Sample records for dense shapes ldrd

  1. Simulations of the interaction of intense petawatt laser pulses with dense Z-pinch plasmas : final report LDRD 39670.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welch, Dale Robert; MacFarlane, Joseph John; Mehlhorn, Thomas Alan

    We have studied the feasibility of using the 3D fully electromagnetic implicit hybrid particle code LSP (Large Scale Plasma) to study laser plasma interactions with dense, compressed plasmas like those created with Z, and which might be created with the planned ZR. We have determined that with the proper additional physics and numerical algorithms developed during the LDRD period, LSP was transformed into a unique platform for studying such interactions. Its uniqueness stems from its ability to consider realistic compressed densities and low initial target temperatures (if required), an ability that conventional PIC codes do not possess. Through several testmore » cases, validations, and applications to next generation machines described in this report, we have established the suitability of the code to look at fast ignition issues for ZR, as well as other high-density laser plasma interaction problems relevant to the HEDP program at Sandia (e.g. backlighting).« less

  2. LDRD FY2004 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotta, P. R.; Kline, K. M.

    2005-02-28

    The Laboratory Directed Research and Development (LDRD) Program is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the missions of the Laboratory, the Department of Energy, and the National Nuclear Security Administration in national security, homeland security, energy security, environmental management, bioscience and healthcare technology, and breakthroughs in fundamental science and technology. The LDRD Program was authorized by Congress in 1991 and is administered by the Laboratory Science and Technology Office. The accomplishments described in this Annual Report demonstrate how the LDRD portfolio is strongly aligned with these missions and contributes to the Laboratory’smore » success in meeting its goals. The LDRD budget of $69.8 million for FY2004 sponsored 220 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific and technical quality and mission relevance. Each year, the number of meritorious proposals far exceeds the funding available, making the selection a challenging one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the Nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory’s multidisciplinary team approach to science and technology. Safeguarding the Nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major

  3. LDRD Annual Report FY2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sketchley, J A; Kotta, P; De Yoreo, J

    The Laboratory Directed Research and Development (LDRD) Program, authorized by Congress in 1991 and administered by the Laboratory Science and Technology Office, is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the missions of the Laboratory, the Department of Energy, and National Nuclear Security Administration in national security, energy security, environmental management, bioscience and technology to improve human health, and breakthroughs in fundamental science and technology. The accomplishments described in this Annual Report demonstrate the strong alignment of the LDRD portfolio with these missions and contribute to the Laboratory's success in meeting its goals.more » The LDRD budget of $92 million for FY2006 sponsored 188 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific quality and mission relevance. Each year, the number of deserving proposals far exceeds the funding available, making the selection a tough one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory's multidisciplinary team approach to science and technology. Safeguarding the nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle for attracting and retaining the best and the brightest

  4. FY2014 LBNL LDRD Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Darren

    2015-06-01

    Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE’s National Laboratory System, Berkeley Lab supports DOE’s missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation. The LDRD program supports Berkeley Lab’s mission in many ways. First, because LDRD funds can be allocated within a relatively short time frame, Berkeley Lab researchers can support the mission of the Department of Energy (DOE) and serve the needs of the nationmore » by quickly responding to forefront scientific problems. Second, LDRD enables Berkeley Lab to attract and retain highly qualified scientists and to support their efforts to carry out worldleading research. In addition, the LDRD program also supports new projects that involve graduate students and postdoctoral fellows, thus contributing to the education mission of Berkeley Lab.« less

  5. 1999 LDRD Laboratory Directed Research and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rita Spencer; Kyle Wheeler

    This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less

  6. LDRD Highlights at the National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alayat, R. A.

    2016-10-10

    To meet the nation’s critical challenges, the Department of Energy (DOE) national laboratories have always pushed the boundaries of science, technology, and engineering. The Atomic Energy Act of 1954 provided the basis for these laboratories to engage in the cutting edge of science and technology and respond to technological surprises, while retaining the best scientific and technological minds. To help re-energize this commitment, in 1991 the U.S. Congress authorized the national laboratories to devote a relatively small percentage of their budget to creative and innovative work that serves to maintain their vitality in disciplines relevant to DOE missions. Since then,more » this effort has been formally called the Laboratory Directed Research and Development (LDRD) Program. LDRD has been an essential mechanism to enable the laboratories to address DOE’s current and future missions with leading-edge research proposed independently by laboratory technical staff, evaluated through expert peer-review committees, and funded by the individual laboratories consistent with the authorizing legislation and the DOE LDRD Order 413.2C.« less

  7. Understanding shape entropy through local dense packing

    DOE PAGES

    van Anders, Greg; Klotsa, Daphne; Ahmed, N. Khalid; ...

    2014-10-24

    Entropy drives the phase behavior of colloids ranging from dense suspensions of hard spheres or rods to dilute suspensions of hard spheres and depletants. Entropic ordering of anisotropic shapes into complex crystals, liquid crystals, and even quasicrystals was demonstrated recently in computer simulations and experiments. The ordering of shapes appears to arise from the emergence of directional entropic forces (DEFs) that align neighboring particles, but these forces have been neither rigorously defined nor quantified in generic systems. In this paper, we show quantitatively that shape drives the phase behavior of systems of anisotropic particles upon crowding through DEFs. We definemore » DEFs in generic systems and compute them for several hard particle systems. We show they are on the order of a few times the thermal energy (k BT) at the onset of ordering, placing DEFs on par with traditional depletion, van der Waals, and other intrinsic interactions. In experimental systems with these other interactions, we provide direct quantitative evidence that entropic effects of shape also contribute to self-assembly. We use DEFs to draw a distinction between self-assembly and packing behavior. We show that the mechanism that generates directional entropic forces is the maximization of entropy by optimizing local particle packing. Finally, we show that this mechanism occurs in a wide class of systems and we treat, in a unified way, the entropy-driven phase behavior of arbitrary shapes, incorporating the well-known works of Kirkwood, Onsager, and Asakura and Oosawa.« less

  8. FY 2014 LDRD Annual Report Project Summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomchak, Dena

    The FY 2014 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support future DOE missions and national research priorities. LDRD is essential to INL - it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enahnces technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

  9. LDRD Program Gives NREL Researchers Path Toward Innovation | News | NREL

    Science.gov Websites

    projects over the years. Photo by Dennis Schroeder The Energy Department's National Renewable Energy handful of LDRD projects. Photo by Dennis Schroeder Money Funds Brainstorming Work While most of the LDRD , renewable electricity generation, and sustainable transportation. Photo by Dennis Schroeder Different Groups

  10. LDRD 2014 Annual Report: Laboratory Directed Research and Development Program Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatton, Diane

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy (DOE) in accordance with DOE Order 413.2B dated April 19, 2006. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY 2014, as required. In FY 2014, the BNL LDRD Program funded 40 projects, 8 of which were new starts, at a total cost of $9.6M.

  11. LDRD 2012 Annual Report: Laboratory Directed Research and Development Program Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bookless, William

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy in accordance with DOE Order 413.2B dated April 19, 2006. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY2012, as required. In FY2012, the BNL LDRD Program funded 52 projects, 14 of which were new starts, at a total cost of $10,061,292.

  12. LDRD 2015 Annual Report: Laboratory Directed Research and Development Program Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatton, D.

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy (DOE) in accordance with DOE Order 413.2B dated April 19, 2006. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY 2015, as required. In FY 2015, the BNL LDRD Program funded 43 projects, 12 of which were new starts, at a total cost of $9.5M.

  13. LDRD 2016 Annual Report: Laboratory Directed Research and Development Program Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatton, D.

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy (DOE) in accordance with DOE Order 413.2C dated October 22, 2015. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY 2016, as required. In FY 2016, the BNL LDRD Program funded 48 projects, 21 of which were new starts, at a total cost of $11.5M. The investments that BNL makes in its LDRD program support the Laboratory’smore » strategic goals. BNL has identified four Critical Outcomes that define the Laboratory’s scientific future and that will enable it to realize its overall vision. Two operational Critical Outcomes address essential operational support for that future: renewal of the BNL campus; and safe, efficient laboratory operations.« less

  14. LDRD 2017 Annual Report: Laboratory Directed Research and Development Program Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Jack; Flynn, Liz

    This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY 2017, as required. In FY 2017, the BNL LDRD Program funded 46 projects, 13 of which were new starts, at a total cost of $10.4M.

  15. Idaho National Laboratory Annual Report FY 2013 LDRD Project Summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dena Tomchak

    The FY 2013 LDRD Annual Report is a compendium of the diverse research performed to develop and ensure the INL’s technical capabilities support the current and future DOE missions and national research priorities. LDRD is essential to INL—it provides a means for the Laboratory to maintain scientific and technical vitality while funding highly innovative, high-risk science and technology research and development (R&D) projects. The program enhances technical capabilities at the Laboratory, providing scientific and engineering staff with opportunities to explore proof-of-principle ideas, advanced studies of innovative concepts, and preliminary technical analyses. Established by Congress in 1991, the LDRD Program provesmore » its benefit each year through new programs, intellectual property, patents, copyrights, national and international awards, and publications.« less

  16. LDRD Final Report: Global Optimization for Engineering Science Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HART,WILLIAM E.

    1999-12-01

    For a wide variety of scientific and engineering problems the desired solution corresponds to an optimal set of objective function parameters, where the objective function measures a solution's quality. The main goal of the LDRD ''Global Optimization for Engineering Science Problems'' was the development of new robust and efficient optimization algorithms that can be used to find globally optimal solutions to complex optimization problems. This SAND report summarizes the technical accomplishments of this LDRD, discusses lessons learned and describes open research issues.

  17. LDRD FY 2014 Program Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anita Gianotto; Dena Tomchak

    As required by DOE Order 413.2B the FY 2014 Program Plan is written to communicate ares of investment and approximate amounts being requested for the upcoming fiscal year. The program plan also includes brief highlights of current or previous LDRD projects that have an opportunity to impact our Nation's current and future energy challenges.

  18. Selected Examples of LDRD Projects Supporting Test Ban Treaty Verification and Nonproliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, K.; Al-Ayat, R.; Walter, W. R.

    The Laboratory Directed Research and Development (LDRD) Program at the DOE National Laboratories was established to ensure the scientific and technical vitality of these institutions and to enhance the their ability to respond to evolving missions and anticipate national needs. LDRD allows the Laboratory directors to invest a percentage of their total annual budget in cutting-edge research and development projects within their mission areas. We highlight a selected set of LDRD-funded projects, in chronological order, that have helped provide capabilities, people and infrastructure that contributed greatly to our ability to respond to technical challenges in support of test ban treatymore » verification and nonproliferation.« less

  19. On the Crossover from Classical to Fermi Liquid Behavior in Dense Plasmas

    NASA Astrophysics Data System (ADS)

    Daligault, Jerome

    2017-10-01

    We explore the crossover from classical plasma to quantum Fermi liquid behavior of electrons in dense plasmas. To this end, we analyze the evolution with density and temperature of the momentum lifetime of a test electron introduced in a dense electron gas. This allows us 1) to determine the boundaries of the crossover region in the temperature-density plane and to shed light on the evolution of scattering properties across it, 2) to quantify the role of the fermionic nature of electrons on electronic collisions across the crossover region, and 3) to explain how the concept of Coulomb logarithm emerges at high enough temperature but disappears at low enough temperature. Work supported by LDRD Grant No. 20170490ER.

  20. Building more powerful less expensive supercomputers using Processing-In-Memory (PIM) LDRD final report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Richard C.

    2009-09-01

    This report details the accomplishments of the 'Building More Powerful Less Expensive Supercomputers Using Processing-In-Memory (PIM)' LDRD ('PIM LDRD', number 105809) for FY07-FY09. Latency dominates all levels of supercomputer design. Within a node, increasing memory latency, relative to processor cycle time, limits CPU performance. Between nodes, the same increase in relative latency impacts scalability. Processing-In-Memory (PIM) is an architecture that directly addresses this problem using enhanced chip fabrication technology and machine organization. PIMs combine high-speed logic and dense, low-latency, high-bandwidth DRAM, and lightweight threads that tolerate latency by performing useful work during memory transactions. This work examines the potential ofmore » PIM-based architectures to support mission critical Sandia applications and an emerging class of more data intensive informatics applications. This work has resulted in a stronger architecture/implementation collaboration between 1400 and 1700. Additionally, key technology components have impacted vendor roadmaps, and we are in the process of pursuing these new collaborations. This work has the potential to impact future supercomputer design and construction, reducing power and increasing performance. This final report is organized as follow: this summary chapter discusses the impact of the project (Section 1), provides an enumeration of publications and other public discussion of the work (Section 1), and concludes with a discussion of future work and impact from the project (Section 1). The appendix contains reprints of the refereed publications resulting from this work.« less

  1. From Idea to Innovation: The Role of LDRD Investments in Sandia's Recent Successful B61 Experiments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arrowsmith, Marie Danielle

    The Laboratory Directed Research and Development (LDRD) program, authorized by U.S. Congress in 1991, enables Department of Energy (DOE) laboratories to devote a small portion of their research funding to high-risk and potentially high-payoff research. Because it is high-risk, LDRD-supported research may not lead to immediate mission impacts; however, many successes at DOE labs can be traced back to investments in LDRD. LDRD investments have a history of enabling significant payoffs for long-running DOE and NNSA missions and for providing anticipatory new technologies that ultimately become critical to future missions. Many of Sandia National Laboratories’ successes can be traced backmore » to investments in LDRD. Capabilities from three LDRDs were critical to recent tests of the B61-12 gravity bomb—tests that would previously have only been performed experimentally.« less

  2. 2014 SRNL LDRD Annual Report, Rev. 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mcwhorter, S.

    2015-03-15

    Laboratory Directed Research and Development is a congressionally authorized program that provides the ‘innovation inspiration’ from which many of the Laboratory’s multi-discipline advancements are made in both science and engineering technology. The program is the backbone for insuring that scientific, technical and engineering capabilities can meet current and future needs. It is an important tool in reducing the probability of technological surprise by allowing laboratory technical staff room to innovate and keep abreast of scientific breakthroughs. Drawing from the synergism among the EM and NNSA missions, and work from other federal agencies ensures that LDRD is the key element inmore » maintaining the vitality of SRNL’s technical programs. The LDRD program aims to position the Laboratory for new business in clean energy, national security, nuclear materials management and environmental stewardship by leveraging the unique capabilities of the Laboratory to yield foundational scientific research in core business areas, while aligning with SRS strategic initiatives and maintaining a vision for ultimate DOE applications.« less

  3. Idaho National Laboratory LDRD Annual Report FY 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dena Tomchak

    This report provides a glimpse into our diverse research and development portfolio, wwhich encompasses both advanced nuclear science and technology and underlying technologies. IN keeping with the mission, INL's LDRD program fosters technical capabilities necessary to support current and future DOE-Office of Nuclear Energy research and development needs.

  4. Multi-attribute criteria applied to electric generation energy system analysis LDRD.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuswa, Glenn W.; Tsao, Jeffrey Yeenien; Drennen, Thomas E.

    2005-10-01

    This report began with a Laboratory-Directed Research and Development (LDRD) project to improve Sandia National Laboratories multidisciplinary capabilities in energy systems analysis. The aim is to understand how various electricity generating options can best serve needs in the United States. The initial product is documented in a series of white papers that span a broad range of topics, including the successes and failures of past modeling studies, sustainability, oil dependence, energy security, and nuclear power. Summaries of these projects are included here. These projects have provided a background and discussion framework for the Energy Systems Analysis LDRD team to carrymore » out an inter-comparison of many of the commonly available electric power sources in present use, comparisons of those options, and efforts needed to realize progress towards those options. A computer aid has been developed to compare various options based on cost and other attributes such as technological, social, and policy constraints. The Energy Systems Analysis team has developed a multi-criteria framework that will allow comparison of energy options with a set of metrics that can be used across all technologies. This report discusses several evaluation techniques and introduces the set of criteria developed for this LDRD.« less

  5. FY06 LDRD Final Report: Broadband Radiation and Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madsen, N; Fasenfest, B; White, D

    2007-03-08

    This is the final report for LDRD 01-ERD-005. The Principle Investigator was Robert Sharpe. Collaborators included Niel Madsen, Benjamin Fasenfest, John D. Rockway, of the Defense Sciences Engineering Division (DSED), Vikram Jandhyala and James Pingenot from the University of Washington, and Mark Stowell of the Center for Applications Development and Software Engineering (CADSE). It should be noted that Benjamin Fasenfest and Mark Stowell were partially supported under other funding. The purpose of this LDRD effort was to enhance LLNL's computational electromagnetics capability in the area of broadband radiation and scattering. For radiation and scattering problems our transient EM codes aremore » limited by the approximate Radiation Boundary Conditions (RBC's) used to model the radiation into an infinite space. Improved RBC's were researched, developed, and incorporated into the existing EMSolve finite-element code to provide a 10-100x improvement in the accuracy of the boundary conditions. Section I provides an introduction to the project and the project goals. Section II provides a summary of the project's research and accomplishments as presented in the attached papers.« less

  6. Lattice Stability and Interatomic Potential of Non-equilibrium Warm Dense Gold

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Mo, M.; Soulard, L.; Recoules, V.; Hering, P.; Tsui, Y. Y.; Ng, A.; Glenzer, S. H.

    2017-10-01

    Interatomic potential is central to the calculation and understanding of the properties of matter. A manifestation of interatomic potential is lattice stability in the solid-liquid transition. Recently, we have used frequency domain interferometry (FDI) to study the disassembly of ultrafast laser heated warm dense gold nanofoils. The FDI measurement is implemented by a spatial chirped single-shot technique. The disassembly of the sample is characterized by the change in phase shift of the reflected probe resulted from hydrodynamic expansion. The experimental data is compared with the results of two-temperature molecular dynamic simulations based on a highly optimized embedded-atom-method (EAM) interatomic potential. Good agreement is found for absorbed energy densities of 0.9 to 4.3MJ/kg. This provides the first demonstration of the applicability of an EAM interatomic potential in the non-equilibrium warm dense matter regime. The MD simulations also reveal the critical role of pressure waves in solid-liquid transition in ultrafast laser heated nanofoils. This work is supported by DOE Office of Science, Fusion Energy Science under FWP 100182, and SLAC LDRD program.

  7. Exploration of cloud computing late start LDRD #149630 : Raincoat. v. 2.1.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Echeverria, Victor T.; Metral, Michael David; Leger, Michelle A.

    This report contains documentation from an interoperability study conducted under the Late Start LDRD 149630, Exploration of Cloud Computing. A small late-start LDRD from last year resulted in a study (Raincoat) on using Virtual Private Networks (VPNs) to enhance security in a hybrid cloud environment. Raincoat initially explored the use of OpenVPN on IPv4 and demonstrates that it is possible to secure the communication channel between two small 'test' clouds (a few nodes each) at New Mexico Tech and Sandia. We extended the Raincoat study to add IPSec support via Vyatta routers, to interface with a public cloud (Amazon Elasticmore » Compute Cloud (EC2)), and to be significantly more scalable than the previous iteration. The study contributed to our understanding of interoperability in a hybrid cloud.« less

  8. 2013 SRNL LDRD Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McWhorter, S.

    2014-03-07

    This report demonstrates the execution of our LDRD program within the objectives and guidelines outlined by the Department of Energy (DOE) through the DOE Order 413.2b. The projects described within the report align purposefully with SRNL’s strategic vision and provide great value to the DOE. The diversity exhibited in the research and development projects underscores the DOE Office of Environmental Management (DOE-EM) mission and enhances that mission by developing the technical capabilities and human capital necessary to support future DOE-EM national needs. As a multiprogram national laboratory, SRNL is applying those capabilities to achieve tangible results for the nation inmore » National Security, Environmental Stewardship, Clean Energy and Nuclear Materials Management.« less

  9. LDRD 2013 Annual Report: Laboratory Directed Research and Development Program Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bookless, W.

    This LDRD project establishes a research program led by Jingguang Chen, who has started a new position as a Joint Appointee between BNL and Columbia University as of FY2013. Under this project, Dr. Chen will establish a new program in catalysis science at BNL and Columbia University. The LDRD program will provide initial research funding to start research at both BNL and Columbia. At BNL, Dr. Chen will initiate laboratory research, including hiring research staff, and will collaborate with the existing BNL catalysis and electrocatalysis research groups. At Columbia, a subcontract to Dr. Chen will provide startup funding for hismore » laboratory research, including initial graduate student costs. The research efforts will be linked under a common Catalysis Program in Sustainable Fuels. The overall impact of this project will be to strengthen the BNL catalysis science program through new linked research thrusts and the addition of an internationally distinguished catalysis scientist.« less

  10. Non-invasive current and voltage imaging techniques for integrated circuits using scanning probe microscopy. Final report, LDRD Project FY93 and FY94

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, A.N.; Cole, E.I. Jr.; Tangyunyong, Paiboon

    This report describes the first practical, non-invasive technique for detecting and imaging currents internal to operating integrated circuits (ICs). This technique is based on magnetic force microscopy and was developed under Sandia National Laboratories` LDRD (Laboratory Directed Research and Development) program during FY 93 and FY 94. LDRD funds were also used to explore a related technique, charge force microscopy, for voltage probing of ICs. This report describes the technical work performed under this LDRD as well as the outcomes of the project in terms of publications and awards, intellectual property and licensing, synergistic work, potential future work, hiring ofmore » additional permanent staff, and benefits to DOE`s defense programs (DP).« less

  11. Organizing principles for dense packings of nonspherical hard particles: Not all shapes are created equal

    NASA Astrophysics Data System (ADS)

    Torquato, Salvatore; Jiao, Yang

    2012-07-01

    We have recently devised organizing principles to obtain maximally dense packings of the Platonic and Archimedean solids and certain smoothly shaped convex nonspherical particles [Torquato and Jiao, Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.81.041310 81, 041310 (2010)]. Here we generalize them in order to guide one to ascertain the densest packings of other convex nonspherical particles as well as concave shapes. Our generalized organizing principles are explicitly stated as four distinct propositions. All of our organizing principles are applied to and tested against the most comprehensive set of both convex and concave particle shapes examined to date, including Catalan solids, prisms, antiprisms, cylinders, dimers of spheres, and various concave polyhedra. We demonstrate that all of the densest known packings associated with this wide spectrum of nonspherical particles are consistent with our propositions. Among other applications, our general organizing principles enable us to construct analytically the densest known packings of certain convex nonspherical particles, including spherocylinders, “lens-shaped” particles, square pyramids, and rhombic pyramids. Moreover, we show how to apply these principles to infer the high-density equilibrium crystalline phases of hard convex and concave particles. We also discuss the unique packing attributes of maximally random jammed packings of nonspherical particles.

  12. Tiger LDRD final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steich, D J; Brugger, S T; Kallman, J S

    2000-02-01

    This final report describes our efforts on the Three-Dimensional Massively Parallel CEM Technologies LDRD project (97-ERD-009). Significant need exists for more advanced time domain computational electromagnetics modeling. Bookkeeping details and modifying inflexible software constitute a vast majority of the effort required to address such needs. The required effort escalates rapidly as problem complexity increases. For example, hybrid meshes requiring hybrid numerics on massively parallel platforms (MPPs). This project attempts to alleviate the above limitations by investigating flexible abstractions for these numerical algorithms on MPPs using object-oriented methods, providing a programming environment insulating physics from bookkeeping. The three major design iterationsmore » during the project, known as TIGER-I to TIGER-III, are discussed. Each version of TIGER is briefly discussed along with lessons learned during the development and implementation. An Application Programming Interface (API) of the object-oriented interface for Tiger-III is included in three appendices. The three appendices contain the Utilities, Entity-Attribute, and Mesh libraries developed during the project. The API libraries represent a snapshot of our latest attempt at insulated the physics from the bookkeeping.« less

  13. Thermal conductivity study of warm dense matter by differential heating on LCLS and Titan

    NASA Astrophysics Data System (ADS)

    Hill, M.; McKelvey, A.; Jiang, S.; Shepherd, R.; Hau-Riege, S.; Whitley, H.; Sterne, P.; Hamel, S.; Collins, G.; Ping, Y.; Brown, C.; Floyd, E.; Fyrth, J.; Hoarty, D.; Hua, R.; Bailly-Grandvaux, M.; Beg, F.; Cho, B.; Kim, M.; Lee, J.; Lee, H.; Galtier, E.

    2017-10-01

    A differential heating platform has been developed for thermal conduction study, where a temperature gradient is induced and subsequent heat flow is probed by time-resolved diagnostics. Multiple experiment using this platform have been carried out at LCLS-MEC and Titan laser facilities for warm dense Al, Fe, amorphous carbon and diamond. Two single-shot time-resolved diagnostics are employed, SOP (streaked optical pyrometry) for surface temperature and FDI (Fourier Domain Interferometry) for surface expansion. Both diagnostics provided excellent data to constrain release equation-of-state (EOS) and thermal conductivity. Data sets with varying target thickness and comparison between simulations with different thermal conductivity models are presented. This work was performed under DOE contract DE-AC52-07NA27344 with support from DOE OFES Early Career program and LLNL LDRD program.

  14. Final report on LDRD project : coupling strategies for multi-physics applications.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, Matthew Morgan; Moffat, Harry K.; Carnes, Brian

    Many current and future modeling applications at Sandia including ASC milestones will critically depend on the simultaneous solution of vastly different physical phenomena. Issues due to code coupling are often not addressed, understood, or even recognized. The objectives of the LDRD has been both in theory and in code development. We will show that we have provided a fundamental analysis of coupling, i.e., when strong coupling vs. a successive substitution strategy is needed. We have enabled the implementation of tighter coupling strategies through additions to the NOX and Sierra code suites to make coupling strategies available now. We have leveragedmore » existing functionality to do this. Specifically, we have built into NOX the capability to handle fully coupled simulations from multiple codes, and we have also built into NOX the capability to handle Jacobi Free Newton Krylov simulations that link multiple applications. We show how this capability may be accessed from within the Sierra Framework as well as from outside of Sierra. The critical impact from this LDRD is that we have shown how and have delivered strategies for enabling strong Newton-based coupling while respecting the modularity of existing codes. This will facilitate the use of these codes in a coupled manner to solve multi-physic applications.« less

  15. Multi-Target Camera Tracking, Hand-off and Display LDRD 158819 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Robert J.

    2014-10-01

    Modern security control rooms gather video and sensor feeds from tens to hundreds of cameras. Advanced camera analytics can detect motion from individual video streams and convert unexpected motion into alarms, but the interpretation of these alarms depends heavily upon human operators. Unfortunately, these operators can be overwhelmed when a large number of events happen simultaneously, or lulled into complacency due to frequent false alarms. This LDRD project has focused on improving video surveillance-based security systems by changing the fundamental focus from the cameras to the targets being tracked. If properly integrated, more cameras shouldn’t lead to more alarms, moremore » monitors, more operators, and increased response latency but instead should lead to better information and more rapid response times. For the course of the LDRD we have been developing algorithms that take live video imagery from multiple video cameras, identify individual moving targets from the background imagery, and then display the results in a single 3D interactive video. In this document we summarize the work in developing this multi-camera, multi-target system, including lessons learned, tools developed, technologies explored, and a description of current capability.« less

  16. Multi-target camera tracking, hand-off and display LDRD 158819 final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Robert J.

    2014-10-01

    Modern security control rooms gather video and sensor feeds from tens to hundreds of cameras. Advanced camera analytics can detect motion from individual video streams and convert unexpected motion into alarms, but the interpretation of these alarms depends heavily upon human operators. Unfortunately, these operators can be overwhelmed when a large number of events happen simultaneously, or lulled into complacency due to frequent false alarms. This LDRD project has focused on improving video surveillance-based security systems by changing the fundamental focus from the cameras to the targets being tracked. If properly integrated, more cameras shouldn't lead to more alarms, moremore » monitors, more operators, and increased response latency but instead should lead to better information and more rapid response times. For the course of the LDRD we have been developing algorithms that take live video imagery from multiple video cameras, identifies individual moving targets from the background imagery, and then displays the results in a single 3D interactive video. In this document we summarize the work in developing this multi-camera, multi-target system, including lessons learned, tools developed, technologies explored, and a description of current capability.« less

  17. Enhanced Vapor-Phase Diffusion in Porous Media - LDRD Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, C.K.; Webb, S.W.

    1999-01-01

    As part of the Laboratory-Directed Research and Development (LDRD) Program at Sandia National Laboratories, an investigation into the existence of enhanced vapor-phase diffusion (EVD) in porous media has been conducted. A thorough literature review was initially performed across multiple disciplines (soil science and engineering), and based on this review, the existence of EVD was found to be questionable. As a result, modeling and experiments were initiated to investigate the existence of EVD. In this LDRD, the first mechanistic model of EVD was developed which demonstrated the mechanisms responsible for EVD. The first direct measurements of EVD have also been conductedmore » at multiple scales. Measurements have been made at the pore scale, in a two- dimensional network as represented by a fracture aperture, and in a porous medium. Significant enhancement of vapor-phase transport relative to Fickian diffusion was measured in all cases. The modeling and experimental results provide additional mechanisms for EVD beyond those presented by the generally accepted model of Philip and deVries (1957), which required a thermal gradient for EVD to exist. Modeling and experimental results show significant enhancement under isothermal conditions. Application of EVD to vapor transport in the near-surface vadose zone show a significant variation between no enhancement, the model of Philip and deVries, and the present results. Based on this information, the model of Philip and deVries may need to be modified, and additional studies are recommended.« less

  18. Laser Beat-Wave Magnetization of a Dense Plasma

    NASA Astrophysics Data System (ADS)

    Yates, Kevin; Hsu, Scott; Montgomery, David; Dunn, John; Langendorf, Samuel; Pollock, Bradley; Johnson, Timothy; Welch, Dale; Thoma, Carsten

    2017-10-01

    We present results from the first of a series of experiments to demonstrate and characterize laser beat-wave magnetization of a dense plasma, motivated by the desire to create high-beta targets with standoff for magneto-inertial fusion. The experiments are being conducted at the Jupiter Laser Facility (JLF) at LLNL. The experiment uses the JLF Janus 1 ω (1053 nm) beam and a standalone Nd:YAG (1064 nm) to drive the beat wave, and the Janus 2 ω (526.5 nm) beam to ionize/heat a gas-jet target as well as to provide Thomson-scattering (TS) measurements of the target density/temperature and scattered light from the beat wave. Streaked TS data captured electron-plasma-wave and ion-acoustic-wave features utilizing either nitrogen or helium gas jets. Effects of initial gas density as well as laser intensity on target have been measured, with electron densities ranging from 1E18 to 1E19 cm-3 with temperatures of tens to hundreds of eV, near the desired range for optimal field generation. LSP simulations were run to aid experimental design and data interpretation. LANL LDRD Program.

  19. LDRD Report: Topological Design Optimization of Convolutes in Next Generation Pulsed Power Devices.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cyr, Eric C.; von Winckel, Gregory John; Kouri, Drew Philip

    This LDRD project was developed around the ambitious goal of applying PDE-constrained opti- mization approaches to design Z-machine components whose performance is governed by elec- tromagnetic and plasma models. This report documents the results of this LDRD project. Our differentiating approach was to use topology optimization methods developed for structural design and extend them for application to electromagnetic systems pertinent to the Z-machine. To achieve this objective a suite of optimization algorithms were implemented in the ROL library part of the Trilinos framework. These methods were applied to standalone demonstration problems and the Drekar multi-physics research application. Out of thismore » exploration a new augmented Lagrangian approach to structural design problems was developed. We demonstrate that this approach has favorable mesh-independent performance. Both the final design and the algorithmic performance were independent of the size of the mesh. In addition, topology optimization formulations for the design of conducting networks were developed and demonstrated. Of note, this formulation was used to develop a design for the inner magnetically insulated transmission line on the Z-machine. The resulting electromagnetic device is compared with theoretically postulated designs.« less

  20. THz transceiver characterization : LDRD project 139363 final report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nordquist, Christopher Daniel; Wanke, Michael Clement; Cich, Michael Joseph

    2009-09-01

    LDRD Project 139363 supported experiments to quantify the performance characteristics of monolithically integrated Schottky diode + quantum cascade laser (QCL) heterodyne mixers at terahertz (THz) frequencies. These integrated mixers are the first all-semiconductor THz devices to successfully incorporate a rectifying diode directly into the optical waveguide of a QCL, obviating the conventional optical coupling between a THz local oscillator and rectifier in a heterodyne mixer system. This integrated mixer was shown to function as a true heterodyne receiver of an externally received THz signal, a breakthrough which may lead to more widespread acceptance of this new THz technology paradigm. Inmore » addition, questions about QCL mode shifting in response to temperature, bias, and external feedback, and to what extent internal frequency locking can improve stability have been answered under this project.« less

  1. Thermal conductivity measurements of proton-heated warm dense aluminum

    NASA Astrophysics Data System (ADS)

    McKelvey, A.; Kemp, G.; Sterne, P.; Fernandez, A.; Shepherd, R.; Marinak, M.; Link, A.; Collins, G.; Sio, H.; King, J.; Freeman, R.; Hua, R.; McGuffey, C.; Kim, J.; Beg, F.; Ping, Y.

    2017-10-01

    We present the first thermal conductivity measurements of warm dense aluminum at 0.5-2.7 g/cc and 2-10 eV, using a recently developed platform of differential heating. A temperature gradient is induced in a Au/Al dual-layer target by proton heating, and subsequent heat flow from the hotter Au to the Al rear surface is detected by two simultaneous time-resolved diagnostics. A systematic data set allows for constraining both thermal conductivity and equation-of-state models. Simulations using Purgatorio model or Sesame S27314 for Al thermal conductivity and LEOS for Au/Al release equation-of-state show good agreement with data after 15 ps. Predictions by other models, such Lee-More, Sesame 27311 and 29373, are outside of experimental error bars. Discrepancy still exists at early time 0-15 ps, likely due to non-equilibrium conditions. (Y. Ping et al. Phys. Plasmas, 2015, A. Mckelvey, et al. Sci. Reports 2017). This work was performed under the auspices of the DOE by LLNL under contract DE-AC52-07NA27344 with support from DOE OFES Early Career program and LLNL LDRD program.

  2. LANL LDRD-funded project: Test particle simulations of energetic ions in natural and artificial radiation belts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowee, Misa; Liu, Kaijun; Friedel, Reinhard H.

    2012-07-17

    We summarize the scientific problem and work plan for the LANL LDRD-funded project to use a test particle code to study the sudden de-trapping of inner belt protons and possible cross-L transport of debris ions after a high altitude nuclear explosion (HANE). We also discuss future application of the code for other HANE-related problems.

  3. Efficient Probability of Failure Calculations for QMU using Computational Geometry LDRD 13-0144 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Scott A.; Ebeida, Mohamed Salah; Romero, Vicente J.

    2015-09-01

    This SAND report summarizes our work on the Sandia National Laboratory LDRD project titled "Efficient Probability of Failure Calculations for QMU using Computational Geometry" which was project #165617 and proposal #13-0144. This report merely summarizes our work. Those interested in the technical details are encouraged to read the full published results, and contact the report authors for the status of the software and follow-on projects.

  4. FY08 LDRD Final Report A New Method for Wave Propagation in Elastic Media LDRD Project Tracking Code: 05-ERD-079

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersson, A

    The LDRD project 'A New Method for Wave Propagation in Elastic Media' developed several improvements to the traditional finite difference technique for seismic wave propagation, including a summation-by-parts discretization which is provably stable for arbitrary heterogeneous materials, an accurate treatment of non-planar topography, local mesh refinement, and stable outflow boundary conditions. This project also implemented these techniques in a parallel open source computer code called WPP, and participated in several seismic modeling efforts to simulate ground motion due to earthquakes in Northern California. This research has been documented in six individual publications which are summarized in this report. Of thesemore » publications, four are published refereed journal articles, one is an accepted refereed journal article which has not yet been published, and one is a non-refereed software manual. The report concludes with a discussion of future research directions and exit plan.« less

  5. A Preliminary Shape Model of 27 Euterpe

    NASA Astrophysics Data System (ADS)

    Stephens, R.; Warner, B. D.; Megna, R.; Coley, D.

    2011-10-01

    We obtained dense rotational lightcurves for the Main-Belt asteroid (27) Euterpe during three apparitions in 2000, 2009 and 2010 with planned observations in the summer of 2011. These were combined with sparse lightcurve data from the USNO to determine a preliminary spin vector and model shape (see Durech et al. [2] for a discussion regarding the differences between dense and sparse data sets). The analysis suggests that Euterpe has albedo features making the determination of an unambiguous spin vector and model shape difficult. So far, Euterpe's near spherical shape, low inclination, pole within 30 degrees of the plane of the solar system, and possible albedo features cause multiple pole and shape solutions to be present.

  6. LDRD final report : mesoscale modeling of dynamic loading of heterogeneous materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robbins, Joshua; Dingreville, Remi Philippe Michel; Voth, Thomas Eugene

    2013-12-01

    Material response to dynamic loading is often dominated by microstructure (grain structure, porosity, inclusions, defects). An example critically important to Sandia's mission is dynamic strength of polycrystalline metals where heterogeneities lead to localization of deformation and loss of shear strength. Microstructural effects are of broad importance to the scientific community and several institutions within DoD and DOE; however, current models rely on inaccurate assumptions about mechanisms at the sub-continuum or mesoscale. Consequently, there is a critical need for accurate and robust methods for modeling heterogeneous material response at this lower length scale. This report summarizes work performed as part ofmore » an LDRD effort (FY11 to FY13; project number 151364) to meet these needs.« less

  7. Maximally dense packings of two-dimensional convex and concave noncircular particles.

    PubMed

    Atkinson, Steven; Jiao, Yang; Torquato, Salvatore

    2012-09-01

    Dense packings of hard particles have important applications in many fields, including condensed matter physics, discrete geometry, and cell biology. In this paper, we employ a stochastic search implementation of the Torquato-Jiao adaptive-shrinking-cell (ASC) optimization scheme [Nature (London) 460, 876 (2009)] to find maximally dense particle packings in d-dimensional Euclidean space R(d). While the original implementation was designed to study spheres and convex polyhedra in d≥3, our implementation focuses on d=2 and extends the algorithm to include both concave polygons and certain complex convex or concave nonpolygonal particle shapes. We verify the robustness of this packing protocol by successfully reproducing the known putative optimal packings of congruent copies of regular pentagons and octagons, then employ it to suggest dense packing arrangements of congruent copies of certain families of concave crosses, convex and concave curved triangles (incorporating shapes resembling the Mercedes-Benz logo), and "moonlike" shapes. Analytical constructions are determined subsequently to obtain the densest known packings of these particle shapes. For the examples considered, we find that the densest packings of both convex and concave particles with central symmetry are achieved by their corresponding optimal Bravais lattice packings; for particles lacking central symmetry, the densest packings obtained are nonlattice periodic packings, which are consistent with recently-proposed general organizing principles for hard particles. Moreover, we find that the densest known packings of certain curved triangles are periodic with a four-particle basis, and we find that the densest known periodic packings of certain moonlike shapes possess no inherent symmetries. Our work adds to the growing evidence that particle shape can be used as a tuning parameter to achieve a diversity of packing structures.

  8. Maximally dense packings of two-dimensional convex and concave noncircular particles

    NASA Astrophysics Data System (ADS)

    Atkinson, Steven; Jiao, Yang; Torquato, Salvatore

    2012-09-01

    Dense packings of hard particles have important applications in many fields, including condensed matter physics, discrete geometry, and cell biology. In this paper, we employ a stochastic search implementation of the Torquato-Jiao adaptive-shrinking-cell (ASC) optimization scheme [Nature (London)NATUAS0028-083610.1038/nature08239 460, 876 (2009)] to find maximally dense particle packings in d-dimensional Euclidean space Rd. While the original implementation was designed to study spheres and convex polyhedra in d≥3, our implementation focuses on d=2 and extends the algorithm to include both concave polygons and certain complex convex or concave nonpolygonal particle shapes. We verify the robustness of this packing protocol by successfully reproducing the known putative optimal packings of congruent copies of regular pentagons and octagons, then employ it to suggest dense packing arrangements of congruent copies of certain families of concave crosses, convex and concave curved triangles (incorporating shapes resembling the Mercedes-Benz logo), and “moonlike” shapes. Analytical constructions are determined subsequently to obtain the densest known packings of these particle shapes. For the examples considered, we find that the densest packings of both convex and concave particles with central symmetry are achieved by their corresponding optimal Bravais lattice packings; for particles lacking central symmetry, the densest packings obtained are nonlattice periodic packings, which are consistent with recently-proposed general organizing principles for hard particles. Moreover, we find that the densest known packings of certain curved triangles are periodic with a four-particle basis, and we find that the densest known periodic packings of certain moonlike shapes possess no inherent symmetries. Our work adds to the growing evidence that particle shape can be used as a tuning parameter to achieve a diversity of packing structures.

  9. Handle-shaped Prominence

    NASA Image and Video Library

    2001-02-17

    NASA Extreme Ultraviolet Imaging Telescope aboard ESA’s SOHO spacecraft took this image of a huge, handle-shaped prominence in 1999. Prominences are huge clouds of relatively cool dense plasma suspended in the Sun hot, thin corona.

  10. Tracking of Nuclear Production using Indigenous Species: Final LDRD Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, Todd Michael; Alam, Mary Kathleen; McIntyre, Sarah K.

    Our LDRD research project sought to develop an analytical method for detection of chemicals used in nuclear materials processing. Our approach is distinctly different than current research involving hardware-based sensors. By utilizing the response of indigenous species of plants and/or animals surrounding (or within) a nuclear processing facility, we propose tracking 'suspicious molecules' relevant to nuclear materials processing. As proof of concept, we have examined TBP, tributylphosphate, used in uranium enrichment as well as plutonium extraction from spent nuclear fuels. We will compare TBP to the TPP (triphenylphosphate) analog to determine the uniqueness of the metabonomic response. We show thatmore » there is a unique metabonomic response within our animal model to TBP. The TBP signature can further be delineated from that of TPP. We have also developed unique methods of instrumental transfer for metabonomic data sets.« less

  11. Hybrid-Based Dense Stereo Matching

    NASA Astrophysics Data System (ADS)

    Chuang, T. Y.; Ting, H. W.; Jaw, J. J.

    2016-06-01

    Stereo matching generating accurate and dense disparity maps is an indispensable technique for 3D exploitation of imagery in the fields of Computer vision and Photogrammetry. Although numerous solutions and advances have been proposed in the literature, occlusions, disparity discontinuities, sparse texture, image distortion, and illumination changes still lead to problematic issues and await better treatment. In this paper, a hybrid-based method based on semi-global matching is presented to tackle the challenges on dense stereo matching. To ease the sensitiveness of SGM cost aggregation towards penalty parameters, a formal way to provide proper penalty estimates is proposed. To this end, the study manipulates a shape-adaptive cross-based matching with an edge constraint to generate an initial disparity map for penalty estimation. Image edges, indicating the potential locations of occlusions as well as disparity discontinuities, are approved by the edge drawing algorithm to ensure the local support regions not to cover significant disparity changes. Besides, an additional penalty parameter 𝑃𝑒 is imposed onto the energy function of SGM cost aggregation to specifically handle edge pixels. Furthermore, the final disparities of edge pixels are found by weighting both values derived from the SGM cost aggregation and the U-SURF matching, providing more reliable estimates at disparity discontinuity areas. Evaluations on Middlebury stereo benchmarks demonstrate satisfactory performance and reveal the potency of the hybrid-based dense stereo matching method.

  12. Automated Algorithms for Quantum-Level Accuracy in Atomistic Simulations: LDRD Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Aidan Patrick; Schultz, Peter Andrew; Crozier, Paul

    2014-09-01

    This report summarizes the result of LDRD project 12-0395, titled "Automated Algorithms for Quantum-level Accuracy in Atomistic Simulations." During the course of this LDRD, we have developed an interatomic potential for solids and liquids called Spectral Neighbor Analysis Poten- tial (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projectedmore » on to a basis of hyperspherical harmonics in four dimensions. The SNAP coef- ficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. Global optimization methods in the DAKOTA software package are used to seek out good choices of hyperparameters that define the overall structure of the SNAP potential. FitSnap.py, a Python-based software pack- age interfacing to both LAMMPS and DAKOTA is used to formulate the linear regression problem, solve it, and analyze the accuracy of the resultant SNAP potential. We describe a SNAP potential for tantalum that accurately reproduces a variety of solid and liquid properties. Most significantly, in contrast to existing tantalum potentials, SNAP correctly predicts the Peierls barrier for screw dislocation motion. We also present results from SNAP potentials generated for indium phosphide (InP) and silica (SiO 2 ). We describe efficient algorithms for calculating SNAP forces and energies in molecular dynamics simulations using massively parallel

  13. Electron and ion dynamics study of iron in warm dense matter regime by time-resolved XAS measurements and from first-principles

    NASA Astrophysics Data System (ADS)

    Ogitsu, T.; Fernandez-Paãella, A.; Correa, A.; Engelhorn, K.; Barbrel, B.; Prendergast, D. G.; Pemmaraju, D.; Beckwith, M.; Kraus, D.; Hamel, S.; Cho, B. I.; Jin, L.; Wong, J.; Heinman, P.; Collins, G. W.; Falcone, R.; Ping, Y.

    2016-10-01

    We present a study of the electron-phonon coupling of warm dense iron upon femtosecond laser excitation by time-resolved x-ray absorption near edge spectroscopy (XANES). The dynamics of iron in electron-ion non-equilibrium conditions was studied using ab-initio density-functional-theory (DFT) simulations combined with the Two Temperature Model (TTM) where spatial inhomogeneity of electron (and ion) temperature(s) due to short ballistic electron transport length in iron was explicitly taken into consideration. Detailed comparison between our simulation results and experiments indicates that the ion temperature dependence on specific heat and on electron-phonon coupling also plays a relevant role in modeling the relaxation dynamics of electrons and ions. These results are the first experimental evidence of the suppression of the electron-phonon coupling factor of a transition metal at electron temperatures ranging 5000- 10000 K. This work was performed under DOE contract DE-AC52-07NA27344 with support from OFES Early Career program and LLNL LDRD program.

  14. Microchannel cross load array with dense parallel input

    DOEpatents

    Swierkowski, Stefan P.

    2004-04-06

    An architecture or layout for microchannel arrays using T or Cross (+) loading for electrophoresis or other injection and separation chemistry that are performed in microfluidic configurations. This architecture enables a very dense layout of arrays of functionally identical shaped channels and it also solves the problem of simultaneously enabling efficient parallel shapes and biasing of the input wells, waste wells, and bias wells at the input end of the separation columns. One T load architecture uses circular holes with common rows, but not columns, which allows the flow paths for each channel to be identical in shape, using multiple mirror image pieces. Another T load architecture enables the access hole array to be formed on a biaxial, collinear grid suitable for EDM micromachining (square holes), with common rows and columns.

  15. Final Report: CNC Micromachines LDRD No.10793

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JOKIEL JR., BERNHARD; BENAVIDES, GILBERT L.; BIEG, LOTHAR F.

    2003-04-01

    The three-year LDRD ''CNC Micromachines'' was successfully completed at the end of FY02. The project had four major breakthroughs in spatial motion control in MEMS: (1) A unified method for designing scalable planar and spatial on-chip motion control systems was developed. The method relies on the use of parallel kinematic mechanisms (PKMs) that when properly designed provide different types of motion on-chip without the need for post-fabrication assembly, (2) A new type of actuator was developed--the linear stepping track drive (LSTD) that provides open loop linear position control that is scalable in displacement, output force and step size. Several versionsmore » of this actuator were designed, fabricated and successfully tested. (3) Different versions of XYZ translation only and PTT motion stages were designed, successfully fabricated and successfully tested demonstrating absolutely that on-chip spatial motion control systems are not only possible, but are a reality. (4) Control algorithms, software and infrastructure based on MATLAB were created and successfully implemented to drive the XYZ and PTT motion platforms in a controlled manner. The control software is capable of reading an M/G code machine tool language file, decode the instructions and correctly calculate and apply position and velocity trajectories to the motion devices linear drive inputs to position the device platform along the trajectory as specified by the input file. A full and detailed account of design methodology, theory and experimental results (failures and successes) is provided.« less

  16. High-efficiency high-energy Ka source for the critically-required maximum illumination of x-ray optics on Z using Z-petawatt-driven laser-breakout-afterburner accelerated ultrarelativistic electrons LDRD .

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sefkow, Adam B.; Bennett, Guy R.

    2010-09-01

    Under the auspices of the Science of Extreme Environments LDRD program, a <2 year theoretical- and computational-physics study was performed (LDRD Project 130805) by Guy R Bennett (formally in Center-01600) and Adam B. Sefkow (Center-01600): To investigate novel target designs by which a short-pulse, PW-class beam could create a brighter K{alpha} x-ray source than by simple, direct-laser-irradiation of a flat foil; Direct-Foil-Irradiation (DFI). The computational studies - which are still ongoing at this writing - were performed primarily on the RedStorm supercomputer at Sandia National Laboratories Albuquerque site. The motivation for a higher efficiency K{alpha} emitter was very clear: asmore » the backlighter flux for any x-ray imaging technique on the Z accelerator increases, the signal-to-noise and signal-to-background ratios improve. This ultimately allows the imaging system to reach its full quantitative potential as a diagnostic. Depending on the particular application/experiment this would imply, for example, that the system would have reached its full design spatial resolution and thus the capability to see features that might otherwise be indiscernible with a traditional DFI-like x-ray source. This LDRD began FY09 and ended FY10.« less

  17. Final LDRD Report: Using Linkography of Cyber Attack Patterns to Inform Honeytoken Placement.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Robert; Jarocki, John Charles; Fisher, Andrew N

    The war to establish cyber supremacy continues, and the literature is crowded with strictly technical cyber security measures. We present the results of a three year LDRD project using Linkography, a methodology new to the field of cyber security, we establish the foundation neces- sary to track and profile the microbehavior of humans attacking cyber systems. We also propose ways to leverage this understanding to influence and deceive these attackers. We studied the sci- ence of linkography, applied it to the cyber security domain, implemented a software package to manage linkographs, generated the preprocessing blocks necessary to ingest raw data,more » produced machine learning models, created ontology refinement algorithms and prototyped a web applica- tion for researchers and practitioners to apply linkography. Machine learning produced some of our key results: We trained and validated multinomial classifiers with a real world data set and predicted the attacker's next category of action with 86 to 98% accuracy; dimension reduction techniques indicated that the linkography-based features were among the most powerful. We also discovered ontology refinement algorithms that advanced the state of the art in linkography in general and cyber security in particular. We conclude that linkography is a viable tool for cyber security; we look forward to expanding our work to other data sources and using our prediction results to enable adversary deception techniques. Acknowledgements Thanks to Phil Bennett, Michael Bernard, Jeffrey Bigg, Marshall Daniels, Tyler Dean, David Dug- gan, Carson Kent, Josh Maine, Marci McBride, Nick Peterson, Katie Rodhouse, Asael Sorenson, Roger Suppona, Scott Watson and David Zage. We acknowledge support for this work by the LDRD Program at Sandia National Laboratories. Sandia National Laboratories is a multi-mission laboratory operated by Sandia Corporation for the United States Department of Energy's National Nuclear Security

  18. Cloud photogrammetry with dense stereo for fisheye cameras

    NASA Astrophysics Data System (ADS)

    Beekmans, Christoph; Schneider, Johannes; Läbe, Thomas; Lennefer, Martin; Stachniss, Cyrill; Simmer, Clemens

    2016-11-01

    We present a novel approach for dense 3-D cloud reconstruction above an area of 10 × 10 km2 using two hemispheric sky imagers with fisheye lenses in a stereo setup. We examine an epipolar rectification model designed for fisheye cameras, which allows the use of efficient out-of-the-box dense matching algorithms designed for classical pinhole-type cameras to search for correspondence information at every pixel. The resulting dense point cloud allows to recover a detailed and more complete cloud morphology compared to previous approaches that employed sparse feature-based stereo or assumed geometric constraints on the cloud field. Our approach is very efficient and can be fully automated. From the obtained 3-D shapes, cloud dynamics, size, motion, type and spacing can be derived, and used for radiation closure under cloudy conditions, for example. Fisheye lenses follow a different projection function than classical pinhole-type cameras and provide a large field of view with a single image. However, the computation of dense 3-D information is more complicated and standard implementations for dense 3-D stereo reconstruction cannot be easily applied. Together with an appropriate camera calibration, which includes internal camera geometry, global position and orientation of the stereo camera pair, we use the correspondence information from the stereo matching for dense 3-D stereo reconstruction of clouds located around the cameras. We implement and evaluate the proposed approach using real world data and present two case studies. In the first case, we validate the quality and accuracy of the method by comparing the stereo reconstruction of a stratocumulus layer with reflectivity observations measured by a cloud radar and the cloud-base height estimated from a Lidar-ceilometer. The second case analyzes a rapid cumulus evolution in the presence of strong wind shear.

  19. Dense crystalline packings of ellipsoids

    NASA Astrophysics Data System (ADS)

    Jin, Weiwei; Jiao, Yang; Liu, Lufeng; Yuan, Ye; Li, Shuixiang

    2017-03-01

    An ellipsoid, the simplest nonspherical shape, has been extensively used as a model for elongated building blocks for a wide spectrum of molecular, colloidal, and granular systems. Yet the densest packing of congruent hard ellipsoids, which is intimately related to the high-density phase of many condensed matter systems, is still an open problem. We discover an unusual family of dense crystalline packings of self-dual ellipsoids (ratios of the semiaxes α : √{α }:1 ), containing 24 particles with a quasi-square-triangular (SQ-TR) tiling arrangement in the fundamental cell. The associated packing density ϕ exceeds that of the densest known SM2 crystal [ A. Donev et al., Phys. Rev. Lett. 92, 255506 (2004), 10.1103/PhysRevLett.92.255506] for aspect ratios α in (1.365, 1.5625), attaining a maximal ϕ ≈0.758 06 ... at α = 93 /64 . We show that the SQ-TR phase derived from these dense packings is thermodynamically stable at high densities over the aforementioned α range and report a phase diagram for self-dual ellipsoids. The discovery of the SQ-TR crystal suggests organizing principles for nonspherical particles and self-assembly of colloidal systems.

  20. Geometrical optics of dense aerosols: forming dense plasma slabs.

    PubMed

    Hay, Michael J; Valeo, Ernest J; Fisch, Nathaniel J

    2013-11-01

    Assembling a freestanding, sharp-edged slab of homogeneous material that is much denser than gas, but much more rarefied than a solid, is an outstanding technological challenge. The solution may lie in focusing a dense aerosol to assume this geometry. However, whereas the geometrical optics of dilute aerosols is a well-developed field, the dense aerosol limit is mostly unexplored. Yet controlling the geometrical optics of dense aerosols is necessary in preparing such a material slab. Focusing dense aerosols is shown here to be possible, but the finite particle density reduces the effective Stokes number of the flow, a critical result for controlled focusing.

  1. Particle-in-cell modeling for MJ scale dense plasma focus with varied anode shape

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Link, A., E-mail: link6@llnl.gov; Halvorson, C., E-mail: link6@llnl.gov; Schmidt, A.

    2014-12-15

    Megajoule scale dense plasma focus (DPF) Z-pinches with deuterium gas fill are compact devices capable of producing 10{sup 12} neutrons per shot but past predictive models of large-scale DPF have not included kinetic effects such as ion beam formation or anomalous resistivity. We report on progress of developing a predictive DPF model by extending our 2D axisymmetric collisional kinetic particle-in-cell (PIC) simulations from the 4 kJ, 200 kA LLNL DPF to 1 MJ, 2 MA Gemini DPF using the PIC code LSP. These new simulations incorporate electrodes, an external pulsed-power driver circuit, and model the plasma from insulator lift-off throughmore » the pinch phase. To accommodate the vast range of relevant spatial and temporal scales involved in the Gemini DPF within the available computational resources, the simulations were performed using a new hybrid fluid-to-kinetic model. This new approach allows single simulations to begin in an electron/ion fluid mode from insulator lift-off through the 5-6 μs run-down of the 50+ cm anode, then transition to a fully kinetic PIC description during the run-in phase, when the current sheath is 2-3 mm from the central axis of the anode. Simulations are advanced through the final pinch phase using an adaptive variable time-step to capture the fs and sub-mm scales of the kinetic instabilities involved in the ion beam formation and neutron production. Validation assessments are being performed using a variety of different anode shapes, comparing against experimental measurements of neutron yield, neutron anisotropy and ion beam production.« less

  2. Hard convex lens-shaped particles: Densest-known packings and phase behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cinacchi, Giorgio, E-mail: giorgio.cinacchi@uam.es; Torquato, Salvatore, E-mail: torquato@princeton.edu

    2015-12-14

    By using theoretical methods and Monte Carlo simulations, this work investigates dense ordered packings and equilibrium phase behavior (from the low-density isotropic fluid regime to the high-density crystalline solid regime) of monodisperse systems of hard convex lens-shaped particles as defined by the volume common to two intersecting congruent spheres. We show that, while the overall similarity of their shape to that of hard oblate ellipsoids is reflected in a qualitatively similar phase diagram, differences are more pronounced in the high-density crystal phase up to the densest-known packings determined here. In contrast to those non-(Bravais)-lattice two-particle basis crystals that are themore » densest-known packings of hard (oblate) ellipsoids, hard convex lens-shaped particles pack more densely in two types of degenerate crystalline structures: (i) non-(Bravais)-lattice two-particle basis body-centered-orthorhombic-like crystals and (ii) (Bravais) lattice monoclinic crystals. By stacking at will, regularly or irregularly, laminae of these two crystals, infinitely degenerate, generally non-periodic in the stacking direction, dense packings can be constructed that are consistent with recent organizing principles. While deferring the assessment of which of these dense ordered structures is thermodynamically stable in the high-density crystalline solid regime, the degeneracy of their densest-known packings strongly suggests that colloidal convex lens-shaped particles could be better glass formers than colloidal spheres because of the additional rotational degrees of freedom.« less

  3. Charge exchange between two nearest neighbour ions immersed in a dense plasma

    NASA Astrophysics Data System (ADS)

    Sauvan, P.; Angelo, P.; Derfoul, H.; Leboucher-Dalimier, E.; Devdariani, A.; Calisti, A.; Talin, B.

    1999-04-01

    In dense plasmas the quasimolecular model is relevant to describe the radiative properties: two nearest neighbor ions remain close to each other during a time scale of the order of the emission time. Within the frame of a quasistatic approach it has been shown that hydrogen-like spectral line shapes can exhibit satellite-like features. In this work we present the effect on the line shapes of the dynamical collision between the two ions exchanging transiently their bound electron. This model is suitable for the description of the core, the wings and the red satellite-like features. It is post-processed to the self consistent code (IDEFIX) giving the adiabatic transition energies and the oscillator strengths for the transient molecule immersed in a dense free electron bath. It is shown that the positions of the satellites are insensitive to the dynamics of the ion-ion collision. Results for fluorine Lyβ are presented.

  4. Ion Heating of Plasma to Warm Dense Matter Conditions for the study of High-Z/Low-Z Mixing

    NASA Astrophysics Data System (ADS)

    Roycroft, R.; Dyer, G. M.; McCary, E.; Wagner, C.; Bernstein, A.; Ditmire, T.; Albright, B. J.; Fernandez, J. C.; Bang, W.; Bradley, P. A.; Gautier, D. C.; Hamilton, C. E.; Palaniyappan, S.; Santiago Cordoba, M. A.; Vold, E. L.; Yin, L.; Hegelich, B. M.

    2016-10-01

    The evolution of the interface between a light and heavy material isochorically heated to warm dense matter conditions is important to the understanding of electrostatic effects on the hydrodynamic models of fluid mixing. In recent experiments at the Trident laser facility, the target, containing a high Z and a low Z material, is heated to around 1eV by laser accelerated aluminum ions. In preparation for continued mixing experiments, we have recently heated aluminum to 20eV by laser accelerated protons on the Texas Petawatt Laser. We fielded a streaked optical pyrometer to measure surface temperature. The pyrometer images the rear surface of a heated target on a sub-nanosecond timescale with 400nm blackbody emissions. This poster presents the details of the experimental setup and pyrometer design, as well as results of ion and proton heating of aluminum targets, and ion heating of high-Z/low-Z integrated targets. Supported by NNSA cooperative agreement DE-NA0002008, the DoE through the LANL LDRD program, the DARPA PULSE program (12-63- PULSE-FP014), and the Air Force Office of Scientific Research (FA9550-14-1-0045).

  5. Multiscale characterization and analysis of shapes

    DOEpatents

    Prasad, Lakshman; Rao, Ramana

    2002-01-01

    An adaptive multiscale method approximates shapes with continuous or uniformly and densely sampled contours, with the purpose of sparsely and nonuniformly discretizing the boundaries of shapes at any prescribed resolution, while at the same time retaining the salient shape features at that resolution. In another aspect, a fundamental geometric filtering scheme using the Constrained Delaunay Triangulation (CDT) of polygonized shapes creates an efficient parsing of shapes into components that have semantic significance dependent only on the shapes' structure and not on their representations per se. A shape skeletonization process generalizes to sparsely discretized shapes, with the additional benefit of prunability to filter out irrelevant and morphologically insignificant features. The skeletal representation of characters of varying thickness and the elimination of insignificant and noisy spurs and branches from the skeleton greatly increases the robustness, reliability and recognition rates of character recognition algorithms.

  6. Mechanical and shape memory properties of porous Ni50.1Ti49.9 alloys manufactured by selective laser melting.

    PubMed

    Taheri Andani, Mohsen; Saedi, Soheil; Turabi, Ali Sadi; Karamooz, M R; Haberland, Christoph; Karaca, Haluk Ersin; Elahinia, Mohammad

    2017-04-01

    Near equiatomic NiTi shape memory alloys were fabricated in dense and designed porous forms by Selective Laser Melting (SLM) and their mechanical and shape memory properties were systematically characterized. Particularly, the effects of pore morphology on their mechanical responses were investigated. Dense and porous NiTi alloys exhibited good shape memory effect with a recoverable strain of about 5% and functional stability after eight cycles of compression. The stiffness and residual plastic strain of porous NiTi were found to depend highly on the pore shape and the level of porosity. Since porous NiTi structures have lower elastic modulus and density than dense NiTi with still good shape memory properties, they are promising materials for lightweight structures, energy absorbers, and biomedical implants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. One step process for producing dense aluminum nitride and composites thereof

    DOEpatents

    Holt, J. Birch; Kingman, Donald D.; Bianchini, Gregory M.

    1989-01-01

    A one step combustion process for the synthesis of dense aluminum nitride compositions is disclosed. The process comprises igniting pure aluminum powder in a nitrogen atmosphere at a pressure of about 1000 atmospheres or higher. The process enables the production of aluminum nitride bodies to be formed directly in a mold of any desired shape.

  8. One step process for producing dense aluminum nitride and composites thereof

    DOEpatents

    Holt, J.B.; Kingman, D.D.; Bianchini, G.M.

    1989-10-31

    A one step combustion process for the synthesis of dense aluminum nitride compositions is disclosed. The process comprises igniting pure aluminum powder in a nitrogen atmosphere at a pressure of about 1,000 atmospheres or higher. The process enables the production of aluminum nitride bodies to be formed directly in a mold of any desired shape.

  9. LDRD project final report : hybrid AI/cognitive tactical behavior framework for LVC.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Djordjevich, Donna D.; Xavier, Patrick Gordon; Brannon, Nathan Gregory

    This Lab-Directed Research and Development (LDRD) sought to develop technology that enhances scenario construction speed, entity behavior robustness, and scalability in Live-Virtual-Constructive (LVC) simulation. We investigated issues in both simulation architecture and behavior modeling. We developed path-planning technology that improves the ability to express intent in the planning task while still permitting an efficient search algorithm. An LVC simulation demonstrated how this enables 'one-click' layout of squad tactical paths, as well as dynamic re-planning for simulated squads and for real and simulated mobile robots. We identified human response latencies that can be exploited in parallel/distributed architectures. We did an experimentalmore » study to determine where parallelization would be productive in Umbra-based force-on-force (FOF) simulations. We developed and implemented a data-driven simulation composition approach that solves entity class hierarchy issues and supports assurance of simulation fairness. Finally, we proposed a flexible framework to enable integration of multiple behavior modeling components that model working memory phenomena with different degrees of sophistication.« less

  10. Large-eddy simulation of dense gas dispersion over a simplified urban area

    NASA Astrophysics Data System (ADS)

    Wingstedt, E. M. M.; Osnes, A. N.; Åkervik, E.; Eriksson, D.; Reif, B. A. Pettersson

    2017-03-01

    Dispersion of neutral and dense gas over a simplified urban area, comprising four cubes, has been investigated by the means of large-eddy simulations (LES). The results have been compared to wind tunnel experiments and both mean and fluctuating quantities of velocity and concentration are in very good agreement. High-quality inflow profiles are necessary to achieve physically realistic LES results. In this study, profiles matching the atmospheric boundary layer flow in the wind tunnel, are generated by means of a separate precursor simulation. Emission of dense gas dramatically alters the flow in the near source region and introduces an upstream dispersion. The resulting dispersion patterns of neutral and dense gas differ significantly, where the plume in the latter case is wider and shallower. The dense gas is highly affected by the cube array, which seems to act as a barrier, effectively deflecting the plume. This leads to higher concentrations outside of the array than inside. On the contrary, the neutral gas plume has a Gaussian-type shape, with highest concentrations along the centreline. It is found that the dense gas reduces the vertical and spanwise turbulent momentum transport and, as a consequence, the turbulence kinetic energy. The reduction coincides with the area where the gradient Richardson number exceeds its critical value, i.e. where the flow may be characterized as stably stratified. Interestingly, this region does not correspond to where the concentration of dense gas is the highest (close to the ground), as this is also where the largest velocity gradients are to be found. Instead there is a layer in the middle of the dense gas cloud where buoyancy is dynamically dominant.

  11. Kinematic Model of Transient Shape-Induced Anisotropy in Dense Granular Flow

    NASA Astrophysics Data System (ADS)

    Nadler, B.; Guillard, F.; Einav, I.

    2018-05-01

    Nonspherical particles are ubiquitous in nature and industry, yet previous theoretical models of granular media are mostly limited to systems of spherical particles. The problem is that in systems of nonspherical anisotropic particles, dynamic particle alignment critically affects their mechanical response. To study the tendency of such particles to align, we propose a simple kinematic model that relates the flow to the evolution of particle alignment with respect to each other. The validity of the proposed model is supported by comparison with particle-based simulations for various particle shapes ranging from elongated rice-like (prolate) to flattened lentil-like (oblate) particles. The model shows good agreement with the simulations for both steady-state and transient responses, and advances the development of comprehensive constitutive models for shape-anisotropic particles.

  12. A single-shot spatial chirp method for measuring initial AC conductivity evolution of femtosecond laser pulse excited warm dense matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Z.; Hering, P.; Brown, S. B.

    To study the rapid evolution of AC conductivity from ultrafast laser excited warm dense matter (WDM), a spatial chirp single-shot method is developed utilizing a crossing angle pump-probe configuration. The pump beam is shaped individually in two spatial dimensions so that it can provide both sufficient laser intensity to excite the material to warm dense matter state and a uniform time window of up to 1 ps with sub-100 fs FWHM temporal resolution. Here, temporal evolution of AC conductivity in laser excited warm dense gold was also measured.

  13. A single-shot spatial chirp method for measuring initial AC conductivity evolution of femtosecond laser pulse excited warm dense matter

    DOE PAGES

    Chen, Z.; Hering, P.; Brown, S. B.; ...

    2016-09-19

    To study the rapid evolution of AC conductivity from ultrafast laser excited warm dense matter (WDM), a spatial chirp single-shot method is developed utilizing a crossing angle pump-probe configuration. The pump beam is shaped individually in two spatial dimensions so that it can provide both sufficient laser intensity to excite the material to warm dense matter state and a uniform time window of up to 1 ps with sub-100 fs FWHM temporal resolution. Here, temporal evolution of AC conductivity in laser excited warm dense gold was also measured.

  14. Diagnosis of warm dense conditions in foil targets heated by intense femtosecond laser pulses using Kα imaging spectroscopy

    DOE PAGES

    Bae, L. J.; Zastrau, U.; Chung, H. -K.; ...

    2018-03-01

    Warm dense conditions in titanium foils irradiated with intense femtosecond laser pulses are diagnosed using an x-ray imaging spectroscopy technique. The line shapes of radially resolved titanium Kα spectra are measured with a toroidally bent GaAs crystal and an x-ray charge-coupled device. Measured spectra are compared with the K-shell emissions modeled using an atomic kinetics – spectroscopy simulation code. Kα line shapes are strongly affected by warm (5-40 eV) bulk electron temperatures and imply multiple temperature distributions in the targets. Finally, the spatial distribution of temperature is dependent on the target thickness, and a thin target shows an advantage tomore » generate uniform warm dense conditions in a large area.« less

  15. Diagnosis of warm dense conditions in foil targets heated by intense femtosecond laser pulses using Kα imaging spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bae, L. J.; Zastrau, U.; Chung, H. -K.

    Warm dense conditions in titanium foils irradiated with intense femtosecond laser pulses are diagnosed using an x-ray imaging spectroscopy technique. The line shapes of radially resolved titanium Kα spectra are measured with a toroidally bent GaAs crystal and an x-ray charge-coupled device. Measured spectra are compared with the K-shell emissions modeled using an atomic kinetics – spectroscopy simulation code. Kα line shapes are strongly affected by warm (5-40 eV) bulk electron temperatures and imply multiple temperature distributions in the targets. Finally, the spatial distribution of temperature is dependent on the target thickness, and a thin target shows an advantage tomore » generate uniform warm dense conditions in a large area.« less

  16. Reactive navigation in extremely dense and highly intricate environments

    PubMed Central

    2017-01-01

    Reactive navigation is a well-known paradigm for controlling an autonomous mobile robot, which suggests making all control decisions through some light processing of the current/recent sensor data. Among the many advantages of this paradigm are: 1) the possibility to apply it to robots with limited and low-priced hardware resources, and 2) the fact of being able to safely navigate a robot in completely unknown environments containing unpredictable moving obstacles. As a major disadvantage, nevertheless, the reactive paradigm may occasionally cause robots to get trapped in certain areas of the environment—typically, these conflicting areas have a large concave shape and/or are full of closely-spaced obstacles. In this last respect, an enormous effort has been devoted to overcome such a serious drawback during the last two decades. As a result of this effort, a substantial number of new approaches for reactive navigation have been put forward. Some of these approaches have clearly improved the way how a reactively-controlled robot can move among densely cluttered obstacles; some other approaches have essentially focused on increasing the variety of obstacle shapes and sizes that could be successfully circumnavigated; etc. In this paper, as a starting point, we choose the best existing reactive approach to move in densely cluttered environments, and we also choose the existing reactive approach with the greatest ability to circumvent large intricate-shaped obstacles. Then, we combine these two approaches in a way that makes the most of them. From the experimental point of view, we use both simulated and real scenarios of challenging complexity for testing purposes. In such scenarios, we demonstrate that the combined approach herein proposed clearly outperforms the two individual approaches on which it is built. PMID:29287078

  17. Forming H-shaped and barrel-shaped nebulae with interacting jets

    NASA Astrophysics Data System (ADS)

    Akashi, Muhammad; Bear, Ealeal; Soker, Noam

    2018-04-01

    We conduct three-dimensional hydrodynamical simulations of two opposite jets with large opening angles launched from a binary stellar system into a previously ejected shell and show that the interaction can form barrel-like and H-like shapes in the descendant nebula. Such features are observed in planetary nebulae (PNe) and supernova remnants. Under our assumption, the dense shell is formed by a short instability phase of the giant star as it interacts with a stellar companion, and the jets are then launched by the companion as it accretes mass through an accretion disc from the giant star. We find that the H-shaped and barrel-shaped morphological features that the jets form evolve with time, and that there are complicated flow patterns, such as vortices, instabilities, and caps moving ahead along the symmetry axis. We compare our numerical results with images of 12 PNe, and show that jet-shell interaction that we simulate can account for the barrel-like or H-like morphologies that are observed in these PNe.

  18. Coherent ultra dense wavelength division multiplexing passive optical networks

    NASA Astrophysics Data System (ADS)

    Shahpari, Ali; Ferreira, Ricardo; Ribeiro, Vitor; Sousa, Artur; Ziaie, Somayeh; Tavares, Ana; Vujicic, Zoran; Guiomar, Fernando P.; Reis, Jacklyn D.; Pinto, Armando N.; Teixeira, António

    2015-12-01

    In this paper, we firstly review the progress in ultra-dense wavelength division multiplexing passive optical network (UDWDM-PON), by making use of the key attributes of this technology in the context of optical access and metro networks. Besides the inherit properties of coherent technology, we explore different modulation formats and pulse shaping. The performance is experimentally demonstrated through a 12 × 10 Gb/s bidirectional UDWDM-PON over hybrid 80 km standard single mode fiber (SSMF) and optical wireless link. High density, 6.25 GHz grid, Nyquist shaped 16-ary quadrature amplitude modulation (16QAM) and digital frequency shifting are some of the properties exploited together in the tests. Also, bidirectional transmission in fiber, relevant in the context, is analyzed in terms of nonlinear and back-reflection effects on receiver sensitivity. In addition, as a basis for the discussion on market readiness, we experimentally demonstrate real-time detection of a Nyquist-shaped quaternary phase-shift keying (QPSK) signal using simple 8-bit digital signal processing (DSP) on a field-programmable gate array (FPGA).

  19. Characterization of fast deuterons involved in the production of fusion neutrons in a dense plasma focus

    NASA Astrophysics Data System (ADS)

    Kubes, P.; Paduch, M.; Sadowski, M. J.; Cikhardt, J.; Cikhardtova, B.; Klir, D.; Kravarik, J.; Munzar, V.; Rezac, K.; Zielinska, E.; Skladnik-Sadowska, E.; Szymaszek, A.; Tomaszewski, K.; Zaloga, D.

    2018-01-01

    This paper considers regions of a fast deuteron production in a correlation with an evolution of ordered structures inside a pinch column of a mega-ampere plasma focus discharge. Ion pinhole cameras equipped with plastic PM-355 track-detectors recorded fast deuterons escaping in the downstream and other directions (up to 60° to the z-axis). Time-integrated ion images made it possible to estimate sources of the deuteron acceleration at the known magnetic field and deuteron energy values. The images of the fast deuterons emitted in the solid angle ranging from 0° to 4° showed two forms: central spots and circular images. The spots of 1-2 cm in diameter were produced by deuterons from the central pinch regions. The circular-shaped images of a radius above 3 cm (or their parts) were formed by deuterons from the region surrounding the dense pinch column. The ion pinhole cameras placed at angles above 20° to the z-axis recorded the ion spots only, and the ring-images were missing. The central region of the deuteron acceleration could be associated mainly with plasmoids, and the circular images could be connected with ring-shaped regions of the radius corresponding to tops of the plasma lobules outside the dense pinch column. The deuteron tracks forming ring-shaped images of a smaller (0.5-1) cm radius could be produced by deflections of the fast deuterons, which were caused by a magnetic field inside the dense pinch column.

  20. Terradynamically streamlined shapes in animals and robots enhance traversability through densely cluttered terrain.

    PubMed

    Li, Chen; Pullin, Andrew O; Haldane, Duncan W; Lam, Han K; Fearing, Ronald S; Full, Robert J

    2015-06-22

    Many animals, modern aircraft, and underwater vehicles use fusiform, streamlined body shapes that reduce fluid dynamic drag to achieve fast and effective locomotion in air and water. Similarly, numerous small terrestrial animals move through cluttered terrain where three-dimensional, multi-component obstacles like grass, shrubs, vines, and leaf litter also resist motion, but it is unknown whether their body shape plays a major role in traversal. Few ground vehicles or terrestrial robots have used body shape to more effectively traverse environments such as cluttered terrain. Here, we challenged forest-floor-dwelling discoid cockroaches (Blaberus discoidalis) possessing a thin, rounded body to traverse tall, narrowly spaced, vertical, grass-like compliant beams. Animals displayed high traversal performance (79 ± 12% probability and 3.4 ± 0.7 s time). Although we observed diverse obstacle traversal strategies, cockroaches primarily (48 ± 9% probability) used a novel roll maneuver, a form of natural parkour, allowing them to rapidly traverse obstacle gaps narrower than half their body width (2.0 ± 0.5 s traversal time). Reduction of body roundness by addition of artificial shells nearly inhibited roll maneuvers and decreased traversal performance. Inspired by this discovery, we added a thin, rounded exoskeletal shell to a legged robot with a nearly cuboidal body, common to many existing terrestrial robots. Without adding sensory feedback or changing the open-loop control, the rounded shell enabled the robot to traverse beam obstacles with gaps narrower than shell width via body roll. Such terradynamically 'streamlined' shapes can reduce terrain resistance and enhance traversability by assisting effective body reorientation via distributed mechanical feedback. Our findings highlight the need to consider body shape to improve robot mobility in real-world terrain often filled with clutter, and to develop better locomotor-ground contact models to understand

  1. FORMATION OF A PROPELLER STRUCTURE BY A MOONLET IN A DENSE PLANETARY RING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michikoshi, Shugo; Kokubo, Eiichiro, E-mail: michikoshi@cfca.jp, E-mail: kokubo@th.nao.ac.jp

    2011-05-10

    The Cassini spacecraft discovered a propeller-shaped structure in Saturn's A. This propeller structure is thought to be formed by gravitational scattering of ring particles by an unseen embedded moonlet. Self-gravity wakes are prevalent in dense rings due to gravitational instability. Strong gravitational wakes affect the propeller structure. Here, we derive the condition for the formation of a propeller structure by a moonlet embedded in a dense ring with gravitational wakes. We find that a propeller structure is formed when the wavelength of the gravitational wakes is smaller than the Hill radius of the moonlet. We confirm this formation condition bymore » performing numerical simulations. This condition is consistent with observations of propeller structures in Saturn's A.« less

  2. Lock-and-key dimerization in dense Brownian systems of hard annular sector particles

    NASA Astrophysics Data System (ADS)

    Hodson, Wade D.; Mason, Thomas G.

    2016-08-01

    We develop a translational-rotational cage model that describes the behavior of dense two-dimensional (2D) Brownian systems of hard annular sector particles (ASPs), resembling C shapes. At high particle densities, pairs of ASPs can form mutually interdigitating lock-and-key dimers. This cage model considers either one or two mobile central ASPs which can translate and rotate within a static cage of surrounding ASPs that mimics the system's average local structure and density. By comparing with recent measurements made on dispersions of microscale lithographic ASPs [P. Y. Wang and T. G. Mason, J. Am. Chem. Soc. 137, 15308 (2015), 10.1021/jacs.5b10549], we show that mobile two-particle predictions of the probability of dimerization Pdimer, equilibrium constant K , and 2D osmotic pressure Π2 D as a function of the particle area fraction ϕA correspond closely to these experiments. By contrast, predictions based on only a single mobile particle do not agree well with either the two-particle predictions or the experimental data. Thus, we show that collective entropy can play an essential role in the behavior of dense Brownian systems composed of nontrivial hard shapes, such as ASPs.

  3. Object-Based Dense Matching Method for Maintaining Structure Characteristics of Linear Buildings

    PubMed Central

    Yan, Yiming; Qiu, Mingjie; Zhao, Chunhui; Wang, Liguo

    2018-01-01

    In this paper, we proposed a novel object-based dense matching method specially for the high-precision disparity map of building objects in urban areas, which can maintain accurate object structure characteristics. The proposed framework mainly includes three stages. Firstly, an improved edge line extraction method is proposed for the edge segments to fit closely to building outlines. Secondly, a fusion method is proposed for the outlines under the constraint of straight lines, which can maintain the building structural attribute with parallel or vertical edges, which is very useful for the dense matching method. Finally, we proposed an edge constraint and outline compensation (ECAOC) dense matching method to maintain building object structural characteristics in the disparity map. In the proposed method, the improved edge lines are used to optimize matching search scope and matching template window, and the high-precision building outlines are used to compensate the shape feature of building objects. Our method can greatly increase the matching accuracy of building objects in urban areas, especially at building edges. For the outline extraction experiments, our fusion method verifies the superiority and robustness on panchromatic images of different satellites and different resolutions. For the dense matching experiments, our ECOAC method shows great advantages for matching accuracy of building objects in urban areas compared with three other methods. PMID:29596393

  4. Signatures of personality on dense 3D facial images.

    PubMed

    Hu, Sile; Xiong, Jieyi; Fu, Pengcheng; Qiao, Lu; Tan, Jingze; Jin, Li; Tang, Kun

    2017-03-06

    It has long been speculated that cues on the human face exist that allow observers to make reliable judgments of others' personality traits. However, direct evidence of association between facial shapes and personality is missing from the current literature. This study assessed the personality attributes of 834 Han Chinese volunteers (405 males and 429 females), utilising the five-factor personality model ('Big Five'), and collected their neutral 3D facial images. Dense anatomical correspondence was established across the 3D facial images in order to allow high-dimensional quantitative analyses of the facial phenotypes. In this paper, we developed a Partial Least Squares (PLS) -based method. We used composite partial least squares component (CPSLC) to test association between the self-tested personality scores and the dense 3D facial image data, then used principal component analysis (PCA) for further validation. Among the five personality factors, agreeableness and conscientiousness in males and extraversion in females were significantly associated with specific facial patterns. The personality-related facial patterns were extracted and their effects were extrapolated on simulated 3D facial models.

  5. GigaGauss solenoidal magnetic field inside bubbles excited in under-dense plasma

    PubMed Central

    Lécz, Zs.; Konoplev, I. V.; Seryi, A.; Andreev, A.

    2016-01-01

    This paper proposes a novel and effective method for generating GigaGauss level, solenoidal quasi-static magnetic fields in under-dense plasma using screw-shaped high intensity laser pulses. This method produces large solenoidal fields that move with the driving laser pulse and are collinear with the accelerated electrons. This is in contrast with already known techniques which rely on interactions with over-dense or solid targets and generates radial or toroidal magnetic field localized at the stationary target. The solenoidal field is quasi-stationary in the reference frame of the laser pulse and can be used for guiding electron beams. It can also provide synchrotron radiation beam emittance cooling for laser-plasma accelerated electron and positron beams, opening up novel opportunities for designs of the light sources, free electron lasers, and high energy colliders based on laser plasma acceleration. PMID:27796327

  6. GigaGauss solenoidal magnetic field inside bubbles excited in under-dense plasma

    NASA Astrophysics Data System (ADS)

    Lécz, Zs.; Konoplev, I. V.; Seryi, A.; Andreev, A.

    2016-10-01

    This paper proposes a novel and effective method for generating GigaGauss level, solenoidal quasi-static magnetic fields in under-dense plasma using screw-shaped high intensity laser pulses. This method produces large solenoidal fields that move with the driving laser pulse and are collinear with the accelerated electrons. This is in contrast with already known techniques which rely on interactions with over-dense or solid targets and generates radial or toroidal magnetic field localized at the stationary target. The solenoidal field is quasi-stationary in the reference frame of the laser pulse and can be used for guiding electron beams. It can also provide synchrotron radiation beam emittance cooling for laser-plasma accelerated electron and positron beams, opening up novel opportunities for designs of the light sources, free electron lasers, and high energy colliders based on laser plasma acceleration.

  7. Quantitative adaptation analytics for assessing dynamic systems of systems: LDRD Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauthier, John H.; Miner, Nadine E.; Wilson, Michael L.

    2015-01-01

    Our society is increasingly reliant on systems and interoperating collections of systems, known as systems of systems (SoS). These SoS are often subject to changing missions (e.g., nation- building, arms-control treaties), threats (e.g., asymmetric warfare, terrorism), natural environments (e.g., climate, weather, natural disasters) and budgets. How well can SoS adapt to these types of dynamic conditions? This report details the results of a three year Laboratory Directed Research and Development (LDRD) project aimed at developing metrics and methodologies for quantifying the adaptability of systems and SoS. Work products include: derivation of a set of adaptability metrics, a method for combiningmore » the metrics into a system of systems adaptability index (SoSAI) used to compare adaptability of SoS designs, development of a prototype dynamic SoS (proto-dSoS) simulation environment which provides the ability to investigate the validity of the adaptability metric set, and two test cases that evaluate the usefulness of a subset of the adaptability metrics and SoSAI for distinguishing good from poor adaptability in a SoS. Intellectual property results include three patents pending: A Method For Quantifying Relative System Adaptability, Method for Evaluating System Performance, and A Method for Determining Systems Re-Tasking.« less

  8. Hardness Assurance for Low-Energy Proton-Induced Single-Event Effects: Final report for LDRD Project 173134

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodds, Nathaniel Anson

    2015-08-01

    This report briefly summarizes three publications that resulted from a two-year LDRD. The three publications address a recently emerging reliability issue: namely, that low-energy protons (LEPs) can cause single-event effects (SEEs) in highly scaled microelectronics. These publications span from low to high technology readiness levels. In the first, novel experiments were used to prove that proton direct ionization is the dominant mechanism for LEP-induced SEEs. In the second, a simple method was developed to calculate expected on-orbit error rates for LEP effects. This simplification was enabled by creating (and characterizing) an accelerated space-like LEP environment in the laboratory. In themore » third publication, this new method was applied to many memory circuits from the 20-90 nm technology nodes to study the general importance of LEP effects, in terms of their contribution to the total on-orbit SEE rate.« less

  9. Micro-structure and motion of two-dimensional dense short spherocylinder liquids

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Lin, Jyun-Ting; Su, Yen-Shuo; I, Lin

    2018-03-01

    We numerically investigate the micro-structure and motion of 2D liquids composed of dense short spherocylinders, by reducing the shape aspect ratio from 3. It is found that reducing shape aspect ratio from 3 causes a smooth transition from heterogeneous structures composed of crystalline ordered domains with good tetratic alignment order to those with good hexagonal bond-orientational order at an aspect ratio equaling 1.35. In the intermediate regime, both structural orders are strongly deteriorated, and the translational hopping rate reaches a maximum due to the poor particle interlocking of the disordered structure. Shortening rod length allows easier rotation, induces monotonic increase of rotational hopping rates, and resumes the separation of rotational and translational hopping time scales at the small aspect ratio end, after the crossover of their rates in the intermediate regime. At the large shape aspect ratio end, the poor local tetratic order has the same positive effects on facilitating local rotational and translational hopping. In contrast, at the small shape aspect ratio end, the poor local bond orientational order has the opposite effects on facilitating local rotational and translational hopping.

  10. Atypical face shape and genomic structural variants in epilepsy

    PubMed Central

    Chinthapalli, Krishna; Bartolini, Emanuele; Novy, Jan; Suttie, Michael; Marini, Carla; Falchi, Melania; Fox, Zoe; Clayton, Lisa M. S.; Sander, Josemir W.; Guerrini, Renzo; Depondt, Chantal; Hennekam, Raoul; Hammond, Peter

    2012-01-01

    Many pathogenic structural variants of the human genome are known to cause facial dysmorphism. During the past decade, pathogenic structural variants have also been found to be an important class of genetic risk factor for epilepsy. In other fields, face shape has been assessed objectively using 3D stereophotogrammetry and dense surface models. We hypothesized that computer-based analysis of 3D face images would detect subtle facial abnormality in people with epilepsy who carry pathogenic structural variants as determined by chromosome microarray. In 118 children and adults attending three European epilepsy clinics, we used an objective measure called Face Shape Difference to show that those with pathogenic structural variants have a significantly more atypical face shape than those without such variants. This is true when analysing the whole face, or the periorbital region or the perinasal region alone. We then tested the predictive accuracy of our measure in a second group of 63 patients. Using a minimum threshold to detect face shape abnormalities with pathogenic structural variants, we found high sensitivity (4/5, 80% for whole face; 3/5, 60% for periorbital and perinasal regions) and specificity (45/58, 78% for whole face and perinasal regions; 40/58, 69% for periorbital region). We show that the results do not seem to be affected by facial injury, facial expression, intellectual disability, drug history or demographic differences. Finally, we use bioinformatics tools to explore relationships between facial shape and gene expression within the developing forebrain. Stereophotogrammetry and dense surface models are powerful, objective, non-contact methods of detecting relevant face shape abnormalities. We demonstrate that they are useful in identifying atypical face shape in adults or children with structural variants, and they may give insights into the molecular genetics of facial development. PMID:22975390

  11. Final LDRD report : development of sample preparation methods for ChIPMA-based imaging mass spectrometry of tissue samples.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maharrey, Sean P.; Highley, Aaron M.; Behrens, Richard, Jr.

    2007-12-01

    The objective of this short-term LDRD project was to acquire the tools needed to use our chemical imaging precision mass analyzer (ChIPMA) instrument to analyze tissue samples. This effort was an outgrowth of discussions with oncologists on the need to find the cellular origin of signals in mass spectra of serum samples, which provide biomarkers for ovarian cancer. The ultimate goal would be to collect chemical images of biopsy samples allowing the chemical images of diseased and nondiseased sections of a sample to be compared. The equipment needed to prepare tissue samples have been acquired and built. This equipment includesmore » an cyro-ultramicrotome for preparing thin sections of samples and a coating unit. The coating unit uses an electrospray system to deposit small droplets of a UV-photo absorbing compound on the surface of the tissue samples. Both units are operational. The tissue sample must be coated with the organic compound to enable matrix assisted laser desorption/ionization (MALDI) and matrix enhanced secondary ion mass spectrometry (ME-SIMS) measurements with the ChIPMA instrument Initial plans to test the sample preparation using human tissue samples required development of administrative procedures beyond the scope of this LDRD. Hence, it was decided to make two types of measurements: (1) Testing the spatial resolution of ME-SIMS by preparing a substrate coated with a mixture of an organic matrix and a bio standard and etching a defined pattern in the coating using a liquid metal ion beam, and (2) preparing and imaging C. elegans worms. Difficulties arose in sectioning the C. elegans for analysis and funds and time to overcome these difficulties were not available in this project. The facilities are now available for preparing biological samples for analysis with the ChIPMA instrument. Some further investment of time and resources in sample preparation should make this a useful tool for chemical imaging applications.« less

  12. LDRD final report :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brost, Randolph C.; McLendon, William Clarence,

    2013-01-01

    Modeling geospatial information with semantic graphs enables search for sites of interest based on relationships between features, without requiring strong a priori models of feature shape or other intrinsic properties. Geospatial semantic graphs can be constructed from raw sensor data with suitable preprocessing to obtain a discretized representation. This report describes initial work toward extending geospatial semantic graphs to include temporal information, and initial results applying semantic graph techniques to SAR image data. We describe an efficient graph structure that includes geospatial and temporal information, which is designed to support simultaneous spatial and temporal search queries. We also report amore » preliminary implementation of feature recognition, semantic graph modeling, and graph search based on input SAR data. The report concludes with lessons learned and suggestions for future improvements.« less

  13. Dense 3D Face Alignment from 2D Video for Real-Time Use

    PubMed Central

    Jeni, László A.; Cohn, Jeffrey F.; Kanade, Takeo

    2018-01-01

    To enable real-time, person-independent 3D registration from 2D video, we developed a 3D cascade regression approach in which facial landmarks remain invariant across pose over a range of approximately 60 degrees. From a single 2D image of a person’s face, a dense 3D shape is registered in real time for each frame. The algorithm utilizes a fast cascade regression framework trained on high-resolution 3D face-scans of posed and spontaneous emotion expression. The algorithm first estimates the location of a dense set of landmarks and their visibility, then reconstructs face shapes by fitting a part-based 3D model. Because no assumptions are required about illumination or surface properties, the method can be applied to a wide range of imaging conditions that include 2D video and uncalibrated multi-view video. The method has been validated in a battery of experiments that evaluate its precision of 3D reconstruction, extension to multi-view reconstruction, temporal integration for videos and 3D head-pose estimation. Experimental findings strongly support the validity of real-time, 3D registration and reconstruction from 2D video. The software is available online at http://zface.org. PMID:29731533

  14. Geometrical Optics of Dense Aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, Michael J.; Valeo, Ernest J.; Fisch, Nathaniel J.

    2013-04-24

    Assembling a free-standing, sharp-edged slab of homogeneous material that is much denser than gas, but much more rare ed than a solid, is an outstanding technological challenge. The solution may lie in focusing a dense aerosol to assume this geometry. However, whereas the geometrical optics of dilute aerosols is a well-developed fi eld, the dense aerosol limit is mostly unexplored. Yet controlling the geometrical optics of dense aerosols is necessary in preparing such a material slab. Focusing dense aerosols is shown here to be possible, but the nite particle density reduces the eff ective Stokes number of the flow, amore » critical result for controlled focusing. __________________________________________________« less

  15. Robust Planning for Autonomous Navigation of Mobile Robots in Unstructured, Dynamic Environments: An LDRD Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    EISLER, G. RICHARD

    This report summarizes the analytical and experimental efforts for the Laboratory Directed Research and Development (LDRD) project entitled ''Robust Planning for Autonomous Navigation of Mobile Robots In Unstructured, Dynamic Environments (AutoNav)''. The project goal was to develop an algorithmic-driven, multi-spectral approach to point-to-point navigation characterized by: segmented on-board trajectory planning, self-contained operation without human support for mission duration, and the development of appropriate sensors and algorithms to navigate unattended. The project was partially successful in achieving gains in sensing, path planning, navigation, and guidance. One of three experimental platforms, the Minimalist Autonomous Testbed, used a repetitive sense-and-re-plan combination to demonstratemore » the majority of elements necessary for autonomous navigation. However, a critical goal for overall success in arbitrary terrain, that of developing a sensor that is able to distinguish true obstacles that need to be avoided as a function of vehicle scale, still needs substantial research to bring to fruition.« less

  16. Implementation and Re nement of a Comprehensive Model for Dense Granular Flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundaresan, Sankaran

    2015-09-30

    Dense granular ows are ubiquitous in both natural and industrial processes. They manifest three di erent ow regimes, each exhibiting its own dependence on solids volume fraction, shear rate, and particle-level properties. This research project sought to develop continuum rheological models for dense granular ows that bridges multiple regimes of ow, implement them in open-source platforms for gas-particle ows and perform test simulations. The rst phase of the research covered in this project involved implementation of a steady- shear rheological model that bridges quasi-static, intermediate and inertial regimes of ow into MFIX (Multiphase Flow with Interphase eXchanges - a generalmore » purpose computer code developed at the National Energy Technology Laboratory). MFIX simulations of dense granular ows in hourglass-shaped hopper were then performed as test examples. The second phase focused on formulation of a modi ed kinetic theory for frictional particles that can be used over a wider range of particle volume fractions and also apply for dynamic, multi- dimensional ow conditions. To guide this work, simulations of simple shear ows of identical mono-disperse spheres were also performed using the discrete element method. The third phase of this project sought to develop and implement a more rigorous treatment of boundary e ects. Towards this end, simulations of simple shear ows of identical mono-disperse spheres con ned between parallel plates were performed and analyzed to formulate compact wall boundary conditions that can be used for dense frictional ows at at frictional boundaries. The fourth phase explored the role of modest levels of cohesive interactions between particles on the dense phase rheology. The nal phase of this project focused on implementation and testing of the modi ed kinetic theory in MFIX and running bin-discharge simulations as test examples.« less

  17. Geophysical Age Dating of Seamounts using Dense Core Flexure Model

    NASA Astrophysics Data System (ADS)

    Hwang, Gyuha; Kim, Seung-Sep

    2016-04-01

    Lithospheric flexure of oceanic plate is thermo-mechanical response of an elastic plate to the given volcanic construct (e.g., seamounts and ocean islands). If the shape and mass of such volcanic loads are known, the flexural response is governed by the thickness of elastic plate, Te. As the age of oceanic plate increases, the elastic thickness of oceanic lithosphere becomes thicker. Thus, we can relate Te with the age of plate at the time of loading. To estimate the amount of the driving force due to seamounts on elastic plate, one needs to approximate their density structure. The most common choice is uniform density model, which utilizes constant density value for a seamount. This approach simplifies computational processes for gravity prediction and error estimates. However, the uniform density model tends to overestimate the total mass of the seamount and hence produces more positive gravitational contributions from the load. Minimization of gravity misfits using uniform density, therefore, favors thinner Te in order to increase negative contributions from the lithospheric flexure, which can compensate for the excessive positives from the seamount. An alternative approach is dense core model, which approximate the heterogeneity nature of seamount density as three bodies of infill sediment, edifice, and dense core. In this study, we apply the dense core model to the Louisville Seamount Chain for constraining flexural deformation. We compare Te estimates with the loading time of the examined seamounts to redefine empirical geophysical age dating of seamounts.

  18. Laboratory directed research and development FY98 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ayat, R; Holzrichter, J

    1999-05-01

    In 1984, Congress and the Department of Energy (DOE) established the Laboratory Directed Research and Development (LDRD) Program to enable the director of a national laboratory to foster and expedite innovative research and development (R and D) in mission areas. The Lawrence Livermore National Laboratory (LLNL) continually examines these mission areas through strategic planning and shapes the LDRD Program to meet its long-term vision. The goal of the LDRD Program is to spur development of new scientific and technical capabilities that enable LLNL to respond to the challenges within its evolving mission areas. In addition, the LDRD Program provides LLNLmore » with the flexibility to nurture and enrich essential scientific and technical competencies and enables the Laboratory to attract the most qualified scientists and engineers. The FY98 LDRD portfolio described in this annual report has been carefully structured to continue the tradition of vigorously supporting DOE and LLNL strategic vision and evolving mission areas. The projects selected for LDRD funding undergo stringent review and selection processes, which emphasize strategic relevance and require technical peer reviews of proposals by external and internal experts. These FY98 projects emphasize the Laboratory's national security needs: stewardship of the U.S. nuclear weapons stockpile, responsibility for the counter- and nonproliferation of weapons of mass destruction, development of high-performance computing, and support of DOE environmental research and waste management programs.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heroux, Michael Allen; Marker, Bryan

    This report summarizes the progress made as part of a one year lab-directed research and development (LDRD) project to fund the research efforts of Bryan Marker at the University of Texas at Austin. The goal of the project was to develop new techniques for automatically tuning the performance of dense linear algebra kernels. These kernels often represent the majority of computational time in an application. The primary outcome from this work is a demonstration of the value of model driven engineering as an approach to accurately predict and study performance trade-offs for dense linear algebra computations.

  20. Quantum dense key distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Degiovanni, I.P.; Ruo Berchera, I.; Castelletto, S.

    2004-03-01

    This paper proposes a protocol for quantum dense key distribution. This protocol embeds the benefits of a quantum dense coding and a quantum key distribution and is able to generate shared secret keys four times more efficiently than the Bennet-Brassard 1984 protocol. We hereinafter prove the security of this scheme against individual eavesdropping attacks, and we present preliminary experimental results, showing its feasibility.

  1. Dense Breasts

    MedlinePlus

    ... fatty tissue. On a mammogram, fatty tissue appears dark (radio-lucent) and the glandular and connective tissues ... white on mammography) and non-dense fatty tissue (dark on mammography) using a visual scale and assign ...

  2. Indexing Volumetric Shapes with Matching and Packing

    PubMed Central

    Koes, David Ryan; Camacho, Carlos J.

    2014-01-01

    We describe a novel algorithm for bulk-loading an index with high-dimensional data and apply it to the problem of volumetric shape matching. Our matching and packing algorithm is a general approach for packing data according to a similarity metric. First an approximate k-nearest neighbor graph is constructed using vantage-point initialization, an improvement to previous work that decreases construction time while improving the quality of approximation. Then graph matching is iteratively performed to pack related items closely together. The end result is a dense index with good performance. We define a new query specification for shape matching that uses minimum and maximum shape constraints to explicitly specify the spatial requirements of the desired shape. This specification provides a natural language for performing volumetric shape matching and is readily supported by the geometry-based similarity search (GSS) tree, an indexing structure that maintains explicit representations of volumetric shape. We describe our implementation of a GSS tree for volumetric shape matching and provide a comprehensive evaluation of parameter sensitivity, performance, and scalability. Compared to previous bulk-loading algorithms, we find that matching and packing can construct a GSS-tree index in the same amount of time that is denser, flatter, and better performing, with an observed average performance improvement of 2X. PMID:26085707

  3. Dense module enumeration in biological networks

    NASA Astrophysics Data System (ADS)

    Tsuda, Koji; Georgii, Elisabeth

    2009-12-01

    Analysis of large networks is a central topic in various research fields including biology, sociology, and web mining. Detection of dense modules (a.k.a. clusters) is an important step to analyze the networks. Though numerous methods have been proposed to this aim, they often lack mathematical rigorousness. Namely, there is no guarantee that all dense modules are detected. Here, we present a novel reverse-search-based method for enumerating all dense modules. Furthermore, constraints from additional data sources such as gene expression profiles or customer profiles can be integrated, so that we can systematically detect dense modules with interesting profiles. We report successful applications in human protein interaction network analyses.

  4. Estimating average growth trajectories in shape-space using kernel smoothing.

    PubMed

    Hutton, Tim J; Buxton, Bernard F; Hammond, Peter; Potts, Henry W W

    2003-06-01

    In this paper, we show how a dense surface point distribution model of the human face can be computed and demonstrate the usefulness of the high-dimensional shape-space for expressing the shape changes associated with growth and aging. We show how average growth trajectories for the human face can be computed in the absence of longitudinal data by using kernel smoothing across a population. A training set of three-dimensional surface scans of 199 male and 201 female subjects of between 0 and 50 years of age is used to build the model.

  5. Shape and spin of asteroid 967 Helionape

    NASA Astrophysics Data System (ADS)

    Apostolovska, G.; Kostov, A.; Donchev, Z.; Bebekovska, E. Vchkova; Kuzmanovska, O.

    2018-04-01

    Knowledge of the spin and shape parameters of the asteroids is very important for understanding of the conditions during the creation of our planetary system and formation of asteroid populations. The main belt asteroid and Flora family member 967 Helionape was observed during five apparitions. The observations were made at the Bulgarian National Astronomical Observatory (BNAO) Rozhen, since March 2006 to March 2016. Lihtcurve inversion method (Kaasalainen et al. (2001)), applied on 12 relative lightcurves obtained at various geometric conditions of the asteroid, reveals the spin vector, the sense of rotation and the preliminary shape model of the asteroid. Our aim is to contribute in increasing the set of asteroids with known spin and shape parameters. This could be done with dense lightcurves, obtained during small number of apparitions, in combination with sparse data produced by photometric asteroid surveys such as the Gaia satellite (Hanush (2011)).

  6. Dense deconvolution net: Multi path fusion and dense deconvolution for high resolution skin lesion segmentation.

    PubMed

    He, Xinzi; Yu, Zhen; Wang, Tianfu; Lei, Baiying; Shi, Yiyan

    2018-01-01

    Dermoscopy imaging has been a routine examination approach for skin lesion diagnosis. Accurate segmentation is the first step for automatic dermoscopy image assessment. The main challenges for skin lesion segmentation are numerous variations in viewpoint and scale of skin lesion region. To handle these challenges, we propose a novel skin lesion segmentation network via a very deep dense deconvolution network based on dermoscopic images. Specifically, the deep dense layer and generic multi-path Deep RefineNet are combined to improve the segmentation performance. The deep representation of all available layers is aggregated to form the global feature maps using skip connection. Also, the dense deconvolution layer is leveraged to capture diverse appearance features via the contextual information. Finally, we apply the dense deconvolution layer to smooth segmentation maps and obtain final high-resolution output. Our proposed method shows the superiority over the state-of-the-art approaches based on the public available 2016 and 2017 skin lesion challenge dataset and achieves the accuracy of 96.0% and 93.9%, which obtained a 6.0% and 1.2% increase over the traditional method, respectively. By utilizing Dense Deconvolution Net, the average time for processing one testing images with our proposed framework was 0.253 s.

  7. Shape of the growing front of biofilms

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Stone, Howard A.; Golestanian, Ramin

    2017-12-01

    The spatial organization of bacteria in dense biofilms is key to their collective behaviour, and understanding it will be important for medical and technological applications. Here we study the morphology of a compact biofilm that undergoes unidirectional growth, and determine the condition for the stability of the growing interface as a function of the nutrient concentration and mechanical tension. Our study suggests that transient behaviour may play an important role in shaping the structure of a biofilm.

  8. Constructing Dense Graphs with Unique Hamiltonian Cycles

    ERIC Educational Resources Information Center

    Lynch, Mark A. M.

    2012-01-01

    It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…

  9. Strength and fatigue properties of three-step sintered dense nanocrystal hydroxyapatite bioceramics

    NASA Astrophysics Data System (ADS)

    Guo, Wen-Guang; Qiu, Zhi-Ye; Cui, Han; Wang, Chang-Ming; Zhang, Xiao-Jun; Lee, In-Seop; Dong, Yu-Qi; Cui, Fu-Zhai

    2013-06-01

    Dense hydroxyapatite (HA) ceramic is a promising material for hard tissue repair due to its unique physical properties and biologic properties. However, the brittleness and low compressive strength of traditional HA ceramics limited their applications, because previous sintering methods produced HA ceramics with crystal sizes greater than nanometer range. In this study, nano-sized HA powder was employed to fabricate dense nanocrystal HA ceramic by high pressure molding, and followed by a three-step sintering process. The phase composition, microstructure, crystal dimension and crystal shape of the sintered ceramic were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Mechanical properties of the HA ceramic were tested, and cytocompatibility was evaluated. The phase of the sintered ceramic was pure HA, and the crystal size was about 200 nm. The compressive strength and elastic modulus of the HA ceramic were comparable to human cortical bone, especially the good fatigue strength overcame brittleness of traditional sintered HA ceramics. Cell attachment experiment also demonstrated that the ceramics had a good cytocompatibility.

  10. Conditioning 3D object-based models to dense well data

    NASA Astrophysics Data System (ADS)

    Wang, Yimin C.; Pyrcz, Michael J.; Catuneanu, Octavian; Boisvert, Jeff B.

    2018-06-01

    Object-based stochastic simulation models are used to generate categorical variable models with a realistic representation of complicated reservoir heterogeneity. A limitation of object-based modeling is the difficulty of conditioning to dense data. One method to achieve data conditioning is to apply optimization techniques. Optimization algorithms can utilize an objective function measuring the conditioning level of each object while also considering the geological realism of the object. Here, an objective function is optimized with implicit filtering which considers constraints on object parameters. Thousands of objects conditioned to data are generated and stored in a database. A set of objects are selected with linear integer programming to generate the final realization and honor all well data, proportions and other desirable geological features. Although any parameterizable object can be considered, objects from fluvial reservoirs are used to illustrate the ability to simultaneously condition multiple types of geologic features. Channels, levees, crevasse splays and oxbow lakes are parameterized based on location, path, orientation and profile shapes. Functions mimicking natural river sinuosity are used for the centerline model. Channel stacking pattern constraints are also included to enhance the geological realism of object interactions. Spatial layout correlations between different types of objects are modeled. Three case studies demonstrate the flexibility of the proposed optimization-simulation method. These examples include multiple channels with high sinuosity, as well as fragmented channels affected by limited preservation. In all cases the proposed method reproduces input parameters for the object geometries and matches the dense well constraints. The proposed methodology expands the applicability of object-based simulation to complex and heterogeneous geological environments with dense sampling.

  11. Three-dimensional reconstruction of the fast-start swimming kinematics of densely schooling fish

    PubMed Central

    Paley, Derek A.

    2012-01-01

    Information transmission via non-verbal cues such as a fright response can be quantified in a fish school by reconstructing individual fish motion in three dimensions. In this paper, we describe an automated tracking framework to reconstruct the full-body trajectories of densely schooling fish using two-dimensional silhouettes in multiple cameras. We model the shape of each fish as a series of elliptical cross sections along a flexible midline. We estimate the size of each ellipse using an iterated extended Kalman filter. The shape model is used in a model-based tracking framework in which simulated annealing is applied at each step to estimate the midline. Results are presented for eight fish with occlusions. The tracking system is currently being used to investigate fast-start behaviour of schooling fish in response to looming stimuli. PMID:21642367

  12. METHOD OF PRODUCING DENSE CONSOLIDATED METALLIC REGULUS

    DOEpatents

    Magel, T.T.

    1959-08-11

    A methcd is presented for reducing dense metal compositions while simultaneously separating impurities from the reduced dense metal and casting the reduced parified dense metal, such as uranium, into well consolidated metal ingots. The reduction is accomplished by heating the dense metallic salt in the presence of a reducing agent, such as an alkali metal or alkaline earth metal in a bomb type reacting chamber, while applying centrifugal force on the reacting materials. Separation of the metal from the impurities is accomplished essentially by the incorporation of a constricted passageway at the vertex of a conical reacting chamber which is in direct communication with a collecting chamber. When a centrifugal force is applled to the molten metal and slag from the reduction in a direction collinear with the axis of the constricted passage, the dense molten metal is forced therethrough while the less dense slag is retained within the reaction chamber, resulting in a simultaneous separation of the reduced molten metal from the slag and a compacting of the reduced metal in a homogeneous mass.

  13. A Shape Model of the Main-belt Asteroid 27 Euterpe

    NASA Astrophysics Data System (ADS)

    Stephens, Robert D.; Warner, Brian D.; Megna, Ralph; Coley, Daniel

    2012-01-01

    We obtained dense rotational lightcurves for the mainbelt asteroid 27 Euterpe during four apparitions in 2000, 2009, 2010 and 2011. The analysis indicates retrograde rotation and suggests, but does not confirm, that Euterpe has albedo features making the determination of an unambiguous spin vector and model shape difficult. Euterpe's apparent nearly spherical shape, low inclination, and pole within about 35 degrees of the plane of the solar system, caused two pole and shape solutions to be present, differing by about 180° in longitude. We found solutions of (83°, -39°, 10.40825 ± 0.00003 h) and (261°, -30°, 10.40818 ± 0.00003 h). The approximate error in the pole solutions is ± 10 degrees.

  14. Learning Compositional Shape Models of Multiple Distance Metrics by Information Projection.

    PubMed

    Luo, Ping; Lin, Liang; Liu, Xiaobai

    2016-07-01

    This paper presents a novel compositional contour-based shape model by incorporating multiple distance metrics to account for varying shape distortions or deformations. Our approach contains two key steps: 1) contour feature generation and 2) generative model pursuit. For each category, we first densely sample an ensemble of local prototype contour segments from a few positive shape examples and describe each segment using three different types of distance metrics. These metrics are diverse and complementary with each other to capture various shape deformations. We regard the parameterized contour segment plus an additive residual ϵ as a basic subspace, namely, ϵ -ball, in the sense that it represents local shape variance under the certain distance metric. Using these ϵ -balls as features, we then propose a generative learning algorithm to pursue the compositional shape model, which greedily selects the most representative features under the information projection principle. In experiments, we evaluate our model on several public challenging data sets, and demonstrate that the integration of multiple shape distance metrics is capable of dealing various shape deformations, articulations, and background clutter, hence boosting system performance.

  15. MobileFusion: real-time volumetric surface reconstruction and dense tracking on mobile phones.

    PubMed

    Ondrúška, Peter; Kohli, Pushmeet; Izadi, Shahram

    2015-11-01

    We present the first pipeline for real-time volumetric surface reconstruction and dense 6DoF camera tracking running purely on standard, off-the-shelf mobile phones. Using only the embedded RGB camera, our system allows users to scan objects of varying shape, size, and appearance in seconds, with real-time feedback during the capture process. Unlike existing state of the art methods, which produce only point-based 3D models on the phone, or require cloud-based processing, our hybrid GPU/CPU pipeline is unique in that it creates a connected 3D surface model directly on the device at 25Hz. In each frame, we perform dense 6DoF tracking, which continuously registers the RGB input to the incrementally built 3D model, minimizing a noise aware photoconsistency error metric. This is followed by efficient key-frame selection, and dense per-frame stereo matching. These depth maps are fused volumetrically using a method akin to KinectFusion, producing compelling surface models. For each frame, the implicit surface is extracted for live user feedback and pose estimation. We demonstrate scans of a variety of objects, and compare to a Kinect-based baseline, showing on average ∼ 1.5cm error. We qualitatively compare to a state of the art point-based mobile phone method, demonstrating an order of magnitude faster scanning times, and fully connected surface models.

  16. Oblique impact of dense granular sheets

    NASA Astrophysics Data System (ADS)

    Ellowitz, Jake; Guttenberg, Nicholas; Jaeger, Heinrich M.; Nagel, Sidney R.; Zhang, Wendy W.

    2013-11-01

    Motivated by experiments showing impacts of granular jets with non-circular cross sections produce thin ejecta sheets with anisotropic shapes, we study what happens when two sheets containing densely packed, rigid grains traveling at the same speed collide asymmetrically. Discrete particle simulations and a continuum frictional fluid model yield the same steady-state solution of two exit streams emerging from incident streams. When the incident angle Δθ is less than Δθc =120° +/-10° , the exit streams' angles differ from that measured in water sheet experiments. Below Δθc , the exit angles from granular and water sheet impacts agree. This correspondence is surprising because 2D Euler jet impact, the idealization relevant for both situations, is ill posed: a generic Δθ value permits a continuous family of solutions. Our finding that granular and water sheet impacts evolve into the same member of the solution family suggests previous proposals that perturbations such as viscous drag, surface tension or air entrapment select the actual outcome are not correct. Currently at Department of Physics, University of Oregon, Eugene, OR 97403.

  17. Sandia National Laboratories: LabNews Articles

    Science.gov Websites

    , 2016 Sandia economic impact up in 2015; 25 years of LDRD; Enormous blades for offshore energy; ANGLEing ) $_SerializerTool.serialize($alt) November 12, 2015 Partnerships, mission synergy will shape Sandia's future; Managing the

  18. Shape Memory Behavior of Dense and Porous NiTi Alloys Fabricated by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Saedi, Soheil

    Selective Laser Melting (SLM) of Additive Manufacturing is an attractive fabrication method that employs CAD data to selectively melt the metal powder layer by layer via a laser beam and produce a 3D part. This method not only opens a new window in overcoming traditional NiTi fabrication problems but also for producing porous or complex shaped structures. The combination of SLM fabrication advantages with the unique properties of NiTi alloys, such as shape memory effect, superelasticity, high ductility, work output, corrosion, biocompatibility, etc. makes SLM NiTi alloys extremely promising for numerous applications. The SLM process parameters such as laser power, scanning speed, spacing, and strategy used during the fabrication are determinant factors in composition, microstructural features and functional properties of the SLM NiTi alloy. Therefore, a comprehensive and systematic study has been conducted over Ni 50.8 Ti49.2 (at%) alloy to understand the influence of each parameter individually. It was found that a sharp [001] texture is formed as a result of SLM fabrication which leads to improvements in the superelastic response of the alloy. It was perceived that transformation temperatures, microstructure, hardness, the intensity of formed texture and the correlated thermo-mechanical response are changed substantially with alteration of each parameter. The provided knowledge will allow choosing optimized parameters for tailoring the functional features of SLM fabricated NiTi alloys. Without going through any heat treatments, 5.77% superelasticity with more than 95% recovery ratio was obtained in as-fabricated condition only with the selection of right process parameters. Additionally, thermal treatments can be utilized to form precipitates in Ni-rich SLM NiTi alloys fabricated by low energy density. Precipitation could significantly alter the matrix composition, transformation temperatures and strain, critical stress for transformation, and shape memory

  19. A constitutive law for dense granular flows.

    PubMed

    Jop, Pierre; Forterre, Yoël; Pouliquen, Olivier

    2006-06-08

    A continuum description of granular flows would be of considerable help in predicting natural geophysical hazards or in designing industrial processes. However, the constitutive equations for dry granular flows, which govern how the material moves under shear, are still a matter of debate. One difficulty is that grains can behave like a solid (in a sand pile), a liquid (when poured from a silo) or a gas (when strongly agitated). For the two extreme regimes, constitutive equations have been proposed based on kinetic theory for collisional rapid flows, and soil mechanics for slow plastic flows. However, the intermediate dense regime, where the granular material flows like a liquid, still lacks a unified view and has motivated many studies over the past decade. The main characteristics of granular liquids are: a yield criterion (a critical shear stress below which flow is not possible) and a complex dependence on shear rate when flowing. In this sense, granular matter shares similarities with classical visco-plastic fluids such as Bingham fluids. Here we propose a new constitutive relation for dense granular flows, inspired by this analogy and recent numerical and experimental work. We then test our three-dimensional (3D) model through experiments on granular flows on a pile between rough sidewalls, in which a complex 3D flow pattern develops. We show that, without any fitting parameter, the model gives quantitative predictions for the flow shape and velocity profiles. Our results support the idea that a simple visco-plastic approach can quantitatively capture granular flow properties, and could serve as a basic tool for modelling more complex flows in geophysical or industrial applications.

  20. Furthering the investigation of eruption styles through quantitative shape analyses of volcanic ash particles

    NASA Astrophysics Data System (ADS)

    Nurfiani, D.; Bouvet de Maisonneuve, C.

    2018-04-01

    Volcanic ash morphology has been quantitatively investigated for various aims such as studying the settling velocity of ash for modelling purposes and understanding the fragmentation processes at the origin of explosive eruptions. In an attempt to investigate the usefulness of ash morphometry for monitoring purposes, we analyzed the shape of volcanic ash particles through a combination of (1) traditional shape descriptors such as solidity, convexity, axial ratio and form factor and (2) fractal analysis using the Euclidean Distance transform (EDT) method. We compare ash samples from the hydrothermal eruptions of Iwodake (Japan) in 2013, Tangkuban Perahu (Indonesia) in 2013 and Marapi (Sumatra, Indonesia) in 2015, the dome explosions of Merapi (Java, Indonesia) in 2013, the Vulcanian eruptions of Merapi in 2010 and Tavurvur (Rabaul, Papaua New Guinea) in 2014, and the Plinian eruption of Kelud (Indonesia) in 2014. Particle size and shape measurements were acquired from a Particle Size Analyzer with a microscope camera attached to the instrument. Clear differences between dense/blocky particles from hydrothermal or dome explosions and vesicular particles produced by the fragmentation of gas-bearing molten magma are well highlighted by conventional shape descriptors and the fractal method. In addition, subtle differences between dense/blocky particles produced by hydrothermal explosions, dome explosions, or quench granulation during phreatomagmatic eruptions can be evidenced with the fractal method. The combination of shape descriptors and fractal analysis is therefore potentially able to distinguish between juvenile and non-juvenile magma, which is of importance for eruption monitoring.

  1. Dynamical theory of dense groups of galaxies

    NASA Technical Reports Server (NTRS)

    Mamon, Gary A.

    1990-01-01

    It is well known that galaxies associate in groups and clusters. Perhaps 40% of all galaxies are found in groups of 4 to 20 galaxies (e.g., Tully 1987). Although most groups appear to be so loose that the galaxy interactions within them ought to be insignificant, the apparently densest groups, known as compact groups appear so dense when seen in projection onto the plane of the sky that their members often overlap. These groups thus appear as dense as the cores of rich clusters. The most popular catalog of compact groups, compiled by Hickson (1982), includes isolation among its selection critera. Therefore, in comparison with the cores of rich clusters, Hickson's compact groups (HCGs) appear to be the densest isolated regions in the Universe (in galaxies per unit volume), and thus provide in principle a clean laboratory for studying the competition of very strong gravitational interactions. The $64,000 question here is then: Are compact groups really bound systems as dense as they appear? If dense groups indeed exist, then one expects that each of the dynamical processes leading to the interaction of their member galaxies should be greatly enhanced. This leads us to the questions: How stable are dense groups? How do they form? And the related question, fascinating to any theorist: What dynamical processes predominate in dense groups of galaxies? If HCGs are not bound dense systems, but instead 1D change alignments (Mamon 1986, 1987; Walke & Mamon 1989) or 3D transient cores (Rose 1979) within larger looser systems of galaxies, then the relevant question is: How frequent are chance configurations within loose groups? Here, the author answers these last four questions after comparing in some detail the methods used and the results obtained in the different studies of dense groups.

  2. Shear thickening and jamming in suspensions of different particle shapes

    NASA Astrophysics Data System (ADS)

    Brown, Eric; Zhang, Hanjun; Forman, Nicole; Betts, Douglas; Desimone, Joseph; Maynor, Benjamin; Jaeger, Heinrich

    2012-02-01

    We investigated the role of particle shape on shear thickening and jamming in densely packed suspensions. Various particle shapes were fabricated including rods of different aspect ratios and non-convex hooked rods. A rheometer was used to measure shear stress vs. shear rate for a wide range of packing fractions for each shape. Each suspensions exhibits qualitatively similar Discontinuous Shear Thickening, in which the logarithmic slope of the stress vs. shear rate has the same scaling for each convex shape and diverges at a critical packing fraction φc. The value of φc varies with particle shape, and coincides with the onset of a yield stress, a.k.a. the jamming transition. This suggests the jamming transition controls shear thickening, and the only effect of particle shape on steady state bulk rheology of convex particles is a shift of φc. Intriguingly, viscosity curves for non-convex particles do not collapse on the same set as convex particles, showing strong shear thickening over a wider range of packing fraction. Qualitative shape dependence was only found in steady state rheology when the system was confined to small gaps where large aspect ratio particle are forced to order.

  3. Mining connected global and local dense subgraphs for bigdata

    NASA Astrophysics Data System (ADS)

    Wu, Bo; Shen, Haiying

    2016-01-01

    The problem of discovering connected dense subgraphs of natural graphs is important in data analysis. Discovering dense subgraphs that do not contain denser subgraphs or are not contained in denser subgraphs (called significant dense subgraphs) is also critical for wide-ranging applications. In spite of many works on discovering dense subgraphs, there are no algorithms that can guarantee the connectivity of the returned subgraphs or discover significant dense subgraphs. Hence, in this paper, we define two subgraph discovery problems to discover connected and significant dense subgraphs, propose polynomial-time algorithms and theoretically prove their validity. We also propose an algorithm to further improve the time and space efficiency of our basic algorithm for discovering significant dense subgraphs in big data by taking advantage of the unique features of large natural graphs. In the experiments, we use massive natural graphs to evaluate our algorithms in comparison with previous algorithms. The experimental results show the effectiveness of our algorithms for the two problems and their efficiency. This work is also the first that reveals the physical significance of significant dense subgraphs in natural graphs from different domains.

  4. Deterministic quantum dense coding networks

    NASA Astrophysics Data System (ADS)

    Roy, Saptarshi; Chanda, Titas; Das, Tamoghna; Sen(De), Aditi; Sen, Ujjwal

    2018-07-01

    We consider the scenario of deterministic classical information transmission between multiple senders and a single receiver, when they a priori share a multipartite quantum state - an attempt towards building a deterministic dense coding network. Specifically, we prove that in the case of two or three senders and a single receiver, generalized Greenberger-Horne-Zeilinger (gGHZ) states are not beneficial for sending classical information deterministically beyond the classical limit, except when the shared state is the GHZ state itself. On the other hand, three- and four-qubit generalized W (gW) states with specific parameters as well as the four-qubit Dicke states can provide a quantum advantage of sending the information in deterministic dense coding. Interestingly however, numerical simulations in the three-qubit scenario reveal that the percentage of states from the GHZ-class that are deterministic dense codeable is higher than that of states from the W-class.

  5. Ultrafast visualization of the structural evolution of dense hydrogen towards warm dense matter

    NASA Astrophysics Data System (ADS)

    Fletcher, Luke

    2016-10-01

    Hot dense hydrogen far from equilibrium is ubiquitous in nature occurring during some of the most violent and least understood events in our universe such as during star formation, supernova explosions, and the creation of cosmic rays. It is also a state of matter important for applications in inertial confinement fusion research and in laser particle acceleration. Rapid progress occurred in recent years characterizing the high-pressure structural properties of dense hydrogen under static or dynamic compression. Here, we show that spectrally and angularly resolved x-ray scattering measure the thermodynamic properties of dense hydrogen and resolve the ultrafast evolution and relaxation towards thermodynamic equilibrium. These studies apply ultra-bright x-ray pulses from the Linac Coherent Light (LCLS) source. The interaction of rapidly heated cryogenic hydrogen with a high-peak power optical laser is visualized with intense LCLS x-ray pulses in a high-repetition rate pump-probe setting. We demonstrate that electron-ion coupling is affected by the small number of particles in the Debye screening cloud resulting in much slower ion temperature equilibration than predicted by standard theory. This work was supported by the DOE Office of Science, Fusion Energy Science under FWP 100182.

  6. Nanoengineering of bioactive glasses: hollow and dense nanospheres

    NASA Astrophysics Data System (ADS)

    Luz, Gisela M.; Mano, João F.

    2013-02-01

    The possibility of engineering bioactive glass (BG) nanoparticles into suitable sizes and shapes represents a significant achievement regarding the development of new osteoconductive biomaterials for therapeutic strategies to replace or regenerate damaged mineralised tissues. Herein we report the structural and chemical evolution of sol-gel derived BG nanoparticles for both the binary (SiO2:CaO (mol%) = 70:30) and ternary (SiO2:CaO:P2O5 (mol%) = 55:40:5) formulations, in order to understand how the particles formation can be directed. Hollow BG nanospheres were obtained through Ostwald ripening. The presence of a non ionic surfactant, poly(ethylene glycol) (PEG), allowed the formation of dense BG nanospheres with controllable diameters depending on the molecular weight of PEG. A deep insight into the genesis of BG nanoparticles formation is essential to design BG based materials with controlled compositions, morphologies and sizes at the nanoscale, in order to improve their performance in orthopaedic applications including bone tissue engineering.

  7. Chemiresistor microsensors for in-situ monitoring of volatile organic compounds : final LDRD report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Michael Loren; Hughes, Robert Clark; Kooser, Ara S.

    2003-09-01

    This report provides a summary of the three-year LDRD (Laboratory Directed Research and Development) project aimed at developing microchemical sensors for continuous, in-situ monitoring of volatile organic compounds. A chemiresistor sensor array was integrated with a unique, waterproof housing that allows the sensors to be operated in a variety of media including air, soil, and water. Numerous tests were performed to evaluate and improve the sensitivity, stability, and discriminatory capabilities of the chemiresistors. Field tests were conducted in California, Nevada, and New Mexico to further test and develop the sensors in actual environments within integrated monitoring systems. The field testsmore » addressed issues regarding data acquisition, telemetry, power requirements, data processing, and other engineering requirements. Significant advances were made in the areas of polymer optimization, packaging, data analysis, discrimination, design, and information dissemination (e.g., real-time web posting of data; see www.sandia.gov/sensor). This project has stimulated significant interest among commercial and academic institutions. A CRADA (Cooperative Research and Development Agreement) was initiated in FY03 to investigate manufacturing methods, and a Work for Others contract was established between Sandia and Edwards Air Force Base for FY02-FY04. Funding was also obtained from DOE as part of their Advanced Monitoring Systems Initiative program from FY01 to FY03, and a DOE EMSP contract was awarded jointly to Sandia and INEEL for FY04-FY06. Contracts were also established for collaborative research with Brigham Young University to further evaluate, understand, and improve the performance of the chemiresistor sensors.« less

  8. Design and Construction of a Dense Plasma Focus Device

    DTIC Science & Technology

    1976-10-01

    This paper deals with the design of a dense plasma focus device as an engineering project. Essentially this approach can be summarized as follows...First, an introduction dealing with a general discussion of plasma devices focusing on the role of a dense plasma focus device as a useful tool in...future research; second, an explanation of the operation of the dense plasma focus ; third, a general design discussion of the dense plasma focus device

  9. Face shape differs in phylogenetically related populations.

    PubMed

    Hopman, Saskia M J; Merks, Johannes H M; Suttie, Michael; Hennekam, Raoul C M; Hammond, Peter

    2014-11-01

    3D analysis of facial morphology has delineated facial phenotypes in many medical conditions and detected fine grained differences between typical and atypical patients to inform genotype-phenotype studies. Next-generation sequencing techniques have enabled extremely detailed genotype-phenotype correlative analysis. Such comparisons typically employ control groups matched for age, sex and ethnicity and the distinction between ethnic categories in genotype-phenotype studies has been widely debated. The phylogenetic tree based on genetic polymorphism studies divides the world population into nine subpopulations. Here we show statistically significant face shape differences between two European Caucasian populations of close phylogenetic and geographic proximity from the UK and The Netherlands. The average face shape differences between the Dutch and UK cohorts were visualised in dynamic morphs and signature heat maps, and quantified for their statistical significance using both conventional anthropometry and state of the art dense surface modelling techniques. Our results demonstrate significant differences between Dutch and UK face shape. Other studies have shown that genetic variants influence normal facial variation. Thus, face shape difference between populations could reflect underlying genetic difference. This should be taken into account in genotype-phenotype studies and we recommend that in those studies reference groups be established in the same population as the individuals who form the subject of the study.

  10. Final report for LDRD project 11-0783 : directed robots for increased military manpower effectiveness.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohrer, Brandon Robinson; Rothganger, Fredrick H.; Wagner, John S.

    The purpose of this LDRD is to develop technology allowing warfighters to provide high-level commands to their unmanned assets, freeing them to command a group of them or commit the bulk of their attention elsewhere. To this end, a brain-emulating cognition and control architecture (BECCA) was developed, incorporating novel and uniquely capable feature creation and reinforcement learning algorithms. BECCA was demonstrated on both a mobile manipulator platform and on a seven degree of freedom serial link robot arm. Existing military ground robots are almost universally teleoperated and occupy the complete attention of an operator. They may remove a soldier frommore » harm's way, but they do not necessarily reduce manpower requirements. Current research efforts to solve the problem of autonomous operation in an unstructured, dynamic environment fall short of the desired performance. In order to increase the effectiveness of unmanned vehicle (UV) operators, we proposed to develop robots that can be 'directed' rather than remote-controlled. They are instructed and trained by human operators, rather than driven. The technical approach is modeled closely on psychological and neuroscientific models of human learning. Two Sandia-developed models are utilized in this effort: the Sandia Cognitive Framework (SCF), a cognitive psychology-based model of human processes, and BECCA, a psychophysical-based model of learning, motor control, and conceptualization. Together, these models span the functional space from perceptuo-motor abilities, to high-level motivational and attentional processes.« less

  11. A Fast Pulse, High Intensity Neutron Source Based Upon The Dense Plasma Focus

    NASA Astrophysics Data System (ADS)

    Krishnan, M.; Bures, B.; Madden, R.; Blobner, F.; Elliott, K. Wilson

    2009-12-01

    Alameda Applied Sciences Corporation (AASC) has built a bench-top source of fast neutrons (˜10-30 ns, 2.45 MeV), that is portable and can be scaled to operate at ˜100 Hz. The source is a Dense Plasma Focus driven by three different capacitor banks: a 40 J/30 kA/100 Hz driver; a 500 J/130 kA/2 Hz driver and a 3 kJ/350 kA/0.5 Hz driver. At currents of ˜130 kA, this source produces ˜1×107 (DD) n/pulse. The neutron pulse widths are ˜10-30 ns and may be controlled by adjusting the DPF electrode geometry and operating parameters. This paper describes the scaling of the fast neutron output with current from such a Dense Plasma Focus source. For each current and driver, different DPF head designs are required to match to the current rise-time, as the operating pressure and anode radius/shape are varied. Doping of the pure D2 gas fill with Ar or Kr was shown earlier to increase the neutron output. Results are discussed in the light of scaling laws suggested by prior literature.

  12. Dynamically generated patterns in dense suspensions of active filaments

    NASA Astrophysics Data System (ADS)

    Prathyusha, K. R.; Henkes, Silke; Sknepnek, Rastko

    2018-02-01

    We use Langevin dynamics simulations to study dynamical behavior of a dense planar layer of active semiflexible filaments. Using the strength of active force and the thermal persistence length as parameters, we map a detailed phase diagram and identify several nonequilibrium phases in this system. In addition to a slowly flowing melt phase, we observe that, for sufficiently high activity, collective flow accompanied by signatures of local polar and nematic order appears in the system. This state is also characterized by strong density fluctuations. Furthermore, we identify an activity-driven crossover from this state of coherently flowing bundles of filaments to a phase with no global flow, formed by individual filaments coiled into rotating spirals. This suggests a mechanism where the system responds to activity by changing the shape of active agents, an effect with no analog in systems of active particles without internal degrees of freedom.

  13. Dense Axion Stars.

    PubMed

    Braaten, Eric; Mohapatra, Abhishek; Zhang, Hong

    2016-09-16

    If the dark matter particles are axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound systems of axions. In the previously known solutions for axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure. The mass of these dilute axion stars cannot exceed a critical mass, which is about 10^{-14}M_{⊙} if the axion mass is 10^{-4}  eV. We study axion stars using a simple approximation to the effective potential of the nonrelativistic effective field theory for axions. We find a new branch of dense axion stars in which gravity is balanced by the mean-field pressure of the axion Bose-Einstein condensate. The mass on this branch ranges from about 10^{-20}M_{⊙} to about M_{⊙}. If a dilute axion star with the critical mass accretes additional axions and collapses, it could produce a bosenova, leaving a dense axion star as the remnant.

  14. Dense Deposit Disease Mimicking a Renal Small Vessel Vasculitis

    PubMed Central

    Singh, Lavleen; Bhardwaj, Swati; Sinha, Aditi; Bagga, Arvind; Dinda, Amit

    2016-01-01

    Dense deposit disease is caused by fluid-phase dysregulation of the alternative complement pathway and frequently deviates from the classic membranoproliferative pattern of injury on light microscopy. Other patterns of injury described for dense deposit disease include mesangioproliferative, acute proliferative/exudative, and crescentic GN. Regardless of the histologic pattern, C3 glomerulopathy, which includes dense deposit disease and C3 GN, is defined by immunofluorescence intensity of C3c two or more orders of magnitude greater than any other immune reactant (on a 0–3 scale). Ultrastructural appearances distinguish dense deposit disease and C3 GN. Focal and segmental necrotizing glomerular lesions with crescents, mimicking a small vessel vasculitis such as ANCA-associated GN, are a very rare manifestation of dense deposit disease. We describe our experience with this unusual histologic presentation and distinct clinical course of dense deposit disease, discuss the pitfalls in diagnosis, examine differential diagnoses, and review the relevant literature. PMID:26361799

  15. Particle-In-Cell Modeling For MJ Dense Plasma Focus with Varied Anode Shape

    NASA Astrophysics Data System (ADS)

    Link, A.; Halvorson, C.; Schmidt, A.; Hagen, E. C.; Rose, D.; Welch, D.

    2014-10-01

    Megajoule scale dense plasma focus (DPF) Z-pinches with deuterium gas fill are compact devices capable of producing 1012 neutrons per shot but past predictive models of large-scale DPF have not included kinetic effects such as ion beam formation or anomalous resistivity. We report on progress of developing a predictive DPF model by extending our 2D axisymmetric collisional kinetic particle-in-cell (PIC) simulations to the 1 MJ, 2 MA Gemini DPF using the PIC code LSP. These new simulations incorporate electrodes, an external pulsed-power driver circuit, and model the plasma from insulator lift-off through the pinch phase. The simulations were performed using a new hybrid fluid-to-kinetic model transitioning from a fluid description to a fully kinetic PIC description during the run-in phase. Simulations are advanced through the final pinch phase using an adaptive variable time-step to capture the fs and sub-mm scales of the kinetic instabilities involved in the ion beam formation and neutron production. Results will be present on the predicted effects of different anode configurations. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) under Contract DE-AC52-07NA27344 and supported by the Laboratory Directed Research and Development Program (11-ERD-063) and the Computing Grand Challenge program at LLNL. This work supported by Office of Defense Nuclear Nonproliferation Research and Development within U.S. Department of Energy's National Nuclear Security Administration.

  16. Ultrafast Absorption Spectroscopy of Aluminum Plasmas Created by LCLS using Betatron X-Ray Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, Felicie

    2016-10-12

    This document summarizes the goals and accomplishments of a six month-long LDRD project, awarded through the LLNL director Early and Mid Career Recognition (EMCR) program. This project allowed us to support beamtime awarded at the Matter under Extreme Conditions (MEC) end station of the Linac Coherent Light Source (LCLS). The goal of the experiment was to heat metallic samples with the bright x-rays from the LCLS free electron laser. Then, we studied how they relaxed back to equilibrium by probing them with ultrafast x-ray absorption spectroscopy using laser-based betatron radiation. Our work enabled large collaborations between LLNL, SLAC, LBNL, andmore » institutions in France and in the UK, while providing training to undergraduate and graduate students during the experiment. Following this LDRD project, the PI was awarded a 5-year DOE early career research grant to further develop applications of laser-driven x-ray sources for high energy density science experiments and warm dense matter states.« less

  17. Relaxation phenomena in AOT-water-decane critical and dense microemulsions

    NASA Astrophysics Data System (ADS)

    Letamendia, L.; Pru-Lestret, E.; Panizza, P.; Rouch, J.; Sciortino, F.; Tartaglia, P.; Hashimoto, C.; Ushiki, H.; Risso, D.

    2001-11-01

    We report on extensive measurements of the low and high frequencies sound velocity and sound absorption in AOT-water-decane microemulsions deduced from ultrasonic and, for the first time as far as the absorption is concerned, from Brillouin scattering experiments. New experimental results on dielectric relaxation are also reported. Our results, which include data taken for critical as well as dense microemulsions, show new interesting relaxation phenomena. The relaxation frequencies deduced from very high frequency acoustical measurements are in good agreement with new high frequency dielectric relaxation measurements. We show that along the critical isochore, sound dispersion, relaxation frequency, and static dielectric permittivity can be accurately fitted to power laws. The absolute values of the new exponents we derived from experimental data are nearly equal, and they are very close to β=0.33 characterising the shape of the coexistence curve. The exponent characterising the infinite frequency permittivity is very close to 0.04 relevant to the diverging shear viscosity. For dense microemulsions, two well defined relaxation domains have been identified and the temperature variations of the sound absorption and the zero frequency dielectric permittivity bear striking similarities. We also show that the relaxation frequency of the slow relaxation process is almost independent of temperature and volume fraction and so cannot be attributed to percolation phenomena, whereas it can more likely be attributed to an intrinsic relaxation process probably connected to membrane fluctuations.

  18. Post-fusion structural changes and their roles in exocytosis and endocytosis of dense-core vesicles

    PubMed Central

    Chiang, Hsueh-Cheng; Shin, Wonchul; Zhao, Wei-Dong; Hamid, Edaeni; Sheng, Jiansong; Baydyuk, Maryna; Wen, Peter J.; Jin, Albert; Momboisse, Fanny; Wu, Ling-Gang

    2014-01-01

    Vesicle fusion with the plasma membrane generates an Ω-shaped membrane profile. Its pore is thought to dilate until flattening (full-collapse), followed by classical endocytosis to retrieve vesicles. Alternatively, the pore may close (kiss-and-run), but the triggering mechanisms and its endocytic roles remain poorly understood. Here, using confocal and STED imaging of dense-core vesicles, we find that fusion-generated Ω-profiles may enlarge or shrink while maintaining vesicular membrane proteins. Closure of fusion-generated Ω-profiles, which produces various sizes of vesicles, is the dominant mechanism mediating rapid and slow endocytosis within ~1–30 s. Strong calcium influx triggers dynamin-mediated closure. Weak calcium influx does not promote closure, but facilitates the merging of Ω-profiles with the plasma membrane via shrinking rather than full-collapse. These results establish a model, termed Ω-exo-endocytosis, in which the fusion-generated Ω-profile may shrink to merge with the plasma membrane, change in size, or change in size then close in response to calcium, which is the main mechanism to retrieve dense-core vesicles. PMID:24561832

  19. Coalescence preference in densely packed microbubbles

    DOE PAGES

    Kim, Yeseul; Lim, Su Jin; Gim, Bopil; ...

    2015-01-13

    A bubble merged from two parent bubbles with different size tends to be placed closer to the larger parent. This phenomenon is known as the coalescence preference. Here we demonstrate that the coalescence preference can be blocked inside a densely packed cluster of bubbles. We utilized high-speed high-resolution X-ray microscopy to clearly visualize individual coalescence events inside densely packed microbubbles with a local packing fraction of ~40%. Thus, the surface energy release theory predicts an exponent of 5 in a relation between the relative coalescence position and the parent size ratio, whereas our observation for coalescence in densely packed microbubblesmore » shows a different exponent of 2. We believe that this result would be important to understand the reality of coalescence dynamics in a variety of packing situations of soft matter.« less

  20. Coalescence preference in densely packed microbubbles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yeseul; Lim, Su Jin; Gim, Bopil

    A bubble merged from two parent bubbles with different size tends to be placed closer to the larger parent. This phenomenon is known as the coalescence preference. Here we demonstrate that the coalescence preference can be blocked inside a densely packed cluster of bubbles. We utilized high-speed high-resolution X-ray microscopy to clearly visualize individual coalescence events inside densely packed microbubbles with a local packing fraction of ~40%. Thus, the surface energy release theory predicts an exponent of 5 in a relation between the relative coalescence position and the parent size ratio, whereas our observation for coalescence in densely packed microbubblesmore » shows a different exponent of 2. We believe that this result would be important to understand the reality of coalescence dynamics in a variety of packing situations of soft matter.« less

  1. Dense Regions in Supersonic Isothermal Turbulence

    NASA Astrophysics Data System (ADS)

    Robertson, Brant; Goldreich, Peter

    2018-02-01

    The properties of supersonic isothermal turbulence influence a variety of astrophysical phenomena, including the structure and evolution of star-forming clouds. This work presents a simple model for the structure of dense regions in turbulence in which the density distribution behind isothermal shocks originates from rough hydrostatic balance between the pressure gradient behind the shock and its deceleration from ram pressure applied by the background fluid. Using simulations of supersonic isothermal turbulence and idealized waves moving through a background medium, we show that the structural properties of dense, shocked regions broadly agree with our analytical model. Our work provides a new conceptual picture for describing the dense regions, which complements theoretical efforts to understand the bulk statistical properties of turbulence and attempts to model the more complex features of star-forming clouds like magnetic fields, self-gravity, or radiative properties.

  2. Final report for LDRD project 11-0029 : high-interest event detection in large-scale multi-modal data sets : proof of concept.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohrer, Brandon Robinson

    2011-09-01

    Events of interest to data analysts are sometimes difficult to characterize in detail. Rather, they consist of anomalies, events that are unpredicted, unusual, or otherwise incongruent. The purpose of this LDRD was to test the hypothesis that a biologically-inspired anomaly detection algorithm could be used to detect contextual, multi-modal anomalies. There currently is no other solution to this problem, but the existence of a solution would have a great national security impact. The technical focus of this research was the application of a brain-emulating cognition and control architecture (BECCA) to the problem of anomaly detection. One aspect of BECCA inmore » particular was discovered to be critical to improved anomaly detection capabilities: it's feature creator. During the course of this project the feature creator was developed and tested against multiple data types. Development direction was drawn from psychological and neurophysiological measurements. Major technical achievements include the creation of hierarchical feature sets created from both audio and imagery data.« less

  3. Spline curve matching with sparse knot sets: applications to deformable shape detection and recognition

    Treesearch

    Sang-Mook Lee; A. Lynn Abbott; Neil A. Clark; Philip A. Araman

    2003-01-01

    Splines can be used to approximate noisy data with a few control points. This paper presents a new curve matching method for deformable shapes using two-dimensional splines. In contrast to the residual error criterion, which is based on relative locations of corresponding knot points such that is reliable primarily for dense point sets, we use deformation energy of...

  4. Dense Suspension Splash

    NASA Astrophysics Data System (ADS)

    Zhang, Wendy; Dodge, Kevin M.; Peters, Ivo R.; Ellowitz, Jake; Klein Schaarsberg, Martin H.; Jaeger, Heinrich M.

    2014-03-01

    Upon impact onto a solid surface at several meters-per-second, a dense suspension plug splashes by ejecting liquid-coated particles. We study the mechanism for splash formation using experiments and a numerical model. In the model, the dense suspension is idealized as a collection of cohesionless, rigid grains with finite surface roughness. The grains also experience lubrication drag as they approach, collide inelastically and rebound away from each other. Simulations using this model reproduce the measured momentum distribution of ejected particles. They also provide direct evidence supporting the conclusion from earlier experiments that inelastic collisions, rather than viscous drag, dominate when the suspension contains macroscopic particles immersed in a low-viscosity solvent such as water. Finally, the simulations reveal two distinct routes for splash formation: a particle can be ejected by a single high momentum-change collision. More surprisingly, a succession of small momentum-change collisions can accumulate to eject a particle outwards. Supported by NSF through its MRSEC program (DMR-0820054) and fluid dynamics program (CBET-1336489).

  5. Electronic structure of dense Pb overlayers on Si(111) investigated using angle-resolved photoemission

    NASA Astrophysics Data System (ADS)

    Choi, W. H.; Koh, H.; Rotenberg, E.; Yeom, H. W.

    2007-02-01

    Dense Pb overlayers on Si(111) are important as the wetting layer for anomalous Pb island growth as well as for their own complex “devil’s-staircase” phases. The electronic structures of dense Pb overlayers on Si(111) were investigated in detail by angle-resolved photoemission. Among the series of ordered phases found recently above one monolayer, the low-coverage 7×3 and the high-coverage 14×3 phases are studied; they are well ordered and form reproducibly in large areas. The band dispersions and Fermi surfaces of the two-dimensional (2D) electronic states of these overlayers are mapped out. A number of metallic surface-state bands are identified for both phases with complex Fermi contours. The basic features of the observed Fermi contours can be explained by overlapping 2D free-electron-like Fermi circles. This analysis reveals that the 2D electrons near the Fermi level of the 7×3 and 14×3 phases are mainly governed by strong 1×1 and 3×3 potentials, respectively. The origins of the 2D electronic states and their apparent Fermi surface shapes are discussed based on recent structure models.

  6. Thermal conduction study of warm dense aluminum by proton differential heating

    NASA Astrophysics Data System (ADS)

    Ping, Y.; Kemp, G.; McKelvey, A.; Fernandez-Panella, A.; Shepherd, R.; Collins, G.; Sio, H.; King, J.; Freeman, R.; Hua, R.; McGuffey, C.; Kim, J.; Beg, F.

    2016-10-01

    A differential heating platform has been developed for thermal conduction study (Ping et al. PoP 2015), where a temperature gradient is induced and subsequent heat flow is probed by time-resolved diagnostics. An experiment using proton differential heating has been carried out at Titan laser for Au/Al targets. Two single-shot time-resolved diagnostics are employed, SOP (streaked optical pyrometry) for surface temperature and FDI (Fourier Domain Interferometry) for surface expansion. Hydrodynamic simulations show that after 15ps, absorption in underdense plasma needs to be taken into account to correctly interpret SOP data. Comparison between simulations with different thermal conductivity models and a set of data with varying target thickness will be presented. This work was performed under DOE contract DE-AC52-07NA27344 with support from OFES Early Career program and LLNL LDRD program.

  7. Shape and spin determination of Barbarian asteroids

    NASA Astrophysics Data System (ADS)

    Devogèle, M.; Tanga, P.; Bendjoya, P.; Rivet, J. P.; Surdej, J.; Hanuš, J.; Abe, L.; Antonini, P.; Artola, R. A.; Audejean, M.; Behrend, R.; Berski, F.; Bosch, J. G.; Bronikowska, M.; Carbognani, A.; Char, F.; Kim, M.-J.; Choi, Y.-J.; Colazo, C. A.; Coloma, J.; Coward, D.; Durkee, R.; Erece, O.; Forne, E.; Hickson, P.; Hirsch, R.; Horbowicz, J.; Kamiński, K.; Kankiewicz, P.; Kaplan, M.; Kwiatkowski, T.; Konstanciak, I.; Kruszewki, A.; Kudak, V.; Manzini, F.; Moon, H.-K.; Marciniak, A.; Murawiecka, M.; Nadolny, J.; Ogłoza, W.; Ortiz, J. L.; Oszkiewicz, D.; Pallares, H.; Peixinho, N.; Poncy, R.; Reyes, F.; de los Reyes, J. A.; Santana-Ros, T.; Sobkowiak, K.; Pastor, S.; Pilcher, F.; Quiñones, M. C.; Trela, P.; Vernet, D.

    2017-11-01

    Context. The so-called Barbarian asteroids share peculiar, but common polarimetric properties, probably related to both their shape and composition. They are named after (234) Barbara, the first on which such properties were identified. As has been suggested, large scale topographic features could play a role in the polarimetric response, if the shapes of Barbarians are particularly irregular and present a variety of scattering/incidence angles. This idea is supported by the shape of (234) Barbara, that appears to be deeply excavated by wide concave areas revealed by photometry and stellar occultations. Aims: With these motivations, we started an observation campaign to characterise the shape and rotation properties of Small Main-Belt Asteroid Spectroscopic Survey (SMASS) type L and Ld asteroids. As many of them show long rotation periods, we activated a worldwide network of observers to obtain a dense temporal coverage. Methods: We used light-curve inversion technique in order to determine the sidereal rotation periods of 15 asteroids and the convergence to a stable shape and pole coordinates for 8 of them. By using available data from occultations, we are able to scale some shapes to an absolute size. We also study the rotation periods of our sample looking for confirmation of the suspected abundance of asteroids with long rotation periods. Results: Our results show that the shape models of our sample do not seem to have peculiar properties with respect to asteroids with similar size, while an excess of slow rotators is most probably confirmed. The light curves are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A119

  8. Biomimetic air sampling for detection of low concentrations of molecules and bioagents : LDRD 52744 final report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Robert Clark

    2003-12-01

    Present methods of air sampling for low concentrations of chemicals like explosives and bioagents involve noisy and power hungry collectors with mechanical parts for moving large volumes of air. However there are biological systems that are capable of detecting very low concentrations of molecules with no mechanical moving parts. An example is the silkworm moth antenna which is a highly branched structure where each of 100 branches contains about 200 sensory 'hairs' which have dimensions of 2 microns wide by 100 microns long. The hairs contain about 3000 pores which is where the gas phase molecules enter the aqueous (lymph)more » phase for detection. Simulations of diffusion of molecules indicate that this 'forest' of hairs is 'designed' to maximize the extraction of the vapor phase molecules. Since typical molecules lose about 4 decades in diffusion constant upon entering the liquid phase, it is important to allow air diffusion to bring the molecule as close to the 'sensor' as possible. The moth acts on concentrations as low as 1000 molecules per cubic cm. (one part in 1e16). A 3-D collection system of these dimensions could be fabricated by micromachining techniques available at Sandia. This LDRD addresses the issues involved with extracting molecules from air onto micromachined structures and then delivering those molecules to microsensors for detection.« less

  9. Prediction of a Densely Loaded Particle-Laden Jet using a Euler-Lagrange Dense Spray Model

    NASA Astrophysics Data System (ADS)

    Pakseresht, Pedram; Apte, Sourabh V.

    2017-11-01

    Modeling of a dense spray regime using an Euler-Lagrange discrete-element approach is challenging because of local high volume loading. A subgrid cluster of droplets can lead to locally high void fractions for the disperse phase. Under these conditions, spatio-temporal changes in the carrier phase volume fractions, which are commonly neglected in spray simulations in an Euler-Lagrange two-way coupling model, could become important. Accounting for the carrier phase volume fraction variations, leads to zero-Mach number, variable density governing equations. Using pressure-based solvers, this gives rise to a source term in the pressure Poisson equation and a non-divergence free velocity field. To test the validity and predictive capability of such an approach, a round jet laden with solid particles is investigated using Direct Numerical Simulation and compared with available experimental data for different loadings. Various volume fractions spanning from dilute to dense regimes are investigated with and without taking into account the volume displacement effects. The predictions of the two approaches are compared and analyzed to investigate the effectiveness of the dense spray model. Financial support was provided by National Aeronautics and Space Administration (NASA).

  10. Analysis of Architectural Building Design Influences on Fire Spread in Densely Urban Settlement using Cellular Automata

    NASA Astrophysics Data System (ADS)

    Tambunan, L.; Salamah, H.; Asriana, N.

    2017-03-01

    This study aims to determine the influence of architectural design on the risk of fire spread in densely urban settlement area. Cellular Automata (CA) is used to analyse the fire spread pattern, speed, and the extent of damage. Four cells represent buildings, streets, and fields characteristic in the simulated area, as well as their flammability level and fire spread capabilities. Two fire scenarios are used to model the spread of fire: (1) fire origin in a building with concrete and wood material majority, and (2) fire origin in building with wood material majority. Building shape, building distance, road width, and total area of wall openings are considered constant, while wind is ignored. The result shows that fire spread faster in the building area with wood majority than with concrete majority. Significant amount of combustible building material, absence of distance between buildings, narrow streets and limited fields are factors which influence fire spread speed and pattern as well as extent of damage when fire occurs in the densely urban settlement area.

  11. Influence of galactic arm scale dynamics on the molecular composition of the cold and dense ISM. I. Observed abundance gradients in dense clouds

    NASA Astrophysics Data System (ADS)

    Ruaud, M.; Wakelam, V.; Gratier, P.; Bonnell, I. A.

    2018-04-01

    Aim. We study the effect of large scale dynamics on the molecular composition of the dense interstellar medium during the transition between diffuse to dense clouds. Methods: We followed the formation of dense clouds (on sub-parsec scales) through the dynamics of the interstellar medium at galactic scales. We used results from smoothed particle hydrodynamics (SPH) simulations from which we extracted physical parameters that are used as inputs for our full gas-grain chemical model. In these simulations, the evolution of the interstellar matter is followed for 50 Myr. The warm low-density interstellar medium gas flows into spiral arms where orbit crowding produces the shock formation of dense clouds, which are held together temporarily by the external pressure. Results: We show that depending on the physical history of each SPH particle, the molecular composition of the modeled dense clouds presents a high dispersion in the computed abundances even if the local physical properties are similar. We find that carbon chains are the most affected species and show that these differences are directly connected to differences in (1) the electronic fraction, (2) the C/O ratio, and (3) the local physical conditions. We argue that differences in the dynamical evolution of the gas that formed dense clouds could account for the molecular diversity observed between and within these clouds. Conclusions: This study shows the importance of past physical conditions in establishing the chemical composition of the dense medium.

  12. Ionospheric modifications detected by a dense network of single frequency GNSS receivers

    NASA Astrophysics Data System (ADS)

    Mrak, S.; Semeter, J. L.

    2017-12-01

    It has been predicted that the region of totality during a total solar eclipse can launch atmospheric gravity waves with large enough amplitude to cause traveling ionospheric disturbances (TIDs). We report initial results from a remote sensing campaign involving a dense hybrid network of single- and dual-frequency GNSS receivers deployed underneath the 21 August 2017 solar eclipse. The campaign took place in central Missouri, involving 84 Trimble dual-frequency receivers, complemented by 2 additional 50 Hz dual-frequency receivers and 15 single-frequency receivers, together constructing 100 receivers with average mutual separation of less than 25 km and with a time resolution of 1 second or better. The initial results show a crescent shaped enhancement bulge in front of region of totality, extending all the way from Canada to Gulf of Mexico. In addition, in the path of totality is noticed a great depletion region, followed by a pair of transverse waves propagating in west-east direction. In the following months, we will explore the transition region carried by the totality by a virtue of hyper dense network of GNSS receivers with 1 second resolution. In addition to TEC data decomposition we will explore effects of the totality on the raw measurements (phase, code and signal intensity), and to the navigation solution which is likely to be effected by a different propagation conditions with respect to other days.

  13. Finding Hierarchical and Overlapping Dense Subgraphs using Nucleus Decompositions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seshadhri, Comandur; Pinar, Ali; Sariyuce, Ahmet Erdem

    Finding dense substructures in a graph is a fundamental graph mining operation, with applications in bioinformatics, social networks, and visualization to name a few. Yet most standard formulations of this problem (like clique, quasiclique, k-densest subgraph) are NP-hard. Furthermore, the goal is rarely to nd the \\true optimum", but to identify many (if not all) dense substructures, understand their distribution in the graph, and ideally determine a hierarchical structure among them. Current dense subgraph nding algorithms usually optimize some objective, and only nd a few such subgraphs without providing any hierarchy. It is also not clear how to account formore » overlaps in dense substructures. We de ne the nucleus decomposition of a graph, which represents the graph as a forest of nuclei. Each nucleus is a subgraph where smaller cliques are present in many larger cliques. The forest of nuclei is a hierarchy by containment, where the edge density increases as we proceed towards leaf nuclei. Sibling nuclei can have limited intersections, which allows for discovery of overlapping dense subgraphs. With the right parameters, the nuclear decomposition generalizes the classic notions of k-cores and k-trusses. We give provable e cient algorithms for nuclear decompositions, and empirically evaluate their behavior in a variety of real graphs. The tree of nuclei consistently gives a global, hierarchical snapshot of dense substructures, and outputs dense subgraphs of higher quality than other state-of-theart solutions. Our algorithm can process graphs with tens of millions of edges in less than an hour.« less

  14. Quantum Dense Coding About a Two-Qubit Heisenberg XYZ Model

    NASA Astrophysics Data System (ADS)

    Xu, Hui-Yun; Yang, Guo-Hui

    2017-09-01

    By taking into account the nonuniform magnetic field, the quantum dense coding with thermal entangled states of a two-qubit anisotropic Heisenberg XYZ chain are investigated in detail. We mainly show the different properties about the dense coding capacity ( χ) with the changes of different parameters. It is found that dense coding capacity χ can be enhanced by decreasing the magnetic field B, the degree of inhomogeneity b and temperature T, or increasing the coupling constant along z-axis J z . In addition, we also find χ remains the stable value as the change of the anisotropy of the XY plane Δ in a certain temperature condition. Through studying different parameters effect on χ, it presents that we can properly turn the values of B, b, J z , Δ or adjust the temperature T to obtain a valid dense coding capacity ( χ satisfies χ > 1). Moreover, the temperature plays a key role in adjusting the value of dense coding capacity χ. The valid dense coding capacity could be always obtained in the lower temperature-limit case.

  15. Application of a Laser Rangefinder for Space Object Imaging and Shape Reconstruction

    DTIC Science & Technology

    2014-02-10

    the LRF can effectively create sufficiently dense point clouds for various asteroid and satellite shaped SOs, with low propellant consumption, by...bodies. An example is NASA’s Near Earth Asteroid Rendezvous (NEAR) mission, which employed an LRF to aid its rendezvous6 with asteroid 433 Eros in...laser beams. The ray-triangle intersection algorithm* deter- mines the point of intersection between the ray and a model of the scanned object. In order

  16. Collaborative Research: Neutrinos & Nucleosynthesis in Hot Dense Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, Sanjay

    2013-09-06

    It is now firmly established that neutrinos, which are copiously produced in the hot and dense core of the supernova, play a role in the supernova explosion mechanism and in the synthesis of heavy elements through a phenomena known as r-process nucleosynthesis. They are also detectable in terrestrial neutrino experiments, and serve as a probe of the extreme environment and complex dynamics encountered in the supernova. The major goal of the UW research activity relevant to this project was to calculate the neutrino interaction rates in hot and dense matter of relevance to core collapse supernova. These serve as keymore » input physics in large scale computer simulations of the supernova dynamics and nucleosynthesis being pursued at national laboratories here in the United States and by other groups in Europe and Japan. Our calculations show that neutrino production and scattering rate are altered by the nuclear interactions and that these modifications have important implications for nucleosynthesis and terrestrial neutrino detection. The calculation of neutrino rates in dense matter are difficult because nucleons in the dense matter are strongly coupled. A neutrino interacts with several nucleons and the quantum interference between scattering off different nucleons depends on the nature of correlations between them in dense matter. To describe these correlations we used analytic methods based on mean field theory and hydrodynamics, and computational methods such as Quantum Monte Carlo. We found that due to nuclear effects neutrino production rates at relevant temperatures are enhanced, and that electron neutrinos are more easily absorbed than anti-electron neutrinos in dense matter. The latter, was shown to favor synthesis of heavy neutron-rich elements in the supernova.« less

  17. Real-Time Large-Scale Dense Mapping with Surfels

    PubMed Central

    Fu, Xingyin; Zhu, Feng; Wu, Qingxiao; Sun, Yunlei; Lu, Rongrong; Yang, Ruigang

    2018-01-01

    Real-time dense mapping systems have been developed since the birth of consumer RGB-D cameras. Currently, there are two commonly used models in dense mapping systems: truncated signed distance function (TSDF) and surfel. The state-of-the-art dense mapping systems usually work fine with small-sized regions. The generated dense surface may be unsatisfactory around the loop closures when the system tracking drift grows large. In addition, the efficiency of the system with surfel model slows down when the number of the model points in the map becomes large. In this paper, we propose to use two maps in the dense mapping system. The RGB-D images are integrated into a local surfel map. The old surfels that reconstructed in former times and far away from the camera frustum are moved from the local map to the global map. The updated surfels in the local map when every frame arrives are kept bounded. Therefore, in our system, the scene that can be reconstructed is very large, and the frame rate of our system remains high. We detect loop closures and optimize the pose graph to distribute system tracking drift. The positions and normals of the surfels in the map are also corrected using an embedded deformation graph so that they are consistent with the updated poses. In order to deal with large surface deformations, we propose a new method for constructing constraints with system trajectories and loop closure keyframes. The proposed new method stabilizes large-scale surface deformation. Experimental results show that our novel system behaves better than the prior state-of-the-art dense mapping systems. PMID:29747450

  18. Characterization of the Modal Characteristics of Structures Operating in Dense Liquid Oxygen Turbopumps

    NASA Technical Reports Server (NTRS)

    Chiu, Joseph; Brown, Andrew M.

    2017-01-01

    A number of valuable conclusions can be drawn from this study. First, knockdown factors for a specific fluid are not constant but instead are dependent on the mode shape, although the largest this variability gets is about 10% for LOX, the densest fluid. The factors decrease the most for lower frequency shapes and less for higher ones. It follows, therefore, that mode number mismatch between air and fluid operation becomes not only possible, but common, as a knockdown factor for a particular mode shape may be higher than for another mode shape. Since this is a function of added mass, the mismatch is more prevalent for higher density fluids, but it initiates even for very low density ones. Another important conclusion reached is that it appears that the basic mode shapes of a structure do not change if it is fully symmetric, which includes its geometry and boundary conditions. There is some indication of small changes in the relative magnitudes within the mode shape. This conclusion is evident in the results from the cantilever rectangular plate and the inducer, which are not symmetric, and the fixed-fixed plate and the annular disk, which are. For non-symmetric structures, though, the mode shapes almost universally change for dense fluids, as shown by the very low MAC calculations. For the inducer in particular, the changes follow a trend of reduced parabolic and sine wavelengths with increasing density. It is critical to recognize the change in mode shape for several reasons. First, model updating with modal test becomes problematic if the shapes change. Second, design to avoid resonance is highly critical on the mode shape for modes other than the primary ones, as resonance is only a factor when the excitation shape matches the mode shape. Finally, application of the modal superposition method of forced response analysis is dependent on the use of accurate mode shapes. A more-refined assessment of the "knockdown" factor values and ranges than any previously

  19. Photons in dense nuclear matter: Random-phase approximation

    NASA Astrophysics Data System (ADS)

    Stetina, Stephan; Rrapaj, Ermal; Reddy, Sanjay

    2018-04-01

    We present a comprehensive and pedagogic discussion of the properties of photons in cold and dense nuclear matter based on the resummed one-loop photon self-energy. Correlations among electrons, muons, protons, and neutrons in β equilibrium that arise as a result of electromagnetic and strong interactions are consistently taken into account within the random phase approximation. Screening effects, damping, and collective excitations are systematically studied in a fully relativistic setup. Our study is relevant to the linear response theory of dense nuclear matter, calculations of transport properties of cold dense matter, and investigations of the production and propagation of hypothetical vector bosons such as the dark photons.

  20. LDRD final report on massively-parallel linear programming : the parPCx system.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parekh, Ojas; Phillips, Cynthia Ann; Boman, Erik Gunnar

    2005-02-01

    This report summarizes the research and development performed from October 2002 to September 2004 at Sandia National Laboratories under the Laboratory-Directed Research and Development (LDRD) project ''Massively-Parallel Linear Programming''. We developed a linear programming (LP) solver designed to use a large number of processors. LP is the optimization of a linear objective function subject to linear constraints. Companies and universities have expended huge efforts over decades to produce fast, stable serial LP solvers. Previous parallel codes run on shared-memory systems and have little or no distribution of the constraint matrix. We have seen no reports of general LP solver runsmore » on large numbers of processors. Our parallel LP code is based on an efficient serial implementation of Mehrotra's interior-point predictor-corrector algorithm (PCx). The computational core of this algorithm is the assembly and solution of a sparse linear system. We have substantially rewritten the PCx code and based it on Trilinos, the parallel linear algebra library developed at Sandia. Our interior-point method can use either direct or iterative solvers for the linear system. To achieve a good parallel data distribution of the constraint matrix, we use a (pre-release) version of a hypergraph partitioner from the Zoltan partitioning library. We describe the design and implementation of our new LP solver called parPCx and give preliminary computational results. We summarize a number of issues related to efficient parallel solution of LPs with interior-point methods including data distribution, numerical stability, and solving the core linear system using both direct and iterative methods. We describe a number of applications of LP specific to US Department of Energy mission areas and we summarize our efforts to integrate parPCx (and parallel LP solvers in general) into Sandia's massively-parallel integer programming solver PICO (Parallel Interger and Combinatorial Optimizer

  1. Coalescence preference in dense packing of bubbles

    NASA Astrophysics Data System (ADS)

    Kim, Yeseul; Gim, Bopil; Gim, Bopil; Weon, Byung Mook

    2015-11-01

    Coalescence preference is the tendency that a merged bubble from the contact of two original bubbles (parent) tends to be near to the bigger parent. Here, we show that the coalescence preference can be blocked by densely packing of neighbor bubbles. We use high-speed high-resolution X-ray microscopy to clearly visualize individual coalescence phenomenon which occurs in micro scale seconds and inside dense packing of microbubbles with a local packing fraction of ~40%. Previous theory and experimental evidence predict a power of -5 between the relative coalescence position and the parent size. However, our new observation for coalescence preference in densely packed microbubbles shows a different power of -2. We believe that this result may be important to understand coalescence dynamics in dense packing of soft matter. This work (NRF-2013R1A22A04008115) was supported by Mid-career Researcher Program through NRF grant funded by the MEST and also was supported by Ministry of Science, ICT and Future Planning (2009-0082580) and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry and Education, Science and Technology (NRF-2012R1A6A3A04039257).

  2. Characterizing dense suspensions: two case studies from the pharmaceutical industry

    NASA Astrophysics Data System (ADS)

    Goldfarb, David J.; Khawaja, Nazia; Kazakevich, Irina; Bhattacharjee, Himanshu; Heslinga, Michael; Dalton, Chad

    2015-11-01

    Liquid suspensions of Active Pharmaceutical Ingredient powders are present as pharmaceutical dosage forms in the form of oral suspensions and injectables. We present two case studies, both dense (~ 30-40%) suspensions, in which the physical characterization of the product, specifically, particle size & shape and rheology were key to understanding the key product attributes as pertaining to the manufacturing process and to patient administration. For the one case study, an oral suspension, identifying variations in particle morphology during the wet milling of the product was key to the product understanding necessary to modify the milling process. Rheological measurements were applied as well. For the second case study, an injectable, results from different particle size measurement techniques and rheological measurements indicated the possibility of flocculation in a formulation. Additionally, measurements were obtained to assess the ``injectability'' of the product via rheometer and texture analyzer measurements and Poiseuille flow modeling. As a result, the relevant shear rate regime for this drug product administration was identified.

  3. Multiple shock reverberation compression of dense Ne up to the warm dense regime: Evaluating the theoretical models

    NASA Astrophysics Data System (ADS)

    Tang, J.; Gu, Y. J.; Chen, Q. F.; Li, Z. G.; Zheng, J.; Li, C. J.; Li, J. T.

    2018-04-01

    Multiple shock reverberation compression experiments are designed and performed to determine the equation of state of neon ranging from the initial dense gas up to the warm dense regime where the pressure is from about 40 MPa to 120 GPa and the temperature is from about 297 K up to above 20 000 K. The wide region experimental data are used to evaluate the available theoretical models. It is found that, for neon below 1.1 g/cm 3 , within the framework of density functional theory molecular dynamics, a van der Waals correction is meaningful. Under high pressure and temperature, results from the self-consistent fluid variational theory model are sensitive to the potential parameter and could give successful predictions in the whole experimental regime if a set of proper parameters is employed. The new observations on neon under megabar (1 Mbar =1011Pa ) pressure and eV temperature (1 eV ≈104K ) enrich the understanding on properties of warm dense matter and have potential applications in revealing the formation and evolution of gaseous giants or mega-Earths.

  4. Improved ferroelectric, piezoelectric and electrostrictive properties of dense BaTiO{sub 3} ceramic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baraskar, Bharat G.; Kakade, S. G.; Kambale, R. C., E-mail: rckambale@gmail.com

    2016-05-23

    The ferroelectric, piezoelectric and electrostrictive properties of BaTiO{sub 3} (BT) dense ceramic synthesized by solid-state reaction were investigated. X-ray diffraction study confirmed tetragonal crystal structure having c/a ~1.0144. The dense microstructure was evidenced from morphological studies with an average grain size ~7.8 µm. Temperature dependent dielectric measurement showed the maximum values of dielectric constant, ε{sub r} = 5617 at Curie temperature, T{sub c} = 125 °C. The saturation and remnant polarization, P{sub sat.} = 24.13 µC/cm{sup 2} and P{sub r} =10.42 µC/cm{sup 2} achieved respectively for the first time with lower coercive field of E{sub c}=2.047 kV/cm. The polarization currentmore » density-electric field measurement exhibits the peaking characteristics, confirms the saturation state of polarization for BT. The strain-electric field measurements revealed the “sprout” shape nature instead of typical “butterfly loop”. This shows the excellent converse piezoelectric response with remnant strain ~ 0.212% and converse piezoelectric constant d*{sub 33} ~376.35 pm/V. The intrinsic electrostrictive coefficient was deduced from the variation of strain with polarization with electrostrictive coefficient Q{sub 33}~ 0.03493m{sup 4}/C{sup 2}.« less

  5. Relocatable dense medium coal preparation plants for Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamb, R.

    1994-12-31

    The major recent coal mine developments in Indonesia have been situated along the east coast of Kalimantan (Borneo). Design and construction in these remote areas require a high level of innovation and ingenuity to ensure that the plants can be brought on line effectively. This paper describes the design, installation, and operation of two relocatable modular dense medium plants. The plants were specifically built to overcome the difficulties of remote areas and can be assembled by a semi-skilled workforce. The two relocatable dense medium coal preparation plants recently built for mines in Kalimantan are unique in that the plants weremore » fabricated, preassembled, and wet-commissioned in Brisbane, Australia, before shipment to Indonesia. The plants are a 3OO t/h dense medium bath, cyclone, and spirals plant and a 250 t/h dense medium cyclone and spirals with reject and tailings co-disposal. The relocatable plant concept has enabled a low capital cost per ton per hour and an extremely fast construction timetable-20 weeks from contract award to completion of wet-commissioning for shipment to Indonesia.« less

  6. Arbitrary electron acoustic waves in degenerate dense plasmas

    NASA Astrophysics Data System (ADS)

    Rahman, Ata-ur; Mushtaq, A.; Qamar, A.; Neelam, S.

    2017-05-01

    A theoretical investigation is carried out of the nonlinear dynamics of electron-acoustic waves in a collisionless and unmagnetized plasma whose constituents are non-degenerate cold electrons, ultra-relativistic degenerate electrons, and stationary ions. A dispersion relation is derived for linear EAWs. An energy integral equation involving the Sagdeev potential is derived, and basic properties of the large amplitude solitary structures are investigated in such a degenerate dense plasma. It is shown that only negative large amplitude EA solitary waves can exist in such a plasma system. The present analysis may be important to understand the collective interactions in degenerate dense plasmas, occurring in dense astrophysical environments as well as in laser-solid density plasma interaction experiments.

  7. Two-dimensional modeling of density and thermal structure of dense circumstellar outflowing disks

    NASA Astrophysics Data System (ADS)

    Kurfürst, P.; Feldmeier, A.; Krtička, J.

    2018-06-01

    Context. Evolution of massive stars is affected by a significant loss of mass either via (nearly) spherically symmetric stellar winds or by aspherical mass-loss mechanisms, namely the outflowing equatorial disks. However, the scenario that leads to the formation of a disk or rings of gas and dust around massive stars is still under debate. It is also unclear how various forming physical mechanisms of the circumstellar environment affect its shape and density, as well as its kinematic and thermal structure. Aims: We study the hydrodynamic and thermal structure of optically thick, dense parts of outflowing circumstellar disks that may be formed around various types of critically rotating massive stars, for example, Be stars, B[e] supergiant (sgB[e]) stars or Pop III stars. We calculate self-consistent time-dependent models of temperature and density structure in the disk's inner dense region that is strongly affected by irradiation from a rotationally oblate central star and by viscous heating. Methods: Using the method of short characteristics, we specify the optical depth of the disk along the line-of-sight from stellar poles. Within the optically thick dense region with an optical depth of τ > 2/3 we calculate the vertical disk thermal structure using the diffusion approximation while for the optically thin outer layers we assume a local thermodynamic equilibrium with the impinging stellar irradiation. For time-dependent hydrodynamic modeling, we use two of our own types of hydrodynamic codes: two-dimensional operator-split numerical code based on an explicit Eulerian finite volume scheme on a staggered grid, and unsplit code based on the Roe's method, both including full second-order Navier-Stokes shear viscosity. Results: Our models show the geometric distribution and contribution of viscous heating that begins to dominate in the central part of the disk for mass-loss rates higher than Ṁ ≳ 10-10 M⊙ yr-1. In the models of dense viscous disks with Ṁ > 10

  8. OH megamasers: dense gas & the infrared radiation field

    NASA Astrophysics Data System (ADS)

    Huang, Yong; Zhang, JiangShui; Liu, Wei; Xu, Jie

    2018-06-01

    To investigate possible factors related to OH megamaser formation (OH MM, L_{H2O}>10L_{⊙}), we compiled a large HCN sample from all well-sampled HCN measurements so far in local galaxies and identified with the OH MM, OH kilomasers (L_{H2O}<10L_{⊙}, OH kMs), OH absorbers and OH non-detections (non-OH MM). Through comparative analysis on their infrared emission, CO and HCN luminosities (good tracers for the low-density gas and the dense gas, respectively), we found that OH MM galaxies tend to have stronger HCN emission and no obvious difference on CO luminosity exists between OH MM and non-OH MM. This implies that OH MM formation should be related to the dense molecular gas, instead of the low-density molecular gas. It can be also supported by other facts: (1) OH MMs are confirmed to have higher mean molecular gas density and higher dense gas fraction (L_{HCN}/L_{CO}) than non-OH MMs. (2) After taking the distance effect into account, the apparent maser luminosity is still correlated with the HCN luminosity, while no significant correlation can be found at all between the maser luminosity and the CO luminosity. (3) The OH kMs tend to have lower values than those of OH MMs, including the dense gas luminosity and the dense gas fraction. (4) From analysis of known data of another dense gas tracer HCO^+, similar results can also be obtained. However, from our analysis, the infrared radiation field can not be ruled out for the OH MM trigger, which was proposed by previous works on one small sample (Darling in ApJ 669:L9, 2007). On the contrary, the infrared radiation field should play one more important role. The dense gas (good tracers of the star formation) and its surrounding dust are heated by the ultra-violet (UV) radiation generated by the star formation and the heating of the high-density gas raises the emission of the molecules. The infrared radiation field produced by the re-radiation of the heated dust in turn serves for the pumping of the OH MM.

  9. DOCK8 regulates lymphocyte shape integrity for skin antiviral immunity

    PubMed Central

    Zhang, Qian; Dove, Christopher G.; Hor, Jyh Liang; Murdock, Heardley M.; Strauss-Albee, Dara M.; Garcia, Jordan A.; Mandl, Judith N.; Grodick, Rachael A.; Jing, Huie; Chandler-Brown, Devon B.; Lenardo, Timothy E.; Crawford, Greg; Matthews, Helen F.; Freeman, Alexandra F.; Cornall, Richard J.; Germain, Ronald N.

    2014-01-01

    DOCK8 mutations result in an inherited combined immunodeficiency characterized by increased susceptibility to skin and other infections. We show that when DOCK8-deficient T and NK cells migrate through confined spaces, they develop cell shape and nuclear deformation abnormalities that do not impair chemotaxis but contribute to a distinct form of catastrophic cell death we term cytothripsis. Such defects arise during lymphocyte migration in collagen-dense tissues when DOCK8, through CDC42 and p21-activated kinase (PAK), is unavailable to coordinate cytoskeletal structures. Cytothripsis of DOCK8-deficient cells prevents the generation of long-lived skin-resident memory CD8 T cells, which in turn impairs control of herpesvirus skin infections. Our results establish that DOCK8-regulated shape integrity of lymphocytes prevents cytothripsis and promotes antiviral immunity in the skin. PMID:25422492

  10. Spark plasma sintering of highly dense fine-grained mineral aggregates

    NASA Astrophysics Data System (ADS)

    Koizumi, S.; Suzuki, T. S.; Sakka, Y.; Hiraga, T.

    2017-12-01

    To obtain highly dense and fine-grained mineral aggregates, which are suitable for laboratory measurements of their physical and chemical properties, we applied spark plasma sintering (SPS) to synthetic mineral powders and powders originated from naturally derived crystals. SPS is an emerging consolidation technique which has been applied to various metals and ceramics and rarely to geomaterials (e.g., Guignard et al., 2011). The technique uses spark plasma created by a pulse direct current during heat treatment of powders in a graphite die. It has been found that the technique provides better densification with little grain growth during sintering compared to a conventional sintering technique in many materials. To obtain ideal highly dense fine-grained materials, it is essential to prepare starting powders suitable for the sintering and also to find appropriate sintering conditions of applied uniaxial pressures, pulsed current patterns and heating rates. We prepared synthetic mineral powers through solid state reaction of source powders at high temperature well developed by our group (Koizumi et al. 2010). We also used jet milling at wet condition and subsequent elutriation to prepare olivine powders with sub-micron particle size and equiaxed particle shape. At heating rate of ≦10°C/min and an achievement of highest temperature of 1150°C, Fe-free olivine aggregate with average grain size of 200 nm with porosity of 0.003% was obtained. We also could obtain olivine aggregate, which was sintered from powders of Horoman peridotite, with average grain size of 500 nm and porosity of 0.2%. We will show results of other minerals including major rock forming minerals of the Earth's crust.

  11. Two Novel Rab2 Interactors Regulate Dense-core Vesicle Maturation

    PubMed Central

    Ailion, Michael; Hannemann, Mandy; Dalton, Susan; Pappas, Andrea; Watanabe, Shigeki; Hegermann, Jan; Liu, Qiang; Han, Hsiao-Fen; Gu, Mingyu; Goulding, Morgan Q.; Sasidharan, Nikhil; Schuske, Kim; Hullett, Patrick; Eimer, Stefan; Jorgensen, Erik M.

    2014-01-01

    Summary Peptide neuromodulators are released from a unique organelle: the dense-core vesicle. Dense-core vesicles are generated at the trans-Golgi, and then sort cargo during maturation before being secreted. To identify proteins that act in this pathway, we performed a genetic screen in Caenorhabditis elegans for mutants defective in dense-core vesicle function. We identified two conserved Rab2-binding proteins: RUND-1, a RUN domain protein, and CCCP-1, a coiled-coil protein. RUND-1 and CCCP-1 colocalize with RAB-2 at the Golgi, and rab-2, rund-1 and cccp-1 mutants have similar defects in sorting soluble and transmembrane dense-core vesicle cargos. RUND-1 also interacts with the Rab2 GAP protein TBC-8 and the BAR domain protein RIC-19, a RAB-2 effector. In summary, a new pathway of conserved proteins controls the maturation of dense-core vesicles at the trans-Golgi network. PMID:24698274

  12. Dense power-law networks and simplicial complexes

    NASA Astrophysics Data System (ADS)

    Courtney, Owen T.; Bianconi, Ginestra

    2018-05-01

    There is increasing evidence that dense networks occur in on-line social networks, recommendation networks and in the brain. In addition to being dense, these networks are often also scale-free, i.e., their degree distributions follow P (k ) ∝k-γ with γ ∈(1 ,2 ] . Models of growing networks have been successfully employed to produce scale-free networks using preferential attachment, however these models can only produce sparse networks as the numbers of links and nodes being added at each time step is constant. Here we present a modeling framework which produces networks that are both dense and scale-free. The mechanism by which the networks grow in this model is based on the Pitman-Yor process. Variations on the model are able to produce undirected scale-free networks with exponent γ =2 or directed networks with power-law out-degree distribution with tunable exponent γ ∈(1 ,2 ) . We also extend the model to that of directed two-dimensional simplicial complexes. Simplicial complexes are generalization of networks that can encode the many body interactions between the parts of a complex system and as such are becoming increasingly popular to characterize different data sets ranging from social interacting systems to the brain. Our model produces dense directed simplicial complexes with power-law distribution of the generalized out-degrees of the nodes.

  13. Modeling of Sensor Placement Strategy for Shape Sensing and Structural Health Monitoring of a Wing-Shaped Sandwich Panel Using Inverse Finite Element Method.

    PubMed

    Kefal, Adnan; Yildiz, Mehmet

    2017-11-30

    This paper investigated the effect of sensor density and alignment for three-dimensional shape sensing of an airplane-wing-shaped thick panel subjected to three different loading conditions, i.e., bending, torsion, and membrane loads. For shape sensing analysis of the panel, the Inverse Finite Element Method (iFEM) was used together with the Refined Zigzag Theory (RZT), in order to enable accurate predictions for transverse deflection and through-the-thickness variation of interfacial displacements. In this study, the iFEM-RZT algorithm is implemented by utilizing a novel three-node C°-continuous inverse-shell element, known as i3-RZT. The discrete strain data is generated numerically through performing a high-fidelity finite element analysis on the wing-shaped panel. This numerical strain data represents experimental strain readings obtained from surface patched strain gauges or embedded fiber Bragg grating (FBG) sensors. Three different sensor placement configurations with varying density and alignment of strain data were examined and their corresponding displacement contours were compared with those of reference solutions. The results indicate that a sparse distribution of FBG sensors (uniaxial strain measurements), aligned in only the longitudinal direction, is sufficient for predicting accurate full-field membrane and bending responses (deformed shapes) of the panel, including a true zigzag representation of interfacial displacements. On the other hand, a sparse deployment of strain rosettes (triaxial strain measurements) is essentially enough to produce torsion shapes that are as accurate as those of predicted by a dense sensor placement configuration. Hence, the potential applicability and practical aspects of i3-RZT/iFEM methodology is proven for three-dimensional shape-sensing of future aerospace structures.

  14. A Green Method for Processing Polymers using Dense Gas Technology

    PubMed Central

    Yoganathan, Roshan B.; Mammucari, Raffaella; Foster, Neil R.

    2010-01-01

    Dense CO2 can be used as an environmentally-benign polymer processing medium because of its liquid-like densities and gas-like mass transfer properties.In this work, polymer bio-blends of polycarbonate (PC), a biocompatible polymer, and polycaprolactone (PCL), a biodegradable polymer were prepared. Dense CO2 was used as a reaction medium for the melt-phase PC polymerization in the presence of dense CO2-swollen PCL particles and this method was used to prepare porous PC/PCL blends. To extend the applicability of dense CO2 to the biomedical industry and polymer blend processing, the impregnation of ibuprofen into the blend was conducted and subsequent dissolution characteristics were observed.

  15. Neutron spectra from beam-target reactions in dense Z-pinches

    NASA Astrophysics Data System (ADS)

    Appelbe, B.; Chittenden, J.

    2015-10-01

    The energy spectrum of neutrons emitted by a range of deuterium and deuterium-tritium Z-pinch devices is investigated computationally using a hybrid kinetic-MHD model. 3D MHD simulations are used to model the implosion, stagnation, and break-up of dense plasma focus devices at currents of 70 kA, 500 kA, and 2 MA and also a 15 MA gas puff. Instabilities in the MHD simulations generate large electric and magnetic fields, which accelerate ions during the stagnation and break-up phases. A kinetic model is used to calculate the trajectories of these ions and the neutron spectra produced due to the interaction of these ions with the background plasma. It is found that these beam-target neutron spectra are sensitive to the electric and magnetic fields at stagnation resulting in significant differences in the spectra emitted by each device. Most notably, magnetization of the accelerated ions causes the beam-target spectra to be isotropic for the gas puff simulations. It is also shown that beam-target spectra can have a peak intensity located at a lower energy than the peak intensity of a thermonuclear spectrum. A number of other differences in the shapes of beam-target and thermonuclear spectra are also observed for each device. Finally, significant differences between the shapes of beam-target DD and DT neutron spectra, due to differences in the reaction cross-sections, are illustrated.

  16. Ion-ion dynamic structure factor of warm dense mixtures

    DOE PAGES

    Gill, N. M.; Heinonen, R. A.; Starrett, C. E.; ...

    2015-06-25

    In this study, the ion-ion dynamic structure factor of warm dense matter is determined using the recently developed pseudoatom molecular dynamics method [Starrett et al., Phys. Rev. E 91, 013104 (2015)]. The method uses density functional theory to determine ion-ion pair interaction potentials that have no free parameters. These potentials are used in classical molecular dynamics simulations. This constitutes a computationally efficient and realistic model of dense plasmas. Comparison with recently published simulations of the ion-ion dynamic structure factor and sound speed of warm dense aluminum finds good to reasonable agreement. Using this method, we make predictions of the ion-ionmore » dynamical structure factor and sound speed of a warm dense mixture—equimolar carbon-hydrogen. This material is commonly used as an ablator in inertial confinement fusion capsules, and our results are amenable to direct experimental measurement.« less

  17. Fundamental Studies of Droplet Interactions in Dense Sprays

    DTIC Science & Technology

    1992-12-31

    correlations for the drag coefficients, Nusselt numbers, and Sherwood numbers for hydrocarbon fuel droplets in dense sprays were obtained. 14. SUBJECYTEM...tions for the drag coefficients, Nusselt numbers, and Sherwood numbers for hydrocarbon fuel droplets in dense sprays were obtained. Nomenclature a...the drag coefficient, lift coefficient, moment coefficient, Nusselt number, Sherwood number, and vaporization rates are different from those of an

  18. Manufacture of dense sintered bodies containing silicon nitride

    NASA Technical Reports Server (NTRS)

    Hirota, K.; Hasegawa, Y.; Ogura, K.; Yashima, Y.

    1985-01-01

    Sintered bodies containing 1-32.5 Si oxide and 1.5 wt.% SiC (Si oxide/SiC wt. ratio 3/2) are prepared and kept in a 10-3000 kg/2 sq. cm. N (g) atmosphere at 1500-2300 degrees, while simultaneously maintaining the CO (g) partial pressure around the body lower than the nitrogenation equil. pressure to give a dense sintered body. The prepared dense sintered body has high strength at high temperatures. Thus, SiC 40, oxide 30 and Si3N4 30 wt% were fired to a body which was kept in 1500 kg/sq. cm. N (g) for 20 h at 2000 degrees to give a dense sintered body having high bending strength at high temperatures.

  19. Shaping van der Waals nanoribbons via torsional constraints: Scrolls, folds and supercoils

    NASA Astrophysics Data System (ADS)

    Shahabi, Alireza; Wang, Hailong; Upmanyu, Moneesh

    2014-11-01

    Interplay between structure and function in atomically thin crystalline nanoribbons is sensitive to their conformations yet the ability to prescribe them is a formidable challenge. Here, we report a novel paradigm for controlled nucleation and growth of scrolled and folded shapes in finite-length nanoribbons. All-atom computations on graphene nanoribbons (GNRs) and experiments on macroscale magnetic thin films reveal that decreasing the end distance of torsionally constrained ribbons below their contour length leads to formation of these shapes. The energy partitioning between twisted and bent shapes is modified in favor of these densely packed soft conformations due to the non-local van der Waals interactions in these 2D crystals; they subvert the formation of supercoils that are seen in their natural counterparts such as DNA and filamentous proteins. The conformational phase diagram is in excellent agreement with theoretical predictions. The facile route can be readily extended for tailoring the soft conformations of crystalline nanoscale ribbons, and more general self-interacting filaments.

  20. Homogenization of sample absorption for the imaging of large and dense fossils with synchrotron microtomography.

    PubMed

    Sanchez, Sophie; Fernandez, Vincent; Pierce, Stephanie E; Tafforeau, Paul

    2013-09-01

    Propagation phase-contrast synchrotron radiation microtomography (PPC-SRμCT) has proved to be very successful for examining fossils. Because fossils range widely in taphonomic preservation, size, shape and density, X-ray computed tomography protocols are constantly being developed and refined. Here we present a 1-h procedure that combines a filtered high-energy polychromatic beam with long-distance PPC-SRμCT (sample to detector: 4-16 m) and an attenuation protocol normalizing the absorption profile (tested on 13-cm-thick and 5.242 g cm(-3) locally dense samples but applicable to 20-cm-thick samples). This approach provides high-quality imaging results, which show marked improvement relative to results from images obtained without the attenuation protocol in apparent transmission, contrast and signal-to-noise ratio. The attenuation protocol involves immersing samples in a tube filled with aluminum or glass balls in association with a U-shaped aluminum profiler. This technique therefore provides access to a larger dynamic range of the detector used for tomographic reconstruction. This protocol homogenizes beam-hardening artifacts, thereby rendering it effective for use with conventional μCT scanners.

  1. Eculizumab for dense deposit disease and C3 glomerulonephritis.

    PubMed

    Bomback, Andrew S; Smith, Richard J; Barile, Gaetano R; Zhang, Yuzhou; Heher, Eliot C; Herlitz, Leal; Stokes, M Barry; Markowitz, Glen S; D'Agati, Vivette D; Canetta, Pietro A; Radhakrishnan, Jai; Appel, Gerald B

    2012-05-01

    The principle defect in dense deposit disease and C3 glomerulonephritis is hyperactivity of the alternative complement pathway. Eculizumab, a monoclonal antibody that binds to C5 to prevent formation of the membrane attack complex, may prove beneficial. In this open-label, proof of concept efficacy and safety study, six subjects with dense deposit disease or C3 glomerulonephritis were treated with eculizumab every other week for 1 year. All had proteinuria >1 g/d and/or AKI at enrollment. Subjects underwent biopsy before enrollment and repeat biopsy at the 1-year mark. The subjects included three patients with dense deposit disease (including one patient with recurrent dense deposit disease in allograft) and three patients with C3 glomerulonephritis (including two patients with recurrent C3 glomerulonephritis in allograft). Genetic and complement function testing revealed a mutation in CFH and MCP in one subject each, C3 nephritic factor in three subjects, and elevated levels of serum membrane attack complex in three subjects. After 12 months, two subjects showed significantly reduced serum creatinine, one subject achieved marked reduction in proteinuria, and one subject had stable laboratory parameters but histopathologic improvements. Elevated serum membrane attack complex levels normalized on therapy and paralleled improvements in creatinine and proteinuria. Clinical and histopathologic data suggest a response to eculizumab in some but not all subjects with dense deposit disease and C3 glomerulonephritis. Elevation of serum membrane attack complex before treatment may predict response. Additional research is needed to define the subgroup of dense deposit disease/C3 glomerulonephritis patients in whom eculizumab therapy can be considered.

  2. Eyeglass Large Aperture, Lightweight Space Optics FY2000 - FY2002 LDRD Strategic Initiative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyde, R

    2003-02-10

    differences in their requirements and implementations, the fundamental difficulty in utilizing large aperture optics is the same for all of these applications: It is extremely difficult to design large aperture space optics which are both optically precise and can meet the practical requirements for launch and deployment in space. At LLNL we have developed a new concept (Eyeglass) which uses large diffractive optics to solve both of these difficulties; greatly reducing both the mass and the tolerance requirements for large aperture optics. During previous LDRD-supported research, we developed this concept, built and tested broadband diffractive telescopes, and built 50 cm aperture diffraction-limited diffractive lenses (the largest in the world). This work is fully described in UCRL-ID-136262, Eyeglass: A Large Aperture Space Telescope. However, there is a large gap between optical proof-of-principle with sub-meter apertures, and actual 50 meter space telescopes. This gap is far too large (both in financial resources and in spacecraft expertise) to be filled internally at LLNL; implementation of large aperture diffractive space telescopes must be done externally using non-LLNL resources and expertise. While LLNL will never become the primary contractor and integrator for large space optical systems, our natural role is to enable these devices by developing the capability of producing very large diffractive optics. Accordingly, the purpose of the Large Aperture, Lightweight Space Optics Strategic Initiative was to develop the technology to fabricate large, lightweight diffractive lenses. The additional purpose of this Strategic Initiative was, of course, to demonstrate this lens-fabrication capability in a fashion compellingly enough to attract the external support necessary to continue along the path to full-scale space-based telescopes. During this 3 year effort (FY2000-FY2002) we have developed the capability of optically smoothing and diffractively-patterning thin meter

  3. Dilute and dense axion stars

    NASA Astrophysics Data System (ADS)

    Visinelli, Luca; Baum, Sebastian; Redondo, Javier; Freese, Katherine; Wilczek, Frank

    2018-02-01

    Axion stars are hypothetical objects formed of axions, obtained as localized and coherently oscillating solutions to their classical equation of motion. Depending on the value of the field amplitude at the core |θ0 | ≡ | θ (r = 0) |, the equilibrium of the system arises from the balance of the kinetic pressure and either self-gravity or axion self-interactions. Starting from a general relativistic framework, we obtain the set of equations describing the configuration of the axion star, which we solve as a function of |θ0 |. For small |θ0 | ≲ 1, we reproduce results previously obtained in the literature, and we provide arguments for the stability of such configurations in terms of first principles. We compare qualitative analytical results with a numerical calculation. For large amplitudes |θ0 | ≳ 1, the axion field probes the full non-harmonic QCD chiral potential and the axion star enters the dense branch. Our numerical solutions show that in this latter regime the axions are relativistic, and that one should not use a single frequency approximation, as previously applied in the literature. We employ a multi-harmonic expansion to solve the relativistic equation for the axion field in the star, and demonstrate that higher modes cannot be neglected in the dense regime. We interpret the solutions in the dense regime as pseudo-breathers, and show that the life-time of such configurations is much smaller than any cosmological time scale.

  4. Hugoniot measurements of double-shocked precompressed dense xenon plasmas

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Chen, Q. F.; Gu, Y. J.; Chen, Z. Y.

    2012-12-01

    The current partially ionized plasmas models for xenon show substantial differences since the description of pressure and thermal ionization region becomes a formidable task, prompting the need for an improved understanding of dense xenon plasmas behavior at above 100 GPa. We performed double-shock compression experiments on dense xenon to determine accurately the Hugoniot up to 172 GPa using a time-resolved optical radiation method. The planar strong shock wave was produced using a flyer plate impactor accelerated up to ˜6 km/s with a two-stage light-gas gun. The time-resolved optical radiation histories were acquired by using a multiwavelength channel optical transience radiance pyrometer. Shock velocity was measured and mass velocity was determined by the impedance-matching methods. The experimental equation of state of dense xenon plasmas are compared with the self-consistent fluid variational calculations of dense xenon in the region of partial ionization over a wide range of pressures and temperatures.

  5. Fabrication, Properties and Applications of Dense Hydroxyapatite: A Review

    PubMed Central

    Prakasam, Mythili; Locs, Janis; Salma-Ancane, Kristine; Loca, Dagnija; Largeteau, Alain; Berzina-Cimdina, Liga

    2015-01-01

    In the last five decades, there have been vast advances in the field of biomaterials, including ceramics, glasses, glass-ceramics and metal alloys. Dense and porous ceramics have been widely used for various biomedical applications. Current applications of bioceramics include bone grafts, spinal fusion, bone repairs, bone fillers, maxillofacial reconstruction, etc. Amongst the various calcium phosphate compositions, hydroxyapatite, which has a composition similar to human bone, has attracted wide interest. Much emphasis is given to tissue engineering, both in porous and dense ceramic forms. The current review focusses on the various applications of dense hydroxyapatite and other dense biomaterials on the aspects of transparency and the mechanical and electrical behavior. Prospective future applications, established along the aforesaid applications of hydroxyapatite, appear to be promising regarding bone bonding, advanced medical treatment methods, improvement of the mechanical strength of artificial bone grafts and better in vitro/in vivo methodologies to afford more particular outcomes. PMID:26703750

  6. Processes for making dense, spherical active materials for lithium-ion cells

    DOEpatents

    Kang, Sun-Ho [Naperville, IL; Amine, Khalil [Downers Grove, IL

    2011-11-22

    Processes are provided for making dense, spherical mixed-metal carbonate or phosphate precursors that are particularly well suited for the production of active materials for electrochemical devices such as lithium ion secondary batteries. Exemplified methods include precipitating dense, spherical particles of metal carbonates or metal phosphates from a combined aqueous solution using a precipitating agent such as ammonium hydrogen carbonate, sodium hydrogen carbonate, or a mixture that includes sodium hydrogen carbonate. Other exemplified methods include precipitating dense, spherical particles of metal phosphates using a precipitating agent such as ammonium hydrogen phosphate, ammonium dihydrogen phosphate, sodium phosphate, sodium hydrogen phosphate, sodium dihydrogen phosphate, or a mixture of any two or more thereof. Further provided are compositions of and methods of making dense, spherical metal oxides and metal phosphates using the dense, spherical metal precursors. Still further provided are electrodes and batteries using the same.

  7. Eculizumab for Dense Deposit Disease and C3 Glomerulonephritis

    PubMed Central

    Smith, Richard J.; Barile, Gaetano R.; Zhang, Yuzhou; Heher, Eliot C.; Herlitz, Leal; Stokes, M. Barry; Markowitz, Glen S.; D’Agati, Vivette D.; Canetta, Pietro A.; Radhakrishnan, Jai; Appel, Gerald B.

    2012-01-01

    Summary Background and objectives The principle defect in dense deposit disease and C3 glomerulonephritis is hyperactivity of the alternative complement pathway. Eculizumab, a monoclonal antibody that binds to C5 to prevent formation of the membrane attack complex, may prove beneficial. Design, setting, participants, & measurements In this open-label, proof of concept efficacy and safety study, six subjects with dense deposit disease or C3 glomerulonephritis were treated with eculizumab every other week for 1 year. All had proteinuria >1 g/d and/or AKI at enrollment. Subjects underwent biopsy before enrollment and repeat biopsy at the 1-year mark. Results The subjects included three patients with dense deposit disease (including one patient with recurrent dense deposit disease in allograft) and three patients with C3 glomerulonephritis (including two patients with recurrent C3 glomerulonephritis in allograft). Genetic and complement function testing revealed a mutation in CFH and MCP in one subject each, C3 nephritic factor in three subjects, and elevated levels of serum membrane attack complex in three subjects. After 12 months, two subjects showed significantly reduced serum creatinine, one subject achieved marked reduction in proteinuria, and one subject had stable laboratory parameters but histopathologic improvements. Elevated serum membrane attack complex levels normalized on therapy and paralleled improvements in creatinine and proteinuria. Conclusions Clinical and histopathologic data suggest a response to eculizumab in some but not all subjects with dense deposit disease and C3 glomerulonephritis. Elevation of serum membrane attack complex before treatment may predict response. Additional research is needed to define the subgroup of dense deposit disease/C3 glomerulonephritis patients in whom eculizumab therapy can be considered. PMID:22403278

  8. Electron-ion temperature equilibration in warm dense tantalum

    DOE PAGES

    Doppner, T; LePape, S.; Ma, T.; ...

    2014-11-05

    We present measurements of electron-ion temperature equilibration in proton-heated tantalum, under warm dense matter conditions. Our results agree with theoretical predictions for metals calculated using input data from ab initio simulations. Furthermore, the fast relaxation observed in the experiment contrasts with much longer equilibration times found in proton heated carbon, indicating that the energy flow pathways in warm dense matter are far from being fully understood.

  9. SU-C-207B-04: Automated Segmentation of Pectoral Muscle in MR Images of Dense Breasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verburg, E; Waard, SN de; Veldhuis, WB

    Purpose: To develop and evaluate a fully automated method for segmentation of the pectoral muscle boundary in Magnetic Resonance Imaging (MRI) of dense breasts. Methods: Segmentation of the pectoral muscle is an important part of automatic breast image analysis methods. Current methods for segmenting the pectoral muscle in breast MRI have difficulties delineating the muscle border correctly in breasts with a large proportion of fibroglandular tissue (i.e., dense breasts). Hence, an automated method based on dynamic programming was developed, incorporating heuristics aimed at shape, location and gradient features.To assess the method, the pectoral muscle was segmented in 91 randomly selectedmore » participants (mean age 56.6 years, range 49.5–75.2 years) from a large MRI screening trial in women with dense breasts (ACR BI-RADS category 4). Each MR dataset consisted of 178 or 179 T1-weighted images with voxel size 0.64 × 0.64 × 1.00 mm3. All images (n=16,287) were reviewed and scored by a radiologist. In contrast to volume overlap coefficients, such as DICE, the radiologist detected deviations in the segmented muscle border and determined whether the result would impact the ability to accurately determine the volume of fibroglandular tissue and detection of breast lesions. Results: According to the radiologist’s scores, 95.5% of the slices did not mask breast tissue in such way that it could affect detection of breast lesions or volume measurements. In 13.1% of the slices a deviation in the segmented muscle border was present which would not impact breast lesion detection. In 70 datasets (78%) at least 95% of the slices were segmented in such a way it would not affect detection of breast lesions, and in 60 (66%) datasets this was 100%. Conclusion: Dynamic programming with dedicated heuristics shows promising potential to segment the pectoral muscle in women with dense breasts.« less

  10. The numerical simulation study of hemodynamics of the new dense-mesh stent

    NASA Astrophysics Data System (ADS)

    Ma, Jiali; Yuan, Zhishan; Yu, Xuebao; Feng, Zhaowei; Miao, Weidong; Xu, Xueli; Li, Juntao

    2017-09-01

    The treatment of aortic aneurysm in new dense mesh stent is based on the principle of hemodynamic changes. But the mechanism is not yet very clear. This paper analyzed and calculated the hemodynamic situation before and after the new dense mesh stent implanting by the method of numerical simulation. The results show the dense mesh stent changed and impacted the blood flow in the aortic aneurysm. The changes include significant decrement of blood velocity, pressure and shear forces, while ensuring blood can supply branches, which means the new dense mesh stent's hemodynamic mechanism in the treatment of aortic aneurysm is clearer. It has very important significance in developing new dense mesh stent in order to cure aortic aneurysm.

  11. The Limits of Shape Recognition following Late Emergence from Blindness.

    PubMed

    McKyton, Ayelet; Ben-Zion, Itay; Doron, Ravid; Zohary, Ehud

    2015-09-21

    Visual object recognition develops during the first years of life. But what if one is deprived of vision during early post-natal development? Shape information is extracted using both low-level cues (e.g., intensity- or color-based contours) and more complex algorithms that are largely based on inference assumptions (e.g., illumination is from above, objects are often partially occluded). Previous studies, testing visual acuity using a 2D shape-identification task (Lea symbols), indicate that contour-based shape recognition can improve with visual experience, even after years of visual deprivation from birth. We hypothesized that this may generalize to other low-level cues (shape, size, and color), but not to mid-level functions (e.g., 3D shape from shading) that might require prior visual knowledge. To that end, we studied a unique group of subjects in Ethiopia that suffered from an early manifestation of dense bilateral cataracts and were surgically treated only years later. Our results suggest that the newly sighted rapidly acquire the ability to recognize an odd element within an array, on the basis of color, size, or shape differences. However, they are generally unable to find the odd shape on the basis of illusory contours, shading, or occlusion relationships. Little recovery of these mid-level functions is seen within 1 year post-operation. We find that visual performance using low-level cues is relatively robust to prolonged deprivation from birth. However, the use of pictorial depth cues to infer 3D structure from the 2D retinal image is highly susceptible to early and prolonged visual deprivation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Po River plume and Northern Adriatic Dense Waters: a modeling and statistical approach.

    NASA Astrophysics Data System (ADS)

    Marcello Falcieri, Francesco; Benetazzo, Alvise; Sclavo, Mauro; Carniel, Sandro; Bergamasco, Andrea; Bonaldo, Davide; Barbariol, Francesco; Russo, Aniello

    2014-05-01

    were found: i) a wide plume that extends well into the basin; ii) a smaller one confined to the coastal area. We speculate that, beside the freshwater amount discharged, also the plume shape (i.e. its spreading) can play a role in preconditioning the wintertime NAdDW formation. To test this hypothesis, the probability distribution of the 6 SOM's Best Matching Units during the period of preconditoning are compared to the heat losses and the amount of dense water formed during the subsequent winter.

  13. Stability of gas channels in a dense suspension in the presence of obstacles

    NASA Astrophysics Data System (ADS)

    Poryles, Raphaël; Varas, Germán; Vidal, Valérie

    2017-06-01

    We investigate experimentally the influence of a fixed obstacle on gas rising in a dense suspension. Air is injected at a constant flow rate by a single nozzle at the bottom center of a Hele-Shaw cell. Without obstacles, previous works have shown that a fluidized zone is formed with a parabolic shape, with a central air channel and two granular convection rolls on its sides. Here, we quantify the influence of the obstacle's shape, size, and height on the location and dynamics of the central air channel. Different regimes are reported: the air channel can simply deviate (stable), or it can switch sides over time (unstable), leading to two signatures not only above the obstacle, but sometimes also below it. This feedback also influences the channel deviation when bypassing the obstacle. A wake of less or no motion is reported above the largest obstacles as well as the maximum probability of gas location, which can be interesting for practical applications. The existence of a critical height hc≃7 cm is discussed and compared with the existence of an air finger that develops from the injection nozzle and is stable in time. A dimensionless number describing the transition between air fingering and fracturing makes it possible to predict the channel's stability.

  14. Mapping the dense scotoma and its enlargement in Stargardt disease

    PubMed Central

    Bernstein, Aryeh; Sunness, Janet S.; Applegate, Carol A.; Tegins, Elizabeth O.

    2016-01-01

    Purpose To describe the enlargement of the dense scotoma over time in Stargardt disease, and to highlight methodological issues in tracking enlargement. Methods Retrospective study of patients with full mapping of the border of the dense scotoma using the MP-1 for at least two visits. Results Fourteen eyes of 7 patients met this criterion. Patients had median of 3 visits (range 2 to 5), with median total f/u of 4.5 years (range 1.5-8). Mean baseline visual acuity was 20/56 (range 20/25-20/200), mean baseline dense scotoma area was 2.23mm2 (range 0.41-5.48), and mean dense scotoma enlargement rate was 1.36mm2/year (range 0.22-2.91). The younger patients tended to have more rapid loss of visual acuity, which tended to plateau when the VA was 20/100 or worse. The patients who developed Stargardt before age 20, and the single patient who developed Stargardt disease after age 40, had more rapid enlargement rates, with preservation of central vision in the oldest patient. The ability to precisely define the dense scotoma area was dependent upon the density location of the points tested; this led to significant variability in the assessment of the scotoma enlargement rate in 3 of the 7 patients. The dense scotoma was not described adequately by the extent of the homogeneous dark area on fundus autofluorescence imaging. Conclusion Microperimetry is necessary for mapping the scotoma in patients with Stargardt disease, since current imaging is not adequate. Standardized grid testing, plus a standardized procedure for refining the border of the dense scotoma, should allow more precise testing and longitudinal assessment of enlargement rates. PMID:26909568

  15. Dynamics of dense direct-seeded stands of southern pines

    Treesearch

    J.C.G. Goelz

    2006-01-01

    Direct seeding of southern pines is an effective method of artificial regeneration, producing extremely dense stands when survival exceeds expectations. Long-term studies of dense direct-seeded stands provide ideal data for exploring development of stands as they approach the limit of maximum stand density. I present data from seven studies with ages of stands ranging...

  16. Dense Plasma Focus Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hui; Li, Shengtai; Jungman, Gerard

    2016-08-31

    The mechanisms for pinch formation in Dense Plasma Focus (DPF) devices, with the generation of high-energy ions beams and subsequent neutron production over a relatively short distance, are not fully understood. Here we report on high-fidelity 2D and 3D numerical magnetohydrodynamic (MHD) simulations using the LA-COMPASS code to study the pinch formation dynamics and its associated instabilities and neutron production.

  17. Three dimensional cylindrical Kadomtsev-Petviashvili equation in a very dense electron-positron-ion plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moslem, W. M.; Sabry, R.; Shukla, P. K.

    2010-03-15

    By using the hydrodynamic equations of ions, Thomas-Fermi electron/positron density distribution, and Poisson equation, a three-dimensional cylindrical Kadomtsev-Petviashvili (CKP) equation is derived for small but finite amplitude ion-acoustic waves. The generalized expansion method is used to analytically solve the CKP equation. New class of solutions admits a train of well-separated bell-shaped periodic pulses is obtained. At certain condition, the latter degenerates to solitary wave solution. The effects of physical parameters on the solitary pulse structures are examined. Furthermore, the energy integral equation is used to study the existence regions of the localized pulses. The present study might be helpful tomore » understand the excitation of nonlinear ion-acoustic waves in a very dense astrophysical objects such as white dwarfs.« less

  18. Activated dynamics in dense fluids of attractive nonspherical particles. II. Elasticity, barriers, relaxation, fragility, and self-diffusion

    NASA Astrophysics Data System (ADS)

    Tripathy, Mukta; Schweizer, Kenneth S.

    2011-04-01

    In paper II of this series we apply the center-of-mass version of Nonlinear Langevin Equation theory to study how short-range attractive interactions influence the elastic shear modulus, transient localization length, activated dynamics, and kinetic arrest of a variety of nonspherical particle dense fluids (and the spherical analog) as a function of volume fraction and attraction strength. The activation barrier (roughly the natural logarithm of the dimensionless relaxation time) is predicted to be a rich function of particle shape, volume fraction, and attraction strength, and the dynamic fragility varies significantly with particle shape. At fixed volume fraction, the barrier grows in a parabolic manner with inverse temperature nondimensionalized by an onset value, analogous to what has been established for thermal glass-forming liquids. Kinetic arrest boundaries lie at significantly higher volume fractions and attraction strengths relative to their dynamic crossover analogs, but their particle shape dependence remains the same. A limited universality of barrier heights is found based on the concept of an effective mean-square confining force. The mean hopping time and self-diffusion constant in the attractive glass region of the nonequilibrium phase diagram is predicted to vary nonmonotonically with attraction strength or inverse temperature, qualitatively consistent with recent computer simulations and colloid experiments.

  19. Predicted reentrant melting of dense hydrogen at ultra-high pressures

    PubMed Central

    Geng, Hua Y.; Wu, Q.

    2016-01-01

    The phase diagram of hydrogen is one of the most important challenges in high-pressure physics and astrophysics. Especially, the melting of dense hydrogen is complicated by dimer dissociation, metallization and nuclear quantum effect of protons, which together lead to a cold melting of dense hydrogen when above 500 GPa. Nonetheless, the variation of the melting curve at higher pressures is virtually uncharted. Here we report that using ab initio molecular dynamics and path integral simulations based on density functional theory, a new atomic phase is discovered, which gives an uplifting melting curve of dense hydrogen when beyond 2 TPa, and results in a reentrant solid-liquid transition before entering the Wigner crystalline phase of protons. The findings greatly extend the phase diagram of dense hydrogen, and put metallic hydrogen into the group of alkali metals, with its melting curve closely resembling those of lithium and sodium. PMID:27834405

  20. In vitro assessment of three dimensional dense chitosan-based structures to be used as bioabsorbable implants.

    PubMed

    Guitian Oliveira, Nuno; Sirgado, Tatiana; Reis, Luís; Pinto, Luís F V; da Silva, Cláudia Lobato; Ferreira, Frederico Castelo; Rodrigues, Alexandra

    2014-12-01

    Chitosan biocompatibility and biodegradability properties make this biopolymer promising for the development of advanced internal fixation devices for orthopedic applications. This work presents a detailed study on the production and characterization of three dimensional (3D) dense, non-porous, chitosan-based structures, with the ability to be processed in different shapes, and also with high strength and stiffness. Such features are crucial for the application of such 3D structures as bioabsorbable implantable devices. The influence of chitosan's molecular weight and the addition of one plasticizer (glycerol) on 3D dense chitosan-based products' biomechanical properties were explored. Several specimens were produced and in vitro studies were performed in order to assess the cytotoxicity of these specimens and their physical behavior throughout the enzymatic degradation experiments. The results point out that glycerol does not impact on cytotoxicity and has a high impact in improving mechanical properties, both elasticity and compressive strength. In addition, human mesenchymal stem/stromal cells (MSC) were used as an ex-vivo model to study cell adhesion and proliferation on these structures, showing promising results with fold increase values in total cell number similar to the ones obtained in standard cell culture flasks. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Dense matter in strong gravitational field of neutron star

    NASA Astrophysics Data System (ADS)

    Bhat, Sajad A.; Bandyopadhyay, Debades

    2018-02-01

    Mass, radius and moment of inertia are direct probes of compositions and Equation of State (EoS) of dense matter in neutron star interior. These are computed for novel phases of dense matter involving hyperons and antikaon condensate and their observable consequences are discussed in this article. Furthermore, the relationship between moment of inertia and quadrupole moment is also explored.

  2. Heterotypic interactions regulate cell shape and density during color pattern formation in zebrafish.

    PubMed

    Mahalwar, Prateek; Singh, Ajeet Pratap; Fadeev, Andrey; Nüsslein-Volhard, Christiane; Irion, Uwe

    2016-11-15

    The conspicuous striped coloration of zebrafish is produced by cell-cell interactions among three different types of chromatophores: black melanophores, orange/yellow xanthophores and silvery/blue iridophores. During color pattern formation xanthophores undergo dramatic cell shape transitions and acquire different densities, leading to compact and orange xanthophores at high density in the light stripes, and stellate, faintly pigmented xanthophores at low density in the dark stripes. Here, we investigate the mechanistic basis of these cell behaviors in vivo, and show that local, heterotypic interactions with dense iridophores regulate xanthophore cell shape transition and density. Genetic analysis reveals a cell-autonomous requirement of gap junctions composed of Cx41.8 and Cx39.4 in xanthophores for their iridophore-dependent cell shape transition and increase in density in light-stripe regions. Initial melanophore-xanthophore interactions are independent of these gap junctions; however, subsequently they are also required to induce the acquisition of stellate shapes in xanthophores of the dark stripes. In summary, we conclude that, whereas homotypic interactions regulate xanthophore coverage in the skin, their cell shape transitions and density is regulated by gap junction-mediated, heterotypic interactions with iridophores and melanophores. © 2016. Published by The Company of Biologists Ltd.

  3. Application of a Dense Gas Technique for Sterilizing Soft Biomaterials

    PubMed Central

    Karajanagi, Sandeep S.; Yoganathan, Roshan; Mammucari, Raffaella; Park, Hyoungshin; Cox, Julian; Zeitels, Steven M.; Langer, Robert; Foster, Neil R.

    2017-01-01

    Sterilization of soft biomaterials such as hydrogels is challenging because existing methods such as gamma irradiation, steam sterilization, or ethylene oxide sterilization, while effective at achieving high sterility assurance levels (SAL), may compromise their physicochemical properties and biocompatibility. New methods that effectively sterilize soft biomaterials without compromising their properties are therefore required. In this report, a dense-carbon dioxide (CO2)-based technique was used to sterilize soft polyethylene glycol (PEG)-based hydrogels while retaining their structure and physicochemical properties. Conventional sterilization methods such as gamma irradiation and steam sterilization severely compromised the structure of the hydrogels. PEG hydrogels with high water content and low elastic shear modulus (a measure of stiffness) were deliberately inoculated with bacteria and spores and then subjected to dense CO2. The dense CO2-based methods effectively sterilized the hydrogels achieving a SAL of 10−7 without compromising the viscoelastic properties, pH, water-content, and structure of the gels. Furthermore, dense CO2-treated gels were biocompatible and non-toxic when implanted subcutaneously in ferrets. The application of novel dense CO2-based methods to sterilize soft biomaterials has implications in developing safe sterilization methods for soft biomedical implants such as dermal fillers and viscosupplements. PMID:21337339

  4. Densely Cratered Terrain Near the Terminator

    NASA Image and Video Library

    2011-08-16

    NASA Dawn spacecraft shows densely cratered terrain near Vesta terminator on August 6, 2011. This image was taken through the framing camera clear filter aboard the spacecraft. North is pointing towards the two oclock position.

  5. Acceptance procedures for dense-graded mixes

    DOT National Transportation Integrated Search

    2001-03-01

    Recent literature related to acceptance procedures for dense-graded mixtures is summarized. Current state of practice and development of acceptance procedures are reviewed. Many agencies are reducing the number of process control-related parameters i...

  6. Head-and-face shape variations of U.S. civilian workers

    PubMed Central

    Zhuang, Ziqing; Shu, Chang; Xi, Pengcheng; Bergman, Michael; Joseph, Michael

    2016-01-01

    The objective of this study was to quantify head-and-face shape variations of U.S. civilian workers using modern methods of shape analysis. The purpose of this study was based on previously highlighted changes in U.S. civilian worker head-and-face shape over the last few decades – touting the need for new and better fitting respirators – as well as the study's usefulness in designing more effective personal protective equipment (PPE) – specifically in the field of respirator design. The raw scan three-dimensional (3D) data for 1169 subjects were parameterized using geometry processing techniques. This process allowed the individual scans to be put in correspondence with each other in such a way that statistical shape analysis could be performed on a dense set of 3D points. This process also cleaned up the original scan data such that the noise was reduced and holes were filled in. The next step, statistical analysis of the variability of the head-and-face shape in the 3D database, was conducted using Principal Component Analysis (PCA) techniques. Through these analyses, it was shown that the space of the head-and-face shape was spanned by a small number of basis vectors. Less than 50 components explained more than 90% of the variability. Furthermore, the main mode of variations could be visualized through animating the shape changes along the PCA axes with computer software in executable form for Windows XP. The results from this study in turn could feed back into respirator design to achieve safer, more efficient product style and sizing. Future study is needed to determine the overall utility of the point cloud-based approach for the quantification of facial morphology variation and its relationship to respirator performance. PMID:23399025

  7. Head-and-face shape variations of U.S. civilian workers.

    PubMed

    Zhuang, Ziqing; Shu, Chang; Xi, Pengcheng; Bergman, Michael; Joseph, Michael

    2013-09-01

    The objective of this study was to quantify head-and-face shape variations of U.S. civilian workers using modern methods of shape analysis. The purpose of this study was based on previously highlighted changes in U.S. civilian worker head-and-face shape over the last few decades - touting the need for new and better fitting respirators - as well as the study's usefulness in designing more effective personal protective equipment (PPE) - specifically in the field of respirator design. The raw scan three-dimensional (3D) data for 1169 subjects were parameterized using geometry processing techniques. This process allowed the individual scans to be put in correspondence with each other in such a way that statistical shape analysis could be performed on a dense set of 3D points. This process also cleaned up the original scan data such that the noise was reduced and holes were filled in. The next step, statistical analysis of the variability of the head-and-face shape in the 3D database, was conducted using Principal Component Analysis (PCA) techniques. Through these analyses, it was shown that the space of the head-and-face shape was spanned by a small number of basis vectors. Less than 50 components explained more than 90% of the variability. Furthermore, the main mode of variations could be visualized through animating the shape changes along the PCA axes with computer software in executable form for Windows XP. The results from this study in turn could feed back into respirator design to achieve safer, more efficient product style and sizing. Future study is needed to determine the overall utility of the point cloud-based approach for the quantification of facial morphology variation and its relationship to respirator performance. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  8. Evolutionary models of rotating dense stellar systems: challenges in software and hardware

    NASA Astrophysics Data System (ADS)

    Fiestas, Jose

    2016-02-01

    We present evolutionary models of rotating self-gravitating systems (e.g. globular clusters, galaxy cores). These models are characterized by the presence of initial axisymmetry due to rotation. Central black hole seeds are alternatively included in our models, and black hole growth due to consumption of stellar matter is simulated until the central potential dominates the kinematics in the core. Goal is to study the long-term evolution (~ Gyr) of relaxed dense stellar systems, which deviate from spherical symmetry, their morphology and final kinematics. With this purpose, we developed a 2D Fokker-Planck analytical code, which results we confirm by detailed N-Body techniques, applying a high performance code, developed for GPU machines. We compare our models to available observations of galactic rotating globular clusters, and conclude that initial rotation modifies significantly the shape and lifetime of these systems, and can not be neglected in studying the evolution of globular clusters, and the galaxy itself.

  9. Size And Shape of Detergent Micelles Determined By Small-Angle X-Ray Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipfert, Jan; Columbus, Linda; Chu, Vincent B.

    2009-04-29

    We present a systematic analysis of the aggregation number and shape of micelles formed by nine detergents commonly used in the study of membrane proteins. Small-angle X-ray scattering measurements are reported for glucosides with 8 and 9 alkyl carbons (OG/NG), maltosides and phosphocholines with 10 and 12 alkyl carbons (DM/DDM and FC-10/FC-12), 1,2-dihexanoyl-sn-glycero-phosphocholine (DHPC), 1-palmitoyl-2-hydroxy-sn-glycero-3-[phospho-rac-(1-glycerol)] (LPPG), and 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS). The SAXS intensities are well described by two-component ellipsoid models, with a dense outer shell corresponding to the detergent head groups and a less electron dense hydrophobic core. These models provide an intermediate resolution view of micelle size and shape.more » In addition, we show that Guinier analysis of the forward scattering intensity can be used to obtain an independent and model-free measurement of the micelle aggregation number and radius of gyration. This approach has the advantage of being easily generalizable to protein-detergent complexes, where simple geometric models are inapplicable. Furthermore, we have discovered that the position of the second maximum in the scattering intensity provides a direct measurement of the characteristic head group-head group spacing across the micelle core. Our results for the micellar aggregation numbers and dimensions agree favorably with literature values as far as they are available. We de novo determine the shape of FC-10, FC-12, DM, LPPG, and CHAPS micelles and the aggregation numbers of FC-10 and OG to be ca. 50 and 250, respectively. Combined, these data provide a comprehensive view of the determinants of micelle formation and serve as a starting point to correlate detergent properties with detergent-protein interactions.« less

  10. Ultra-dense WDM-PON delivering carrier-centralized Nyquist-WDM uplink with digital coherent detection.

    PubMed

    Dong, Ze; Yu, Jianjun; Chien, Hung-Chang; Chi, Nan; Chen, Lin; Chang, Gee-Kung

    2011-06-06

    We introduce an "ultra-dense" concept into next-generation WDM-PON systems, which transmits a Nyquist-WDM uplink with centralized uplink optical carriers and digital coherent detection for the future access network requiring both high capacity and high spectral efficiency. 80-km standard single mode fiber (SSMF) transmission of Nyquist-WDM signal with 13 coherent 25-GHz spaced wavelength shaped optical carriers individually carrying 100-Gbit/s polarization-multiplexing quadrature phase-shift keying (PM-QPSK) upstream data has been experimentally demonstrated with negligible transmission penalty. The 13 frequency-locked wavelengths with a uniform optical power level of -10 dBm and OSNR of more than 50 dB are generated from a single lightwave via a multi-carrier generator consists of an optical phase modulator (PM), a Mach-Zehnder modulator (MZM), and a WSS. Following spacing the carriers at the baud rate, sub-carriers are individually spectral shaped to form Nyquist-WDM. The Nyquist-WDM channels have less than 1-dB crosstalk penalty of optical signal-to-noise ratio (OSNR) at 2 × 10(-3) bit-error rate (BER). Performance of a traditional coherent optical OFDM scheme and its restrictions on symbol synchronization and power difference are also experimentally compared and studied.

  11. The Green Bank Ammonia Survey: Dense Cores under Pressure in Orion A

    NASA Astrophysics Data System (ADS)

    Kirk, Helen; Friesen, Rachel K.; Pineda, Jaime E.; Rosolowsky, Erik; Offner, Stella S. R.; Matzner, Christopher D.; Myers, Philip C.; Di Francesco, James; Caselli, Paola; Alves, Felipe O.; Chacón-Tanarro, Ana; Chen, How-Huan; Chun-Yuan Chen, Michael; Keown, Jared; Punanova, Anna; Seo, Young Min; Shirley, Yancy; Ginsburg, Adam; Hall, Christine; Singh, Ayushi; Arce, Héctor G.; Goodman, Alyssa A.; Martin, Peter; Redaelli, Elena

    2017-09-01

    We use data on gas temperature and velocity dispersion from the Green Bank Ammonia Survey and core masses and sizes from the James Clerk Maxwell Telescope Gould Belt Survey to estimate the virial states of dense cores within the Orion A molecular cloud. Surprisingly, we find that almost none of the dense cores are sufficiently massive to be bound when considering only the balance between self-gravity and the thermal and non-thermal motions present in the dense gas. Including the additional pressure binding imposed by the weight of the ambient molecular cloud material and additional smaller pressure terms, however, suggests that most of the dense cores are pressure-confined.

  12. PHOTOCHEMICAL HEATING OF DENSE MOLECULAR GAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glassgold, A. E.; Najita, J. R.

    2015-09-10

    Photochemical heating is analyzed with an emphasis on the heating generated by chemical reactions initiated by the products of photodissociation and photoionization. The immediate products are slowed down by collisions with the ambient gas and then heat the gas. In addition to this direct process, heating is also produced by the subsequent chemical reactions initiated by these products. Some of this chemical heating comes from the kinetic energy of the reaction products and the rest from collisional de-excitation of the product atoms and molecules. In considering dense gas dominated by molecular hydrogen, we find that the chemical heating is sometimesmore » as large, if not much larger than, the direct heating. In very dense gas, the total photochemical heating approaches 10 eV per photodissociation (or photoionization), competitive with other ways of heating molecular gas.« less

  13. Relating quantum discord with the quantum dense coding capacity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xin; Qiu, Liang, E-mail: lqiu@cumt.edu.cn; Li, Song

    2015-01-15

    We establish the relations between quantum discord and the quantum dense coding capacity in (n + 1)-particle quantum states. A necessary condition for the vanishing discord monogamy score is given. We also find that the loss of quantum dense coding capacity due to decoherence is bounded below by the sum of quantum discord. When these results are restricted to three-particle quantum states, some complementarity relations are obtained.

  14. A numerical framework for the direct simulation of dense particulate flow under explosive dispersal

    NASA Astrophysics Data System (ADS)

    Mo, H.; Lien, F.-S.; Zhang, F.; Cronin, D. S.

    2018-05-01

    In this paper, we present a Cartesian grid-based numerical framework for the direct simulation of dense particulate flow under explosive dispersal. This numerical framework is established through the integration of the following numerical techniques: (1) operator splitting for partitioned fluid-solid interaction in the time domain, (2) the second-order SSP Runge-Kutta method and third-order WENO scheme for temporal and spatial discretization of governing equations, (3) the front-tracking method for evolving phase interfaces, (4) a field function proposed for low-memory-cost multimaterial mesh generation and fast collision detection, (5) an immersed boundary method developed for treating arbitrarily irregular and changing boundaries, and (6) a deterministic multibody contact and collision model. Employing the developed framework, this paper further studies particle jet formation under explosive dispersal by considering the effects of particle properties, particulate payload morphologies, and burster pressures. By the simulation of the dispersal processes of dense particle systems driven by pressurized gas, in which the driver pressure reaches 1.01325× 10^{10} Pa (10^5 times the ambient pressure) and particles are impulsively accelerated from stationary to a speed that is more than 12000 m/s within 15 μ s, it is demonstrated that the presented framework is able to effectively resolve coupled shock-shock, shock-particle, and particle-particle interactions in complex fluid-solid systems with shocked flow conditions, arbitrarily irregular particle shapes, and realistic multibody collisions.

  15. Memory-Efficient Analysis of Dense Functional Connectomes.

    PubMed

    Loewe, Kristian; Donohue, Sarah E; Schoenfeld, Mircea A; Kruse, Rudolf; Borgelt, Christian

    2016-01-01

    The functioning of the human brain relies on the interplay and integration of numerous individual units within a complex network. To identify network configurations characteristic of specific cognitive tasks or mental illnesses, functional connectomes can be constructed based on the assessment of synchronous fMRI activity at separate brain sites, and then analyzed using graph-theoretical concepts. In most previous studies, relatively coarse parcellations of the brain were used to define regions as graphical nodes. Such parcellated connectomes are highly dependent on parcellation quality because regional and functional boundaries need to be relatively consistent for the results to be interpretable. In contrast, dense connectomes are not subject to this limitation, since the parcellation inherent to the data is used to define graphical nodes, also allowing for a more detailed spatial mapping of connectivity patterns. However, dense connectomes are associated with considerable computational demands in terms of both time and memory requirements. The memory required to explicitly store dense connectomes in main memory can render their analysis infeasible, especially when considering high-resolution data or analyses across multiple subjects or conditions. Here, we present an object-based matrix representation that achieves a very low memory footprint by computing matrix elements on demand instead of explicitly storing them. In doing so, memory required for a dense connectome is reduced to the amount needed to store the underlying time series data. Based on theoretical considerations and benchmarks, different matrix object implementations and additional programs (based on available Matlab functions and Matlab-based third-party software) are compared with regard to their computational efficiency. The matrix implementation based on on-demand computations has very low memory requirements, thus enabling analyses that would be otherwise infeasible to conduct due to

  16. Memory-Efficient Analysis of Dense Functional Connectomes

    PubMed Central

    Loewe, Kristian; Donohue, Sarah E.; Schoenfeld, Mircea A.; Kruse, Rudolf; Borgelt, Christian

    2016-01-01

    The functioning of the human brain relies on the interplay and integration of numerous individual units within a complex network. To identify network configurations characteristic of specific cognitive tasks or mental illnesses, functional connectomes can be constructed based on the assessment of synchronous fMRI activity at separate brain sites, and then analyzed using graph-theoretical concepts. In most previous studies, relatively coarse parcellations of the brain were used to define regions as graphical nodes. Such parcellated connectomes are highly dependent on parcellation quality because regional and functional boundaries need to be relatively consistent for the results to be interpretable. In contrast, dense connectomes are not subject to this limitation, since the parcellation inherent to the data is used to define graphical nodes, also allowing for a more detailed spatial mapping of connectivity patterns. However, dense connectomes are associated with considerable computational demands in terms of both time and memory requirements. The memory required to explicitly store dense connectomes in main memory can render their analysis infeasible, especially when considering high-resolution data or analyses across multiple subjects or conditions. Here, we present an object-based matrix representation that achieves a very low memory footprint by computing matrix elements on demand instead of explicitly storing them. In doing so, memory required for a dense connectome is reduced to the amount needed to store the underlying time series data. Based on theoretical considerations and benchmarks, different matrix object implementations and additional programs (based on available Matlab functions and Matlab-based third-party software) are compared with regard to their computational efficiency. The matrix implementation based on on-demand computations has very low memory requirements, thus enabling analyses that would be otherwise infeasible to conduct due to

  17. The Transition from Diffuse to Dense Gas in Herschel Dust Emission Maps

    NASA Astrophysics Data System (ADS)

    Goldsmith, Paul

    Dense cores in dark clouds are the sites where young stars form. These regions manifest as relatively small (<0.1pc) pockets of cold and dense gas. If we wish to understand the star formation process, we have to understand the physical conditions in dense cores. This has been a main aim of star formation research in the past decade. Today, we do indeed possess a good knowledge of the density and velocity structure of cores, as well as their chemical evolution and physical lifetime. However, we do not understand well how dense cores form out of the diffuse gas clouds surrounding them. It is crucial that we constrain the relationship between dense cores and their environment: if we only understand dense cores, we may be able to understand how individual stars form --- but we would not know how the star forming dense cores themselves come into existence. We therefore propose to obtain data sets that reveal both dense cores and the clouds containing them in the same map. Based on these maps, we will study how dense cores form out of their natal clouds. Since cores form stars, this knowledge is crucial for the development of a complete theoretical and observational understanding of the formation of stars and their planets, as envisioned in NASA's Strategic Science Plan. Fortunately, existing archival data allow to derive exactly the sort of maps we need for our analysis. Here, we describe a program that exclusively builds on PACS and SPIRE dust emission imaging data from the NASA-supported Herschel mission. The degree-sized wide-field Herschel maps of the nearby (<260pc) Polaris Flare and Aquila Rift clouds are ideal for our work. They permit to resolve dense cores (<0.1pc), while the maps also reveal large-scale cloud structure (5pc and larger). We will generate column density maps from these dust emission maps and then run a tree-based hierarchical multi-scale structure analysis on them. Only this procedure permits to exploit the full potential of the maps: we will

  18. Automatic Method for Building Indoor Boundary Models from Dense Point Clouds Collected by Laser Scanners

    PubMed Central

    Valero, Enrique; Adán, Antonio; Cerrada, Carlos

    2012-01-01

    In this paper we present a method that automatically yields Boundary Representation Models (B-rep) for indoors after processing dense point clouds collected by laser scanners from key locations through an existing facility. Our objective is particularly focused on providing single models which contain the shape, location and relationship of primitive structural elements of inhabited scenarios such as walls, ceilings and floors. We propose a discretization of the space in order to accurately segment the 3D data and generate complete B-rep models of indoors in which faces, edges and vertices are coherently connected. The approach has been tested in real scenarios with data coming from laser scanners yielding promising results. We have deeply evaluated the results by analyzing how reliably these elements can be detected and how accurately they are modeled. PMID:23443369

  19. A high-speed tracking algorithm for dense granular media

    NASA Astrophysics Data System (ADS)

    Cerda, Mauricio; Navarro, Cristóbal A.; Silva, Juan; Waitukaitis, Scott R.; Mujica, Nicolás; Hitschfeld, Nancy

    2018-06-01

    Many fields of study, including medical imaging, granular physics, colloidal physics, and active matter, require the precise identification and tracking of particle-like objects in images. While many algorithms exist to track particles in diffuse conditions, these often perform poorly when particles are densely packed together-as in, for example, solid-like systems of granular materials. Incorrect particle identification can have significant effects on the calculation of physical quantities, which makes the development of more precise and faster tracking algorithms a worthwhile endeavor. In this work, we present a new tracking algorithm to identify particles in dense systems that is both highly accurate and fast. We demonstrate the efficacy of our approach by analyzing images of dense, solid-state granular media, where we achieve an identification error of 5% in the worst evaluated cases. Going further, we propose a parallelization strategy for our algorithm using a GPU, which results in a speedup of up to 10 × when compared to a sequential CPU implementation in C and up to 40 × when compared to the reference MATLAB library widely used for particle tracking. Our results extend the capabilities of state-of-the-art particle tracking methods by allowing fast, high-fidelity detection in dense media at high resolutions.

  20. Fabrication of dense wavelength division multiplexing filters with large useful area

    NASA Astrophysics Data System (ADS)

    Lee, Cheng-Chung; Chen, Sheng-Hui; Hsu, Jin-Cherng; Kuo, Chien-Cheng

    2006-08-01

    Dense Wavelength Division Multiplexers (DWDM), a kind of narrow band-pass filter, are extremely sensitive to the optical thickness error in each composite layer. Therefore to have a large useful coating area is extreme difficult because of the uniformity problem. To enlarge the useful coating area it is necessary to improve their design and their fabrication. In this study, we discuss how the tooling factors at different positions and for different materials are related to the optical performance of the design. 100GHz DWDM filters were fabricated by E-gun evaporation with ion-assisted deposition (IAD). To improve the coating uniformity, an analysis technique called shaping tooling factor (STF) was used to analyze the deviation of the optical thickness in different materials so as to enlarge the useful coating area. Also a technique of etching the deposited layers with oxygen ions was introduced. When the above techniques were applied in the fabrication of 100 GHz DWDM filters, the uniformity was better than +/-0.002% over an area of 72 mm in diameter and better than +/-0.0006% over 20mm in diameter.

  1. The capture of attention by entirely irrelevant pictures of calorie-dense foods.

    PubMed

    Cunningham, Corbin A; Egeth, Howard E

    2018-04-01

    Inborn preference for palatable energy-dense food is thought to be an evolutionary adaptation. One way this preference manifests itself is through the control of visual attention. In the present study, we investigated how attentional capture is influenced by changes in naturally occurring goal-states, in this case desire for energy-dense foods (typically high fat and/or high sugar). We demonstrate that even when distractors are entirely irrelevant, participants were significantly more distracted by energy-dense foods compared with non-food objects and even low-energy foods. Additionally, we show the lability of these goal-states by having a separate set of participants consume a small amount of calorie-dense food prior to the task. The amount of distraction by the energy-dense food images in this case was significantly reduced and no different than distraction by images of low-energy foods and images of non-food objects. While naturally occurring goal-states can be difficult to ignore, they also are highly flexible.

  2. A quasi-dense matching approach and its calibration application with Internet photos.

    PubMed

    Wan, Yanli; Miao, Zhenjiang; Wu, Q M Jonathan; Wang, Xifu; Tang, Zhen; Wang, Zhifei

    2015-03-01

    This paper proposes a quasi-dense matching approach to the automatic acquisition of camera parameters, which is required for recovering 3-D information from 2-D images. An affine transformation-based optimization model and a new matching cost function are used to acquire quasi-dense correspondences with high accuracy in each pair of views. These correspondences can be effectively detected and tracked at the sub-pixel level in multiviews with our neighboring view selection strategy. A two-layer iteration algorithm is proposed to optimize 3-D quasi-dense points and camera parameters. In the inner layer, different optimization strategies based on local photometric consistency and a global objective function are employed to optimize the 3-D quasi-dense points and camera parameters, respectively. In the outer layer, quasi-dense correspondences are resampled to guide a new estimation and optimization process of the camera parameters. We demonstrate the effectiveness of our algorithm with several experiments.

  3. Developing Cost-Effective Dense Continuous SDC Barrier Layers for SOFCs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Hoang Viet P.; Hardy, John S.; Coyle, Christopher A.

    Significantly improved performance during electrochemical testing of a cell with a dense continuous pulsed laser deposited (PLD) samarium doped ceria (SDC) layer spurred investigations into the fabrication of dense continuous SDC barrier layers by means of cost-effective deposition using screen printing which is amenable to industrial production of SOFCs. Many approaches to improve the SDC density have been explored including the use of powder with reduced particle sizes, inks with increased solids loading, and doping with sintering aids (1). In terms of sintering aids, dopants like Mo or binary systems of Mo+Cu or Fe+Co greatly enhance SDC sinterability. In fact,more » adding dopants to a screen printed, prefired, porous SDC layer made it possible to achieve a dense continuous barrier layer atop the YSZ electrolyte without sintering above 1200°C. Although the objective of fabricating a dense continuous layer was achieved, additional studies have been initiated to improve the cell performance. Underlying issues with constrained sintering and dopant-enhanced ceria-zirconia solid solubility are also addressed in this paper.« less

  4. The Green Bank Ammonia Survey: Dense Cores under Pressure in Orion A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirk, Helen; Di Francesco, James; Friesen, Rachel K.

    We use data on gas temperature and velocity dispersion from the Green Bank Ammonia Survey and core masses and sizes from the James Clerk Maxwell Telescope Gould Belt Survey to estimate the virial states of dense cores within the Orion A molecular cloud. Surprisingly, we find that almost none of the dense cores are sufficiently massive to be bound when considering only the balance between self-gravity and the thermal and non-thermal motions present in the dense gas. Including the additional pressure binding imposed by the weight of the ambient molecular cloud material and additional smaller pressure terms, however, suggests thatmore » most of the dense cores are pressure-confined.« less

  5. Rheology of dense suspensions of non colloidal particles

    NASA Astrophysics Data System (ADS)

    Guazzelli, Élisabeth

    2017-06-01

    Dense suspensions are materials with broad applications both in industrial processes (e.g. waste disposal, concrete, drilling muds, metalworking chip transport, and food processing) and in natural phenomena (e.g. flows of slurries, debris, and lava). Despite its long research history and its practical relevance, the mechanics of dense suspensions remain poorly understood. The major difficulty is that the grains interact both by hydrodynamic interactions through the liquid and by mechanical contact. These systems thus belong to an intermediate regime between pure suspensions and granular flows. We show that we can unify suspension and granular rheology under a common framework by transferring the frictional approach of dry granular media to wet suspensions of spherical particles. We also discuss non-Newtonian behavior such as normal-stress differences and shear-induced migration. Beyond the classical problem of dense suspension of hard spheres which is far from being completely resolved, there are also entirely novel avenues of study concerning more complex mixtures of particles and fluids such as those involving other types of particles (e.g. fibers) or non-Newtonian fluids that we will also address.

  6. An extended GS method for dense linear systems

    NASA Astrophysics Data System (ADS)

    Niki, Hiroshi; Kohno, Toshiyuki; Abe, Kuniyoshi

    2009-09-01

    Davey and Rosindale [K. Davey, I. Rosindale, An iterative solution scheme for systems of boundary element equations, Internat. J. Numer. Methods Engrg. 37 (1994) 1399-1411] derived the GSOR method, which uses an upper triangular matrix [Omega] in order to solve dense linear systems. By applying functional analysis, the authors presented an expression for the optimum [Omega]. Moreover, Davey and Bounds [K. Davey, S. Bounds, A generalized SOR method for dense linear systems of boundary element equations, SIAM J. Comput. 19 (1998) 953-967] also introduced further interesting results. In this note, we employ a matrix analysis approach to investigate these schemes, and derive theorems that compare these schemes with existing preconditioners for dense linear systems. We show that the convergence rate of the Gauss-Seidel method with preconditioner PG is superior to that of the GSOR method. Moreover, we define some splittings associated with the iterative schemes. Some numerical examples are reported to confirm the theoretical analysis. We show that the EGS method with preconditioner produces an extremely small spectral radius in comparison with the other schemes considered.

  7. Possible Climate Change Influences on Continued Reduction of Dense Fog in Southern California

    NASA Astrophysics Data System (ADS)

    Ladochy, S.; Witiw, M.

    2010-07-01

    Dense fog appears to be decreasing in many parts of the world, especially in cities. An earlier study showed that dense fog (visibility < 400 m) was disappearing in the urban southern California area as well. Using hourly data from 1948 to the present, we looked at the relationship between fog events and contributing factors in the region along with trends over time. We showed that the decrease in dense fog events could be explained mainly by declining particulate levels, Pacific SSTs, and increased urban warming. Dense fog is most prevalent along the coast and decreases rapidly inland, so the influence of the Pacific should be large. In particular, the Pacific Decadal Oscillation (PDO) and the Southern Oscillation signals can be seen in fog frequencies as well as in the contributing factors. Results show a decrease in the occurrence of dense fog at two airports in close proximity to the Pacific Ocean, LAX and LGB. Occurrence of the frequency of low visibilities at these two locations was highly correlated with the phases of the PDO. While examining data from LAX, we saw a frequency of dense fog that reached over 300 hours in 1950, but occurrence was down to zero in 1997. Since 1997, there has been a bit of a recovery with both 2008 and 2009 recording over 30 hours of dense fog each. In the present study, we continue to examine the relationships that control the frequency of dense fog in coastal southern California. To remove urban influence, we also included Vandenberg Air Force Base, located in a relatively sparsely populated area. While particulates, urban heat island and Pacific SSTs are all contributing factors, we now speculate on the direct and indirect influences of climate change on continued decreases in dense fog. Case studies of local and regional dense fog in southern California point to the importance of strong, low inversions and to a lesser contributor, Santa Ana winds. Both are associated with large-scale atmospheric circulation patterns, which

  8. Morphological operation based dense houses extraction from DSM

    NASA Astrophysics Data System (ADS)

    Li, Y.; Zhu, L.; Tachibana, K.; Shimamura, H.

    2014-08-01

    This paper presents a method of reshaping and extraction of markers and masks of the dense houses from the DSM based on mathematical morphology (MM). Houses in a digital surface model (DSM) are almost joined together in high-density housing areas, and most segmentation methods cannot completely separate them. We propose to label the markers of the buildings firstly and segment them into masks by watershed then. To avoid detecting more than one marker for a house or no marker at all due to its higher neighbour, the DSM is morphologically reshaped. It is carried out by a MM operation using the certain disk shape SE of the similar size to the houses. The sizes of the houses need to be estimated before reshaping. A granulometry generated by opening-by-reconstruction to the NDSM is proposed to detect the scales of the off-terrain objects. It is a histogram of the global volume of the top hats of the convex objects in the continuous scales. The obvious step change in the profile means that there are many objects of similar sizes occur at this scale. In reshaping procedure, the slices of the object are derived by morphological filtering at the detected continuous scales and reconstructed in pile as the dome. The markers are detected on the basis of the domes.

  9. TREMOR: A wireless MEMS accelerograph for dense arrays

    USGS Publications Warehouse

    Evans, J.R.; Hamstra, R.H.; Kundig, C.; Camina, P.; Rogers, J.A.

    2005-01-01

    The ability of a strong-motion network to resolve wavefields can be described on three axes: frequency, amplitude, and space. While the need for spatial resolution is apparent, for practical reasons that axis is often neglected. TREMOR is a MEMS-based accelerograph using wireless Internet to minimize lifecycle cost. TREMOR instruments can economically augment traditional ones, residing between them to improve spatial resolution. The TREMOR instrument described here has dynamic range of 96 dB between ??2 g, or 102 dB between ??4 g. It is linear to ???1% of full scale (FS), with a response function effectively shaped electronically. We developed an economical, very low noise, accurate (???1%FS) temperature compensation method. Displacement is easily recovered to 10-cm accuracy at full bandwidth, and better with care. We deployed prototype instruments in Oakland, California, beginning in 1998, with 13 now at mean spacing of ???3 km - one of the most densely instrumented urban centers in the United States. This array is among the quickest in returning (PGA, PGV, Sa) vectors to ShakeMap, ???75 to 100 s. Some 13 events have been recorded. A ShakeMap and an example of spatial variability are shown. Extensive tests of the prototypes for a commercial instrument are described here and in a companion paper. ?? 2005, Earthquake Engineering Research Institute.

  10. Dense Gas, Dynamical Equilibrium Pressure, and Star Formation in Nearby Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Gallagher, Molly J.; Leroy, Adam K.; Bigiel, Frank; Cormier, Diane; Jiménez-Donaire, María J.; Ostriker, Eve; Usero, Antonio; Bolatto, Alberto D.; García-Burillo, Santiago; Hughes, Annie; Kepley, Amanda A.; Krumholz, Mark; Meidt, Sharon E.; Meier, David S.; Murphy, Eric J.; Pety, Jérôme; Rosolowsky, Erik; Schinnerer, Eva; Schruba, Andreas; Walter, Fabian

    2018-05-01

    We use new ALMA observations to investigate the connection between dense gas fraction, star formation rate (SFR), and local environment across the inner region of four local galaxies showing a wide range of molecular gas depletion times. We map HCN (1–0), HCO+ (1–0), CS (2–1), 13CO (1–0), and C18O (1–0) across the inner few kiloparsecs of each target. We combine these data with short-spacing information from the IRAM large program EMPIRE, archival CO maps, tracers of stellar structure and recent star formation, and recent HCN surveys by Bigiel et al. and Usero et al. We test the degree to which changes in the dense gas fraction drive changes in the SFR. {I}HCN}/{I}CO} (tracing the dense gas fraction) correlates strongly with I CO (tracing molecular gas surface density), stellar surface density, and dynamical equilibrium pressure, P DE. Therefore, {I}HCN}/{I}CO} becomes very low and HCN becomes very faint at large galactocentric radii, where ratios as low as {I}HCN}/{I}CO}∼ 0.01 become common. The apparent ability of dense gas to form stars, {{{Σ }}}SFR}/{{{Σ }}}dense} (where Σdense is traced by the HCN intensity and the star formation rate is traced by a combination of Hα and 24 μm emission), also depends on environment. {{{Σ }}}SFR}/{{{Σ }}}dense} decreases in regions of high gas surface density, high stellar surface density, and high P DE. Statistically, these correlations between environment and both {{{Σ }}}SFR}/{{{Σ }}}dense} and {I}HCN}/{I}CO} are stronger than that between apparent dense gas fraction ({I}HCN}/{I}CO}) and the apparent molecular gas star formation efficiency {{{Σ }}}SFR}/{{{Σ }}}mol}. We show that these results are not specific to HCN.

  11. Beyond the single-atom response in absorption line shapes: probing a dense, laser-dressed helium gas with attosecond pulse trains.

    PubMed

    Liao, Chen-Ting; Sandhu, Arvinder; Camp, Seth; Schafer, Kenneth J; Gaarde, Mette B

    2015-04-10

    We investigate the absorption line shapes of laser-dressed atoms beyond the single-atom response, by using extreme ultraviolet (XUV) attosecond pulse trains to probe an optically thick helium target under the influence of a strong infrared (IR) field. We study the interplay between the IR-induced phase shift of the microscopic time-dependent dipole moment and the resonant-propagation-induced reshaping of the macroscopic XUV pulse. Our experimental and theoretical results show that as the optical depth increases, this interplay leads initially to a broadening of the IR-modified line shape, and subsequently, to the appearance of new, narrow features in the absorption line.

  12. THE JCMT GOULD BELT SURVEY: DENSE CORE CLUSTERS IN ORION A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lane, J.; Kirk, H.; Johnstone, D.

    The Orion A molecular cloud is one of the most well-studied nearby star-forming regions, and includes regions of both highly clustered and more dispersed star formation across its full extent. Here, we analyze dense, star-forming cores identified in the 850 and 450 μ m SCUBA-2 maps from the JCMT Gould Belt Legacy Survey. We identify dense cores in a uniform manner across the Orion A cloud and analyze their clustering properties. Using two independent lines of analysis, we find evidence that clusters of dense cores tend to be mass segregated, suggesting that stellar clusters may have some amount of primordial mass segregationmore » already imprinted in them at an early stage. We also demonstrate that the dense core clusters have a tendency to be elongated, perhaps indicating a formation mechanism linked to the filamentary structure within molecular clouds.« less

  13. High frequency flow-structural interaction in dense subsonic fluids

    NASA Technical Reports Server (NTRS)

    Liu, Baw-Lin; Ofarrell, J. M.

    1995-01-01

    Prediction of the detailed dynamic behavior in rocket propellant feed systems and engines and other such high-energy fluid systems requires precise analysis to assure structural performance. Designs sometimes require placement of bluff bodies in a flow passage. Additionally, there are flexibilities in ducts, liners, and piping systems. A design handbook and interactive data base have been developed for assessing flow/structural interactions to be used as a tool in design and development, to evaluate applicable geometries before problems develop, or to eliminate or minimize problems with existing hardware. This is a compilation of analytical/empirical data and techniques to evaluate detailed dynamic characteristics of both the fluid and structures. These techniques have direct applicability to rocket engine internal flow passages, hot gas drive systems, and vehicle propellant feed systems. Organization of the handbook is by basic geometries for estimating Strouhal numbers, added mass effects, mode shapes for various end constraints, critical onset flow conditions, and possible structural response amplitudes. Emphasis is on dense fluids and high structural loading potential for fatigue at low subsonic flow speeds where high-frequency excitations are possible. Avoidance and corrective measure illustrations are presented together with analytical curve fits for predictions compiled from a comprehensive data base.

  14. Insulator-to-conducting transition in dense fluid helium.

    PubMed

    Celliers, P M; Loubeyre, P; Eggert, J H; Brygoo, S; McWilliams, R S; Hicks, D G; Boehly, T R; Jeanloz, R; Collins, G W

    2010-05-07

    By combining diamond-anvil-cell and laser-driven shock wave techniques, we produced dense He samples up to 1.5 g/cm(3) at temperatures reaching 60 kK. Optical measurements of reflectivity and temperature show that electronic conduction in He at these conditions is temperature-activated (semiconducting). A fit to the data suggests that the mobility gap closes with increasing density, and that hot dense He becomes metallic above approximately 1.9 g/cm(3). These data provide a benchmark to test models that describe He ionization at conditions found in astrophysical objects, such as cold white dwarf atmospheres.

  15. Electrodeposition of Dense Chromium Coatings from Molten Salt Electrolytes

    DTIC Science & Technology

    1991-04-01

    AD-A235 978 . JUN 03 391 ELECTRODEPOSITION OF DENSE CHROMIUM COATINGS FROM MOLTEN SALT ELECTROLYTES Final Technical Report J t ]Vgca or by ~ 4 OTC... molten salts , pulsed currents, electrodeposition. 2. The results, on the electrodeposition of dense chromium coatings from molten salt electrolytes... salts dissolved in molten salts using the cell Cl2/C/!Cr 2 + in LiCI-KCI//Cr metal The chromium ions are introduced by anodizing a piece of chromium and

  16. Measurement of electron-ion relaxation in warm dense copper

    DOE PAGES

    Cho, B. I.; Ogitsu, T.; Engelhorn, K.; ...

    2016-01-06

    Experimental investigation of electron-ion coupling and electron heat capacity of copper in warm and dense states are presented. From time-resolved x-ray absorption spectroscopy, the temporal evolution of electron temperature is obtained for non-equilibrium warm dense copper heated by an intense femtosecond laser pulse. Electron heat capacity and electron-ion coupling are inferred from the initial electron temperature and its decrease over 10 ps. As a result, data are compared with various theoretical models.

  17. Robust lung identification in MSCT via controlled flooding and shape constraints: dealing with anatomical and pathological specificity

    NASA Astrophysics Data System (ADS)

    Fetita, Catalin; Tarando, Sebastian; Brillet, Pierre-Yves; Grenier, Philippe A.

    2016-03-01

    Correct segmentation and labeling of lungs in thorax MSCT is a requirement in pulmonary/respiratory disease analysis as a basis for further processing or direct quantitative measures: lung texture classification, respiratory functional simulations, intrapulmonary vascular remodeling evaluation, detection of pleural effusion or subpleural opacities, are only few clinical applications related to this requirement. Whereas lung segmentation appears trivial for normal anatomo-pathological conditions, the presence of disease may complicate this task for fully-automated algorithms. The challenges come either from regional changes of lung texture opacity or from complex anatomic configurations (e.g., thin septum between lungs making difficult proper lung separation). They make difficult or even impossible the use of classic algorithms based on adaptive thresholding, 3-D connected component analysis and shape regularization. The objective of this work is to provide a robust segmentation approach of the pulmonary field, with individualized labeling of the lungs, able to overcome the mentioned limitations. The proposed approach relies on 3-D mathematical morphology and exploits the concept of controlled relief flooding (to identify contrasted lung areas) together with patient-specific shape properties for peripheral dense tissue detection. Tested on a database of 40 MSCT of pathological lungs, the proposed approach showed correct identification of lung areas with high sensitivity and specificity in locating peripheral dense opacities.

  18. Scale-chiral symmetry, ω meson, and dense baryonic matter

    NASA Astrophysics Data System (ADS)

    Ma, Yong-Liang; Rho, Mannque

    2018-05-01

    It is shown that explicitly broken scale symmetry is essential for dense skyrmion matter in hidden local symmetry theory. Consistency with the vector manifestation fixed point for the hidden local symmetry of the lowest-lying vector mesons and the dilaton limit fixed point for scale symmetry in dense matter is found to require that the anomalous dimension (|γG2| ) of the gluon field strength tensor squared (G2 ) that represents the quantum trace anomaly should be 1.0 ≲|γG2|≲3.5 . The magnitude of |γG2| estimated here will be useful for studying hadron and nuclear physics based on the scale-chiral effective theory. More significantly, that the dilaton limit fixed point can be arrived at with γG2≠0 at some high density signals that scale symmetry can arise in dense medium as an "emergent" symmetry.

  19. Modification of jet shapes in PbPb collisions at $$\\sqrt {s_{NN}} = 2.76$$ TeV

    DOE PAGES

    Chatrchyan, Serguei

    2014-03-01

    The first measurement of jet shapes, defined as the fractional transverse momentum radial distribution, for inclusive jets produced in heavy-ion collisions is presented. Data samples of PbPb and pp collisions, corresponding to integrated luminosities of 150 inverse microbarns and 5.3 inverse picobarns respectively, were collected at a nucleon-nucleon centre-of-mass energy of sqrt(s[NN]) = 2.76 TeV with the CMS detector at the LHC. The jets are reconstructed with the anti-kt algorithm with a distance parameter R=0.3, and the jet shapes are measured for charged particles with transverse momentum pt > 1 GeV. The jet shapes measured in PbPb collisions in differentmore » collision centralities are compared to reference distributions based on the pp data. A centrality-dependent modification of the jet shapes is observed in the more central PbPb collisions, indicating a redistribution of the energy inside the jet cone. This measurement provides information about the parton shower mechanism in the hot and dense medium produced in heavy-ion collisions.« less

  20. Prevalence of Mammographically Dense Breasts in the United States

    PubMed Central

    Gangnon, Ronald E.; Burt, Veronica; Trentham-Dietz, Amy; Hampton, John M.; Wellman, Robert D.; Kerlikowske, Karla; Miglioretti, Diana L.

    2014-01-01

    Background National legislation is under consideration that would require women with mammographically dense breasts to be informed of their breast density and encouraged to discuss supplemental breast cancer screening with their health care providers. The number of US women potentially affected by this legislation is unknown. Methods We determined the mammographic breast density distribution by age and body mass index (BMI) using data from 1518 599 mammograms conducted from 2007 through 2010 at mammography facilities in the Breast Cancer Surveillance Consortium (BCSC). We applied these breast density distributions to age- and BMI-specific counts of the US female population derived from the 2010 US Census and the National Health and Nutrition Examination Survey (NHANES) to estimate the number of US women with dense breasts. Results Overall, 43.3% (95% confidence interval [CI] = 43.1% to 43.4%) of women 40 to 74 years of age had heterogeneously or extremely dense breasts, and this proportion was inversely associated with age and BMI. Based on the age and BMI distribution of US women, we estimated that 27.6 million women (95% CI = 27.5 to 27.7 million) aged 40 to 74 years in the United States have heterogeneously or extremely dense breasts. Women aged 40 to 49 years (N = 12.3 million) accounted for 44.3% of this group. Conclusion The prevalence of dense breasts among US women of common breast cancer screening ages exceeds 25 million. Policymakers and healthcare providers should consider this large prevalence when debating breast density notification legislation and designing strategies to ensure that women who are notified have opportunities to evaluate breast cancer risk and discuss and pursue supplemental screening options if deemed appropriate. PMID:25217577

  1. Dense water plumes modulate richness and productivity of deep sea microbes.

    PubMed

    Luna, Gian Marco; Chiggiato, Jacopo; Quero, Grazia Marina; Schroeder, Katrin; Bongiorni, Lucia; Kalenitchenko, Dimitri; Galand, Pierre E

    2016-12-01

    Growing evidence indicates that dense water formation and flow over the continental shelf is a globally relevant oceanographic process, potentially affecting microbial assemblages down to the deep ocean. However, the extent and consequences of this influence have yet to be investigated. Here it is shown that dense water propagation to the deep ocean increases the abundance of prokaryotic plankton, and stimulates carbon production and organic matter degradation rates. Dense waters spilling off the shelf modifies community composition of deep sea microbial assemblages, leading to the increased relevance of taxa likely originating from the sea surface and the seafloor. This phenomenon can be explained by a combination of factors that interplay during the dense waters propagation, such as the transport of surface microbes to the ocean floor (delivering in our site 0.1 megatons of C), the stimulation of microbial metabolism due to increased ventilation and nutrients availability, the sediment re-suspension, and the mixing with ambient waters along the path. Thus, these results highlight a hitherto unidentified role for dense currents flowing over continental shelves in influencing deep sea microbes. In light of climate projections, this process will affect significantly the microbial functioning and biogeochemical cycling of large sectors of the ocean interior. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Validation of in vivo 2D displacements from spiral cine DENSE at 3T.

    PubMed

    Wehner, Gregory J; Suever, Jonathan D; Haggerty, Christopher M; Jing, Linyuan; Powell, David K; Hamlet, Sean M; Grabau, Jonathan D; Mojsejenko, Walter Dimitri; Zhong, Xiaodong; Epstein, Frederick H; Fornwalt, Brandon K

    2015-01-30

    Displacement Encoding with Stimulated Echoes (DENSE) encodes displacement into the phase of the magnetic resonance signal. Due to the stimulated echo, the signal is inherently low and fades through the cardiac cycle. To compensate, a spiral acquisition has been used at 1.5T. This spiral sequence has not been validated at 3T, where the increased signal would be valuable, but field inhomogeneities may result in measurement errors. We hypothesized that spiral cine DENSE is valid at 3T and tested this hypothesis by measuring displacement errors at both 1.5T and 3T in vivo. Two-dimensional spiral cine DENSE and tagged imaging of the left ventricle were performed on ten healthy subjects at 3T and six healthy subjects at 1.5T. Intersection points were identified on tagged images near end-systole. Displacements from the DENSE images were used to project those points back to their origins. The deviation from a perfect grid was used as a measure of accuracy and quantified as root-mean-squared error. This measure was compared between 3T and 1.5T with the Wilcoxon rank sum test. Inter-observer variability of strains and torsion quantified by DENSE and agreement between DENSE and harmonic phase (HARP) were assessed by Bland-Altman analyses. The signal to noise ratio (SNR) at each cardiac phase was compared between 3T and 1.5T with the Wilcoxon rank sum test. The displacement accuracy of spiral cine DENSE was not different between 3T and 1.5T (1.2 ± 0.3 mm and 1.2 ± 0.4 mm, respectively). Both values were lower than the DENSE pixel spacing of 2.8 mm. There were no substantial differences in inter-observer variability of DENSE or agreement of DENSE and HARP between 3T and 1.5T. Relative to 1.5T, the SNR at 3T was greater by a factor of 1.4 ± 0.3. The spiral cine DENSE acquisition that has been used at 1.5T to measure cardiac displacements can be applied at 3T with equivalent accuracy. The inter-observer variability and agreement of DENSE-derived peak strains and

  3. 2015 Fermilab Laboratory Directed Research & Development Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wester, W.

    2016-05-26

    The Fermi National Accelerator Laboratory (FNAL) is conducting a Laboratory Directed Research and Development (LDRD) program. Fiscal year 2015 represents the first full year of LDRD at Fermilab and includes seven projects approved mid-year in FY14 and six projects approved in FY15. One of the seven original projects has been completed just after the beginning of FY15. The implementation of LDRD at Fermilab is captured in the approved Fermilab 2015 LDRD Annual Program Plan. In FY15, the LDRD program represents 0.64% of Laboratory funding. The scope of the LDRD program at Fermilab will be established over the next couple ofmore » years where a portfolio of about 20 on-going projects representing approximately between 1% and 1.5% of the Laboratory funding is anticipated. This Annual Report focuses on the status of the current projects and provides an overview of the current status of LDRD at Fermilab.« less

  4. Turbulence Modulation and Dense-Spray Structure

    DTIC Science & Technology

    1988-08-01

    system ............................................. 10 6 Particle size distribution (dp = 0.5 mm) .................................... 13 7 Particle size...54 27 Sketch of the pressurized test apparatus .................................... 55 28 Sketch of the double-pulse holocamera system ...58 29 Sketch of the hologram reconstruction system ............................ 59 30 Typical hologram reconstruction in the dense

  5. Sulfur chemistry in dense interstellar clouds

    NASA Technical Reports Server (NTRS)

    Prasad, S. S.; Huntress, W. T., Jr.

    1982-01-01

    A model is presented for the gas phase chemistry of molecules containing sulfur in dense interstellar clouds. The sulfur chemistry is different from that used in previous models as a result of an extensive search of the recent literature and the availability of new laboratory data. The changes have a significant effect on the calculated abundance of sulfur compounds. The linked chemistry of sulfur and oxygen in the present model requires a severe depletion of sulfur and low fractional abundances of both O and O2 in the dense clouds. In contrast, the high abundance of SO and the low abundance of CS relative to SO in the HVS in the KL may indicate an oxygen-rich, high temperature environment compared to OMC-1. The formation of S-H bonds is slow because of the absence of radiative association between S(+) and H2. The present model underestimates the abundance of H2S unless a radiative association reaction between HS(+) and H2 is postulated.

  6. A rich diversity of opercle bone shape among teleost fishes

    PubMed Central

    Small, Clayton M.; Knope, Matthew L.

    2017-01-01

    The opercle is a prominent craniofacial bone supporting the gill cover in all bony fish and has been the subject of morphological, developmental, and genetic investigation. We surveyed the shapes of this bone among 110 families spanning the teleost tree and examined its pattern of occupancy in a principal component-based morphospace. Contrasting with expectations from the literature that suggest the local morphospace would be only sparsely occupied, we find primarily dense, broad filling of the morphological landscape, indicating rich diversity. Phylomorphospace plots suggest that dynamic evolution underlies the observed spatial patterning. Evolutionary transits through the morphospaces are sometimes long, and occur in a variety of directions. The trajectories seem to represent both evolutionary divergences and convergences, the latter supported by convevol analysis. We suggest that that this pattern of occupancy reflects the various adaptations of different groups of fishes, seemingly paralleling their diverse marine and freshwater ecologies and life histories. Opercle shape evolution within the acanthomorphs, spiny ray-finned fishes, appears to have been especially dynamic. PMID:29281662

  7. The Effect of Interchanging the Polarity of the Dense Plasma Focus on Neutron Yield

    NASA Astrophysics Data System (ADS)

    Jiang, Sheng; Higginson, Drew; Link, Anthony; Schmidt, Andrea

    2017-10-01

    The dense plasma focus (DPF) Z-pinch devices can serve as portable neutron sources when deuterium is used as the filling gas. DPF devices are normally operated with the inner electrode as the anode. It has been found that interchanging the polarity of the electrodes can cause orders of magnitude decrease in the neutron yield. Here we use the particle-in-cell (PIC) code LSP to model a DPF with both polarities. We have found the difference in the shape of the sheath, the voltage and current traces, and the electric and magnetic fields in the pinch region due to different polarities. A detailed comparison will be presented. Prepared by LLNL under Contract DE-AC52-07NA27344 and supported by the Laboratory Directed Research and Development Program (15-ERD-034) at LLNL. Computing support for this work came from the LLNL Institutional Computing Grand Challenge program.

  8. Local Crystalline Structure in an Amorphous Protein Dense Phase

    PubMed Central

    Greene, Daniel G.; Modla, Shannon; Wagner, Norman J.; Sandler, Stanley I.; Lenhoff, Abraham M.

    2015-01-01

    Proteins exhibit a variety of dense phases ranging from gels, aggregates, and precipitates to crystalline phases and dense liquids. Although the structure of the crystalline phase is known in atomistic detail, little attention has been paid to noncrystalline protein dense phases, and in many cases the structures of these phases are assumed to be fully amorphous. In this work, we used small-angle neutron scattering, electron microscopy, and electron tomography to measure the structure of ovalbumin precipitate particles salted out with ammonium sulfate. We found that the ovalbumin phase-separates into core-shell particles with a core radius of ∼2 μm and shell thickness of ∼0.5 μm. Within this shell region, nanostructures comprised of crystallites of ovalbumin self-assemble into a well-defined bicontinuous network with branches ∼12 nm thick. These results demonstrate that the protein gel is comprised in part of nanocrystalline protein. PMID:26488663

  9. Jammed Clusters and Non-locality in Dense Granular Flows

    NASA Astrophysics Data System (ADS)

    Kharel, Prashidha; Rognon, Pierre

    We investigate the micro-mechanisms underpinning dense granular flow behaviour from a series of DEM simulations of pure shear flows of dry grains. We observe the development of transient clusters of jammed particles within the flow. Typical size of such clusters is found to scale with the inertial number with a power law that is similar to the scaling of shear-rate profile relaxation lengths observed previously. Based on the simple argument that transient clusters of size l exist in the dense flow regime, the formulation of steady state condition for non-homogeneous shear flow results in a general non-local relation, which is similar in form to the non-local relation conjectured for soft glassy flows. These findings suggest the formation of jammed clusters to be the key micro-mechanism underpinning non-local behaviour in dense granular flows. Particles and Grains Laboratory, School of Civil Engineering, The University of Sydney, Sydney, NSW 2006, Australia.

  10. Experimental study of droplet formation of dense suspensions

    NASA Astrophysics Data System (ADS)

    Martensson, Gustaf; Carson, Fabian

    2017-11-01

    As with the jet printing of dyes and other low-viscosity fluids, the jetting of dense fluid suspensions is dependent on the repeatable break-off of the fluid filament into well-formed droplets. It is well known that the break-off of dense suspensions is dependent on the volume fraction of the solid phase, particle size and morphology, fluid phase viscosity et cetera, see for example van Deen et al. (2013). The purpose of this study is to establish a deeper understanding of the formation process of droplets of dense suspensions. Previous experiments have utilised a filament break-off device (FilBO) developed in-house. These experiments utilise an ejection device based on rapid volumetric displacement of the fluid through a conical nozzle. The suspension samples consist of a resin-based flux and spherical particles with diameters of dp = 5 - 25 μ m. A droplet of of the suspension with a volume of Vdrop = 2 - 50 nl is ejected from the nozzle. Correlations between droplet speed and the temporal development of the volumetric displacement will be presented. Further results relating break-off length and rate versus particle diameter, volume fraction and probe speed will be presented.

  11. Radiative-Transfer Modeling of Spectra of Densely Packed Particulate Media

    NASA Astrophysics Data System (ADS)

    Ito, G.; Mishchenko, M. I.; Glotch, T. D.

    2017-12-01

    Remote sensing measurements over a wide range of wavelengths from both ground- and space-based platforms have provided a wealth of data regarding the surfaces and atmospheres of various solar system bodies. With proper interpretations, important properties, such as composition and particle size, can be inferred. However, proper interpretation of such datasets can often be difficult, especially for densely packed particulate media with particle sizes on the order of wavelength of light being used for remote sensing. Radiative transfer theory has often been applied to the study of densely packed particulate media like planetary regoliths and snow, but with difficulty, and here we continue to investigate radiative transfer modeling of spectra of densely packed media. We use the superposition T-matrix method to compute scattering properties of clusters of particles and capture the near-field effects important for dense packing. Then, the scattering parameters from the T-matrix computations are modified with the static structure factor correction, accounting for the dense packing of the clusters themselves. Using these corrected scattering parameters, reflectance (or emissivity via Kirchhoff's Law) is computed with the method of invariance imbedding solution to the radiative transfer equation. For this work we modeled the emissivity spectrum of the 3.3 µm particle size fraction of enstatite, representing some common mineralogical and particle size components of regoliths, in the mid-infrared wavelengths (5 - 50 µm). The modeled spectrum from the T-matrix method with static structure factor correction using moderate packing densities (filling factors of 0.1 - 0.2) produced better fits to the laboratory measurement of corresponding spectrum than the spectrum modeled by the equivalent method without static structure factor correction. Future work will test the method of the superposition T-matrix and static structure factor correction combination for larger particles

  12. Dense high temperature ceramic oxide superconductors

    DOEpatents

    Landingham, Richard L.

    1993-01-01

    Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.

  13. Dense high temperature ceramic oxide superconductors

    DOEpatents

    Landingham, R.L.

    1993-10-12

    Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.

  14. Collisional excitation of molecules in dense interstellar clouds

    NASA Technical Reports Server (NTRS)

    Green, S.

    1985-01-01

    State transitions which permit the identification of the molecular species in dense interstellar clouds are reviewed, along with the techniques used to calculate the transition energies, the database on known molecular transitions and the accuracy of the values. The transition energies cannot be measured directly and therefore must be modeled analytically. Scattering theory is used to determine the intermolecular forces on the basis of quantum mechanics. The nuclear motions can also be modeled with classical mechanics. Sample rate constants are provided for molecular systems known to inhabit dense interstellar clouds. The values serve as a database for interpreting microwave and RF astrophysical data on the transitions undergone by interstellar molecules.

  15. Exploring warm dense matter using quantum molecular dynamics

    NASA Astrophysics Data System (ADS)

    Clérouin, J.; Mazevet, S.

    2006-06-01

    For dense plasmas produced in shock experiments, the influence of the media on the isolated atomic properties can no longer be treated as a perturbation and conventional atomic physics approaches usually fail. Recently, quantum molecular dynamics (QMD) has been used to successfully predict static, dynamical and optical properties in this regime within the framework of a first principle method. In this short report, we illustrate the usefulness of the method for dense plasmas with a few selected examples: the equation of state of liquid deuterium, the electrical properties of expanded metals, the optical properties of shocked insulators, and the interaction of femto-second lasers with gold thin films.

  16. Explosive desorption of icy grain mantles in dense clouds

    NASA Technical Reports Server (NTRS)

    Schutte, W. A.; Greenberg, J. M.

    1991-01-01

    The cycling of the condensible material in dense clouds between the gas phase and the icy grain mantles is investigated. In the model studied, desorption of the ice occurs due to grain mantle explosions when photochemically stored energy is released after transient heating by a cosmic ray particle. It is shown that, depending on the grain size distribution in dense clouds, explosive desorption can maintain up to about eight percent of the carbon in the form of CO in the gas phase at typical cloud densities.

  17. Multicontextual correlates of energy-dense, nutrient-poor snack food consumption by adolescents

    PubMed Central

    Larson, Nicole; Miller, Jonathan M.; Eisenberg, Marla E.; Watts, Allison W.; Story, Mary; Neumark-Sztainer, Dianne

    2017-01-01

    Frequent consumption of energy-dense, nutrient-poor snack foods is an eating behavior of public health concern. This study was designed to inform strategies for reducing adolescent intake of energy-dense snack foods by identifying individual and environmental influences. Surveys were completed in 2009-2010 by 2,540 adolescents (54% females, mean age=14.5±2.0, 80% nonwhite) in Minneapolis-St. Paul, Minnesota schools. Daily servings of energy-dense snack food was assessed using a food frequency questionnaire that asked about consumption of 21 common snack food items, such as potato chips, cookies, and candy. Data representing characteristics of adolescents’ environments were collected from parents/caregivers, friends, school personnel, Geographic Information System sources, and a content analysis of favorite television shows. Linear regression was used to examine relationships between each individual or environmental characteristic and snack food consumption in separate models and also to examine relationships in a model including all of the characteristics simultaneously. The factors found to be significantly associated with higher energy-dense snack food intake represented individual attitudes/behaviors (e.g., snacking while watching television) and characteristics of home/family (e.g., home unhealthy food availability), peer (friends’ energy-dense snack food consumption), and school (e.g., student snack consumption norms) environments. In total, 25.5% of the variance in adolescents’ energy-dense snack food consumption was explained when factors from within each context were examined together. The results suggest that the design of interventions targeting improvement in the dietary quality of adolescents’ snack food choices should address relevant individual factors (e.g., eating while watching television) along with characteristics of their home/family (e.g., limiting the availability of unhealthy foods), peer (e.g., guiding the efforts of a peer leader

  18. Oxygen ion-conducting dense ceramic

    DOEpatents

    Balachandran, Uthamalingam; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Morissette, Sherry L.; Pei, Shiyou

    1998-01-01

    Preparation, structure, and properties of mixed metal oxide compositions and their uses are described. Mixed metal oxide compositions of the invention have stratified crystalline structure identifiable by means of powder X-ray diffraction patterns. In the form of dense ceramic membranes, the present compositions demonstrate an ability to separate oxygen selectively from a gaseous mixture containing oxygen and one or more other volatile components by means of ionic conductivities.

  19. Increasing low-energy-dense foods and decreasing high-energy-dense foods differently influence weight loss trial outcomes

    PubMed Central

    Vadiveloo, M; Parker, H; Raynor, H

    2018-01-01

    BACKGROUND/OBJECTIVE Although reducing energy density (ED) enhances weight loss, it is unclear whether all dietary strategies that reduce ED are comparable, hindering effective ED guidelines for obesity treatment. This study examined how changes in number of low-energy-dense (LED) (<4.186 kJ/1.0 kcal g−1) and high-energy-dense (HED) (>12.56 kJ/3.0 kcal g−1) foods consumed affected dietary ED and weight loss within an 18-month weight loss trial. METHODS This secondary analysis examined data from participants randomized to an energy-restricted lifestyle intervention or lifestyle intervention plus limited non-nutrient dense, energy-dense food variety (n = 183). Number of daily LED and HED foods consumed was calculated from three, 24-h dietary recalls and anthropometrics were measured at 0, 6 and 18 months. Multivariable-adjusted generalized linear models and repeated-measures mixed linear models examined associations between 6-month changes in number of LED and HED foods and changes in ED, body mass index (BMI), and percent weight loss at 6 and 18 months. RESULTS Among mostly female (58%), White (92%) participants aged 51.9 years following an energy-restricted diet, increasing number of LED foods or decreasing number of HED foods consumed was associated with 6- and 18-month reductions in ED (β = − 0.25 to − 0.38 kJ g−1 (−0.06 to − 0.09 kcal g−1), P<0.001). Only increasing number of LED foods consumed was associated with 6- and 18-month reductions in BMI (β = − 0.16 to − 0.2 kg m−2, P<0.05) and 6-month reductions in percent weight loss (β = − 0.5%, P<0.05). Participants consuming ≤2 HED foods per day and ≥6.6 LED foods per day experienced better weight loss outcomes at 6- and 18-month than participants only consuming ≤2 HED foods per day. CONCLUSION Despite similar reductions in ED from reducing number of HED foods or increasing number of LED foods consumed, only increasing number of LED foods related to weight loss. This provides

  20. Complex patchy colloids shaped from deformable seed particles through capillary interactions.

    PubMed

    Meester, V; Kraft, D J

    2018-02-14

    We investigate the mechanisms underlying the reconfiguration of random aggregates of spheres through capillary interactions, the so-called "colloidal recycling" method, to fabricate a wide variety of patchy particles. We explore the influence of capillary forces on clusters of deformable seed particles by systematically varying the crosslink density of the spherical seeds. Spheres with a poorly crosslinked polymer network strongly deform due to capillary forces and merge into large spheres. With increasing crosslink density and therefore rigidity, the shape of the spheres is increasingly preserved during reconfiguration, yielding patchy particles of well-defined shape for up to five spheres. In particular, we find that the aspect ratio between the length and width of dumbbells, L/W, increases with the crosslink density (cd) as L/W = B - A·exp(-cd/C). For clusters consisting of more than five spheres, the particle deformability furthermore determines the patch arrangement of the resulting particles. The reconfiguration pathway of clusters of six densely or poorly crosslinked seeds leads to octahedral and polytetrahedral shaped patchy particles, respectively. For seven particles several geometries were obtained with a preference for pentagonal dipyramids by the rigid spheres, while the soft spheres do rarely arrive in these structures. Even larger clusters of over 15 particles form non-uniform often aspherical shapes. We discuss that the reconfiguration pathway is largely influenced by confinement and geometric constraints. The key factor which dominates during reconfiguration depends on the deformability of the spherical seed particles.

  1. Laboratory Directed Research and Development 1998 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pam Hughes; Sheila Bennett eds.

    1999-07-14

    The Laboratory's Directed Research and Development (LDRD) program encourages the advancement of science and the development of major new technical capabilities from which future research and development will grow. Through LDRD funding, Pacific Northwest continually replenishes its inventory of ideas that have the potential to address major national needs. The LDRD program has enabled the Laboratory to bring to bear its scientific and technical capabilities on all of DOE's missions, particularly in the arena of environmental problems. Many of the concepts related to environmental cleanup originally developed with LDRD funds are now receiving programmatic support from DOE, LDRD-funded work inmore » atmospheric sciences is now being applied to DOE's Atmospheric Radiation Measurement Program. We also have used concepts initially explored through LDRD to develop several winning proposals in the Environmental Management Science Program. The success of our LDRD program is founded on good management practices that ensure funding is allocated and projects are conducted in compliance with DOE requirements. We thoroughly evaluate the LDRD proposals based on their scientific and technical merit, as well as their relevance to DOE's programmatic needs. After a proposal is funded, we assess progress annually using external peer reviews. This year, as in years past, the LDRD program has once again proven to be the major enabling vehicle for our staff to formulate new ideas, advance scientific capability, and develop potential applications for DOE's most significant challenges.« less

  2. Numerical modeling for dilute and dense sprays

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Kim, Y. M.; Shang, H. M.; Ziebarth, J. P.; Wang, T. S.

    1992-01-01

    We have successfully implemented a numerical model for spray-combustion calculations. In this model, the governing gas-phase equations in Eulerian coordinate are solved by a time-marching multiple pressure correction procedure based on the operator-splitting technique. The droplet-phase equations in Lagrangian coordinate are solved by a stochastic discrete particle technique. In order to simplify the calculation procedure for the circulating droplets, the effective conductivity model is utilized. The k-epsilon models are utilized to characterize the time and length scales of the gas phase in conjunction with turbulent modulation by droplets and droplet dispersion by turbulence. This method entails random sampling of instantaneous gas flow properties and the stochastic process requires a large number of computational parcels to produce the satisfactory dispersion distributions even for rather dilute sprays. Two major improvements in spray combustion modelings were made. Firstly, we have developed a probability density function approach in multidimensional space to represent a specific computational particle. Secondly, we incorporate the Taylor Analogy Breakup (TAB) model for handling the dense spray effects. This breakup model is based on the reasonable assumption that atomization and drop breakup are indistinguishable processes within a dense spray near the nozzle exit. Accordingly, atomization is prescribed by injecting drops which have a characteristic size equal to the nozzle exit diameter. Example problems include the nearly homogeneous and inhomogeneous turbulent particle dispersion, and the non-evaporating, evaporating, and burning dense sprays. Comparison with experimental data will be discussed in detail.

  3. Dense Deposit Disease and C3 Glomerulopathy

    PubMed Central

    Barbour, Thomas D.; Pickering, Matthew C.; Terence Cook, H.

    2013-01-01

    Summary C3 glomerulopathy refers to those renal lesions characterized histologically by predominant C3 accumulation within the glomerulus, and pathogenetically by aberrant regulation of the alternative pathway of complement. Dense deposit disease is distinguished from other forms of C3 glomerulopathy by its characteristic appearance on electron microscopy. The extent to which dense deposit disease also differs from other forms of C3 glomerulopathy in terms of clinical features, natural history, and outcomes of treatment including renal transplantation is less clear. We discuss the pathophysiology of C3 glomerulopathy, with evidence for alternative pathway dysregulation obtained from affected individuals and complement factor H (Cfh)-deficient animal models. Recent linkage studies in familial C3 glomerulopathy have shown genomic rearrangements in the Cfh-related genes, for which the novel pathophysiologic concept of Cfh deregulation has been proposed. PMID:24161036

  4. Interaction of Interstellar Shocks with Dense Obstacles: Formation of ``Bullets''

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    The so-called cumulative effect take place in converging conical shock waves arising behind dense obstacles overtaken by incident interstellar shock. A significant part of energy of converging flow of matter swept-up by a radiative conical shock can be transferred to a dense jet-like ejection (``bullet'') directed along the cone axis. Possible applications of this effect for star-forming regions (e.g., OMC-1) and supernova remnants (e.g., Vela SNR) are discussed.

  5. DENSE NONAQUEOUS PHASE LIQUIDS -- A WORKSHOP SUMMARY

    EPA Science Inventory

    site characterization, and, therefore, DNAPL remediation, can be expected. Dense nonaqueous phase liquids (DNAPLs) in the subsurface are long-term sources of ground-water contamination, and may persist for centuries before dissolving completely in adjacent ground water. In respo...

  6. Dose-dense weekly chemotherapy in advanced ovarian cancer: An updated meta-analysis of randomized controlled trials.

    PubMed

    Marchetti, C; De Felice, F; Di Pinto, A; D'Oria, O; Aleksa, N; Musella, A; Palaia, I; Muzii, L; Tombolini, V; Benedetti Panici, P

    2018-05-01

    The use of dose-dense weekly chemotherapy in the management of advanced ovarian cancer (OC) remains controversial. The aim of this meta-analysis was to evaluate the efficacy of dose-dense regimen to improve clinical outcomes in OC patients with the inclusion of new trials. For this updated meta-analysis, PubMed Medline and Scopus databases and meeting proceedings were searched for eligible studies with the limitation of randomized controlled trials, comparing dose-dense chemotherapy versus standard treatment. Trials were grouped in two types of dose-dense chemotherapy: weekly dose-dense (both paclitaxel and carboplatin weekly administration) and semi-weekly dose-dense (weekly paclitaxel and three weekly carboplatin administration). Data were extracted independently and were analyzed using RevMan statistical software version 5.3 (http://www.cochrane.org). Primary end-point was progression-free survival (PFS). Four randomized controlled trials comprising 3698 patients were identified as eligible. Dose-dense chemotherapy had not a significant benefit on PFS (HR 0.92, 95% CI 0.81-1.04, p = 0.20). When the analysis was restricted to both weekly and semi-weekly dose-dense data, a no significant interaction between dose-dense and standard regimen was confirmed (HR 1.01, 95% CI 0.93-1.10 and HR 0.82, 95% CI 0.63-1.08, respectively). In the absence of PFS superiority of dose-dense schedule, three weekly schedule should remain the standard of care for advanced OC. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Classical and quantum simulations of warm dense carbon

    NASA Astrophysics Data System (ADS)

    Whitley, Heather; Sanchez, David; Hamel, Sebastien; Correa, Alfredo; Benedict, Lorin

    We have applied classical and DFT-based molecular dynamics (MD) simulations to study the equation of state of carbon in the warm dense matter regime (ρ = 3.7 g/cc, 0.86 eV dense regimes could have important consequences when using classical inter-ionic forces such as these in large-scale MD simulations aimed at studying processes of relevance to inertial confinement fusion. This study points to a need for better interatomic potentials to describe warm dense matter. Prepared by LLNL under Contract DE-AC52-07NA27344.

  8. The Continued Reduction in Dense Fog in the Southern California Region: Possible Causes

    NASA Astrophysics Data System (ADS)

    LaDochy, S.; Witiw, M.

    2012-05-01

    Dense fog appears to be decreasing in many parts of the world, especially in western cities. Dense fog (visibility <400 m) is disappearing in the urban southern California area also. There the decrease in dense fog events can be explained mainly by declining particulate levels, Pacific sea surface temperatures (SST), and increased urban warming. Using hourly data from 1948 to the present, we looked at the relationship between fog events in the region and contributing factors and trends over time. Initially a strong relationship was suggested between the occurrence of dense fog and the phases of an atmosphere-ocean cycle: the Pacific Decadal Oscillation (PDO). However, closer analysis revealed the importance to fog variability of an increasing urban heat island and the amount of atmospheric suspended particulate matter. Results show a substantial decrease in the occurrence of very low visibilities (<400 m) at the two airport stations in close proximity to the Pacific Ocean, LAX (Los Angeles International) and LGB (Long Beach International). A downward trend in particulate concentrations, coupled with an upward trend in urban temperatures were associated with the decrease in dense fog occurrence at both LAX and LGB. LAX dense fog that reached over 300 h in 1950 dropped steadily, with 0 h recorded in 1997. Since 1997, there has been a slight recovery with both 2008 and 2009 recording over 30 h of dense fog at both locations. In this study we examine whether the upturn is a temporary reversal of the trend. To remove the urban effect, we also included fog data from Vandenberg Air Force Base (VBG), located in a relatively sparsely populated area approximately 200 km to the north of metropolitan Los Angeles. Particulates, urban heat island, and Pacific SSTs all seem to be contributing factors to the decrease in fog in southern California, along with large-scale atmosphere-ocean interaction cycles. Case studies of local and regional dense fog in southern California point

  9. Compton scattering measurements from dense plasmas

    DOE PAGES

    Glenzer, S. H.; Neumayer, P.; Doppner, T.; ...

    2008-06-12

    Here, Compton scattering techniques have been developed for accurate measurements of densities and temperatures in dense plasmas. One future challenge is the application of this technique to characterize compressed matter on the National Ignition Facility where hydrogen and beryllium will approach extremely dense states of matter of up to 1000 g/cc. In this regime, the density, compressibility, and capsule fuel adiabat may be directly measured from the Compton scattered spectrum of a high-energy x-ray line source. Specifically, the scattered spectra directly reflect the electron velocity distribution. In non-degenerate plasmas, the width provides an accurate measure of the electron temperatures, whilemore » in partially Fermi degenerate systems that occur in laser-compressed matter it provides the Fermi energy and hence the electron density. Both of these regimes have been accessed in experiments at the Omega laser by employing isochorically heated solid-density beryllium and moderately compressed beryllium foil targets. In the latter experiment, compressions by a factor of 3 at pressures of 40 Mbar have been measured in excellent agreement with radiation hydrodynamic modeling.« less

  10. Improved statistical power with a sparse shape model in detecting an aging effect in the hippocampus and amygdala

    NASA Astrophysics Data System (ADS)

    Chung, Moo K.; Kim, Seung-Goo; Schaefer, Stacey M.; van Reekum, Carien M.; Peschke-Schmitz, Lara; Sutterer, Matthew J.; Davidson, Richard J.

    2014-03-01

    The sparse regression framework has been widely used in medical image processing and analysis. However, it has been rarely used in anatomical studies. We present a sparse shape modeling framework using the Laplace- Beltrami (LB) eigenfunctions of the underlying shape and show its improvement of statistical power. Tradition- ally, the LB-eigenfunctions are used as a basis for intrinsically representing surface shapes as a form of Fourier descriptors. To reduce high frequency noise, only the first few terms are used in the expansion and higher frequency terms are simply thrown away. However, some lower frequency terms may not necessarily contribute significantly in reconstructing the surfaces. Motivated by this idea, we present a LB-based method to filter out only the significant eigenfunctions by imposing a sparse penalty. For dense anatomical data such as deformation fields on a surface mesh, the sparse regression behaves like a smoothing process, which will reduce the error of incorrectly detecting false negatives. Hence the statistical power improves. The sparse shape model is then applied in investigating the influence of age on amygdala and hippocampus shapes in the normal population. The advantage of the LB sparse framework is demonstrated by showing the increased statistical power.

  11. On the dense water spreading off the Ross Sea shelf (Southern Ocean)

    NASA Astrophysics Data System (ADS)

    Budillon, G.; Gremes Cordero, S.; Salusti, E.

    2002-07-01

    In this study, current meter and hydrological data obtained during the X Italian Expedition in the Ross Sea (CLIMA Project) are analyzed. Our data show a nice agreement with previous data referring to the water masses present in this area and their dynamics. Here, they are used to further analyze the mixing and deepening processes of Deep Ice Shelf Water (DISW) over the northern shelf break of the Ross Sea. In more detail, our work is focused on the elementary mechanisms that are the most efficient in removing dense water from the shelf: either classical mixing effects or density currents that interact with some topographic irregularity in order to drop to deeper levels, or also the variability of the Antarctic Circumpolar Current (ACC) which, in its meandering, can push the dense water off the shelf, thus interrupting its geostrophic flow. We also discuss in detail the (partial) evidence of dramatic interactions of the dense water with bottom particulate, of geological or biological origin, thus generating impulsive or quasi-steady density-turbidity currents. This complex interaction allows one to consider bottom particular and dense water as a unique self-interacting system. In synthesis, this is a first tentative analysis of the effect of bottom particulate on the dense water dynamics in the Ross Sea.

  12. Dietary intake of energy-dense, nutrient-poor and nutrient-dense food sources in children with cystic fibrosis.

    PubMed

    Sutherland, Rosie; Katz, Tamarah; Liu, Victoria; Quintano, Justine; Brunner, Rebecca; Tong, Chai Wei; Collins, Clare E; Ooi, Chee Y

    2018-04-30

    Prescription of a high-energy, high-fat diet is a mainstay of nutrition management in cystic fibrosis (CF). However, families may be relying on energy-dense, nutrient-poor (EDNP) foods rather than nutrient-dense (ND) foods to meet dietary targets. We aimed to evaluate the relative contribution of EDNP and ND foods to the usual diets of children with CF and identify sociodemographic factors associated with higher EDNP intakes. This is a cross-sectional comparison of children with CF aged 2-18 years and age- and gender-matched controls. Dietary intake was assessed using the Australian Child and Adolescent Eating Survey (ACAES) food frequency questionnaire. Children with CF (n = 80: 37 males; mean age 9.3 years) consumed significantly more EDNP foods than controls (mean age 9.8 years) in terms of both total energy (median [IQR]: 1301 kcal/day (843-1860) vs. 686 kcal/day (480-1032); p < 0.0001), and as a proportion of energy intake (median [IQR]: 44% (34-51) vs. 31% (24-43); p < 0.0001). Although children with CF met their estimated energy requirements (median [IQR]: 158% (124-187) vs. 112% (90-137); p < 0.0001) and their diets were high in fat (median [IQR]: 38% (35-41) vs. 34% (32-36); p < 0.0001), this was largely attributable to EDNP foods. High EDNP intakes (≥10 serves/day) were associated with socioeconomic disadvantage (p = 0.01) and rural residential location (p = 0.03). The energy- and fat-dense CF diet is primarily achieved by overconsumption of EDNP foods, rather than ND sources. This dietary pattern may not be optimal for the future health of children with CF, who are now expected to survive well into adulthood. Copyright © 2018 European Cystic Fibrosis Society. All rights reserved.

  13. Non-native seagrass Halophila stipulacea forms dense mats under eutrophic conditions in the Caribbean

    NASA Astrophysics Data System (ADS)

    van Tussenbroek, B. I.; van Katwijk, M. M.; Bouma, T. J.; van der Heide, T.; Govers, L. L.; Leuven, R. S. E. W.

    2016-09-01

    Seagrasses comprise 78 species and are rarely invasive. But the seagrass Halophila stipulacea, firstly recorded in the Caribbean in the year 2002, has spread quickly throughout the region. Previous works have described this species as invasive in the Caribbean, forming dense mats that exclude native seagrass species. During a reconnaissance field survey of Caribbean seagrass meadows at the islands of Bonaire and Sint Maarten in 2013, we observed that this species was only extremely dense at 5 out of 10 studied meadows. Compared to areas with sparse growth of H. stipulacea, these dense meadows showed consistently higher nutrient concentrations, as indicated by higher leaf tissue N contents of the seagrass Thalassia testudinum (dense when C:N < 22.5) and sediments (dense when %N > 11.3). Thus, the potential invasiveness of this non-native seagrass most likely depends on the environmental conditions, especially the nutrient concentrations.

  14. Multicontextual correlates of energy-dense, nutrient-poor snack food consumption by adolescents.

    PubMed

    Larson, Nicole; Miller, Jonathan M; Eisenberg, Marla E; Watts, Allison W; Story, Mary; Neumark-Sztainer, Dianne

    2017-05-01

    Frequent consumption of energy-dense, nutrient-poor snack foods is an eating behavior of public health concern. This study was designed to inform strategies for reducing adolescent intake of energy-dense snack foods by identifying individual and environmental influences. Surveys were completed in 2009-2010 by 2540 adolescents (54% females, mean age = 14.5 ± 2.0, 80% nonwhite) in Minneapolis-St. Paul, Minnesota schools. Daily servings of energy-dense snack food was assessed using a food frequency questionnaire that asked about consumption of 21 common snack food items, such as potato chips, cookies, and candy. Data representing characteristics of adolescents' environments were collected from parents/caregivers, friends, school personnel, Geographic Information System sources, and a content analysis of favorite television shows. Linear regression was used to examine relationships between each individual or environmental characteristic and snack food consumption in separate models and also to examine relationships in a model including all of the characteristics simultaneously. The factors found to be significantly associated with higher energy-dense snack food intake represented individual attitudes/behaviors (e.g., snacking while watching television) and characteristics of home/family (e.g., home unhealthy food availability), peer (friends' energy-dense snack food consumption), and school (e.g., student snack consumption norms) environments. In total, 25.5% of the variance in adolescents' energy-dense snack food consumption was explained when factors from within each context were examined together. The results suggest that the design of interventions targeting improvement in the dietary quality of adolescents' snack food choices should address relevant individual factors (e.g., eating while watching television) along with characteristics of their home/family (e.g., limiting the availability of unhealthy foods), peer (e.g., guiding the efforts of a peer leader in

  15. Pulsar-irradiated stars in dense globular clusters

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1992-01-01

    We discuss the properties of stars irradiated by millisecond pulsars in 'hard' binaries of dense globular clusters. Irradiation by a relativistic pulsar wind as in the case of the eclipsing millisecond pulsar PSR 1957+20 alter both the magnitude and color of the companion star. Some of the blue stragglers (BSs) recently discovered in dense globular clusters can be irradiated stars in binaries containing powerful millisecond pulsars. The discovery of pulsar-driven orbital modulations of BS brightness and color with periods of a few hours together with evidence for radio and/or gamma-ray emission from BS binaries would valuably contribute to the understanding of the evolution of collapsed stars in globular clusters. Pulsar-driven optical modulation of cluster stars might be the only observable effect of a new class of binary pulsars, i.e., hidden millisecond pulsars enshrouded in the evaporated material lifted off from the irradiated companion star.

  16. Identifying women with dense breasts at high risk for interval cancer: a cohort study.

    PubMed

    Kerlikowske, Karla; Zhu, Weiwei; Tosteson, Anna N A; Sprague, Brian L; Tice, Jeffrey A; Lehman, Constance D; Miglioretti, Diana L

    2015-05-19

    Twenty-one states have laws requiring that women be notified if they have dense breasts and that they be advised to discuss supplemental imaging with their provider. To better direct discussions of supplemental imaging by determining which combinations of breast cancer risk and Breast Imaging Reporting and Data System (BI-RADS) breast density categories are associated with high interval cancer rates. Prospective cohort. Breast Cancer Surveillance Consortium (BCSC) breast imaging facilities. 365,426 women aged 40 to 74 years who had 831,455 digital screening mammography examinations. BI-RADS breast density, BCSC 5-year breast cancer risk, and interval cancer rate (invasive cancer ≤12 months after a normal mammography result) per 1000 mammography examinations. High interval cancer rate was defined as more than 1 case per 1000 examinations. High interval cancer rates were observed for women with 5-year risk of 1.67% or greater and extremely dense breasts or 5-year risk of 2.50% or greater and heterogeneously dense breasts (24% of all women with dense breasts). The interval rate of advanced-stage disease was highest (>0.4 case per 1000 examinations) among women with 5-year risk of 2.50% or greater and heterogeneously or extremely dense breasts (21% of all women with dense breasts). Five-year risk was low to average (0% to 1.66%) for 51.0% of women with heterogeneously dense breasts and 52.5% with extremely dense breasts, with interval cancer rates of 0.58 to 0.63 and 0.72 to 0.89 case per 1000 examinations, respectively. The benefit of supplemental imaging was not assessed. Breast density should not be the sole criterion for deciding whether supplemental imaging is justified because not all women with dense breasts have high interval cancer rates. BCSC 5-year risk combined with BI-RADS breast density can identify women at high risk for interval cancer to inform patient-provider discussions about alternative screening strategies. National Cancer Institute.

  17. Do Circumnuclear Dense Gas Disks Drive Mass Accretion onto Supermassive Black Holes?

    NASA Astrophysics Data System (ADS)

    Izumi, Takuma; Kawakatu, Nozomu; Kohno, Kotaro

    2016-08-01

    We present a positive correlation between the mass of dense molecular gas ({M}{{dense}}) of ˜100 pc scale circumnuclear disks (CNDs) and the black hole mass accretion rate ({\\dot{M}}{{BH}}) in a total of 10 Seyfert galaxies, based on data compiled from the literature and an archive (median aperture θ med = 220 pc). A typical {M}{{dense}} of CNDs is 107-8 {M}⊙ , estimated from the luminosity of the dense gas tracer, the HCN(1-0) emission line. Because dense molecular gas is the site of star formation, this correlation is virtually equivalent to the one between the nuclear star-formation rate and {\\dot{M}}{{BH}} revealed previously. Moreover, the {M}{{dense}}{--}{\\dot{M}}{{BH}} correlation was tighter for CND-scale gas than for the gas on kiloparsec or larger scales. This indicates that CNDs likely play an important role in fueling black holes, whereas greater than kiloparesec scale gas does not. To demonstrate a possible approach for studying the CND-scale accretion process with the Atacama Large Millimeter/submillimeter Array, we used a mass accretion model where angular momentum loss due to supernova explosions is vital. Based on the model prediction, we suggest that only the partial fraction of the mass accreted from the CND ({\\dot{M}}{{acc}}) is consumed as {\\dot{M}}{{BH}}. However, {\\dot{M}}{{acc}} agrees well with the total nuclear mass flow rate (I.e., {\\dot{M}}{{BH}} + outflow rate). Although these results are still tentative with large uncertainties, they support the view that star formation in CNDs can drive mass accretion onto supermassive black holes in Seyfert galaxies.

  18. Experimental realization of the analogy of quantum dense coding in classical optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhenwei; Sun, Yifan; Li, Pengyun

    2016-06-15

    We report on the experimental realization of the analogy of quantum dense coding in classical optical communication using classical optical correlations. Compared to quantum dense coding that uses pairs of photons entangled in polarization, we find that the proposed design exhibits many advantages. Considering that it is convenient to realize in optical communication, the attainable channel capacity in the experiment for dense coding can reach 2 bits, which is higher than that of the usual quantum coding capacity (1.585 bits). This increased channel capacity has been proven experimentally by transmitting ASCII characters in 12 quaternary digitals instead of the usualmore » 24 bits.« less

  19. Toward Superior Capacitive Energy Storage: Recent Advances in Pore Engineering for Dense Electrodes.

    PubMed

    Liu, Congcong; Yan, Xiaojun; Hu, Fei; Gao, Guohua; Wu, Guangming; Yang, Xiaowei

    2018-04-01

    With the rapid development of mobile electronics and electric vehicles, future electrochemical capacitors (ECs) need to store as much energy as possible in a rather limited space. As the core component of ECs, dense electrodes that have a high volumetric energy density and superior rate capability are the key to achieving improved energy storage. Here, the significance of and recent progress in the high volumetric performance of dense electrodes are presented. Furthermore, dense yet porous electrodes, as the critical precondition for realizing superior electrochemical capacitive energy, have become a scientific challenge and an attractive research focus. From a pore-engineering perspective, insight into the guidelines of engineering the pore size, connectivity, and wettability is provided to design dense electrodes with different porous architectures toward high-performance capacitive energy storage. The current challenges and future opportunities toward dense electrodes are discussed and include the construction of an orderly porous structure with an appropriate gradient, the coupling of pore sizes with the solvated cations and anions, and the design of coupled pores with diverse electrolyte ions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. First experimental demonstration of magnetic-field assisted fast heating of a dense plasma core

    NASA Astrophysics Data System (ADS)

    Fujioka, Shinsuke; Sakata, Shohei; Lee, Seung Ho; Matsuo, Kazuki; Sawada, Hiroshi; Iwasa, Yuki; Law, King Fai Farley; Morita, Hitoki; Kojima, Sadaoki; Abe, Yuki; Yao, Akira; Hata, Masayasu; Johzaki, Tomoyuki; Sunahara, Atsushi; Ozaki, Tetsuo; Sakagami, Hitoshi; Morace, Alessio; Arikawa, Yasunobu; Yogo, Akifumi; Nishimura, Hiroaki; Nakai, Mitsuo; Shiraga, Hiroyuki; Sentoku, Yasuhiko; Nagatomo, Hideo; Azechi, Hiroshi; Firex Project Team

    2016-10-01

    Fast heating of a dense plasma core by an energetic electron beam is being studied on GEKKO-LFEX laser facility. Here, we introduce a laser-driven kilo-tesla external magnetic field to guide the diverging electron beam to the dense plasma core. This involve placing a spherical target in the magnetic field, compressing it with the GEKKO-XII laser beams and then using the LFEX laser beams injected into the dense plasma to generate the electron beam which do the fast heating. Cu-Ka emission is used to visualize transport or heating processes of a dense plasma. X-ray spectrum from a highly ionized Cu ions indicates several keV of the temperature increment induced by the LFEX.

  1. How do Neoseiulus californicus (Acari: Phytoseiidae) females penetrate densely webbed spider mite nests?

    PubMed

    Montserrat, M; de la Peña, F; Hormaza, J I; González-Fernández, J J

    2008-02-01

    The persea mite Oligonychus perseae is a pest of avocado trees that builds extremely dense webbed nests that protect them against natural enemies, including phytoseiid mites. Nests have one or two marginal entrances that are small and flattened. The predatory mite Neoseiulus californicus co-occurs with O. perseae in the avocado orchards of the south-east of Spain. Penetration inside nests through the entrances by this predator is thought to be hindered by its size and its globular-shaped body. However, in the field it has repeatedly been found inside nests that were clearly ripped. Perhaps penetration of the nests has been facilitated by nest wall ripping caused by some other species or by unfavourable abiotic factors. However, to assess whether N. californicus is also able to enter the nest of O. perseae by itself, we carried out laboratory experiments and made a short film. They show how this predator manages to overcome the webbed wall, and that it can penetrate and forage inside nests of O. perseae.

  2. Laser rapid forming technology of high-performance dense metal components with complex structure

    NASA Astrophysics Data System (ADS)

    Huang, Weidong; Chen, Jing; Li, Yanming; Lin, Xin

    2005-01-01

    Laser rapid forming (LRF) is a new and advanced manufacturing technology that has been developed on the basis of combining high power laser cladding technology with rapid prototyping (RP) to realize net shape forming of high performance dense metal components without dies. Recently we have developed a set of LRF equipment. LRF experiments were carried out on the equipment to investigate the influences of processing parameters on forming characterizations systematically with the cladding powder materials as titanium alloys, superalloys, stainless steel, and copper alloys. The microstructure of laser formed components is made up of columnar grains or columnar dendrites which grow epitaxially from the substrate since the solid components were prepared layer by layer additionally. The result of mechanical testing proved that the mechanical properties of laser formed samples are similar to or even over that of forging and much better than that of casting. It is shown in this paper that LRF technology is providing a new solution for some difficult processing problems in the high tech field of aviation, spaceflight and automobile industries.

  3. Preparation of a dense, polycrystalline ceramic structure

    DOEpatents

    Cooley, Jason; Chen, Ching-Fong; Alexander, David

    2010-12-07

    Ceramic nanopowder was sealed inside a metal container under a vacuum. The sealed evacuated container was forced through a severe deformation channel at an elevated temperature below the melting point of the ceramic nanopowder. The result was a dense nanocrystalline ceramic structure inside the metal container.

  4. Simulation of a Driven Dense Granular Gas

    NASA Astrophysics Data System (ADS)

    Bizon, Chris; Shattuck, M. D.; Swift, J. B.; Swinney, Harry L.

    1998-11-01

    Event driven particle simulations quantitatively reproduce the experimental results on vibrated granular layers, including the formation of standing wave patterns(C. Bizon, M.D. Shattuck, J.B. Swift, W.D. McCormick, and H.L. Swinney, Phys. Rev. Lett. 80), pp. 57-60 (1998). and secondary instabilities(J.R. deBruyn, C. Bizon, M.D. Shattuck, D. Goldman, J.B. Swift, and H.L. Swinney, Phys. Rev. Lett. 81) (1998), to appear. . In these simulations the velocity distributions are nearly Gaussian when scaled with the local fluctuational kinetic energy (granular temperature); this suggests that inelastic dense gas kinetic theory is applicable. We perform simulations of a two-dimensional granular gas that is homogeneously driven with fluctuating forces. We find that the equation of state differs from that of an elastic dense gas and that this difference is due to a change in the distribution of relative velocities at collisions. Granular thermal conductivity and viscosity are measured by allowing the fluctuating forces to have large scale spatial gradients.

  5. Reply to 'Comment on 'Quantum dense key distribution''

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Degiovanni, I.P.; Berchera, I. Ruo; Castelletto, S.

    2005-01-01

    In this Reply we propose a modified security proof of the quantum dense key distribution protocol, detecting also the eavesdropping attack proposed by Wojcik in his Comment [Wojcik, Phys. Rev. A 71, 016301 (2005)].

  6. Dense ceramic membranes for converting methane to syngas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balachandran, U.; Dusek, J.T.; Picciolo, J.J.

    1995-07-01

    Dense mixed-oxide ceramics capable of conducting both electrons and oxygen ions are promising materials for partial oxygenation of methane to syngas. We are particularly interested in an oxide based on the Sr-Fe-Co-O system. Dense ceramic membrane tubes have been fabricated by a plastic extrusion technique. The sintered tubes were then used to selectively transport oxygen from air through the membrane to make syngas without the use of external electrodes. The sintered tubes have operated for >1000 h, and methane conversion efficiencies of >98% have been observed. Mechanical properties, structural integrity of the tubes during reactor operation, results of methane conversion,more » selectivity of methane conversion products, oxygen permeation, and fabrication of multichannel configurations for large-scale production of syngas will be presented.« less

  7. A look at scalable dense linear algebra libraries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dongarra, J.J.; Van de Geijn, R.A.; Walker, D.W.

    1992-01-01

    We discuss the essential design features of a library of scalable software for performing dense linear algebra computations on distributed memory concurrent computers. The square block scattered decomposition is proposed as a flexible and general-purpose way of decomposing most, if not all, dense matrix problems. An object- oriented interface to the library permits more portable applications to be written, and is easy to learn and use, since details of the parallel implementation are hidden from the user. Experiments on the Intel Touchstone Delta system with a prototype code that uses the square block scattered decomposition to perform LU factorization aremore » presented and analyzed. It was found that the code was both scalable and efficient, performing at about 14 GFLOPS (double precision) for the largest problem considered.« less

  8. A look at scalable dense linear algebra libraries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dongarra, J.J.; Van de Geijn, R.A.; Walker, D.W.

    1992-08-01

    We discuss the essential design features of a library of scalable software for performing dense linear algebra computations on distributed memory concurrent computers. The square block scattered decomposition is proposed as a flexible and general-purpose way of decomposing most, if not all, dense matrix problems. An object- oriented interface to the library permits more portable applications to be written, and is easy to learn and use, since details of the parallel implementation are hidden from the user. Experiments on the Intel Touchstone Delta system with a prototype code that uses the square block scattered decomposition to perform LU factorization aremore » presented and analyzed. It was found that the code was both scalable and efficient, performing at about 14 GFLOPS (double precision) for the largest problem considered.« less

  9. Dense cold baryonic matter

    NASA Astrophysics Data System (ADS)

    Stavinskiy, A. V.

    2017-09-01

    A possibility of studying cold nuclear matter on the Nuclotron-NICA facility at baryonic densities characteristic of and higher than at the center of a neutron star is considered based on the data from cumulative processes. A special rare-event kinematic trigger for collisions of relativistic ions is proposed for effective selection of events accompanied by production of dense baryonic systems. Possible manifestations of new matter states under these unusual conditions and an experimental program for their study are discussed. Various experimental setups are proposed for these studies, and a possibility of using experimental setups at the Nuclotron-NICA facility for this purpose is considered.

  10. 2014 Fermilab Laboratory Directoed Research & Development Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    W. Wester

    After initiation by the Fermilab Laboratory Director, a team from the senior Laboratory leadership and a Laboratory Directed Research and Development (LDRD) Advisory Committee developed an implementation plan for LDRD at Fermilab for the first time. This implementation was captured in the approved Fermilab 2014 LDRD Program Plan and followed directions and guidance from the Department of Energy (DOE) order, DOE O 413.2B, a “Roles, Responsibilities, and Guidelines, …” document, and examples of best practices at other DOE Office of Science Laboratories. At Fermilab, a FY14 midyear Call for Proposals was issued. A LDRD Selection Committee evaluated those proposals thatmore » were received and provided a recommendation to the Laboratory Director who approved seven LDRD projects. This Annual Report focuses on the status of those seven projects and provides an overview of the current status of LDRD at Fermilab. The seven FY14 LDRD approved projects had a date of initiation late in FY14 such that this report reflects approximately six months of effort approximately through January 2015. The progress of these seven projects, the subsequent award of six additional new projects beginning in FY15, and preparations for the issuance of the FY16 Call for Proposals indicates that LDRD is now integrated into the overall annual program at Fermilab. All indications are that LDRD is improving the scientific and technical vitality of the Laboratory and providing new, novel, or cutting edge projects carried out at the forefront of science and technology and aligned with the mission and strategic visions of Fermilab and the Department of Energy.« less

  11. Acceptance procedures for dense-graded mixes : literature review.

    DOT National Transportation Integrated Search

    2001-03-01

    Recent literature related to acceptance procedures for dense-graded mixtures is summarized. Current state of practice and development of acceptance procedures are reviewed. Many agencies are reducing the number of process control-related parameters i...

  12. IrisDenseNet: Robust Iris Segmentation Using Densely Connected Fully Convolutional Networks in the Images by Visible Light and Near-Infrared Light Camera Sensors

    PubMed Central

    Arsalan, Muhammad; Naqvi, Rizwan Ali; Kim, Dong Seop; Nguyen, Phong Ha; Owais, Muhammad; Park, Kang Ryoung

    2018-01-01

    The recent advancements in computer vision have opened new horizons for deploying biometric recognition algorithms in mobile and handheld devices. Similarly, iris recognition is now much needed in unconstraint scenarios with accuracy. These environments make the acquired iris image exhibit occlusion, low resolution, blur, unusual glint, ghost effect, and off-angles. The prevailing segmentation algorithms cannot cope with these constraints. In addition, owing to the unavailability of near-infrared (NIR) light, iris recognition in visible light environment makes the iris segmentation challenging with the noise of visible light. Deep learning with convolutional neural networks (CNN) has brought a considerable breakthrough in various applications. To address the iris segmentation issues in challenging situations by visible light and near-infrared light camera sensors, this paper proposes a densely connected fully convolutional network (IrisDenseNet), which can determine the true iris boundary even with inferior-quality images by using better information gradient flow between the dense blocks. In the experiments conducted, five datasets of visible light and NIR environments were used. For visible light environment, noisy iris challenge evaluation part-II (NICE-II selected from UBIRIS.v2 database) and mobile iris challenge evaluation (MICHE-I) datasets were used. For NIR environment, the institute of automation, Chinese academy of sciences (CASIA) v4.0 interval, CASIA v4.0 distance, and IIT Delhi v1.0 iris datasets were used. Experimental results showed the optimal segmentation of the proposed IrisDenseNet and its excellent performance over existing algorithms for all five datasets. PMID:29748495

  13. IrisDenseNet: Robust Iris Segmentation Using Densely Connected Fully Convolutional Networks in the Images by Visible Light and Near-Infrared Light Camera Sensors.

    PubMed

    Arsalan, Muhammad; Naqvi, Rizwan Ali; Kim, Dong Seop; Nguyen, Phong Ha; Owais, Muhammad; Park, Kang Ryoung

    2018-05-10

    The recent advancements in computer vision have opened new horizons for deploying biometric recognition algorithms in mobile and handheld devices. Similarly, iris recognition is now much needed in unconstraint scenarios with accuracy. These environments make the acquired iris image exhibit occlusion, low resolution, blur, unusual glint, ghost effect, and off-angles. The prevailing segmentation algorithms cannot cope with these constraints. In addition, owing to the unavailability of near-infrared (NIR) light, iris recognition in visible light environment makes the iris segmentation challenging with the noise of visible light. Deep learning with convolutional neural networks (CNN) has brought a considerable breakthrough in various applications. To address the iris segmentation issues in challenging situations by visible light and near-infrared light camera sensors, this paper proposes a densely connected fully convolutional network (IrisDenseNet), which can determine the true iris boundary even with inferior-quality images by using better information gradient flow between the dense blocks. In the experiments conducted, five datasets of visible light and NIR environments were used. For visible light environment, noisy iris challenge evaluation part-II (NICE-II selected from UBIRIS.v2 database) and mobile iris challenge evaluation (MICHE-I) datasets were used. For NIR environment, the institute of automation, Chinese academy of sciences (CASIA) v4.0 interval, CASIA v4.0 distance, and IIT Delhi v1.0 iris datasets were used. Experimental results showed the optimal segmentation of the proposed IrisDenseNet and its excellent performance over existing algorithms for all five datasets.

  14. Grain Growth and Silicates in Dense Clouds

    NASA Technical Reports Server (NTRS)

    Pendeleton, Yvonne J.; Chiar, J. E.; Ennico, K.; Boogert, A.; Greene, T.; Knez, C.; Lada, C.; Roellig, T.; Tielens, A.; Werner, M.; hide

    2006-01-01

    Interstellar silicates are likely to be a part of all grains responsible for visual extinction (Av) in the diffuse interstellar medium (ISM) and dense clouds. A correlation between Av and the depth of the 9.7 micron silicate feature (measured as optical depth, tau(9.7)) is expected if the dust species are well 'mixed. In the di&se ISM, such a correlation is observed for lines of sight in the solar neighborhood. A previous study of the silicate absorption feature in the Taurus dark cloud showed a tendency for the correlation to break down at high Av (Whittet et al. 1988, MNRAS, 233,321), but the scatter was large. We have acquired Spitzer Infrared Spectrograph data of several lines of sight in the IC 5 146, Barnard 68, Chameleon I and Serpens dense clouds. Our data set spans an Av range between 2 and 35 magnitudes. All lines of sight show the 9.7 micron silicate feature. The Serpens data appear to follow the diffuse ISM correlation line whereas the data for the other clouds show a non-linear correlation between the depth of the silicate feature relative to Av, much like the trend observed in the Taurus data. In fact, it appears that for visual extinctions greater than about 10 mag, tau(9.7) begins to level off. This decrease in the growth of the depth of the 9.7 micron feature with increasing Av could indicate the effects of grain growth in dense clouds. In this poster, we explore the possibility that grain growth causes an increase in opacity (Av) without causing a corresponding increase in tau(9.7).

  15. Energy transfer dynamics in strongly inhomogeneous hot-dense-matter systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stillman, C. R.; Nilson, P. M.; Sefkow, A. B.

    Direct measurements of energy transfer across steep density and temperature gradients in a hot-dense-matter system are presented. Hot dense plasma conditions were generated by high-intensity laser irradiation of a thin-foil target containing a buried metal layer. Energy transfer to the layer was measured using picosecond time-resolved x-ray emission spectroscopy. Here, the data show two x-ray flashes in time. Fully explicit, coupled particle-in-cell and collisional-radiative atomic kinetics model predictions reproduce these observations, connecting the two x-ray flashes with staged radial energy transfer within the target.

  16. Energy transfer dynamics in strongly inhomogeneous hot-dense-matter systems

    DOE PAGES

    Stillman, C. R.; Nilson, P. M.; Sefkow, A. B.; ...

    2018-06-25

    Direct measurements of energy transfer across steep density and temperature gradients in a hot-dense-matter system are presented. Hot dense plasma conditions were generated by high-intensity laser irradiation of a thin-foil target containing a buried metal layer. Energy transfer to the layer was measured using picosecond time-resolved x-ray emission spectroscopy. Here, the data show two x-ray flashes in time. Fully explicit, coupled particle-in-cell and collisional-radiative atomic kinetics model predictions reproduce these observations, connecting the two x-ray flashes with staged radial energy transfer within the target.

  17. The JCMT Gould Belt Survey: Dense Core Clusters in Orion B

    NASA Astrophysics Data System (ADS)

    Kirk, H.; Johnstone, D.; Di Francesco, J.; Lane, J.; Buckle, J.; Berry, D. S.; Broekhoven-Fiene, H.; Currie, M. J.; Fich, M.; Hatchell, J.; Jenness, T.; Mottram, J. C.; Nutter, D.; Pattle, K.; Pineda, J. E.; Quinn, C.; Salji, C.; Tisi, S.; Hogerheijde, M. R.; Ward-Thompson, D.; The JCMT Gould Belt Survey Team

    2016-04-01

    The James Clerk Maxwell Telescope Gould Belt Legacy Survey obtained SCUBA-2 observations of dense cores within three sub-regions of Orion B: LDN 1622, NGC 2023/2024, and NGC 2068/2071, all of which contain clusters of cores. We present an analysis of the clustering properties of these cores, including the two-point correlation function and Cartwright’s Q parameter. We identify individual clusters of dense cores across all three regions using a minimal spanning tree technique, and find that in each cluster, the most massive cores tend to be centrally located. We also apply the independent M-Σ technique and find a strong correlation between core mass and the local surface density of cores. These two lines of evidence jointly suggest that some amount of mass segregation in clusters has happened already at the dense core stage.

  18. SHAPE Selection (SHAPES) enrich for RNA structure signal in SHAPE sequencing-based probing data

    PubMed Central

    Poulsen, Line Dahl; Kielpinski, Lukasz Jan; Salama, Sofie R.; Krogh, Anders; Vinther, Jeppe

    2015-01-01

    Selective 2′ Hydroxyl Acylation analyzed by Primer Extension (SHAPE) is an accurate method for probing of RNA secondary structure. In existing SHAPE methods, the SHAPE probing signal is normalized to a no-reagent control to correct for the background caused by premature termination of the reverse transcriptase. Here, we introduce a SHAPE Selection (SHAPES) reagent, N-propanone isatoic anhydride (NPIA), which retains the ability of SHAPE reagents to accurately probe RNA structure, but also allows covalent coupling between the SHAPES reagent and a biotin molecule. We demonstrate that SHAPES-based selection of cDNA–RNA hybrids on streptavidin beads effectively removes the large majority of background signal present in SHAPE probing data and that sequencing-based SHAPES data contain the same amount of RNA structure data as regular sequencing-based SHAPE data obtained through normalization to a no-reagent control. Moreover, the selection efficiently enriches for probed RNAs, suggesting that the SHAPES strategy will be useful for applications with high-background and low-probing signal such as in vivo RNA structure probing. PMID:25805860

  19. Dense gas and star formation in individual Giant Molecular Clouds in M31

    NASA Astrophysics Data System (ADS)

    Viaene, S.; Forbrich, J.; Fritz, J.

    2018-04-01

    Studies both of entire galaxies and of local Galactic star formation indicate a dependency of a molecular cloud's star formation rate (SFR) on its dense gas mass. In external galaxies, such measurements are derived from HCN(1-0) observations, usually encompassing many Giant Molecular Clouds (GMCs) at once. The Andromeda galaxy (M31) is a unique laboratory to study the relation of the SFR and HCN emission down to GMC scales at solar-like metallicities. In this work, we correlate our composite SFR determinations with archival HCN, HCO+, and CO observations, resulting in a sample of nine reasonably representative GMCs. We find that, at the scale of individual clouds, it is important to take into account both obscured and unobscured star formation to determine the SFR. When correlated against the dense-gas mass from HCN, we find that the SFR is low, in spite of these refinements. We nevertheless retrieve an SFR-dense-gas mass correlation, confirming that these SFR tracers are still meaningful on GMC scales. The correlation improves markedly when we consider the HCN/CO ratio instead of HCN by itself. This nominally indicates a dependency of the SFR on the dense-gas fraction, in contradiction to local studies. However, we hypothesize that this partly reflects the limited dynamic range in dense-gas mass, and partly that the ratio of single-pointing HCN and CO measurements may be less prone to systematics like sidelobes. In this case, the HCN/CO ratio would importantly be a better empirical measure of the dense-gas content itself.

  20. Tripolar vortex formation in dense quantum plasma with ion-temperature-gradients

    NASA Astrophysics Data System (ADS)

    Qamar, Anisa; Ata-ur-Rahman, Mirza, Arshad M.

    2012-05-01

    We have derived system of nonlinear equations governing the dynamics of low-frequency electrostatic toroidal ion-temperature-gradient mode for dense quantum magnetoplasma. For some specific profiles of the equilibrium density, temperature, and ion velocity gradients, the nonlinear equations admit a stationary solution in the form of a tripolar vortex. These results are relevant to understand nonlinear structure formation in dense quantum plasmas in the presence of equilibrium ion-temperature and density gradients.

  1. Learning object correspondences with the observed transport shape measure.

    PubMed

    Pitiot, Alain; Delingette, Hervé; Toga, Arthur W; Thompson, Paul M

    2003-07-01

    We propose a learning method which introduces explicit knowledge to the object correspondence problem. Our approach uses an a priori learning set to compute a dense correspondence field between two objects, where the characteristics of the field bear close resemblance to those in the learning set. We introduce a new local shape measure we call the "observed transport measure", whose properties make it particularly amenable to the matching problem. From the values of our measure obtained at every point of the objects to be matched, we compute a distance matrix which embeds the correspondence problem in a highly expressive and redundant construct and facilitates its manipulation. We present two learning strategies that rely on the distance matrix and discuss their applications to the matching of a variety of 1-D, 2-D and 3-D objects, including the corpus callosum and ventricular surfaces.

  2. Department of Energy Lab Management. Hearings before the Committee on Energy and Natural Resources, United States Senate, One Hundred Eighth Congress, First Session. June 24, 2003, July 17, 2003

    DTIC Science & Technology

    2003-07-17

    what has come to be called Laboratory Directed R&D ( LDRD ). In the 1990s, LDRD became an interesting example of the lack of historical memory and...coordination in the Congress. The House sought to terminate LDRD at the three weapons laboratories as a use of funds for unauthor- ized and unappropriated

  3. Observations of non-linear plasmon damping in dense plasmas

    NASA Astrophysics Data System (ADS)

    Witte, B. B. L.; Sperling, P.; French, M.; Recoules, V.; Glenzer, S. H.; Redmer, R.

    2018-05-01

    We present simulations using finite-temperature density-functional-theory molecular-dynamics to calculate dynamic dielectric properties in warm dense aluminum. The comparison between exchange-correlation functionals in the Perdew, Burke, Ernzerhof approximation, Strongly Constrained and Appropriately Normed Semilocal Density Functional, and Heyd, Scuseria, Ernzerhof (HSE) approximation indicates evident differences in the electron transition energies, dc conductivity, and Lorenz number. The HSE calculations show excellent agreement with x-ray scattering data [Witte et al., Phys. Rev. Lett. 118, 225001 (2017)] as well as dc conductivity and absorption measurements. These findings demonstrate non-Drude behavior of the dynamic conductivity above the Cooper minimum that needs to be taken into account to determine optical properties in the warm dense matter regime.

  4. Classical dense matter physics: some basic methods and results

    NASA Astrophysics Data System (ADS)

    Čelebonović, Vladan

    2002-07-01

    This is an introduction to the basic notions, some methods and open problems of dense matter physics and their applications in astrophysics. Experimental topics cover the range from the work of P. W. Bridgman to the discovery and basic results of use of the diamond anvil cell. On the theoretical side, the semiclassical method of P. Savić and R. Kašanin is described. The choice of these topics is conditioned by their applicability in astrophysics and the author's research experience. At the end of the paper is presented a list of some unsolved problems in dense matter physics and astrophysics, some (or all) of which could form a basis of future collaborations.

  5. A strong diffusive ion mode in dense ionized matter predicted by Langevin dynamics

    DOE PAGES

    Mabey, P.; Richardson, S.; White, T. G.; ...

    2017-01-30

    We determined the state and evolution of planets, brown dwarfs and neutron star crusts by the properties of dense and compressed matter. Furthermore, due to the inherent difficulties in modelling strongly coupled plasmas, however, current predictions of transport coefficients differ by orders of magnitude. Collective modes are a prominent feature, whose spectra may serve as an important tool to validate theoretical predictions for dense matter. With recent advances in free electron laser technology, X-rays with small enough bandwidth have become available, allowing the investigation of the low-frequency ion modes in dense matter. Here, we present numerical predictions for these ionmore » modes and demonstrate significant changes to their strength and dispersion if dissipative processes are included by Langevin dynamics. Notably, a strong diffusive mode around zero frequency arises, which is not present, or much weaker, in standard simulations. These results have profound consequences in the interpretation of transport coefficients in dense plasmas.« less

  6. A strong diffusive ion mode in dense ionized matter predicted by Langevin dynamics

    PubMed Central

    Mabey, P.; Richardson, S.; White, T. G.; Fletcher, L. B.; Glenzer, S. H.; Hartley, N. J.; Vorberger, J.; Gericke, D. O.; Gregori, G.

    2017-01-01

    The state and evolution of planets, brown dwarfs and neutron star crusts is determined by the properties of dense and compressed matter. Due to the inherent difficulties in modelling strongly coupled plasmas, however, current predictions of transport coefficients differ by orders of magnitude. Collective modes are a prominent feature, whose spectra may serve as an important tool to validate theoretical predictions for dense matter. With recent advances in free electron laser technology, X-rays with small enough bandwidth have become available, allowing the investigation of the low-frequency ion modes in dense matter. Here, we present numerical predictions for these ion modes and demonstrate significant changes to their strength and dispersion if dissipative processes are included by Langevin dynamics. Notably, a strong diffusive mode around zero frequency arises, which is not present, or much weaker, in standard simulations. Our results have profound consequences in the interpretation of transport coefficients in dense plasmas. PMID:28134338

  7. Shear dispersion in dense granular flows

    DOE PAGES

    Christov, Ivan C.; Stone, Howard A.

    2014-04-18

    We formulate and solve a model problem of dispersion of dense granular materials in rapid shear flow down an incline. The effective dispersivity of the depth-averaged concentration of the dispersing powder is shown to vary as the Péclet number squared, as in classical Taylor–Aris dispersion of molecular solutes. An extension to generic shear profiles is presented, and possible applications to industrial and geological granular flows are noted.

  8. Free-free opacity in dense plasmas with an average atom model

    DOE PAGES

    Shaffer, Nathaniel R.; Ferris, Natalie G.; Colgan, James Patrick; ...

    2017-02-28

    A model for the free-free opacity of dense plasmas is presented. The model uses a previously developed average atom model, together with the Kubo-Greenwood model for optical conductivity. This, in turn, is used to calculate the opacity with the Kramers-Kronig dispersion relations. Furthermore, comparisons to other methods for dense deuterium results in excellent agreement with DFT-MD simulations, and reasonable agreement with a simple Yukawa screening model corrected to satisfy the conductivity sum rule.

  9. Free-free opacity in dense plasmas with an average atom model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaffer, Nathaniel R.; Ferris, Natalie G.; Colgan, James Patrick

    A model for the free-free opacity of dense plasmas is presented. The model uses a previously developed average atom model, together with the Kubo-Greenwood model for optical conductivity. This, in turn, is used to calculate the opacity with the Kramers-Kronig dispersion relations. Furthermore, comparisons to other methods for dense deuterium results in excellent agreement with DFT-MD simulations, and reasonable agreement with a simple Yukawa screening model corrected to satisfy the conductivity sum rule.

  10. Densely ionizing radiation affects DNA methylation of selective LINE-1 elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prior, Sara; Miousse, Isabelle R.

    Long Interspersed Nucleotide Element 1 (LINE-1) retrotransposons are heavily methylated and are the most abundant transposable elements in mammalian genomes. Here, we investigated the differential DNA methylation within the LINE-1 under normal conditions and in response to environmentally relevant doses of sparsely and densely ionizing radiation. We demonstrate that DNA methylation of LINE-1 elements in the lungs of C57BL6 mice is dependent on their evolutionary age, where the elder age of the element is associated with the lower extent of DNA methylation. Exposure to 5-aza-2′-deoxycytidine and methionine-deficient diet affected DNA methylation of selective LINE-1 elements in an age- and promotermore » type-dependent manner. Exposure to densely IR, but not sparsely IR, resulted in DNA hypermethylation of older LINE-1 elements, while the DNA methylation of evolutionary younger elements remained mostly unchanged. We also demonstrate that exposure to densely IR increased mRNA and protein levels of LINE-1 via the loss of the histone H3K9 dimethylation and an increase in the H3K4 trimethylation at the LINE-1 5′-untranslated region, independently of DNA methylation. Our findings suggest that DNA methylation is important for regulation of LINE-1 expression under normal conditions, but histone modifications may dictate the transcriptional activity of LINE-1 in response to exposure to densely IR. - Highlights: • DNA methylation of LINE-1 elements is dependent on their evolutionary age. • Densely ionizing radiation affects DNA methylation of selective LINE-1 elements. • Radiation-induced reactivation of LINE-1 is DNA methylation-independent. • Histone modifications dictate the transcriptional activity of LINE-1.« less

  11. Dense understory dwarf bamboo alters the retention of canopy tree seeds

    NASA Astrophysics Data System (ADS)

    Qian, Feng; Zhang, Tengda; Guo, Qinxue; Tao, Jianping

    2016-05-01

    Tree seed retention is thought to be an important factor in the process of forest community regeneration. Although dense understory dwarf bamboo has been considered to have serious negative effects on the regeneration of forest community species, little attention has been paid to the relationship between dwarf bamboo and seed retention. In a field experiment we manipulated the density of Fargesia decurvata, a common understory dwarf bamboo, to investigate the retention of seeds from five canopy tree species in an evergreen and deciduous broad-leaved mixed forest in Jinfoshan National Nature Reserve, SW China. We found that the median survival time and retention ratio of seeds increased with the increase in bamboo density. Fauna discriminately altered seed retention in bamboo groves of different densities. Arthropods reduced seed survival the most, and seeds removed decreased with increasing bamboo density. Birds removed or ate more seeds in groves of medium bamboo density and consumed fewer seeds in dense or sparse bamboo habitats. Rodents removed a greater number of large and highly profitable seeds in dense bamboo groves but more small and thin-husked seeds in sparse bamboo groves. Seed characteristics, including seed size, seed mass and seed profitability, were important factors affecting seed retention. The results suggested that dense understory dwarf bamboo not only increased seeds concealment and reduced the probability and speed of seed removal but also influenced the trade-off between predation and risk of animal predatory strategies, thereby impacting the quantity and composition of surviving seeds. Our results also indicated that dense understory dwarf bamboo and various seed characteristics can provide good opportunities for seed storage and seed germination and has a potential positive effect on canopy tree regeneration.

  12. The uniform electron gas at warm dense matter conditions

    NASA Astrophysics Data System (ADS)

    Dornheim, Tobias; Groth, Simon; Bonitz, Michael

    2018-05-01

    Motivated by the current high interest in the field of warm dense matter research, in this article we review the uniform electron gas (UEG) at finite temperature and over a broad density range relevant for warm dense matter applications. We provide an exhaustive overview of different simulation techniques, focusing on recent developments in the dielectric formalism (linear response theory) and quantum Monte Carlo (QMC) methods. Our primary focus is on two novel QMC methods that have recently allowed us to achieve breakthroughs in the thermodynamics of the warm dense electron gas: Permutation blocking path integral MC (PB-PIMC) and configuration path integral MC (CPIMC). In fact, a combination of PB-PIMC and CPIMC has allowed for a highly accurate description of the warm dense UEG over a broad density-temperature range. We are able to effectively avoid the notorious fermion sign problem, without invoking uncontrolled approximations such as the fixed node approximation. Furthermore, a new finite-size correction scheme is presented that makes it possible to treat the UEG in the thermodynamic limit without loss of accuracy. In addition, we in detail discuss the construction of a parametrization of the exchange-correlation free energy, on the basis of these data - the central thermodynamic quantity that provides a complete description of the UEG and is of crucial importance as input for the simulation of real warm dense matter applications, e.g., via thermal density functional theory. A second major aspect of this review is the use of our ab initio simulation results to test previous theories, including restricted PIMC, finite-temperature Green functions, the classical mapping by Perrot and Dharma-wardana, and various dielectric methods such as the random phase approximation, or the Singwi-Tosi-Land-Sjölander (both in the static and quantum versions), Vashishta-Singwi and the recent Tanaka scheme for the local field correction. Thus, for the first time, thorough

  13. Superordinate Shape Classification Using Natural Shape Statistics

    ERIC Educational Resources Information Center

    Wilder, John; Feldman, Jacob; Singh, Manish

    2011-01-01

    This paper investigates the classification of shapes into broad natural categories such as "animal" or "leaf". We asked whether such coarse classifications can be achieved by a simple statistical classification of the shape skeleton. We surveyed databases of natural shapes, extracting shape skeletons and tabulating their…

  14. The EARP Complex and Its Interactor EIPR-1 Are Required for Cargo Sorting to Dense-Core Vesicles

    PubMed Central

    Topalidou, Irini; Cattin-Ortolá, Jérôme; MacCoss, Michael J.

    2016-01-01

    The dense-core vesicle is a secretory organelle that mediates the regulated release of peptide hormones, growth factors, and biogenic amines. Dense-core vesicles originate from the trans-Golgi of neurons and neuroendocrine cells, but it is unclear how this specialized organelle is formed and acquires its specific cargos. To identify proteins that act in dense-core vesicle biogenesis, we performed a forward genetic screen in Caenorhabditis elegans for mutants defective in dense-core vesicle function. We previously reported the identification of two conserved proteins that interact with the small GTPase RAB-2 to control normal dense-core vesicle cargo-sorting. Here we identify several additional conserved factors important for dense-core vesicle cargo sorting: the WD40 domain protein EIPR-1 and the endosome-associated recycling protein (EARP) complex. By assaying behavior and the trafficking of dense-core vesicle cargos, we show that mutants that lack EIPR-1 or EARP have defects in dense-core vesicle cargo-sorting similar to those of mutants in the RAB-2 pathway. Genetic epistasis data indicate that RAB-2, EIPR-1 and EARP function in a common pathway. In addition, using a proteomic approach in rat insulinoma cells, we show that EIPR-1 physically interacts with the EARP complex. Our data suggest that EIPR-1 is a new interactor of the EARP complex and that dense-core vesicle cargo sorting depends on the EARP-dependent trafficking of cargo through an endosomal sorting compartment. PMID:27191843

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ``research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. LDRD includes activities previously defined as ER&D, as well as other discretionary research and development activities not provided for in amore » DOE program.`` Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our ``core competencies.`` Currently, PNL`s core competencies have been identified as integrated environmental research; process technology; energy systems research. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. A significant proportion of PNL`s LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. The projects are described in Section 2.0. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides an overview of PNL`s LDRD program and the management process used for the program and project summaries for each LDRD project.« less

  16. Cereal Leaf Beetle (Coleoptera: Chrysomelidae) Regional Dispersion and Relationship With Wheat Stand Denseness.

    PubMed

    Reisig, Dominic D; Bacheler, Jack S; Herbert, D Ames; Heiniger, Ron; Kuhar, Thomas; Malone, Sean; Philips, Chris; Tilley, M Scott

    2017-06-01

    Cereal leaf beetle, Oulema melanopus L., is a pest of small grains and the literature conflicts on whether it is more abundant in sparse or dense stands of wheat. Our objectives were to determine the impact of stand denseness on cereal leaf beetle abundance and to investigate the regional dispersion of cereal leaf beetles across North Carolina and Virginia. One-hundred twenty fields were sampled across North Carolina and Virginia during 2011 for stand denseness, and cereal leaf beetle eggs, larvae, and adults. Two small-plot wheat experiments were planted in North Carolina using a low and a high seeding rate. Main plots were split, with one receiving a single nitrogen application and one receiving two. Egg density, but not larva or adult density, was positively correlated with stand denseness in the regional survey. Furthermore, regional spatial patterns of aggregation were noted for both stand denseness and egg number. In the small-plot experiments, seeding rate influenced stand denseness, but not nitrogen application. In one experiment, egg densities per unit area were higher in denser wheat, while in the other experiment, egg densities per tiller were lower in denser wheat. Larvae were not influenced by any factor. Overall, there were more cereal leaf beetle eggs in denser wheat stands. Previous observations that sparse stands of wheat are more prone to cereal leaf beetle infestation can be attributed to the fact that sparser stands have fewer tillers, which increases the cereal leaf beetle to tiller ratio compared with denser stands. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Coupled modes in magnetized dense plasma with relativistic-degenerate electrons

    NASA Astrophysics Data System (ADS)

    Khan, S. A.

    2012-01-01

    Low frequency electrostatic and electromagnetic waves are investigated in ultra-dense quantum magnetoplasma with relativistic-degenerate electron and non-degenerate ion fluids. The dispersion relation is derived for mobile as well as immobile ions by employing hydrodynamic equations for such plasma under the influence of electromagnetic forces and pressure gradient of relativistic-degenerate Fermi gas of electrons. The result shows the coexistence of shear Alfven and ion modes with relativistically modified dispersive properties. The relevance of results to the dense degenerate plasmas of astrophysical origin (for instance, white dwarf stars) is pointed out with brief discussion on ultra-relativistic and non-relativistic limits.

  18. Phase transitions, interparticle correlations, and elementary processes in dense plasmas

    NASA Astrophysics Data System (ADS)

    Ichimaru, Setsuo

    2017-12-01

    Astrophysical dense plasmas are those we find in the interiors, surfaces, and outer envelopes of stellar objects such as neutron stars, white dwarfs, the Sun, and giant planets. Condensed plasmas in the laboratory settings include those in ultrahigh-pressure metal-physics experiments undertaken for realization of metallic hydrogen. We review basic physics issues studied in the past 60 some years on the phase transitions, the interparticle correlations, and the elementary processes in dense plasmas, through survey on scattering of electromagnetic waves, equations of state, phase diagrams, transport processes, stellar and planetary magnetisms, and thermo- and pycnonuclear reactions.

  19. Evolution of dense spatially modulated electron bunches

    NASA Astrophysics Data System (ADS)

    Balal, N.; Bratman, V. L.; Friedman, A.

    2018-03-01

    An analytical theory describing the dynamics of relativistic moving 1D electron pulses (layers) with the density modulation affected by a space charge has been revised and generalized for its application to the formation of dense picosecond bunches from linear accelerators with laser-driven photo injectors, and its good agreement with General Particle Tracer simulations has been demonstrated. Evolution of quasi-one-dimensional bunches (disks), for which the derived formulas predict longitudinal expansion, is compared with that for thin and long electron cylinders (threads), for which the excitation of non-linear waves with density spikes was found earlier by Musumeci et al. [Phys. Rev. Lett. 106(18), 184801 (2011)] and Musumeci et al. [Phys. Rev. Spec. Top. -Accel. Beams 16(10), 100701 (2013)]. Both types of bunches can be used for efficiency enhancement of THz sources based on the Doppler frequency up-shifted coherent spontaneous radiation of electrons. Despite the strong Coulomb repulsion, the periodicity of a preliminary modulation in dense 1D layers persists during their expansion in the most interesting case of a relatively small change in particle energy. However, the period of modulation increases and its amplitude decreases in time. In the case of a large change in electron energy, the uniformity of periodicity is broken due to different relativistic changes in longitudinal scales along the bunch: the "period" of modulation decreases and its amplitude increases from the rear to the front boundary. Nevertheless, the use of relatively long electron bunches with a proper preliminary spatial modulation of density can provide a significantly higher power and a narrower spectrum of coherent spontaneous radiation of dense bunches than in the case of initially short single bunches with the same charge.

  20. Nuclear quantum dynamics in dense hydrogen

    PubMed Central

    Kang, Dongdong; Sun, Huayang; Dai, Jiayu; Chen, Wenbo; Zhao, Zengxiu; Hou, Yong; Zeng, Jiaolong; Yuan, Jianmin

    2014-01-01

    Nuclear dynamics in dense hydrogen, which is determined by the key physics of large-angle scattering or many-body collisions between particles, is crucial for the dynamics of planet's evolution and hydrodynamical processes in inertial confinement confusion. Here, using improved ab initio path-integral molecular dynamics simulations, we investigated the nuclear quantum dynamics regarding transport behaviors of dense hydrogen up to the temperatures of 1 eV. With the inclusion of nuclear quantum effects (NQEs), the ionic diffusions are largely higher than the classical treatment by the magnitude from 20% to 146% as the temperature is decreased from 1 eV to 0.3 eV at 10 g/cm3, meanwhile, electrical and thermal conductivities are significantly lowered. In particular, the ionic diffusion is found much larger than that without NQEs even when both the ionic distributions are the same at 1 eV. The significant quantum delocalization of ions introduces remarkably different scattering cross section between protons compared with classical particle treatments, which explains the large difference of transport properties induced by NQEs. The Stokes-Einstein relation, Wiedemann-Franz law, and isotope effects are re-examined, showing different behaviors in nuclear quantum dynamics. PMID:24968754

  1. Synthesis and Characterization of Mimosa Pudica Leaves Shaped α-Iron Oxide Nanostructures for Ethanol Chemical Sensor Applications.

    PubMed

    Kim, S H; Ibrahim, Ahmed A; Kumar, R; Umar, Ahmad; Abaker, M; Hwang, S W; Baskoutas, S

    2016-03-01

    Herein, the synthesis of mimosa pudica leaves shaped a-iron oxide (α-Fe2O3) nanostructures is reported through simple and facile hydrothermal process. The prepared α-Fe2O3 nanostructures were characterized in terms of their morphological, structural, compositional and optical properties through a variety of characterization techniques such as FESEM, EDS, XRD, FTIR and Raman spectroscopy. The detailed characterizations revealed the well-crystallinity and dense growth of mimosa pudica leaf shaped α-Fe2O3 nanostructures. Further, the prepared nanomaterials were used as efficient electron mediator to fabricate sensitive ethanol chemical sensor. The fabricated sensor exhibited a high sensitivity of -30.37 μAmM(-1) cm(-2) and low detection limit of -0.62 μM. The observed linear dynamic range (LDR) was in the range from 10 μM-0.625 μM.

  2. Quantum Linear System Algorithm for Dense Matrices.

    PubMed

    Wossnig, Leonard; Zhao, Zhikuan; Prakash, Anupam

    2018-02-02

    Solving linear systems of equations is a frequently encountered problem in machine learning and optimization. Given a matrix A and a vector b the task is to find the vector x such that Ax=b. We describe a quantum algorithm that achieves a sparsity-independent runtime scaling of O(κ^{2}sqrt[n]polylog(n)/ε) for an n×n dimensional A with bounded spectral norm, where κ denotes the condition number of A, and ε is the desired precision parameter. This amounts to a polynomial improvement over known quantum linear system algorithms when applied to dense matrices, and poses a new state of the art for solving dense linear systems on a quantum computer. Furthermore, an exponential improvement is achievable if the rank of A is polylogarithmic in the matrix dimension. Our algorithm is built upon a singular value estimation subroutine, which makes use of a memory architecture that allows for efficient preparation of quantum states that correspond to the rows of A and the vector of Euclidean norms of the rows of A.

  3. Quantum Linear System Algorithm for Dense Matrices

    NASA Astrophysics Data System (ADS)

    Wossnig, Leonard; Zhao, Zhikuan; Prakash, Anupam

    2018-02-01

    Solving linear systems of equations is a frequently encountered problem in machine learning and optimization. Given a matrix A and a vector b the task is to find the vector x such that A x =b . We describe a quantum algorithm that achieves a sparsity-independent runtime scaling of O (κ2√{n }polylog(n )/ɛ ) for an n ×n dimensional A with bounded spectral norm, where κ denotes the condition number of A , and ɛ is the desired precision parameter. This amounts to a polynomial improvement over known quantum linear system algorithms when applied to dense matrices, and poses a new state of the art for solving dense linear systems on a quantum computer. Furthermore, an exponential improvement is achievable if the rank of A is polylogarithmic in the matrix dimension. Our algorithm is built upon a singular value estimation subroutine, which makes use of a memory architecture that allows for efficient preparation of quantum states that correspond to the rows of A and the vector of Euclidean norms of the rows of A .

  4. Characterization of cap-shaped silver particles for surface-enhanced fluorescence effects.

    PubMed

    Yamaguchi, Tetsuji; Kaya, Takatoshi; Takei, Hiroyuki

    2007-05-15

    Surface-enhanced fluorescence has potentially many desirable properties as an analytical method for medical diagnostics, but the effect observed so far is rather modest and only in conjunction with fluorophores with low quantum yields. Coupled with the fact that preparation of suitable surfaces at low costs has been difficult, this has limited its utilities. Here we report a novel method for forming uniform and reproducible surfaces with respectable enhancement ratios even for high-quantum-yield fluorophores. Formation of dense surface-adsorbed latex spheres on a flat surface via partial aggregation, followed by evaporation of silver, results in a film consisting of cap-shaped silver particles at high densities. Binding of fluorescence biomolecules, either through physisorption or antigen-antibody reaction, was performed, and enhancements close to 50 have been observed with fluorophores such as R-phycoerythrin and Alexa 546-labeled, bovine serum albumin, both of which have quantum yields around 0.8. We attribute this to the unique shape of the silver particle and the presence of abundant gaps among adjacent particles at high densities. The effectiveness of the new surface is also demonstrated with IL-6 sandwich assays.

  5. Uncountably many maximizing measures for a dense subset of continuous functions

    NASA Astrophysics Data System (ADS)

    Shinoda, Mao

    2018-05-01

    Ergodic optimization aims to single out dynamically invariant Borel probability measures which maximize the integral of a given ‘performance’ function. For a continuous self-map of a compact metric space and a dense set of continuous functions, we show the existence of uncountably many ergodic maximizing measures. We also show that, for a topologically mixing subshift of finite type and a dense set of continuous functions there exist uncountably many ergodic maximizing measures with full support and positive entropy.

  6. The dense gas mass fraction of molecular clouds in the Milky Way

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battisti, Andrew J.; Heyer, Mark H., E-mail: abattist@astro.umass.edu, E-mail: heyer@astro.umass.edu

    2014-01-10

    The mass fraction of dense gas within giant molecular clouds (GMCs) of the Milky Way is investigated using {sup 13}CO data from the Five College Radio Astronomy Observatory Galactic Plane Surveys and the Bolocam Galactic Plane Survey (BGPS) of 1.1 mm dust continuum emission. A sample of 860 compact dust sources are selected from the BGPS catalog and kinematically linked to 344 clouds of extended (>3') {sup 13}CO J = 1-0 emission. Gas masses are tabulated for the full dust source and subregions within the dust sources with mass surface densities greater than 200 M {sub ☉} pc{sup –2}, whichmore » are assumed to be regions of enhanced volume density. Masses of the parent GMCs are calculated assuming optically thin {sup 13}CO J = 1-0 emission and local thermodynamic equilibrium conditions. The mean fractional mass of dust sources to host GMC mass is 0.11{sub −0.06}{sup +0.12}. The high column density subregions comprise 0.07{sub −0.05}{sup +0.13} of the mass of the cloud. Owing to our assumptions, these values are upper limits to the true mass fractions. The fractional mass of dense gas is independent of GMC mass and gas surface density. The low dense gas mass fraction suggests that the formation of dense structures within GMCs is the primary bottleneck for star formation. The distribution of velocity differences between the dense gas and the low density material along the line of sight is also examined. We find a strong, centrally peaked distribution centered on zero velocity displacement. This distribution of velocity differences is modeled with radially converging flows toward the dense gas position that are randomly oriented with respect to the observed line of sight. These models constrain the infall velocities to be 2-4 km s{sup –1} for various flow configurations.« less

  7. Integration of prior knowledge into dense image matching for video surveillance

    NASA Astrophysics Data System (ADS)

    Menze, M.; Heipke, C.

    2014-08-01

    Three-dimensional information from dense image matching is a valuable input for a broad range of vision applications. While reliable approaches exist for dedicated stereo setups they do not easily generalize to more challenging camera configurations. In the context of video surveillance the typically large spatial extent of the region of interest and repetitive structures in the scene render the application of dense image matching a challenging task. In this paper we present an approach that derives strong prior knowledge from a planar approximation of the scene. This information is integrated into a graph-cut based image matching framework that treats the assignment of optimal disparity values as a labelling task. Introducing the planar prior heavily reduces ambiguities together with the search space and increases computational efficiency. The results provide a proof of concept of the proposed approach. It allows the reconstruction of dense point clouds in more general surveillance camera setups with wider stereo baselines.

  8. Generation of dense plume fingers in saturated-unsaturated homogeneous porous media

    NASA Astrophysics Data System (ADS)

    Cremer, Clemens J. M.; Graf, Thomas

    2015-02-01

    Flow under variable-density conditions is widespread, occurring in geothermal reservoirs, at waste disposal sites or due to saltwater intrusion. The migration of dense plumes typically results in the formation of vertical plume fingers which are known to be triggered by material heterogeneity or by variations in source concentration that causes the density variation. Using a numerical groundwater model, six perturbation methods are tested under saturated and unsaturated flow conditions to mimic heterogeneity and concentration variations on the pore scale in order to realistically generate dense fingers. A laboratory-scale sand tank experiment is numerically simulated, and the perturbation methods are evaluated by comparing plume fingers obtained from the laboratory experiment with numerically simulated fingers. Dense plume fingering for saturated flow can best be reproduced with a spatially random, time-constant perturbation of the solute source. For unsaturated flow, a spatially and temporally random noise of solute concentration or a random conductivity field adequately simulate plume fingering.

  9. Interband and intraband electron kinetics in non-thermal warm dense gold

    NASA Astrophysics Data System (ADS)

    Brennan Brown, Shaughnessy; Chen, Zhijiang; Curry, Chandra; Hering, Philippe; Hoffmann, Matthias C.; Ng, Andrew; Reid, Matthew; Tsui, Ying Y.; Glenzer, Siegfried H.

    2015-11-01

    Single-state warm dense matter may be produced via isochoric heating of thin metal foils using ultrafast high-power lasers. Previous experiments have confirmed that electron temperatures exceed ion temperatures during the initial picoseconds following excitation; however, electron kinetics in non-thermal states preceding establishment of a well-defined electron thermal distribution remain little understood. X-ray and optical probing techniques provide necessary resolution to investigate these electronic properties. Here, we will present a study of electron kinetics in warm dense gold produced by irradiating free-standing 30 nm Au foils with a 400 nm FWHM, 45 fs Ti:Sapphire laser system at SLAC National Accelerator Laboratory. The temporal evolutions of AC conductivity for 400 nm and 800 nm laser pulses are simultaneously determined with sub-100 fs resolution, providing insight into the 5 d-6 s/ p interband and 6 s / p intraband transitions respectively. Our results suggest that Auger decay and three-body recombination play important roles in electron thermalization of warm dense gold.

  10. Measurement of charged-particle stopping in warm-dense plasma

    DOE PAGES

    Zylstra, A.  B.; Frenje, J.  A.; Grabowski, P. E.; ...

    2015-05-27

    We measured the stopping of energetic protons in an isochorically-heated solid-density Be plasma with an electron temperature of ~32 eV, corresponding to moderately-coupled [(e²/a/(k BT e + E F ) ~ 0.3] and moderately-degenerate [k BT e/E F ~2] 'warm dense matter' (WDM) conditions. We present the first high-accuracy measurements of charged-particle energy loss through dense plasma, which shows an increased loss relative to cold matter, consistent with a reduced mean ionization potential. The data agree with stopping models based on an ad-hoc treatment of free and bound electrons, as well as the average-atom local-density approximation; this work is themore » first test of these theories in WDM plasma.« less

  11. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Office of the Director

    2010-04-09

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energymore » Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In addition

  12. Ab initio thermodynamic results for warm dense matter

    NASA Astrophysics Data System (ADS)

    Bonitz, Michael

    2016-10-01

    Warm dense matter (WDM) - an exotic state where electrons are quantum degenerate and ions may be strongly correlated - is ubiquitous in dense astrophysical plasmas and highly compressed laboratory systems including inertial fusion. Accurate theoretical predictions require precision thermodynamic data for the electron gas at high density and finite temperature around the Fermi temperature. First such data have been obtained by restricted path integral Monte Carlo (restricted PIMC) simulations and transformed into analytical fits for the free energy. Such results are also key input for novel finite temperature density functional theory. However, the RPIMC data of Ref. 1 are limited to moderate densities, and even there turned out to be surprisingly inaccurate, which is a consequence of the fermion sign problem. These problems were recently overcome by the development of alternative QMC approaches in Kiel (configuration PIMC and permutation blocking PIMC) and Imperial College (Density matrix QMC). The three methods have their strengths and limitations in complementary parameter regions and provide highly accurate thermodynamic data for the electronic contributions in WDM. While the original results were obtained for small particle numbers, recently accurate finite size corrections were derived allowing to compute ab initio thermodynamic data with an unprecedented accuracy of better than 0.3 percent. This provides the final step for the use as benchmark data for experiments and models of Warm dense matter. Co-authors: T. Schoof, S. Groth, T. Dornheim, F. D. Malone, M. Foulkes, and T. Sjostroem, Funded by: DFG via SFB-TR24 and project BO1366-10.

  13. Locating sources within a dense sensor array using graph clustering

    NASA Astrophysics Data System (ADS)

    Gerstoft, P.; Riahi, N.

    2017-12-01

    We develop a model-free technique to identify weak sources within dense sensor arrays using graph clustering. No knowledge about the propagation medium is needed except that signal strengths decay to insignificant levels within a scale that is shorter than the aperture. We then reinterpret the spatial coherence matrix of a wave field as a matrix whose support is a connectivity matrix of a graph with sensors as vertices. In a dense network, well-separated sources induce clusters in this graph. The geographic spread of these clusters can serve to localize the sources. The support of the covariance matrix is estimated from limited-time data using a hypothesis test with a robust phase-only coherence test statistic combined with a physical distance criterion. The latter criterion ensures graph sparsity and thus prevents clusters from forming by chance. We verify the approach and quantify its reliability on a simulated dataset. The method is then applied to data from a dense 5200 element geophone array that blanketed of the city of Long Beach (CA). The analysis exposes a helicopter traversing the array and oil production facilities.

  14. Extracting Communities from Complex Networks by the k-Dense Method

    NASA Astrophysics Data System (ADS)

    Saito, Kazumi; Yamada, Takeshi; Kazama, Kazuhiro

    To understand the structural and functional properties of large-scale complex networks, it is crucial to efficiently extract a set of cohesive subnetworks as communities. There have been proposed several such community extraction methods in the literature, including the classical k-core decomposition method and, more recently, the k-clique based community extraction method. The k-core method, although computationally efficient, is often not powerful enough for uncovering a detailed community structure and it produces only coarse-grained and loosely connected communities. The k-clique method, on the other hand, can extract fine-grained and tightly connected communities but requires a substantial amount of computational load for large-scale complex networks. In this paper, we present a new notion of a subnetwork called k-dense, and propose an efficient algorithm for extracting k-dense communities. We applied our method to the three different types of networks assembled from real data, namely, from blog trackbacks, word associations and Wikipedia references, and demonstrated that the k-dense method could extract communities almost as efficiently as the k-core method, while the qualities of the extracted communities are comparable to those obtained by the k-clique method.

  15. Filamentation in the pinched column of the dense plasma focus

    NASA Astrophysics Data System (ADS)

    Kubes, P.; Paduch, M.; Cikhardt, J.; Cikhardtova, B.; Klir, D.; Kravarik, J.; Rezac, K.; Zielinska, E.; Sadowski, M. J.; Szymaszek, A.; Tomaszewski, K.; Zaloga, D.

    2017-03-01

    The paper describes the filamentary structure observed in the high-energy ultraviolet radiation for discharges performed at the hydrogen- or deuterium-filling and at the puffing of hydrogen, deuterium or helium, in a mega-ampere dense plasma-focus facility. The lifetime of this structure overcomes 50 ns. These filaments connect the surface of a pinched column with internal plasmoids formed at different combinations of filling and puffing gases and they should transport some current and plasma. During all the investigated deuterium shots, the fusion-produced neutrons were recorded. Therefore, deuterons should be present in the region of their acceleration, independent of the applied puffing of the gas. Simultaneously with the observed filaments, inside the dense plasma column small plasma-balls of mm-dimensions were observed, which had a similar lifetime (longer than the relaxation time) and quasi-stationary positions in the discharge volume. The observed filaments and balls might be a manifestation of the (i) discrete spatial structure of the current flowing through and around the dense plasma column and (ii) transport of the plasma from external layers to the central region. Their formation and visualization were easier due to the application of air admixtures in the puffed gas.

  16. A review of the basic concepts of dense gas dispersion with special regard to modelling of heat transfer

    NASA Astrophysics Data System (ADS)

    Tasker, M. N.

    1984-01-01

    Dense gas dispersion is the study of the spreading and dilution of a gas that has a density greater than that of ambient air. Models to predict the dispersion of such dense gases as chlorine, sulfur dioxide, liquefied natural gas, and liquid propane are necessary to prevent a catastrophe in environmental and/or human terms. A basic physical picture of dense gas dispersion is provided. Mathematical and wind tunnel models of dense gas flow are presented and discussed, including the constraints and disadvantages of modelling techniques. Special emphasis is given to heat transfer during dense gas dispersion.

  17. Sandia SCADA Program -- High Surety SCADA LDRD Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CARLSON, ROLF E.

    2002-04-01

    Supervisory Control and Data Acquisition (SCADA) systems are a part of the nation's critical infrastructure that is especially vulnerable to attack or disruption. Sandia National Laboratories is developing a high-security SCADA specification to increase the national security posture of the U.S. Because SCADA security is an international problem and is shaped by foreign and multinational interests, Sandia is working to develop a standards-based solution through committees such as the IEC TC 57 WG 15, the IEEE Substation Committee, and the IEEE P1547-related activity on communications and controls. The accepted standards are anticipated to take the form of a Common Criteriamore » Protection Profile. This report provides the status of work completed and discusses several challenges ahead.« less

  18. On parametrised cold dense matter equation of state inference

    NASA Astrophysics Data System (ADS)

    Riley, Thomas E.; Raaijmakers, Geert; Watts, Anna L.

    2018-04-01

    Constraining the equation of state of cold dense matter in compact stars is a major science goal for observing programmes being conducted using X-ray, radio, and gravitational wave telescopes. We discuss Bayesian hierarchical inference of parametrised dense matter equations of state. In particular we generalise and examine two inference paradigms from the literature: (i) direct posterior equation of state parameter estimation, conditioned on observations of a set of rotating compact stars; and (ii) indirect parameter estimation, via transformation of an intermediary joint posterior distribution of exterior spacetime parameters (such as gravitational masses and coordinate equatorial radii). We conclude that the former paradigm is not only tractable for large-scale analyses, but is principled and flexible from a Bayesian perspective whilst the latter paradigm is not. The thematic problem of Bayesian prior definition emerges as the crux of the difference between these paradigms. The second paradigm should in general only be considered as an ill-defined approach to the problem of utilising archival posterior constraints on exterior spacetime parameters; we advocate for an alternative approach whereby such information is repurposed as an approximative likelihood function. We also discuss why conditioning on a piecewise-polytropic equation of state model - currently standard in the field of dense matter study - can easily violate conditions required for transformation of a probability density distribution between spaces of exterior (spacetime) and interior (source matter) parameters.

  19. On parametrized cold dense matter equation-of-state inference

    NASA Astrophysics Data System (ADS)

    Riley, Thomas E.; Raaijmakers, Geert; Watts, Anna L.

    2018-07-01

    Constraining the equation of state of cold dense matter in compact stars is a major science goal for observing programmes being conducted using X-ray, radio, and gravitational wave telescopes. We discuss Bayesian hierarchical inference of parametrized dense matter equations of state. In particular, we generalize and examine two inference paradigms from the literature: (i) direct posterior equation-of-state parameter estimation, conditioned on observations of a set of rotating compact stars; and (ii) indirect parameter estimation, via transformation of an intermediary joint posterior distribution of exterior spacetime parameters (such as gravitational masses and coordinate equatorial radii). We conclude that the former paradigm is not only tractable for large-scale analyses, but is principled and flexible from a Bayesian perspective while the latter paradigm is not. The thematic problem of Bayesian prior definition emerges as the crux of the difference between these paradigms. The second paradigm should in general only be considered as an ill-defined approach to the problem of utilizing archival posterior constraints on exterior spacetime parameters; we advocate for an alternative approach whereby such information is repurposed as an approximative likelihood function. We also discuss why conditioning on a piecewise-polytropic equation-of-state model - currently standard in the field of dense matter study - can easily violate conditions required for transformation of a probability density distribution between spaces of exterior (spacetime) and interior (source matter) parameters.

  20. Real-time detection of moving objects from moving vehicles using dense stereo and optical flow

    NASA Technical Reports Server (NTRS)

    Talukder, Ashit; Matthies, Larry

    2004-01-01

    Dynamic scene perception is very important for autonomous vehicles operating around other moving vehicles and humans. Most work on real-time object tracking from moving platforms has used sparse features or assumed flat scene structures. We have recently extended a real-time, dense stereo system to include realtime, dense optical flow, enabling more comprehensive dynamic scene analysis. We describe algorithms to robustly estimate 6-DOF robot egomotion in the presence of moving objects using dense flow and dense stereo. We then use dense stereo and egomotion estimates to identify & other moving objects while the robot itself is moving. We present results showing accurate egomotion estimation and detection of moving people and vehicles under general 6-DOF motion of the robot and independently moving objects. The system runs at 18.3 Hz on a 1.4 GHz Pentium M laptop, computing 160x120 disparity maps and optical flow fields, egomotion, and moving object segmentation. We believe this is a significant step toward general unconstrained dynamic scene analysis for mobile robots, as well as for improved position estimation where GPS is unavailable.

  1. Real-time detection of moving objects from moving vehicles using dense stereo and optical flow

    NASA Technical Reports Server (NTRS)

    Talukder, Ashit; Matthies, Larry

    2004-01-01

    Dynamic scene perception is very important for autonomous vehicles operating around other moving vehicles and humans. Most work on real-time object tracking from moving platforms has used sparse features or assumed flat scene structures. We have recently extended a real-time, dense stereo system to include real-time, dense optical flow, enabling more comprehensive dynamic scene analysis. We describe algorithms to robustly estimate 6-DOF robot egomotion in the presence of moving objects using dense flow and dense stereo. We then use dense stereo and egomotion estimates to identity other moving objects while the robot itself is moving. We present results showing accurate egomotion estimation and detection of moving people and vehicles under general 6-DOF motion of the robot and independently moving objects. The system runs at 18.3 Hz on a 1.4 GHz Pentium M laptop, computing 160x120 disparity maps and optical flow fields, egomotion, and moving object segmentation. We believe this is a significant step toward general unconstrained dynamic scene analysis for mobile robots, as well as for improved position estimation where GPS is unavailable.

  2. Real-time Detection of Moving Objects from Moving Vehicles Using Dense Stereo and Optical Flow

    NASA Technical Reports Server (NTRS)

    Talukder, Ashit; Matthies, Larry

    2004-01-01

    Dynamic scene perception is very important for autonomous vehicles operating around other moving vehicles and humans. Most work on real-time object tracking from moving platforms has used sparse features or assumed flat scene structures. We have recently extended a real-time. dense stereo system to include realtime. dense optical flow, enabling more comprehensive dynamic scene analysis. We describe algorithms to robustly estimate 6-DOF robot egomotion in the presence of moving objects using dense flow and dense stereo. We then use dense stereo and egomotion estimates to identify other moving objects while the robot itself is moving. We present results showing accurate egomotion estimation and detection of moving people and vehicles under general 6DOF motion of the robot and independently moving objects. The system runs at 18.3 Hz on a 1.4 GHz Pentium M laptop. computing 160x120 disparity maps and optical flow fields, egomotion, and moving object segmentation. We believe this is a significant step toward general unconstrained dynamic scene analysis for mobile robots, as well as for improved position estimation where GPS is unavailable.

  3. A pilot scale ultrasonic system to enhance extraction processes with dense gases

    NASA Astrophysics Data System (ADS)

    Riera, E.; Blasco, M.; Tornero, A.; Casas, E.; Roselló, C.; Simal, S.; Acosta, V. M.; Gallego-Juárez, J. A.

    2012-05-01

    The use of dense gases (supercritical fluids) as extracting agents has been attracting wide interest for years. In particular, supercritical carbon dioxide is considered nowadays as a green and very useful solvent. Nevertheless, the extraction process has a slow dynamics. Power ultrasound represents an efficient way for accelerating and enhancing the kinetics of the process by producing strong agitation and turbulence, compressions and decompressions, and heating in the media. For this purpose, a device prototype for using ultrasound in supercritical media was developed, tested and validated in extraction processes of oil from grounded almonds (55% oil content, wet basis and 3-4 mm particle size) in a 5 L extraction unit. An amount of 1500 g of grounded almonds was placed in a cylindrical basket during the trials inside the dense gas extractor (DGE) where solvent was introduced at different flow rates, pressures and temperatures. In all cases the ultrasonic energy confirmed the enhancement and acceleration of the almond oil extraction kinetics using supercritical CO2. Presently the power ultrasound effect in such a process is being deeply analyzed in a 5 L extraction unit before scaling-up a new ultrasonic system. This technology, still under development, has been designed for a bigger dense gas pilot-plant consisting of two extractors (20 L capacity), two separation units and has the possibility of operating at a pressure up to 50 MPa. The goal of this work is to study the effect of high-power ultrasound coupled to dense gas extraction inside the basket with the product, and to present a prototype for the use of power ultrasound in extraction processes with dense gases inside a new 20 L extractor unit.

  4. Laboratory Directed Research and Development FY2008 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kammeraad, J E; Jackson, K J; Sketchley, J A

    The Laboratory Directed Research and Development (LDRD) Program, authorized by Congress in 1991 and administered by the Institutional Science and Technology Office at Lawrence Livermore, is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the full spectrum of national security interests encompassed by the missions of the Laboratory, the Department of Energy, and National Nuclear Security Administration. The accomplishments described in this annual report demonstrate the strong alignment of the LDRD portfolio with these missions and contribute to the Laboratory's success in meeting its goals. The LDRD budget of $91.5 million for fiscal yearmore » 2008 sponsored 176 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific quality and mission relevance. Each year, the number of deserving proposals far exceeds the funding available, making the selection a tough one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory's multidisciplinary team approach to science and technology. Safeguarding the nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle for attracting and retaining the best and the brightest technical staff and for establishing collaborations with universities

  5. Generation of warm dense matter using an argon based capillary discharge laser

    NASA Astrophysics Data System (ADS)

    Rossall, A. K.; Tallents, G. J.

    2015-06-01

    Argon based capillary discharge lasers operating in the extreme ultra violet (EUV) at 46.9 nm with output up to 0.5 mJ energy per pulse and repetition rates up to 10 Hz are capable of focused irradiances of 109-1012 W cm-2 and can be used to generate plasma in the warm dense matter regime by irradiating solid material. To model the interaction between such an EUV laser and solid material, the 2D radiative-hydrodynamic code POLLUX has been modified to include absorption via direct photo-ionisation, a super-configuration model to describe the ionization-dependent electronic configurations and a calculation of plasma refractive indices for ray tracing of the incident EUV laser radiation. A simulation study is presented, demonstrating how capillary discharge lasers of 1200 ps pulse duration can be used to generate warm dense matter at close to solid densities with temperatures of a few eV and energy densities up to 1 × 105 J cm-3. Plasmas produced by EUV laser irradiation are shown to be useful for examining the properties of warm dense matter as, for example, plasma emission is not masked by hotter, less dense plasma emission that occurs with visible/infra-red laser target irradiation.

  6. Net Shaped Component Fabrication of Refractory Metal Alloys using Vacuum Plasma Spraying

    NASA Technical Reports Server (NTRS)

    Sen, S.; ODell, S.; Gorti, S.; Litchford, R.

    2006-01-01

    The vacuum plasma spraying (VPS) technique was employed to produce dense and net shaped components of a new tungsten-rhenium (W-Re) refractory metal alloy. The fine grain size obtained using this technique enhanced the mechanical properties of the alloy at elevated temperatures. The alloy development also included incorporation of thermodynamically stable dispersion phases to pin down grain boundaries at elevated temperatures and thereby circumventing the inherent problem of recrystallization of refractory alloys at elevated temperatures. Requirements for such alloys as related to high temperature space propulsion components will be discussed. Grain size distribution as a function of cooling rate and dispersion phase loading will be presented. Mechanical testing and grain growth results as a function of temperature will also be discussed.

  7. Transonic aerodynamics of dense gases. M.S. Thesis - Virginia Polytechnic Inst. and State Univ., Apr. 1990

    NASA Technical Reports Server (NTRS)

    Morren, Sybil Huang

    1991-01-01

    Transonic flow of dense gases for two-dimensional, steady-state, flow over a NACA 0012 airfoil was predicted analytically. The computer code used to model the dense gas behavior was a modified version of Jameson's FL052 airfoil code. The modifications to the code enabled modeling the dense gas behavior near the saturated vapor curve and critical pressure region where the fundamental derivative, Gamma, is negative. This negative Gamma region is of interest because the nonclassical gas behavior such as formation and propagation of expansion shocks, and the disintegration of inadmissible compression shocks may exist. The results indicated that dense gases with undisturbed thermodynamic states in the negative Gamma region show a significant reduction in the extent of the transonic regime as compared to that predicted by the perfect gas theory. The results support existing theories and predictions of the nonclassical, dense gas behavior from previous investigations.

  8. Shaping planetary nebulae with jets in inclined triple stellar systems

    NASA Astrophysics Data System (ADS)

    Akashi, Muhammad; Soker, Noam

    2017-10-01

    We conduct three-dimensional hydrodynamical simulations of two opposite jets launched obliquely to the orbital plane around an asymptotic giant branch (AGB) star and within its dense wind, and demonstrate the formation of a `messy' planetary nebula (PN), namely, a PN lacking any type of symmetry (highly irregular). In building the initial conditions we assume that a tight binary system orbits the AGB star, and that the orbital plane of the tight binary system is inclined to the orbital plane of binary system and the AGB star. We further assume that the accreted mass onto the tight binary system forms an accretion disk around one of the stars, and that the plane of the disk is in between the two orbital planes. The highly asymmetrical lobes that we obtain support the notion that messy PNe might be shaped by triple stellar systems.

  9. A continuous stochastic model for non-equilibrium dense gases

    NASA Astrophysics Data System (ADS)

    Sadr, M.; Gorji, M. H.

    2017-12-01

    While accurate simulations of dense gas flows far from the equilibrium can be achieved by direct simulation adapted to the Enskog equation, the significant computational demand required for collisions appears as a major constraint. In order to cope with that, an efficient yet accurate solution algorithm based on the Fokker-Planck approximation of the Enskog equation is devised in this paper; the approximation is very much associated with the Fokker-Planck model derived from the Boltzmann equation by Jenny et al. ["A solution algorithm for the fluid dynamic equations based on a stochastic model for molecular motion," J. Comput. Phys. 229, 1077-1098 (2010)] and Gorji et al. ["Fokker-Planck model for computational studies of monatomic rarefied gas flows," J. Fluid Mech. 680, 574-601 (2011)]. The idea behind these Fokker-Planck descriptions is to project the dynamics of discrete collisions implied by the molecular encounters into a set of continuous Markovian processes subject to the drift and diffusion. Thereby, the evolution of particles representing the governing stochastic process becomes independent from each other and thus very efficient numerical schemes can be constructed. By close inspection of the Enskog operator, it is observed that the dense gas effects contribute further to the advection of molecular quantities. That motivates a modelling approach where the dense gas corrections can be cast in the extra advection of particles. Therefore, the corresponding Fokker-Planck approximation is derived such that the evolution in the physical space accounts for the dense effects present in the pressure, stress tensor, and heat fluxes. Hence the consistency between the devised Fokker-Planck approximation and the Enskog operator is shown for the velocity moments up to the heat fluxes. For validation studies, a homogeneous gas inside a box besides Fourier, Couette, and lid-driven cavity flow setups is considered. The results based on the Fokker-Planck model are

  10. Dense matter theory: A simple classical approach

    NASA Astrophysics Data System (ADS)

    Savić, P.; Čelebonović, V.

    1994-07-01

    In the sixties, the first author and by P. Savić and R. Kašanin started developing a mean-field theory of dense matter. It is based on the Coulomb interaction, supplemented by a microscopic selection rule and a set of experimentally founded postulates. Applications of the theory range from the calculation of models of planetary internal structure to DAC experiments.

  11. The Presence of Dense Material in the Deep Mantle: Implications for Plate Motion

    NASA Astrophysics Data System (ADS)

    Stein, C.; Hansen, U.

    2017-12-01

    The dense material in the deep mantle strongly interacts with the convective flow in the mantle. On the one hand, it has a restoring effect on rising plumes. On the other hand, the dense material is swept about by the flow forming dense piles. Consequently this affects the plate motion and, in particular, the onset time and the style of plate tectonics varies considerably for different model scenarios. In this study we apply a thermochemical mantle convection model combined with a rheological model (temperature- and stress-dependent viscosity) that allows for plate formation according to the convective flow. The model's starting condition is the post-magma ocean period. We analyse a large number of model scenarios ranging from variations in thickness, density and depth of a layer of dense material to different initial temperatures.Furthermore, we present a mechanism in which the dense layer at the core-mantle boundary forms without prescribing the thickness or the density contrast. Due to advection-assisted diffusion, long-lived piles can be established that act on the style of convection and therefore on plate motion. We distinguish between the subduction-triggered regime with early plate tectonics and the plume-triggered regime with a late onset of plate tectonics. The formation of piles by advection-assisted diffusion is a typical phenomenon that appears not only at the lower boundary, but also at internal boundaries that form in the layering phase during the evolution of the system.

  12. Shape-Based Virtual Screening with Volumetric Aligned Molecular Shapes

    PubMed Central

    Koes, David Ryan; Camacho, Carlos J.

    2014-01-01

    Shape-based virtual screening is an established and effective method for identifying small molecules that are similar in shape and function to a reference ligand. We describe a new method of shape-based virtual screening, volumetric aligned molecular shapes (VAMS). VAMS uses efficient data structures to encode and search molecular shapes. We demonstrate that VAMS is an effective method for shape-based virtual screening and that it can be successfully used as a pre-filter to accelerate more computationally demanding search algorithms. Unique to VAMS is a novel minimum/maximum shape constraint query for precisely specifying the desired molecular shape. Shape constraint searches in VAMS are particularly efficient and millions of shapes can be searched in a fraction of a second. We compare the performance of VAMS with two other shape-based virtual screening algorithms a benchmark of 102 protein targets consisting of more than 32 million molecular shapes and find that VAMS provides a competitive trade-off between run-time performance and virtual screening performance. PMID:25049193

  13. Electron-ion collision-frequency for x-ray Thomson scattering in dense plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faussurier, Gérald, E-mail: gerald.faussurier@cea.fr; Blancard, Christophe

    2016-01-15

    Two methods are presented to calculate the electron-ion collision-frequency in dense plasmas using an average-atom model. The first one is based on the Kubo-Greenwood approach. The second one uses the Born and Lenard-Balescu approximations. The two methods are used to calculate x-ray Thomson scattering spectra. Illustrations are shown for dense beryllium and aluminum plasmas. Comparisons with experiment are presented in the case of an x-ray Thomson scattering spectrum.

  14. Modeling 3D Facial Shape from DNA

    PubMed Central

    Claes, Peter; Liberton, Denise K.; Daniels, Katleen; Rosana, Kerri Matthes; Quillen, Ellen E.; Pearson, Laurel N.; McEvoy, Brian; Bauchet, Marc; Zaidi, Arslan A.; Yao, Wei; Tang, Hua; Barsh, Gregory S.; Absher, Devin M.; Puts, David A.; Rocha, Jorge; Beleza, Sandra; Pereira, Rinaldo W.; Baynam, Gareth; Suetens, Paul; Vandermeulen, Dirk; Wagner, Jennifer K.; Boster, James S.; Shriver, Mark D.

    2014-01-01

    Human facial diversity is substantial, complex, and largely scientifically unexplained. We used spatially dense quasi-landmarks to measure face shape in population samples with mixed West African and European ancestry from three locations (United States, Brazil, and Cape Verde). Using bootstrapped response-based imputation modeling (BRIM), we uncover the relationships between facial variation and the effects of sex, genomic ancestry, and a subset of craniofacial candidate genes. The facial effects of these variables are summarized as response-based imputed predictor (RIP) variables, which are validated using self-reported sex, genomic ancestry, and observer-based facial ratings (femininity and proportional ancestry) and judgments (sex and population group). By jointly modeling sex, genomic ancestry, and genotype, the independent effects of particular alleles on facial features can be uncovered. Results on a set of 20 genes showing significant effects on facial features provide support for this approach as a novel means to identify genes affecting normal-range facial features and for approximating the appearance of a face from genetic markers. PMID:24651127

  15. Dense plasma focus production in a hypocycloidal pinch

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Mcfarland, D. R.; Hohl, F.

    1975-01-01

    A type of high-power pinch apparatus consisting of disk electrodes was developed, and diagnostic measurements to study its mechanism of dense plasma production were made. The collapse fronts of the current sheets are well organized, and dense plasma focuses are produced on the axis with radial stability in excess of 5 microns. A plasma density greater than 10 to the 18th power/cubic cm was determined with Stark broadening and CO2 laser absorption. A plasma temperature of approximately 1 keV was measured with differential transmission of soft X-rays through thin foils. Essentially complete absorption of a high-energy CO2 laser beam was observed. The advantages of this apparatus over the coaxial plasma focus are in (1) the plasma volume, (2) the stability, (3) the containment time, (4) the easy access to additional heating by laser or electron beams, and (5) the possibility of scaling up to a multiple array for high-power operation.

  16. Dynamic conductivity and partial ionization in dense fluid hydrogen

    NASA Astrophysics Data System (ADS)

    Zaghoo, Mohamed

    2018-04-01

    A theoretical description for optical conduction experiments in dense fluid hydrogen is presented. Different quantum statistical approaches are used to describe the mechanism of electronic transport in hydrogen's high-temperature dense phase. We show that at the onset of the metallic transition, optical conduction could be described by a strong rise in atomic polarizability, due to increased ionization, whereas in the highly degenerate limit, the Ziman weak scattering model better accounts for the observed saturation of reflectance. The inclusion of effects of partial ionization in the highly degenerate region provides great agreement with experimental results. Hydrogen's fluid metallic state is revealed to be a partially ionized free-electron plasma. Our results provide some of the first theoretical transport models that are experimentally benchmarked, as well as an important guide for future studies.

  17. Restrike Particle Beam Experiments on a Dense Plasma Focus. Opening Switch Research on a Dense Plasma Focus.

    DTIC Science & Technology

    1985-06-01

    Research on this grant has focused on plasma focus experiments in the areas of particle beam generation and as a potential repetitive opening switch...as were scaling laws for the increase of electron energy and current with input energy. The potential of the plasma focus as an opening switch was...delay line technique. The observed frequencies were most consistent with the lower hybrid frequency. Keywords include: Dense Plasma Focus , Particle Beam Generation, Opening Switch, Load Experiments, Pulsed Power.

  18. Symmetry energy in cold dense matter

    NASA Astrophysics Data System (ADS)

    Jeong, Kie Sang; Lee, Su Houng

    2016-01-01

    We calculate the symmetry energy in cold dense matter both in the normal quark phase and in the 2-color superconductor (2SC) phase. For the normal phase, the thermodynamic potential is calculated by using hard dense loop (HDL) resummation to leading order, where the dominant contribution comes from the longitudinal gluon rest mass. The effect of gluonic interaction on the symmetry energy, obtained from the thermodynamic potential, was found to be small. In the 2SC phase, the non-perturbative BCS paring gives enhanced symmetry energy as the gapped states are forced to be in the common Fermi sea reducing the number of available quarks that can contribute to the asymmetry. We used high density effective field theory to estimate the contribution of gluon interaction to the symmetry energy. Among the gluon rest masses in 2SC phase, only the Meissner mass has iso-spin dependence although the magnitude is much smaller than the Debye mass. As the iso-spin dependence of gluon rest masses is even smaller than the case in the normal phase, we expect that the contribution of gluonic interaction to the symmetry energy in the 2SC phase will be minimal. The different value of symmetry energy in each phase will lead to different prediction for the particle yields in heavy ion collision experiment.

  19. Testing the universality of the star-formation efficiency in dense molecular gas

    NASA Astrophysics Data System (ADS)

    Shimajiri, Y.; André, Ph.; Braine, J.; Könyves, V.; Schneider, N.; Bontemps, S.; Ladjelate, B.; Roy, A.; Gao, Y.; Chen, H.

    2017-08-01

    Context. Recent studies with, for example, Spitzer and Herschel have suggested that star formation in dense molecular gas may be governed by essentially the same "law" in Galactic clouds and external galaxies. This conclusion remains controversial, however, in large part because different tracers have been used to probe the mass of dense molecular gas in Galactic and extragalactic studies. Aims: We aimed to calibrate the HCN and HCO+ lines commonly used as dense gas tracers in extragalactic studies and to test the possible universality of the star-formation efficiency in dense gas (≳104 cm-3), SFEdense. Methods: We conducted wide-field mapping of the Aquila, Ophiuchus, and Orion B clouds at 0.04 pc resolution in the J = 1 - 0 transition of HCN, HCO+, and their isotopomers. For each cloud, we derived a reference estimate of the dense gas mass MHerschelAV > 8, as well as the strength of the local far-ultraviolet (FUV) radiation field, using Herschel Gould Belt survey data products, and estimated the star-formation rate from direct counting of the number of Spitzer young stellar objects. Results: The H13CO+(1-0) and H13CN(1-0) lines were observed to be good tracers of the dense star-forming filaments detected with Herschel. Comparing the luminosities LHCN and LHCO+ measured in the HCN and HCO+ lines with the reference masses MHerschelAV > 8, the empirical conversion factors αHerschel - HCN (=MHerschelAV > 8/LHCN) and αHerschel - HCO+ (=MHerschelAV > 8/LHCO+) were found to be significantly anti-correlated with the local FUV strength. In agreement with a recent independent study of Orion B by Pety et al., the HCN and HCO+ lines were found to trace gas down to AV ≳ 2. As a result, published extragalactic HCN studies must be tracing all of the moderate density gas down to nH2 ≲ 103 cm-3. Estimating the contribution of this moderate density gas from the typical column density probability distribution functions in nearby clouds, we obtained the following G0

  20. Laboratory Directed Research and Development Program FY2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none, none

    2012-04-27

    Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2011 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). Going forward in FY 2012, the LDRD program also supports themore » Goals codified in the new DOE Strategic Plan of May, 2011. The LDRD program also supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Brief summares of projects and accomplishments for the period for each division are included.« less

  1. Opening Switch Research on a Dense Plasma Focus.

    DTIC Science & Technology

    Several experiments were performed to enhance power coupling to the load by placing the load electrode opposite the muzzle end of the Dense Plasma ... Focus plasma gun. The impaler concept, whereby the current sheath is run into a knife edge insulator, was tested in two configurations. However, the

  2. The effect of a fictitious peer on young children's choice of familiar v. unfamiliar low- and high-energy-dense foods.

    PubMed

    Bevelander, Kirsten E; Anschütz, Doeschka J; Engels, Rutger C M E

    2012-09-28

    The present experimental study was the first to investigate the impact of a remote (non-existent) peer on children's food choice of familiar v. unfamiliar low- and high-energy-dense food products. In a computer task, children (n 316; 50·3 % boys; mean age 7·13 (SD 0·75) years) were asked to choose between pictures of familiar and unfamiliar foods in four different choice blocks using the following pairs: (1) familiar v. unfamiliar low-energy-dense foods (fruits and vegetables), (2) familiar v. unfamiliar high-energy-dense foods (high sugar, salt and/or fat content), (3) familiar low-energy-dense v. unfamiliar high-energy-dense foods and (4) unfamiliar low-energy-dense v. familiar high-energy-dense foods. Participants who were not in the control group were exposed to the food choices (either always the familiar or always the unfamiliar food product) of a same-sex and same-age fictitious peer who was supposedly completing the same task at another school. The present study provided insights into children's choices between (un)familiar low- and high-energy-dense foods in an everyday situation. The findings revealed that the use of fictitious peers increased children's willingness to try unfamiliar foods, although children tended to choose high-energy-dense foods over low-energy-dense foods. Intervention programmes that use peer influence to focus on improving children's choice of healthy foods should take into account children's strong aversion to unfamiliar low-energy-dense foods as well as their general preference for familiar and unfamiliar high-energy-dense foods.

  3. Dense plasma chemistry of hydrocarbons at conditions relevant to planetary interiors and inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Kraus, Dominik

    2017-10-01

    Carbon-hydrogen demixing and subsequent diamond precipitation has been predicted to strongly participate in shaping the internal structure and evolution of icy giant planets like Neptune and Uranus. The very same dense plasma chemistry is also a potential concern for CH plastic ablator materials in inertial confinement fusion (ICF) experiments where similar conditions are present during the first compression stage of the imploding capsule. Here, carbon-hydrogen demixing may enhance the hydrodynamic instabilities occurring in the following compression stages. First experiments applying dynamic compression and ultrafast in situ X-ray diffraction at SLAC's Linac Coherent Light Source demonstrated diamond formation from polystyrene (CH) at 150 GPa and 5000 K. Very recent experiments have now investigated the influence of oxygen, which is highly abundant in icy giant planets on the phase separation process. Compressing PET (C5H4O2) and PMMA(C5H8O2), we find again diamond formation at pressures above 150 GPa and temperatures of several thousand kelvins, showing no strong effect due to the presence of oxygen. Thus, diamond precipitation deep inside icy giant planets seems very likely. Moreover, small-angle X-ray scattering (SAXS) was added to the platform, which determines an upper limit for the diamond particle size, while the width of the diffraction features provides a lower limit. We find that diamond particles of several nanometers in size are formed on a nanosecond timescale. Finally, spectrally resolved X-ray scattering is used to scale amorphous diffraction signals and allows for determining the amount of carbon-hydrogen demixing inside the compressed samples even if no crystalline diamond is formed. This whole set of diagnostics provides unprecedented insights into the nanosecond kinetics of dense plasma chemistry.

  4. The ubiquity of energy-dense snack foods: a national multicity study.

    PubMed

    Farley, Thomas A; Baker, Erin T; Futrell, Lauren; Rice, Janet C

    2010-02-01

    We assessed the availability and accessibility of energy-dense snacks in retail stores whose primary merchandise was not food and whether these varied by store type, region, or socioeconomic factors. We conducted systematic observations of 1082 retail stores in 19 US cities and determined the availability and accessibility of 6 categories of energy-dense snack foods. Snack food was available in 41% of the stores; the most common forms were candy (33%), sweetened beverages (20%), and salty snacks (17%). These foods were often within arm's reach of the cash register queue. We observed snack foods in 96% of pharmacies, 94% of gasoline stations, 22% of furniture stores, 16% of apparel stores, and 29% to 65% of other types of stores. Availability varied somewhat by region but not by the racial or socioeconomic characteristics of nearby census tracts. Energy-dense snack foods and beverages, implicated as contributors to the obesity epidemic, are widely available in retail stores whose primary business is not food. The ubiquity of these products may contribute to excess energy consumption in the United States.

  5. Novel Descattering Approach for Stereo Vision in Dense Suspended Scatterer Environments

    PubMed Central

    Nguyen, Chanh D. Tr.; Park, Jihyuk; Cho, Kyeong-Yong; Kim, Kyung-Soo; Kim, Soohyun

    2017-01-01

    In this paper, we propose a model-based scattering removal method for stereo vision for robot manipulation in indoor scattering media where the commonly used ranging sensors are unable to work. Stereo vision is an inherently ill-posed and challenging problem. It is even more difficult in the case of images of dense fog or dense steam scenes illuminated by active light sources. Images taken in such environments suffer attenuation of object radiance and scattering of the active light sources. To solve this problem, we first derive the imaging model for images taken in a dense scattering medium with a single active illumination close to the cameras. Based on this physical model, the non-uniform backscattering signal is efficiently removed. The descattered images are then utilized as the input images of stereo vision. The performance of the method is evaluated based on the quality of the depth map from stereo vision. We also demonstrate the effectiveness of the proposed method by carrying out the real robot manipulation task. PMID:28629139

  6. The Ubiquity of Energy-Dense Snack Foods: A National Multicity Study

    PubMed Central

    Farley, Thomas A.; Baker, Erin T.; Rice, Janet C.

    2010-01-01

    Objectives. We assessed the availability and accessibility of energy-dense snacks in retail stores whose primary merchandise was not food and whether these varied by store type, region, or socioeconomic factors. Methods. We conducted systematic observations of 1082 retail stores in 19 US cities and determined the availability and accessibility of 6 categories of energy-dense snack foods. Results. Snack food was available in 41% of the stores; the most common forms were candy (33%), sweetened beverages (20%), and salty snacks (17%). These foods were often within arm's reach of the cash register queue. We observed snack foods in 96% of pharmacies, 94% of gasoline stations, 22% of furniture stores, 16% of apparel stores, and 29% to 65% of other types of stores. Availability varied somewhat by region but not by the racial or socioeconomic characteristics of nearby census tracts. Conclusions. Energy-dense snack foods and beverages, implicated as contributors to the obesity epidemic, are widely available in retail stores whose primary business is not food. The ubiquity of these products may contribute to excess energy consumption in the United States. PMID:20019297

  7. The JCMT Gould Belt Survey: A First Look at Dense Cores in Orion B

    NASA Astrophysics Data System (ADS)

    Kirk, H.; Di Francesco, J.; Johnstone, D.; Duarte-Cabral, A.; Sadavoy, S.; Hatchell, J.; Mottram, J. C.; Buckle, J.; Berry, D. S.; Broekhoven-Fiene, H.; Currie, M. J.; Fich, M.; Jenness, T.; Nutter, D.; Pattle, K.; Pineda, J. E.; Quinn, C.; Salji, C.; Tisi, S.; Hogerheijde, M. R.; Ward-Thompson, D.; Bastien, P.; Bresnahan, D.; Butner, H.; Chen, M.; Chrysostomou, A.; Coude, S.; Davis, C. J.; Drabek-Maunder, E.; Fiege, J.; Friberg, P.; Friesen, R.; Fuller, G. A.; Graves, S.; Greaves, J.; Gregson, J.; Holland, W.; Joncas, G.; Kirk, J. M.; Knee, L. B. G.; Mairs, S.; Marsh, K.; Matthews, B. C.; Moriarty-Schieven, G.; Mowat, C.; Rawlings, J.; Richer, J.; Robertson, D.; Rosolowsky, E.; Rumble, D.; Thomas, H.; Tothill, N.; Viti, S.; White, G. J.; Wouterloot, J.; Yates, J.; Zhu, M.

    2016-02-01

    We present a first look at the SCUBA-2 observations of three sub-regions of the Orion B molecular cloud: LDN 1622, NGC 2023/2024, and NGC 2068/2071, from the JCMT Gould Belt Legacy Survey. We identify 29, 564, and 322 dense cores in L1622, NGC 2023/2024, and NGC 2068/2071 respectively, using the SCUBA-2 850 μm map, and present their basic properties, including their peak fluxes, total fluxes, and sizes, and an estimate of the corresponding 450 μm peak fluxes and total fluxes, using the FellWalker source extraction algorithm. Assuming a constant temperature of 20 K, the starless dense cores have a mass function similar to that found in previous dense core analyses, with a Salpeter-like slope at the high-mass end. The majority of cores appear stable to gravitational collapse when considering only thermal pressure; indeed, most of the cores which have masses above the thermal Jeans mass are already associated with at least one protostar. At higher cloud column densities, above 1-2 × 1023 cm-2, most of the mass is found within dense cores, while at lower cloud column densities, below 1 × 1023 cm-2, this fraction drops to 10% or lower. Overall, the fraction of dense cores associated with a protostar is quite small (<8%), but becomes larger for the densest and most centrally concentrated cores. NGC 2023/2024 and NGC 2068/2071 appear to be on the path to forming a significant number of stars in the future, while L1622 has little additional mass in dense cores to form many new stars.

  8. Kubo–Greenwood approach to conductivity in dense plasmas with average atom models

    DOE PAGES

    Starrett, C. E.

    2016-04-13

    In this study, a new formulation of the Kubo–Greenwood conductivity for average atom models is given. The new formulation improves upon previous treatments by explicitly including the ionic-structure factor. Calculations based on this new expression lead to much improved agreement with ab initio results for DC conductivity of warm dense hydrogen and beryllium, and for thermal conductivity of hydrogen. We also give and test a slightly modified Ziman–Evans formula for the resistivity that includes a non-free electron density of states, thus removing an ambiguity in the original Ziman–Evans formula. Again, results based on this expression are in good agreement withmore » ab initio simulations for warm dense beryllium and hydrogen. However, for both these expressions, calculations of the electrical conductivity of warm dense aluminum lead to poor agreement at low temperatures compared to ab initio simulations.« less

  9. Progress towards an ab initio real-time treatment of warm dense matter

    NASA Astrophysics Data System (ADS)

    Baczewski, Andrew; Cangi, Attila; Hansen, Stephanie; Jensen, Daniel

    2017-10-01

    Time-dependent density functional theory (TDDFT) provides an accurate description of equilibrium properties of warm dense matter, such as the dynamic structure factor (Baczewski et al., Phys. Rev. Lett., 116(11), 2016). While non-equilibrium properties, such as stopping power, have also been demonstrated to be within the grasp of TDDFT, the ultrafast isochoric heating of condensed matter into the warm dense state, enabled by recent advances in XFELs, remains beyond its capabilities. In this talk, we will describe the successes of and continuing challenges for TDDFT for warm dense matter, and present progress towards a more complete ab initio treatment of isochoric x-ray heating. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the DOE's National Nuclear Security Administration under contract DE-NA0003525.

  10. Science and Technology for a Safer Nation

    DTIC Science & Technology

    2008-03-01

    facilities. “Harvesting Innovation” gathers detailed information about efforts supporting Laboratory-Directed Research and Development ( LDRD ...programs and shares this with DHS directors, division heads and program managers. Energy Department labs allocate some $400 million per year in LDRD ...correlate LDRD projects with DHS S&T strategic goals and ongoing programs as well as planned projects in all six S&T divisions. This minimizes

  11. Improved understanding of the acoustophoretic focusing of dense suspensions in a microchannel

    NASA Astrophysics Data System (ADS)

    Karthick, S.; Sen, A. K.

    2017-11-01

    We provide improved understanding of acoustophoretic focusing of a dense suspension (volume fraction φ >10 % ) in a microchannel subjected to an acoustic standing wave using a proposed theoretical model and experiments. The model is based on the theory of interacting continua and utilizes a momentum transport equation for the mixture, continuity equation, and transport equation for the solid phase. The model demonstrates the interplay between acoustic radiation and shear-induced diffusion (SID) forces that is critical in the focusing of dense suspensions. The shear-induced particle migration model of Leighton and Acrivos, coupled with the acoustic radiation force, is employed to simulate the continuum behavior of particles. In the literature, various closures for the diffusion coefficient Dφ* are available for rigid spheres at high concentrations and nonspherical deformable particles [e.g., red blood cells (RBCs)] at low concentrations. Here we propose a closure for Dφ* for dense suspension of RBCs and validate the proposed model with experimental data. While the available closures for Dφ* fail to predict the acoustic focusing of a dense suspension of nonspherical deformable particles like RBCs, the predictions of the proposed model match experimental data within 15%. Both the model and experiments reveal a competition between acoustic radiation and SID forces that gives rise to an equilibrium width w* of a focused stream of particles at some distance Leq* along the flow direction. Using different shear rates, acoustic energy densities, and particle concentrations, we show that the equilibrium width is governed by Péclet number Pe and Strouhal number Stas w*=1.4(PeSt) -0.5 while the length required to obtain the equilibrium-focused width depends on St as Leq*=3.8 /(St)0.6 . The proposed model and correlations would find significance in the design of microchannels for acoustic focusing of dense suspensions such as undiluted blood.

  12. Fine structure of the vapor field in evaporating dense sprays

    NASA Astrophysics Data System (ADS)

    Villermaux, Emmanuel; Moutte, Alexandre; Amielh, Muriel; Meunier, Patrice

    2017-11-01

    Making use of an original technique which permits the simultaneous measurement of both the displacement field of evaporating droplets in a spray, and of their vapor, we investigate the relevance of a scenario introduced earlier to describe the evaporation dynamics of dense sprays. A plume of dense acetone droplets evaporating in air is studied, for which the stirring field is measured by particle image velocimetry of the droplets, and the vapor field is imaged quantitatively by laser-induced fluorescence. We show, thanks to these unique in situ measurements, that the spray boundary with the diluting environment is slaved to the dynamics of its saturating vapor concentration field, whose structure is analyzed for different well defined local flow topologies.

  13. 3D numerical calculations and synthetic observations of magnetized massive dense core collapse and fragmentation.

    NASA Astrophysics Data System (ADS)

    Commerçon, B.; Hennebelle, P.; Levrier, F.; Launhardt, R.; Henning, Th.

    2012-03-01

    I will present radiation-magneto-hydrodynamics calculations of low-mass and massive dense core collapse, focusing on the first collapse and the first hydrostatic core (first Larson core) formation. The influence of magnetic field and initial mass on the fragmentation properties will be investigated. In the first part reporting low mass dense core collapse calculations, synthetic observations of spectral energy distributions will be derived, as well as classical observational quantities such as bolometric temperature and luminosity. I will show how the dust continuum can help to target first hydrostatic cores and to state about the nature of VeLLOs. Last, I will present synthetic ALMA observation predictions of first hydrostatic cores which may give an answer, if not definitive, to the fragmentation issue at the early Class 0 stage. In the second part, I will report the results of radiation-magneto-hydrodynamics calculations in the context of high mass star formation, using for the first time a self-consistent model for photon emission (i.e. via thermal emission and in radiative shocks) and with the high resolution necessary to resolve properly magnetic braking effects and radiative shocks on scales <100 AU (Commercon, Hennebelle & Henning ApJL 2011). In this study, we investigate the combined effects of magnetic field, turbulence, and radiative transfer on the early phases of the collapse and the fragmentation of massive dense cores (M=100 M_⊙). We identify a new mechanism that inhibits initial fragmentation of massive dense cores, where magnetic field and radiative transfer interplay. We show that this interplay becomes stronger as the magnetic field strength increases. We speculate that highly magnetized massive dense cores are good candidates for isolated massive star formation, while moderately magnetized massive dense cores are more appropriate to form OB associations or small star clusters. Finally we will also present synthetic observations of these

  14. Calculation of Transport Coefficients in Dense Plasma Mixtures

    NASA Astrophysics Data System (ADS)

    Haxhimali, T.; Cabot, W. H.; Caspersen, K. J.; Greenough, J.; Miller, P. L.; Rudd, R. E.; Schwegler, E. R.

    2011-10-01

    We use classical molecular dynamics (MD) to estimate species diffusivity and viscosity in mixed dense plasmas. The Yukawa potential is used to describe the screened Coulomb interaction between the ions. This potential has been used widely, providing the basis for models of dense stellar materials, inertial confined plasmas, and colloidal particles in electrolytes. We calculate transport coefficients in equilibrium simulations using the Green- Kubo relation over a range of thermodynamic conditions including the viscosity and the self - diffusivity for each component of the mixture. The interdiffusivity (or mutual diffusivity) can then be related to the self-diffusivities by using a generalization of the Darken equation. We have also employed non-equilibrium MD to estimate interdiffusivity during the broadening of the interface between two regions each with a high concentration of either species. Here we present results for an asymmetric mixture between Ar and H. These can easily be extended to other plasma mixtures. A main motivation for this study is to develop accurate transport models that can be incorporated into the hydrodynamic codes to study hydrodynamic instabilities. We use classical molecular dynamics (MD) to estimate species diffusivity and viscosity in mixed dense plasmas. The Yukawa potential is used to describe the screened Coulomb interaction between the ions. This potential has been used widely, providing the basis for models of dense stellar materials, inertial confined plasmas, and colloidal particles in electrolytes. We calculate transport coefficients in equilibrium simulations using the Green- Kubo relation over a range of thermodynamic conditions including the viscosity and the self - diffusivity for each component of the mixture. The interdiffusivity (or mutual diffusivity) can then be related to the self-diffusivities by using a generalization of the Darken equation. We have also employed non-equilibrium MD to estimate interdiffusivity during

  15. Comment I on ''Dense coding in entangled states''

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wojcik, Antoni; Grudka, Andrzej

    2003-07-01

    In this Comment we question the recent analysis of two dense coding protocols presented by Lee, Ahn, and Hwang [Phys. Rev. A 66, 024304 (2002)]. We argue that in the case of two-party communication protocol, there is no reason for using a maximally entangled state of more than two qubits.

  16. Development and utilization of new diagnostics for dense-phase pneumatic transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Dense-phase pneumatic transport is an attractive means of conveying solids. Unfortunately, because of the high solid concentrations, this transport method is a difficult regime in which to carry out detailed measurements. Hence most details of the flow are unknown. In this context, the main objective of this work is to develop probes for local measurements of solid velocity and holdup in dense gas-solid flows. Because we anticipate the recent theories of rapid granular flows will bring insight to the dense pneumatic transport of particles, we have sought to substantiate these theories through computer simulations. There we have verified the theorymore » of Hanes, Jenkins Richman (1988) for the rapid, steady shear flow of identical, smooth, nearly elastics disks driven by identical, parallel, bumpy boundaries. Because granular flows depend strongly on the nature of their interaction with a boundary, we have verified the boundary conditions calculated by Jenkins (1991) for spheres interacting with a flat, frictional surface. During the previous reporting period, we began a study of the time relaxation of the second moment of velocity fluctuations for a collection of disks undergoing simple shear. In the present reporting period, we have completed this study of relaxation by comparing results of simulations with the theoretical predictions of Jenkins and Richman (1988). In addition, we have concluded a series of experiments with flour plugs in the dense-phase pneumatic setup. Finally, we have established several industrial contacts to transfer the diagnostic techniques developed under this contract. 7 refs., 11 figs.« less

  17. Inferring segmented dense motion layers using 5D tensor voting.

    PubMed

    Min, Changki; Medioni, Gérard

    2008-09-01

    We present a novel local spatiotemporal approach to produce motion segmentation and dense temporal trajectories from an image sequence. A common representation of image sequences is a 3D spatiotemporal volume, (x,y,t), and its corresponding mathematical formalism is the fiber bundle. However, directly enforcing the spatiotemporal smoothness constraint is difficult in the fiber bundle representation. Thus, we convert the representation into a new 5D space (x,y,t,vx,vy) with an additional velocity domain, where each moving object produces a separate 3D smooth layer. The smoothness constraint is now enforced by extracting 3D layers using the tensor voting framework in a single step that solves both correspondence and segmentation simultaneously. Motion segmentation is achieved by identifying those layers, and the dense temporal trajectories are obtained by converting the layers back into the fiber bundle representation. We proceed to address three applications (tracking, mosaic, and 3D reconstruction) that are hard to solve from the video stream directly because of the segmentation and dense matching steps, but become straightforward with our framework. The approach does not make restrictive assumptions about the observed scene or camera motion and is therefore generally applicable. We present results on a number of data sets.

  18. Exploring interspace: open space opportunities in dense urban areas

    Treesearch

    Paul H. Gobster; Kathleen E. Dickhut

    1995-01-01

    Using ideas from landscape ecology, this paper explores how small open spaces can aid urban forestry efforts in dense urban areas. A case study in Chicago illustrates the physical and social lessons learned in dealing with these spaces.

  19. Densely ionizing radiation affects DNA methylation of selective LINE-1 elements1

    PubMed Central

    Prior, Sara; Miousse, Isabelle R.; Nzabarushimana, Etienne; Pathak, Rupak; Skinner, Charles; Kutanzi, Kristy R.; Allen, Antiño R.; Raber, Jacob; Tackett, Alan J.; Hauer-Jensen, Martin; Nelson, Gregory A.; Koturbash, Igor

    2016-01-01

    Long Interspersed Nucleotide Element 1 (LINE-1) retrotransposons are heavily methylated and are the most abundant transposable elements in mammalian genomes. Here, we investigated the differential DNA methylation within the LINE-1 under normal conditions and in response to environmentally relevant doses of sparsely and densely ionizing radiation. We demonstrate that DNA methylation of LINE-1 elements in the lungs of C57BL6 mice is dependent on their evolutionary age, where the elder age of the element is associated with the lower extent of DNA methylation. Exposure to 5-aza-2′-deoxycytidine and methionine-deficient diet affected DNA methylation of selective LINE-1 elements in an age- and promoter type-dependent manner. Exposure to densely IR, but not sparsely IR, resulted in DNA hypermethylation of older LINE-1 elements, while the DNA methylation of evolutionary younger elements remained mostly unchanged. We also demonstrate that exposure to densely IR increased mRNA and protein levels of LINE-1 via the loss of the histone H3K9 dimethylation and an increase in the H3K4 trimethylation at the LINE-1 5′-untranslated region, independently of DNA methylation. Our findings suggest that DNA methylation is important for regulation of LINE-1 expression under normal conditions, but histone modifications may dictate the transcriptional activity of LINE-1 in response to exposure to densely IR. PMID:27419368

  20. Significantly different pulse shapes for γ- and α-rays in Gd3Al2Ga3O12:Ce3+ scintillating crystals

    NASA Astrophysics Data System (ADS)

    Kobayashi, Masaaki; Tamagawa, Yoichi; Tomita, Shougo; Yamamoto, Akihiro; Ogawa, Izumi; Usuki, Yoshiyuki

    2012-12-01

    We have found that scintillation in Gd3Al2Ga3O12 (GAGG):Ce3+ garnet single crystals has significantly different pulse shapes for 0.662 MeV γ- and 5.47 MeV α-rays. The decay and rise times for γ-rays are smaller by 50% and threefold, respectively, than those for α-rays. Because the GAGG:Ce is a dense, efficient and fast-response scintillator and because it can be grown in large-size single crystals, it should be a promising unified target and a detector material in the study of neutrinoless double beta decay of 160Gd through the use of pulse shape discrimination between the β-ray signals and the α-ray-induced backgrounds.

  1. Left ventricular strain and its pattern estimated from cine CMR and validation with DENSE

    NASA Astrophysics Data System (ADS)

    Gao, Hao; Allan, Andrew; McComb, Christie; Luo, Xiaoyu; Berry, Colin

    2014-07-01

    Measurement of local strain provides insight into the biomechanical significance of viable myocardium. We attempted to estimate myocardial strain from cine cardiovascular magnetic resonance (CMR) images by using a b-spline deformable image registration method. Three healthy volunteers and 41 patients with either recent or chronic myocardial infarction (MI) were studied at 1.5 Tesla with both cine and DENSE CMR. Regional circumferential and radial left ventricular strains were estimated from cine and DENSE acquisitions. In all healthy volunteers, there was no difference for peak circumferential strain (- 0.18 ± 0.04 versus - 0.18 ± 0.03, p = 0.76) between cine and DENSE CMR, however peak radial strain was overestimated from cine (0.84 ± 0.37 versus 0.49 ± 0.2, p < 0.01). In the patient study, the peak strain patterns predicted by cine were similar to the patterns from DENSE, including the strain evolution related to recovery time and strain patterns related to MI scar extent. Furthermore, cine-derived strain disclosed different strain patterns in MI and non-MI regions, and regions with transmural and non-transmural MI as DENSE. Although there were large variations with radial strain measurements from cine CMR images, useful circumferential strain information can be obtained from routine clinical CMR imaging. Cine strain analysis has potential to improve the diagnostic yield from routine CMR imaging in clinical practice.

  2. Astrophysical Nuclear Reaction Rates in the Dense Metallic Environments

    NASA Astrophysics Data System (ADS)

    Kilic, Ali Ihsan

    2017-09-01

    Nuclear reaction rates can be enhanced by many orders of magnitude in dense and relatively cold astrophysical plasmas such as in white dwarfs, brown dwarfs, and giant planets. Similar conditions are also present in supernova explosions where the ignition conditions are vital for cosmological models. White dwarfs are compact objects that have both extremely high interior densities and very strong local magnetic fields. For the first time, a new formula has been developed to explain cross section and reaction rate quantities for light elements that includes not only the nuclear component but also the material dependence, magnetic field, and crystal structure dependency in dense metallic environments. I will present the impact of the developed formula on the cross section and reaction rates for light elements. This could have possible technological applications in energy production using nuclear fusion reactions.

  3. XPS and biocompatibility studies of titania film on anodized NiTi shape memory alloy.

    PubMed

    Chu, C L; Wang, R M; Hu, T; Yin, L H; Pu, Y P; Lin, P H; Dong, Y S; Guo, C; Chung, C Y; Yeung, K W K; Chu, Paul K

    2009-01-01

    A dense titania film is fabricated in situ on NiTi shape memory alloy (SMA) by anodic oxidation in a Na(2)SO(4) electrolyte. The microstructure of the titania film and its influence on the biocompatibility of NiTi SMA are investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICPMS), hemolysis analysis, and platelet adhesion test. The results indicate that the titania film has a Ni-free zone near the surface and can effectively block the release of harmful Ni ions from the NiTi substrate in simulated body fluids. Moreover, the wettability, hemolysis resistance, and thromboresistance of the NiTi sample are improved by this anodic oxidation method.

  4. BOX-COUNTING DIMENSION COMPUTED BY α-DENSE CURVES

    NASA Astrophysics Data System (ADS)

    García, G.; Mora, G.; Redtwitz, D. A.

    We introduce a method to reduce to the real case the calculus of the box-counting dimension of subsets of the unit cube In, n > 1. The procedure is based on the existence of special types of α-dense curves (a generalization of the space-filling curves) in In called δ-uniform curves.

  5. Ultrastructural histochemical investigations of "dense deposit disease". Pathogenetic approach to a special type of mesangiocapillary glomerulonephritis.

    PubMed

    Muda, A O; Barsotti, P; Marinozzi, V

    1988-01-01

    Dense deposit disease is characterized by the presence of intramembranous dense deposits; their constituents are unknown but immunological and biochemical studies have demonstrated that they contain no gamma-globulins or any other plasma protein. In order to clarify the nature of the dense deposits better, we investigated their most distinctive character, (marked electron-density) by means of ultrastructural histochemistry techniques using thin sections from Formaldehyde fixed, OsO4 postfixed and Epon embedded specimens collected for diagnostic electron microscopy. The dense deposits have a higher osmium affinity than the lamina densa of normal basement membranes, and the electron-density is strictly osmium-dependent suggesting the presence of a lipid component. Further data, obtained using an extraction method for lipids, seems to confirm our hypothesis.

  6. Models of the elastic x-ray scattering feature for warm dense aluminum

    DOE PAGES

    Starrett, Charles Edward; Saumon, Didier

    2015-09-03

    The elastic feature of x-ray scattering from warm dense aluminum has recently been measured by Fletcher et al. [Nature Photonics 9, 274 (2015)] with much higher accuracy than had hitherto been possible. This measurement is a direct test of the ionic structure predicted by models of warm dense matter. We use the method of pseudoatom molecular dynamics to predict this elastic feature for warm dense aluminum with temperatures of 1–100 eV and densities of 2.7–8.1g/cm 3. We compare these predictions to experiments, finding good agreement with Fletcher et al. and corroborating the discrepancy found in analyses of an earlier experimentmore » of Ma et al. [Phys. Rev. Lett. 110, 065001 (2013)]. Lastly, we also evaluate the validity of the Thomas-Fermi model of the electrons and of the hypernetted chain approximation in computing the elastic feature and find them both wanting in the regime currently probed by experiments.« less

  7. THE JCMT GOULD BELT SURVEY: A FIRST LOOK AT DENSE CORES IN ORION B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirk, H.; Francesco, J. Di; Johnstone, D.

    2016-02-01

    We present a first look at the SCUBA-2 observations of three sub-regions of the Orion B molecular cloud: LDN 1622, NGC 2023/2024, and NGC 2068/2071, from the JCMT Gould Belt Legacy Survey. We identify 29, 564, and 322 dense cores in L1622, NGC 2023/2024, and NGC 2068/2071 respectively, using the SCUBA-2 850 μm map, and present their basic properties, including their peak fluxes, total fluxes, and sizes, and an estimate of the corresponding 450 μm peak fluxes and total fluxes, using the FellWalker source extraction algorithm. Assuming a constant temperature of 20 K, the starless dense cores have a mass function similar to that found inmore » previous dense core analyses, with a Salpeter-like slope at the high-mass end. The majority of cores appear stable to gravitational collapse when considering only thermal pressure; indeed, most of the cores which have masses above the thermal Jeans mass are already associated with at least one protostar. At higher cloud column densities, above 1–2 × 10{sup 23} cm{sup −2}, most of the mass is found within dense cores, while at lower cloud column densities, below 1 × 10{sup 23} cm{sup −2}, this fraction drops to 10% or lower. Overall, the fraction of dense cores associated with a protostar is quite small (<8%), but becomes larger for the densest and most centrally concentrated cores. NGC 2023/2024 and NGC 2068/2071 appear to be on the path to forming a significant number of stars in the future, while L1622 has little additional mass in dense cores to form many new stars.« less

  8. New shape models of asteroids reconstructed from sparse-in-time photometry

    NASA Astrophysics Data System (ADS)

    Durech, Josef; Hanus, Josef; Vanco, Radim; Oszkiewicz, Dagmara Anna

    2015-08-01

    Asteroid physical parameters - the shape, the sidereal rotation period, and the spin axis orientation - can be reconstructed from the disk-integrated photometry either dense (classical lightcurves) or sparse in time by the lightcurve inversion method. We will review our recent progress in asteroid shape reconstruction from sparse photometry. The problem of finding a unique solution of the inverse problem is time consuming because the sidereal rotation period has to be found by scanning a wide interval of possible periods. This can be efficiently solved by splitting the period parameter space into small parts that are sent to computers of volunteers and processed in parallel. We will show how this approach of distributed computing works with currently available sparse photometry processed in the framework of project Asteroids@home. In particular, we will show the results based on the Lowell Photometric Database. The method produce reliable asteroid models with very low rate of false solutions and the pipelines and codes can be directly used also to other sources of sparse photometry - Gaia data, for example. We will present the distribution of spin axis of hundreds of asteroids, discuss the dependence of the spin obliquity on the size of an asteroid,and show examples of spin-axis distribution in asteroid families that confirm the Yarkovsky/YORP evolution scenario.

  9. Novel method for measuring a dense 3D strain map of robotic flapping wings

    NASA Astrophysics Data System (ADS)

    Li, Beiwen; Zhang, Song

    2018-04-01

    Measuring dense 3D strain maps of the inextensible membranous flapping wings of robots is of vital importance to the field of bio-inspired engineering. Conventional high-speed 3D videography methods typically reconstruct the wing geometries through measuring sparse points with fiducial markers, and thus cannot obtain the full-field mechanics of the wings in detail. In this research, we propose a novel system to measure a dense strain map of inextensible membranous flapping wings by developing a superfast 3D imaging system and a computational framework for strain analysis. Specifically, first we developed a 5000 Hz 3D imaging system based on the digital fringe projection technique using the defocused binary patterns to precisely measure the dynamic 3D geometries of rapidly flapping wings. Then, we developed a geometry-based algorithm to perform point tracking on the precisely measured 3D surface data. Finally, we developed a dense strain computational method using the Kirchhoff-Love shell theory. Experiments demonstrate that our method can effectively perform point tracking and measure a highly dense strain map of the wings without many fiducial markers.

  10. Antiproton beam polarizer using a dense polarized target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wojtsekhowski, Bogdan

    2011-05-01

    We describe considerations regarding the spin filtering method for the antiproton beam. The proposed investigation of the double polarization cross section for antiproton to nucleon interaction is outlined. It will use a single path of the antiproton beam through a dense polarized target, e.g. 3He or CH2, followed by a polarimeter.

  11. Retrieving Coherent Receiver Function Images with Dense Arrays

    NASA Astrophysics Data System (ADS)

    Zhong, M.; Zhan, Z.

    2016-12-01

    Receiver functions highlight converted phases (e.g., Ps, PpPs, sP) and have been widely used to study seismic interfaces. With a dense array, receiver functions (RFs) at multiple stations form a RF image that can provide more robust/detailed constraints. However, due to noise in data, non-uniqueness of deconvolution, and local structures that cannot be detected across neighboring stations, traditional RF images are often noisy and hard to interpret. Previous attempts to enhance coherence by stacking RFs from multiple events or post-filtering the RF images have not produced satisfactory improvements. Here, we propose a new method to retrieve coherent RF images with dense arrays. We take advantage of the waveform coherency at neighboring stations and invert for a small number of coherent arrivals for their RFs. The new RF images contain only the coherent arrivals required to fit data well. Synthetic tests and preliminary applications on real data demonstrate that the new RF images are easier to interpret and improve our ability to infer Earth structures using receiver functions.

  12. On dense water formation in shelves of the Aegean Sea during the year 1987

    NASA Astrophysics Data System (ADS)

    Salusti, Ettore; Bellacicco, Marco; Anagnostou, Christos; Rinaldi, Eleonora; Tripsanas, Efthymios

    2015-04-01

    We here investigate the role of the rather virgin year 1987, when some modern data are available but before the main EMT event. A combination of field, satellite and numerical model temperature and salinity data from PROTHEUS, as well as a coupled ocean-atmosphere model, are used to implement theoretical models. After its formation over a sloping shelf of some important points in the Aegean Sea, due to the strong cold winter winds, a dense water patch can either have a dramatic downflow or can start a slow geostrophic descent along shelves and then following isobaths, best described by streamtube models. The most important, among these shelves characterized by a strong air sea interaction, have been identified from satellite data. The Northernmost shelves are those north of the island of Samothrace and in the Northern Thermaikos Gulf. In agreement with the field measuraments of Georgopoulos et al. (1987) also the shallow shelf between Limnos and Goceada was a source of very dense water, as well as thr shelf between Lesbos and the Turkish coast. Most probably also the shelves around the Cycladic Plateau were affected by strong winds and contributed to the Aegean Sea deep water formation. In addition, other theoretical models of wind-induced coastal upwelling allow to infer temperature and salinity information of dense water dynamics along the shallow coasts and shelves of the Aegean Sea. All this allows a heuristic application of classical T/S diagrams to estimate Northern Aegean dense water evolution and spreading, that nicely supports the early ideas of Zervakis et al. (2000). A complex situation about the Cycladic Plateau dynamics is also analyzed in correlation with sediment locations. Indeed seismic-reflection profiles confirm the presence of a contourite location along the northeast Cyclades Plateau shelves. All this interestingly opens novel prospective about the dense water coastal formation shelves. In synthesis such field, numerical and satellite data

  13. Special Specification 3XXX, dense-graded hot-mix asphalt.

    DOT National Transportation Integrated Search

    2004-01-01

    Construct a hot-mix asphalt (HMA) pavement layer composed of a compacted, dense-graded mixture of aggregate and asphalt binder mixed hot in a mixing plant. Pay adjustments will apply to HMA placed under this specification unless the HMA is deemed exe...

  14. Maternal dietary counseling reduces consumption of energy-dense foods among infants: a randomized controlled trial.

    PubMed

    Vitolo, Marcia Regina; Bortolini, Gisele Ane; Campagnolo, Paula Dal Bo; Hoffman, Daniel J

    2012-01-01

    To evaluate the impact of a dietary counseling in reducing the intake of energy-dense foods by infants. A randomized controlled trial. São Leopoldo, Brazil. Mothers and infants of a low-income-group population were randomized into intervention (n = 163) and received dietary counseling during 10 home visits, or control (n = 234) groups. Child consumption of sugar-dense (SD) and lipid-dense (LD) foods at 12 to 16 months. The effect of the intervention was expressed by relative risks and 95% confidence intervals. Poisson regression analysis was used to determine the association between exclusive breastfeeding and the energy-dense foods intake. A smaller proportion of infants from the intervention group consumed candy, soft drinks, honey, cookies, chocolate, and salty snacks. In the intervention group, there was a reduction of 40% and 50% in the proportion of infants who consumed LD and SD foods, respectively. Being breastfed up to 6 months reduced the risk for consumption of LD and SD foods by 58% and 67%, respectively. Dietary counseling to mothers may be effective in reducing the consumption of energy-dense foods among infants, and it is helpful in improving early dietary habits. Copyright © 2012 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  15. Predictors of changes in adolescents' consumption of fruits, vegetables and energy-dense snacks.

    PubMed

    Pearson, Natalie; Ball, Kylie; Crawford, David

    2011-03-01

    Understanding the predictors of developmental changes in adolescent eating behaviours is important for the design of nutrition interventions. The present study examined associations between individual, social and physical environmental factors and changes in adolescent eating behaviours over 2 years. Consumption of fruits, vegetables and energy-dense snacks was assessed using a Web-based survey completed by 1850 adolescents from years 7 and 9 of secondary schools in Victoria, Australia, at baseline and 2 years later. Perceived value of healthy eating, self-efficacy for healthy eating, social modelling and support, and home availability and accessibility of foods were assessed at baseline. Self-efficacy for increasing fruit consumption was positively associated with the change in fruit and vegetable consumption, while self-efficacy for decreasing junk food consumption was inversely associated with the change in energy-dense snack consumption. Home availability of energy-dense foods was inversely associated with the change in fruit consumption and positively associated with the change in energy-dense snack consumption, while home availability of fruits and vegetables was positively associated with the change in vegetable consumption. Perceived value of healthy eating and modelling of healthy eating by mothers were positively associated with the change in fruit consumption. Support of best friends for healthy eating was positively associated with the change in vegetable consumption. Self-efficacy and home availability of foods appear to be consistent predictors of change in fruit, vegetable and energy-dense snack consumption. Future study should assess the effectiveness of methods to increase self-efficacy for healthy eating and to improve home availability of healthy food options in programmes promoting healthy eating among adolescents.

  16. Radial chromatin positioning is shaped by local gene density, not by gene expression

    PubMed Central

    2009-01-01

    G- and R-bands of metaphase chromosomes are characterized by profound differences in gene density, CG content, replication timing, and chromatin compaction. The preferential localization of gene-dense, transcriptionally active, and early replicating chromatin in the nuclear interior and of gene-poor, later replicating chromatin at the nuclear envelope has been demonstrated to be evolutionary-conserved in various cell types. Yet, the impact of different local chromatin features on the radial nuclear arrangement of chromatin is still not well understood. In particular, it is not known whether radial chromatin positioning is preferentially shaped by local gene density per se or by other related parameters such as replication timing or transcriptional activity. The interdependence of these distinct chromatin features on the linear deoxyribonucleic acid (DNA) sequence precludes a simple dissection of these parameters with respect to their importance for the reorganization of the linear DNA organization into the distinct radial chromatin arrangements observed in the nuclear space. To analyze this problem, we generated probe sets of pooled bacterial artificial chromosome (BAC) clones from HSA 11, 12, 18, and 19 representing R/G-band-assigned chromatin, segments with different gene density and gene loci with different expression levels. Using multicolor 3D flourescent in situ hybridization (FISH) and 3D image analysis, we determined their localization in the nucleus and their positions within or outside the corresponding chromosome territory (CT). For each BAC data on local gene density within 2- and 10-Mb windows, as well as GC (guanine and cytosine) content, replication timing and expression levels were determined. A correlation analysis of these parameters with nuclear positioning revealed regional gene density as the decisive parameter determining the radial positioning of chromatin in the nucleus in contrast to band assignment, replication timing, and transcriptional

  17. Molecular dynamics simulations of dense plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, L.A.; Kress, J.D.; Kwon, I.

    1993-12-31

    We have performed quantum molecular dynamics simulations of hot, dense plasmas of hydrogen over a range of temperatures(0.1-5eV) and densities(0.0625-5g/cc). We determine the forces quantum mechanically from density functional, extended Huckel, and tight binding techniques and move the nuclei according to the classical equations of motion. We determine pair-correlation functions, diffusion coefficients, and electrical conductivities. We find that many-body effects predominate in this regime. We begin to obtain agreement with the OCP and Thomas-Fermi models only at the higher temperatures and densities.

  18. Fluorescence and absorption spectroscopy for warm dense matter studies and ICF plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Hansen, S. B.; Harding, E. C.; Knapp, P. F.; Gomez, M. R.; Nagayama, T.; Bailey, J. E.

    2018-05-01

    The burning core of an inertial confinement fusion (ICF) plasma produces bright x-rays at stagnation that can directly diagnose core conditions essential for comparison to simulations and understanding fusion yields. These x-rays also backlight the surrounding shell of warm, dense matter, whose properties are critical to understanding the efficacy of the inertial confinement and global morphology. We show that the absorption and fluorescence spectra of mid-Z impurities or dopants in the warm dense shell can reveal the optical depth, temperature, and density of the shell and help constrain models of warm, dense matter. This is illustrated by the example of a high-resolution spectrum collected from an ICF plasma with a beryllium shell containing native iron impurities. Analysis of the iron K-edge provides model-independent diagnostics of the shell density (2.3 × 1024 e/cm3) and temperature (10 eV), while a 12-eV red shift in Kβ and 5-eV blue shift in the K-edge discriminate among models of warm dense matter: Both shifts are well described by a self-consistent field model based on density functional theory but are not fully consistent with isolated-atom models using ad-hoc density effects.

  19. Fluorescence and absorption spectroscopy for warm dense matter studies and ICF plasma diagnostics

    DOE PAGES

    Hansen, Stephanie B.; Harding, Eric C.; Knapp, Patrick F.; ...

    2018-03-07

    The burning core of an inertial confinement fusion (ICF) plasma produces bright x-rays at stagnation that can directly diagnose core conditions essential for comparison to simulations and understanding fusion yields. These x-rays also backlight the surrounding shell of warm, dense matter, whose properties are critical to understanding the efficacy of the inertial confinement and global morphology. In this work, we show that the absorption and fluorescence spectra of mid-Z impurities or dopants in the warm dense shell can reveal the optical depth, temperature, and density of the shell and help constrain models of warm, dense matter. This is illustrated bymore » the example of a high-resolution spectrum collected from an ICF plasma with a beryllium shell containing native iron impurities. Lastly, analysis of the iron K-edge provides model-independent diagnostics of the shell density (2.3 × 10 24 e/cm 3) and temperature (10 eV), while a 12-eV red shift in Kβ and 5-eV blue shift in the K-edge discriminate among models of warm dense matter: Both shifts are well described by a self-consistent field model based on density functional theory but are not fully consistent with isolated-atom models using ad-hoc density effects.« less

  20. Deterministic and unambiguous dense coding

    NASA Astrophysics Data System (ADS)

    Wu, Shengjun; Cohen, Scott M.; Sun, Yuqing; Griffiths, Robert B.

    2006-04-01

    Optimal dense coding using a partially-entangled pure state of Schmidt rank Dmacr and a noiseless quantum channel of dimension D is studied both in the deterministic case where at most Ld messages can be transmitted with perfect fidelity, and in the unambiguous case where when the protocol succeeds (probability τx ) Bob knows for sure that Alice sent message x , and when it fails (probability 1-τx ) he knows it has failed. Alice is allowed any single-shot (one use) encoding procedure, and Bob any single-shot measurement. For Dmacr ⩽D a bound is obtained for Ld in terms of the largest Schmidt coefficient of the entangled state, and is compared with published results by Mozes [Phys. Rev. A71, 012311 (2005)]. For Dmacr >D it is shown that Ld is strictly less than D2 unless Dmacr is an integer multiple of D , in which case uniform (maximal) entanglement is not needed to achieve the optimal protocol. The unambiguous case is studied for Dmacr ⩽D , assuming τx>0 for a set of Dmacr D messages, and a bound is obtained for the average ⟨1/τ⟩ . A bound on the average ⟨τ⟩ requires an additional assumption of encoding by isometries (unitaries when Dmacr =D ) that are orthogonal for different messages. Both bounds are saturated when τx is a constant independent of x , by a protocol based on one-shot entanglement concentration. For Dmacr >D it is shown that (at least) D2 messages can be sent unambiguously. Whether unitary (isometric) encoding suffices for optimal protocols remains a major unanswered question, both for our work and for previous studies of dense coding using partially-entangled states, including noisy (mixed) states.

  1. Gravity-driven dense granular flows

    NASA Astrophysics Data System (ADS)

    Ertas, Deniz

    2002-03-01

    Despite their importance in many areas of science and technology, the emergent physics of hard granular systems remain largely obscure, especially when the packing density approaches that of a jammed system. In particular, I will focus on the rheology of gravity-driven dense granular flows on an incline with a ``rough" bottom in two and three dimensions. We have conducted large-scale molecular dynamics simulations of spheres that interact through linear damped spring or Hertzian force laws with a Coulomb failure criterion(D. Ertaş) et al., Europhys. Lett. 56, 214 (2001); L.E. Silbert et al., Phys. Rev. E 64, 051302 (2001).. This flow geometry produces a constant density profile, and reproduces key features of such flows that have been observed experimentally(O. Pouliquen, Phys. Fluids 11), 542 (1999), such as an angle of repose that depends on flow thickness, steady-state solutions at varying heights for a given inclination angle, and the scaling of the mean particle velocity with pile height (< v > ∝ H^3/2). These successes prompted us to carefully examine the rheology in the interior of the pile by measuring the full stress and strain tensors, which are generally unavailable through experiments. The type of force law has little impact on the behavior of the system. The bulk rheology can be approximately described in terms of extensions of Chapman-Enskog theory to dense packings(L. Bocquet et al.), cond-mat/0112072. However, close to the angle of repose, this description fails near the free surface, which exhibits a rheology dominated by normal stress differences that are small in the bulk. This change in rheology can be qualitatively understood in terms of stress-bearing force networks that are continuously formed by ``gravitational inelastic collapse" and destroyed by the imposed strain.

  2. Comment II on ''Dense coding in entangled states''

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhavan, O.; Institute for Studies in Theoretical Physics and Mathematics; Rezakhani, A. T.

    2003-07-01

    In a recent Brief Report, L. Lee, D. Ahn, and S. W. Hwang [Phys. Rev. A 66, 024304 (2002)] have claimed that using pairwise entangled qubits gives rise to an exponentially more efficient dense coding when two parties are involved than using maximally entangled qubits shared among N parties. Here we show that their claim is not true.

  3. Generation of dense statistical connectomes from sparse morphological data

    PubMed Central

    Egger, Robert; Dercksen, Vincent J.; Udvary, Daniel; Hege, Hans-Christian; Oberlaender, Marcel

    2014-01-01

    Sensory-evoked signal flow, at cellular and network levels, is primarily determined by the synaptic wiring of the underlying neuronal circuitry. Measurements of synaptic innervation, connection probabilities and subcellular organization of synaptic inputs are thus among the most active fields of research in contemporary neuroscience. Methods to measure these quantities range from electrophysiological recordings over reconstructions of dendrite-axon overlap at light-microscopic levels to dense circuit reconstructions of small volumes at electron-microscopic resolution. However, quantitative and complete measurements at subcellular resolution and mesoscopic scales to obtain all local and long-range synaptic in/outputs for any neuron within an entire brain region are beyond present methodological limits. Here, we present a novel concept, implemented within an interactive software environment called NeuroNet, which allows (i) integration of sparsely sampled (sub)cellular morphological data into an accurate anatomical reference frame of the brain region(s) of interest, (ii) up-scaling to generate an average dense model of the neuronal circuitry within the respective brain region(s) and (iii) statistical measurements of synaptic innervation between all neurons within the model. We illustrate our approach by generating a dense average model of the entire rat vibrissal cortex, providing the required anatomical data, and illustrate how to measure synaptic innervation statistically. Comparing our results with data from paired recordings in vitro and in vivo, as well as with reconstructions of synaptic contact sites at light- and electron-microscopic levels, we find that our in silico measurements are in line with previous results. PMID:25426033

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    W. Wester

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab. LDRD is able to fund employee-initiated proposals that address the current strategic objectivesmore » and better position Fermilab for future mission needs. The request for such funds is made in consideration of the investment needs, affordability, and directives from DOE and Congress. Review procedures of the proposals will insure that those proposals which most address the strategic goals of the DOE and the Laboratory or which best position Fermilab for the future will be recommended to the Laboratory Director who has responsibility for approval. The execution of each approved project will be the responsibility of the Principal Investigator, PI, who will follow existing Laboratory guidelines to ensure compliance with safety, environmental, and quality assurance practices. A Laboratory Director-appointed LDRD Coordinator will work with Committees, Laboratory Management, other Fermilab Staff, and the PI’s to oversee the implementation of policies and procedures of LDRD and provide the management and execution of this Annual Program Plan. FY16 represents third fiscal year in which LDRD has existed at Fermilab. The number of preliminary proposals (117) submitted in response to the LDRD Call for Proposals indicates very strong interest of the program within the Fermilab community. The first two Calls have resulted in thirteen active LDRD projects – and it is expected that between five and seven

  5. APPARATUS FOR CHARGING A RECEPTACLE WITH A DENSE SUBLIMATE FORM OF URANIUM CHLORIDE

    DOEpatents

    Davidson, P.H.

    1959-08-18

    An apparatus for filling a tubular storage receptacle with a dense massive form of uranium chloride is described. The apparatus includes an evacuated housing divided into a vaporizing chamber and a portion adapted to receive the receptacle. A nozzle conducts vaporized uranium chloride from the chamber to the interior of the receptacle. The nozzle is withdrawable to progressively deposit the uranium chloride under controlled conditions to produce a dense sublimate which fills the receptacle.

  6. Linear shaped charge

    DOEpatents

    Peterson, David; Stofleth, Jerome H.; Saul, Venner W.

    2017-07-11

    Linear shaped charges are described herein. In a general embodiment, the linear shaped charge has an explosive with an elongated arrowhead-shaped profile. The linear shaped charge also has and an elongated v-shaped liner that is inset into a recess of the explosive. Another linear shaped charge includes an explosive that is shaped as a star-shaped prism. Liners are inset into crevices of the explosive, where the explosive acts as a tamper.

  7. Transformation of irregular shaped silver nanostructures into nanoparticles by under water pulsed laser melting

    NASA Astrophysics Data System (ADS)

    Yadavali, S.; Sandireddy, V. P.; Kalyanaraman, R.

    2016-05-01

    The ability to easily manufacture nanostructures with a desirable attribute, such as well-defined size and shape, especially from any given initial shapes or sizes of the material, will be helpful towards accelerating the use of nanomaterials in various applications. In this work we report the transformation of discontinuous irregular nanostructures (DIN) of silver metal by rapid heating under a bulk fluid layer. Ag films were changed into DIN by dewetting in air and subsequently heated by nanosecond laser pulses under water. Our findings show that the DIN first ripens into elongated structures and then breaks up into nanoparticles. From the dependence of this behavior on laser fluence we found that under water irradiation reduced the rate of ripening and also decreased the characteristic break-up length scale of the elongated structures. This latter result was qualitatively interpreted as arising from a Rayleigh-Plateau instability modified to yield significantly smaller length scales than the classical process due to pressure gradients arising from the rapid evaporation of water during laser melting. These results demonstrate that it is possible to fabricate a dense collection of monomodally sized Ag nanoparticles with significantly enhanced plasmonic quality starting from the irregular shaped materials. This can be beneficial towards transforming discontinuous Ag films into nanostructures with useful plasmonic properties, that are relevant for biosensing applications.

  8. Carbon chemistry in dense molecular clouds: Theory and observational constraints

    NASA Technical Reports Server (NTRS)

    Blake, Geoffrey A.

    1990-01-01

    For the most part, gas phase models of the chemistry of dense molecular clouds predict the abundances of simple species rather well. However, for larger molecules and even for small systems rich in carbon these models often fail spectacularly. Researchers present a brief review of the basic assumptions and results of large scale modeling of the carbon chemistry in dense molecular clouds. Particular attention is to the influence of the gas phase C/O ratio in molecular clouds, and the likely role grains play in maintaining this ratio as clouds evolve from initially diffuse objects to denser cores with associated stellar and planetary formation. Recent spectral line surveys at centimeter and millimeter wavelengths along with selected observations in the submillimeter have now produced an accurate inventory of the gas phase carbon budget in several different types of molecular clouds, though gaps in our knowledge clearly remain. The constraints these observations place on theoretical models of interstellar chemistry can be used to gain insights into why the models fail, and show also which neglected processes must be included in more complete analyses. Looking toward the future, larger molecules are especially difficult to study both experimentally and theoretically in such dense, cold regions, and some new methods are therefore outlined which may ultimately push the detectability of small carbon chains and rings to much heavier species.

  9. Shape coexistence and shape transition in light nuclei

    NASA Astrophysics Data System (ADS)

    Saxena, G.; Kumawat, M.; Singh, U. K.; Kaushik, M.; Jain, S. K.

    2018-05-01

    A systematic study has been performed to investigate the shape coexistence and shape transition for even-even nuclei between Z = 10-20 by employing Relativistic Mean-Filed plus BCS (RMF+BCS) approach. We calculate ground state properties viz. binding energy, deformation etc. for even-even nuclei to find the shape coexistence and shape transition. These results are found in agreement of recent experiments and consistent with other parameters of RMF and other theories.

  10. Transformation and motility of human platelets: details of the shape change and release reaction observed by optical and electron microscopy

    PubMed Central

    1979-01-01

    Blood platelets from 10 normal human subjects have been examined with a sensitive differential interference contrast (DIC) microscope. The entire transformation process during adhesion to glass is clearly visible and has been recorded cinematographically, including the disk to sphere change of shape, the formation of sessile protuberances, the extension and retraction of pseudopodia, and the spreading, ruffling, and occasional regression of the hyalomere. The exocytosis of intact dense bodies can be observed either by DIC microscopy, or by epifluorescence microscopy in platelets stained with mepacrine. Details of fluorescent flashes indicate that the dense bodies usually release their contents extracellularly, may do so intracytoplasmically under the influence of strong, short wavelength light on some preparations of mepacrine-stained platelets. The release of one or more dense bodies leaves a crater of variable size on the upper surface of the granulomere. Such craters represent the surface component of the open canalicular system and their formation and disappearance can be directly observed. Because these techniques permit quantitation of several parameters of motility which are not readily observable by other techniques, it is suggested that high extinction DIC microscope examination may become a rapid and useful method of studying congenital and acquired platelet disorders. Many features of platelet transformation have been confirmed and extended by scanning electron micrographs. These can in turn be interpreted by reference to time- lapse films of living platelets. PMID:511936

  11. Simulation of dense amorphous polymers by generating representative atomistic models

    NASA Astrophysics Data System (ADS)

    Curcó, David; Alemán, Carlos

    2003-08-01

    A method for generating atomistic models of dense amorphous polymers is presented. The generated models can be used as starting structures of Monte Carlo and molecular dynamics simulations, but also are suitable for the direct evaluation physical properties. The method is organized in a two-step procedure. First, structures are generated using an algorithm that minimizes the torsional strain. After this, an iterative algorithm is applied to relax the nonbonding interactions. In order to check the performance of the method we examined structure-dependent properties for three polymeric systems: polyethyelene (ρ=0.85 g/cm3), poly(L,D-lactic) acid (ρ=1.25 g/cm3), and polyglycolic acid (ρ=1.50 g/cm3). The method successfully generated representative packings for such dense systems using minimum computational resources.

  12. THE GREEN BANK TELESCOPE MAPS THE DENSE, STAR-FORMING GAS IN THE NEARBY STARBURST GALAXY M82

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kepley, Amanda A.; Frayer, David; Leroy, Adam K.

    Observations of the Milky Way and nearby galaxies show that dense molecular gas correlates with recent star formation, suggesting that the formation of this gas phase may help regulate star formation. A key test of this idea requires wide-area, high-resolution maps of dense molecular gas in galaxies to explore how local physical conditions drive dense gas formation, but these observations have been limited because of the faintness of dense gas tracers like HCN and HCO{sup +}. Here we demonstrate the power of the Robert C. Byrd Green Bank Telescope (GBT)—the largest single-dish millimeter radio telescope—for mapping dense gas in galaxiesmore » by presenting the most sensitive maps yet of HCN and HCO{sup +} in the starburst galaxy M82. The HCN and HCO{sup +} in the disk of this galaxy correlates with both recent star formation and more diffuse molecular gas and shows kinematics consistent with a rotating torus. The HCO{sup +} emission extending to the north and south of the disk is coincident with the outflow previously identified in CO and traces the eastern edge of the hot outflowing gas. The central starburst region has a higher ratio of star formation to dense gas than the outer regions, pointing to the starburst as a key driver of this relationship. These results establish that the GBT can efficiently map the dense molecular gas at 90 GHz in nearby galaxies, a capability that will increase further with the 16 element feed array under construction.« less

  13. Neutron Star Spin Measurements and Dense Matter with LOFT

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod

    2011-01-01

    Observations over the last decade with RXTE have begun to reveal the X-ray binary progenitors of the fastest spinning neutron stars presently known. Detection and study of the spin rates of binary neutron stars has important implications for constraining the nature of dense matter present in neutron star interiors, as both the maximum spin rate and mass for neutron stars is set by the equation of state. Precision pulse timing of accreting neutron star binaries can enable mass constraints. Particularly promIsing is the combination of the pulse and eclipse timing, as for example, in systems like Swift 11749.4-2807. With its greater sensitivity, LOFT will enable deeper searches for the spin periods of the neutron stars, both during persistent outburst intervals and thermonuclear X-ray bursts, and enable more precise modeling of detected pulsations. I will explore the anticipated impact of LOFT on spin measurements and its potential for constraining dense matter in neutron stars

  14. Dynamic Conductivity and Partial Ionization in Warm, Dense Hydrogen

    NASA Astrophysics Data System (ADS)

    Zaghoo, M.; Silvera, I. F.

    2017-10-01

    A theoretical description for optical conduction experiments in dense fluid hydrogen is presented. Different quantum statistical approaches are used to describe the mechanism of electron transport in hydrogen's high-temperature dense phase. We show that at the onset of the metallic transition, optical conduction could be described by a strong rise in the atomic polarizability, resulting from increased ionization; whereas in the highly degenerate limit, the Ziman weak-scattering model better describes the observed saturation of reflectance. In the highly degenerate region, the inclusion of partial ionization effects provides excellent agreement with experimental results. Hydrogen's fluid metallic state is revealed to be a partially ionized free-electron plasma. These results provide a crucial benchmark for ab initio calculations as well as an important guide for future experiments. Research supported by DOE Stockpile Stewardship Academic Alliance Program, Grant DE-FG52-10NA29656, and NASA Earth and Space Science Fellowship Program, Award NNX14AP17H.

  15. Production of dense plasmas in a hypocycloidal pinch apparatus

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Mcfarland, D. R.; Hohl, F.

    1977-01-01

    A high-power pinch apparatus consisting of disk electrodes was developed, and diagnostic measurements to study its mechanism of dense plasma production have been made. The collapse fronts of the current sheets are well organized, and dense plasma foci are produced on the axis with radial stability in excess of 5 microsec. A plasma density greater than 10 to the 18th power per cu cm is determined with Stark broadening and CO2 laser absorption. Essentially complete absorption of a high-energy CO2 laser beam has been observed. A plasma temperature of approximately 1 keV is measured with differential transmission of soft X-rays through thin foils. The advantages of this apparatus over the coaxial plasma focus are improvements in (1) plasma volume, (2) stability, (3) containment time, (4) access to additional heating by laser or electron beams, and (5) the possibility of scaling up to a multiple array for high-power operation.

  16. Cosmic-ray ionisation of dense molecular clouds

    NASA Astrophysics Data System (ADS)

    Vaupre, Solenn

    2015-07-01

    Cosmic rays (CR) are of tremendous importance in the dynamical and chemical evolution of interstellar molecular clouds, where stars and planets form. CRs are likely accelerated in the shells of supernova remnants (SNR), thus molecular clouds nearby can be irradiated by intense fluxes of CRs. CR protons have two major effects on dense molecular clouds: 1) when they encounter the dense medium, high-energy protons (>280 MeV) create pions that decay into gamma-rays. This process makes SNR-molecular cloud associations intense GeV and/or TeV sources whose spectra mimic the CR spectrum. 2) at lower energies, CRs penetrate the cloud and ionise the gas, leading to the formation of molecular species characteristic of the presence of CRs, called tracers of the ionisation. Studying these tracers gives information on low-energy CRs that are unaccessible to any other observations. I studied the CR ionisation of molecular clouds next to three SNRs: W28, W51C and W44. These SNRs are known to be interacting with the nearby clouds, from the presence of shocked gas, OH masers and pion-decay induced gamma-ray emission. My work includes millimeter observations and chemical modeling of tracers of the ionisation in these dense molecular clouds. In these three regions, we determined an enhanced CR ionisation rate, supporting the hypothesis of an origin of the CRs in the SNR nearby. The evolution of the CR ionisation rate with the distance to the SNR brings valuable constraints on the propagation properties of low-energy CRs. The method used relies on observations of the molecular ions HCO+ and DCO+, which shows crucial limitations at high ionisation. Therefore, I investigated, both through modeling and observations, the chemical abundances of several other species to try and identity alternative tracers of the ionisation. In particular, in the W44 region, observations of N2H+ bring additional constraints on the physical conditions, volatile abundances in the cloud, and the ionisation

  17. Tracking brain motion during the cardiac cycle using spiral cine-DENSE MRI

    PubMed Central

    Zhong, Xiaodong; Meyer, Craig H.; Schlesinger, David J.; Sheehan, Jason P.; Epstein, Frederick H.; Larner, James M.; Benedict, Stanley H.; Read, Paul W.; Sheng, Ke; Cai, Jing

    2009-01-01

    Cardiac-synchronized brain motion is well documented, but the accurate measurement of such motion on the pixel-by-pixel basis has been hampered by the lack of proper imaging technique. In this article, the authors present the implementation of an autotracking spiral cine displacement-encoded stimulation echo (DENSE) magnetic resonance imaging (MRI) technique for the measurement of pulsatile brain motion during the cardiac cycle. Displacement-encoded dynamic MR images of three healthy volunteers were acquired throughout the cardiac cycle using the spiral cine-DENSE pulse sequence gated to the R wave of an electrocardiogram. Pixelwise Lagrangian displacement maps were computed, and 2D displacement as a function of time was determined for selected regions of interests. Different intracranial structures exhibited characteristic motion amplitude, direction, and pattern throughout the cardiac cycle. Time-resolved displacement curves revealed the pathway of pulsatile motion from brain stem to peripheral brain lobes. These preliminary results demonstrated that the spiral cine-DENSE MRI technique can be used to measure cardiac-synchronized pulsatile brain motion on the pixel-by-pixel basis with high temporal∕spatial resolution and sensitivity. PMID:19746774

  18. A systematic method of interconnection optimization for dense-array concentrator photovoltaic system.

    PubMed

    Siaw, Fei-Lu; Chong, Kok-Keong

    2013-01-01

    This paper presents a new systematic approach to analyze all possible array configurations in order to determine the most optimal dense-array configuration for concentrator photovoltaic (CPV) systems. The proposed method is fast, simple, reasonably accurate, and very useful as a preliminary study before constructing a dense-array CPV panel. Using measured flux distribution data, each CPV cells' voltage and current values at three critical points which are at short-circuit, open-circuit, and maximum power point are determined. From there, an algorithm groups the cells into basic modules. The next step is I-V curve prediction, to find the maximum output power of each array configuration. As a case study, twenty different I-V predictions are made for a prototype of nonimaging planar concentrator, and the array configuration that yields the highest output power is determined. The result is then verified by assembling and testing of an actual dense-array on the prototype. It was found that the I-V curve closely resembles simulated I-V prediction, and measured maximum output power varies by only 1.34%.

  19. A Systematic Method of Interconnection Optimization for Dense-Array Concentrator Photovoltaic System

    PubMed Central

    Siaw, Fei-Lu

    2013-01-01

    This paper presents a new systematic approach to analyze all possible array configurations in order to determine the most optimal dense-array configuration for concentrator photovoltaic (CPV) systems. The proposed method is fast, simple, reasonably accurate, and very useful as a preliminary study before constructing a dense-array CPV panel. Using measured flux distribution data, each CPV cells' voltage and current values at three critical points which are at short-circuit, open-circuit, and maximum power point are determined. From there, an algorithm groups the cells into basic modules. The next step is I-V curve prediction, to find the maximum output power of each array configuration. As a case study, twenty different I-V predictions are made for a prototype of nonimaging planar concentrator, and the array configuration that yields the highest output power is determined. The result is then verified by assembling and testing of an actual dense-array on the prototype. It was found that the I-V curve closely resembles simulated I-V prediction, and measured maximum output power varies by only 1.34%. PMID:24453823

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2011. The associated FY 2011 ORNL LDRD Self-Assessment (ORNL/PPA-2012/2) provides financial datamore » and an internal evaluation of the program’s management process.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2010. The associated FY 2010 ORNL LDRD Self-Assessment (ORNL/PPA-2011/2) provides financial datamore » and an internal evaluation of the program’s management process.« less

  2. ORNLs Laboratory Directed Research and Development Program FY 2009 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2010-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2009. The associated FY 2009 ORNL LDRD Self-Assessment (ORNL/PPA-2010/2) provides financial data andmore » an internal evaluation of the program’s management process.« less

  3. ORNLs Laboratory Directed Research and Development Program FY 2013 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2014-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the US Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2013. The associated FY 2013 ORNL LDRD Self-Assessment (ORNL/PPA-2014/2) provides financial datamore » and an internal evaluation of the program’s management process.« less

  4. Laboratory Directed Research and Development Program FY 2006 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjoreen, Terrence P

    2007-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the US Departmental of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2006. The associated FY 2006 ORNL LDRD Self-Assessment (ORNL/PPA-2007/2) provides financial data about themore » FY 2006 projects and an internal evaluation of the program's management process.« less

  5. ORNLs Laboratory Directed Research and Development Program FY 2008 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2009-03-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2008. The associated FY 2008 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and anmore » internal evaluation of the program’s management process.« less

  6. ORNLs Laboratory Directed Research and Development Program FY 2012 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2013-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the US Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2012. The associated FY 2012 ORNL LDRD Self-Assessment (ORNL/PPA-2012/2) provides financial datamore » and an internal evaluation of the program’s management process.« less

  7. Role of ultrasonography in detecting mammographically occult breast carcinoma in women with dense breasts.

    PubMed

    Corsetti, V; Ferrari, A; Ghirardi, M; Bergonzini, R; Bellarosa, S; Angelini, O; Bani, C; Ciatto, S

    2006-04-01

    The purpose of this study was to assess the usefulness of routine ultrasonography in women with negative mammography and dense breasts [Breast Imaging Reporting and Data System (BIRADS D3-4)]. We applied a protocol involving routine ultrasonography in a consecutive series of subjects with negative mammography and dense breasts. After evaluation by internal and external reviewers of cancers detected by ultrasonography performed to confirm negative mammography, we determined the additional cancer detection rate of ultrasonography and the cost of the protocol. Out of 17,883 total mammographies, 167 cancers were diagnosed (detection rate: 0.93%). Out of 257 suspicious mammographies, 138 cancers were detected. Out of 17,626 negative mammographies, 6,449 (36.5%) were classified as "dense breast" and underwent ultrasonography: 29 cancers were detected (detection rate: 0.44%, or 17.3% of total cancers). Out of 25 cancer cases reviewed, negative mammography and asymptomatic status was confirmed in 15 (detection rate 0.23%, or 8.9% of total cancers). The cancer detection rate was 0.11%, 0.22%, 0.32% and 0.14% for age groups <40, 40-49, 50-59 and >59, respectively. The cost per additional carcinoma detected by ultrasonography alone was euro 25,847.85 whereas that per examined woman was euro 21.68. The study confirms the possibility that ultrasonography can detect mammographically occult breast carcinoma in dense breasts. The evidence is insufficient to recommend this policy in routine screening practice but suggests that, at least in current clinical practice, adding ultrasonography in dense breasts may be useful despite the substantial costs.

  8. Embedded binaries and their dense cores

    NASA Astrophysics Data System (ADS)

    Sadavoy, Sarah I.; Stahler, Steven W.

    2017-08-01

    We explore the relationship between young, embedded binaries and their parent cores, using observations within the Perseus Molecular Cloud. We combine recently published Very Large Array observations of young stars with core properties obtained from Submillimetre Common-User Bolometer Array 2 observations at 850 μm. Most embedded binary systems are found towards the centres of their parent cores, although several systems have components closer to the core edge. Wide binaries, defined as those systems with physical separations greater than 500 au, show a tendency to be aligned with the long axes of their parent cores, whereas tight binaries show no preferred orientation. We test a number of simple, evolutionary models to account for the observed populations of Class 0 and I sources, both single and binary. In the model that best explains the observations, all stars form initially as wide binaries. These binaries either break up into separate stars or else shrink into tighter orbits. Under the assumption that both stars remain embedded following binary break-up, we find a total star formation rate of 168 Myr-1. Alternatively, one star may be ejected from the dense core due to binary break-up. This latter assumption results in a star formation rate of 247 Myr-1. Both production rates are in satisfactory agreement with current estimates from other studies of Perseus. Future observations should be able to distinguish between these two possibilities. If our model continues to provide a good fit to other star-forming regions, then the mass fraction of dense cores that becomes stars is double what is currently believed.

  9. Energy Flow in Dense Off-Equilibrium Plasma

    DTIC Science & Technology

    2016-07-15

    akT e in our system100 i e T T Teller 1966 Smoking Gun Experiment: Laser Breakdown in COLD gas In going from room to liquid Nitrogen temperature...oflaser breakdown have revealed a new phase of off-equilibrium plasma that has a tensile strength similar to a liquid , and reduced ion-electron...approved for public release. Part 1: Energy Balance in Sonoluminescing Dense Plasma Sonoluminescence occurs from rapid implosion of gas bubbles caused to

  10. Strong seismic wave scattering beneath Kanto region derived from dense K-NET/KiK-net strong motion network and numerical simulation

    NASA Astrophysics Data System (ADS)

    Takemura, S.; Yoshimoto, K.

    2013-12-01

    Observed seismograms, which consist of the high-frequency body waves through the low-velocity (LV) region at depth of 20-40 km beneath northwestern Chiba in Kanto, show strong peak delay and spindle shape of S waves. By analyzing dense seismic records from K-NET/KiK-net, such spindle-shape S waves are clearly observed in the frequency range of 1-8 Hz. In order to investigate a specific heterogeneous structure to generate such observations, we conduct 3-D finite-difference method (FDM) simulation using realistic heterogeneous models and compare the simulation results with dense strong motion array observations. Our 3-D simulation model is covering the zone 150 km by 64 km in horizontal directions and 75 km in vertical direction, which has been discretized with uniform grid size 0.05 km. We assume a layered background velocity structure, which includes basin structure, crust, mantle and subducting oceanic plate, base on the model proposed by Koketsu et al. (2008). In order to introduce the effect of seismic wave scattering, we assume a stochastic random velocity fluctuation in each layer. Random velocity fluctuations are characterized by exponential-type auto-correlation function (ACF) with correlation distance a = 3 km and rms value of fluctuation e = 0.05 in the upper crust, a = 3 km and e = 0.07 in the lower crust, a = 10 km and e = 0.02 in the mantle. In the subducting oceanic plate, we assume an anisotropic random velocity fluctuation characterized by exponential-type ACF with aH = 10 km in horizontal direction, aZ = 0.5 km in vertical direction and e = 0.02 (e.g., Furumura and Kennett, 2005). In addition, we assume a LV zone at northeastern part of Chiba with depth of 20-40 km (e.g., Matsubara et al., 2004). In the LV zone, random velocity fluctuation characterized by Gaussian-type ACF with a = 1 km and e = 0.07 is superposed on exponential-type ACF with a = 3 km and e = 0.07, in order to modulate the S-wave propagation in the dominant frequency range of

  11. Temperature-tunable Fano resonance induced by strong Weyl fermion-phonon coupling in TaAs

    NASA Astrophysics Data System (ADS)

    Dai, Yaomin; Trugman, S. A.; Zhu, J.-X.; Taylor, A. J.; Yarotski, D. A.; Prasankumar, R. P.; Xu, B.; Zhao, L. X.; Wang, K.; Yang, R.; Zhang, W.; Liu, J. Y.; Xiao, H.; Chen, G. F.; Qiu, X. G.

    Strong coupling between discrete phonon and continuous electron-hole pair excitations can give rise to a pronounced asymmetry in the phonon line shape, known as the Fano resonance. We present infrared spectroscopic studies on the recently discovered Weyl semimetal TaAs at different temperatures. Our experimental results reveal strong coupling between an infrared-active A1 phonon and electronic transitions near the Weyl points (Weyl fermions), as evidenced by the conspicuous asymmetry in the phonon line shape. More interestingly, the phonon line shape can be continuously tuned by temperature, which we demonstrate to arise from the suppression of the electronic transitions near the Weyl points due to the decreasing occupation of electronic states below the Fermi level with increasing temperature, as well as Pauli blocking caused by thermally excited electrons above the Fermi level. Supported by LANL LDRD and LANL-UCRP programs.

  12. Self-assembled monolayers of shape-persistent macrocycles on graphite: interior design and conformational polymorphism.

    PubMed

    Vollmeyer, Joscha; Eberhagen, Friederike; Höger, Sigurd; Jester, Stefan-S

    2014-01-01

    Three shape-persistent naphthylene-phenylene-acetylene macrocycles of identical backbone structures and extraannular substitution patterns but different (empty, apolar, polar) nanopore fillings are self-assembled at the solid/liquid interface of highly oriented pyrolytic graphite and 1,2,4-trichlorobenzene. Submolecularly resolved images of the resulting two-dimensional (2D) crystalline monolayer patterns are obtained by in situ scanning tunneling microscopy. A concentration-dependent conformational polymorphism is found, and open and more dense packing motifs are observed. For all three compounds alike lattice parameters are found, therefore the intermolecular macrocycle distances are mainly determined by their size and symmetry. This is an excellent example that the graphite acts as a template for the macrocycle organization independent from their specific interior.

  13. Shape memory polymers

    DOEpatents

    Wilson, Thomas S.; Bearinger, Jane P.

    2017-08-29

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  14. Shape memory polymers

    DOEpatents

    Wilson, Thomas S.; Bearinger, Jane P.

    2015-06-09

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxyl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  15. Virginia method for the design of dense-graded emulsion mixes.

    DOT National Transportation Integrated Search

    1982-01-01

    An investigation into the Illinois method for the design of dense-graded emulsion base mixes had resulted in a report offering several modifications to that procedure. The Bituminous Research Advisory Committee then recommended that the Illinois meth...

  16. 3D shape recovery of smooth surfaces: dropping the fixed-viewpoint assumption.

    PubMed

    Moses, Yael; Shimshoni, Ilan

    2009-07-01

    We present a new method for recovering the 3D shape of a featureless smooth surface from three or more calibrated images illuminated by different light sources (three of them are independent). This method is unique in its ability to handle images taken from unconstrained perspective viewpoints and unconstrained illumination directions. The correspondence between such images is hard to compute and no other known method can handle this problem locally from a small number of images. Our method combines geometric and photometric information in order to recover dense correspondence between the images and accurately computes the 3D shape. Only a single pass starting at one point and local computation are used. This is in contrast to methods that use the occluding contours recovered from many images to initialize and constrain an optimization process. The output of our method can be used to initialize such processes. In the special case of fixed viewpoint, the proposed method becomes a new perspective photometric stereo algorithm. Nevertheless, the introduction of the multiview setup, self-occlusions, and regions close to the occluding boundaries are better handled, and the method is more robust to noise than photometric stereo. Experimental results are presented for simulated and real images.

  17. Shaping planetary nebulae with jets in inclined triple stellar systems

    NASA Astrophysics Data System (ADS)

    Akashi, Muhammad; Soker, Noam

    2017-08-01

    We conduct three-dimensional hydrodynamical simulations of two opposite jets launched obliquely to the orbital plane around an asymptotic giant branch (AGB) star and within its dense wind, and demonstrate the formation of a 'messy' planetary nebula (PN), namely a PN lacking any type of symmetry (I.e. highly irregular). In building the initial conditions, we assume that a tight binary system orbits the AGB star and that the orbital plane of the tight binary system is inclined to the orbital plane of the binary system and the AGB star (the triple system plane). We further assume that the accreted mass on to the tight binary system forms an accretion disc around one of the stars and that the plane of the disc is tilted to the orbital plane of the triple system. The highly asymmetrical and filamentary structures that we obtain support the notion that messy PNe might be shaped by triple stellar systems.

  18. Dense Deposit Disease

    PubMed Central

    Smith, Richard J.H; Harris, Claire L.; Pickering, Matthew C.

    2011-01-01

    Dense deposit disease (DDD) is an orphan disease that primarily affects children and young adults without sexual predilection. Studies of its pathophysiology have shown conclusively that it is caused by fluid-phase dysregulation of the alternative pathway of complement, however the role played by genetics and autoantibodies like C3 nephritic factors must be more thoroughly defined if we are to make an impact in the clinical management of this disease. There are currently no mechanism-directed therapies to offer affected patients, half of whom progress to end stage renal failure disease within 10 years of diagnosis. Transplant recipients face the dim prospect of disease recurrence in their allografts, half of which ultimately fail. More detailed genetic and complement studies of DDD patients may make it possible to identify protective factors prognostic for naïve kidney and transplant survival, or conversely risk factors associated with progression to renal failure and allograft loss. The pathophysiology of DDD suggests that a number of different treatments warrant consideration. As advances are made in these areas, there will be a need to increase healthcare provider awareness of DDD by making resources available to clinicians to optimize care for DDD patients. PMID:21601923

  19. The effect of playing advergames that promote energy-dense snacks or fruit on actual food intake among children.

    PubMed

    Folkvord, Frans; Anschütz, Doeschka J; Buijzen, Moniek; Valkenburg, Patti M

    2013-02-01

    Previous studies have focused on the effects of television advertising on the energy intake of children. However, the rapidly changing food-marketing landscape requires research to measure the effects of nontraditional forms of marketing on the health-related behaviors of children. The main aim of this study was to examine the effect of advergames that promote energy-dense snacks or fruit on children's ad libitum snack and fruit consumption and to examine whether this consumption differed according to brand and product type (energy-dense snacks and fruit). The second aim was to examine whether advergames can stimulate fruit intake. We used a randomized between-subject design with 270 children (age: 8-10 y) who played an advergame that promoted energy-dense snacks (n = 69), fruit (n = 67), or nonfood products (n = 65) or were in the control condition (n = 69). Subsequently, we measured the free intake of energy-dense snacks and fruit. The children then completed questionnaire measures, and we weighed and measured them. The main finding was that playing an advergame containing food cues increased general energy intake, regardless of the advertised brand or product type (energy-dense snacks or fruit), and this activity particularly increased the intake of energy-dense snack foods. Children who played the fruit version of the advergame did not eat significantly more fruit than did those in the other groups. The findings suggest that playing advergames that promote food, including either energy-dense snacks or fruit, increases energy intake in children.

  20. Shear-induced organization of forces in dense suspensions: signatures of discontinuous shear thickening

    NASA Astrophysics Data System (ADS)

    Sarkar, Sumantra; Shatoff, Elan; Ramola, Kabir; Mari, Romain; Morris, Jeffrey; Chakraborty, Bulbul

    2017-06-01

    Dense suspensions can exhibit an abrupt change in their viscosity in response to increasing shear rate. The origin of this discontinuous shear thickening (DST) has been ascribed to the transformation of lubricated contacts to frictional, particle-on-particle contacts. Recent research on the flowing and jamming behavior of dense suspensions has explored the intersection of ideas from granular physics and Stokesian fluid dynamics to better understand this transition from lubricated to frictional rheology. DST is reminiscent of classical phase transitions, and a key question is how interactions between the microscopic constituents give rise to a macroscopic transition. In this paper, we extend a formalism that has proven to be successful in understanding shear jamming of dry grains to dense suspensions. Quantitative analysis of the collective evolution of the contactforce network accompanying the DST transition demonstrates clear changes in the distribution of microscopic variables, and leads to the identification of an "order parameter" characterizing DST.

  1. Tools to Perform Local Dense 3D Reconstruction of Shallow Water Seabed ‡

    PubMed Central

    Avanthey, Loïca; Beaudoin, Laurent; Gademer, Antoine; Roux, Michel

    2016-01-01

    Tasks such as distinguishing or identifying individual objects of interest require the production of dense local clouds at the scale of these individual objects of interest. Due to the physical and dynamic properties of an underwater environment, the usual dense matching algorithms must be rethought in order to be adaptive. These properties also imply that the scene must be observed at close range. Classic robotized acquisition systems are oversized for local studies in shallow water while the systematic acquisition of data is not guaranteed with divers. We address these two major issues through a multidisciplinary approach. To efficiently acquire on-demand stereoscopic pairs using simple logistics in small areas of shallow water, we devised an agile light-weight dedicated system which is easy to reproduce. To densely match two views in a reliable way, we devised a reconstruction algorithm that automatically accounts for the dynamics, variability and light absorption of the underwater environment. Field experiments in the Mediterranean Sea were used to assess the results. PMID:27196913

  2. Practice Paper of the Academy of Nutrition and Dietetics: Selecting Nutrient-Dense Foods for Good Health.

    PubMed

    Hingle, Melanie D; Kandiah, Jayanthi; Maggi, Annette

    2016-09-01

    The 2015 Dietary Guidelines for Americans encourage selection of nutrient-dense foods for health promotion and disease prevention and management. The purpose of this Academy of Nutrition and Dietetics practice paper is to provide an update regarding the science and practice of nutrient-dense food identification and selection. Characterization of tools used to identify nutrient density of foods is provided and recommendations for how registered dietitian nutritionists and nutrition and dietetics technicians, registered, might use available profiling tools to help consumers select nutrient-dense foods is discussed. Copyright © 2016 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  3. Propagation of monochromatic light in a hot and dense medium

    NASA Astrophysics Data System (ADS)

    Masood, Samina S.

    2017-12-01

    Photons, as quanta of electromagnetic fields, determine the electromagnetic properties of an extremely hot and dense medium. Considering the properties of the photons in the interacting medium of charged particles, we explicitly calculate the electromagnetic properties such as the electric permittivity, magnetic permeability, refractive index and the propagation speed of electromagnetic signals in an extremely hot and dense background. Photons acquire a dynamically generated mass in such a medium. The screening mass of the photon, the Debye shielding length and the plasma frequency are calculated as functions of the statistical parameters of the medium. We study the properties of the propagating particles in astrophysical systems of distinct statistical conditions. The modifications in the properties of the medium lead to the equation of state of the system. We mainly calculate all these parameters for extremely high temperatures of the early universe.

  4. Modeling of Dense Plasma Effects in Short-Pulse Laser Experiments

    NASA Astrophysics Data System (ADS)

    Walton, Timothy; Golovkin, Igor; Macfarlane, Joseph; Prism Computational Sciences, Madison, WI Team

    2016-10-01

    Warm and Hot Dense Matter produced in short-pulse laser experiments can be studied with new high resolving power x-ray spectrometers. Data interpretation implies accurate modeling of the early-time heating dynamics and the radiation conditions that are generated. Producing synthetic spectra requires a model that describes the major physical processes that occur inside the target, including the hot-electron generation and relaxation phases and the effect of target heating. An important issue concerns the sensitivity of the predicted K-line shifts to the continuum lowering model that is used. We will present a set of PrismSPECT spectroscopic simulations using various continuum lowering models: Hummer/Mihalas, Stewart-Pyatt, and Ecker-Kroll and discuss their effect on the formation of K-shell features. We will also discuss recently implemented models for dense plasma shifts for H-like, He-like and neutral systems.

  5. The Slc35d3 gene, encoding an orphan nucleotide sugar transporter, regulates platelet-dense granules

    PubMed Central

    Chintala, Sreenivasulu; Tan, Jian; Gautam, Rashi; Rusiniak, Michael E.; Guo, Xiaoli; Li, Wei; Gahl, William A.; Huizing, Marjan; Spritz, Richard A.; Hutton, Saunie; Novak, Edward K.; Swank, Richard T.

    2007-01-01

    Platelet dense granules are lysosome-related organelles which contain high concentrations of several biologically important low-molecular-weight molecules. These include calcium, serotonin, adenine nucleotides, pyrophosphate, and polyphosphate, which are necessary for normal blood hemostasis. The synthesis of dense granules and other lysosome-related organelles is defective in inherited diseases such as Hermansky-Pudlak syndrome (HPS) and Chediak-Higashi syndrome (CHS). HPS and CHS mutations in 8 human and at least 16 murine genes have been identified. Previous studies produced contradictory findings for the function of the murine ashen (Rab27a) gene in platelet-dense granules. We have used a positional cloning approach with one line of ashen mutants to establish that a new mutation in a second gene, Slc35d3, on mouse chromosome 10 is the basis of this discrepancy. The platelet-dense granule defect is rescued in BAC transgenic mice containing the normal Slc35d3 gene. Thus, Slc35d3, an orphan member of a nucleotide sugar transporter family, specifically regulates the contents of platelet-dense granules. Unlike HPS or CHS genes, it has no apparent effect on other lysosome-related organelles such as melanosomes or lysosomes. The ash-Roswell mouse mutant is an appropriate model for human congenital-isolated delta-storage pool deficiency. PMID:17062724

  6. Do constraints associated with the locomotor habitat drive the evolution of forelimb shape? A case study in musteloid carnivorans

    PubMed Central

    Fabre, Anne-Claire; Cornette, Raphael; Goswami, Anjali; Peigné, Stéphane

    2015-01-01

    Convergence in morphology can result from evolutionary adaptations in species living in environments with similar selective pressures. Here, we investigate whether the shape of the forelimb long bones has converged in environments imposing similar functional constraints, using musteloid carnivores as a model. The limbs of quadrupeds are subjected to many factors that may influence their shape. They need to support body mass without collapsing or breaking, yet at the same time resist the stresses and strains induced by locomotion. This likely imposes strong constraints on their morphology. Our geometric morphometric analyses show that locomotion, body mass and phylogeny all influence the shape of the forelimb. Furthermore, we find a remarkable convergence between: (i) aquatic and semi-fossorial species, both displaying a robust forelimb, with a shape that improves stability and load transfer in response to the physical resistance imposed by the locomotor environment; and (ii) aquatic and arboreal/semi-arboreal species, with both groups displaying a broad capitulum. This augments the degree of pronation/supination, an important feature for climbing as well as grasping and manipulation ability, behaviors common to aquatic and arboreal species. In summary, our results highlight how musteloids with different locomotor ecologies show differences in the anatomy of their forelimb bones. Yet, functional demands for limb movement through dense media also result in convergence in forelimb long-bone shape between diverse groups, for example, otters and badgers. PMID:25994128

  7. Do constraints associated with the locomotor habitat drive the evolution of forelimb shape? A case study in musteloid carnivorans.

    PubMed

    Fabre, Anne-Claire; Cornette, Raphael; Goswami, Anjali; Peigné, Stéphane

    2015-06-01

    Convergence in morphology can result from evolutionary adaptations in species living in environments with similar selective pressures. Here, we investigate whether the shape of the forelimb long bones has converged in environments imposing similar functional constraints, using musteloid carnivores as a model. The limbs of quadrupeds are subjected to many factors that may influence their shape. They need to support body mass without collapsing or breaking, yet at the same time resist the stresses and strains induced by locomotion. This likely imposes strong constraints on their morphology. Our geometric morphometric analyses show that locomotion, body mass and phylogeny all influence the shape of the forelimb. Furthermore, we find a remarkable convergence between: (i) aquatic and semi-fossorial species, both displaying a robust forelimb, with a shape that improves stability and load transfer in response to the physical resistance imposed by the locomotor environment; and (ii) aquatic and arboreal/semi-arboreal species, with both groups displaying a broad capitulum. This augments the degree of pronation/supination, an important feature for climbing as well as grasping and manipulation ability, behaviors common to aquatic and arboreal species. In summary, our results highlight how musteloids with different locomotor ecologies show differences in the anatomy of their forelimb bones. Yet, functional demands for limb movement through dense media also result in convergence in forelimb long-bone shape between diverse groups, for example, otters and badgers. © 2015 Anatomical Society.

  8. The advanced hohlraum research project

    NASA Astrophysics Data System (ADS)

    Jones, Ogden; Tabak, M.; Amendt, P. A.; Hammer, J. H.; Baker, K. L.; Baumann, T. F.; Berger, R. L.; Biener, M. M.; Ho, D. D.; Kim, S. H.; Logan, B. G.; Mariscal, D. A.; Patankar, S.; Wallace, R. L.

    2017-10-01

    We present results of a three-year study on alternate hohlraum designs. Several alternatives to cylindrical gas-filled hohlraums have been investigated. Proposed new hohlraum concepts utilize different hohlraum shapes, multiple laser entrance holes, and alternate materials such as metal foam walls. For each design we assess the radiation drive efficiency, the time-dependent drive symmetry, and laser-plasma interaction issues such as backscatter and crossed beam energy transfer. Results from supporting experiments on laser-heated foams are also summarized. Prepared by LLNL under LDRD 15-ERD-058.

  9. Effect of temperature on the shape of spatial quasi-periodic oscillations of the refractive index of alkali atoms in an optically dense medium with a closed excitation contour of Δ type

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barantsev, K A; Litvinov, A N

    2014-10-31

    A theory of a closed excitation contour (Δ system) of a three-level atom in an optically dense medium is constructed with allowance for temperature. The spatial quasi-periodic oscillations of the refractive index in the system under study are shown to damp with increasing temperature. The range of temperatures at which these oscillations are most pronounced is found. (quantum optics)

  10. Oligosaccharide composition is similar in drusen and dense deposits in membranoproliferative glomerulonephritis type II.

    PubMed

    D'souza, Yvonne B; Jones, Carolyn J P; Short, Colin D; Roberts, Ian S D; Bonshek, Richard E

    2009-04-01

    Drusen are a feature of age-related macular degeneration (AMD). Lesions similar in appearance to drusen are also found in the fundi of patients with membranoproliferative glomerulonephritis type II (dense deposit disease, DDD). The lamina densa of the glomerular basement membrane, in DDD, is transformed into an electron-dense structure by deposition of microscopically homogeneous material. Our study sought to compare the saccharide composition of drusen and dense deposits in the formalin-fixed, paraffin-embedded tissue from the eye and kidney. Six eye specimens were obtained from patients diagnosed with AMD but another eye was obtained from a patient with partial lipodystrophy, who died after renal failure presumably because of DDD. The kidney specimens were from three biopsy-proven cases of DDD. Glycosylation patterns were measured by the binding of 19 biotinylated lectins before and after neuraminidase pre-treatment. High mannose, bi/tri-antennary non-bisected and bisected complex N-glycan, N-acetyl glucosamine, galactose, and sialic acid residues were found in both drusen and dense deposits. Treatment with neuraminidase exposed subterminal galactose in both sites and sparse N-acetyl galactosamine residues in drusen alone. Our study found similar pathologic oligosaccharide structures in the eye and kidney, suggesting that drusen may be a common end result of retinal and glomerular disease.

  11. Self-erecting shapes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reading, Matthew W.

    Technologies for making self-erecting structures are described herein. An exemplary self-erecting structure comprises a plurality of shape-memory members that connect two or more hub components. When forces are applied to the self-erecting structure, the shape-memory members can deform, and when the forces are removed the shape-memory members can return to their original pre-deformation shape, allowing the self-erecting structure to return to its own original shape under its own power. A shape of the self-erecting structure depends on a spatial orientation of the hub components, and a relative orientation of the shape-memory members, which in turn depends on an orientation ofmore » joining of the shape-memory members with the hub components.« less

  12. FY04 LDRD Final Report Stroke Sensor Development Using Microdot Sensor Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, J C; Wilson, T S; Alvis, R M

    2005-11-15

    . Stroke is a major thrust area for the Medical Technology Program (M-division). Through MTP, LLNL has a sizable investment and recognizable expertise in stroke treatment research. The proposed microdot array sensor for stroke will complement this existing program in which mechanical devices are being designed for removing the thrombus. The following list of stroke projects and their relative status shows that MTP has a proven track record of taking ideas to industry: The goal of this LDRD funded project was to develop and demonstrate a minimally invasive optical fiber-based sensor for rapid and in-vivo measurements of multiple stroke biomarkers (e.g. pH and enzyme). The development of this sensor also required the development of a new fabrication technology for attaching indicator chemistries to optical fibers. A benefit of this work is to provide clinicians with a tool to assess vascular integrity of the region beyond the thrombus to determine whether or not it is safe to proceed with the removal of the clot. Such an assessment could extend the use of thrombolytic drug treatment to acute stroke victims outside the current rigid temporal limitation of 3 hours. Furthermore, this sensor would also provide a tool for use with emerging treatments involving the use of mechanical devices for removing the thrombus. The sensor effectively assesses the risk for reperfusion injury.« less

  13. Laboratory Directed Research and Development annual report, fiscal year 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-03-01

    The Department of Energy Order 413.2(a) establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 413.2, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. DOE Order 413.2 requires that each laboratory submit an annual report on its LDRD activities to the cognizant Secretarial Officer through themore » appropriate Operations Office Manager. The report provided in this document represents Pacific Northwest National Laboratory`s LDRD report for FY 1997.« less

  14. Anthropogenic CO2 in a dense water formation area of the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Ingrosso, Gianmarco; Bensi, Manuel; Cardin, Vanessa; Giani, Michele

    2017-05-01

    There is growing evidence that the on-going ocean acidification of the Mediterranean Sea could be favoured by its active overturning circulation. The areas of dense water formation are, indeed, preferential sites for atmospheric carbon dioxide absorption and through them the ocean acidification process can quickly propagate into the deep layers. In this study we estimated the concentration of anthropogenic CO2 (Cant) in the dense water formation areas of the middle and southern Adriatic Sea. Using the composite tracer TrOCA (Tracer combining Oxygen, inorganic Carbon, and total Alkalinity) and carbonate chemistry data collected throughout March 2013, our results revealed that a massive amount of Cant has invaded all the identified water masses. High Cant concentration was detected at the bottom layer of the Pomo Pit (middle Adriatic, 96.8±9.7 μmol kg-1) and Southern Adriatic Pit (SAP, 85.2±9.4 μmol kg-1), associated respectively with the presence of North Adriatic Dense Water (NAdDW) and Adriatic Dense Water (AdDW). This anthropogenic contamination was clearly linked to the dense water formation events, which govern strong CO2 flux from the atmosphere to the sea and the sinking of dense, CO2-rich surface waters to the deep sea. However, a very high Cant level (94.5±12.5 μmol kg-1) was also estimated at the intermediate layer, as a consequence of a recent vertical mixing that determined the physical and biogeochemical modification of the water of Levantine origin (i.e. Modified Levantine Intermediate Water, MLIW) and favoured the atmospheric CO2 intrusion. The penetration of Cant in the Adriatic Sea determined a significant pH reduction since the pre-industrial era (- 0.139±0.019 pH units on average). This estimation was very similar to the global Mediterranean Sea acidification, but it was again more pronounced at the bottom of the Pomo Pit, within the layer occupied by NAdDW (- 0.157±0.018 pH units), and at the intermediate layer of the recently formed MLIW

  15. Asteroid families spin and shape models to be supported by the ProjectSoft robotic observatory

    NASA Astrophysics Data System (ADS)

    Brož, M.; Ďurech, J.; Hanuš, J.; Lehký, M.

    2014-07-01

    In our recent work (Hanuš et al. 2013), we studied dynamics of asteroid families constrained by the distribution of pole latitudes vs semimajor axis. The model contained the following ingredients: (i) the Yarkovsky semimajor-axis drift; (ii) secular spin evolution due to the YORP effect; (iii) collisional re-orientations; (iv) a simple treatment of spin-orbit resonances; and (v) of mass shedding. We suggest to use a different complementary approach, based on distribution functions of shape parameters. Based on ˜1000 old and new convex-hull shape models, we construct the distributions of suitable quantities (ellipticity, normalized facet areas, etc.) and we discuss a significance of differences among asteroid populations. We check for outlier points which may then serve as a possible identification of (large) interlopers among ''real'' family members. This has also implications for SPH models of asteroid disruptions which can be possibly further constrained by the shape models of resulting fragments. Up to now, the observed size-frequency distribution and velocity field were used as constraints, sometimes allowing for a removal of interlopers (Michel et al. 2011). We also outline an ongoing construction of the ProjectSoft robotic observatory called ''Blue Eye 600'', which will support our efforts to complete the sample of shapes for a substantial fraction of (large) family members. Dense photometry will be targeted in such a way to maximize a possibility to derive a new pole/shape model. Other possible applications of the observatory include: (i) fast resolved observations of fireballs (thanks to a fast-motion capability, tens of degrees per second); or, (ii) an automatic survey of a particular population of objects (main-belt and near-Earth asteroids, variable stars, novae etc.)

  16. SD-SEM: sparse-dense correspondence for 3D reconstruction of microscopic samples.

    PubMed

    Baghaie, Ahmadreza; Tafti, Ahmad P; Owen, Heather A; D'Souza, Roshan M; Yu, Zeyun

    2017-06-01

    Scanning electron microscopy (SEM) imaging has been a principal component of many studies in biomedical, mechanical, and materials sciences since its emergence. Despite the high resolution of captured images, they remain two-dimensional (2D). In this work, a novel framework using sparse-dense correspondence is introduced and investigated for 3D reconstruction of stereo SEM images. SEM micrographs from microscopic samples are captured by tilting the specimen stage by a known angle. The pair of SEM micrographs is then rectified using sparse scale invariant feature transform (SIFT) features/descriptors and a contrario RANSAC for matching outlier removal to ensure a gross horizontal displacement between corresponding points. This is followed by dense correspondence estimation using dense SIFT descriptors and employing a factor graph representation of the energy minimization functional and loopy belief propagation (LBP) as means of optimization. Given the pixel-by-pixel correspondence and the tilt angle of the specimen stage during the acquisition of micrographs, depth can be recovered. Extensive tests reveal the strength of the proposed method for high-quality reconstruction of microscopic samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. An Adaptive Channel Access Method for Dynamic Super Dense Wireless Sensor Networks.

    PubMed

    Lei, Chunyang; Bie, Hongxia; Fang, Gengfa; Zhang, Xuekun

    2015-12-03

    Super dense and distributed wireless sensor networks have become very popular with the development of small cell technology, Internet of Things (IoT), Machine-to-Machine (M2M) communications, Vehicular-to-Vehicular (V2V) communications and public safety networks. While densely deployed wireless networks provide one of the most important and sustainable solutions to improve the accuracy of sensing and spectral efficiency, a new channel access scheme needs to be designed to solve the channel congestion problem introduced by the high dynamics of competing nodes accessing the channel simultaneously. In this paper, we firstly analyzed the channel contention problem using a novel normalized channel contention analysis model which provides information on how to tune the contention window according to the state of channel contention. We then proposed an adaptive channel contention window tuning algorithm in which the contention window tuning rate is set dynamically based on the estimated channel contention level. Simulation results show that our proposed adaptive channel access algorithm based on fast contention window tuning can achieve more than 95 % of the theoretical optimal throughput and 0 . 97 of fairness index especially in dynamic and dense networks.

  18. The Gardos channel is responsible for CDNB-induced dense sickle cell formation.

    PubMed

    Shartava, A; McIntyre, J; Shah, A K; Goodman, S R

    2000-07-01

    The red blood cells (RBCs) derived from blood taken from homozygous sickle cell (SS) patients demonstrate densities that are inversely proportional to the intracellular reduced glutathione (GSH) content. Addition of 1 mM 1-chloro-2,4-dinitrobenzene (CDNB) to low-density sickle cells (LDSS), at 4 degrees C, results in a shift of LDSS erythrocytes to high-density sickle cells (HDSS), with corresponding decreases in GSH. We have previously demonstrated that this CDNB effect was due to increased K(+) leakage and that dense cell formation could be inhibited by clotrimazole (specific for the Gardos channel) but not DIOA (specific for the K(+)-Cl(-) co-transport system) at pH 7.4 (Shartava et al. Am. J. Hematol. 1999;62:19-24). Here we demonstrate that clotrimazole (10 microM) inhibits dense cell formation at pH 7.1 and 6.8, while DIOA (1 mM) has no effect. As pH 6.8 is the optimal pH for the K(+)-Cl(-) co-transport system, we can now reasonably conclude that damage to the Gardos channel is responsible for CDNB-induced dense cell formation. Copyright 2000 Wiley-Liss, Inc.

  19. Nuclear quantum effects on structure and transport properties of dense liquid helium

    NASA Astrophysics Data System (ADS)

    Kang, Dongdong; Dai, Jiayu; Yuan, Jianmin

    2015-11-01

    Transport properties of dense liquid helium under the conditions of planet's core and cool atmosphere of white dwarfs are important for determining the structure and evolution of these astrophysical objects. We have investigated these properties of dense liquid helium by using the improved centroid path-integral simulations combined with density functional theory. The results show that with the inclusion of nuclear quantum effects (NQEs), the self-diffusion is largely higher while the shear viscosity is notably lower than the results of without the inclusion of NQEs due to the lower collision cross sections even when the NQEs have little effects on the static structures. The potential surface of helium atom along the simulation trajectory is quite different between MD and PIMD simulations. We have shown that the quantum nuclear character induces complex behaviors for ionic transport properties of dense liquid helium. NQEs bring more fluctuations of local electronic density of states than the classical treatment. Therefore, in order to construct more reasonable structure and evolution model for the planets and WDs, NQEs must be reconsidered when calculating the transport properties at certain temperature and density conditions.

  20. Small cell foams containing a modified dense star polymer or dendrimer as a nucleating agent

    DOEpatents

    Hedstrand, David M.; Tomalia, Donald A.

    1995-01-01

    A small cell foam having a modified dense star polymer or dendrimer is described. This modified dense star polymer or dendrimer has a highly branched interior of one monomeric composition and an exterior structure of a different monomeric composition capable of providing a hydrophobic outer shell and a particle diameter of from about 5 to about 1,000 nm with a matrix polymer.

  1. Small cell foams containing a modified dense star polymer or dendrimer as a nucleating agent

    DOEpatents

    Hedstrand, D.M.; Tomalia, D.A.

    1995-02-28

    A small cell foam having a modified dense star polymer or dendrimer is described. This modified dense star polymer or dendrimer has a highly branched interior of one monomeric composition and an exterior structure of a different monomeric composition capable of providing a hydrophobic outer shell and a particle diameter of from about 5 to about 1,000 nm with a matrix polymer.

  2. Directly observed reversible shape changes and hemoglobin stratification during centrifugation of human and Amphiuma red blood cells.

    PubMed

    Hoffman, Joseph F; Inoué, Shinya

    2006-02-21

    This paper describes changes that occur in human and Amphiuma red blood cells observed during centrifugation with a special microscope. Dilute suspensions of cells were layered, in a centrifuge chamber, above an osmotically matched dense solution, containing Nycodenz, Ficoll, or Percoll (Pharmacia) that formed a density gradient that allowed the cells to slowly settle to an equilibrium position. Biconcave human red blood cells moved downward at low forces with minimum wobble. The cells oriented vertically when the force field was increased and Hb sedimented as the lower part of each cell became bulged and assumed a "bag-like" shape. The upper centripetal portion of the cell became thinner and remained biconcave. These changes occurred rapidly and were completely reversible upon lowering the centrifugal force. Bag-shaped cells, upon touching red cells in rouleau, immediately reverted to biconcave disks as they flipped onto a stack. Amphiuma red cells displayed a different type of reversible stratification and deformation at high force fields. Here the cells became stretched, with the nucleus now moving centrifugally, the Hb moving centripetally, and the bottom of the cells becoming thinner and clear. Nevertheless, the distribution of the marginal bands at the cells' rim was unchanged. We conclude that centrifugation, per se, while changing a red cell's shape and the distribution of its intracellular constituents, does so in a completely reversible manner. Centrifugation of red cells harboring altered or missing structural elements could provide information on shape determinants that are still unexplained.

  3. The influence of socioeconomic factors and family context on energy-dense food consumption among 2-year-old children.

    PubMed

    Vilela, S; Oliveira, A; Pinto, E; Moreira, P; Barros, H; Lopes, C

    2015-01-01

    Adverse effect on health has been described for a high consumption of energy-dense food, among children and adults. Limited research has been performed among pre-school children. The objective of this study is to evaluate the association between socioeconomic characteristics and family structure, and the consumption of energy-dense food among 2-year-old children. The study sample includes 808 2-year-old children from the Portuguese birth cohort Generation XXI with information on food consumption. Data were obtained from questionnaires administered by interviewers to parents. Based on a food frequency questionnaire, four groups of energy-dense food were defined: soft drinks (sweetened drinks), sweets (chocolate and candies), cakes (creamy and not creamy cakes and sweet pastry) and salty snacks (crisps, pizza and burger). Multinomial logistic regression models (odds ratio and 95% confidence intervals) were fitted to estimate the associations. Intakes of energy-dense food were much lower than in similar aged children in other Westernized countries. Maternal age and education, grandparents' education, household income and maternal occupation were inversely associated with the consumption of energy-dense food, particularly soft drinks and sweets. Children with older siblings were more likely to have a daily consumption of any energy-dense food. Few significant associations were found between socioeconomic characteristics and family structure and consumption of cakes and sweets less than once a week. High socioeconomic characteristics were associated with lower consumption of energy-dense food by 2-year-old children, mainly soft drinks and sweets. This influence is not only from parents' background but also from the preceding generations.

  4. Laser Heating in a Dense Plasma Focus.

    DTIC Science & Technology

    The report is divided in two parts. In the first part an account is given of the measurement of the momentum distribution of the deuterons ejected from a dense plasma focus . The results show the existence of a pronounced non-Maxwellian distribution and a small population of deuterons accelerated to the voltage of the condenser bank. In the second part theoretical calculation of laser heating establish the presence of large density gradient which probably accounts for the large currents detected in such plasmas. (Author)

  5. Neutrino Oscillations in Dense Matter

    NASA Astrophysics Data System (ADS)

    Lobanov, A. E.

    2017-03-01

    A modification of the electroweak theory, where the fermions with the same electroweak quantum numbers are combined in multiplets and are treated as different quantum states of a single particle, is proposed. In this model, mixing and oscillations of particles arise as a direct consequence of the general principles of quantum field theory. The developed approach enables one to calculate the probabilities of the processes taking place in the detector at long distances from the particle source. Calculations of higher-order processes, including computation of the contributions due to radiative corrections, can be performed in the framework of the perturbation theory using the regular diagram technique. As a result, the analog to the Dirac-Schwinger equation of quantum electrodynamics describing neutrino oscillations and its spin rotation in dense matter can be obtained.

  6. Clustering-based energy-saving algorithm in ultra-dense network

    NASA Astrophysics Data System (ADS)

    Huang, Junwei; Zhou, Pengguang; Teng, Deyang; Zhang, Renchi; Xu, Hao

    2017-06-01

    In Ultra-dense Networks (UDN), dense deployment of low power small base stations will cause serious small cells interference and a large amount of energy consumption. The purpose of this paper is to explore the method of reducing small cells interference and energy saving system in UDN, and we innovatively propose a sleep-waking-active (SWA) scheme. The scheme decreases the user outage causing by failure to detect users’ service requests, shortens the opening time of active base stations directly switching to sleep mode; we further proposes a Vertex Surrounding Clustering(VSC) algorithm, which first colours the small cells with the most strongest interference and next extends to the adjacent small cells. VSC algorithm can use the least colour to stain the small cell, reduce the number of iterations and promote the efficiency of colouring. The simulation results show that SWA scheme can effectively improve the system Energy Efficiency (EE), the VSC algorithm can reduce the small cells interference and optimize the users’ Spectrum Efficiency (SE) and throughput.

  7. Microstructure and Shape Memory Characteristics of Powder-Metallurgical-Processed Ti-Ni-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Kim, Yeon-Wook; Chung, Young-Soo; Choi, Eunsoo; Nam, Tae-Hyun

    2012-08-01

    Even though Ti-Ni-Cu alloys have attracted a lot of attention because of their high performance in shape memory effect and decrease in thermal and stress hysteresis compared with Ti-Ni binary alloys, their poor workability restrains the practical applications of Ti-Ni-Cu shape memory alloys. Consolidation of Ti-Ni-Cu alloy powders is useful for the fabrication of bulk near-net-shape shape memory alloy. Ti50Ni30Cu20 shape memory alloy powders were prepared by gas atomization, and the sieved powders with the specific size range of 25 to 150 μm were chosen for this study. The evaluation of powder microstructures was based on a scanning electron microscope (SEM) examination of the surface and the polished and etched powder cross sections. The typical images showed cellular/dendrite morphology and high population of small shrinkage cavities at intercellular regions. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis showed that a B2-B19 one-step martensitic transformation occurred in the as-atomized powders. The martensitic transformation start temperature (Ms) of powders ranging between 25 and 50 μm was 304.5 K (31.5 °C). The Ms increased with increasing powder size. However, the difference of Ms in the as-atomized powders ranging between 25 and 150 μm was only 274 K (1 °C). A dense cylindrical specimen of 10 mm diameter and 15 mm length were fabricated by spark plasma sintering (SPS) at 1073 K (800 °C) and 10 MPa for 20 minutes. Then, this bulk specimen was heat treated for 60 minutes at 1123 K (850 °C) and quenched in ice water. The Ms of the SPS specimen was 310.5 K (37.5 °C) whereas the Ms of conventionally cast ingot is found to be as high as 352.7 K (79.7 °C). It is considered that the depression of the Ms in rapidly solidified powders is ascribed to the density of dislocations and the stored energy produced by rapid solidification.

  8. Laboratory Directed Research and Development Program FY2016 Annual Summary of Completed Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    ORNL FY 2016 Annual Summary of Laboratory Directed Research and Development Program (LDRD) Completed Projects. The Laboratory Directed Research and Development (LDRD) program at ORNL operates under the authority of DOE Order 413.2C, “Laboratory Directed Research and Development” (October 22, 2015), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. The LDRD program funds are obtained through a charge to all Laboratory programs. ORNL reports its status to DOE in March of each year.

  9. Ionization-potential depression and other dense plasma statistical property studies - Application to spectroscopic diagnostics.

    NASA Astrophysics Data System (ADS)

    Calisti, Annette; Ferri, Sandrine; Mossé, Caroline; Talin, Bernard

    2017-02-01

    The radiative properties of an emitter surrounded by a plasma, are modified through various mechanisms. For instance the line shapes emitted by bound-bound transitions are broadened and carry useful information for plasma diagnostics. Depending on plasma conditions the electrons occupying the upper quantum levels of radiators no longer exist as they belong to the plasma free electron population. All the charges present in the radiator environment contribute to the lowering of the energy required to free an electron in the fundamental state. This mechanism is known as ionization potential depression (IPD). The knowledge of IPD is useful as it affects both the radiative properties of the various ionic states and their populations. Its evaluation deals with highly complex n-body coupled systems, involving particles with different dynamics and attractive ion-electron forces. A classical molecular dynamics (MD) code, the BinGo-TCP code, has been recently developed to simulate neutral multi-component (various charge state ions and electrons) plasma accounting for all the charge correlations. In the present work, results on IPD and other dense plasma statistical properties obtained using the BinGo-TCP code are presented. The study focuses on aluminum plasmas for different densities and several temperatures in order to explore different plasma coupling conditions.

  10. Nearly full-dense and fine-grained AZO:Y ceramics sintered from the corresponding nanoparticles

    PubMed Central

    2012-01-01

    Aluminum-doped zinc oxide ceramics with yttria doping (AZO:Y) ranging from 0 to 0.2 wt.% were fabricated by pressureless sintering yttria-modified nanoparticles in air at 1,300°C. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction analysis, a physical property measurement system, and a densimeter were employed to characterize the precursor nanoparticles and the sintered AZO ceramics. It was shown that a small amount of yttria doping can remarkably retard the growth of the as-received precursor nanoparticles, further improve the microstructure, refine the grain size, and enhance the density for the sintered ceramic. Increasing the yttria doping to 0.2 wt.%, the AZO:Y nanoparticles synthetized by a coprecipitation process have a nearly sphere-shaped morphology and a mean particle diameter of 15.1 nm. Using the same amount of yttria, a fully dense AZO ceramic (99.98% of theoretical density) with a grain size of 2.2 μm and a bulk resistivity of 4.6 × 10−3 Ω·cm can be achieved. This kind of AZO:Y ceramic has a potential to be used as a high-quality sputtering target to deposit ZnO-based transparent conductive films with better optical and electrical properties. PMID:22929049

  11. Mesons from Laser-Induced Processes in Ultra-Dense Hydrogen H(0)

    PubMed Central

    2017-01-01

    Large signals of charged light mesons are observed in the laser-induced particle flux from ultra-dense hydrogen H(0) layers. The mesons are formed in such layers on metal surfaces using < 200 mJ laser pulse-energy. The time variation of the signal to metal foil collectors and the magnetic deflection to a movable pin collector are now studied. Relativistic charged particles with velocity up to 500 MeV u-1 thus 0.75 c are observed. Characteristic decay time constants for meson decay are observed, for charged and neutral kaons and also for charged pions. Magnetic deflections agree with charged pions and kaons. Theoretical predictions of the decay chains from kaons to muons in the particle beam agree with the results. Muons are detected separately by standard scintillation detectors in laser-induced processes in ultra-dense hydrogen H(0) as published previously. The muons formed do not decay appreciably within the flight distances used here. Most of the laser-ejected particle flux with MeV energy is not deflected by the magnetic fields and is thus neutral, either being neutral kaons or the ultra-dense HN(0) precursor clusters. Photons give only a minor part of the detected signals. PACS: 67.63.Gh, 14.40.-n, 79.20.Ds, 52.57.-z. PMID:28081199

  12. Quantum molecular dynamics simulations of dense matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, L.; Kress, J.; Troullier, N.

    1997-12-31

    The authors have developed a quantum molecular dynamics (QMD) simulation method for investigating the properties of dense matter in a variety of environments. The technique treats a periodically-replicated reference cell containing N atoms in which the nuclei move according to the classical equations-of-motion. The interatomic forces are generated from the quantum mechanical interactions of the (between?) electrons and nuclei. To generate these forces, the authors employ several methods of varying sophistication from the tight-binding (TB) to elaborate density functional (DF) schemes. In the latter case, lengthy simulations on the order of 200 atoms are routinely performed, while for the TB,more » which requires no self-consistency, upwards to 1000 atoms are systematically treated. The QMD method has been applied to a variety cases: (1) fluid/plasma Hydrogen from liquid density to 20 times volume-compressed for temperatures of a thousand to a million degrees Kelvin; (2) isotopic hydrogenic mixtures, (3) liquid metals (Li, Na, K); (4) impurities such as Argon in dense hydrogen plasmas; and (5) metal/insulator transitions in rare gas systems (Ar,Kr) under high compressions. The advent of parallel versions of the methods, especially for fast eigensolvers, presage LDA simulations in the range of 500--1000 atoms and TB runs for tens of thousands of particles. This leap should allow treatment of shock chemistry as well as large-scale mixtures of species in highly transient environments.« less

  13. Biconcave shape of human red-blood-cell ghosts relies on density differences between the rim and dimple of the ghost's plasma membrane.

    PubMed

    Hoffman, Joseph F

    2016-12-20

    The shape of the human red blood cell is known to be a biconcave disk. It is evident from a variety of theoretical work that known physical properties of the membrane, such as its bending energy and elasticity, can explain the red-blood-cell biconcave shape as well as other shapes that red blood cells assume. But these analyses do not provide information on the underlying molecular causes. This paper describes experiments that attempt to identify some of the underlying determinates of cell shape. To this end, red-blood-cell ghosts were made by hypotonic hemolysis and then reconstituted such that they were smooth spheres in hypo-osmotic solutions and smooth biconcave discs in iso-osmotic solutions. The spherical ghosts were centrifuged onto a coated coverslip upon which they adhered. When the attached spheres were changed to biconcave discs by flushing with an iso-osmotic solution, the ghosts were observed to be mainly oriented in a flat alignment on the coverslip. This was interpreted to mean that, during centrifugation, the spherical ghosts were oriented by a dense band in its equatorial plane, parallel to the centrifugal field. This appears to be evidence that the difference in the densities between the rim and the dimple regions of red blood cells and their ghosts may be responsible for their biconcave shape.

  14. Biconcave shape of human red-blood-cell ghosts relies on density differences between the rim and dimple of the ghost's plasma membrane

    PubMed Central

    Hoffman, Joseph F.

    2016-01-01

    The shape of the human red blood cell is known to be a biconcave disk. It is evident from a variety of theoretical work that known physical properties of the membrane, such as its bending energy and elasticity, can explain the red-blood-cell biconcave shape as well as other shapes that red blood cells assume. But these analyses do not provide information on the underlying molecular causes. This paper describes experiments that attempt to identify some of the underlying determinates of cell shape. To this end, red-blood-cell ghosts were made by hypotonic hemolysis and then reconstituted such that they were smooth spheres in hypo-osmotic solutions and smooth biconcave discs in iso-osmotic solutions. The spherical ghosts were centrifuged onto a coated coverslip upon which they adhered. When the attached spheres were changed to biconcave discs by flushing with an iso-osmotic solution, the ghosts were observed to be mainly oriented in a flat alignment on the coverslip. This was interpreted to mean that, during centrifugation, the spherical ghosts were oriented by a dense band in its equatorial plane, parallel to the centrifugal field. This appears to be evidence that the difference in the densities between the rim and the dimple regions of red blood cells and their ghosts may be responsible for their biconcave shape. PMID:27930321

  15. Molecular Composition and Chemistry of Isolated Dense Cores

    NASA Astrophysics Data System (ADS)

    Cook, Amanda; Boogert, A.

    2009-01-01

    The composition of molecular clouds and the envelopes and disks surrounding low mass protostars within them is still poorly known. There is little doubt that a large fraction of the molecules is frozen on grains, but the abundance of several crucial species (e.g. ammonia, methanol, ions) in the ices is still uncertain. In addition, prominent spectral features discovered decades ago are still not securely identified (e.g. the 6.85-micron absorption band). Gas phase and grain surface chemistry play pivotal roles in molecule formation, but numerous other processes could have significant impacts as well: shocks, thermal heating, irradiation of ices by ultraviolet photons and cosmic rays. Complex species could be formed this way, profoundly influencing cloud, disk and planetary/cometary chemistry. We have obtained Spitzer/IRS spectra of an unprecedented sample of sight-lines tracing 25 dense isolated cores. These cores physically differ from the large, cluster-forming molecular clouds (e.g. Ophiuchus, Perseus) that are commonly studied: they are less turbulent, colder, less dense, and likely longer lived. These IRS spectra of isolated cores thus provide unique information on ice formation and destruction mechanisms. Toward the same cores, we observed 33 highly extincted background stars as well, tracing the quiescent cloud medium against which the ices around protostars can be contrasted.

  16. Computing rank-revealing QR factorizations of dense matrices.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bischof, C. H.; Quintana-Orti, G.; Mathematics and Computer Science

    1998-06-01

    We develop algorithms and implementations for computing rank-revealing QR (RRQR) factorizations of dense matrices. First, we develop an efficient block algorithm for approximating an RRQR factorization, employing a windowed version of the commonly used Golub pivoting strategy, aided by incremental condition estimation. Second, we develop efficiently implementable variants of guaranteed reliable RRQR algorithms for triangular matrices originally suggested by Chandrasekaran and Ipsen and by Pan and Tang. We suggest algorithmic improvements with respect to condition estimation, termination criteria, and Givens updating. By combining the block algorithm with one of the triangular postprocessing steps, we arrive at an efficient and reliablemore » algorithm for computing an RRQR factorization of a dense matrix. Experimental results on IBM RS/6000 SGI R8000 platforms show that this approach performs up to three times faster that the less reliable QR factorization with column pivoting as it is currently implemented in LAPACK, and comes within 15% of the performance of the LAPACK block algorithm for computing a QR factorization without any column exchanges. Thus, we expect this routine to be useful in may circumstances where numerical rank deficiency cannot be ruled out, but currently has been ignored because of the computational cost of dealing with it.« less

  17. Influence of the finite linewidth of the laser radiation spectrum on the shape of the coherent population trapping resonance line in an optically dense medium with a buffer gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barantsev, K. A., E-mail: kostmann@yandex.ru; Popov, E. N.; Litvinov, A. N., E-mail: andrey.litvinov@mail.ru

    2015-11-15

    The theory of coherent population trapping resonance is developed for the finite linewidth of the laser radiation spectrum in an optically dense medium of Λ atoms in a cell with a buffer gas. Equations are derived for the atomic density matrix and laser emission spectrum transfer in a cell with working and buffer gases at a finite temperature. The dependence of the quality factor of coherent population trapping resonance on the linewidth of the laser radiation spectrum is studied by measuring transmitted radiation and fluorescence signals.

  18. High-Resolution Strain Analysis of the Human Heart with Fast-DENSE

    NASA Astrophysics Data System (ADS)

    Aletras, Anthony H.; Balaban, Robert S.; Wen, Han

    1999-09-01

    Single breath-hold displacement data from the human heart were acquired with fast-DENSE (fast displacement encoding with stimulated echoes) during systolic contraction at 2.5 × 2.5 mm in-plane resolution. Encoding strengths of 0.86-1.60 mm/π were utilized in order to extend the dynamic range of the phase measurements and minimize effects of physiologic and instrument noise. The noise level in strain measurements for both contraction and dilation corresponded to a strain value of 2.8%. In the human heart, strain analysis has sufficient resolution to reveal transmural variation across the left ventricular wall. Data processing required minimal user intervention and provided a rapid quantitative feedback. The intrinsic temporal integration of fast-DENSE achieves high accuracy at the expense of temporal resolution.

  19. Phase boundary of hot dense fluid hydrogen

    PubMed Central

    Ohta, Kenji; Ichimaru, Kota; Einaga, Mari; Kawaguchi, Sho; Shimizu, Katsuya; Matsuoka, Takahiro; Hirao, Naohisa; Ohishi, Yasuo

    2015-01-01

    We investigated the phase transformation of hot dense fluid hydrogen using static high-pressure laser-heating experiments in a laser-heated diamond anvil cell. The results show anomalies in the heating efficiency that are likely to be attributed to the phase transition from a diatomic to monoatomic fluid hydrogen (plasma phase transition) in the pressure range between 82 and 106 GPa. This study imposes tighter constraints on the location of the hydrogen plasma phase transition boundary and suggests higher critical point than that predicted by the theoretical calculations. PMID:26548442

  20. Single-shot mega-electronvolt ultrafast electron diffraction for structure dynamic studies of warm dense matter

    NASA Astrophysics Data System (ADS)

    Mo, M. Z.; Shen, X.; Chen, Z.; Li, R. K.; Dunning, M.; Sokolowski-Tinten, K.; Zheng, Q.; Weathersby, S. P.; Reid, A. H.; Coffee, R.; Makasyuk, I.; Edstrom, S.; McCormick, D.; Jobe, K.; Hast, C.; Glenzer, S. H.; Wang, X.

    2016-11-01

    We have developed a single-shot mega-electronvolt ultrafast-electron-diffraction system to measure the structural dynamics of warm dense matter. The electron probe in this system is featured by a kinetic energy of 3.2 MeV and a total charge of 20 fC, with the FWHM pulse duration and spot size at sample of 350 fs and 120 μm respectively. We demonstrate its unique capability by visualizing the atomic structural changes of warm dense gold formed from a laser-excited 35-nm freestanding single-crystal gold foil. The temporal evolution of the Bragg peak intensity and of the liquid signal during solid-liquid phase transition are quantitatively determined. This experimental capability opens up an exciting opportunity to unravel the atomic dynamics of structural phase transitions in warm dense matter regime.

  1. FY07 LDRD Final Report A Fracture Mechanics and Tribology Approach to Understanding Subsurface Damage on Fused Silica during Grinding and Polishing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suratwala, T I; Miller, P E; Menapace, J A

    The objective of this work is to develop a solid scientific understanding of the creation and characteristics of surface fractures formed during the grinding and polishing of brittle materials, specifically glass. In this study, we have experimentally characterized the morphology, number density, and depth distribution of various surface cracks as a function of various grinding and polishing processes (blanchard, fixed abrasive grinding, loose abrasive, pitch polishing and pad polishing). Also, the effects of load, abrasive particle (size, distribution, foreign particles, geometry, velocity), and lap material (pitch, pad) were examined. The resulting data were evaluated in terms of indentation fracture mechanicsmore » and tribological interactions (science of interacting surfaces) leading to several models to explain crack distribution behavior of ground surfaces and to explain the characteristics of scratches formed during polishing. This project has greatly advanced the scientific knowledge of microscopic mechanical damage occurring during grinding and polishing and has been of general interest. This knowledge-base has also enabled the design and optimization of surface finishing processes to create optical surfaces with far superior laser damage resistance. There are five major areas of scientific progress as a result of this LDRD. They are listed in Figure 1 and described briefly in this summary below. The details of this work are summarized through a number of published manuscripts which are included this LDRD Final Report. In the first area of grinding, we developed a technique to quantitatively and statistically measure the depth distribution of surface fractures (i.e., subsurface damage) in fused silica as function of various grinding processes using mixtures of various abrasive particles size distributions. The observed crack distributions were explained using a model that extended known, single brittle indentation models to an ensemble of loaded

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, T

    I am pleased to present the fiscal year 2007 Laboratory Directed Research and Development (LDRD) annual report. This represents the first year that SRNL has been eligible for LDRD participation and our results to date demonstrate we are off to an excellent start. SRNL became a National Laboratory in 2004, and was designated the 'Corporate Laboratory' for the DOE Office of Environmental Management (EM) in 2006. As you will see, we have made great progress since these designations. The LDRD program is one of the tools SRNL is using to enable achievement of our strategic goals for the DOE. Themore » LDRD program allows the laboratory to blend a strong basic science component into our applied technical portfolio. This blending of science with applied technology provides opportunities for our scientists to strengthen our capabilities and delivery. The LDRD program is vital to help SRNL attract and retain leading scientists and engineers who will help build SRNL's future and achieve DOE mission objectives. This program has stimulated our research staff creativity, while realizing benefits from their participation. This investment will yield long term dividends to the DOE in its Environmental Management, Energy, and National Security missions.« less

  3. Molecular characterization of long direct repeat (LDR) sequences expressing a stable mRNA encoding for a 35-amino-acid cell-killing peptide and a cis-encoded small antisense RNA in Escherichia coli.

    PubMed

    Kawano, Mitsuoki; Oshima, Taku; Kasai, Hiroaki; Mori, Hirotada

    2002-07-01

    Genome sequence analyses of Escherichia coli K-12 revealed four copies of long repetitive elements. These sequences are designated as long direct repeat (LDR) sequences. Three of the repeats (LDR-A, -B, -C), each approximately 500 bp in length, are located as tandem repeats at 27.4 min on the genetic map. Another copy (LDR-D), 450 bp in length and nearly identical to LDR-A, -B and -C, is located at 79.7 min, a position that is directly opposite the position of LDR-A, -B and -C. In this study, we demonstrate that LDR-D encodes a 35-amino-acid peptide, LdrD, the overexpression of which causes rapid cell killing and nucleoid condensation of the host cell. Northern blot and primer extension analysis showed constitutive transcription of a stable mRNA (approximately 370 nucleotides) encoding LdrD and an unstable cis-encoded antisense RNA (approximately 60 nucleotides), which functions as a trans-acting regulator of ldrD translation. We propose that LDR encodes a toxin-antitoxin module. LDR-homologous sequences are not pre-sent on any known plasmids but are conserved in Salmonella and other enterobacterial species.

  4. Densely calculated facial soft tissue thickness for craniofacial reconstruction in Chinese adults.

    PubMed

    Shui, Wuyang; Zhou, Mingquan; Deng, Qingqiong; Wu, Zhongke; Ji, Yuan; Li, Kang; He, Taiping; Jiang, Haiyan

    2016-09-01

    Craniofacial reconstruction (CFR) is used to recreate a likeness of original facial appearance for an unidentified skull; this technique has been applied in both forensics and archeology. Many CFR techniques rely on the average facial soft tissue thickness (FSTT) of anatomical landmarks, related to ethnicity, age, sex, body mass index (BMI), etc. Previous studies typically employed FSTT at sparsely distributed anatomical landmarks, where different landmark definitions may affect the contrasting results. In the present study, a total of 90,198 one-to-one correspondence skull vertices are established on 171 head CT-scans and the FSTT of each corresponding vertex is calculated (hereafter referred to as densely calculated FSTT) for statistical analysis and CFR. Basic descriptive statistics (i.e., mean and standard deviation) for densely calculated FSTT are reported separately according to sex and age. Results show that 76.12% of overall vertices indicate that the FSTT is greater in males than females, with the exception of vertices around the zygoma, zygomatic arch and mid-lateral orbit. These sex-related significant differences are found at 55.12% of all vertices and the statistically age-related significant differences are depicted between the three age groups at a majority of all vertices (73.31% for males and 63.43% for females). Five non-overlapping categories are given and the descriptive statistics (i.e., mean, standard deviation, local standard deviation and percentage) are reported. Multiple appearances are produced using the densely calculated FSTT of various age and sex groups, and a quantitative assessment is provided to examine how relevant the choice of FSTT is to increasing the accuracy of CFR. In conclusion, this study provides a new perspective in understanding the distribution of FSTT and the construction of a new densely calculated FSTT database for craniofacial reconstruction. Copyright © 2016. Published by Elsevier Ireland Ltd.

  5. Relativistic Modelling of Stable Anisotropic Super-Dense Star

    NASA Astrophysics Data System (ADS)

    Maurya, S. K.; Gupta, Y. K.; Jasim, M. K.

    2015-08-01

    In the present article we have obtained new set of exact solutions of Einstein field equations for anisotropic fluid spheres by using the Herrera et al. [1] algorithm. The anisotropic fluid solutions so obtained join continuously to the Schwarzschild exterior solution across the pressure-free boundary. It is observed that most of the new anisotropic solutions are well-behaved and are used to construct the super-dense star models such as neutron stars and pulsars.

  6. Dynamos in asymptotic-giant-branch stars as the origin of magnetic fields shaping planetary nebulae.

    PubMed

    Blackman, E G; Frank, A; Markiel, J A; Thomas, J H; Van Horn, H M

    2001-01-25

    Planetary nebulae are thought to be formed when a slow wind from the progenitor giant star is overtaken by a subsequent fast wind generated as the star enters its white dwarf stage. A shock forms near the boundary between the winds, creating the relatively dense shell characteristic of a planetary nebula. A spherically symmetric wind will produce a spherically symmetric shell, yet over half of known planetary nebulae are not spherical; rather, they are elliptical or bipolar in shape. A magnetic field could launch and collimate a bipolar outflow, but the origin of such a field has hitherto been unclear, and some previous work has even suggested that a field could not be generated. Here we show that an asymptotic-giant-branch (AGB) star can indeed generate a strong magnetic field, having as its origin a dynamo at the interface between the rapidly rotating core and the more slowly rotating envelope of the star. The fields are strong enough to shape the bipolar outflows that produce the observed bipolar planetary nebulae. Magnetic braking of the stellar core during this process may also explain the puzzlingly slow rotation of most white dwarf stars.

  7. Preionization Techniques in a kJ-Scale Dense Plasma Focus

    NASA Astrophysics Data System (ADS)

    Povilus, Alexander; Shaw, Brian; Chapman, Steve; Podpaly, Yuri; Cooper, Christopher; Falabella, Steve; Prasad, Rahul; Schmidt, Andrea

    2016-10-01

    A dense plasma focus (DPF) is a type of z-pinch device that uses a high current, coaxial plasma gun with an implosion phase to generate dense plasmas. These devices can accelerate a beam of ions to MeV-scale energies through strong electric fields generated by instabilities during the implosion of the plasma sheath. The formation of these instabilities, however, relies strongly on the history of the plasma sheath in the device, including the evolution of the gas breakdown in the device. In an effort to reduce variability in the performance of the device, we attempt to control the initial gas breakdown in the device by seeding the system with free charges before the main power pulse arrives. We report on the effectiveness of two techniques developed for a kJ-scale DPF at LLNL, a miniature primer spark gap and pulsed, 255nm LED illumination. Prepared by LLNL under Contract DE-AC52-07NA27344.

  8. Extreme ultraviolet interferometry of warm dense matter in laser plasmas.

    PubMed

    Gartside, L M R; Tallents, G J; Rossall, A K; Wagenaars, E; Whittaker, D S; Kozlová, M; Nejdl, J; Sawicka, M; Polan, J; Kalal, M; Rus, B

    2010-11-15

    We demonstrate that interferometric probing with extreme ultraviolet (EUV) laser light enables determination of the degree of ionization of the "warm dense matter" produced between the critical and ablation surfaces of laser plasmas. Interferometry has been utilized to measure both transmission and phase information for an EUV laser beam at the photon energy of 58.5 eV, probing longitudinally through laser-irradiated plastic (parylene-N) targets (thickness 350 nm) irradiated by a 300 ps duration pulse of wavelength 438 nm and peak irradiance 10(12) W cm(-2). The transmission of the EUV probe beam provides a measure of the rate of target ablation, as ablated plasma becomes close to transparent when the photon energy is less than the ionization energy of the predominant ion species. We show that refractive indices η below the solid parylene N (η(solid) = 0.946) and expected plasma values are produced in the warm dense plasma created by laser irradiation due to bound-free absorption in C(+).

  9. Laboratory Directed Research and Development FY-15 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pillai, Rekha Sukamar

    The Laboratory Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2015.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wester, W., editor

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    SLAC,

    The Department of Energy (DOE) and the SLAC National Accelerator Laboratory (SLAC) encourage innovation, creativity, originality and quality to maintain the Laboratory’s research activities and staff at the forefront of science and technology. To further advance its scientific research capabilities, the Laboratory allocates a portion of its funds for the Laboratory Directed Research and Development (LDRD) program. With DOE guidance, the LDRD program enables SLAC scientists to make rapid and significant contributions that seed new strategies for solving important national science and technology problems. The LDRD program is conducted using existing research facilities.

  12. 2014 Fermilab Laboratory Directed Research & Development Program Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wester, W., editor

    2016-05-26

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  13. An Analog Macroscopic Technique for Studying Molecular Hydrodynamic Processes in Dense Gases and Liquids.

    PubMed

    Dahlberg, Jerry; Tkacik, Peter T; Mullany, Brigid; Fleischhauer, Eric; Shahinian, Hossein; Azimi, Farzad; Navare, Jayesh; Owen, Spencer; Bisel, Tucker; Martin, Tony; Sholar, Jodie; Keanini, Russell G

    2017-12-04

    An analog, macroscopic method for studying molecular-scale hydrodynamic processes in dense gases and liquids is described. The technique applies a standard fluid dynamic diagnostic, particle image velocimetry (PIV), to measure: i) velocities of individual particles (grains), extant on short, grain-collision time-scales, ii) velocities of systems of particles, on both short collision-time- and long, continuum-flow-time-scales, iii) collective hydrodynamic modes known to exist in dense molecular fluids, and iv) short- and long-time-scale velocity autocorrelation functions, central to understanding particle-scale dynamics in strongly interacting, dense fluid systems. The basic system is composed of an imaging system, light source, vibrational sensors, vibrational system with a known media, and PIV and analysis software. Required experimental measurements and an outline of the theoretical tools needed when using the analog technique to study molecular-scale hydrodynamic processes are highlighted. The proposed technique provides a relatively straightforward alternative to photonic and neutron beam scattering methods traditionally used in molecular hydrodynamic studies.

  14. First-principles calculations of K-shell X-ray absorption spectra for warm dense nitrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zi; Zhang, Shen; Kang, Wei

    2016-05-15

    X-ray absorption spectrum is a powerful tool for atomic structure detection on warm dense matter. Here, we perform first-principles molecular dynamics and X-ray absorption spectrum calculations on warm dense nitrogen along a Hugoniot curve. From the molecular dynamics trajectory, the detailed atomic structures are examined for each thermodynamical condition. The K-shell X-ray absorption spectrum is calculated, and its changes with temperature and pressure along the Hugoniot curve are discussed. The warm dense nitrogen systems may contain isolated nitrogen atoms, N{sub 2} molecules, and nitrogen clusters, which show quite different contributions to the total X-ray spectrum due to their different electronmore » density of states. The changes of X-ray spectrum along the Hugoniot curve are caused by the different nitrogen structures induced by the temperature and the pressure. Some clear signatures on X-ray spectrum for different thermodynamical conditions are pointed out, which may provide useful data for future X-ray experiments.« less

  15. Linear dependence of surface expansion speed on initial plasma temperature in warm dense matter

    DOE PAGES

    Bang, Woosuk; Albright, Brian James; Bradley, Paul Andrew; ...

    2016-07-12

    Recent progress in laser-driven quasi-monoenergetic ion beams enabled the production of uniformly heated warm dense matter. Matter heated rapidly with this technique is under extreme temperatures and pressures, and promptly expands outward. While the expansion speed of an ideal plasma is known to have a square-root dependence on temperature, computer simulations presented here show a linear dependence of expansion speed on initial plasma temperature in the warm dense matter regime. The expansion of uniformly heated 1–100 eV solid density gold foils was modeled with the RAGE radiation-hydrodynamics code, and the average surface expansion speed was found to increase linearly withmore » temperature. The origin of this linear dependence is explained by comparing predictions from the SESAME equation-of-state tables with those from the ideal gas equation-of-state. In conclusion, these simulations offer useful insight into the expansion of warm dense matter and motivate the application of optical shadowgraphy for temperature measurement.« less

  16. The dense gas mass fraction in the W51 cloud and its protoclusters

    NASA Astrophysics Data System (ADS)

    Ginsburg, Adam; Bally, John; Battersby, Cara; Youngblood, Allison; Darling, Jeremy; Rosolowsky, Erik; Arce, Héctor; Lebrón Santos, Mayra E.

    2015-01-01

    Context. The density structure of molecular clouds determines how they will evolve. Aims: We map the velocity-resolved density structure of the most vigorously star-forming molecular cloud in the Galactic disk, the W51 giant molecular cloud. Methods: We present new 2 cm and 6 cm maps of H2CO, radio recombination lines, and the radio continuum in the W51 star forming complex acquired with Arecibo and the Green Bank Telescope at ~ 50″ resolution. We use H2CO absorption to determine the relative line-of-sight positions of molecular and ionized gas. We measure gas densities using the H2CO densitometer, including continuous measurements of the dense gas mass fraction (DGMF) over the range 104cm-3dense gas mass fraction has been measured over a range of densities with a single data set. Results: The DGMF in W51 A is high, f ≳ 70% above n> 104cm-3, while it is low, f< 20%, in W51 B. We did not detect any H2CO emission throughout the W51 GMC; all gas dense enough to emit under normal conditions is in front of bright continuum sources and therefore is seen in absorption instead. Conclusions: (1) The dense gas fraction in the W51 A and B clouds shows that W51 A will continue to form stars vigorously, while star formation has mostly ended in W51 B. The lack of dense, star-forming gas around W51 C indicates that collect-and-collapse is not acting or is inefficient in W51. (2) Ongoing high-mass star formation is correlated with n ≳ 1 × 105cm-3 gas. Gas with n> 104cm-3 is weakly correlated with low and moderate mass star formation, but does not strongly correlate with high-mass star formation. (3) The nondetection of H2CO emission implies that the emission detected in other galaxies, e.g. Arp 220, comes from high-density gas that is not directly affiliated with already-formed massive stars. Either the non-star-forming ISM of these galaxies is very dense, implying the star formation density threshold is higher, or H ii regions

  17. Agonist and antagonist effects of diadenosine tetraphosphate, a platelet dense granule constituent, on platelet P2Y1, P2Y12 and P2X1 receptors.

    PubMed

    Chang, Hung; Yanachkov, Ivan B; Michelson, Alan D; Li, YouFu; Barnard, M R; Wright, George E; Frelinger, Andrew L

    2010-02-01

    Diadenosine 5',5'''-P(1),P(4)- tetraphosphate (Ap(4)A) is stored in platelet dense granules, but its effects on platelet function are not well understood. We examined the effects of Ap(4)A on platelet purinergic receptors P2Y(1), P2Y(12) and P2X(1). Flow cytometry was used to measure the effects of Ap(4)A in the presence or absence of ADP on: a) P2Y(12)-mediated decrease in intraplatelet phosphorylated vasodilator stimulated phosphoprotein (VASP), b) P2Y(1)-mediated increase in platelet cytosolic Ca(2+), and c) P2X(1)-mediated intraplatelet entry of extracellular Ca(2+). ADP-stimulated platelet shape change (P2Y(1)-mediated) and aggregation (P2Y(1)- and P2Y(12)-mediated) were measured optically. Ap(4)A inhibited 3 microM ADP-induced: a) platelet aggregation (IC(50) 9.8+/-2.8 microM), b) P2Y(1)-mediated shape change, c) P2Y(1)-mediated increase in platelet cytosolic Ca(2+) (IC(50) 40.8+/-12.3 microM), and d) P2Y(12)-mediated decrease in VASP phosphorylation (IC(50)>250 microM). In the absence of added ADP, Ap(4)A had agonist effects on platelet P2X(1) and P2Y(12), but not P2Y(1), receptors. Ap(4)A, a constituent of platelet dense granules, is a) an antagonist of platelet P2Y(1) and P2Y(12) receptors, where it inhibits the effects of ADP, and b) an agonist of platelet P2X(1) and P2Y(12) receptors. Copyright 2009 Elsevier Ltd. All rights reserved.

  18. Agonist and Antagonist Effects of Diadenosine Tetraphosphate, a Platelet Dense Granule Constituent, on Platelet P2Y1, P2Y12 and P2X1 Receptors

    PubMed Central

    Chang, Hung; Yanachkov, Ivan B.; Michelson, Alan D.; Li, YouFu; Barnard, M.R.; Wright, George E.; Frelinger, Andrew L.

    2010-01-01

    Introduction Diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A) is stored in platelet dense granules, but its effects on platelet function are not well understood. Methods and Results We examined the effects of Ap4A on platelet purinergic receptors P2Y1, P2Y12 and P2X1. Flow cytometry was used to measure the effects of Ap4A in the presence or absence of ADP on: a) P2Y12-mediated decrease in intraplatelet phosphorylated vasodilator stimulated phosphoprotein (VASP), b) P2Y1-mediated increase in platelet cytosolic Ca2+, and c) P2X1-mediated intraplatelet entry of extracellular Ca2+. ADP-stimulated platelet shape change (P2Y1-mediated) and aggregation (P2Y1- and P2Y12-mediated) were measured optically. Ap4A inhibited 3 µM ADP-induced: a) platelet aggregation (IC50 9.8 ± 2.8 µM), b) P2Y1-mediated shape change, c) P2Y1-mediated increase in platelet cytosolic Ca2+ (IC50 40.8 ± 12.3 µM), and d) P2Y12-mediated decrease in VASP phosphorylation (IC50 >250 µM). In the absence of added ADP, Ap4A had agonist effects on platelet P2X1 and P2Y12, but not P2Y1, receptors. Conclusion Ap4A, a constituent of platelet dense granules, is a) an antagonist of platelet P2Y1 and P2Y12 receptors, where it inhibits the effects of ADP, and b) an agonist of platelet P2X1 and P2Y12 receptors. PMID:19945153

  19. Uniformly dense polymeric foam body

    DOEpatents

    Whinnery, Jr., Leroy

    2003-07-15

    A method for providing a uniformly dense polymer foam body having a density between about 0.013 g/cm.sup.3 to about 0.5 g/cm.sup.3 is disclosed. The method utilizes a thermally expandable polymer microsphere material wherein some of the microspheres are unexpanded and some are only partially expanded. It is shown that by mixing the two types of materials in appropriate ratios to achieve the desired bulk final density, filling a mold with this mixture so as to displace all or essentially all of the internal volume of the mold, heating the mold for a predetermined interval at a temperature above about 130.degree. C., and then cooling the mold to a temperature below 80.degree. C. the molded part achieves a bulk density which varies by less then about .+-.6% everywhere throughout the part volume.

  20. Resident CAPS on dense-core vesicles docks and primes vesicles for fusion

    PubMed Central

    Kabachinski, Greg; Kielar-Grevstad, D. Michelle; Zhang, Xingmin; James, Declan J.; Martin, Thomas F. J.

    2016-01-01

    The Ca2+-dependent exocytosis of dense-core vesicles in neuroendocrine cells requires a priming step during which SNARE protein complexes assemble. CAPS (aka CADPS) is one of several factors required for vesicle priming; however, the localization and dynamics of CAPS at sites of exocytosis in live neuroendocrine cells has not been determined. We imaged CAPS before, during, and after single-vesicle fusion events in PC12 cells by TIRF micro­scopy. In addition to being a resident on cytoplasmic dense-core vesicles, CAPS was present in clusters of approximately nine molecules near the plasma membrane that corresponded to docked/tethered vesicles. CAPS accompanied vesicles to the plasma membrane and was present at all vesicle exocytic events. The knockdown of CAPS by shRNA eliminated the VAMP-2–dependent docking and evoked exocytosis of fusion-competent vesicles. A CAPS(ΔC135) protein that does not localize to vesicles failed to rescue vesicle docking and evoked exocytosis in CAPS-depleted cells, showing that CAPS residence on vesicles is essential. Our results indicate that dense-core vesicles carry CAPS to sites of exocytosis, where CAPS promotes vesicle docking and fusion competence, probably by initiating SNARE complex assembly. PMID:26700319