Science.gov

Sample records for dense plasma diagnostics

  1. ICTP-IAEA Workshop on Dense Magnetized Plasma and Plasma Diagnostics: an executive summary

    NASA Astrophysics Data System (ADS)

    Gribkov, V. A.; Mank, G.; Markowicz, A.; Miklaszewski, R.; Tuniz, C.; Crespo, M. L.

    2011-12-01

    The Workshop on Dense Magnetized Plasma and Plasma Diagnostics was held from 15 to 26 November 2010 at the Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy. It was attended by 60 participants, including 15 lecturers, 2 tutors and 37 trainees, representing 25 countries.

  2. Diagnostic of dense plasmas using X-ray spectra

    NASA Astrophysics Data System (ADS)

    Yu, Q. Z.; Zhang, J.; Li, Y. T.; Zhang, Z.; Jin, Z.; Lu, X.; Li, J.; Yu, Y. N.; Jiang, X. H.; Li, W. H.; Liu, S. Y.

    2005-12-01

    The spectrally and spatially resolved X-ray spectra emitted from a dense aluminum plasma produced by 500 J, 1 ns Nd:glass laser pulses are presented. Six primary hydrogen-like and helium-like lines are identified and simulated with the atomic physics code FLY. We find that the plasma is almost completely ionized under the experimental conditions. The highest electron density we measured reaches up to 1023 cm-3. The spatial variations of the electron temperature and density are compared with the simulations of MEDUSA hydrocode for different geometry targets. The results indicate that lateral expansion of the plasma produced with this laser beam plays an important role.

  3. X-ray Imaging Diagnostics for Dense Strongly-Coupled Aluminum Plasmas

    NASA Astrophysics Data System (ADS)

    Workman, J.; Tierney, T.; Evans, S.; Kyrala, G.; Benage, J., Jr.

    1998-11-01

    Dense, strongly-coupled plasmas (Γ > 1), found in astrophysical, geologic and ICF applications, can be difficult to diagnose. Determination of the equation of state of such plasmas requires dynamic measurements of internal plasma properties. X-ray backlighting can provide the diagnostic access needed for accurate measurements of plasma density and shock velocity. In this pursuit, we have designed a one-dimensional dual-spherical-crystal x-ray microscope capable of high-spatial and high-temporal shock-velocity and plasma-density measurements. Microscopes operating at energies of 1.35 keV and 4.75 keV, using the second and seventh order reflections of mica crystals, are described. With a magnification of 45X, the microscope's spatial resolution is predicted to be better than 2 microns when coupled to an x-ray streak camera. Preliminary x-ray measurements of spatial resolution are presented as well as ray-tracing analysis of the designs.

  4. Atoms in dense plasmas

    SciTech Connect

    More, R.M.

    1986-01-01

    Recent experiments with high-power pulsed lasers have strongly encouraged the development of improved theoretical understanding of highly charged ions in a dense plasma environment. This work examines the theory of dense plasmas with emphasis on general rules which govern matter at extreme high temperature and density. 106 refs., 23 figs.

  5. Dense Hypervelocity Plasma Jets

    NASA Astrophysics Data System (ADS)

    Case, Andrew; Witherspoon, F. Douglas; Messer, Sarah; Bomgardner, Richard; Phillips, Michael; van Doren, David; Elton, Raymond; Uzun-Kaymak, Ilker

    2007-11-01

    We are developing high velocity dense plasma jets for fusion and HEDP applications. Traditional coaxial plasma accelerators suffer from the blow-by instability which limits the mass accelerated to high velocity. In the current design blow-by is delayed by a combination of electrode shaping and use of a tailored plasma armature created by injection of a high density plasma at a few eV generated by arrays of capillary discharges or sparkgaps. Experimental data will be presented for a complete 32 injector gun system built for driving rotation in the Maryland MCX experiment, including data on penetration of the plasma jet through a magnetic field. We present spectroscopic measurements of plasma velocity, temperature, and density, as well as total momentum measured using a ballistic pendulum. Measurements are in agreement with each other and with time of flight data from photodiodes and a multichannel PMT. Plasma density is above 10^15 cm-3, velocities range up to about 100 km/s. Preliminary results from a quadrature heterodyne HeNe interferometer are consistent with these results.

  6. Single-shot Zeff dense plasma diagnostic through simultaneous refraction and attenuation measurements with a Talbot–Lau x-ray moiré deflectometer

    DOE PAGES

    Valdivia, M. P.; Stutman, D.; Finkenthal, M.

    2015-03-23

    The Talbot–Lau x-ray moiré deflectometer is a powerful plasma diagnostic capable of delivering simultaneous refraction and attenuation information through the accurate detection of x-ray phase shift and intensity. The diagnostic can provide the index of refraction n = 1 - δ + iβ of an object (dense plasma, for example) placed in the x-ray beam by independently measuring both δ and β, which are directly related to the electron density ne and the attenuation coefficient μ, respectively. Since δ and β depend on the effective atomic number Zeff, a map can be obtained from the ratio between phase and absorptionmore » images acquired in a single shot. The Talbot–Lau x-ray moiré deflectometer and its corresponding data acquisition and processing are briefly described to illustrate how the above is achieved; Zeff values of test objects within the 4–12 range were obtained experimentally through simultaneous refraction and attenuation measurements. We show that Zeff mapping of objects does not require previous knowledge of sample length or shape. The determination of Zeff from refraction and attenuation measurements with Moiré deflectometry could be of high interest to various domains of HED research, such as shocked materials and ICF experiments, as well as material science and NDT.« less

  7. Single-shot Z(eff) dense plasma diagnostic through simultaneous refraction and attenuation measurements with a Talbot-Lau x-ray moiré deflectometer.

    PubMed

    Valdivia, M P; Stutman, D; Finkenthal, M

    2015-04-01

    The Talbot-Lau x-ray moiré deflectometer is a powerful plasma diagnostic capable of delivering simultaneous refraction and attenuation information through the accurate detection of x-ray phase shift and intensity. The diagnostic can provide the index of refraction n=1-δ+iβ of an object (dense plasma, for example) placed in the x-ray beam by independently measuring both δ and β, which are directly related to the electron density n(e) and the attenuation coefficient μ, respectively. Since δ and β depend on the effective atomic number Z(eff), a map can be obtained from the ratio between phase and absorption images acquired in a single shot. The Talbot-Lau x-ray moiré deflectometer and its corresponding data acquisition and processing are briefly described to illustrate how the above is achieved; Z(eff) values of test objects within the 4-12 range were obtained experimentally through simultaneous refraction and attenuation measurements. We show that Z(eff) mapping of objects does not require previous knowledge of sample length or shape. The determination of Z(eff) from refraction and attenuation measurements with moiré deflectometry could be of high interest to various domains of high energy density research, such as shocked materials and inertial confinement fusion experiments, as well as material science and nondestructive testing.

  8. Plasma diagnostics for FED

    SciTech Connect

    Nelson, W.D.

    1981-01-01

    An overview of the plasma diagnostic instruments recommended for the Fusion Engineering Device (FED) is described. First the role and need for plasma diagnostics is discussed. This is followed by an identification of particles and radiation eminating from the plasma. Next some design considerations are presented for the overall set of diagnostic instruments. Finally, instruments used for control and for plasma performance measurements are included in separate lists.

  9. Nuclear Probing of Dense Plasmas

    SciTech Connect

    Richard Petrasso

    2007-02-14

    The object of inertial confinement fusion (ICF) is to compress a fuel capsule to a state with high enough density and temperature to ignite, starting a self-sustaining fusion burn that consumes much of the fuel and releases a large amount of energy. The national ICF research program is trying to reach this goal, especially through experiments at the OMEGA laser facility of the University of Rochester Laboratory of Laser Energetics (LLE), planned experiments at the National Ignition Facility (NIF) under construction at the Lawrence Livermore National Laboratory (LLNL), and experimental and theoretical work at other national laboratories. The work by MIT reported here has played several important roles in this national program. First, the development of new and improved charged-particle-based plasma diagnostics has allowed the gathering of new and unique diagnostic information about the implosions of fuel capsules in ICF experiments, providing new means for evaluating experiments and for studying capsule implosion dynamics. Proton spectrometers have become the standard for evaluating the mass assembly in compressed capsules in experiments at OMEGA; the measured energy downshift of either primary or secondary D3He fusion protons to determines the areal density, or ?R, of imploded capsules. The Proton Temporal Diagnostic measures the time history of fusion burn, and multiple proton emission imaging cameras reveal the 3-D spatial distribution of fusion burn. A new compact neutron spectrometer, for measuring fusion yield, is described here for the first time. And of especially high importance to future work is the Magnetic Recoil Spectrometer (MRS), which is a neutron spectrometer that will be used to study a range of important performance parameters in future experiments at the NIF. A prototype is currently being prepared for testing at OMEGA, using a magnet funded by this grant. Second, MIT has used these diagnostic instruments to perform its own physics experiments

  10. Plasma diagnostic reflectometry

    SciTech Connect

    Cohen, B.I.; Afeyan, B.B.; Garrison, J.C.; Kaiser, T.B.; Luhmann, N.C. Jr.; Domier, C.W.; Chou, A.E.; Baang, S.

    1996-02-26

    Theoretical and experimental studies of plasma diagnostic reflectometry have been undertaken as a collaborative research project between the Lawrence Livermore National Laboratory (LLNL) and the University of California Department of Applied Science Plasma Diagnostics Group under the auspices of the Laboratory Directed Research and Development Program at LLNL. Theoretical analyses have explored the basic principles of reflectometry to understand its limitations, to address specific gaps in the understanding of reflectometry measurements in laboratory experiments, and to explore extensions of reflectometry such as ultra-short-pulse reflectometry. The theory has supported basic laboratory reflectometry experiments where reflectometry measurements can be corroborated by independent diagnostic measurements.

  11. Ab Initio Simulations of Dense Helium Plasmas

    SciTech Connect

    Wang Cong; He Xiantu; Zhang Ping

    2011-04-08

    We study the thermophysical properties of dense helium plasmas by using quantum molecular dynamics and orbital-free molecular dynamics simulations, where densities are considered from 400 to 800 g/cm{sup 3} and temperatures up to 800 eV. Results are presented for the equation of state. From the Kubo-Greenwood formula, we derive the electrical conductivity and electronic thermal conductivity. In particular, with the increase in temperature, we discuss the change in the Lorenz number, which indicates a transition from strong coupling and degenerate state to moderate coupling and partial degeneracy regime for dense helium.

  12. Exotic x-ray emission from dense plasmas

    NASA Astrophysics Data System (ADS)

    Rosmej, F. B.; Dachicourt, R.; Deschaud, B.; Khaghani, D.; Dozières, M.; Šmíd, M.; Renner, O.

    2015-11-01

    Exotic x-ray emission from dense matter is identified as the complex high intensity satellite emission from autoionizing states of highly charged ions. Among a vast amount of possible transitions, double K-hole hollow ion (HI) x-ray emission K0L X → K1L X-1 + hν hollow is of exceptional interest due to its advanced diagnostic potential for matter under extreme conditions where opacity and radiation fields play important roles. Transient ab initio simulations identify intense short pulse radiation fields (e.g., those emitted by x-ray free electron lasers) as possible driving mechanisms of HI x-ray emission via two distinct channels: first, successive photoionization of K-shell electrons, second, photoionization followed by resonant photoexciation among various ionic charge states that are simultaneously present in high density matter. We demonstrated that charge exchange of intermixing inhomogenous plasmas as well as collisions driven by suprathermal electrons are possible mechanisms to populate HIs to observable levels in dense plasmas, particularly in high current Z-pinch plasmas and high intensity field-ionized laser produced plasmas. Although the HI x-ray transitions were repeatedly identified in many other cases of dense optical laser produced plasmas on the basis of atomic structure calculations, their origin is far from being understood and remains one of the last holy grails of high intensity laser-matter interaction.

  13. Electrical and thermal conductivities in dense plasmas

    SciTech Connect

    Faussurier, G. Blancard, C.; Combis, P.; Videau, L.

    2014-09-15

    Expressions for the electrical and thermal conductivities in dense plasmas are derived combining the Chester-Thellung-Kubo-Greenwood approach and the Kramers approximation. The infrared divergence is removed assuming a Drude-like behaviour. An analytical expression is obtained for the Lorenz number that interpolates between the cold solid-state and the hot plasma phases. An expression for the electrical resistivity is proposed using the Ziman-Evans formula, from which the thermal conductivity can be deduced using the analytical expression for the Lorenz number. The present method can be used to estimate electrical and thermal conductivities of mixtures. Comparisons with experiment and quantum molecular dynamics simulations are done.

  14. Dense Plasma Injection Experiment at MCX

    NASA Astrophysics Data System (ADS)

    Uzun-Kaymak, I.; Messer, S.; Bomgardner, R.; Case, A.; Clary, R.; Ellis, R.; Elton, R.; Hassam, A.; Teodorescu, C.; Witherspoon, D.; Young, W.

    2009-09-01

    We present preliminary results of the High Density Plasma Injection Experiment at the Maryland Centrifugal Experiment (MCX). HyperV Technologies Corp. has designed, built, and installed a prototype coaxial gun to drive rotation in MCX. This gun has been designed to avoid the blow-by instability via a combination of electrode shaping and a tailored plasma armature. An array of diagnostics indicates the gun is capable of plasma jets with a mass of 160 μg at 70 km/s with an average plasma density above 1015 cm-3. Preliminary measurements are underway at MCX to understand the penetration of the plasma jet through the MCX magnetic field and the momentum transfer from the jet to the MCX plasma. Data will be presented for a wide range of MCX field parameters, and the prospects for future injection experiments will be evaluated.

  15. Single-shot Zeff dense plasma diagnostic through simultaneous refraction and attenuation measurements with a Talbot–Lau x-ray moiré deflectometer

    SciTech Connect

    Valdivia, M. P.; Stutman, D.; Finkenthal, M.

    2015-03-23

    The Talbot–Lau x-ray moiré deflectometer is a powerful plasma diagnostic capable of delivering simultaneous refraction and attenuation information through the accurate detection of x-ray phase shift and intensity. The diagnostic can provide the index of refraction n = 1 - δ + iβ of an object (dense plasma, for example) placed in the x-ray beam by independently measuring both δ and β, which are directly related to the electron density ne and the attenuation coefficient μ, respectively. Since δ and β depend on the effective atomic number Zeff, a map can be obtained from the ratio between phase and absorption images acquired in a single shot. The Talbot–Lau x-ray moiré deflectometer and its corresponding data acquisition and processing are briefly described to illustrate how the above is achieved; Zeff values of test objects within the 4–12 range were obtained experimentally through simultaneous refraction and attenuation measurements. We show that Zeff mapping of objects does not require previous knowledge of sample length or shape. The determination of Zeff from refraction and attenuation measurements with Moiré deflectometry could be of high interest to various domains of HED research, such as shocked materials and ICF experiments, as well as material science and NDT.

  16. Dense plasma focus production in a hypocycloidal pinch

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Mcfarland, D. R.; Hohl, F.

    1975-01-01

    A type of high-power pinch apparatus consisting of disk electrodes was developed, and diagnostic measurements to study its mechanism of dense plasma production were made. The collapse fronts of the current sheets are well organized, and dense plasma focuses are produced on the axis with radial stability in excess of 5 microns. A plasma density greater than 10 to the 18th power/cubic cm was determined with Stark broadening and CO2 laser absorption. A plasma temperature of approximately 1 keV was measured with differential transmission of soft X-rays through thin foils. Essentially complete absorption of a high-energy CO2 laser beam was observed. The advantages of this apparatus over the coaxial plasma focus are in (1) the plasma volume, (2) the stability, (3) the containment time, (4) the easy access to additional heating by laser or electron beams, and (5) the possibility of scaling up to a multiple array for high-power operation.

  17. Nonlinear extraordinary wave in dense plasma

    SciTech Connect

    Krasovitskiy, V. B.; Turikov, V. A.

    2013-10-15

    Conditions for the propagation of a slow extraordinary wave in dense magnetized plasma are found. A solution to the set of relativistic hydrodynamic equations and Maxwell’s equations under the plasma resonance conditions, when the phase velocity of the nonlinear wave is equal to the speed of light, is obtained. The deviation of the wave frequency from the resonance frequency is accompanied by nonlinear longitudinal-transverse oscillations. It is shown that, in this case, the solution to the set of self-consistent equations obtained by averaging the initial equations over the period of high-frequency oscillations has the form of an envelope soliton. The possibility of excitation of a nonlinear wave in plasma by an external electromagnetic pulse is confirmed by numerical simulations.

  18. Tomographic diagnostics of nonthermal plasmas

    NASA Astrophysics Data System (ADS)

    Denisova, Natalia

    2009-10-01

    In the previous work [1], we discussed a ``technology'' of tomographic method and relations between the tomographic diagnostics in thermal (equilibrium) and nonthermal (nonequilibrium) plasma sources. The conclusion has been made that tomographic reconstruction in thermal plasma sources is the standard procedure at present, which can provide much useful information on the plasma structure and its evolution in time, while the tomographic reconstruction of nonthermal plasma has a great potential at making a contribution to understanding the fundamental problem of substance behavior in strongly nonequilibrium conditions. Using medical terminology, one could say, that tomographic diagnostics of the equilibrium plasma sources studies their ``anatomic'' structure, while reconstruction of the nonequilibrium plasma is similar to the ``physiological'' examination: it is directed to study the physical mechanisms and processes. The present work is focused on nonthermal plasma research. The tomographic diagnostics is directed to study spatial structures formed in the gas discharge plasmas under the influence of electrical and gravitational fields. The ways of plasma ``self-organization'' in changing and extreme conditions are analyzed. The analysis has been made using some examples from our practical tomographic diagnostics of nonthermal plasma sources, such as low-pressure capacitive and inductive discharges. [0pt] [1] Denisova N. Plasma diagnostics using computed tomography method // IEEE Trans. Plasma Sci. 2009 37 4 502.

  19. Temperature relaxation in dense plasma mixtures

    NASA Astrophysics Data System (ADS)

    Faussurier, Gérald; Blancard, Christophe

    2016-09-01

    We present a model to calculate temperature-relaxation rates in dense plasma mixtures. The electron-ion relaxation rates are calculated using an average-atom model and the ion-ion relaxation rates by the Landau-Spitzer approach. This method allows the study of the temperature relaxation in many-temperature electron-ion and ion-ion systems such as those encountered in inertial confinement fusion simulations. It is of interest for general nonequilibrium thermodynamics dealing with energy flows between various systems and should find broad use in present high energy density experiments.

  20. Neutron Emission in Deuterium Dense Plasma Foci

    NASA Astrophysics Data System (ADS)

    Appelbe, Brian; Chittenden, Jeremy

    2013-10-01

    We present the results of a computational study of the deuterium dense plasma focus (DPF) carried out to improve understanding of the neutron production mechanism in the DPF. The device currents studied range from 70 kA to several MA. The complete evolution of the DPF is simulated in 3D from rundown through to neutron emission using a hybrid computational method. The rundown, pinching, stagnation and post-stagnation (pinch break-up) phases are simulated using the 3D MHD code Gorgon. Kinetic computational tools are used to model the formation and transport of non-thermal ion populations and neutron production during the stagnation and post-stagnation phases, resulting in the production of synthetic neutron spectra. It is observed that the break-up phase plays an important role in the formation of non-thermal ions. Large electric fields generated during pinch break-up cause ions to be accelerated from the edges of dense plasma regions. The dependence on current of the neutron yield, neutron spectra shape and isotropy is studied. The effect of magnetization of the non-thermal ions is evident as the anisotropy of the neutron spectra decreases at higher current.

  1. Compact collimated fiber optic array diagnostic for railgun plasma experiments

    SciTech Connect

    Tang, V; Solberg, J; Ferriera, T; Tully, L; Stephan, P

    2008-10-02

    We have developed and tested a compact collimated sixteen channel fiber optic array diagnostic for studying the light emission of railgun armature plasmas with {approx}mm spatial and sub-{micro}s temporal resolution. The design and operational details of the diagnostic are described. Plasma velocities, oscillation, and dimension data from the diagnostic for the Livermore Fixed Hybrid Armature experiment are presented and compared with 1-D simulations. The techniques and principles discussed allow the extension of the diagnostic to other railgun and related dense plasma experiments.

  2. Mach reflection in a warm dense plasma

    SciTech Connect

    Foster, J. M.; Rosen, P. A.; Wilde, B. H.; Hartigan, P.; Perry, T. S.

    2010-11-15

    The phenomenon of irregular shock-wave reflection is of importance in high-temperature gas dynamics, astrophysics, inertial-confinement fusion, and related fields of high-energy-density science. However, most experimental studies of irregular reflection have used supersonic wind tunnels or shock tubes, and few or no data are available for Mach reflection phenomena in the plasma regime. Similarly, analytic studies have often been confined to calorically perfect gases. We report the first direct observation, and numerical modeling, of Mach stem formation for a warm, dense plasma. Two ablatively driven aluminum disks launch oppositely directed, near-spherical shock waves into a cylindrical plastic block. The interaction of these shocks results in the formation of a Mach-ring shock that is diagnosed by x-ray backlighting. The data are modeled using radiation hydrocodes developed by AWE and LANL. The experiments were carried out at the University of Rochester's Omega laser [J. M. Soures, R. L. McCrory, C. P. Verdon et al., Phys. Plasmas 3, 2108 (1996)] and were inspired by modeling [A. M. Khokhlov, P. A. Hoeflich, E. S. Oran et al., Astrophys J. 524, L107 (1999)] of core-collapse supernovae that suggest that in asymmetric supernova explosion significant mass may be ejected in a Mach-ring formation launched by bipolar jets.

  3. Diagnostic techniques for thermal plasmas

    SciTech Connect

    Fincke, J.R.; Snyder, S.C.; Swank, W.D.; Haggard, D.C.; Reynolds, L.D.

    1994-12-31

    The plasma diagnostic techniques discussed are Rayleigh and coherent Thomson scattering, Coherent-Anti-Stokes-Raman Spectroscopy (CARS) and enthalpy probes. The quantities measured are heavy species and electron temperature, ionized fraction, plasma composition, and velocity. Examples of results from both subsonic and supersonic jets are presented and limitations discussed.

  4. Kinetic Simulations of Dense Plasma Focus Breakdown

    NASA Astrophysics Data System (ADS)

    Schmidt, A.; Higginson, D. P.; Jiang, S.; Link, A.; Povilus, A.; Sears, J.; Bennett, N.; Rose, D. V.; Welch, D. R.

    2015-11-01

    A dense plasma focus (DPF) device is a type of plasma gun that drives current through a set of coaxial electrodes to assemble gas inside the device and then implode that gas on axis to form a Z-pinch. This implosion drives hydrodynamic and kinetic instabilities that generate strong electric fields, which produces a short intense pulse of x-rays, high-energy (>100 keV) electrons and ions, and (in deuterium gas) neutrons. A strong factor in pinch performance is the initial breakdown and ionization of the gas along the insulator surface separating the two electrodes. The smoothness and isotropy of this ionized sheath are imprinted on the current sheath that travels along the electrodes, thus making it an important portion of the DPF to both understand and optimize. Here we use kinetic simulations in the Particle-in-cell code LSP to model the breakdown. Simulations are initiated with neutral gas and the breakdown modeled self-consistently as driven by a charged capacitor system. We also investigate novel geometries for the insulator and electrodes to attempt to control the electric field profile. The initial ionization fraction of gas is explored computationally to gauge possible advantages of pre-ionization which could be created experimentally via lasers or a glow-discharge. Prepared by LLNL under Contract DE-AC52-07NA27344.

  5. INPIStron switched pulsed power for dense plasma pinches

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Lee, Ja H.

    1993-01-01

    The inverse plasma switch INPIStron was employed for 10kJ/40kV capacitor bank discharge system to produce focused dense plasmas in hypocycloidal-pinch (HCP) devices. A single unit and an array of multiple HCP's were coupled as the load of the pulsed power circuit. The geometry and switching plasma dynamics were found advantageous and convenient for commutating the large current pulse from the low impedance transmission line to the low impedance plasma load. The pulse power system with a single unit HCP, the system A, was used for production of high temperature plasma focus and its diagnostics. The radially running down plasma dynamics, revealed in image converter photographs, could be simulated by a simple snow-plow model with a correction for plasma resistivity. The system B with an array of 8-HCP units which forms a long coaxial discharge chamber was used for pumping a Ti-sapphire laser. The intense UV emission from the plasma was frequency shifted with dye-solution jacket to match the absorption band of the Ti crystal laser near 500 nm. An untuned laser pulse energy of 0.6 J/pulse was obtained for 6.4 kJ/40 kV discharge, or near 103 times of the explosion limit of conventional flash lamps. For both systems the advantages of the INPIStron were well demonstrated: a single unit is sufficient for a large current (greater than 50 kA) without increasing the system impedance, highly reliable and long life operation and implied scalability for the high power ranges above I(sub peak) = 1 MA and V(sub hold) = 100 kV.

  6. X-ray Thomson Scattering from Dense Plasmas

    SciTech Connect

    Glenzer, S

    2007-05-14

    Advances in the development of laser-produced x-ray sources have enabled a new class of high-energy density physics experiments. Powerful narrow-bandwidth x rays penetrate through short-lived hot dense states of matter and probe the physical properties with spectrally resolved x-ray scattering. Experiments from isochorically-heated plasmas with electron densities in the range of solid density and above have been demonstrated allowing for the first time exploration of the microscopic properties of dense matter regime close to strongly-coupled and Fermi degenerate conditions. Backscatter measurements have accessed the non-collective Compton scattering regime, which provides accurate diagnostic information on the temperature, density and ionization states. The forward scattering spectrum has been shown to measure the collective plasmon oscillations. Besides extracting the standard plasma parameters, density and temperature, forward scattering yields new observables such as a direct measure of collisions, quantum effects and detailed balance. In this talk, we will discuss new results important for applications of this technique for novel experiments in a wide range of research areas such as inertial confinement fusion, radiation-hydrodynamics, material science, and laboratory astrophysics.

  7. Observations of strong ion-ion correlations in dense plasmas

    SciTech Connect

    Ma, T. Pak, A.; Landen, O. L.; Le Pape, S.; Turnbull, D.; Döppner, T.; Fletcher, L.; Galtier, E.; Hastings, J.; Lee, H. J.; Nagler, B.; Glenzer, S. H.; Chapman, D. A.; Falcone, R. W.; Fortmann, C.; Gericke, D. O.; Gregori, G.; White, T. G.; Neumayer, P.; Vorberger, J.; and others

    2014-05-15

    Using simultaneous spectrally, angularly, and temporally resolved x-ray scattering, we measure the pronounced ion-ion correlation peak in a strongly coupled plasma. Laser-driven shock-compressed aluminum at ∼3× solid density is probed with high-energy photons at 17.9 keV created by molybdenum He-α emission in a laser-driven plasma source. The measured elastic scattering feature shows a well-pronounced correlation peak at a wave vector of k=4Å{sup −1}. The magnitude of this correlation peak cannot be described by standard plasma theories employing a linear screened Coulomb potential. Advanced models, including a strong short-range repulsion due to the inner structure of the aluminum ions are however in good agreement with the scattering data. These studies have demonstrated a new highly accurate diagnostic technique to directly measure the state of compression and the ion-ion correlations. We have since applied this new method in single-shot wave-number resolved S(k) measurements to characterize the physical properties of dense plasmas.

  8. Stopping Power in Dense Plasmas: Models, Simulations and Experiments

    NASA Astrophysics Data System (ADS)

    Grabowski, Paul; Fichtl, Chris; Graziani, Frank; Hazi, Andrew; Murillo, Michael; Sheperd, Ronnie; Surh, Mike; Cimarron Collaboration

    2011-10-01

    Our goal is to conclusively determine the minimal model for stopping power in dense plasmas via a three-pronged theoretical, simulation, and experimental program. Stopping power in dense plasma is important for ion beam heating of targets (e.g., fast ignition) and alpha particle energy deposition in inertial confinement fusion targets. We wish to minimize our uncertainties in the stopping power by comparing a wide range of theoretical approaches to both detailed molecular dynamics (MD) simulations and experiments. The largest uncertainties occur for slow-to-moderate velocity projectiles, dense plasmas, and highly charged projectiles. We have performed MD simulations of a classical, one component plasma to reveal where there are weaknesses in our kinetic theories of stopping power, over a wide range of plasma conditions. We have also performed stopping experiments of protons in heated warm dense carbon for validation of such models, including MD calculations, of realistic plasmas for which bound contributions are important.

  9. Properties of plasma radiation diagnostics

    SciTech Connect

    Idzorek, G.C.; Oona, H.

    1996-06-01

    A number of diagnostics utilizing the radiation emitted from high-temperature plasmas have been developed at Los Alamos. Photoemissive x-ray diodes with photon energy bandpass filters provide time resolved rough spectral data from bout 6 eV to > 10 keV photon energy. Filtered silicon photodiodes can be used down to 1 eV and offer the advantages of nominally flat response and ability to operate in poor vacuum conditions. Both types of diodes will provide a rough time resolved spectrum and both are relatively inexpensive, reliable, and passive (i.e. no synchronization problems). For higher energy resolution bent crystal spectrographs are used in the x-ray region. With the addition of streak cameras or gated microchannel plates these systems provide data with high energy and high time resolution. To measure the total energy output a thin foil bolometer is used that measures the change in foil resistance as it is heated by the plasma radiation. Information on the physical location of the plasma is provided by a suite of visible framing cameras and x-ray pinhole cameras. By combining these diagnostics into a complementary set good diagnostic information can be guaranteed on any plasma experiment.

  10. Recoverable Plasma Diagnostics Package (RPDP)

    NASA Technical Reports Server (NTRS)

    Roberts, B.

    1986-01-01

    The recoverable plasma diagnostics package (RPDP) is an ejectable and recoverable satellite with flight and ground support systems so that it can be utilized in three modes: attached to an remote manipulator system; tethered; or as a subsatellite. The satellite is well instrumented with particle and field diagnostic as well as optical sensors to: investigate the dynamics of the natural environment or ejected perturbations from particle beams; measure the characteristics and propagation of electrostatic and electromagnetic waves; study wave particle interactions; and study natural properties of the magnetosphere, ionosphere, and upper atmosphere.

  11. Recoverable Plasma Diagnostics Package (RPDP)

    NASA Technical Reports Server (NTRS)

    Roberts, W. T.

    1985-01-01

    The recoverable plasma diagnostics package (RPDP) is an ejectable and recoverable satellite with flight and ground support systems so that it can be utilized in three modes: attached to an remote manipulator system; tethered; or as a subsatellite. The satellite is well instrumented with particle and field diagnostic as well as optical sensors to: investigate the dynamics of the natural environment or ejected perturbations from particle beams; measure the characteristics and propagation of electrostatic and electromagnetic waves; study wave particle interactions; and study natural properties of the magnetosphere, ionosphere, and upper atmosphere.

  12. Far infrared fusion plasma diagnostics

    SciTech Connect

    Luhmann, N.C. Jr.; Peebles, W.A.

    1990-01-01

    Over the last several years, reflectometry has grown in importance as a diagnostic for both steady-state density Profiles as well as for the investigation of density fluctuations and turbulence. As a diagnostic for density profile measurement, it is generally believed to be well understood in the tokamak environment. However, its use as a fluctuation diagnostic is hampered by a lack of quantitative experimental understanding of its wavenumber sensitivity and spatial resolution. Several researchers, have theoretically investigated these questions. However, prior to the UCLA laboratory investigation, no group has experimentally investigated these questions. Because of the reflectometer's importance to the world effort in understanding plasma turbulence and transport, UCLA has, over the last year, made its primary Task IIIA effort the resolution of these questions. UCLA has taken the lead in a quantitative experimental understanding of reflectometer data as applied to the measurement of density fluctuations. In addition to this, work has proceeded on the design, construction, and installation of a reflectometer system on UCLA's CCT tokamak. This effort will allow a comparison between the improved confinement regimes (H-mode) observed on both the DIII-D and CCT machines with the goal of achieving a physics understanding of the phenomena. Preliminary investigation of a new diagnostic technique to measure density profiles as a function of time has been initiated at UCLA. The technique promises to be a valuable addition to the range of available plasma diagnostics. Work on advanced holographic reflectometry technique as applied to fluctuation diagnostics has awaited a better understanding of the reflectometer signal itself as discussed above. Efforts to ensure the transfer of the diagnostic developments have continued with particular attention devoted to the preliminary design of a multichannel FIR interferometer for MST.

  13. Diagnostics for near-term warm dense matter experiments

    NASA Astrophysics Data System (ADS)

    Bieniosek, F. M.; Barnard, J. J.; Leitner, M. A.; Molvik, A. W.; More, R. M.; Roy, P. K.

    2007-07-01

    We describe near-term ion beam-driven warm dense matter (WDM) experiments. Initial experiments are at low beam velocity, below the Bragg peak, increasing toward the Bragg peak in subsequent versions of the accelerator. The WDM conditions are envisioned to be achieved by combined longitudinal and transverse neutralized drift compression to provide a hot spot on the target with a beam spot size of about 1 mm and pulse length about 1-2 ns. The range of the beams in solid matter targets is about 1 μm, which can be lengthened by using porous targets at reduced density. Initial candidate experiments include an experiment to study transient darkening in the WDM regime; and a thin target d E/d x experiment to study beam energy and charge state distribution in a heated target. Further experiments will explore target temperature and other properties such as electrical conductivity to investigate phase transitions and the critical point. Initial diagnostics will be relatively simple or extensions of existing capabilities. These include electrical resistivity and optical absorption measurements to provide information on target temperature and electronic phase transitions. Beam energy and charge state after passing through thin targets can be measured using time of flight and the existing electrostatic energy analyzer. Ion beam current and profile diagnostics will be improved to diagnose the small spot sizes to be achieved in these experiments. Other diagnostics of interest may monitor optical emission (e.g. fast optical pyrometer, streak cameras), and utilize laser reflectometry, polarimetry, or shadowgraphy.

  14. Weakly dissipative solitons in dense relativistic-degenerate plasma

    NASA Astrophysics Data System (ADS)

    Ahmad, Saeed; Ata-ur-Rahman; Khan, S. A.

    2015-07-01

    We investigate the features of weakly nonlinear waves in a collisional dense plasma consisting of ultra-relativistic degenerate electrons and non-relativistic degenerate ions. In weak dissipation limit, the dynamics of low frequency nonlinear ion (solitary) wave is described by solving a damped Korteweg-deVries equation. The analytical and numerical analysis shows the existence of weakly dissipative solitons evolving with time. The characteristics of soliton evolution with plasma number density and slow ion-neutral collision rate are discussed with some detail. The relevance of the study with degenerate plasmas in ultra-dense astrophysical objects, particularly white dwarf stars is also pointed out.

  15. Resonances in positron-hydrogen scattering in dense quantum plasmas

    SciTech Connect

    Jiang, Zishi; Zhang, Yong-Zhi; Kar, Sabyasachi

    2015-05-15

    We have investigated the S-wave resonance states in positron-hydrogen system embedded in dense quantum plasmas using Hylleraas-type wave functions within the framework of the stabilization method. The effect of quantum plasmas has been incorporated using the exponential-cosine-screened Coulomb (modified Yukawa-type) potential. Resonance parameters (both position and width) below the Ps n = 2 threshold are reported as functions of plasma screening parameters.

  16. Electronic Structure of Dense Plasmas by X-Ray Scattering

    SciTech Connect

    Gregori, G; Glenzer, S H; Rogers, F J; Pollaine, S M; Froula, D H; Blancard, C; Faussurier, G; Renaudin, P; Kuhlbrodt, S; Redmer, R; Landen, O L

    2003-10-07

    We present an improved analytical expression for the x-ray dynamic structure factor from a dense plasma which includes the effects of weakly bound electrons. This result can be applied to describe scattering from low to moderate Z plasmas, and it covers the entire range of plasma conditions that can be found in inertial confinement fusion experiments, from ideal to degenerate up to moderately coupled systems. We use our theory to interpret x-ray scattering experiments from solid density carbon plasma and to extract accurate measurements of electron temperature, electron density and charge state. We use our experimental results to validate various equation-of-state models for carbon plasmas.

  17. Space-Time Characterization of Laser Plasma Interactions in the Warm Dense Matter Regime

    SciTech Connect

    Cao, L F; Uschmann, I; Forster, E; Zamponi, F; Kampfer, T; Fuhrmann, A; Holl, A; Redmer, R; Toleikis, S; Tschentsher, T; Glenzer, S H

    2008-04-30

    Laser plasma interaction experiments have been performed using a fs Titanium Sapphire laser. Plasmas have been generated from planar PMMA targets using single laser pulses with 3.3 mJ pulse energy, 50 fs pulse duration at 800 nm wavelength. The electron density distributions of the plasmas in different delay times have been characterized by means of Nomarski Interferometry. Experimental data were compared with hydrodynamic simulation. First results to characterize the plasma density and temperature as a function of space and time are obtained. This work aims to generate plasmas in the warm dense matter (WDM) regime at near solid-density in an ultra-fast laser target interaction process. Plasmas under these conditions can serve as targets to develop x-ray Thomson scattering as a plasma diagnostic tool, e.g., using the VUV free-electron laser (FLASH) at DESY Hamburg.

  18. Positron scattering from hydrogen atom embedded in dense quantum plasma

    SciTech Connect

    Bhattacharya, Arka; Kamali, M. Z. M.; Ghoshal, Arijit; Ratnavelu, K.

    2013-08-15

    Scattering of positrons from the ground state of hydrogen atoms embedded in dense quantum plasma has been investigated by applying a formulation of the three-body collision problem in the form of coupled multi-channel two-body Lippmann-Schwinger equations. The interactions among the charged particles in dense quantum plasma have been represented by exponential cosine-screened Coulomb potentials. Variationally determined hydrogenic wave function has been employed to calculate the partial-wave scattering amplitude. Plasma screening effects on various possible mode of fragmentation of the system e{sup +}+H(1s) during the collision, such as 1s→1s and 2s→2s elastic collisions, 1s→2s excitation, positronium formation, elastic proton-positronium collisions, have been reported in the energy range 13.6-350 eV. Furthermore, a comparison has been made on the plasma screening effect of a dense quantum plasma with that of a weakly coupled plasma for which the plasma screening effect has been represented by the Debye model. Our results for the unscreened case are in fair agreement with some of the most accurate results available in the literature.

  19. X-ray and optical studies of dense plasmas

    NASA Astrophysics Data System (ADS)

    Ellwi, Samir Shakir

    X-ray and optical investigations of dense plasmas and x- ray sources for laser-plasma studies are presented in this thesis. Short pulse laser interaction with solids is reviewed. The transport of laser energy into the bulk of the target by electron thermal conduction, radiation and shock waves is described. X-ray characterisation of different types of plasma are presented. The first experiment deals with the generation of a plasma cathode x-ray source. The experimental results are compared with a simulation made using a simple self consistent model. The x-ray source size depends upon the cone angle of the tip of the anode. A wide range of experimental data for different parameters (anode-cathode separation, anode positive voltages, anode material, cathode material and different laser energies) is collected and analysed. In chapter 5 the equation of state of gold is studied using the shock wave reflection method. Experimental measurements are done for the direct and indirect drives. The experimental data are compared to the SESAME tabular data. Indirect drive is found to give a more accurate measurement compared to direct drive using the Phase Zone Plate (PZP) method technique. Preheating effects in laser driven shock waves is presented in chapter 6. We used two different diagnostics: the colour temperature measurements deduced by recording the target rear side emissivity in two spectral bands and the target rear side reflectivity measurements. We use the MULTI hydrodynamic code to measure the temperature of the preheat and in coupling with the Fresnel reflectivity model in order to compare the theoretical calculations to the experimental observations. Qualitative results of energy transport by hot fast electrons in solid cold and compressed plastic are presented in chapter 7. K-alpha emission from chlorine fluor buried layers is used to measure the fast electron transport. These data are collected from time integrated spectrometers using k-alpha spectroscopy of the

  20. Temperature Measurements of Dense Plasmas by Detailed Balance

    SciTech Connect

    Holl, A; Redmer, R; Ropke, G; Reinholz, H; Thiele, R; Fortmann, C; Forster, E; Cao, L; Tschentscher, T; Toleikis, S; Glenzer, S H

    2006-03-14

    Plasmas at high electron densities of n{sub e} = 10{sup 20} - 10{sup 26} cm{sup -3} and moderate temperatures T{sub e} = 1 - 20 eV are important for laboratory astrophysics, high energy density science and inertial confinement fusion. These plasmas are usually referred to as Warm Dense Matter (WDM) and are characterized by a coupling parameter of {Lambda} {approx}> 1 where correlations become important. The characterization of such plasmas is still a challenging task due to the lack of direct measurement techniques for temperatures and densities. They propose to measure the Thomson scattering spectrum of vacuum-UV radiation off density fluctuations in the plasma. Collective Thomson scattering provides accurate data for the electron temperature applying first principles. Further, this method takes advantage of the spectral asymmetry resulting from detailed balance and is independent of collisional effects in these dense systems.

  1. Self-Diffusion in Dense Plasmas

    NASA Astrophysics Data System (ADS)

    Stern, Julie; Murillo, Michael

    2014-10-01

    Large angle scattering has been shown to be important in ICF plasmas [Turrell et al. PRL 112, 245002 (2014)]. We use molecular dynamics to obtain effective Coulomb logarithms across coupling regimes through a careful study of self-diffusion in screened ionic systems. Through a theoretical analysis of the MD data, we assess the applicability of the Coulomb logarithm in different regimes, finding three distinct regimes of transport. Although theoretical models of Ornstein-Uhlenbeck typically model Brownian motion processes, they cannot fully capture collective dynamics in all regimes of plasma coupling. Modified memory based theoretical OU models are introduced. In order to make the models more accurate, the role of stochastic charge fluctuations relative to the mean ionization state < Z > is investigated. The Yukawa pair potential is combined with a Stewart-Pyatt continuum-lowered Saha method. Transport coefficients using average charges < Z > are compared with charge state distributions {Z i } . We model the time-evolving charge state fluctuations using a discrete stochastic evolution algorithm. Mixtures are investigated and compared to single-species. *murillo@lanl.gov

  2. Microwave diagnostics of atmospheric plasmas

    NASA Astrophysics Data System (ADS)

    Scott, David

    Plasma treatment of biological tissues has tremendous potential due to the wide range of applications. Most plasmas have gas temperatures which greatly exceed room temperature. These are often utilized in electro-surgery for cutting and coagulating tissue. Another type of plasma, referred to as cold atmospheric plasma, or CAP, is characterized by heavy particle temperatures which are at or near room temperature. Due to this lack of thermal effect, CAP may provide less invasive medical procedures. Additionally, CAP have been demonstrated to be effective at targeting cancer cells while minimizing damage to the surrounding tissue. A recently fabricated Microwave Electron Density Device (MEDD) utilizes microwave scattering on small atmospheric plasmas to determine the electron plasma density. The MEDD can be utilized on plasmas which range from a fraction of a millimeter to several centimeters at atmospheric pressure when traditional methods cannot be applied. Microwave interferometry fails due to the small size of the plasma relative to the microwave wavelength which leads to diffraction and negligible phase change; electrostatic probes introduce very strong perturbation and are associated with difficulties of application in strongly-collisional atmospheric conditions; and laser Thomson scattering is not sensitive enough to measure plasma densities less than 1012 cm-3. The first part of this dissertation provides an overview of two types of small atmospheric plasma objects namely CAPs and plasmas utilized in the electro-surgery. It then goes on to describe the fabrication, testing and calibration of the MEDD facility. The second part of this dissertation is focused on the application of the MEDD and other diagnostic techniques to both plasma objects. A series of plasma images that illustrate the temporal evolution of a discharge created by an argon electrosurgical device operating in the coagulation mode and its behavior was analyzed. The discharge of the argon

  3. Propagation of broadband terahertz pulses through a dense-magnetized-collisional-bounded plasma layer

    SciTech Connect

    Yuan Chengxun; Zhou Zhongxiang; Sun Hongguo; Pu Shaozhi; Xiang Xiaoli

    2010-11-15

    The terahertz characteristics of a dense-magnetized-collisional-bounded plasma under normal incident are analyzed in this study, which is of practical significance in plasma diagnostics with electromagnetic waves. We theoretically calculate the reflection, absorption, and transmission coefficients for right- and left-handed polarized terahertz waves through a uniform, magnetized, and collisional plasma slab bounded by lossless transparent walls. The power absorption spectra in the frequency range of 0.1-2 THz are given with strong external magnetic fields and different plasma parameters such as plasma density and collisional frequency. Our numerical result is consistent with Jamison's experimental result. It is found that plasma absorption is mainly caused by the collisional absorption and electron cyclotron resonance. Furthermore, the absorption heavily depends on the polarization mode of the terahertz waves when the external magnetic field B is high enough that the election gyrofrequency is near the incident wave frequency. The relationships between the corresponding parameters of the problem are studied numerically.

  4. Quasimolecules and spectral line broadening in dense plasmas

    SciTech Connect

    Arranz, J. P.; Butaux, J.; Nguyen, H.; Reggadi, A.

    1997-01-05

    The energy levels and transition probabilities for transient diatomic molecules have been obtained by means of a self-consistent field method and used to compute the static and dynamical NeX Lyman {alpha} and Lyman {beta} line profiles emitted from dense plasmas. The typical excitation of molecular satellite lines is pointed out.

  5. Quasimolecules and spectral line broadening in dense plasmas

    SciTech Connect

    Arranz, J.P.; Butaux, J.; Nguyen, H.; Reggadi, A.

    1997-01-01

    The energy levels and transition probabilities for transient diatomic molecules have been obtained by means of a self-consistent field method and used to compute the static and dynamical NeX Lyman {alpha} and Lyman {beta} line profiles emitted from dense plasmas. The typical excitation of molecular satellite lines is pointed out. {copyright} {ital 1997 American Institute of Physics.}

  6. Accessibility of electron Bernstein modes in over-dense plasma

    SciTech Connect

    Carter, M. D.; Bigelow, T. S.; Batchelor, D. B.

    1999-09-20

    Mode-conversion between the ordinary, extraordinary and electron Bernstein modes near the plasma edge may allow signals generated by electrons in an over-dense plasma to be detected. Alternatively, high frequency power may gain accessibility to the core plasma through this mode conversion process. Many of the tools used for ion cyclotron antenna design can also be applied near the electron cyclotron frequency. In this paper, we investigate the the possibilities for an antenna that may couple to electron Bernstein modes inside an over-dense plasma. The optimum values for wavelengths that undergo mode-conversion are found by scanning the poloidal and toroidal response of the plasma using a warm plasma slab approximation with a sheared magnetic field. Only a very narrow region of the edge can be examined in this manner; however, ray tracing may be used to follow the mode converted power in a more general geometry. It is eventually hoped that the methods can be extended to a hot plasma representation. Using antenna design codes, some basic antenna shapes will be considered to see what types of antennas might be used to detect or launch modes that penetrate the cutoff layer in the edge plasma. (c) 1999 American Institute of Physics.

  7. Accessibillity of Electron Bernstein Modes in Over-Dense Plasma

    SciTech Connect

    Batchelor, D.B.; Bigelow, T.S.; Carter, M.D.

    1999-04-12

    Mode-conversion between the ordinary, extraordinary and electron Bernstein modes near the plasma edge may allow signals generated by electrons in an over-dense plasma to be detected. Alternatively, high frequency power may gain accessibility to the core plasma through this mode conversion process. Many of the tools used for ion cyclotron antenna de-sign can also be applied near the electron cyclotron frequency. In this paper, we investigate the possibilities for an antenna that may couple to electron Bernstein modes inside an over-dense plasma. The optimum values for wavelengths that undergo mode-conversion are found by scanning the poloidal and toroidal response of the plasma using a warm plasma slab approximation with a sheared magnetic field. Only a very narrow region of the edge can be examined in this manner; however, ray tracing may be used to follow the mode converted power in a more general geometry. It is eventually hoped that the methods can be extended to a hot plasma representation. Using antenna design codes, some basic antenna shapes will be considered to see what types of antennas might be used to detect or launch modes that penetrate the cutoff layer in the edge plasma.

  8. Dense Metal Plasma in a Solenoid for Ion Beam Neutralization

    SciTech Connect

    Anders, Andre; Kauffeldt, Marina; Oks, Efim M.; Roy, Prabir K.

    2010-10-30

    Space-charge neutralization is required to compress and focus a pulsed, high-current ion beam on a target for warm dense matter physics or heavy ion fusion experiments. We described approaches to produce dense plasma in and near the final focusing solenoid through which the ion beam travels, thereby providing an opportunity for the beam to acquire the necessary space-charge compensating electrons. Among the options are plasma injection from pulsed vacuum arc sources located outside the solenoid, and using a high current (> 4 kA) pulsed vacuum arc plasma from a ring cathode near the edge of the solenoid. The plasma distribution is characterized by photographic means, by an array of movable Langmuir probes, by a small single probe, and by evaluating Stark broadening of the Balmer H beta spectral line. In the main approach described here, the plasma is produced at several cathode spots distributed azimuthally on the ring cathode. It is shown that the plasma is essentially hollow, as determined by the structure of the magnetic field, though the plasma density exceeds 1014 cm-3 in practically all zones of the solenoid volume if the ring electrode is placed a few centimeters off the center of the solenoid. The plasma is non-uniform and fluctuating, however, since its density exceeds the ion beam density it is believed that this approach could provide a practical solution to the space charge neutralization challenge.

  9. Electron Recombination in a Dense Hydrogen Plasma

    SciTech Connect

    Jana, M.R.; Johnstone, C.; Kobilarcik, T.; Koizumi, G.M.; Moretti, A.; Popovic, M.; Tollestrup, A.V.; Yonehara, K.; Leonova, M.A.; Schwarz, T.A.; Chung, M.; /Unlisted /IIT, Chicago /Fermilab /MUONS Inc., Batavia /Turin Polytechnic

    2012-05-01

    A high pressure hydrogen gas filled RF cavity was subjected to an intense proton beam to study the evolution of the beam induced plasma inside the cavity. Varying beam intensities, gas pressures and electric fields were tested. Beam induced ionized electrons load the cavity, thereby decreasing the accelerating gradient. The extent and duration of this degradation has been measured. A model of the recombination between ionized electrons and ions is presented, with the intent of producing a baseline for the physics inside such a cavity used in a muon accelerator. Analysis of the data taken during the summer of 2011 shows that self recombination takes place in pure hydrogen gas. The decay of the number of electrons in the cavity once the beam is turned off indicates self recombination rather than attachment to electronegative dopants or impurities. The cross section of electron recombination grows for larger clusters of hydrogen and so at the equilibrium of electron production and recombination in the cavity, processes involving H{sub 5}{sup +} or larger clusters must be taking place. The measured recombination rates during this time match or exceed the analytic predicted values. The accelerating gradient in the cavity recovers fully in time for the next beam pulse of a muon collider. Exactly what the recombination rate is and how much the gradient degrades during the 60 ns muon collider beam pulse will be extrapolated from data taken during the spring of 2012.

  10. Development and utilization of new diagnostics for dense-phase pneumatic transport

    SciTech Connect

    Louge, M.; Jenkins, J.T.

    1992-03-02

    In 1988, we proposed a program to develop new diagnostics for dense gas-solid suspensions, with particular interest toward the dense pneumatic transport of cohesive solid plugs. This program included three main objectives, as follows: to develop probes for local measurements of (1) local particle volume fraction and (2) individual particle velocities in dense gas-solid flows; and (3) to construct a bench-scale setup for transporting dense cohesive solid plugs and to analyze data from the resulting tests.

  11. Development and utilization of new diagnostics for dense-phase pneumatic transport. Final report

    SciTech Connect

    Louge, M.; Jenkins, J.T.

    1992-03-02

    In 1988, we proposed a program to develop new diagnostics for dense gas-solid suspensions, with particular interest toward the dense pneumatic transport of cohesive solid plugs. This program included three main objectives, as follows: to develop probes for local measurements of (1) local particle volume fraction and (2) individual particle velocities in dense gas-solid flows; and (3) to construct a bench-scale setup for transporting dense cohesive solid plugs and to analyze data from the resulting tests.

  12. Nonequilibrium diagnostics of plasma thrusters

    SciTech Connect

    Eddy, T.L.; Grandy, J.D.

    1990-01-01

    This paper describes possible techniques by which the state of plasma thruster operation for space propulsion can be determined from a minimum set of experimental data in the laboratory. The kinetic properties of the nonequilibrium plasma plume usually can not be directly related to the observed radiation; hence, appropriate nonequilibrium diagnostic techniques must be employed. A newly developed multithermal, multichemical equilibrium method is discussed that uses measured line emission intensities and N equations to solve for N unknowns. The effect of arbitrarily changing the number of selected N unknowns and how one determines the optimum (minimum) number to be used for a given composition is also presented. The chemical nonequilibrium aspects and the application to molecular species have not yet been published. The important conclusions are that (1) complete thermodynamic systems in nonequilibrium can be described by relatively few variables if appropriate choices and filtering methods are used, (2) a few radiation measurements can yield valid kinetic properties, and (3) the major question in the relations to be used is in the form of the law of mass action. The results are substantiated in the laboratory by additional alternative methods of measurement of some of the kinetic properties. 13 refs., 1 fig.

  13. Characterization of Dense Plasma Targets for Equation of State Experiments.

    NASA Astrophysics Data System (ADS)

    Hurry, Tom; Benage, John; Cobble, Jim; Dodd, Evan; Herrmann, Hans; Ortiz, Tom; Workman, Jonathan

    2006-10-01

    The measurement of the Equation of State (EOS) of materials in the dense-plasma state is difficult. The standard method for measuring EOS relies on the shock driven Hugoniot technique, where the material is initially at standard temperature and pressure and is shocked using a flyer plate. The locus of states produced using this technique is called the standard Hugoniot. However, the states produced do not fall into the regime of dense plasmas, where the EOS of the material is quite uncertain. We are developing a technique for measuring the EOS in a dense plasma, conditions far away from the standard Hugoniot. This technique requires that the initial condition of the material be at densities well below and temperatures well above standard. We have completed initial experiments producing and characterizing the plasma targets using visible spectroscopy and imaging. We have also begun development of a dynamic phase contrast imaging system required for measuring the shock velocity in the plasma. Simulations of these initial measurements and of the laser drive necessary to produce a uniform shock in the material are also shown. The conditions that we calculate to be produced by this shock are then compared to models for the EOS of this material.

  14. Warm, Dense Plasma Characterization by X-ray Thomson Scattering

    SciTech Connect

    Landen, O L; Glenzer, S H; Cauble, R C; Lee, R W; Edwards, J E; Degroot, J S

    2000-07-18

    We describe how the powerful technique of spectrally resolved Thomson scattering can be extended to the x-ray regime, for direct measurements of the ionization state, density, temperature, and the microscopic behavior of dense cool plasmas. Such a direct measurement of microscopic parameters of solid density plasmas could eventually be used to properly interpret laboratory measurements of material properties such as thermal and electrical conductivity, EUS and opacity. In addition, x-ray Thomson scattering will provide new information on the characteristics of rarely and hitherto difficult to diagnose Fermi degenerate and strongly coupled plasmas.

  15. Dense simple plasmas as high-temperature liquid simple metals

    NASA Technical Reports Server (NTRS)

    Perrot, F.

    1990-01-01

    The thermodynamic properties of dense plasmas considered as high-temperature liquid metals are studied. An attempt is made to show that the neutral pseudoatom picture of liquid simple metals may be extended for describing plasmas in ranges of densities and temperatures where their electronic structure remains 'simple'. The primary features of the model when applied to plasmas include the temperature-dependent self-consistent calculation of the electron charge density and the determination of a density and temperature-dependent ionization state.

  16. Measurement of charged-particle stopping in warm dense plasma.

    PubMed

    Zylstra, A B; Frenje, J A; Grabowski, P E; Li, C K; Collins, G W; Fitzsimmons, P; Glenzer, S; Graziani, F; Hansen, S B; Hu, S X; Johnson, M Gatu; Keiter, P; Reynolds, H; Rygg, J R; Séguin, F H; Petrasso, R D

    2015-05-29

    We measured the stopping of energetic protons in an isochorically heated solid-density Be plasma with an electron temperature of ∼32  eV, corresponding to moderately coupled [(e^{2}/a)/(k_{B}T_{e}+E_{F})∼0.3] and moderately degenerate [k_{B}T_{e}/E_{F}∼2] "warm-dense matter" (WDM) conditions. We present the first high-accuracy measurements of charged-particle energy loss through dense plasma, which shows an increased loss relative to cold matter, consistent with a reduced mean ionization potential. The data agree with stopping models based on an ad hoc treatment of free and bound electrons, as well as the average-atom local-density approximation; this work is the first test of these theories in WDM plasma. PMID:26066441

  17. 1991 US-Japan workshop on Nuclear Fusion in Dense Plasmas. Proceedings

    SciTech Connect

    Ichimaru, S.; Tajima, T.

    1991-10-01

    The scientific areas covered at the Workshop may be classified into the following subfields: (1) basic theory of dense plasma physics and its interface with atomic physics and nuclear physics; (2) physics of dense z-pinches, ICF plasmas etc; (3) stellar interior plasmas; (4) cold fusion; and (5) other dense plasmas.

  18. 1991 US-Japan workshop on Nuclear Fusion in Dense Plasmas

    SciTech Connect

    Ichimaru, S. . Dept. of Physics); Tajima, T. . Inst. for Fusion Studies)

    1991-10-01

    The scientific areas covered at the Workshop may be classified into the following subfields: (1) basic theory of dense plasma physics and its interface with atomic physics and nuclear physics; (2) physics of dense z-pinches, ICF plasmas etc; (3) stellar interior plasmas; (4) cold fusion; and (5) other dense plasmas.

  19. Hugoniot measurements of double-shocked precompressed dense xenon plasmas.

    PubMed

    Zheng, J; Chen, Q F; Gu, Y J; Chen, Z Y

    2012-12-01

    The current partially ionized plasmas models for xenon show substantial differences since the description of pressure and thermal ionization region becomes a formidable task, prompting the need for an improved understanding of dense xenon plasmas behavior at above 100 GPa. We performed double-shock compression experiments on dense xenon to determine accurately the Hugoniot up to 172 GPa using a time-resolved optical radiation method. The planar strong shock wave was produced using a flyer plate impactor accelerated up to ∼6 km/s with a two-stage light-gas gun. The time-resolved optical radiation histories were acquired by using a multiwavelength channel optical transience radiance pyrometer. Shock velocity was measured and mass velocity was determined by the impedance-matching methods. The experimental equation of state of dense xenon plasmas are compared with the self-consistent fluid variational calculations of dense xenon in the region of partial ionization over a wide range of pressures and temperatures. PMID:23368058

  20. MFTF-B plasma-diagnostic system

    SciTech Connect

    Throop, A.L.; Goerz, D.A.; Thomas, S.R.

    1981-10-21

    This paper describes the current design status of the plasma diagnostic system for MFTF-B. In this paper we describe the system requirement changes which have occurred as a result of the funded rescoping of the original MFTF facility into MFTF-B. We outline the diagnostic instruments which are currently planned, and present an overview of the diagnostic system.

  1. Laser-driven Beat-Wave Current Drive in Dense Plasmas with Demo on CTIX

    NASA Astrophysics Data System (ADS)

    Liu, Fei; Horton, Robert; Hwang, David; Zhu, Ben; Evans, Russell; Hong, Sean; Hsu, Scott

    2010-11-01

    The ability to remotely generate plasma current in dense plasmas hanging freely in vacuum in voluminous amount without obstruction to diagnostics will greatly enhance our ability to study the physics of high energy density plasmas in strong magnetic fields. Plasma current can be generated through nonlinear beat-wave process by launching two intense electromagnetic waves into unmagnetized plasma. Beat-wave acceleration of electrons has been demonstrated in a low-density plasma using microwaves [1]. The proposed PLX experimental facility presently under construction at Los Alamos offers the opportunity to test the method at a density level scalable to the study of HED plasmas. For PLX beat-wave experiments, CO2 lasers will be used as pump waves due to their high power and tunability. For a typical PLX density ne=10^17cm-3, two CO2 lasers can be separately tuned to 9P(28) and 10P(20) to match the 2.84THz plasma frequency. The beat-wave demo experiment will be conducted on CTIX. The laser arrangement is being converted to two independent single lasers. Frequency-tuning methods, optics focusing system and diagnostics system will be discussed. The laser measurements and results of synchronization of two lasers will be presented, and scaling to PLX experiments will be given. [1] Rogers, J. H. and Hwang, D. Q., PRL. v68 p3877 (1992).

  2. Ponderomotive potential and backward Raman scattering in dense quantum plasmas

    SciTech Connect

    Son, S.

    2014-03-15

    The backward Raman scattering is studied in dense quantum plasmas. The coefficients in the backward Raman scattering is found to be underestimated (overestimated) in the classical theory if the excited Langmuir wave has low-wave vector (high-wave vector). The second-order quantum perturbation theory shows that the second harmonic of the ponderomotive potential arises naturally even in a single particle motion contrary to the classical prediction.

  3. Ionic Transport Coefficients of Dense Plasmas without Molecular Dynamics.

    PubMed

    Daligault, Jérôme; Baalrud, Scott D; Starrett, Charles E; Saumon, Didier; Sjostrom, Travis

    2016-02-19

    We present a theoretical model that allows a fast and accurate evaluation of ionic transport properties of realistic plasmas spanning from warm and dense to hot and dilute conditions, including mixtures. This is achieved by combining a recent kinetic theory based on effective interaction potentials with a model for the equilibrium radial density distribution based on an average atom model and the integral equations theory of fluids. The model should find broad use in applications where nonideal plasma conditions are traversed, including inertial confinement fusion, compact astrophysical objects, solar and extrasolar planets, and numerous present-day high energy density laboratory experiments. PMID:26943540

  4. Ionic Transport Coefficients of Dense Plasmas without Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Daligault, Jérôme; Baalrud, Scott D.; Starrett, Charles E.; Saumon, Didier; Sjostrom, Travis

    2016-02-01

    We present a theoretical model that allows a fast and accurate evaluation of ionic transport properties of realistic plasmas spanning from warm and dense to hot and dilute conditions, including mixtures. This is achieved by combining a recent kinetic theory based on effective interaction potentials with a model for the equilibrium radial density distribution based on an average atom model and the integral equations theory of fluids. The model should find broad use in applications where nonideal plasma conditions are traversed, including inertial confinement fusion, compact astrophysical objects, solar and extrasolar planets, and numerous present-day high energy density laboratory experiments.

  5. Interaction of fast magnetoacoustic solitons in dense plasmas

    SciTech Connect

    Jahangir, R.; Saleem, Khalid; Masood, W.; Siddiq, M.; Batool, Nazia

    2015-09-15

    One dimensional propagation of fast magnetoacoustic solitary waves in dense plasmas with degenerate electrons is investigated in this paper in the small amplitude limit. In this regard, Korteweg deVries equation is derived and discussed using the plasma parameters that are typically found in white dwarf stars. The interaction of fast magnetoacoustic solitons is explored by using the Hirota bilinear formalism, which admits multi soliton solutions. It is observed that the values of the propagation vectors determine the interaction of solitary waves. It is further noted that the amplitude of the respective solitary waves remain unchanged after the interaction; however, they do experience a phase shift.

  6. Interaction of fast magnetoacoustic solitons in dense plasmas

    NASA Astrophysics Data System (ADS)

    Jahangir, R.; Masood, W.; Siddiq, M.; Batool, Nazia; Saleem, Khalid

    2015-09-01

    One dimensional propagation of fast magnetoacoustic solitary waves in dense plasmas with degenerate electrons is investigated in this paper in the small amplitude limit. In this regard, Korteweg deVries equation is derived and discussed using the plasma parameters that are typically found in white dwarf stars. The interaction of fast magnetoacoustic solitons is explored by using the Hirota bilinear formalism, which admits multi soliton solutions. It is observed that the values of the propagation vectors determine the interaction of solitary waves. It is further noted that the amplitude of the respective solitary waves remain unchanged after the interaction; however, they do experience a phase shift.

  7. Dense Plasma Focus: A question in search of answers, a technology in search of applications

    NASA Astrophysics Data System (ADS)

    Auluck, S. K. H.

    2014-08-01

    Diagnostic information accumulated over four decades of research suggests a directionality of toroidal motion for energetic ions responsible for fusion neutron production in the Dense Plasma Focus (DPF) and existence of an axial component of magnetic field even under conditions of azimuthal symmetry. This is at variance with the traditional view of Dense Plasma Focus as a purely irrotational compressive flow. The difficulty in understanding the experimental situation from a theoretical standpoint arises from polarity of the observed solenoidal state: three independent experiments confirm existence of a fixed polarity of the axial magnetic field or related azimuthal current. Since the equations governing plasma dynamics do not have a built-in direction, the fixed polarity must be related with initial conditions: the plasma dynamics must interact with an external physical vector in order to generate a solenoidal state of fixed polarity. Only four such external physical vectors can be identified: the earth's magnetic field, earth's angular momentum, direction of current flow and the direction of the plasma accelerator. How interaction of plasma dynamics with these fields can generate observed solenoidal state is a question still in search of answers; this paper outlines one possible answer. The importance of this question goes beyond scientific curiosity into technological uses of the energetic ions and the high-power-density plasma environment. However, commercial utilization of such technologies faces reliability concerns, which can be met only by first-principles integrated design of globally-optimized industrial-quality DPF hardware. Issues involved in the emergence of the Dense Plasma Focus as a technology platform for commercial applications in the not-too-distant future are discussed.

  8. Renormalization plasma shielding effects on scattering entanglement fidelity in dense plasmas

    SciTech Connect

    Lee, Gyeong Won; Shim, Jaewon; Jung, Young-Dae

    2014-10-15

    The influence of renormalization plasma screening on the entanglement fidelity for the elastic electron-atom scattering is investigated in partially ionized dense hydrogen plasmas. The partial wave analysis and effective interaction potential are employed to obtain the scattering entanglement fidelity in dense hydrogen plasmas as functions of the collision energy, the Debye length, and the renormalization parameter. It is found that the renormalization plasma shielding enhances the scattering entanglement fidelity. Hence, we show that the transmission of the quantum information can be increased about 10% due to the renormalization shielding effect in dense hydrogen plasmas. It is also found that the renormalization shielding effect on the entanglement fidelity for the electron-atom collision increases with an increase of the collision energy. In addition, the renormalization shielding function increases with increasing collision energy and saturates to the unity with an increase of the Debye length.

  9. Understanding neutron production in the deuterium dense plasma focus

    SciTech Connect

    Appelbe, Brian E-mail: j.chittenden@imperial.ac.uk; Chittenden, Jeremy E-mail: j.chittenden@imperial.ac.uk

    2014-12-15

    The deuterium Dense Plasma Focus (DPF) can produce copious amounts of MeV neutrons and can be used as an efficient neutron source. However, the mechanism by which neutrons are produced within the DPF is poorly understood and this limits our ability to optimize the device. In this paper we present results from a computational study aimed at understanding how neutron production occurs in DPFs with a current between 70 kA and 500 kA and which parameters can affect it. A combination of MHD and kinetic tools are used to model the different stages of the DPF implosion. It is shown that the anode shape can significantly affect the structure of the imploding plasma and that instabilities in the implosion lead to the generation of large electric fields at stagnation. These electric fields can accelerate deuterium ions within the stagnating plasma to large (>100 keV) energies leading to reactions with ions in the cold dense plasma. It is shown that the electromagnetic fields present can significantly affect the trajectories of the accelerated ions and the resulting neutron production.

  10. Understanding neutron production in the deuterium dense plasma focus

    NASA Astrophysics Data System (ADS)

    Appelbe, Brian; Chittenden, Jeremy

    2014-12-01

    The deuterium Dense Plasma Focus (DPF) can produce copious amounts of MeV neutrons and can be used as an efficient neutron source. However, the mechanism by which neutrons are produced within the DPF is poorly understood and this limits our ability to optimize the device. In this paper we present results from a computational study aimed at understanding how neutron production occurs in DPFs with a current between 70 kA and 500 kA and which parameters can affect it. A combination of MHD and kinetic tools are used to model the different stages of the DPF implosion. It is shown that the anode shape can significantly affect the structure of the imploding plasma and that instabilities in the implosion lead to the generation of large electric fields at stagnation. These electric fields can accelerate deuterium ions within the stagnating plasma to large (>100 keV) energies leading to reactions with ions in the cold dense plasma. It is shown that the electromagnetic fields present can significantly affect the trajectories of the accelerated ions and the resulting neutron production.

  11. Stability Limits and Properties of Dense Nonneutral Plasmas

    SciTech Connect

    Pollock, R. E.

    2001-12-14

    Developed equipment consisted of a high magnetic field solenoid with supporting instrumentation for electron plasma confinement. The solenoid was designed and delivered in year 1. In year 2, it was mapped and the trap was created and commissioned. In parallel, an ongoing program of beam-plasma interaction studies was carried out with a lower field trap developed earlier. The trap was placed in the IUCF Coolor (an intermediate-energy electron-cooled storage ring) and the effects of the beam on the plasma were investigated, including energy and angular momentum transfer. Student projects carried out within the beam-plasma group also included development of a diagnostic with high spatial resolution, and preparation for extension of the beam-plasma interaction study to much lower beam energy. This became the principal group activity during the latter part of the project.

  12. Rare Gases Transition Probabilities for Plasma Diagnostics

    SciTech Connect

    Katsonis, K.; Siskos, A.; Ndiaye, A.; Clark, R. E. H.; Cornille, M.; Abdallah, J. Jr.

    2006-01-15

    Evaluation of Ar and Xe transition probabilities to be used in Collisional-Radiative models for plasma diagnostics is addressed. Partial results are given for the typical case of the 4p <- 4d Ar III multiplet.

  13. Current and Perspective Applications of Dense Plasma Focus Devices

    SciTech Connect

    Gribkov, V. A.

    2008-04-07

    Dense Plasma Focus (DPF) devices' applications, which are intended to support the main-stream large-scale nuclear fusion programs (NFP) from one side (both in fundamental problems of Dense Magnetized Plasma physics and in its engineering issues) as well as elaborated for an immediate use in a number of fields from the other one, are described. In the first direction such problems as self-generated magnetic fields, implosion stability of plasma shells having a high aspect ratio, etc. are important for the Inertial Confinement Fusion (ICF) programs (e.g. as NIF), whereas different problems of current disruption phenomenon, plasma turbulence, mechanisms of generation of fast particles and neutrons in magnetized plasmas are of great interest for the large devices of the Magnetic Plasma Confinement--MPC (e.g. as ITER). In a sphere of the engineering problems of NFP it is shown that in particular the radiation material sciences have DPF as a very efficient tool for radiation tests of prospect materials and for improvement of their characteristics. In the field of broad-band current applications some results obtained in the fields of radiation material sciences, radiobiology, nuclear medicine, express Neutron Activation Analysis (including a single-shot interrogation of hidden illegal objects), dynamic non-destructive quality control, X-Ray microlithography and micromachining, and micro-radiography are presented. As the examples of the potential future applications it is proposed to use DPF as a powerful high-flux neutron source to generate very powerful pulses of neutrons in the nanosecond (ns) range of its duration for innovative experiments in nuclear physics, for the goals of radiation treatment of malignant tumors, for neutron tests of materials of the first wall, blankets and NFP device's constructions (with fluences up to 1 dpa per a year term), and ns pulses of fast electrons, neutrons and hard X-Rays for brachytherapy.

  14. Current and Perspective Applications of Dense Plasma Focus Devices

    NASA Astrophysics Data System (ADS)

    Gribkov, V. A.

    2008-04-01

    Dense Plasma Focus (DPF) devices' applications, which are intended to support the main-stream large-scale nuclear fusion programs (NFP) from one side (both in fundamental problems of Dense Magnetized Plasma physics and in its engineering issues) as well as elaborated for an immediate use in a number of fields from the other one, are described. In the first direction such problems as self-generated magnetic fields, implosion stability of plasma shells having a high aspect ratio, etc. are important for the Inertial Confinement Fusion (ICF) programs (e.g. as NIF), whereas different problems of current disruption phenomenon, plasma turbulence, mechanisms of generation of fast particles and neutrons in magnetized plasmas are of great interest for the large devices of the Magnetic Plasma Confinement—MPC (e.g. as ITER). In a sphere of the engineering problems of NFP it is shown that in particular the radiation material sciences have DPF as a very efficient tool for radiation tests of prospect materials and for improvement of their characteristics. In the field of broad-band current applications some results obtained in the fields of radiation material sciences, radiobiology, nuclear medicine, express Neutron Activation Analysis (including a single-shot interrogation of hidden illegal objects), dynamic non-destructive quality control, X-Ray microlithography and micromachining, and micro-radiography are presented. As the examples of the potential future applications it is proposed to use DPF as a powerful high-flux neutron source to generate very powerful pulses of neutrons in the nanosecond (ns) range of its duration for innovative experiments in nuclear physics, for the goals of radiation treatment of malignant tumors, for neutron tests of materials of the first wall, blankets and NFP device's constructions (with fluences up to 1 dpa per a year term), and ns pulses of fast electrons, neutrons and hard X-Rays for brachytherapy.

  15. Dense Plasma X-ray Scattering: Methods and Applications

    SciTech Connect

    Glenzer, S H; Lee, H J; Davis, P; Doppner, T; Falcone, R W; Fortmann, C; Hammel, B A; Kritcher, A L; Landen, O L; Lee, R W; Munro, D H; Redmer, R; Weber, S

    2009-08-19

    We have developed accurate x-ray scattering techniques to measure the physical properties of dense plasmas. Temperature and density are inferred from inelastic x-ray scattering data whose interpretation is model-independent for low to moderately coupled systems. Specifically, the spectral shape of the non-collective Compton scattering spectrum directly reflects the electron velocity distribution. In partially Fermi degenerate systems that have been investigated experimentally in laser shock-compressed beryllium, the Compton scattering spectrum provides the Fermi energy and hence the electron density. We show that forward scattering spectra that observe collective plasmon oscillations yield densities in agreement with Compton scattering. In addition, electron temperatures inferred from the dispersion of the plasmon feature are consistent with the ion temperature sensitive elastic scattering feature. Hence, theoretical models of the static ion-ion structure factor and consequently the equation of state of dense matter can be directly tested.

  16. Some plasma aspects and plasma diagnostics of ion sources (invited)

    SciTech Connect

    Wiesemann, Klaus

    2008-02-15

    We consider plasma properties in the most advanced type of plasma ion sources, electron cyclotron resonance ion sources for highly charged ions. Depending on the operation conditions the plasma in these sources may be highly ionized, which completely changes its transport properties. The most striking difference to weakly ionized plasma is that diffusion will become intrinsically ambipolar. We further discuss means of plasma diagnostics. As noninvasive diagnostic methods we will discuss analysis of the ion beam, optical spectroscopy, and measurement of the x-ray bremsstrahlung continuum. From beam analysis and optical spectroscopy one may deduce ion densities, and electron densities and distribution functions as a mean over the line of sight along the axis (optical spectroscopy) or at the plasma edge (ion beam). From x-ray spectra one obtains information about the population of highly energetic electrons and the energy transfer from the driving electromagnetic waves to the plasma--basic data for plasma modeling.

  17. Some plasma aspects and plasma diagnostics of ion sources.

    PubMed

    Wiesemann, Klaus

    2008-02-01

    We consider plasma properties in the most advanced type of plasma ion sources, electron cyclotron resonance ion sources for highly charged ions. Depending on the operation conditions the plasma in these sources may be highly ionized, which completely changes its transport properties. The most striking difference to weakly ionized plasma is that diffusion will become intrinsically ambipolar. We further discuss means of plasma diagnostics. As noninvasive diagnostic methods we will discuss analysis of the ion beam, optical spectroscopy, and measurement of the x-ray bremsstrahlung continuum. From beam analysis and optical spectroscopy one may deduce ion densities, and electron densities and distribution functions as a mean over the line of sight along the axis (optical spectroscopy) or at the plasma edge (ion beam). From x-ray spectra one obtains information about the population of highly energetic electrons and the energy transfer from the driving electromagnetic waves to the plasma -- basic data for plasma modeling.

  18. Synthetic diagnostics platform for fusion plasmas (invited)

    NASA Astrophysics Data System (ADS)

    Shi, L.; Valeo, E. J.; Tobias, B. J.; Kramer, G. J.; Hausammann, L.; Tang, W. M.; Chen, M.

    2016-11-01

    A Synthetic Diagnostics Platform (SDP) for fusion plasmas has been developed which provides state of the art synthetic reflectometry, beam emission spectroscopy, and Electron Cyclotron Emission (ECE) diagnostics. Interfaces to the plasma simulation codes GTC, XGC-1, GTS, and M3D-C1 are provided, enabling detailed validation of these codes. In this paper, we give an overview of SDP's capabilities, and introduce the synthetic diagnostic modules. A recently developed synthetic ECE Imaging module which self-consistently includes refraction, diffraction, emission, and absorption effects is discussed in detail. Its capabilities are demonstrated on two model plasmas. The importance of synthetic diagnostics in validation is shown by applying the SDP to M3D-C1 output and comparing it with measurements from an edge harmonic oscillation mode on DIII-D.

  19. Beam-driven acceleration in ultra-dense plasma media

    DOE PAGES

    Shin, Young-Min

    2014-09-15

    Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 1025 m-3 and 1.6 x 1028 m-3 plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers 20 % higher acceleration gradient by enlarging the channel radius (r)more » from 0.2 Ap to 0.6 .Ap in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g. nanotubes) of high electron plasma density.« less

  20. Beam-driven acceleration in ultra-dense plasma media

    SciTech Connect

    Shin, Young-Min

    2014-09-15

    Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 1025 m-3 and 1.6 x 1028 m-3 plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers 20 % higher acceleration gradient by enlarging the channel radius (r) from 0.2 Ap to 0.6 .Ap in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g. nanotubes) of high electron plasma density.

  1. Beam-driven acceleration in ultra-dense plasma media

    SciTech Connect

    Shin, Young-Min

    2014-09-15

    Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 10{sup 25 }m{sup −3} and 1.6 × 10{sup 28 }m{sup −3} plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers ∼20% higher acceleration gradient by enlarging the channel radius (r) from 0.2 λ{sub p} to 0.6 λ{sub p} in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g., nanotubes) of high electron plasma density.

  2. Analysis of Experimental Production of Dense Titanium Plasma

    NASA Astrophysics Data System (ADS)

    Wysocki, Frederick J.; Benage, John F.; Newton, Robert R.; Wood, Blake P.

    2001-10-01

    As part of the stockpile stewardship program, we are developing the capability to produce strongly coupled plasmas at very high density and modest temperature. In this experiment, we desire a cylindrical shell of titanium plasma with ion density ≈ 0.1 times solid density and ion temperature of a few eV. The shell has a radius of 1 cm, a length of 4 cm, and a shell thickness of 0.2 cm. The plasma is produced by using ≈ 1 MA of current (2.5 μs risetime) from the LANL Colt capacitor bank to ohmically heat a 100 μm thick titanium cylindrical foil to the desired conditions. Plasma pressure causes the titanium to expand to the desired thickness, with nylon tamps preventing further expansion. Magnetic force at the foil is reduced by splitting the return current between the axis and outside the foil. The primary diagnostic was two radial x-ray radiographic systems. Analysis of these data indicate the Titanium foil turns to plasma from the outside surfaces inward, rather than a bulk transition to plasma. The data indicate that after 4.8 μs, roughly one half of the foil mass has been turned into plasma, which has expanded to fill the gap between the nylon tamps.

  3. Microwave imaging diagnostics for plasma fluctuation studies

    NASA Astrophysics Data System (ADS)

    Wang, Jian

    Electron Cyclotron Emission Imaging (ECEI) and Microwave Imaging Reflectometry (MIR) combined systems are being investigated by the UC Davis Plasma Diagnostic Group (PDG), in collaboration with Princeton Plasma Physics Laboratory (PPPL) researchers, Drs. E. Mazzucato, H.K. Park and T. Munsat, as well as researchers from the FOM-Instituut voor Plasmafysica Rijnhuizen,the Netherlands. The goal is to develop the plasma diagnostic systems based on the imaging technology developed in the UC Davis PDG group, for the study of plasma micro-turbulence, which is extremely important for the understanding of anomalous transport behavior of magnetically confined plasmas such as in tokamaks. This dissertation work provides the design of the optical systems, the design of the electronics, the testing of the antenna array and the data analysis of TEXTOR ECEI/MIR combined systems.

  4. Brewster angle and reflectivity of optically nonuniform dense plasmas

    NASA Astrophysics Data System (ADS)

    Norman, G.; Saitov, I.

    2016-10-01

    We provide theoretical analysis of the reflectance of shock-compressed plasmas and warm dense matter for normal incidence of laser radiation as well as for the dependence of s - and p -polarized reflectivity on the incidence angle. The self-consistent approach for the calculation of the optical and electronic properties of warm dense matter and nonideal plasmas developed in our previous works is extended for the description of normal and polarized reflectivity from the broadened optically nonuniform medium. Two methods are applied for the calculation of the reflectivity from spatially broadened optically nonuniform medium. The first one is based on the solution of the Helmholtz equation for the amplitudes of the electromagnetic field. Another one is based on Drude theory of reflection. It allows us to calculate the ratio of the s - and p -polarized reflectivity if dependence of the dielectric function on distance is known. For the case of the polarized reflectivity, the particular attention is concentrated on the Brewster angle. The calculation results for the dielectric function, obtained within the framework of the density-functional theory with the longitudinal expression for the dielectric tensor, are applied for the calculation of the reflectivity. Comparison with the experimental data for shock-compressed xenon is performed.

  5. Equation of state of dense plasmas with pseudoatom molecular dynamics

    NASA Astrophysics Data System (ADS)

    Starrett, C. E.; Saumon, D.

    2016-06-01

    We present an approximation for calculating the equation of state (EOS) of warm and hot dense matter that is built on the previously published pseudoatom molecular dynamics (PAMD) model of dense plasmas [Starrett et al., Phys. Rev. E 91, 013104 (2015), 10.1103/PhysRevE.91.013104]. While the EOS calculation with PAMD was previously limited to orbital-free density functional theory (DFT), the new approximation presented here allows a Kohn-Sham DFT treatment of the electrons. The resulting EOS thus includes a quantum mechanical treatment of the electrons with a self-consistent model of the ionic structure, while remaining tractable at high temperatures. The method is validated by comparisons with pressures from ab initio simulations of Be, Al, Si, and Fe. The EOS in the Thomas-Fermi approximation shows remarkable thermodynamic consistency over a wide range of temperatures for aluminum. We calculate the principal Hugoniots of aluminum and silicon up to 500 eV. We find that the ionic structure of the plasma has a modest effect that peaks at temperatures of a few eV and that the features arising from the electronic structure agree well with ab initio simulations.

  6. Monte Carlo simulations of ionization potential depression in dense plasmas

    NASA Astrophysics Data System (ADS)

    Stransky, M.

    2016-01-01

    A particle-particle grand canonical Monte Carlo model with Coulomb pair potential interaction was used to simulate modification of ionization potentials by electrostatic microfields. The Barnes-Hut tree algorithm [J. Barnes and P. Hut, Nature 324, 446 (1986)] was used to speed up calculations of electric potential. Atomic levels were approximated to be independent of the microfields as was assumed in the original paper by Ecker and Kröll [Phys. Fluids 6, 62 (1963)]; however, the available levels were limited by the corresponding mean inter-particle distance. The code was tested on hydrogen and dense aluminum plasmas. The amount of depression was up to 50% higher in the Debye-Hückel regime for hydrogen plasmas, in the high density limit, reasonable agreement was found with the Ecker-Kröll model for hydrogen plasmas and with the Stewart-Pyatt model [J. Stewart and K. Pyatt, Jr., Astrophys. J. 144, 1203 (1966)] for aluminum plasmas. Our 3D code is an improvement over the spherically symmetric simplifications of the Ecker-Kröll and Stewart-Pyatt models and is also not limited to high atomic numbers as is the underlying Thomas-Fermi model used in the Stewart-Pyatt model.

  7. Spectroscopic diagnostics of high temperature plasmas

    SciTech Connect

    Moos, W.

    1990-01-01

    A three-year research program for the development of novel XUV spectroscopic diagnostics for magnetically confined fusion plasmas is proposed. The new diagnostic system will use layered synthetic microstructures (LSM) coated, flat and curved surfaces as dispersive elements in spectrometers and narrow band XUV filter arrays. In the framework of the proposed program we will develop impurity monitors for poloidal and toroidal resolved measurements on PBX-M and Alcator C-Mod, imaging XUV spectrometers for electron density and temperature fluctuation measurements in the hot plasma core in TEXT or other similar tokamaks and plasma imaging devices in soft x-ray light for impurity behavior studies during RF heating on Phaedrus T and carbon pellet ablation in Alcator C-Mod. Recent results related to use of multilayer in XUV plasma spectroscopy are presented. We also discuss the latest results reviewed to q{sub o} and local poloidal field measurements using Zeeman polarimetry.

  8. diagnostic in a recombining plasma

    NASA Astrophysics Data System (ADS)

    Wenzel, U.; Goto, M.

    2016-05-01

    In fusion devices the hydrogen Balmer lines are used to measure the neutral flux from the walls into the plasma using the atomic physics factor S/XB. This is a standard diagnostic which can be applied in ionizing plasma using {{H}α} , {{H}β} or {{H}γ} without knowledge of the electron density. We will extend this method to a recombining plasma in front of a surface. {{H}α} can be used in an analogous way to measure the plasma flow to this surface which can be e.g. a divertor target. The other Balmer lines are not suitable because the corresponding atomic physics factor R/YB depends on density due to three-body recombination. An application of this diagnostic method is provided.

  9. Fully kinetic simulations of megajoule-scale dense plasma focus

    SciTech Connect

    Schmidt, A.; Link, A.; Tang, V.; Halvorson, C.; May, M.; Welch, D.; Meehan, B. T.; Hagen, E. C.

    2014-10-15

    Dense plasma focus (DPF) Z-pinch devices are sources of copious high energy electrons and ions, x-rays, and neutrons. Megajoule-scale DPFs can generate 10{sup 12} neutrons per pulse in deuterium gas through a combination of thermonuclear and beam-target fusion. However, the details of the neutron production are not fully understood and past optimization efforts of these devices have been largely empirical. Previously, we reported on the first fully kinetic simulations of a kilojoule-scale DPF and demonstrated that both kinetic ions and kinetic electrons are needed to reproduce experimentally observed features, such as charged-particle beam formation and anomalous resistivity. Here, we present the first fully kinetic simulation of a MegaJoule DPF, with predicted ion and neutron spectra, neutron anisotropy, neutron spot size, and time history of neutron production. The total yield predicted by the simulation is in agreement with measured values, validating the kinetic model in a second energy regime.

  10. Fully kinetic simulations of megajoule-scale dense plasma focus

    NASA Astrophysics Data System (ADS)

    Schmidt, A.; Link, A.; Welch, D.; Meehan, B. T.; Tang, V.; Halvorson, C.; May, M.; Hagen, E. C.

    2014-10-01

    Dense plasma focus (DPF) Z-pinch devices are sources of copious high energy electrons and ions, x-rays, and neutrons. Megajoule-scale DPFs can generate 1012 neutrons per pulse in deuterium gas through a combination of thermonuclear and beam-target fusion. However, the details of the neutron production are not fully understood and past optimization efforts of these devices have been largely empirical. Previously, we reported on the first fully kinetic simulations of a kilojoule-scale DPF and demonstrated that both kinetic ions and kinetic electrons are needed to reproduce experimentally observed features, such as charged-particle beam formation and anomalous resistivity. Here, we present the first fully kinetic simulation of a MegaJoule DPF, with predicted ion and neutron spectra, neutron anisotropy, neutron spot size, and time history of neutron production. The total yield predicted by the simulation is in agreement with measured values, validating the kinetic model in a second energy regime.

  11. High contrast radiography using a small dense plasma focus

    SciTech Connect

    Castillo, F.; Gamboa-deBuen, I.; Herrera, J. J. E.; Rangel, J.; Villalobos, S.

    2008-02-04

    Radiographs are obtained with a small (4.6 kJ) dense plasma focus machine, using the x-rays which cross a 300 {mu}m aluminum window on the axis. Contrast is improved by inserting an iron needle on the tip of the electrode. Measurements with TLD-100 dosimeters have shown the average dose to increase from 0.077{+-}0.006 mGy/shot, when a hollow cathode is used, to 0.11{+-}0.01 mGy/shot, with the needle. The spectrum is estimated using aluminum filters and the effective equivalent energy is found to be in the range of 20-25 keV.

  12. Hydrogen Balmer-alpha broadening in dense plasmas.

    PubMed

    Alexiou, S; Leboucher-Dalimier, E

    1999-09-01

    This work presents a theoretical analysis of experimental results for the hydrogen Balmer-alpha line in dense plasmas, with electron densities between 2x10(18) and 9x10(18) e/cm(3) A simulation of both electrons and ions is employed to produce reliable theoretical widths. These results are essentially in agreement with standard theory results and, for the most part, disagree with the experimental results. Consequently, either mechanisms not accounted for in the theoretical results (such as quadrupoles) are more important than previously thought at these densities, or else there is a problem in the experimental data (such as a possible reabsorption, which is not ruled out by the experimental data). PMID:11970167

  13. Dense plasma focus-assisted nitriding of AISI-304

    NASA Astrophysics Data System (ADS)

    Shafiq, M.; Asghar, M.; Ahmad, S.; Sadiq, M.; Qayyum, A.; Zakaullah, M.

    Nitrogen ion implantation into AISI-304 stainless steel is carried out using a dense plasma focus device, operated at a charging voltage of 18 kV (discharge energyD1.45 kJ) with nitrogen filling at optimum pressure of 0.75 mbar. AISI-304 stainless steel samples placed axially above the anode tip are exposed to the ions for 10, 20 and 30 focus shots. X-ray diffraction (XRD), Vickers's micro hardness tester, scanning electron microscopy, and energy dispersive X-ray spectroscopy are used to explore the ion induced changes in the crystallographic structures, surface morphology, elemental composition and surface hardness of the ion irradiated samples. The XRD pattern confirms the formation of an expanded austenite phase, owing to nitrogen incorporated into the existing iron lattice. The results of micro hardness tester show that the hardness is increased about three times at an axial distance of 5 cm for 20 shots.

  14. Laser Diagnostics for Plasma Processes

    NASA Astrophysics Data System (ADS)

    Filimonov, Serguei Victor

    The time transients of vibrational/rotational excitation up to v = 7 vibrational level of the ground electronic state of nitrogen were measured in a positive column during the 1-10 mus pulsed electric discharges, and in the afterglow. Current densities were up to 25 A/cm^2, and pressures up to 6 Torr. It is shown that initially energy is being transferred, primarily into vibrational levels above v = 1, resulting in a highly non Boltzmann distribution. The redistribution between vibrational levels takes place within 100 mus after the discharge pulse. Beyond 100 mus the vibrational populations resemble closely Boltzmann distribution. Significant rotational heating was observed in the afterglow and is attributed to energy transfer from vibration to rotation via collisions with electrons. The rotational temperature was as high as 3500 K and reached maximum values between 80 and 100 mus after the discharge pulse. Standard, Coherent Anti-Stokes Raman Spectroscopy (CARS) was employed in all measurements. A novel laser interferometric system has been developed for real time in situ monitoring of the etch rate during the plasma etching. The two-beam-two-path optical set-up provides continuous etch rate measurements while plasma parameters are changing.

  15. Magnetic Diagnostics at the Wisconsin Plasma Astrophysics Laboratory

    NASA Astrophysics Data System (ADS)

    Peterson, Ethan; Clark, Michael; Egedal, Jan; Wallace, John; Weisberg, David; Forest, Cary

    2015-11-01

    A flexible suite of magnetic diagnostics is being developed to measure low and high frequency magnetic fields, the 3-D magnetic field structure throughout the plasma volume, and the 2-D structure (polar and azimuthal fields) on the surface of the sphere. The internal 3-D structure is ascertained by scanning insertion probes with high sensitivity, high bandwidth, 3-axis hall effect sensors. Careful engineering of these insertion probes is required to effectively remove the heat load while simultaneously maintaining high performance (hot, dense, steady state) plasmas. A surface array of 3-axis hall-effect sensors and 2-axis flux loops will provide 3-D, low frequency magnetic field measurements as well as high frequency fluctuations in the polar and azimuthal directions due to plasma waves. This surface array can be used to observe the spatial structure of global modes such as spherical ion acoustic waves and can provide insight into the structure and magnitude of internal plasma flows. The engineering and capabilities of these diagnostics is the focus of this poster.

  16. Dense plasma focus PACO as a hard X-ray emitter: a study on the radiation source

    NASA Astrophysics Data System (ADS)

    Supán, L.; Guichón, S.; Milanese, M.; Niedbalski, J.; Moroso, R.; Acuña, H.; Malamud, F.

    2014-05-01

    The radiation in the X-ray range detected outside the vacuum chamber of the dense plasma focus (DPF) PACO, are produced on the anode zone. The zone of emission is studied in a shot-to-shot analysis, using pure deuterium as filling gas. We present a diagnostic method to determine the place and size of the hard X-ray source by image analysis of high density radiography plates.

  17. MHD modeling of dense plasma focus electrode shape variation

    NASA Astrophysics Data System (ADS)

    McLean, Harry; Hartman, Charles; Schmidt, Andrea; Tang, Vincent; Link, Anthony; Ellsworth, Jen; Reisman, David

    2013-10-01

    The dense plasma focus (DPF) is a very simple device physically, but results to date indicate that very extensive physics is needed to understand the details of operation, especially during the final pinch where kinetic effects become very important. Nevertheless, the overall effects of electrode geometry, electrode size, and drive circuit parameters can be informed efficiently using MHD fluid codes, especially in the run-down phase before the final pinch. These kinds of results can then guide subsequent, more detailed fully kinetic modeling efforts. We report on resistive 2-d MHD modeling results applying the TRAC-II code to the DPF with an emphasis on varying anode and cathode shape. Drive circuit variations are handled in the code using a self-consistent circuit model for the external capacitor bank since the device impedance is strongly coupled to the internal plasma physics. Electrode shape is characterized by the ratio of inner diameter to outer diameter, length to diameter, and various parameterizations for tapering. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  18. ALEGRA-HEDP simulations of the dense plasma focus.

    SciTech Connect

    Flicker, Dawn G.; Kueny, Christopher S.; Rose, David V.

    2009-09-01

    We have carried out 2D simulations of three dense plasma focus (DPF) devices using the ALEGRA-HEDP code and validated the results against experiments. The three devices included two Mather-type machines described by Bernard et. al. and the Tallboy device currently in operation at NSTec in North Las Vegas. We present simulation results and compare to detailed plasma measurements for one Bernard device and to current and neutron yields for all three. We also describe a new ALEGRA capability to import data from particle-in-cell calculations of initial gas breakdown, which will allow the first ever simulations of DPF operation from the beginning of the voltage discharge to the pinch phase for arbitrary operating conditions and without assumptions about the early sheath structure. The next step in understanding DPF pinch physics must be three-dimensional modeling of conditions going into the pinch, and we have just launched our first 3D simulation of the best-diagnosed Bernard device.

  19. Optical Spectroscopy of a Mega-Ampere Dense Plasma Focus

    NASA Astrophysics Data System (ADS)

    Dutra, Eric; Bennett, Nichelle; Hagen, Edward; Hunt, Eugene; Hsu, Scott; Koch, Jeffrey; Ross, Patrick; Waltman, Thomas

    2015-11-01

    An optical streaked spectroscopy system was developed to evaluate the spectral emission of the run-down, run-in and pinch phase on the Gemini Dense Plasma Focus (DPF). Time-resolved emission spectra were captured for hydrogen, deuterium, argon, and krypton gas from these phases. The emission was focused onto a fiber, and fed to a spectrometer that was coupled to a streak camera. Spectra of hydrogen, deuterium, argon, and krypton gas were modeled using Spec3D. Plasma parameters including electron density and temperature, from LSP simulations of the DPF discharge, were loaded into the Spec3D simulation to evaluate the emission spectra. Spectra collected from DPF on the streaked spectrometer system were then compared to the Spec3D simulations, and used to verify known optical emission lines for the various gases and to identify possible contaminants. This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946, and by Los Alamos National Laboratory, under Contract no. DE-AC52-06NA25396 with the U.S. Department of Energy. DOE/NV/25946-2519.

  20. Dense plasma focus powered by flux compression generators

    SciTech Connect

    Fowler, C.M.; Freeman, B.L.; Caird, R.S.; Erickson, D.J.; Garn, W.B.

    1992-12-01

    A short summary is given of earlier Los Alamos work in which a Dense Plasma Focus was powered by Flux Compression Generators. Neutron yields obtained in the shot series scaled well with the fifth power of the current. The shot parameters were modeled surprisingly well through the plasma rundown phase by a simple snowplow model. It is shown, with the use of this model, that DPF currents in excess of 10 MA should be obtained with existing generators and initial energy sources. One new element is needed -- a high energy opening switch such as a fuse. Much more is known about fuse operation since the Los Alamos program was stopped, so development of this component should be relatively straightforward. If the yield-current scaling relation holds to this current level, then D-T neutron yields in excess of 10{sup 16} per burst would result, sufficient for some interesting pulsed radiography applications that involve rapidly moving components. Finally, in a sheer flight of fancy, it is shown that D-T yields approaching 10{sup 20} could be obtained, using FCGs not too much beyond the state of the art, provided the simple modeling and neutron-current scaling relations continue to hold, a rather unlikely supposition.

  1. Dense plasma focus powered by flux compression generators

    NASA Astrophysics Data System (ADS)

    Fowler, C. M.; Freeman, B. L.; Caird, R. S.; Erickson, D. J.; Garn, W. B.

    A short summary is given of earlier Los Alamos work in which a Dense Plasma Focus was powered by Flux Compression Generators. Neutron yields obtained in the shot series scaled well with the fifth power of the current. The shot parameters were modeled surprisingly well through the plasma rundown phase by a simple snowplow model. It is shown, with the use of this model, that DPF currents in excess of 10 MA should be obtained with existing generators and initial energy sources. One new element is needed--a high energy opening switch such as a fuse. Much more is known about fuse operation since the Los Alamos program was stopped, so development of this component should be relatively straightforward. If the yield-current scaling relation holds to this current level, then D-T neutron yields in excess of 10(exp 16) per burst would result, sufficient for some interesting pulsed radiography applications that involve rapidly moving components. Finally, in a sheer flight of fancy, it is shown that D-T yields approaching 10(exp 20) could be obtained, using FCG's not too much beyond the state of the art, provided the simple modeling and neutron-current scaling relations continue to hold, a rather unlikely supposition.

  2. Dense plasma focus powered by flux compression generators

    SciTech Connect

    Fowler, C.M.; Freeman, B.L.; Caird, R.S.; Erickson, D.J.; Garn, W.B.

    1992-01-01

    A short summary is given of earlier Los Alamos work in which a Dense Plasma Focus was powered by Flux Compression Generators. Neutron yields obtained in the shot series scaled well with the fifth power of the current. The shot parameters were modeled surprisingly well through the plasma rundown phase by a simple snowplow model. It is shown, with the use of this model, that DPF currents in excess of 10 MA should be obtained with existing generators and initial energy sources. One new element is needed -- a high energy opening switch such as a fuse. Much more is known about fuse operation since the Los Alamos program was stopped, so development of this component should be relatively straightforward. If the yield-current scaling relation holds to this current level, then D-T neutron yields in excess of 10[sup 16] per burst would result, sufficient for some interesting pulsed radiography applications that involve rapidly moving components. Finally, in a sheer flight of fancy, it is shown that D-T yields approaching 10[sup 20] could be obtained, using FCGs not too much beyond the state of the art, provided the simple modeling and neutron-current scaling relations continue to hold, a rather unlikely supposition.

  3. Unified Concept of Effective One Component Plasma for Hot Dense Plasmas.

    PubMed

    Clérouin, Jean; Arnault, Philippe; Ticknor, Christopher; Kress, Joel D; Collins, Lee A

    2016-03-18

    Orbital-free molecular dynamics simulations are used to benchmark two popular models for hot dense plasmas: the one component plasma (OCP) and the Yukawa model. A unified concept emerges where an effective OCP (EOCP) is constructed from the short-range structure of the plasma. An unambiguous ionization and the screening length can be defined and used for a Yukawa system, which reproduces the long-range structure with finite compressibility. Similarly, the dispersion relation of longitudinal waves is consistent with the screened model at vanishing wave number but merges with the OCP at high wave number. Additionally, the EOCP reproduces the overall relaxation time scales of the correlation functions associated with ionic motion. In the hot dense regime, this unified concept of EOCP can be fruitfully applied to deduce properties such as the equation of state, ionic transport coefficients, and the ion feature in x-ray Thomson scattering experiments.

  4. Unified Concept of Effective One Component Plasma for Hot Dense Plasmas.

    PubMed

    Clérouin, Jean; Arnault, Philippe; Ticknor, Christopher; Kress, Joel D; Collins, Lee A

    2016-03-18

    Orbital-free molecular dynamics simulations are used to benchmark two popular models for hot dense plasmas: the one component plasma (OCP) and the Yukawa model. A unified concept emerges where an effective OCP (EOCP) is constructed from the short-range structure of the plasma. An unambiguous ionization and the screening length can be defined and used for a Yukawa system, which reproduces the long-range structure with finite compressibility. Similarly, the dispersion relation of longitudinal waves is consistent with the screened model at vanishing wave number but merges with the OCP at high wave number. Additionally, the EOCP reproduces the overall relaxation time scales of the correlation functions associated with ionic motion. In the hot dense regime, this unified concept of EOCP can be fruitfully applied to deduce properties such as the equation of state, ionic transport coefficients, and the ion feature in x-ray Thomson scattering experiments. PMID:27035306

  5. Unified concept of effective one component plasma for hot dense plasmas

    DOE PAGES

    Clerouin, Jean; Arnault, Philippe; Ticknor, Christopher; Kress, Joel D.; Collins, Lee A.

    2016-03-17

    Orbital-free molecular dynamics simulations are used to benchmark two popular models for hot dense plasmas: the one component plasma (OCP) and the Yukawa model. A unified concept emerges where an effective OCP (EOCP) is constructed from the short-range structure of the plasma. An unambiguous ionization and the screening length can be defined and used for a Yukawa system, which reproduces the long-range structure with finite compressibility. Similarly, the dispersion relation of longitudinal waves is consistent with the screened model at vanishing wave number but merges with the OCP at high wave number. Additionally, the EOCP reproduces the overall relaxation timemore » scales of the correlation functions associated with ionic motion. Lastly, in the hot dense regime, this unified concept of EOCP can be fruitfully applied to deduce properties such as the equation of state, ionic transport coefficients, and the ion feature in x-ray Thomson scattering experiments.« less

  6. Unified Concept of Effective One Component Plasma for Hot Dense Plasmas

    NASA Astrophysics Data System (ADS)

    Clérouin, Jean; Arnault, Philippe; Ticknor, Christopher; Kress, Joel D.; Collins, Lee A.

    2016-03-01

    Orbital-free molecular dynamics simulations are used to benchmark two popular models for hot dense plasmas: the one component plasma (OCP) and the Yukawa model. A unified concept emerges where an effective OCP (EOCP) is constructed from the short-range structure of the plasma. An unambiguous ionization and the screening length can be defined and used for a Yukawa system, which reproduces the long-range structure with finite compressibility. Similarly, the dispersion relation of longitudinal waves is consistent with the screened model at vanishing wave number but merges with the OCP at high wave number. Additionally, the EOCP reproduces the overall relaxation time scales of the correlation functions associated with ionic motion. In the hot dense regime, this unified concept of EOCP can be fruitfully applied to deduce properties such as the equation of state, ionic transport coefficients, and the ion feature in x-ray Thomson scattering experiments.

  7. Measurement of the electrical resistivity of a dense strongly coupled plasma

    NASA Astrophysics Data System (ADS)

    Benage, J. F., Jr.; Shanahan, W. R.; Sherwood, E. G.; Jones, L. A.; Trainor, R. J.

    1994-05-01

    We present measurements of the electrical resistivity of a dense strongly coupled plasma. This plasma is created in a comprehensively diagnosed capillary discharge that produces uniform well-characterized dense plasmas. Data for polyurethane at densities ρ=0.01ρ0, where ρ0=1.265 g/cm3, and temperatures in the 25-30 eV range are compared with several dense plasma theories, and show a significant disagreement. These results are of importance for the modeling of pulsed power experiments and the understanding of transport processes in many astrophysical plasmas.

  8. The Dense Plasma Focus Group of IFAS at Argentina: A brief history and recent direction of the investigations

    NASA Astrophysics Data System (ADS)

    Milanese, María Magdalena

    2006-12-01

    This is a short review of the research done by the Dense Plasma Focus Group (GPDM) presently working in Tandil, Argentina, from its origin, more than three decades ago, as part of the Plasma Physics Laboratory of Buenos Aires University (the first one in Latin-America where experiments in plasma focus have been made) up to the present. The interest has been mainly experimental studies on plasma focus and, in general, fast electrical discharges. The plasma focus has extensively been studied as neutron producer, including its possibility to play a role in nuclear fusion. It was also researched not only for basic plasma studies, but also for other important applications. Conception, design, construction and study of devices and diagnostics suitable for each application have been made on basis of developed criteria.

  9. The Dense Plasma Focus Group of IFAS at Argentina: A brief history and recent direction of the investigations

    SciTech Connect

    Milanese, Maria Magdalena

    2006-12-04

    This is a short review of the research done by the Dense Plasma Focus Group (GPDM) presently working in Tandil, Argentina, from its origin, more than three decades ago, as part of the Plasma Physics Laboratory of Buenos Aires University (the first one in Latin-America where experiments in plasma focus have been made) up to the present. The interest has been mainly experimental studies on plasma focus and, in general, fast electrical discharges. The plasma focus has extensively been studied as neutron producer, including its possibility to play a role in nuclear fusion. It was also researched not only for basic plasma studies, but also for other important applications. Conception, design, construction and study of devices and diagnostics suitable for each application have been made on basis of developed criteria.

  10. Final Report LDRD 02-ERD-013 Dense Plasma Characterization by X-ray Thomson Scattering

    SciTech Connect

    Landen, O L; Glenzer, S H; Gregori, G; Pollaine, S M; Hammer, J H; Rogers, F; Meezan, N B; Chung, H; Lee, R W

    2005-02-11

    We have successfully demonstrated spectrally-resolved x-ray scattering in a variety of dense plasmas as a powerful new technique for providing microscopic dense plasma parameters unattainable by other means. The results have also been used to distinguish between ionization balance models. This has led to 10 published or to be published papers, 8 invited talks and significant interest from both internal and external experimental plasma physicists and the international statistical plasma physics theory community.

  11. Plasma Diagnostics of a Forward Laser Plasma Accelerated Thruster

    SciTech Connect

    Izumi, Masaya; Horisawa, Hideyuki; Takeda, Akihito; Kimura, Itsuro

    2006-05-02

    Fundamental investigations on plasma diagnostics of a forward laser plasma acceleration employing laser-foil interactions were conducted for an Al-foil target irradiated with an Nd:YAG laser of 1J/pulse with pulse-width of 10nsec. A time-of-flight measurement was also conducted to evaluate ion speeds. In addition, temporal evolutions of electron temperatures and densities were evaluated with electrostatic probes and spectroscopic diagnostics. Moreover, a preliminary one-dimensional particle-in-cell (PIC) simulation was conducted to elucidate acceleration mechanisms. From the results, it was shown that a speed of ions in a forward direction were about 135 km/sec, respectively. Also it was shown that the plasma temperature and density were about 2.5{approx}3 eV and 1010 cm-3.

  12. Optical mixing as a plasma diagnostic

    SciTech Connect

    Forman, P.R.; Riesenfeld, W.

    1980-03-01

    The nonlinear interaction of electromagnetic waves in a plasma are examined as the basis for a new and useful diagnostic tool. In particular, we consider the Raman-Induced Kerr Effect (RIKE) in a magnetic field-free plasma, and evaluate the characteristics of various laser sources and detecting equipment necessary for the implementation of a sensitive RIKE scattering system. Our conclusion is that the present state of technology permits the design of promising diagnostics systems of this type. Finally, we express reasonable conjectures on the generalization of the effect to magnetoplasmas, in which the measurement could lead to the determination not only of density, but also of the magnitude and direction of the imbedded magnetic field.

  13. Diagnostics for the plasma liner experiment.

    PubMed

    Lynn, A G; Merritt, E; Gilmore, M; Hsu, S C; Witherspoon, F D; Cassibry, J T

    2010-10-01

    The goal of the Plasma Liner Experiment (PLX) is to explore and demonstrate the feasibility of forming imploding spherical "plasma liners" via merging high Mach number plasma jets to reach peak liner pressures of ∼0.1 Mbar using ∼1.5 MJ of initial stored energy. Such a system would provide HED plasmas for a variety of fundamental HEDLP, laboratory astrophysics, and materials science studies, as well as a platform for experimental validation of rad-hydro and rad-MHD simulations. It could also prove attractive as a potential standoff driver for magnetoinertial fusion. Predicted parameters from jet formation to liner stagnation cover a large range of plasma density and temperature, varying from n(i)∼10(16) cm(-3), T(e)≈T(i)∼1 eV at the plasma gun mouth to n(i)>10(19) cm(-3), T(e)≈T(i)∼0.5 keV at stagnation. This presents a challenging problem for the plasma diagnostics suite which will be discussed.

  14. Diagnostics for the Plasma Liner Experiment

    SciTech Connect

    Lynn, A. G.; Merritt, E.; Gilmore, M.; Hsu, S. C.; Witherspoon, F. D.; Cassibry, J. T.

    2010-10-15

    The goal of the Plasma Liner Experiment (PLX) is to explore and demonstrate the feasibility of forming imploding spherical ''plasma liners'' via merging high Mach number plasma jets to reach peak liner pressures of {approx}0.1 Mbar using {approx}1.5 MJ of initial stored energy. Such a system would provide HED plasmas for a variety of fundamental HEDLP, laboratory astrophysics, and materials science studies, as well as a platform for experimental validation of rad-hydro and rad-MHD simulations. It could also prove attractive as a potential standoff driver for magnetoinertial fusion. Predicted parameters from jet formation to liner stagnation cover a large range of plasma density and temperature, varying from n{sub i}{approx}10{sup 16} cm{sup -3}, T{sub e}{approx_equal}T{sub i}{approx}1 eV at the plasma gun mouth to n{sub i}>10{sup 19} cm{sup -3}, T{sub e}{approx_equal}T{sub i}{approx}0.5 keV at stagnation. This presents a challenging problem for the plasma diagnostics suite which will be discussed.

  15. Inverse bremsstrahlung heating rate for dense plasmas in laser fields

    NASA Astrophysics Data System (ADS)

    Dey, R.; Roy, A. C.

    2013-07-01

    We report a theoretical analysis of inverse bremsstrahlung heating rate in the eikonal approximation. The present analysis is performed for a dense plasma using the screened electron-ion interaction potential for the ion charge state Zi = 1 and for both the weak and strong plasma screening cases. We have also compared the eikonal results with the first Born approximation (FBA) [M. Moll et al., New J. Phys. 14, 065010 (2012)] calculation. We find that the magnitudes of inverse bremsstrahlung heating rate within the eikonal approximation (EA) are larger than the FBA values in the weak screening case (κ = 0.03 a.u.) in a wide range of field strength for three different initial electron momenta (2, 3, and 4 a.u.). But for strong screening case (κ = 0.3 a.u.), the heating rates predicted by the two approximations do not differ much after reaching their maximum values. Furthermore, the individual contribution of photoemission and photoabsorption processes to heating rate is analysed for both the weak and strong screening cases. We find that the single photoemission and photoabsorption rates are the same throughout the field strength while the multiphoton absorption process dominates over the multiphoton emission process beyond the field strength ≈ 4×108 V/cm. The present study of the dependence of heating rate on the screening parameter ranging from 0.01 to 20 shows that whereas the heating rate predicted by the EA is greater than the FBA up to the screening parameter κ = 0.3 a.u., the two approximation methods yield results which are nearly identical beyond the above value.

  16. Inverse bremsstrahlung heating rate for dense plasmas in laser fields

    SciTech Connect

    Dey, R.; Roy, A. C.

    2013-07-15

    We report a theoretical analysis of inverse bremsstrahlung heating rate in the eikonal approximation. The present analysis is performed for a dense plasma using the screened electron-ion interaction potential for the ion charge state Z{sub i} = 1 and for both the weak and strong plasma screening cases. We have also compared the eikonal results with the first Born approximation (FBA) [M. Moll et al., New J. Phys. 14, 065010 (2012)] calculation. We find that the magnitudes of inverse bremsstrahlung heating rate within the eikonal approximation (EA) are larger than the FBA values in the weak screening case (κ = 0.03 a.u.) in a wide range of field strength for three different initial electron momenta (2, 3, and 4 a.u.). But for strong screening case (κ = 0.3 a.u.), the heating rates predicted by the two approximations do not differ much after reaching their maximum values. Furthermore, the individual contribution of photoemission and photoabsorption processes to heating rate is analysed for both the weak and strong screening cases. We find that the single photoemission and photoabsorption rates are the same throughout the field strength while the multiphoton absorption process dominates over the multiphoton emission process beyond the field strength ≈ 4×10{sup 8} V/cm. The present study of the dependence of heating rate on the screening parameter ranging from 0.01 to 20 shows that whereas the heating rate predicted by the EA is greater than the FBA up to the screening parameter κ = 0.3 a.u., the two approximation methods yield results which are nearly identical beyond the above value.

  17. X-ray Spectral Measurements of a Dense Plasma Focus

    NASA Astrophysics Data System (ADS)

    Whitlock, Robert R.; Dozier, Charles M.; Newman, Daniel A.; Petr, Rodney A.; Freshman, Jay; Hoey, David W.; Heaton, John

    2002-10-01

    Absolute intensities of spectra in a dense-plasma-focus (DPF) source have been recorded and analyzed. This DPF source has been identified as one of the more promising sources for X-ray lithography. The source, developed by Science Research Laboratory, Inc., is currently undergoing testing and further development at BAE Systems, Inc. The DPF operates at 60 Hz and produces an average output pulse of ~5 J of X rays into 4π steradians in a continuous operation mode. In all runs, there was an initial number of pulses, typically between 30 to 40, during which the X-ray output increased and the DPF appeared to be undergoing a conditioning process, and after which a "steady-state" mode was achieved where the average X-ray power was relatively constant. Each spectral run was exposed to ~600 J of output, as measured by the PIN. The X-ray spectral region between 0.8 and 3 keV was recorded on Kodak DEF film in a potassium acid phthalate (KAP) convex curved-crystal spectrograph. The source emits neon line radiation from Ne IX and Ne X ionization stages in the 900 to 1300 eV region, suitable for lithographic exposures of photoresist. Two helium-like neon lines contribute more than 50% of the total energy. From continuum shape, plasma temperatures were found to be approximately 170-200 eV. The absolute, integrated spectral outputs were verified to within 30% by comparison with measurements by a PIN detector and a radiachromic X-ray dosimeter.

  18. Development and Benchmarking of a Hybrid PIC Code For Dense Plasmas and Fast Ignition

    SciTech Connect

    Witherspoon, F. Douglas; Welch, Dale R.; Thompson, John R.; MacFarlane, Joeseph J.; Phillips, Michael W.; Bruner, Nicki; Mostrom, Chris; Thoma, Carsten; Clark, R. E.; Bogatu, Nick; Kim, Jin-Soo; Galkin, Sergei; Golovkin, Igor E.; Woodruff, P. R.; Wu, Linchun; Messer, Sarah J.

    2014-05-20

    Radiation processes play an important role in the study of both fast ignition and other inertial confinement schemes, such as plasma jet driven magneto-inertial fusion, both in their effect on energy balance, and in generating diagnostic signals. In the latter case, warm and hot dense matter may be produced by the convergence of a plasma shell formed by the merging of an assembly of high Mach number plasma jets. This innovative approach has the potential advantage of creating matter of high energy densities in voluminous amount compared with high power lasers or particle beams. An important application of this technology is as a plasma liner for the flux compression of magnetized plasma to create ultra-high magnetic fields and burning plasmas. HyperV Technologies Corp. has been developing plasma jet accelerator technology in both coaxial and linear railgun geometries to produce plasma jets of sufficient mass, density, and velocity to create such imploding plasma liners. An enabling tool for the development of this technology is the ability to model the plasma dynamics, not only in the accelerators themselves, but also in the resulting magnetized target plasma and within the merging/interacting plasma jets during transport to the target. Welch pioneered numerical modeling of such plasmas (including for fast ignition) using the LSP simulation code. Lsp is an electromagnetic, parallelized, plasma simulation code under development since 1995. It has a number of innovative features making it uniquely suitable for modeling high energy density plasmas including a hybrid fluid model for electrons that allows electrons in dense plasmas to be modeled with a kinetic or fluid treatment as appropriate. In addition to in-house use at Voss Scientific, several groups carrying out research in Fast Ignition (LLNL, SNL, UCSD, AWE (UK), and Imperial College (UK)) also use LSP. A collaborative team consisting of HyperV Technologies Corp., Voss Scientific LLC, FAR-TECH, Inc., Prism

  19. Plasma diagnostics for the compact ignition tokamak

    SciTech Connect

    Medley, S.S.; Young, K.M.

    1988-06-01

    The primary mission of the Compact Ignition Tokamak (CIT) is to study the physics of alpha-particle heating in an ignited D-T plasma. A burn time of about 10 /tau//sub E/ is projected in a divertor configuration with baseline machine design parameters of R=2.10 m, 1=0.65 m, b=1.30 m, I/sub p/=11 MA, B/sub T/=10 T and 10-20 MW of auxiliary rf heating. Plasma temperatures and density are expected to reach T/sub e/(O) /approximately/20 keV, T/sub i/(O) /approximately/30 keV, and n/sub e/(O) /approximately/ 1 /times/ 10/sup 21/m/sup /minus/3/. The combined effects of restricted port access to the plasma, the presence of severe neutron and gamma radiation backgrounds, and the necessity for remote of in-cell components create challenging design problems for all of the conventional diagnostic associated with tokamak operations. In addition, new techniques must be developed to diagnose the evolution in space, time, and energy of the confined alpha distribution as well as potential plasma instabilities driven by collective alpha-particle effects. The design effort for CIT diagnostics is presently in the conceptual phase with activity being focused on the selection of a viable diagnostic set and the identification of essential research and development projects to support this process. A review of these design issues and other aspects impacting the selection of diagnostic techniques for the CIT experiment will be presented. 28 refs., 10 figs., 2 tabs.

  20. Advancements in Dense Plasma Focus (DPF) for Space Propulsion

    SciTech Connect

    Thomas, Robert; Yang Yang; Miley, G.H.; Mead, F.B.

    2005-02-06

    The development of a dense plasma focus (DPF) propulsion device using p-11B is described. A propulsion system of this type is attractive because of its high thrust-to-weight ratio capabilities at high specific impulses. From a fuel standpoint, p-11B is advantageous because of the aneutronic nature of the reaction, which is favorable for the production of thrust since the charged particles can be channeled by a magnetic field. Different fusion mechanisms are investigated and their implication to the p-11B reaction is explored. Three main requirements must be satisfied to reach breakeven for DPF fusion: a high Ti/Te ratio ({approx}20), an order of magnitude higher pinch lifetime, and the reflection and absorption of at least 50% radiation. Moreover, a power re-circulation method with high efficiency must be available for the relatively low Q value of the DPF fusion reactor. A possible direct energy conversion scheme using magnetic field compression is discussed. DPF parameters are estimated for thrust levels of 1000 kN and 500 kN, and possible propulsion applications are discussed, along with developmental issues.

  1. Laser induced focusing for over-dense plasma beams

    SciTech Connect

    Schmidt, Peter; Boine-Frankenheim, Oliver; Mulser, Peter

    2015-09-15

    The capability of ion acceleration with high power, pulsed lasers has become an active field of research in the past years. In this context, the radiation pressure acceleration (RPA) mechanism has been the topic of numerous theoretical and experimental publications. Within that mechanism, a high power, pulsed laser beam hits a thin film target. In contrast to the target normal sheath acceleration, the entire film target is accelerated as a bulk by the radiation pressure of the laser. Simulations predict heavy ion beams with kinetic energy up to GeV, as well as solid body densities. However, there are several effects which limit the efficiency of the RPA: On the one hand, the Rayleigh-Taylor-instability limits the predicted density. On the other hand, conventional accelerator elements, such as magnetic focusing devices are too bulky to be installed right after the target. Therefore, we present a new beam transport method, suitable for RPA-like/over-dense plasma beams: laser induced focusing.

  2. Experiments on the interaction of heavy-ion beams with dense plasmas

    SciTech Connect

    Stoeckl, C.; Roth, M.; Suess, W.; Wetzler, H; Seelig, W.; Kulish, M.; Spiller, P.; Jacoby, J.; Hoffmann, D.H.H.

    1997-03-01

    Gas discharge plasma targets were used for energy loss and charge state measurements of fast heavy ions 5 MeV/u < E{sub kin} < 10 MeV/u in a regime of electron density and temperature up to 10{sup 19}cm{sup -3} and 20 eV, respectively. Progress has been achieved in the understanding of charge exchange processes in fully ionized hydrogen plasma. An improved model that has taken excitation-autoionization processes into account has removed some of the discrepancies of previous theoretical descriptions. Furthermore, the energy loss of the ion beam serves as an excellent diagnostic tool for measuring the electron density in partially ionized plasmas such as argon. The experience with these methods will be used in the future to diagnose dense laser-produced plasmas. A setup with a 5-GW neodymium-glass laser, currently under construction, will provide access to density ranges up to 10{sup 21} cm{sup -3} and temperatures > 100 eV. 13 refs., 7 figs.

  3. Adaptive Embedded Digital System for Plasma Diagnostics

    NASA Astrophysics Data System (ADS)

    González, Angel; Rodríguez, Othoniel; Mangual, Osvaldo; Ponce, Eduardo; Vélez, Xavier

    2014-05-01

    An Adaptive Embedded Digital System to perform plasma diagnostics using electrostatic probes was developed at the Plasma Engineering Laboratory at Polytechnic University of Puerto Rico. The system will replace the existing instrumentation at the Laboratory, using reconfigurable hardware to minimize the equipment and software needed to perform diagnostics. The adaptability of the design resides on the possibility of replacing the computational algorithm on the fly, allowing to use the same hardware for different probes. The system was prototyped using Very High Speed Integrated Circuits Hardware Description Language (VHDL) into an Field Programmable Gate Array (FPGA) board. The design of the Embedded Digital System includes a Zero Phase Digital Filter, a Derivative Unit, and a Computational Unit designed using the VHDL-2008 Support Library. The prototype is able to compute the Plasma Electron Temperature and Density from a Single Langmuir probe. The system was tested using real data previously acquired from a single Langmuir probe. The plasma parameters obtained from the embedded system were compared with results computed using matlab yielding excellent matching. The new embedded system operates on 4096 samples versus 500 on the previous system, and completes its computations in 26 milliseconds compared with about 15 seconds on the previous system.

  4. NSTX Diagnostics for Fusion Plasma Science Studies

    SciTech Connect

    R. Kaita; D. Johnson; L. Roquemore; M. Bitter; F. Levinton; F. Paoletti; D. Stutman; and the NSTX Team

    2001-07-05

    This paper will discuss how plasma science issues are addressed by the diagnostics for the National Spherical Torus Experiment (NSTX), the newest large-scale machine in the magnetic confinement fusion (MCF) program. The development of new schemes for plasma confinement involves the interplay of experimental results and theoretical interpretations. A fundamental requirement, for example, is a determination of the equilibria for these configurations. For MCF, this is well established in the solutions of the Grad-Shafranov equation. While it is simple to state its basis in the balance between the kinetic and magnetic pressures, what they are as functions of space and time are often not easy to obtain. Quantities like the plasma pressure and current density are not directly measurable. They are derived from data that are themselves complex products of more basic parameters. The same difficulties apply to the understanding of plasma instabilities. Not only are the needs for spatial and temporal resolution more stringent, but the wave parameters which characterize the instabilities are difficult to resolve. We will show how solutions to the problems of diagnostic design on NSTX, and the physics insight the data analysis provides, benefits both NSTX and the broader scientific community.

  5. Plasma diagnostics of non-equilibrium atmospheric plasma jets

    NASA Astrophysics Data System (ADS)

    Shashurin, Alexey; Scott, David; Keidar, Michael; Shneider, Mikhail

    2014-10-01

    Intensive development and biomedical application of non-equilibrium atmospheric plasma jet (NEAPJ) facilitates rapid growth of the plasma medicine field. The NEAPJ facility utilized at the George Washington University (GWU) demonstrated efficacy for treatment of various cancer types (lung, bladder, breast, head, neck, brain and skin). In this work we review recent advances of the research conducted at GWU concerned with the development of NEAPJ diagnostics including Rayleigh Microwave Scattering setup, method of streamer scattering on DC potential, Rogowski coils, ICCD camera and optical emission spectroscopy. These tools allow conducting temporally-resolved measurements of plasma density, electrical potential, charge and size of the streamer head, electrical currents flowing though the jet, ionization front propagation speed etc. Transient dynamics of plasma and discharge parameters will be considered and physical processes involved in the discharge will be analyzed including streamer breakdown, electrical coupling of the streamer tip with discharge electrodes, factors determining NEAPJ length, cross-sectional shape and propagation path etc.

  6. Dense magnetized plasma associated with a fast radio burst

    NASA Astrophysics Data System (ADS)

    Masui, Kiyoshi; Lin, Hsiu-Hsien; Sievers, Jonathan; Anderson, Christopher J.; Chang, Tzu-Ching; Chen, Xuelei; Ganguly, Apratim; Jarvis, Miranda; Kuo, Cheng-Yu; Li, Yi-Chao; Liao, Yu-Wei; McLaughlin, Maura; Pen, Ue-Li; Peterson, Jeffrey B.; Roman, Alexander; Timbie, Peter T.; Voytek, Tabitha; Yadav, Jaswant K.

    2015-12-01

    Fast radio bursts are bright, unresolved, non-repeating, broadband, millisecond flashes, found primarily at high Galactic latitudes, with dispersion measures much larger than expected for a Galactic source. The inferred all-sky burst rate is comparable to the core-collapse supernova rate out to redshift 0.5. If the observed dispersion measures are assumed to be dominated by the intergalactic medium, the sources are at cosmological distances with redshifts of 0.2 to 1 (refs 10 and 11). These parameters are consistent with a wide range of source models. One fast burst revealed circular polarization of the radio emission, but no linear polarization was detected, and hence no Faraday rotation measure could be determined. Here we report the examination of archival data revealing Faraday rotation in the fast radio burst FRB 110523. Its radio flux and dispersion measure are consistent with values from previously reported bursts and, accounting for a Galactic contribution to the dispersion and using a model of intergalactic electron density, we place the source at a maximum redshift of 0.5. The burst has a much higher rotation measure than expected for this line of sight through the Milky Way and the intergalactic medium, indicating magnetization in the vicinity of the source itself or within a host galaxy. The pulse was scattered by two distinct plasma screens during propagation, which requires either a dense nebula associated with the source or a location within the central region of its host galaxy. The detection in this instance of magnetization and scattering that are both local to the source favours models involving young stellar populations such as magnetars over models involving the mergers of older neutron stars, which are more likely to be located in low-density regions of the host galaxy.

  7. Dense magnetized plasma associated with a fast radio burst.

    PubMed

    Masui, Kiyoshi; Lin, Hsiu-Hsien; Sievers, Jonathan; Anderson, Christopher J; Chang, Tzu-Ching; Chen, Xuelei; Ganguly, Apratim; Jarvis, Miranda; Kuo, Cheng-Yu; Li, Yi-Chao; Liao, Yu-Wei; McLaughlin, Maura; Pen, Ue-Li; Peterson, Jeffrey B; Roman, Alexander; Timbie, Peter T; Voytek, Tabitha; Yadav, Jaswant K

    2015-12-24

    Fast radio bursts are bright, unresolved, non-repeating, broadband, millisecond flashes, found primarily at high Galactic latitudes, with dispersion measures much larger than expected for a Galactic source. The inferred all-sky burst rate is comparable to the core-collapse supernova rate out to redshift 0.5. If the observed dispersion measures are assumed to be dominated by the intergalactic medium, the sources are at cosmological distances with redshifts of 0.2 to 1 (refs 10 and 11). These parameters are consistent with a wide range of source models. One fast burst revealed circular polarization of the radio emission, but no linear polarization was detected, and hence no Faraday rotation measure could be determined. Here we report the examination of archival data revealing Faraday rotation in the fast radio burst FRB 110523. Its radio flux and dispersion measure are consistent with values from previously reported bursts and, accounting for a Galactic contribution to the dispersion and using a model of intergalactic electron density, we place the source at a maximum redshift of 0.5. The burst has a much higher rotation measure than expected for this line of sight through the Milky Way and the intergalactic medium, indicating magnetization in the vicinity of the source itself or within a host galaxy. The pulse was scattered by two distinct plasma screens during propagation, which requires either a dense nebula associated with the source or a location within the central region of its host galaxy. The detection in this instance of magnetization and scattering that are both local to the source favours models involving young stellar populations such as magnetars over models involving the mergers of older neutron stars, which are more likely to be located in low-density regions of the host galaxy. PMID:26633633

  8. Dense magnetized plasma associated with a fast radio burst.

    PubMed

    Masui, Kiyoshi; Lin, Hsiu-Hsien; Sievers, Jonathan; Anderson, Christopher J; Chang, Tzu-Ching; Chen, Xuelei; Ganguly, Apratim; Jarvis, Miranda; Kuo, Cheng-Yu; Li, Yi-Chao; Liao, Yu-Wei; McLaughlin, Maura; Pen, Ue-Li; Peterson, Jeffrey B; Roman, Alexander; Timbie, Peter T; Voytek, Tabitha; Yadav, Jaswant K

    2015-12-24

    Fast radio bursts are bright, unresolved, non-repeating, broadband, millisecond flashes, found primarily at high Galactic latitudes, with dispersion measures much larger than expected for a Galactic source. The inferred all-sky burst rate is comparable to the core-collapse supernova rate out to redshift 0.5. If the observed dispersion measures are assumed to be dominated by the intergalactic medium, the sources are at cosmological distances with redshifts of 0.2 to 1 (refs 10 and 11). These parameters are consistent with a wide range of source models. One fast burst revealed circular polarization of the radio emission, but no linear polarization was detected, and hence no Faraday rotation measure could be determined. Here we report the examination of archival data revealing Faraday rotation in the fast radio burst FRB 110523. Its radio flux and dispersion measure are consistent with values from previously reported bursts and, accounting for a Galactic contribution to the dispersion and using a model of intergalactic electron density, we place the source at a maximum redshift of 0.5. The burst has a much higher rotation measure than expected for this line of sight through the Milky Way and the intergalactic medium, indicating magnetization in the vicinity of the source itself or within a host galaxy. The pulse was scattered by two distinct plasma screens during propagation, which requires either a dense nebula associated with the source or a location within the central region of its host galaxy. The detection in this instance of magnetization and scattering that are both local to the source favours models involving young stellar populations such as magnetars over models involving the mergers of older neutron stars, which are more likely to be located in low-density regions of the host galaxy.

  9. Comparative analyses of plasma probe diagnostics techniques

    SciTech Connect

    Godyak, V. A.; Alexandrovich, B. M.

    2015-12-21

    The subject of this paper is a comparative analysis of the plasma parameters inferred from the classical Langmuir probe procedure, from different theories of the ion current to the probe, and from measured electron energy distribution function (EEDF) obtained by double differentiation of the probe characteristic. We concluded that the plasma parameters inferred from the classical Langmuir procedure can be subjected to significant inaccuracy due to the non-Maxwellian EEDF, uncertainty of locating the plasma potential, and the arbitrariness of the ion current approximation. The plasma densities derived from the ion part of the probe characteristics diverge by as much as an order of magnitude from the density calculated according to Langmuir procedure or calculated as corresponding integral of the measured EEDF. The electron temperature extracted from the ion part is always subjected to uncertainty. Such inaccuracy is attributed to modification of the EEDF for fast electrons due to inelastic electron collisions, and to deficiencies in the existing ion current theories; i.e., unrealistic assumptions about Maxwellian EEDFs, underestimation of the ion collisions and the ion ambipolar drift, and discounting deformation of the one-dimensional structure of the region perturbed by the probe. We concluded that EEDF measurement is the single reliable probe diagnostics for the basic research and industrial applications of highly non-equilibrium gas discharge plasmas. Examples of EEDF measurements point up importance of examining the probe current derivatives in real time and reiterate significance of the equipment technical characteristics, such as high energy resolution and wide dynamic range.

  10. Comparative analyses of plasma probe diagnostics techniques

    NASA Astrophysics Data System (ADS)

    Godyak, V. A.; Alexandrovich, B. M.

    2015-12-01

    The subject of this paper is a comparative analysis of the plasma parameters inferred from the classical Langmuir probe procedure, from different theories of the ion current to the probe, and from measured electron energy distribution function (EEDF) obtained by double differentiation of the probe characteristic. We concluded that the plasma parameters inferred from the classical Langmuir procedure can be subjected to significant inaccuracy due to the non-Maxwellian EEDF, uncertainty of locating the plasma potential, and the arbitrariness of the ion current approximation. The plasma densities derived from the ion part of the probe characteristics diverge by as much as an order of magnitude from the density calculated according to Langmuir procedure or calculated as corresponding integral of the measured EEDF. The electron temperature extracted from the ion part is always subjected to uncertainty. Such inaccuracy is attributed to modification of the EEDF for fast electrons due to inelastic electron collisions, and to deficiencies in the existing ion current theories; i.e., unrealistic assumptions about Maxwellian EEDFs, underestimation of the ion collisions and the ion ambipolar drift, and discounting deformation of the one-dimensional structure of the region perturbed by the probe. We concluded that EEDF measurement is the single reliable probe diagnostics for the basic research and industrial applications of highly non-equilibrium gas discharge plasmas. Examples of EEDF measurements point up importance of examining the probe current derivatives in real time and reiterate significance of the equipment technical characteristics, such as high energy resolution and wide dynamic range.

  11. Plasma-screening effects on the electron-impact excitation of hydrogenic ions in dense plasmas

    NASA Technical Reports Server (NTRS)

    Jung, Young-Dae

    1993-01-01

    Plasma-screening effects are investigated on electron-impact excitation of hydrogenic ions in dense plasmas. Scaled cross sections Z(exp 4) sigma for 1s yields 2s and 1s yields 2p are obtained for a Debye-Hueckel model of the screened Coulomb interaction. Ground and excited bound wave functions are modified in the screened Coulomb potential (Debye-Hueckel model) using the Ritz variation method. The resulting atomic wave functions and their eigenenergies agree well with the numerical and high-order perturbation theory calculations for the interesting domain of the Debye length not less than 10. The Born approximation is used to describe the continuum states of the projectile electron. Plasma screening effects on the atomic electrons cannot be neglected in the high-density cases. Including these effects, the cross sections are appreciably increased for 1s yields 2s transitions and decreased for 1s yields 2p transitions.

  12. Charge Diagnostics for Laser Plasma Accelerators

    SciTech Connect

    Nakamura, K.; Gonsalves, A. J.; Lin, C.; Sokollik, T.; Smith, A.; Rodgers, D.; Donahue, R.; Bryne, W.; Leemans, W. P.

    2010-06-01

    The electron energy dependence of a scintillating screen (Lanex Fast) was studied with sub-nanosecond electron beams ranging from 106 MeV to 1522 MeV at the Lawrence Berkeley National Laboratory Advanced Light Source (ALS) synchrotron booster accelerator. The sensitivity of the Lanex Fast decreased by 1percent per 100 MeV increase of the energy. The linear response of the screen against the charge was verified with charge density and intensity up to 160 pC/mm2 and 0.4 pC/ps/mm2, respectively. For electron beams from the laser plasma accelerator, a comprehensive study of charge diagnostics has been performed using a Lanex screen, an integrating current transformer, and an activation based measurement. The charge measured by each diagnostic was found to be within +/-10 percent.

  13. Charge Diagnostics for Laser Plasma Accelerators

    SciTech Connect

    Nakamura, K.; Gonsalves, A. J.; Lin, C.; Sokollik, T.; Smith, A.; Rodgers, D.; Donahue, R.; Bryne, W.; Leemans, W. P.

    2010-11-04

    The electron energy dependence of a scintillating screen (Lanex Fast) was studied with sub-nanosecond electron beams ranging from 106 MeV to 1522 MeV at the Lawrence Berkeley National Laboratory Advanced Light Source (ALS) synchrotron booster accelerator. The sensitivity of the Lanex Fast decreased by 1% per 100 MeV increase of the energy. The linear response of the screen against the charge was verified with charge density and intensity up to 160 pC/mm{sup 2} and 0.4 pC/ps/mm{sup 2}, respectively. For electron beams from the laser plasma accelerator, a comprehensive study of charge diagnostics has been performed using a Lanex screen, an integrating current transformer, and an activation based measurement. The charge measured by each diagnostic was found to be within {+-}10%.

  14. A calorimetric probe for plasma diagnostics

    SciTech Connect

    Stahl, Marc; Trottenberg, Thomas; Kersten, Holger

    2010-02-15

    A calorimetric probe for plasma diagnostics is presented, which allows measurements of the power taken by a test substrate. The substrate can be biased and used as an electric probe in order to obtain information about the composition of the total heating power. A new calibration technique for calorimetric probes, which uses monoenergetic electrons at low pressure, has been developed for an improved accuracy. The use of the probe is exemplified with an experiment where both energetic neutral atoms and ions heat the test substrate.

  15. Nonlinear electrostatic excitations in magnetized dense plasmas with nonrelativistic and ultra-relativistic degenerate electrons

    SciTech Connect

    Mahmood, S.; Sadiq, Safeer; Haque, Q.

    2013-12-15

    Linear and nonlinear electrostatic waves in magnetized dense electron-ion plasmas are studied with nonrelativistic and ultra-relativistic degenerate and singly, doubly charged helium (He{sup +}, He{sup ++}) and hydrogen (H{sup +}) ions, respectively. The dispersion relation of electrostatic waves in magnetized dense plasmas is obtained under both the energy limits of degenerate electrons. Using reductive perturbation method, the Zakharov-Kuznetsov equation for nonlinear propagation of electrostatic solitons in magnetized dense plasmas is derived for both nonrelativistic and ultra-relativistic degenerate electrons. It is found that variations in plasma density, magnetic field intensity, different mass, and charge number of ions play significant role in the formation of electrostatic solitons in magnetized dense plasmas. The numerical plots are also presented for illustration using the parameters of dense astrophysical plasma situations such as white dwarfs and neutron stars exist in the literature. The present investigation is important for understanding the electrostatic waves propagation in the outer periphery of compact stars which mostly consists of hydrogen and helium ions with degenerate electrons in dense magnetized plasmas.

  16. Propagation of electron and positron beams in long, dense plasmas

    NASA Astrophysics Data System (ADS)

    Muggli, Patric; Blue, Brent; Clayton, Chris; Decker, Franz-Joseph; Hogan, Mark; Hunag, Chengkun; Joshi, Chan; Katsouleas, Tom; Lu, Wei; Mori, Warren; O'Connell, Caollionn; Siemann, Robert; Walz, Dieter; Zhou, Miaomiao

    2008-04-01

    Electron beams with density larger than the plasma density can propagate through plasmas without significant emittance growth. The electron beam expels the plasma electrons from the bunch volume and propagate in a pure, uniform ion column. In contrast, positron beams attract plasma electrons that flow through the positron bunch. As a result the plasma focusing force is nonlinear, a charge halo forms around the bunch, and the bunch emittance grows. After some distance into the plasma, the bunch emittance reaches an approximately constant value, and the beam and the plasma focusing force reach a steady state. Experimental results obtained with electron and positron bunches, as well as numerical simulation results will be presented.

  17. Dense Plasma Focus Fusion Neutron Sources Progress at NSTec, September 2011

    SciTech Connect

    Hagen, E. C.

    2011-07-02

    A number of dense plasma focus (DPF) sources are introduced, including their operating characteristics and current activities. Neutron resonance spectroscopy is discussed and the feasibility of using DPF for neutron sources is considered.

  18. Laser diagnostics of plasma assisted combustion

    NASA Astrophysics Data System (ADS)

    Rao, Xing

    In this study, a microwave re-entrant cavity discharge system and a direct current (DC) plasmatron are used to investigate flame enhancement and nitric oxide (NO) formation using laser and optical diagnostics. The uniqueness of this study lies in the direct coupling concept, a novel highly efficient strategy used here for the first time. To investigate combustion dynamics of direct microwave coupled combustion, an atmospheric high-Q re-entrant cavity applicator is used to couple microwave (2.45 GHz) electromagnetic energy directly into the reaction zone of a premixed laminar methane-oxygen flame using a compact torch. When microwave energy increases, a transition from electric field enhancement to microwave plasma discharge is observed. At 6 to 10 Watts, ionization and eventually break-down occurs. 2-D laser induced fluorescence (LIF) imaging of hydroxyl radicals (OH) and carbon monoxide (CO) is conducted in the reaction zone over this transition, as well as spectrally resolved flame emission measurements. These measurements serve to monitor excited state species and derive rotational temperatures using OH chemiluminescence for a range of equivalence ratios (both rich and lean) and total flow rates. Combustion dynamics is also investigated for plasma enhanced methane-air flames in premixed and nonpremixed configurations using a transient arc DC plasmatron. Results for OH and CO PLIF also indicate the differences in stability mechanism, and energy consumption for premixed and nonpremixed modes. It is shown that both configurations are significantly influenced by in-situ fuel reforming at higher plasma powers. Parametric studies are conducted in a plasma assisted methane/air premixed flame for quantitative NO production using a DC plasmatron with PLIF imaging. Quantitative measurements of NO are reported as a function of gas flow rate (20 to 50 SCFH), plasma power (100 to 900 mA, 150 to 750 W) and equivalence ratio (0.7 to 1.3). NO PLIF images and single point NO

  19. Dense Plasma Focus - From Alternative Fusion Source to Versatile High Energy Density Plasma Source for Plasma Nanotechnology

    NASA Astrophysics Data System (ADS)

    Rawat, R. S.

    2015-03-01

    The dense plasma focus (DPF), a coaxial plasma gun, utilizes pulsed high current electrical discharge to heat and compress the plasma to very high density and temperature with energy densities in the range of 1-10 × 1010 J/m3. The DPF device has always been in the company of several alternative magnetic fusion devices as it produces intense fusion neutrons. Several experiments conducted on many different DPF devices ranging over several order of storage energy have demonstrated that at higher storage energy the neutron production does not follow I4 scaling laws and deteriorate significantly raising concern about the device's capability and relevance for fusion energy. On the other hand, the high energy density pinch plasma in DPF device makes it a multiple radiation source of ions, electron, soft and hard x-rays, and neutrons, making it useful for several applications in many different fields such as lithography, radiography, imaging, activation analysis, radioisotopes production etc. Being a source of hot dense plasma, strong shockwave, intense energetic beams and radiation, etc, the DPF device, additionally, shows tremendous potential for applications in plasma nanoscience and plasma nanotechnology. In the present paper, the key features of plasma focus device are critically discussed to understand the novelties and opportunities that this device offers in processing and synthesis of nanophase materials using, both, the top-down and bottom-up approach. The results of recent key experimental investigations performed on (i) the processing and modification of bulk target substrates for phase change, surface reconstruction and nanostructurization, (ii) the nanostructurization of PLD grown magnetic thin films, and (iii) direct synthesis of nanostructured (nanowire, nanosheets and nanoflowers) materials using anode target material ablation, ablated plasma and background reactive gas based synthesis and purely gas phase synthesis of various different types of

  20. Plasma diagnostic techniques using particle beam probes

    SciTech Connect

    Jennings, W C

    1980-07-01

    A brief overview is given of particle beam probing. The fundamental concepts common to all techniques are discussed as well as the design considerations for choosing a particular diagnostic technique. The capabilities of existing and proposed techniques, and the present status of the techniques in major magnetic confinement geometries is also presented. Techniques which involve the injection of a beam of neutral particles into the plasma are then considered. The techniques of beam attenuation, beam scattering, and active charge exchange using a beam of light particles such as hydrogen or helium are first presented. Optical measurements of the Zeeman splitting of the radiation from a neutral lithium beam is then discussed, including a new proposal for significantly improving this technique through the addition of a dye laser. Two techniques involving the injection of heavy neutral particles are then presented, and the section concludes with two proposed techniques for measuring the properties of the alpha particles produced from actual fusion reactions. The diagnostic techniques which are based upon the injection of a beam of charged particles into the plasma are next described. The advantages and limitations of these techniques in comparison with the neutral techniques are discussed, followed by a description of specific techniques.

  1. Early results of microwave transmission experiments through an overly dense rectangular plasma sheet with microparticle injection

    SciTech Connect

    Gillman, Eric D.; Amatucci, W. E.

    2014-06-15

    These experiments utilize a linear hollow cathode to create a dense, rectangular plasma sheet to simulate the plasma layer surrounding vehicles traveling at hypersonic velocities within the Earth's atmosphere. Injection of fine dielectric microparticles significantly reduces the electron density and therefore lowers the electron plasma frequency by binding a significant portion of the bulk free electrons to the relatively massive microparticles. Measurements show that microwave transmission through this previously overly dense, impenetrable plasma layer increases with the injection of alumina microparticles approximately 60 μm in diameter. This method of electron depletion is a potential means of mitigating the radio communications blackout experienced by hypersonic vehicles.

  2. Early results of microwave transmission experiments through an overly dense rectangular plasma sheet with microparticle injection

    NASA Astrophysics Data System (ADS)

    Gillman, Eric D.; Amatucci, W. E.

    2014-06-01

    These experiments utilize a linear hollow cathode to create a dense, rectangular plasma sheet to simulate the plasma layer surrounding vehicles traveling at hypersonic velocities within the Earth's atmosphere. Injection of fine dielectric microparticles significantly reduces the electron density and therefore lowers the electron plasma frequency by binding a significant portion of the bulk free electrons to the relatively massive microparticles. Measurements show that microwave transmission through this previously overly dense, impenetrable plasma layer increases with the injection of alumina microparticles approximately 60 μm in diameter. This method of electron depletion is a potential means of mitigating the radio communications blackout experienced by hypersonic vehicles.

  3. Dense Plasma Focus With High Energy Helium Beams for Radiological Source Replacement

    NASA Astrophysics Data System (ADS)

    Schmidt, Andrea; Ellsworth, Jennifer; Falabella, Steve; Link, Anthony; Rusnak, Brian; Sears, Jason; Tang, Vincent

    2014-10-01

    A dense plasma focus (DPF) is a compact accelerator that can produce intense high energy ion beams (multiple MeV). It could be used in place of americium-beryllium (AmBe) neutron sources in applications such as oil well logging if optimized to produce high energy helium beams. AmBe sources produce neutrons when 5.5 MeV alphas emitted from the Am interact with the Be. However, due to the very small alpha-Be cross section for alphas <2 MeV, an AmBe source replacement would have to accelerate ~0.15 μC of He to 2 + MeV in order to produce 107 neutrons per pulse. We are using our particle in cell (PIC) model in LSP of a 4 kJ dense plasma focus discharge to guide the optimization of a compact DPF for the production of high-energy helium beam. This model is fluid for the run-down phase, and then transitions to fully kinetic prior to the pinch in order to include kinetic effects such as ion beam formation and anomalous resistivity. An external pulsed-power driver circuit is used at the anode-cathode boundary. Simulations will be benchmarked to He beam measurements using filtered and time-of-flight Faraday cup diagnostics. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work supported by US DOE/NA-22 Office of Non-proliferation Research and Development. Computing support for this work came from the LLNL Institutional Computing Grand Challenge program.

  4. Diagnostics for first plasma and development plan on KSTAR

    SciTech Connect

    Lee, J. H.; Na, H. K.; Lee, S. G.; Bak, J. G.; Seo, D. C.; Seo, S. H.; Oh, S. T.; Ko, W. H.; Chung, J.; Nam, Y. U.; Lee, K. D.; Ka, E. M.; Oh, Y. K.; Kwon, M.; Jeong, S. H.

    2010-06-15

    The first plasma with target values of the plasma current and the pulse duration was finally achieved on June 13, 2008 in the Korea Superconducting Tokamak Advanced Research (KSTAR). The diagnostic systems played an important role in achieving successful first plasma operation for the KSTAR tokamak. The employed plasma diagnostic systems for the KSTAR first plasma including the magnetic diagnostics, millimeter-wave interferometer, inspection illuminator, H{sub {alpha}}, visible spectrometer, filterscope, and electron cyclotron emission (ECE) radiometer have provided the main plasma parameters, which are essential for the plasma generation, control, and physics understanding. Improvements to the first diagnostic systems and additional diagnostics including an x-ray imaging crystal spectrometer, reflectometer, ECE radiometer, resistive bolometer, and soft x-ray array are scheduled to be added for the next KSTAR experimental campaign in 2009.

  5. Development and utilization of new diagnostics for dense-phase pneumatic transport

    SciTech Connect

    Not Available

    1991-01-01

    Dense-phase pneumatic transport is an attractive means of conveying solids. Unfortunately, because of the high solid concentrations, this transport method is a difficult regime in which to carry out detailed measurements. Hence most details of the flow are unknown. In this context, the main objective of this work is to develop probes for local measurements of solid velocity and holdup in dense gas-solid flows. Because we anticipate the recent theories of rapid granular flows will bring insight to the dense pneumatic transport of particles, we have sought to substantiate these theories through computer simulations. There we have verified the theory of Hanes, Jenkins Richman (1988) for the rapid, steady shear flow of identical, smooth, nearly elastics disks driven by identical, parallel, bumpy boundaries. Because granular flows depend strongly on the nature of their interaction with a boundary, we have verified the boundary conditions calculated by Jenkins (1991) for spheres interacting with a flat, frictional surface. During the previous reporting period, we began a study of the time relaxation of the second moment of velocity fluctuations for a collection of disks undergoing simple shear. In the present reporting period, we have completed this study of relaxation by comparing results of simulations with the theoretical predictions of Jenkins and Richman (1988). In addition, we have concluded a series of experiments with flour plugs in the dense-phase pneumatic setup. Finally, we have established several industrial contacts to transfer the diagnostic techniques developed under this contract. 7 refs., 11 figs.

  6. Predictive Fully Kinetic Modeling of kJ and MJ Dense Plasma Focus Z-Pinches

    NASA Astrophysics Data System (ADS)

    Link, A.; Ellsworth, J.; Falabella, S.; McLean, H.; Rusnak, B.; Schmidt, A.; Sears, J.; Tang, V.; Welch, D.

    2013-10-01

    Dense plasma focus (DPF) Z-pinches are compact devices capable of producing MeV ion beams, x-rays, and (for D or DT gas fill) neutrons but the details of the mechanisms which give rise to these strong accelerating gradients are not well understood. We report on progress in developing predictive, fully kinetic simulations of DPF Z-Pinches using the particle-in-cell code LSP. These simulations include full-scale electrodes; both run-in and pinch phases; and post-pinch behavior. Here we present a comparison between simulations and experiments conducted on the LLNL 4 kJ tabletop DPF. Diagnostics allow us to measure neutron yield, plasma oscillations arising from instabilities, DPF ion beam energies, and the acceleration of an externally injected ion probe beam in the pinch region, which can be compared with simulations. We will further report on the initial work to extend these simulations from kJ to MJ-class devices. LLNL-ABS-640759. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and supported by the Laboratory Directed Research and Development Program (11-ERD-063) at LLNL.

  7. Diagnostic Workup and Costs of a Single Supplemental Molecular Breast Imaging Screen of Mammographically Dense Breasts

    PubMed Central

    Hruska, Carrie B.; Conners, Amy Lynn; Jones, Katie N.; O’Connor, Michael K.; Moriarty, James P.; Boughey, Judy C.; Rhodes, Deborah J.

    2016-01-01

    OBJECTIVE The purpose of this study was to examine additional diagnostic workup and costs generated by addition of a single molecular breast imaging (MBI) examination to screening mammography for women with dense breasts. SUBJECTS AND METHODS Women with mammographically dense breasts presenting for screening mammography underwent adjunct MBI performed with 300 MBq 99mTc-sestamibi and a direct-conversion cadmium-zinc-telluride dual-head gamma camera. All subsequent imaging tests and biopsies were tracked for a minimum of 1 year. The positive predictive value of biopsies performed (PPV3), benign biopsy rate, cost per patient screened, and cost per cancer detected were determined. RESULTS A total of 1651 women enrolled in the study. Among the 1585 participants with complete reference standard, screening mammography alone prompted diagnostic workup of 175 (11.0%) patients and biopsy of 20 (1.3%) and yielded five malignancies (PPV3, 25%). Results of combined screening mammography plus MBI prompted diagnostic workup of 279 patients (17.6%) and biopsy of 67 (4.2%) and yielded 19 malignancies (PPV3, 28.4%). The benign biopsy rates were 0.9% (15 of 1585) for screening mammography alone and 3.0% (48 of 1585) for the combination (p < 0.001). The addition of MBI increased the cost per patient screened from $176 for mammography alone to $571 for the combination. However, cost per cancer detected was lower for the combination ($47,597) than for mammography alone ($55,851). CONCLUSION The addition of MBI to screening mammography of women with dense breasts increased the overall costs and benign biopsy rate but also increased the cancer detection rate, which resulted in a lower cost per cancer detected than with screening mammography alone. PMID:26001247

  8. Diagnostics of thermal spraying plasma jets

    SciTech Connect

    Fauchais, P.; Coudert, J.F.; Vardelle, M.; Vardelle, A.; Denoirjean, A. )

    1992-06-01

    The development of diagnostic techniques for dc plasma spraying is reviewed with attention given to the need for thick highly reproducible coatings of good quality for aeronautic and other uses. Among the techniques examined are fast cameras, laser-Doppler anemometry (LDA), coherent anti-Stokes Raman spectroscopy (CARS), enthalpy probes, and emission spectroscopy. Particular emphasis is given to the effect of arc fluctuations on the spectroscopic measurements, and a method is introduced for obtaining temperature and species density of vapor clouds traveling with each particle in flight. Coating properties can be deduced from data on single particles, and statistical approaches are often unreliable without added data on surface temperature and particle velocity. Also presented is a method for deriving the temperature evolution of a cooled splat and successive layers and passes. These methods are of interest to the control of adhesion and cohesion in coatings for critical aerospace applications. 70 refs.

  9. Diagnostics of thermal spraying plasma jets

    NASA Astrophysics Data System (ADS)

    Fauchais, P.; Coudert, J. F.; Vardelle, M.; Vardelle, A.; Denoirjean, A.

    1992-06-01

    The development of diagnostic techniques for dc plasma spraying is reviewed with attention given to the need for thick highly reproducible coatings of good quality for aeronautic and other uses. Among the techniques examined are fast cameras, laser-Doppler anemometry (LDA), coherent anti-Stokes Raman spectroscopy (CARS), enthalpy probes, and emission spectroscopy. Particular emphasis is given to the effect of arc fluctuations on the spectroscopic measurements, and a method is introduced for obtaining temperature and species density of vapor clouds traveling with each particle in flight. Coating properties can be deduced from data on single particles, and statistical approaches are often unreliable without added data on surface temperature and particle velocity. Also presented is a method for deriving the temperature evolution of a cooled splat and successive layers and passes. These methods are of interest to the control of adhesion and cohesion in coatings for critical aerospace applications.

  10. Imaging the development of the cold dense plasma sheet

    NASA Astrophysics Data System (ADS)

    Fuselier, S. A.; Dayeh, M. A.; Livadiotis, G.; McComas, D. J.; Ogasawara, K.; Valek, P.; Funsten, H. O.; Petrinec, S. M.

    2015-10-01

    The Interstellar Boundary Explorer (IBEX) frequently images the Earth's magnetosphere in Energetic Neutral Atoms (ENAs). In May 2013, there was an extended period of northward interplanetary magnetic field (IMF) while IBEX was imaging the Earth's magnetotail. During this period, IBEX imaged the development of the cold plasma sheet between about 15 and 20 Earth radii (RE) down the tail from the Earth. The ENA fluxes changed in both amplitude and average energy during this development. In addition, the plasma sheet may have thickened. At the end of the interval, the IMF turned southward and ENA fluxes decreased. The thickening of the plasma sheet suggests that the plasma in this region increases in both density and volume as it develops during extended periods of northward IMF. The decrease in the ENA flux suggests thinning of the plasma sheet and loss of plasma associated with the IMF turning.

  11. A New Parameter Regime for Dust in Plasma: the Case of Dense and Supersonic Plasma Flows

    SciTech Connect

    Ticos, Catalin M.; Wang Zhehui; Wurden, Glen A.

    2008-09-07

    The co-existence between charged micron-size particulates of matter and plasma electrons and ions can lead to interesting physics phenomena. Some of the most spectacular observations in laboratory low ionized gases include the formation of aligned dust structures, the propagation of dust waves or self-organization leading to dust voids. Here, the dust dynamics is established by the forces of gravity, of electrostatic interaction with electric fields within the plasma, of friction with the neutral gas, and by the Coulomb repulsion between grains. Measurements of dust trajectories have been carried out in situ when the plasma density is about 6-7 orders of magnitude higher than in typical laboratory dusty plasmas, i.e. {approx}10{sup 22} m{sup -3}, and the ion temperature is a few eV. The plasma flows at speeds of the order of 20-60 km/s. Two observed features characterize dust in this new plasma regime: the plasma drag force dominates over all other forces acting on the grains and the microparticles are heated to temperatures sufficiently high, to become self-illuminated. Simultaneous observation at different moments in time of up to a few hundred flying dust grains has been possible due to the timing capabilities of a high-speed camera equipped with a telephoto lens. Dust speed of a few km/s and accelerations of {approx}10{sup 5}-10{sup 6} m/s{sup 2} have been inferred using the time-of-flight technique. Among the applications of hypervelocity dust are local diagnostics performed on hot plasmas, interstellar propulsion or simulation of meteorite impacts.

  12. Asymptotic regimes for the electrical and thermal conductivities in dense plasmas

    SciTech Connect

    Faussurier, G. Blancard, C.

    2015-04-15

    We study the asymptotic regimes for the electrical and thermal conductivities in dense plasmas obtained by combining the Chester–Thellung–Kubo–Greenwood approach and the Kramers approximation [Faussurier et al., Phys. Plasmas 21, 092706 (2014)]. Non-degenerate and degenerate situations are considered. The Wiedemann–Franz law is obtained in the degenerate case.

  13. Four-color laser diagnostics for Z-pinch and laser-produced plasma.

    PubMed

    Ivanov, V V; Anderson, A A; Begishev, I A

    2016-01-20

    Four-color laser diagnostics were developed for Z-pinch and laser plasma at the 1 MA pulsed power generator. Four harmonics of the Nd:YAG laser at wavelengths of 1064, 532, 266, and 213 nm were produced during the cascade conversion in three nonlinear crystals and propagated together in one beampath. Deep UV probing allows better penetration of the dense plasma. Laser probing at four wavelengths allows observation of plasma in a wide range of densities in one shot of the diagnostic laser. Examples of four-color laser shadowgraphy and interferometry of the wire-array load and laser plasma interaction are presented and discussed. PMID:26835923

  14. Self-similar expansion of a warm dense plasma

    SciTech Connect

    Djebli, Mourad; Moslem, Waleed M.

    2013-07-15

    The properties of an expanding plasma composed of degenerate electron fluid and non-degenerate ions are studied. For our purposes, we use fluid equations for ions together with the electron momentum equation that include quantum forces (e.g., the quantum statistical pressure, forces due to the electron-exchange and electron correlations effects) and the quasi-neutrality condition. The governing equation is written in a tractable form by using a self-similar transformation. Numerical results for typical beryllium plasma parameters revealed that, during the expansion, the ion acoustic speed decreases for both isothermal and adiabatic ion pressure. When compared with classical hydrodynamic plasma expansion model, the electrons and ions are found to initially escape faster in vacuum creating thus an intense electric field that accelerates most of the particles into the vacuum ahead of the plasma expansion. The relevancy of the present model to beryllium plasma produced by a femto-second laser is highlighted.

  15. Production of Uniform Dense Titanium Plasmas for Experiments on Atlas

    NASA Astrophysics Data System (ADS)

    Wysocki, Frederick J.; Benage, John F.; Newton, Robert R.; Wood, Blake P.

    2000-10-01

    Atlas is a large pulsed power machine being built at Los Alamos for the purpose of doing basic physics and hydrodynamic experiments for the stockpile stewardship program. One class of the basic physics experiments involves studying the properties and behavior of plasmas at very high density. These experiments will typically involve the production of a high density plasma to be imploded by the solid liners driven by the Atlas machine. The requirements for these high density ``target" plasmas are that they be uniform in density and temperature, have ion densities ≈ 0.1 x solid density, and temperatures of a few eV. The production of such plasmas has not been demonstrated; therefore, we have initiated an experimental program to learn to do this. We are conducting a series of experiments on the Colt capacitor bank at Los Alamos. These experiments use a novel configuration to heat a titanium foil to plasma conditions using the current from Colt, but without imploding the plasma. We will present preliminary density profiles of the titanium plasma using x-ray radiography along with magnetic probe data showing the current distribution in the machine. Measurements of the electrical resistivity of titanium under these conditions will also be presented.

  16. Production of Uniform Dense Plasmas for Experiments on Atlas

    NASA Astrophysics Data System (ADS)

    Wysocki, Frederick J.; Benage, John F.; Newton, Robert R.

    1999-11-01

    Atlas is a large pulsed power machine being built at Los Alamos for the purpose of doing basic physics and hydrodynamic experiments for the stockpile stewardship program. One class of the basic physics experiments involves studying the properties and behavior of plasmas at very high density. These experiments will typically involve the production of a high density plasma to be imploded by the solid liners driven by the Atlas machine. The requirements for these high density ``target" plasmas are that they be uniform in density and temperature, have ion densities 0.1 x solid density, and temperatures of a few eV. The production of such plasmas has not been demonstrated; therefore, we have initiated an experimental program to learn to do this. We are conducting a series of experiments on the Colt capacitor bank at Los Alamos. These experiments use a novel configuration to heat a titanium foil to plasma conditions using the current from Colt, but without imploding the plasma. We will present preliminary density profiles of the titanium plasma using x-ray radiography along with magnetic probe data showing the current distribution in the machine.

  17. Development of laser-based diagnostics for 1-MA z-pinch plasmas

    NASA Astrophysics Data System (ADS)

    Ivanov, V. V.; Hakel, P.; Mancini, R. C.; Wiewior, P.; Presura, R.; Kindel, J. M.; Shevelko, A. P.; Chalyy, O.; Astanovitskiy, A.; Haboub, A.; Altemara, S. D.; Papp, D.; Durmaz, T.

    2009-11-01

    The 50 TW Leopard laser coupled with the 1-MA Zebra generator was used for development of new diagnostics of z-pinch plasmas. Two plasma diagnostics are presented: an x-ray broadband backlighting for z-pinch absorption spectroscopy and parametric two-plasmon decay of the laser beam in dense z-pinch plasma. Implementation of new diagnostics on the Zebra generator and the first results are discussed. The absorption spectroscopy is based on backlighting of z-pinch plasma with a broadband x-ray radiation from a Sm laser plasma. Detailed analysis of the absorption spectra yields the electron temperature and density of z-pinch plasma at the non-radiative stage. The parametric two-plasmon decay of intensive laser radiation generates 3/2φ and 1/2φ harmonics. These harmonics can be used to derive a temperature of z-pinch plasma with the electron density near the quarter of critical plasma density.

  18. Ultra-High Intensity Magnetic Field Generation in Dense Plasma

    SciTech Connect

    Fisch, Nathaniel J

    2014-01-08

    I. Grant Objective The main objective of this grant proposal was to explore the efficient generation of intense currents. Whereasthefficient generation of electric current in low-­energy-­density plasma has occupied the attention of the magnetic fusion community for several decades, scant attention has been paid to carrying over to high-­energy-­density plasma the ideas for steady-­state current drive developed for low-­energy-­density plasma, or, for that matter, to inventing new methodologies for generating electric current in high-­energy-­density plasma. What we proposed to do was to identify new mechanisms to accomplish current generation, and to assess the operation, physics, and engineering basis of new forms of current drive in regimes appropriate for new fusion concepts.

  19. Spatial Distribution of Dense Plasma in the Near-Earth Plasma Sheet and its Transport Into the Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Izutsu, T.; Nishino, M. N.; Fujimoto, M.; Lavraud, B.; Hasegawa, H.; Angelopoulos, V.; McFadden, J. P.; Larson, D.; Auster, U.; Saito, Y.; Thomsen, M. F.

    2008-12-01

    We investigate the cold-dense plasma sheet (CDPS) on November 12 and 13, 2007 by using THEMIS, Geotail, and LANL satellite. During the last extend period of northward IMF, 2-component CDPS in the duskside plasma sheet (PS), single component CDPS in the dawnside PS, and hot-dense ions (HDIs) at the inner edge of the PS on the dawnside were observed by Geotail, THC, and THA simultaneously. Then, super-dense plasma sheet (SDPS) was detected near the midnight region at geosynchronous orbit (GEO) (i) 1 hour after the southward turning of the IMF and (ii) at the rapid enhancement of the solar wind density (4 hours after (i)). Focusing on (i), duskward moving HDIs and earthward fast flow were encountered by Geotail in the pre-midnight PS. The appearance of SDPS and energetic electrons was in good association with this fast flow. We suggest that HDIs on the dawnside moved to the pre-midnight PS and they were pushed into GEO by the fast flow. After both observations of SDPS, the dense plasma was not seen on the dawnside where THA had detected HDIs (X < ~-5 Re), while it existed earthward of the region. Although these periods were front parts of corotating interaction region (CIR), geomagnetic activity was very weak. We discuss the transport mechanism and the geoeffectiveness of the dense plasma.

  20. Digital Breast Tomosynthesis: A New Diagnostic Method for Mass-Like Lesions in Dense Breasts.

    PubMed

    Bian, Tiantian; Lin, Qing; Cui, Chunxiao; Li, Lili; Qi, Chunhua; Fei, Jie; Su, Xiaohui

    2016-09-01

    To compare the rates and accuracy of digital breast tomosynthesis (DBT) and 2D digital mammography (DM) for detecting and diagnosing mass-like lesions in dense breasts. Mediolateral and craniocaudal images taken with DBT (affected breast) and DM (both breasts) of the dense breasts of 631 women were assessed independently using Breast Imaging Reporting and Data System (BI-RADS) scores. Images were compared for detection and diagnostic accuracy for masses; sensitivity and specificity of diagnosis; false-negative and recall rates; and clarity of display, particularly of margins and spicules. Histopathology was conducted via surgical biopsies of all patients. The detection and diagnostic accuracy rates of DBT images (84.3% and 82.3%, respectively) were significantly higher than that of DM (77.3% and 73.4%; p < 0.01, both). The sensitivity and specificity of DBT (68.1% and 95.2%) were higher than that of DM (58.8% and 86.7%), whereas the recall rate of DBT was lower (3.6% cf. 9.8%). The number of cases of benign circumscribed masses and malignant spiculated masses detected by DBT (172 and 182) was significantly higher than the number detected through DM (75 and 115; p < 0.01, both). Radiologists assigned higher BI-RADS scores for probability of malignancy to DBT images than DM, to lesions proved malignant (p = 0.025); for benign cases, the methods were comparable (p = 0.065). Compared with DM, DBT yielded significantly higher rates of detection and diagnostic accuracy for benign and malignant masses, with greater sensitivity and specificity and lower recall rates. In addition, DBT images facilitated analysis of margins, and the rate of accuracy for judgments of malignancy probability was higher, as proved on biopsy. PMID:27296324

  1. Detailed analysis of hollow ions spectra from dense matter pumped by X-ray emission of relativistic laser plasma

    SciTech Connect

    Hansen, S. B. E-mail: anatolyf@hotmail.com; Colgan, J.; Abdallah, J.; Faenov, A. Ya. E-mail: anatolyf@hotmail.com; Pikuz, S. A.; Skobelev, I. Yu.; Wagenaars, E.; Culfa, O.; Dance, R. J.; Tallents, G. J.; Rossall, A. K.; Woolsey, N. C.; Booth, N.; Lancaster, K. L.; Evans, R. G.; Gray, R. J.; McKenna, P.; Kaempfer, T.; Schulze, K. S.; Uschmann, I.; and others

    2014-03-15

    X-ray emission from hollow ions offers new diagnostic opportunities for dense, strongly coupled plasma. We present extended modeling of the x-ray emission spectrum reported by Colgan et al. [Phys. Rev. Lett. 110, 125001 (2013)] based on two collisional-radiative codes: the hybrid-structure Spectroscopic Collisional-Radiative Atomic Model (SCRAM) and the mixed-unresolved transition arrays (MUTA) ATOMIC model. We show that both accuracy and completeness in the modeled energy level structure are critical for reliable diagnostics, investigate how emission changes with different treatments of ionization potential depression, and discuss two approaches to handling the extensive structure required for hollow-ion models with many multiply excited configurations.

  2. Detailed analysis of hollow ions spectra from dense matter pumped by X-ray emission of relativistic laser plasma

    NASA Astrophysics Data System (ADS)

    Hansen, S. B.; Colgan, J.; Faenov, A. Ya.; Abdallah, J.; Pikuz, S. A.; Skobelev, I. Yu.; Wagenaars, E.; Booth, N.; Culfa, O.; Dance, R. J.; Tallents, G. J.; Evans, R. G.; Gray, R. J.; Kaempfer, T.; Lancaster, K. L.; McKenna, P.; Rossall, A. K.; Schulze, K. S.; Uschmann, I.; Zhidkov, A. G.; Woolsey, N. C.

    2014-03-01

    X-ray emission from hollow ions offers new diagnostic opportunities for dense, strongly coupled plasma. We present extended modeling of the x-ray emission spectrum reported by Colgan et al. [Phys. Rev. Lett. 110, 125001 (2013)] based on two collisional-radiative codes: the hybrid-structure Spectroscopic Collisional-Radiative Atomic Model (SCRAM) and the mixed-unresolved transition arrays (MUTA) ATOMIC model. We show that both accuracy and completeness in the modeled energy level structure are critical for reliable diagnostics, investigate how emission changes with different treatments of ionization potential depression, and discuss two approaches to handling the extensive structure required for hollow-ion models with many multiply excited configurations.

  3. Arbitrary amplitude electrostatic wave propagation in a magnetized dense plasma containing helium ions and degenerate electrons

    NASA Astrophysics Data System (ADS)

    Mahmood, S.; Sadiq, Safeer; Haque, Q.; Ali, Munazza Z.

    2016-06-01

    The obliquely propagating arbitrary amplitude electrostatic wave is studied in a dense magnetized plasma having singly and doubly charged helium ions with nonrelativistic and ultrarelativistic degenerate electrons pressures. The Fermi temperature for ultrarelativistic degenerate electrons described by N. M. Vernet [(Cambridge University Press, Cambridge, 2007), p. 57] is used to define ion acoustic speed in ultra-dense plasmas. The pseudo-potential approach is used to solve the fully nonlinear set of dynamic equations for obliquely propagating electrostatic waves in a dense magnetized plasma containing helium ions. The upper and lower Mach number ranges for the existence of electrostatic solitons are found which depends on the obliqueness of the wave propagation with respect to applied magnetic field and charge number of the helium ions. It is found that only compressive (hump) soliton structures are formed in all the cases and only subsonic solitons are formed for a singly charged helium ions plasma case with nonrelativistic degenerate electrons. Both subsonic and supersonic soliton hump structures are formed for doubly charged helium ions with nonrelativistic degenerate electrons and ultrarelativistic degenerate electrons plasma case containing singly as well as doubly charged helium ions. The effect of propagation direction on the soliton amplitude and width of the electrostatic waves is also presented. The numerical plots are also shown for illustration using dense plasma parameters of a compact star (white dwarf) from literature.

  4. Dynamics of the fully stripped ion-hydrogen atom charge exchange process in dense quantum plasmas

    SciTech Connect

    Zhang, Ling-yu; Wan, Jiang-feng; Zhao, Xiao-ying; Xiao, Guo-qing; Duan, Wen-shan; Qi, Xin; Yang, Lei

    2014-09-15

    The plasma screening effects of dense quantum plasmas on charge exchange processes of a fully stripped ion colliding with a hydrogen atom are studied by the classical trajectory Monte Carlo method. The inter-particle interactions are described by the exponential cosine-screened Coulomb potentials. It is found that in weak screening conditions, cross sections increase with the increase of the ionic charge Z. However, in strong screening conditions, the dependence of cross sections on the ionic charge is related to the incident particle energy. At high energies, cross sections show a linear increase with the increase of Z, whereas at low energies, cross sections for Z≥4 become approximately the same. The He{sup 2+} and C{sup 6+} impacting charge exchange cross sections in dense quantum plasmas are also compared with those in weakly coupled plasmas. The interactions are described by the static screened Coulomb potential. It is found that for both He{sup 2+} and C{sup 6+}, the oscillatory screening effects of dense quantum plasmas are almost negligible in weak screening conditions. However, in strong screening conditions, the oscillatory screening effects enhance the screening effects of dense quantum plasmas, and the enhancement becomes more and more significant with the increase of the screening parameter and the ionic charge.

  5. Quantum-Mechanical Calculation of Ionization-Potential Lowering in Dense Plasmas

    NASA Astrophysics Data System (ADS)

    Son, Sang-Kil; Thiele, Robert; Jurek, Zoltan; Ziaja, Beata; Santra, Robin

    2014-07-01

    The charged environment within a dense plasma leads to the phenomenon of ionization-potential depression (IPD) for ions embedded in the plasma. Accurate predictions of the IPD effect are of crucial importance for modeling atomic processes occurring within dense plasmas. Several theoretical models have been developed to describe the IPD effect, with frequently discrepant predictions. Only recently, first experiments on IPD in Al plasma have been performed with an x-ray free-electron laser, where their results were found to be in disagreement with the widely used IPD model by Stewart and Pyatt. Another experiment on Al, at the Orion laser, showed disagreement with the model by Ecker and Kröll. This controversy shows a strong need for a rigorous and consistent theoretical approach to calculate the IPD effect. Here, we propose such an approach: a two-step Hartree-Fock-Slater model. With this parameter-free model, we can accurately and efficiently describe the experimental Al data and validate the accuracy of standard IPD models. Our model can be a useful tool for calculating atomic properties within dense plasmas with wide-ranging applications to studies on warm dense matter, shock experiments, planetary science, inertial confinement fusion, and nonequilibrium plasmas created with x-ray free-electron lasers.

  6. JINA Workshop Nuclear Physics in Hot Dense Dynamic Plasmas

    SciTech Connect

    Kritcher, A L; Cerjan, C; Landen, O; Libby, S; Chen, M; Wilson, B; Knauer, J; Mcnabb, D; Caggiano, J; Bleauel, D; Weideking, M; Kozhuharov, C; Brandau, C; Stoehlker, T; Meot, V; Gosselin, G; Morel, P; Schneider, D; Bernstein, L A

    2011-03-07

    Measuring NEET and NEEC is relevant for probing stellar cross-sections and testing atomic models in hot plasmas. Using NEEC and NEET we can excite nuclear levels in laboratory plasmas: (1) NIF: Measure effect of excited nuclear levels on (n,{gamma}) cross-sections, 60% and never been measured; (2) Omega, Test cross-sections for creating these excited levels via NEEC and NEET. Will allow us to test models that estimate resonance overlap of atomic states with the nucleus: (1) Average Atom model (AA) (CEA&LLNL), single average wave-function potential; (2) Super Transition Array (STA) model (LLNL), More realistic individual configuration potentials NEET experimental data is scarce and not in a plasma environment, NEEC has not yet been observed.

  7. Low frequency electromagnetic oscillations in dense degenerate electron-positron pair plasma, with and without ions

    SciTech Connect

    Khan, S. A.; Ayub, M. K.; Ahmad, Ali

    2012-10-15

    Quantum plasma oscillations are studied in a strongly magnetized, ultra-dense plasma with degenerate electrons and positrons. The dispersive role of electron and positron quantum effects on low frequency (in comparison to electron cyclotron frequency) shear electromagnetic wave is investigated by employing hydrodynamic formulation. In the presence of ions, the density balance changes, and the electromagnetic wave (with frequency lower than the ion cyclotron frequency) is shown to couple with electrostatic ion mode under certain conditions. For such low frequency waves, it is also seen that the contribution of electron and positron degeneracy pressure is dominant as compared to their diffraction effects. The results are analyzed numerically for illustrative purpose pointing out their relevance to the dense laboratory (e.g., super-intense laser-dense matter interactions) and astrophysical plasmas.

  8. Low frequency electromagnetic oscillations in dense degenerate electron-positron pair plasma, with and without ions

    NASA Astrophysics Data System (ADS)

    Khan, S. A.; Ayub, M. K.; Ahmad, Ali

    2012-10-01

    Quantum plasma oscillations are studied in a strongly magnetized, ultra-dense plasma with degenerate electrons and positrons. The dispersive role of electron and positron quantum effects on low frequency (in comparison to electron cyclotron frequency) shear electromagnetic wave is investigated by employing hydrodynamic formulation. In the presence of ions, the density balance changes, and the electromagnetic wave (with frequency lower than the ion cyclotron frequency) is shown to couple with electrostatic ion mode under certain conditions. For such low frequency waves, it is also seen that the contribution of electron and positron degeneracy pressure is dominant as compared to their diffraction effects. The results are analyzed numerically for illustrative purpose pointing out their relevance to the dense laboratory (e.g., super-intense laser-dense matter interactions) and astrophysical plasmas.

  9. A Seemingly Simple Task: Filling a Solenoid Volume in Vacuum with Dense Plasma

    SciTech Connect

    Anders, Andre; Kauffeldt, Marina; Roy, Prabir; Oks, Efim

    2010-06-24

    Space-charge neutralization of a pulsed, high-current ion beam is required to compress and focus the beam on a target for warm dense matter physics or heavy ion fusion experiments. We described attempts to produce dense plasma in and near the final focusing solenoid through which the ion beam travels, thereby providing an opportunity for the beam to acquire the necessary charge-compensating electrons. Among the options are plasma injection from four pulsed vacuum arc sources located outside the solenoid, and using a high current (> 4 kA) pulsed vacuum arc plasma from a ring cathode near the edge of the solenoid. The plasma distribution is characterized by photographic means and by an array of movable Langmuir probes. The plasma is produced at several cathode spots distributed azimuthally on the ring cathode. Beam neutralization and compression are accomplished, though issues of density, uniformity, and pulse-to-pulse reproducibly remain to be solved.

  10. Passive Spectroscopic Diagnostics for Magnetically-confined Fusion Plasmas

    SciTech Connect

    Stratton, B. C.; Biter, M.; Hill, K. W.; Hillis, D. L.; Hogan, J. T.

    2007-07-18

    Spectroscopy of radiation emitted by impurities and hydrogen isotopes plays an important role in the study of magnetically-confined fusion plasmas, both in determining the effects of impurities on plasma behavior and in measurements of plasma parameters such as electron and ion temperatures and densities, particle transport, and particle influx rates. This paper reviews spectroscopic diagnostics of plasma radiation that are excited by collisional processes in the plasma, which are termed 'passive' spectroscopic diagnostics to distinguish them from 'active' spectroscopic diagnostics involving injected particle and laser beams. A brief overview of the ionization balance in hot plasmas and the relevant line and continuum radiation excitation mechanisms is given. Instrumentation in the soft X-ray, vacuum ultraviolet, ultraviolet, visible, and near-infrared regions of the spectrum is described and examples of measurements are given. Paths for further development of these measurements and issues for their implementation in a burning plasma environment are discussed.

  11. Linear Response Screening Models for Dense, Strongly-Coupled Plasmas

    NASA Astrophysics Data System (ADS)

    Stanton, Liam; Murillo, Michael; Benage, John; Graziani, Frank

    2011-10-01

    Needs for accurate EOS and transport models of warm/hot dense matter have increased with the advent of new experiments that are able to more accurately probe these areas of phase-space. Molecular dynamics (MD) methods are often used for this, as they are apt for strongly-coupled systems. Unfortunately, the traditional Coulomb and Yukawa pair-potentials begin to fail at lower temperatures as degeneracy effects of the electron gas arise, and a more sophisticated treatment is required. We present a class of effective ion-ion interactions derived within the framework of linear response, which go beyond screening in the long-wavelength limit. These new potentials not only improve the accuracy of screening effects without contributing to the computational complexity of the model, but they also add physics entirely missing from Yukawa models (such as the onset of Friedel oscillations). Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-490713.

  12. Design and initial results from a kilojoule level dense plasma focus with hollow anode and cylindrically symmetric gas puff

    NASA Astrophysics Data System (ADS)

    Ellsworth, J. L.; Falabella, S.; Tang, V.; Schmidt, A.; Guethlein, G.; Hawkins, S.; Rusnak, B.

    2014-01-01

    We have designed and built a Dense Plasma Focus (DPF) Z-pinch device using a kJ-level capacitor bank and a hollow anode, and fueled by a cylindrically symmetric gas puff. Using this device, we have measured peak deuteron beam energies of up to 400 keV at 0.8 kJ capacitor bank energy and pinch lengths of ˜6 mm, indicating accelerating fields greater than 50 MV/m. Neutron yields of on the order of 107 per shot were measured during deuterium operation. The cylindrical gas puff system permitted simultaneous operation of DPF with a radiofrequency quadrupole accelerator for beam-into-plasma experiments. This paper describes the machine design, the diagnostic systems, and our first results.

  13. Luminescent characteristics study of mather-type dense plasma focus and applications to short-wavelength optical pumping

    NASA Astrophysics Data System (ADS)

    Kim, K. K.

    1986-06-01

    A Mather type dense plasma focus (MDPF) system was designed, built, and tested specifically to study its luminescent characteristics and to assess its potential as a new light source of high energy, short wavelength lasers. The luminescence study of MDPF showed that the conversion efficiency from the electrical input to the optical output energies is at least 50%, up to the time the plasma compression is complete. Using the system, for the first time as an optical pump, laser activities were successfully obtained from a variety of liquid organic dyes. Diagnostic capabilities included an optical multichannel analyzer system complete with a computer control, a nitrogen pumped tunable dye laser system, a high speed streak/framing camera, a digital laser energy meter, voltage and current probes, and a computer based data acquisition system.

  14. Design and initial results from a kilojoule level Dense Plasma Focus with hollow anode and cylindrically symmetric gas puff.

    PubMed

    Ellsworth, J L; Falabella, S; Tang, V; Schmidt, A; Guethlein, G; Hawkins, S; Rusnak, B

    2014-01-01

    We have designed and built a Dense Plasma Focus (DPF) Z-pinch device using a kJ-level capacitor bank and a hollow anode, and fueled by a cylindrically symmetric gas puff. Using this device, we have measured peak deuteron beam energies of up to 400 keV at 0.8 kJ capacitor bank energy and pinch lengths of ∼6 mm, indicating accelerating fields greater than 50 MV/m. Neutron yields of on the order of 10(7) per shot were measured during deuterium operation. The cylindrical gas puff system permitted simultaneous operation of DPF with a radiofrequency quadrupole accelerator for beam-into-plasma experiments. This paper describes the machine design, the diagnostic systems, and our first results. PMID:24517762

  15. Design and initial results from a kilojoule level dense plasma focus with hollow anode and cylindrically symmetric gas puff

    SciTech Connect

    Ellsworth, J. L. Falabella, S.; Tang, V.; Schmidt, A.; Guethlein, G.; Hawkins, S.; Rusnak, B.

    2014-01-15

    We have designed and built a Dense Plasma Focus (DPF) Z-pinch device using a kJ-level capacitor bank and a hollow anode, and fueled by a cylindrically symmetric gas puff. Using this device, we have measured peak deuteron beam energies of up to 400 keV at 0.8 kJ capacitor bank energy and pinch lengths of ∼6 mm, indicating accelerating fields greater than 50 MV/m. Neutron yields of on the order of 10{sup 7} per shot were measured during deuterium operation. The cylindrical gas puff system permitted simultaneous operation of DPF with a radiofrequency quadrupole accelerator for beam-into-plasma experiments. This paper describes the machine design, the diagnostic systems, and our first results.

  16. Acoustic double layer structures in dense magnetized electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Akhtar, N.; Mahmood, S.

    2011-11-01

    The acoustic double layer structures are studied using quantum hydrodynamic model in dense magnetized electron-positron-ion plasmas. The extended Korteweg-de Vries is derived using reductive perturbation method. It is found that increase in the ion concentration in dense magnetized electron-positron plasmas increases the amplitude as well as the steepness of the double layer structure. However, increase in the magnetic field strength and decrease in the obliqueness of the nonlinear acoustic wave enhances only the steepness of the double layer structures. The numerical results have also been shown by using the data of the outer layer regions of white dwarfs given in the literature.

  17. Coupled modes in magnetized dense plasma with relativistic-degenerate electrons

    SciTech Connect

    Khan, S. A.

    2012-01-15

    Low frequency electrostatic and electromagnetic waves are investigated in ultra-dense quantum magnetoplasma with relativistic-degenerate electron and non-degenerate ion fluids. The dispersion relation is derived for mobile as well as immobile ions by employing hydrodynamic equations for such plasma under the influence of electromagnetic forces and pressure gradient of relativistic-degenerate Fermi gas of electrons. The result shows the coexistence of shear Alfven and ion modes with relativistically modified dispersive properties. The relevance of results to the dense degenerate plasmas of astrophysical origin (for instance, white dwarf stars) is pointed out with brief discussion on ultra-relativistic and non-relativistic limits.

  18. Acoustic double layer structures in dense magnetized electron-positron-ion plasmas

    SciTech Connect

    Akhtar, N.; Mahmood, S.

    2011-11-15

    The acoustic double layer structures are studied using quantum hydrodynamic model in dense magnetized electron-positron-ion plasmas. The extended Korteweg-de Vries is derived using reductive perturbation method. It is found that increase in the ion concentration in dense magnetized electron-positron plasmas increases the amplitude as well as the steepness of the double layer structure. However, increase in the magnetic field strength and decrease in the obliqueness of the nonlinear acoustic wave enhances only the steepness of the double layer structures. The numerical results have also been shown by using the data of the outer layer regions of white dwarfs given in the literature.

  19. Kinetic simulation of the O-X conversion process in dense magnetized plasmas

    SciTech Connect

    Ali Asgarian, M.; Verboncoeur, J. P.; Parvazian, A.; Trines, R.

    2013-10-15

    One scheme for heating a dense magnetized plasma core, such as in a tokamak, involves launching an ordinary (O) electromagnetic wave at the low density edge. It is converted to a reflected extraordinary (X) electromagnetic wave under certain conditions, and then transformed into an electron Bernstein wave able to reach high density regions inaccessible to most other waves. The O-X mode conversion is important in heating and diagnostic processes in different devices such as tokamaks, stellarators, and some types of pinches. The goal of this study has been to demonstrate that the kinetic particle-in-cell (PIC) scheme is suitable for modeling the O-X conversion process as the first step toward a more complete simulation of O-X-B heating. The O-X process is considered and simulated with a kinetic particle model for parameters of the TJ-II stellarator using the PIC code, XOOPIC. This code is able to model the non-monotonic density and the magnetic profile of the TJ-II stellarator. It can also statistically represent the self-consistent distribution function of the plasma, which has not been possible in previous fluid models. By considering the electric and magnetic components of launched and reflected waves, the O-mode and X-mode waves can be detected, and the O-X conversion can be demonstrated. In this work, the optimum angle for conversion efficiency, as predicted by the previous theory and experimentally confirmed, is used. Via considering the power of the launched O-mode wave and the converted X-mode wave, the efficiency of 63% for O-X conversion for the optimum theoretical launch angle of 47{sup ∘} is obtained, which is in good agreement with efficiencies computed via full-wave simulations.

  20. Kinetic simulation of the O-X conversion process in dense magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Ali Asgarian, M.; Verboncoeur, J. P.; Parvazian, A.; Trines, R.

    2013-10-01

    One scheme for heating a dense magnetized plasma core, such as in a tokamak, involves launching an ordinary (O) electromagnetic wave at the low density edge. It is converted to a reflected extraordinary (X) electromagnetic wave under certain conditions, and then transformed into an electron Bernstein wave able to reach high density regions inaccessible to most other waves. The O-X mode conversion is important in heating and diagnostic processes in different devices such as tokamaks, stellarators, and some types of pinches. The goal of this study has been to demonstrate that the kinetic particle-in-cell (PIC) scheme is suitable for modeling the O-X conversion process as the first step toward a more complete simulation of O-X-B heating. The O-X process is considered and simulated with a kinetic particle model for parameters of the TJ-II stellarator using the PIC code, XOOPIC. This code is able to model the non-monotonic density and the magnetic profile of the TJ-II stellarator. It can also statistically represent the self-consistent distribution function of the plasma, which has not been possible in previous fluid models. By considering the electric and magnetic components of launched and reflected waves, the O-mode and X-mode waves can be detected, and the O-X conversion can be demonstrated. In this work, the optimum angle for conversion efficiency, as predicted by the previous theory and experimentally confirmed, is used. Via considering the power of the launched O-mode wave and the converted X-mode wave, the efficiency of 63% for O-X conversion for the optimum theoretical launch angle of 47∘ is obtained, which is in good agreement with efficiencies computed via full-wave simulations.

  1. Nonlinear magnetosonic waves in dense plasmas with non-relativistic and ultra-relativistic degenerate electrons

    SciTech Connect

    Hussain, S.; Mahmood, S.; Rehman, Aman-ur-

    2014-11-15

    Linear and nonlinear propagation of magnetosonic waves in the perpendicular direction to the ambient magnetic field is studied in dense plasmas for non-relativistic and ultra-relativistic degenerate electrons pressure. The sources of nonlinearities are the divergence of the ions and electrons fluxes, Lorentz forces on ions and electrons fluids and the plasma current density in the system. The Korteweg-de Vries equation for magnetosonic waves propagating in the perpendicular direction of the magnetic field is derived by employing reductive perturbation method for non-relativistic as well as ultra-relativistic degenerate electrons pressure cases in dense plasmas. The plots of the magnetosonic wave solitons are also shown using numerical values of the plasma parameters such a plasma density and magnetic field intensity of the white dwarfs from literature. The dependence of plasma density and magnetic field intensity on the magnetosonic wave propagation is also pointed out in dense plasmas for both non-relativistic and ultra-relativistic degenerate electrons pressure cases.

  2. Theoretical Model and Interpretation of Dense Plasma X-Ray Thomson Scattering

    SciTech Connect

    Gregori, G; Landen, O; Hicks, D; Pasley, J; Collins, G; Celliers, P; Bastea, M; Glenzer, S

    2002-04-03

    The authors present analytical expressions for the dynamic structure factor, or form factor S(k,{omega}), which is the quantity describing the inelastic x-ray cross section from a dense plasma or a simple liquid. The results, based on the random phase approximation (RPA) for the treatment on the charged particle coupling, can be applied to describe scattering from either weakly coupled classical plasmas or degenerate electron liquids. The form factor correctly reproduces the Compton energy downshift and the usual Fermi-Dirac electron velocity distribution for S(k,{omega}) in the case of a cold degenerate plasma. the usual concept of scattering parameter is also reinterpreted for the degenerate case in order to include the effect of the Thomas-Fermi screening. The results shown in this work can be applied to interpreting x-ray scattering in warm dense plasmas occurring in inertial confinement fusion experiments or inside the interior of planets.

  3. X-ray Spectroscopy of Hot Dense Plasmas: Experimental Limits, Line Shifts and Field Effects

    SciTech Connect

    Renner, Oldrich; Sauvan, Patrick; Dalimier, Elisabeth; Riconda, Caterina; Rosmej, Frank B.; Weber, Stefan; Nicolai, Philippe; Peyrusse, Olivier; Uschmann, Ingo; Hoefer, Sebastian; Kaempfer, Tino; Loetzsch, Robert; Zastrau, Ulf; Foerster, Eckhart; Oks, Eugene

    2008-10-22

    High-resolution x-ray spectroscopy is capable of providing complex information on environmental conditions in hot dense plasmas. Benefiting from application of modern spectroscopic methods, we report experiments aiming at identification of different phenomena occurring in laser-produced plasma. Fine features observed in broadened profiles of the emitted x-ray lines and their satellites are interpreted using theoretical models predicting spectra modification under diverse experimental situations.

  4. Electrical resistivity and equation of state measurements of a dense aluminum plasma

    SciTech Connect

    Benage, J.F. Jr.; Shanahan, W.R.

    1992-01-01

    In this paper we report results of experiments to measure the electrical resistivity and equation of state for a dense strongly coupled aluminum plasma. These plasmas are near solid density and have temperatures in the 15--20 eV range with {Gamma} = 2--3. Our initial results indicate a significant reduction in pressure below the ideal gas law value and initial resistivity measurements agree with a model by Rinker within error bars.

  5. Electrical resistivity and equation of state measurements of a dense aluminum plasma

    SciTech Connect

    Benage, J.F. Jr.; Shanahan, W.R.

    1992-09-01

    In this paper we report results of experiments to measure the electrical resistivity and equation of state for a dense strongly coupled aluminum plasma. These plasmas are near solid density and have temperatures in the 15--20 eV range with {Gamma} = 2--3. Our initial results indicate a significant reduction in pressure below the ideal gas law value and initial resistivity measurements agree with a model by Rinker within error bars.

  6. Spectrally Resolved Intensities of Ultra-Dense Hot Aluminum Plasmas

    SciTech Connect

    Gil, J. M.; Rodriguez, R.; Florido, R.; Rubiano, J. G.; Martel, P.; Minguez, E.; Sauvan, P.; Angelo, P.; Dalimier, E.; Schott, R.; Mancini, R.

    2008-10-22

    We present a first study of spectroscopic determination of electron temperature and density spatial profiles of aluminum K-shell line emission spectra from laser-shocked aluminum experiments performed at LULI. The radiation emitted by the aluminum plasma was dispersed with an ultra-high resolution spectrograph ({lambda}/{delta}{lambda}{approx_equal}6000). From the recorded films one can extract a set of time-integrated emission lineouts associated with the corresponding spatial region of the plasma. The observed spectra include the Ly{alpha}, He{beta}, He{gamma}, Ly{beta} and Ly{gamma} line emissions and their associated He- and Li-like satellites thus covering a photon energy range from 1700 eV to 2400 eV approximately. The data analysis rely on the ABAKO/RAPCAL computational package, which has been recently developed at the University of Las Palmas de Gran Canaria and takes into account non-equilibrium collisional-radiative atomic kinetics, Stark broadened line shapes and radiation transport calculations.

  7. Soft x-rays measurements in a dense plasma focus

    SciTech Connect

    Castillo, F.; Milanese, M.; Moroso, R.; Pouzo, J.

    1994-12-31

    Soft X-Rays emitted from a 2 kJ DPF are detected. Deuterium or a mixture of deuterium and argon is used as filling gas. The DPF is operated in static filling D{sub 2} gas pressure ({approximately} 2 mb) or in gas-puff mode. The image of the emitting area (time integrated) is taken with a 5 holes X-Rays pin-hole camera. The visible light is filtered using Al foils of different thickness in each one of the 5 holes. The image is a fine line ({approximately} 1 cm long) on the PF axis, into which several bright points can be observed. An estimation of the emitting zone temperature is performed through measurements of transmittance in each hole using radiographic plates densitometry. The background plasma emission corresponds to a temperature between 1 and 2 keV, in both normal and gas-puff modes. The temperature estimated for the bright points results higher by a factor 2 respect to the plasma bulk. Simultaneous measurements of time resolved X-Rays pulses using a PIN diode with Be filter, and both time resolved and time integrated neutron flux detection are performed.

  8. Spectrally Resolved Intensities of Ultra-Dense Hot Aluminum Plasmas

    NASA Astrophysics Data System (ADS)

    Gil, J. M.; Rodríguez, R.; Florido, R.; Rubiano, J. G.; Martel, P.; Mínguez, E.; Sauvan, P.; Angelo, P.; Schott, R.; Dalimier, E.; Mancini, R.

    2008-10-01

    We present a first study of spectroscopic determination of electron temperature and density spatial profiles of aluminum K-shell line emission spectra from laser-shocked aluminum experiments performed at LULI. The radiation emitted by the aluminum plasma was dispersed with an ultra-high resolution spectrograph (λ/Δλ≈6000). From the recorded films one can extract a set of time-integrated emission lineouts associated with the corresponding spatial region of the plasma. The observed spectra include the Lyα, Heβ, Heγ, Lyβ and Lyγ line emissions and their associated He- and Li-like satellites thus covering a photon energy range from 1700 eV to 2400 eV approximately. The data analysis rely on the ABAKO/RAPCAL computational package, which has been recently developed at the University of Las Palmas de Gran Canaria and takes into account non-equilibrium collisional-radiative atomic kinetics, Stark broadened line shapes and radiation transport calculations.

  9. Quantum molecular dynamics simulations of transport properties in liquid and dense-plasma plutonium

    SciTech Connect

    Kress, J. D.; Cohen, James S.; Kilcrease, D. P.; Horner, D. A.; Collins, L. A.

    2011-02-15

    We have calculated the viscosity and self-diffusion coefficients of plutonium in the liquid phase using quantum molecular dynamics (QMD) and in the dense-plasma phase using orbital-free molecular dynamics (OFMD), as well as in the intermediate warm dense matter regime with both methods. Our liquid metal results for viscosity are about 40% lower than measured experimentally, whereas a previous calculation using an empirical interatomic potential (modified embedded-atom method) obtained results 3-4 times larger than the experiment. The QMD and OFMD results agree well at the intermediate temperatures. The calculations in the dense-plasma regime for temperatures from 50 to 5000 eV and densities about 1-5 times ambient are compared with the one-component plasma (OCP) model, using effective charges given by the average-atom code inferno. The inferno-OCP model results agree with the OFMD to within about a factor of 2, except for the viscosity at temperatures less than about 100 eV, where the disagreement is greater. A Stokes-Einstein relationship of the viscosities and diffusion coefficients is found to hold fairly well separately in both the liquid and dense-plasma regimes.

  10. Quantum molecular dynamics simulations of transport properties in liquid and dense-plasma plutonium.

    PubMed

    Kress, J D; Cohen, James S; Kilcrease, D P; Horner, D A; Collins, L A

    2011-02-01

    We have calculated the viscosity and self-diffusion coefficients of plutonium in the liquid phase using quantum molecular dynamics (QMD) and in the dense-plasma phase using orbital-free molecular dynamics (OFMD), as well as in the intermediate warm dense matter regime with both methods. Our liquid metal results for viscosity are about 40% lower than measured experimentally, whereas a previous calculation using an empirical interatomic potential (modified embedded-atom method) obtained results 3-4 times larger than the experiment. The QMD and OFMD results agree well at the intermediate temperatures. The calculations in the dense-plasma regime for temperatures from 50 to 5000 eV and densities about 1-5 times ambient are compared with the one-component plasma (OCP) model, using effective charges given by the average-atom code INFERNO. The INFERNO-OCP model results agree with the OFMD to within about a factor of 2, except for the viscosity at temperatures less than about 100 eV, where the disagreement is greater. A Stokes-Einstein relationship of the viscosities and diffusion coefficients is found to hold fairly well separately in both the liquid and dense-plasma regimes.

  11. A nonlinear model for magnetoacoustic waves in dense dissipative plasmas with degenerate electrons

    SciTech Connect

    Masood, W.; Jahangir, R.; Siddiq, M.; Eliasson, B.

    2014-10-15

    The properties of nonlinear fast magnetoacoustic waves in dense dissipative plasmas with degenerate electrons are studied theoretically in the framework of the Zabolotskaya-Khokhlov (ZK) equation for small but finite amplitude excitations. Shock-like solutions of the ZK equation are obtained and are applied to parameters relevant to white dwarf stars.

  12. Screened α decay in dense astrophysical plasmas and superstrong magnetic fields

    NASA Astrophysics Data System (ADS)

    Liolios, Theodore E.

    2003-07-01

    This paper shows that ultrastrong magnetic fields (such as those of magnetars) and dense astrophysical plasmas can reduce the half-life of α-decaying nuclei by many orders of magnitude. In such environments, the conventional Geiger-Nuttall law is modified so that all relevant half-lives are shifted to dramatically lower values.

  13. Multifunctional laser facility with photoelectric recording for plasma diagnostics

    SciTech Connect

    Pyatnitsky, L.N.; Yakushev, G.G.; Oberman, F.M. )

    1989-01-01

    A laser facility with photoelectric recording is described. It can be used in performing plasma diagnostics by four different measuring techniques. The application of photoelectric recording considerably simplifies the automation of measurements.

  14. Thomson Scattering Lineshape Fitting for Plasma Diagnostics

    1994-02-04

    HFIT30 is used for interpreting lineshape (intensity versus frequency) data from Thomson and Rayleigh light scattering from a plasma, to obtain temperatures and number densities of the component species in the plasma.

  15. Recent Advancements in Microwave Imaging Plasma Diagnostics

    SciTech Connect

    H. Park; C.C. Chang; B.H. Deng; C.W. Domier; A.J.H. Donni; K. Kawahata; C. Liang; X.P. Liang; H.J. Lu; N.C. Luhmann, Jr.; A. Mase; H. Matsuura; E. Mazzucato; A. Miura; K. Mizuno; T. Munsat; K. and Y. Nagayama; M.J. van de Pol; J. Wang; Z.G. Xia; W-K. Zhang

    2002-03-26

    Significant advances in microwave and millimeter wave technology over the past decade have enabled the development of a new generation of imaging diagnostics for current and envisioned magnetic fusion devices. Prominent among these are revolutionary microwave electron cyclotron emission imaging (ECEI), microwave phase imaging interferometers, imaging microwave scattering and microwave imaging reflectometer (MIR) systems for imaging electron temperature and electron density fluctuations (both turbulent and coherent) and profiles (including transport barriers) on toroidal devices such as tokamaks, spherical tori, and stellarators. The diagnostic technology is reviewed, and typical diagnostic systems are analyzed. Representative experimental results obtained with these novel diagnostic systems are also presented.

  16. Thin and Dense Ceramic Coatings by Plasma Spraying at Very Low Pressure

    NASA Astrophysics Data System (ADS)

    Mauer, Georg; Vaßen, Robert; Stöver, Detlev

    2010-01-01

    The very low pressure plasma spray (VLPPS) process operates at a pressure range of approximately 100 Pa. At this pressure, the plasma jet interaction with the surrounding atmosphere is very weak. Thus, the plasma velocity is almost constant over a large distance from the nozzle exit. Furthermore, at these low pressures the collision frequency is distinctly reduced and the mean free path is strongly increased. As a consequence, at low pressure the specific enthalpy of the plasma is substantially higher, but at lower density. These particular plasma characteristics offer enhanced possibilities to spray thin and dense ceramics compared to conventional processes which operate in the pressure range between 5 and 20 kPa. This paper presents some examples of gas-tight and electrically insulating coatings with low thicknesses <50 μm for solid oxide fuel cell applications. Furthermore, plasma spraying of oxygen conducting membrane materials such as perovskites is discussed.

  17. Efficient propagation of ultra-intense laser beam in dense plasma

    SciTech Connect

    Habara, H.; Ivancic, S.; Anderson, K.; Haberberger, D.; Iwawaki, T.; Stoeckl, C.; Tanaka, K. A.; Uematsu, Y.; Theobald, W.

    2015-04-29

    Ultra intense laser propagation in extended, dense plasma is investigated through optical and proton probing. When a >1 kJ, 10 ps laser propagates into a long-density scale length plasma, channel formation was observed up to 0.6 nc from the analysis of optical probe images. The proton track analysis shows the formation of strong electric and magnetic fields along the plasma channel, which may lead to the observed collimated electron beam on the laser axis. These results are promising for the feasibility of the direct irradiation scheme of fast ignition.

  18. Linear and nonlinear ion-acoustic waves in very dense magnetized plasmas

    SciTech Connect

    Khan, S. A.; Mahmood, S.; Saleem, H.

    2008-08-15

    Obliquely propagating linear and weakly nonlinear ion-acoustic waves in a magnetized quantum plasma are investigated by employing the quantum hydrodynamic formulation. A linear dispersion relation is presented and the nonlinear Korteweg-de Vries equation is derived using the reductive perturbative method. The dispersion caused by the quantum diffraction effects is possible only in a very short wavelength regime. The amplitude and width of the solitons formed by the ion-acoustic waves propagating in a magnetized plasma depend upon various parameters. Possible applications of the results to dense plasmas are discussed.

  19. Study of Electron-Beam Propagation through Preionized Dense Foam Plasmas

    SciTech Connect

    Jung, R.; Osterholz, J.; Loewenbrueck, K.; Kiselev, S.; Pretzler, G.; Pukhov, A.; Willi, O.; Kar, S.; Borghesi, M.; Nazarov, W.; Karsch, S.; Clarke, R.; Neely, D.

    2005-05-20

    The transport of an intense electron-beam produced by the Vulcan petawatt laser through dense plasmas has been studied by imaging with high resolution the optical emission due to electron transit through the rear side of coated foam targets. It is observed that the MeV-electron beam undergoes strong filamentation and the filaments organize themselves in a ringlike structure. This behavior has been modeled using particle-in-cell simulations of the laser-plasma interaction as well as of the transport of the electron beam through the preionized plasma. In the simulations the filamentary structures are reproduced and attributed to the Weibel instability.

  20. Generation of terahertz radiation in the reflection of a laser pulse from a dense plasma

    SciTech Connect

    Frolov, A. A.

    2007-12-15

    The generation of low-frequency (terahertz) electromagnetic radiation in the reflection of a laser pulse from the boundary of a dense plasma is considered. Low-frequency wave electromagnetic fields in vacuum are excited by a vortex electric current that is induced at the plasma boundary by the ponderomotive force of the laser pulse. The spectral, angular, and energy parameters of the low-frequency radiation, as well as the spatiotemporal structure of the emitted waves, are investigated. It is shown that for typical parameters of present-day laser plasma experiments, the power of terahertz radiation can amount to tens of megawatts.

  1. Laboratory measurements of resistivity in warm dense plasmas relevant to the microphysics of brown dwarfs

    SciTech Connect

    Booth, N.; Robinson, A. P. L.; Hakel, P.; Clarke, R. J.; Dance, R. J.; Doria, D.; Gizzi, L. A.; Gregori, G.; Koester, P.; Labate, L.; Levato, T.; Li, B.; Makita, M.; Mancini, R. C.; Pasley, J.; Rajeev, P. P.; Riley, D.; Wagenaars, E.; Waugh, J. N.; Woolsey, N. C.

    2015-11-06

    Since the observation of the first brown dwarf in 1995, numerous studies have led to a better understanding of the structures of these objects. Here we present a method for studying material resistivity in warm dense plasmas in the laboratory, which we relate to the microphysics of brown dwarfs through viscosity and electron collisions. Here we use X-ray polarimetry to determine the resistivity of a sulphur-doped plastic target heated to Brown Dwarf conditions by an ultra-intense laser. The resistivity is determined by matching the plasma physics model to the atomic physics calculations of the measured large, positive, polarization. Furthermore, the inferred resistivity is larger than predicted using standard resistivity models, suggesting that these commonly used models will not adequately describe the resistivity of warm dense plasma related to the viscosity of brown dwarfs.

  2. Laboratory measurements of resistivity in warm dense plasmas relevant to the microphysics of brown dwarfs.

    PubMed

    Booth, N; Robinson, A P L; Hakel, P; Clarke, R J; Dance, R J; Doria, D; Gizzi, L A; Gregori, G; Koester, P; Labate, L; Levato, T; Li, B; Makita, M; Mancini, R C; Pasley, J; Rajeev, P P; Riley, D; Wagenaars, E; Waugh, J N; Woolsey, N C

    2015-11-06

    Since the observation of the first brown dwarf in 1995, numerous studies have led to a better understanding of the structures of these objects. Here we present a method for studying material resistivity in warm dense plasmas in the laboratory, which we relate to the microphysics of brown dwarfs through viscosity and electron collisions. Here we use X-ray polarimetry to determine the resistivity of a sulphur-doped plastic target heated to Brown Dwarf conditions by an ultra-intense laser. The resistivity is determined by matching the plasma physics model to the atomic physics calculations of the measured large, positive, polarization. The inferred resistivity is larger than predicted using standard resistivity models, suggesting that these commonly used models will not adequately describe the resistivity of warm dense plasma related to the viscosity of brown dwarfs.

  3. Measurement of charged-particle stopping in warm-dense plasma

    DOE PAGES

    Zylstra, A.  B.; Frenje, J.  A.; Grabowski, P. E.; Li, C.  K.; Collins, G.  W.; Fitzsimmons, P.; Glenzer, S.; Graziani, F.; Hansen, S.  B.; Hu, S. X.; et al

    2015-05-27

    We measured the stopping of energetic protons in an isochorically-heated solid-density Be plasma with an electron temperature of ~32 eV, corresponding to moderately-coupled [(e²/a/(kBTe + EF ) ~ 0.3] and moderately-degenerate [kBTe/EF ~2] 'warm dense matter' (WDM) conditions. We present the first high-accuracy measurements of charged-particle energy loss through dense plasma, which shows an increased loss relative to cold matter, consistent with a reduced mean ionization potential. The data agree with stopping models based on an ad-hoc treatment of free and bound electrons, as well as the average-atom local-density approximation; this work is the first test of these theories inmore » WDM plasma.« less

  4. GigaGauss solenoidal magnetic field inside bubbles excited in under-dense plasma

    PubMed Central

    Lécz, Zs.; Konoplev, I. V.; Seryi, A.; Andreev, A.

    2016-01-01

    This paper proposes a novel and effective method for generating GigaGauss level, solenoidal quasi-static magnetic fields in under-dense plasma using screw-shaped high intensity laser pulses. This method produces large solenoidal fields that move with the driving laser pulse and are collinear with the accelerated electrons. This is in contrast with already known techniques which rely on interactions with over-dense or solid targets and generates radial or toroidal magnetic field localized at the stationary target. The solenoidal field is quasi-stationary in the reference frame of the laser pulse and can be used for guiding electron beams. It can also provide synchrotron radiation beam emittance cooling for laser-plasma accelerated electron and positron beams, opening up novel opportunities for designs of the light sources, free electron lasers, and high energy colliders based on laser plasma acceleration. PMID:27796327

  5. Laboratory measurements of resistivity in warm dense plasmas relevant to the microphysics of brown dwarfs

    PubMed Central

    Booth, N.; Robinson, A. P. L.; Hakel, P.; Clarke, R. J.; Dance, R. J.; Doria, D.; Gizzi, L. A.; Gregori, G.; Koester, P.; Labate, L.; Levato, T.; Li, B.; Makita, M.; Mancini, R. C.; Pasley, J.; Rajeev, P. P.; Riley, D.; Wagenaars, E.; Waugh, J. N.; Woolsey, N. C.

    2015-01-01

    Since the observation of the first brown dwarf in 1995, numerous studies have led to a better understanding of the structures of these objects. Here we present a method for studying material resistivity in warm dense plasmas in the laboratory, which we relate to the microphysics of brown dwarfs through viscosity and electron collisions. Here we use X-ray polarimetry to determine the resistivity of a sulphur-doped plastic target heated to Brown Dwarf conditions by an ultra-intense laser. The resistivity is determined by matching the plasma physics model to the atomic physics calculations of the measured large, positive, polarization. The inferred resistivity is larger than predicted using standard resistivity models, suggesting that these commonly used models will not adequately describe the resistivity of warm dense plasma related to the viscosity of brown dwarfs. PMID:26541650

  6. Ion acoustic solitons in dense magnetized plasmas with nonrelativistic and ultrarelativistic degenerate electrons and positrons

    SciTech Connect

    Sadiq, Safeer; Mahmood, S.; Haque, Q.; Ali, Munazza Zulfiqar

    2014-09-20

    The propagation of electrostatic waves in a dense magnetized electron-positron-ion (EPI) plasma with nonrelativistic and ultrarelativistic degenerate electrons and positrons is investigated. The linear dispersion relation is obtained for slow and fast electrostatic waves in the EPI plasma. The limiting cases for ion acoustic wave (slow) and ion cyclotron wave (fast) are also discussed. Using the reductive perturbation method, two-dimensional propagation of ion acoustic solitons is found for both the nonrelativistic and ultrarelativistic degenerate electrons and positrons. The effects of positron concentration, magnetic field, and mass of ions on ion acoustic solitons are shown in numerical plots. The proper form of Fermi temperature for nonrelativistic and ultrarelativistic degenerate electrons and positrons is employed, which has not been used in earlier published work. The present investigation is useful for the understanding of linear and nonlinear electrostatic wave propagation in the dense magnetized EPI plasma of compact stars. For illustration purposes, we have applied our results to a pulsar magnetosphere.

  7. Laboratory measurements of resistivity in warm dense plasmas relevant to the microphysics of brown dwarfs.

    PubMed

    Booth, N; Robinson, A P L; Hakel, P; Clarke, R J; Dance, R J; Doria, D; Gizzi, L A; Gregori, G; Koester, P; Labate, L; Levato, T; Li, B; Makita, M; Mancini, R C; Pasley, J; Rajeev, P P; Riley, D; Wagenaars, E; Waugh, J N; Woolsey, N C

    2015-01-01

    Since the observation of the first brown dwarf in 1995, numerous studies have led to a better understanding of the structures of these objects. Here we present a method for studying material resistivity in warm dense plasmas in the laboratory, which we relate to the microphysics of brown dwarfs through viscosity and electron collisions. Here we use X-ray polarimetry to determine the resistivity of a sulphur-doped plastic target heated to Brown Dwarf conditions by an ultra-intense laser. The resistivity is determined by matching the plasma physics model to the atomic physics calculations of the measured large, positive, polarization. The inferred resistivity is larger than predicted using standard resistivity models, suggesting that these commonly used models will not adequately describe the resistivity of warm dense plasma related to the viscosity of brown dwarfs. PMID:26541650

  8. Measurement of charged-particle stopping in warm-dense plasma

    SciTech Connect

    Zylstra, A.  B.; Frenje, J.  A.; Grabowski, P. E.; Li, C.  K.; Collins, G.  W.; Fitzsimmons, P.; Glenzer, S.; Graziani, F.; Hansen, S.  B.; Hu, S. X.; Johnson, M. Gatu; Keiter, P.; Reynolds, H.; Rygg, J.  R.; Séguin, F. H.; Petrasso, R. D.

    2015-05-27

    We measured the stopping of energetic protons in an isochorically-heated solid-density Be plasma with an electron temperature of ~32 eV, corresponding to moderately-coupled [(e²/a/(kBTe + EF ) ~ 0.3] and moderately-degenerate [kBTe/EF ~2] 'warm dense matter' (WDM) conditions. We present the first high-accuracy measurements of charged-particle energy loss through dense plasma, which shows an increased loss relative to cold matter, consistent with a reduced mean ionization potential. The data agree with stopping models based on an ad-hoc treatment of free and bound electrons, as well as the average-atom local-density approximation; this work is the first test of these theories in WDM plasma.

  9. Numerical study of ion acoustic shock waves in dense quantum plasma

    SciTech Connect

    Hanif, M.; Mirza, Arshad M.; Ali, S.; Mukhtar, Q.

    2014-03-15

    Two fluid quantum hydrodynamic equations are solved numerically to investigate the propagation characteristics of ion acoustic shock waves in an unmagnetized dense quantum plasma, whose constituents are the electrons and ions. For this purpose, we employ the standard finite difference Lax Wendroff and relaxation methods, to examine the quantum effects on the profiles of shock potential, the electron/ion number densities, and velocity even for quantum parameter at H = 2. The effects of the latter vanish in a weakly non-linear limit while obeying the KdV theory. It is shown that the evolution of the wave depends sensitively on the plasma density and the quantum parameter. Numerical results reveal that the kinks or oscillations are pronounced for large values of quantum parameter, especially at H = 2. Our results should be important to understand the shock wave excitations in dense quantum plasmas, white dwarfs, neutron stars, etc.

  10. Laboratory measurements of resistivity in warm dense plasmas relevant to the microphysics of brown dwarfs

    DOE PAGES

    Booth, N.; Robinson, A. P. L.; Hakel, P.; Clarke, R. J.; Dance, R. J.; Doria, D.; Gizzi, L. A.; Gregori, G.; Koester, P.; Labate, L.; et al

    2015-11-06

    Since the observation of the first brown dwarf in 1995, numerous studies have led to a better understanding of the structures of these objects. Here we present a method for studying material resistivity in warm dense plasmas in the laboratory, which we relate to the microphysics of brown dwarfs through viscosity and electron collisions. Here we use X-ray polarimetry to determine the resistivity of a sulphur-doped plastic target heated to Brown Dwarf conditions by an ultra-intense laser. The resistivity is determined by matching the plasma physics model to the atomic physics calculations of the measured large, positive, polarization. Furthermore, themore » inferred resistivity is larger than predicted using standard resistivity models, suggesting that these commonly used models will not adequately describe the resistivity of warm dense plasma related to the viscosity of brown dwarfs.« less

  11. Mechanical considerations for MFTF-B plasma-diagnostic system

    SciTech Connect

    Thomas, S.R. Jr.; Wells, C.W.

    1981-10-19

    The reconfiguration of MFTF to a tandem mirror machine with thermal barriers has caused a significant expansion in the physical scope of plasma diagnostics. From a mechanical perspective, it complicates the plasma access, system interfaces, growth and environmental considerations. Conceptual designs characterize the general scope of the design and fabrication which remains to be done.

  12. Tomography as a promising diagnostic tool for plasma turbulence

    NASA Astrophysics Data System (ADS)

    Fujisawa, A.; Nagashima, Y.; Inagaki, S.; Onchi, T.; Ohshima, S.; Shimizu, A.

    2016-02-01

    A system for plasma turbulence tomography has been developed in a linear cylindrical plasma as a prototype with aiming at future application on toroidal plasma of higher temperature. This paper describes the diagnostic system in both aspects of the soft- and hardware, and reports the first results of tomographic reconstruction that can successfully produce local emission and its fluctuations. In the reconstruction process, two dimensional view of plasma is obtained for approximately 0.6 ms in every sampling time of 1 μs using parallel processing of 120 cores with 10 personal computers. The results include the steady state analysis of local fluctuation power spectra using fast Fourier transform, analysis of temporal behavior of fluctuation power spectra with wavelet transform, and analyses of the structural deformation or pattern of local plasma emission, demonstrating that the success of tomography as a promising diagnostic tool for plasma turbulence.

  13. Challenges for Plasma Diagnostics in a Next Step Device (FIRE)

    SciTech Connect

    Kenneth M. Young

    2002-01-28

    The physics program of any next-step tokamak such as FIRE [Fusion Ignition Research Experiment] sets demands for plasma measurement which are at least as comprehensive as on present tokamaks, with the additional capabilities needed for control of the plasma and for understanding the effects of the alpha-particles. The diagnostic instrumentation must be able to provide the fine spatial and temporal resolution required for the advanced tokamak plasma scenarios. It must also be able to overcome the effects of neutron- and gamma-induced electrical noise in ceramic components or detectors, and fluorescence and absorption in optical components. There are practical engineering issues of minimizing radiation streaming while providing essential diagnostic access to the plasma. Many diagnostics will require components at or close to the first wall, e.g., ceramics and MI cable for magnetic diagnostics and mirrors for optical diagnostics; these components must be mounted to operate, and survive, i n fluxes which require special material selection. A better set of diagnostics of alpha-particles than that available for the TFTR [Tokamak Fusion Test Reactor] is essential; it must be qualified well before moving into D-T [deuterim-tritium] experiments. A start has been made to assessing the potential implementation of key diagnostics for the FIRE device. The present status is described.

  14. Time-Space Position of Warm Dense Matter in Laser Plasma Interaction Process

    SciTech Connect

    Cao, L F; Uschmann, I; Forster, E; Zamponi, F; Kampfer, T; Fuhrmann, A; Holl, A; Redmer, R; Toleikis, S; Tschentscher, T; Landen, O L; Glenzer, S H

    2006-09-25

    Laser plasma interaction experiments have been perform performed using an fs Titanium Sapphire laser. Plasmas have been generated from planar PMMA targets using single laser pulses with 3.3 mJ pulse energy, 50 fs pulse duration at 800 nm wavelength. Electron density distributions of the plasmas in different delay times have been characterized by means of Nomarski Interferometry. Experimental data were cautiously compared with relevant 1D numerical simulation. Finally these results provide a first experience of searching for the time-space position of the so-called warm dense plasma in an ultra fast laser target interaction process. These experiments aim to prepare near solid-density plasmas for Thomson scattering experiments using the short wavelength free-electron laser FLASH, DESY Hamburg.

  15. Partial ionization in dense plasmas: comparisons among average-atom density functional models.

    PubMed

    Murillo, Michael S; Weisheit, Jon; Hansen, Stephanie B; Dharma-wardana, M W C

    2013-06-01

    Nuclei interacting with electrons in dense plasmas acquire electronic bound states, modify continuum states, generate resonances and hopping electron states, and generate short-range ionic order. The mean ionization state (MIS), i.e, the mean charge Z of an average ion in such plasmas, is a valuable concept: Pseudopotentials, pair-distribution functions, equations of state, transport properties, energy-relaxation rates, opacity, radiative processes, etc., can all be formulated using the MIS of the plasma more concisely than with an all-electron description. However, the MIS does not have a unique definition and is used and defined differently in different statistical models of plasmas. Here, using the MIS formulations of several average-atom models based on density functional theory, we compare numerical results for Be, Al, and Cu plasmas for conditions inclusive of incomplete atomic ionization and partial electron degeneracy. By contrasting modern orbital-based models with orbital-free Thomas-Fermi models, we quantify the effects of shell structure, continuum resonances, the role of exchange and correlation, and the effects of different choices of the fundamental cell and boundary conditions. Finally, the role of the MIS in plasma applications is illustrated in the context of x-ray Thomson scattering in warm dense matter.

  16. Transient calorimetric diagnostics for plasma processing

    NASA Astrophysics Data System (ADS)

    Bornholdt, Sven; Kersten, Holger

    2013-08-01

    This paper reports on an improvement of the calorimetric method for the determination of energy fluxes from plasma towards substrates by using a transient technique. It provides a short overview of the traditional method used for characterization of plasma-wall-interactions during plasma processing. The mathematical framework of the method and possible implications are discussed. It is shown how the method can be improved to obtain additional and detailed information about the energy influx in a shorter measurement time. For this purpose, the probe bias (if applied), which has commonly been kept constant is varied like in Langmuir probe measurements. The experimental validation of the theoretical considerations emphasizes the potential of the method for control in plasma processing. The possibility how the passive calorimetric probe can be used in continuous measurements for process monitoring without any feedback loops used by other probes, is finally discussed.

  17. Coronal plasma diagnostics from eclipse observations

    NASA Astrophysics Data System (ADS)

    Landi, E.; Habbal, S. R.; Tomczyk, S.

    2015-12-01

    In this talk we will discuss the diagnostic potential of observationsof visible spectral lines formed in the extended solar corona that canbe obtained during eclipses. We will discuss the possible diagnosticapplications of visible eclipse observations to measure the physicalparameters of the extended corona, to understand solar wind origin andacceleration, and to determine the evolution of Coronal Mass Ejectionsduring onset.We will first review the mechanisms of formation of spectral lineintensities, we will then illustrate their diagnostic applications,and show some results from recent eclipse observations. We will alsoreview the spectral lines that are most likely to be observed inthe extended solar corona during the upcoming 2017 eclipse in thecontinental United States.

  18. The equation of state and ionization equilibrium of dense aluminum plasma with conductivity verification

    SciTech Connect

    Wang, Kun; Shi, Zongqian; Shi, Yuanjie; Bai, Jun; Wu, Jian; Jia, Shenli

    2015-06-15

    The equation of state, ionization equilibrium, and conductivity are the most important parameters for investigation of dense plasma. The equation of state is calculated with the non-ideal effects taken into consideration. The electron chemical potential and pressure, which are commonly used thermodynamic quantities, are calculated by the non-ideal free energy and compared with results of a semi-empirical equation of state based on Thomas-Fermi-Kirzhnits model. The lowering of ionization potential, which is a crucial factor in the calculation of non-ideal Saha equation, is settled according to the non-ideal free energy. The full coupled non-ideal Saha equation is applied to describe the ionization equilibrium of dense plasma. The conductivity calculated by the Lee-More-Desjarlais model combined with non-ideal Saha equation is compared with experimental data. It provides a possible approach to verify the accuracy of the equation of state and ionization equilibrium.

  19. Influence of renormalization shielding on the electron-impact ionization process in dense partially ionized plasmas

    SciTech Connect

    Song, Mi-Young; Yoon, Jung-Sik; Jung, Young-Dae

    2015-04-15

    The renormalization shielding effects on the electron-impact ionization of hydrogen atom are investigated in dense partially ionized plasmas. The effective projectile-target interaction Hamiltonian and the semiclassical trajectory method are employed to obtain the transition amplitude as well as the ionization probability as functions of the impact parameter, the collision energy, and the renormalization parameter. It is found that the renormalization shielding effect suppresses the transition amplitude for the electron-impact ionization process in dense partially ionized plasmas. It is also found that the renormalization effect suppresses the differential ionization cross section in the peak impact parameter region. In addition, it is found that the influence of renormalization shielding on the ionization cross section decreases with an increase of the relative collision energy. The variations of the renormalization shielding effects on the electron-impact ionization cross section are also discussed.

  20. Shock waves and double layers in electron degenerate dense plasma with viscous ion fluids

    SciTech Connect

    Mamun, A. A.; Zobaer, M. S.

    2014-02-15

    The properties of ion-acoustic shock waves and double layers propagating in a viscous degenerate dense plasma (containing inertial viscous ion fluid, non-relativistic and ultra-relativistic degenerate electron fluid, and negatively charged stationary heavy element) is investigated. A new nonlinear equation (viz. Gardner equation with additional dissipative term) is derived by the reductive perturbation method. The properties of the ion-acoustic shock waves and double layers are examined by the analysis of the shock and double layer solutions of this new equation (we would like to call it “M-Z equation”). It is found that the properties of these shock and double layer structures obtained from this analysis are significantly different from those obtained from the analysis of standard Gardner or Burgers’ equation. The implications of our results to dense plasmas in astrophysical objects (e.g., non-rotating white dwarf stars) are briefly discussed.

  1. Equation of state of dense neon and krypton plasmas in the partial ionization regime

    SciTech Connect

    Chen, Q. F. Zheng, J.; Gu, Y. J.; Li, Z. G.

    2015-12-15

    The compression behaviors of dense neon and krypton plasmas over a wide pressure-temperature range are investigated by self-consistent fluid variational theory. The ionization degree and equation of state of dense neon and krypton are calculated in the density-temperature range of 0.01–10 g/cm{sup 3} and 4–50 kK. A region of thermodynamic instability is found which is related to the plasma phase transition. The calculated shock adiabat and principal Hugoniot of liquid krypton are in good agreement with available experimental data. The predicted results of shock-compressed liquid neon are presented, which provide a guide for dynamical experiments or numerical first-principle calculations aimed at studying the compression properties of liquid neon in the partial ionization regime.

  2. XFEL resonant photo-pumping of dense plasmas and dynamic evolution of autoionizing core hole states

    NASA Astrophysics Data System (ADS)

    Rosmej, F. B.; Moinard, A.; Renner, O.; Galtier, E.; Lee, J. J.; Nagler, B.; Heimann, P. A.; Schlotter, W.; Turner, J. J.; Lee, R. W.; Makita, M.; Riley, D.; Seely, J.

    2016-03-01

    Similarly to the case of LIF (Laser-Induced Fluorescence), an equally revolutionary impact to science is expected from resonant X-ray photo-pumping. It will particularly contribute to a progress in high energy density science: pumped core hole states create X-ray transitions that can escape dense matter on a 10 fs-time scale without essential photoabsorption, thus providing a unique possibility to study matter under extreme conditions. In the first proof of principle experiment at the X-ray Free Electron Laser LCLS at SCLAC [Seely, J., Rosmej, F.B., Shepherd, R., Riley, D., Lee, R.W. Proposal to Perform the 1st High Energy Density Plasma Spectroscopic Pump/Probe Experiment”, approved LCLS proposal L332 (2010)] we have successfully pumped inner-shell X-ray transitions in dense plasmas. The plasma was generated with a YAG laser irradiating solid Al and Mg targets attached to a rotating cylinder. In parallel to the optical laser beam, the XFEL was focused into the plasma plume at different delay times and pump energies. Pumped X-ray transitions have been observed with a spherically bent crystal spectrometer coupled to a Princeton CCD. By using this experimental configuration, we have simultaneously achieved extremely high spectral (λ/δλ ≈ 5000) and spatial resolution (δx≈70 μm) while maintaining high luminosity and a large spectral range covered (6.90 - 8.35 Å). By precisely measuring the variations in spectra emitted from plasma under action of XFEL radiation, we have successfully demonstrated transient X- ray pumping in a dense plasma.

  3. Linearly Coupled Electrostatic and Shear Alfven Waves in Dense Plasma in the Presence of Stationary Dust

    SciTech Connect

    Khan, S. A.

    2011-11-29

    Low frequency electrostatic and electromagnetic waves in a dense magnetoplasma are studied. The dispersive contribution of electron quantum effects in an electron-ion plasma in the presence of positively or negatively charged dust particles in the background is emphasized. By employing the quantum hydrodynamic model, a linear dispersion relation is derived which shows coupling of electrostatic and shear Alfven modes which shows influence of electron quantum effects and dust density.

  4. RAPID COMMUNICATION: The dissipative effect of thermal radiation loss in high-temperature dense plasmas

    NASA Astrophysics Data System (ADS)

    Li, L. H.; Zhang, H. Q.

    1996-08-01

    A dynamical model based on the two-fluid dynamical equations with energy generation and loss is obtained and used to investigate the self-generated magnetic fields in high-temperature dense plasmas such as the solar core. The self-generation of magnetic fields might be looked at as a self-organization-type behaviour of stochastic thermal radiation fields, as expected for an open dissipative system according to Prigogine's theory of dissipative structures.

  5. Linearly Coupled Electrostatic and Shear Alfven Waves in Dense Plasma in the Presence of Stationary Dust

    NASA Astrophysics Data System (ADS)

    Khan, S. A.

    2011-11-01

    Low frequency electrostatic and electromagnetic waves in a dense magnetoplasma are studied. The dispersive contribution of electron quantum effects in an electron-ion plasma in the presence of positively or negatively charged dust particles in the background is emphasized. By employing the quantum hydrodynamic model, a linear dispersion relation is derived which shows coupling of electrostatic and shear Alfven modes which shows influence of electron quantum effects and dust density.

  6. Application of cylindrical Langmuir probes to streaming plasma diagnostics.

    NASA Technical Reports Server (NTRS)

    Segall, S. B.; Koopman, D. W.

    1973-01-01

    The current-voltage characteristics of cylindrical probes in a high velocity collisionless plasma flow have been investigated experimentally and theoretically. The plasma was generated by a focused laser pulse incident on a metallic target in vacuum. An analysis, developed from a stationary plasma analog to the flowing case, demonstrated a failure of plasma shielding of probe potential in the electron attracting region. Modifications of relatively simple previous treatments were found to be valid for computing electron current to a probe. The electron characteristics derived from the present analysis agree well with experimental results. The ion and electron portions of the characteristics are consistent with each other and with independent diagnostic measurements.

  7. Simulation studies of ion dynamic effects on dense plasma line shapes

    SciTech Connect

    Pollock, E.L.

    1986-12-01

    Computer simulations have been widely used in studying dense plasma properties including the local field properties important in spectral line broadening calculations. We will review here a more recent use of simulation, possibly less familiar to this audience, where the time dependent ionic microfield generated by computer simulation of a plasma is used directly as a time dependent external potential for the evolution of the electronic structure of an ion. This permits calculation of the dipole correlation function and thus line shapes with the inclusion of ion dynamic effects. 12 refs., 7 figs.

  8. Energy and momentum relaxation of heavy fermion in dense and warm plasma

    SciTech Connect

    Sarkar, Sreemoyee; Dutt-Mazumder, Abhee K.

    2010-09-01

    We determine the drag and the momentum diffusion coefficients of heavy fermion in dense plasma. It is seen that in degenerate matter the drag coefficient at the leading order mediated by the transverse photon is proportional to (E-{mu}){sup 2} while for the longitudinal exchange this goes as (E-{mu}){sup 3}. We also calculate the longitudinal diffusion coefficient to obtain the Einstein relation in a relativistic degenerate plasma. Finally, finite temperature corrections are included both for the drag and the diffusion coefficients.

  9. Quantum ion-acoustic double layers in unmagnetized dense electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Khan, S. A.; Mahmood, S.; Ali, S.

    2009-04-01

    The existence of small amplitude quantum ion-acoustic double layers is studied in an unmagnetized dense electron-positron-ion plasma. For this purpose, the quantum hydrodynamic model is employed to derive a deformed Korteweg-de Vries (dKdV) equation. The steady state double layer solution of dKdV equation is obtained and its dependence on various parameters is discussed. It is found that only compressive double layers can exist in such plasmas. The analytical and numerical studies reveal that the quantum ion-acoustic double layer structures strongly depend on quantum diffraction effects and positron number density.

  10. Linear and nonlinear quantum ion-acoustic waves in dense magnetized electron-positron-ion plasmas

    SciTech Connect

    Khan, S. A.; Masood, W.

    2008-06-15

    The linear and nonlinear quantum ion-acoustic waves propagating obliquely in two dimensions in superdense, magnetized electron-positron-ion quantum plasma are investigated on the basis of quantum hydrodynamic model. It is found in linear analysis that the quantum corrections of diffraction are important in the very short wavelength regime that may be found in dense astrophysical plasmas. To investigate the solitary waves, the Zakharov-Kuznetsov equation is derived and the solution is presented in the small amplitude limit. By numerical analysis, it is found that the soliton structure of the ion acoustic wave depends upon quantum pressure, concentration of positrons, strength of magnetic field, and the propagation angle.

  11. Linear and nonlinear quantum ion-acoustic waves in dense magnetized electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Khan, S. A.; Masood, W.

    2008-06-01

    The linear and nonlinear quantum ion-acoustic waves propagating obliquely in two dimensions in superdense, magnetized electron-positron-ion quantum plasma are investigated on the basis of quantum hydrodynamic model. It is found in linear analysis that the quantum corrections of diffraction are important in the very short wavelength regime that may be found in dense astrophysical plasmas. To investigate the solitary waves, the Zakharov-Kuznetsov equation is derived and the solution is presented in the small amplitude limit. By numerical analysis, it is found that the soliton structure of the ion acoustic wave depends upon quantum pressure, concentration of positrons, strength of magnetic field, and the propagation angle.

  12. Diagnostics and biomedical applications of radiofrequency plasmas

    NASA Astrophysics Data System (ADS)

    Lazović, Saša

    2012-11-01

    In this paper we present spatial profiles of ion and atomic oxygen concentrations in a large scale cylindrical 13.56 MHz capacitively coupled plasma low pressure reactor suitable for indirect biomedical applications (like treatment of textile to increase antibacterial properties) and direct (treatment of seeds of rare and protected species). Such reactor can easily be used for the sterilization of medical instruments by removing bacteria, spores, prions and fungi as well. We also discuss electrical properties of the system based on the signals obtained by the derivative probes and show the light emission profiles close to the sample platform. In the case of seeds treatment, the desired effect is to plasma etch the outer shell of the seed which will lead to the easier nutrition and therefore increase of the germination. In the case of textile treatment the functionalization is done by bounding atomic oxygen to the surface. It appears that antibacterial properties of the textile are increased by incorporating nanoparticles to the fibres which can successfully be done after the plasma treatment. From these two examples it is obvious that the balance of ion and atomic oxygen concentrations as well as proper choice of ion energy and power delivered to the plasma direct the nature of the plasma treatment.

  13. Optically controlled dense current structures driven by relativistic plasma aperture-induced diffraction

    NASA Astrophysics Data System (ADS)

    Gonzalez-Izquierdo, Bruno; Gray, Ross J.; King, Martin; Dance, Rachel J.; Wilson, Robbie; McCreadie, John; Butler, Nicholas M. H.; Capdessus, Remi; Hawkes, Steve; Green, James S.; Borghesi, Marco; Neely, David; McKenna, Paul

    2016-05-01

    The collective response of charged particles to intense fields is intrinsic to plasma accelerators and radiation sources, relativistic optics and many astrophysical phenomena. Here we show that a relativistic plasma aperture is generated in thin foils by intense laser light, resulting in the fundamental optical process of diffraction. The plasma electrons collectively respond to the resulting laser near-field diffraction pattern, producing a beam of energetic electrons with a spatial structure that can be controlled by variation of the laser pulse parameters. It is shown that static electron-beam and induced-magnetic-field structures can be made to rotate at fixed or variable angular frequencies depending on the degree of ellipticity in the laser polarization. The concept is demonstrated numerically and verified experimentally, and is an important step towards optical control of charged particle dynamics in laser-driven dense plasma sources.

  14. Nonlinear electrostatic drift waves in dense electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Haque, Q.; Mahmood, S.; Mushtaq, A.

    2008-08-01

    The Korteweg-de Vries-Burgers (KdVB)-type equation is obtained using the quantum hydrodynamic model in an inhomogeneous electron-positron-ion quantum magnetoplasma with neutral particles in the background. The KdV-type solitary waves, Burgers-type monotonic, and oscillatory shock like solutions are discussed in different limits. The quantum parameter is also dependent on the positron concentration in dense multicomponent plasmas. It is found that both solitary hump and dip are formed and their amplitude and width are dependent on percentage presence of positrons in electron-ion plasmas. The height of the monotonic shock is decreased with the increase of positron concentration and it is independent of the quantum parameter in electron-positron-ion magnetized quantum plasmas. However, the amplitude of the oscillatory shock is dependent on positron concentration and quantum parameter in electron-positron-ion plasmas.

  15. Nonlinear electrostatic drift waves in dense electron-positron-ion plasmas

    SciTech Connect

    Haque, Q.; Mahmood, S.; Mushtaq, A.

    2008-08-15

    The Korteweg-de Vries-Burgers (KdVB)-type equation is obtained using the quantum hydrodynamic model in an inhomogeneous electron-positron-ion quantum magnetoplasma with neutral particles in the background. The KdV-type solitary waves, Burgers-type monotonic, and oscillatory shock like solutions are discussed in different limits. The quantum parameter is also dependent on the positron concentration in dense multicomponent plasmas. It is found that both solitary hump and dip are formed and their amplitude and width are dependent on percentage presence of positrons in electron-ion plasmas. The height of the monotonic shock is decreased with the increase of positron concentration and it is independent of the quantum parameter in electron-positron-ion magnetized quantum plasmas. However, the amplitude of the oscillatory shock is dependent on positron concentration and quantum parameter in electron-positron-ion plasmas.

  16. Microparticle injection effects on microwave transmission through an overly dense plasma layer

    SciTech Connect

    Gillman, Eric D. Amatucci, W. E.; Williams, Jeremiah; Compton, C. S.

    2015-04-15

    Microparticles injected into a plasma have been shown to deplete the free electron population as electrons are collected through the process of microparticles charging to the plasma floating potential. However, these charged microparticles can also act to scatter electromagnetic signals. These experiments investigate microwave penetration through a previously impenetrable overly dense plasma layer as microparticles are injected and the physical phenomena associated with the competing processes that occur due to electron depletion and microwave scattering. The timescales for when each of these competing processes dominates is analyzed in detail. It was found that while both processes play a significant and dominant role at different times, ultimately, transmission through this impenetrable plasma layer can be significantly increased with microparticle injection.

  17. Stark Broadening Analysis Using Optical Spectroscopy of the Dense Plasma Focus

    NASA Astrophysics Data System (ADS)

    Ross, Patrick; Bennett, Nikki; Dutra, Eric; Hagen, E. Chris; Hsu, Scott; Hunt, Gene; Koch, Jeff; Waltman, Tom; NSTec DPF Team

    2015-11-01

    To aid in validating numerical modeling of MA-class dense plasma focus (DPF) devices, spectroscopic measurements of the Gemini Dense Plasma Focus (DPF) were performed using deuterium and deuterium/dopant (argon/krypton) gas. The spectroscopic measurements were made using a fiber-coupled spectrometer and streak camera. Stark line-broadening analysis was applied to the deuterium beta emission (486 nm) in the region near the breakdown of the plasma and during the run-down and run-in phases of the plasma evolution. Densities in the range of 1e17 to low 1e18 cm-3 were obtained. These values are in agreement with models of the DPF performed using the LSP code. The spectra also show a rise and fall with time, indicative of the plasma sheath passing by the view port. Impurity features were also identified in the spectra which grew in intensity as the gas inside the DPF was discharged repeatedly without cycling. Implications of this impurity increase for D-T discharges (without fresh gas fills between every discharge) will be discussed. This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946, and by Los Alamos National Laboratory, under Contract no. DE-AC52-06NA25396 with the U.S. Department of Energy. DOE/NV/25946-2515.

  18. THz time-domain spectroscopy for tokamak plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Causa, F.; Zerbini, M.; Johnston, M.; Buratti, P.; Doria, A.; Gabellieri, L.; Gallerano, G. P.; Giovenale, E.; Pacella, D.; Romano, A.; Tuccillo, A. A.; Tudisco, O.

    2014-08-01

    The technology is now becoming mature for diagnostics using large portions of the electromagnetic spectrum simultaneously, in the form of THz pulses. THz radiation-based techniques have become feasible for a variety of applications, e.g., spectroscopy, imaging for security, medicine and pharmaceutical industry. In particular, time-domain spectroscopy (TDS) is now being used also for plasma diagnostics in various fields of application. This technique is promising also for plasmas for fusion applications, where plasma characteristics are non-uniform and/or evolve during the discharge This is because THz pulses produced with femtosecond mode-locked lasers conveniently span the spectrum above and below the plasma frequency and, thus, can be used as very sensitive and versatile probes of widely varying plasma parameters. The short pulse duration permits time resolving plasma characteristics while the large frequency span permits a large dynamic range. The focus of this work is to present preliminary experimental and simulation results demonstrating that THz TDS can be realistically adapted as a versatile tokamak plasma diagnostic technique.

  19. THz time-domain spectroscopy for tokamak plasma diagnostics

    SciTech Connect

    Causa, F.; Zerbini, M.; Buratti, P.; Gabellieri, L.; Pacella, D.; Romano, A.; Tuccillo, A. A.; Tudisco, O.; Johnston, M.; Doria, A.; Gallerano, G. P.; Giovenale, E.

    2014-08-21

    The technology is now becoming mature for diagnostics using large portions of the electromagnetic spectrum simultaneously, in the form of THz pulses. THz radiation-based techniques have become feasible for a variety of applications, e.g., spectroscopy, imaging for security, medicine and pharmaceutical industry. In particular, time-domain spectroscopy (TDS) is now being used also for plasma diagnostics in various fields of application. This technique is promising also for plasmas for fusion applications, where plasma characteristics are non-uniform and/or evolve during the discharge This is because THz pulses produced with femtosecond mode-locked lasers conveniently span the spectrum above and below the plasma frequency and, thus, can be used as very sensitive and versatile probes of widely varying plasma parameters. The short pulse duration permits time resolving plasma characteristics while the large frequency span permits a large dynamic range. The focus of this work is to present preliminary experimental and simulation results demonstrating that THz TDS can be realistically adapted as a versatile tokamak plasma diagnostic technique.

  20. Studies on X-ray and Ion Emission from Dense Plasma Focus and Its Application in Material Modification

    NASA Astrophysics Data System (ADS)

    Bhuyan, Heman

    In the recent years, the radiations, namely X-rays and ions, from high temperature and high density plasma have become extremely important because of their applications in diverse areas. In micro- and nano-electronics industries, the current predominant trend of shrinkage of integrated circuits demands powerful, clean and bright pulsed X-ray sources. These sources are in hunt for not only electronics industries but also for other disciplines like micro-radiography, microscopy, crystallography etc.. Likewise, the quest for plasma based ion sources has been growing phenomenally during last decades for the synthesis of novel materials. These novel materials have plenty of applications in automotive, aerospace, biomedical and electronics industries. The need of present hour is to develop compact, cost-effective and efficient plasma based radiation sources so as to fulfill industrial requirements. The work presented in this thesis mainly focuses on how to operate the Dense Plasma Focus facility of Centre of Plasma Physics (CPP DPF) in an enhanced X-ray and ion emission mode. Four research problems are addressed in this thesis: (i) study of current sheet dynamics; (ii) investigation of X-ray emission; (iii) analysis of ion emission; and (iv) utilization of ions for material modification. Salient features of the different chapters of this thesis are described hereafter. Chapter 1, in addition to a brief introduction to the importance of plasma physics, provides information on X-ray and ion sources and their current scenario of industrial applications. Besides, this chapter provides a short introduction to DPF device along with current sheet dynamics and other related plasma phenomena. Chapter 2 presents the design and fabrication details of CPP DPF facility (pulsed power driver, plasma focus tube with pumping system) along with the basic diagnostic techniques (Rogowski coil and resistive voltage divider). In addition, the discharge performance of DPF facility, which is

  1. New Electron Temperature Diagnostic for Low Temperature Plasmas

    NASA Astrophysics Data System (ADS)

    Boivin, Robert; Loch, Stuart

    2004-11-01

    A new line ratio diagnostic design to measure electron temperature in plasma is presented. Unlike previous diagnostics, this new technique features emission lines originating from levels with different principal quantum numbers. A significant advantage of this approach is that the line ratio varies considerably with temperature in the 1 to 20 eV range. Another advantage is that both transitions are optically thin even for plasma density up to 1 E 14 cm-3. The drawbacks are: a large difference in the line intensities and the significant difference in wavelength. The event of high sensitivity CCD camera combine with precise calibration can to a large extent minimize these latest two issues. The diagnostic is tested on the ASTRAL (Auburn Steady sTate Research fAciLity) helicon plasma source. ASTRAL is a 2.3 m long helicon source designed to investigate basic plasma and space plasma processes. The device produces plasmas with the following typical parameters ne = 1 E9 to 1 E13 cm-3, Te = 2 to 20 eV and Ti = 0.03 to 0.3 eV. A series of 8 large coils produce an axial magnetic field up to 1.2 kGauss. Operating pressure varies from 0.1 to 100 mTorr. A water cooled fractional helix antenna is used to introduce RF power up to 2 kwatt through a standard matching circuit. The line ratio temperatures are measured by means of a 0.33 m McPherson Criss-Cross Scanning monochromator instrumented with a SPH5 Apogee CCD camera. The line ratio temperatures are compared to electron temperatures measured by a rf compensated Langmuir Probe. To validate the diagnostic, a new collisional radiative model that makes use of the latest excitation cross-section values is presented. The model is also used to predict the potential range of this new diagnostic both in terms of electron temperature and plasma density.

  2. Radio stimulation and diagnostics of space plasmas

    NASA Technical Reports Server (NTRS)

    Lee, Min-Chang

    1993-01-01

    We have investigated the small-scale topside ionospheric plasma structures first observed at Millstone Hill, Massachusetts with the 440 MHz incoherent scatter radar. These small-scale obliquely propagating plasma modes occurring in the vicinity of the midlatitude ionospheric trough, have large radar cross-sections and narrow spectral widths. They have, until recently, been dismissed solely as hard target contamination of the incoherent scatter radar. The geophysical conditions associated with the ionospheric trough, such as the field-aligned current activity and steep plasma density gradients, suggest that these recently discovered small-scale topside ionospheric plasmas may also appear in the auroral and polar ionosphere. In fact, this speculation has been corroborated by the preliminary experiments and data analyses at Tromso, Norway and Sondrestromfjord, Greenland. The primary research results are highlighted. Described in Section 3 are the experiments conducted at Arecibo, Puerto Rico in the past summer for simulating the geophysical conditions of generating these topside ionospheric plasma structures. Recommendation for the future research is finally given. Attached as the appendix of this report are several chapters which present the detailed results of research in the concerned topside ionospheric clutter. Highlights of the research results include: (1) causes of the enhanced radar backscatter (ERB) phenomenon; (2) occurrence of the ERB phenomenon; (3) altitudes of the ERB phenomenon; (4) strength of the ERB returns; (5) range of altitudes of the ERB returns; (6) occurrence frequency of the ERB phenomenon; (7) Doppler effect of the ERB phenomenon; (8) persistency of the ERB; and (9) distinction between ERB phenomenon and space object signatures.

  3. Spectroscopic diagnostics of high temperature plasmas. [Annual report

    SciTech Connect

    Moos, W.

    1990-12-31

    A three-year research program for the development of novel XUV spectroscopic diagnostics for magnetically confined fusion plasmas is proposed. The new diagnostic system will use layered synthetic microstructures (LSM) coated, flat and curved surfaces as dispersive elements in spectrometers and narrow band XUV filter arrays. In the framework of the proposed program we will develop impurity monitors for poloidal and toroidal resolved measurements on PBX-M and Alcator C-Mod, imaging XUV spectrometers for electron density and temperature fluctuation measurements in the hot plasma core in TEXT or other similar tokamaks and plasma imaging devices in soft x-ray light for impurity behavior studies during RF heating on Phaedrus T and carbon pellet ablation in Alcator C-Mod. Recent results related to use of multilayer in XUV plasma spectroscopy are presented. We also discuss the latest results reviewed to q{sub o} and local poloidal field measurements using Zeeman polarimetry.

  4. Central structure of low-n Balmer lines in dense plasmas

    NASA Technical Reports Server (NTRS)

    Hey, J. D.; Griem, H. R.

    1975-01-01

    The investigation reported is concerned with disagreements between the computations of Kepple and Griem (1968) and the results of calculations based upon the 'unified theory' proposed by Vidal et al. (1973). Experiments were conducted with a high-pressure electromagnetically driven shock tube as the plasma source. The diagnostic methods used are discussed along with the experimental results and their significance.

  5. Flush-mounted probe diagnostics for argon glow discharge plasma.

    PubMed

    Xu, Liang; Cao, Jinxiang; Liu, Yu; Wang, Jian; Du, Yinchang; Zheng, Zhe; Zhang, Xiao; Wang, Pi; Zhang, Jin; Li, Xiao; Qin, Yongqiang; Zhao, Liang

    2014-09-01

    A comparison is made between plasma parameters measured by a flush-mounted probe (FP) and a cylindrical probe (CP) in argon glow discharge plasma. Parameters compared include the space potential, the plasma density, and the effective electron temperature. It is found that the ion density determined by the FP agrees well with the electron density determined by the CP in the quasi-neutral plasma to better than 10%. Moreover, the space potential and effective electron temperature calculated from electron energy distribution function measured by the FP is consistent with that measured by the CP over the operated discharge current and pressure ranges. These results present the FP can be used as a reliable diagnostic tool in the stable laboratory plasma and also be anticipated to be applied in other complicated plasmas, such as tokamaks, the region of boundary-layer, and so on.

  6. Flush-mounted probe diagnostics for argon glow discharge plasma

    SciTech Connect

    Xu, Liang Cao, Jinxiang; Liu, Yu; Wang, Jian; Du, Yinchang; Zheng, Zhe; Zhang, Xiao; Wang, Pi; Zhang, Jin; Li, Xiao; Qin, Yongqiang; Zhao, Liang

    2014-09-15

    A comparison is made between plasma parameters measured by a flush-mounted probe (FP) and a cylindrical probe (CP) in argon glow discharge plasma. Parameters compared include the space potential, the plasma density, and the effective electron temperature. It is found that the ion density determined by the FP agrees well with the electron density determined by the CP in the quasi-neutral plasma to better than 10%. Moreover, the space potential and effective electron temperature calculated from electron energy distribution function measured by the FP is consistent with that measured by the CP over the operated discharge current and pressure ranges. These results present the FP can be used as a reliable diagnostic tool in the stable laboratory plasma and also be anticipated to be applied in other complicated plasmas, such as tokamaks, the region of boundary-layer, and so on.

  7. UV laser ionization and electron beam diagnostics for plasma lenses

    SciTech Connect

    Govil, R.; Volfbeyn, P.; Leemans, W.

    1995-04-01

    A comprehensive study of focusing of relativistic electron beams with overdense and underdense plasma lenses requires careful control of plasma density and scale lengths. Plasma lens experiments are planned at the Beam Test Facility of the LBL Center for Beam Physics, using the 50 MeV electron beam delivered by the linac injector from the Advanced Light Source. Here we present results from an interferometric study of plasmas produced in tri-propylamine vapor with a frequency quadrupled Nd:YAG laser at 266 nm. To study temporal dynamics of plasma lenses we have developed an electron beam diagnostic using optical transition radiation to time resolve beam size and divergence. Electron beam ionization of the plasma has also been investigated.

  8. Plasma diagnostic method using intermodulation frequencies in a Langmuir probe

    SciTech Connect

    Kim, Dong-Hwan; Lee, Hyo-Chang; Kim, Yu-Sin; Chung, Chin-Wook

    2013-08-19

    A plasma diagnostic method using intermodulation frequencies is developed. When dual-frequency (ω{sub 1},ω{sub 2}) voltage signals are applied to a probe, the intermodulation frequencies (ω{sub 2}±ω{sub 1}, ω{sub 2}±2ω{sub 1}) between the signals are generated due to the nonlinearity of the sheath. From the analysis of the intermodulation frequencies, the plasma parameters, such as the electron temperature and the plasma density, can be obtained. The measured plasma parameters from this method are compared to the results from the measured electron energy distribution function, and they are in good agreement. Because the intermodulation currents originated from the plasma not from the stray component of the measurement system, an accurate measurement of the plasma parameters is achievable.

  9. Ultrafast Diagnostics for Electron Beams from Laser Plasma Accelerators

    SciTech Connect

    Matlis, N. H.; Bakeman, M.; Geddes, C. G. R.; Gonsalves, T.; Lin, C.; Nakamura, K.; Osterhoff, J.; Plateau, G. R.; Schroeder, C. B.; Shiraishi, S.; Sokollik, T.; Tilborg, J. van; Toth, Cs.; Leemans, W. P.

    2010-11-04

    We present an overview of diagnostic techniques for measuring key parameters of electron bunches from Laser Plasma Accelerators (LPAs). The diagnostics presented here were chosen because they highlight the unique advantages (e.g. diverse forms of electromagnetic emission) and difficulties (e.g. shot-to-shot variability) associated with LPAs. Non destructiveness and high resolution (in space and time and energy) are key attributes that enable the formation of a comprehensive suite of simultaneous diagnostics which are necessary for the full characterization of the ultrashort, but highly-variable electron bunches from LPAs.

  10. Ultrafast Diagnostics for Electron Beams from Laser Plasma Accelerators

    SciTech Connect

    Matlis, N. H.; Bakeman, M.; Geddes, C. G. R.; Gonsalves, T.; Lin, C.; Nakamura, K.; Osterhoff, J.; Plateau, G. R.; Schroeder, C. B.; Shiraishi, S.; Sokollik, T.; van Tilborg, J.; Toth, Cs.; Leemans, W. P.

    2010-06-01

    We present an overview of diagnostic techniques for measuring key parameters of electron bunches from Laser Plasma Accelerators (LPAs). The diagnostics presented here were chosen because they highlight the unique advantages (e.g., diverse forms of electromagnetic emission) and difficulties (e.g., shot-to-shot variability) associated with LPAs. Non destructiveness and high resolution (in space and time and energy) are key attributes that enable the formation of a comprehensive suite of simultaneous diagnostics which are necessary for the full characterization of the ultrashort, but highly-variable electron bunches from LPAs.

  11. Diagnostic evaluations of microwave generated helium and nitrogen plasma mixtures

    NASA Technical Reports Server (NTRS)

    Haraburda, Scott S.; Hawley, Martin C.; Dinkel, Duane W.

    1990-01-01

    The goal of this work is to continue the development to fundamentally understand the plasma processes as applied to spacecraft propulsion. The diagnostic experiments used are calorimetric, dimensional, and spectroscopic measurements using the TM 011 and TM 012 modes in the resonance cavity. These experimental techniques are highly important in furthering the understanding of plasma phenomena and of designing rocket thrusters. Several experimental results are included using nitrogen and helium gas mixtures.

  12. Note: Refined possibilities for plasma probe diagnostics.

    PubMed

    Masherov, P E; Riaby, V A; Abgaryan, V K

    2016-08-01

    In an earlier publication, the ion mass determination technique was proposed using the Langmuir probe measurement results for low-pressure Maxwellian plasmas and their analysis, based on the Bohm effect and the Child-Boguslavsky-Langmuir (CBL) probe sheath model, allowing for probe sheath thickness and ion mass evaluations after the Bohm coefficient CBCyl ≈ 1.13 for cylindrical probes had been determined. In the present study, the step-front sheath model, being physically closer to the reality of gas discharge plasmas, was considered in order to correct the CBL sheath model results. At this stage, more real Bohm coefficient (CBCyl ≈ 1.23) for cylindrical probes was found to provide a more reliable method of probe sheath thickness and ion mass determination. PMID:27587177

  13. Note: Refined possibilities for plasma probe diagnostics

    NASA Astrophysics Data System (ADS)

    Masherov, P. E.; Riaby, V. A.; Abgaryan, V. K.

    2016-08-01

    In an earlier publication, the ion mass determination technique was proposed using the Langmuir probe measurement results for low-pressure Maxwellian plasmas and their analysis, based on the Bohm effect and the Child-Boguslavsky-Langmuir (CBL) probe sheath model, allowing for probe sheath thickness and ion mass evaluations after the Bohm coefficient CBCyl ≈ 1.13 for cylindrical probes had been determined. In the present study, the step-front sheath model, being physically closer to the reality of gas discharge plasmas, was considered in order to correct the CBL sheath model results. At this stage, more real Bohm coefficient (CBCyl ≈ 1.23) for cylindrical probes was found to provide a more reliable method of probe sheath thickness and ion mass determination.

  14. Note: Refined possibilities for plasma probe diagnostics.

    PubMed

    Masherov, P E; Riaby, V A; Abgaryan, V K

    2016-08-01

    In an earlier publication, the ion mass determination technique was proposed using the Langmuir probe measurement results for low-pressure Maxwellian plasmas and their analysis, based on the Bohm effect and the Child-Boguslavsky-Langmuir (CBL) probe sheath model, allowing for probe sheath thickness and ion mass evaluations after the Bohm coefficient CBCyl ≈ 1.13 for cylindrical probes had been determined. In the present study, the step-front sheath model, being physically closer to the reality of gas discharge plasmas, was considered in order to correct the CBL sheath model results. At this stage, more real Bohm coefficient (CBCyl ≈ 1.23) for cylindrical probes was found to provide a more reliable method of probe sheath thickness and ion mass determination.

  15. Influence of dense quantum plasmas on fine-structure splitting of Lyman doublets of hydrogenic systems

    SciTech Connect

    De, Madhab Ray, Debasis

    2015-05-15

    Relativistic calculations are performed to study the effects of oscillatory quantum plasma screening on the fine-structure splitting between the components of Lyman-α and β line doublets of atomic hydrogen and hydrgen-like argon ion within dense quantum plasmas, where the effective two-body (electron–nucleus) interaction is modeled by the Shukla–Eliasson oscillatory exponential cosine screened-Coulomb potential. The numerical solutions of the radial Dirac equation for the quantum plasma-embedded atomic systems reveal that the oscillatory quantum screening effect suppresses the doublet (energy) splitting substantially and the suppression becomes more prominent at large quantum wave number k{sub q}. In the absence of the oscillatory cosine screening term, much larger amount of suppression is noticed at larger values of k{sub q}, and the corresponding results represent the screening effect of an exponential screened-Coulomb two-body interaction. The Z{sup 4} scaling of the Lyman doublet splitting in low-Z hydrogen isoelectronic series of ions in free space is violated in dense quantum plasma environments. The relativistic data for the doublet splitting in the zero screening (k{sub q} = 0) case are in very good agreement with the NIST reference data, with slight discrepancies (∼0.2%) arising from the neglect of the quantum electrodynamic effects.

  16. Influence of dense quantum plasmas on fine-structure splitting of Lyman doublets of hydrogenic systems

    NASA Astrophysics Data System (ADS)

    De, Madhab; Ray, Debasis

    2015-05-01

    Relativistic calculations are performed to study the effects of oscillatory quantum plasma screening on the fine-structure splitting between the components of Lyman-α and β line doublets of atomic hydrogen and hydrgen-like argon ion within dense quantum plasmas, where the effective two-body (electron-nucleus) interaction is modeled by the Shukla-Eliasson oscillatory exponential cosine screened-Coulomb potential. The numerical solutions of the radial Dirac equation for the quantum plasma-embedded atomic systems reveal that the oscillatory quantum screening effect suppresses the doublet (energy) splitting substantially and the suppression becomes more prominent at large quantum wave number kq. In the absence of the oscillatory cosine screening term, much larger amount of suppression is noticed at larger values of kq, and the corresponding results represent the screening effect of an exponential screened-Coulomb two-body interaction. The Z4 scaling of the Lyman doublet splitting in low-Z hydrogen isoelectronic series of ions in free space is violated in dense quantum plasma environments. The relativistic data for the doublet splitting in the zero screening (kq = 0) case are in very good agreement with the NIST reference data, with slight discrepancies (˜0.2%) arising from the neglect of the quantum electrodynamic effects.

  17. Signal processing methods for MFE plasma diagnostics

    SciTech Connect

    Candy, J.V.; Casper, T.; Kane, R.

    1985-02-01

    The application of various signal processing methods to extract energy storage information from plasma diamagnetism sensors occurring during physics experiments on the Tandom Mirror Experiment-Upgrade (TMX-U) is discussed. We show how these processing techniques can be used to decrease the uncertainty in the corresponding sensor measurements. The algorithms suggested are implemented using SIG, an interactive signal processing package developed at LLNL.

  18. Improved adhesion of dense silica coatings on polymers by atmospheric plasma pretreatment.

    PubMed

    Cui, Linying; Ranade, Alpana N; Matos, Marvi A; Dubois, Geraud; Dauskardt, Reinhold H

    2013-09-11

    Oxygen atmospheric plasma was used to pretreat polycarbonate (PC) and stretched poly(methyl methacrylate) (PMMA) surfaces in order to enhance the adhesion of the dense silica coatings deposited by atmospheric plasma on the polymer substrates. The treatment time and chemical structure of the polymers were found to be important factors. For PC, a short treatment increased the adhesion energy, while longer treatment times decreased the adhesion. In contrast, plasma pretreatment monotonically decreased the adhesion of PMMA, and pristine PMMA exhibited much higher adhesion than the PC counterpart. We found that adhesion enhancement was achieved through improved chemical bonding, chain interdiffusion, and mechanical interlocking at the coating/substrate interface, after a short atmospheric plasma treatment. Decreased adhesion resulted from overoxidation and low-molecular-weight weak layer formation on the polymer surface by prolonged atmospheric plasma treatment. The dramatic differences in the behavior of PC and PMMA in relation to the plasma treatment time were due to their dissimilar resistance to atmospheric plasma exposure.

  19. The Diagnostics of the External Plasma for the Plasma Rocket

    NASA Technical Reports Server (NTRS)

    Karr, Gerald R.

    1997-01-01

    Three regions of plasma temperature/energy are being investigated to understand fully the behavior of the plasma created by the propulsion device and the operation of the RPA. Each type of plasma has a RPA associated with it; i.e. a thermal RPA, a collimated RPA, and a high temperature RPA. Through the process of developing the thermal and collimated RPAs, the proper knowledge and experience has been gained to not only design a high temperature RPA for the plasma rocket, but to understand its operation, results, and uncertainty. After completing a literature search for, reading published papers on, and discussing the operation of the RPA with electric propulsion researchers, I applied the knowledge gained to the development of a RPA for thermal plasma. A design of a thermal RPA was made which compensates for a large Debye length and low ionized plasma. From this design a thermal RPA was constructed. It consists of an outer stainless steel casing, a phenolic insulator (outgases slightly), and stainless steel mesh for the voltage screens. From the experience and knowledge gained in the development of the thermal RPA, a RPA for collimated plasma was developed. A collimated RPA has been designed and constructed. It compensate for a smaller Debye length and much higher ionization than that existing in the thermal plasma. It is 17% of the size of the thermal RPA. A stainless steel casing shields the detector from impinging electrons and ions. An insulating material, epoxy resin, was utilized which has a negligible outgassing. This material can be molded in styrofoam and machined quite nicely. It is capable of withstanding moderately high temperatures. Attached to this resin insulator are inconel screens attached by silver plated copper wire to a voltage supply. All the work on the RPAs and thermal ion source, I performed in the University of Alabama in Huntsville's (UAH) engineering machine shop.

  20. Linear dependence of surface expansion speed on initial plasma temperature in warm dense matter

    DOE PAGES

    Bang, Woosuk; Albright, Brian James; Bradley, Paul Andrew; Vold, Erik Lehman; Boettger, Jonathan Carl; Fernández, Juan Carlos

    2016-07-12

    Recent progress in laser-driven quasi-monoenergetic ion beams enabled the production of uniformly heated warm dense matter. Matter heated rapidly with this technique is under extreme temperatures and pressures, and promptly expands outward. While the expansion speed of an ideal plasma is known to have a square-root dependence on temperature, computer simulations presented here show a linear dependence of expansion speed on initial plasma temperature in the warm dense matter regime. The expansion of uniformly heated 1–100 eV solid density gold foils was modeled with the RAGE radiation-hydrodynamics code, and the average surface expansion speed was found to increase linearly withmore » temperature. The origin of this linear dependence is explained by comparing predictions from the SESAME equation-of-state tables with those from the ideal gas equation-of-state. In conclusion, these simulations offer useful insight into the expansion of warm dense matter and motivate the application of optical shadowgraphy for temperature measurement.« less

  1. Linear dependence of surface expansion speed on initial plasma temperature in warm dense matter

    NASA Astrophysics Data System (ADS)

    Bang, W.; Albright, B. J.; Bradley, P. A.; Vold, E. L.; Boettger, J. C.; Fernández, J. C.

    2016-07-01

    Recent progress in laser-driven quasi-monoenergetic ion beams enabled the production of uniformly heated warm dense matter. Matter heated rapidly with this technique is under extreme temperatures and pressures, and promptly expands outward. While the expansion speed of an ideal plasma is known to have a square-root dependence on temperature, computer simulations presented here show a linear dependence of expansion speed on initial plasma temperature in the warm dense matter regime. The expansion of uniformly heated 1–100 eV solid density gold foils was modeled with the RAGE radiation-hydrodynamics code, and the average surface expansion speed was found to increase linearly with temperature. The origin of this linear dependence is explained by comparing predictions from the SESAME equation-of-state tables with those from the ideal gas equation-of-state. These simulations offer useful insight into the expansion of warm dense matter and motivate the application of optical shadowgraphy for temperature measurement.

  2. Linear dependence of surface expansion speed on initial plasma temperature in warm dense matter

    PubMed Central

    Bang, W.; Albright, B. J.; Bradley, P. A.; Vold, E. L.; Boettger, J. C.; Fernández, J. C.

    2016-01-01

    Recent progress in laser-driven quasi-monoenergetic ion beams enabled the production of uniformly heated warm dense matter. Matter heated rapidly with this technique is under extreme temperatures and pressures, and promptly expands outward. While the expansion speed of an ideal plasma is known to have a square-root dependence on temperature, computer simulations presented here show a linear dependence of expansion speed on initial plasma temperature in the warm dense matter regime. The expansion of uniformly heated 1–100 eV solid density gold foils was modeled with the RAGE radiation-hydrodynamics code, and the average surface expansion speed was found to increase linearly with temperature. The origin of this linear dependence is explained by comparing predictions from the SESAME equation-of-state tables with those from the ideal gas equation-of-state. These simulations offer useful insight into the expansion of warm dense matter and motivate the application of optical shadowgraphy for temperature measurement. PMID:27405664

  3. Dense Plasma Focus Z-pinches for High Gradient Particle Acceleration

    SciTech Connect

    Tang, V; Adams, M L; Rusnak, B

    2009-07-24

    The final Z-pinch stage of a Dense Plasma Focus (DPF) could be used as a simple, compact, and potentially rugged plasma-based high-gradient accelerator with fields at the 100 MV/m level. In this paper we review previously published experimental beam data that indicate the feasibility of such an DPF-based accelerator, qualitatively discuss the physical acceleration processes in terms of the induced voltages, and as a starting point examine the DPF acceleration potential by numerically applying a self-consistent DPF system model that includes the induced voltage from both macroscopic and instability driven plasma dynamics. Applications to the remote detection of high explosives and a multi-staged acceleration concept are briefly discussed.

  4. Gamma ray measurements with photoconductive detectors using a dense plasma focus

    SciTech Connect

    May, M. J. Brown, G. V.; Halvorson, C.; Schmidt, A.; Bower, D.; Tran, B.; Lewis, P.; Hagen, C.

    2014-11-15

    Photons in the MeV range emitted from the dense plasma focus (DPF) at the NSTec North Las Vegas Facility have been measured with both neutron-damaged GaAs and natural diamond photoconductive detectors (PCDs). The DPF creates or “pinches” plasmas of various gases (e.g., H{sub 2}, D{sub 2}, Ne, Ar., etc.) that have enough energy to create MeV photons from either bremsstrahlung and/or (n,n{sup ′}) reactions if D{sub 2} gas is used. The high bandwidth of the PCDs enabled the first ever measurement of the fast micro-pinches present in DPF plasmas. Comparisons between a slower more conventional scintillator/photomultiplier tube based nuclear physics detectors were made to validate the response of the PCDs to fast intense MeV photon signals. Significant discrepancies in the diamond PCD responses were evident.

  5. Gamma ray measurements with photoconductive detectors using a dense plasma focusa)

    NASA Astrophysics Data System (ADS)

    May, M. J.; Brown, G. V.; Halvorson, C.; Schmidt, A.; Bower, D.; Tran, B.; Lewis, P.; Hagen, C.

    2014-11-01

    Photons in the MeV range emitted from the dense plasma focus (DPF) at the NSTec North Las Vegas Facility have been measured with both neutron-damaged GaAs and natural diamond photoconductive detectors (PCDs). The DPF creates or "pinches" plasmas of various gases (e.g., H2, D2, Ne, Ar., etc.) that have enough energy to create MeV photons from either bremsstrahlung and/or (n,n') reactions if D2 gas is used. The high bandwidth of the PCDs enabled the first ever measurement of the fast micro-pinches present in DPF plasmas. Comparisons between a slower more conventional scintillator/photomultiplier tube based nuclear physics detectors were made to validate the response of the PCDs to fast intense MeV photon signals. Significant discrepancies in the diamond PCD responses were evident.

  6. Temperature and density dependence of XANES spectra in warm dense aluminum plasmas

    NASA Astrophysics Data System (ADS)

    Recoules, V.; Mazevet, S.

    2009-08-01

    Using ab initio molecular-dynamics simulations combined with linear-response theory, we calculate the density and temperature dependence of the x-ray absorption near-edge structure (XANES) of a dense aluminum plasma. At solid density and for temperatures increasing up to 6 eV, we see that the XANES spectrum loses its well-known room-temperature structure, first due to melting and second due to loss of correlation in the liquid. Similarly, as the density decreases and the system evolves from a liquid to a plasma, the XANES spectrum becomes less structured. As the density is further lowered and the system turns into an atomic fluid, a pre-edge forms as the 3p state becomes bound. We suggest that direct measurements of the XANES spectra in this density region is a unique opportunity to validate pressure ionization models routinely used in plasma physics modeling.

  7. Mechanisms for multi-scale structures in dense degenerate astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Shatashvili, N. L.; Mahajan, S. M.; Berezhiani, V. I.

    2016-02-01

    Two distinct routes lead to the creation of multi-scale equilibrium structures in dense degenerate plasmas, often met in astrophysical conditions. By analyzing an e-p-i plasma consisting of degenerate electrons and positrons with a small contamination of mobile classical ions, we show the creation of a new macro scale L_{macro} (controlled by ion concentration). The temperature and degeneracy enhancement effective inertia of bulk e-p components also makes the effective skin depths larger (much larger) than the standard skin depth. The emergence of these intermediate and macro scales lends immense richness to the process of structure formation, and vastly increases the channels for energy transformations. The possible role played by this mechanism in explaining the existence of large-scale structures in astrophysical objects with degenerate plasmas, is examined.

  8. Bremsstrahlung and Line Spectroscopy of Warm Dense Aluminum Plasma Generated by EUV Free Electron Laser

    SciTech Connect

    Zastrau, U; Fortmann, C; Faustlin, R; Bornath, T; Cao, L F; Doppner, T; Dusterer, S; Forster, E; Glenzer, S H; Gregori, G; Holl, A; Laarmann, T; Lee, H; Meiwes-Broer, K; Przystawik, A; Radcliffe, P; Redmer, R; Reinholz, H; Ropke, G; Tiggesbaumker, J; Thiele, R; Truong, N X; Uschmann, I; Toleikis, S; Tschentscher, T; Wierling, A

    2008-03-07

    We report on the novel creation of a solid density aluminum plasma using free electron laser radiation at 13.5 nm wavelength. Ultrashort pulses of 30 fs duration and 47 {micro}J pulse energy were focused on a spot of 25 {micro}m diameter, yielding an intensity of 3 x 10{sup 14} W/cm{sup 2} on the bulk Al-target. The radiation emitted from the plasma was measured using a high resolution, high throughput EUV spectrometer. The analysis of both bremsstrahlung and line spectra results in an estimated electron temperature of (30 {+-} 10) eV, which is in very good agreement with radiation hydrodynamics simulations of the laser-target-interaction. This demonstrates the feasibility of exciting plasmas at warm dense matter conditions using EUV free electron lasers and their accurate characterization by EUV spectroscopy.

  9. Whispering Gallery Mode Spectroscopy as a Diagnostic for Dusty Plasmas

    SciTech Connect

    Thieme, G.; Basner, R.; Ehlbeck, J.; Roepcke, J.; Maurer, H.; Kersten, H.; Davies, P. B.

    2008-09-07

    Whispering-gallery-mode spectroscopy is being assessed as a diagnostic method for the characterisation of size and chemical composition of spherical particles levitated in a plasma. With a pulsed laser whispering gallery modes (cavity resonances) are excited in individual microspheres leading to enhanced Raman scattering or fluorescence at characteristic wavelengths. This method can be used to gain specific information from the particle surface and is thus of great interest for the characterisation of layers deposited on microparticles, e.g. in molecular plasmas. We present investigations of different microparticles in air and results from fluorescent particles levitated in an Argon rf plasma.

  10. A Recoverable Plasma Diagnostics Package (RPDP) for Spacelab

    NASA Technical Reports Server (NTRS)

    Shawhan, S. D.; Ackerson, K. L.; Anderson, R. R.; Craven, J. D.; Dangelo, N.; Frank, L. A.; Gurnett, D. A.; Shaw, R. R.; Block, L. P.; Falthammar, C. G.

    1980-01-01

    The RPDP is a fully instrumented, ejectable and recoverable unit with flight and ground support systems so that it can be utilized attached to the orbiter remote manipulator system, tethered from the orbiter, or as an orbiter subsatellite. Core instruments on the RPDP are flight proven hardware which provide diagnostics measurements of energetic particles, AC electromagnetic and electrostatic waves, vector magnetic field signatures of current systems, vector electric field signatures associated with plasma flow and particle acceleration, thermal plasma ion composition and density, thermal plasma electron density and temperature, and images of optical emissions regions in UV or visible wavelengths.

  11. Heat flow diagnostics for helicon plasmas

    SciTech Connect

    Berisford, Daniel F.; Bengtson, Roger D.; Raja, Laxminarayan L.; Cassady, Leonard D.; Chancery, William J.

    2008-10-15

    We present experimental studies of power balance in an argon helicon discharge. An infrared camera measures the heating of the dielectric tube containing a helicon discharge based on measurement of temperature profiles of the tube surface before and after a rf pulse. Using this diagnostic, we have measured surface heating trends at a variety of operating conditions on two helicon systems: the 10 kW VASIMR VX-50 experiment and the University of Texas at Austin 1 kW helicon experiment. Power losses downstream from the antenna are measured using thermocouples and probes. The heating of the dielectric tube increases with decreasing magnetic fields, higher gas flow rates, and higher molecular mass of the gas. These preliminary results suggest that cross-field particle diffusion contributes a significant proportion of the energy flux to the wall.

  12. A comparative study of electrical probe techniques for plasma diagnostics

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, E. P.

    1972-01-01

    Techniques for using electrical probes for plasma diagnostics are reviewed. Specific consideration is given to the simple Langmuir probe, the symmetric double probe of Johnson and Malter, the variable-area probe of Fetz and Oeschsner, and a floating probe technique. The advantages and disadvantages of each technique are discussed.

  13. Development in Diagnostics Application to Control Advanced Tokamak Plasma

    SciTech Connect

    Koide, Y.

    2008-03-12

    For continuous operation expected in DEMO, all the plasma current must be non-inductively driven, with self-generated neoclassical bootstrap current being maximized. The control of such steady state high performance tokamak plasma (so-called 'Advanced Tokamak Plasma') is a challenge because of the strong coupling between the current density, the pressure profile and MHD stability. In considering diagnostic needs for the advanced tokamak research, diagnostics for MHD are the most fundamental, since discharges which violate the MHD stability criteria either disrupt or have significantly reduced confinement. This report deals with the development in diagnostic application to control advanced tokamak plasma, with emphasized on recent progress in active feedback control of the current profile and the pressure profile under DEMO-relevant high bootstrap-current fraction. In addition, issues in application of the present-day actuators and diagnostics for the advanced control to DEMO will be briefly addressed, where port space for the advanced control may be limited so as to keep sufficient tritium breeding ratio (TBR)

  14. New diagnostic facilities for Caltech plasma experiments

    NASA Astrophysics Data System (ADS)

    Zhai, Xiang; Bellan, Paul

    2011-10-01

    An optically coupled high voltage probe (HV probe) and a visible and near infrared (VNIR) detector are being developed for Caltech solar coronal loop and astrophysical jet experiments. The HV probe uses a capacitive voltage divider coupled a fast LED to convert the electrical signal into an optical signal, which is then conveyed to a receiver via an optical fiber. A solar cell array powered by ambient laboratory lighting charges a capacitor that when triggered acts as a short-duration power supply for an onboard amplifier in the HV probe. The fast VNIR detector combined with specific atomic line filters measures the spectra with 10ns time resolution. Measurements show that before detachment, the gross VNIR emission power of the solar coronal plasma loop is a function of the axial electric current. H α and H β line emission power is found to be 102 ~103 greater than predicted by assuming local thermodynamic equilibrium. This indicates that the plasma is not in an ionization-recombination equilibrium state and can have a larger population of neutrals than predicted for an equilibrium state. NSF, DOE, AFOSR

  15. Diagnostics of the Solar Wind Plasma

    NASA Astrophysics Data System (ADS)

    Issautier, K.

    The solar wind is a fully ionized plasma, coming from the outer atmosphere of the Sun, the so-called solar corona, which expands as a supersonic flow into the interplanetary medium [55]. The first observations indicating that the Sun might be emitting a wind were made by Biermann in 1946 of comet tails [1], which are observed to point away from the Sun. Comets usually exhibit two tails: a dust tail driven by the radiation pressure and a plasma tail, which points in slightly different directions pushed by the “solar corpuscular radiation” of the Sun. In 1958, E.N. Parker explained theoretically this “particle radiation” using a simple fluid model [55], showing that the solar atmosphere is not in hydrostatic equilibrium but must expand into the interplanetary medium as a wind. The existence of this solar wind was debated until it was indeed confirmed by spacecraft Lunik 2 and 3 [16] and continuously observed by Mariner 2 [53]. The Parker theory is discussed fully in Chap. 7 (Velli).

  16. A study of the methods for the production and confinement of high energy plasmas. [injection of dense plasma into long magnetic field

    NASA Technical Reports Server (NTRS)

    Cheng, D. Y.; Wang, P.

    1972-01-01

    The injection of dense plasmas into a B sub z long magnetic field from both ends of the field coil was investigated. Deflagration plasma guns and continuous flow Z-pinch are discussed along with the possibility of a continuous flow Z-pinch fusion reactor. The injection experiments are described with emphasis on the synchronization of the two plasma deflagration guns, the collision of the two plasma beams, and the determination of plasma density.

  17. Near-infrared spectroscopy for burning plasma diagnostic applicationsa)

    NASA Astrophysics Data System (ADS)

    Soukhanovskii, V. A.

    2008-10-01

    Ultraviolet and visible (UV-VIS, 200-750nm) atomic spectroscopy of neutral and ionized fuel species (H, D, T, and Li) and impurities (e.g., He, Be, C, and W) is a key element of plasma control and diagnosis on International Thermonuclear Experimental Reactor and future magnetically confined burning plasma experiments (BPXs). Spectroscopic diagnostic implementation and performance issues that arise in the BPX harsh nuclear environment in the UV-VIS range, e.g., degradation of first mirror reflectivity under charge-exchange atom bombardment (erosion) and impurity deposition, permanent and dynamic loss of window, and optical fiber transmission under intense neutron and γ-ray fluxes, are either absent or not as severe in the near-infrared (NIR, 750-2000nm) range. An initial survey of NIR diagnostic applications has been undertaken on the National Spherical Torus Experiment. It is demonstrated that NIR spectroscopy can be used for machine protection and plasma control applications, as well as contribute to plasma performance evaluation and physics studies. Emission intensity estimates demonstrate that NIR measurements are possible in the BPX plasma operating parameter range. Complications in the NIR range due to the parasitic background emissions are expected to occur at very high plasma densities, low impurity densities, and at high plasma-facing component temperatures.

  18. Road of warm dense noble metals to the plasma state: Ab initio theory of the ultrafast structural dynamics in warm dense matter

    NASA Astrophysics Data System (ADS)

    Kabeer, Fairoja Cheenicode; Zijlstra, Eeuwe S.; Garcia, Martin E.

    2014-03-01

    Intense ultrashort extreme ultraviolet (XUV) pulses can be used to create warm dense matter in the laboratory, which then develops to a plasma state. So far, however, it is unknown, whether this transition occurs via heat transfer from hot electrons to cold atoms or nonthermally due to a lattice instability. Here we computed the response of the phonon spectra of copper and silver to the presence of XUV-excited core holes and core holes together with very hot electrons. We found that the average interatomic bonds become stronger in the warm dense state. We discuss why these findings support the above-mentioned heat transfer scenario.

  19. Micro-Particles as Electrostatic Probes for Plasma Sheath Diagnostic

    SciTech Connect

    Wolter, Matthias; Haass, Moritz; Ockenga, Taalke; Kersten, Holger; Blazec, Joseph; Basner, Ralf

    2008-09-07

    An interesting aspect in the research of complex (dusty) plasmas is the experimental study of the interaction of micro-particles of different sizes with the surrounding plasma for diagnostic purpose. In the plasma micro-disperse particles are negatively charged and confined in the sheath. The particles are trapped by an equilibrium of gravity, electric field force and ion drag force. From the behavior, local electric fields can be determined, e.g. particles are used as electrostatic probes. In combination with additional measurements of the plasma parameters with Langmuir probes and thermal probes as well as by comparison with an analytical sheath model, the structure of the sheath can be described. In the present work we focus on the behavior of micro-particles of different sizes and several plasma parameters e.g. the gas pressure and the rf-power.

  20. Magnetoacoustic solitons and shocks in dense astrophysical plasmas with relativistic degenerate electrons

    NASA Astrophysics Data System (ADS)

    Irfan, M.; Ali, S.; Mirza, Arshad M.

    2016-02-01

    Two-fluid quantum magnetohydrodynamic (QMHD) equations are employed to investigate linear and nonlinear properties of the magnetosonic waves in a semi-relativistic dense plasma accounting for degenerate relativistic electrons. In the linear analysis, a plane wave solution is used to derive the dispersion relation of magnetosonic waves, which is significantly modified due to relativistic degenerate electrons. However, for a nonlinear investigation of solitary and shock waves, we employ the reductive perturbation technique for the derivation of Korteweg-de Vries (KdV) and Korteweg-de Vries Burger (KdVB) equations, admitting nonlinear wave solutions. Numerically, it is shown that the wave frequency decreases to attain a lowest possible value at a certain critical number density Nc(0), and then increases beyond Nc(0) as the plasma number density increases. Moreover, the relativistic electrons and associated pressure degeneracy lead to a reduction in the spatial extents of the magnetosonic waves and a strengthening of the shock amplitude. The results might be important for understanding the linear and nonlinear magnetosonic excitations in dense astrophysical plasmas, such as in white dwarfs, magnetars and neutron stars, etc., where relativistic degenerate electrons are present.

  1. Positron impact excitations of hydrogen atom embedded in dense quantum plasmas: Formation of Rydberg atoms

    SciTech Connect

    Rej, Pramit; Ghoshal, Arijit

    2014-11-15

    Formation of Rydberg atoms due to 1 s → nlm excitations of hydrogen by positron impact, for arbitrary n, l, m, in dense quantum plasma has been investigated using a distorted wave theory which includes screened dipole polarization potential. The interactions among the charged particles in the plasma have been represented by exponential cosine-screened Coulomb potentials. Making use of a simple variationally determined hydrogen wave function, it has been possible to obtain the distorted wave scattering amplitude in a closed analytical form. A detailed study has been made to explore the structure of differential and total cross sections in the energy range 20–300 eV of incident positron. For the unscreened case, our results agree nicely with some of the most accurate results available in the literature. To the best of our knowledge, such a study on the differential and total cross sections for 1 s → nlm inelastic positron-hydrogen collisions in dense quantum plasma is the first reported in the literature.

  2. Low Temperature Atmospheric Argon Plasma: Diagnostics and Medical Applications

    NASA Astrophysics Data System (ADS)

    Ermolaeva, Svetlana; Petrov, Oleg; Zigangirova, Nailya; Vasiliev, Mikhail; Sysolyatina, Elena; Antipov, Sergei; Alyapyshev, Maxim; Kolkova, Natalia; Mukhachev, Andrei; Naroditsky, Boris; Shimizu, Tetsuji; Grigoriev, Anatoly; Morfill, Gregor; Fortov, Vladimir; Gintsburg, Alexander

    This study was devoted to diagnostic of low temperature plasma produced by microwave generator and investigation of its bactericidal effect against bacteria in biofilms and within eukaryotic cells. The profile of gas temperature near the torch outlet was measured. The spectrum in a wide range of wavelengths was derived by the method of optical emission spec-troscopy. Probe measurements of the floating potential of plasma were car-ried out. The estimation and adaptation of parameters of plasma flow (tem-perature, velocity, ion number density) according to medico-technical requirements were produced. The model of immersed surface-associated biofilms formed by Gram-negative bacteria, Pseudomonas aeruginosa and Burkholderia cenocepacia, and Gram-positive bacteria, Staphylococcus aureus, was used to assess bactericidal effects of plasma treatment. Reduction in the concentration of live bacteria in biofilms treated with plasma for 5 min was demonstrated by measuring Live/Dead fluorescent labeling and using direct plating. The intracellular infection model with the pathogenic bacterium, Chlamydia trachomatis, was used to study the efficacy of microwave argon plasma against intracellular parasites. A 2 min plasma treatment of mouse cells infected with C. trachomatis reduced infectious bacteria by a factor of 2×106. Plasma treatment diminished the number of viable host cells by about 20%. When the samples were covered with MgF2 glass to obstruct active particles and UV alone was applied, the bactericidal effect was re-duced by 5×104 fold compared to the whole plasma.

  3. Nonlinear electrostatic excitations of charged dust in degenerate ultra-dense quantum dusty plasmas

    SciTech Connect

    Abdelsalam, U. M.; Ali, S.; Kourakis, I.

    2012-06-15

    The linear and nonlinear properties of low-frequency electrostatic excitations of charged dust particles (or defects) in a dense collisionless, unmagnetized Thomas-Fermi plasma are investigated. A fully ionized three-component model plasma consisting of electrons, ions, and negatively charged massive dust grains is considered. Electrons and ions are assumed to be in a degenerate quantum state, obeying the Thomas-Fermi density distribution, whereas the inertial dust component is described by a set of classical fluid equations. Considering large-amplitude stationary profile travelling-waves in a moving reference frame, the fluid evolution equations are reduced to a pseudo-energy-balance equation, involving a Sagdeev-type potential function. The analysis describes the dynamics of supersonic dust-acoustic solitary waves in Thomas-Fermi plasmas, and provides exact predictions for their dynamical characteristics, whose dependence on relevant parameters (namely, the ion-to-electron Fermi temperature ratio, and the dust concentration) is investigated. An alternative route is also adopted, by assuming weakly varying small-amplitude disturbances off equilibrium, and then adopting a multiscale perturbation technique to derive a Korteweg-de Vries equation for the electrostatic potential, and finally solving in terms for electric potential pulses (electrostatic solitons). A critical comparison between the two methods reveals that they agree exactly in the small-amplitude, weakly superacoustic limit. The dust concentration (Havnes) parameter h=Z{sub d0}n{sub d0}/n{sub e0} affects the propagation characteristics by modifying the phase speed, as well as the electron/ion Fermi temperatures. Our results aim at elucidating the characteristics of electrostatic excitations in dust-contaminated dense plasmas, e.g., in metallic electronic devices, and also arguably in supernova environments, where charged dust defects may occur in the quantum plasma regime.

  4. Elastic scattering of low energy electrons in partially ionized dense semiclassical plasma

    SciTech Connect

    Dzhumagulova, K. N. Shalenov, E. O.; Ramazanov, T. S.

    2015-08-15

    Elastic scattering of electrons by hydrogen atoms in a dense semiclassical hydrogen plasma for low impact energies has been studied. Differential scattering cross sections were calculated within the effective model of electron-atom interaction taking into account the effect of screening as well as the quantum mechanical effect of diffraction. The calculations were carried out on the basis of the phase-function method. The influence of the diffraction effect on the Ramsauer–Townsend effect was studied on the basis of a comparison with results made within the effective polarization model of the Buckingham type.

  5. Observations of non-collective x-ray scattering in warm dense carbon plasma

    SciTech Connect

    Bao Lihua; Zhang Jiyan; Zhao Yang; Ding Yongkun; Zhang Xiaoding

    2012-12-15

    An experiment for observing the spectrally resolved non-collective x-ray scattering in warm dense carbon plasma is presented in this paper. The experiment used Ta M-band x-rays to heat a foamed carbon cylinder sample isochorically and measured the scattering spectrum with a HOPG crystal spectrometer. The spectrum was compared with the calculation results using a Born-Mermin-approximation model. The best fitting was found at an electron temperature of T{sub e}=34 eV and an electron density of n{sub e}=1.6 Multiplication-Sign 10{sup 23}cm{sup -3}.

  6. Time-dependent calculations of hydrogen spectral line shapes in dense plasmas

    NASA Astrophysics Data System (ADS)

    Olchawa, Wiesław

    2001-04-01

    A new formalism has been elaborated for calculations of hydrogen line profiles emitted by dense plasmas. Calculated line shapes are broadened, shifted and asymmetrical. The formalism is very general and yields full line shapes, shifts and widths at relatively small number of assumptions. For this purpose a new basis of the appropriate subspace of the Hilbert space has been built. This basis gives an accurate description of the quadratic Stark effect and the interaction of the emitter with field gradients. A computer simulation has been used to determine the emitter perturbations by electrons and ions. Final results have been compared with experimental and theoretical findings of other authors.

  7. Electron Beam Diagnostics in Plasmas Based on Electron Beam Ionization

    NASA Astrophysics Data System (ADS)

    Leonhardt, Darrin; Leal-Quiros, Edbertho; Blackwell, David; Walton, Scott; Murphy, Donald; Fernsler, Richard; Meger, Robert

    2001-10-01

    Over the last few years, electron beam ionization has been shown to be a viable generator of high density plasmas with numerous applications in materials modification. To better understand these plasmas, we have fielded electron beam diagnostics to more clearly understand the propagation of the beam as it travels through the background gas and creates the plasma. These diagnostics vary greatly in sophistication, ranging from differentially pumped systems with energy selective elements to metal 'hockey pucks' covered with thin layers of insulation to electrically isolate the detector from the plasma but pass high energy beam electrons. Most importantly, absolute measurements of spatially resolved beam current densities are measured in a variety of pulsed and continuous beam sources. The energy distribution of the beam current(s) will be further discussed, through experiments incorporating various energy resolving elements such as simple grids and more sophisticated cylindrical lens geometries. The results are compared with other experiments of high energy electron beams through gases and appropriate disparities and caveats will be discussed. Finally, plasma parameters are correlated to the measured beam parameters for a more global picture of electron beam produced plasmas.

  8. Dense Plasma Focus as Collimated Source of D-D Fusion Neutron Beams for Irradiation Experiences and Study of Emitted Radiations

    SciTech Connect

    Milanese, M.; Niedbalski, J.; Moroso, R.; Guichon, S.; Supan, J.

    2008-04-07

    A 'table-top' 2 kJ, 250 kA plasma focus, the PACO (Plasma AutoConfinado), designed by the Dense Plasma Group of IFAS is used in its optimum regime for neutron yield for obtaining collimated pulsed neutron beams (100 ns). A simple and low-cost shielding arrangement was developed in order to fully eliminate the 2.45 MeV neutrons generated in the PACO device (10{sup 8} per shot at 31 kV, 1-2 mbar). Conventional neutron diagnostics: scintillator-photomultiplier (S-PMT), silver activation counters (SAC), etc., are used to determine the minimum width of the shielding walls. Emission of very hard electromagnetic pulses is also studied. Collimation using lead and copper plates is made to determine the localization of the very hard X-ray source. The maximum energy of the continuum photon distribution is estimated in 0,6 MeV using a system of filters.

  9. Energy loss of tens keV charged particles traveling in the hot dense carbon plasma

    NASA Astrophysics Data System (ADS)

    Fu, ZhenGuo; Wang, ZhiGang; He, Bin; Li, DaFang; Zhang, Ping

    2016-08-01

    The energy loss of charged particles, including electrons, protons, and α-particles with tens keV initial energy E 0, traveling in the hot dense carbon (C) plasma for densities from 2.281 to 22.81 g/cm3 and temperatures from 400 to 1500 eV is systematically and quantitatively studied by using the dimensional continuation method. The behaviors of different charged particles are readily distinguishable from each other. Firstly, because an ion is thousands times heavier than an electron, the penetration distance of the electron is much longer than that of proton and α-particle traveling in the plasma. Secondly, most energy of electron projectile with E 0 < 100 keV deposits into the electron species of C plasma, while for the cases of proton and α-particle with E 0 < 100 keV, about more than half energy transfers into the ion species of C plasma. A simple decreasing law of the penetration distance as a function of the plasma density is fitted, and different behaviors of each projectile particle can be clearly found from the fitted data. We believe that with the advanced progress of the present experimental technology, the findings shown here could be confirmed in ion-stopping experiments in the near future.

  10. A limited-view-tomography for plasma diagnostics.

    NASA Astrophysics Data System (ADS)

    Denisova, Natalja

    2001-10-01

    In recent years progress in plasma diagnostics has led to the wide use of techniques and algorithms of computerized tomography. An important problem in the diagnostics of a plasma as a spectroscopic source is the determination of spatial distributions of the coefficients of emission (or absorption), which are directly related to the temperature and particle density. There are several methods for the reconstruction of the spatial distributions of the emission (absorption) coefficients from the integrated intensities. This paper describes a Maximum Entropy (ME) algorithm which seems especially attractive in the experimental situations when the number of views is strongly limited.The researcher should have enough justifications for reconstruction from a few views. This problem is discussed with reference to the reconstruction from two views of soft x-ray emissivity profiles in W7-AS stellarator.On the other hand, in experiments of this type there is usually some additional information which can be incorporated into the ME reconstruction algorithm. The crucial role of prior information is illustrated in reconstruction of a spatial distribution of electron density in a laser-produced plasma in a strong transverse magnetic field. References 1.Denisova N.V.Maximum-entropy-based tomography for gas and plasma diagnostics J.Phys.D:Appl.Phys. 31 (1998) 1888-1895. 1.Denisova N.V.Two-view tomography J.Phys.D.:Appl.Phys. 33 (2000) 313-319.

  11. Method of azimuthally stable Mueller-matrix diagnostics of blood plasma polycrystalline films in cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Ushenko, Yu. A.; Prysyazhnyuk, V. P.; Gavrylyak, M. S.; Gorsky, M. P.; Bachinskiy, V. T.; Vanchuliak, O. Ya.

    2015-02-01

    A new information optical technique of diagnostics of the structure of polycrystalline films of blood plasma is proposed. The model of Mueller-matrix description of mechanisms of optical anisotropy of such objects as optical activity, birefringence, as well as linear and circular dichroism is suggested. The ensemble of informationally topical azimuthally stable Mueller-matrix invariants is determined. Within the statistical analysis of such parameters distributions the objective criteria of differentiation of films of blood plasma taken from healthy and patients with liver cirrhosis were determined. From the point of view of probative medicine the operational characteristics (sensitivity, specificity and accuracy) of the information-optical method of Mueller-matrix mapping of polycrystalline films of blood plasma were found and its efficiency in diagnostics of liver cirrhosis was demonstrated. Prospects of application of the method in experimental medicine to differentiate postmortem changes of the myocardial tissue was examined.

  12. Quantum-statistical T-matrix approach to line broadening of hydrogen in dense plasmas

    SciTech Connect

    Lorenzen, Sonja; Wierling, August; Roepke, Gerd; Reinholz, Heidi; Zammit, Mark C.; Fursa, Dmitry V.; Bray, Igor

    2010-10-29

    The electronic self-energy {Sigma}{sup e} is an important input in a quantum-statistical theory for spectral line profile calculations. It describes the influence of plasma electrons on bound state properties. In dense plasmas, the effect of strong, i.e. close, electron-emitter collisions can be considered by three-particle T-matrix diagrams. These digrams are approximated with the help of an effective two-particle T-matrix, which is obtained from convergent close-coupling calculations with Debye screening. A comparison with other theories is carried out for the 2p level of hydrogen at k{sub B}T = 1 eV and n{sub e} = 2{center_dot}10{sup 23} m{sup -3}, and results are given for n{sub e} = 1{center_dot}10{sup 25} m{sup -3}.

  13. Quantitative diagnostics of reactive, multicomponent low-temperature plasmas

    NASA Astrophysics Data System (ADS)

    Schwarz-Selinger, Thomas

    2013-09-01

    The special emphasis in this work is put on the quantitative determination of the plasma composition of an inductively coupled low temperature plasma (ICP). Several standard plasma diagnostic techniques were applied. As a test case for a multi-component low-temperature plasma argon-hydrogen as well as argon-hydrogen-nitrogen mixed plasmas were investigated. For steady-state plasma operation the ion density and electron temperature were determined with a single tip Langmuir probe. A multi-grid miniature retarding-field analyzer was used to measure the mass integrated ion flux. An energy-dispersive mass spectrometer - a so-called plasma monitor (PM) - was applied to sample ions from the plasma to derive the ion composition. The degree of dissociation of hydrogen and the gas temperature were derived from optical emission spectroscopy. The gas temperature was estimated by the rotational distribution of the Q-branch lines of the hydrogen Fulcher- α diagonal band for the argon-hydrogen mixed plasmas and from the second positive system of N2 in argon-hydrogen-nitrogen mixed plasmas. The degree of dissociation of hydrogen was measured by actinometry. The influence of the substrate material of the counter electrode (stainless steel, copper, tungsten, Macor, and aluminium) on the atomic hydrogen concentration was investigated by OES. In addition, ionization-threshold mass spectrometry (ITMS) was used to determine the densities of atomic nitrogen (N) and atomic hydrogen (H and D). Pulsed plasma operation was applied to directly measure the loss rate of H, D and N in the afterglow from the temporal decay of the ITMS signal. From these data the wall loss probability of atomic hydrogen was determined. Furthermore, a zero-dimensional rate equation model was devised to explain the ion composition in these mixed plasmas with different admixture ratios. In addition to the experimental data on electron density, gas temperature, total pressure, atomic hydrogen density, and Ar, H2

  14. A Fast Pulse, High Intensity Neutron Source Based Upon The Dense Plasma Focus

    SciTech Connect

    Krishnan, M.; Bures, B.; Madden, R.; Blobner, F.; Elliott, K. Wilson

    2009-12-02

    Alameda Applied Sciences Corporation (AASC) has built a bench-top source of fast neutrons (approx10-30 ns, 2.45 MeV), that is portable and can be scaled to operate at approx100 Hz. The source is a Dense Plasma Focus driven by three different capacitor banks: a 40 J/30 kA/100 Hz driver; a 500 J/130 kA/2 Hz driver and a 3 kJ/350 kA/0.5 Hz driver. At currents of approx130 kA, this source produces approx1x10{sup 7} (DD) n/pulse. The neutron pulse widths are approx10-30 ns and may be controlled by adjusting the DPF electrode geometry and operating parameters. This paper describes the scaling of the fast neutron output with current from such a Dense Plasma Focus source. For each current and driver, different DPF head designs are required to match to the current rise-time, as the operating pressure and anode radius/shape are varied. Doping of the pure D{sub 2} gas fill with Ar or Kr was shown earlier to increase the neutron output. Results are discussed in the light of scaling laws suggested by prior literature.

  15. Controlling the Neutron Yield from a Small Dense Plasma Focus using Deuterium-Inert Gas Mixtures

    SciTech Connect

    Bures, B. L.; Krishnan, M.; Eshaq, Y.

    2009-01-21

    The dense plasma focus (DPF) is a well known source of neutrons when operating with deuterium. The DPF is demonstrated to scale from 10{sup 4} n/pulse at 40 kA to >10{sup 12} n/pulse at 2 MA by non-linear current scaling as described in [1], which is itself based on the simple yet elegant model developed by Lee [2]. In addition to the peak current, the gas pressure controls the neutron yield. Recent published results suggest that mixing 1-5% mass fractions of Krypton increase the neutron yield per pulse by more than 10x. In this paper we present results obtained by mixing deuterium with Helium, Neon and Argon in a 500 J dense plasma focus operating at 140 kA with a 600 ns rise time. The mass density was held constant in these experiments at the optimum (pure) deuterium mass density for producing neutrons. A typical neutron yield for a pure deuterium gas charge is 2x10{sup 6}{+-}15% n/pulse. Neutron yields in excess of 10{sup 7}{+-}10% n/pulse were observed with low mass fractions of inert gas. Time integrated optical images of the pinch, soft x-ray measurements and optical emission spectroscopy where used to examine the pinch in addition to the neutron yield monitor and the fast scintillation detector. Work supported by Domestic Nuclear Detection Office under contract HSHQDC-08-C-00020.

  16. Runaway electrons as a source of impurity and reduced fusion yield in the dense plasma focus

    SciTech Connect

    Lerner, Eric J.; Yousefi, Hamid R.

    2014-10-15

    Impurities produced by the vaporization of metals in the electrodes may be a major cause of reduced fusion yields in high-current dense plasma focus devices. We propose here that a major, but hitherto-overlooked, cause of such impurities is vaporization by runaway electrons during the breakdown process at the beginning of the current pulse. This process is sufficient to account for the large amount of erosion observed in many dense plasma focus devices on the anode very near to the insulator. The erosion is expected to become worse with lower pressures, typical of machines with large electrode radii, and would explain the plateauing of fusion yield observed in such machines at higher peak currents. Such runaway electron vaporization can be eliminated by the proper choice of electrode material, by reducing electrode radii and thus increasing fill gas pressure, or by using pre-ionization to eliminate the large fields that create runaway electrons. If these steps are combined with monolithic electrodes to eliminate arcing erosion, large reductions in impurities and large increases in fusion yield may be obtained, as the I{sup 4} scaling is extended to higher currents.

  17. Spectroscopic Analysis and Thomson Scattering Diagnostics of Wire Produced Plasma

    NASA Astrophysics Data System (ADS)

    Plechaty, Christopher; Sotnikov, Vladimir; Main, Daniel; Caplinger, James; Wallerstein, Austin; Kim, Tony

    2014-10-01

    The Lower Hybrid Drift Instability (LHDI) in plasma is driven by the presence of inhomogeneities in density, temperature, or magnetic field (Krall 1971, Davidson 1977), and occurs in systems where the electrons are magnetized and the ions are effectively unmagnetized. The LHDI is thought to occur in magnetic reconnection (Huba 1977), and has also been investigated as a mitigation technique which can allow for communications to take place through the plasma formed around hypersonic aircraft (Sotnikov 2010). To further understand the phenomenology of the LHDI, we plan to carry out experiments at the Air Force Research Laboratory, in the newly formed Plasma Physics Sensors Laboratory. In experiment, a pulsed power generator is employed to produce plasma by passing current through single, or dual-wire configurations. To characterize the plasma, a Thomson scattering diagnostic is employed, along with a visible spectroscopy diagnostic. This work was performed under the auspices of the U.S. Department of Defense by Riverside Research under Contract BAA-FA8650-13-C-1539.

  18. Evaluation of two-beam spectroscopy as a plasma diagnostic

    SciTech Connect

    Billard, B.D.

    1980-04-01

    A two-beam spectroscopy (TBS) system is evaluated theoretically and experimentally. This new spectroscopic technique uses correlations between components of emitted light separated by a small difference in angle of propagation. It is thus a non-perturbing plasma diagnostic which is shown to provide local (as opposed to line-of-sight averaged) information about fluctuations in the density of light sources within a plasma - information not obtainable by the usual spectroscopic methods. The present design is an improvement on earlier systems proposed in a thesis by Rostler.

  19. Mobile CARS instrument for combustion and plasma diagnostics

    SciTech Connect

    Anderson, T.J.; Dobbs, G.M.; Eckbreth, A.C.

    1986-11-15

    A compact and easily transportable coherent anti-Stokes Raman spectroscopy system for combustion and plasma diagnostics is described. The instrument is readily adaptable to a wide variety, test environments and experiments. The system is capable of withstanding high noise and vibration levels and is remotely operable to protect the operator and delicate components from high noise levels or hazardous environments. It is intended for single-pulse temperature and concentration measurements in practical combustion systems, such as gas turbines, diesel engines, and plasma process applications. The system is operational, and initial measurement demonstrations in a supersonic combusting flow are described.

  20. Microwave diagnostics of femtosecond laser-generated plasma filaments

    SciTech Connect

    Papeer, J.; Ehrlich, Y.; Zigler, A.; Mitchell, C.; Penano, J.; Sprangle, P.

    2011-10-03

    We present a simple non-intrusive experimental method allowing a complete single shot temporal measurement of laser produced plasma filament conductivity. The method is based on filament interaction with low intensity microwave radiation in a rectangular waveguide. The suggested diagnostics allow a complete single shot temporal analysis of filament plasma decay with resolution better than 0.3 ns and high spatial resolution along the filament. The experimental results are compared to numerical simulations, and an initial electron density of 7 x 10{sup 16 }cm{sup -3} and decay time of 3 ns are obtained.

  1. Observation of Hypervelocity Dust in Dense Supersonic Plasma Flows: Physics and Applications

    SciTech Connect

    Ticos, C. M.; Wang, Z.; Wurden, G. A.; Shukla, P. K.

    2008-10-15

    Synthetic diamond and graphite dust powders with a wide range of sizes, from a few to several tens of microns in diameter were accelerated to velocities up to 4 km/s in vacuum by plasma jet produced in a coaxial gun. Some of the key features of the plasma flow are high density, of the order of 10{sup 22} m{sup -3}, low ion and electron temperatures, of only a few eV, and good collimation over a distance of {approx_equal}2 m due to confinement by the self-generated magnetic field. The main features of this plasma-drag acceleration technique are presented and discussed. From basic science point of view hypervelocity dust is useful for studying the physics of dust interaction with energetic plasma flows at microscopic level. In physical applications, it has been proposed to use hypervelocity dust for diagnostic or control of magnetically confined fusion plasmas. In engineering, hypervelocity dusty plasmas are extensively employed in industrial processes involved in the processing of surfaces.

  2. Remote network control plasma diagnostic system for Tokamak T-10

    NASA Astrophysics Data System (ADS)

    Troynov, V. I.; Zimin, A. M.; Krupin, V. A.; Notkin, G. E.; Nurgaliev, M. R.

    2016-09-01

    The parameters of molecular plasma in closed magnetic trap is studied in this paper. Using the system of molecular diagnostics, which was designed by the authors on the «Tokamak T-10» facility, the radiation of hydrogen isotopes at the plasma edge is investigated. The scheme of optical radiation registration within visible spectrum is described. For visualization, identification and processing of registered molecular spectra a new software is developed using MatLab environment. The software also includes electronic atlas of electronic-vibrational-rotational transitions for molecules of protium and deuterium. To register radiation from limiter cross-section a network control system is designed using the means of the Internet/Intranet. Remote control system diagram and methods are given. The examples of web-interfaces for working out equipment control scenarios and viewing of results are provided. After test run in Intranet, the remote diagnostic system will be accessible through Internet.

  3. Comparisons of dense-plasma-focus kinetic simulations with experimental measurements

    SciTech Connect

    Schmidt, A.; Link, A.; Welch, D.; Ellsworth, J.; Falabella, S.; Tang, V.

    2014-06-01

    Dense-plasma-focus (DPF) Z-pinch devices are sources of copious high-energy electrons and ions, x rays, and neutrons. The mechanisms through which these physically simple devices generate such high-energy beams in a relatively short distance are not fully understood and past optimization efforts of these devices have been largely empirical. Previously we reported on fully kinetic simulations of a DPF and compared them with hybrid and fluid simulations of the same device. Here we present detailed comparisons between fully kinetic simulations and experimental data on a 1.2 kJ DPF with two electrode geometries, including neutron yield and ion beam energy distributions. A more intensive third calculation is presented which examines the effects of a fully detailed pulsed power driver model. We also compare simulated electromagnetic fluctuations with direct measurement of radiofrequency electromagnetic fluctuations in a DPF plasma. These comparisons indicate that the fully kinetic model captures the essential physics of these plasmas with high fidelity, and provide further evidence that anomalous resistivity in the plasma arises due to a kinetic instability near the lower hybrid frequency.

  4. Electron capture and excitation processes in H+‑H collisions in dense quantum plasmas

    NASA Astrophysics Data System (ADS)

    Jakimovski, D.; Markovska, N.; Janev, R. K.

    2016-10-01

    Electron capture and excitation processes in proton–hydrogen atom collisions taking place in dense quantum plasmas are studied by employing the two-centre atomic orbital close-coupling (TC-AOCC) method. The Debye–Hückel cosine (DHC) potential is used to describe the plasma screening effects on the Coulomb interaction between charged particles. The properties of a hydrogen atom with DHC potential are investigated as a function of the screening strength of the potential. It is found that the decrease in binding energy of nl levels with increasing screening strength is considerably faster than in the case of the Debye–Hückel (DH) screening potential, appropriate for description of charged particle interactions in weakly coupled classical plasmas. This results in a reduction in the number of bound states in the DHC potential with respect to that in the DH potential for the same plasma screening strength, and is reflected in the dynamics of excitation and electron capture processes for the two screened potentials. The TC-AOCC cross sections for total and state-selective electron capture and excitation cross sections with the DHC potential are calculated for a number of representative screening strengths in the 1–300 keV energy range and compared with those for the DH and pure Coulomb potential. The total capture cross sections for a selected number of screening strengths are compared with the available results from classical trajectory Monte Carlo calculations.

  5. On the quantum Landau collision operator and electron collisions in dense plasmas

    NASA Astrophysics Data System (ADS)

    Daligault, Jérôme

    2016-03-01

    The quantum Landau collision operator, which extends the widely used Landau/Fokker-Planck collision operator to include quantum statistical effects, is discussed. The quantum extension can serve as a reference model for including electron collisions in non-equilibrium dense plasmas, in which the quantum nature of electrons cannot be neglected. In this paper, the properties of the Landau collision operator that have been useful in traditional plasma kinetic theory and plasma transport theory are extended to the quantum case. We outline basic properties in connection with the conservation laws, the H-theorem, and the global and local equilibrium distributions. We discuss the Fokker-Planck form of the operator in terms of three potentials that extend the usual two Rosenbluth potentials. We establish practical closed-form expressions for these potentials under local thermal equilibrium conditions in terms of Fermi-Dirac and Bose-Einstein integrals. We study the properties of linearized quantum Landau operator, and extend two popular approximations used in plasma physics to include collisions in kinetic simulations. We apply the quantum Landau operator to the classic test-particle problem to illustrate the physical effects embodied in the quantum extension. We present useful closed-form expressions for the electron-ion momentum and energy transfer rates. Throughout the paper, similarities and differences between the quantum and classical Landau collision operators are emphasized.

  6. Measurement of the Electron-Ion Temperature Relaxation Rate in a Dense Plasma

    NASA Astrophysics Data System (ADS)

    Taccetti, J. M.; Shurter, R. P.; Goodwin, P. M.; Benage, J. F., Jr.

    2008-11-01

    Current theoretical approaches to temperature relaxation, which can be categorized as binary-collision and many-body approaches, disagree. Existing experimental evidence infers a lower relaxation rate compared to the binary-collision approach, but is insufficient to determine which approach is correct. We present the most recent results from an experiment aimed at obtaining the temperature relaxation rate between ions and electrons in a dense, strongly coupled plasma by directly measuring the temperature of each component. The plasma is formed by heating a gas jet with a 10 ps laser pulse. The electrons are preferentially heated by the short pulse laser (Te 100 eV), while the ions, after undergoing very rapid (sub-ps time-scale) disorder-induced heating, should only reach a temperature of 10-15 eV. This results in a strongly coupled ion plasma with an ion-ion coupling parameter γii 3-5. We plan to measure the electron and ion temperatures of the resulting plasma independently during and after heating, using collective Thomson scattering for electrons and a high-resolution x-ray spectrometer for the ions (measuring Doppler-broadened absorption lines).

  7. Simulation of thermal ionization in a dense helium plasma by the Feynman path integral method

    NASA Astrophysics Data System (ADS)

    Shevkunov, S. V.

    2011-04-01

    The region of equilibrium states is studied where the quantum nature of the electron component and a strong nonideality of a plasma play a key role. The problem of negative signs in the calculation of equilibrium averages a system of indistinguishable quantum particles with a spin is solved in the macroscopic limit. It is demonstrated that the calculation can be conducted up to a numerical result. The complete set of symmetrized basis wave functions is constructed based on the Young symmetry operators. The combinatorial weight coefficients of the states corresponding to different graphs of connected Feynman paths in multiparticle systems are calculated by the method of random walk over permutation classes. The kinetic energy is calculated using a viral estimator at a finite pressure in a statistical ensemble with flexible boundaries. Based on the methods developed in the paper, the computer simulation is performed for a dense helium plasma in the temperature range from 30000 to 40000 K. The equation of state, internal energy, ionization degree, and structural characteristic of the plasma are calculated in terms of spatial correlation functions. The parameters of a pseudopotential plasma model are estimated.

  8. Intense field induced excitation and ionization of an atom confined in a dense quantum plasma

    NASA Astrophysics Data System (ADS)

    Lumb, Shalini; Lumb, Sonia; Munjal, D.; Prasad, V.

    2015-09-01

    Exponential cosine screened Coulomb potential (ECSCP) has been widely used in various branches of physics e.g., solid-state physics, nuclear physics and plasma physics. The atomic photoionization processes under plasma shielding can serve as an efficient tool for study of plasma properties in various environments ranging from nano-scale devices to astrophysical objects. In the present study, ECSCP has been used to characterize a dense quantum plasma and its effect on the spectrum of an atom encaged in a spherical box has been investigated. The work has further been extended to study the response of such a system to a periodic laser field. Photoexcitation and ionization probabilities of the system have been studied as a function of applied laser field parameters using the non-perturbative Floquet technique. As the Floquet method requires exact energy values and oscillator strengths, the spectrum of confined system has been calculated using Bernstein-polynomial method. The variation of energy spectrum and oscillator strengths with screening as well as confinement parameters has also been explored.

  9. Simulation of thermal ionization in a dense helium plasma by the Feynman path integral method

    SciTech Connect

    Shevkunov, S. V.

    2011-04-15

    The region of equilibrium states is studied where the quantum nature of the electron component and a strong nonideality of a plasma play a key role. The problem of negative signs in the calculation of equilibrium averages a system of indistinguishable quantum particles with a spin is solved in the macroscopic limit. It is demonstrated that the calculation can be conducted up to a numerical result. The complete set of symmetrized basis wave functions is constructed based on the Young symmetry operators. The combinatorial weight coefficients of the states corresponding to different graphs of connected Feynman paths in multiparticle systems are calculated by the method of random walk over permutation classes. The kinetic energy is calculated using a viral estimator at a finite pressure in a statistical ensemble with flexible boundaries. Based on the methods developed in the paper, the computer simulation is performed for a dense helium plasma in the temperature range from 30000 to 40000 K. The equation of state, internal energy, ionization degree, and structural characteristic of the plasma are calculated in terms of spatial correlation functions. The parameters of a pseudopotential plasma model are estimated.

  10. Plasma diagnostics package (PDP) photographed in grasp of the RMS

    NASA Technical Reports Server (NTRS)

    1982-01-01

    This view shows the plasma diagnostics package (PDP) photographed by STS-3 crewmen in the grasp of the end effector of the remote manipulator system (RMS) and other components of the OSS-1 package in the aft section of the Columbia's cargo hold. Other OSS-1 payload experiments seen in the bay include the Thermal Canister Experiment, the Solar Flare X-Ray Polarimeter Experiment, the Vehicle Charging and Potential Experiment and the Induced Atmosphere Experiment.

  11. Laser Induced Fluorescence Diagnostic for the ASTRAL Plasma Source.

    NASA Astrophysics Data System (ADS)

    Boivin, Robert; Kamar, Ola; Munoz, Jorge

    2006-10-01

    A Laser Induced Fluorescence (LIF) diagnostic is presented in this poster. The ion temperature measurements are made in the ASTRAL (Auburn Steady sTate Research fAciLity) helicon plasma source using a diode laser based LIF diagnostic. ASTRAL produces Ar plasmas with the following parameters: ne = 10^10 to 10^13 cm-3, Te = 2 to 10 eV and Ti = 0.03 to 0.5 eV. A series of 7 large coils produce an axial magnetic field up to 1.3 kGauss. Operating pressure varies from 0.1 to 100 mTorr and any gas can be used for the discharge. A fractional helix antenna is used to introduce rf power up to 2 kWatt. A number of diagnostics are presently installed on the plasma device (Langmuir Probe, Spectrometer, LIF system). The LIF diagnostic makes use of a diode laser with the following characteristics: 1.5 MHz bandwidth, Littrow external cavity, mode-hop free tuning range up to 16 GHz, total power output of about 15 mW. The wavelength is measured by a precision wavemeter and frequent monitoring prevents wavelength drift. For Ar plasma, a new LIF scheme has been developed. The laser tuned at 686.354 nm, is used to pump the 3d^4F5/2 Ar II metastable level to the 4p^4D5/2 state. The fluorescence radiation between the 4p^4D5/2 and the 4s^4P3/2 terms (442.6 nm) is monitored by a PMT.

  12. Low pressure plasma diagnostics by cars and other techniques

    SciTech Connect

    Hata, N. )

    1989-01-01

    Within the past several years, intensive research activities relating amorphous-silicon technology have stimulated plasma-chemical-vapor-deposition (plasma-CVD) diagnostics by laser-spectroscopic techniques. Among them, coherent anti-Stokes Raman spectroscopy (CARS) has attracted much attention because of its great success in combustion diagnostics, and has been employed for low-pressure-plasma studies. Gas-phase species such as SiH{sub 4}, H{sub 2}, Si{sub 2}H{sub 6}, SiH{sub 2}, and GeH{sub 4} have been detected, time dependences of their concentration and spatial profiles of their concentration and rotational temperature have been determined, and the gas-phase mechanisms have been discussed. This talk will employ those results as examples, and discuss (1) the potential of CARS for gas-phase analysis in CVD (including (i) what species are monitored, (ii) what information is obtained, and (iii) what are the advantages and limitations), and (2) some other diagnostic techniques that provide additional information for better understandings of CVD mechanisms.

  13. Damages of Carbon-Tungsten Samples under Influence of Deuterium Ions and Dense Plasma Streams within Plasma-Focus Facility

    SciTech Connect

    Gribkov, V. A.; Grebenschikova, Ye. S.; Dubrovsky, A. V.; Makeev, O. N.; Rogozhkin, S. V.; Zaluzhnij, A. G.; Demina, Ye. V.; Kovtun, A. V.; Maslayev, S. A.; Pimenov, V. N.; Malinowski, K.; Skladnik-Sadowska, E.; Paduch, M.; Scholz, M.; Sadowski, M. J.

    2008-03-19

    The paper reports on experimental studies of processes of the interaction of pulsed streams of fast deuterium ions (E{sub i}{approx}100 keV) and dense deuterium plasma (v{sub pl}>10{sup 7} cm/s) with samples made of carbon and tungsten. Experiments were performed in the large PF-1000 plasma-focus facility with the charging energy of 481 kJ and with the pure deuterium filling. Power flux density of plasma/ions streams was q = 10{sup 7}-10{sup 10} W/cm{sup 2} and the pulse length was from 10{sup -7} s to 10{sup -6} s, whereas the duration of heat pulses (due to a secondary plasma at the target's surface) was 10{sup -4} s. The stainless steel, tungsten and carbon-tungsten samples were placed in the zone of their strong melting and evaporation or in the zone without their melting. Each sample was exposed to 1 through 10 discharges, and the irradiated samples were investigated with optical-, electron- and atomic-force-microscopes. The interaction of intense plasma-ion pulses with the carbon-tungsten samples caused the formation of a wave-like relief on sample surfaces, the evident erosion of the sample material, and the creation of numerous micro-cracks. It was also found that about 200-nm-thick layer of the irradiated tungsten sample contained many melted fragments of nm-dimensions. The results might be useful for estimations of tungsten behavior in extreme situations (e.g. disruptions) expected in fusion reactors with magnetic plasma confinement.

  14. In-depth Plasma-Wave Heating of Dense Plasma Irradiated by Short Laser Pulses

    NASA Astrophysics Data System (ADS)

    Sherlock, M.; Hill, E. G.; Evans, R. G.; Rose, S. J.; Rozmus, W.

    2014-12-01

    We investigate the mechanism by which relativistic electron bunches created at the surface of a target irradiated by a very short and intense laser pulse transfer energy to the deeper parts of the target. In existing theories, the dominant heating mechanism is that of resistive heating by the neutralizing return current. In addition to this, we find that large amplitude plasma waves are induced in the plasma in the wake of relativistic electron bunches. The subsequent collisional damping of these waves represents a source of heating that can exceed the resistive heating rate. As a result, solid targets heat significantly faster than has been previously considered. A new hybrid model, capable of reproducing these results, is described.

  15. Diagnostic techniques in thermal plasma processing (Part II). Volume 2

    SciTech Connect

    Boulos, M.; Fauchais, P.; Pfender, E.

    1986-02-01

    Techniques for diagnostics for thermal plasmas are discussed. These include both optical techniques and in-flight measurements of particulate matter. In the core of the plasma, collisional excitation of the various chemical species is so strong that the population of the corresponding quantum levels becomes high enough for net emission from the plasma. In that case, the classical methods of emission spectroscopy may be applied. But in the regions where the temperatures are below 4000/sup 0/K (these regions are of primary importance for plasma processing), the emission from the plasma is no longer sufficient for emission spectroscopy. In this situation, the population of excited levels must be increased by the absorption of the light from an external source. Such sources, as for example pulsed tunable dye lasers, are now commercially available. The use of such new devices leads to various techniques such as laser induced fluorescence (LIF) or Coherent Anti Stockes Raman Spectroscopy (CARS) that can be used for analyzing plasmas. Particle velocity measurements can be achieved by photography and laser Doppler anemometry. Particle flux measurements are typically achieved by collecting particles on a substrate. Particle size measurements are based on intensity of scattered light. (WRF)

  16. Laser Thomson Scattering Diagnostics in the Low-Temperature Plasmas

    NASA Astrophysics Data System (ADS)

    Woo, Hyun-Jong; Chung, Kyu-Sun

    2008-10-01

    Laser Thomson Scattering (LTS) is the non-invasive method for measuring the electron temperature and its density, which can be used for the calibrations of electric probes within collisional and magnetized plasmas. For LTS diagnostics in the low-temperature plasmas, one need to special optics for detection of the scattered light with restricting the Rayleigh and Stray lights. For this, one uses the Triple Grating Spectrometer (TGS), which is composed of Rayleigh block (notch filter for Rayleigh light) and double grating filter (DGF). All focusing lenses are used with achromatic doublet configuration for reducing the non-linear optical effects such as spherical aberration, coma, etc. The specifications of the grating and achromatic doublet lens are 1800 gr/mm with the dimensions of 84 mm x 84 mm and 400 mm of focal length with the diameter of 100 mm, respectively. In this configurations, the linear dispersion is given as 1.006 nm/mm. Considering the dimension of Charged Coupled Device (CCD) with the linear dispersion, the LTS system can be measure the electron temperatures of less than 10 eV (in most laboratory plasmas). The initial measurement of LTS measurement and comparative study with single probe are done in Divertor Plasma Simulator (DiPS) with the following plasma parameters; plasma density of 10^11-10^13 cm-3, electron temperature of 1-4 eV, and the magnetic field of 0.2-1 kG, respectively.

  17. Link between K absorption edges and thermodynamic properties of warm dense plasmas established by an improved first-principles method

    NASA Astrophysics Data System (ADS)

    Zhang, Shen; Zhao, Shijun; Kang, Wei; Zhang, Ping; He, Xian-Tu

    2016-03-01

    A precise calculation that translates shifts of x-ray K absorption edges to variations of thermodynamic properties allows quantitative characterization of interior thermodynamic properties of warm dense plasmas by x-ray absorption techniques, which provides essential information for inertial confinement fusion and other astrophysical applications. We show that this interpretation can be achieved through an improved first-principles method. Our calculation shows that the shift of K edges exhibits selective sensitivity to thermal parameters and thus would be a suitable temperature index to warm dense plasmas. We also show with a simple model that the shift of K edges can be used to detect inhomogeneity inside warm dense plasmas when combined with other experimental tools.

  18. Generation of terahertz radiation via an electromagnetically induced transparency at ion acoustic frequency region in laser-produced dense plasmas.

    PubMed

    Nakagawa, Makoto; Kodama, Ryosuke; Higashiguchi, Takeshi; Yugami, Noboru

    2009-08-01

    Electromagnetically induced transparency is a well-known quantum phenomena that electromagnetic wave controls the refractive index of medium. It enables us to create a passband for low-frequency electromagnetic wave in a dense plasma even if the plasma is opaque for the electromagnetic wave. This technique can be used to prove the ion acoustic wave because the ion acoustic frequency is lower than the plasma frequency. We have investigated a feasibility of electromagnetic radiation at THz region corresponding to the ion acoustic frequency from a dense plasma. We confirmed that the passband is created at about 7.5 THz corresponding to the ion acoustic frequency in the electron plasma density of 10(21) cm(-3) with a Ti:Sapphire laser with the wavelength of 800 nm and the laser intensity of 10(17) W/cm(2). The estimated radiation power is around 1 MW, which is expected to be useful for nonlinear THz science and applications.

  19. High density plasmas and new diagnostics: An overview (invited).

    PubMed

    Celona, L; Gammino, S; Mascali, D

    2016-02-01

    One of the limiting factors for the full understanding of Electron Cyclotron Resonance Ion Sources (ECRISs) fundamental mechanisms consists of few types of diagnostic tools so far available for such compact machines. Microwave-to-plasma coupling optimisation, new methods of density overboost provided by plasma wave generation, and magnetostatic field tailoring for generating a proper electron energy distribution function, suitable for optimal ion beams formation, require diagnostic tools spanning across the entire electromagnetic spectrum from microwave interferometry to X-ray spectroscopy; these methods are going to be implemented including high resolution and spatially resolved X-ray spectroscopy made by quasi-optical methods (pin-hole cameras). The ion confinement optimisation also requires a complete control of cold electrons displacement, which can be performed by optical emission spectroscopy. Several diagnostic tools have been recently developed at INFN-LNS, including "volume-integrated" X-ray spectroscopy in low energy domain (2-30 keV, by using silicon drift detectors) or high energy regime (>30 keV, by using high purity germanium detectors). For the direct detection of the spatially resolved spectral distribution of X-rays produced by the electronic motion, a "pin-hole camera" has been developed also taking profit from previous experiences in the ECRIS field. The paper will give an overview of INFN-LNS strategy in terms of new microwave-to-plasma coupling schemes and advanced diagnostics supporting the design of new ion sources and for optimizing the performances of the existing ones, with the goal of a microwave-absorption oriented design of future machines.

  20. High density plasmas and new diagnostics: An overview (invited)

    NASA Astrophysics Data System (ADS)

    Celona, L.; Gammino, S.; Mascali, D.

    2016-02-01

    One of the limiting factors for the full understanding of Electron Cyclotron Resonance Ion Sources (ECRISs) fundamental mechanisms consists of few types of diagnostic tools so far available for such compact machines. Microwave-to-plasma coupling optimisation, new methods of density overboost provided by plasma wave generation, and magnetostatic field tailoring for generating a proper electron energy distribution function, suitable for optimal ion beams formation, require diagnostic tools spanning across the entire electromagnetic spectrum from microwave interferometry to X-ray spectroscopy; these methods are going to be implemented including high resolution and spatially resolved X-ray spectroscopy made by quasi-optical methods (pin-hole cameras). The ion confinement optimisation also requires a complete control of cold electrons displacement, which can be performed by optical emission spectroscopy. Several diagnostic tools have been recently developed at INFN-LNS, including "volume-integrated" X-ray spectroscopy in low energy domain (2-30 keV, by using silicon drift detectors) or high energy regime (>30 keV, by using high purity germanium detectors). For the direct detection of the spatially resolved spectral distribution of X-rays produced by the electronic motion, a "pin-hole camera" has been developed also taking profit from previous experiences in the ECRIS field. The paper will give an overview of INFN-LNS strategy in terms of new microwave-to-plasma coupling schemes and advanced diagnostics supporting the design of new ion sources and for optimizing the performances of the existing ones, with the goal of a microwave-absorption oriented design of future machines.

  1. High density plasmas and new diagnostics: An overview (invited).

    PubMed

    Celona, L; Gammino, S; Mascali, D

    2016-02-01

    One of the limiting factors for the full understanding of Electron Cyclotron Resonance Ion Sources (ECRISs) fundamental mechanisms consists of few types of diagnostic tools so far available for such compact machines. Microwave-to-plasma coupling optimisation, new methods of density overboost provided by plasma wave generation, and magnetostatic field tailoring for generating a proper electron energy distribution function, suitable for optimal ion beams formation, require diagnostic tools spanning across the entire electromagnetic spectrum from microwave interferometry to X-ray spectroscopy; these methods are going to be implemented including high resolution and spatially resolved X-ray spectroscopy made by quasi-optical methods (pin-hole cameras). The ion confinement optimisation also requires a complete control of cold electrons displacement, which can be performed by optical emission spectroscopy. Several diagnostic tools have been recently developed at INFN-LNS, including "volume-integrated" X-ray spectroscopy in low energy domain (2-30 keV, by using silicon drift detectors) or high energy regime (>30 keV, by using high purity germanium detectors). For the direct detection of the spatially resolved spectral distribution of X-rays produced by the electronic motion, a "pin-hole camera" has been developed also taking profit from previous experiences in the ECRIS field. The paper will give an overview of INFN-LNS strategy in terms of new microwave-to-plasma coupling schemes and advanced diagnostics supporting the design of new ion sources and for optimizing the performances of the existing ones, with the goal of a microwave-absorption oriented design of future machines. PMID:26931960

  2. Effect of driver impedance on dense plasma focus Z-pinch neutron yield

    SciTech Connect

    Sears, Jason E-mail: schmidt36@llnl.gov; Link, Anthony E-mail: schmidt36@llnl.gov; Schmidt, Andrea E-mail: schmidt36@llnl.gov; Welch, Dale

    2014-12-15

    The Z-pinch phase of a dense plasma focus (DPF) heats the plasma by rapid compression and accelerates ions across its intense electric fields, producing neutrons through both thermonuclear and beam-target fusion. Driver characteristics have empirically been shown to affect performance, as measured by neutron yield per unit of stored energy. We are exploring the effect of driver characteristics on DPF performance using particle-in-cell (PIC) simulations of a kJ scale DPF. In this work, our PIC simulations are fluid for the run-down phase and transition to fully kinetic for the pinch phase, capturing kinetic instabilities, anomalous resistivity, and beam formation during the pinch. The anode-cathode boundary is driven by a circuit model of the capacitive driver, including system inductance, the load of the railgap switches, the guard resistors, and the coaxial transmission line parameters. It is known that the driver impedance plays an important role in the neutron yield: first, it sets the peak current achieved at pinch time; and second, it affects how much current continues to flow through the pinch when the pinch inductance and resistance suddenly increase. Here we show from fully kinetic simulations how total neutron yield depends on the impedance of the driver and the distributed parameters of the transmission circuit. Direct comparisons between the experiment and simulations enhance our understanding of these plasmas and provide predictive design capability for neutron source applications.

  3. Effect of driver impedance on dense plasma focus Z-pinch neutron yield

    NASA Astrophysics Data System (ADS)

    Sears, Jason; Link, Anthony; Schmidt, Andrea; Welch, Dale

    2014-12-01

    The Z-pinch phase of a dense plasma focus (DPF) heats the plasma by rapid compression and accelerates ions across its intense electric fields, producing neutrons through both thermonuclear and beam-target fusion. Driver characteristics have empirically been shown to affect performance, as measured by neutron yield per unit of stored energy. We are exploring the effect of driver characteristics on DPF performance using particle-in-cell (PIC) simulations of a kJ scale DPF. In this work, our PIC simulations are fluid for the run-down phase and transition to fully kinetic for the pinch phase, capturing kinetic instabilities, anomalous resistivity, and beam formation during the pinch. The anode-cathode boundary is driven by a circuit model of the capacitive driver, including system inductance, the load of the railgap switches, the guard resistors, and the coaxial transmission line parameters. It is known that the driver impedance plays an important role in the neutron yield: first, it sets the peak current achieved at pinch time; and second, it affects how much current continues to flow through the pinch when the pinch inductance and resistance suddenly increase. Here we show from fully kinetic simulations how total neutron yield depends on the impedance of the driver and the distributed parameters of the transmission circuit. Direct comparisons between the experiment and simulations enhance our understanding of these plasmas and provide predictive design capability for neutron source applications.

  4. Axial mass fraction measurements in a 300kA dense plasma focus

    NASA Astrophysics Data System (ADS)

    Caballero Bendixsen, L. S.; Bott-Suzuki, S. C.; Cordaro, S. W.; Krishnan, M.; Chapman, S.; Coleman, P.; Chittenden, J.

    2016-09-01

    The dynamics and characteristics of the plasma sheath during the axial phase in a ˜300 kA, ˜2 kJ dense plasma focus using a static gas load of Ne at 1-4 Torr are reported. The sheath, which is driven axially at a constant velocity ˜105 m/s by the j × B force, is observed using optical imaging, to form an acute angle between the electrodes. This angle becomes more acute (more parallel to the axis) along the rundown. The average sheath thickness nearer the anode is 0.69 ± 0.02 mm and nearer the cathode is 0.95 ± 0.02 mm. The sheath total mass increases from 1 ± 0.02 μg to 6 ± 0.02 μg over the pressure range of 1-4 Torr. However, the mass fraction (defined as the sheath mass/total mass of cold gas between the electrodes) decreases from 7% to 5%. In addition, the steeper the plasma sheath, the more mass is lost from the sheath, which is consistent with radial and axial motion. Experimental results are compared to the Lee code when 100% of the current drives the axial and radial phase.

  5. Dense plasma heating and Gbar shock formation by a high intensity flux of energetic electrons

    SciTech Connect

    Ribeyre, X.; Feugeas, J.-L.; Nicolaï, Ph.; Tikhonchuk, V. T.; Gus'kov, S.

    2013-06-15

    Process of shock ignition in inertial confinement fusion implies creation of a high pressure shock with a laser spike having intensity of the order of a few PW/cm{sup 2}. However, the collisional (Bremsstrahlung) absorption at these intensities is inefficient and a significant part of laser energy is converted in a stream of energetic electrons. The process of shock formation in a dense plasma by an intense electron beam is studied in this paper in a planar geometry. The energy deposition takes place in a fixed mass target layer with the areal density determined by the electron range. A self-similar isothermal rarefaction wave of a fixed mass describes the expanding plasma. Formation of a shock wave in the target under the pressure of expanding plasma is described. The efficiency of electron beam energy conversion into the shock wave energy depends on the fast electron energy and the pulse duration. The model is applied to the laser produced fast electrons. The fast electron energy transport could be the dominant mechanism of ablation pressure creation under the conditions of shock ignition. The shock wave pressure exceeding 1 Gbar during 200–300 ps can be generated with the electron pulse intensity in the range of 5–10 PW/cm{sup 2}. The conclusions of theoretical model are confirmed in numerical simulations with a radiation hydrodynamic code coupled with a fast electron transport module.

  6. Diagnostic for Plasma Enhanced Chemical Vapor Deposition and Etch Systems

    NASA Technical Reports Server (NTRS)

    Cappelli, Mark A.

    1999-01-01

    concentration, temperature, ion energy distribution, and electron number density. A wide variety of diagnostic techniques are under development through this consortium grant to measure these parameters. including molecular beam mass spectrometry (MBMS). Fourier transform infrared (FTIR) spectroscopy, broadband ultraviolet (UV) absorption spectroscopy, a compensated Langmuir probe. Additional diagnostics. Such as microwave interferometry and microwave absorption for measurements of plasma density and radical concentrations are also planned.

  7. Ion beam and neutron output from a sub-kilojoule dense plasma focus

    NASA Astrophysics Data System (ADS)

    Ellsworth, J. L.; Falabella, S.; Schmidt, A.; Tang, V.

    2014-12-01

    We are seeking to gain a better fundamental understanding of the ion beam acceleration and neutron production dense plasma focus (DPF) device. Experiments were performed on a kilojoule level, fast rise time DPF located at LLNL. Ion beam spectra and neutron yield were measured for deuterium pinches. Visible light images of the pinch are used to determine the pinch length. In addition, an RF probe was placed just outside the cathode to measure fluctuations in Ez up to 6 GHz, which is within the range of the lower hybrid frequencies. We find these oscillations arise at a characteristic frequency near 4 GHz during the pinch. Comparisons of the neutron yield and ion beam characteristics are presented. The neutron yield is also compared to scaling laws.

  8. Ion beam and neutron output from a sub-kilojoule dense plasma focus

    SciTech Connect

    Ellsworth, J. L. Falabella, S. Schmidt, A. Tang, V.

    2014-12-15

    We are seeking to gain a better fundamental understanding of the ion beam acceleration and neutron production dense plasma focus (DPF) device. Experiments were performed on a kilojoule level, fast rise time DPF located at LLNL. Ion beam spectra and neutron yield were measured for deuterium pinches. Visible light images of the pinch are used to determine the pinch length. In addition, an RF probe was placed just outside the cathode to measure fluctuations in E{sub z} up to 6 GHz, which is within the range of the lower hybrid frequencies. We find these oscillations arise at a characteristic frequency near 4 GHz during the pinch. Comparisons of the neutron yield and ion beam characteristics are presented. The neutron yield is also compared to scaling laws.

  9. A reduced model for relativistic electron beam transport in solids and dense plasmas

    NASA Astrophysics Data System (ADS)

    Touati, M.; Feugeas, J.-L.; Nicolaï, Ph; Santos, J. J.; Gremillet, L.; Tikhonchuk, V. T.

    2014-07-01

    A hybrid reduced model for relativistic electron beam transport based on the angular moments of the relativistic kinetic equation with a special closure is presented. It takes into account collective effects with the self-generated electromagnetic fields as well as collisional effects with the slowing down of the relativistic electrons by plasmons, bound and free electrons and their angular scattering on both ions and electrons. This model allows for fast computations of relativistic electron beam transport while describing their energy distribution evolution. Despite the loss of information concerning the angular distribution of the electron beam, the model reproduces analytical estimates in the academic case of a monodirectional and monoenergetic electron beam propagating through a warm and dense plasma and hybrid particle-in-cell simulation results in a realistic laser-generated electron beam transport case.

  10. Shifts of the H sub. beta. line in dense hydrogen plasmas

    SciTech Connect

    Mijatovic, Z.; Pavlov, M.; Djurovic, S. )

    1991-06-01

    The H{sub {beta}} line shifts were measured in dense {ital ssT}-shaped-tube plasmas for electron densities from 2.1{times}10{sup 17} to 7.8{times}10{sup 17} cm{sup {minus}3} and temperatures between 19 000 and 35 000 K. Comparisons of these shifts with recent theories (H. R. Griem, Phys. Rev. A 28, 1596 (1983); 38, 2943 (1988)) that take the dynamical quadratic Stark effect for {Delta}{ital n}=0 and {ital n}{prime}={ital n}+1 interactions and ion quadrupole effects into account are presented. Also, comparisons with some experimental results (H. L. Wiese, D. E. Kelleher, and D. R. Paquette, Phys. Rev. A 6, 1132 (1972)) were made. Our results are in agreement with an extrapolated experimental best fit to the experimental results of Wiese {ital et} {ital al}., but the measured shifts are larger than the theories predict.

  11. Fast and accurate quantum molecular dynamics of dense plasmas across temperature regimes

    DOE PAGES

    Sjostrom, Travis; Daligault, Jerome

    2014-10-10

    Here, we develop and implement a new quantum molecular dynamics approximation that allows fast and accurate simulations of dense plasmas from cold to hot conditions. The method is based on a carefully designed orbital-free implementation of density functional theory. The results for hydrogen and aluminum are in very good agreement with Kohn-Sham (orbital-based) density functional theory and path integral Monte Carlo calculations for microscopic features such as the electron density as well as the equation of state. The present approach does not scale with temperature and hence extends to higher temperatures than is accessible in the Kohn-Sham method and lowermore » temperatures than is accessible by path integral Monte Carlo calculations, while being significantly less computationally expensive than either of those two methods.« less

  12. Fast and accurate quantum molecular dynamics of dense plasmas across temperature regimes

    SciTech Connect

    Sjostrom, Travis; Daligault, Jerome

    2014-10-10

    Here, we develop and implement a new quantum molecular dynamics approximation that allows fast and accurate simulations of dense plasmas from cold to hot conditions. The method is based on a carefully designed orbital-free implementation of density functional theory. The results for hydrogen and aluminum are in very good agreement with Kohn-Sham (orbital-based) density functional theory and path integral Monte Carlo calculations for microscopic features such as the electron density as well as the equation of state. The present approach does not scale with temperature and hence extends to higher temperatures than is accessible in the Kohn-Sham method and lower temperatures than is accessible by path integral Monte Carlo calculations, while being significantly less computationally expensive than either of those two methods.

  13. Neutral particle effects on the spin-dependent electron scattering in dense plasmas

    SciTech Connect

    Lee, Gyeong Won; Jung, Young-Dae

    2014-09-15

    The influence of neutral particle collisions on the spin-channel preference for spin-asymmetry scattering is investigated in dense plasmas. The effective electron-electron interaction potential taking into account the electron-neutral collision effects is employed to obtain the scattering cross sections for the spin-triplet and singlet states and spin-asymmetry scattering parameter. It is found that the electron-neutral collision effect enhances the spin-asymmetry scattering parameter as well as the preference for the spin-singlet scattering channel. It is also shown that the preference for the spin-singlet scattering channel increases with an increase of the thermal energy. In addition, it is found that the angular averaged spin-asymmetry parameter decreases with increasing collision frequency and thermal energy. The variations of the spin-singlet and spin-triplet scattering channels are also discussed.

  14. Bound-bound transitions in hydrogen-like ions in dense quantum plasmas

    NASA Astrophysics Data System (ADS)

    Qi, Y. Y.; Wang, J. G.; Janev, R. K.

    2016-07-01

    The properties of bound-bound transitions in hydrogen-like ions in dense quantum plasmas, characterized by a cosine-Debye-Hückel interaction between charged particles, are studied in detail. The transition frequencies, oscillator strengths, and radiative transition probabilities of Lyman and Balmer series are calculated for a wide range of screening strengths of the interaction up to the n = 5 shell. For Δ n ≠ 0 transitions, all these quantities exhibit a significant decrease with increasing screening strength, while for the Δ n = 0 transitions and for the radiative lifetimes, the opposite is true. The present results are compared with those available from the literature. They are also compared with the results for the pure Debye-Hückel potential with the same screening strength.

  15. Synthesis of dense yttrium-stabilised hafnia pellets for nuclear applications by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Tyrpekl, Vaclav; Holzhäuser, Michael; Hein, Herwin; Vigier, Jean-Francois; Somers, Joseph; Svora, Petr

    2014-11-01

    Dense yttrium-stabilised hafnia pellets (91.35 wt.% HfO2 and 8.65 wt.% Y2O3) were prepared by spark plasma sintering consolidation of micro-beads synthesised by the “external gelation” sol-gel technique. This technique allows a preparation of HfO2-Y2O3 beads with homogenous yttria-hafnia solid solution. A sintering time of 5 min at 1600 °C was sufficient to produce high density pellets (over 90% of the theoretical density) with significant reproducibility. The pellets have been machined in a lathe to the correct dimensions for use as neutron absorbers in an experimental test irradiation in the High Flux Reactor (HFR) in Petten, Holland, in order to investigate the safety of americium based nuclear fuels.

  16. Design of Z-Pinch and Dense Plasma Focus Powered Vehicles

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara; Fincher, Sharon; Adams, Robert B.; Cassibry, Jason; Cortez, Ross; Turner, Matthew; Maples, C. Daphne; Miermik, Janie N.; Statham, Geoffrey N.; Fabisinski, Leo; Santarius, John; Percy, Tom

    2011-01-01

    Z-pinch and Dense Plasma Focus (DPF) are two promising techniques for bringing fusion power to the field of in-space propulsion. A design team comprising of engineers and scientists from UAHuntsville, NASA's George C. Marshall Space Flight Center and the University of Wisconsin developed concept vehicles for a crewed round trip mission to Mars and an interstellar precursor mission. Outlined in this paper are vehicle concepts, complete with conceptual analysis of the mission profile, operations, structural and thermal analysis and power/avionics design. Additionally engineering design of the thruster itself is included. The design efforts adds greatly to the fidelity of estimates for power density (alpha) and overall performance for these thruster concepts

  17. An Investigation of Bremsstrahlung Reflection in a Dense Plasma Focus (DPF) Propulsion Device

    SciTech Connect

    Thomas, Robert; Miley, G. H.; Mead, Franklin

    2006-01-20

    The dense plasma focus device is one of the few fusion systems that is capable of burning advanced fuels such as D - 3He and p - 11B. An study has been performed and shown that three main requirements must be satisfied to reach breakeven for DPF fusion: a high Ti/Te ration ({approx} 20), an order of magnitude higher pinch lifetime, and the reflection and absorption if at least 50% Bremsstrahlung radiation. The latter issue is the focus of this report, and a literature search has been performed on laser-driven fusion radiation cavities, multilayer reflectors, and their application to Bremsstrahlung radiation reflection is presented. Additionally, the results found are compared to those assumed in the earlier DPF study bring p-11B.

  18. Supersonic propagation of ionization waves in an under-dense, laser-produced plasma

    SciTech Connect

    Constantin, C; Back, C A; Fournier, K B; Gregori, G; Landen, O L; Glenzer, S H; Dewald, E L; Miller, M C

    2004-10-22

    We observe a laser-driven supersonic ionization wave heating a mm-scale plasma of sub-critical density up to 2-3 keV electron temperatures. Propagation velocities initially 10 times the sound speed were measured by means of time-resolved x-ray imaging diagnostics. The measured ionization wave trajectory is modeled analytically and by a 2D radiation-hydrodynamics code. The comparison to the modeling suggests that nonlocal heat transport effects may contribute to the attenuation of the heat wave propagation.

  19. PROMINENCE PLASMA DIAGNOSTICS THROUGH EXTREME-ULTRAVIOLET ABSORPTION

    SciTech Connect

    Landi, E.; Reale, F.

    2013-07-20

    In this paper, we introduce a new diagnostic technique that uses EUV and UV absorption to determine the electron temperature and column emission measure, as well as the He/H relative abundance of the absorbing plasma. If a realistic assumption on the geometry of the latter can be made and a spectral code such as CHIANTI is used, then this technique can also yield the absorbing plasma hydrogen and electron density. This technique capitalizes on the absorption properties of hydrogen and helium at different wavelength ranges and temperature regimes. Several cases where this technique can be successfully applied are described. This technique works best when the absorbing plasma is hotter than 15,000 K. We demonstrate this technique on AIA observations of plasma absorption during a coronal mass ejection eruption. This technique can be easily applied to existing observations of prominences and cold plasmas in the Sun from almost all space missions devoted to the study of the solar atmosphere, which we list.

  20. Prominence Plasma Diagnostics through Extreme-ultraviolet Absorption

    NASA Astrophysics Data System (ADS)

    Landi, E.; Reale, F.

    2013-07-01

    In this paper, we introduce a new diagnostic technique that uses EUV and UV absorption to determine the electron temperature and column emission measure, as well as the He/H relative abundance of the absorbing plasma. If a realistic assumption on the geometry of the latter can be made and a spectral code such as CHIANTI is used, then this technique can also yield the absorbing plasma hydrogen and electron density. This technique capitalizes on the absorption properties of hydrogen and helium at different wavelength ranges and temperature regimes. Several cases where this technique can be successfully applied are described. This technique works best when the absorbing plasma is hotter than 15,000 K. We demonstrate this technique on AIA observations of plasma absorption during a coronal mass ejection eruption. This technique can be easily applied to existing observations of prominences and cold plasmas in the Sun from almost all space missions devoted to the study of the solar atmosphere, which we list.

  1. Diagnostics for hot plasmas using hydrogen neutral beams

    SciTech Connect

    Goldston, R.J.

    1982-12-01

    Beams of neutral hydrogen atoms have found a number of uses in the diagnosis of hot plasmas. In the most straightforward application, neutral beams have been used to determine plasma line density, based on simple attenuation measurements. This technique has been applied most intensively recently to the study of beam-injected mirror plasmas. Neutral beams have also now been used in a number of tokamaks to supply a local increase of the neutral atom target density for charge exchange. By directing a time-modulated neutral beam across the sight-line of a charge-exchange analyzer, and measuring the modulated neutral particle efflux from the plasma, local measurements of the ion energy distribution function can be made. If a modulated diagnostic neutral beam is directed across the sight-line of an ultra-violet spectrometer, one can also make measurements of the local densities and possibly velocity distributions of fully stripped impurities. The fast hydrogen neutrals charge exchange with fully stripped impurities in the plasma, leaving the impurities in excited hydrogen-like states. In their prompt radiative decay the impurity ions emit characteristic uv lines, which can be detected easily.

  2. Analyses of Different Techniques for the Plasma Probe Diagnostics

    NASA Astrophysics Data System (ADS)

    Godyak, Valery; Alexandrovich, Benjamin

    2015-09-01

    The subject of this publication is comparison of the plasma parameters inferred from classical Langmuir probe procedure, from different theories of the ion current to the probe, and from measured EEDF using double differentiation of the probe characteristic We concluded that the plasma parameters inferred by the classical Langmuir procedure are subjected to significant inaccuracy due to non-Maxwellian EEDF, uncertainty of locating the plasma potential and arbitrariness in approximation of the ion current. The plasma density inferred from the ion part of the probe characteristic was found to diverge by as much as an order of magnitude from the density calculated as the EEDF integral, while the electron temperature is derived with significant uncertainty. Such inaccuracy is attributed to deficiencies in the ion current theories, i.e. unrealistic assumptions about Maxwellian-shaped EEDFs, underestimation of the ion collisions and the ion ambipolar drift, and some others. We concluded that for highly non-equilibrium gas discharge plasmas at low gas pressure the probe measurements based on EEDF diagnostics is single reliable tool of for the basic research and industrial applications. Examples of EEDF measurements reiterate significance of the instrument technical characteristics, such as high energy resolution and wide dynamic range and importance of displaying the probe current derivatives in real time.

  3. Simulation of the O-X-B conversion process in dense magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Asgarian, Mohammad Ali; Verboncoeur, John; Parvazian, Akbar

    2012-10-01

    Electron Bernstein waves (EBWs) are special electrostatic cyclotron waves which propagate with a short wavelength in hot plasma. EBWs are useful for core plasma heating, current drive and temperature diagnostics in high density plasma devices like stellarators and tokamaks. The resonance of EBWs is close to the cyclotron harmonics, and they do not have a density cut-off. The ordinary-extraordinary-Bernstein(O-X-B) conversion is one of the processes for generating EBWs. The generated EBW propagates in the region with density higher than ordinary wave cut-off and is strongly absorbed at the electron cyclotron harmonics. As such, EBWs may provide local electron heating and current drive. This double conversion process has been simulated using the XOOPIC code. XOOPIC is a 2D PIC code with 3D electrostatic and electromagnetic field solvers for slab and cylindrical geometries. The O-X-B simulation has been done in a slab plasma, using the electromagnetic field solver and a surface impedance wave source to generate the O-wave. The maximum energy transformation in O-X conversion will be ensured with the optimized refractive index, parallel to toroidal magnetic field. Moreover, the dependence of the conversion efficiency on the density gradient scale length will be considered.

  4. Dense Plasma Focus Z-Pinch Fully Kinetic Modeling and Ion Probe-Beam Experiments

    NASA Astrophysics Data System (ADS)

    Schmidt, Andrea

    2013-10-01

    The Z-pinch phase of a dense plasma focus (DPF) emits multiple-MeV ions on a cm-scale length, even for kJ-scale devices. The mechanisms through which these physically simple devices generate such high energy beams in a relatively short distance are not fully understood. We are exploring the mechanisms behind these large gradients using the first fully kinetic simulations of a DPF Z-pinch as well as an ion probe beam experiment in which a 4 MeV deuteron beam is injected along the z-axis of a DPF Z-pinch plasma and accelerated. Our table-top DPF has demonstrated >50 MV/m acceleration gradients during 800 J operation using a fast capacitive driver. We have now directly measured the DPF gradients and demonstrated acceleration of an injected ion beam for the first time. Our particle-in-cell simulations have successfully predicted observed DPF ion beams and neutron yield, which past fluid simulations have not reproduced. We have now experimentally measured and observed in the simulations for the first time, electric field oscillations near the lower hybrid frequency. This is suggestive that the lower hybrid drift instability, long speculated to be the cause of the anomalous plasma resistivity that produces large DPF gradients, is playing an important role. Direct comparisons between the experiment and simulations enhance our understanding of these plasmas and provide predictive design capability for accelerator and neutron source applications. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and supported by the Laboratory Directed Research and Development Program (11-ERD-063) at LLNL.

  5. An Ultrafast X-ray Diagnostic Suite for Burning Plasmas

    NASA Astrophysics Data System (ADS)

    Baker, Kevin; Stewart, Richard; Steele, Paul; Vernon, Steve; Hsing, Warren; Haynes, Susan

    2011-10-01

    Ignition designs on the National Ignition Facility predict ~1019 neutrons in a time of 15-20 ps. The very short burn time and small size of the burning plasma will require x-ray diagnostics with time resolutions of a few ps and high spatial resolution which can function in extremely large neutron fluxes. One promising solution to this challenge is to perform an ultrafast conversion of the x-ray signals into the optical regime, <100 fs, and to relay image the signal out of the chamber and into a shielded bunker. A diagnostic suite, Grating Actuated Transient Optical Recorder (GATOR), has been developed which uses the ultrafast near-band-edge change in the optical index of refraction of semiconductors caused by x-ray generated free carriers to achieve this goal. The GATOR diagnostic suite has been tested on a laser-produced x-ray source at the Jupiter Laser Facility and the performance of this diagnostic suite, which includes a multi-temporal frame 2-D imager, a continuous-time 1-D imager and a single channel continuous-time recorder, is presented. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  6. Streak Tubes for Diagnostics of Lasers and Plasmas

    NASA Astrophysics Data System (ADS)

    Sokolov, A. Yu; Konovalov, P. I.; Nurtdinov, R. I.; Vikulin, M. P.; Pryanishnikov, I. G.; Dolotov, A. S.; Krapiva, P. S.

    2016-09-01

    Designing a facility for laser fusion research requires sufficient advancement in diagnostics techniques for lasers and plasmas, including those involving streak camera imaging. Maximum specifications of streak cameras depend on the parameters of streak tubes. The paper illustrates how these devices function, and which of their parameters are limiting. The paper presents a novel technological platform designed at VNIIA, which was used to develop a new generation of streak tubes. Using these streak tubes in streak cameras, the efficiency of streak camera imaging techniques can be improved by several orders of magnitude, and new techniques can be designed.

  7. Polarizer design for millimeter-wave plasma diagnostics

    SciTech Connect

    Leipold, F.; Salewski, M.; Jacobsen, A. S.; Jessen, M.; Korsholm, S. B.; Michelsen, P. K.; Nielsen, S. K.; Stejner, M.

    2013-08-15

    Radiation from magnetized plasmas is in general elliptically polarized. In order to convert the elliptical polarization to linear polarization, mirrors with grooved surfaces are currently employed in our collective Thomson scattering diagnostic at ASDEX Upgrade. If these mirrors can be substituted by birefringent windows, the microwave receivers can be designed to be more compact at lower cost. Sapphire windows (a-cut) as well as grooved high density polyethylene windows can serve this purpose. The sapphire window can be designed such that the calculated transmission of the wave energy is better than 99%, and that of the high density polyethylene can be better than 97%.

  8. Experiments and Simulations on Magnetically Driven Implosions in High Repetition Rate Dense Plasma Focus

    NASA Astrophysics Data System (ADS)

    Caballero Bendixsen, Luis; Bott-Suzuki, Simon; Cordaro, Samuel; Krishnan, Mahadevan; Chapman, Stephen; Coleman, Phil; Chittenden, Jeremy

    2015-11-01

    Results will be shown on coordinated experiments and MHD simulations on magnetically driven implosions, with an emphasis on current diffusion and heat transport. Experiments are run at a Mather-type dense plasma focus (DPF-3, Vc: 20 kV, Ip: 480 kA, E: 5.8 kJ). Typical experiments are run at 300 kA and 0.33 Hz repetition rate with different gas loads (Ar, Ne, and He) at pressures of ~ 1-3 Torr, usually gathering 1000 shots per day. Simulations are run at a 96-core HP blade server cluster using 3GHz processors with 4GB RAM per node.Preliminary results show axial and radial phase plasma sheath velocity of ~ 1x105 m/s. These are in agreement with the snow-plough model of DPFs. Peak magnetic field of ~ 1 Tesla in the radial compression phase are measured. Electron densities on the order of 1018 cm-3 anticipated. Comparison between 2D and 3D models with empirical results show a good agreement in the axial and radial phase.

  9. Ion probe beam experiments and kinetic modeling in a dense plasma focus Z-pinch

    SciTech Connect

    Schmidt, A. Ellsworth, J. Falabella, S. Link, A. McLean, H. Rusnak, B. Sears, J. Tang, V.; Welch, D.

    2014-12-15

    The Z-pinch phase of a dense plasma focus (DPF) emits multiple-MeV ions in a ∼cm length. The mechanisms through which these physically simple devices generate such high energy beams in a relatively short distance are not fully understood. We are exploring the origins of these large gradients using measurements of an ion probe beam injected into a DPF during the pinch phase and the first kinetic simulations of a DPF Z-pinch. To probe the accelerating fields in our table top experiment, we inject a 4 MeV deuteron beam along the z-axis and then sample the beam energy distribution after it passes through the pinch region. Using this technique, we have directly measured for the first time the acceleration of an injected ion beam. Our particle-in-cell simulations have been benchmarked on both a kJ-scale DPF and a MJ-scale DPF. They have reproduced experimentally measured neutron yields as well as ion beams and EM oscillations which fluid simulations do not exhibit. Direct comparisons between the experiment and simulations enhance our understanding of these plasmas and provide predictive design capability for accelerator and neutron source applications.

  10. Linear accelerator design study with direct plasma injection scheme for warm dense matter

    SciTech Connect

    Kondo, K.; Kanesue, T; Okamura, M.

    2011-03-28

    Warm Dense Matter (WDM) is a challenging science field, which is related to heavy ion inertial fusion and planetary science. It is difficult to expect the behavior because the state with high density and low temperature is completely different from ideal condition. The well-defined WDM generation is required to understand it. Moderate energy ion beams ({approx} MeV/u) slightly above Bragg peak is an advantageous method for WDM because of the uniform energy deposition. Direct Plasma Injection Scheme (DPIS) with a Interdigital H-mode (IH) accelerator has a potential for the beam parameter. We show feasible parameters of the IH accelerator for WDM. WDM physics is a challenging science and is strongly related to Heavy Ion Fusion science. WDM formation by Direct Plasma Injection Scheme (DPIS) with IH accelerator, which is a compact system, is proposed. Feasible parameters for IH accelerator are shown for WDM state. These represents that DPIS with IH accelerator can access a different parameter region of WDM.

  11. Angular distribution of fusion products and x rays emitted by a small dense plasma focus machine

    SciTech Connect

    Castillo, F.; Herrera, J. J. E.; Gamboa, Isabel; Rangel, J.; Golzarri, J. I.; Espinosa, G.

    2007-01-01

    Time integrated measurements of the angular distributions of fusion products and x rays in a small dense plasma focus machine are made inside the discharge chamber, using passive detectors. The machine is operated at 37 kV with a stored energy of 4.8 kJ and a deuterium filling pressure of 2.75 torr. Distributions of protons and neutrons are measured with CR-39 Lantrack registered nuclear track detectors, on 1.8x0.9 cm{sup 2} chips, 500 {mu}m thick. A set of detectors was placed on a semicircular Teflon registered holder, 13 cm away from the plasma column, and covered with 15 {mu}m Al filters, thus eliminating tritium and helium-3 ions, but not protons and neutrons. A second set was placed on the opposite side of the holder, eliminating protons. The angular distribution of x rays is also studied within the chamber with TLD-200 dosimeters. While the neutron angular distributions can be fitted by Gaussian curves mounted on constant pedestals and the proton distributions are strongly peaked, falling rapidly after {+-}40 deg. , the x-ray distributions show two maxima around the axis, presumably as a result of the collision of a collimated electron beam against the inner electrode, along the axis.

  12. Fast valve and nozzle for gas-puff operation of dense plasma focus

    SciTech Connect

    Milanese, Maria M.; Pouzo, Jorge O.; Cortazar, Osvaldo D.; Moroso, Roberto L.

    2006-03-15

    A simple and reliable valve and nozzle system for a very fast injection of gas has been designed and constructed for its use in gas-puff mode of dense plasma focus experiments. It delivers a very quick rise time: 55 {mu}s. The pressure measured in our setup at a distance of 15 mm from the nozzle output is about 0.285 mbar, with a plenum pressure of 3 bars (absolute). The time between the valve aperture and pressure front arrival is 360 {mu}s. This result comes up as an average of about a hundred measurements. The energy input is 95 J (270 V on a 3000 {mu}F capacitor bank). The typical dimensions of the valve are 52 mm in diameter and 80 mm in length. The entire volume of the valve is, then, very small. The relative low pressure and voltage operation are significant advantages of this development. The performance of the valve satisfactorily fulfills the objectives of gas-puff plasma focus operation.

  13. Fast valve and nozzle for gas-puff operation of dense plasma focus

    NASA Astrophysics Data System (ADS)

    Milanese, María M.; Pouzo, Jorge O.; Cortázar, Osvaldo D.; Moroso, Roberto L.

    2006-03-01

    A simple and reliable valve and nozzle system for a very fast injection of gas has been designed and constructed for its use in gas-puff mode of dense plasma focus experiments. It delivers a very quick rise time: 55μs. The pressure measured in our setup at a distance of 15 mm from the nozzle output is about 0.285 mbar, with a plenum pressure of 3 bars (absolute). The time between the valve aperture and pressure front arrival is 360μs. This result comes up as an average of about a hundred measurements. The energy input is 95 J (270 V on a 3000μF capacitor bank). The typical dimensions of the valve are 52 mm in diameter and 80 mm in length. The entire volume of the valve is, then, very small. The relative low pressure and voltage operation are significant advantages of this development. The performance of the valve satisfactorily fulfills the objectives of gas-puff plasma focus operation.

  14. Progress in Development of Dense Plasma Focus Pinch for AmBe Radiological Source Replacement

    NASA Astrophysics Data System (ADS)

    Falabella, Steve; Povilus, Alex; Schmidt, Andrea; Ellsworth, Jennifer; Link, Anthony; Sears, Jason; Higginson, Drew; Jiang, Sheng

    2015-11-01

    A dense plasma focus (DPF) is a compact plasma gun accelerator that can produce intense, high energy ion beams (multiple MeV). These ion beams could be used to replace radiological sources for a variety of applications. Using a 2kJ DPF with a helium gas fill, alpha particles are accelerated into a beryllium target in order to generate a neutron spectrum similar to an AmBe source. We report on initial observations of neutron yields for this system and efforts to optimize and improve repeatability of pinch performance. In particular, incorporating results from newly-developed kinetic LSP simulations, we demonstrated higher neutron yields by adjusting the geometry of the anode electrode. In addition, we present preliminary measurements for energy distributions of ions accelerated by the pinch. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work supported by US DOE/NA-22 Office of Non-proliferation Research and Development.

  15. Ion probe beam experiments and kinetic modeling in a dense plasma focus Z-pinch

    NASA Astrophysics Data System (ADS)

    Schmidt, A.; Ellsworth, J.; Falabella, S.; Link, A.; McLean, H.; Rusnak, B.; Sears, J.; Tang, V.; Welch, D.

    2014-12-01

    The Z-pinch phase of a dense plasma focus (DPF) emits multiple-MeV ions in a ˜cm length. The mechanisms through which these physically simple devices generate such high energy beams in a relatively short distance are not fully understood. We are exploring the origins of these large gradients using measurements of an ion probe beam injected into a DPF during the pinch phase and the first kinetic simulations of a DPF Z-pinch. To probe the accelerating fields in our table top experiment, we inject a 4 MeV deuteron beam along the z-axis and then sample the beam energy distribution after it passes through the pinch region. Using this technique, we have directly measured for the first time the acceleration of an injected ion beam. Our particle-in-cell simulations have been benchmarked on both a kJ-scale DPF and a MJ-scale DPF. They have reproduced experimentally measured neutron yields as well as ion beams and EM oscillations which fluid simulations do not exhibit. Direct comparisons between the experiment and simulations enhance our understanding of these plasmas and provide predictive design capability for accelerator and neutron source applications.

  16. The equation of state of dense xenon plasma under double-shock compression to 172 GPA

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Gu, Yunjun; Chen, Qifeng; Chen, Zhiyun

    2012-03-01

    Warm dense plasmas having uniform, constant density, and temperature were generated by passage of planar shock wave through gas. The pressure of the Xe plasma was accurately measured by optical radiation method in the range of 172 GPa. The shock was produced using the flyer plate impact by accelerated up to ~6 km/s with a two-stage light gas gun. The time-resolved optical radiation histories were acquired by using a multi-wavelength channel optical transience radiance pyrometer. Shock velocity was measured and particle velocity was determined by the impedance-matching methods. Experimental data available of the Xe specimen in this region were compared with the calculations by the self-consistent fluid variational theory (SFVT). The observed shock compression ratios range from ρ/ρ0 = 3.7 for the initial density of 2.2 g/cm3 to ρ/ρ0 = 8.5 for the initial density of 0.04 g/cm3. The comparison of the Hugoniot in the Pressure-compression plane clearly shows how higher initial densities result in lower final compression.

  17. Fully three-dimensional simulation and modeling of a dense plasma focus

    SciTech Connect

    Meehan, B. T.; Niederhaus, J. H. J.

    2014-10-01

    A dense plasma focus (DPF) is a pulsed-power machine that electromagnetically accelerates and cylindrically compresses a shocked plasma in a Z-pinch. The pinch results in a brief (~ 100 ns) pulse of X-rays, and, for some working gases, also a pulse of neutrons. A great deal of experimental research has been done into the physics of DPF reactions, and there exist mathematical models describing its behavior during the different time phases of the reaction. Two of the phases, known as the inverse pinch and the rundown, are approximately governed by magnetohydrodynamics, and there are a number of well-established codes for simulating these phases in two dimensions or in three dimensions under the assumption of axial symmetry. There has been little success, however, in developing fully three-dimensional simulations. In this work we present three-dimensional simulations of DPF reactions and demonstrate that three-dimensional simulations predict qualitatively and quantitatively different behavior than their two-dimensional counterparts. One of the most important quantities to predict is the time duration between the formation of the gas shock and Z-pinch, and the three-dimensional simulations more faithfully represent experimental results for this time duration and are essential for accurate prediction of future experiments.

  18. Investigation of plasma diagnostics using a dual frequency harmonic technique

    SciTech Connect

    Kim, Dong-Hwan; Kim, Young-Do; Cho, Sung-Won; Kim, Yu-Sin; Chung, Chin-Wook

    2014-09-07

    Plasma diagnostic methods using harmonic currents analysis of electrostatic probes were experimentally investigated to understand the differences in their measurement of the plasma parameters. When dual frequency voltage (ω{sub 1},ω{sub 2}) was applied to a probe, various harmonic currents (ω{sub 1}, 2ω{sub 1},ω{sub 2}, 2ω{sub 2},ω{sub 2}±ω{sub 1},ω{sub 2}±2ω{sub 1}) were generated due to the non-linearity of the probe sheath. The electron temperature can be obtained from the ratio of the two harmonics of the probe currents. According to the combinations of the two harmonics, the sensitivities in the measurement of the electron temperature differed, and this results in a difference of the electron temperature. From experiments and simulation, it is shown that this difference is caused by the systematic and random noise.

  19. Spectroscopic investigations of tungsten EUV spectra for fusion plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Clementson, Joel; Lennartsson, Thomas; Beiersdorfer, Peter; Safronova, Ulyana; Brage, Tomas; Grumer, Jon

    2011-10-01

    The Livermore WOLFRAM spectroscopy project consists of experimental and theoretical investigations of tungsten ions of relevance to the diagnostics of magnetically confined fusion plasmas. A recent effort has focused on the complex extreme ultraviolet spectra of few-times ionized tungsten atoms that are expected to be abundant in ITER divertor plasmas. The tungsten ions were produced and excited in the Livermore EBIT-I electron beam ion trap by scanning the electron-beam energy between 30 and 300 eV. The emission was studied using a broad-band grazing-incidence spectrometer covering 150 - 300 Å and a high-resolution spectrometer covering the 180 - 220 Å region. Experimental spectra are presented together with analysis based on calculations using the FAC, GRASP, Cowan, HULLAC, and RMBPT codes. Part of this work was performed under the auspices of the US DOE by LLNL under Contract No. DE-AC52-07NA-27344.

  20. Atomic Processes and Diagnostics of Low Pressure Krypton Plasma

    NASA Astrophysics Data System (ADS)

    Srivastava, Rajesh; Goyal, Dipti; Gangwar, Reetesh; Stafford, Luc

    2015-03-01

    Optical emission spectroscopy along with suitable collisional-radiative (CR) model is used in plasma diagnostics. Importance of reliable cross-sections for various atomic processes is shown for low pressure argon plasma. In the present work, radially-averaged Kr emission lines from the 2pi --> 1sj were recorded as a function of pressure from 1 to 50mTorr. We have developed a CR model using our fine-structure relativistic-distorted wave cross sections. The various processes considered are electron-impact excitation, ionization and their reverse processes. The required rate coefficients have been calculated from these cross-sections assuming Maxwellian energy distribution. Electron temperature obtained from the CR model is found to be in good agreement with the probe measurements. Work is supported by IAEA Vienna, DAE-BRNS Mumbai and CSIR, New Delhi.

  1. Evaluation of two-beam spectroscopy as a plasma diagnostic

    NASA Astrophysics Data System (ADS)

    Billard, B. D.

    1980-12-01

    A two beam spectroscopy system is evaluated theoretically and experimentally. This spectroscopic technique uses correlations between components of emitted light separated by a small difference in angle of propagation. It is a nonperturbing plasma diagnostic which is shown to provide local (as opposed to line of sight averaged) information about fluctuations in the density of light sources within a plasma information not obtainable by the usual spectroscopic methods. The improved design, which abandons some of the components previously deemed essential, does not sacrifice any of the capabilities of the earlier systems in exchange for greater simplicity and increased light efficiency. The hot cathode discharge and prototype TBS system built for evaluation of the technique are described.

  2. Development of neutron spectrometer toward deuterium plasma diagnostics in LHD

    SciTech Connect

    Tomita, H.; Iwai, H.; Iguchi, T.; Kawarabayashi, J.; Isobe, M.; Konno, C.

    2010-10-15

    Neutron spectrometer based on coincident counting of associated particles has been developed for deuterium plasma diagnostics on Large Helical Device (LHD) at the National Institute for Fusion Science. Efficient detection of 2.5 MeV neutron with high energy resolution would be achievable by coincident detection of a scattered neutron and a recoiled proton associated with an elastic scattering of incident neutron in a plastic scintillator as a radiator. The calculated neutron spectra from deuterium plasma heated by neutral beam injection indicate that the energy resolution of better than 7% is required for the spectrometer to evaluate energetic deuterium confinement. By using a prototype of the proposed spectrometer, the energy resolution of 6.3% and the detection efficiency of 3.3x10{sup -7} count/neutron were experimentally demonstrated for 2.5 MeV monoenergetic neutron, respectively.

  3. Stable dense plasma jets produced at laser power densities around 1014 W/cm2

    NASA Astrophysics Data System (ADS)

    Kasperczuk, A.; Pisarczyk, T.; Borodziuk, S.; Ullschmied, J.; Krousky, E.; Masek, K.; Rohlena, K.; Skala, J.; Hora, H.

    2006-06-01

    The results of investigations are presented that are connected with defocused laser beam-planar target interaction. Following the very large focus laser-plasma interaction experiments on the Nova [H. T. Powell, J. A. Caird, J. E. Murray, and C. E. Thompson, 1991 ICF Annual Report UCRL-LR-105820-91, p. 163 (1991)] and GEKKO-XII [C. Yamanaka, Y. Kato, Y. Izawa, K. Yoshida, T. Yamanaka, T. Sasaki, T. Nakatsuka, J. Kuroda, and S. Nakai, IEEE J. Quantum Electron. QE-17, 1639 (1981)] lasers, as well as on the National Ignition Facility (NIF) laser [W. J. Hogan, E. I. Moses, B. E. Warner, M. S. Sorem, and J. M. Soures, Nucl. Fusion 41, 567 (2001)] with generation of high Mach number jets, this paper is devoted to similar jet generation with very detailed measurements of density profiles by using high-power lasers at large focus conditions. The experiment was carried out with target materials of different mass densities (Al, Cu, Ag, Ta, and Pb) using the Prague Asterix Laser System (PALS) iodine laser [K. Jungwirth, A. Cejnarova, L. Juha, B. Kralikowa, J. Krasa, E. Krousky, P. Krupickova, L. Laska, K. Masek, A. Prag, O. Renner, K. Rohlena, B. Rus, J. Skala, P. Straka, and J. Ullschmied, Phys. Plasmas 8, 2495 (2001)]. The investigations were conducted for the laser radiation energy of 100J at two wavelengths of 1.315 and 0.438μm (the first and third harmonics of laser radiation), pulse duration of 0.4ns, and a focal spot radius of 300μm. Most of the experimental data were obtained by means of a three-frame laser interferometer and an x-ray streak camera; the crater parameters were obtained by using the crater replica technique. These investigations have shown that stable dense plasma jets can be produced in a simple configuration of laser beam-planar target interaction, provided that a proper target material is used.

  4. Millimeter-Wave Imaging Technology Advancements for Plasma Diagnostics Applications

    NASA Astrophysics Data System (ADS)

    Kong, Xiangyu

    To realize fusion plant, the very first step is to understand the fundamental physics of materials under fusion conditions, i.e. to understand fusion plasmas. Our research group, Plasma Diagnostics Group, focuses on developing advanced tools for physicists to extract as much information as possible from fusion plasmas at millions degrees. The Electron Cyclotron Emission Imaging (ECEI) diagnostics is a very useful tool invented in this group to study fusion plasma electron temperature and it fluctuations. This dissertation presents millimeter wave imaging technology advances recently developed in this group to improve the ECEI system. New technologies made it more powerful to image and visualize magneto-hydrodynamics (MHD) activities and micro-turbulence in fusion plasmas. Topics of particular emphasis start from development of miniaturized elliptical substrate lens array. This novel substrate lens array replaces the previous generation substrate lens, hyper-hemispherical substrate lens, in terms of geometry. From the optical performance perspective, this substitution not only significantly simplifies the optical system with improved optical coupling, but also enhances the RF/LO coupling efficiency. By the benefit of the mini lens focusing properties, a wideband dual-dipole antenna array is carefully designed and developed. The new antenna array is optimized simultaneously for receiving both RF and LO, with sharp radiation patterns, low side-lobe levels, and less crosstalk between adjacent antennas. In addition, a high frequency antenna is also developed, which extends the frequency limit from 145 GHz to 220 GHz. This type of antenna will be used on high field operation tokamaks with toroidal fields in excess of 3 Tesla. Another important technology advance is so-called extended bandwidth double down-conversion electronics. This new electronics extends the instantaneous IF coverage from 2 to 9.2 GHz to 2 to 16.4 GHz. From the plasma point of view, it means that the

  5. Diagnostics of Nano-Particle Formation in Process Plasmas

    NASA Astrophysics Data System (ADS)

    Kersten, Holger

    2015-09-01

    The main sources of particle generation during plasma surface processing and the formation of nano-composite materials are (i) the formation of large molecules, mesoscopic clusters and particles in the plasma bulk by chemically reactive gases, and (ii) the formation and incorporation of particles at surfaces (target, substrate) by means of plasma-wall interaction. The plasma process promotes the particle formation by excitation, dissociation and reaction of the involved species in the gas phase. The different stages of the particle growth in the gas phase can be observed by various plasma diagnostics as mass spectrometry, laser induced evaporation, photo-detachment, IR absorption, microwave cavity measurements, Mie scattering and self-excited electron resonance spectroscopy (SEERS). Common diagnostics of particle formation also use the observation and analysis of harmonics and other discharge characteristics. Especially the early stages of the particle growth are not well investigated since they are experimentally inaccessible by standard methods as mentioned above. A novel collection method based on neutral drag was tested in order to get a better insight into the early stages of particle growth. The experiments were performed in an asymmetric, capacitively coupled rf-discharge, where multiple growth cycles can be obtained. Making use of the correlation between the particle growth cycles and the bias voltage as well as the phase angle between discharge current and voltage it was possible to monitor each growth process in-situ. This allowed to collect particles at any desired stage of the growth cycle via the neutral drag method. Size distributions of the nanoparticles at the different stages of the growth cycle were determined ex-situ by transmission electron microscopy. The observed correlations of particle size and bias voltage, which can be used for prediction of the particle growth, are qualitatively explained. Furthermore, the change of the electron density

  6. Optical diagnostics for laser wakefields in plasma channels

    NASA Astrophysics Data System (ADS)

    Gaul, E. W.; Le Blanc, S. P.; Downer, M. C.

    1998-11-01

    Laser wakefield accelerators can excite large amplitude electrostatic fields (E >= 100 GV/m) which are potentially suitable for compact accelerators and advanced high energy colliders. An accurate diagnostic tool is necessary to test the physical effects in the wakefield predicted by theory and numerical simulations, and to have control over experiments. Frequency domain interferometry (FDI) (C. W. Siders et. al.), Phys. Rev. Lett. 76, 3570 (1995) has been developed in previous work. We experimentally demonstrate single-shot FDI as a sensitive diagnostic technique for probing laser wakefields. To generate wakefields longer than the diffraction limit, optical guiding of the laser pulse is necessary. An optical guide is formed by the hydrodynamic expansion of a cylindrical shock wave driven by a laser heated plasma, which is generated by laser pulse focused with an axicon lens (C. G. Durfee and H. M. Milchberg, Phys. Rev. Lett. 71, 2409 (1993)) to intensities of ~= 10^13 W/cm^2. These are too low to reach multi-photon ionization or significant collisional ionization in <= 1 atm helium. We preionize Helium gas with an electrical discharge for efficient inverse bremsstrahlung absorption of the laser pulse and formation of a plasma channel. Spatially resolved chirped pulse interferometry is used to measure the radial electron density profile of the channel.

  7. Characterization of Nano-Crystalline Diamond like Carbon (DLC) Films with Substrate Temperature Using Dense Plasma Focusing Method

    SciTech Connect

    Yadav, Vikram S; Dhubkarya, D. C.; Singh, Yashpal; Sahu, Devendra K; Singh, Manveer; Kumar, Kuldeep

    2010-06-17

    Nano-crystalline Diamond like Carbon (DLC) film has been grown by Dense Plasma Focusing Method (DPF) using pure graphite Plasma, on different substrate (glass/silica) at different substrate temperature. The films were grown at substrate temperature 100 deg. C, 150 deg. C and 300 deg. C by the high dense plasma of energy 1.3 k Joule on glass and silica. Raman spectra confirmed that sp{sup 3} content is grown in the films under various conditions. The Raman spectra of these films show a broad asymmetric peak which narrow with sp{sup 2} decreasing contents. We believe that our data presented here may be used as reference of DLC characterization.

  8. Interpretation of STS-3/plasma diagnostics package results in terms of large space structure plasma interactions

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.

    1984-01-01

    The Plasma Diagnostics Package, which was flown aboard STS-3 recorded various chemical releases from the Orbiter. Changes in the plasma environment were observed to occur during Flash Evaporator System (FES) releases, water dumps and maneuvering thruster operations. During flash evaporator operations, broadband Orbiter-generated electro-static noise is enhanced and plasma density irregularity (delta n/N) is observed to increase by as much as 4 times and is strongly peaked below 6 Hz. In the case of water dumps, background electrostatic noise is enhanced or suppressed depending on frequency and Delta N/N is also seen to increase by as much as 4 times. Various changes in the plasma environment are effected by primary and vernier thruster operations. In addition, thruster activity stimulates electrostatic noise with a spectrum which is most intense at frequencies below 10 kHz.

  9. Diagnostic techniques for measuring suprathermal electron dynamics in plasmas (invited)

    SciTech Connect

    Coda, S.

    2008-10-15

    Plasmas, both in the laboratory and in space, are often not in thermodynamic equilibrium, and the plasma electron distribution function is accordingly non-Maxwellian. Suprathermal electron tails can be generated by external drives, such as rf waves and electric fields, or internal ones, such as instabilities and magnetic reconnection. The variety and importance of the phenomena in which suprathermal electrons play a significant role explains an enduring interest in diagnostic techniques to investigate their properties and dynamics. X-ray bremsstrahlung emission has been studied in hot magnetized plasmas for well over two decades, flanked progressively by electron-cyclotron emission in geometries favoring the high-energy end of the distribution function (high-field-side, vertical, oblique emission), by electron-cyclotron absorption, by spectroscopic techniques, and at lower temperatures, by Langmuir probes and electrostatic analyzers. Continuous progress in detector technology and in measurement and analysis techniques, increasingly sophisticated layouts (multichannel and tomographic systems, imaging geometries), and highly controlled suprathermal generation methods (e.g., perturbative rf modulation) have all been brought to bear in recent years on an increasingly detailed, although far from complete, understanding of suprathermal electron dynamics.

  10. Establishing isokinetic flow for a plasma torch exhaust gas diagnostic for a plasma hearth furnace

    SciTech Connect

    Pollack, B.R.

    1996-05-01

    Real time monitoring of toxic metallic effluents in confined gas streams can be accomplished through use of Microwave Induced Plasmas to perform atomic emission spectroscopy, For this diagnostic to be viable it is necessary that it sample from the flowstream of interest in an isokinetic manner. A method of isokinetic sampling was established for this device for use in the exhaust system of a plasma hearth vitrification furnace. The flow and entrained particulate environment were simulated in the laboratory setting using a variable flow duct of the same dimensions (8-inch diameter, schedule 40) as that in the field and was loaded with similar particulate (less than 10 {mu}m in diameter) of lake bed soil typically used in the vitrification process. The flow from the furnace was assumed to be straight flow. To reproduce this effect a flow straightener was installed in the device. An isokinetic sampling train was designed to include the plasma torch, with microwave power input operating at 2.45 GHz, to match local freestream velocities between 800 and 2400 ft/sec. The isokinetic sampling system worked as planned and the plasma torch had no difficulty operating at the required flowrates. Simulation of the particulate suspension was also successful. Steady particle feeds were maintained over long periods of time and the plasma diagnostic responded as expected.

  11. Particle-in-cell modeling for MJ scale dense plasma focus with varied anode shape

    SciTech Connect

    Link, A. Halvorson, C. Schmidt, A.; Hagen, E. C.; Rose, D. V.; Welch, D. R.

    2014-12-15

    Megajoule scale dense plasma focus (DPF) Z-pinches with deuterium gas fill are compact devices capable of producing 10{sup 12} neutrons per shot but past predictive models of large-scale DPF have not included kinetic effects such as ion beam formation or anomalous resistivity. We report on progress of developing a predictive DPF model by extending our 2D axisymmetric collisional kinetic particle-in-cell (PIC) simulations from the 4 kJ, 200 kA LLNL DPF to 1 MJ, 2 MA Gemini DPF using the PIC code LSP. These new simulations incorporate electrodes, an external pulsed-power driver circuit, and model the plasma from insulator lift-off through the pinch phase. To accommodate the vast range of relevant spatial and temporal scales involved in the Gemini DPF within the available computational resources, the simulations were performed using a new hybrid fluid-to-kinetic model. This new approach allows single simulations to begin in an electron/ion fluid mode from insulator lift-off through the 5-6 μs run-down of the 50+ cm anode, then transition to a fully kinetic PIC description during the run-in phase, when the current sheath is 2-3 mm from the central axis of the anode. Simulations are advanced through the final pinch phase using an adaptive variable time-step to capture the fs and sub-mm scales of the kinetic instabilities involved in the ion beam formation and neutron production. Validation assessments are being performed using a variety of different anode shapes, comparing against experimental measurements of neutron yield, neutron anisotropy and ion beam production.

  12. Particle-in-cell modeling for MJ scale dense plasma focus with varied anode shape

    NASA Astrophysics Data System (ADS)

    Link, A.; Halvorson, C.; Hagen, E. C.; Rose, D. V.; Welch, D. R.; Schmidt, A.

    2014-12-01

    Megajoule scale dense plasma focus (DPF) Z-pinches with deuterium gas fill are compact devices capable of producing 1012 neutrons per shot but past predictive models of large-scale DPF have not included kinetic effects such as ion beam formation or anomalous resistivity. We report on progress of developing a predictive DPF model by extending our 2D axisymmetric collisional kinetic particle-in-cell (PIC) simulations from the 4 kJ, 200 kA LLNL DPF to 1 MJ, 2 MA Gemini DPF using the PIC code LSP. These new simulations incorporate electrodes, an external pulsed-power driver circuit, and model the plasma from insulator lift-off through the pinch phase. To accommodate the vast range of relevant spatial and temporal scales involved in the Gemini DPF within the available computational resources, the simulations were performed using a new hybrid fluid-to-kinetic model. This new approach allows single simulations to begin in an electron/ion fluid mode from insulator lift-off through the 5-6 μs run-down of the 50+ cm anode, then transition to a fully kinetic PIC description during the run-in phase, when the current sheath is 2-3 mm from the central axis of the anode. Simulations are advanced through the final pinch phase using an adaptive variable time-step to capture the fs and sub-mm scales of the kinetic instabilities involved in the ion beam formation and neutron production. Validation assessments are being performed using a variety of different anode shapes, comparing against experimental measurements of neutron yield, neutron anisotropy and ion beam production.

  13. Particle-In-Cell Modeling For MJ Dense Plasma Focus with Varied Anode Shape

    NASA Astrophysics Data System (ADS)

    Link, A.; Halvorson, C.; Schmidt, A.; Hagen, E. C.; Rose, D.; Welch, D.

    2014-10-01

    Megajoule scale dense plasma focus (DPF) Z-pinches with deuterium gas fill are compact devices capable of producing 1012 neutrons per shot but past predictive models of large-scale DPF have not included kinetic effects such as ion beam formation or anomalous resistivity. We report on progress of developing a predictive DPF model by extending our 2D axisymmetric collisional kinetic particle-in-cell (PIC) simulations to the 1 MJ, 2 MA Gemini DPF using the PIC code LSP. These new simulations incorporate electrodes, an external pulsed-power driver circuit, and model the plasma from insulator lift-off through the pinch phase. The simulations were performed using a new hybrid fluid-to-kinetic model transitioning from a fluid description to a fully kinetic PIC description during the run-in phase. Simulations are advanced through the final pinch phase using an adaptive variable time-step to capture the fs and sub-mm scales of the kinetic instabilities involved in the ion beam formation and neutron production. Results will be present on the predicted effects of different anode configurations. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) under Contract DE-AC52-07NA27344 and supported by the Laboratory Directed Research and Development Program (11-ERD-063) and the Computing Grand Challenge program at LLNL. This work supported by Office of Defense Nuclear Nonproliferation Research and Development within U.S. Department of Energy's National Nuclear Security Administration.

  14. Effect of Driver Impedance on Dense Plasma Focus Z-Pinch Neutron Yield and Beam Acceleration

    NASA Astrophysics Data System (ADS)

    Sears, J.; Link, A.; Ellsworth, J.; Falabella, S.; Rusnak, B.; Tang, V.; Schmidt, A.; Welch, D.

    2014-10-01

    We explore the effect of driver characteristics on dense plasma focus (DPF) neutron yield and beam acceleration using particle-in-cell (PIC) simulations of a kJ-scale DPF. Our PIC simulations are fluid for the run-down phase and transition to fully kinetic for the pinch phase. The anode-cathode boundary is driven by a circuit model of the capacitive driver, including system inductance, the load of the railgap switches, the guard resistors, and the coaxial transmission line parameters. Simulations are benchmarked to measurements of a table top kJ DPF experiment with neutron yield measured with He3-based detectors. Simulated neutron yield scales approximately with the fourth power of peak current, I4. We also probe the accelerating fields by measuring the acceleration of a 4 MeV deuteron beam and by measuring the DPF self-generated beam energy distribution, finding gradients higher than 50 MV/m. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and supported by the Laboratory Directed Research and Development Program (11-ERD-063) at LLNL.

  15. Experimental Determination of DT Yield in High Current DD Dense Plasma Focii

    SciTech Connect

    Lowe, D. R.; Hagen, E. C.; Meehan, B. T.; Springs, R. K.; O'Brien, R. J.

    2013-06-18

    Dense Plasma Focii (DPF), which utilize deuterium gas to produce 2.45 MeV neutrons, may in fact also produce DT fusion neutrons at 14.1 MeV due to the triton production in the DD reaction. If beam-target fusion is the primary producer of fusion neutrons in DPFs, it is possible that ejected tritons from the first pinch will interact with the second pinch, and so forth. The 2 MJ DPF at National Security Technologies’ Losee Road Facility is able to, and has produced, over 1E12 DD neutrons per pulse, allowing an accurate measurement of the DT/DD ratio. The DT/DD ratio was experimentally verified by using the (n,2n) reaction in a large piece of praseodymium metal, which has a threshold reaction of 8 MeV, and is widely used as a DT yield measurement system1. The DT/DD ratio was experimentally determined for over 100 shots, and then compared to independent variables such as tube pressure, number of pinches per shot, total current, pinch current and charge voltage.

  16. Molecular systems under shock compression into the dense plasma regime: carbon dioxide and hydrocarbon polymers

    NASA Astrophysics Data System (ADS)

    Mattsson, Thomas R.; Cochrane, Kyle R.; Root, Seth; Carpenter, John H.

    2013-10-01

    Density Functional Theory (DFT) has proven remarkably accurate in predicting properties of matter under shock compression into the dense plasma regime. Materials where chemistry plays a role are of interest for many applications, including planetary science and inertial confinement fusion (ICF). As examples of systems where chemical reactions are important, and demonstration of the high fidelity possible for these both structurally and chemically complex systems, we will discuss shock- and re-shock of liquid carbon dioxide (CO2) in the range 100 to 800 GPa and shock compression of hydrocarbon polymers, including GDP (glow discharge polymer) which is used as an ablator in laser ICF experiments. Experimental results from Sandia's Z machine validate the DFT simulations at extreme conditions and the combination of experiment and DFT provide reliable data for evaluating existing and constructing future wide-range equations of state models for molecular compounds. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  17. Stark broadening of hydrogen lines in dense plasmas: analysis of recent experiments.

    PubMed

    Alexiou, S

    2005-06-01

    In recent years experiments conducted by a number of different groups on line broadening of hydrogen lines, mainly H(alpha) on dense plasmas of densities larger than or equal to 10(18) e/cm3 have claimed significant differences from the predictions of the standard theory. At these high densities the standard theory predictions depend on some cutoffs, necessary to preserve unitarity, the long range approximation and to ensure the validity of a semiclassical picture. Furthermore, a new, supposedly "advanced" theory based on a number of incorrect assumptions and/or approximations with extra exotic effects has claimed good agreement with these experiments. In this work we produce benchmark simulation calculations for these data to identify relevant and not relevant physics for the parameters of these experiments. In this way, we evaluate claims of electron-ion coupling, ion dynamics, electron vs ion broadening, nonimpact effects, and nonperturbative effects. At least one data set is seen to be dubious, in agreement with previous analyses. PMID:16089876

  18. Electromagnetic Analysis For The Design Of ITER Diagnostic Port Plugs During Plasma Disruptions

    SciTech Connect

    Zhai, Y

    2014-03-03

    ITER diagnostic port plugs perform many functions including structural support of diagnostic systems under high electromagnetic loads while allowing for diagnostic access to plasma. The design of diagnotic equatorial port plugs (EPP) are largely driven by electromagnetic loads and associate response of EPP structure during plasma disruptions and VDEs. This paper summarizes results of transient electromagnetic analysis using Opera 3d in support of the design activities for ITER diagnostic EPP. A complete distribution of disruption loads on the Diagnostic First Walls (DFWs). Diagnostic Shield Modules (DSMs) and the EPP structure, as well as impact on the system design integration due to electrical contact among various EPP structural components are discussed.

  19. Particle-In-Cell Modeling for MegaJoule Dense Plasma Focus

    NASA Astrophysics Data System (ADS)

    Link, Anthony

    2015-11-01

    Megajoule scale dense plasma focus (DPF) Z-pinches with deuterium gas fill are compact devices capable of producing 1012 neutrons per shot but past predictive models of large-scale DPF have not included kinetic effects such as ion beam formation or anomalous resistivity. We report on progress of developing a predictive DPF model by extending our 2D axisymmetric collisional kinetic particle-in-cell (PIC) simulations from the 4 kJ, 200 kA LLNL DPF to 1 MJ, 2 MA Gemini DPF using the PIC code LSP. These new simulations are by far the most detailed and computationally intensive DPF simulations run to date. They incorporate electrodes, an external pulsed-power driver circuit, and model the plasma from insulator lift-off through the pinch phase. To accommodate the vast range of relevant spatial and temporal scales involved in the Gemini DPF within the available computational resources, the simulations were performed using a new hybrid fluid-to-kinetic model. This new approach allows single simulations to begin in an electron/ion fluid mode from insulator lift-off through the 5-6 μs run-down of the 50 + cm anode, then transition to a fully kinetic PIC description during the run-in phase, when the current sheath is 2-3 mm from the central axis of the anode. Simulations are advanced through the final pinch phase using an adaptive variable time-step to capture the fs and sub-mm scales of the kinetic instabilities involved in the ion beam formation and neutron production. An anode shape scan as well as a scan in stored energy/charging voltage has been performed. A comparison of MJ performance for different drivers will be presented. Validation assessments are being performed, comparing against experimental measurements of neutron yield, neutron anisotropy and plasma density. Prepared by LLNL under Contract DE-AC52-07NA27344. This work supported by the U.S. Department of Energy's National Nuclear Security Administration. Computing support for this work came from the LLNL

  20. Electron Beam Charge Diagnostics for Laser Plasma Accelerators

    SciTech Connect

    Nakamura, Kei; Gonsalves, Anthony; Lin, Chen; Smith, Alan; Rodgers, David; Donahue, Rich; Byrne, Warren; Leemans, Wim

    2011-06-27

    A comprehensive study of charge diagnostics is conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). First, a scintillating screen (Lanex) was extensively studied using subnanosecond electron beams from the Advanced Light Source booster synchrotron, at the Lawrence Berkeley National Laboratory. The Lanex was cross calibrated with an integrating current transformer (ICT) for up to the electron energy of 1.5 GeV, and the linear response of the screen was confirmed for charge density and intensity up to 160 pC/mm{sup 2} and 0.4 pC/(ps mm{sup 2}), respectively. After the radio-frequency accelerator based cross calibration, a series of measurements was conducted using electron beams from an LPA. Cross calibrations were carried out using an activation-based measurement that is immune to electromagnetic pulse noise, ICT, and Lanex. The diagnostics agreed within {+-}8%, showing that they all can provide accurate charge measurements for LPAs.

  1. Interpretation of plasma diagnostics package results in terms of large space structure plasma interactions

    NASA Technical Reports Server (NTRS)

    Kurth, William S.

    1991-01-01

    The Plasma Diagnostics Package (PDP) is a spacecraft which was designed and built at The University of Iowa and which contained several scientific instruments. These instruments were used for measuring Space Shuttle Orbiter environmental parameters and plasma parameters. The PDP flew on two Space Shuttle flights. The first flight of the PDP was on Space Shuttle Mission STS-3 and was a part of the NASA/Office of Space Science payload (OSS-1). The second flight of the PDP was on Space Shuttle Mission STS/51F and was a part of Spacelab 2. The interpretation of both the OSS-1 and Spacelab 2 PDP results in terms of large space structure plasma interactions is emphasized.

  2. Suprathermal plasma observed on STS-3 Mission by plasma diagnostics package

    NASA Technical Reports Server (NTRS)

    Paterson, W.; Frank, L. A.; Owens, H.; Pickett, J. S.; Murphy, G. B.; Shawhan, S. D.

    1985-01-01

    Artificially produced electron beams were used extensively during the past decade as a means of probing the magnetosphere, and more recently as a means of actively controlling spacecraft potential. Experimentation in these areas has proven valuable, yet at times confusing, due to the interaction of the electron beam with the ambient plasma. The OSS-1/STS-3 Mission in March 1982 provided a unique opportunity to study beam-plasma interactions at an altitude of 240 km. On board for this mission was a Fast Pulse Electron Generator (FPEG). Measurements made by the Plasma Diagnostics Package (PDP) while extended on the Orbiter RMS show modifications of the ion and electron energy distributions during electron beam injection. Observations made by charged particle detectors are discussed and related to measurements of Orbiter potential. Several of the PDP instruments, the joint PDP/FPEG experiment, and observations made during electron beam injection are described.

  3. Forbidden lines of highly ionized ions for localized plasma diagnostics

    SciTech Connect

    Hinnov, E.; Fonck, R.; Suckewer, S.

    1980-06-01

    Numerous optically forbidden lines resulting from magnetic dipole transitions in low-lying electron configurations of highly ionized Fe, Ti and Cr atoms have been identified in PLT and PDX tokamak discharges, and applied for localized diagnostics in the high-temperature (0.5 to 3.0 keV) interior of these plasmas. The measurements include determination of local ion densities and their variation in time, and of ion motions (ion temperature, plasma rotations) through Doppler effect of the lines. These forbidden lines are particularly appropriate for such measurements because under typical tokamak conditions their emissivities are quite high (10/sup 11/ to 10/sup 14/ photons/cm/sup 3/-sec), and their relatively long wavelengths allow the use of intricate optical techniques and instrumentation. The spatial location of the emissivity is directly measurable, and tends to occur near radii where the ionization potential of the ion in question is equal to the local electron temperature. In future larger and presumably higher-temperature tokamaks analogous measurements with somewhat heavier atoms, particularly krypton, and perhaps zirconium appear both feasible and desirable.

  4. Plasma diagnostics package. Volume 1: OSS-1 section

    NASA Technical Reports Server (NTRS)

    Pickett, Jolene S. (Compiler); Frank, L. A. (Compiler); Kurth, W. S. (Compiler)

    1988-01-01

    This volume (1) of the Plasma Diagnostics Package (PDP) final science report contains a summary of all of the data reduction and scientific analyses which were performed using PDP data obtained on STS-3 as a part of the Office of Space Science first payload (OSS-1). This work was performed during the period of launch, March 22, l982, through June 30, l983. During this period the primary data reduction effort consisted of processing summary plots of the data received by the 14 instruments located on the PDP and submitting these data to the National Space Science Data Center (NSSDC). The scientific analyses during the performance period consisted of general studies which incorporated the results of several of the PDP's instruments, detailed studies which concentrated on data from only one or two of the instruments, and joint studies of beam-plasma interactions with the OSS-1 Fast Pulse Electron Generator (FPEG) of the Vehicle Charging and Potential Investigation (VCAP). Internal reports, published papers and oral presentations which involve PDP/OSS-1 data are listed in Sections 3 and 4. A PDP/OSS-1 scientific results meeting was held at the University of Iowa on April 19-20, 1983. This meeting was attended by most of the PDP and VCAP investigators and provided a forum for discussing and comparing the various results, particularly with regard to the shuttle orbiter environment. One of the most important functional objectives of the PDP on OSS-1 was to characterize the orbiter environment.

  5. Plasma diagnostics package. Volume 2: Spacelab 2 section, part A

    NASA Technical Reports Server (NTRS)

    Pickett, Jolene S. (Compiler); Frank, L. A. (Compiler); Kurth, W. S. (Compiler)

    1988-01-01

    This volume (2), which consists of two parts (A and B), of the Plasma Diagnostics Package (PDP) Final Science Report contains a summary of all of the data reduction and scientific analyses which were performed using PDP data obtained on STS-51F as a part of the Spacelab 2 (SL-2) payload. This work was performed during the period of launch, July 29, l985, through June 30, l988. During this period the primary data reduction effort consisted of processing summary plots of the data received by 12 of the 14 instruments located on the PDP and submitting these data to the National Space Science Data Center (NSSDC). The scientific analyses during the performance period consisted of follow-up studies of shuttle orbiter environment and orbiter/ionosphere interactions and various plasma particle and wave studies which dealt with data taken when the PDP was on the Remote Manipulator System (RMS) arm and when the PDP was in free flight. Of particular interest during the RMS operations and free flight were the orbiter wake studies and joint studies of beam/plasma interactions with the SL-2 Fast Pulse Electron Generator (FPEG) of the Vehicle Charging and Potential Investigation (VCAP). Internal reports, published papers and presentations which involve PDP/SL-2 data are listed in Sections 3 and 4. A PDP/SL-2 scientific results meeting was held at the University of Iowa on June 10, l986. This meeting was attended by most of the PDP and VCAP investigators and provided a forum for discussing and comparing the various results, particularly with regard to the PDP free flight.

  6. Renormalization shielding effect on the Wannier-ridge mode for double-electron continua in partially ionized dense hydrogen plasmas

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Jung, Young-Dae

    2016-01-01

    The influence of renormalization shielding on the Wannier threshold law for the double-electron escapes by the electron-impact ionization is investigated in partially ionized dense plasmas. The renormalized electron charge and Wannier exponent are obtained by considering the equation of motion in the Wannier-ridge including the renormalization shielding effect. It is found that the renormalization shielding effect reduces the magnitude of effective electron charge, especially, within the Bohr radius in partially ionized dense plasmas. The maximum position of the renormalized electron charge approaches to the center of the target atom with an increase of the renormalization parameter. In addition, the Wannier exponent increases with an increase of the renormalization parameter. The variations of the renormalized electron charge and Wannier exponent due to the renormalization shielding effect are also discussed.

  7. A solar tornado observed by EIS. Plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Levens, P. J.; Labrosse, N.; Fletcher, L.; Schmieder, B.

    2015-10-01

    Context. The term "solar tornadoes" has been used to describe apparently rotating magnetic structures above the solar limb, as seen in high resolution images and movies from the Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamics Observatory (SDO). These often form part of the larger magnetic structure of a prominence, however the links between them remain unclear. Here we present plasma diagnostics on a tornado-like structure and its surroundings, seen above the limb by the Extreme-ultraviolet Imaging Spectrometer (EIS) aboard the Hinode satellite. Aims: We aim to extend our view of the velocity patterns seen in tornado-like structures with EIS to a wider range of temperatures and to use density diagnostics, non-thermal line widths, and differential emission measures to provide insight into the physical characteristics of the plasma. Methods: Using Gaussian fitting to fit and de-blend the spectral lines seen by EIS, we calculated line-of-sight velocities and non-thermal line widths. Along with information from the CHIANTI database, we used line intensity ratios to calculate electron densities at each pixel. Using a regularised inversion code we also calculated the differential emission measure (DEM) at different locations in the prominence. Results: The split Doppler-shift pattern is found to be visible down to a temperature of around log T = 6.0. At temperatures lower than this, the pattern is unclear in this data set. We obtain an electron density of log ne = 8.5 when looking towards the centre of the tornado structure at a plasma temperature of log T = 6.2, as compared to the surroundings of the tornado structure where we find log ne to be nearer 9. Non-thermal line widths show broader profiles at the tornado location when compared to the surrounding corona. We discuss the differential emission measure in both the tornado and the prominence body, which suggests that there is more contribution in the tornado at temperatures below log T = 6.0 than in the

  8. Modeling the hot-dense plasma of the solar interior in and out of thermal equilibrium

    NASA Astrophysics Data System (ADS)

    Lin, Hsiao-Hsuan

    The developments in helioseismology ensure a wealth of studies in solar physics. In particular, with the high precision of the observations of helioseismology, a high-quality solar model is mandated, since even the tiny deviations between a model and the real Sun can be detected. One crucial ingredient of any solar model is the thermodynamics of hot-dense plasmas, in particular the equation of state. This has motivated efforts to develop sophisticated theoretical equations of state (EOS). It is important to realize that for the conditions of solar-interior plasmas, there are no terrestrial laboratory experiments; the only observational constraints come from helioseismology. Among the most successful EOS is so called OPAL EOS, which is part of the Opacity Project at Livermore. It is based on an activity expansion of the quantum plasma, and realized in the so-called "physical picture". One of its main competitor is the so called MHD EOS, which is part of the international Opacity Project (OP), a non-classified multi-country consortium. The approach of MHD is via the so-called "chemical picture". Since OPAL is the most accurate equation of state so far, there has been a call for a public-domain version of it. However, the OPAL code remains proprietary, and its "emulation" makes sense. An additional reason for such a project is that the results form OPAL can only be accessed via tables generated by the OPAL team. Their users do not have the flexibility to change the chemical composition from their end. The earlier MHD-based OPAL emulator worked well with its modifications of the MHD equation of state, which is the Planck-Larkin partition function and its corresponding scattering terms. With this modification, MHD can serve as a OPAL emulator with all the flexibility and accessibility. However, to build a really user-friendly OPAL emulator one should consider CEFF-based OPAL emulator. CEFF itself is already widely used practical EOS which can be easily implemented

  9. Direct Measurement of the Acceleration of a Probe Beam by a Dense Plasma Focus Z-Pinch

    NASA Astrophysics Data System (ADS)

    Ellsworth, J. L.; Falabella, S.; Rusnak, B.; Schmidt, A. E. W.; Tang, V.

    2013-10-01

    Dense plasma focus (DPF) Z-pinch plasmas produce multiple-MeV ions on a cm-scale length, implying electric field gradients exceeding 100 MV/m in the plasma. We report on the first experiments using a 4 MeV deuteron probe beam to directly measure the electric field gradients produced by the kJ-level DPF experiment at LLNL. This information can be used in conjunction with fully kinetic simulations of DPF plasmas to further our understanding of the mechanisms that produce these beams. An understanding of gradient formation in DPFs is necessary to optimize the gradients in these devices for compact accelerator applications. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and supported by the Laboratory Directed Research and Development Program (11-ERD-063) at LLNL.

  10. Simulations of the interaction of intense petawatt laser pulses with dense Z-pinch plasmas : final report LDRD 39670.

    SciTech Connect

    Welch, Dale Robert; MacFarlane, Joseph John; Mehlhorn, Thomas Alan; Campbell, Robert B.

    2004-11-01

    We have studied the feasibility of using the 3D fully electromagnetic implicit hybrid particle code LSP (Large Scale Plasma) to study laser plasma interactions with dense, compressed plasmas like those created with Z, and which might be created with the planned ZR. We have determined that with the proper additional physics and numerical algorithms developed during the LDRD period, LSP was transformed into a unique platform for studying such interactions. Its uniqueness stems from its ability to consider realistic compressed densities and low initial target temperatures (if required), an ability that conventional PIC codes do not possess. Through several test cases, validations, and applications to next generation machines described in this report, we have established the suitability of the code to look at fast ignition issues for ZR, as well as other high-density laser plasma interaction problems relevant to the HEDP program at Sandia (e.g. backlighting).

  11. The interaction between two planar and nonplanar quantum electron acoustic solitary waves in dense electron-ion plasmas

    SciTech Connect

    EL-Labany, S. K.; El-Mahgoub, M. G.; EL-Shamy, E. F.

    2012-06-15

    The interaction between two planar and nonplanar (cylindrical and spherical) quantum electron acoustic solitary waves (QEASWs) in quantum dense electron-ion plasmas has been studied. The extended Poincare-Lighthill-Kuo method is used to obtain planar and nonplanar phase shifts after the interaction of the two QEASWs. The change of phase shifts and trajectories for QEASWs due to the effect of the different geometries, the quantum corrections of diffraction, and the cold electron-to-hot electron number density ratio are discussed. It is shown that the interaction of the QEASWs in planar geometry, cylindrical geometry, and spherical geometry are different. The present investigation may be beneficial to understand the interaction between two planar and nonplanar QEASWs that may occur in the quantum plasmas found in laser-produced plasmas as well as in astrophysical plasmas.

  12. The K x-ray line structures of the 3d-transition metals in warm dense plasma

    NASA Astrophysics Data System (ADS)

    Szymańska, E.; Syrocki, Ł.; Słabkowska, K.; Polasik, M.; Rzadkiewicz, J.

    2016-09-01

    The shapes and positions of the Kα1 and Kα2 x-ray lines for 3d-transition metals can vary substantially as electrons are stripped from the outer-shells. This paper shows the detailed line shapes for nickel and zinc, obtained by calculations with a multiconfiguration Dirac-Fock method that includes Breit interaction and quantum electrodynamics corrections. The line shapes can be useful in interpreting hot, dense plasmas with energetic electrons for which the K x-ray lines are optically thin, as may be produced by pulsed power machines such as the plasma-filled rod pinch diode or the plasma focus, or in short-pulsed high power laser plasmas.

  13. The interaction between two planar and nonplanar quantum electron acoustic solitary waves in dense electron-ion plasmas

    NASA Astrophysics Data System (ADS)

    EL-Labany, S. K.; EL-Shamy, E. F.; El-Mahgoub, M. G.

    2012-06-01

    The interaction between two planar and nonplanar (cylindrical and spherical) quantum electron acoustic solitary waves (QEASWs) in quantum dense electron-ion plasmas has been studied. The extended Poincaré-Lighthill-Kuo method is used to obtain planar and nonplanar phase shifts after the interaction of the two QEASWs. The change of phase shifts and trajectories for QEASWs due to the effect of the different geometries, the quantum corrections of diffraction, and the cold electron-to-hot electron number density ratio are discussed. It is shown that the interaction of the QEASWs in planar geometry, cylindrical geometry, and spherical geometry are different. The present investigation may be beneficial to understand the interaction between two planar and nonplanar QEASWs that may occur in the quantum plasmas found in laser-produced plasmas as well as in astrophysical plasmas.

  14. Diagnostics of silane and germane radio frequency plasmas by coherent anti-Stokes Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Perry, Joseph W.; Shing, Y. H.; Allevato, C. E.

    1988-06-01

    In situ plasma diagnostics using coherent anti-Stokes Raman spectroscopy have shown different dissociation characteristics for GeH4 and SiH4 in radio frequency (rf) plasma-enhanced chemical vapor deposition of amorphous silicon germanium alloy (a-SiGe:H) thin films. The GeH4 dissociation rate in rf plasmas is a factor of about 3 larger than that of SiH4. Plasma diagnostics have revealed that the hydrogen dilution of the SiH4 and GeH4 mixed plasma plays a critical role in suppressing the gas phase polymerization and enhancing the GeH4 dissociation.

  15. Diagnostics of silane and germane radio frequency plasmas by coherent anti-Stokes Raman spectroscopy

    NASA Technical Reports Server (NTRS)

    Perry, Joseph W.; Shing, Y. H.; Allevato, C. E.

    1988-01-01

    In situ plasma diagnostics using coherent anti-Stokes Raman spectroscopy have shown different dissociation characteristics for GeH4 and SiH4 in radio frequency (rf) plasma-enhanced chemical vapor deposition of amorphous silicon germanium alloy (a-SiGe:H) thin films. The GeH4 dissociation rate in rf plasmas is a factor of about 3 larger than that of SiH4. Plasma diagnostics have revealed that the hydrogen dilution of the SiH4 and GeH4 mixed plasma plays a critical role in suppressing the gas phase polymerization and enhancing the GeH4 dissociation.

  16. Effect of dense plasmas on exchange-energy shifts in highly charged ions: An alternative approach for arbitrary perturbation potentials

    SciTech Connect

    Rosmej, F.; Bennadji, K.; Lisitsa, V. S.

    2011-09-15

    An alternative method of calculation of dense plasma effects on exchange-energy shifts {Delta}E{sub x} of highly charged ions is proposed which results in closed expressions for any plasma or perturbation potential. The method is based on a perturbation theory expansion for the inner atomic potential produced by charged plasma particles employing the Coulomb Green function method. This approach allows us to obtain analytic expressions and scaling laws with respect to the electron temperature T, density n{sub e}, and nuclear charge Z. To demonstrate the power of the present method, two specific models were considered in detail: the ion sphere model (ISM) and the Debye screening model (DSM). We demonstrate that analytical expressions can be obtained even for the finite temperature ISM. Calculations have been carried out for the singlet 1s2p{sup 1} P{sub 1} and triplet 1s2p{sup 3} P{sub 1} configurations of He-like ions with charge Z that can be observed in dense plasmas via the He-like resonance and intercombination lines. Finally we discuss recently available purely numerical calculations and experimental data.

  17. Positron plasma diagnostics and temperature control for antihydrogen production.

    PubMed

    Amoretti, M; Amsler, C; Bonomi, G; Bouchta, A; Bowe, P D; Carraro, C; Cesar, C L; Charlton, M; Doser, M; Filippini, V; Fontana, A; Fujiwara, M C; Funakoshi, R; Genova, P; Hangst, J S; Hayano, R S; Jørgensen, L V; Lagomarsino, V; Landua, R; Lindelöf, D; Rizzini, E Lodi; Macrí, M; Madsen, N; Manuzio, G; Montagna, P; Pruys, H; Regenfus, C; Rotondi, A; Testera, G; Variola, A; van der Werf, D P

    2003-08-01

    Production of antihydrogen atoms by mixing antiprotons with a cold, confined, positron plasma depends critically on parameters such as the plasma density and temperature. We discuss nondestructive measurements, based on a novel, real-time analysis of excited, low-order plasma modes, that provide comprehensive characterization of the positron plasma in the ATHENA antihydrogen apparatus. The plasma length, radius, density, and total particle number are obtained. Measurement and control of plasma temperature variations, and the application to antihydrogen production experiments are discussed.

  18. Apatite formation on alkaline-treated dense TiO2 coatings deposited using the solution precursor plasma spray process.

    PubMed

    Chen, Dianying; Jordan, Eric H; Gell, Maurice; Wei, Mei

    2008-05-01

    A dense titania (TiO2) coating was deposited from an ethanol-based solution containing titanium isopropoxide using the solution precursor plasma spray (SPPS) process. XRD and Raman spectrum analyses confirmed that the coating is exclusively composed of rutile TiO2. SEM micrographs show the as-sprayed coating is dense with a uniform thickness and there are no coarse splat boundaries. The as-sprayed coating was chemically treated in 5M NaOH solution at 80 degrees C for 48 h. The bioactivity of as-sprayed and alkaline-treated coatings was investigated by immersing the coatings in simulated body fluid (SBF) for 14-28 days, respectively. After 28 days immersion, there is a complete layer of carbonate-containing apatite formed on the alkaline-treated TiO2 coating surface, but none formed on the as-sprayed coating.

  19. Analysis of plasma wave interference patterns in the Spacelab 2 PDP data. [PDP (Plasma Diagnostics Package)

    SciTech Connect

    Feng, Wei.

    1992-01-01

    During the Spacelab 2 mission the University of Iowa's Plasma Diagnostics Package (PDP) explored the plasma environment around the shuttle. Wideband spectrograms of plasma waves were obtained from the PDP at frequencies from 0 to 30 kHz up to 400 m from the shuttle. These spectrograms frequently showed interference patterns caused by waves with wavelengths short compared to the antenna length (3.89 meters). Two types of interference patterns were observed in the wideband data: associated with the ejection of an electron beam from the space shuttle; associated with lower hybrid waves generated by an interaction between the neutral gas cloud around shuttle and the ambient ionospheric plasma. Analysis of these antenna interference patterns permits a determination of the wavelength, the plasma rest frame frequency, the direction of propagation, the power spectrum and in some cases the location of the source. The electric field noise associated with the electron beam was observed in the wideband data for two periods during which an electron frequency range at low frequencies (below 10 kHz) and shows clear evidence of interference patterns. The broadband low frequency noise was the dominant type of noise produced by the electron beam. The waves have a linear dispersion relation very similar to ion acoustic waves. The returning to the shuttle in response to the ejected electron beam. The waves associated with the lower hybrid resonance have rest frame frequencies near the lower hybrid frequency and propagate perpendicular to the magnetic field. The occurrence of these waves depends strongly on the PDP's position relative to the shuttle and the magnetic field direction. The authors results confirm previous identifications of these waves as lower hybrid waves and suggest they are driven by pick-up ions (H[sub 2]O[sup +]) produced by a charge exchange interaction between a water cloud around the shuttle and the ambient ionosphere.

  20. Kubo–Greenwood approach to conductivity in dense plasmas with average atom models

    DOE PAGES

    Starrett, C. E.

    2016-04-13

    In this study, a new formulation of the Kubo–Greenwood conductivity for average atom models is given. The new formulation improves upon previous treatments by explicitly including the ionic-structure factor. Calculations based on this new expression lead to much improved agreement with ab initio results for DC conductivity of warm dense hydrogen and beryllium, and for thermal conductivity of hydrogen. We also give and test a slightly modified Ziman–Evans formula for the resistivity that includes a non-free electron density of states, thus removing an ambiguity in the original Ziman–Evans formula. Again, results based on this expression are in good agreement withmore » ab initio simulations for warm dense beryllium and hydrogen. However, for both these expressions, calculations of the electrical conductivity of warm dense aluminum lead to poor agreement at low temperatures compared to ab initio simulations.« less

  1. Kubo-Greenwood approach to conductivity in dense plasmas with average atom models

    NASA Astrophysics Data System (ADS)

    Starrett, C. E.

    2016-06-01

    A new formulation of the Kubo-Greenwood conductivity for average atom models is given. The new formulation improves upon previous treatments by explicitly including the ionic-structure factor. Calculations based on this new expression lead to much improved agreement with ab initio results for DC conductivity of warm dense hydrogen and beryllium, and for thermal conductivity of hydrogen. We also give and test a slightly modified Ziman-Evans formula for the resistivity that includes a non-free electron density of states, thus removing an ambiguity in the original Ziman-Evans formula. Again, results based on this expression are in good agreement with ab initio simulations for warm dense beryllium and hydrogen. However, for both these expressions, calculations of the electrical conductivity of warm dense aluminum lead to poor agreement at low temperatures compared to ab initio simulations.

  2. Numerical Approach of Interactions of Proton Beams and Dense Plasmas with Quantum-Hydrodynamic/Particle-in-Cell Model

    NASA Astrophysics Data System (ADS)

    Zhang, Ya; Li, Lian; Jiang, Wei; Yi, Lin

    2016-07-01

    A one dimensional quantum-hydrodynamic/particle-in-cell (QHD/PIC) model is used to study the interaction process of an intense proton beam (injection density of 1017 cm‑3) with a dense plasma (initial density of ~ 1021 cm‑3), with the PIC method for simulating the beam particle dynamics and the QHD model for considering the quantum effects including the quantum statistical and quantum diffraction effects. By means of the QHD theory, the wake electron density and wakefields are calculated, while the proton beam density is calculated by the PIC method and compared to hydrodynamic results to justify that the PIC method is a more suitable way to simulate the beam particle dynamics. The calculation results show that the incident continuous proton beam when propagating in the plasma generates electron perturbations as well as wakefields oscillations with negative valleys and positive peaks where the proton beams are repelled by the positive wakefields and accelerated by the negative wakefields. Moreover, the quantum correction obviously hinders the electron perturbations as well as the wakefields. Therefore, it is necessary to consider the quantum effects in the interaction of a proton beam with cold dense plasmas, such as in the metal films. supported by National Natural Science Foundation of China (Nos. 11405067, 11105057, 11275007)

  3. Plasma Sprayed Dense MgO-Y2O3 Nanocomposite Coatings Using Sol-Gel Combustion Synthesized Powder

    NASA Astrophysics Data System (ADS)

    Wang, Jiwen; Jordan, Eric H.; Gell, Maurice

    2010-09-01

    MgO-Y2O3 nanostructured composite powder (volume ratio of 50:50) was synthesized by a sol-gel combustion process which generated crystal sizes in the 10-20 nm range. The MgO-Y2O3 nanopowder was plasma sprayed using a conventional, DC arc plasma spray system. X-ray diffraction analysis shows that the as-sprayed MgO-Y2O3 coating is composed of cubic MgO and Y2O3 phases and has ~95% density. Microstructure characterization by SEM reveals that the as-sprayed coating has fine grain sizes of 100-300 nm as a result of rapid solidification. The hardness of the coating, 7.5 ± 0.6 GPa, is higher than that of coarse-grained, dense MgO, and Y2O3 ceramics. This approach demonstrates the potential of plasma spray processes for making thick, dense MgO-Y2O3 nanocomposite performs for applications as durable, infrared windows.

  4. Multiple diagnostics in a high-pressure hydrogen microwave plasma torch

    SciTech Connect

    Torres, J.; Mullen, J. J. A. M. van der; Gamero, A.; Sola, A.

    2010-02-01

    We present an experimental study of a hydrogen plasma produced by a microwave axial injection torch, launching the plasma in a helium-filled chamber. Three different diagnostic methods have been used to obtain the electron density and temperature as follows: The Stark intersection method of Balmer spectral lines (already tested in argon and helium plasmas); the modified Boltzmann-plot showing that the plasma is far from the local thermodynamic equilibrium but ruled by the excitation-saturation balance; and a study by the disturbed bilateral relations theory. All of these diagnostic techniques show a good agreement.

  5. Very low pressure plasma sprayed alumina and yttria-stabilized zirconia thin dense coatings using a modified transferred arc plasma torch

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; Zhang, Nannan; Zhang, Baicheng; Sun, Fu; Bolot, Rodolphe; Planche, Marie-Pierre; Liao, Hanlin; Coddet, Christian

    2011-12-01

    As a novel thermal spray process, very low pressure plasma spray (VLPPS) process has been significantly used to deposit thin, dense and homogenous ceramic coating materials for special application needs in recent years. In this study, in order to enhance low-energy plasma jet under very low pressure ambience, a home-made transferred arc nozzle was made and mounted on a low-power F100 plasma torch to fully melt or evaporate powder feedstock. As a result, thin and dense alumina (Al2O3) and yttria-stabilized zirconia (YSZ) ceramic coatings with an average thickness of 30-40 μm were successfully elaborated by the VLPPS process below 1 mbar. An optical emission spectroscopy (OES) was used to analyze the plasma jet properties. The microstructures of the coatings were observed by means of a scanning electron microscopy (SEM). It was found that the YSZ coatings displayed a bimodal microstructure which was composed of splats formed by melted particles and a little amount of vapor condensation from evaporated particles. However, vapor condensation could not be observed in the Al2O3 coatings, and only lamellar splats were found. The mechanical properties of both coatings were also evaluated.

  6. Energy shifts of K- and L-lines as spectroscopic diagnostic of Z-pinch plasmas

    SciTech Connect

    Słabkowska, K.; Szymańska, E.; Polasik, M.; Rzadkiewicz, J.; Syrocki, Ł.; Pereira, N. R.

    2014-12-15

    Ultrafast molybdenum wire implosions on the Z machine at Sandia produce intense pulses of multi-keV x-rays from partially ionized plasmas. The most intense radiation comes from a hot, dense core of thermal plasma in ionization equilibrium with Mo ionized to within the L-shell. Non-thermal, energetic electrons in the plasma generate Kα and Kβ radiation, whose energy is affected by Mo’s ionization state, and therefore on the plasma temperature. Based on an extensive series of recent computations on this effect, we recalculate the pinch’ Mo x-ray spectrum, with reasonable results.

  7. X-ray absorption of a warm dense aluminum plasma created by an ultra-short laser pulse

    NASA Astrophysics Data System (ADS)

    Lecherbourg, L.; Renaudin, P.; Bastiani-Ceccotti, S.; Geindre, J.-P.; Blancard, C.; Cossé, P.; Faussurier, G.; Shepherd, R.; Audebert, P.

    2007-05-01

    Point-projection K-shell absorption spectroscopy has been used to measure absorption spectra of transient aluminum plasma created by an ultra-short laser pulse. The 1s-2p and 1s-3p absorption lines of weakly ionized aluminum were measured for an extended range of densities in a low-temperature regime. Independent plasma characterization was obtained using frequency domain interferometry diagnostic (FDI) that allows the interpretation of the absorption spectra in terms of spectral opacities. A detailed opacity code using the density and temperature inferred from the FDI reproduce the measured absorption spectra except in the last stage of the recombination phase.

  8. A fluctuation-induced plasma transport diagnostic based upon fast-Fourier transform spectral analysis

    NASA Technical Reports Server (NTRS)

    Powers, E. J.; Kim, Y. C.; Hong, J. Y.; Roth, J. R.; Krawczonek, W. M.

    1978-01-01

    A diagnostic, based on fast Fourier-transform spectral analysis techniques, that provides experimental insight into the relationship between the experimentally observable spectral characteristics of the fluctuations and the fluctuation-induced plasma transport is described. The model upon which the diagnostic technique is based and its experimental implementation is discussed. Some characteristic results obtained during the course of an experimental study of fluctuation-induced transport in the electric field dominated NASA Lewis bumpy torus plasma are presented.

  9. THz Plasma Diagnostics: an evolution from FIR and Millimeter waves historical applications

    NASA Astrophysics Data System (ADS)

    Bombarda, F.; Doria, A.; Galatola Teka, G.; Giovenale, E.; Zerbini, M.

    2016-08-01

    Extremely broadband (100 GHz-30 THz) single cycle THz pulses are routinely generated with femtosecond laser for Time Domain Spectroscopy applications (TDS). The wide frequency range has an unquestionable diagnostic potential for Tokamak plasmas and not surprisingly THz TDS finds a natural field of application in this area, which is an evolution of the FIR and millimeter waves diagnostics, where ENEA Frascati holds historical expertise. By illuminating the plasma with a THz beam, phase, intensity and polarization of both reflected and transmitted beams can be detected, devising a single diagnostic instrument capable of measuring multiple plasma parameters. We will describe and discuss the laboratory work now in progress to realise a tailored THz-TDS spectrometer with design parameters optimised for the requirements of Tokamak plasmas and the tests of optical fibers and quasioptical couplers to optimise access to plasma. ENEA Frascati and the Photonics group of Physics Dept. of Oxford University are collaborating on this subject [1].

  10. THz Plasma Diagnostics: an evolution from FIR and Millimeter waves historical applications

    NASA Astrophysics Data System (ADS)

    Bombarda, F.; Doria, A.; Galatola Teka, G.; Giovenale, E.; Zerbini, M.

    2016-08-01

    Extremely broadband (100 GHz–30 THz) single cycle THz pulses are routinely generated with femtosecond laser for Time Domain Spectroscopy applications (TDS). The wide frequency range has an unquestionable diagnostic potential for Tokamak plasmas and not surprisingly THz TDS finds a natural field of application in this area, which is an evolution of the FIR and millimeter waves diagnostics, where ENEA Frascati holds historical expertise. By illuminating the plasma with a THz beam, phase, intensity and polarization of both reflected and transmitted beams can be detected, devising a single diagnostic instrument capable of measuring multiple plasma parameters. We will describe and discuss the laboratory work now in progress to realise a tailored THz-TDS spectrometer with design parameters optimised for the requirements of Tokamak plasmas and the tests of optical fibers and quasioptical couplers to optimise access to plasma. ENEA Frascati and the Photonics group of Physics Dept. of Oxford University are collaborating on this subject [1].

  11. [The correction to spectroscopic diagnostics of plasma jet with air engulfment].

    PubMed

    Zhao, Wen-hua; Tang, Huang-zai; Tian, Kuo; Zhang, Guan-zhong

    2004-04-01

    A high-resolution, multi-line spectroscopic diagnostic system was used to detect two spectral line intensities in plasma jet simultaneously. The temperature profiles of an arc plasma jet issued into atmosphere and the concentrations of the air engulfment in the plasma jet were experimentally determined by means of the line absolute intensity method in this paper. The temperature profiles were obtained in two cases: the air engulfment in the plasma jet being considered and not being considered. The comparison of temperatures obtained in these two cases illustrates that the air engulfment in the plasma jet has considerable influence on spectroscopic diagnostic results. The neglect of the air engulfment brings on error in the temperature diagnostics with the absolute line intensity method. Especially in the region far away from the exit of the nozzle, the error is obvious.

  12. Bounds imposed on the sheath velocity of a dense plasma focus by conservation laws and ionization stability condition

    SciTech Connect

    Auluck, S. K. H. E-mail: skauluck@barc.gov.in

    2014-09-15

    Experimental data compiled over five decades of dense plasma focus research are consistent with the snowplow model of sheath propagation, based on the hypothetical balance between magnetic pressure driving the plasma into neutral gas ahead and “wind pressure” resisting its motion. The resulting sheath velocity, or the numerically proportional “drive parameter,” is known to be approximately constant for devices optimized for neutron production over 8 decades of capacitor bank energy. This paper shows that the validity of the snowplow hypothesis, with some correction, as well as the non-dependence of sheath velocity on device parameters, have their roots in local conservation laws for mass, momentum, and energy coupled with the ionization stability condition. Both upper and lower bounds on sheath velocity are shown to be related to material constants of the working gas and independent of the device geometry and capacitor bank impedance.

  13. Bounds imposed on the sheath velocity of a dense plasma focus by conservation laws and ionization stability condition

    NASA Astrophysics Data System (ADS)

    Auluck, S. K. H.

    2014-09-01

    Experimental data compiled over five decades of dense plasma focus research are consistent with the snowplow model of sheath propagation, based on the hypothetical balance between magnetic pressure driving the plasma into neutral gas ahead and "wind pressure" resisting its motion. The resulting sheath velocity, or the numerically proportional "drive parameter," is known to be approximately constant for devices optimized for neutron production over 8 decades of capacitor bank energy. This paper shows that the validity of the snowplow hypothesis, with some correction, as well as the non-dependence of sheath velocity on device parameters, have their roots in local conservation laws for mass, momentum, and energy coupled with the ionization stability condition. Both upper and lower bounds on sheath velocity are shown to be related to material constants of the working gas and independent of the device geometry and capacitor bank impedance.

  14. Magneto-inertial Fusion: An Emerging Concept for Inertial Fusion and Dense Plasmas in Ultrahigh Magnetic Fields

    SciTech Connect

    Thio, Francis Y.C.

    2008-01-01

    An overview of the U.S. program in magneto-inertial fusion (MIF) is given in terms of its technical rationale, scientific goals, vision, research plans, needs, and the research facilities currently available in support of the program. Magneto-inertial fusion is an emerging concept for inertial fusion and a pathway to the study of dense plasmas in ultrahigh magnetic fields (magnetic fields in excess of 500 T). The presence of magnetic field in an inertial fusion target suppresses cross-field thermal transport and potentially could enable more attractive inertial fusion energy systems. A vigorous program in magnetized high energy density laboratory plasmas (HED-LP) addressing the scientific basis of magneto-inertial fusion has been initiated by the Office of Fusion Energy Sciences of the U.S. Department of Energy involving a number of universities, government laboratories and private institutions.

  15. Ion-acoustic solitary waves in a dense pair-ion plasma containing degenerate electrons and positrons

    NASA Astrophysics Data System (ADS)

    Abdelsalam, U. M.; Moslem, W. M.; Shukla, P. K.

    2008-05-01

    Fully nonlinear propagation of ion-acoustic solitary waves in a collisionless dense/quantum electron-positron-ion plasma is investigated. The electrons and positrons are assumed to follow the Thomas-Fermi density distribution and the ions are described by the hydrodynamic equations. An energy balance-like equation involving a Sagdeev-type pseudo-potential is derived. Finite amplitude solutions are obtained numerically and their characteristics are discussed. The small-but finite-amplitude limit is also considered and an exact analytical solution is obtained. The present studies might be helpful to understand the excitation of nonlinear ion-acoustic solitary waves in a degenerate plasma such as in superdense white dwarfs.

  16. STS-3/OSS-1 Plasma Diagnostics Package (PDP) measurements of the temperature pressure and plasma

    NASA Technical Reports Server (NTRS)

    Shawhan, S. D.; Murphy, G.

    1983-01-01

    Designed to withstand the thermal extremes of the STS-3 mission through the use of heaters and thermal blankets, the plasma diagnostics package sat on the release/engagement mechanism on the OSS-1 payload pallet without a coldplate and was attached to the RMS for two extended periods. Plots show temperature versus mission elapsed time for two temperature sensors. Pressure in the range of 10 to the -3 power torr and 10 to the -7 power torr, measured 3 inches from the skin of the package is plotted against GMT during the mission. The most distinctive feature of the pressure profile is the modulation at the obit period. It was found that pressure peaks when the atmospheric gas is rammed into the cargo bay. Electric and magnetic noise spectra and time variability due to orbiter systems, UHF and S-band transmitter field strengths, and measurements of the ion spectra obtained both in the cargo bay and during experiments are plotted.

  17. Extended application of Kohn-Sham first-principles molecular dynamics method with plane wave approximation at high energy—From cold materials to hot dense plasmas

    NASA Astrophysics Data System (ADS)

    Zhang, Shen; Wang, Hongwei; Kang, Wei; Zhang, Ping; He, X. T.

    2016-04-01

    An extended first-principles molecular dynamics (FPMD) method based on Kohn-Sham scheme is proposed to elevate the temperature limit of the FPMD method in the calculation of dense plasmas. The extended method treats the wave functions of high energy electrons as plane waves analytically and thus expands the application of the FPMD method to the region of hot dense plasmas without suffering from the formidable computational costs. In addition, the extended method inherits the high accuracy of the Kohn-Sham scheme and keeps the information of electronic structures. This gives an edge to the extended method in the calculation of mixtures of plasmas composed of heterogeneous ions, high-Z dense plasmas, lowering of ionization potentials, X-ray absorption/emission spectra, and opacities, which are of particular interest to astrophysics, inertial confinement fusion engineering, and laboratory astrophysics.

  18. Stable solitary waves in super dense plasmas at external magnetic fields

    NASA Astrophysics Data System (ADS)

    Ghaani, Azam; Javidan, Kurosh; Sarbishaei, Mohsen

    2015-07-01

    Propagation of localized waves in a Fermi-Dirac distributed super dense matter at the presence of strong external magnetic fields is studied using the reductive perturbation method. We have shown that stable solitons can be created in such non-relativistic fluids in the presence of an external magnetic field. Such solitary waves are governed by the Zakharov-Kuznetsov (ZK) equation. Properties of solitonic solutions are studied in media with different values of background mass density and strength of magnetic field.

  19. Development, diagnostic and applications of radio-frequency plasma reactor

    NASA Astrophysics Data System (ADS)

    Puac, N.

    2008-07-01

    In many areas of the industry, plasma processing of materials is a vital technology. Nonequilibrium plasmas proved to be able to produce chemically reactive species at a low gas temperature while maintaining highly uniform reaction rates over relatively large areas (Makabe and Petrovic 2006). At the same time nonequilibrium plasmas provide means for good and precise control of the properties of active particles that determine the surface modification. Plasma needle is one of the atmospheric pressure sources that can be used for treatment of the living matter which is highly sensitive when it comes to low pressure or high temperatures (above 40 C). Dependent on plasma conditions, several refined cell responses are induced in mammalian cells (Sladek et al. 2005). It appears that plasma treatment may find many biomedical applications. However, there are few data in the literature about plasma effects on plant cells and tissues. So far, only the effect of low pressure plasmas on seeds was investigated. It was shown that short duration pretreatments by non equilibrium low temperature air plasma were stimulative in light induced germination of Paulownia tomentosa seeds (Puac et al. 2005). As membranes of plants have different properties to those of animals and as they show a wide range of properties we have tried to survey some of the effects of typical plasma which is envisaged to be used in biotechnological applications on plant cells. In this paper we will make a comparison between two configurations of plasma needle that we have used in treatment of biological samples (Puac et al. 2006). Difference between these two configurations is in the additional copper ring that we have placed around glass tube at the tip of the needle. We will show some of the electrical characteristics of the plasma needle (with and without additional copper ring) and, also, plasma emission intensity obtained by using fast ICCD camera.

  20. Langmuir probe diagnostics of plasma in high current electron cyclotron resonance proton ion source

    NASA Astrophysics Data System (ADS)

    Roychowdhury, P.; Kewlani, H.; Mishra, L.; Patil, D. S.; Mittal, K. C.

    2013-07-01

    A high current Electron Cyclotron Resonance (ECR) proton ion source has been developed for low energy high intensity proton accelerator at Bhabha Atomic Research Centre. Langmuir probe diagnostics of the plasma generated in this proton ion source is performed using Langmuir probe. The diagnostics of plasma in the ion source is important as it determines beam parameters of the ion source, i.e., beam current, emittance, and available species. The plasma parameter measurement in the ion source is performed in continuously working and pulsed mode using hydrogen as plasma generation gas. The measurement is performed in the ECR zone for operating pressure and microwave power range of 10-4-10-3 mbar and 400-1000 W. An automated Langmuir probe diagnostics unit with data acquisition system is developed to measure these parameters. The diagnostics studies indicate that the plasma density and plasma electron temperature measured are in the range 5.6 × 1010 cm-3 to 3.8 × 1011 cm-3 and 4-14 eV, respectively. Using this plasma, ion beam current of tens of mA is extracted. The variations of plasma parameters with microwave power, gas pressure, and radial location of the probe have been studied.

  1. Langmuir probe diagnostics of plasma in high current electron cyclotron resonance proton ion source

    SciTech Connect

    Roychowdhury, P.; Kewlani, H.; Mishra, L.; Mittal, K. C.; Patil, D. S.

    2013-07-15

    A high current Electron Cyclotron Resonance (ECR) proton ion source has been developed for low energy high intensity proton accelerator at Bhabha Atomic Research Centre. Langmuir probe diagnostics of the plasma generated in this proton ion source is performed using Langmuir probe. The diagnostics of plasma in the ion source is important as it determines beam parameters of the ion source, i.e., beam current, emittance, and available species. The plasma parameter measurement in the ion source is performed in continuously working and pulsed mode using hydrogen as plasma generation gas. The measurement is performed in the ECR zone for operating pressure and microwave power range of 10{sup −4}–10{sup −3} mbar and 400–1000 W. An automated Langmuir probe diagnostics unit with data acquisition system is developed to measure these parameters. The diagnostics studies indicate that the plasma density and plasma electron temperature measured are in the range 5.6 × 10{sup 10} cm{sup −3} to 3.8 × 10{sup 11} cm{sup −3} and 4–14 eV, respectively. Using this plasma, ion beam current of tens of mA is extracted. The variations of plasma parameters with microwave power, gas pressure, and radial location of the probe have been studied.

  2. Magnetic Diagnostics For Equilibrium Reconstruction And Realtime Plasma Control In NSTX-Upgrade

    SciTech Connect

    Gerhardt, Stefan P.; Erickson, Keith; Kaita, Robert; Lawson, John; Mozulay, Robert; Mueller, Dennis; Que, Weiguo; Rahman, Nabidur; Schneider, Hans; Smalley, Gustav; Tresemer, Kelsey

    2014-06-01

    This paper describes aspects of magnetic diagnostics for realtime control in NSTX-U. The sensor arrangement on the upgraded center column is described. New analog and digital circuitry for processing the plasma current rogowski data are presented. An improved algorithm for estimating the plasma vertical velocity for feedback control is presented.

  3. Laser scattering for temporal and spatial diagnostic of low temperature plasmas

    NASA Astrophysics Data System (ADS)

    Palomares Linares, Jose Maria

    2012-10-01

    Many recent industrial and technological applications like surface etching, inorganic films deposition, polymerization of surfaces or sterilization are developed within the field of low temperature plasmas. To study, monitor and model plasma processes is of great importance to have diagnostic tools that can provide reliable information on different plasma parameters. In general, laser scattering techniques provide a direct and accurate method for plasma diagnostic with spatial and temporal resolution. Laser Thomson scattering is used for the diagnostic of electron density and temperature, two of the most important parameters in low temperature discharges. With a similar setup Rayleigh and Raman scattering techniques are used for the diagnostic of gas density and temperature. In this contribution we deal with the different technical and theoretical aspects that are required for the application of these laser scattering techniques. Of special importance are the detection limit, laser stray light rejection and laser perturbations of the plasma. The present study is performed on different low temperature microwave discharges, both at low and atmospheric pressure. The laser scattering techniques provide information on the spatial distribution of the mentioned plasma parameters over different discharge conditions, including small micro-plasmas. Similarly, the temporal evolution of pulsed plasmas is studied, unraveling the features of the switching on and off phases of the discharges.

  4. Langmuir probe diagnostics of plasma in high current electron cyclotron resonance proton ion source.

    PubMed

    Roychowdhury, P; Kewlani, H; Mishra, L; Patil, D S; Mittal, K C

    2013-07-01

    A high current Electron Cyclotron Resonance (ECR) proton ion source has been developed for low energy high intensity proton accelerator at Bhabha Atomic Research Centre. Langmuir probe diagnostics of the plasma generated in this proton ion source is performed using Langmuir probe. The diagnostics of plasma in the ion source is important as it determines beam parameters of the ion source, i.e., beam current, emittance, and available species. The plasma parameter measurement in the ion source is performed in continuously working and pulsed mode using hydrogen as plasma generation gas. The measurement is performed in the ECR zone for operating pressure and microwave power range of 10(-4)-10(-3) mbar and 400-1000 W. An automated Langmuir probe diagnostics unit with data acquisition system is developed to measure these parameters. The diagnostics studies indicate that the plasma density and plasma electron temperature measured are in the range 5.6 × 10(10) cm(-3) to 3.8 × 10(11) cm(-3) and 4-14 eV, respectively. Using this plasma, ion beam current of tens of mA is extracted. The variations of plasma parameters with microwave power, gas pressure, and radial location of the probe have been studied.

  5. Plasma diagnostics approach to welding heat source/molten pool interaction

    SciTech Connect

    Key, J.F.; McIlwain, M.E.; Isaacson, L.

    1980-01-01

    Plasma diagnostic techniques show that weld fusion zone profile and loss of metal vapors from the molten pool are strongly dependent on both the intensity and distribution of the heat source. These plasma properties, are functions of cathode vertex angle and thermal conductivity of the shielding gas, especially near the anode.

  6. Fusion gamma diagnostics for D-T and D-/sup 3/He plasmas

    SciTech Connect

    Medley, S.S.; Hendel, H.

    1982-11-01

    Nuclear reactions of interest in controlled thermonuclear fusion research often possess a branch yielding prompt emission of gamma radiation. In principle, the gamma emission can be exploited to provide a new fusion diagnostic offering measurements comparable to those obtained by the well established neutron diagnostics methods. The conceptual aspects for a fusion gamma diagnostic are discussed in this paper and the feasibility for application to the Tokamak Fusion Test Reactor during deuterium neutral beam heating of a D-T plasma and minority ion cyclotron resonance heating of a D-/sup 3/He plasma is examined.

  7. Design of the plasma current sensor diagnostic for MFTF-B

    SciTech Connect

    Goerz, D.A.; House, P.A.; Wells, C.W.

    1983-11-23

    The Plasma Current Sensor (PCS) diagnostic includes large diamagnetic loops (DL) that fully encircle the plasma as well as small multi-turn pickup coils (PCs) located between the plasma and the superconducting magnets. Both types of sensors respond to changing magnetic flux linkages caused by plasma currents and are used to measure plasma diamagnetism, from which estimates of temperature and density can be made. The DLs are used in the central cell and Axicell regions, while the PCs are used in the Yin-yang regions where DLs are impractical. Other PCs are used in the central cell to detect axial plasma currents, to help tune trim coils in the transition cell and confirm theoretical estimates of radial diffusion limits. This paper describes the PCS diagnostic and presents the detailed mechanical and electrical designs.

  8. Resonance States of Two-Electron Ions in Dense Quantum Plasmas

    NASA Astrophysics Data System (ADS)

    Jiang, Pinghui; Jiang, Zishi; Kar, Sabyasachi

    2016-10-01

    Plasma screening effects on S-wave resonance states of two-electron systems, starting from Be^{2+} to Ne^{8+} , are investigated in a quantum plasma medium using highly correlated Hylleraas-type wave functions in the framework of the stabilization method. Resonance parameters (resonance position and width) for the 2s2 1Se and 2p2 1Se states along with the ground state energies are reported for the first time as functions of screening parameter. The 2p2 1Se resonance parameters for He and Li+ embedded in quantum plasma environments are also reported.

  9. Skin effect and interaction of short laser pulses with dense plasmas

    NASA Astrophysics Data System (ADS)

    Rozmus, W.; Tikhonchuk, V. T.

    1990-12-01

    Interaction of intense, subpicosecond laser pulses with plasmas is discussed. A self-consistent analytical model of the anomalous and normal skin effects in plasmas with steplike density profile is proposed. The heat transport is described by classical Spitzer conductivity with new boundary conditions accounting for laser absorption in the thin skin layer. Self-similar solutions for the heat-conduction problem are obtained, and the scaling laws for important plasma parameters are also discussed. Predictions are found to be consistent with recent experimental results.

  10. Hilbert-Huang Transform in MHD Plasma Diagnostics

    SciTech Connect

    Kakurin, A.M.; Orlovsky, I.I.

    2005-12-15

    A new method for processing experimental data from MHD diagnostics is discussed that provides a more detailed study of the dynamics of large-scale MHD instabilities. The method is based on the Hilbert-Huang transform method and includes an empirical mode decomposition algorithm, which is used to decompose the experimental MHD diagnostic signals into a set of frequency- and amplitude-modulated harmonics in order to construct the time evolutions of the amplitudes and frequencies of these harmonics with the help of the Hilbert transform. The method can also be applied to analyze data from other diagnostics that measure unsteady oscillating signals.

  11. Shear viscosity for dense plasmas by equilibrium molecular dynamics in asymmetric Yukawa ionic mixtures.

    PubMed

    Haxhimali, Tomorr; Rudd, Robert E; Cabot, William H; Graziani, Frank R

    2015-11-01

    We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and inertial confinement fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100-500 eV and a number density of 10^{25} ions/cc. The motion of 30,000-120,000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction; the electrons are not simulated explicitly. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function, a quantity calculated in the equilibrium MD simulations. We systematically study different mixtures through a series of simulations with increasing fraction of the minority high-Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. In the more strongly coupled plasmas, the kinetic theory does not agree well with the MD results. We develop a simple model that interpolates between classical kinetic theories at weak coupling and the Murillo Yukawa viscosity model at higher coupling. This hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated, ranging from moderately weakly coupled to moderately strongly coupled asymmetric plasma mixtures. PMID:26651805

  12. Influence of the bias signal amplitude and frequency on the harmonic probe measurements in plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Bai, Yu-jing; Lu, Wen-qi; Li, Jian-quan; Xu, Jun; Wang, You-nian

    2016-08-01

    The harmonic probe technique may be used for the diagnostics of the plasma in insulative film deposition circumstances where the conventional Langmuir probe cannot work. In this study, we investigated the influence of the bias signal amplitude V0 and frequency f of the harmonic probe on the diagnostic results. While the measured electron temperature Te and ion density ni change little with f within the frequency range of 1-10 kHz, both of them show a considerable increase with V0 . The reasons for the results were analyzed, and based on the understanding, an improved harmonic probe technique was proposed. The validity of the improved technique was verified by comparing its results with those of a conventional Langmuir probe in Ar plasmas. The improved harmonic probe technique was applied in diagnostics of the plasma circumstance for microwave electron cyclotron resonance plasma enhanced radio frequency magnetron sputtering deposition of SiNx films.

  13. Frontier of the physics of dense plasmas and planetary interiors: experiments, theory, applications

    SciTech Connect

    Saumon, Didier; Fortney, Jonathan J; Glenzer, Siegfried H; Koenig, Michel; Brambrink, E; Militzer, Burkhard; Valencia, Diana

    2008-01-01

    Recent developments of dynamic x-ray characterization experiments of dense matter are reviewed, with particular emphasis on conditions relevant to interiors of terrestrial and gas giant planets. These studies include characterization of compressed states of matter in light elements by x-ray scattering and imaging of shocked iron by radiography. Several applications of this work are examined. These include the structure of massive 'super-Earth' terrestrial planets around other stars, the 40 known extrasolar gas giants with measured masses and radii, and Jupiter itself, which serves as the benchmark for giant planets.

  14. Diagnostics and active species formation in an atmospheric pressure helium sterilization plasma source

    NASA Astrophysics Data System (ADS)

    Simon, A.; Anghel, S. D.; Papiu, M.; Dinu, O.

    2009-01-01

    Systematic spectroscopic studies and diagnostics of an atmospheric pressure radiofrequency (13.56 MHz) He plasma is presented. The discharge is an intrinsic part of the resonant circuit of the radiofrequency oscillator and was obtained using a monoelectrode type torch, at various gas flow-rates (0.1-6.0 l/min) and power levels (0-2 W). As function of He flow-rate and power the discharge has three developing stages: point-like plasma, spherical plasma and ellipsoidal plasma. The emission spectra of the plasma were recorded and investigated as function of developing stages, flow-rates and plasma power. The most important atomic and molecular components were identified and their evolution was studied as function of He flow-rate and plasma power towards understanding basic mechanisms occurring in this type of plasma. The characteristic temperatures (vibrational Tvibr, rotational Trot and excitation Texc) and the electron number density (ne) were determined.

  15. Optical diagnostic instrument for monitoring etch uniformity during plasma etching of polysilicon in a chlorine-helium plasma

    SciTech Connect

    Hareland, W.A.; Buss, R.J.

    1993-06-01

    Nonuniform etching is a serious problem in plasma processing of semiconductor materials and has important consequences in the quality and yield of microelectronic components. In many plasmas, etching occurs at a faster rate near the periphery of the wafer, resulting in nonuniform removal of specific materials over the wafer surface. This research was to investigate in situ optical diagnostic techniques for monitoring etch uniformity during plasma processing of microelectronic components. We measured 2-D images of atomic chlorine at 726 nm in a chlorine-helium plasma during plasma etching of polysilicon in a parallel-plate plasma etching reactor. The 3-D distribution of atomic chlorine was determined by Abel inversion of the plasma image. The experimental results showed that the chlorine atomic emission intensity is at a maximum near the outer radius of the plasma and decreases toward the center. Likewise, the actual etch rate, as determined by profilometry on the processed wafer, was approximately 20% greater near the edge of the wafer than at its center. There was a direct correlation between the atomic chlorine emission intensity and the etch rate of polysilicon over the wafer surface. Based on these analyses, 3-D imaging would be a useful diagnostic technique for in situ monitoring of etch uniformity on wafers.

  16. Experimental results on the irradiation of nuclear fusion relevant materials at the dense plasma focus ‘Bora’ device

    NASA Astrophysics Data System (ADS)

    Cicuttin, A.; Crespo, M. L.; Gribkov, V. A.; Niemela, J.; Tuniz, C.; Zanolli, C.; Chernyshova, M.; Demina, E. V.; Latyshev, S. V.; Pimenov, V. N.; Talab, A. A.

    2015-06-01

    Samples of materials counted as perspective ones for use in the first-wall and construction elements in nuclear fusion reactors (FRs) with magnetic and inertial plasma confinement (W, Ti, Al, low-activated ferritic steel ‘Eurofer’ and some alloys) were irradiated in the dense plasma focus (DPF) device ‘Bora’ having a bank energy of ⩽5 kJ. The device generates hot dense (T ˜ 1 keV, n ˜ 1019 cm-3) deuterium plasma, powerful plasma streams (v ˜ 3 × 107 cm s-1) and fast (E ˜ 0.1 … 1.0 MeV) deuterons of power flux densities q up to 1010 and 1012 W cm-2 correspondingly. ‘Damage factor’ F = q × τ0.5 ensures an opportunity to simulate radiation loads (predictable for both reactors types) by the plasma/ion streams, which have the same nature and namely those parameters as expected in the FR modules. Before and after irradiation we provided investigations of our samples by means of a number of analytical techniques. Among them we used optical and scanning electron microscopy to understand character and parameters of damageability of the surface layers of the samples. Atomic force microscopy was applied to measure roughness of the surface after irradiation. These characteristics are quite important for understanding mechanisms and values of dust production in FR that may relate to tritium retention and emergency situations in FR facilities. We also applied two new techniques. For the surface we elaborated the portable x-ray diffractometer that combines x-ray single photon detection with high spectroscopic and angular resolutions. For bulk damageability investigations we applied an x-ray microCT system where x-rays were produced by a Hamamatsu microfocus source (150 kV, 500 µA, 5 µm minimum focal spot size). The detector was a Hamamatsu CMOS flat panel coupled to a fibre optic plate under the GOS scintillator. The reconstruction of three-dimensional data was run with Cobra 7.4 and DIGIX CT software while VG Studio Max 2.1, and Amira 5.3 were used for

  17. The effect of degeneracy parameter on Weibel instability in dense plasma

    NASA Astrophysics Data System (ADS)

    Mahdavi, M.; Khodadadi Azadboni, F.

    2013-12-01

    In this paper, the role of degeneracy parameter, in both directions parallel and perpendicular with propagation direction of the laser beam in plasma, on the growth rate of Weibel instability, is studied. Calculations show that with the temperature anisotropy, β = T∥/T⊥ = 0.2 and a 0.75 times reduction of the degeneracy parameter, the increased rate of the the Weibel instability growth rate is 72%. The degeneracy required for minimal growth rate in interaction laser plasma with a density of 1.2 × 1032m-3, is larger than 3. The reduction of temperature and the degeneracy parameter of plasma in parallel direction will also increase growth rate about 30% more than incrossing degeneracy parameter in transverse direction. With the minimum pressure costs of cold compression, subsequent degeneracy parameters, and the minimum value of electron quiver energy, we can expect growth rate of Weibel instability order 0.01.

  18. Weakly nonlinear ion-acoustic excitations in a relativistic model for dense quantum plasma.

    PubMed

    Behery, E E; Haas, F; Kourakis, I

    2016-02-01

    The dynamics of linear and nonlinear ionic-scale electrostatic excitations propagating in a magnetized relativistic quantum plasma is studied. A quantum-hydrodynamic model is adopted and degenerate statistics for the electrons is taken into account. The dispersion properties of linear ion acoustic waves are examined in detail. A modified characteristic charge screening length and "sound speed" are introduced, for relativistic quantum plasmas. By employing the reductive perturbation technique, a Zakharov-Kuznetzov-type equation is derived. Using the small-k expansion method, the stability profile of weakly nonlinear slightly supersonic electrostatic pulses is also discussed. The effect of electron degeneracy on the basic characteristics of electrostatic excitations is investigated. The entire analysis is valid in a three-dimensional as well as in two-dimensional geometry. A brief discussion of possible applications in laboratory and space plasmas is included. PMID:26986431

  19. Direct laser acceleration of electron by an ultra intense and short-pulsed laser in under-dense plasma

    SciTech Connect

    Li, Y. Y.; Gu, Y. J.; Zhu, Z.; Li, X. F.; Ban, H. Y.; Kong, Q.; Kawata, S.

    2011-05-15

    Direct laser acceleration (DLA) of electron by an ultra intense and short-pulsed laser interacting with under-dense plasma is investigated based on 2.5-dimensional particle-in-cell simulation. A high-density electron beam is generated by the laser longitudinal ponderomotive force. Although the total number of DLA electrons is significantly smaller than the number of electrons trapped in the bubble, the total charge of high-energy DLA electrons (E>800MeV) reaches 67 pC/{mu}m. It is found that the electron beam occurs in a two-stage acceleration, i.e., accelerated in vacuum by the laser directly soon after a DLA process in plasma. The beam is accelerated violently with effective acceleration gradient in 100 GeV/cm. The energy spectrum of electrons presents a Maxwellian distribution with the highest energy of about 3.1 GeV. The dependence of maximum electron energy and electric quantity with laser intensity, laser width, pulse duration, and initial plasma density are also studied.

  20. Plasma Channel Diagnostic Based on Laser Centroid Oscillations

    SciTech Connect

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Osterhoff, Jens; Shiraishi, Satomi; Schroeder, Carl; Geddes, Cameron; Toth, Csaba; Esarey, Eric; Leemans, Wim

    2010-09-09

    A technique has been developed for measuring the properties of discharge-based plasma channels by monitoring the centroid location of a laser beam exiting the channel as a function of input alignment offset between the laser and the channel. The centroid position of low-intensity (<10{sup 14}Wcm{sup -2}) laser pulses focused at the input of a hydrogen-filled capillary discharge waveguide was scanned and the exit positions recorded to determine the channel shape and depth with an accuracy of a few %. In addition, accurate alignment of the laser beam through the plasma channel can be provided by minimizing laser centroid motion at the channel exit as the channel depth is scanned either by scanning the plasma density or the discharge timing. The improvement in alignment accuracy provided by this technique will be crucial for minimizing electron beam pointing errors in laser plasma accelerators.

  1. LabView virtual instrument for automatic plasma diagnostic

    NASA Astrophysics Data System (ADS)

    Ballesteros, J.; Fernández Palop, J. I.; Hernández, M. A.; Crespo, R. Morales; del Pino, S. Borrego

    2004-01-01

    This article presents a LabView virtual instrument (VI) that automatically measures the I-V plasma probe characteristic and obtains the electron energy distribution function (EEDF) in plasmas. The VI determines several parameters characterizing the plasma using different methods to verify the validity of the results. The program controls some parameters associated with color coded warnings to verify the fidelity of the measured data and their later numerical treatment. The measurement process and data treatment are very fast, about 0.5 s, so that temporal evolutions of the EEDF can be scanned, to analyze the drift of the plasma. Finally, the program is easily portable since it is developed in the LabView environment, so it can be adapted to any platform using common laboratory instruments.

  2. Recent Progress and Future Plans for Fusion Plasma Synthetic Diagnostics Platform

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Kramer, Gerrit; Tang, William; Tobias, Benjamin; Valeo, Ernest; Churchill, Randy; Hausammann, Loic

    2015-11-01

    The Fusion Plasma Synthetic Diagnostics Platform (FPSDP) is a Python package developed at the Princeton Plasma Physics Laboratory. It is dedicated to providing an integrated programmable environment for applying a modern ensemble of synthetic diagnostics to the experimental validation of fusion plasma simulation codes. The FPSDP will allow physicists to directly compare key laboratory measurements to simulation results. This enables deeper understanding of experimental data, more realistic validation of simulation codes, quantitative assessment of existing diagnostics, and new capabilities for the design and optimization of future diagnostics. The Fusion Plasma Synthetic Diagnostics Platform now has data interfaces for the GTS and XGC-1 global particle-in-cell simulation codes with synthetic diagnostic modules including: (i) 2D and 3D Reflectometry; (ii) Beam Emission Spectroscopy; and (iii) 1D Electron Cyclotron Emission. Results will be reported on the delivery of interfaces for the global electromagnetic PIC code GTC, the extended MHD M3D-C1 code, and the electromagnetic hybrid NOVAK eigenmode code. Progress toward development of a more comprehensive 2D Electron Cyclotron Emission module will also be discussed. This work is supported by DOE contract #DEAC02-09CH11466.

  3. Laser produced plasma diagnostics by cavity ringdown spectroscopy and applications

    SciTech Connect

    Milosevic, S.

    2012-05-25

    Laser-produced plasmas have many applications for which detailed characterization of the plume is requested. Cavity ring-down spectroscopy is a versatile absorption method which provides data on the plume and its surroundings, with spatial and temporal resolution. The measured absorption line shapes contain information about angular and velocity distributions within the plume. In various plasmas we have observed molecules or metastable atoms which were not present in the emission spectra.

  4. Submillimeter laser interferometer for high density plasma diagnostic

    NASA Astrophysics Data System (ADS)

    Kamenev, Yu. E.; Kiselyev, V. K.; Kuleshov, E. M.; Knyaz'kov, B. N.; Kononenko, V. K.; Nesterov, P. K.; Yanovsky, M. S.

    1995-06-01

    There are presented the results of investigation of the one-channel homodyne laser interferometer λ=119 µm made on the basis of the hollow dielectric beamguide and quasioptical functional devices. The interferometer is designed for determination of the plasma electron density of the TOKAMAK-7. The density response threshold is 0.7% from the expected plasma density and the phase difference measurement total error is 5°

  5. Cesium control and diagnostics in surface plasma negative ion sources

    SciTech Connect

    Dudnikov, Vadim; Chapovsky, Pavel; Dudnikov, Andrei

    2010-02-15

    For efficient and reliable negative ion generation it is very important to improve a cesium control and diagnostics. Laser beam attenuation and resonance fluorescence can be used for measurement of cesium distribution and cesium control. Resonant laser excitation and two-photon excitation can be used for improved cesium ionization and cesium trapping in the discharge chamber. Simple and inexpensive diode lasers can be used for cesium diagnostics and control. Cesium migration along the surface is an important mechanism of cesium escaping. It is important to develop a suppression of cesium migration and cesium accumulation on the extraction system.

  6. Development of an x-ray Talbot-Lau moire deflectometer for fast density profile measurements of dense plasmas generated by beam-target interactions

    SciTech Connect

    Clayton, Dan; Berninger, M; Meidinger, A; Stutman, Dan; Valdivia, Maria Pia

    2015-05-01

    For the first time an x-ray Talbot-Lau moire deflectometer is being developed that will use a flash tube source and fast detector for dynamic density gradient measurements. In Talbot-Lau moire deflectometry, an x-ray grating makes an image of itself on a second grating (the Talbot effect) to produce a moire pattern on a detector. The test object is placed between these gratings, with variations in index of refraction changing the pattern. A third grating in front of an incoherent x-ray source produces an array of coherent sources. With a 150 kV x-ray flash tube as the source, the gratings are placed in a glancing angle setup for performance at ~60 keV. The detector is a gated CCD with a fast scintillator for x-ray conversion. This diagnostic, designed for the Dual-Axis Radiographic Hydrodynamic Test facility (DARHT) at Los Alamos National Laboratory, measures the density profile of dense plasma plumes ejected from beam-target interactions. DARHT has two high-current, pulsed, inductive linear electron accelerators with bremsstrahlung targets at the end of each beam line to create 2-D radiographic images of hydrodynamic tests. One multi-pulse accelerator has up to four beam pulses striking the same target within 2 μs. Computer simulations that model target evolution and ejected material between pulses are used to design these targets for optimal radiographic performance; the x-ray deflectometer will directly measure density gradients in the ejected plumes and provide the first experimental constraints to these models. During the first year, currently underway, the diagnostic systems are being designed. In year two, the flash tube and fast detector will be deployed at DARHT for radiographic imaging while the deflectometer is built and tested on the bench with a continuous source. Finally, in year three, the fast deflectometer will be installed on DARHT and density measurements will be performed.

  7. Light scattering by a dense ionization plasma wave with a tunable velocity

    NASA Astrophysics Data System (ADS)

    Zhidkov, Alexei; Fujii, Takashi; Esirkepov, Timur; Koga, James; Nemoto, Koshichi; Bulanov, Sergei

    2009-11-01

    An optically-dense ionization wave (IW) produced by two femtosecond laser pulses focused cylindrically and crossing each other is shown to be an efficient coherent x-ray converter. The resulting velocity of a quasi-plane IW in the vicinity of pulse intersection increases with the angle between the pulses from the group velocity of ionizing pulses to infinity allowing an easy tuning the wavelength of x-rays. We study the conversion of a coherent light to x-rays by means of particle-in-cell simulation and by solution of continuous equation with the correct current. The x-ray spectra of a converted, lower frequency coherent light change from the monochromatic to a high order harmonic-like with the duration of ionizing pulses and the intensity of scattered pulses; the spectrum are not symmetrical at Vc.

  8. K-(alpha) X-ray Thomson Scattering From Dense Plasmas

    SciTech Connect

    Kritcher, A L; Neumayer, P; Castor, J; Doppner, T; Falcone, R W; Landen, O L; Lee, H J; Lee, R W; Morse, E C; Ng, A; Pollaine, S; Price, D; Glenzer, S H

    2009-05-07

    Spectrally resolved Thomson scattering using ultra-fast K-{alpha} x-rays has measured the compression and heating of shocked compressed matter. The evolution and coalescence of two shock waves traveling through a solid density LiH target were characterized by the elastic scattering component. The density and temperature at shock coalescence, 2.2 eV and 1.7 x 10{sup 23}cm{sup -3}, were determined from the plasmon frequency shift and the relative intensity of the elastic and inelastic scattering features in the collective scattering regime. The observation of plasmon scattering at coalescence indicates a transition to the dense metallic state in LiH. The density and temperature regimes accessed in these experiments are relevant for inertial confinement fusion experiments and for the study of planetary formation.

  9. All-optical bright γ-ray and dense positron source by laser driven plasmas-filled cone.

    PubMed

    Liu, Jin-Jin; Yu, Tong-Pu; Yin, Yan; Zhu, Xing-Long; Shao, Fu-Qiu

    2016-07-11

    An all-optical scheme for bright γ-rays and dense e-e+ pair source is proposed by irradiating a 1022 W/cm2 laser onto a near-critical-density plasmas filled Al cone. Two-dimensional (2D) QED particle-in-cell (PIC) simulations show that, a dense electron bunch is confined in the laser field due to the radiation reaction and the trapped electrons oscillate transversely, emitting bright γ-rays forward in two ways: (1) nonlinear Compton scattering due to oscillation of electrons in the laser field, and (2) Compton backwardscattering resulting from the bunch colliding with the reflected laser by the cone tip. Finally, the multi-photon Breit-Wheeler process is initiated, producing abundant e-e+ pairs with a density of ∼ 1027m-3. The scheme is further demonstrated by full 3D PIC simulations, which indicates a positron number up to 2 × 109. This compact γ-rays and e-e+ pair source may have many potential applications, such as the laboratory study of astrophysics and nuclear physics. PMID:27410866

  10. Unified first principles description from warm dense matter to ideal ionized gas plasma: electron-ion collisions induced friction.

    PubMed

    Dai, Jiayu; Hou, Yong; Yuan, Jianmin

    2010-06-18

    Electron-ion interactions are central to numerous phenomena in the warm dense matter (WDM) regime and at higher temperature. The electron-ion collisions induced friction at high temperature is introduced in the procedure of ab initio molecular dynamics using the Langevin equation based on density functional theory. In this framework, as a test for Fe and H up to 1000 eV, the equation of state and the transition of electronic structures of the materials with very wide density and temperature can be described, which covers a full range of WDM up to high energy density physics. A unified first principles description from condensed matter to ideal ionized gas plasma is constructed.

  11. Ion beam measurement using Rogowski coils in a hundred of joules dense plasma focus device.

    NASA Astrophysics Data System (ADS)

    Jain, J.; Moreno, J.; Pavez, C.; Bora, B.; Inestrosa-Izurieta, M. J.; Avaria, G.; Soto, L.

    2016-05-01

    In present work an effort has been made to measure the ion beams generated during experiment with PF-400J plasma focus device, using an array of two Rogowski coils with time of flight analysis. It was found that the coils measure the signals of beam for a particular range of operating pressure. The beam signals were recorded at 20, 15, 12, 10, 9,8,7,6 and 5 mbar filled pressure of hydrogen gas. The optimized pressure range for good plasma column formation for this device was found about 9 mbar. At 15 mbar no or very weak beam signals were observed by Rogowski coil which was kept relatively far from the top of the anode and at 20 mbar there were no beam signals observed in both of the coils. The calculated beam energy is found to have maximum value at 9 mbar of filled hydrogen gas pressure.

  12. Dense Helical Electron Bunch Generation in Near-Critical Density Plasmas with Ultrarelativistic Laser Intensities

    PubMed Central

    Hu, Ronghao; Liu, Bin; Lu, Haiyang; Zhou, Meilin; Lin, Chen; Sheng, Zhengming; Chen, Chia-erh; He, Xiantu; Yan, Xueqing

    2015-01-01

    The mechanism for emergence of helical electron bunch(HEB) from an ultrarelativistic circularly polarized laser pulse propagating in near-critical density(NCD) plasma is investigated. Self-consistent three-dimensional(3D) Particle-in-Cell(PIC) simulations are performed to model all aspects of the laser plasma interaction including laser pulse evolution, electron and ion motions. At a laser intensity of 1022 W/cm2, the accelerated electrons have a broadband spectrum ranging from 300 MeV to 1.3 GeV, with the charge of 22 nano-Coulombs(nC) within a solid-angle of 0.14 Sr. Based on the simulation results, a phase-space dynamics model is developed to explain the helical density structure and the broadband energy spectrum. PMID:26503634

  13. Recombination of ions of a dense ion plasma in a fluorine atmosphere

    NASA Astrophysics Data System (ADS)

    Lankin, A. V.

    2016-08-01

    A new effect leading to the slowing of recombination in a weakly nonideal ion plasma is considered. The solvation of ions is included in the explanation of the results from studying a gas discharge afterglow in a fluorine atmosphere. It is shown that recombination in such a system is slowed in comparison to the standard relationships for ideal plasma. The formation and composition of cluster ions in such a medium are considered. The relationship between the variation in the kinetics of recombination and the course of the process according to a complicated mechanism with the intermediate formation of metastable cluster pairs is established. A quantitative model is built and a formula allowing us to describe the recombination rate over a wide range of parameters of the medium is obtained. It is shown that the proposed model is in good agreement with the experimental data.

  14. Time resolved diagnostics of ions in colliding carbon plasmas

    SciTech Connect

    Singh, Ravi Pratap; Gupta, Shyam L.; Thareja, Raj K.

    2014-11-14

    We report a comparative study of the dynamic behaviour of ions at different pressures in laser ablated colliding and single plasma plumes using 2D imaging, optical emission spectroscopy (OES) and a retarding field analyser (RFA). 2D imaging shows the splitting of plasma plumes due to different velocities of various plasma species. OES shows enhancement in abundance of ionic species with their presence for a longer time in colliding plume. C{sub 2} molecular formation is seen at later time in colliding plume compared to single plume and is attributed to dominating collisional processes in the colliding region of the plumes. The time of flight distribution of ions traced by the RFA shows the variation with change in fluence as well as ambient pressure for both colliding and single plume. Time of flight analysis of ions also shows the appearance of a fast peak in ion signal due to acceleration of ions at larger fluence.

  15. Note: The expansion of possibilities for plasma probe diagnostics

    NASA Astrophysics Data System (ADS)

    Masherov, P. E.; Riaby, V. A.; Abgaryan, V. K.

    2016-05-01

    The determination of ion mass for low-pressure Maxwellian plasmas has been proposed. It can be done using Langmuir probe measurements and the Bohm formula for the ion current density to a floating probe, due to this formula's reliance on ion mass. This goal was achieved by accurate measurements of xenon plasma parameters in the inductive discharge at pressure p = 2 ṡ 10-3 Torr using the Plasma Sensors VGPS-12 probe station with the cylindrical Langmuir probes. The analysis of measurement data showed that in these conditions, the Bohm effect was valid with engineering-level precision, resulting in the experimental Bohm coefficient CBCyl ≈ 1.13 for cylindrical probes.

  16. Note: The expansion of possibilities for plasma probe diagnostics.

    PubMed

    Masherov, P E; Riaby, V A; Abgaryan, V K

    2016-05-01

    The determination of ion mass for low-pressure Maxwellian plasmas has been proposed. It can be done using Langmuir probe measurements and the Bohm formula for the ion current density to a floating probe, due to this formula's reliance on ion mass. This goal was achieved by accurate measurements of xenon plasma parameters in the inductive discharge at pressure p = 2 ⋅ 10(-3) Torr using the Plasma Sensors VGPS-12 probe station with the cylindrical Langmuir probes. The analysis of measurement data showed that in these conditions, the Bohm effect was valid with engineering-level precision, resulting in the experimental Bohm coefficient CBCyl ≈ 1.13 for cylindrical probes. PMID:27250479

  17. Note: The expansion of possibilities for plasma probe diagnostics.

    PubMed

    Masherov, P E; Riaby, V A; Abgaryan, V K

    2016-05-01

    The determination of ion mass for low-pressure Maxwellian plasmas has been proposed. It can be done using Langmuir probe measurements and the Bohm formula for the ion current density to a floating probe, due to this formula's reliance on ion mass. This goal was achieved by accurate measurements of xenon plasma parameters in the inductive discharge at pressure p = 2 ⋅ 10(-3) Torr using the Plasma Sensors VGPS-12 probe station with the cylindrical Langmuir probes. The analysis of measurement data showed that in these conditions, the Bohm effect was valid with engineering-level precision, resulting in the experimental Bohm coefficient CBCyl ≈ 1.13 for cylindrical probes.

  18. Application of dust grains and Langmuir probe for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Ussenov, Y. A.; Ramazanov, T. S.; Dzhumagulova, K. N.; Dosbolayev, M. K.

    2014-01-01

    This paper presents the results of the analysis of the experimentally measured width of the dust-free region around a single electric probe in a dusty plasma of glow discharge. The experimental results were compared with the data of a theoretical study on the basis of the balance equation of the dust particles thermal energy and their electrostatic interaction energy with the probe. An alternative method for the determination of the buffer plasma parameters was developed by measuring the dust-free region area around the probe. Using this method the temperature and the concentration of electrons in an argon glow discharge plasma in the pressure range from P= 0.6 to P= 0.8\\ \\text{torr} were determined.

  19. Filamentary structures in dense plasma focus: Current filaments or vortex filaments?

    SciTech Connect

    Soto, Leopoldo Pavez, Cristian; Moreno, José; Castillo, Fermin; Veloso, Felipe; Auluck, S. K. H.

    2014-07-15

    Recent observations of an azimuthally distributed array of sub-millimeter size sources of fusion protons and correlation between extreme ultraviolet (XUV) images of filaments with neutron yield in PF-1000 plasma focus have re-kindled interest in their significance. These filaments have been described variously in literature as current filaments and vortex filaments, with very little experimental evidence in support of either nomenclature. This paper provides, for the first time, experimental observations of filaments on a table-top plasma focus device using three techniques: framing photography of visible self-luminosity from the plasma, schlieren photography, and interferometry. Quantitative evaluation of density profile of filaments from interferometry reveals that their radius closely agrees with the collision-less ion skin depth. This is a signature of relaxed state of a Hall fluid, which has significant mass flow with equipartition between kinetic and magnetic energy, supporting the “vortex filament” description. This interpretation is consistent with empirical evidence of an efficient energy concentration mechanism inferred from nuclear reaction yields.

  20. The effect of degeneracy parameter on Weibel instability in dense plasma

    SciTech Connect

    Mahdavi, M.; Khodadadi Azadboni, F.

    2013-12-15

    In this paper, the role of degeneracy parameter, in both directions parallel and perpendicular with propagation direction of the laser beam in plasma, on the growth rate of Weibel instability, is studied. Calculations show that with the temperature anisotropy, β = T{sub ∥}/T{sub ⊥} = 0.2 and a 0.75 times reduction of the degeneracy parameter, the increased rate of the the Weibel instability growth rate is 72%. The degeneracy required for minimal growth rate in interaction laser plasma with a density of 1.2 × 10{sup 32}m{sup −3}, is larger than 3. The reduction of temperature and the degeneracy parameter of plasma in parallel direction will also increase growth rate about 30% more than incrossing degeneracy parameter in transverse direction. With the minimum pressure costs of cold compression, subsequent degeneracy parameters, and the minimum value of electron quiver energy, we can expect growth rate of Weibel instability order 0.01.

  1. Overview of C-2 field-reversed configuration experiment plasma diagnostics.

    PubMed

    Gota, H; Thompson, M C; Tuszewski, M; Binderbauer, M W

    2014-11-01

    A comprehensive diagnostic suite for field-reversed configuration (FRC) plasmas has been developed and installed on the C-2 device at Tri Alpha Energy to investigate the dynamics of FRC formation as well as to understand key FRC physics properties, e.g., confinement and stability, throughout a discharge. C-2 is a unique, large compact-toroid merging device that produces FRC plasmas partially sustained for up to ∼5 ms by neutral-beam (NB) injection and end-on plasma-guns for stability control. Fundamental C-2 FRC properties are diagnosed by magnetics, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, and NB-related fast-ion/neutral diagnostics. These diagnostics (totaling >50 systems) are essential to support the primary goal of developing a deep understanding of NB-driven FRCs.

  2. Overview of C-2 field-reversed configuration experiment plasma diagnostics

    SciTech Connect

    Gota, H. Thompson, M. C.; Tuszewski, M.; Binderbauer, M. W.

    2014-11-15

    A comprehensive diagnostic suite for field-reversed configuration (FRC) plasmas has been developed and installed on the C-2 device at Tri Alpha Energy to investigate the dynamics of FRC formation as well as to understand key FRC physics properties, e.g., confinement and stability, throughout a discharge. C-2 is a unique, large compact-toroid merging device that produces FRC plasmas partially sustained for up to ∼5 ms by neutral-beam (NB) injection and end-on plasma-guns for stability control. Fundamental C-2 FRC properties are diagnosed by magnetics, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, and NB-related fast-ion/neutral diagnostics. These diagnostics (totaling >50 systems) are essential to support the primary goal of developing a deep understanding of NB-driven FRCs.

  3. Microwave cavity diagnostics of microwave breakdown plasmas. Final report

    SciTech Connect

    Eckstrom, D.J.; Williams, M.S.

    1989-08-01

    We have performed microwave cavity perturbation measurements in the LLNL AIM facility using a 329-MHz cavity that allow us to examine in detail the plasma formation and decay processes for electron densities between approximately 10{sup 5} and 10{sup 7}/cm{sup 3}. We believe these to be the lowest density plasmas ever studied in microwave breakdown experiments, and as such they allow us to determine the power and energy required to produce plasmas suitable for HF radar reflection as well as the effective lifetimes of these plasmas before re-ionization is required. Analyses of these results leads to the following conclusions. (1) For microwave breakdown pulses varying from 0.6 to 2.4 {mu}s, the threshold power required to produce measurable plasmas is 30 to 12 MW/m{sup 2} at 0.01 torr, decreasing to 3.5 to 1.8 MW/m{sup 2} at 1 to 3 torr, and then increasing to 5 to 3.5 MW/m{sup 2} at 30 torr. The threshold power in each case decreases with increasing pulse length, but the required pulse energy increases with decreasing power or increasing pulse length. (2) The effective electron density decay rates are approximately 100/s for 0.1 to 1 torr, after which they increase linearly with pressure. Thus, the useful plasma lifetimes are in the range of 20 to 40 ms at the lower pressures and decrease to about 1 ms at 30 torr. These decay rates and lifetimes are comparable to those that would exist for artificially ionized regions in the upper atmosphere. (3) The collision frequencies measured at pressures of 1 torr and above correspond to electron temperatures of 800 K or less. In fact, the inferred temperatures for p > 3 torr are below room temperature. This may be due to a contribution to the measured conductivity by negative ions.

  4. Diagnostics and required R and D for control of DEMO grade plasmas

    SciTech Connect

    Park, Hyeon K.

    2014-08-21

    Even if the diagnostics of ITER performs as expected, installation and operation of the diagnostic systems in Demo device will be much harsher than those of the present ITER device. In order to operate the Demo grade plasmas, which may have a higher beta limit, safely with very limited number of simple diagnostic system, it requires a well defined predictable plasma modelling in conjunction with the reliable control system for burn control and potential harmful instabilities. Development of such modelling in ITER is too risky and the logical choice would be utilization of the present day steady state capable devices such as KSTAR and EAST. In order to fulfill this mission, sophisticated diagnostic systems such as 2D/3D imaging systems can validate the physics in the theoretical modeling and challenge the predictable capability.

  5. EDITORIAL: The 9th Workshop on Frontiers in Low Temperature Plasma Diagnostics The 9th Workshop on Frontiers in Low Temperature Plasma Diagnostics

    NASA Astrophysics Data System (ADS)

    SAME ADDRESS--> Nader Sadeghi,

  1. Frontiers of the Physics of Dense Plasmas and Planetary Interiors: Experiment, Theory, Applications

    SciTech Connect

    Fortney, J J; Glenzer, S H; Koenig, M; Brambrink, E; Militzer, B; Saumon, D; Valencia, D

    2008-09-12

    We review recent developments of dynamic x-ray characterization experiments of dense matter, with particular emphasis on conditions relevant to interiors of terrestrial and gas giant planets. These studies include characterization of compressed states of matter in light elements by x-ray scattering and imaging of shocked iron by radiography. We examine several applications of this work. These include the structure of massive 'Super Earth' terrestrial planets around other stars, the 40 known extrasolar gas giants with measured masses and radii, and Jupiter itself, which serves as our benchmark for giant planets. We are now in an era of dramatic improvement in our knowledge of the physics of materials at high density. For light elements, this theoretical and experimental work has many applications, including internal confinement fusion as well as the interiors of gas giant planets. For heavy elements, experiments on silicates and iron at high pressure are helping to better understand the Earth, as well as terrestrial planets as a class of objects. In particular, the discovery of rocky and gaseous planets in other planetary systems has opened our imaginations to planets not found in our own solar system. While the fields of experiments of matter at high densities, first principles calculations of equations of state (EOS), planetary science, and astronomy do progress independently of each other, it is important for there to be communication between fields. For instance, in the realm of planets, physicists can learn of key problems that exist in the area of planetary structure, and how advances in our understanding of input physics could shed new light in this area. Astronomers and planetary scientists can learn where breakthroughs in physics of materials under extreme conditions are occurring, and be ready to apply these findings within their fields.

  2. Plasma diagnostic techniques in thermal-barrier tandem-mirror fusion experiments

    SciTech Connect

    Silver, E.H.; Clauser, J.F.; Carter, M.R.; Failor, B.H.; Foote, J.H.; Hornady, R.S.; James, R.A.; Lasnier, C.J.; Perkins, D.E.

    1986-08-29

    We review two classes of plasma diagnostic techniques used in thermal-barrier tandem-mirror fusion experiments. The emphasis of the first class is to study mirror-trapped electrons at the thermal-barrier location. The focus of the second class is to measure the spatial and temporal behavior of the plasma space potential at various axial locations. The design and operation of the instruments in these two categories are discussed and data that are representative of their performance is presented.

  3. X-linked adrenoleukodystrophy with non-diagnostic plasma very long chain fatty acids.

    PubMed Central

    Kennedy, C R; Allen, J T; Fensom, A H; Steinberg, S J; Wilson, R

    1994-01-01

    Measurement of plasma very long chain fatty acids is widely recognised as a sensitive screening test for X-linked adrenoleukodystrophy (X-ALD). This test has particular importance because of the highly variable clinical expression of X-ALD. In this affected family the progressive childhood form of X-ALD was accompanied by "non-diagnostic" concentrations of plasma very long chain fatty acids. The implications for diagnosis of X-ALD are discussed. PMID:8006665

  4. Nonintrusive microwave diagnostics of collisional plasmas in Hall thrusters and dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Stults, Joshua

    This research presents a numerical framework for diagnosing electron properties in collisional plasmas. Microwave diagnostics achieved a significant level of development during the middle part of the last century due to work in nuclear weapons and fusion plasma research. With the growing use of plasma-based devices in fields as diverse as space propulsion, materials processing and fluid flow control, there is a need for improved, flexible diagnostic techniques suitable for use under the practical constraints imposed by plasma fields generated in a wide variety of aerospace devices. Much of the current diagnostic methodology in the engineering literature is based on analytical diagnostic, or forward, models. The Appleton-Hartree formula is an oft-used analytical relation for the refractive index of a cold, collisional plasma. Most of the assumptions underlying the model are applicable to diagnostics for plasma fields such as those found in Hall Thrusters and dielectric barrier discharge (DBD) plasma actuators. Among the assumptions is uniform material properties, this assumption is relaxed in the present research by introducing a flexible, numerical model of diagnostic wave propagation that can capture the effects of spatial gradients in the plasma state. The numerical approach is chosen for its flexibility in handling future extensions such as multiple spatial dimensions to account for scattering effects when the spatial extent of the plasma is small relative to the probing beam's width, and velocity dependent collision frequency for situations where the constant collision frequency assumption is not justified. The numerical wave propagation model (forward model) is incorporated into a general tomographic reconstruction framework that enables the combination of multiple interferometry measurements. The combined measurements provide a quantitative picture of the spatial variation in the plasma properties. The benefit of combining multiple measurements in a coherent

  5. Neutron diagnostics for pulsed high-density thermonuclear plasmas.

    PubMed

    Ekdahl, C A

    1979-08-01

    Time-resolved measurements of the neutron flux from the Scylla IV-P linear theta-pinch experiment have been made with scintillator-photomultiplier combinations. Calibration of the detectors is accomplished by a comparison of their time-integrated output with the total neutron yield measured using a foil-activation technique for which an accurate calibration has been established. The temperature of the Maxwellian ion velocity distribution that would produce the observed flux is obtained from the Maxwellian reactivity < sigmav >(DD) for D (d,n)He3 and measurements of the temporal evolution of the plasma column density and dimensions. This determination of the time history of the ion temperature is in good agreement with the plasma energy measured using other techniques.

  6. Infrared laser induced plasma diagnostics of silver target

    SciTech Connect

    Ahmat, L. Nadeem, Ali; Ahmed, I.

    2014-09-15

    In the present work, the optical emission spectra of silver (Ag) plasma have been recorded and analyzed using the laser induced breakdown spectroscopy technique. The emission line intensities and plasma parameters were investigated as a function of lens to sample distance, laser irradiance, and distance from the target surface. The electron number density (n{sub e}) and electron temperature (T{sub e}) were determined using the Stark broadened line profile and Boltzmann plot method, respectively. A gradual increase in the spectral line intensities and the plasma parameters, n{sub e} from 2.89 × 10{sup 17} to 3.92 × 10{sup 17 }cm{sup −3} and T{sub e} from 4662 to 8967 K, was observed as the laser irradiance was increased 2.29 × 10{sup 10}–1.06 × 10{sup 11} W cm{sup −2}. The spatial variations in n{sub e} and T{sub e} were investigated from 0 to 5.25 mm from the target surface, yielding the electron number density from 4.78 × 10{sup 17} to 1.72 × 10{sup 17 }cm{sup −3} and electron temperature as 9869–3789 K. In addition, the emission intensities and the plasma parameters of silver were investigated by varying the ambient pressure from 0.36 to 1000 mbars.

  7. A two photon absorption laser induced fluorescence diagnostic for fusion plasmas

    SciTech Connect

    Magee, R. M.; Galante, M. E.; McCarren, D.; Scime, E. E.; Boivin, R. L.; Brooks, N. H.; Groebner, R. J.; Hill, D. N.; Porter, G. D.

    2012-10-15

    The quality of plasma produced in a magnetic confinement fusion device is influenced to a large extent by the neutral gas surrounding the plasma. The plasma is fueled by the ionization of neutrals, and charge exchange interactions between edge neutrals and plasma ions are a sink of energy and momentum. Here we describe a diagnostic capable of measuring the spatial distribution of neutral gas in a magnetically confined fusion plasma. A high intensity (5 MW/cm{sup 2}), narrow bandwidth (0.1 cm{sup -1}) laser is injected into a hydrogen plasma to excite the Lyman {beta} transition via the simultaneous absorption of two 205 nm photons. The absorption rate, determined by measurement of subsequent Balmer {alpha} emission, is proportional to the number of particles with a given velocity. Calibration is performed in situ by filling the chamber to a known pressure of neutral krypton and exciting a transition close in wavelength to that used in hydrogen. We present details of the calibration procedure, including a technique for identifying saturation broadening, measurements of the neutral density profile in a hydrogen helicon plasma, and discuss the application of the diagnostic to plasmas in the DIII-D tokamak.

  8. Thomson scattering as a method for laser plasma diagnostics

    SciTech Connect

    Alayi, Y.

    1983-12-01

    The Thomson scattering has been used to determine the density and temperature of an inhomogeneous nonstationary plasma. A common method to calibrate the Thomson scattering device consists in replacing the plasma by a gas and measuring the Rayleigh scattering cross section. The angular distribution of the scattered light in Argon is measured, the incident light is a ruby laser with ..delta..t = 30ns and lambda = 6943nm and vertically polarized. We have found that angular distribution is strongly favored in the forward direction (30/sup 0/, 45/sup 0/, 60/sup 0/) and defavored for backward direction (90/sup 0/, 120/sup 0/, 135/sup 0/, 150/sup 0/) in agreement with the results of George, et al, but in disagreement with the Rayleigh theory which assumes a uniform distribution. Our results may be related to the form of the scattered light spectrum which undergoes a dramatic change through the kinetic-hydrodynamic transition. The general form of the spectrum is determined by the parameter y = 1/Kl (where K = 4..pi.. sin (theta/2)/lambda, theta is the scattering angle and l is the free path path), which increases in the direction of the hydrodynamic regime (small angles). By analogy, the Thomson scattering presents the same aspects with ..cap alpha.. = 1/Klambda /SUB D/ (where lambda /SUB D/ is the Debye length). The deviation from the uniform distribution provides the possibility to determine the plasma turbulence spectrum from the scattered light.

  9. First-principles thermal conductivity of warm-dense deuterium plasmas for inertial confinement fusion applications.

    PubMed

    Hu, S X; Collins, L A; Boehly, T R; Kress, J D; Goncharov, V N; Skupsky, S

    2014-04-01

    Thermal conductivity (κ) of both the ablator materials and deuterium-tritium (DT) fuel plays an important role in understanding and designing inertial confinement fusion (ICF) implosions. The extensively used Spitzer model for thermal conduction in ideal plasmas breaks down for high-density, low-temperature shells that are compressed by shocks and spherical convergence in imploding targets. A variety of thermal-conductivity models have been proposed for ICF hydrodynamic simulations of such coupled and degenerate plasmas. The accuracy of these κ models for DT plasmas has recently been tested against first-principles calculations using the quantum molecular-dynamics (QMD) method; although mainly for high densities (ρ > 100 g/cm3), large discrepancies in κ have been identified for the peak-compression conditions in ICF. To cover the wide range of density-temperature conditions undergone by ICF imploding fuel shells, we have performed QMD calculations of κ for a variety of deuterium densities of ρ = 1.0 to 673.518 g/cm3, at temperatures varying from T = 5 × 103 K to T = 8 × 106 K. The resulting κQMD of deuterium is fitted with a polynomial function of the coupling and degeneracy parameters Γ and θ, which can then be used in hydrodynamic simulation codes. Compared with the "hybrid" Spitzer-Lee-More model currently adopted in our hydrocode lilac, the hydrosimulations using the fitted κQMD have shown up to ∼20% variations in predicting target performance for different ICF implosions on OMEGA and direct-drive-ignition designs for the National Ignition Facility (NIF). The lower the adiabat of an imploding shell, the more variations in predicting target performance using κQMD. Moreover, the use of κQMD also modifies the shock conditions and the density-temperature profiles of the imploding shell at early implosion stage, which predominantly affects the final target performance. This is in contrast to the previous speculation that κQMD changes mainly the

  10. First-principles thermal conductivity of warm-dense deuterium plasmas for inertial confinement fusion applications

    NASA Astrophysics Data System (ADS)

    Hu, S. X.; Collins, L. A.; Boehly, T. R.; Kress, J. D.; Goncharov, V. N.; Skupsky, S.

    2014-04-01

    Thermal conductivity (κ) of both the ablator materials and deuterium-tritium (DT) fuel plays an important role in understanding and designing inertial confinement fusion (ICF) implosions. The extensively used Spitzer model for thermal conduction in ideal plasmas breaks down for high-density, low-temperature shells that are compressed by shocks and spherical convergence in imploding targets. A variety of thermal-conductivity models have been proposed for ICF hydrodynamic simulations of such coupled and degenerate plasmas. The accuracy of these κ models for DT plasmas has recently been tested against first-principles calculations using the quantum molecular-dynamics (QMD) method; although mainly for high densities (ρ > 100 g/cm3), large discrepancies in κ have been identified for the peak-compression conditions in ICF. To cover the wide range of density-temperature conditions undergone by ICF imploding fuel shells, we have performed QMD calculations of κ for a variety of deuterium densities of ρ = 1.0 to 673.518 g/cm3, at temperatures varying from T = 5 × 103 K to T = 8 × 106 K. The resulting κQMD of deuterium is fitted with a polynomial function of the coupling and degeneracy parameters Γ and θ, which can then be used in hydrodynamic simulation codes. Compared with the "hybrid" Spitzer-Lee-More model currently adopted in our hydrocode lilac, the hydrosimulations using the fitted κQMD have shown up to ˜20% variations in predicting target performance for different ICF implosions on OMEGA and direct-drive-ignition designs for the National Ignition Facility (NIF). The lower the adiabat of an imploding shell, the more variations in predicting target performance using κQMD. Moreover, the use of κQMD also modifies the shock conditions and the density-temperature profiles of the imploding shell at early implosion stage, which predominantly affects the final target performance. This is in contrast to the previous speculation that κQMD changes mainly the

  11. Stable dense plasma jets produced at laser power densities around 10{sup 14} W/cm{sup 2}

    SciTech Connect

    Kasperczuk, A.; Pisarczyk, T.; Borodziuk, S.; Ullschmied, J.; Krousky, E.; Masek, K.; Rohlena, K.; Skala, J.; Hora, H.

    2006-06-15

    The results of investigations are presented that are connected with defocused laser beam-planar target interaction. Following the very large focus laser-plasma interaction experiments on the Nova [H. T. Powell, J. A. Caird, J. E. Murray, and C. E. Thompson, 1991 ICF Annual Report UCRL-LR-105820-91, p. 163 (1991)] and GEKKO-XII [C. Yamanaka, Y. Kato, Y. Izawa, K. Yoshida, T. Yamanaka, T. Sasaki, T. Nakatsuka, J. Kuroda, and S. Nakai, IEEE J. Quantum Electron. QE-17, 1639 (1981)] lasers, as well as on the National Ignition Facility (NIF) laser [W. J. Hogan, E. I. Moses, B. E. Warner, M. S. Sorem, and J. M. Soures, Nucl. Fusion 41, 567 (2001)] with generation of high Mach number jets, this paper is devoted to similar jet generation with very detailed measurements of density profiles by using high-power lasers at large focus conditions. The experiment was carried out with target materials of different mass densities (Al, Cu, Ag, Ta, and Pb) using the Prague Asterix Laser System (PALS) iodine laser [K. Jungwirth, A. Cejnarova, L. Juha, B. Kralikowa, J. Krasa, E. Krousky, P. Krupickova, L. Laska, K. Masek, A. Prag, O. Renner, K. Rohlena, B. Rus, J. Skala, P. Straka, and J. Ullschmied, Phys. Plasmas 8, 2495 (2001)]. The investigations were conducted for the laser radiation energy of 100 J at two wavelengths of 1.315 and 0.438 {mu}m (the first and third harmonics of laser radiation), pulse duration of 0.4 ns, and a focal spot radius of 300 {mu}m. Most of the experimental data were obtained by means of a three-frame laser interferometer and an x-ray streak camera; the crater parameters were obtained by using the crater replica technique. These investigations have shown that stable dense plasma jets can be produced in a simple configuration of laser beam-planar target interaction, provided that a proper target material is used.

  12. Warm dense aluminum plasma generated by the free-electron-laser FLASH

    SciTech Connect

    Zastrau, U.; Vinko, S. M.; Wark, J. S.; Toleikis, S.; Tschentscher, T.; Glenzer, S. H.; Lee, R. W.; Nelson, A. J.; Dzelzainis, T. W. J.; Riley, D.; Nagler, B.; Galtier, E.; Rosmej, F. B.; Foerster, E.

    2012-05-25

    We report on experiments aimed at the generation and characterization of solid density plasmas at the free-electron laser FLASH in Hamburg. Aluminum samples were irradiated with XUV pulses at 13.5 nm wavelength (92 eV photon energy). The pulses with duration of a few tens of femtoseconds and pulse energy up to 100 {mu}J are focused to intensities ranging from 10{sup 13} to 10{sup 17} W/cm{sup 2}. We investigate the absorption and temporal evolution of the sample under irradiation by use of XUV spectroscopy. We discuss the origin of saturable absorption, radiative decay, bremsstrahlung and ionic line emission. Our experimental results are in good agreement with hydrodynamic simulations.

  13. Electron kinetic effects on optical diagnostics in fusion plasmas

    SciTech Connect

    Mirnov, V. V.; Den Hartog, D. J.; Duff, J.; Parke, E.; Brower, D. L. Ding, W. X.

    2014-08-21

    At anticipated high electron temperatures in ITER, the effects of electron thermal motion on Thomson scattering (TS), toroidal interferometer/polarimeter (TIP) and poloidal polarimeter (PoPola) diagnostics will be significant and must be accurately treated. We calculate electron thermal corrections to the interferometric phase and polarization state of an EM wave propagating along tangential and poloidal chords (Faraday and Cotton-Mouton polarimetry) and perform analysis of the degree of polarization for incoherent TS. The precision of the previous lowest order linear in τ = T{sub e}/m{sub e}c{sup 2} model may be insufficient; we present a more precise model with τ{sup 2}-order corrections to satisfy the high accuracy required for ITER TIP and PoPola diagnostics. The linear model is extended from Maxwellian to a more general class of anisotropic electron distributions that allows us to take into account distortions caused by equilibrium current, ECRH and RF current drive effects. The classical problem of degree of polarization of incoherent Thomson scattered radiation is solved analytically exactly without any approximations for the full range of incident polarizations, scattering angles, and electron thermal motion from non-relativistic to ultra-relativistic. The results are discussed in the context of the possible use of the polarization properties of Thomson scattered light as a method of T{sup e} measurement relevant to ITER operational scenarios.

  14. ITER Plasma at Electron Cyclotron Frequency Domain: Tokamak Core Plasma Diagnostics Based on the Synergy of Stimulated Raman and Brillouin Scatterings

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander

    2012-10-01

    A novel plasma diagnostic method is proposed based on the synergy of stimulated Raman and Brillouin scatterings. A nonlinear plasma mode is excited in a 4-wave coupling,footnotetextV. Alexander STEFAN, Nonlinear Electromagnetic Radiation Plasma Interactions, (S-U-Press, 2008). leading to the appearance of suprathermal electrons and accelerated ions at the plasma edgefootnotetextV. Alexander Stefan, Abstract: D1.00018 : ITER Plasma at Electron Cyclotron Frequency Domain: Stimulated Raman Scattering off Gould-Trivelpiece Modes and Generation of Suprathermal Electrons and Energetic Ions; Bulletin of the American Physical Society APS April Meeting 2011 Volume 56, Number 4. with the parameters directly dependent on the plasma parameters in the core of tokamak. Accordingly, plasma diagnostic in the core region, (ion temperature), can be performed by the diagnostics of suprathermal electrons and accelerated ions at the edge plasma.

  15. Spectral diagnostics of laser erosion plasma of mercury chalcogenide targets

    NASA Astrophysics Data System (ADS)

    Kotlyarchuk, B. K.; Popovych, D. I.; Savchuk, V. K.; Savitsky, V. G.

    1995-11-01

    The article sets out to investigate spatial-time and spectral characteristics of laser erosive vapor-plasma torch (EVT), formed at the vaporization of mercury chalcogenines targets. Its influence on the synthesis processes of HgTe and CdHgTe layers, condensed in mercury vapor, is described. It is shown that the laser radiation flux density and Hg vapor pressure in the reaction chamber are dominating factors which determine the character of gas-dynamic spread and EVT composition of mercury chalcogenides targets.

  16. Tracer-encapsulated pellet injector for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Sudo, S.; Viniar, I.; Lukin, A.; Reznichenko, P.; Umov, A.

    2005-05-01

    An injector for making solid hydrogen pellets around impurity cores has been developed for plasma transport study in large helical device. A technique has been employed for automatic loading carbon or polystyrene cores of 0.2 mm diameter from a gun magazine to a light-gas gun barrel. The injector is equipped with a cryocooler and is able to form a 3.2 mm long and 3 mm diameter cylindrical solid hydrogen pellet at 7-8 K with an impurity core in its center within 6 min and to inject it in the light-gas gun up to 1 km/s.

  17. Hydrogen-encapsulated impurity pellet injector for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Viniar, I.; Reznichenko, P.; Lukin, A.; Umov, A.; Sudo, S.

    2001-06-01

    A novel technology is suggested for making solid hydrogen shells around impurity pellets to be injected into plasmas of fusion devices with a view to looking into its transport properties. In proof-of-principle tests, a 3 mm long and 3 mm diameter cylindrical solid hydrogen shell was formed around a 0.2 mm diameter globular pellet at a temperature of 8-11 K within 5 min and accelerated in a pipe-gun barrel up to 1 km/s.

  18. Spectroscopic, imaging, and probe diagnostics of laser plasma plumes expanding between confining surfaces

    SciTech Connect

    Yeates, P.; Kennedy, E. T.

    2010-11-15

    Laser plasma plumes were generated in aluminum rectangular cavities of fixed depth (6 mm) and varying height (2.0, 1.5, and 1.0 mm). Space and time resolved visible emission spectroscopy, gated intensified visible imaging, and Langmuir probe diagnostics were utilized to diagnose the evolution of the confined plasma plumes in comparison to freely expanding plasma plume generated from ablation of a planar target. The constrained plasma behavior displayed a multiphase history. Early stage interactions (t<100 ns) resulted in enhanced continuum and line emission, shockwave formation and plasma plume rebound. Later phase, long duration plasma-surface interactions (t>160 ns) resulted in sustained 'decay', i.e., a rapid termination of continuum emission, in concert with decreases in peak electron density (N{sub e}) and plasma temperature (T). This later phase originates from loss mechanisms which bleed the plasma plume of thermal energy and charged particles. These loss mechanisms increase in magnitude as the duration of the plasma-surface interaction increases. The transition from enhancement phase, originating from hydrodynamic containment, and plasma-surface collisions, to decay phase is described and occurs for each cavity at a different point in the space time history.

  19. Dust dynamics and diagnostic applications in quasi-neutral plasmas and magnetic fusion

    NASA Astrophysics Data System (ADS)

    Wang, Zhehui; Ticos, Catalin M.; Si, Jiahe; Delzanno, Gian Luca; Lapenta, Gianni; Wurden, Glen

    2007-11-01

    Little is known about dust dynamics in highly ionized quasi-neutral plasmas with ca. 1.0 e+20 per cubic meter density and ion temperature at a few eV and above, including in magnetic fusion. For example, dust motion in fusion, better known as UFO's, has been observed since 1980's but not explained. Solid understanding of dust dynamics is also important to International Thermonuclear Experimental Reactor (ITER) because of concerns about safety and dust contamination of fusion core. Compared with well studied strongly-coupled dusty plasma regime, new physics may arise in the higher density quasi-neutral plasma regime because of at least four orders of magnitude higher density and two orders of magnitude hotter ion temperature. Our recent laboratory experiments showed that plasma-flow drag force dominates over other forces in a quasi-neutral flowing plasma. In contrast, delicate balance among different forces in dusty plasma has led to many unique phenomena, in particular, the formation of dust crystal. Based on our experiments, we argue that 1) dust crystal will not form in the highly ionized plasmas with flows; 2) the UFO's are moving dust dragged by plasma flows; 3) dust can be used to measure plasma flow. Two diagnostic applications using dust for laboratory quasi-neutral plasmas and magnetic fusion will also be presented.

  20. A dual far-infrared laser diagnostic of magnetized plasmas

    SciTech Connect

    Darrow, D.S.; Park, H.K.

    1988-02-01

    A dual far-infrared laser has been constructed and its properties have been exploited to probe tokamak-like discharges in the CDX toroidal device. Thermal variation of the difference frequency between the two far-infrared cavities is slow, though the cavities lack thermal stabilization, simply because their assembly on the same chassis exposes them to virtually identical temperature changes. The optical arrangement beyond the laser permits conversion within minutes between interferometry and density fluctuation observation, and within an hour between different operating wavelengths. Line-average densities of 2 /times/ 10/sup 13/ cm/sup -3/ and coherent fluctuations in the neighborhood of 20 kHz have been measured with this diagnostic. 15 refs., 5 figs., 2 tabs.