accompanied by nonlinear longitudinal-transverse oscillations. It is shown that, in this case, the solution to the set of self-consistent equations obtained by averaging the initial equations over the period of high-frequency oscillations has the form of an envelope soliton. Themore » possibility of excitation of a nonlinear wave in plasma by an external electromagnetic pulse is confirmed by numerical simulations.« less

  5. Characterization of hot dense plasma with plasma parameters

    NASA Astrophysics Data System (ADS)

    Singh, Narendra; Goyal, Arun; Chaurasia, S.

    2018-05-01

    Characterization of hot dense plasma (HDP) with its parameters temperature, electron density, skin depth, plasma frequency is demonstrated in this work. The dependence of HDP parameters on temperature and electron density is discussed. The ratio of the intensities of spectral lines within HDP is calculated as a function of electron temperature. The condition of weakly coupled for HDP is verified by calculating coupling constant. Additionally, atomic data such as transition wavelength, excitation energies, line strength, etc. are obtained for Be-like ions on the basis of MCDHF method. In atomic data calculations configuration interaction and relativistic effects QED and Breit corrections are newly included for HDP characterization and this is first result of HDP parameters from extreme ultraviolet (EUV) radiations.

  6. Generation of surface-wave microwave microplasmas in hollow-core photonic crystal fiber based on a split-ring resonator.

    PubMed

    Vial, Florian; Gadonna, Katell; Debord, Benoît; Delahaye, Frédéric; Amrani, Foued; Leroy, Olivier; Gérôme, Frédéric; Benabid, Fetah

    2016-05-15

    We report on a new and highly compact scheme for the generation and sustainment of microwave-driven plasmas inside the core of an inhibited coupling Kagome hollow-core photonic crystal fiber. The microwave plasma generator consists of a split-ring resonator that efficiently couples the microwave field into the gas-filled fiber. This coupling induces the concomitant generation of a microwave surface wave at the fiber core surround and a stable plasma column confined in the fiber core. The scheme allowed the generation of several centimeters long argon microplasma columns with a very low excitation power threshold. This result represents an important step toward highly compact plasma lasers or plasma-based photonic components.

  7. Determination of N-(trans-4-isopropylcyclohexanecarbonyl)-D-phenylalanine and its metabolites in human plasma and urine by column-switching high-performance liquid chromatography with ultraviolet detection.

    PubMed

    Ono, I; Matsuda, K; Kanno, S

    1997-05-09

    A simple, rapid and sensitive two column-switching high-performance liquid chromatographic (HPLC) method with ultraviolet detection at 210 nm has been developed for the determination of N-(trans-4-isopropylcyclohexanecarbonyl)-D-phenylalanine (AY4166, I) and its seven metabolites in human plasma and urine. Measurements of I and its metabolites were carried out by two column-switching HPLC, because metabolites were classified into two groups according to their retention times. After purification of plasma samples using solid-phase extraction and direct dilution of urinary samples, I and each metabolite were injected into HPLC. The calibration graphs for plasma and urinary samples were linear in the ranges 0.1 to 10 microg ml(-1) and 0.5 to 50 microg ml(-1), respectively. Recoveries of I and its seven metabolites were over 88% by the standard addition method and the relative standard deviations of I and its metabolites were 1-6%.

  8. Deposition of Lanthanum Strontium Cobalt Ferrite (LSCF) Using Suspension Plasma Spraying for Oxygen Transport Membrane Applications

    NASA Astrophysics Data System (ADS)

    Fan, E. S. C.; Kesler, O.

    2015-08-01

    Suspension plasma spray deposition was utilized to fabricate dense lanthanum strontium cobalt ferrite oxygen separation membranes (OSMs) on porous metal substrates for mechanical support. The as-sprayed membranes had negligible and/or reversible material decomposition. At the longer stand-off distance (80 mm), smooth and dense membranes could be manufactured using a plasma with power below approximately 81 kW. Moreover, a membrane of 55 μm was observed to have very low gas leakage rates desirable for OSM applications. This thickness could potentially be decreased further to improve oxygen diffusion by using metal substrates with finer surface pores.

  9. Microscale depletion of high abundance proteins in human biofluids using IgY14 immunoaffinity resin: analysis of human plasma and cerebrospinal fluid.

    PubMed

    Hyung, Seok-Won; Piehowski, Paul D; Moore, Ronald J; Orton, Daniel J; Schepmoes, Athena A; Clauss, Therese R; Chu, Rosalie K; Fillmore, Thomas L; Brewer, Heather; Liu, Tao; Zhao, Rui; Smith, Richard D

    2014-11-01

    Removal of highly abundant proteins in plasma is often carried out using immunoaffinity depletion to extend the dynamic range of measurements to lower abundance species. While commercial depletion columns are available for this purpose, they generally are not applicable to limited sample quantities (<20 μL) due to low yields stemming from losses caused by nonspecific binding to the column matrix and concentration of large eluent volumes. Additionally, the cost of the depletion media can be prohibitive for larger-scale studies. Modern LC-MS instrumentation provides the sensitivity necessary to scale-down depletion methods with minimal sacrifice to proteome coverage, which makes smaller volume depletion columns desirable for maximizing sample recovery when samples are limited, as well as for reducing the expense of large-scale studies. We characterized the performance of a 346 μL column volume microscale depletion system, using four different flow rates to determine the most effective depletion conditions for ∼6-μL injections of human plasma proteins and then evaluated depletion reproducibility at the optimum flow rate condition. Depletion of plasma using a commercial 10-mL depletion column served as the control. Results showed depletion efficiency of the microscale column increased as flow rate decreased, and that our microdepletion was reproducible. In an initial application, a 600-μL sample of human cerebrospinal fluid (CSF) pooled from multiple sclerosis patients was depleted and then analyzed using reversed phase liquid chromatography-mass spectrometry to demonstrate the utility of the system for this important biofluid where sample quantities are more commonly limited.

  10. Microscale depletion of high abundance proteins in human biofluids using IgY14 immunoaffinity resin: Analysis of human plasma and cerebrospinal fluid

    DOE PAGES

    Hyung, Seok Won; Piehowski, Paul D.; Moore, Ronald J.; ...

    2014-09-06

    Removal of highly abundant proteins in plasma is often carried out using immunoaffinity depletion to extend the dynamic range of measurements to lower abundance species. While commercial depletion columns are available for this purpose, they generally are not applicable to limited sample quantities (<20 µL) due to low yields stemming from losses caused by nonspecific binding to the column matrix. Additionally, the cost of the depletion media can be prohibitive for larger scale studies. Modern LC-MS instrumentation provides the sensitivity necessary to scale-down depletion methods with minimal sacrifice to proteome coverage, which makes smaller volume depletion columns desirable for maximizingmore » sample recovery when samples are limited, as well as for reducing the expense of large scale studies. We characterized the performance of a 346 µL column volume micro-scale depletion system, using four different flow rates to determine the most effective depletion conditions for ~6 μL injections of human plasma proteins and then evaluated depletion reproducibility at the optimum flow rate condition. Depletion of plasma using a commercial 10 mL depletion column served as the control. Results showed depletion efficiency of the micro-scale column increased as flow rate decreased, and that our micro-depletion was reproducible. We found, in an initial application, a 600 µL sample of human cerebral spinal fluid (CSF) pooled from multiple sclerosis patients was depleted and then analyzed using reversed phase liquid chromatography-mass spectrometry to demonstrate the utility of the system for this important biofluid where sample quantities are more commonly limited.« less

  11. Pattern formation and filamentation in low temperature, magnetized plasmas - a numerical approach

    NASA Astrophysics Data System (ADS)

    Menati, Mohamad; Konopka, Uwe; Thomas, Edward

    2017-10-01

    In low-temperature discharges under the influence of high magnetic field, pattern and filament formation in the plasma has been reported by different groups. The phenomena present themselves as bright plasma columns (filaments) oriented parallel to the magnetic field lines at high magnetic field regime. The plasma structure can filament into different shapes from single columns to spiral and bright rings when viewed from the top. In spite of the extensive experimental observations, the observed effects lack a detailed theoretical and numerical description. In an attempt to numerically explain the plasma filamentation, we present a simplified model for the plasma discharge and power deposition into the plasma. Based on the model, 2-D and 3-D codes are being developed that solve Poisson's equation along with the fluid equations to obtain a self-consistent description of the plasma. The model and preliminary results applied to the specific plasma conditions will be presented. This work was supported by the US Dept. of Energy and NSF, DE-SC0016330, PHY-1613087.

  12. Stereospecific analysis of loxoprofen in plasma by chiral column liquid chromatography with a circular dichroism-based detector.

    PubMed

    Kanazawa, Hideko; Tsubayashi, Akane; Nagata, Yoshiko; Matsushima, Yoshikazu; Mori, Chiharu; Kizu, Junko; Higaki, Megumu

    2002-03-01

    The chiral separation of loxoprofen was achieved on a chiral column with UV and circular dichroism (CD) detection. The good resolution of four loxoprofen stereoisomers was obtained. The column used for the chiral separation was Chiralcel OJ column (250 x 4.6 mm) using hexane-2-propanol-trifluoroacetic acid (95:5:0.1), as an eluent. The flow-rate was 1.0 ml/min and the detection was at 225 nm. In addition, CD and UV spectra were obtained by stopped flow scanning. The method allows the determination of the stereoisomers of loxoprofen in human plasma after the administration of therapeutic dose of the racemic drug, thus HPLC with CD detector is useful for the stereospecific determination of loxoprofen products in biological samples.

  13. Geometrical optics of dense aerosols: forming dense plasma slabs.

    PubMed

    Hay, Michael J; Valeo, Ernest J; Fisch, Nathaniel J

    2013-11-01

    Assembling a freestanding, sharp-edged slab of homogeneous material that is much denser than gas, but much more rarefied than a solid, is an outstanding technological challenge. The solution may lie in focusing a dense aerosol to assume this geometry. However, whereas the geometrical optics of dilute aerosols is a well-developed field, the dense aerosol limit is mostly unexplored. Yet controlling the geometrical optics of dense aerosols is necessary in preparing such a material slab. Focusing dense aerosols is shown here to be possible, but the finite particle density reduces the effective Stokes number of the flow, a critical result for controlled focusing.

  14. Point Source X-Ray Lithography System for Sub-0.15 Micron Design Rules

    DTIC Science & Technology

    1998-05-22

    consist of a SAL developed stepper, an SRL developed Dense Plasma Focus , (DPF), X-Ray source, and a CXrL developed beam line. The system will be...existing machine that used spark gap switching, SRL has developed an all solid state driver and improved head electrode assembly for their dense plasma ... focus X-Ray source. Likewise, SAL has used their existing Model 4 stepper installed at CXrL as a design starting point, and has developed an advanced

  15. Re-appraisal and extension of the Gratton-Vargas two-dimensional analytical snowplow model of plasma focus. II. Looking at the singularity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auluck, S. K. H., E-mail: skhauluck@gmail.com

    2015-11-15

    The Gratton-Vargas snowplow model, recently revisited and expanded [S. K. H. Auluck, Phys. Plasmas 20, 112501 (2013)], has given rise to significant new insights into some aspects of the Dense Plasma Focus (DPF), in spite of being a purely kinematic description having no reference to plasma phenomena. It is able to provide a good fit to the experimental current waveforms in at least 4 large facilities. It has been used for construction of a local curvilinear frame of reference, in which conservation laws for mass, momentum, and energy can be reduced to effectively-one-dimensional hyperbolic conservation law equations. Its utility inmore » global parameter optimization of device parameters has been demonstrated. These features suggest that the Gratton-Vargas model deserves a closer look at its supposed limitations near the singular phase of the DPF. This paper presents a discussion of its development near the device axis, based on the original work of Gratton and Vargas, with some differences. It is shown that the Gratton-Vargas partial differential equation has solutions for times after the current singularity, which exhibit an expanding bounded volume (which can serve as model of an expanding plasma column) and decreasing dynamic inductance of the discharge, in spite of having no built-in hydrodynamics. This enables the model to qualitatively reproduce the characteristic shape of the current derivative in DPF experiments without reference to any plasma phenomena, such as instabilities, anomalous resistance, or reflection of hydrodynamic shock wave from the axis. The axial propagation of the solution exhibits a power-law dependence on the dimensionless time starting from the time of singularity, which is similar to the power-law relations predicted by theory of point explosions in ideal gases and which has also been observed experimentally.« less

  16. The Green Bank Ammonia Survey: Observations of Hierarchical Dense Gas Structures in Cepheus-L1251

    NASA Astrophysics Data System (ADS)

    Keown, Jared; Di Francesco, James; Kirk, Helen; Friesen, Rachel K.; Pineda, Jaime E.; Rosolowsky, Erik; Ginsburg, Adam; Offner, Stella S. R.; Caselli, Paola; Alves, Felipe; Chacón-Tanarro, Ana; Punanova, Anna; Redaelli, Elena; Seo, Young Min; Matzner, Christopher D.; Chun-Yuan Chen, Michael; Goodman, Alyssa A.; Chen, How-Huan; Shirley, Yancy; Singh, Ayushi; Arce, Hector G.; Martin, Peter; Myers, Philip C.

    2017-11-01

    We use Green Bank Ammonia Survey observations of NH3 (1, 1) and (2, 2) emission with 32″ FWHM resolution from a ˜10 pc2 portion of the Cepheus-L1251 molecular cloud to identify hierarchical dense gas structures. Our dendrogram analysis of the NH3 data results in 22 top-level structures, which reside within 13 lower-level parent structures. The structures are compact (0.01 {pc}≲ {R}{eff}≲ 0.1 {pc}) and are spatially correlated with the highest H2 column density portions of the cloud. We also compare the ammonia data to a catalog of dense cores identified by higher-resolution (18.″2 FWHM) Herschel Space Observatory observations of dust continuum emission from Cepheus-L1251. Maps of kinetic gas temperature, velocity dispersion, and NH3 column density, derived from detailed modeling of the NH3 data, are used to investigate the stability and chemistry of the ammonia-identified and Herschel-identified structures. We show that the dust and dense gas in the structures have similar temperatures, with median T dust and T K measurements of 11.7 ± 1.1 K and 10.3 ± 2.0 K, respectively. Based on a virial analysis, we find that the ammonia-identified structures are gravitationally dominated, yet may be in or near a state of virial equilibrium. Meanwhile, the majority of the Herschel-identified dense cores appear to be not bound by their own gravity and instead confined by external pressure. CCS (20 - 10) and HC5N (9-8) emission from the region reveal broader line widths and centroid velocity offsets when compared to the NH3 (1, 1) emission in some cases, likely due to these carbon-based molecules tracing the turbulent outer layers of the dense cores.

  17. Dense Plasma Focus - From Alternative Fusion Source to Versatile High Energy Density Plasma Source for Plasma Nanotechnology

    NASA Astrophysics Data System (ADS)

    Rawat, R. S.

    2015-03-01

    The dense plasma focus (DPF), a coaxial plasma gun, utilizes pulsed high current electrical discharge to heat and compress the plasma to very high density and temperature with energy densities in the range of 1-10 × 1010 J/m3. The DPF device has always been in the company of several alternative magnetic fusion devices as it produces intense fusion neutrons. Several experiments conducted on many different DPF devices ranging over several order of storage energy have demonstrated that at higher storage energy the neutron production does not follow I4 scaling laws and deteriorate significantly raising concern about the device's capability and relevance for fusion energy. On the other hand, the high energy density pinch plasma in DPF device makes it a multiple radiation source of ions, electron, soft and hard x-rays, and neutrons, making it useful for several applications in many different fields such as lithography, radiography, imaging, activation analysis, radioisotopes production etc. Being a source of hot dense plasma, strong shockwave, intense energetic beams and radiation, etc, the DPF device, additionally, shows tremendous potential for applications in plasma nanoscience and plasma nanotechnology. In the present paper, the key features of plasma focus device are critically discussed to understand the novelties and opportunities that this device offers in processing and synthesis of nanophase materials using, both, the top-down and bottom-up approach. The results of recent key experimental investigations performed on (i) the processing and modification of bulk target substrates for phase change, surface reconstruction and nanostructurization, (ii) the nanostructurization of PLD grown magnetic thin films, and (iii) direct synthesis of nanostructured (nanowire, nanosheets and nanoflowers) materials using anode target material ablation, ablated plasma and background reactive gas based synthesis and purely gas phase synthesis of various different types of nanostructured materials using DPF device will discussed to establish this device as versatile tool for plasma nanotechnology.

  18. Hydroxyapatite coatings deposited by liquid precursor plasma spraying: controlled dense and porous microstructures and osteoblastic cell responses.

    PubMed

    Huang, Yi; Song, Lei; Liu, Xiaoguang; Xiao, Yanfeng; Wu, Yao; Chen, Jiyong; Wu, Fang; Gu, Zhongwei

    2010-12-01

    Hydroxyapatite coatings were deposited on Ti-6Al-4V substrates by a novel plasma spraying process, the liquid precursor plasma spraying (LPPS) process. X-ray diffraction results showed that the coatings obtained by the LPPS process were mainly composed of hydroxyapatite. The LPPS process also showed excellent control on the coating microstructure, and both nearly fully dense and highly porous hydroxyapatite coatings were obtained by simply adjusting the solid content of the hydroxyapatite liquid precursor. Scanning electron microscope observations indicated that the porous hydroxyapatite coatings had pore size in the range of 10-200 µm and an average porosity of 48.26 ± 0.10%. The osteoblastic cell responses to the dense and porous hydroxyapatite coatings were evaluated with human osteoblastic cell MG-63, in respect of the cell morphology, proliferation and differentiation, with the hydroxyapatite coatings deposited by the atmospheric plasma spraying (APS) process as control. The cell experiment results indicated that the heat-treated LPPS coatings with a porous structure showed the best cell proliferation and differentiation among all the hydroxyapatite coatings. Our results suggest that the LPPS process is a promising plasma spraying technique for fabricating hydroxyapatite coatings with a controllable microstructure, which has great potential in bone repair and replacement applications.

  19. Time-resolved spectra of dense plasma focus using spectrometer, streak camera, and CCD combination.

    PubMed

    Goldin, F J; Meehan, B T; Hagen, E C; Wilkins, P R

    2010-10-01

    A time-resolving spectrographic instrument has been assembled with the primary components of a spectrometer, image-converting streak camera, and CCD recording camera, for the primary purpose of diagnosing highly dynamic plasmas. A collection lens defines the sampled region and couples light from the plasma into a step index, multimode fiber which leads to the spectrometer. The output spectrum is focused onto the photocathode of the streak camera, the output of which is proximity-coupled to the CCD. The spectrometer configuration is essentially Czerny-Turner, but off-the-shelf Nikon refraction lenses, rather than mirrors, are used for practicality and flexibility. Only recently assembled, the instrument requires significant refinement, but has now taken data on both bridge wire and dense plasma focus experiments.

  20. Restrike Particle Beam Experiments on a Dense Plasma Focus.

    DTIC Science & Technology

    1981-11-30

    particle beams generated in a plasma focus with the current flowing in the circuit just before the radial collapse of the pinch, IMB. The results show...the implications for the application of the plasma focus as an opening switch are discussed. (Author)

  1. Design and Prototype of an Automated Column-Switching HPLC System for Radiometabolite Analysis.

    PubMed

    Vasdev, Neil; Collier, Thomas Lee

    2016-08-17

    Column-switching high performance liquid chromatography (HPLC) is extensively used for the critical analysis of radiolabeled ligands and their metabolites in plasma. However, the lack of streamlined apparatus and consequently varying protocols remain as a challenge among positron emission tomography laboratories. We report here the prototype apparatus and implementation of a fully automated and simplified column-switching procedure to allow for the easy and automated determination of radioligands and their metabolites in up to 5 mL of plasma. The system has been used with conventional UV and coincidence radiation detectors, as well as with a single quadrupole mass spectrometer.

  2. Plasma-screening effects on the electron-impact excitation of hydrogenic ions in dense plasmas

    NASA Technical Reports Server (NTRS)

    Jung, Young-Dae

    1993-01-01

    Plasma-screening effects are investigated on electron-impact excitation of hydrogenic ions in dense plasmas. Scaled cross sections Z(exp 4) sigma for 1s yields 2s and 1s yields 2p are obtained for a Debye-Hueckel model of the screened Coulomb interaction. Ground and excited bound wave functions are modified in the screened Coulomb potential (Debye-Hueckel model) using the Ritz variation method. The resulting atomic wave functions and their eigenenergies agree well with the numerical and high-order perturbation theory calculations for the interesting domain of the Debye length not less than 10. The Born approximation is used to describe the continuum states of the projectile electron. Plasma screening effects on the atomic electrons cannot be neglected in the high-density cases. Including these effects, the cross sections are appreciably increased for 1s yields 2s transitions and decreased for 1s yields 2p transitions.

  3. Nuclear Fusion Within Extremely Dense Plasma Enhanced by Quantum Particle Waves

    NASA Astrophysics Data System (ADS)

    Miao, Feng; Zheng, Xianjun; Deng, Baiquan

    2015-05-01

    Quantum effects play an enhancement role in p-p chain reactions occurring within stars. Such an enhancement is quantified by a wave penetration factor that is proportional to the density of the participating fuel particles. This leads to an innovative theory for dense plasma, and its result shows good agreement with independent data derived from the solar energy output. An analysis of the first Z-pinch machine in mankind's history exhibiting neutron emission leads to a derived deuterium plasma beam density greater than that of water, with plasma velocities exceeding 10000 km/s. Fusion power could be achieved by the intersection of four such pinched plasma beams with powerful head-on collisions in their common focal region due to the beam and target enhanced reaction. supported by the Fund for the Construction of Graduate Degree of China (No. 2014XWD-S0805)

  4. Nuclear-plus-interference-scattering effect on the energy deposition of multi-MeV protons in a dense Be plasma.

    PubMed

    Wang, Zhigang; Fu, Zhenguo; He, Bin; Hu, Zehua; Zhang, Ping

    2016-09-01

    The nuclear plus interference scattering (NIS) effect on the stopping power of hot dense beryllium (Be) plasma for multi-MeV protons is theoretically investigated by using the generalized Brown-Preston-Singleton (BPS) model, in which a NIS term is taken into account. The analytical formula of the NIS term is detailedly derived. By using this formula, the density and temperature dependence of the NIS effect is numerically studied, and the results show that the NIS effect becomes more and more important with increasing the plasma temperature or density. Different from the cases of protons traveling through the deuterium-tritium plasmas, for a Be plasma, a prominent oscillation valley structure is observed in the NIS term when the proton's energy is close to E_{p}=7MeV. Furthermore, the penetration distance is remarkably reduced when the NIS term is considered.

  5. Stopping power of dense plasmas: The collisional method and limitations of the dielectric formalism.

    PubMed

    Clauser, C F; Arista, N R

    2018-02-01

    We present a study of the stopping power of plasmas using two main approaches: the collisional (scattering theory) and the dielectric formalisms. In the former case, we use a semiclassical method based on quantum scattering theory. In the latter case, we use the full description given by the extension of the Lindhard dielectric function for plasmas of all degeneracies. We compare these two theories and show that the dielectric formalism has limitations when it is used for slow heavy ions or atoms in dense plasmas. We present a study of these limitations and show the regimes where the dielectric formalism can be used, with appropriate corrections to include the usual quantum and classical limits. On the other hand, the semiclassical method shows the correct behavior for all plasma conditions and projectile velocity and charge. We consider different models for the ion charge distributions, including bare and dressed ions as well as neutral atoms.

  6. Calculation of Transport Coefficients in Dense Plasma Mixtures

    NASA Astrophysics Data System (ADS)

    Haxhimali, T.; Cabot, W. H.; Caspersen, K. J.; Greenough, J.; Miller, P. L.; Rudd, R. E.; Schwegler, E. R.

    2011-10-01

    We use classical molecular dynamics (MD) to estimate species diffusivity and viscosity in mixed dense plasmas. The Yukawa potential is used to describe the screened Coulomb interaction between the ions. This potential has been used widely, providing the basis for models of dense stellar materials, inertial confined plasmas, and colloidal particles in electrolytes. We calculate transport coefficients in equilibrium simulations using the Green- Kubo relation over a range of thermodynamic conditions including the viscosity and the self - diffusivity for each component of the mixture. The interdiffusivity (or mutual diffusivity) can then be related to the self-diffusivities by using a generalization of the Darken equation. We have also employed non-equilibrium MD to estimate interdiffusivity during the broadening of the interface between two regions each with a high concentration of either species. Here we present results for an asymmetric mixture between Ar and H. These can easily be extended to other plasma mixtures. A main motivation for this study is to develop accurate transport models that can be incorporated into the hydrodynamic codes to study hydrodynamic instabilities. We use classical molecular dynamics (MD) to estimate species diffusivity and viscosity in mixed dense plasmas. The Yukawa potential is used to describe the screened Coulomb interaction between the ions. This potential has been used widely, providing the basis for models of dense stellar materials, inertial confined plasmas, and colloidal particles in electrolytes. We calculate transport coefficients in equilibrium simulations using the Green- Kubo relation over a range of thermodynamic conditions including the viscosity and the self - diffusivity for each component of the mixture. The interdiffusivity (or mutual diffusivity) can then be related to the self-diffusivities by using a generalization of the Darken equation. We have also employed non-equilibrium MD to estimate interdiffusivity during the broadening of the interface between two regions each with a high concentration of either species. Here we present results for an asymmetric mixture between Ar and H. These can easily be extended to other plasma mixtures. A main motivation for this study is to develop accurate transport models that can be incorporated into the hydrodynamic codes to study hydrodynamic instabilities. This work was performed under the auspices of the US Dept. of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344.

  7. Visible light emission measurements from a dense electrothermal launcher plasma

    NASA Astrophysics Data System (ADS)

    Hankins, O. E.; Bourham, M. A.; Earnhart, J.; Gilligan, J. G.

    1993-01-01

    Measurements of the visible light emission from dense, weakly non-ideal plasmas have been performed on the experimental electrothermal launcher device 'SIRENS'. The plasma is created by the ablation or a Lexan insulator in the source, which then flows through a cylindrical barrel which serves as the material sample. Visible light emission spectra have been observed both in-bore and from the muzzle flash or the barrel, and from the flash or the source. Due to high plasma opacity (the plasma emits as a near blackbody) and absorption by the molecular components of the vapor shield, the hotter core or the arc has been difficult to observe. Recent measurements along the axis or the device indicate time-averaged plasma temperatures in the barrel or about 1 eV for lower energy shots, which agree with experimental measurements of the average heat flux and plasma conductivity along the barrel. Measurements or visible emission from the source indicate time averaged temperatures of 1 to 2 eV which agree with the theoretical estimates derived from ablated mass measurements and calculated estimates derived from plasma conductivity measurements.

  8. D.C. - ARC plasma generator for nonequilibrium plasmachemical processes

    NASA Astrophysics Data System (ADS)

    Kvaltin, J.

    1990-06-01

    The analysis of conditions for generation of nonequilibrium plasma to plasmachemical processes is made and the design of d.c.-arc plasma generator on the base of integral criterion is suggested. The measurement of potentials on the plasma column of that generator is presented.

  9. Electromagnetic Wave Transmittance Control using Anisotropic Plasma Lattice

    NASA Astrophysics Data System (ADS)

    Matlis, Eric; Corke, Thomas; Hoffman, Anthony

    2017-11-01

    Experiments of transmission through a lattice array of plasma columns have shown an absorption band close to the plasma frequency at 14 GHz. The beam was oriented at a 35° incident angle to the planar plasma cell. These experiments were designed to determine if the observed absorption was the result of the isotropic plasma medium or that of an anisotropic metamaterial. Transmission of the microwave energy was not consistent with an isotropic material in which absorption would monotonically increase below the plasma frequency. The experimental results are supported by an anisotropic model which was developed for the plasma permittivity using an effective medium approximation. The plasma columns were modeled as uniform rods with permittivity described by a Drude model while the components of the permittivity tensor was calculated using the Maxwell-Garnett effective medium theory. Electron densities of n = 4 x1012 cm-3 were assumed which is consistent with prior experimental measurements. This model confirms the existence of non-zero imaginary wave vector k in a narrow region centered about 14 GHz.

  10. Hydrodynamic optical-field-ionized plasma channels

    NASA Astrophysics Data System (ADS)

    Shalloo, R. J.; Arran, C.; Corner, L.; Holloway, J.; Jonnerby, J.; Walczak, R.; Milchberg, H. M.; Hooker, S. M.

    2018-05-01

    We present experiments and numerical simulations which demonstrate that fully ionized, low-density plasma channels could be formed by hydrodynamic expansion of plasma columns produced by optical field ionization. Simulations of the hydrodynamic expansion of plasma columns formed in hydrogen by an axicon lens show the generation of 200 mm long plasma channels with axial densities of order ne(0 ) =1 ×1017cm-3 and lowest-order modes of spot size WM≈40 μ m . These simulations show that the laser energy required to generate the channels is modest: of order 1 mJ per centimeter of channel. The simulations are confirmed by experiments with a spherical lens which show the formation of short plasma channels with 1.5 ×1017cm-3≲ne(0 ) ≲1 ×1018cm-3 and 61 μ m ≳WM≳33 μ m . Low-density plasma channels of this type would appear to be well suited as multi-GeV laser-plasma accelerator stages capable of long-term operation at high pulse repetition rates.

  11. Model of vertical plasma motion during the current quench

    NASA Astrophysics Data System (ADS)

    Breizman, Boris; Kiramov, Dmitrii

    2017-10-01

    Tokamak disruptions impair plasma position control, which allows the plasma column to move and hit the wall. These detrimental events enhance thermal and mechanical loads due to halo currents and runaway electron losses. Their fundamental understanding and prevention is one of the high-priority items for ITER. As commonly observed in experiments, the disruptive plasma tends to move vertically, and the timescale of this motion is rather resistive than Alfvenic. These observations suggest that the plasma column is nearly force-free during its vertical motion. In fact, the force-free constraint is already used in disruption simulators. In this work, we consider a geometrically simple system that mimics the tokamak plasma surrounded by the conducting structures. Using this model, we highlight the underlying mechanism of the vertical displacement events during the current quench phase of plasma disruption. We also address a question of ideal MHD stability of the plasma during its resistive motion. Work supported by the U.S. Department of Energy Contracts DEFG02-04ER54742 and DE-SC0016283.

  12. Analysis of carvedilol enantiomers in human plasma using chiral stationary phase column and liquid chromatography with tandem mass spectrometry.

    PubMed

    Poggi, Josiane Cristófani; Da Silva, Flávia Garcez; Coelho, Eduardo Barbosa; Marques, Maria Paula; Bertucci, Carlo; Lanchote, Vera Lucia

    2012-03-01

    Carvedilol is an antihypertensive drug available as a racemic mixture. (-)-(S)-carvedilol is responsible for the nonselective β-blocker activity but both enantiomers present similar activity on α(1)-adrenergic receptor. To our knowledge, this is the first study of carvedilol enantiomers in human plasma using a chiral stationary phase column and liquid chromatography with tandem mass spectrometry. The method involves plasma extraction with diisopropyl ether using metoprolol as internal standard and direct separation of the carvedilol enantiomers on a Chirobiotic T® (Teicoplanin) column. Protonated ions [M + H](+) and their respective ion products were monitored at transitions of 407 > 100 for the carvedilol enantiomers and 268 > 116 for the internal standard. The quantification limit was 0.2 ng ml(-1) for both enantiomers in plasma. The method was applied to study enantioselectivity in the pharmacokinetics of carvedilol administered as a single dose of 25 mg to a hypertensive patient. The results showed a higher plasma concentration of (+)-(R)-carvedilol (AUC(0-∞) 205.52 vs. 82.61 (ng h) ml(-1)), with an enantiomer ratio of 2.48. Copyright © 2012 Wiley Periodicals, Inc.

  13. Shocks in Dense Clouds in the Vela Supernova Remnant: FUSE

    NASA Technical Reports Server (NTRS)

    Nichols, Joy; Sonneborn, George (Technical Monitor)

    2002-01-01

    We have obtained 8 LWRS FUSE spectra to study a recently identified interaction of the Vela supernova remnant with a dense cloud region along its western edge. The goal is to quantify the temperature, ionization, density, and abundance characteristics associated with this shock/dense cloud interface by means of UV absorption line studies. Our detection of high-velocity absorption line C I at +90 to +130 km/s with IUE toward a narrow region interior to the Vela SNR strongly suggests the Vela supernova remnant is interacting with a dense ISM or molecular cloud. The shock/dense cloud interface is suggested by (1) the rarity of detection of high-velocity C I seen in IUE spectra, (2) its very limited spatial distribution in the remnant, and (3) a marked decrease in X-ray emission in the region immediately west of the position of these stars where one also finds a 100 micron emission ridge in IRAS images. We have investigated the shock physics and general properties of this interaction region through a focussed UV absorption line study using FUSE spectra. We have FUSE data on OVI absorption lines observed toward 8 stars behind the Vela supernova remnant (SNR). We compare the OVI observations with IUE observations of CIV absorption toward the same stars. Most of the stars, which are all B stars, have complex continua making the extraction of absorption lines difficult. Three of the stars, HD 72088, HD 72089 and HD 72350, however, are rapid rotators (v sin i less than 100 km/s) making the derivation of absorption column densities much easier. We have measured OVI and CIV column densities for the "main component" (i.e. the low velocity component) for these stars. In addition, by removing the H2 line at 1032.35A (121.6 km/s relative to OVI), we find high velocity components of OVI at approximately 150 km/s that we attribute to the shock in the Vela SNR. The column density ratios and magnitudes are compared to both steady shock models and results of hydrodynamical SNR modeling. We find that the models require the shock to be relatively slow (approximately 100 - 170 km/s) to match the FUSE data. We discuss the implications of our results for models of the evolution of the Vela SNR.

  14. SSE-based Thomas algorithm for quasi-block-tridiagonal linear equation systems, optimized for small dense blocks

    NASA Astrophysics Data System (ADS)

    Barnaś, Dawid; Bieniasz, Lesław K.

    2017-07-01

    We have recently developed a vectorized Thomas solver for quasi-block tridiagonal linear algebraic equation systems using Streaming SIMD Extensions (SSE) and Advanced Vector Extensions (AVX) in operations on dense blocks [D. Barnaś and L. K. Bieniasz, Int. J. Comput. Meth., accepted]. The acceleration caused by vectorization was observed for large block sizes, but was less satisfactory for small blocks. In this communication we report on another version of the solver, optimized for small blocks of size up to four rows and/or columns.

  15. Method for making a non-extractable stationary phase of polymer within a capillary column

    DOEpatents

    Springston, Stephen R.

    1990-01-01

    A method for coating interior capillary column surfaces, or packing material of a packed column, used for gas chromatography, with a stationary polymer phase that is cross-linked by exposing it to a low-temperature plasma that is uniformly distributed over the column or packing material for a predetermined period of time to effect the desired degree of cross-linking of the coating.

  16. Interferometry using subnanosecond pulses from TEA nitrogen lasers.

    PubMed

    Schmidt, H; Salzmann, H; Strohwald, H

    1975-09-01

    The applicability of TEA nitrogen lasers emitting at 3371 A for high speed optical plasma interferometry of short lived plasmas is demonstrated. Interferograms of the dense phase of a 30-kJ plasma focus are obtained with an exposure time of less than 500 psec.

  17. Clocking Femtosecond Collisional Dynamics via Resonant X-Ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    van den Berg, Q. Y.; Fernandez-Tello, E. V.; Burian, T.; Chalupský, J.; Chung, H.-K.; Ciricosta, O.; Dakovski, G. L.; Hájková, V.; Hollebon, P.; Juha, L.; Krzywinski, J.; Lee, R. W.; Minitti, M. P.; Preston, T. R.; de la Varga, A. G.; Vozda, V.; Zastrau, U.; Wark, J. S.; Velarde, P.; Vinko, S. M.

    2018-02-01

    Electron-ion collisional dynamics is of fundamental importance in determining plasma transport properties, nonequilibrium plasma evolution, and electron damage in diffraction imaging applications using bright x-ray free-electron lasers (FELs). Here we describe the first experimental measurements of ultrafast electron impact collisional ionization dynamics using resonant core-hole spectroscopy in a solid-density magnesium plasma, created and diagnosed with the Linac Coherent Light Source x-ray FEL. By resonantly pumping the 1 s →2 p transition in highly charged ions within an optically thin plasma, we have measured how off-resonance charge states are populated via collisional processes on femtosecond time scales. We present a collisional cross section model that matches our results and demonstrates how the cross sections are enhanced by dense-plasma effects including continuum lowering. Nonlocal thermodynamic equilibrium collisional radiative simulations show excellent agreement with the experimental results and provide new insight on collisional ionization and three-body-recombination processes in the dense-plasma regime.

  18. Clocking Femtosecond Collisional Dynamics via Resonant X-Ray Spectroscopy

    DOE PAGES

    van den Berg, Q. Y.; Fernandez-Tello, E. V.; Burian, T.; ...

    2018-02-01

    Electron-ion collisional dynamics is of fundamental importance in determining plasma transport properties, nonequilibrium plasma evolution, and electron damage in diffraction imaging applications using bright x-ray free-electron lasers (FELs). Here in this paper, we describe the first experimental measurements of ultrafast electron impact collisional ionization dynamics using resonant core-hole spectroscopy in a solid-density magnesium plasma, created and diagnosed with the Linac Coherent Light Source x-ray FEL. By resonantly pumping the 1s → 2p transition in highly charged ions within an optically thin plasma, we have measured how off-resonance charge states are populated via collisional processes on femtosecond time scales. We presentmore » a collisional cross section model that matches our results and demonstrates how the cross sections are enhanced by dense-plasma effects including continuum lowering. Nonlocal thermodynamic equilibrium collisional radiative simulations show excellent agreement with the experimental results and provide new insight on collisional ionization and three-body-recombination processes in the dense-plasma regime.« less

  19. Rapid quantification of underivatized amino acids in plasma by hydrophilic interaction liquid chromatography (HILIC) coupled with tandem mass-spectrometry.

    PubMed

    Prinsen, Hubertus C M T; Schiebergen-Bronkhorst, B G M; Roeleveld, M W; Jans, J J M; de Sain-van der Velden, M G M; Visser, G; van Hasselt, P M; Verhoeven-Duif, N M

    2016-09-01

    Amino acidopathies are a class of inborn errors of metabolism (IEM) that can be diagnosed by analysis of amino acids (AA) in plasma. Current strategies for AA analysis include cation exchange HPLC with post-column ninhydrin derivatization, GC-MS, and LC-MS/MS-related methods. Major drawbacks of the current methods are time-consuming procedures, derivative problems, problems with retention, and MS-sensitivity. The use of hydrophilic interaction liquid chromatography (HILIC) columns is an ideal separation mode for hydrophilic compounds like AA. Here we report a HILIC-method for analysis of 36 underivatized AA in plasma to detect defects in AA metabolism that overcomes the major drawbacks of other methods. A rapid, sensitive, and specific method was developed for the analysis of AA in plasma without derivatization using HILIC coupled with tandem mass-spectrometry (Xevo TQ, Waters). Excellent separation of 36 AA (24 quantitative/12 qualitative) in plasma was achieved on an Acquity BEH Amide column (2.1×100 mm, 1.7 μm) in a single MS run of 18 min. Plasma of patients with a known IEM in AA metabolism was analyzed and all patients were correctly identified. The reported method analyzes 36 AA in plasma within 18 min and provides baseline separation of isomeric AA such as leucine and isoleucine. No separation was obtained for isoleucine and allo-isoleucine. The method is applicable to study defects in AA metabolism in plasma.

  20. Effects of Coulomb collisions on cyclotron maser and plasma wave growth in magnetic loops

    NASA Technical Reports Server (NTRS)

    Hamilton, Russell J.; Petrosian, Vahe

    1990-01-01

    The evolution of nonthermal electrons accelerated in magnetic loops is determined by solving the kinetic equation, including magnetic field convergence and Coulomb collisions in order to determine the effects of these interactions on the induced cyclotron maser and plasma wave growth. It is found that the growth rates are larger and the possibility of cyclotron maser action is stronger for smaller loop column density, for larger magnetic field convergence, for a more isotropic injected electron pitch angle distribution, and for more impulsive acceleration. For modest values of the column density in the coronal portion of a flaring loop, the growth rates of instabilities are significantly reduced, and the reduction is much larger for the cyclotron modes than for the plasma wave modes. The rapid decrease in the growth rates with increasing loop column density suggests that, in flare loops when such phenomena occur, the densities are lower than commonly accepted.

  1. Rarefaction waves, solitons, and holes in a pure electron plasma

    NASA Astrophysics Data System (ADS)

    Moody, J. D.; Driscoll, C. F.

    1995-12-01

    The propagation of holes, solitons, and rarefaction waves along the axis of a magnetized pure electron plasma column is described. The time dependence of the radially averaged density perturbation produced by the nonlinear waves is measured at several locations along the plasma column for a wide range of plasma parameters. The rarefaction waves are studied by measuring the free expansion of the plasma into a vacuum. A new hydrodynamic theory is described that quantitatively predicts the free expansion measurements. The rarefaction is initially characterized by a self-similar plasma flow, resulting in a perturbed density and velocity without a characteristic length scale. The electron solitons show a small increase in propagation speed with increasing amplitude and exhibit electron bursts. The holes show a decrease in propagation speed with increasing amplitude. Collisions between holes and solitons show that these objects pass through each other undisturbed, except for a small offset.

  2. Determination of alpidem, an imidazopyridine anxiolytic, and its metabolites by column-switching high-performance liquid chromatography with fluorescence detection.

    PubMed

    Flaminio, L; Ripamonti, M; Ascalone, V

    1994-05-13

    Alpidem, 6-chloro-2-(4-chlorophenyl)-N,N-dipropylimidazo[1,2-a]pyridine- 3-acetamide, is an anxiolytic imidazopyridine that undergoes a first-pass elimination after oral administration to humans; it is actively metabolized and three circulating metabolites have been identified in plasma due to N-dealkylation, oxidation or a combination of both processes. For the determination of the unchanged drug and its metabolites in human plasma, a column-switching HPLC method was developed. The method, based on solid-phase extraction (performed on-line), involves the automatic injection of plasma samples (200 microliters) on to a precolumn filled with C18 material, clean-up of the sample with water in order to remove protein and salts and transfer of the analytes to the analytical column (after valve switching) by means of the mobile phase. All the processes were performed in the presence of an internal standard, a compound chemically related to alpidem. During the analytical chromatography, the precolumn was flushed with different solvents and after regeneration with water, it was ready for further injections. The analytical column was a C8 type and the mobile phase was acetonitrile-methanol-phosphate buffer solution (45:15:45, v/v/v) at a flow-rate of 1.5 ml min-1. The column was connected to a fluorimetric detector operating at excitation and emission wavelengths of 255 and 423 nm, respectively. The limits of quantitation of alpidem and three metabolites were 2.5 and 1.5 ng ml-1, respectively, in human plasma.

  3. Simplified Calculation Model and Experimental Study of Latticed Concrete-Gypsum Composite Panels

    PubMed Central

    Jiang, Nan; Ma, Shaochun

    2015-01-01

    In order to address the performance complexity of the various constituent materials of (dense-column) latticed concrete-gypsum composite panels and the difficulty in the determination of the various elastic constants, this paper presented a detailed structural analysis of the (dense-column) latticed concrete-gypsum composite panel and proposed a feasible technical solution to simplified calculation. In conformity with mechanical rules, a typical panel element was selected and divided into two homogenous composite sub-elements and a secondary homogenous element, respectively for solution, thus establishing an equivalence of the composite panel to a simple homogenous panel and obtaining the effective formulas for calculating the various elastic constants. Finally, the calculation results and the experimental results were compared, which revealed that the calculation method was correct and reliable and could meet the calculation needs of practical engineering and provide a theoretical basis for simplified calculation for studies on composite panel elements and structures as well as a reference for calculations of other panels. PMID:28793631

  4. Simplified Calculation Model and Experimental Study of Latticed Concrete-Gypsum Composite Panels.

    PubMed

    Jiang, Nan; Ma, Shaochun

    2015-10-27

    In order to address the performance complexity of the various constituent materials of (dense-column) latticed concrete-gypsum composite panels and the difficulty in the determination of the various elastic constants, this paper presented a detailed structural analysis of the (dense-column) latticed concrete-gypsum composite panel and proposed a feasible technical solution to simplified calculation. In conformity with mechanical rules, a typical panel element was selected and divided into two homogenous composite sub-elements and a secondary homogenous element, respectively for solution, thus establishing an equivalence of the composite panel to a simple homogenous panel and obtaining the effective formulas for calculating the various elastic constants. Finally, the calculation results and the experimental results were compared, which revealed that the calculation method was correct and reliable and could meet the calculation needs of practical engineering and provide a theoretical basis for simplified calculation for studies on composite panel elements and structures as well as a reference for calculations of other panels.

  5. Laser-Produced Colliding Plasmas on LaPD

    NASA Astrophysics Data System (ADS)

    Collette, Andrew

    2005-10-01

    The expansion and interaction of dense plasmas in the presence of a magnetized background plasma is important in many astrophysical processes, among them shocks which transport energy. We study the collision of two dense, laser-produced plasmas expanding perpendicular to the background magnetic field, each with an Alfv'en Mach number of approximately 0.5. The plasmas are launched off of two carbon targets, 9cm apart, by a short pulse of laser energy (Nd:YAG, 1J 8ns). Experiments are currently in progress in a small test chamber at UCLA (background plasma n 3x10^12, 3 meters long, B0<700G) and will shortly be migrated to the LaPD (LArge Plasma Device; n 3x10^12, 18 meters long, 70cm diameter, 400G

  6. Gamma ray measurements with photoconductive detectors using a dense plasma focus.

    PubMed

    May, M J; Brown, G V; Halvorson, C; Schmidt, A; Bower, D; Tran, B; Lewis, P; Hagen, C

    2014-11-01

    Photons in the MeV range emitted from the dense plasma focus (DPF) at the NSTec North Las Vegas Facility have been measured with both neutron-damaged GaAs and natural diamond photoconductive detectors (PCDs). The DPF creates or "pinches" plasmas of various gases (e.g., H2, D2, Ne, Ar., etc.) that have enough energy to create MeV photons from either bremsstrahlung and/or (n,n(')) reactions if D2 gas is used. The high bandwidth of the PCDs enabled the first ever measurement of the fast micro-pinches present in DPF plasmas. Comparisons between a slower more conventional scintillator/photomultiplier tube based nuclear physics detectors were made to validate the response of the PCDs to fast intense MeV photon signals. Significant discrepancies in the diamond PCD responses were evident.

  7. Colliding Laser-Produced Plasmas on LaPD

    NASA Astrophysics Data System (ADS)

    Collette, Andrew; Gekelman, Walter

    2008-11-01

    The expansion and interaction of dense plasmas in the presence of a magnetized background plasma is important in many astrophysical processes. We describe a series of experiments which involve the collision of two dense (initially n > 10^15cm-3) laser-produced plasmas within an ambient, highly magnetized background plasma at the UCLA Large Plasma Device facility. These plasmas form diamagnetic cavities in which a large fraction of the background field (600G) has been expelled. Fast (3ns) camera observations of this experiment recorded complicated structures, including coherent corrugated structures on the bubble surfaces. The data hint at the presence of turbulence in the interaction. In order to directly investigate the evolution of the magnetic field, we developed a novel diagnostic system composed of small (1-mm) 3-axis differential magnetic field probes, in conjunction with a vacuum ceramic motor system capable of sub-micron positioning accuracy. Using an ensemble of magnetic field data from fixed and movable probes, we calculate the cross-spectral function, from which the dominant modes and ultimately the dispersion relation of waves in this region may be deduced.

  8. Advanced Design Concepts for Dense Plasma Focus Devices at LLNL

    NASA Astrophysics Data System (ADS)

    Povilus, Alexander; Podpaly, Yuri; Cooper, Christopher; Shaw, Brian; Chapman, Steve; Mitrani, James; Anderson, Michael; Pearson, Aric; Anaya, Enrique; Koh, Ed; Falabella, Steve; Link, Tony; Schmidt, Andrea

    2017-10-01

    The dense plasma focus (DPF) is a z-pinch device where a plasma sheath is accelerated down a coaxial railgun and ends in a radial implosion, pinch phase. During the pinch phase, the plasma generates intense, transient electric fields through physical mechanisms, similar to beam instabilities, that can accelerate ions in the plasma sheath to MeV-scale energies on millimeter length scales. Using kinetic modeling techniques developed at LLNL, we have gained insight into the formation of these accelerating fields and are using these observations to optimize the behavior of the generated ion beam for producing neutrons via beam-target interactions for kilojoule to megajoule-scale devices. Using a set of DPF's, both in operation and in development at LLNL, we have explored critical aspects of these devices, including plasma sheath formation behavior, power delivery to the plasma, and instability seeding during the implosion in order to improve the absolute yield and stability of the device. Prepared by LLNL under Contract DE-AC52-07NA27344. Computing support for this work came from the LLNL Institutional Computing Grand Challenge program.

  9. Method for making a non-extractable stationary phase of polymer within a capillary column

    DOEpatents

    Springston, S.R.

    1990-10-30

    A method is described for coating interior capillary column surfaces, or packing material of a packed column, used for gas chromatography, with a stationary polymer phase that is cross-linked by exposing it to a low-temperature plasma that is uniformly distributed over the column or packing material for a predetermined period of time to effect the desired degree of cross-linking of the coating. 7 figs.

  10. PROCEEDINGS OF RIKEN/BNL RESEARCH CENTER WORKSHOP, EQUILIBRIUM AND NON-EQUILIBRIM ASPECTTS OF HOT, DENSE QCD, VOLUME 28.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DE VEGA,H.J.; BOYANOVSKY,D.

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven, beginning operation this year, and the Large Hadron Collider (LHC) at CERN, beginning operation {approximately}2005, will provide an unprecedented range of energies and luminosities that will allow us to probe the Gluon-Quark plasma. At RHIC and LHC, at central rapidity typical estimates of energy densities and temperatures are e * 1-10 GeV/fm3 and T0 * 300 - 900 MeV. Such energies are well above current estimates for the GQ plasma. Initially, this hot, dense plasma is far from local thermal equilibrium, making the theoretical study of transport phenomena, kinetic and chemical equilibrationmore » in dense and hot plasmas, and related issues a matter of fundamental importance. During the last few years a consistent framework to study collective effects in the Gluon-Quark plasma, and a microscopic description of transport in terms of the hard thermal (and dense) loops resummation program has emerged. This approach has the potential of providing a microscopic formulation of transport, in the regime of temperatures and densities to be achieved at RHIC and LHC. A parallel development over the last few years has provided a consistent formulation of non-equilibrium quantum field theory that provides a real-time description of phenomena out of equilibrium. Novel techniques including non-perturbative approaches and the dynamical renormalization group techniques lead to new insights into transport and relaxation. A deeper understanding of collective.excitations and transport phenomena in the GQ plasma could lead to recognize novel potential experimental signatures. New insights into small-c physics reveals a striking similarity between small-c and hard thermal loops, and novel real-time numerical simulations have recently studied the parton distributions and their thermalizations in the initial stages of a heavy ion collision.« less

  11. PROCEEDINGS OF RIKEN/BNL RESEARCH CENTER WORKSHOP, EQUILIBRIUM AND NON-EQUILIBRIM ASPECTS OF HOT, DENSE QCD, VOLUME 28.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Vega, H.J.; Boyanovsky, D.

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven, beginning operation this year, and the Large Hadron Collider (LHC) at CERN, beginning operation {approximately}2005, will provide an unprecedented range of energies and luminosities that will allow us to probe the Gluon-Quark plasma. At RHIC and LHC, at central rapidity typical estimates of energy densities and temperatures are e * 1-10 GeV/fm3 and T0 * 300 - 900 MeV. Such energies are well above current estimates for the GQ plasma. Initially, this hot, dense plasma is far from local thermal equilibrium, making the theoretical study of transport phenomena, kinetic and chemical equilibrationmore » in dense and hot plasmas, and related issues a matter of fundamental importance. During the last few years a consistent framework to study collective effects in the Gluon-Quark plasma, and a microscopic description of transport in terms of the hard thermal (and dense) loops resummation program has emerged. This approach has the potential of providing a microscopic formulation of transport, in the regime of temperatures and densities to be achieved at RHIC and LHC. A parallel development over the last few years has provided a consistent formulation of non-equilibrium quantum field theory that provides a real-time description of phenomena out of equilibrium. Novel techniques including non-perturbative approaches and the dynamical renormalization group techniques lead to new insights into transport and relaxation. A deeper understanding of collective.excitations and transport phenomena in the GQ plasma could lead to recognize novel potential experimental signatures. New insights into small-c physics reveals a striking similarity between small-c and hard thermal loops, and novel real-time numerical simulations have recently studied the parton distributions and their thermalizations in the initial stages of a heavy ion collision.« less

  12. Synthesis of the flavonoid 3',4',5'-trimethoxyflavonol and its determination in plasma and tissues of mice by HPLC with fluorescence detection.

    PubMed

    Britton, Robert G; Fong, Isabel; Saad, Shaban; Brown, Karen; Steward, William P; Gescher, Andreas; Sale, Stewart

    2009-04-01

    3',4',5'-Trimethoxyflavonol (TMFol) was synthesized as a potential colorectal cancer chemopreventive agent. An HPLC method for determination for TMFol in murine plasma and tissues was developed and validated using human plasma. Analyte was separated (C(18) column; fluorescence detection 330nm excitation, 440nm emission) using 69% methanol and 0.1M ammonium acetate buffer (pH 5.1) as mobile phase. The method was linear for 50-2500ng/ml plasma and 0.05-10microg/g tissue (r>0.99). TMFol was recovered from plasma or tissues using solid phase columns or organic solvent protein precipitation, respectively. Recovery at low, medium and high concentrations was 97.6-107.3%, with inter- and intra-day coefficients of variation of <10%. The lower limit of quantitation for plasma was 50ng/ml. The method was applied to measure steady-state TMFol plasma and tissue levels in mice which received dietary TMFol (0.2%).

  13. Influence of the Doppler effect on radiative transfer in a spherical plasma under macroscopic motion of substance

    NASA Astrophysics Data System (ADS)

    Kosarev, N. I.

    2018-03-01

    The non-LTE radiative transfer in spherical plasma containing resonantly absorbing light ions has been studied numerically under conditions of macroscopic motion of substance. Two types of macroscopic motion were simulated: radial expansion and compression (pulsation) of spherical plasma; rotation of plasma relative to an axis of symmetry. The calculations of absorption line profile of transmitted broadband radiation and the emission line profile were performed for the optically dense plasma of calcium ions on the resonance transition with wavelength 397 nm. Numerical results predict frequency shifts in the emission line profile to red wing of the spectrum for radial expansion of the plasma and to blue wing of the spectrum for the plasma compression at an average velocity of ions along the ray of sight equal to zero. The width of the emission line profile of a rotating plasma considerably exceeds the width of the profile of the static plasma, and the shift of the central frequency of resonance transition from the resonance frequency of the static plasma gives a linear velocity of ion motion along a given ray trajectory in units of thermal velocity. Knowledge of the linear radial velocity of ions can be useful for diagnostic purposes in determining the frequency and period of rotation of optically dense plasmas.

  14. Efficient calculation of atomic rate coefficients in dense plasmas

    NASA Astrophysics Data System (ADS)

    Aslanyan, Valentin; Tallents, Greg J.

    2017-03-01

    Modelling electron statistics in a cold, dense plasma by the Fermi-Dirac distribution leads to complications in the calculations of atomic rate coefficients. The Pauli exclusion principle slows down the rate of collisions as electrons must find unoccupied quantum states and adds a further computational cost. Methods to calculate these coefficients by direct numerical integration with a high degree of parallelism are presented. This degree of optimization allows the effects of degeneracy to be incorporated into a time-dependent collisional-radiative model. Example results from such a model are presented.

  15. Phase boundary of hot dense fluid hydrogen

    PubMed Central

    Ohta, Kenji; Ichimaru, Kota; Einaga, Mari; Kawaguchi, Sho; Shimizu, Katsuya; Matsuoka, Takahiro; Hirao, Naohisa; Ohishi, Yasuo

    2015-01-01

    We investigated the phase transformation of hot dense fluid hydrogen using static high-pressure laser-heating experiments in a laser-heated diamond anvil cell. The results show anomalies in the heating efficiency that are likely to be attributed to the phase transition from a diatomic to monoatomic fluid hydrogen (plasma phase transition) in the pressure range between 82 and 106 GPa. This study imposes tighter constraints on the location of the hydrogen plasma phase transition boundary and suggests higher critical point than that predicted by the theoretical calculations. PMID:26548442

  16. Molecular dynamics simulations of dense plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, L.A.; Kress, J.D.; Kwon, I.

    1993-12-31

    We have performed quantum molecular dynamics simulations of hot, dense plasmas of hydrogen over a range of temperatures(0.1-5eV) and densities(0.0625-5g/cc). We determine the forces quantum mechanically from density functional, extended Huckel, and tight binding techniques and move the nuclei according to the classical equations of motion. We determine pair-correlation functions, diffusion coefficients, and electrical conductivities. We find that many-body effects predominate in this regime. We begin to obtain agreement with the OCP and Thomas-Fermi models only at the higher temperatures and densities.

  17. Fluorescence and absorption spectroscopy for warm dense matter studies and ICF plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Hansen, Stephanie

    2017-10-01

    The burning core of an inertial confinement fusion (ICF) plasma at stagnation is surrounded by a shell of warm, dense matter whose properties are difficult both to model (due to a complex interplay of thermal, degeneracy, and strong coupling effects) and to diagnose (due to low emissivity and high opacity). We demonstrate a promising technique to study the warm dense shells of ICF plasmas based on the fluorescence emission of dopants or impurities in the shell material. This emission, which is driven by x-rays produced in the hot core, exhibits signature changes in response to compression and heating. High-resolution measurements of absorption and fluorescence features can refine our understanding of the electronic structure of material under high compression, improve our models of density-driven phenomena such as ionization potential depression and plasma polarization shifts, and help diagnose shell density, temperature, mass distribution, and residual motion in ICF plasmas at stagnation. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. This work was supported by the U.S. Department of Energy, Office of Science Early Career Research Program, Office of Fusion Energy Sciences under FWP-14-017426.

  18. Intensity-dependent resonant transmission of x-rays in solid-density aluminum plasma

    NASA Astrophysics Data System (ADS)

    Cho, M. S.; Chung, H.-K.; Cho, B. I.

    2018-05-01

    X-ray free-electron lasers (XFELs) provide unique opportunities to generate and investigate dense plasmas. The absorption and transmission properties of x-ray photons in dense plasmas are important in characterizing the state of the plasmas. Experimental evidence shows that the transmission of x-ray photons through dense plasmas depends greatly on the incident XFEL intensity. Here, we present a detailed analysis of intensity-dependent x-ray transmission in solid-density aluminum using collisional-radiative population kinetics calculations. Reverse saturable absorption (RSA), i.e., an increase in x-ray absorption with intensity has been observed for photon energies below the K-absorption edge and in the intensity range of 1016-1017 W/cm2 for XFEL photons with 1487 eV. At higher intensities, a transition from RSA to saturable absorption (SA) is predicted; thus, the x-ray absorption decreases with intensity above a threshold value. For XFEL photon energies of 1501 eV and 1515 eV, the transition from RSA to SA occurs at XFEL intensities between 1017-1018 W/cm2. Electron temperatures are predicted to be in the range of 30-50 eV for the given experimental conditions. Detailed population kinetics of the charge states explains the intensity-dependent absorption of x-ray photons and the fast modulation of XFEL pulses for both RSA and SA.

  19. Central 300 PC of the Galaxy Probed by the Infrared Spectra of H_3^+ and Co: I. Predominance of Warm and Diffuse Gas and High H_2 Ionization Rate

    NASA Astrophysics Data System (ADS)

    Oka, Takeshi; Geballe, Thomas R.; Goto, Miwa; Usuda, Tomonori; Indriolo, Nick

    2016-06-01

    A low-resolution 2.0-2.5 μm survey of ˜500 very red point-like objects in the Central Molecular Zone (CMZ) of our Galaxy, initiated in 2008, has revealed many new bright objects with featureless spectra that are suitable for high resolution absorption spectroscopy of H_3^+ and CO. We now have altogether 48 objects mostly close to the Galactic plane located from 142 pc to the west of Sgr A* to 120 pc east allowing us to probe dense and diffuse gas by H_3^+ and dense gas by CO. Our observations demonstrate that the warm (˜250 K) and diffuse (≤100 cm-3) gas with a large column length (≥30 pc) initially observed toward the brightest star in the CMZ, GCS3-2 of the Quintuplet Cluster, exists throughout the CMZ with the surface filling factor of ˜ 100% dominating the region. The column densities of CO in the CMZ are found to be much less than those in the three foreground spiral arms except in the directions of Sgr B and Sgr E complexes and indicate that the volume filling factor of dense clouds of 10% previously estimated is a gross overestimate for the front half of the CMZ. Nevertheless the predominance of the newly found diffuse molecular gas makes the term "Central Molecular Zone" even more appropriate. The ultra-hot X-rays emitting plasma which some thought to dominate the region must be non existent except near the stars and SNRs. Recently the H_2 fraction f(H_2) in diffuse gas of the CMZ has been reported to be ˜0.6. If we use this value, the cosmic ray H_2 ionization rate ζ of a few times 10-15 s-1 reported earlier^b on the assumption of f(H_2)=1 needs to be increased by a factor of ˜3 since the value is approximately inversely proportional to f(H_2)^2. Geballe, T. R., Oka, T., Lambridges, E., Yeh, S. C. C., Schlegelmilch, B., Goto, M., Westrick, C. W., WI07 at the 70th ISMS, Urbana, IL, USA,2015 Oka, T., Geballe, T. R., Goto, M., Usuda, T., McCall, B. J. 2005, ApJ, 632, 882 Le Petit, F., Ruaud, M., Bron, E., Godard, B., Roueff, E., Languignon, D., Le Bourlot, J. 2016, A&A, 585, A105

  20. Megajoule Dense Plasma Focus Solid Target Experiments

    NASA Astrophysics Data System (ADS)

    Podpaly, Y. A.; Falabella, S.; Link, A.; Povilus, A.; Higginson, D. P.; Shaw, B. H.; Cooper, C. M.; Chapman, S.; Bennett, N.; Sipe, N.; Olson, R.; Schmidt, A. E.

    2016-10-01

    Dense plasma focus (DPF) devices are plasma sources that can produce significant neutron yields from beam into gas interactions. Yield increases, up to approximately a factor of five, have been observed previously on DPFs using solid targets, such as CD2 and D2O ice. In this work, we report on deuterium solid-target experiments at the Gemini DPF. A rotatable target holder and baffle arrangement were installed in the Gemini device which allowed four targets to be deployed sequentially without breaking vacuum. Solid targets of titanium deuteride were installed and systematically studied at a variety of fill pressures, bias voltages, and target positions. Target holder design, experimental results, and comparison to simulations will be presented. Prepared by LLNL under Contract DE-AC52-07NA27344.

  1. Dynamics of conical wire array Z-pinch implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ampleford, D. J.; Lebedev, S. V.; Bland, S. N.

    2007-10-15

    A modification of the wire array Z pinch, the conical wire array, has applications to the understanding of wire array implosions and potentially to pulse shaping relevant to inertial confinement fusion. Results are presented from imploding conical wire array experiments performed on university scale 1 MA generators--the MAGPIE generator (1 MA, 240 ns) at Imperial College London [I. H. Mitchell et al., Rev. Sci Instrum. 67, 1533 (1996)] and the Nevada Terawatt Facility's Zebra generator (1 MA, 100 ns) at the University of Nevada, Reno [B. Bauer et al., in Dense Z-Pinches, edited by N. Pereira, J. Davis, and P.more » Pulsifer (AIP, New York, 1997), Vol. 409, p. 153]. This paper will discuss the implosion dynamics of conical wire arrays. Data indicate that mass ablation from the wires in this complex system can be reproduced with a rocket model with fixed ablation velocity. Modulations in the ablated plasma are present, the wavelength of which is invariant to a threefold variation in magnetic field strength. The axial variation in the array leads to a zippered precursor column formation. An initial implosion of a magnetic bubble near the cathode is followed by the implosion zippering upwards. Spectroscopic data demonstrating a variation of plasma parameters (e.g., electron temperature) along the Z-pinch axis is discussed, and experimental data are compared to magnetohydrodynamic simulations.« less

  2. The small, dense LDL phenotype and the risk of coronary heart disease: epidemiology, patho-physiology and therapeutic aspects.

    PubMed

    Lamarche, B; Lemieux, I; Després, J P

    1999-09-01

    More than decade ago, several cross-sectional studies have reported differences in LDL particle size, density and composition between coronary heart disease (CHD) patients and healthy controls. Three recent prospective, nested case-control studies have since confirmed that the presence of small, dense LDL particles was associated with more than a three-fold increase in the risk of CHD. The small, dense LDL phenotype rarely occurs as an isolated disorder. It is most frequently accompanied by hypertriglyceridemia, reduced HDL cholesterol levels, abdominal obesity, insulin resistance and by a series of other metabolic alterations predictive of an impaired endothelial function and increased susceptibility to thrombosis. Whether or not the small, dense LDL phenotype should be considered an independent CHD risk factor remains to be clearly established. The cluster of metabolic abnormalities associated with small, dense LDL particles has been referred to as the insulin resistance-dyslipidemic phenotype of abdominal obesity. Results from the Québec Cardiovascular Study have indicated that individuals displaying three of the numerous features of insulin resistance (elevated plasma insulin and apolipoprotein B concentrations and small, dense LDL particles) showed a remarkable increase in CHD risk. Our data suggest that the increased risk of CHD associated with having small, dense LDL particles may be modulated to a significant extent by the presence/absence of insulin resistance, abdominal obesity and increased LDL particle concentration. We suggest that the complex interactions among the metabolic alterations of the insulin resistance syndrome should be considered when evaluating the risk of CHD associated with the small, dense LDL phenotype. From a therapeutic standpoint, the treatment of this condition should not only aim at reducing plasma triglyceride levels, but also at improving all features of the insulin resistance syndrome, for which body weight loss and mobilization of abdominal fat appear as key elements. Finally, interventions leading to reduction in fasting triglyceride levels will increase LDL particle size and contribute to reduce CHD risk, particularly if plasma apolipoprotein B concentration (as a surrogate of the number of atherogenic particles) is also reduced.

  3. Modeling and Theory of RF Antenna Systems on Proto-MPEX

    NASA Astrophysics Data System (ADS)

    Piotrowicz, P. A.; Caneses, J. F.; Goulding, R. H.; Green, D.; Caughman, J. B. O.; Ruzic, D. N.; Proto-MPEX Team

    2017-10-01

    The RF wave coupling of the helicon and ICH antennas installed on the Prototype Material Plasma Exposure eXperiment (MPEX) has been explored theoretically and via a full wave model implemented in COMSOL Multiphysics. The high-density mode in Proto-MPEX has been shown to occur when exciting radial eigenmodes of the plasma column which coincides with entering a Trivelpiece Gould (TG) anti-resonant regime, therefore suppressing edge heating in favor of core power deposition. The fast wave launched by the helicon antenna has a large wavelength and travels at a steep group velocity angle with the background magnetic field; for this reason the fast wave launched by the helicon antenna efficiently couples power to the core plasma. However, the ICH heating scheme relies on a small wavelength slow wave to couple power to the core of the plasma column. Coupling slow wave power to the core of the plasma column is sensitive to the location of the Alfven resonance. The wave-vector and group velocity vector of the slow wave in this parameter regime undergoes a drastic change in behavior when approaching the Alfven resonance. Full wave simulation results and dispersion analysis will be presented with suggestions to guide experimental progress. This work was supported by the US. D.O.E. contract DE-AC05-00OR22725.

  4. Nonmonotonic radial distribution of excited atoms in a positive column of pulsed direct currect discharges in helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnat, E. V.; Kolobov, V. I.

    2013-01-21

    Nonmonotonic radial distributions of excited helium atoms have been experimentally observed in a positive column of pulsed helium discharges using planar laser induced fluorescence. Computational analysis of the discharge dynamics with a fluid plasma model confirms the experimental observations over a range of pressures and currents. The observed effect is attributed to the peculiarities of electron population-depopulation of the excited states during the 'dynamic discharge' conditions with strong modulations of the electric field maintaining the plasma.

  5. Cylindrical stationary striations in surface wave produced plasma columns of argon

    NASA Astrophysics Data System (ADS)

    Kumar, Rajneesh; Kulkarni, Sanjay V.; Bora, Dhiraj

    2007-12-01

    Striations are a good example of manifestation of a glow discharge. In the present investigation, stationary striations in the surface wave produced plasma column are formed. Physical parameters (length, number, etc.) of such striations can be controlled by operating parameters. With the help of bifurcation theory, experimental results are explained by considering two-step ionization in the surface wave discharge mechanism in argon gas. It is also observed that the bifurcation parameter is a function of input power, working pressure, and tube radius.

  6. Electric discharge during electrosurgery

    PubMed Central

    Shashurin, Alexey; Scott, David; Zhuang, Taisen; Canady, Jerome; Beilis, Isak I.; Keidar, Michael

    2015-01-01

    Electric discharge utilized for electrosurgery is studied by means of a recently developed method for the diagnostics of small-size atmospheric plasma objects based on Rayleigh scattering of microwaves on the plasma volume. Evolution of the plasma parameters in the near-electrode sheaths and in the positive column is measured and analyzed. It is found that the electrosurgical system produces a glow discharge of alternating current with strongly contracted positive column with current densities reaching 103 A/cm2. The plasma electron density and electrical conductivities in the channel were found be 1016 cm−3 and (1-2) Ohm−1cm−1, respectively. The discharge interrupts every instance when the discharge-driving AC voltage crosses zero and re-ignites again every next half-wave at the moment when the instant voltage exceeds the breakdown threshold. PMID:25880721

  7. Electric discharge during electrosurgery.

    PubMed

    Shashurin, Alexey; Scott, David; Zhuang, Taisen; Canady, Jerome; Beilis, Isak I; Keidar, Michael

    2015-04-16

    Electric discharge utilized for electrosurgery is studied by means of a recently developed method for the diagnostics of small-size atmospheric plasma objects based on Rayleigh scattering of microwaves on the plasma volume. Evolution of the plasma parameters in the near-electrode sheaths and in the positive column is measured and analyzed. It is found that the electrosurgical system produces a glow discharge of alternating current with strongly contracted positive column with current densities reaching 10(3) A/cm(2). The plasma electron density and electrical conductivities in the channel were found be 10(16) cm(-3) and (1-2) Ohm(-1) cm(-1), respectively. The discharge interrupts every instance when the discharge-driving AC voltage crosses zero and re-ignites again every next half-wave at the moment when the instant voltage exceeds the breakdown threshold.

  8. High-performance liquid chromatographic determination of the beta2-selective adrenergic agonist fenoterol in human plasma after fluorescence derivatization.

    PubMed

    Kramer, S; Blaschke, G

    2001-02-10

    A sensitive high-performance liquid chromatographic method has been developed for the determination of the beta2-selective adrenergic agonist fenoterol in human plasma. To improve the sensitivity of the method, fenoterol was derivatized with N-(chloroformyl)-carbazole prior to HPLC analysis yielding highly fluorescent derivatives. The assay involves protein precipitation with acetonitrile, liquid-liquid-extraction of fenoterol from plasma with isobutanol under alkaline conditions followed by derivatization with N-(chloroformyl)-carbazole. Reversed-phase liquid chromatographic determination of the fenoterol derivative was performed using a column-switching system consisting of a LiChrospher 100 RP 18 and a LiChrospher RP-Select B column with acetonitrile, methanol and water as mobile phase. The limit of quantitation in human plasma was 376 pg fenoterol/ml. The method was successfully applied for the assay of fenoterol in patient plasma.

  9. Determination of highly protein bound drugs in plasma using high-performance liquid chromatography and column switching, exemplified by the retinoids.

    PubMed

    Wyss, R; Bucheli, F

    1988-12-02

    During method development for the determination of either isotretinoin, tretinoin and their 4-oxo-metabolites, or etretinate, acitretin and 13-cis-acitretin in plasma using high-performance liquid chromatography and column switching, recovery problems arose, when undiluted plasma samples were injected directly onto the precolumn. These recovery problems may be due to the strong binding of the retinoids to different plasma proteins. Measures to overcome this strong protein binding, such as variation of the injection solution composition and the purge mobile phase, were systematically investigated. Best recoveries were obtained by diluting of plasma with 9 mM sodium hydroxide-acetonitrile (8:2, v/v) and protein precipitation with ethanol for the isotretinoin and etretinate series, respectively, in combination with the use of a purge mobile phase containing ammonium acetate and 10-20% acetonitrile. Less effective was the use of a longer precolumn or heating of the precolumn.

  10. Observations of strong ion-ion correlations in dense plasmas

    DOE PAGES

    Ma, T.; Fletcher, L.; Pak, A.; ...

    2014-04-24

    Using simultaneous spectrally, angularly, and temporally resolved x-ray scattering, we measure the pronounced ion-ion correlation peak in a strongly coupled plasma. Laser-driven shock-compressed aluminum at ~3× solid density is probed with high-energy photons at 17.9 keV created by molybdenum He-α emission in a laser-driven plasma source. The measured elastic scattering feature shows a well-pronounced correlation peak at a wave vector of k=4Å –1. The magnitude of this correlation peak cannot be described by standard plasma theories employing a linear screened Coulomb potential. Advanced models, including a strong short-range repulsion due to the inner structure of the aluminum ions are howevermore » in good agreement with the scattering data. These studies have demonstrated a new highly accurate diagnostic technique to directly measure the state of compression and the ion-ion correlations. Furthermore, we have since applied this new method in single-shot wave-number resolved S(k) measurements to characterize the physical properties of dense plasmas.« less

  11. Magnetless magnetic fusion

    NASA Astrophysics Data System (ADS)

    Beklemishev, A. D.; Tajima, T.

    1994-02-01

    The authors propose a concept of thermonuclear fusion reactor in which the plasma pressure is balanced by direct gas-wall interaction in a high-pressure vessel. The energy confinement is achieved by means of the self-contained toroidal magnetic configuration sustained by an external current drive or charged fusion products. This field structure causes the plasma pressure to decrease toward the inside of the discharge and thus it should be magnetohydrodynamically stable. The maximum size, temperature and density profiles of the reactor are estimated. An important feature of confinement physics is the thin layer of cold gas at the wall and the adjacent transitional region of dense arc-like plasma. The burning condition is determined by the balance between these nonmagnetized layers and the current-carrying plasma. They suggest several questions for future investigation, such as the thermal stability of the transition layer and the possibility of an effective heating and current drive behind the dense edge plasma. The main advantage of this scheme is the absence of strong external magnets and, consequently, potentially cheaper design and lower energy consumption.

  12. Simulations of the interaction of intense petawatt laser pulses with dense Z-pinch plasmas : final report LDRD 39670.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welch, Dale Robert; MacFarlane, Joseph John; Mehlhorn, Thomas Alan

    We have studied the feasibility of using the 3D fully electromagnetic implicit hybrid particle code LSP (Large Scale Plasma) to study laser plasma interactions with dense, compressed plasmas like those created with Z, and which might be created with the planned ZR. We have determined that with the proper additional physics and numerical algorithms developed during the LDRD period, LSP was transformed into a unique platform for studying such interactions. Its uniqueness stems from its ability to consider realistic compressed densities and low initial target temperatures (if required), an ability that conventional PIC codes do not possess. Through several testmore » cases, validations, and applications to next generation machines described in this report, we have established the suitability of the code to look at fast ignition issues for ZR, as well as other high-density laser plasma interaction problems relevant to the HEDP program at Sandia (e.g. backlighting).« less

  13. Formation and plasma circulation of solar prominences and coronal rains

    NASA Astrophysics Data System (ADS)

    Xia, C.

    2016-12-01

    Solar prominences are long-lived cool and dense plasma curtains in the hot and rarefied corona. The physical mechanism responsible for their formation and especially for their internal plasma circulation has been uncertain for decades. The observed ubiquitous down flows in quiescent prominences are difficult to interpret as plasma with high conductivity seems to move across horizontal magnetic field lines. Here we present three-dimensional (3D) numerical simulations of prominence formation and evolution in an elongated magnetic flux rope as a result of in-situ plasma condensations fueled by continuous plasma evaporation from the solar chromosphere. The prominence is born and maintained in a fragmented, highly dynamic state with continuous reappearance of multiple blobs and thread structures that move mainly downward dragging along mass-loaded field lines. The prominence plasma circulation is characterized by the dynamic balance between the drainage of prominence plasma back to the chromosphere and the formation of prominence plasma via continuous condensation. Plasma evaporates from the chromosphere, condenses into the prominence in the corona, and drains back to the chromosphere, establishing a stable chromosphere-corona plasma cycle. Another form of cool and dense plasma in the corona is coronal rain, which forms in-situ and drain down arched pathways along loops near active regions. We present 3D simulations of coronal rain in a bipolar arcade and compare it with observational results.

  14. Life of Lambda

    ERIC Educational Resources Information Center

    Futhey, Tracy

    2005-01-01

    In this column, the author discusses the four key questions related to the National LambdaRail (NLR) networking technology. NLR uses Dense Wave Division Multiplexing (DWDM) to enable multiple networks to coexist on a national fiber footprint, and is owned and operated not by carriers, but by the research and education community. The NLR Board…

  15. Compton scattering measurements from dense plasmas

    DOE PAGES

    Glenzer, S. H.; Neumayer, P.; Doppner, T.; ...

    2008-06-12

    Here, Compton scattering techniques have been developed for accurate measurements of densities and temperatures in dense plasmas. One future challenge is the application of this technique to characterize compressed matter on the National Ignition Facility where hydrogen and beryllium will approach extremely dense states of matter of up to 1000 g/cc. In this regime, the density, compressibility, and capsule fuel adiabat may be directly measured from the Compton scattered spectrum of a high-energy x-ray line source. Specifically, the scattered spectra directly reflect the electron velocity distribution. In non-degenerate plasmas, the width provides an accurate measure of the electron temperatures, whilemore » in partially Fermi degenerate systems that occur in laser-compressed matter it provides the Fermi energy and hence the electron density. Both of these regimes have been accessed in experiments at the Omega laser by employing isochorically heated solid-density beryllium and moderately compressed beryllium foil targets. In the latter experiment, compressions by a factor of 3 at pressures of 40 Mbar have been measured in excellent agreement with radiation hydrodynamic modeling.« less

  16. Post-fusion structural changes and their roles in exocytosis and endocytosis of dense-core vesicles

    PubMed Central

    Chiang, Hsueh-Cheng; Shin, Wonchul; Zhao, Wei-Dong; Hamid, Edaeni; Sheng, Jiansong; Baydyuk, Maryna; Wen, Peter J.; Jin, Albert; Momboisse, Fanny; Wu, Ling-Gang

    2014-01-01

    Vesicle fusion with the plasma membrane generates an Ω-shaped membrane profile. Its pore is thought to dilate until flattening (full-collapse), followed by classical endocytosis to retrieve vesicles. Alternatively, the pore may close (kiss-and-run), but the triggering mechanisms and its endocytic roles remain poorly understood. Here, using confocal and STED imaging of dense-core vesicles, we find that fusion-generated Ω-profiles may enlarge or shrink while maintaining vesicular membrane proteins. Closure of fusion-generated Ω-profiles, which produces various sizes of vesicles, is the dominant mechanism mediating rapid and slow endocytosis within ~1–30 s. Strong calcium influx triggers dynamin-mediated closure. Weak calcium influx does not promote closure, but facilitates the merging of Ω-profiles with the plasma membrane via shrinking rather than full-collapse. These results establish a model, termed Ω-exo-endocytosis, in which the fusion-generated Ω-profile may shrink to merge with the plasma membrane, change in size, or change in size then close in response to calcium, which is the main mechanism to retrieve dense-core vesicles. PMID:24561832

  17. Soft X-ray Spectrometer for Characterization of Electron Beam Driven WDM

    NASA Astrophysics Data System (ADS)

    Ramey, Nicholas; Coleman, Joshua; Perry, John

    2017-10-01

    A preliminary design study is being performed on a soft X-ray spectrometer to measure K-shell spectra emitted by a warm dense plasma generated by an intense, relativistic electron beam interacting with a thin, low-Z metal foil. A 100-ns-long electron pulse with a beam current of 1.7 kA and energy of 19.8 MeV deposits energy into the thin metal foil heating it to a warm dense plasma. The collisional ionization of the target by the electron beam produces an anisotropic angular distribution of K-shell radiation and a continuum of both scattered electrons and Bremsstrahlung up to the beam energy of 19.8 MeV. A proof-of-principle Bragg-type spectrometer has been built to measure the Ti K- α and K- β lines. The goal of the spectrometer is to measure the temperature and density of this warm dense plasma for the first time with this heating technique. This work was supported by the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396.

  18. Use of emulsified vegetable oil to support bioremediation of TCE DNAPL in soil columns.

    PubMed

    Harkness, Mark; Fisher, Angela

    2013-08-01

    The interaction between emulsified vegetable oil (EVO) and trichloroethylene (TCE) dense non-aqueous phase liquid (DNAPL) was observed using two soil columns and subsequent reductive dechlorination of TCE was monitored over a three year period. Dyed TCE DNAPL (~75 g) was emplaced in one column (DNAPL column), while the second was DNAPL-free (plume column). EVO was added to both columns and partitioning of the EVO into the TCE DNAPL was measured and quantified. TCE (1.9 mM) was added to the influent of the plume column to simulate conditions down gradient of a DNAPL source area and the columns were operated independently for more than one year, after which they were connected in series. Initially limited dechlorination of TCE to cDCE was observed in the DNAPL column, while the plume column supported complete reductive dechlorination of TCE to ethene. Upon connection and reamendment of the plume column with EVO, near saturation levels of TCE from the effluent of the DNAPL column were rapidly dechlorinated to c-DCE and VC in the plume column; however, this high rate dechlorination produced hydrochloric acid which overwhelmed the buffering capacity of the system and caused the pH to drop below 6.0. Dechlorination efficiency in the columns subsequently deteriorated, as measured by the chloride production and Dehalococcoides counts, but was restored by adding sodium bicarbonate buffer to the influent groundwater. Robust dechlorination was eventually observed in the DNAPL column, such that the TCE DNAPL was largely removed by the end of the study. Partitioning of the EVO into the DNAPL provided significant operational benefits to the remediation system both in terms of electron donor placement and longevity. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Ionization-potential depression and other dense plasma statistical property studies - Application to spectroscopic diagnostics.

    NASA Astrophysics Data System (ADS)

    Calisti, Annette; Ferri, Sandrine; Mossé, Caroline; Talin, Bernard

    2017-02-01

    The radiative properties of an emitter surrounded by a plasma, are modified through various mechanisms. For instance the line shapes emitted by bound-bound transitions are broadened and carry useful information for plasma diagnostics. Depending on plasma conditions the electrons occupying the upper quantum levels of radiators no longer exist as they belong to the plasma free electron population. All the charges present in the radiator environment contribute to the lowering of the energy required to free an electron in the fundamental state. This mechanism is known as ionization potential depression (IPD). The knowledge of IPD is useful as it affects both the radiative properties of the various ionic states and their populations. Its evaluation deals with highly complex n-body coupled systems, involving particles with different dynamics and attractive ion-electron forces. A classical molecular dynamics (MD) code, the BinGo-TCP code, has been recently developed to simulate neutral multi-component (various charge state ions and electrons) plasma accounting for all the charge correlations. In the present work, results on IPD and other dense plasma statistical properties obtained using the BinGo-TCP code are presented. The study focuses on aluminum plasmas for different densities and several temperatures in order to explore different plasma coupling conditions.

  20. Voyager Captures Sounds of Interstellar Space

    NASA Image and Video Library

    2013-09-12

    The plasma wave instrument on NASA's Voyager 1 spacecraft captured these sounds of dense plasma, or ionized gas, vibrating in interstellar space. There were two times the instrument heard these vibrations: October to November 2012 and April to May 2013.

  1. Dense solar wind cloud geometries deduced from comparisons of radio signal delay and in situ plasma measurements

    NASA Technical Reports Server (NTRS)

    Landt, J. A.

    1974-01-01

    The geometries of dense solar wind clouds are estimated by comparing single-location measurements of the solar wind plasma with the average of the electron density obtained by radio signal delay measurements along a radio path between earth and interplanetary spacecraft. Several of these geometries agree with the current theoretical spatial models of flare-induced shock waves. A new class of spatially limited structures that contain regions with densities greater than any observed in the broad clouds is identified. The extent of a cloud was found to be approximately inversely proportional to its density.

  2. Elastic scattering of low energy electrons in partially ionized dense semiclassical plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dzhumagulova, K. N., E-mail: dzhumagulova.karlygash@gmail.com; Shalenov, E. O.; Ramazanov, T. S.

    2015-08-15

    Elastic scattering of electrons by hydrogen atoms in a dense semiclassical hydrogen plasma for low impact energies has been studied. Differential scattering cross sections were calculated within the effective model of electron-atom interaction taking into account the effect of screening as well as the quantum mechanical effect of diffraction. The calculations were carried out on the basis of the phase-function method. The influence of the diffraction effect on the Ramsauer–Townsend effect was studied on the basis of a comparison with results made within the effective polarization model of the Buckingham type.

  3. Quantum statistical mechanics of dense partially ionized hydrogen

    NASA Technical Reports Server (NTRS)

    Dewitt, H. E.; Rogers, F. J.

    1972-01-01

    The theory of dense hydrogen plasmas beginning with the two component quantum grand partition function is reviewed. It is shown that ionization equilibrium and molecular dissociation equilibrium can be treated in the same manner with proper consideration of all two-body states. A quantum perturbation expansion is used to give an accurate calculation of the equation of state of the gas for any degree of dissociation and ionization. The statistical mechanical calculation of the plasma equation of state is intended for stellar interiors. The general approach is extended to the calculation of the equation of state of the outer layers of large planets.

  4. Thomas-Fermi simulations of dense plasmas without pseudopotentials

    NASA Astrophysics Data System (ADS)

    Starrett, C. E.

    2017-07-01

    The Thomas-Fermi model for warm and hot dense matter is widely used to predict material properties such as the equation of state. However, for practical reasons current implementations use pseudopotentials for the electron-nucleus interaction instead of the bare Coulomb potential. This complicates the calculation and quantities such as free energy cannot be converged with respect to the pseudopotential parameters. We present a method that retains the bare Coulomb potential for the electron-nucleus interaction and does not use pseudopotentials. We demonstrate that accurate free energies are obtained by checking variational consistency. Examples for aluminum and iron plasmas are presented.

  5. Variable-Resistivity Material For Memory Circuits

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, Ganesan; Distefano, Salvador; Moacanin, Jovan

    1989-01-01

    Nonvolatile memory elements packed densely. Electrically-erasable, programmable, read-only memory matrices made with newly-synthesized organic material of variable electrical resistivity. Material, polypyrrole doped with tetracyanoquinhydrone (TCNQ), changes reversibly between insulating or higher-resistivity state and conducting or low-resistivity state. Thin film of conductive polymer separates layer of row conductors from layer of column conductors. Resistivity of film at each intersection and, therefore, resistance of memory element defined by row and column, increased or decreased by application of suitable switching voltage. Matrix circuits made with this material useful for experiments in associative electronic memories based on models of neural networks.

  6. The ATLASGAL survey: distribution of cold dust in the Galactic plane. Combination with Planck data

    NASA Astrophysics Data System (ADS)

    Csengeri, T.; Weiss, A.; Wyrowski, F.; Menten, K. M.; Urquhart, J. S.; Leurini, S.; Schuller, F.; Beuther, H.; Bontemps, S.; Bronfman, L.; Henning, Th.; Schneider, N.

    2016-01-01

    Context. Sensitive ground-based submillimeter surveys, such as ATLASGAL, provide a global view on the distribution of cold dense gas in the Galactic plane at up to two-times better angular-resolution compared to recent space-based surveys with Herschel. However, a drawback of ground-based continuum observations is that they intrinsically filter emission, at angular scales larger than a fraction of the field-of-view of the array, when subtracting the sky noise in the data processing. The lost information on the distribution of diffuse emission can be, however, recovered from space-based, all-sky surveys with Planck. Aims: Here we aim to demonstrate how this information can be used to complement ground-based bolometer data and present reprocessed maps of the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) survey. Methods: We use the maps at 353 GHz from the Planck/HFI instrument, which performed a high sensitivity all-sky survey at a frequency close to that of the APEX/LABOCA array, which is centred on 345 GHz. Complementing the ground-based observations with information on larger angular scales, the resulting maps reveal the distribution of cold dust in the inner Galaxy with a larger spatial dynamic range. We visually describe the observed features and assess the global properties of dust distribution. Results: Adding information from large angular scales helps to better identify the global properties of the cold Galactic interstellar medium. To illustrate this, we provide mass estimates from the dust towards the W43 star-forming region and estimate a column density contrast of at least a factor of five between a low intensity halo and the star-forming ridge. We also show examples of elongated structures extending over angular scales of 0.5°, which we refer to as thin giant filaments. Corresponding to > 30 pc structures in projection at a distance of 3 kpc, these dust lanes are very extended and show large aspect ratios. We assess the fraction of dense gas by determining the contribution of the APEX/LABOCA maps to the combined maps, and estimate 2-5% for the dense gas fraction (corresponding to Av> 7 mag) on average in the Galactic plane. We also show probability distribution functions of the column density (N-PDF), which reveal the typically observed log-normal distribution for low column density and exhibit an excess at high column densities. As a reference for extragalactic studies, we show the line-of-sight integrated N-PDF of the inner Galaxy, and derive a contribution of this excess to the total column density of ~ 2.2%, corresponding to NH2 = 2.92 × 1022 cm-2. Taking the total flux density observed in the maps, we provide an independent estimate of the mass of molecular gas in the inner Galaxy of ~ 1 × 109 M⊙, which is consistent with previous estimates using CO emission. From the mass and dense gas fraction (fDG), we estimate a Galactic SFR of Ṁ = 1.3 M⊙ yr-1. Conclusions: Retrieving the extended emission helps to better identify massive giant filaments which are elongated and confined structures. We show that the log-normal distribution of low column density gas is ubiquitous in the inner Galaxy. While the distribution of diffuse gas is relatively homogenous in the inner Galaxy, the central molecular zone (CMZ) stands out with a higher dense gas fraction despite its low star formation efficiency.Altogether our findings explain well the observed low star formation efficiency of the Milky Way by the low fDG in the Galactic ISM. In contrast, the high fDG observed towards the CMZ, despite its low star formation activity, suggests that, in that particular region of our Galaxy, high density gas is not the bottleneck for star formation.

  7. Eigenmode electric field profiles in cylindrical plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litwin, C.; Hershkowitz, N.

    Electric field profiles of plasma column eigenmodes in the ion-cyclotron range of frequencies are discussed. Step and parabolic density profiles are compared. The role of temperature and Alfven resonance is analyzed.

  8. Effect of turbulent flow on an atmospheric-pressure AC powered gliding arc discharge

    NASA Astrophysics Data System (ADS)

    Kong, Chengdong; Gao, Jinlong; Zhu, Jiajian; Ehn, Andreas; Aldén, Marcus; Li, Zhongshan

    2018-06-01

    A high-power gliding arc (GA) discharge was generated in a turbulent air flow driven by a 35 kHz alternating current electric power supply. The effects of the flow rate on the characteristics of the GA discharge were investigated using combined optical and electrical diagnostics. Phenomenologically, the GA discharge exhibits two types of discharge, i.e., glow type and spark type, depending on the flow rates and input powers. The glow-type discharge, which has peak currents of hundreds of milliamperes, is sustained at low flow rates. The spark-type discharge, which is characterized by a sharp current spike of several amperes with duration of less than 1 μs, occurs more frequently as the flow rate increases. Higher input power can suppress spark-type discharges in moderate turbulence, but this effect becomes weak under high turbulent conditions. Physically, the transition between glow- and spark-type is initiated by the short cutting events and the local re-ignition events. Short cutting events occur owing to the twisting, wrinkling, and stretching of the plasma columns that are governed by the relatively large vortexes in the flow. Local re-ignition events, which are defined as re-ignition along plasma columns, are detected in strong turbulence due to increment of the impedance of the plasma column and consequently the internal electric field strength. It is suggested that the vortexes with length scales smaller than the size of the plasma can penetrate into the plasma column and promote mixing with surroundings to accelerate the energy dissipation. Therefore, the turbulent flow influences the GA discharges by ruling the short cutting events with relatively large vortexes and the local re-ignition events with small vortexes.

  9. Colliding Laser-Produced Plasmas on LaPD

    NASA Astrophysics Data System (ADS)

    Collette, Andrew; Gekelman, Walter

    2007-11-01

    The expansion and interaction of dense plasmas in the presence of a magnetized background plasma is important in many astrophysical processes, among them coronal mass ejections and the many examples of plasma jets from astrophotography. Turbulence is expected to be present in many such configurations. We describe a series of experiments which involve the collision of two dense (initially, n > 10^15cm-3) laser-produced plasmas within an ambient, highly magnetized plasma. The laser-produced plasmas form diamagnetic cavities in which a large percentage of the background magnetic field (600G) has been expelled. First-stage observations using a fast (3ns exposure) camera indicate complicated structure at late times, in addition to coherent corrugated structures on the bubble surfaces. The data hint at the presence of turbulence in the interaction. The second stage of observation consists of direct investigation of the magnetic field using probes. A novel diagnostic system composed of small (300-500 micron) 3-axis differential magnetic field probes in conjunction with a ceramic motor system capable of extremely fine (sub-micron) positioning accuracy is currently under development. An ensemble of magnetic field data from fixed and movable probes makes possible the calculation of the cross-spectral function.

  10. Dense plasma focus (DPF) accelerated non radio isotopic radiological source

    DOEpatents

    Rusnak, Brian; Tang, Vincent

    2017-01-31

    A non-radio-isotopic radiological source using a dense plasma focus (DPF) to produce an intense z-pinch plasma from a gas, such as helium, and which accelerates charged particles, such as generated from the gas or injected from an external source, into a target positioned along an acceleration axis and of a type known to emit ionizing radiation when impinged by the type of accelerated charged particles. In a preferred embodiment, helium gas is used to produce a DPF-accelerated He2+ ion beam to a beryllium target, to produce neutron emission having a similar energy spectrum as a radio-isotopic AmBe neutron source. Furthermore, multiple DPFs may be stacked to provide staged acceleration of charged particles for enhancing energy, tunability, and control of the source.

  11. Gallium arsenide/gold nanostructures deposited using plasma method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangla, O.; Physics Department, Hindu College, University of Delhi, Delhi, 110007; Roy, S.

    2016-05-23

    The fabrication of gallium arsenide (GaAs) nanostructures on gold coated glass, quartz and silicon substrates using the high fluence and highly energetic ions has been reported. The high fluence and highly energetic ions are produced by the hot, dense and extremely non-equilibrium plasma in a modified dense plasma focus device. The nanostructures having mean size about 14 nm, 13 nm and 18 nm are deposited on gold coated glass, quartz and silicon substrates, respectively. The optical properties of nanostructures studied using absorption spectra show surface plasmon resonance peak of gold nanoparticles. In addition, the band-gap of GaAs nanoparticles is more than that ofmore » bulk GaAs suggesting potential applications in the field of optoelectronic and sensor systems.« less

  12. Plasmasphere Response: Tutorial and Review of Recent Imaging Results

    NASA Astrophysics Data System (ADS)

    Goldstein, J.

    2006-06-01

    The plasmasphere is the cold, dense innermost region of the magnetosphere that is populated by upflow of ionospheric plasma along geomagnetic field lines. Driven directly by dayside magnetopause reconnection, enhanced sunward convection erodes the outer layers of the plasmasphere. Erosion causes the plasmasphere outer boundary, the plasmapause, to move inward on the nightside and outward on the dayside to form plumes of dense plasma extending sunward into the outer magnetosphere. Coupling between the inner magnetosphere and ionosphere can significantly modify the convection field, either enhancing sunward flows near dusk or shielding them on the night side. The plasmaspheric configuration plays a crucial role in the inner magnetosphere; wave-particle interactions inside the plasmasphere can cause scattering and loss of warmer space plasmas such as the ring current and radiation belts.

  13. Design and initial results from a kilojoule level Dense Plasma Focus with hollow anode and cylindrically symmetric gas puff.

    PubMed

    Ellsworth, J L; Falabella, S; Tang, V; Schmidt, A; Guethlein, G; Hawkins, S; Rusnak, B

    2014-01-01

    We have designed and built a Dense Plasma Focus (DPF) Z-pinch device using a kJ-level capacitor bank and a hollow anode, and fueled by a cylindrically symmetric gas puff. Using this device, we have measured peak deuteron beam energies of up to 400 keV at 0.8 kJ capacitor bank energy and pinch lengths of ∼6 mm, indicating accelerating fields greater than 50 MV/m. Neutron yields of on the order of 10(7) per shot were measured during deuterium operation. The cylindrical gas puff system permitted simultaneous operation of DPF with a radiofrequency quadrupole accelerator for beam-into-plasma experiments. This paper describes the machine design, the diagnostic systems, and our first results.

  14. Free-free absorption coefficients and Gaunt factors for dense hydrogen-like stellar plasma

    NASA Astrophysics Data System (ADS)

    Srećković, V. A.; Sakan, N.; Šulić, D.; Jevremović, D.; Ignjatović, Lj M.; Dimitrijević, M. S.

    2018-03-01

    In this work, we present a study dedicated to determination of the inverse bremsstrahlung absorption coefficients and the corresponding Gaunt factor of dense hydrogen-like stellar-atmosphere plasmas where electron density and temperature change in a wide range. A method suitable for this wide range is suggested and applied to the inner layers of the solar atmosphere, as well as the plasmas of partially ionized layers of some other stellar atmospheres (for example, some DA and DB white dwarfs) where the electron densities vary from 1014 cm-3 to 1020 cm-3 and temperatures from 6000 K to 300 000 K in the wavelength region of 10 nm ≤ λ ≤ 3000 nm. The results of the calculations are illustrated by the corresponding figures and tables.

  15. Simultaneous determination of acetylsalicylic acid and salicylic acid in human plasma by isocratic high-pressure liquid chromatography with post-column hydrolysis and fluorescence detection.

    PubMed

    Hobl, Eva-Luise; Jilma, Bernd; Ebner, Josef; Schmid, Rainer W

    2013-06-01

    A selective, sensitive and rapid high-performance liquid chromatography method with post-column hydrolysis and fluorescence detection was developed for the simultaneous quantification of acetylsalicylic acid and its metabolite salicylic acid in human plasma. Following the addition of 2-hydroxy-3-methoxybenzoic acid as internal standard and simple protein precipitation with acetonitrile, the analytes were separated on a ProntoSIL 120 C18 ace-EPS column (150 × 2 mm, 3 µm) protected by a C8 guard column (5 µm). The mobile phase, 10 mm formic acid in water (pH 2.9) and acetonitrile (70:30, v/v), was used at a flow rate of 0.35 mL/min. After on-line post-column hydrolysis of acetylsalicylic acid (ASA) to salicylic acid (SA) by addition of alkaline solution, the analytes were measured at 290 nm (λex ) and 400 nm (λem ). The method was linear in the concentration ranges between 0.05 and 20 ng/μL for both ASA and SA with a lower limit of quantification of 25 pg/μL for SA and 50 pg/μL for ASA. The limit of detection was 15 pg/μL for SA and 32.5 pg/μL for ASA. The analysis of ASA and SA can be carried out within 8 min; therefore this method is suitable for measuring plasma concentrations of salicylates in clinical routine. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Polymyxin B-immobilized fiber column hemoperfusion removes endotoxin throughout a 24-hour treatment period.

    PubMed

    Mitaka, Chieko; Fujiwara, Naoto; Yamamoto, Mamoru; Toyofuku, Takahiro; Haraguchi, Go; Tomita, Makoto

    2014-10-01

    The purpose of this study was to evaluate the extent of endotoxin adsorption by polymyxin B-immobilized fiber column hemoperfusion (PMX) performed for a 24-hour treatment period in patients with septic shock. Nineteen patients with septic shock were retrospectively studied. The plasma endotoxin concentrations of blood drawn from the radial artery and from the outlet circuit of the PMX column were measured by kinetic turbidimetric limulus assay using an MT-358 Toxinometer (Wako Pure Chemical Industries, Ltd, Osaka, Japan) after 24 hours of PMX treatment. The endotoxin removal rate was defined by the following equation: ([radial artery endotoxin concentration - outlet circuit of PMX column endotoxin concentration]/radial artery endotoxin concentration) × 100%. The patients had a median Acute Physiology and Chronic Health Evaluation II score of 29 at intensive care unit admission and a 28-day mortality of 47%. Before the start of the PMX treatment, the median radial arterial plasma endotoxin concentration was 16.48 pg/mL. After 24 hours of PMX treatment, the median radial plasma endotoxin concentration had decreased to 1.857 pg/mL, and the concentration at the outlet circuit of the PMX column was further decreased to 0.779 pg/mL. The median endotoxin removal rate was 74.4%. These findings suggest that 24-hour PMX treatment was effective in removing endotoxin continuously throughout the entire treatment period. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Study of Plasma Chemistry and Plasma Processing.

    DTIC Science & Technology

    1983-01-01

    m, 20% 0,0-oxybisfpropionitrile] on Chrom W column in these reactions comes from their pertinence to prebiotic was used for cyanogen and gaseous...xerography, prebiotic chemistry, and chemistry in the ionosphere. L -5- Euipment for RF Reactions Virtually all of the work on organic plasmas has used RF

  18. Direct-injection screening for acidic drugs in plasma and neutral drugs in equine urine by differential-gradient LC-LC coupled MS/MS.

    PubMed

    Stanley, Shawn M R; Wee, Wei Khee; Lim, Boon Huat; Foo, Hsiao Ching

    2007-04-01

    Direct-injection LC-LC hybrid tandem MS methods have been developed for undertaking broad-based screening for acidic drugs in protein-precipitated plasma and neutral doping agents in equine urine. In both analyses, analytes present in the matrix were trapped using a HLB extraction column before being refocused and separated on a Chromolith RP-18e monolithic analytical column using a controlled differential gradient generated by proportional dilution of the first column's eluent with water. Each method has been optimised by the adoption of a mobile phase and gradient that was tailored to enhance ionisation in the MS source while maintaining good chromatographic behaviour for the majority of the target drugs. The analytical column eluent was fed into the heated nebulizer (HN) part of the Duospray interface attached to a 4000 QTRAP mass spectrometer. Information dependent acquisition (IDA) with dynamic background subtraction (DBS) was configured to trigger a sensitive enhanced product ion (EPI) scan when a multiple reaction monitoring (MRM) survey scan signal exceeded the defined criteria. Ninety-one percent of acidic drugs in protein-precipitated plasma and 80% of the neutral compounds in equine urine were detected when spiked at 10 ng/ml.

  19. Validated hydrophilic interaction LC-MS/MS method for simultaneous quantification of dacarbazine and 5-amino-4-imidazole-carboxamide in human plasma.

    PubMed

    Liu, Yanhong; Zhang, Weihua; Yang, Yuhui

    2008-10-19

    A hydrophilic interaction high performance liquid chromatography-tandem mass spectrometric method has been developed and validated for simultaneous quantification of dacarbazine (DTIC) and its terminal metabolite, 5-amino-4-imidazole-carboxamide (AIC) in human plasma. The plasma samples are first extracted by a C8+SCX mixed-mode 96-well plate to extend the extraction stability of DTIC and AIC. The extracted residues are further cleaned by a primary and secondary amine (PSA) adsorbent for minimization of matrix effect. Analyses are done on an Amide-80 HPLC column coupled to a tandem mass spectrometer fitted with an atmospheric pressure turbo ion spray ionization interface in the positive-ion mode. Both DTIC and AIC have reproducible retention times on the Amide-80 HPLC column. This type of column not only has an excellent column life (over 4000 injections), but also has zero carryover effect. The injection volume should be limited at 10 microL or less to avoid the peak splitting. The validated concentration ranges are from 0.5 to 500 ng/mL for DTIC and from 2.0 to 500 ng/mL for AIC. The validated method has been successfully applied to determine the pharmacokinetic profiles for human patients receiving DTIC infusions.

  20. Dynamics of Magnetized Plasma Jets and Bubbles Launched into a Background Magnetized Plasma

    NASA Astrophysics Data System (ADS)

    Wallace, B.; Zhang, Y.; Fisher, D. M.; Gilmore, M.

    2016-10-01

    The propagation of dense magnetized plasma, either collimated with mainly azimuthal B-field (jet) or toroidal with closed B-field (bubble), in a background plasma occurs in a number of solar and astrophysical cases. Such cases include coronal mass ejections moving in the background solar wind and extragalactic radio lobes expanding into the extragalactic medium. Understanding the detailed MHD behavior is crucial for correctly modeling these events. In order to further the understanding of such systems, we are investigating the injection of dense magnetized jets and bubbles into a lower density background magnetized plasma using a coaxial plasma gun and a background helicon or cathode plasma. In both jet and bubble cases, the MHD dynamics are found to be very different when launched into background plasma or magnetic field, as compared to vacuum. In the jet case, it is found that the inherent kink instability is stabilized by velocity shear developed due to added magnetic tension from the background field. In the bubble case, rather than directly relaxing to a minimum energy Taylor state (spheromak) as in vacuum, there is an expansion asymmetry and the bubble becomes Rayleigh-Taylor unstable on one side. Recent results will be presented. Work supported by the Army Research Office Award No. W911NF1510480.

  1. Path Integral Monte Carlo Simulations of Warm Dense Matter and Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Militzer, Burkhard

    2018-01-13

    New path integral Monte Carlo simulation (PIMC) techniques will be developed and applied to derive the equation of state (EOS) for the regime of warm dense matter and dense plasmas where existing first-principles methods cannot be applied. While standard density functional theory has been used to accurately predict the structure of many solids and liquids up to temperatures on the order of 10,000 K, this method is not applicable at much higher temperature where electronic excitations become important because the number of partially occupied electronic orbitals reaches intractably large numbers and, more importantly, the use of zero-temperature exchange-correlation functionals introducesmore » an uncontrolled approximation. Here we focus on PIMC methods that become more and more efficient with increasing temperatures and still include all electronic correlation effects. In this approach, electronic excitations increase the efficiency rather than reduce it. While it has commonly been assumed such methods can only be applied to elements without core electrons like hydrogen and helium, we recently showed how to extend PIMC to heavier elements by performing the first PIMC simulations of carbon and water plasmas [Driver, Militzer, Phys. Rev. Lett. 108 (2012) 115502]. Here we propose to continue this important development to extend the reach of PIMC simulations to yet heavier elements and also lower temperatures. The goal is to provide a robust first-principles simulation method that can accurately and efficiently study materials with excited electrons at solid-state densities in order to access parts of the phase diagram such the regime of warm dense matter and plasmas where so far only more approximate, semi-analytical methods could be applied.« less

  2. Effect of Residence Time on Net Nitrate Retention in Flow-Regulated Backwaters of the Upper Mississippi River

    DTIC Science & Technology

    2006-02-01

    include Ceratophyllum demersum, Myriophyllum spicatum, and Nymphaea odorata . METHODS: In late April 2004, vertical slide gates were adjusted to...due to a shallow water column and dense N. odorata beds. Flows into Schmokers Lake could not be directly measured because it was not connected to the

  3. SURFACTANT ENHANCED RECOVERY OF TETRACHLOROETHYLENE FROM A POROUS MEDIUM CONTAINING LOW PERMEABILITY LENSES. 1. EXPERIMENTAL STUDIES. (R825409)

    EPA Science Inventory

    Abstract

    A matrix of batch, column and two-dimensional (2-D) box experiments was conducted to investigate the coupled effects of rate-limited solubilization and layering on the entrapment and subsequent recovery of a representative dense NAPL, tetrachloroethylene (PCE)...

  4. Charge exchange between two nearest neighbour ions immersed in a dense plasma

    NASA Astrophysics Data System (ADS)

    Sauvan, P.; Angelo, P.; Derfoul, H.; Leboucher-Dalimier, E.; Devdariani, A.; Calisti, A.; Talin, B.

    1999-04-01

    In dense plasmas the quasimolecular model is relevant to describe the radiative properties: two nearest neighbor ions remain close to each other during a time scale of the order of the emission time. Within the frame of a quasistatic approach it has been shown that hydrogen-like spectral line shapes can exhibit satellite-like features. In this work we present the effect on the line shapes of the dynamical collision between the two ions exchanging transiently their bound electron. This model is suitable for the description of the core, the wings and the red satellite-like features. It is post-processed to the self consistent code (IDEFIX) giving the adiabatic transition energies and the oscillator strengths for the transient molecule immersed in a dense free electron bath. It is shown that the positions of the satellites are insensitive to the dynamics of the ion-ion collision. Results for fluorine Lyβ are presented.

  5. Modeling of Dense Plasma Effects in Short-Pulse Laser Experiments

    NASA Astrophysics Data System (ADS)

    Walton, Timothy; Golovkin, Igor; Macfarlane, Joseph; Prism Computational Sciences, Madison, WI Team

    2016-10-01

    Warm and Hot Dense Matter produced in short-pulse laser experiments can be studied with new high resolving power x-ray spectrometers. Data interpretation implies accurate modeling of the early-time heating dynamics and the radiation conditions that are generated. Producing synthetic spectra requires a model that describes the major physical processes that occur inside the target, including the hot-electron generation and relaxation phases and the effect of target heating. An important issue concerns the sensitivity of the predicted K-line shifts to the continuum lowering model that is used. We will present a set of PrismSPECT spectroscopic simulations using various continuum lowering models: Hummer/Mihalas, Stewart-Pyatt, and Ecker-Kroll and discuss their effect on the formation of K-shell features. We will also discuss recently implemented models for dense plasma shifts for H-like, He-like and neutral systems.

  6. Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams

    DOE PAGES

    Bang, W.; Albright, B. J.; Bradley, P. A.; ...

    2015-09-22

    With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has beenmore » unavailable to date. We have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.« less

  7. Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams.

    PubMed

    Bang, W; Albright, B J; Bradley, P A; Gautier, D C; Palaniyappan, S; Vold, E L; Santiago Cordoba, M A; Hamilton, C E; Fernández, J C

    2015-09-22

    With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has been unavailable to date. Here we have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.

  8. Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bang, W.; Albright, B. J.; Bradley, P. A.

    With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has beenmore » unavailable to date. We have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.« less

  9. Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams

    NASA Astrophysics Data System (ADS)

    Bang, W.; Albright, B. J.; Bradley, P. A.; Gautier, D. C.; Palaniyappan, S.; Vold, E. L.; Cordoba, M. A. Santiago; Hamilton, C. E.; Fernández, J. C.

    2015-09-01

    With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has been unavailable to date. Here we have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.

  10. Collapse of tall granular columns in fluid

    NASA Astrophysics Data System (ADS)

    Kumar, Krishna; Soga, Kenichi; Delenne, Jean-Yves

    2017-06-01

    Avalanches, landslides, and debris flows are geophysical hazards, which involve rapid mass movement of granular solids, water, and air as a multi-phase system. In order to describe the mechanism of immersed granular flows, it is important to consider both the dynamics of the solid phase and the role of the ambient fluid. In the present study, the collapse of a granular column in fluid is studied using 2D LBM - DEM. The flow kinematics are compared with the dry and buoyant granular collapse to understand the influence of hydrodynamic forces and lubrication on the run-out. In the case of tall columns, the amount of material destabilised above the failure plane is larger than that of short columns. Therefore, the surface area of the mobilised mass that interacts with the surrounding fluid in tall columns is significantly higher than the short columns. This increase in the area of soil - fluid interaction results in an increase in the formation of turbulent vortices thereby altering the deposit morphology. It is observed that the vortices result in the formation of heaps that significantly affects the distribution of mass in the flow. In order to understand the behaviour of tall columns, the run-out behaviour of a dense granular column with an initial aspect ratio of 6 is studied. The collapse behaviour is analysed for different slope angles: 0°, 2.5°, 5° and 7.5°.

  11. Evolution of columns, modules, and domains in the neocortex of primates.

    PubMed

    Kaas, Jon H

    2012-06-26

    The specialized regions of neocortex of mammals, called areas, have been divided into smaller functional units called minicolumns, columns, modules, and domains. Here we describe some of these functional subdivisions of areas in primates and suggest when they emerged in mammalian evolution. We distinguish several types of these smaller subdivisions. Minicolumns, vertical arrays of neurons that are more densely interconnected with each other than with laterally neighboring neurons, are present in all cortical areas. Classic columns are defined by a repeating pattern of two or more types of cortex distinguished by having different inputs and neurons with different response properties. Sensory stimuli that continuously vary along a stimulus dimension may activate groups of neurons that vary continuously in location, producing "columns" without specific boundaries. Other groups or columns of cortical neurons are separated by narrow septa of fibers that reflect discontinuities in the receptor sheet. Larger regions of posterior parietal cortex and frontal motor cortex are parts of networks devoted to producing different sequences of movements. We distinguish these larger functionally distinct regions as domains. Columns of several types have evolved independently a number of times. Some of the columns found in primates likely emerged with the first primates, whereas others likely were present in earlier ancestors. The sizes and shapes of columns seem to depend on the balance of neuron activation patterns and molecular signals during development.

  12. Low-frequency instabilities and plasma turbulence

    NASA Technical Reports Server (NTRS)

    Ilic, D. B.

    1973-01-01

    A theoretical and experimental study is reported of steady-state and time-dependent characteristics of the positive column and the hollow cathode discharge (HCD). The steady state of a non-isothermal, cylindrical positive column in an axial magnetic field is described by three moment equations in the plasma approximation. Volume generation of electron-ion pairs by single-stage ionization, the presence of axial current, and collisions with neutrals are considered. The theory covers the range from the low pressure, collisionless regime to the intermediate pressure, collisional regime. It yields radial profiles of the charged particle velocities, density, potential, electron and ion temperatures, and demonstrates similarity laws for the positive column. The results are compared with two moment theories and with experimental data on He, Ar and Hg found in the literature for a wide range of pressures. A simple generalization of the isothermal theory for an infinitely long cylinder in an axial magnetic field to the case of a finite column with axial current flow is also demonstrated.

  13. Hydrodynamic study of plasma amplifiers for soft-x-ray lasers: a transition in hydrodynamic behavior for plasma columns with widths ranging from 20 μm to 2 mm.

    PubMed

    Oliva, Eduardo; Zeitoun, Philippe; Velarde, Pedro; Fajardo, Marta; Cassou, Kevin; Ros, David; Sebban, Stephan; Portillo, David; le Pape, Sebastien

    2010-11-01

    Plasma-based seeded soft-x-ray lasers have the potential to generate high energy and highly coherent short pulse beams. Due to their high density, plasmas created by the interaction of an intense laser with a solid target should store the highest amount of energy density among all plasma amplifiers. Our previous numerical work with a two-dimensional (2D) adaptive mesh refinement hydrodynamic code demonstrated that careful tailoring of plasma shapes leads to a dramatic enhancement of both soft-x-ray laser output energy and pumping efficiency. Benchmarking of our 2D hydrodynamic code in previous experiments demonstrated a high level of confidence, allowing us to perform a full study with the aim of the way for 10-100 μJ seeded soft-x-ray lasers. In this paper, we describe in detail the mechanisms that drive the hydrodynamics of plasma columns. We observed transitions between narrow plasmas, where very strong bidimensional flow prevents them from storing energy, to large plasmas that store a high amount of energy. Millimeter-sized plasmas are outstanding amplifiers, but they have the limitation of transverse lasing. In this paper, we provide a preliminary solution to this problem.

  14. Plasma flow measurements in the Prototype-Material Plasma Exposure eXperiment (Proto-MPEX) and comparison with B2.5-Eirene modeling

    NASA Astrophysics Data System (ADS)

    Kafle, N.; Owen, L. W.; Caneses, J. F.; Biewer, T. M.; Caughman, J. B. O.; Donovan, D. C.; Goulding, R. H.; Rapp, J.

    2018-05-01

    The Prototype Material Plasma Exposure eXperiment (Proto-MPEX) at Oak Ridge National Laboratory is a linear plasma device that combines a helicon plasma source with additional microwave and radio frequency heating to deliver high plasma heat and particle fluxes to a target. Double Langmuir probes and Thomson scattering are being used to measure local electron temperature and density at various radial and axial locations. A recently constructed Mach-double probe provides the added capability of simultaneously measuring electron temperatures ( T e), electron densities ( n e), and Mach numbers (M). With this diagnostic, it is possible to infer the plasma flow, particle flux, and heat flux at different locations along the plasma column in Proto-MPEX. Preliminary results show Mach numbers of 0.5 (towards the dump plate) and 1.0 (towards the target plate) downstream from the helicon source, and a stagnation point (no flow) near the source for the case where the peak magnetic field was 1.3 T. Measurements of particle flow and ne and Te profiles are discussed. The extensive coverage provided by these diagnostics permits data-constrained B2.5-Eirene modeling of the entire plasma column, and comparison with results of modeling in the high-density helicon plasmas will be presented.

  15. Research on plasma-puff initiation of high Coulomb transfer switches

    NASA Technical Reports Server (NTRS)

    Venable, Demetrius D.; Han, Kwang S.

    1993-01-01

    The plasma-puff triggering mechanism based on hypocycloidal pinch geometry was investigated to determine the optimal operating conditions for an azimuthally uniform surface flashover which initiates plasma-puff under wide ranges of fill gas pressures of Ar, He and N2. Research is presented and resulting conference papers are attached. These papers include 'Characteristics of Plasma-Puff Trigger for an Inverse-Pinch Plasma Switch'; 'Ultra-High-Power Plasma Switch INPUTS for Pulse Power Systems'; 'Characteristics of Switching Plasma in an Inverse-Pinch Switch'; 'Comparative Study of INPIStron and Spark Gap'; and 'INPIStron Switched Pulsed Power for Dense Plasma Pinches.'

  16. Plasma source development for fusion-relevant material testing

    DOE PAGES

    Caughman, John B. O.; Goulding, Richard H.; Biewer, Theodore M.; ...

    2017-05-01

    Plasma facing materials in the divertor of a magnetic fusion reactor will have to tolerate steady-state plasma heat fluxes in the range of 10 MW/m2 for ~107 sec, in addition to fusion neutron fluences, which can damage the plasma facing materials to high displacements per atom (dpa) of ~50 dpa . Material solutions needed for the plasma facing components are yet to be developed and tested. The Materials Plasma Exposure eXperiment (MPEX) is a newly proposed steady state linear plasma device that is designed to deliver the necessary plasma heat flux to a target for this material testing, including themore » capability to expose a-priori neutron damaged material samples to those plasmas. The requirements of the plasma source needed to deliver this plasma heat flux are being developed on the Proto-MPEX device, which is a linear high-intensity radio frequency (RF) plasma source that combines a high-density helicon plasma generator with electron and ion heating sections. It is being used to study the physics of heating over-dense plasmas in a linear configuration. The helicon plasma is operated at 13.56 MHz with RF power levels up to 120 kW. Microwaves at 28 GHz (~30 kW) are coupled to the electrons in the over-dense helicon plasma via Electron Bernstein Waves (EBW), and ion cyclotron heating at 7-9 MHz (~30 kW) is via a magnetic beach approach. High plasma densities >6x1019/m3 have been produced in deuterium, with electron temperatures that can range from 2 to >10 eV. Operation with on-axis magnetic field strengths between 0.6 and 1.4 T is typical. The plasma heat flux delivered to a target can be > 10 MW/m2, depending on the operating conditions.« less

  17. Plasma source development for fusion-relevant material testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caughman, John B. O.; Goulding, Richard H.; Biewer, Theodore M.

    Plasma facing materials in the divertor of a magnetic fusion reactor will have to tolerate steady-state plasma heat fluxes in the range of 10 MW/m2 for ~107 sec, in addition to fusion neutron fluences, which can damage the plasma facing materials to high displacements per atom (dpa) of ~50 dpa . Material solutions needed for the plasma facing components are yet to be developed and tested. The Materials Plasma Exposure eXperiment (MPEX) is a newly proposed steady state linear plasma device that is designed to deliver the necessary plasma heat flux to a target for this material testing, including themore » capability to expose a-priori neutron damaged material samples to those plasmas. The requirements of the plasma source needed to deliver this plasma heat flux are being developed on the Proto-MPEX device, which is a linear high-intensity radio frequency (RF) plasma source that combines a high-density helicon plasma generator with electron and ion heating sections. It is being used to study the physics of heating over-dense plasmas in a linear configuration. The helicon plasma is operated at 13.56 MHz with RF power levels up to 120 kW. Microwaves at 28 GHz (~30 kW) are coupled to the electrons in the over-dense helicon plasma via Electron Bernstein Waves (EBW), and ion cyclotron heating at 7-9 MHz (~30 kW) is via a magnetic beach approach. High plasma densities >6x1019/m3 have been produced in deuterium, with electron temperatures that can range from 2 to >10 eV. Operation with on-axis magnetic field strengths between 0.6 and 1.4 T is typical. The plasma heat flux delivered to a target can be > 10 MW/m2, depending on the operating conditions.« less

  18. Thermophysical properties of multi-shock compressed dense argon.

    PubMed

    Chen, Q F; Zheng, J; Gu, Y J; Chen, Y L; Cai, L C; Shen, Z J

    2014-02-21

    In contrast to the single shock compression state that can be obtained directly via experimental measurements, the multi-shock compression states, however, have to be calculated with the aid of theoretical models. In order to determine experimentally the multiple shock states, a diagnostic approach with the Doppler pins system (DPS) and the pyrometer was used to probe multiple shocks in dense argon plasmas. Plasma was generated by a shock reverberation technique. The shock was produced using the flyer plate impact accelerated up to ∼6.1 km/s by a two-stage light gas gun and introduced into the plenum argon gas sample, which was pre-compressed from the environmental pressure to about 20 MPa. The time-resolved optical radiation histories were determined using a multi-wavelength channel optical transience radiance pyrometer. Simultaneously, the particle velocity profiles of the LiF window was measured with multi-DPS. The states of multi-shock compression argon plasma were determined from the measured shock velocities combining the particle velocity profiles. We performed the experiments on dense argon plasmas to determine the principal Hugonoit up to 21 GPa, the re-shock pressure up to 73 GPa, and the maximum measure pressure of the fourth shock up to 158 GPa. The results are used to validate the existing self-consistent variational theory model in the partial ionization region and create new theoretical models.

  19. Thermophysical properties of multi-shock compressed dense argon

    NASA Astrophysics Data System (ADS)

    Chen, Q. F.; Zheng, J.; Gu, Y. J.; Chen, Y. L.; Cai, L. C.; Shen, Z. J.

    2014-02-01

    In contrast to the single shock compression state that can be obtained directly via experimental measurements, the multi-shock compression states, however, have to be calculated with the aid of theoretical models. In order to determine experimentally the multiple shock states, a diagnostic approach with the Doppler pins system (DPS) and the pyrometer was used to probe multiple shocks in dense argon plasmas. Plasma was generated by a shock reverberation technique. The shock was produced using the flyer plate impact accelerated up to ˜6.1 km/s by a two-stage light gas gun and introduced into the plenum argon gas sample, which was pre-compressed from the environmental pressure to about 20 MPa. The time-resolved optical radiation histories were determined using a multi-wavelength channel optical transience radiance pyrometer. Simultaneously, the particle velocity profiles of the LiF window was measured with multi-DPS. The states of multi-shock compression argon plasma were determined from the measured shock velocities combining the particle velocity profiles. We performed the experiments on dense argon plasmas to determine the principal Hugonoit up to 21 GPa, the re-shock pressure up to 73 GPa, and the maximum measure pressure of the fourth shock up to 158 GPa. The results are used to validate the existing self-consistent variational theory model in the partial ionization region and create new theoretical models.

  20. Load Designs For MJ Dense Plasma Foci

    NASA Astrophysics Data System (ADS)

    Link, A.; Povlius, A.; Anaya, R.; Anderson, M. G.; Angus, J. R.; Cooper, C. M.; Falabella, S.; Goerz, D.; Higginson, D.; Holod, I.; McMahon, M.; Mitrani, J.; Koh, E. S.; Pearson, A.; Podpaly, Y. A.; Prasad, R.; van Lue, D.; Watson, J.; Schmidt, A. E.

    2017-10-01

    Dense plasma focus (DPF) Z-pinches are compact pulse power driven devices with coaxial electrodes. The discharge of DPF consists of three distinct phases: first generation of a plasma sheath, plasma rail gun phase where the sheath is accelerated down the electrodes and finally an implosion phase where the plasma stagnates into a z-pinch geometry. During the z-pinch phase, DPFs can produce MeV ion beams, x-rays and neutrons. Megaampere class DPFs with deuterium fills have demonstrated neutron yields in the 1012 neutrons/shot range with pulse durations of 10-100 ns. Kinetic simulations using the code Chicago are being used to evaluate various load configurations from initial sheath formation to the final z-pinch phase for DPFs with up to 5 MA and 1 MJ coupled to the load. Results will be presented from the preliminary design simulations. LLNL-ABS-734785 This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) under Contract DE-AC52-07NA27344 and with support from the Computing Grand Challenge program at LLNL.

  1. Generation and acceleration of neutral atoms in intense laser plasma experiments

    NASA Astrophysics Data System (ADS)

    Tata, Sheroy; Mondal, Angana; Sarkar, Shobhik; Ved, Yash; Lad, Amit D.; Pasley, John; Colgan, James; Krishnamurthy, M.

    2017-10-01

    The interaction of a high intensity (>=1018 W/cm2), high contrast (>=109), ultra-short (30fs) laser with solid targets generates a highly dense hot plasma. The quasi-static electric fields in such plasmas are well known for ion acceleration via the target normal sheath acceleration process. Under such conditions charge reduction to generate fast neutral atoms is almost inhibited. Improvised Thomson parabola spectrometry with improved signal to noise ratio has enabled us to measure the signals of fast neutral atoms and negative ions having energies in excess of tens of keV. A study on the neutralization of accelerated protons in plasma shows that the neutral atom to all particle ratio rises sharply from a few percent at the highest detectable energy to 50 % at 15 keV. Using usual charge transfer reactions the generation of neutral atoms can not be explained, thus we conjecture that the neutralization of the accelerated ions is not from the hot dense region of the plasma but neutral atom formation takes place by co-propagating ions with low energy electrons enhancing the effective neutral ratio.

  2. Fully kinetic simulations of dense plasma focus Z-pinch devices.

    PubMed

    Schmidt, A; Tang, V; Welch, D

    2012-11-16

    Dense plasma focus Z-pinch devices are sources of copious high energy electrons and ions, x rays, and neutrons. The mechanisms through which these physically simple devices generate such high-energy beams in a relatively short distance are not fully understood. We now have, for the first time, demonstrated a capability to model these plasmas fully kinetically, allowing us to simulate the pinch process at the particle scale. We present here the results of the initial kinetic simulations, which reproduce experimental neutron yields (~10(7)) and high-energy (MeV) beams for the first time. We compare our fluid, hybrid (kinetic ions and fluid electrons), and fully kinetic simulations. Fluid simulations predict no neutrons and do not allow for nonthermal ions, while hybrid simulations underpredict neutron yield by ~100x and exhibit an ion tail that does not exceed 200 keV. Only fully kinetic simulations predict MeV-energy ions and experimental neutron yields. A frequency analysis in a fully kinetic simulation shows plasma fluctuations near the lower hybrid frequency, possibly implicating lower hybrid drift instability as a contributor to anomalous resistivity in the plasma.

  3. Comparisons of dense-plasma-focus kinetic simulations with experimental measurements.

    PubMed

    Schmidt, A; Link, A; Welch, D; Ellsworth, J; Falabella, S; Tang, V

    2014-06-01

    Dense-plasma-focus (DPF) Z-pinch devices are sources of copious high-energy electrons and ions, x rays, and neutrons. The mechanisms through which these physically simple devices generate such high-energy beams in a relatively short distance are not fully understood and past optimization efforts of these devices have been largely empirical. Previously we reported on fully kinetic simulations of a DPF and compared them with hybrid and fluid simulations of the same device. Here we present detailed comparisons between fully kinetic simulations and experimental data on a 1.2 kJ DPF with two electrode geometries, including neutron yield and ion beam energy distributions. A more intensive third calculation is presented which examines the effects of a fully detailed pulsed power driver model. We also compare simulated electromagnetic fluctuations with direct measurement of radiofrequency electromagnetic fluctuations in a DPF plasma. These comparisons indicate that the fully kinetic model captures the essential physics of these plasmas with high fidelity, and provide further evidence that anomalous resistivity in the plasma arises due to a kinetic instability near the lower hybrid frequency.

  4. Energy loss of α-particle moving in warm dense deuterium plasma: Role of local field corrections

    NASA Astrophysics Data System (ADS)

    Fu, Zhen-Guo; Wang, Zhigang; Zhang, Ping

    2017-11-01

    We theoretically study the energy loss of α-particles traveling in the warm dense plasma (WDP) of deuterium (D) with temperatures from 10 to 100 eV and electron number densities from 1023 to 1024 cm-3. Beyond the random phase approximation (RPA) model, the extended Mermin dielectric function (MDF) model including the static and dynamic local field corrections (LFC) is employed in the calculations. Compared with the static LFC, the dynamic LFC introduced in the extended MDF model gives rise to a more significant departure from the RPA result. For the plasma conditions focused in this work, the departure induced by dynamic LFC reaches almost ˜ 30 % , which may be detected in the inertial confinement fusion (ICF) related experiment. Moreover, we find that the effect of static e-e collision may be of importance (unimportance) for the WDP of D with a temperature of tens (hundreds) of eV. Our findings may be important for ICF ignition since the uncertainty induced by the correlation effects between plasma component particles is crucial for the prediction of α-particle heating in fusion plasmas.

  5. Compact electron beam focusing column

    NASA Astrophysics Data System (ADS)

    Persaud, Arun; Leung, Ka-Ngo; Reijonen, Jani

    2001-12-01

    A novel design for an electron beam focusing column has been developed at LBNL. The design is based on a low-energy spread multicusp plasma source which is used as a cathode for electron beam production. The focusing column is 10 mm in length. The electron beam is focused by means of electrostatic fields. The column is designed for a maximum voltage of 50 kV. Simulations of the electron trajectories have been performed by using the 2D simulation code IGUN and EGUN. The electron temperature has also been incorporated into the simulations. The electron beam simulations, column design and fabrication will be discussed in this presentation.

  6. Absorption of a laser light pulse in a dense plasma.

    NASA Technical Reports Server (NTRS)

    Mehlman-Balloffet, G.

    1973-01-01

    An experimental study of the absorption of a laser light pulse in a transient, high-density, high-temperature plasma is presented. The plasma is generated around a metallic anode tip by a fast capacitive discharge occurring in vacuum. The amount of transmitted light is measured for plasmas made of different metallic ions in the regions of the discharge of high electronic density. Variation of the transmission during the laser pulse is also recorded. Plasma electrons are considered responsible for the very high absorption observed.

  7. An Experimental Study of the Plasma Focus Device as a Charged Particle Accelerator

    DTIC Science & Technology

    1988-11-01

    The dense plasma focus has been investigated at many laboratories as a possible fusion device. Typical plasma parameters for this device are electron...temperatures of 1 keV, densities of 10 to the 19th power per cc, and confinement times of 100 ns. Characteristic of the plasma focus discharge are...neutrons. The emphasis of this work is to investigate the electron and ion emission from the plasma focus and the development of appropriate diagnostics to

  8. Observation of the ballooning mode that limits the operation space of the high-density super-dense-core plasma in the LHD

    NASA Astrophysics Data System (ADS)

    Ohdachi, S.; Watanabe, K. Y.; Tanaka, K.; Suzuki, Y.; Takemura, Y.; Sakakibara, S.; Du, X. D.; Bando, T.; Narushima, Y.; Sakamoto, R.; Miyazawa, J.; Motojima, G.; Morisaki, T.; LHD Experiment Group

    2017-06-01

    The central beta of the super-dense-core (SDC) plasma in the large helical device (LHD) is limited by a large scale MHD event called ‘core density collapse’ (CDC). The detailed measurement reveals that a new type of ballooning mode, quite localized in space and destabilized from the 3D nature of Heliotron devices, is the cause of the CDC. It is the first observation of an unstable mode in a region with global negative magnetic shear. Avoidance of the excitation of this mode is a key to expand the operational limit of the LHD.

  9. Multiphase-Multifunctional Ceramic Coatings

    DTIC Science & Technology

    2013-06-30

    were conducted at 1200-1600° C from 10-24 h. Densification of powders in the pyrochlore-fuorite system was also performed by Spark Plasma Sintering ...capability with emphasis on improving toughness and phase stability. The primary goal was clearly accomplished by developing an instrumented air plasma ...composition. Coating compositions were synthesized by atmospheric plasma spray (APS) at CINVESTAV facilities, and dense monolithic counterparts were

  10. Equation of state of dense plasmas with pseudoatom molecular dynamics

    DOE PAGES

    Starrett, C. E.; Saumon, D.

    2016-06-14

    Here, we present an approximation for calculating the equation of state (EOS) of warm and hot dense matter that is built on the previously published pseudoatom molecular dynamics (PAMD) model of dense plasmas [Starrett et al., Phys. Rev. E 91, 013104 (2015)]. And while the EOS calculation with PAMD was previously limited to orbital-free density functional theory (DFT), the new approximation presented here allows a Kohn-Sham DFT treatment of the electrons. The resulting EOS thus includes a quantum mechanical treatment of the electrons with a self-consistent model of the ionic structure, while remaining tractable at high temperatures. The method ismore » validated by comparisons with pressures from ab initio simulations of Be, Al, Si, and Fe. The EOS in the Thomas-Fermi approximation shows remarkable thermodynamic consistency over a wide range of temperatures for aluminum. We also calculate the principal Hugoniots of aluminum and silicon up to 500 eV. We find that the ionic structure of the plasma has a modest effect that peaks at temperatures of a few eV and that the features arising from the electronic structure agree well with ab initio simulations.« less

  11. A Fast Pulse, High Intensity Neutron Source Based Upon The Dense Plasma Focus

    NASA Astrophysics Data System (ADS)

    Krishnan, M.; Bures, B.; Madden, R.; Blobner, F.; Elliott, K. Wilson

    2009-12-01

    Alameda Applied Sciences Corporation (AASC) has built a bench-top source of fast neutrons (˜10-30 ns, 2.45 MeV), that is portable and can be scaled to operate at ˜100 Hz. The source is a Dense Plasma Focus driven by three different capacitor banks: a 40 J/30 kA/100 Hz driver; a 500 J/130 kA/2 Hz driver and a 3 kJ/350 kA/0.5 Hz driver. At currents of ˜130 kA, this source produces ˜1×107 (DD) n/pulse. The neutron pulse widths are ˜10-30 ns and may be controlled by adjusting the DPF electrode geometry and operating parameters. This paper describes the scaling of the fast neutron output with current from such a Dense Plasma Focus source. For each current and driver, different DPF head designs are required to match to the current rise-time, as the operating pressure and anode radius/shape are varied. Doping of the pure D2 gas fill with Ar or Kr was shown earlier to increase the neutron output. Results are discussed in the light of scaling laws suggested by prior literature.

  12. Runaway electrons as a source of impurity and reduced fusion yield in the dense plasma focus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lerner, Eric J.; Yousefi, Hamid R.

    2014-10-15

    Impurities produced by the vaporization of metals in the electrodes may be a major cause of reduced fusion yields in high-current dense plasma focus devices. We propose here that a major, but hitherto-overlooked, cause of such impurities is vaporization by runaway electrons during the breakdown process at the beginning of the current pulse. This process is sufficient to account for the large amount of erosion observed in many dense plasma focus devices on the anode very near to the insulator. The erosion is expected to become worse with lower pressures, typical of machines with large electrode radii, and would explainmore » the plateauing of fusion yield observed in such machines at higher peak currents. Such runaway electron vaporization can be eliminated by the proper choice of electrode material, by reducing electrode radii and thus increasing fill gas pressure, or by using pre-ionization to eliminate the large fields that create runaway electrons. If these steps are combined with monolithic electrodes to eliminate arcing erosion, large reductions in impurities and large increases in fusion yield may be obtained, as the I{sup 4} scaling is extended to higher currents.« less

  13. Determination of plasma azathioprine and 6-mercaptopurine in patients with rheumatoid arthritis treated with oral azathioprine.

    PubMed

    Liliemark, J; Pettersson, B; Lafolie, P; Zweig, T; Peterson, C

    1990-07-01

    Two specific high-performance liquid chromatography methods for determining plasma concentrations of azathioprine and 6-mercaptopurine after oral administration of azathioprine are presented. It was shown that azathioprine is unstable in the blood samples unless immediately cooled in ice water. The 2-amino analog, guaneran, was used as internal standard for azathioprine, which was extracted from plasma with ethylacetate. A Nucleosil C18 column was used for the separation. The detection limit was 6 nM. For quantification of 6-mercaptopurine, 6-thioguanine was used as internal standard. Plasma was deproteinized with HClO4 and the sample was purified on mercurial cellulose. A Beckman ODS column was used and the detection limit was 5 nM. Pharmacokinetic data from two patients are presented. Unchanged azathioprine was seen until 6 h after an oral dose of 32 mg/m2.

  14. Gallium nitride nanoneedles grown in extremely non-equilibrium nitrogen plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangla, O., E-mail: onkarmangla@gmail.com; Physics Department, Hindu College, University of Delhi, Delhi, 110007; Roy, S.

    2016-05-23

    In the present work, gallium nitride (GaN) nanoneedles are grown on quartz substrates using the high fluence ions of GaN produced by hot, dense and extremely non-equlibrium nitrogen plasma in a modified dense plasma focus device. The formation of nanoneedles is obtained from the scanning electron microscopy with mean size of the head of nanoneedles ~ 70 nm. The nanoneedles are found to be poly-crystalline when studied structurally through the X-ray diffraction. The optical properties of nanoneedles studied using absorption spectra which show more absorption for nanoneedles depsoited one shot of ions irradiation. In addition, the band gap of nanoneedles ismore » found to be increased as compared to bulk GaN. The obtained nanoneedles with increased band gap have potential applications in detector systems.« less

  15. Propagation of Ion Solitary Pulses in Dense Astrophysical Electron-Positron-Ion Magnetoplasmas

    NASA Astrophysics Data System (ADS)

    Ata-Ur-Rahman; A. Khan, S.; Qamar, A.

    2015-12-01

    In this paper, we theoretically investigate the existence and propagation of low amplitude nonlinear ion waves in a dense plasma under the influence of a strong magnetic field. The plasma consists of ultra-relativistic and degenerate electrons and positrons and non-degenerate cold ions. Firstly, the appearance of two distinct linear modes and their evolution is studied by deriving a dispersion equation with the aid of Fourier analysis. Secondly, the dynamics of low amplitude ion solitary structures is investigated via a Korteweg-de Vries equation derived by employing a reductive perturbation method. The effects of various plasma parameters like positron concentration, strength of magnetic field, obliqueness of field, etc., are discussed in detail. At the end, analytical results are supplemented through numerical analysis by using typical representative parameters consistent with degenerate and ultra-relativistic magnetoplasmas of astrophysical regimes.

  16. Integral equation model for warm and hot dense mixtures.

    PubMed

    Starrett, C E; Saumon, D; Daligault, J; Hamel, S

    2014-09-01

    In a previous work [C. E. Starrett and D. Saumon, Phys. Rev. E 87, 013104 (2013)] a model for the calculation of electronic and ionic structures of warm and hot dense matter was described and validated. In that model the electronic structure of one atom in a plasma is determined using a density-functional-theory-based average-atom (AA) model and the ionic structure is determined by coupling the AA model to integral equations governing the fluid structure. That model was for plasmas with one nuclear species only. Here we extend it to treat plasmas with many nuclear species, i.e., mixtures, and apply it to a carbon-hydrogen mixture relevant to inertial confinement fusion experiments. Comparison of the predicted electronic and ionic structures with orbital-free and Kohn-Sham molecular dynamics simulations reveals excellent agreement wherever chemical bonding is not significant.

  17. Some Research Centers for Plasma Physics and Solid State Physics in the Netherlands and Belgium. Part II. Belgium,

    DTIC Science & Technology

    plasma column and observed the interesting phenomenon of plasma ejection. At FUB, Balescu and Prigogine direct a group of sixty theoreticians doing...outstanding work in statistical physics. Balescu is writing another graduate textbook on non-equilibrium statistical mechanics. He is tackling the

  18. Characterization of Flow and Ohm's Law in the Rotating Wall Machine

    NASA Astrophysics Data System (ADS)

    Hannum, David; Brookhart, M.; Forest, C. B.; Kendrick, R.; Mengin, G.; Paz-Soldan, C.

    2010-11-01

    The rotating wall machine is a linear screw-pinch built to study the role of different electromagnetic boundary conditions on the Resistive Wall Mode (RWM). Its plasma is created by an array of electrostatic washer guns which can be biased to discharge up to 1 kA of current each. Individual flux ropes from the guns shear, merge, and expand into a 20 cm diameter, ˜1 m long plasma column. Langmuir (singletip) and tri-axial B-dot probes move throughout the column to measure radial and axial profiles of key plasma parameters. As the plasma current increases, more H2 fuel is ionized, raising ne to 5 x10^20 m-3 while Te stays at a constant 3 eV. The electron density expands to the wall while the current density (Jz) stays pinched to the central axis. E xB and diamagnetic drifts create radially and axially sheared plasma rotation. Plasma resistivity follows the Spitzer model in the core while exceeding it at the edge. These measurements improve the model used to predict the RWM growth rate.

  19. Status of Plasma Electron Hose Instability Studies in FACET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adli, Erik; /U. Oslo; England, Robert Joel

    In the FACET plasma-wakefield acceleration experiment a dense 23 GeV electron beam will interact with lithium and cesium plasmas, leading to plasma ion-channel formation. The interaction between the electron beam and the plasma sheath-electrons may lead to a fast growing electron hose instability. By using optics dispersion knobs to induce a controlled z-x tilt along the beam entering the plasma, we investigate the transverse behavior of the beam in the plasma as function of the tilt. We seek to quantify limits on the instability in order to further explore potential limitations on future plasma wakefield accelerators due to the electronmore » hose instability. The FACET plasma-wakefield experiment at SLAC will study beam driven plasma wakefield acceleration. A dense 23 GeV electron beam will interact with lithium or cesium plasma, leading to plasma ion-channel formation. The interaction between the electron beam and the plasma sheath-electrons drives the electron hose instability, as first studied by Whittum. While Ref. [2] indicates the possibility of a large instability growth rate for typical beam and plasma parameters, other studies including have shown that several physical effects may mitigate the hosing growth rate substantially. So far there has been no quantitative benchmarking of experimentally observed hosing in previous experiments. At FACET we aim to perform such benchmarking by for example inducing a controlled z-x tilt along the beamentering the plasma, and observing the transverse behavior of the beam in the plasma as function. The long-term objective of these studies is to quantify potential limitations on future plasma wakefield accelerators due to the electron hose instability.« less

  20. The composition and metabolism of large and small LDL

    USDA-ARS?s Scientific Manuscript database

    Decreased size and increased density of LDL have been associated with increased coronary heart disease (CHD) risk. Elevated plasma concentrations of small dense LDL (sdLDL) correlate with high plasma triglycerides and low HDL cholesterol levels. This review highlights recent findings about the met...

  1. Nonlinear Absorption and Heating of Dense Plasmas.

    DTIC Science & Technology

    plasma focus both illuminated by a high intensity CO2 laser. Results indicate the previously noted increases in absorption due to the inclusion of the nonlinear saturation mechanism. The previously obtained increases in absorption with increasing density scale height and decreasing temperatures are also recovered. The

  2. Relativistic laser channeling in plasmas for fast ignition

    NASA Astrophysics Data System (ADS)

    Lei, A. L.; Pukhov, A.; Kodama, R.; Yabuuchi, T.; Adumi, K.; Endo, K.; Freeman, R. R.; Habara, H.; Kitagawa, Y.; Kondo, K.; Kumar, G. R.; Matsuoka, T.; Mima, K.; Nagatomo, H.; Norimatsu, T.; Shorokhov, O.; Snavely, R.; Yang, X. Q.; Zheng, J.; Tanaka, K. A.

    2007-12-01

    We report an experimental observation suggesting plasma channel formation by focusing a relativistic laser pulse into a long-scale-length preformed plasma. The channel direction coincides with the laser axis. Laser light transmittance measurement indicates laser channeling into the high-density plasma with relativistic self-focusing. A three-dimensional particle-in-cell simulation reproduces the plasma channel and reveals that the collimated hot-electron beam is generated along the laser axis in the laser channeling. These findings hold the promising possibility of fast heating a dense fuel plasma with a relativistic laser pulse.

  3. Development of the dense plasma focus for short-pulse applications

    NASA Astrophysics Data System (ADS)

    Bennett, N.; Blasco, M.; Breeding, K.; Constantino, D.; DeYoung, A.; DiPuccio, V.; Friedman, J.; Gall, B.; Gardner, S.; Gatling, J.; Hagen, E. C.; Luttman, A.; Meehan, B. T.; Misch, M.; Molnar, S.; Morgan, G.; O'Brien, R.; Robbins, L.; Rundberg, R.; Sipe, N.; Welch, D. R.; Yuan, V.

    2017-01-01

    The dense plasma focus (DPF) has long been considered a compact source for pulsed neutrons and has traditionally been optimized for the total neutron yield. In this paper, we describe the efforts to optimize the DPF for short-pulse applications by introducing a reentrant cathode at the end of the coaxial plasma gun. The resulting neutron pulse widths are reduced by an average of 21 ±9 % from the traditional long-drift DPF design. Pulse widths and yields achieved from deuterium-tritium fusion at 2 MA are 61.8 ±30.7 ns FWHM and 1.84 ±0.49 ×1012 neutrons per shot. Simulations were conducted concurrently to elucidate the DPF operation and confirm the role of the reentrant cathode. A hybrid fluid-kinetic particle-in-cell modeling capability demonstrates correct sheath velocities, plasma instabilities, and fusion yield rates. Consistent with previous findings that the DPF is dominated by beam-target fusion from superthermal ions, we estimate that the thermonuclear contribution is at the 1% level.

  4. Experimental Results of OH Regime Investigation in Globus-M Spherical Torus

    NASA Astrophysics Data System (ADS)

    Golant, Victor; Gusev, Vasily; Levin, Roman; Petrov, Yuriy; Sakharov, Nikolay

    2001-10-01

    Plasma parameters were measured in novel spherical torus Globus-M in highly shaped plasmas with aspect ratio, A > 1.5, elongation, k < 1.9, triangularity < 0.5. Plasma column was created by direct induction method with the currents up to Ip 0.3 MA in the magnetic field, Bt - 0.08 - 0.5 T. In Globus-M spherical torus plasma column is closely fitted into the vacuum vessel and wall conditioning technology described in [1] was used to achieve good plasma performance. Plasma experiments were focused around achievement of ultimate OH regimes allowed by power supplies. The operational limits of the device were investigated. In the regime with extreme low q(cy1) < 1 and high normalized current > 4, the plasma current of almost 100kA was sustained transiently in low magnetic field 800 Gs. The first results on stability analysis with numerical code are presented. The runaway electrons behavior was studied in spherical tokamak conditions. Influence of plasma current and density ramp-up speeds, MHD events on plasma performance and stability was demonstrated. Magnetic reconstruction was performed with EFIT version adopted for PC simulations. Plans for auxiliary heating and current drive are discussed. 1. V.K. Gusev, …, V.E. Golant, et al., Nucl. Fusion 41, No 7, (2001), to be published

  5. Development of an on-column enrichment technique based on C18-functionalized magnetic silica nanoparticles for the determination of lidocaine in rat plasma by high performance liquid chromatography.

    PubMed

    Chu, Bin; Lou, Dujuan; Yu, Panfeng; Hu, Shaonan; Shen, Shun

    2011-10-14

    In this study, a novel on-column enrichment technique filled with C(18)-functionalized magnetic silica nanoparticles was successfully developed for the determination of lidocaine in rat plasma by high performance liquid chromatography (HPLC). The synthesized Fe(3)O(4)@SiO(2)-C(18) nanoparticles were locally packed into the capillary by the application of magnets. Lidocaine in the sample solutions pumped into the capillary tube could be easily adsorbed by Fe(3)O(4)@SiO(2)-C(18) through hydrophobic interaction by the interior C(18) groups, and eluted by acetonitrile solution. Different extraction conditions were investigated. Method validations including linear range, quantification limit, detection limit, precision, accuracy and recovery were also studied. The results showed that the proposed method based on on-column enrichment by Fe(3)O(4)@SiO(2)-C(18) was a novel, little solvent and efficient approach for the determination of lidocaine in the complex plasma samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Ionization of Xenon to the Nickel-Like Stage and Beyond in Micro-Capillary Plasma Columns Heated by Ultrafast Current Pulses

    NASA Astrophysics Data System (ADS)

    Avaria, G.; Grisham, M.; Li, J.; Tomasel, F. G.; Shlyapstsev, V. N.; Busquet, M.; Woolston, M.; Rocca, J. J.

    Homogeneous plasma columns with ionization levels typical of MA discharges were created by rapidly heating gas-filled 520 µm diameter channels with ns rise-time current pulses of unusually low amplitude, 40 kA. These conditions allow the generation of high aspect ratio (eg. > 300:1) plasma columns with very high degrees of ionization (e.g. Ni-like Xenon) of interest for soft x-ray lasers below λ = 10 nm. Spectra and simulations of plasmas generated in 520 µm diameter alumina capillaries driven by 35-40 kA current pulses with 4 ns rise time were obtained for discharges in Xenon and Neon discharges. The first shows the presence of lines corresponding to ionization stages up to Fe-like Xe. The latter show that Al impurities from the walls are ionized to the H-like and He-like stages. He-like Al spectra containing the resonance line significantly broaden by opacity, the intercombination line, and Li-like satellites are analyzed. For Xenon discharges, the spectral lines from the Ni-like transitions the 3d94d (3/2, 3/2)J = 0 to the 3d94p(5/2, 3/2)J = 1 and to 3d94p(3/2, 1/2)J = 1 are observed.

  7. Experiments on and observations of intense Alfvén waves in the laboratory

    NASA Astrophysics Data System (ADS)

    Gekelman, W.; Vanzeeland, M.; Vincena, S.

    2002-11-01

    There are many situations, which occur in space (coronal mass ejections, supernovas), or are man-made (upper atmospheric detonations) in which a dense plasma expands into a background magnetized plasma, that can support Alfvén waves. The LArge Plasma Device ( LAPD) is a machine, at UCLA, in which Alfvén wave propagation in homogeneous and inhomogeneous plasmas has been studied. We describe a series of experiments which involve the expansion of a dense (initially, n_lpp/n_0>>1) laser-produced plasma into an ambient highly magnetized background plasma capable of supporting Alfvén waves. The interaction results in the production of intense shear and compressional Alfvén waves, as well as large density perturbations. The magnetic fields of the waves are obtained with a 3-axis inductive probe. Spatial patterns of the magnetic fields associated with the waves and density perturbations are measured at over 10^4 locations. The wave generation mechanism is due to currents from fast electrons which leave the lpp and field aligned return currents provided by the plasma to neutralize space charge. Dramatic movies of the measured wave fields and their associated currents will be presented. *Work supported by the ONR, and DOE/NSF.

  8. Three-Step Buildup of the 17 March 2015 Storm Ring Current: Implication for the Cause of the Unexpected Storm Intensification

    NASA Astrophysics Data System (ADS)

    Keika, Kunihiro; Seki, Kanako; Nosé, Masahito; Miyoshi, Yoshizumi; Lanzerotti, Louis J.; Mitchell, Donald G.; Gkioulidou, Matina; Manweiler, Jerry W.

    2018-01-01

    We examine the spatiotemporal variations of the energy density and the energy spectral evolution of energetic ions in the inner magnetosphere during the main phase of the 17 March 2015 storm, using data from the RBSPICE and EMFISIS instruments onboard Van Allen Probes. The storm developed in response to two southward IMF intervals separated by about 3 h. In contrast to two steps seen in the Dst/SYM-H index, the ring current ion population evolved in three steps: the first subphase was apparently caused by the earlier southward IMF, and the subsequent subphases occurred during the later southward IMF period. Ion energy ranges that contribute to the ring current differed between the three subphases. We suggest that the spectral evolution resulted from the penetration of different plasma sheet populations. The ring current buildup during the first subphase was caused by the penetration of a relatively low-energy population that had existed in the plasma sheet during a prolonged prestorm northward IMF interval. The deeper penetration of the lower-energy population was responsible for the second subphase. The third subphase, where the storm was unexpectedly intensified to a Dst/SYM-H level of <-200 nT, was caused by the penetration of a hot, dense plasma sheet population. We attribute the hot, dense population to the entry of hot, dense solar wind into the plasma sheet and/or ion heating/acceleration in the near-Earth plasma sheet associated with magnetotail activity such as reconnection and dipolarization.

  9. Classical molecular dynamics simulations for non-equilibrium correlated plasmas

    NASA Astrophysics Data System (ADS)

    Ferri, S.; Calisti, A.; Talin, B.

    2017-03-01

    A classical molecular dynamics model was recently extended to simulate neutral multi-component plasmas where various charge states of the same atom and electrons coexist. It is used to investigate the plasma effects on the ion charge and on the ionization potential in dense plasmas. Different simulated statistical properties will show that the concept of isolated particles is lost in such correlated plasmas. The charge equilibration is discussed for a carbon plasma at solid density and investigation on the charge distribution and on the ionization potential depression (IPD) for aluminum plasmas is discussed with reference to existing experiments.

  10. X-ray emission from high temperature plasmas

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1977-01-01

    The physical processes occurring in plasma focus devices were investigated with particular emphasis on X-ray emission. Topics discussed include: trajectories of high energy electrons; detection of ion trajectories; spatial distribution of neutron emission; space and time resolved emission of hard X-rays from a plasma focus; the staged plasma focus as a variation of the hypocloidal pinch; formation of current sheets in a staged plasma focus; and X-ray and neutron emission from a staged plasma focus. The possibility of operating dense plasma-focus type devices in multiple arrays beyond the scaling law for a single gun is discussed.

  11. Fatigue and stress studies : an improved semi-automated procedure for flurometric determination of plasma catecholamines.

    DOT National Transportation Integrated Search

    1966-04-01

    A semiautomated technique is described for the estimation of total catecholamines in plasma by the trihydroxyindole procedure. The method utilizes conventional alumina-column chromatography for isolation of the amines. Catecholamine oxidation, tautom...

  12. Determination of endogenous levels of 13-cis-retinoic acid (isotretinoin), all-trans-retinoic acid (tretinoin) and their 4-oxo metabolites in human and animal plasma by high-performance liquid chromatography with automated column switching and ultraviolet detection.

    PubMed

    Wyss, R; Bucheli, F

    1997-10-24

    A highly sensitive HPLC method with automated column switching was developed for the simultaneous determination of endogenous levels of 13-cis-retinoic acid (isotretinoin), all-trans-retinoic acid (tretinoin) and their 4-oxo metabolites in plasma samples from man, Cynomolgus monkey, rabbit, rat and mouse. Plasma (0.4 ml) was deproteinated by adding ethanol (1.5 ml) containing the internal standard acitretin. After centrifugation, 1.4 ml of the supernatant were directly injected onto the precolumn packed with LiChrospher 100 RP-18 (5 microm). 1.25% ammonium acetate and acetic acid-ethanol (8:2, v/v) was used as mobile phase during injection and 1% ammonium acetate and 2% acetic acid-ethanol (102:4, v/v) was added, on-line, to decrease the elution strength of the injection solution. After backflush purging of the precolumn, the retained components were transferred to the analytical column in the backflush mode, separated by gradient elution and detected at 360 nm. Two coupled Superspher 100 RP-18 endcapped columns (both 250x4 mm) were used for the separation, together with a mobile phase consisting of acetonitrile-water-10% ammonium acetate-acetic acid: (A) 600:300:60:10 (v/v/v/v), (B) 950:20:5:20 (v/v/v/v), and (C) 990:5:0:5 (v/v/v/v). The method was linear in the range 0.3-100 ng/ml, at least, with a quantification limit of 0.3 ng/ml. The mean recoveries from human plasma were 93.2%-94.4% and the mean inter-assay precision was 2.8%-3.2% (range 0.3-100 ng/ml). Similar results were obtained for animal plasma. The analytes were found to be stable in the plasma of all investigated species stored at -20 degrees C for 4.3 months and at -80 degrees C for 9 months, at least. At this temperature, human plasma samples were even stable for 2 years. The method was successfully applied to more than 6000 human and 1000 animal plasma samples from clinical and toxicokinetic studies. Endogenous levels determined in control patients and pregnant women were similar to published data from volunteers.

  13. Detection of low-metallicity warm plasma in a galaxy overdensity environment at z ˜ 0.2

    NASA Astrophysics Data System (ADS)

    Narayanan, Anand; Savage, Blair D.; Mishra, Preetish K.; Wakker, Bart P.; Khaire, Vikram; Wadadekar, Yogesh

    2018-04-01

    We present results from the analysis of a multiphase O VI-broad Ly α (BLA) absorber at z = 0.19236 in the HubbleSpaceTelescope/Cosmic Origins Spectrograph spectrum of PG 1121 + 422. The low and intermediate ionization metal lines in this absorber have a single narrow component, whereas the Ly α has a possible broad component with b({H {I}}) ˜ 71 km s-1. Ionization models favour the low and intermediate ions coming from a T ˜ 8500 K, moderately dense (n H ˜ 10 - 3 cm-3) photoionized gas with near solar metallicities. The weak O VI requires a separate gas phase that is collisionally ionized. The O VI coupled with BLA suggests T ˜ 3.2 × 105 K, with significantly lower metal abundance and ˜1.8 orders of magnitude higher total hydrogen column density compared to the photoionized phase. Sloan Digitial Sky Survey (SDSS) shows 12 luminous (>L*) galaxies in the ρ ≤ 5 Mpc, |Δv| ≤ 800 km s-1 region surrounding the absorber, with the absorber outside the virial bounds of the nearest galaxy. The warm phase of this absorber is consistent with being transition temperature plasma either at the interface regions between the hot intragroup gas and cooler photoionized clouds within the group, or associated with high velocity gas in the halo of a ≲L* galaxy. The absorber highlights the advantage of O VI-BLA absorbers as ionization model independent probes of warm baryon reserves.

  14. Ultrastructural histochemical investigations of "dense deposit disease". Pathogenetic approach to a special type of mesangiocapillary glomerulonephritis.

    PubMed

    Muda, A O; Barsotti, P; Marinozzi, V

    1988-01-01

    Dense deposit disease is characterized by the presence of intramembranous dense deposits; their constituents are unknown but immunological and biochemical studies have demonstrated that they contain no gamma-globulins or any other plasma protein. In order to clarify the nature of the dense deposits better, we investigated their most distinctive character, (marked electron-density) by means of ultrastructural histochemistry techniques using thin sections from Formaldehyde fixed, OsO4 postfixed and Epon embedded specimens collected for diagnostic electron microscopy. The dense deposits have a higher osmium affinity than the lamina densa of normal basement membranes, and the electron-density is strictly osmium-dependent suggesting the presence of a lipid component. Further data, obtained using an extraction method for lipids, seems to confirm our hypothesis.

  15. Studies of a plasma with a hot dense core in LAPD

    NASA Astrophysics Data System (ADS)

    van Compernolle, Bart; Gekelman, Walter; Pribyl, Patrick; Cooper, Chris

    2009-11-01

    Recently, considerable effort in the LArge Plasma Device at UCLA (LAPD) has gone into the study of large cathodes which would enable higher discharge currents and higher densities. The new cathode is made out of Lanthanum HexaBoride (LaB6). LaB6 has a low work function and has higher emissivity than Barium oxide coated cathodes. The operating temperature of LaB6 cathodes lies above 1600 degrees Celsius. Tests of this cathode in the Enormous Toroidal Plasma Device (ETPD) showed that densities in excess of 2 10^13 cm-3 and electron temperatures of 12 eV are feasible. Small LaB6 cathodes (3mm - 2cm) have been used before in LAPD in several experiments on heat transport and on magnetized flux ropes. The cathode presented in this paper has a 8 cm diameter, and can be positioned at different radial locations. The cathode will be pulsed into the standard background plasma (ne= 2 10^12 cm-3, .25 <=Te<=6 eV, dia = 60 cm, L = 18 m) creating a plasma with a hot dense core. We present the characterization of the core plasma at different conditions. Studies of the heat transport and density spreading at the interface between the core plasma and background plasma will be done by use of a variety of probes (Langmuir, magnetic, Mach, emissive) as well as fast photography.

  16. Simulations of a beam-driven plasma antenna in the regime of plasma transparency

    NASA Astrophysics Data System (ADS)

    Timofeev, I. V.; Berendeev, E. A.; Dudnikova, G. I.

    2017-09-01

    In this paper, the theoretically predicted possibility to increase the efficiency of electromagnetic radiation generated by a thin beam-plasma system in the regime of oblique emission, when a plasma column becomes transparent to radiation near the plasma frequency, is investigated using particle-in-cell simulations. If a finite-size plasma column has a longitudinal density modulation, such a system is able to radiate electromagnetic waves as a dipole antenna. This radiation mechanism is based on the conversion of an electron beam-driven potential plasma wave on the periodic perturbation of plasma density. In this case, the frequency of radiated waves appears to be slightly lower than the plasma frequency. That is why their fields enable the penetration into the plasma only to the skin-depth. This case is realized when the period of density modulation coincides with the wavelength of the most unstable beam-driven mode, and the produced radiation escapes from the plasma in the purely transverse direction. In the recent theoretical paper [I. V. Timofeev et al. Phys. Plasmas 23, 083119 (2016)], however, it has been found that the magnetized plasma can be transparent to this radiation at certain emission angles. It means that the beam-to-radiation power conversion can be highly efficient even in a relatively thick plasma since not only boundary layers but also the whole plasma volume can be involved in the generation of electromagnetic waves. Simulations of steady-state beam injection into a pre-modulated plasma channel confirm the existence of this effect and show limits of validity for the simplified theoretical model.

  17. Current and Perspective Applications of Dense Plasma Focus Devices

    NASA Astrophysics Data System (ADS)

    Gribkov, V. A.

    2008-04-01

    Dense Plasma Focus (DPF) devices' applications, which are intended to support the main-stream large-scale nuclear fusion programs (NFP) from one side (both in fundamental problems of Dense Magnetized Plasma physics and in its engineering issues) as well as elaborated for an immediate use in a number of fields from the other one, are described. In the first direction such problems as self-generated magnetic fields, implosion stability of plasma shells having a high aspect ratio, etc. are important for the Inertial Confinement Fusion (ICF) programs (e.g. as NIF), whereas different problems of current disruption phenomenon, plasma turbulence, mechanisms of generation of fast particles and neutrons in magnetized plasmas are of great interest for the large devices of the Magnetic Plasma Confinement—MPC (e.g. as ITER). In a sphere of the engineering problems of NFP it is shown that in particular the radiation material sciences have DPF as a very efficient tool for radiation tests of prospect materials and for improvement of their characteristics. In the field of broad-band current applications some results obtained in the fields of radiation material sciences, radiobiology, nuclear medicine, express Neutron Activation Analysis (including a single-shot interrogation of hidden illegal objects), dynamic non-destructive quality control, X-Ray microlithography and micromachining, and micro-radiography are presented. As the examples of the potential future applications it is proposed to use DPF as a powerful high-flux neutron source to generate very powerful pulses of neutrons in the nanosecond (ns) range of its duration for innovative experiments in nuclear physics, for the goals of radiation treatment of malignant tumors, for neutron tests of materials of the first wall, blankets and NFP device's constructions (with fluences up to 1 dpa per a year term), and ns pulses of fast electrons, neutrons and hard X-Rays for brachytherapy.

  18. Isochoric heating of low Z solid targets with sub 10 fs laser pulses

    NASA Astrophysics Data System (ADS)

    Osterholz, Jens

    2004-11-01

    The investigation of high density plasmas plays an important role for astrophysics, inertial confinement fusion and x-ray lasers. Therefore the generation of dense plasmas with ultra-intense laser pulses is a field of enormous topical interest. An upper limit of the maximum plasma density that can be achieved with this method, however, occurs due to the formation of a preplasma and the expansion of the plasma during the interaction [1,2]. Here we describe a novel approach that is based on a laser system that generates sub 10 fs pulses with a low prepulse energy. Isochoric heating is demonstrated with small Z solid targets. Time integrated XUV spectroscopy is used to investigate K-shell emission from the plasma. In the spectra, only the Ly α and He α lines are observed, whereas transitions from orbitals with principal quantum numbers n > 2 are not present. This series limit is explained by pressure ionisation in the dense plasma. The XUV spectra were simulated by two different models [3]. The first calculates the effect of pressure ionisation and the second calculates the line intensity ratios. Preliminary calculations suggest that the plasma density of the emitting region is close to solid density with an electron temperature of about 100eV. We conclude that our laser system is well suited for isochoric heating of solid targets and an efficient transfer of the laser energy to the dense region of the target is possible. In cooperation with: T. Fischer, F. Brandl, G. Pretzler and O. Willi, Heinrich-Heine-University Duesseldorf, Germany, S. J. Rose, University of Oxford, United Kingdom [1] D. Riley et al., PRL 69, 3739 (1992). [2] A. Saemann et al., PRL 82, 4843 (1999). [3] S. J. Rose, J Phys B: Atom Molec Opt Phys, 25, 1667 (1992), 31, 2129 (1998).

  19. Gyrokinetic-water-bag modeling of low-frequency instabilities in a laboratory magnetized plasma column

    NASA Astrophysics Data System (ADS)

    Gravier, E.; Klein, R.; Morel, P.; Besse, N.; Bertrand, P.

    2008-12-01

    A new model is presented, named collisional-gyro-water-bag (CGWB), which describes the collisional drift waves and ion-temperature-gradient (ITG) instabilities in a plasma column. This model is based on the kinetic gyro-water-bag approach recently developed [P. Morel et al., Phys. Plasmas 14, 112109 (2007)] to investigate ion-temperature-gradient modes. In CGWB electron-neutral collisions have been introduced and are now taken into account. The model has been validated by comparing CGWB linear analysis with other models previously proposed and experimental results as well. Kinetic effects on collisional drift waves are investigated, resulting in a less effective growth rate, and the transition from collisional drift waves to ITG instability depending on the ion temperature gradient is studied.

  20. Micro liquid chromatography-mass spectrometry with direct liquid introduction used for separation and quantitation of all-trans- and 13-cis-retinoic acids and their 4-oxo metabolites in human plasma.

    PubMed

    Ranalder, U B; Lausecker, B B; Huselton, C

    1993-07-23

    The separation and quantitation of the pentafluorobenzyl derivatives of all-trans- and 13-cis-retinoic acids and their 4-oxo metabolites in human plasma on micro high-performance liquid chromatographic columns (0.32 mm I.D.) is described. The column outlet was directly coupled to the source of a quadrupole mass spectrometer via a simple SFC-frit interface. Negative ion chemical ionization conditions were obtained by coaxial introduction of ammonia as a reagent gas. A signal-to-noise ratio well above 3 was obtained for 1 pg of each analyte injected. The limit of quantitation calculated from spiked biological plasma extracts was 0.3 ng/ml.

  1. Nano-amylose-2,3-bis(3,5-dimethylphenylcarbamate)-silica hybrid sol immobilized on open tubular capillary column for capillary electrochromatography enantioseparation.

    PubMed

    Sun, Yaming; Wu, Qi; Shi, Xiaofeng; Gao, Jie; Dong, Shuqing; Zhao, Liang

    2018-04-01

    The chiral organic-inorganic hybrid materials can exhibit a high loading, and the chiral selector nanoparticles can create efficient stationary phases for open-tubular capillary electrochromatography (OT-CEC). Hence, a novel protocol for the preparation of an OT column coated with nano-amylose-2,3-bis(3,5-dimethylphenylcarbamate) (nano-ABDMPC)-silica hybrid sol through in situ layer-by-layer self-assembly method was developed for CEC enantioseparation. By controlling the assembly cycle number of nano-ABDMPC-silica hybrid sol, a homogeneous, dense and stable coating was successfully prepared, which was confirmed by SEM and elemental analysis. As the main parameter influencing the chiral separating effect, the nano-ABDMPC bearing 3-(triethoxysilyl)propyl residues concentration was investigated. The experimental results showed that 10.0 mg/mL nano-ABDMPC bearing 3-(triethoxysilyl)propyl residues coated OT capillary column possessed chiral recognition ability toward the six enantiomers (phenylalanine, tyrosine, tryptophan, phenethyl alcohol, 1-phenyl-2-propanol, and Tröger's base) at some of the different conditions tested. Additionally, the coated OT column revealed adequate repeatability concerning run-to-run, day-to-day and column-to-column. These results demonstrated the promising applicability of nano-ABDMPC-silica hybrid sol coated OT column in CEC enantioseparations. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Stephanie B.; Harding, Eric C.; Knapp, Patrick F.

    The burning core of an inertial confinement fusion (ICF) plasma produces bright x-rays at stagnation that can directly diagnose core conditions essential for comparison to simulations and understanding fusion yields. These x-rays also backlight the surrounding shell of warm, dense matter, whose properties are critical to understanding the efficacy of the inertial confinement and global morphology. In this work, we show that the absorption and fluorescence spectra of mid-Z impurities or dopants in the warm dense shell can reveal the optical depth, temperature, and density of the shell and help constrain models of warm, dense matter. This is illustrated bymore » the example of a high-resolution spectrum collected from an ICF plasma with a beryllium shell containing native iron impurities. Lastly, analysis of the iron K-edge provides model-independent diagnostics of the shell density (2.3 × 10 24 e/cm 3) and temperature (10 eV), while a 12-eV red shift in Kβ and 5-eV blue shift in the K-edge discriminate among models of warm dense matter: Both shifts are well described by a self-consistent field model based on density functional theory but are not fully consistent with isolated-atom models using ad-hoc density effects.« less

  3. Resident CAPS on dense-core vesicles docks and primes vesicles for fusion

    PubMed Central

    Kabachinski, Greg; Kielar-Grevstad, D. Michelle; Zhang, Xingmin; James, Declan J.; Martin, Thomas F. J.

    2016-01-01

    The Ca2+-dependent exocytosis of dense-core vesicles in neuroendocrine cells requires a priming step during which SNARE protein complexes assemble. CAPS (aka CADPS) is one of several factors required for vesicle priming; however, the localization and dynamics of CAPS at sites of exocytosis in live neuroendocrine cells has not been determined. We imaged CAPS before, during, and after single-vesicle fusion events in PC12 cells by TIRF micro­scopy. In addition to being a resident on cytoplasmic dense-core vesicles, CAPS was present in clusters of approximately nine molecules near the plasma membrane that corresponded to docked/tethered vesicles. CAPS accompanied vesicles to the plasma membrane and was present at all vesicle exocytic events. The knockdown of CAPS by shRNA eliminated the VAMP-2–dependent docking and evoked exocytosis of fusion-competent vesicles. A CAPS(ΔC135) protein that does not localize to vesicles failed to rescue vesicle docking and evoked exocytosis in CAPS-depleted cells, showing that CAPS residence on vesicles is essential. Our results indicate that dense-core vesicles carry CAPS to sites of exocytosis, where CAPS promotes vesicle docking and fusion competence, probably by initiating SNARE complex assembly. PMID:26700319

  4. Production of plasmas by long-wavelength lasers

    DOEpatents

    Dawson, J.M.

    1973-10-01

    A long-wavelength laser system for heating low-density plasma to high temperatures is described. In one embodiment, means are provided for repeatedly receiving and transmitting long-wavelength laser light in successive stages to form a laser-light beam path that repeatedly intersects with the equilibrium axis of a magnetically confined toroidal plasma column for interacting the laser light with the plasma for providing controlled thermonuclear fusion. Embodiments for heating specific linear plasmas are also provided. (Official Gazette)

  5. Mode suppression of a two-dimensional potential relaxation instability in a weakly magnetized discharge plasma

    NASA Astrophysics Data System (ADS)

    Gyergyek, T.; Čerček, M.; Jelić, N.; Stanojević, M.

    1993-05-01

    A potential relaxation instability (PRI) is modulated by an external signal using an additional grid to modulate the radial plasma potential profile in a magnetized plasma column in a linear magnetized discharge plasma device. It is observed that the electrode current oscillations follow the van der Pol equation with an external forcing term, and the linear growth rate of the instability is measured.

  6. Characterization of argon direct-current glow discharge with a longitudinal electric field applied at ambient air

    NASA Astrophysics Data System (ADS)

    Jiang, Weiman; Tang, Jie; Wang, Yishan; Zhao, Wei; Duan, Yixiang

    2014-09-01

    A direct-current-driven plasma jet is developed by applying a longitudinal electric field on the flowing argon at ambient air. This plasma shows a torch shape with its cross-section increased from the anode to the cathode. Comparison with its counterparts indicates that the gas flow plays a key role in variation of the plasma structure and contributes much to enlarging the plasma volume. It is also found that the circular hollow metal base promotes generation of plasma with a high-power volume density in a limited space. The optical emission spectroscopy (OES) diagnosis indicates that the plasma comprises many reactive species, such as OH, O, excited N2, and Ar metastables. Examination of the rotational and vibrational temperature indicates that the plasma is under nonequilibrium condition and the excited species OH(A 2Σ+), O(5P), and N2(C 3Πu) are partly generated by energy transfer from argon metastables. The spatially resolved OES of plasma reveals that the negative glow, Faraday dark space, and positive column are distributed across the gas gap. The absence of the anode glow is attributed to the fact that many electrons in the vicinity of the anode follow ions into the positive column due to the ambipolar diffusion in the flowing gas.

  7. Degenerate mixing of plasma waves on cold, magnetized single-species plasmas

    NASA Astrophysics Data System (ADS)

    Anderson, M. W.; O'Neil, T. M.; Dubin, D. H. E.; Gould, R. W.

    2011-10-01

    In the cold-fluid dispersion relation ω =ωp/[1+(k⊥/kz)2]1/2 for Trivelpiece-Gould waves on an infinitely long magnetized plasma cylinder, the transverse and axial wavenumbers appear only in the combination k⊥/kz. As a result, for any frequency ω <ωp, there are infinitely many degenerate waves, all having the same value of k⊥/kz. On a cold finite-length plasma column, these degenerate waves reflect into one another at the ends; thus, each standing-wave normal mode of the bounded plasma is a mixture of many degenerate waves, not a single standing wave as is often assumed. A striking feature of the many-wave modes is that the short-wavelength waves often add constructively along resonance cones given by dz /dr=±(ωp2/ω2-1)1/2. Also, the presence of short wavelengths in the admixture for a predominantly long-wavelength mode enhances the viscous damping beyond what the single-wave approximation would predict. Here, numerical solutions are obtained for modes of a cylindrical plasma column with rounded ends. Exploiting the fact that the modes of a spheroidal plasma are known analytically (the Dubin modes), a perturbation analysis is used to investigate the mixing of low-order, nearly degenerate Dubin modes caused by small deformations of a plasma spheroid.

  8. Optical breakdown of air triggered by femtosecond laser filaments

    NASA Astrophysics Data System (ADS)

    Polynkin, Pavel; Moloney, Jerome V.

    2011-10-01

    We report experiments on the generation of dense plasma channels in ambient air using a dual laser pulse excitation scheme. The dilute plasma produced through the filamentation of an ultraintense femtosecond laser pulse is densified via avalanche ionization driven by a co-propagating multi-Joule nanosecond pulse.

  9. Possibility of the amplification of the radiation at the wave length lambda = 1776 A in recombining plasma (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gudzenko, L.I.; Evstigneev, V.V.; Yakovlenko, S.I.

    1973-09-01

    A calculation is made of the characteristics of the amplification of the radiation in the vaccum ultraviolet spectral range in the 2s-2p transition of Be ions in supercooled (intensely recombining) dense Be plasma. (tr-auth)

  10. Plasma Modes

    NASA Astrophysics Data System (ADS)

    Dubin, D. H. E.

    This chapter explores several aspects of the linear electrostatic normal modes of oscillation for a single-species non-neutral plasma in a Penning trap. Linearized fluid equations of motion are developed, assuming the plasma is cold but collisionless, which allow derivation of the cold plasma dielectric tensor and the electrostatic wave equation. Upper hybrid and magnetized plasma waves in an infinite uniform plasma are described. The effect of the plasma surface in a bounded plasma system is considered, and the properties of surface plasma waves are characterized. The normal modes of a cylindrical plasma column are discussed, and finally, modes of spheroidal plasmas, and finite temperature effects on the modes, are briefly described.

  11. Experiments on the interaction of heavy ions with dense plasma at GSI-Darmstadt

    NASA Astrophysics Data System (ADS)

    Stöckl, C.; Boine-Frankenheim, O.; Geißel, M.; Roth, M.; Wetzler, H.; Seelig, W.; Iwase, O.; Spiller, P.; Bock, R.; Süß, W.; Hoffmann, D. H. H.

    One of the main objectives of the experimental plasma physics activities at the Gesellschaft für Schwerionenforschung (GSI) are the interaction processes of heavy ions with dense ionized matter. Gas-discharge plasma targets were used for energy loss and charge state measurements in a regime of electron density and temperature up to 10 19 cm -3 and 20 eV, respectively. An improved model of the charge exchange processes in fully ionized hydrogen plasma, taking into account multiple excited electronic configurations which subsequently ionize, has removed the discrepancies of previous theoretical descriptions. The energy loss of the ion beam in partially ionized plasmas such as argon was found to agree very well with our simple theoretical model based on the modified Bethe-Bloch theory. A new setup with a 100 J/5 GW Nd-glass laser now provides access to density ranges up to 10 21 cm -3 and temperatures of up to 100 eV. First results of interaction experiments with laser-produced plasma are presented. To fully exploit the experimental possibilities of the new laser-plasma setup both improved charge state detection systems and better plasma diagnostics are indispensable. Present developments and future possibilities in these fields are presented. This paper summarizes the following contributions: Interaction of heavy-ion beams with laser plasma by C. Stöckl et al. Energy Loss of Heavy Ions in a laser-produced plasma by M. Roth et al. Charge state measurements of heavy ions passing a laser produced plasma with high time resolution by W. Süß et al. Plasma diagnostics for laser-produced plasma by O. Iwase et al. Future possibilities of plasma diagnostics at GSI by M. Geißel et al.

  12. Ion distribution in the hot spot of an inertial confinement fusion plasma

    NASA Astrophysics Data System (ADS)

    Tang, Xianzhu; Guo, Zehua; Berk, Herb

    2012-10-01

    Maximizing the fusion gain of inertial confinement fusion (ICF) for inertial fusion energy (IFE) applications leads to the standard scenario of central hot spot ignition followed by propagating burn wave through the cold/dense assembled fuel. The fact that the hot spot is surrounded by cold but dense fuel layer introduces subtle plasma physics which requires a kinetic description. Here we perform Fokker-Planck calculations and kinetic PIC simulations for an ICF plasma initially in pressure balance but having large temperature gradient over a narrow transition layer. The loss of the fast ion tail from the hot spot, which is important for fusion reactivity, is quantified by Fokker-Planck models. The role of electron energy transport and the ambipolar electric field is investigated via kinetic simulations and the fluid moment models. The net effect on both hot spot ion temperature and the ion tail distribution, and hence the fusion reactivity, is elucidated.

  13. Low-velocity ion stopping in a dense and low-temperature plasma target

    NASA Astrophysics Data System (ADS)

    Deutsch, Claude; Popoff, Romain

    2007-07-01

    We investigate the stopping specificities involved in the heating of thin foils irradiated by intense ion beams in the 0.3-3 MeV/amu energy range and in close vicinity of the Bragg peak. Considering a swiftly ionized target to eV temperatures before expansion while retaining solid-state density, a typical warm dense matter (WDM) situation thus arises. We stress low Vp stopping through ion diffusion in the given target plasma. This allows to include the case of a strongly magnetized target in a guiding center approximation. We also demonstrate that the ion projectile penetration depth in target is significantly affected by multiple scattering on target electrons. The given plasma target is taken weakly coupled with Maxwell electron either with no magnetic field ( B=0) or strongly magnetized ( B≠0). Dynamical coupling between ion projectiles energy losses and projectiles charge state will also be addressed.

  14. Frequency-dependent absorbance of broadband terahertz wave in dense plasma sheet

    NASA Astrophysics Data System (ADS)

    Peng, Yan; Qi, Binbin; Jiang, Xiankai; Zhu, Zhi; Zhao, Hongwei; Zhu, Yiming

    2018-05-01

    Due to the ability of accurate fingerprinting and low-ionization for different substances, terahertz (THz) technology has a lot of crucial applications in material analysis, information transfer, and safety inspection, etc. However, the spectral characteristic of atmospheric gas and ionized gas has not been widely investigated, which is important for the remote sensing application. Here, in this paper, we investigate the absorbance of broadband terahertz wave in dense plasma sheet generated by femtosecond laser pulses. It was found that as the terahertz wave transmits through the plasma sheet formed, respectively, in carbon dioxide, oxygen, argon and nitrogen, spectrum presents completely different and frequency-dependent absorbance. The reasons for these absorption peaks are related to the molecular polarity, electric charge, intermolecular and intramolecular interactions, and collisional absorption of gas molecules. These results have significant implications for the remote sensing of gas medium.

  15. Luminescent characteristics study of Mather-type dense plasma focus and applications to short-wavelength optical pumping. Final technical report, 1 May 1984-30 September 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, K.K.

    A Mather-type dense plasma focus (MDPF) system was designed, built, and tested specifically to study its luminescent characteristics and to assess its potential as a new light source of high-energy, short-wavelength lasers. The luminescence study of MDPF showed that the conversion efficiency from the electrical input to the optical output energies is at least 50%, up to the time the plasma compression is complete. Using the system, for the first time as an optical pump, laser activities were successfully obtained from a variety of liquid organic dyes. Diagnostic capabilities included an optical multichannel analyzer system complete with a computer control,more » a nitrogen-pumped tunable dye-laser system, a high-speed streak/framing camera, a digital laser energy meter, voltage and current probes, and a computer-based data-acquisition system.« less

  16. Preparation and characterization of lysine-immobilized poly(glycidyl methacrylate) nanoparticle-coated capillary for the separation of amino acids by open tubular capillary electrochromatography.

    PubMed

    Xu, Liang; Cui, Pengfei; Wang, Dongmei; Tang, Cheng; Dong, Linyi; Zhang, Can; Duan, Hongquan; Yang, Victor C

    2014-01-03

    In this study, poly(glycidyl methacrylate) (PGMA) nanoparticles (NPs) were prepared and chemically immobilized for the first time onto a capillary inner wall for open tubular capillary electrochromatography (OTCEC). The immobilization of PGMA NPs onto the capillary was attained by a ring-opening reaction between the NPs and an amino-silylated fused capillary inner surface. Scanning electron micrographs clearly demonstrated that the NPs were bound to the capillary inner surface in a dense monolayer. The PGMA NP-coated column was then functionalized by lysine (Lys). After fuctionalization, the capillary can afford strong anodic electroosmotic flow, especially in acidic running buffers. Separations of three amino acids (including tryptophan, tyrosine and phenylalanine) were performed in NP-modified, monolayer Lys-functionalized and bare uncoated capillaries. Results indicated that the NP-coated column can provide more retention and higher resolution for analytes due to the hydrophobic interaction between analytes and the NP-coating. Run-to-run and column-to-column reproducibilities in the separation of the amino acids using the NP-modified column were also demonstrated. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. The viscosity to entropy ratio: From string theory motivated bounds to warm dense matter

    DOE PAGES

    Faussurier, G.; Libby, S. B.; Silvestrelli, P. L.

    2014-07-04

    Here, we study the ratio of viscosity to entropy density in Yukawa one-component plasmas as a function of coupling parameter at fixed screening, and in realistic warm dense matter models as a function of temperature at fixed density. In these two situations, the ratio is minimized for values of the coupling parameters that depend on screening, and for temperatures that in turn depend on density and material. In this context, we also examine Rosenfeld arguments relating transport coefficients to excess reduced entropy for Yukawa one-component plasmas. For these cases we show that this ratio is always above the lower-bound conjecturemore » derived from string theory ideas.« less

  18. Critical parameters, thermodynamic functions, and shock Hugoniot of aluminum fluid at high energy density

    NASA Astrophysics Data System (ADS)

    Zaghloul, Mofreh R.

    2018-03-01

    We present estimates of the critical properties, thermodynamic functions, and principal shock Hugoniot of hot dense aluminum fluid as predicted from a chemical model for the equation-of-state of hot dense, partially ionized and partially degenerate plasma. The essential features of strongly coupled plasma of metal vapors, such as multiple ionization, Coulomb interactions among charged particles, partial degeneracy, and intensive short range hard core repulsion are taken into consideration. Internal partition functions of neutral, excited, and multiply ionized species are carefully evaluated in a statistical-mechanically consistent way. Results predicted from the present model are presented, analyzed and compared with available experimental measurements and other theoretical predictions in the literature.

  19. Mather-type dense plasma focus as a new optical pump for short-wavelength high-power lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fanning, J.J.; Kim, K.

    For the first time, a Mather-type dense plasma focus (MDPF) is successfully operated as an optical pump for lasers. Rhodamine-6G dye is optically pumped using the MDPF fluorescence, producing a laser pulse 1 ..mu..s in duration and more than 50 kW in output power. No optimization is attempted either of the laser cavity or of the lasing medium concentration and volume. A brief description of the experimental setup is presented, along with a summary and discussion of the results. The advantages of the present optical pump source and, in particular, their implications for the pumping of short-wavelength lasers are discussed.

  20. Design of Z-Pinch and Dense Plasma Focus Powered Vehicles

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara; Fincher, Sharon; Adams, Robert B.; Cassibry, Jason; Cortez, Ross; Turner, Matthew; Maples, C. Daphne; Miermik, Janie N.; Statham, Geoffrey N.; Fabisinski, Leo; hide

    2011-01-01

    Z-pinch and Dense Plasma Focus (DPF) are two promising techniques for bringing fusion power to the field of in-space propulsion. A design team comprising of engineers and scientists from UAHuntsville, NASA's George C. Marshall Space Flight Center and the University of Wisconsin developed concept vehicles for a crewed round trip mission to Mars and an interstellar precursor mission. Outlined in this paper are vehicle concepts, complete with conceptual analysis of the mission profile, operations, structural and thermal analysis and power/avionics design. Additionally engineering design of the thruster itself is included. The design efforts adds greatly to the fidelity of estimates for power density (alpha) and overall performance for these thruster concepts

  1. Split Flow Online Solid-Phase Extraction Coupled with Inductively Coupled Plasma Mass Spectrometry System for One-Shot Data Acquisition of Quantification and Recovery Efficiency.

    PubMed

    Furukawa, Makoto; Takagai, Yoshitaka

    2016-10-04

    Online solid-phase extraction (SPE) coupled with inductively coupled plasma mass spectrometry (ICPMS) is a useful tool in automatic sequential analysis. However, it cannot simultaneously quantify the analytical targets and their recovery percentages (R%) in one-shot samples. We propose a system that simultaneously acquires both data in a single sample injection. The main flowline of the online solid-phase extraction is divided into main and split flows. The split flow line (i.e., bypass line), which circumvents the SPE column, was placed on the main flow line. Under program-controlled switching of the automatic valve, the ICPMS sequentially measures the targets in a sample before and after column preconcentration and determines the target concentrations and the R% on the SPE column. This paper describes the system development and two demonstrations to exhibit the analytical significance, i.e., the ultratrace amounts of radioactive strontium ( 90 Sr) using commercial Sr-trap resin and multielement adsorbability on the SPE column. This system is applicable to other flow analyses and detectors in online solid phase extraction.

  2. Formation of a dual-stage pinch-accelerator in a Z-pinch (plasma focus) device

    NASA Astrophysics Data System (ADS)

    Behbahani, R. A.; Hirose, A.; Xiao, C.

    2018-01-01

    A novel dense plasma focus configuration with two separate concentric current sheet run-down regions has been demonstrated to produce several consecutive plasma focusing events. In a proof-of-principle experiment on a low-energy plasma focus device, the measured tube voltages and discharge current have been explained by using circuit analyses of the device. Based on the calculated plasma voltages the occurrence of flash-over phase, axial phase, and compression phase has been discussed. The electrical signals along with the calculated plasma voltages suggest the occurrence of several focusing events in the new structure.

  3. External control of ion waves in a plasma by high frequency fields

    DOEpatents

    Kaw, P.K.; Dawson, J.M.

    1973-12-18

    An apparatus and method are described for stabilizing plasma instabilities, in a magnetically confined plasma column by transmitting into the plasma high frequency electromagnetic waves at a frequency close to the electron plasma frequency. The said frequencies, e.g., are between the plasma frequency and 1.5 times the plasma frequency at a power level below the level for producing parametric instabilities in a plasma having temperatures from below 10 eV to about 10 keV or more, at densities from below 10/sup 13/ to above 10/sup 18/ particles/cm/sup 3/. (Official Gazette)

  4. Dietary patterns of rural older adults are associated with weight and nutritional status.

    PubMed

    Ledikwe, Jenny H; Smiciklas-Wright, Helen; Mitchell, Diane C; Miller, Carla K; Jensen, Gordon L

    2004-04-01

    To characterize dietary patterns of rural older adults and relate patterns to weight and nutritional status. Cross-sectional. Rural Pennsylvania. One hundred seventy-nine community-dwelling adults aged 66 to 87 years. A home visit was conducted to collect demographic, health behavior, and anthropometric data and a blood sample. Five 24-hour dietary recall were administered. Cluster analysis classified participants into dietary patterns using food subgroup servings. Chi-square, analysis of covariance, and logistic regression were used to assess differences across clusters. A low-nutrient-dense cluster (n=107), with higher intake of breads, sweet breads/desserts, dairy desserts, processed meats, eggs, and fats/oils, and a high-nutrient-dense cluster (n=72) with higher intake of cereals, dark green/yellow vegetables, other vegetables, citrus/melons/berries, fruit juices, other fruits, milks, poultry, fish, and beans, were identified. Those in the high-nutrient-dense cluster had lower energy intake; higher energy-adjusted intake of fiber, iron, zinc, folate, and vitamins B(6), B(12), and D; higher Healthy Eating Index scores; higher plasma vitamin B(12) levels; and a lower waist circumference. Those with a low-nutrient-dense dietary pattern were twice as likely to be obese, twice as likely to have low plasma vitamin B(12) levels, and three to 17 times more likely to have low nutrient intake. This study provides support for recommending a high-nutrient-dense dietary pattern for older adults. Behavioral interventions encouraging diets characterized by high-nutrient-dense foods may improve weight and nutritional status of older adults.

  5. Battery-Powered RF Pre-Ionization System for the Caltech Magnetohydrodynamically-Driven Jet Experiment: RF Discharge Properties and MHD-Driven Jet Dynamics

    NASA Astrophysics Data System (ADS)

    Chaplin, Vernon H.

    This thesis describes investigations of two classes of laboratory plasmas with rather different properties: partially ionized low pressure radiofrequency (RF) discharges, and fully ionized high density magnetohydrodynamically (MHD)-driven jets. An RF pre-ionization system was developed to enable neutral gas breakdown at lower pressures and create hotter, faster jets in the Caltech MHD-Driven Jet Experiment. The RF plasma source used a custom pulsed 3 kW 13.56 MHz RF power amplifier that was powered by AA batteries, allowing it to safely float at 4-6 kV with the cathode of the jet experiment. The argon RF discharge equilibrium and transport properties were analyzed, and novel jet dynamics were observed. Although the RF plasma source was conceived as a wave-heated helicon source, scaling measurements and numerical modeling showed that inductive coupling was the dominant energy input mechanism. A one-dimensional time-dependent fluid model was developed to quantitatively explain the expansion of the pre-ionized plasma into the jet experiment chamber. The plasma transitioned from an ionizing phase with depressed neutral emission to a recombining phase with enhanced emission during the course of the experiment, causing fast camera images to be a poor indicator of the density distribution. Under certain conditions, the total visible and infrared brightness and the downstream ion density both increased after the RF power was turned off. The time-dependent emission patterns were used for an indirect measurement of the neutral gas pressure. The low-mass jets formed with the aid of the pre-ionization system were extremely narrow and collimated near the electrodes, with peak density exceeding that of jets created without pre-ionization. The initial neutral gas distribution prior to plasma breakdown was found to be critical in determining the ultimate jet structure. The visible radius of the dense central jet column was several times narrower than the axial current channel radius, suggesting that the outer portion of the jet must have been force free, with the current parallel to the magnetic field. The studies of non-equilibrium flows and plasma self-organization being carried out at Caltech are relevant to astrophysical jets and fusion energy research.

  6. Global Plasmaspheric Issues

    NASA Technical Reports Server (NTRS)

    Gallagher, Dennis L.; Carpenter, Donald L.

    1998-01-01

    The plasmasphere and the dense plasmas drawn from it into the middle and outer magnetosphere dynamically participates in the transport of energy produced during magnetic storms into the inner magnetosphere and ionosphere. These plasmas are also a tracer of electric fields induced globally by the solar wind and locally through transient phenomena. The outstanding issues related to plasmaspheric plasma in the magnetosphere will be discussed in the context of the anticipated IMAGE mission which, for the first time, will provide global images of this plasma system.

  7. About the influence of phase mixing process and current neutralization on the resistive sausage instability dynamics of a relativistic electron beam

    NASA Astrophysics Data System (ADS)

    Kolesnikov, E. K.; Manuilov, A. S.; Petrov, V. S.; Zelensky, A. G.

    2018-05-01

    The resistive sausage instability of the relativistic electron beam in dense gas-plasma medium in the case of the generation of equilibrium return plasma current is investigated. In this situation the eigenvalue equation of this instability is obtained. The stabilizing and destabilizing effects of the phase mixing and generation of the return plasma current respectively have been shown.

  8. Effect of spin-polarized D-3He fuel on dense plasma focus for space propulsion

    NASA Astrophysics Data System (ADS)

    Mei-Yu Wang, Choi, Chan K.; Mead, Franklin B.

    1992-01-01

    Spin-polarized D-3He fusion fuel is analyzed to study its effect on the dense plasma focus (DPF) device for space propulsion. The Mather-type plasma focus device is adopted because of the ``axial'' acceleration of the current carrying plasma sheath, like a coaxial plasma gun. The D-3He fuel is chosen based on the neutron-lean fusion reactions with high charged-particle fusion products. Impulsive mode of operation is used with multi-thrusters in order to make higher thrust (F)-to-weight (W) ratio with relatively high value of specific impulse (Isp). Both current (I) scalings with I2 and I8/3 are considered for plasma pinch temperature and capacitor mass. For a 30-day Mars mission, with four thrusters, for example, the typical F/W values ranging from 0.5-0.6 to 0.1-0.2 for I2 and I8/3 scalings, respectively, and the Isp values of above 1600 s are obtained. Parametric studies indicate that the spin-polarized D-3He provides increased values of F/W and Isp over conventional D-3He fuel which was due to the increased fusion power and decreased radiation losses for the spin-polarized case.

  9. The effects of microstructure on propagation of laser-driven radiative heat waves in under-dense high-Z plasma

    NASA Astrophysics Data System (ADS)

    Colvin, J. D.; Matsukuma, H.; Brown, K. C.; Davis, J. F.; Kemp, G. E.; Koga, K.; Tanaka, N.; Yogo, A.; Zhang, Z.; Nishimura, H.; Fournier, K. B.

    2018-03-01

    This work was motivated by previous findings that the measured laser-driven heat front propagation velocity in under-dense TiO2/SiO2 foams is slower than the simulated one [Pérez et al., Phys. Plasmas 21, 023102 (2014)]. In attempting to test the hypothesis that these differences result from effects of the foam microstructure, we designed and conducted an experiment on the GEKKO laser using an x-ray streak camera to compare the heat front propagation velocity in "equivalent" gas and foam targets, that is, targets that have the same initial density, atomic weight, and average ionization state. We first discuss the design and the results of this comparison experiment. To supplement the x-ray streak camera data, we designed and conducted an experiment on the Trident laser using a new high-resolution, time-integrated, spatially resolved crystal spectrometer to image the Ti K-shell spectrum along the laser-propagation axis in an under-dense TiO2/SiO2 foam cylinder. We discuss the details of the design of this experiment, and present the measured Ti K-shell spectra compared to the spectra simulated with a detailed superconfiguration non-LTE atomic model for Ti incorporated into a 2D radiation hydrodynamic code. We show that there is indeed a microstructure effect on heat front propagation in under-dense foams, and that the measured heat front velocities in the TiO2/SiO2 foams are consistent with the analytical model of Gus'kov et al. [Phys. Plasmas 18, 103114 (2011)].

  10. Monte Carlo simulations of ionization potential depression in dense plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stransky, M., E-mail: stransky@fzu.cz

    A particle-particle grand canonical Monte Carlo model with Coulomb pair potential interaction was used to simulate modification of ionization potentials by electrostatic microfields. The Barnes-Hut tree algorithm [J. Barnes and P. Hut, Nature 324, 446 (1986)] was used to speed up calculations of electric potential. Atomic levels were approximated to be independent of the microfields as was assumed in the original paper by Ecker and Kröll [Phys. Fluids 6, 62 (1963)]; however, the available levels were limited by the corresponding mean inter-particle distance. The code was tested on hydrogen and dense aluminum plasmas. The amount of depression was up tomore » 50% higher in the Debye-Hückel regime for hydrogen plasmas, in the high density limit, reasonable agreement was found with the Ecker-Kröll model for hydrogen plasmas and with the Stewart-Pyatt model [J. Stewart and K. Pyatt, Jr., Astrophys. J. 144, 1203 (1966)] for aluminum plasmas. Our 3D code is an improvement over the spherically symmetric simplifications of the Ecker-Kröll and Stewart-Pyatt models and is also not limited to high atomic numbers as is the underlying Thomas-Fermi model used in the Stewart-Pyatt model.« less

  11. Simulations of a dense plasma focus on a high impedance generator

    NASA Astrophysics Data System (ADS)

    Beresnyak, Andrey; Giuliani, John; Jackson, Stuart; Richardson, Steve; Swanekamp, Steve; Schumer, Joe; Commisso, Robert; Mosher, Dave; Weber, Bruce; Velikovich, Alexander

    2017-10-01

    We study the connection between plasma instabilities and fast ion acceleration for neutron production on a Dense Plasma Focus (DPF). The experiments will be performed on the HAWK generator (665 kA), which has fast rise time, 1.2 μs, and a high inductance, 607 nH. It is hypothesized that high impedance may enhance the neutron yield because the current will not be reduced during the collapse resulting in higher magnetization. To prevent upstream breakdown, we will inject plasma far from the insulator stack. We simulated rundown and collapse dynamics with Athena - Eulerian 3D, unsplit finite volume MHD code that includes shock capturing with Riemann solvers, resistive diffusion and the Hall term. The simulations are coupled to an equivalent circuit model for HAWK. We will report the dynamics and implosion time as a function of the initial injected plasma distribution and the implications of non-ideal effects. We also traced test particles in MHD fields and confirmed the presence of stochastic acceleration, which was limited by the size of the system and the strength of the magnetic field. Supported by DOE/NNSA and the Naval Research Laboratory Base Program.

  12. Evaluation and routine application of the novel restricted-access precolumn packing material Alkyl-Diol Silica: coupled-column high-performance liquid chromatographic analysis of the photoreactive drug 8-methoxypsoralen in plasma.

    PubMed

    Vielhauer, S; Rudolphi, A; Boos, K S; Seidel, D

    1995-04-21

    A fully automated coupled-column HPLC method for on-line sample processing and determination of the photoreactive drug 8-methoxypsoralen (8-MOP) in plasma has been developed. The method is based on the novel internal-surface reversed-phase precolumn packing materials Alkyl-Diol Silica (ADS). This new family of restricted-access materials has a hydrophilic, electroneutral outer particle surface and a hydrophobic internal pore surface. The supports tolerate the direct and repetitive injection of proteinaceous fluids such as plasma and allow a classical C18-, C8- or C4-reversed-phase partitioning at the internal (pore) surface. The total protein load, i.e. the lifetime of the precolumn used in this study (C8-Alkyl-Diol Silica, 25 microns, 25 x 4 mm I.D.), exceeds more than 100 ml of plasma. 8-MOP was detected by its native fluorescence (excitation 312 nm, emission 540 nm). Validation of the method revealed a quantitative and matrix-independent recovery (99.5-101.3% measured at five concentrations between 21.3 and 625.2 ng of 8-MOP per milliliter of plasma), linearity over a wide range of 8-MOP concentrations (1.2-3070 ng of 8-MOP/ml, r = 0.999), low limits of detection (0.39 ng of 8-MOP/ml) and quantitation (0.79 ng of 8-MOP/ml) and a high between-run (C.V. 1.47%, n = 10) and within-run (C.V. 1.33%, n = 10) reproducibility. This paper introduces coupled-column HPLC as a suitable method for on-site analysis of drug plasma profiles (bedside-monitoring).

  13. Identification and control of plasma vertical position using neural network in Damavand tokamak.

    PubMed

    Rasouli, H; Rasouli, C; Koohi, A

    2013-02-01

    In this work, a nonlinear model is introduced to determine the vertical position of the plasma column in Damavand tokamak. Using this model as a simulator, a nonlinear neural network controller has been designed. In the first stage, the electronic drive and sensory circuits of Damavand tokamak are modified. These circuits can control the vertical position of the plasma column inside the vacuum vessel. Since the vertical position of plasma is an unstable parameter, a direct closed loop system identification algorithm is performed. In the second stage, a nonlinear model is identified for plasma vertical position, based on the multilayer perceptron (MLP) neural network (NN) structure. Estimation of simulator parameters has been performed by back-propagation error algorithm using Levenberg-Marquardt gradient descent optimization technique. The model is verified through simulation of the whole closed loop system using both simulator and actual plant in similar conditions. As the final stage, a MLP neural network controller is designed for simulator model. In the last step, online training is performed to tune the controller parameters. Simulation results justify using of the NN controller for the actual plant.

  14. Deploying Solid Targets in Dense Plasma Focus Devices for Improved Neutron Yields

    NASA Astrophysics Data System (ADS)

    Podpaly, Y. A.; Chapman, S.; Povilus, A.; Falabella, S.; Link, A.; Shaw, B. H.; Cooper, C. M.; Higginson, D.; Holod, I.; Sipe, N.; Gall, B.; Schmidt, A. E.

    2017-10-01

    We report on recent progress in using solid targets in dense plasma focus (DPF) devices. DPFs have been observed to generate energetic ion beams during the pinch phase; these beams interact with the dense plasma in the pinch region as well as the background gas and are believed to be the primary neutron generation mechanism for a D2 gas fill. Targets can be placed in the beam path to enhance neutron yield and to shorten the neutron pulse if desired. In this work, we measure yields from placing titanium deuteride foils, deuterated polyethylene, and non-deuterated control targets in deuterium filled DPFs at both megajoule and kilojoule scales. Furthermore, we have deployed beryllium targets in a helium gas-filled, kilojoule scale DPF for use as a potential AmBe radiological source replacement. Neutron yield, neutron time of flight, and optical images are used to diagnose the effectiveness of target deployments relative to particle-in-cell simulation predictions. A discussion of target holder engineering for material compatibility and damage control will be shown as well. Prepared by LLNL under Contract DE-AC52-07NA27344. Supported by the Office of Defense Nuclear Nonproliferation Research and Development within U.S. DOE's National Nuclear Security Administration and the LLNL Institutional Computing Grand Challenge program.

  15. [Determination of acyclovir in mouse plasma and tissues by reversed-phase high performance liquid chromatography].

    PubMed

    Xu, Y; Zhou, S W; Tang, J L; Huang, L Q

    2001-11-01

    The aim of this study was to establish an high performance liquid chromatographic method for determining acyclovir (ACV) concentration in mouse plasma and tissues. A solution of 0.25 mL 60 g/L perchloric acid and 0.25 mL acetonitrile was added into 0.2 mL plasma or 0.2 g tissues to precipitate proteins. Following centrifugation, the supernatant obtained was injected into a reversed-phase column. Operating conditions were Hypersil ODS column(250 mm x 4.6 mm i.d., 5 microns), methanol-water-acetic acid(1:99:0.5, volume ratio) solution as mobile phase at a flow rate of 1.5 mL/min, UV detection at 252 nm. The detection limit of ACV concentration in plasma was 20 micrograms/L and that in tissues was 50 ng/g. The standard curves for ACV were linear in plasma and homogenate of tissues (r > 0.99). The precision of the method was good and the recoveries of ACV were higher than 97.5%. So this method is rapid, accurate and convenient for determination of ACV concentrations in plasma and tissues.

  16. First-principles opacity table of warm dense deuterium for inertial-confinement-fusion applications.

    PubMed

    Hu, S X; Collins, L A; Goncharov, V N; Boehly, T R; Epstein, R; McCrory, R L; Skupsky, S

    2014-09-01

    Accurate knowledge of the optical properties of a warm dense deuterium-tritium (DT) mixture is important for reliable design of inertial confinement fusion (ICF) implosions using radiation-hydrodynamics simulations. The opacity of a warm dense DT shell essentially determines how much radiation from hot coronal plasmas can be deposited in the DT fuel of an imploding capsule. Even for the simplest species of hydrogen, the accurate calculation of their opacities remains a challenge in the warm-dense matter regime because strong-coupling and quantum effects play an important role in such plasmas. With quantum-molecular-dynamics (QMD) simulations, we have derived a first-principles opacity table (FPOT) of deuterium (and the DT mixture by mass scaling) for a wide range of densities from ρ(D)=0.5 to 673.518g/cm(3) and temperatures from T=5000K up to the Fermi temperature T(F) for each density. Compared with results from the astrophysics opacity table (AOT) currently used in our hydrocodes, the FPOT of deuterium from our QMD calculations has shown a significant increase in opacity for strongly coupled and degenerate plasma conditions by a factor of 3-100 in the ICF-relevant photon-energy range. As conditions approach those of classical plasma, the opacity from the FPOT converges to the corresponding values of the AOT. By implementing the FPOT of deuterium and the DT mixture into our hydrocodes, we have performed radiation-hydrodynamics simulations for low-adiabat cryogenic DT implosions on the OMEGA laser and for direct-drive-ignition designs for the National Ignition Facility. The simulation results using the FPOT show that the target performance (in terms of neutron yield and energy gain) could vary from ∼10% up to a factor of ∼2 depending on the adiabat of the imploding DT capsule; the lower the adiabat, the more variation is seen in the prediction of target performance when compared to the AOT modeling.

  17. Interplay between intrinsic plasma rotation and magnetic island evolution in disruptive discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronchi, G.; Severo, J. H. F.; Salzedas, F.

    The behavior of the intrinsic toroidal rotation of the plasma column during the growth and eventual saturation of m/n = 2/1 magnetic islands, triggered by programmed density rise, has been carefully investigated in disruptive discharges in TCABR. The results show that, as the island starts to grow and rotate at a speed larger than that of the plasma column, the angular frequency of the intrinsic toroidal rotation increases and that of the island decreases, following the expectation of synchronization. As the island saturates at a large size, just before a major disruption, the angular speed of the intrinsic rotation decreasesmore » quite rapidly, even though the island keeps still rotating at a reduced speed. This decrease of the toroidal rotation is quite reproducible and can be considered as an indicative of disruption.« less

  18. Evolution of space open electric arc burning in the external axial magnetic field

    NASA Astrophysics Data System (ADS)

    Urusova, I. R.; Urusova, T. E.

    2018-06-01

    The calculation was made for open DC electric arc burning in an external uniform axial magnetic field. It was performed within the framework of a nonstationary three-dimensional mathematical model in approximation of partial local thermodynamic equilibrium of plasma. A "schematic" analog of electron temperature fluctuations was proposed for numerical realization of the open electric arc column of a helical shape. According to calculations, it was established that the column of the open electric arc takes a helical space shape. Plasma rotates around a longitudinal axis of the arc, at that the directions of plasma rotation near the cathode and the anode are opposite. In the arc cross-sections, the velocity of plasma rotation is unequal and the deviation value of the same part of the arc from the central axis varies in time. A helical shape of the open arc is not stable and varies in time. Apparently, the open arc cannot remain stable and invariable in the time helical shape in the external axial magnetic field.

  19. Studies of a driven Alfvénic cavity and cylindrical Alfven eigenmodes in LAPD

    NASA Astrophysics Data System (ADS)

    Lybarger, Warren; Carter, Troy; Brugman, Brian; Pribyl, Pat

    2004-11-01

    An Alfven wave MASER has been observed in the Large Plasma Device (LAPD), where an instability drives a resonant Alfven wave in the cavity defined by the cathode and anode of the discharge source(J.E. Maggs and G.J. Morales, PRL, 91, 035004-1 (2003)). We will present a study of external driving of this cavity, motivated by a desire to find a source of large amplitude Alfvén waves for studies of nonlinear interactions. The cavity is driven by modulating the discharge current using a broadband, high power push-pull amplifier. The Alfvén waves launched by exciting the cavity are large amplitude (δ B/B ˜ 1%) and are eigenmodes of the cylindrical column. Experimental results will be presented on the structure of the eigenmodes in the plasma column, the Q-value of the cavity and its dependence on plasma parameters, and deviations in the structure of the eigenmodes from ideal MHD due to kinetic effects. Experimental results will be compared to theories of Alfvén eigenmodes in a cylindrical column. * Work supported by DOE grant # DE-FG03-02ER54688

  20. Utility of Experimental Design in Pre-Column Derivatization for the Analysis of Tobramycin by HPLC-Fluorescence Detection: Application to Ophthalmic Solution and Human Plasma.

    PubMed

    El-Zaher, Asmaa A; Mahrouse, Marianne A

    2013-01-01

    A novel, selective, and sensitive reversed phase high-performance liquid chromatography (HPLC) method coupled with fluorescence detection has been developed for the determination of tobramycin (TOB) in pure form, in ophthalmic solution and in spiked human plasma. Since TOB lacks UV absorbing chromophores and native fluorescence, pre-column derivatization of TOB was carried out using fluorescamine reagent (0.01%, 1.5 mL) and borate buffer (pH 8.5, 2 mL). Experimental design was applied for optimization of the derivatization step. The resulting highly fluorescent stable derivative was chromatographed on C18 column and eluted using methanol:water (60:40, v/v) at a flow rate of 1 mL min(-1). A fluorescence detector (λex 390 and λem 480 nm) was used. The method was linear over the concentration range 20-200 ng mL(-1). The structure of the fluorescent product was proposed, the method was then validated and applied for the determination of TOB in human plasma. The results were statistically compared with the reference method, revealing no significant difference.

  1. Utility of Experimental Design in Pre-Column Derivatization for the Analysis of Tobramycin by HPLC—Fluorescence Detection: Application to Ophthalmic Solution and Human Plasma

    PubMed Central

    El-Zaher, Asmaa A.; Mahrouse, Marianne A.

    2013-01-01

    A novel, selective, and sensitive reversed phase high-performance liquid chromatography (HPLC) method coupled with fluorescence detection has been developed for the determination of tobramycin (TOB) in pure form, in ophthalmic solution and in spiked human plasma. Since TOB lacks UV absorbing chromophores and native fluorescence, pre-column derivatization of TOB was carried out using fluorescamine reagent (0.01%, 1.5 mL) and borate buffer (pH 8.5, 2 mL). Experimental design was applied for optimization of the derivatization step. The resulting highly fluorescent stable derivative was chromatographed on C18 column and eluted using methanol:water (60:40, v/v) at a flow rate of 1 mL min−1. A fluorescence detector (λex 390 and λem 480 nm) was used. The method was linear over the concentration range 20–200 ng mL−1. The structure of the fluorescent product was proposed, the method was then validated and applied for the determination of TOB in human plasma. The results were statistically compared with the reference method, revealing no significant difference. PMID:23700362

  2. Correlation and transport properties for mixtures at constant pressure and temperature

    NASA Astrophysics Data System (ADS)

    White, Alexander J.; Collins, Lee A.; Kress, Joel D.; Ticknor, Christopher; Clérouin, Jean; Arnault, Philippe; Desbiens, Nicolas

    2017-06-01

    Transport properties of mixtures of elements in the dense plasma regime play an important role in natural astrophysical and experimental systems, e.g., inertial confinement fusion. We present a series of orbital-free molecular dynamics simulations on dense plasma mixtures with comparison to a global pseudo ion in jellium model. Hydrogen is mixed with elements of increasingly high atomic number (lithium, carbon, aluminum, copper, and silver) at a fixed temperature of 100 eV and constant pressure set by pure hydrogen at 2 g/cm 3 , namely, 370 Mbars. We compute ionic transport coefficients, such as self-diffusion, mutual diffusion, and viscosity for various concentrations. Small concentrations of the heavy atoms significantly change the density of the plasma and decrease the transport coefficients. The structure of the mixture evidences a strong Coulomb coupling between heavy ions and the appearance of a broad correlation peak at short distances between hydrogen atoms. The concept of an effective one component plasma is used to quantify the overcorrelation of the light element induced by the admixture of a heavy element.

  3. Development of the dense plasma focus for short-pulse applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, N.; Blasco, M.; Breeding, K.

    The dense plasma focus (DPF) has long been considered a compact source for pulsed neutrons and has traditionally been optimized for the total neutron yield. Here, we describe the efforts to optimize the DPF for short-pulse applications by introducing a reentrant cathode at the end of the coaxial plasma gun. We reduced the resulting neutron pulse widths by an average of 21±921±9% from the traditional long-drift DPF design. Pulse widths and yields achieved from deuterium-tritium fusion at 2 MA are 61.8±30.761.8±30.7 ns FWHM and 1.84±0.49×10121.84±0.49×10 12 neutrons per shot. Simulations were conducted concurrently to elucidate the DPF operation and confirmmore » the role of the reentrant cathode. Furthermore, a hybrid fluid-kinetic particle-in-cell modeling capability demonstrates correct sheath velocities, plasma instabilities, and fusion yield rates. Consistent with previous findings that the DPF is dominated by beam-target fusion from superthermal ions, we estimate that the thermonuclear contribution is at the 1% level.« less

  4. Spatial Distribution and Semiannual Variation of Cold-Dense Plasma Sheet

    NASA Astrophysics Data System (ADS)

    Bai, Shichen; Shi, Quanqi; Tian, Anmin; Nowada, Motoharu; Degeling, Alexander W.; Zhou, Xu-Zhi; Zong, Qiu-Gang; Rae, I. Jonathan; Fu, Suiyan; Zhang, Hui; Pu, Zuyin; Fazakerly, Andrew N.

    2018-01-01

    The cold-dense plasma sheet (CDPS) plays an important role in the entry process of the solar wind plasma into the magnetosphere. Investigating the seasonal variation of CDPS occurrences will help us better understand the long-term variation of plasma exchange between the solar wind and magnetosphere, but any seasonal variation of CDPS occurrences has not yet been reported in the literature. In this paper, we investigate the seasonal variation of the occurrence rate of CDPS using Geotail data from 1996 to 2015 and find a semiannual variation of the CDPS occurrences. Given the higher probability of solar wind entry under stronger northward interplanetary magnetic field (IMF) conditions, 20 years of IMF data (1996-2015) are used to investigate the seasonal variation of IMF Bz under northward IMF conditions. We find a semiannual variation of IMF Bz, which is consistent with the Russell-McPherron (R-M) effect. We therefore suggest that the semiannual variation of CDPS may be related to the R-M effect.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skladnik-Sadowska, E.; Malinowski, K.; Sadowski, M. J.

    The paper concerns the monitoring of high-current pulse discharges and the determination of the plasma concentration within the dense magnetized plasma by means of optical spectroscopy methods. In experiments with the large PF-1000 facility operated at IPPLM in Warsaw, Poland, attention was paid to the determination of the operational mode and electron concentration under different experimental conditions. To measure the visible radiation (VR) the use was made of the MECHELLE registered 900-spectrometer equipped with the CCD readout. The VR emission, observed at 65 deg. to the z-axis, originated from a part of the electrode surfaces, the collapsing current-sheath layer andmore » the dense plasma pinch-region (40-50 mm from the electrode ends). Considerable differences were found in the optical spectra recorded for so-called 'good shots' and for cases of some failures. Estimates of the electron concentration, which were performed with different spectroscopic techniques, showed that it ranged from 5.56x1018 cm-3 to 4.8x1019 cm-3, depending on experimental conditions. The correlation of the fusion-neutron yield and the plasma density was proved.« less

  6. Influence of dense plasma on the energy levels and transition properties in highly charged ions

    NASA Astrophysics Data System (ADS)

    Chen, Zhan-Bin; Hu, Hong-Wei; Ma, Kun; Liu, Xiao-Bin; Guo, Xue-Ling; Li, Shuang; Zhu, Bo-Hong; Huang, Lian; Wang, Kai

    2018-03-01

    The studies of the influence of plasma environments on the level structures and transition properties for highly charged ions are presented. For the relativistic treatment, we implemented the multiconfiguration Dirac-Fock method incorporating the ion sphere (IS) model potential, in which the plasma screening is taken into account as a modified interaction potential between the electron and the nucleus. For the nonrelativistic treatment, analytical solutions of the Schrödinger equation with two types of the IS screened potential are proposed. The Ritz variation method is used with hydrogenic wave function as a trial wave function that contains two unknown variational parameters. Bound energies are derived from an energy equation, and the variational parameters are obtained from the minimisation condition of the expectation value of the energy. Numerical results for hydrogen-like ions in dense plasmas are presented as examples. A detailed analysis of the influence of relativistic effects on the energy levels and transition properties is also reported. Our results are compared with available results in the literature showing a good quantitative agreement.

  7. Excitation of atoms and ions in plasmas by ultra-short electromagnetic pulses

    NASA Astrophysics Data System (ADS)

    Astapenko, V. A.; Sakhno, S. V.; Svita, S. Yu; Lisitsa, V. S.

    2017-02-01

    The problem of atoms and ions diagnostics in rarefied and dense plasmas by ultrashort laser pulses (USP) is under consideration. The application of USP provides: 1) excitation from ground states due to their carrier frequency high enough, 2) penetration into optically dense media due to short pulses duration. The excitation from ground atomic states increases sharply populations of excited atomic states in contrast with standard laser induced fluorescence spectroscopy based on radiative transitions between excited atomic states. New broadening parameter in radiation absorption, namely inverse pulse duration time 1/τ appears in addition to standard line-shape width in the profile G(ω). The Lyman-beta absorption spectra for USP are calculated for Holtsmark static broadening mechanism. Excitation of highly charged H-like ions in hot plasmas is described by both Gaussian shapes for Doppler broadening and pulse spectrum resulting in analytical absorption line-shape. USP penetration into optically thick media and corresponding excitation probability are calculated. It is shown a great effect of USP duration on excitation probabilities in optically thick media. The typical situations for plasma diagnostics by USP are discussed in details.

  8. Correlation and transport properties for mixtures at constant pressure and temperature

    DOE PAGES

    White, Alexander J.; Collins, Lee A.; Kress, Joel D.; ...

    2017-06-02

    Transport properties of mixtures of elements in the dense plasma regime play an important role in natural astrophysical and experimental systems, e.g., inertial confinement fusion. In this paper, we present a series of orbital-free molecular dynamics simulations on dense plasma mixtures with comparison to a global pseudo ion in jellium model. Hydrogen is mixed with elements of increasingly high atomic number (lithium, carbon, aluminum, copper, and silver) at a fixed temperature of 100 eV and constant pressure set by pure hydrogen at 2g/cm 3, namely, 370 Mbars. We compute ionic transport coefficients, such as self-diffusion, mutual diffusion, and viscosity formore » various concentrations. Small concentrations of the heavy atoms significantly change the density of the plasma and decrease the transport coefficients. The structure of the mixture evidences a strong Coulomb coupling between heavy ions and the appearance of a broad correlation peak at short distances between hydrogen atoms. Finally, the concept of an effective one component plasma is used to quantify the overcorrelation of the light element induced by the admixture of a heavy element.« less

  9. Magnetohydrodynamic waves with relativistic electrons and positrons in degenerate spin-1/2 astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Maroof, R.; Ali, S.; Mushtaq, A.; Qamar, A.

    2015-11-01

    Linear properties of high and low frequency waves are studied in an electron-positron-ion (e-p-i) dense plasma with spin and relativity effects. In a low frequency regime, the magnetohydrodynamic (MHD) waves, namely, the magnetoacoustic and Alfven waves are presented in a magnetized plasma, in which the inertial ions are taken as spinless and non-degenerate, whereas the electrons and positrons are treated quantum mechanically due to their smaller mass. Quantum corrections associated with the spin magnetization and density correlations for electrons and positrons are re-considered and a generalized dispersion relation for the low frequency MHD waves is derived to account for relativistic degeneracy effects. On the basis of angles of propagation, the dispersion relations of different modes are discussed analytically in a degenerate relativistic plasma. Numerical results reveal that electron and positron relativistic degeneracy effects significantly modify the dispersive properties of MHD waves. Our present analysis should be useful for understanding the collective interactions in dense astrophysical compact objects, like, the white dwarfs and in atmosphere of neutron stars.

  10. Correlation and transport properties for mixtures at constant pressure and temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Alexander J.; Collins, Lee A.; Kress, Joel D.

    Transport properties of mixtures of elements in the dense plasma regime play an important role in natural astrophysical and experimental systems, e.g., inertial confinement fusion. In this paper, we present a series of orbital-free molecular dynamics simulations on dense plasma mixtures with comparison to a global pseudo ion in jellium model. Hydrogen is mixed with elements of increasingly high atomic number (lithium, carbon, aluminum, copper, and silver) at a fixed temperature of 100 eV and constant pressure set by pure hydrogen at 2g/cm 3, namely, 370 Mbars. We compute ionic transport coefficients, such as self-diffusion, mutual diffusion, and viscosity formore » various concentrations. Small concentrations of the heavy atoms significantly change the density of the plasma and decrease the transport coefficients. The structure of the mixture evidences a strong Coulomb coupling between heavy ions and the appearance of a broad correlation peak at short distances between hydrogen atoms. Finally, the concept of an effective one component plasma is used to quantify the overcorrelation of the light element induced by the admixture of a heavy element.« less

  11. Development of the dense plasma focus for short-pulse applications

    DOE PAGES

    Bennett, N.; Blasco, M.; Breeding, K.; ...

    2017-01-05

    The dense plasma focus (DPF) has long been considered a compact source for pulsed neutrons and has traditionally been optimized for the total neutron yield. Here, we describe the efforts to optimize the DPF for short-pulse applications by introducing a reentrant cathode at the end of the coaxial plasma gun. We reduced the resulting neutron pulse widths by an average of 21±921±9% from the traditional long-drift DPF design. Pulse widths and yields achieved from deuterium-tritium fusion at 2 MA are 61.8±30.761.8±30.7 ns FWHM and 1.84±0.49×10121.84±0.49×10 12 neutrons per shot. Simulations were conducted concurrently to elucidate the DPF operation and confirmmore » the role of the reentrant cathode. Furthermore, a hybrid fluid-kinetic particle-in-cell modeling capability demonstrates correct sheath velocities, plasma instabilities, and fusion yield rates. Consistent with previous findings that the DPF is dominated by beam-target fusion from superthermal ions, we estimate that the thermonuclear contribution is at the 1% level.« less

  12. Reaction-in-flight neutrons as a test of stopping power in degenerate plasmas

    NASA Astrophysics Data System (ADS)

    Hayes, A. C.; Jungman, Gerard; Schulz, A. E.; Boswell, M.; Fowler, M. M.; Grim, G.; Klein, A.; Rundberg, R. S.; Wilhelmy, J. B.; Wilson, D.; Cerjan, C.; Schneider, D.; Sepke, S. M.; Tonchev, A.; Yeamans, C.

    2015-08-01

    We present the first measurements of reaction-in-flight (RIF) neutrons in an inertial confinement fusion system. The experiments were carried out at the National Ignition Facility, using both Low Foot and High Foot drives and cryogenic plastic capsules. In both cases, the high-energy RIF ( En> 15 MeV) component of the neutron spectrum was found to be about 10-4 of the total. The majority of the RIF neutrons were produced in the dense cold fuel surrounding the burning hotspot of the capsule, and the data are consistent with a compressed cold fuel that is moderately to strongly coupled (Γ˜ 0.6) and electron degenerate (θFermi/θe˜ 4). The production of RIF neutrons is controlled by the stopping power in the plasma. Thus, the current RIF measurements provide a unique test of stopping power models in an experimentally unexplored plasma regime. We find that the measured RIF data strongly constrain stopping models in warm dense plasma conditions, and some models are ruled out by our analysis of these experiments.

  13. Reaction-in-flight neutrons as a test of stopping power in degenerate plasmas

    DOE PAGES

    Hayes, A. C.; Jungman, Gerard; Schulz, A. E.; ...

    2015-08-06

    We present the first measurements of reaction-in-flight (RIF) neutrons in an inertial confinement fusion system. The experiments were carried out at the National Ignition Facility, using both Low Foot and High Foot drives and cryogenic plastic capsules. In both cases, the high-energy RIF (E n > 15 MeV) component of the neutron spectrum was found to be about 10 –4 of the total. The majority of the RIF neutrons were produced in the dense cold fuel surrounding the burning hotspot of the capsule, and the data are consistent with a compressed cold fuel that is moderately to strongly coupled (Γ~more » 0.6) and electron degenerate (θ Fermi/θ e~ 4). The production of RIF neutrons is controlled by the stopping power in the plasma. Thus, the current RIF measurements provide a unique test of stopping power models in an experimentally unexplored plasma regime. In conclusion, we find that the measured RIF data strongly constrain stopping models in warm dense plasma conditions, and some models are ruled out by our analysis of these experiments.« less

  14. Energy transfer dynamics in strongly inhomogeneous hot-dense-matter systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stillman, C. R.; Nilson, P. M.; Sefkow, A. B.

    Direct measurements of energy transfer across steep density and temperature gradients in a hot-dense-matter system are presented. Hot dense plasma conditions were generated by high-intensity laser irradiation of a thin-foil target containing a buried metal layer. Energy transfer to the layer was measured using picosecond time-resolved x-ray emission spectroscopy. Here, the data show two x-ray flashes in time. Fully explicit, coupled particle-in-cell and collisional-radiative atomic kinetics model predictions reproduce these observations, connecting the two x-ray flashes with staged radial energy transfer within the target.

  15. Energy transfer dynamics in strongly inhomogeneous hot-dense-matter systems

    DOE PAGES

    Stillman, C. R.; Nilson, P. M.; Sefkow, A. B.; ...

    2018-06-25

    Direct measurements of energy transfer across steep density and temperature gradients in a hot-dense-matter system are presented. Hot dense plasma conditions were generated by high-intensity laser irradiation of a thin-foil target containing a buried metal layer. Energy transfer to the layer was measured using picosecond time-resolved x-ray emission spectroscopy. Here, the data show two x-ray flashes in time. Fully explicit, coupled particle-in-cell and collisional-radiative atomic kinetics model predictions reproduce these observations, connecting the two x-ray flashes with staged radial energy transfer within the target.

  16. Generalized charge-screening in relativistic Thomas–Fermi model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbari-Moghanjoughi, M.

    In this paper, we study the charge shielding within the relativistic Thomas-Fermi model for a wide range of electron number-densities and the atomic-number of screened ions. A generalized energy-density relation is obtained using the force-balance equation and taking into account the Chandrasekhar's relativistic electron degeneracy pressure. By numerically solving a second-order nonlinear differential equation, the Thomas-Fermi screening length is investigated, and the results are compared for three distinct regimes of the solid-density, warm-dense-matter, and white-dwarfs (WDs). It is revealed that our nonlinear screening theory is compatible with the exponentially decaying Thomas-Fermi-type shielding predicted by the linear response theory. Moreover, themore » variation of relative Thomas-Fermi screening length shows that extremely dense quantum electron fluids are relatively poor charge shielders. Calculation of the total number of screening electrons around a nucleus shows that there is a position of maximum number of screening localized electrons around the screened nucleus, which moves closer to the point-like nucleus by increase in the plasma number density but is unaffected due to increase in the atomic-number value. It is discovered that the total number of screening electrons, (N{sub s}∝r{sub TF}{sup 3}/r{sub d}{sup 3} where r{sub TF} and r{sub d} are the Thomas-Fermi and interparticle distance, respectively) has a distinct limit for extremely dense plasmas such as WD-cores and neutron star crusts, which is unique for all given values of the atomic-number. This is equal to saying that in an ultrarelativistic degeneracy limit of electron-ion plasma, the screening length couples with the system dimensionality and the plasma becomes spherically self-similar. Current analysis can provide useful information on the effects of relativistic correction to the charge screening for a wide range of plasma density, such as the inertial-confined plasmas and compact stellar objects.« less

  17. Experiments on Plasma Turbulence Created by Supersonic Plasma Flows with Shear

    DTIC Science & Technology

    2014-04-01

    for producing a plasma column (in black). An insulated wire traverses the plasma and car - ries a pulsed current in x-direction. The unmagnetized ions... electric field which together with the B field around the wire causes an electron ExB drift. The ions are unmagnetized. A radial space charge electric field...by the self-consistent currents passing through the grid. These currents, consisting of electron and ion flows, are controlled by the electrical

  18. Fully automated methods for the determination of hydrochlorothiazide in human plasma and urine.

    PubMed

    Hsieh, J Y; Lin, C; Matuszewski, B K; Dobrinska, M R

    1994-12-01

    LC assays utilizing fully automated sample preparation procedures on Zymark PyTechnology Robot and BenchMate Workstation for the quantification of hydrochlorothiazide (HCTZ) in human plasma and urine have been developed. After aliquoting plasma and urine samples, and adding internal standard (IS) manually, the robot executed buffer and organic solvent addition, liquid-liquid extraction, solvent evaporation and on-line LC injection steps for plasma samples, whereas, BenchMate performed buffer and organic solvent addition, liquid-liquid and solid-phase extractions, and on-line LC injection steps for urine samples. Chromatographic separations were carried out on Beckman Octyl Ultrasphere column using the mobile phase composed of 12% (v/v) acetonitrile and 88% of either an ion-pairing reagent (plasma) or 0.1% trifluoroacetic acid (urine). The eluent from the column was monitored with UV detector (271 nm). Peak heights for HCTZ and IS were automatically processed using a PE-Nelson ACCESS*CHROM laboratory automation system. The assays have been validated in the concentration range of 2-100 ng ml-1 in plasma and 0.1-20 micrograms ml-1 in urine. Both plasma and urine assays have the sensitivity and specificity necessary to determine plasma and urine concentrations of HCTZ from low dose (6.25/12.5 mg) administration of HCTZ to human subjects in the presence or absence of losartan.

  19. Unified first principles description from warm dense matter to ideal ionized gas plasma: electron-ion collisions induced friction.

    PubMed

    Dai, Jiayu; Hou, Yong; Yuan, Jianmin

    2010-06-18

    Electron-ion interactions are central to numerous phenomena in the warm dense matter (WDM) regime and at higher temperature. The electron-ion collisions induced friction at high temperature is introduced in the procedure of ab initio molecular dynamics using the Langevin equation based on density functional theory. In this framework, as a test for Fe and H up to 1000 eV, the equation of state and the transition of electronic structures of the materials with very wide density and temperature can be described, which covers a full range of WDM up to high energy density physics. A unified first principles description from condensed matter to ideal ionized gas plasma is constructed.

  20. Reconstruction of a kimberlite eruption, using an integrated volcanological, geochemical and numerical approach: A case study of the Fox Kimberlite, NWT, Canada

    NASA Astrophysics Data System (ADS)

    Porritt, L. A.; Cas, R. A. F.

    2009-01-01

    An integrated approach involving volcanology, geochemistry and numerical modelling has enabled the reconstruction of the volcanic history of the Fox kimberlite pipe. The observed deposits within the vent include a basal massive, poorly sorted, matrix supported, lithic fragment rich, eruption column collapse lapilli tuff. Extensive vent widening during the climactic magmatic phase of the eruption led to overloading of the eruption column with cold dense country rock lithic fragments, dense juvenile pyroclasts and olivine crystals, triggering column collapse. > 40% dilution of the kimberlite by granodiorite country rock lithic fragments is observed both in the physical componentry of the rocks and in the geochemical signature, where enrichment in Al 2O 3 and Na 2O compared to average values for coherent kimberlite is seen. The wide, deep, open vent provided a trap for a significant proportion of the collapsing column material, preventing large scale run-away in the form of pyroclastic flow onto the ground surface, although minor flows probably also occurred. A massive to diffusely bedded, poorly sorted, matrix supported, accretionary-lapilli bearing, lithic fragment rich, lapilli tuff overlies the column collapse deposit providing evidence for a late phreatomagmatic eruption stage, caused by the explosive interaction of external water with residual magma. Correlation of pipe morphology and internal stratigraphy indicate that widening of the pipe occurred during this latter stage and a thick granodiorite cobble-boulder breccia was deposited. Ash- and accretionary lapilli-rich tephra, deposited on the crater rim during the late phreatomagmatic stage, was subsequently resedimented into the vent. Incompatible elements such as Nb are used as indicators of the proportion of the melt fraction, or kimberlite ash, retained or removed by eruptive processes. When compared to average coherent kimberlite the ash-rich deposits exhibit ~ 30% loss of fines whereas the column collapse deposit exhibits ~ 50% loss. This shows that despite the poorly sorted nature of the column collapse deposit significant elutriation has occurred during the eruption, indicating the existence of a high sustained eruption column. The deposits within Fox record a complex eruption sequence showing a transition from a probable violent sub-plinian style eruption, driven by instantaneous exsolution of magmatic volatiles, to a late phreatomagmatic eruption phase. Mass eruption rate and duration of the sub-plinian phase of the eruption have been determined based on the dimensions of milled country-rock boulders found within the intra-vent deposits. Calculations show a short lived eruption of one to eleven days for the sub-plinian magmatic phase, which is similar in duration to small volume basaltic eruptions. This is in general agreement with durations of kimberlite eruptions calculated using entirely different approaches and parameters, such as predictions of magma ascent rates in kimberlite dykes.

  1. Unveiling the spatial structure of the overionized plasma in the supernova remnant W49B

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Miceli, Marco; Bocchino, Fabrizio; Orlando, Salvatore; Chen, Yang

    2011-07-01

    W49B is a mixed-morphology supernova remnant with thermal X-ray emission dominated by the ejecta. In this remnant, the presence of overionized plasma has been directly established, with information about its spatial structure. However, the physical origin of the overionized plasma in W49B has not yet been understood. We investigate this intriguing issue through a 2D hydrodynamic model that takes into account, for the first time, the mixing of ejecta with the inhomogeneous circumstellar and interstellar medium, the thermal conduction, the radiative losses from optically thin plasma and the deviations from equilibrium of ionization induced by plasma dynamics. The model was set up on the basis of the observational results. We found that the thermal conduction plays an important role in the evolution of W49B, inducing the evaporation of the circumstellar ring-like cloud (whose presence has been deduced from previous observations) that mingles with the surrounding hot medium, cooling down the shocked plasma, and pushes the ejecta backwards to the centre of the remnant, forming there a jet-like structure. During the evolution, a large region of overionized plasma forms within the remnant. The overionized plasma originates from the rapid cooling of the hot plasma originally heated by the shock reflected from the dense ring-like cloud. In particular, we found two different ways for the rapid cooling of plasma to appear: (i) the mixing of relatively cold and dense material evaporated from the ring with the hot shocked plasma and (ii) the rapid adiabatic expansion of the ejecta. The spatial distribution of the radiative recombination continuum predicted by the numerical model is in good agreement with that observed.

  2. Ion-ion dynamic structure factor of warm dense mixtures

    DOE PAGES

    Gill, N. M.; Heinonen, R. A.; Starrett, C. E.; ...

    2015-06-25

    In this study, the ion-ion dynamic structure factor of warm dense matter is determined using the recently developed pseudoatom molecular dynamics method [Starrett et al., Phys. Rev. E 91, 013104 (2015)]. The method uses density functional theory to determine ion-ion pair interaction potentials that have no free parameters. These potentials are used in classical molecular dynamics simulations. This constitutes a computationally efficient and realistic model of dense plasmas. Comparison with recently published simulations of the ion-ion dynamic structure factor and sound speed of warm dense aluminum finds good to reasonable agreement. Using this method, we make predictions of the ion-ionmore » dynamical structure factor and sound speed of a warm dense mixture—equimolar carbon-hydrogen. This material is commonly used as an ablator in inertial confinement fusion capsules, and our results are amenable to direct experimental measurement.« less

  3. INPIStron switched pulsed power for dense plasma pinches

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Lee, Ja H.

    1993-01-01

    The inverse plasma switch INPIStron was employed for 10kJ/40kV capacitor bank discharge system to produce focused dense plasmas in hypocycloidal-pinch (HCP) devices. A single unit and an array of multiple HCP's were coupled as the load of the pulsed power circuit. The geometry and switching plasma dynamics were found advantageous and convenient for commutating the large current pulse from the low impedance transmission line to the low impedance plasma load. The pulse power system with a single unit HCP, the system A, was used for production of high temperature plasma focus and its diagnostics. The radially running down plasma dynamics, revealed in image converter photographs, could be simulated by a simple snow-plow model with a correction for plasma resistivity. The system B with an array of 8-HCP units which forms a long coaxial discharge chamber was used for pumping a Ti-sapphire laser. The intense UV emission from the plasma was frequency shifted with dye-solution jacket to match the absorption band of the Ti crystal laser near 500 nm. An untuned laser pulse energy of 0.6 J/pulse was obtained for 6.4 kJ/40 kV discharge, or near 103 times of the explosion limit of conventional flash lamps. For both systems the advantages of the INPIStron were well demonstrated: a single unit is sufficient for a large current (greater than 50 kA) without increasing the system impedance, highly reliable and long life operation and implied scalability for the high power ranges above I(sub peak) = 1 MA and V(sub hold) = 100 kV.

  4. Column Selection for Biomedical Analysis Supported by Column Classification Based on Four Test Parameters

    PubMed Central

    Plenis, Alina; Rekowska, Natalia; Bączek, Tomasz

    2016-01-01

    This article focuses on correlating the column classification obtained from the method created at the Katholieke Universiteit Leuven (KUL), with the chromatographic resolution attained in biomedical separation. In the KUL system, each column is described with four parameters, which enables estimation of the FKUL value characterising similarity of those parameters to the selected reference stationary phase. Thus, a ranking list based on the FKUL value can be calculated for the chosen reference column, then correlated with the results of the column performance test. In this study, the column performance test was based on analysis of moclobemide and its two metabolites in human plasma by liquid chromatography (LC), using 18 columns. The comparative study was performed using traditional correlation of the FKUL values with the retention parameters of the analytes describing the column performance test. In order to deepen the comparative assessment of both data sets, factor analysis (FA) was also used. The obtained results indicated that the stationary phase classes, closely related according to the KUL method, yielded comparable separation for the target substances. Therefore, the column ranking system based on the FKUL-values could be considered supportive in the choice of the appropriate column for biomedical analysis. PMID:26805819

  5. Column Selection for Biomedical Analysis Supported by Column Classification Based on Four Test Parameters.

    PubMed

    Plenis, Alina; Rekowska, Natalia; Bączek, Tomasz

    2016-01-21

    This article focuses on correlating the column classification obtained from the method created at the Katholieke Universiteit Leuven (KUL), with the chromatographic resolution attained in biomedical separation. In the KUL system, each column is described with four parameters, which enables estimation of the FKUL value characterising similarity of those parameters to the selected reference stationary phase. Thus, a ranking list based on the FKUL value can be calculated for the chosen reference column, then correlated with the results of the column performance test. In this study, the column performance test was based on analysis of moclobemide and its two metabolites in human plasma by liquid chromatography (LC), using 18 columns. The comparative study was performed using traditional correlation of the FKUL values with the retention parameters of the analytes describing the column performance test. In order to deepen the comparative assessment of both data sets, factor analysis (FA) was also used. The obtained results indicated that the stationary phase classes, closely related according to the KUL method, yielded comparable separation for the target substances. Therefore, the column ranking system based on the FKUL-values could be considered supportive in the choice of the appropriate column for biomedical analysis.

  6. EFFECTS OF THE INVASIVE, NONINDIGENOUS SEAGRASS ZOSTERA JAPONICA ON NUTRIENT FLUXES BETWEEN THE WATER COLUMN AND BENTHOS IN A NE PACIFIC ESTUARY

    EPA Science Inventory

    Since its introduction in the early to mid-20th century, the Asian seagrass Zostera japonica has become established in marine and mesohaline portions of many estuaries in the Pacific Northwest. Z. japonica forms dense patches from 0.3-2.4m above mean lower low water, a zone that...

  7. Constraining the uncertainty in emissions over India with a regional air quality model evaluation

    NASA Astrophysics Data System (ADS)

    Karambelas, Alexandra; Holloway, Tracey; Kiesewetter, Gregor; Heyes, Chris

    2018-02-01

    To evaluate uncertainty in the spatial distribution of air emissions over India, we compare satellite and surface observations with simulations from the U.S. Environmental Protection Agency (EPA) Community Multi-Scale Air Quality (CMAQ) model. Seasonally representative simulations were completed for January, April, July, and October 2010 at 36 km × 36 km using anthropogenic emissions from the Greenhouse Gas-Air Pollution Interaction and Synergies (GAINS) model following version 5a of the Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants project (ECLIPSE v5a). We use both tropospheric columns from the Ozone Monitoring Instrument (OMI) and surface observations from the Central Pollution Control Board (CPCB) to closely examine modeled nitrogen dioxide (NO2) biases in urban and rural regions across India. Spatial average evaluation with satellite retrievals indicate a low bias in the modeled tropospheric column (-63.3%), which reflects broad low-biases in majority non-urban regions (-70.1% in rural areas) across the sub-continent to slightly lesser low biases reflected in semi-urban areas (-44.7%), with the threshold between semi-urban and rural defined as 400 people per km2. In contrast, modeled surface NO2 concentrations exhibit a slight high bias of +15.6% when compared to surface CPCB observations predominantly located in urban areas. Conversely, in examining extremely population dense urban regions with more than 5000 people per km2 (dense-urban), we find model overestimates in both the column (+57.8) and at the surface (+131.2%) compared to observations. Based on these results, we find that existing emission fields for India may overestimate urban emissions in densely populated regions and underestimate rural emissions. However, if we rely on model evaluation with predominantly urban surface observations from the CPCB, comparisons reflect model high biases, contradictory to the knowledge gained using satellite observations. Satellites thus serve as an important emissions and model evaluation metric where surface observations are lacking, such as rural India, and support improved emissions inventory development.

  8. PLASMA PHYSICS AND STATISTICAL MECHANICS IN BRUSSELS, BELGIUM,

    DTIC Science & Technology

    significant research in the theory and experiment of the Tonks-Dattner resonances in a cylindrical plasma column. The second visit was to Professors I ...Prigogine and R. Balescu , of the Faculte des Sciences, Universite Libre de Bruxelles, who together direct a large group of scientists working on all

  9. Spacecraft Charging Modeling -- Nascap-2k 2014 Annual Report

    DTIC Science & Technology

    2014-09-19

    i ) ’ "’"’ 2rrm" T (2) For a surface directly facing the .ram at a typical low- Earth - orbit speed of 7.500 m/ s in a 0.1 eV plasma . the surface is...of modeling the charging of spacecraft with a low- Earth -orbit plasma within Nascap-2k. This work resulted in a paper presented at the Spacecraft...approaches used to model spacecraft charging in cold. dense plasma . such as found in low- Earth -orbit The range of plasma properties under

  10. Studies of high-current relativistic electron beam interaction with gas and plasma in Novosibirsk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinitsky, S. L., E-mail: s.l.sinitsky@inp.nsk.su; Arzhannikov, A. V.; Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090

    2016-03-25

    This paper presents an overview of the studies on the interaction of a high-power relativistic electron beam (REB) with dense plasma confined in a long open magnetic trap. The main goal of this research is to achieve plasma parameters close to those required for thermonuclear fusion burning. The experimental studies were carried over the course of four decades on various devices: INAR, GOL, INAR-2, GOL-M, and GOL-3 (Budker Institute of Nuclear Physics) for a wide range of beam and plasma parameters.

  11. A theoretical study of hot plasma spheroids in the presence of low-frequency electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Ahmadizadeh, Y.; Jazi, B.; Barjesteh, S.

    2016-07-01

    While taking into account thermal motion of electrons, scattering of electromagnetic waves with low frequency from hot plasma spheroids is investigated. In this theoretical research, ions are heavy to respond to electromagnetic fluctuations. The solution of scalar wave equation in spheroidal coordinates for electric potential inside the plasma spheroids are obtained. The variations of resonance frequencies vs. Debye length are studied and consistency between the obtained results in this paper and the results for the well-known plasma objects such as plasma column and spherical plasma have been proved.

  12. A Non-Neutral Plasma Device: Electron Beam Penning Trap

    NASA Astrophysics Data System (ADS)

    Zhuang, Ge; Liu, Wan-dong; Zheng, Jian; Fu, Cheng-jiang; Bai, Bo; Chi, Ji; Zhao, Kai; Xie, Jin-lin; Liang, Xiao-ping; Yu, Chang-xuan

    1999-12-01

    An electron beam Penning trap (EBPT) non- neutral plasma system, built to investigate the formation of a dense electron core with the density beyond Brillouin limit and possible application to fusion research, has been described. The density in the center of the EBPT has been verified to be up to 10 times of Brillouin density limit.

  13. Scaling mechanisms of vapour/plasma shielding from laser-produced plasmas to magnetic fusion regimes

    NASA Astrophysics Data System (ADS)

    Sizyuk, Tatyana; Hassanein, Ahmed

    2014-02-01

    The plasma shielding effect is a well-known mechanism in laser-produced plasmas (LPPs) reducing laser photon transmission to the target and, as a result, significantly reducing target heating and erosion. The shielding effect is less pronounced at low laser intensities, when low evaporation rate together with vapour/plasma expansion processes prevent establishment of a dense plasma layer above the surface. Plasma shielding also loses its effectiveness at high laser intensities when the formed hot dense plasma plume causes extensive target erosion due to radiation fluxes back to the surface. The magnitude of emitted radiation fluxes from such a plasma is similar to or slightly higher than the laser photon flux in the low shielding regime. Thus, shielding efficiency in LPPs has a peak that depends on the laser beam parameters and the target material. A similar tendency is also expected in other plasma-operating devices such as tokamaks of magnetic fusion energy (MFE) reactors during transient plasma operation and disruptions on chamber walls when deposition of the high-energy transient plasma can cause severe erosion and damage to the plasma-facing and nearby components. A detailed analysis of these abnormal events and their consequences in future power reactors is limited in current tokamak reactors. Predictions for high-power future tokamaks are possible only through comprehensive, time-consuming and rigorous modelling. We developed scaling mechanisms, based on modelling of LPP devices with their typical temporal and spatial scales, to simulate tokamak abnormal operating regimes to study wall erosion, plasma shielding and radiation under MFE reactor conditions. We found an analogy in regimes and results of carbon and tungsten erosion of the divertor surface in ITER-like reactors with erosion due to laser irradiation. Such an approach will allow utilizing validated modelling combined with well-designed and well-diagnosed LPP experimental studies for predicting consequences of plasma instabilities in complex fusion environment, which are of serious concern for successful energy production.

  14. Experimental results from plasma transport on Prototype-Material Plasma Exposure eXperiment and comparison with B2-Eirene modeling

    NASA Astrophysics Data System (ADS)

    Kafle, N.; Caneses, J. F.; Biewer, T. M.; Owen, L.; Showers, M.; Donovan, D.; Caughman, J. B.; Goulding, R. H.; Rapp, Juergen

    2017-10-01

    Proto-MPEX at ORNL is a linear plasma device that combines a helicon plasma source with additional microwave and RF heating to deliver high plasma heat and particle fluxes to a target. Double Langmuir probes and Thomson scattering are being used to measure local Te and ne at various radial and axial locations. A recently constructed Mach- double probe provides the added capability of simultaneously measuring Te, ne, and Mach number. With this diagnostic, it is possible to infer the plasma flow, particle flux, and convective heat flux at different locations along the plasma column in Proto-MPEX. Preliminary results show Mach numbers of 0.6 and 0.8 in either direction away from the helicon source, and no flow near the source for the case where the peak magnetic field was 1.0 T. In addition, the Thomson Scattering system has been upgraded to measure ne and Te profiles at two axial locations, upstream at the electron heating location and downstream close to the target. Measurements of particle flow and flux profiles, heat flux, and profiles of ne and Te will be discussed. The extensive coverage provided by these diagnostics permits data-constrained B2-Eirene modeling of the entire plasma column, and comparison with results of modeling of high density mode plasmas will be presented. Supported by the US. D.O.E. contract DE-AC05-00OR22725.

  15. Development and validation of a reversed-phase fluorescence HPLC method for determination of bucillamine in human plasma using pre-column derivatization with monobromobimane.

    PubMed

    Lee, Kang Choon; Chun, Young Goo; Kim, Insoo; Shin, Beom Soo; Park, Eun-Seok; Yoo, Sun Dong; Youn, Yu Seok

    2009-07-15

    A simple, specific and sensitive derivatization with monobromobimane (mBrB) and the corresponding HPLC-fluorescence quantitation method for the analysis of bucillamine in human plasma was developed and validated. The analytical procedure involves a simple protein precipitation, pre-column fluorescence derivatization, and separation by reversed-phase high performance liquid chromatography (RP-HPLC). The calibration curve showed good linearity over a wide concentration range (50 ng/mL to 10 microg/mL) in human plasma (r(2)=0.9998). The lower limit of quantitation (LLOQ) was 50 ng/mL. The average precision and accuracy at LLOQ were within 6.3% and 107.6%, respectively. This method was successfully applied to a pharmacokinetic study after oral administration of a dose (300 mg) of bucillamine to 20 healthy Korean volunteers.

  16. A rapid and sensitive method for the quantitation of montelukast in sheep plasma using liquid chromatography/tandem mass spectrometry.

    PubMed

    Papp, Robert; Luk, Pauline; Mullett, Wayne M; Kwong, Elizabeth

    2007-10-15

    A rapid LC-MS/MS method was developed and partially validated for the quantitation of montelukast in spiked sheep plasma. A total run time of 1.5 min was achieved using a short monolithic column and employing a rapid gradient. Sample preparation involved protein precipitation with twofold acetonitrile by volume during which a deuterated internal standard (montelukast D-6) was incorporated. The MRM transitions for montelukast and the deuterated internal standard were 586/422 and 592/427, respectively. A linear dynamic range of 0.25-500 ng/mL with a correlation coefficient of 0.9999 was achieved. Precision was below 5% at all levels except at the LOQ (0.36 ng/mL) which demonstrated an overall of R.S.D. of 8%. Post-column infusion experiments were performed with precipitated plasma matrix and showed minimal interference with the peaks of interest.

  17. Enantiospecific determination of PNU-83894 and its major metabolite, PNU-83892, in plasma, and its application to the characterization of the enantioselective pharmacokinetics of PNU-83894 in the dog.

    PubMed

    Zhong, W Z; Williams, M G

    2000-02-25

    A chiral method for the simultaneous analysis of the (+)- and (-)-enantiomers of PNU-83894 and its metabolite, PNU-83892, in plasma was developed to characterize the enantioselective pharmacokinetics of PNU-83894, a potential anticonvulsant candidate. The method involves solid-phase extraction (phenyl column) of the enantiomers from plasma followed by direct enantioselective separation on a beta-cyclodextrin HPLC chiral column and UV detection at 230 nm. The linear range for this method was found to be 12.5 ng/ml to 5.00 microg/ml and the intra- and inter-assay precision and accuracy for each enantiomer were <11% in all cases. The validity of this assay was also demonstrated by its application to the pharmacokinetic evaluation of PNU-83894 in the dog.

  18. Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air

    NASA Astrophysics Data System (ADS)

    Zhu, Jiajian; Gao, Jinlong; Li, Zhongshan; Ehn, Andreas; Aldén, Marcus; Larsson, Anders; Kusano, Yukihiro

    2014-12-01

    Rapid transition from glow discharge to thermal arc has been a common problem in generating stable high-power non-thermal plasmas especially at ambient conditions. A sustained diffusive gliding arc discharge was generated in a large volume in atmospheric pressure air, driven by an alternating current (AC) power source. The plasma column extended beyond the water-cooled stainless steel electrodes and was stabilized by matching the flow speed of the turbulent air jet with the rated output power. Comprehensive investigations were performed using high-speed movies measured over the plasma column, synchronized with simultaneously recorded current and voltage waveforms. Dynamic details of the novel non-equilibrium discharge are revealed, which is characterized by a sinusoidal current waveform with amplitude stabilized at around 200 mA intermediate between thermal arc and glow discharge, shedding light to the governing mechanism of the sustained spark-suppressed AC gliding arc discharge.

  19. [Dyuamical studies on metabolic chemistry of lignans from seeds of Arctium lappa].

    PubMed

    Zheng, Yi-min; Cai, Shao-xi; Xu, Xiu-ying; Fu, Shan-quan

    2005-08-01

    To study the metabolic chemistry and pharmaco-dynamics characters of ligan from seeds of Arctium lappa. HPLC method was used in the study. The analysis was carried out on C18 column. The mobile phase was CH3CN-0.05% H3PO4 (36:64) with flow-rate at 0.6 mL x min(-1) and wave-length of 210 nm. The column temperature was kept at 25 degrees C. The results indicated that the ligan was detected in plasma and the main organs 5 min after po. The main metabolic production in plasma was arctigenin. In addition, arctigenin and an unknown product were found in metabolic production in the organs. The method was stable,simple and reproducible. It can be used to determine the metabolic product of the ligan. The metabolic chemistry of ligan in plasma was obviously different from that in the main organs.

  20. High-Energy Two-Stage Pulsed Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Markusic, Tom

    2003-01-01

    A high-energy (28 kJ per pulse) two-stage pulsed plasma thruster (MSFC PPT-1) has been constructed and tested. The motivation of this project is to develop a high power (approximately 500 kW), high specific impulse (approximately 10000 s), highly efficient (greater than 50%) thruster for use as primary propulsion in a high power nuclear electric propulsion system. PPT-1 was designed to overcome four negative characteristics which have detracted from the utility of pulsed plasma thrusters: poor electrical efficiency, poor propellant utilization efficiency, electrode erosion, and reliability issues associated with the use of high speed gas valves and high current switches. Traditional PPTs have been plagued with poor efficiency because they have not been operated in a plasma regime that fully exploits the potential benefits of pulsed plasma acceleration by electromagnetic forces. PPTs have generally been used to accelerate low-density plasmas with long current pulses. Operation of thrusters in this plasma regime allows for the development of certain undesirable particle-kinetic effects, such as Hall effect-induced current sheet canting. PPT-1 was designed to propel a highly collisional, dense plasma that has more fluid-like properties and, hence, is more effectively pushed by a magnetic field. The high-density plasma loading into the second stage of the accelerator is achieved through the use of a dense plasma injector (first stage). The injector produces a thermal plasma, derived from a molten lithium propellant feed system, which is subsequently accelerated by the second stage using mega-amp level currents, which eject the plasma at a speed on the order of 100 kilometers per second. Traditional PPTs also suffer from dynamic efficiency losses associated with snowplow loading of distributed neutral propellant. The twostage scheme used in PPT-I allows the propellant to be loaded in a manner which more closely approximates the optimal slug loading. Lithium propellant was chosen to test whether or not the reduced electrode erosion found in the Lithium Lorentz Force Accelerator (LiLFA) could also be realized in a pulsed plasma thruster. The use of the molten lithium dense plasma injector also eliminates the need for a gas valve and electrical switch; the injector design fulfills both roles, and uses no moving parts to provide, in principle, a highly reliable propellant feed and electrical switching system. Experimental results reported in this paper include: second-stage current traces, high-speed photographic and holographic imaging of the thruster exit plume, and internal mapping of the discharge chamber magnetic field from B-dot probe data. The magnetic field data is used to create a two-dimensional description of the evolution of the current sheet inside the thruster.

  1. Oriented immobilized anti-hIgG via F(c) fragment-imprinted PHEMA cryogel for IgG purification.

    PubMed

    Bereli, Nilay; Ertürk, Gizem; Tümer, M Aşkin; Say, Ridvan; Denizli, Adil

    2013-05-01

    Antibodies are used in many applications, especially as diagnostic and therapeutic agents. Among the various techniques used for the purification of antibodies, immunoaffinity chromatography is by far the most common. For this purpose, oriented immobilization of antibodies is an important step for the efficiency of purification step. In this study, F(c) fragment-imprinted poly(hydroxyethyl methacrylate) cryogel (MIP) was prepared for the oriented immobilization of anti-hIgG for IgG purification from human plasma. Non-imprinted poly(hydroxyethyl methacrylate) cryogel (NIP) was also prepared for random immobilization of anti-hIgG to compare the adsorption capacities of oriented (MIP/anti-hIgG) and random (NIP/anti-hIgG) cryogel columns. The amount of immobilized anti-hIgG was 19.8 mg/g for the NIP column and 23.7 mg/g for the MIP column. Although the amount of immobilized anti-hIgG was almost the same for the NIP and MIP columns, IgG adsorption capacity was found to be three times higher than the NIP/anti-hIgG column (29.7 mg/g) for the MIP/anti-hIgG column (86.9 mg/g). Higher IgG adsorption capacity was observed from human plasma (up to 106.4 mg/g) with the MIP/anti-hIgG cryogel column. Adsorbed IgG was eluted using 1.0 M NaCl with a purity of 96.7%. The results obtained here are very encouraging and showed the usability of MIP/anti-hIgG cryogel prepared via imprinting of Fc fragments as an alternative to conventional immunoaffinity techniques for IgG purification. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Simultaneous quantification of soman and VX adducts to butyrylcholinesterase, their aged methylphosphonic acid adduct and butyrylcholinesterase in plasma using an off-column procainamide-gel separation method combined with UHPLC-MS/MS.

    PubMed

    Liu, Chang-Cai; Huang, Gui-Lan; Xi, Hai-Ling; Liu, Shi-Lei; Liu, Jing-Quan; Yu, Hui-Lan; Zhou, Shi-Kun; Liang, Long-Hui; Yuan, Ling

    2016-11-15

    This work describes a novel and sensitive non-isotope dilution method for simultaneous quantification of organophosphorus nerve agents (OPNAs) soman (GD) and VX adducts to butyrylcholinesterase (BChE), their aged methylphosphonic acid (MeP) adduct and unadducted BChE in plasma exposed to OPNA. OPNA-BChE adducts were isolated with an off-column procainamide-gel separation (PGS) from plasma, and then digested with pepsin into specific adducted FGES * AGAAS nonapeptide (NP) biomarkers. The resulting NPs were detected by UHPLC-MS/MS MRM. The off-column PGS method can capture over 90% of BChE, MeP-BChE, VX-BChE and GD-BChE from their respective plasma materials. One newly designed and easily synthesized phosphorylated BChE nonapeptide with one Gly-to-Ala mutation was successfully reported to serve as internal standard instead of traditional isotopically labeled BChE nonapeptide. The linear range of calibration curves were from 1.00-200ngmL -1 for VX-NP, 2.00-200ngmL -1 for GD-NP and MeP-NP (R 2 ≥0.995), and 3.00-200ngmL -1 for BChE NP (R 2 ≥0.990). The inter-day precision had relative standard deviation (%RSD) of <8.89%, and the accuracy ranged between 88.9-120%. The limit of detection was calculated to be 0.411, 0.750, 0.800 and 1.43ngmL -1 for VX-NP, GD-NP, MeP-NP and BChE NP, respectively. OPNA-exposed quality control plasma samples were characterized as part of method validation. Investigation of plasma samples unexposed to OPNA revealed no baseline values or interferences. Using the off-column PGS method combined with UHPLC-MS/MS, VX-NP and GD-NP adducts can be unambiguously detected with high confidence in 0.10ngmL -1 and 0.50ngmL -1 of exposed human plasma respectively, only requiring 0.1mL of plasma sample and taking about four hours without special sample preparation equipment. These improvements make it a simple, sensitive and robust PGS-UHPLC-MS/MS method, and this method will become an attractive alternative to immunomagnetic separation (IMS) method and a useful diagnostic tool for retrospective detection of OPNA exposure with high confidence. Furthermore, using the developed method, the adducted BChE levels from VX and GD-exposed (0.10-100ngmL -1 ) plasma samples were completely characterized, and the fact that VX being more active and specific to BChE than GD was re-confirmed. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Formation of a plasma jet of multiply charged ions in the interaction of a laser plasma with an external pulsed magnetic field

    NASA Astrophysics Data System (ADS)

    Dyakin, V. M.; Pikuz, T. A.; Skobelev, I. Yu; Faenov, A. Ya; Wolowski, J.; Karpinski, L.; Kasperczuk, A.; Pisarczyk, T.

    1994-12-01

    A dense jet of a plasma consisting of multiply charged ions was generated in the interaction of a laser plasma with a strong external axial magnetic field. Images were formed by spectral lines and the soft x-ray spectrum range of the plasma jet was obtained with a large-aperture spectrograph containing a mica crystal bent to form a spherical surface with a radius of R = 10 cm. A tenfold increase in the density of the He-like Mg XI plasma, compared with a freely expanding plasma, was observed at a distance of 5 mm from the target.

  4. Classification of LC columns based on the QSRR method and selectivity toward moclobemide and its metabolites.

    PubMed

    Plenis, Alina; Olędzka, Ilona; Bączek, Tomasz

    2013-05-05

    This paper focuses on a comparative study of the column classification system based on the quantitative structure-retention relationships (QSRR method) and column performance in real biomedical analysis. The assay was carried out for the LC separation of moclobemide and its metabolites in human plasma, using a set of 24 stationary phases. The QSRR models established for the studied stationary phases were compared with the column test performance results under two chemometric techniques - the principal component analysis (PCA) and the hierarchical clustering analysis (HCA). The study confirmed that the stationary phase classes found closely related by the QSRR approach yielded comparable separation for moclobemide and its metabolites. Therefore, the QSRR method could be considered supportive in the selection of a suitable column for the biomedical analysis offering the selection of similar or dissimilar columns with a relatively higher certainty. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Low-threshold parametric excitation of the upper hybrid wave in experiments on electron-cyclotron resonance heating by an ordinary wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sysoeva, E. V., E-mail: tinlit@yandex.ru; Gusakov, E. Z.; Simonchik, L. V.

    2016-07-15

    The possibility of the low-threshold decay of an ordinary wave into an upper hybrid wave localized in a plasma column (or in an axisymmetric plasma filament) and a low-frequency wave is analyzed. It is shown that the threshold for such a decay, accompanied by the excitation of an ion-acoustic wave, can easily be overcome for plasma parameters typical of model experiments on the Granit linear plasma facility.

  6. X-ray emission from high temperature plasmas

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1976-01-01

    The physical processes occurring in plasma focus devices were studied. These devices produce dense high temperature plasmas, which emit X rays of hundreds of KeV energy and one to ten billion neutrons per pulse. The processes in the devices seem related to solar flare phenomena, and would also be of interest for controlled thermonuclear fusion applications. The high intensity, short duration bursts of X rays and neutrons could also possibly be used for pumping nuclear lasers.

  7. A Novel Femtosecond-gated, High-resolution, Frequency-shifted Shearing Interferometry Technique for Probing Pre-plasma Expansion in Ultra-intense Laser Experiments

    DTIC Science & Technology

    2014-07-17

    frequency-shifted shearing interferometry technique for probing pre-plasma expansion in ultra-intense laser experimentsa) Ultra-intense laser -matter...interaction experiments (>1018 W/cm2) with dense targets are highly sensitive to the effect of laser “noise” (in the form of pre-pulses) preceding the...interferometry technique for probing pre- plasma expansion in ultra-intense laser experimentsa) Report Title Ultra-intense laser -matter interaction

  8. Electrical Conductivity of Dense Al, Ti, Fe, Ni, Cu, Mo, Ta, and W Plasmas

    DTIC Science & Technology

    2011-06-01

    for all but tantalum and titanium shows a minimum at approximately 0.01 times solid density, followed by an increase as the density decreases further...internal energy and specific volume. Conductivity is observed to fall as the plasma expands for fixed internal energy, and for all but tantalum and...plasmas formed from elemental metal wires heated rapidly in a water bath by the electric current from discharge of a charged capacitor . Electrical

  9. Intense Excitation Source of Blue-Green Laser.

    DTIC Science & Technology

    1985-10-15

    plasma focus (DPF) can produce intense uv photons (200-300nm) which match the absorption spectra of both near uv and blue green dye lasers (300-400nm...existing blue green dye laser. On the other hand the dense- plasma focus (DPF) with new optical coupling has been designed and constructed. For the...optimization of the DPF device as the uv pumping light source, the velocity of current sheath and the formation of plasma focus have been measured as

  10. A Grazing Incidence Spectrograph as Applied to Vacuum Ultraviolet, Soft X-Ray, Pulsed Plasma Sources.

    DTIC Science & Technology

    A 2.2-meter variable angle of incidence grazing incidence spectrograph is described for photographic recording of spectra down to 10A. Also a method for determining the absolute total fluence from a pulsed plasma source, knowing the absolute sensitivity of the instrument, is described. Spectra are presented from a low-inductance sliding spark gap and a 20-kj dense plasma focus . A program for spectram analysis is included. (Modified author abstract)

  11. Laser Plasma Heating.

    DTIC Science & Technology

    The heating of a plasma by a laser is studied, assuming the classical inverse bremsstrahlung mechanism for transfer of energy from laser photons to electron thermal energy. Emphasis is given to CO2 laser heating of the dense plasma focus (DPF) device. Particular attention is paid to the contribution of impurities to the radiation output of the DPF. A steady-state CORONA model is discussed and used to generate a computer program, CORONA, which calculates species densities as a function of electron temperature. (Author)

  12. Acceleration of Dense Flowing Plasmas using ICRF Power in the VASIMR Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Squire, Jared P.

    2005-09-26

    ICRF power in the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) concept energizes ions (> 100 eV) in a diverging magnetic field to accelerate a dense ({approx} 1019 m-3) flowing plasma to velocities useful for space propulsion ({approx}100 km/s). Theory predicts that an ICRF slow wave launched from the high field side of the resonance will propagate in the magnetic beach to absorb nearly all of the power at the resonance, thus efficiently converting the RF power to ion kinetic energy. The plasma flows through the resonance only once, so the ions are accelerated in a single pass. This process hasmore » proven efficient ({approx} 70%) with an ICRF power level of 1.5 kW at about 3.6 MHz in the VASIMR experiment, VX-30, using deuterium plasma created by a helicon operating in flowing mode. We have measured ICRF plasma loading up to 2 ohms, consistent with computational predictions made using Oak Ridge National Laboratory's EMIR code. Recent helicon power upgrades (20 kW at 13.56 MHz) have enabled a 5 cm diameter target plasma for ICRF with an ion flux of over 3x10 20 s-1 and a high degree of ionization. This paper summarizes our ICRF results and presents the latest helicon developments in VX-30.« less

  13. Theoretical investigation of the ultra-intense laser interaction with plasma mirrors in radiation pressure dominant regime

    NASA Astrophysics Data System (ADS)

    Sonia, Krishna Kumar; Maheshwari, K. P.; Jaiman, N. K.

    2017-05-01

    At laser intensity in the range ~ 1022 -1023W/cm2, the radiation pressure starts to play a key role in the interaction of an intense electromagnetic wave with a dense plasma foil. Depending upon the incident laser intensity, polarization of the incident beam and also on the density of the thin plasma layer the mirror motion may be assumed to be uniform, accelerated, or oscillatory. A solid dense plasma slab, accelerated in the radiation pressure dominant (RPD) regime, can efficiently reflect a counter-propagating relativistically strong source pulse consisting of up-shifted frequency and high harmonics. In this RPD regime we present our numerical results for the frequency and brightness of the reflected radiation from a uniformly moving plasma mirror. Our numerical results show that for the appropriate laser and plasma parameters in the case 2γ < {({n}e{λ }s3)}1/6 there are approximately 8.03 × 1042 photons / (mm2 - mrad2 - sec.-0.1% bandwidth) in the energy range ~ 10keV. In the case when 2γ > {({n}e{λ }s3)}1/6 for the same parameters and ad = 300, λd = 0.8 μm, the brightness is found to be 3.27 × 1034 photons / (mm2 - mrad2 - sec. - 0.1% bandwidth) in the energy range ~100 keV.

  14. Differences in the protein composition of bovine retinal rod outer segment disk and plasma membranes isolated by a ricin-gold-dextran density perturbation method

    PubMed Central

    1987-01-01

    The plasma membrane and disk membranes of bovine retinal rod outer segments (ROS) have been purified by a novel density-gradient perturbation method for analysis of their protein compositions. Purified ROS were treated with neuraminidase to expose galactose residues on plasma membrane-specific glycoproteins and labeled with ricin-gold-dextran particles. After the ROS were lysed in hypotonic buffer, the plasma membrane was dissociated from the disks by either mild trypsin digestion or prolonged exposure to low ionic strength buffer. The dense ricin-gold-dextran-labeled plasma membrane was separated from disks by sucrose gradient centrifugation. Electron microscopy was used to follow this fractionation procedure. The dense red pellet primarily consisted of inverted plasma membrane vesicles containing gold particles; the membrane fraction of density 1.13 g/cc consisted of unlabeled intact disks and vesicles. Ricin-binding studies indicated that the plasma membrane from trypsin-treated ROS was purified between 10-15-fold. The protein composition of plasma membranes and disks was significantly different as analyzed by SDS gels and Western blots labeled with lectins and monoclonal antibodies. ROS plasma membrane exhibited three major proteins of 36 (rhodopsin), 38, and 52 kD, three ricin-binding glycoproteins of 230, 160, and 110 kD, and numerous minor proteins in the range of 14-270 kD. In disk membranes rhodopsin appeared as the only major protein. A 220-kD concanavalin A-binding glycoprotein and peripherin, a rim-specific protein, were also present along with minor proteins of 43 and 57-63 kD. Radioimmune assays indicated that the ROS plasma membrane contained about half as much rhodopsin as disk membranes. PMID:2447095

  15. Hybrid Sargassum-sand sorbent: a novel adsorbent in packed column to treat metal-bearing wastewaters from inductively coupled plasma-optical emission spectrometry.

    PubMed

    Vijayaraghavan, K; Joshi, U M

    2013-01-01

    Laboratory batch and column experiments were carried out to examine the efficiency of algal-based treatment technique to clean-up wastewaters emanating from inductively coupled plasma-optical emission spectrometry (ICP-OES). Chemical characterization revealed the extreme complexity of the wastewater, with the presence of 14 different metals under very low pH (pH = 1.1), high conductivity (6.98 mS/cm), total dissolved solid (4.46 g/L) and salinity (3.77). Batch experiments using Sargassum biomass indicated that it was possible to attain high removal efficiencies at optimum pH of 4.0. Efforts were also made to continuously treat ICP-OES wastewater using up-flow packed column. However, swelling of Sargassum biomass leads to stoppage of column. To address the problem, Sargassum was mixed with sand at a ratio of 40: 60 on volume basis. Remarkably, the hybrid Sargassum-sand sorbent showed very high removal efficiency towards multiple metal ions with the column able to operate for 11 h at a flow rate of 10 mL/min. Metal ions such as Cu, Cd, and Pb were only under trace levels in the treated water until 11 h. The results of the treatment process were compared with trade effluent discharge standards. Further the process evaluation and cost analysis were presented.

  16. Kinetic description of cyclotron-range oscillations of a non-neutral plasma column

    NASA Astrophysics Data System (ADS)

    Neu, S. C.; Morales, G. J.

    1998-04-01

    The kinetic analysis introduced by Prasad, Morales, and Fried [Prasad et al., Phys. Fluids 30, 3093 (1987)] is used to derive damping conditions and a differential equation for azimuthally propagating waves in a non-neutral plasma column in the limits rl/L≪1 and krl≪1 (where rl is the Larmor radius, k is the wave number, and L is the density scale length). The predictions of the kinetic analysis are verified using a two-dimensional particle-in-cell simulation of Bernstein modes in a thermal rigid-rotor equilibrium. Differences between modes in a strongly magnetized limit and near the Brillouin limit are studied in the simulation.

  17. Varying Radii of On-Axis Anode Hollows For kJ-Class Dense Plasma Focus

    NASA Astrophysics Data System (ADS)

    Shaw, Brian; Chapman, Steven; Falabella, Steven; Pankin, Alexei; Liu, Jason; Link, Anthony; Schmidt, Andréa

    2017-10-01

    A dense plasma focus (DPF) is a compact plasma gun that produces high energy ion beams, up to several MeV, through strong potential gradients. Motivated by particle-in-cell simulations, we have tried a series of hollow anodes on our kJ-class DPF. Each anode has varying hollow sizes, and has been studied to optimize ion beam production in Helium, reduce anode sputter, and increase neutron yields in deuterium. We diagnose the rate at which electrode material is ablated and deposited onto nearby surfaces. This is of interest in the case of solid targets, which perform poorly in the presence of sputter. We have found that the larger the hollow radius produces more energetic ion beams, higher neutron yield, and sputter less than a flat top anode. A complete comparison is presented. This work was prepared by LLNL under Contract DE-AC52-07NA27344 and supported by Office of Defense Nuclear Nonproliferation Research and Development within U.S. Department of Energy's National Nuclear Security Administration.

  18. Ionization potential depression in an atomic-solid-plasma picture

    NASA Astrophysics Data System (ADS)

    Rosmej, F. B.

    2018-05-01

    Exotic solid density matter such as heated hollow crystals allow extended material studies while their physical properties and models such as the famous ionization potential depression are presently under renewed controversial discussion. Here we develop an atomic-solid-plasma (ASP) model that permits ionization potential depression studies also for single and multiple core hole states. Numerical calculations show very good agreement with recently available data not only in absolute values but also for Z-scaled properties while currently employed methods fail. For much above solid density compression, the ASP model predicts increased K-edge energies that are related to a Fermi surface rising. This is in good agreement with recent quantum molecular dynamics simulations. For hot dense matter a quantum number dependent optical electron finite temperature ion sphere model is developed that fits well with line shift and line disappearance data from dense laser produced plasma experiments. Finally, the physical transparency of the ASP picture allows a critical discussion of current methods.

  19. Dense Plasma Focus: physics and applications (radiation material science, single-shot disclosure of hidden illegal objects, radiation biology and medicine, etc.)

    NASA Astrophysics Data System (ADS)

    Gribkov, V. A.; Miklaszewski, R.; Paduch, M.; Zielinska, E.; Chernyshova, M.; Pisarczyk, T.; Pimenov, V. N.; Demina, E. V.; Niemela, J.; Crespo, M.-L.; Cicuttin, A.; Tomaszewski, K.; Sadowski, M. J.; Skladnik-Sadowska, E.; Pytel, K.; Zawadka, A.; Giannini, G.; Longo, F.; Talab, A.; Ul'yanenko, S. E.

    2015-03-01

    The paper presents some outcomes obtained during the year of 2013 of the activity in the frame of the International Atomic Energy Agency Co-ordinated research project "Investigations of Materials under High Repetition and Intense Fusion-Relevant Pulses". The main results are related to the effects created at the interaction of powerful pulses of different types of radiation (soft and hard X-rays, hot plasma and fast ion streams, neutrons, etc. generated in Dense Plasma Focus (DPF) facilities) with various materials including those that are counted as perspective ones for their use in future thermonuclear reactors. Besides we discuss phenomena observed at the irradiation of biological test objects. We examine possible applications of nanosecond powerful pulses of neutrons to the aims of nuclear medicine and for disclosure of hidden illegal objects. Special attention is devoted to discussions of a possibility to create extremely large and enormously diminutive DPF devices and probabilities of their use in energetics, medicine and modern electronics.

  20. Development of Fast and Reliable Free-Energy Density Functional Methods for Simulations of Dense Plasmas from Cold- to Hot-Temperature Regimes

    NASA Astrophysics Data System (ADS)

    Karasiev, V. V.

    2017-10-01

    Free-energy density functional theory (DFT) is one of the standard tools in high-energy-density physics used to determine the fundamental properties of dense plasmas, especially in cold and warm regimes when quantum effects are essential. DFT is usually implemented via the orbital-dependent Kohn-Sham (KS) procedure. There are two challenges of conventional implementation: (1) KS computational cost becomes prohibitively expensive at high temperatures; and (2) ground-state exchange-correlation (XC) functionals do not take into account the XC thermal effects. This talk will address both challenges and report details of the formal development of new generalized gradient approximation (GGA) XC free-energy functional which bridges low-temperature (ground state) and high-temperature (plasma) limits. Recent progress on development of functionals for orbital-free DFT as a way to address the second challenge will also be discussed. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  1. Method of forming a plasma sprayed interconnection layer on an electrode of an electrochemical cell

    DOEpatents

    Spengler, Charles J.; Folser, George R.; Vora, Shailesh D.; Kuo, Lewis; Richards, Von L.

    1995-01-01

    A dense, substantially gas-tight, electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO.sub.3 particles doped with an element selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by plasma spraying doped LaCrO.sub.3 powder, preferably compensated with chromium as Cr.sub.2 O.sub.3 and/or dopant element, preferably by plasma arc spraying; and, (C) heating the doped and compensated LaCrO.sub.3 layer to about 1100.degree. C. to 1300.degree. C. to provide a dense, substantially gas-tight, substantially hydration-free, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the unselected portion of the air electrode, and a fuel electrode can be applied to the solid electrolyte, to provide an electrochemical cell.

  2. Method of forming a plasma sprayed interconnection layer on an electrode of an electrochemical cell

    DOEpatents

    Spengler, C.J.; Folser, G.R.; Vora, S.D.; Kuo, L.; Richards, V.L.

    1995-06-20

    A dense, substantially gas-tight, electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO{sub 3} particles doped with an element selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by plasma spraying doped LaCrO{sub 3} powder, preferably compensated with chromium as Cr{sub 2}O{sub 3} and/or dopant element, preferably by plasma arc spraying; and, (C) heating the doped and compensated LaCrO{sub 3} layer to about 1100 C to 1300 C to provide a dense, substantially gas-tight, substantially hydration-free, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the unselected portion of the air electrode, and a fuel electrode can be applied to the solid electrolyte, to provide an electrochemical cell. 6 figs.

  3. Bounds imposed on the sheath velocity of a dense plasma focus by conservation laws and ionization stability condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auluck, S. K. H., E-mail: skhauluck@gmail.com, E-mail: skauluck@barc.gov.in

    2014-09-15

    Experimental data compiled over five decades of dense plasma focus research are consistent with the snowplow model of sheath propagation, based on the hypothetical balance between magnetic pressure driving the plasma into neutral gas ahead and “wind pressure” resisting its motion. The resulting sheath velocity, or the numerically proportional “drive parameter,” is known to be approximately constant for devices optimized for neutron production over 8 decades of capacitor bank energy. This paper shows that the validity of the snowplow hypothesis, with some correction, as well as the non-dependence of sheath velocity on device parameters, have their roots in local conservationmore » laws for mass, momentum, and energy coupled with the ionization stability condition. Both upper and lower bounds on sheath velocity are shown to be related to material constants of the working gas and independent of the device geometry and capacitor bank impedance.« less

  4. Progress Toward Kelvin-Helmholtz instabilities in a High-Energy-Density Plasma on the Nike Laser

    NASA Astrophysics Data System (ADS)

    Harding, E. C.; Drake, R. P.; Aglitskiy, Y.; Dwarkadas, V. V.; Gillespie, R. S.; Grosskopf, M. J.; Huntington, C. M.; Gjeci, N.; Campbell, D. A.; Marion, D. C.

    2007-11-01

    In the realm of high-energy-density (HED) plasmas, there exist three primary hydrodynamic instabilities: Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH). Although the RT and the RM instabilities have been observed in the laboratory, no experiment to our knowledge has cleanly diagnosed the KH instability. While the RT instability results from the acceleration of a more dense fluid into a less dense fluid and the RM instability is due to shock deposited vorticity onto an interface, the KH instability is driven by a lifting force generated by velocity shear at a perturbed fluid interface. Understanding the KH instability mechanism in HED plasmas will provide essential insight into detailed RT-spike development, mass stripping, many astrophysical processes, as well as laying the groundwork for future transition to turbulence experiments. We present 2D simulations and data from our initial attempts to create a pure KH system using the Nike laser at the Naval Research Laboratory.

  5. ALEGRA-HEDP simulations of the dense plasma focus.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flicker, Dawn G.; Kueny, Christopher S.; Rose, David V.

    We have carried out 2D simulations of three dense plasma focus (DPF) devices using the ALEGRA-HEDP code and validated the results against experiments. The three devices included two Mather-type machines described by Bernard et. al. and the Tallboy device currently in operation at NSTec in North Las Vegas. We present simulation results and compare to detailed plasma measurements for one Bernard device and to current and neutron yields for all three. We also describe a new ALEGRA capability to import data from particle-in-cell calculations of initial gas breakdown, which will allow the first ever simulations of DPF operation from themore » beginning of the voltage discharge to the pinch phase for arbitrary operating conditions and without assumptions about the early sheath structure. The next step in understanding DPF pinch physics must be three-dimensional modeling of conditions going into the pinch, and we have just launched our first 3D simulation of the best-diagnosed Bernard device.« less

  6. A new restricted access molecularly imprinted polymer capped with albumin for direct extraction of drugs from biological matrices: the case of chlorpromazine in human plasma.

    PubMed

    de Oliveira Isac Moraes, Gabriel; da Silva, Larissa Meirelles Rodrigues; dos Santos-Neto, Alvaro José; Florenzano, Fábio Herbst; Figueiredo, Eduardo Costa

    2013-09-01

    A new restricted access molecularly imprinted polymer coated with bovine serum albumin (RAMIP-BSA) was developed, characterized, and used for direct analysis of chlorpromazine in human plasma samples. The RAMIP-BSA was synthesized using chlorpromazine, methacrylic acid, and ethylene glycol dimethacrylate as template, functional monomer, and cross-linker, respectively. Glycerol dimethacrylate and hydroxy methyl methacrylate were used to promote a hydrophilic surface (high density of hydroxyl groups). Afterward, the polymer was coated with BSA using glutaraldehyde as cross-linker, resulting in a protein chemical shield around it. The material was able to eliminate ca. 99% of protein when a 44-mg mL(-1) BSA aqueous solution was passed through it. The RAMIP-BSA was packed in a column and used for direct analysis of chlorpromazine in human plasma samples in an online column switching high-performance liquid chromatography system. The analytical calibration curve was prepared in a pool of human plasma samples with chlorpromazine concentrations ranging from 30 to 350 μg L(-1). The correlation coefficient obtained was 0.995 and the limit of quantification was 30 μg L(-1). Intra-day and inter-day precision and accuracy presented variation coefficients and relative errors lower than 15% and within -15 and 15%, respectively. The sample throughput was 3 h(-1) (sample preparation and chromatographic analysis steps) and the same RAMIP-BSA column was efficiently used for about 90 cycles.

  7. WDM production with intense relativistic electrons

    NASA Astrophysics Data System (ADS)

    Coleman, Josh; Andrews, Heather; Klasky, Mark; Colgan, James; Burris-Mog, Trevor; Creveling, Dan; Miller, Craig; Welch, Dale; Berninger, Mike

    2016-10-01

    The production of warm dense matter (WDM) through collisional heating with intense relativistic electrons is underway. A 100-ns-long monochromatic bunch of electrons with energies of 19.1-19.8 MeV and currents of 0.2-1.7 kA is used to heat 100- μm-thick foils with Z <29. The principal objective of these experiments is to develop a controlled method of measuring the equation of state with particle beams and benchmark numerical models. Measurements indicate the formation of a warm dense plasma near the end of the pulse, which is on the order of the beam size. These plasmas expand 5 mm in the first microsecond and slow down to <0.5 mm/ μs over the next 10 μs. These plasmas also produce both emitted and absorbed spectra amongst a continuum for Ti, Fe, and Cu. Cu-I spectra is dominated by stark broadening, indicating a cool plasma with ne >1018 cm-3. At these densities our plasma is collisionally dominated making it possible to spectrally model the density and temperature in LTE. Preliminary density gradient measurements will also be presented indicating the spatial extent of the solid density cutoff. This work was supported by the National Nuclear Se- curity Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396.

  8. Electron beam generation in the turbulent plasma of Z-pinch discharges

    NASA Astrophysics Data System (ADS)

    Vikhrev, Victor V.; Baronova, Elena O.

    1997-05-01

    Numerical modeling of the process of electron beam generation in z-pinch discharges are presented. The proposed model represents the electron beam generation under turbulent plasma conditions. Strong current distribution inhomogeneity in the plasma column has been accounted for the adequate generation process investigation. Electron beam is generated near the maximum of compression due to run away mechanism and it is not related with the current break effect.

  9. Broad ion energy distributions in helicon wave-coupled helium plasma

    NASA Astrophysics Data System (ADS)

    Woller, K. B.; Whyte, D. G.; Wright, G. M.

    2017-05-01

    Helium ion energy distributions were measured in helicon wave-coupled plasmas of the dynamics of ion implantation and sputtering of surface experiment using a retarding field energy analyzer. The shape of the energy distribution is a double-peak, characteristic of radiofrequency plasma potential modulation. The broad distribution is located within a radius of 0.8 cm, while the quartz tube of the plasma source has an inner radius of 2.2 cm. The ion energy distribution rapidly changes from a double-peak to a single peak in the radius range of 0.7-0.9 cm. The average ion energy is approximately uniform across the plasma column including the double-peak and single peak regions. The widths of the broad distribution, ΔE , in the wave-coupled mode are large compared to the time-averaged ion energy, ⟨E ⟩. On the axis (r = 0), ΔE / ⟨E ⟩ ≲ 3.4, and at a radius near the edge of the plasma column (r = 2.2 cm), ΔE / ⟨E ⟩ ˜ 1.2. The discharge parameter space is scanned to investigate the effects of the magnetic field, input power, and chamber fill pressure on the wave-coupled mode that exhibits the sharp radial variation in the ion energy distribution.

  10. Atomistic study of mixing at high Z / low Z interfaces at Warm Dense Matter Conditions

    NASA Astrophysics Data System (ADS)

    Haxhimali, Tomorr; Glosli, James; Rudd, Robert; Lawrence Livermore National Laboratory Team

    2016-10-01

    We use atomistic simulations to study different aspects of mixing occurring at an initially sharp interface of high Z and low Z plasmas in the Warm/Hot Dense Matter regime. We consider a system of Diamond (the low Z component) in contact with Ag (the high Z component), which undergoes rapid isochoric heating from room temperature up to 10 eV, rapidly changing the solids into warm dense matter at solid density. We simulate the motion of ions via the screened Coulomb potential. The electric field, the electron density and ionizations level are computed on the fly by solving Poisson equation. The spatially varying screening lengths computed from the electron cloud are included in this effective interaction; the electrons are not simulated explicitly. We compute the electric field generated at the Ag-C interface as well as the dynamics of the ions during the mixing process occurring at the plasma interface. Preliminary results indicate an anomalous transport of high Z ions (Ag) into the low Z component (C); a phenomenon that is partially related to the enhanced transport of ions due to the generated electric field. These results are in agreement with recent experimental observation on Au-diamond plasma interface. This work was performed under the auspices of the US Dept. of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344.

  11. Monte Carlo simulation of neutron backscattering from concrete walls in the dense plasma focus laboratory of Bologna University.

    PubMed

    Frignani, M; Mostacci, D; Rocchi, F; Sumini, M

    2005-01-01

    Between 2001 and 2003 a 3.2 kJ dense plasma focus (DPF) device has been built at the Montecuccolino Laboratory of the Department of Energy, Nuclear and Environmental Control Engineering (DIENCA) of the University of Bologna. A DPF is a pulsed device in which deuterium nuclear fusion reactions can be obtained through the pinching effects of electromagnetic fields upon a dense plasma. The empirical scale law that governs the total D-D neutron yield from a single pulse of a DPF predicts for this machine a figure of approximately 10(7) fast neutrons per shot. The aim of the present work is to evaluate the role of backscattering of neutrons from the concrete walls surrounding the Montecuccolino DPF in total neutron yield measurements. The evaluation is performed by MCNP-5 simulations that are aimed at estimating the neutron spectra at a few points of interest in the laboratory, where neutron detectors will be placed during the experimental campaigns. Spectral information from the simulations is essential because the response of detectors is influenced by neutron energy. Comparisons are made with the simple r(-2) law, which holds for a DPF in infinite vacuum. The results from the simulations will ultimately be used both in the design and optimisation of the neutron detectors and in their final calibration and placement inside the laboratory.

  12. Analysis of staged Z-pinch implosion trajectories from experiments on Zebra

    NASA Astrophysics Data System (ADS)

    Ross, Mike P.; Conti, F.; Darling, T. W.; Ruskov, E.; Valenzuela, J.; Wessel, F. J.; Beg, F.; Narkis, J.; Rahman, H. U.

    2017-10-01

    The Staged Z-pinch plasma confinement concept relies on compressing an annular liner of high-Z plasma onto a target plasma column of deuterium fuel. The interface between the liner and target is stable against the Magneto-Rayleigh-Taylor Instability, which leads to effective fuel compression and makes the concept interesting as a potential fusion reactor. The liner initiates as a neutral gas puff, while the target plasma is a partially ionized (Zeff < 10 percent column ejected from a coaxial plasma gun. The Zebra pulsed power generator (1 MA peak current, 100 ns rise time) provides the discharge that ionizes the liner and drives the Z-pinch implosion. Diverse diagnostics observe the 100-300 km/s implosions including silicon diodes, photo-conducting detectors (PCDs), laser shadowgraphy, an XUV framing camera, and a visible streak camera. The imaging diagnostics track instabilities smaller than 0.1 mm, and Z-pinch diameters below 2.5 mm are seen at peak compression. This poster correlates the data from these diagnostics to elucidate implosion behavior dependencies on liner gas, liner pressure, target pressure, and applied, axial-magnetic field. Funded by the Advanced Research Projects Agency - Energy, DE-AR0000569.

  13. Dense blocks of energetic ions driven by multi-petawatt lasers

    PubMed Central

    Weng, S. M.; Liu, M.; Sheng, Z. M.; Murakami, M.; Chen, M.; Yu, L. L.; Zhang, J.

    2016-01-01

    Laser-driven ion accelerators have the advantages of compact size, high density, and short bunch duration over conventional accelerators. Nevertheless, it is still challenging to simultaneously enhance the yield and quality of laser-driven ion beams for practical applications. Here we propose a scheme to address this challenge via the use of emerging multi-petawatt lasers and a density-modulated target. The density-modulated target permits its ions to be uniformly accelerated as a dense block by laser radiation pressure. In addition, the beam quality of the accelerated ions is remarkably improved by embedding the target in a thick enough substrate, which suppresses hot electron refluxing and thus alleviates plasma heating. Particle-in-cell simulations demonstrate that almost all ions in a solid-density plasma of a few microns can be uniformly accelerated to about 25% of the speed of light by a laser pulse at an intensity around 1022 W/cm2. The resulting dense block of energetic ions may drive fusion ignition and more generally create matter with unprecedented high energy density. PMID:26924793

  14. The effect of shear flow and the density gradient on the Weibel instability growth rate in the dense plasma

    NASA Astrophysics Data System (ADS)

    Amininasab, S.; Sadighi-Bonabi, R.; Khodadadi Azadboni, F.

    2018-02-01

    Shear stress effect has been often neglected in calculation of the Weibel instability growth rate in laser-plasma interactions. In the present work, the role of the shear stress in the Weibel instability growth rate in the dense plasma with density gradient is explored. By increasing the density gradient, the shear stress threshold is increasing and the range of the propagation angles of growing modes is limited. Therefore, by increasing steps of the density gradient plasma near the relativistic electron beam-emitting region, the Weibel instability occurs at a higher stress flow. Calculations show that the minimum value of the stress rate threshold for linear polarization is greater than that of circular polarization. The Wiebel instability growth rate for linear polarization is 18.3 times circular polarization. One sees that for increasing stress and density gradient effects, there are smaller maximal growth rates for the range of the propagation angles of growing modes /π 2 < θ m i n < π and /3 π 2 < θ m i n < 2 π in circular polarized plasma and for /k c ω p < 4 in linear polarized plasma. Therefore, the shear stress and density gradient tend to stabilize the Weibel instability for /k c ω p < 4 in linear polarized plasma. Also, the shear stress and density gradient tend to stabilize the Weibel instability for the range of the propagation angles of growing modes /π 2 < θ m i n < π and /3 π 2 < θ m i n < 2 π in circular polarized plasma.

  15. Regulated bioanalysis of conformers - A case study with ASP2151 in dog plasma and urine.

    PubMed

    Ohtsu, Yoshiaki; Otsuka, Shohei; Nakamura, Takeshi; Noguchi, Kiyoshi

    2015-08-01

    We developed and validated bioanalytical methods for a potent helicase-primase inhibitor ASP2151 that has two conformers. These conformers elute as unseparated broad peaks under ordinary high-performance liquid chromatographic conditions, indicating discernable differences in hydrophobicity. We observed that column temperature and mobile phase pH have no effect on these peaks and that conformers form a single symmetrical peak when tetrahydrofuran is added to the mobile phase. In addition, we needed to develop semi-automated methods where inter-conversion of the conformers is unlikely to cause sample-to-sample extraction variability. Briefly, following the addition of deuterium-labeled ASP2151 as an internal standard (IS), dog plasma samples or acetonitrile-added urine samples were filtrated. The filtrates were then injected into a column-switching liquid chromatography-tandem mass spectrometry (LC-MS/MS) system and trapped onto an extraction column. Extracts were back-flushed onto an analytical C18 column (4.6×50mm, 3μm) with a mobile phase consisting of methanol, tetrahydrofuran, and 20mmol/L ammonium acetate (45:5:50, v/v/v). The eluent was monitored in the negative atmospheric pressure chemical ionization mode. The calibration curve was linear over a range of 5-1000ng/mL for plasma and 0.5-100μg/mL for urine. Validation data met the acceptance criteria in accordance with regulatory guidance and demonstrated that these methods were selective, accurate, and reproducible. In addition, the present methods were successfully applied to a pharmacokinetic study in dogs. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Sensitive determination of four tetracycline antibiotics in pig plasma by field-amplified sample stacking open-tubular capillary electrochromatography with dimethylethanolamine aminated polychloromethyl styrene nano-latex coated capillary column.

    PubMed

    Guo, Yaxiao; Meng, Lei; Zhang, Yanhao; Tang, Wei; Zhang, Wenfen; Xia, Yan; Ban, Fuguo; Wu, Ningpeng; Zhang, Shusheng

    2013-12-30

    This paper described the preparation and application of a new dimethylethanolamine aminated polychloromethyl styrene nano-latex (DMEAPL) coated capillary column (ccc-DMEAPL) in the determination of four tetracycline antibiotics (TCA) including tetracycline (TC), oxytetracycline (OTC), doxycycline (DC) and chlorotetracycline (CTC) in pig plasma. The ccc-DMEAPL column was characterized with steady EOF values of ca. 1.5-5.2×10(-5)cm(2)/Vs at pH 1.8-6.3. The optimized conditions for field-amplified sample stacking open-tubular capillary electrochromatography (FASS-OT-CEC) were as following: background electrolyte, 10mmol/L Na2HPO4+15mmol/L citric acid (pH 3.2); ccc-DMEAPL, 50μm i.d.×50cm (effective length 41.5cm), separation voltage, 18kV; column temperature, 25°C; UV detection wavelength, 270nm; water-plug injection: 30mbar×10s; sample electrokinetic injection, 10kV×20s. The four TCA were extracted with the solution of 10mmol/L Na2HPO4+15mmol/L citric acid+4g/L EDTA-2Na (pH 3.2). The FASS-OT-CEC method was validated in terms of linearity, sensitivity, selectivity, precision and accuracy. The LODs ranged from 3 to 7ng/mL, the recoveries for the four TCA were all more than 80%. The developed method was successfully applied for the determination of TCs in the actual pig plasma samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Impact of Relativistic Electron Beam on Hole Acoustic Instability in Quantum Semiconductor Plasmas

    NASA Astrophysics Data System (ADS)

    Siddique, M.; Jamil, M.; Rasheed, A.; Areeb, F.; Javed, Asif; Sumera, P.

    2018-01-01

    We studied the influence of the classical relativistic beam of electrons on the hole acoustic wave (HAW) instability exciting in the semiconductor quantum plasmas. We conducted this study by using the quantum-hydrodynamic model of dense plasmas, incorporating the quantum effects of semiconductor plasma species which include degeneracy pressure, exchange-correlation potential and Bohm potential. Analysis of the quantum characteristics of semiconductor plasma species along with relativistic effect of beam electrons on the dispersion relation of the HAW is given in detail qualitatively and quantitatively by plotting them numerically. It is worth mentioning that the relativistic electron beam (REB) stabilises the HAWs exciting in semiconductor (GaAs) degenerate plasma.

  18. Potential of mean force for electrical conductivity of dense plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starrett, C. E.

    The electrical conductivity in dense plasmas can be calculated with the relaxation-time approximation provided that the interaction potential between the scattering electron and the ion is known. To date there has been considerable uncertainty as to the best way to define this interaction potential so that it correctly includes the effects of ionic structure, screening by electrons and partial ionization. The current approximations lead to significantly different results with varying levels of agreement when compared to bench-mark calculations and experiments. Here, we present a new way to define this potential, drawing on ideas from classical fluid theory to define amore » potential of mean force. This new potential results in significantly improved agreement with experiments and bench-mark calculations, and includes all the aforementioned physics self-consistently.« less

  19. Leveraging extreme laser-driven magnetic fields for gamma-ray generation and pair production

    NASA Astrophysics Data System (ADS)

    Jansen, O.; Wang, T.; Stark, D. J.; d’Humières, E.; Toncian, T.; Arefiev, A. V.

    2018-05-01

    The ability of an intense laser pulse to propagate in a classically over-critical plasma through the phenomenon of relativistic transparency is shown to facilitate the generation of strong plasma magnetic fields. Particle-in-cell simulations demonstrate that these fields significantly enhance the radiation rates of the laser-irradiated electrons, and furthermore they collimate the emission so that a directed and dense beam of multi-MeV gamma-rays is achievable. This capability can be exploited for electron–positron pair production via the linear Breit–Wheeler process by colliding two such dense beams. Presented simulations show that more than 103 pairs can be produced in such a setup, and the directionality of the positrons can be controlled by the angle of incidence between the beams.

  20. Potential of mean force for electrical conductivity of dense plasmas

    DOE PAGES

    Starrett, C. E.

    2017-09-28

    The electrical conductivity in dense plasmas can be calculated with the relaxation-time approximation provided that the interaction potential between the scattering electron and the ion is known. To date there has been considerable uncertainty as to the best way to define this interaction potential so that it correctly includes the effects of ionic structure, screening by electrons and partial ionization. The current approximations lead to significantly different results with varying levels of agreement when compared to bench-mark calculations and experiments. Here, we present a new way to define this potential, drawing on ideas from classical fluid theory to define amore » potential of mean force. This new potential results in significantly improved agreement with experiments and bench-mark calculations, and includes all the aforementioned physics self-consistently.« less

  1. Dissipative quantum hydrodynamics model of x-ray Thomson scattering in dense plasmas

    NASA Astrophysics Data System (ADS)

    Diaw, Abdourahmane; Murillo, Michael

    2017-10-01

    X-ray Thomson scattering (XRTS) provides detailed diagnostic information about dense plasma experiments. The inferences made rely on an accurate model for the form factor, which is typically expressed in terms of a well-known response function. Here, we develop an alternate approach based on quantum hydrodynamics using a viscous form of dynamical density functional theory. This approach is shown to include the equation of state self-consistently, including sum rules, as well as irreversibility arising from collisions. This framework is used to generate a model for the scattering spectrum, and it offers an avenue for measuring hydrodynamic properties, such as transport coefficients, using XRTS. This work was supported by the Air Force Office of Scientific Research (Grant No. FA9550-12-1-0344).

  2. Fast and accurate quantum molecular dynamics of dense plasmas across temperature regimes

    DOE PAGES

    Sjostrom, Travis; Daligault, Jerome

    2014-10-10

    Here, we develop and implement a new quantum molecular dynamics approximation that allows fast and accurate simulations of dense plasmas from cold to hot conditions. The method is based on a carefully designed orbital-free implementation of density functional theory. The results for hydrogen and aluminum are in very good agreement with Kohn-Sham (orbital-based) density functional theory and path integral Monte Carlo calculations for microscopic features such as the electron density as well as the equation of state. The present approach does not scale with temperature and hence extends to higher temperatures than is accessible in the Kohn-Sham method and lowermore » temperatures than is accessible by path integral Monte Carlo calculations, while being significantly less computationally expensive than either of those two methods.« less

  3. Quantum statistical mechanics of dense partially ionized hydrogen.

    NASA Technical Reports Server (NTRS)

    Dewitt, H. E.; Rogers, F. J.

    1972-01-01

    The theory of dense hydrogenic plasmas beginning with the two component quantum grand partition function is reviewed. It is shown that ionization equilibrium and molecular dissociation equilibrium can be treated in the same manner with proper consideration of all two-body states. A quantum perturbation expansion is used to give an accurate calculation of the equation of state of the gas for any degree of dissociation and ionization. In this theory, the effective interaction between any two charges is the dynamic screened potential obtained from the plasma dielectric function. We make the static approximation; and we carry out detailed numerical calculations with the bound and scattering states of the Debye potential, using the Beth-Uhlenbeck form of the quantum second virial coefficient. We compare our results with calculations from the Saha equation.

  4. Synthesis of dense yttrium-stabilised hafnia pellets for nuclear applications by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Tyrpekl, Vaclav; Holzhäuser, Michael; Hein, Herwin; Vigier, Jean-Francois; Somers, Joseph; Svora, Petr

    2014-11-01

    Dense yttrium-stabilised hafnia pellets (91.35 wt.% HfO2 and 8.65 wt.% Y2O3) were prepared by spark plasma sintering consolidation of micro-beads synthesised by the "external gelation" sol-gel technique. This technique allows a preparation of HfO2-Y2O3 beads with homogenous yttria-hafnia solid solution. A sintering time of 5 min at 1600 °C was sufficient to produce high density pellets (over 90% of the theoretical density) with significant reproducibility. The pellets have been machined in a lathe to the correct dimensions for use as neutron absorbers in an experimental test irradiation in the High Flux Reactor (HFR) in Petten, Holland, in order to investigate the safety of americium based nuclear fuels.

  5. Potential of mean force for electrical conductivity of dense plasmas

    NASA Astrophysics Data System (ADS)

    Starrett, C. E.

    2017-12-01

    The electrical conductivity in dense plasmas can be calculated with the relaxation-time approximation provided that the interaction potential between the scattering electron and the ion is known. To date there has been considerable uncertainty as to the best way to define this interaction potential so that it correctly includes the effects of ionic structure, screening by electrons and partial ionization. Current approximations lead to significantly different results with varying levels of agreement when compared to bench-mark calculations and experiments. We present a new way to define this potential, drawing on ideas from classical fluid theory to define a potential of mean force. This new potential results in significantly improved agreement with experiments and bench-mark calculations, and includes all the aforementioned physics self-consistently.

  6. Thermal and wind-driven water motions in vegetated waters and their role in greenhouse gas fluxes

    NASA Astrophysics Data System (ADS)

    Poindexter, C.; Variano, E. A.

    2016-12-01

    The relative importance of different methane transport pathways in wetlands can impact total wetland methane fluxes. The transport of methane and other gases through the water column is affected by a variety of forces. We investigate the role of wind- and thermally-driven water motions in greenhouse gas fluxes in a freshwater marsh and a rice field using in situ velocity measurements in combination with gas transfer velocity models. We measure velocity using an Acoustic Doppler velocimeter, correcting for instrument generated velocities, and a Volumetric Particle Imager. These measurements indicate the presence of wind-driven motions in the wetland water column located below a dense 3-m emergent vegetation canopy. In the rice field's water column, velocity data suggest the occurrence of thermal convection. Results from these in-situ velocity measurements correspond with the non-negligible gas transfer velocities we predict via semi-empirical models. This underscores the importance of hydrodynamics to greenhouse gas fluxes even in shallow, vegetated inland waters.

  7. SPQR II: A beam-plasma interaction experiment

    NASA Astrophysics Data System (ADS)

    Bimbot, R.; Della-Negra, S.; Gardès, D.; Rivet, M. F.; Fleurier, C.; Dumax, B.; Hoffman, D. H. H.; Weyrich, K.; Deutsch, C.; Maynard, G.

    1986-01-01

    SPQR II is an interaction experiment designed to probe energy -and charge-exchange of Cn+ ions at 2 MeV/a.m.u., flowing through a fully ionized plasma column of hydrogen with nℓ=1019 e-cm-2 at T=5 eV. One expects a factor of two enhanced stopping over the cold gas case.

  8. Venus' nighttime horizontal plasma flow, 'magnetic congestion', and ionospheric hole production

    NASA Technical Reports Server (NTRS)

    Grebowsky, J. M.; Mayr, H. G.; Curtis, S. A.; Taylor, H. A., Jr.

    1983-01-01

    A simple rectilinear, two-dimensional MHD model is used to investigate the effects of field-aligned plasma loss and cooling on a dense plasma convecting across a weak magnetic field, in order to illumine the Venus nighttime phenomena of horizontal plasma flow, magnetic congestion and ionospheric hole production. By parameterizing field-aligned variations and explicitly solving for cross magnetic field variations, it is shown that the abrupt horizontal enhancements of the vertical magnetic field, as well as sudden decreases of the plasma density to very low values (which are characteristic of ionospheric holes), can be produced in the presence of field-aligned losses.

  9. Effects of Io ejecta on Europa

    NASA Astrophysics Data System (ADS)

    Eviatar, A.; Siscoe, G. L.; Johnson, T. V.; Matson, D. L.

    1981-07-01

    The effects of plasma ejected from Io on the nature and evolution of the surface of Europa and on the relative importance of the roles played by the two satellites in the Jupiter magnetosphere are examined. Observations of an ultraviolet absorption feature on the trailing side of Europa are interpreted as due to an equilibrium column density of SO2 in a steady-state model of the implantation of iogenic ions into the surface of Europa and their subsequent sputtering. The observed sulfur column density of 2 x 10 to the 16th/sq cm implies a slow loss of material from Europa, mainly water ice, and indicates that the spectrum of particles sputtered is soft. Considerations of the comparative roles of corotating and energetic heavy ions are shown to suggest that the implantation and sputtering is primarily the result of the proton and light ion component of the plasma. The weakness of Europa as a plasma source resulting from the soft sputtered particle spectrum thus leads to the dominance of Io in contributing to the magnetospheric plasma.

  10. Isoflavone-free soy protein prepared by column chromatography reduces plasma cholesterol in rats.

    PubMed

    Fukui, Kensuke; Tachibana, Nobuhiko; Wanezaki, Satoshi; Tsuzaki, Shinichi; Takamatsu, Kiyoharu; Yamamoto, Takashi; Hashimoto, Yukio; Shimoda, Tadahisa

    2002-09-25

    To know whether isoflavones are responsible for the hypocholesterolemic effect of soy protein, the effect on plasma cholesterol of isoflavone-free soy protein prepared by column chromatography was examined in rats. Five-week-old male Sprague-Dawley rats were fed cholesterol-enriched AIN-93G diets containing either 20% casein (CAS), 20% soy protein isolate (SPI), 20% isoflavone-free SPI (IF-SPI), 19.7% IF-SPI + 0.3% isoflavone-rich fraction (isoflavone concentrate, IC), or 20% CAS + 0.3% IC for 2 weeks. Plasma total cholesterol concentrations of rats fed SPI and IF-SPI were comparable and were significantly lower than that of rats fed CAS. The addition of IC to the CAS and IF-SPI did not influence plasma cholesterol level. Fecal steroid excretion of the three SPI groups was higher than that of the two CAS groups, whereas the addition of IC showed no effect. Thus, a significant fraction of the cholesterol-lowering effect of SPI in rats can be attributed to the protein content, but the isoflavones and other minor constituents may also play a role.

  11. Direct-injection HPLC method of measuring micafungin in human plasma using a novel hydrophobic/hydrophilic hybrid ODS column.

    PubMed

    Uranishi, Hiroaki; Nakamura, Mitsuhiro; Nakamura, Hiroki; Ikeda, Yukari; Otsuka, Mayuko; Kato, Zenichiro; Tsuchiya, Teruo

    2011-04-15

    A direct-injection HPLC-based method has been developed for determining amounts of micafungin in human plasma using a novel hydrophobic/hydrophilic hybrid ODS column. The method is easy to perform and requires only 10 μL of a filtered plasma sample. The chromatographic separations were carried out with a gradient mode. The fluorescence detection wavelengths of excitation and emission were set at 273 nm and 464 nm, respectively. Retention times for micafungin and IS were 22.4 and 23.7 min, respectively. Micafungin and FR195743 (IS) peaks were completely separated with little tailing, and no interference was observed. The calibration curve of micafungin showed good linearity in the range of 0.5-20.0 μg/mL (r(2)=1.00). The intra-day accuracy ranged from -4.5 to 5.3%. The inter-day accuracy ranged from -9.8 to 1.5%. The precisions were less than 10%. This method is useful for the determination of micafungin in human plasma. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Tailoring the charged particle fluxes across the target surface of Magnum-PSI

    NASA Astrophysics Data System (ADS)

    Costin, C.; Anita, V.; Popa, G.; Scholten, J.; De Temmerman, G.

    2016-04-01

    Linear plasma generators are plasma devices designed to study fusion-relevant plasma-surface interactions. The first requirement for such devices is to operate with adjustable and well characterized plasma parameters. In the linear plasma device Magnum-PSI, the distribution of the charged particle flux across the target surface can be tailored by the target bias. The process is based on the radial inhomogeneity of the plasma column and it is evidenced by electrical measurements via a 2D multi-probe system installed as target. Typical results are reported for a hydrogen discharge operated at 125 A and confined by a magnetic field strength of 0.95 T in the middle of the coils. The probes were biased in the range of  -80 to  -25 V, while the floating potential of the target was about  -35 V. The results were obtained in steady-state regime of Magnum-PSI, being time-averaged over any type of fluctuations. Depending on the relative value of the target bias voltage with respect to the local floating potential in the plasma column, the entire target surface can be exposed to ion or electron dominated flux, respectively, or it can be divided into two adjacent zones: one exposed to electron flux and the other to ion flux. As a consequence of this effect, a floating conductive surface that interacts with an inhomogeneous plasma is exposed to non-zero local currents despite its overall null current and it is subjected to internal current flows.

  13. Saha equation, single and two particle states

    NASA Technical Reports Server (NTRS)

    Kraeft, W. D.; Girardeau, M. D.; Strege, B.

    1990-01-01

    Single- and two-particle properties in a dense plasma are discussed in connection with their role in the mass action law for a partially ionized plasma. The two-particle-bound states are nearly density independent, while the continuum is essentially shifted. The single-particle states are damped, and their energy has a negative shift and a parabolic behavior for small momenta.

  14. Central structure of low-n Balmer lines in dense plasmas

    NASA Technical Reports Server (NTRS)

    Hey, J. D.; Griem, H. R.

    1975-01-01

    The investigation reported is concerned with disagreements between the computations of Kepple and Griem (1968) and the results of calculations based upon the 'unified theory' proposed by Vidal et al. (1973). Experiments were conducted with a high-pressure electromagnetically driven shock tube as the plasma source. The diagnostic methods used are discussed along with the experimental results and their significance.

  15. Sensitive Detection of α-Conotoxin GI in Human Plasma Using a Solid-Phase Extraction Column and LC-MS/MS.

    PubMed

    Yu, Shuo; Yang, Bo; Yan, Liangping; Dai, Qiuyun

    2017-07-28

    α-conotoxin GI, a short peptide toxin in the venom of Conus geographus , is composed of 13 amino acids and two disulfide bonds. It is the most toxic component of Conus geographus venom with estimated lethal doses of 0.029-0.038 mg/kg for humans. There is currently no reported analytical method for this toxin. In the present study, a sensitive detection method was developed to quantify GI in human plasma using a solid-phase extraction (SPE) column (polystyrene-divinyl benzene copolymer) combined with liquid chromatography/electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) in the multiple reaction monitoring (MRM) mode. The plasma samples were treated with a protein precipitating solvent (methanol: acetonitrile = 50:50, v / v ). GI in the solvent was efficiently extracted with an SPE column and was further separated by a Grace Alltima HP C 18 (50 × 2.1 mm, 5 μm) column at a flow rate of 0.4 mL/min. Water (with 2% methanol) acetonitrile (with 0.1% acetic acid) was selected as the mobile phase combination used in a linear gradient system. α-Conotoxin GI was analyzed by an API 4000 triple quadrupole mass spectrometer. In the method validation, the linear calibration curve in the range of 2.0 to 300.0 ng/mL had correlation coefficients ( r ) above 0.996. The recovery was 57.6-66.8% for GI and the internal standard. The lower limit of quantification (LLOQ) was 2 ng/mL. The intra- and inter-batch precisions were below 6.31% and 8.61%, respectively, and the accuracies were all within acceptance. GI was stable in a bench-top autosampler through long-term storage and freeze/thaw cycles. Therefore, this method is specific, sensitive and reliable for quantitative analysis of α-conotoxin GI in human plasma.

  16. Improved long-term electrical stability of pulsed high-power diodes using dense carbon fiber velvet cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang Jie; Shu Ting; Wang Hui

    2012-07-15

    The influence of fibrous velvet cathodes on the electrical stability of a planar high-power diode powered by a {approx}230 kV, {approx}110 ns pulse has been investigated. The current density was on the order of {approx}123 A/cm{sup 2}. A combination of time-resolved electrical and optical diagnostics has been employed to study the basic phenomenology of the temporal and spatial evolution of the diode plasmas. Additionally, an impedance model was used to extract information about this plasma from voltage and current profiles. The results from the two diagnostics were compared. By comparison with commercial polymer velvet cathode, the dense carbon fiber velvetmore » cathode showed superior long-term electrical stability as judged by the change in cathode turn-on field, ignition delays, diode impedance, and surface plasma characteristics during the voltage flattop, a promising result for applications where reliable operation at high power is required. Finally, it was shown that the interaction of the electron beam with the stainless steel anode did not lead to the formation of anode plasma. These results may be of interest to the high power microwave systems with cold cathodes.« less

  17. Using Perturbed QR Factorizations To Solve Linear Least-Squares Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avron, Haim; Ng, Esmond G.; Toledo, Sivan

    2008-03-21

    We propose and analyze a new tool to help solve sparse linear least-squares problems min{sub x} {parallel}Ax-b{parallel}{sub 2}. Our method is based on a sparse QR factorization of a low-rank perturbation {cflx A} of A. More precisely, we show that the R factor of {cflx A} is an effective preconditioner for the least-squares problem min{sub x} {parallel}Ax-b{parallel}{sub 2}, when solved using LSQR. We propose applications for the new technique. When A is rank deficient we can add rows to ensure that the preconditioner is well-conditioned without column pivoting. When A is sparse except for a few dense rows we canmore » drop these dense rows from A to obtain {cflx A}. Another application is solving an updated or downdated problem. If R is a good preconditioner for the original problem A, it is a good preconditioner for the updated/downdated problem {cflx A}. We can also solve what-if scenarios, where we want to find the solution if a column of the original matrix is changed/removed. We present a spectral theory that analyzes the generalized spectrum of the pencil (A*A,R*R) and analyze the applications.« less

  18. Comparative histological study of the mammalian facial nucleus.

    PubMed

    Furutani, Rui; Sugita, Shoei

    2008-04-01

    We performed comparative Nissl, Klüver-Barrera and Golgi staining studies of the mammalian facial nucleus to classify the morphologically distinct subdivisions and the neuronal types in the rat, rabbit, ferret, Japanese monkey (Macaca fuscata), pig, horse, Risso's dolphin (Grampus griseus), and bottlenose dolphin (Tursiops truncatus). The medial subnucleus was observed in all examined species; however, that of the Risso's and bottlenose dolphins was a poorly-developed structure comprised of scattered neurons. The medial subnuclei of terrestrial mammals were well-developed cytoarchitectonic structures, usually a rounded column comprised of densely clustered neurons. Intermediate and lateral subnuclei were found in all studied mammals, with differences in columnar shape and neuronal types from species to species. The dorsolateral subnucleus was detected in all mammals but the Japanese monkey, whose facial neurons converged into the intermediate subnucleus. The dorsolateral subnuclei of the two dolphin species studied were expanded subdivisions comprised of densely clustered cells. The ventromedial subnuclei of the ferret, pig, and horse were richly-developed columns comprised of large multipolar neurons. Pig and horse facial nuclei contained another ventral cluster, the ventrolateral subnucleus. The facial nuclei of the Japanese monkey and the bottlenose dolphin were similar in their ventral subnuclear organization. Our findings show species-specific subnuclear organization and distribution patterns of distinct types of neurons within morphological discrete subdivisions, reflecting functional differences.

  19. Collision effects on propagation characteristics of electromagnetic waves in a sub-wavelength plasma slab of partially ionized dense plasmas

    NASA Astrophysics Data System (ADS)

    Bowen, LI; Zhibin, WANG; Qiuyue, NIE; Xiaogang, WANG; Fanrong, KONG; Zhenyu, WANG

    2018-01-01

    Intensive collisions between electrons and neutral particles in partially ionized plasmas generated in atmospheric/sub-atmospheric pressure environments can sufficiently affect the propagation characteristics of electromagnetic waves, particularly in the sub-wavelength regime. To investigate the collisional effect in such plasmas, we introduce a simplified plasma slab model with a thickness on the order of the wavelength of the incident electromagnetic wave. The scattering matrix method (SMM) is applied to solve the wave equation in the plasma slab with significant nonuniformity. Results show that the collisions between the electrons and the neutral particles, as well as the incident angle and the plasma thickness, can disturb the transmission and reduce reflection significantly.

  20. Microwave Argon Plasma Torch

    DTIC Science & Technology

    2013-07-01

    31st ICPIG, July 14-19, 2013, Granada , Spain Microwave Argon plasma torch E. Benova1, M. Pencheva-Atanasova1,2, P. Marinova1, V. Marchev1, T...See also ADA594770. International Conference on Phenomena in Ionized Gases (31st) (ICPIG) Held in Granada , Spain on 14-19 July 2013, The original...18 31st ICPIG, July 14-19, 2013, Granada , Spain EEDF usually strongly differs from Maxwellian and chages along the plasma column (this is

Top