Sample records for dense temporary network

  1. Traffic on complex networks: Towards understanding global statistical properties from microscopic density fluctuations

    NASA Astrophysics Data System (ADS)

    Tadić, Bosiljka; Thurner, Stefan; Rodgers, G. J.

    2004-03-01

    We study the microscopic time fluctuations of traffic load and the global statistical properties of a dense traffic of particles on scale-free cyclic graphs. For a wide range of driving rates R the traffic is stationary and the load time series exhibits antipersistence due to the regulatory role of the superstructure associated with two hub nodes in the network. We discuss how the superstructure affects the functioning of the network at high traffic density and at the jamming threshold. The degree of correlations systematically decreases with increasing traffic density and eventually disappears when approaching a jamming density Rc. Already before jamming we observe qualitative changes in the global network-load distributions and the particle queuing times. These changes are related to the occurrence of temporary crises in which the network-load increases dramatically, and then slowly falls back to a value characterizing free flow.

  2. Seasonality of Shallow Icequakes at Mount Erebus Volcano, Antarctica

    NASA Astrophysics Data System (ADS)

    Knox, H. A.; Aster, R. C.; Kyle, P. R.

    2010-12-01

    Background (non-eruptive) seismicity at Mount Erebus Volcano is dominated by icequake activity on its extensive ice fields and glaciers. We examine icequake seismograms recorded by both long-running and temporary densification deployments spanning seven years (2003-2009) to assess event frequency, size, apparent seasonality, event mechanism, and geographic distribution. In addition to generally investigating mountain glacial ice seismicity in cold and dry glacial environments, we also hope to exploit icequakes as local sources for tomographic imaging of the volcano’s interior in conjunction with 2008-2010 active source and explosive volcanism data. Using Antelope-based methodologies, we determined the distribution and magnitude of a subset of well-recorded icequakes using data from the long-running Mount Erebus Volcano Network (MEVO) network, as well as two dense IRIS PASSCAL supported temporary networks deployed during 2008 and 2009 (the MEVO network consists of six broadband and nine short period stations with environmental data streams; the dense arrays consisted of 24 broadband stations arranged in two concentric rings around the volcano and 99 short period stations deployed near the summit of Erebus volcano and along the Terror-Erebus axis of Ross Island). During each of the seven years, we note a number of large icequake swarms (up to many hundreds of events per day). We hypothesize that many of these events occur in very shallow ice, based on the apparent ambient temperature-driven seasonality of the events. Specifically, approximately 43% of the events occur between March and May and approximately 30% occur between October and December. Each of these times feature rapidly changing ambient air temperatures due to the high latitude appearance/disappearance of the sun. A shallow mechanism is predicted by 1-D thermal skin depth calculations that show that annual temperature fluctuations decay by 1/e within the top few meters of ice.

  3. Seismicity and Fault Zone Structure Near the Xinfengjiang Water Reservoir, Guangdong, China

    NASA Astrophysics Data System (ADS)

    Yang, H.; Sun, X.; He, L.; Wang, S.

    2015-12-01

    Xingfengjiang Water Reservoir (XWR) was built in 1958 and the first impoundment was conducted in 1959. Immediately following the reservoir impoundment, a series of earthquakes occurred in the vicinity of the XWR, including the 1962 M6.1 earthquake that occurred ~1 km next to the dam. Numerous small earthquakes take place in this region presently, making it one of the most active seismic zones in Guangdong. To investigate the present seismicity and associated fault zone structure, we deployed a temporary seismic network, including a dense linear array across the Ren-Zi-Shi fault southwest to the reservoir. The temporary network is consisted of 42 stations that are operated in the field for more than one month. Because of the mountainous terrain, it is impossible to deploy broadband sensors. Here we use DDV-5 seismometer with a central frequency of 120Hz-5s that is independent on external GPS and battery. During our deployment, numerous earthquakes were recorded. Preliminary results of travel time analysis have shown the characteristic of low velocity fault zone. More detailed analysis, including relocation of earthquakes, ambient noise cross correlation, and modeling body waves, will be presented.

  4. Community Seismic Network (CSN)

    NASA Astrophysics Data System (ADS)

    Clayton, R. W.; Heaton, T. H.; Kohler, M. D.; Cheng, M.; Guy, R.; Chandy, M.; Krause, A.; Bunn, J.; Olson, M.; Faulkner, M.

    2011-12-01

    The CSN is a network of low-cost accelerometers deployed in the Pasadena, CA region. It is a prototype network with the goal of demonstrating the importance of dense measurements in determining the rapid lateral variations in ground motion due to earthquakes. The main product of the CSN is a map of peak ground produced within seconds of significant local earthquakes that can be used as a proxy for damage. Examples of this are shown using data from a temporary network in Long Beach, CA. Dense measurements in buildings are also being used to determine the state of health of structures. In addition to fixed sensors, portable sensors such as smart phones are also used in the network. The CSN has necessitated several changes in the standard design of a seismic network. The first is that the data collection and processing is done in the "cloud" (Google cloud in this case) for robustness and the ability to handle large impulsive loads (earthquakes). Second, the database is highly de-normalized (i.e. station locations are part of waveform and event-detection meta data) because of the mobile nature of the sensors. Third, since the sensors are hosted and/or owned by individuals, the privacy of the data is very important. The location of fixed sensors is displayed on maps as sensor counts in block-wide cells, and mobile sensors are shown in a similar way, with the additional requirement to inhibit tracking that at least two must be present in a particular cell before any are shown. The raw waveform data are only released to users outside of the network after a felt earthquake.

  5. Estimating seismic site response in Christchurch City (New Zealand) from dense low-cost aftershock arrays

    USGS Publications Warehouse

    Kaiser, Anna E.; Benites, Rafael A.; Chung, Angela I.; Haines, A. John; Cochran, Elizabeth S.; Fry, Bill

    2011-01-01

    The Mw 7.1 September 2010 Darfield earthquake, New Zealand, produced widespread damage and liquefaction ~40 km from the epicentre in Christchurch city. It was followed by the even more destructive Mw 6.2 February 2011 Christchurch aftershock directly beneath the city’s southern suburbs. Seismic data recorded during the two large events suggest that site effects contributed to the variations in ground motion observed throughout Christchurch city. We use densely-spaced aftershock recordings of the Darfield earthquake to investigate variations in local seismic site response within the Christchurch urban area. Following the Darfield main shock we deployed a temporary array of ~180 low-cost 14-bit MEMS accelerometers linked to the global Quake-Catcher Network (QCN). These instruments provided dense station coverage (spacing ~2 km) to complement existing New Zealand national network strong motion stations (GeoNet) within Christchurch city. Well-constrained standard spectral ratios were derived for GeoNet stations using a reference station on Miocene basalt rock in the south of the city. For noisier QCN stations, the method was adapted to find a maximum likelihood estimate of spectral ratio amplitude taking into account the variance of noise at the respective stations. Spectral ratios for QCN stations are similar to nearby GeoNet stations when the maximum likelihood method is used. Our study suggests dense low-cost accelerometer aftershock arrays can provide useful information on local-scale ground motion properties for use in microzonation. Preliminary results indicate higher amplifications north of the city centre and strong high-frequency amplification in the small, shallower basin of Heathcote Valley.

  6. Deploying temporary networks for upscaling of sparse network stations

    NASA Astrophysics Data System (ADS)

    Coopersmith, Evan J.; Cosh, Michael H.; Bell, Jesse E.; Kelly, Victoria; Hall, Mark; Palecki, Michael A.; Temimi, Marouane

    2016-10-01

    Soil observations networks at the national scale play an integral role in hydrologic modeling, drought assessment, agricultural decision support, and our ability to understand climate change. Understanding soil moisture variability is necessary to apply these measurements to model calibration, business and consumer applications, or even human health issues. The installation of soil moisture sensors as sparse, national networks is necessitated by limited financial resources. However, this results in the incomplete sampling of the local heterogeneity of soil type, vegetation cover, topography, and the fine spatial distribution of precipitation events. To this end, temporary networks can be installed in the areas surrounding a permanent installation within a sparse network. The temporary networks deployed in this study provide a more representative average at the 3 km and 9 km scales, localized about the permanent gauge. The value of such temporary networks is demonstrated at test sites in Millbrook, New York and Crossville, Tennessee. The capacity of a single U.S. Climate Reference Network (USCRN) sensor set to approximate the average of a temporary network at the 3 km and 9 km scales using a simple linear scaling function is tested. The capacity of a temporary network to provide reliable estimates with diminishing numbers of sensors, the temporal stability of those networks, and ultimately, the relationship of the variability of those networks to soil moisture conditions at the permanent sensor are investigated. In this manner, this work demonstrates the single-season installation of a temporary network as a mechanism to characterize the soil moisture variability at a permanent gauge within a sparse network.

  7. Seismicity and Crustal Anisotropy Beneath the Western Segment of the North Anatolian Fault: Results from a Dense Seismic Array

    NASA Astrophysics Data System (ADS)

    Turkelli, N.; Teoman, U.; Altuncu Poyraz, S.; Cambaz, D.; Mutlu, A. K.; Kahraman, M.; Houseman, G. A.; Rost, S.; Thompson, D. A.; Cornwell, D. G.; Utkucu, M.; Gülen, L.

    2013-12-01

    The North Anatolian Fault (NAF) is one of the major strike slip fault systems on Earth comparable to San Andreas Fault in some ways. Devastating earthquakes have occurred along this system causing major damage and casualties. In order to comprehensively investigate the shallow and deep crustal structure beneath the western segment of NAF, a temporary dense seismic network for North Anatolia (DANA) consisting of 73 broadband sensors was deployed in early May 2012 surrounding a rectangular grid of by 70 km and a nominal station spacing of 7 km with the aim of further enhancing the detection capability of this dense seismic array. This joint project involves researchers from University of Leeds, UK, Bogazici University Kandilli Observatory and Earthquake Research Institute (KOERI), and University of Sakarya and primarily focuses on upper crustal studies such as earthquake locations (especially micro-seismic activity), receiver functions, moment tensor inversions, shear wave splitting, and ambient noise correlations. To begin with, we obtained the hypocenter locations of local earthquakes that occured within the DANA network. The dense 2-D grid geometry considerably enhanced the earthquake detection capability which allowed us to precisely locate events with local magnitudes (Ml) less than 1.0. Accurate earthquake locations will eventually lead to high resolution images of the upper crustal structure beneath the northern and southern branches of NAF in Sakarya region. In order to put additional constraints on the active tectonics of the western part of NAF, we also determined fault plane solutions using Regional Moment Tensor Inversion (RMT) and P wave first motion methods. For the analysis of high quality fault plane solutions, data from KOERI and the DANA project were merged. Furthermore, with the aim of providing insights on crustal anisotropy, shear wave splitting parameters such as lag time and fast polarization direction were obtained for local events recorded within the seismic network with magnitudes larger than 2.5.

  8. The AlpArray Seismic Network: current status and next steps

    NASA Astrophysics Data System (ADS)

    Hetényi, György; Molinari, Irene; Clinton, John; Kissling, Edi

    2016-04-01

    The AlpArray initiative (http://www.alparray.ethz.ch) is a large-scale European collaboration to study the entire Alpine orogen at high resolution and in 3D with a large variety of geoscientific methods. The core element of the initiative is an extensive and dense broadband seismological network, the AlpArray Seismic Network (AASN), which complements the permanent seismological stations to ensure homogeneous coverage of the greater Alpine area. The some 260 temporary stations of the AlpArray Seismic Network are operated as a joint effort by a number of institutions from Austria, Bosnia-Herzegovina, Croatia, Czech Republic, France, Germany, Hungary, Italy, Slovakia and Switzerland. The first stations were installed in Spring 2015 and the full AASN is planned to be operational by early Summer 2016. In this poster we present the actual status of the deployment, the effort undertaken by the contributing groups, station performance, typical noise levels, best practices in installation as well as in data management, often encountered challenges, and planned next steps including the deployment of ocean bottom seismometers in the Ligurian Sea.

  9. New Orogenic Model for Taiwan Collision Zone Inferred From Three-dimensional P- and S-wave Velocity Structures and Seismicity

    NASA Astrophysics Data System (ADS)

    Nagai, S.; Hirata, N.; Sato, H.

    2008-12-01

    The island of Taiwan is located in the site of ongoing arc-continent collision zone between the Philippine Sea Plate (PSP) and the Eurasian Plate (EUP). Numerous geophysical and geological studies are done in and around Taiwan to develop various models to explain the tectonic processes in the Taiwan region. However, their details have not been known enough, especially under the Central Range. We suggest a new orogenic model for Taiwan orogeny, named 'Upper Crustal Stacking Model', inferred from our tomographic images using three temporary seismic networks with the Central Weather Bureau Seismic Network. These three temporary networks are the aftershock observation after the 1999 Chi-Chi Taiwan earthquake and two dense array observations across central and southern Taiwan, respectively. Tomographic images by the double-difference tomography [Zhang and Thurber, 2003] show a lateral alternate variation of high- and low-velocity, which are well correlated to surface geology and separated by east-dipping boundaries. These images have reliable high-resolution by dense arrays to be able to discuss this alternate variation. We found three high-velocity zones (> 6.0km/s). The westernmost zone corresponds to the subducting EUP. Other two zones are located beneath the Hsuehshan Range and the Eastern Central Range with trends of eastward dipping, respectively. And, we could image low-velocity zone located beneath Backbone Range between the two high-velocity zones clearly. We interpret that these east-dipping high- and low-velocity zones can be divided into two layered blocks and the subducting EUP, each of which consists of a high-velocity body under low-velocity one. Layered blocks can be interpreted as stacked thrust sheets between the subducting EUP and the Northern Luzon Arc, a part of PSP. These thrust sheets are parts of upper- and mid-crust detached from the subducting EUP. The model of continental subduction followed by buoyancy-driven exhumation can explain the existence of stacked thrust sheets. Thus we propose a new orogenic model, as referred to as the 'Upper Crustal Stacking Model'.

  10. Association of childhood abuse with homeless women's social networks.

    PubMed

    Green, Harold D; Tucker, Joan S; Wenzel, Suzanne L; Golinelli, Daniela; Kennedy, David P; Ryan, Gery W; Zhou, Annie J

    2012-01-01

    Childhood abuse has been linked to negative sequelae for women later in life including drug and alcohol use and violence as victim or perpetrator and may also affect the development of women's social networks. Childhood abuse is prevalent among at-risk populations of women (such as the homeless) and thus may have a stronger impact on their social networks. We conducted a study to: (a) develop a typology of sheltered homeless women's social networks; (b) determine whether childhood abuse was associated with the social networks of sheltered homeless women; and (c) determine whether those associations remained after accounting for past-year substance abuse and recent intimate partner abuse. A probability sample of 428 homeless women from temporary shelter settings in Los Angeles County completed a personal network survey that provided respondent information as well as information about their network members' demographics and level of interaction with each other. Cluster analyses identified groups of women who shared specific social network characteristics. Multinomial logistic regressions revealed variables associated with group membership. We identified three groups of women with differing social network characteristics: low-risk networks, densely connected risky networks (dense, risky), and sparsely connected risky networks (sparse, risky). Multinomial logistic regressions indicated that membership in the sparse, risky network group, when compared to the low-risk group, was associated with history of childhood physical abuse (but not sexual or emotional abuse). Recent drug abuse was associated with membership in both risky network groups; however, the association of childhood physical abuse with sparse, risky network group membership remained. Although these findings support theories proposing that the experience of childhood abuse can shape women's social networks, they suggest that it may be childhood physical abuse that has the most impact among homeless women. The effects of childhood physical abuse should be more actively investigated in clinical settings, especially those frequented by homeless women, particularly with respect to the formation of social networks in social contexts that may expose these women to greater risks. Copyright © 2012. Published by Elsevier Ltd.

  11. Identical Aftershocks from the Main Rupture Zone 10 Months After the Mw=7.6 September 5, 2012, Nicoya, Costa Rica, Earthquake

    NASA Astrophysics Data System (ADS)

    Protti, M.; Alfaro-Diaz, R.; Brenn, G. R.; Fasola, S.; Murillo, A.; Marshall, J. S.; Gardner, T. W.

    2013-12-01

    Over a two weeks period and as part of a Keck Geology Consortium summer research project, we installed a dense broad band seismic array directly over the rupture zone of the Nicoya, September 5th, 2012, Mw=7.6 earthquake. The network consisted of 5 Trillium compact seismometers and Taurus digitizers from Nanometrics, defining a triangular area of ~20 km per side. Also located within this area are 3 stations of the Nicoya permanent broadband network. One side of the triangular area, along the west coast of the Nicoya peninsula, is parallel to the trench and the apex lies 15 km landward. The plate interface and rupture zone of the Nicoya 2012 earthquake are located 16 km below the trench-parallel side and 25 km below the apex of this triangular footprint. Station spacing ranged from 3 to 14 km. This dense array operated from July 2nd to July 17th, 2013. On June 23rd, eight days before we installed this array, an Mw=5.4 aftershock (one of the only 5 aftershocks of the Nicoya Mw=7.6 earthquake with magnitudes above 5.0) occurred directly beneath the area of our temporary network. Preliminary analysis of the data shows that we recorded several identical aftershocks with magnitudes below 1.0 that locate some 18 km below our network. We will present detailed locations of these small aftershocks and their relationship with the June 23rd, 2013 aftershock and the September 5th, 2012, mainshock.

  12. Minimal camera networks for 3D image based modeling of cultural heritage objects.

    PubMed

    Alsadik, Bashar; Gerke, Markus; Vosselman, George; Daham, Afrah; Jasim, Luma

    2014-03-25

    3D modeling of cultural heritage objects like artifacts, statues and buildings is nowadays an important tool for virtual museums, preservation and restoration. In this paper, we introduce a method to automatically design a minimal imaging network for the 3D modeling of cultural heritage objects. This becomes important for reducing the image capture time and processing when documenting large and complex sites. Moreover, such a minimal camera network design is desirable for imaging non-digitally documented artifacts in museums and other archeological sites to avoid disturbing the visitors for a long time and/or moving delicate precious objects to complete the documentation task. The developed method is tested on the Iraqi famous statue "Lamassu". Lamassu is a human-headed winged bull of over 4.25 m in height from the era of Ashurnasirpal II (883-859 BC). Close-range photogrammetry is used for the 3D modeling task where a dense ordered imaging network of 45 high resolution images were captured around Lamassu with an object sample distance of 1 mm. These images constitute a dense network and the aim of our study was to apply our method to reduce the number of images for the 3D modeling and at the same time preserve pre-defined point accuracy. Temporary control points were fixed evenly on the body of Lamassu and measured by using a total station for the external validation and scaling purpose. Two network filtering methods are implemented and three different software packages are used to investigate the efficiency of the image orientation and modeling of the statue in the filtered (reduced) image networks. Internal and external validation results prove that minimal image networks can provide highly accurate records and efficiency in terms of visualization, completeness, processing time (>60% reduction) and the final accuracy of 1 mm.

  13. Minimal Camera Networks for 3D Image Based Modeling of Cultural Heritage Objects

    PubMed Central

    Alsadik, Bashar; Gerke, Markus; Vosselman, George; Daham, Afrah; Jasim, Luma

    2014-01-01

    3D modeling of cultural heritage objects like artifacts, statues and buildings is nowadays an important tool for virtual museums, preservation and restoration. In this paper, we introduce a method to automatically design a minimal imaging network for the 3D modeling of cultural heritage objects. This becomes important for reducing the image capture time and processing when documenting large and complex sites. Moreover, such a minimal camera network design is desirable for imaging non-digitally documented artifacts in museums and other archeological sites to avoid disturbing the visitors for a long time and/or moving delicate precious objects to complete the documentation task. The developed method is tested on the Iraqi famous statue “Lamassu”. Lamassu is a human-headed winged bull of over 4.25 m in height from the era of Ashurnasirpal II (883–859 BC). Close-range photogrammetry is used for the 3D modeling task where a dense ordered imaging network of 45 high resolution images were captured around Lamassu with an object sample distance of 1 mm. These images constitute a dense network and the aim of our study was to apply our method to reduce the number of images for the 3D modeling and at the same time preserve pre-defined point accuracy. Temporary control points were fixed evenly on the body of Lamassu and measured by using a total station for the external validation and scaling purpose. Two network filtering methods are implemented and three different software packages are used to investigate the efficiency of the image orientation and modeling of the statue in the filtered (reduced) image networks. Internal and external validation results prove that minimal image networks can provide highly accurate records and efficiency in terms of visualization, completeness, processing time (>60% reduction) and the final accuracy of 1 mm. PMID:24670718

  14. Precisely relocated seismicity using 3-D seismic velocity model by double-difference tomography method and orogenic processes in central and southern Taiwan

    NASA Astrophysics Data System (ADS)

    Nagai, S.; Wu, Y.; Suppe, J.; Hirata, N.

    2009-12-01

    The island of Taiwan is located in the site of ongoing arc-continent collision zone between the Philippine Sea Plate and the Eurasian Plate. Numerous geophysical and geological studies are done in and around Taiwan to develop various models to explain the tectonic processes in the Taiwan region. The active and young tectonics and the associated high seismicity in Taiwan provide us with unique opportunity to explore and understand the processes in the region related to the arc-continent collision. Nagai et al. [2009] imaged eastward dipping alternate high- and low-velocity bodies at depths of 5 to 25 km from the western side of the Central Mountain Range to the eastern part of Taiwan, by double-difference tomography [Zhang and Thurber, 2003] using three temporary seismic networks with the Central Weather Bureau Seismic Network(CWBSN). These three temporary networks are the aftershock observation after the 1999 Chi-Chi Taiwan earthquake and two dense linear array observations; one is across central Taiwan in 2001, another is across southern Taiwan in 2005, respectively. We proposed a new orogenic model, ’Upper Crustal Stacking Model’ inferred from our tomographic images. To understand the detailed seismic structure more, we carry on relocating earthquakes more precisely in central and southern Taiwan, using three-dimensional velocity model [Nagai et al., 2009] and P- and S-wave arrival times both from the CWBSN and three temporary networks. We use the double-difference tomography method to improve relative and absolute location accuracy simultaneously. The relocated seismicity is concentrated and limited along the parts of boundaries between low- and high-velocity bodies. Especially, earthquakes occurred beneath the Eastern Central Range, triggered by 1999 Chi-Chi earthquake, delineate subsurface structural boundaries, compared with profiles of estimated seismic velocity. The relocated catalog and 3-D seismic velocity model give us some constraints to reconstruct the orogenic model in Taiwan. We show these relocated seismicity with P- and S-wave velocity profiles, with focal mechanisms [e.g. Wu et al., 2008] and spatio-temporal variation, in central and southern Taiwan and discuss tectonic processes in Taiwan.

  15. Seismic activity offshore Martinique and Dominica islands (Central Lesser Antilles subduction zone) from temporary onshore and offshore seismic networks

    NASA Astrophysics Data System (ADS)

    Ruiz, M.; Galve, A.; Monfret, T.; Sapin, M.; Charvis, P.; Laigle, M.; Evain, M.; Hirn, A.; Flueh, E.; Gallart, J.; Diaz, J.; Lebrun, J. F.

    2013-09-01

    This work focuses on the analysis of a unique set of seismological data recorded by two temporary networks of seismometers deployed onshore and offshore in the Central Lesser Antilles Island Arc from Martinique to Guadeloupe islands. During the whole recording period, extending from January to the end of August 2007, more than 1300 local seismic events were detected in this area. A subset of 769 earthquakes was located precisely by using HypoEllipse. We also computed focal mechanisms using P-wave polarities of the best azimuthally constrained earthquakes. We detected earthquakes beneath the Caribbean forearc and in the Atlantic oceanic plate as well. At depth seismicity delineates the Wadati-Benioff Zone down to 170 km depth. The main seismic activity is concentrated in the lower crust and in the mantle wedge, close to the island arc beneath an inner forearc domain in comparison to an outer forearc domain where little seismicity is observed. We propose that the difference of the seismicity beneath the inner and the outer forearc is related to a difference of crustal structure between the inner forearc interpreted as a dense, thick and rigid crustal block and the lighter and more flexible outer forearc. Seismicity is enhanced beneath the inner forearc because it likely increases the vertical stress applied to the subducting plate.

  16. Scaling an in situ network for high resolution modeling during SMAPVEX15

    NASA Astrophysics Data System (ADS)

    Coopersmith, E. J.; Cosh, M. H.; Jacobs, J. M.; Jackson, T. J.; Crow, W. T.; Holifield Collins, C.; Goodrich, D. C.; Colliander, A.

    2015-12-01

    Among the greatest challenges within the field of soil moisture estimation is that of scaling sparse point measurements within a network to produce higher resolution map products. Large-scale field experiments present an ideal opportunity to develop methodologies for this scaling, by coupling in situ networks, temporary networks, and aerial mapping of soil moisture. During the Soil Moisture Active Passive Validation Experiments in 2015 (SMAPVEX15) in and around the USDA-ARS Walnut Gulch Experimental Watershed and LTAR site in southeastern Arizona, USA, a high density network of soil moisture stations was deployed across a sparse, permanent in situ network in coordination with intensive soil moisture sampling and an aircraft campaign. This watershed is also densely instrumented with precipitation gages (one gauge/0.57 km2) to monitor the North American Monsoon System, which dominates the hydrologic cycle during the summer months in this region. Using the precipitation and soil moisture time series values provided, a physically-based model is calibrated that will provide estimates at the 3km, 9km, and 36km scales. The results from this model will be compared with the point-scale gravimetric samples, aircraft-based sensor, and the satellite-based products retrieved from NASA's Soil Moisture Active Passive mission.

  17. The AlpArray Seismic Network: status and operation

    NASA Astrophysics Data System (ADS)

    Hetényi, György; Molinari, Irene; Clinton, John; Kissling, Edi

    2017-04-01

    The AlpArray initiative (http://www.alparray.ethz.ch) is a large-scale European collaboration to study the entire Alpine orogen at high resolution and in 3D with a large variety of geoscientific methods. The core element of the initiative is an extensive and dense broadband seismological network, the AlpArray Seismic Network (AASN). Over 300 temporary stations complement the permanent seismological stations to ensure homogeneous coverage of the greater Alpine area. The AASN has officially started operation in January 2016 and is now complete on land. It is operated in a joint effort by a number of institutions from Austria, Bosnia-Herzegovina, Croatia, Czech Republic, France, Germany, Hungary, Italy, Slovakia and Switzerland. In the Ligurian Sea, a 32-station OBS campaign is planned from June 2017 until March 2018. This will complete the coverage of the greater Alpine area at an unprecedented resolution. In this poster we present the actual status of the deployment, the effort undertaken by the contributing groups, station performance, best practices, data management as well as often encountered challenges, and provide a meeting and discussion point during the conference.

  18. When can Empirical Green Functions be computed from Noise Cross-Correlations? Hints from different Geographical and Tectonic environments

    NASA Astrophysics Data System (ADS)

    Matos, Catarina; Silveira, Graça; Custódio, Susana; Domingues, Ana; Dias, Nuno; Fonseca, João F. B.; Matias, Luís; Krueger, Frank; Carrilho, Fernando

    2014-05-01

    Noise cross-correlations are now widely used to extract Green functions between station pairs. But, do all the cross-correlations routinely computed produce successful Green Functions? What is the relationship between noise recorded in a couple of stations and the cross-correlation between them? During the last decade, we have been involved in the deployment of several temporary dense broadband (BB) networks within the scope of both national projects and international collaborations. From 2000 to 2002, a pool of 8 BB stations continuously operated in the Azores in the scope of the Memorandum of Understanding COSEA (COordinated Seismic Experiment in the Azores). Thanks to the Project WILAS (West Iberia Lithosphere and Astenosphere Structure, PTDC/CTE-GIX/097946/2008) we temporarily increased the number of BB deployed in mainland Portugal to more than 50 (permanent + temporary) during the period 2010 - 2012. In 2011/12 a temporary pool of 12 seismometers continuously recorded BB data in the Madeira archipelago, as part of the DOCTAR (Deep Ocean Test Array Experiment) project. Project CV-PLUME (Investigation on the geometry and deep signature of the Cape Verde mantle plume, PTDC/CTE-GIN/64330/2006) covered the archipelago of Cape Verde, North Atlantic, with 40 temporary BB stations in 2007/08. Project MOZART (Mozambique African Rift Tomography, PTDC/CTE-GIX/103249/2008), covered Mozambique, East Africa, with 30 temporary BB stations in the period 2011 - 2013. These networks, located in very distinct geographical and tectonic environments, offer an interesting opportunity to study seasonal and spatial variations of noise sources and their impact on Empirical Green functions computed from noise cross-correlation. Seismic noise recorded at different seismic stations is evaluated by computation of the probability density functions of power spectral density (PSD) of continuous data. To assess seasonal variations of ambient noise sources in frequency content, time-series of PSD at different frequency bands have been computed. The influence of the spatial and seasonal variation is evaluated by analysis of the one-day length cross-correlations, stacked with a 30-day moving window and with an overlap of 30 days. To inspect the effects of frequency content variations, 30-day cross-correlograms have also been computed at different frequency bands. This work is supported by project QuakeLoc-PT (PTDC/GEO-FIQ/3522/2012) and a contribution to project AQUAREL (PTDC/CTE-GIX/116819/2010).

  19. 78 FR 28626 - Oshkosh Defense, a Subsidiary of Oshkosh Corporation, Including On-Site Leased Workers From...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-15

    ...., Larsen and Toubro Limited, MRI Network/Manta Resources, Inc., Omni Resources, Premier Temporary Staffing...., Larsen and Toubro Limited, MRI Network/Manta Resources, Inc., Omni Resources, Premier Temporary Staffing...

  20. Group Velocity Dispersion Curves from Wigner-Ville Distributions

    NASA Astrophysics Data System (ADS)

    Lloyd, Simon; Bokelmann, Goetz; Sucic, Victor

    2013-04-01

    With the widespread adoption of ambient noise tomography, and the increasing number of local earthquakes recorded worldwide due to dense seismic networks and many very dense temporary experiments, we consider it worthwhile to evaluate alternative Methods to measure surface wave group velocity dispersions curves. Moreover, the increased computing power of even a simple desktop computer makes it feasible to routinely use methods other than the typically employed multiple filtering technique (MFT). To that end we perform tests with synthetic and observed seismograms using the Wigner-Ville distribution (WVD) frequency time analysis, and compare dispersion curves measured with WVD and MFT with each other. Initial results suggest WVD to be at least as good as MFT at measuring dispersion, albeit at a greater computational expense. We therefore need to investigate if, and under which circumstances, WVD yields better dispersion curves than MFT, before considering routinely applying the method. As both MFT and WVD generally work well for teleseismic events and at longer periods, we explore how well the WVD method performs at shorter periods and for local events with smaller epicentral distances. Such dispersion information could potentially be beneficial for improving velocity structure resolution within the crust.

  1. A low cost strategy to monitor the expansion and contraction of the flowing stream network in mountainous headwater catchments

    NASA Astrophysics Data System (ADS)

    Assendelft, Rick; van Meerveld, Ilja; Seibert, Jan

    2017-04-01

    Streams are dynamic features in the landscape. The flowing stream network expands and contracts, connects and disconnects in response to rainfall events and seasonal changes in catchment wetness. Sections of the river system that experience these wet and dry cycles are often referred to as temporary streams. Temporary streams are abundant and widely distributed freshwater ecosystems. They account for more than half of the total length of the global stream network, are unique habitats and form important hydrological and ecological links between the uplands and perennial streams. However, temporary streams have been largely unstudied, especially in mountainous headwater catchments. The dynamic character of these systems makes it difficult to monitor them. We describe a low-cost, do-it-yourself strategy to monitor the occurrence of water and flow in temporary streams. We evaluate this strategy in two headwater catchments in Switzerland. The low cost sensor network consists of electrical resistivity sensors, water level switches, temperature sensors and flow sensors. These sensors are connected to Arduino microcontrollers and data loggers, which log the data every 5 minutes. The data from the measurement network are compared with observations (mapping of the temporary stream network) as well as time lapse camera data to evaluate the performance of the sensors. We look at how frequently the output of the sensors (presence and absence of water from the ER and water level data, and flow or no-flow from the flow sensors) corresponds to the observed channel state. This is done for each sensor, per sub-catchment, per precipitation event and per sensor location to determine the best sensor combination to monitor temporary streams in mountainous catchments and in which situation which sensor combination works best. The preliminary results show that the sensors and monitoring network work well. The data from the sensors corresponds with the observations and provides information on the expansion of the stream network pattern.

  2. The AlpArray Seismic Network: A Large-Scale European Experiment to Image the Alpine Orogen

    NASA Astrophysics Data System (ADS)

    Hetényi, György; Molinari, Irene; Clinton, John; Bokelmann, Götz; Bondár, István; Crawford, Wayne C.; Dessa, Jean-Xavier; Doubre, Cécile; Friederich, Wolfgang; Fuchs, Florian; Giardini, Domenico; Gráczer, Zoltán; Handy, Mark R.; Herak, Marijan; Jia, Yan; Kissling, Edi; Kopp, Heidrun; Korn, Michael; Margheriti, Lucia; Meier, Thomas; Mucciarelli, Marco; Paul, Anne; Pesaresi, Damiano; Piromallo, Claudia; Plenefisch, Thomas; Plomerová, Jaroslava; Ritter, Joachim; Rümpker, Georg; Šipka, Vesna; Spallarossa, Daniele; Thomas, Christine; Tilmann, Frederik; Wassermann, Joachim; Weber, Michael; Wéber, Zoltán; Wesztergom, Viktor; Živčić, Mladen

    2018-04-01

    The AlpArray programme is a multinational, European consortium to advance our understanding of orogenesis and its relationship to mantle dynamics, plate reorganizations, surface processes and seismic hazard in the Alps-Apennines-Carpathians-Dinarides orogenic system. The AlpArray Seismic Network has been deployed with contributions from 36 institutions from 11 countries to map physical properties of the lithosphere and asthenosphere in 3D and thus to obtain new, high-resolution geophysical images of structures from the surface down to the base of the mantle transition zone. With over 600 broadband stations operated for 2 years, this seismic experiment is one of the largest simultaneously operated seismological networks in the academic domain, employing hexagonal coverage with station spacing at less than 52 km. This dense and regularly spaced experiment is made possible by the coordinated coeval deployment of temporary stations from numerous national pools, including ocean-bottom seismometers, which were funded by different national agencies. They combine with permanent networks, which also required the cooperation of many different operators. Together these stations ultimately fill coverage gaps. Following a short overview of previous large-scale seismological experiments in the Alpine region, we here present the goals, construction, deployment, characteristics and data management of the AlpArray Seismic Network, which will provide data that is expected to be unprecedented in quality to image the complex Alpine mountains at depth.

  3. Dense module enumeration in biological networks

    NASA Astrophysics Data System (ADS)

    Tsuda, Koji; Georgii, Elisabeth

    2009-12-01

    Analysis of large networks is a central topic in various research fields including biology, sociology, and web mining. Detection of dense modules (a.k.a. clusters) is an important step to analyze the networks. Though numerous methods have been proposed to this aim, they often lack mathematical rigorousness. Namely, there is no guarantee that all dense modules are detected. Here, we present a novel reverse-search-based method for enumerating all dense modules. Furthermore, constraints from additional data sources such as gene expression profiles or customer profiles can be integrated, so that we can systematically detect dense modules with interesting profiles. We report successful applications in human protein interaction network analyses.

  4. Dense power-law networks and simplicial complexes

    NASA Astrophysics Data System (ADS)

    Courtney, Owen T.; Bianconi, Ginestra

    2018-05-01

    There is increasing evidence that dense networks occur in on-line social networks, recommendation networks and in the brain. In addition to being dense, these networks are often also scale-free, i.e., their degree distributions follow P (k ) ∝k-γ with γ ∈(1 ,2 ] . Models of growing networks have been successfully employed to produce scale-free networks using preferential attachment, however these models can only produce sparse networks as the numbers of links and nodes being added at each time step is constant. Here we present a modeling framework which produces networks that are both dense and scale-free. The mechanism by which the networks grow in this model is based on the Pitman-Yor process. Variations on the model are able to produce undirected scale-free networks with exponent γ =2 or directed networks with power-law out-degree distribution with tunable exponent γ ∈(1 ,2 ) . We also extend the model to that of directed two-dimensional simplicial complexes. Simplicial complexes are generalization of networks that can encode the many body interactions between the parts of a complex system and as such are becoming increasingly popular to characterize different data sets ranging from social interacting systems to the brain. Our model produces dense directed simplicial complexes with power-law distribution of the generalized out-degrees of the nodes.

  5. Hidden Rift Structure Beneath a Thick Sedimentary Basin in the Niigata Region, Japan

    NASA Astrophysics Data System (ADS)

    Takeda, T.; Enescu, B.; Asano, Y.; Obara, K.; Sekiguchi, S.

    2010-12-01

    Niigata region is located in a high-strain-rate zone, along the easternmost margin of the back-arc basin of the Sea of Japan (Sagiya et al., 2000, Okamura et al., 1995). In this region, two M6.8 inland earthquakes with reverse fault type focal mechanism, having NW-SE compression, occurred in 2004 and 2007. The reverse fault system may indicate present reactivation of the rift structure formed as a result of normal faulting when the Sea of Japan opened in the Miocene (Sato, 1994). Therefore, imaging the spatial extent of the rift structure is important to reveal the seismotectonics and occurrence mechanism of inland earthquakes. To resolve the fine structure beneath the Niigata region, we have installed a dense temporary network of 300 seismic stations and performed a regional tomography analysis. The temporary seismic network was designed with a multi-scale station spacing of 3 to 5 km in and around the aftershock areas of the two large earthquakes, and of ~10 km for the surrounding region. The 3D velocity tomography analysis and relocation of earthquakes were performed using the tomoDD software (Zhang and Thurber, 2003). We used 777 events that occurred after the installation of the temporary network and 703 events that were recorded only by the permanent seismic network (Hi-net) before the temporary network deployment. The initial 3D velocity model was constructed by using the 3D shallow velocity structure provided by the “Japan Seismic Hazard Information Station” (J-SHIS; Fujiwara et al., 2009) of NIED. The horizontal and vertical grid spacing were of 5 ~ 10 km and 2 ~ 4 km, respectively. The tomography analysis enabled us to delineate the fine subsurface structure. The high and low velocity pattern corresponds well to the Bouguer gravity anomalies mapped in the region. The velocity model shows a wide and relatively low velocity (< 5 km/sec for the P-wave velocity) band extending in a NE-SW direction. The band widens and narrows along its extent. The thickness of the low-velocity region varies from place to place and exceeds 7 km in some parts. The surface of the basement rock below the low velocity band is fairly undulated, showing in some places a stair-like structure. Most of the earthquakes occurred in the basement rocks. The aftershocks of the 2004 and 2007 Niigata earthquakes occurred on the flanks of the lower velocity band. Kato et al. (2009) suggested that in the two aftershock areas the undulation of the basement rock surface was formed from multiple rift structures. According to our tomography results, the undulation structure is extensively found below the low-velocity band, which indicates that ancient, hidden rift structures are widely distributed. Some of these structures show micro-earthquake activity, however they do not correspond to the recognized active fault traces. The reactivation of deep rift structures covered with thick sediments may have not been fully detected. Therefore, mapping of the hidden rift structure helps mitigating the earthquake hazards in this high strain-rate and high seismic activity region.

  6. UMTS rapid response real-time seismic networks: implementation and strategies at INGV

    NASA Astrophysics Data System (ADS)

    Govoni, Aladino; Margheriti, Lucia; Moretti, Milena; Lauciani, Valentino; Sensale, Gianpaolo; Bucci, Augusto; Criscuoli, Fabio

    2015-04-01

    The benefits of portable real-time seismic networks are several and well known. During the management of a temporary experiment from the real-time data it is possible to detect and fix rapidly problems with power supply, time synchronization, disk failures and, most important, seismic signal quality degradation due to unexpected noise sources or sensor alignment/tampering. This usually minimizes field maintenance trips and maximizes both the quantity and the quality of the acquired data. When the area of the temporary experiment is not well monitored by the local permanent network, the real-time data from the temporary experiment can be fed to the permanent network monitoring system improving greatly both the real-time hypocentral locations and the final revised bulletin. All these benefits apply also in case of seismic crises when rapid deployment stations can significantly contribute to the aftershock analysis. Nowadays data transmission using meshed radio networks or satellite systems is not a big technological problem for a permanent seismic network where each site is optimized for the device power consumption and is usually installed by properly specialized technicians that can configure transmission devices and align antennas. This is not usually practical for temporary networks and especially for rapid response networks where the installation time is the main concern. These difficulties are substantially lowered using the now widespread UMTS technology for data transmission. A small (but sometimes power hungry) properly configured device with an omnidirectional antenna must be added to the station assembly. All setups are usually configured before deployment and this allows for an easy installation also by untrained personnel. We describe here the implementation of a UMTS based portable seismic network for both temporary experiments and rapid response applications developed at INGV. The first field experimentation of this approach dates back to the 2009 L'Aquila aftershock sequence and since then it has been customized and refined to overcome most reliability and security issues using an industry standard VPN architecture that allows to avoid UMTS provider firewall problems and does not expose to the Internet the usually weak and attack prone data acquisition ports. With this approach all the devices are protected inside a local network and the only exposed port is the VPN server one. This solution improves both the security and the bandwidth available to data transmission. While most of the experimentation has been carried out using the RefTek units of the INGV Mobile Network this solution applies equally well to most seismic data loggers available on the market. Overall the UMTS data transmission has been used in most temporary seismic experiments and in all seismic emergencies happened in Italy since 2010 and has proved to be a very cost effective approach with real-time data acquisition rates usually greater than 97% and all the benefits that result from the fast integration of the temporary data in the National Network monitoring system and in the EIDA data bank.

  7. Seismic Interferometry at a Large, Dense Array: Capturing the Wavefield at the Source Physics Experiment

    NASA Astrophysics Data System (ADS)

    Matzel, E.; Mellors, R. J.; Magana-Zook, S. A.

    2016-12-01

    Seismic interferometry is based on the observation that the Earth's background wavefield includes coherent energy, which can be recovered by observing over long time periods, allowing the incoherent energy to cancel out. The cross correlation of the energy recorded at a pair of stations results in an estimate of the Green's Function (GF) and is equivalent to the record of a simple source located at one of the stations as recorded by the other. This allows high resolution imagery beneath dense seismic networks even in areas of low seismicity. The power of these inter-station techniques increases rapidly as the number of seismometers in a network increases. For large networks the number of correlations computed can run into the millions and this becomes a "big-data" problem where data-management dominates the efficiency of the computations. In this study, we use several methods of seismic interferometry to obtain highly detailed images at the site of the Source Physics Experiment (SPE). The objective of SPE is to obtain a physics-based understanding of how seismic waves are created at and scattered near the source. In 2015, a temporary deployment of 1,000 closely spaced geophones was added to the main network of instruments at the site. We focus on three interferometric techniques: Shot interferometry (SI) uses the SPE shots as rich sources of high frequency, high signal energy. Coda interferometry (CI) isolates the energy from the scattered wavefield of distant earthquakes. Ambient noise correlation (ANC) uses the energy of the ambient background field. In each case, the data recorded at one seismometer are correlated with the data recorded at another to obtain an estimate of the GF between the two. The large network of mixed geophone and broadband instruments at the SPE allows us to calculate over 500,000 GFs, which we use to characterize the site and measure the localized wavefield. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

  8. Experimental study of thin film sensor networks for wind turbine blade damage detection

    NASA Astrophysics Data System (ADS)

    Downey, A.; Laflamme, S.; Ubertini, F.; Sauder, H.; Sarkar, P.

    2017-02-01

    Damage detection of wind turbine blades is difficult due to their complex geometry and large size, for which large deployment of sensing systems is typically not economical. A solution is to develop and deploy dedicated sensor networks fabricated from inexpensive materials and electronics. The authors have recently developed a novel skin-type strain gauge for measuring strain over very large surfaces. The skin, a type of large-area electronics, is constituted from a network of soft elastomeric capacitors. The sensing system is analogous to a biological skin, where local strain can be monitored over a global area. In this paper, we propose the utilization of a dense network of soft elastomeric capacitors to detect, localize, and quantify damage on wind turbine blades. We also leverage mature off-the-shelf technologies, in particular resistive strain gauges, to augment such dense sensor network with high accuracy data at key locations, therefore constituting a hybrid dense sensor network. The proposed hybrid dense sensor network is installed inside a wind turbine blade model, and tested in a wind tunnel to simulate an operational environment. Results demonstrate the ability of the hybrid dense sensor network to detect, localize, and quantify damage.

  9. Towards Integrated Marmara Strong Motion Network

    NASA Astrophysics Data System (ADS)

    Durukal, E.; Erdik, M.; Safak, E.; Ansal, A.; Ozel, O.; Alcik, H.; Mert, A.; Kafadar, N.; Korkmaz, A.; Kurtulus, A.

    2009-04-01

    Istanbul has a 65% chance of having a magnitude 7 or above earthquake within the next 30 years. As part of the preparations for the future earthquake, strong motion networks have been installed in and around Istanbul. The Marmara Strong Motion Network, operated by the Department of Earthquake Engineering of Kandilli Observatory and Earthquake Research Institute, encompasses permanent systems outlined below. It is envisaged that the networks will be run by a single entity responsible for technical management and maintanence, as well as for data management, archiving and dissemination through dedicated web-based interfaces. • Istanbul Earthquake Rapid Response and Early Warning System - IERREWS (one hundred 18-bit accelerometers for rapid response; ten 24-bit accelerometers for early warning) • IGDAŞ Gas Shutoff Network (100 accelerometers to be installed in 2010 and integrated with IERREWS) • Structural Monitoring Arrays - Fatih Sultan Mehmet Suspension Bridge (1200m-long suspension bridge across the Bosphorus, five 3-component accelerometers + GPS sensors) - Hagia Sophia Array (1500-year-old historical edifice, 9 accelerometers) - Süleymaniye Mosque Array (450-year-old historical edifice,9 accelerometers) - Fatih Mosque Array (237-year-old historical edifice, 9 accelerometers) - Kanyon Building Array (high-rise office building, 5 accelerometers) - Isbank Tower Array (high-rise office building, 5 accelerometers) - ENRON Array (power generation facility, 4 acelerometers) - Mihrimah Sultan Mosque Array (450-year-old historical edifice,9 accelerometers + tiltmeters, to be installed in 2009) - Sultanahmet Mosque Array, (390-year-old historical edifice, 9 accelerometers + tiltmeters, to be installed in 2009) • Special Arrays - Atakoy Vertical Array (four 3-component accelerometers at 25, 50, 75, and 150 m depths) - Marmara Tube Tunnel (1400 m long submerged tunnel, 128 ch. accelerometric data, 24 ch. strain data, to be installed in 2010) - Air-Force Academy Array (72 ch. dense accelerometric array to be installed in 2010) - Gemlik Array (a dense basin array of 8 stations, to be installed in 2010) The objectives of these systems and networks are: (1) to produce rapid earthquake intensity, damage and loss assessment information after an earthquake (in the case of IERREWS), (2) to monitor conditions of structural systems, (3) to develop real-time data processing, analysis, and damage detection and location tools (in the case of structural networks) after an extreme event, (4) to assess spatial properties of strong ground motion and ground strain, and to characterise basin response (in the case of special arrays), (5) to investigate site response and wave propagation (in the case of vertical array). Ground motion data obtained from these strong motion networks have and are being used for investigations of attenuation, spatial variation (coherence), simulation benchmarking, source modeling, site response, seismic microzonation, system identification and structural model verification and structural health control. In addition to the systems and networks outlined above there are two temporary networks: KIMNET - a dense urban noise and microtremor network consisting of 50 broadband stations expected to be operational in mid 2009, and SOSEWIN - a 20-station, self-organizing structural integrated array at Ataköy in Istanbul.

  10. Multidirectional seismo-acoustic wavefield of strombolian explosions at Yasur, Vanuatu using a broadband seismo-acoustic network, infrasound arrays, and infrasonic sensors on tethered balloons

    NASA Astrophysics Data System (ADS)

    Matoza, R. S.; Jolly, A. D.; Fee, D.; Johnson, R.; Kilgour, G.; Christenson, B. W.; Garaebiti, E.; Iezzi, A. M.; Austin, A.; Kennedy, B.; Fitzgerald, R.; Key, N.

    2016-12-01

    Seismo-acoustic wavefields at volcanoes contain rich information on shallow magma transport and subaerial eruption processes. Acoustic wavefields from eruptions are predicted to be directional, but sampling this wavefield directivity is challenging because infrasound sensors are usually deployed on the ground surface. We attempt to overcome this observational limitation using a novel deployment of infrasound sensors on tethered balloons in tandem with a suite of dense ground-based seismo-acoustic, geochemical, and eruption imaging instrumentation. We present preliminary results from a field experiment at Yasur Volcano, Vanuatu from July 26th to August 4th 2016. Our observations include data from a temporary network of 11 broadband seismometers, 6 single infrasonic microphones, 7 small-aperture 3-element infrasound arrays, 2 infrasound sensor packages on tethered balloons, an FTIR, a FLIR, 2 scanning Flyspecs, and various visual imaging data. An introduction to the dataset and preliminary analysis of the 3D seismo-acoustic wavefield and source process will be presented. This unprecedented dataset should provide a unique window into processes operating in the shallow magma plumbing system and their relation to subaerial eruption dynamics.

  11. Background Noise of the Aldeia da Serra Region (Portugal) from a temporary broad band network

    NASA Astrophysics Data System (ADS)

    Wachilala, Piedade; Borges, José; Caldeira, Bento; Bezzeghoud, Mourad

    2017-04-01

    In this study, we analyse seismic background noise to assess the effect of noise based on the detectability of a temporary network constituted by DOCTAR (Deep Ocean Test Array), who have been deployed in a period between 2011 and 2012 in Portugal mainland, and the Évora permanent seismic station. This network is constituted by 14 digital broadband stations (14 CMG-3ESP and one STS2 sensors) with a flat response between the 60 sec to 50 Hz, 24-bit and 120s to 60Hz respectively. The temporary network was operated in continuous recording mode (three-components) in a region located in the north of the region of Évora, within a radius of about 30 km around the village of Aldeia da Serra, region in which there is an important seismic activity in the context of Portugal mainland. We calculated power spectral densities of background noise for each station/component and compare them with high-noise model and low-noise model of Peterson (1993). We consider different for day and night local and for different periods of the year. Power spectral density estimates show moderate noise levels with all stations falling within the high and low bounds of Peterson (1993). Considering the results of the noise, we estimate the detection limit of each station and consequently the detectability of the network. From this information and taking in attention the events recorded during the period of DOCTAR operation we analyse the improvement promoted by this temporary network regarding the existent seismic networks to the local seismicity study. This work was partially supported by COMPETE 2020 program (POCI-01-0145-FEDER-007690 project). We acknowledge GFZ Potsdam for providing part of the data used in this study.

  12. Mapping the temporary and perennial character of whole river networks

    NASA Astrophysics Data System (ADS)

    González-Ferreras, A. M.; Barquín, J.

    2017-08-01

    Knowledge of the spatial distribution of temporary and perennial river channels in a whole catchment is important for effective integrated basin management and river biodiversity conservation. However, this information is usually not available or is incomplete. In this study, we present a statistically based methodology to classify river segments from a whole river network (Deva-Cares catchment, Northern Spain) as temporary or perennial. This method is based on an a priori classification of a subset of river segments as temporary or perennial, using field surveys and aerial images, and then running Random Forest models to predict classification membership for the rest of the river network. The independent variables and the river network were derived following a computer-based geospatial simulation of riverine landscapes. The model results show high values of overall accuracy, sensitivity, and specificity for the evaluation of the fitted model to the training and testing data set (≥0.9). The most important independent variables were catchment area, area occupied by broadleaf forest, minimum monthly precipitation in August, and average catchment elevation. The final map shows 7525 temporary river segments (1012.5 km) and 3731 perennial river segments (662.5 km). A subsequent validation of the mapping results using River Habitat Survey data and expert knowledge supported the validity of the proposed maps. We conclude that the proposed methodology is a valid method for mapping the limits of flow permanence that could substantially increase our understanding of the spatial links between terrestrial and aquatic interfaces, improving the research, management, and conservation of river biodiversity and functioning.

  13. Project WILAS: Seismic imaging of crustal and upper mantle structures beneath the western Iberian Peninsula by means of the receiver-function technique

    NASA Astrophysics Data System (ADS)

    Dündar, Süleyman; Dias, Nuno A.; Silveira, Graça; Vinnik, Lev; Haberland, Christian

    2013-04-01

    An accurate knowledge of the structure of the earth's interior is of great importance to our understanding of tectonic processes. The WILAS-project (REF: PTDC/CTE-GIX/097946/2008) is a three-year collaborative project developed to study the subsurface structure of the western Iberian Peninsula, putting the main emphases on the lithosphere-asthenosphere system beneath the mainland of Portugal. The tectonic evolution of the target area has been driven by major plate-tectonic processes such as the historical opening of the Central Atlantic and the subsequent African-Eurasian convergence. Still, very little is known about the spatial structure of the continental collision. Within the framework of this research, a temporary network of 30 broadband three-component digital stations was operated between 2010 and 2012 in the target area. To carry out a large-scale structural analysis and facilitate a dense station-coverage for the area under investigation, the permanent Global Seismic Network stations, and temporary broadband stations deployed within the scope of the several seismic experiments (e.g. Doctar Network, Portuguese National Seismic Network), were included in the research analysis. In doing so, an unprecedented volume of high-quality data of a ca. 60X60 km density along with a combined network of 65 temporary and permanent broadband seismic stations are currently available for research purposes. One of the tasks of the WILAS research project has been a study of seismic velocity discontinuities beneath the western Iberian Peninsula region, up to a depth range of 700 km, utilizing the P- and S-receiver function techniques (PRF, SRF). Both techniques are based mainly on mode conversion of the elastic body-waves at an interface dividing the layers with different elastic properties. In the first phase of the project, PRF analysis was conducted in order to image the crust-mantle interface (Moho) and the mantle-transition-zone discontinuities at a depth of 410 km and 660 km beneath the area under investigation. While applying the common data processing steps (e.g., rotation, deconvolution and moveout-correction) to the selected data-set, we were able to create approximately 4.500 PRFs. The signals from the Moho, 410-km and 660-km discontinuities are clearly visible in many PRF stacks. The Moho depth range is from 26 to 34 km, with an average value of 29 km. No significant lateral variations in the depths of the "410-km" and "660-km" discontinuities have been identified so far. In the second phase of this project, the S-receiver-function technique will be applied in order to map the thickness of the underlying mantle lithosphere. Additionally, joint inversion of PRFs and waveforms of SKS will be used to investigate depth-localized azimuthal anisotropy and the related past and present mantle flows.

  14. Forest research notes, Pacific Northwest Forest Experiment Station, No. 31, November 30, 1940.

    Treesearch

    P.A. Briegleb; Theodore Kachin; L.A. Isaac; Fremont McComb; T.T. Munger

    1940-01-01

    The pulp and paper industry in the Pacific Northwest is able to compete successfully in national and world markets primarily bemuse it is favored with dense stands of high-grade pulpwood in its back yard. This natural advantage need not be temporary. Here industry can obtain such stands continuously because it can grow them.

  15. An energy-efficient and compact clustering scheme with temporary support nodes for cognitive radio sensor networks.

    PubMed

    Salim, Shelly; Moh, Sangman; Choi, Dongmin; Chung, Ilyong

    2014-08-11

    A cognitive radio sensor network (CRSN) is a wireless sensor network whose sensor nodes are equipped with cognitive radio capability. Clustering is one of the most challenging issues in CRSNs, as all sensor nodes, including the cluster head, have to use the same frequency band in order to form a cluster. However, due to the nature of heterogeneous channels in cognitive radio, it is difficult for sensor nodes to find a cluster head. This paper proposes a novel energy-efficient and compact clustering scheme named clustering with temporary support nodes (CENTRE). CENTRE efficiently achieves a compact cluster formation by adopting two-phase cluster formation with fixed duration. By introducing a novel concept of temporary support nodes to improve the cluster formation, the proposed scheme enables sensor nodes in a network to find a cluster head efficiently. The performance study shows that not only is the clustering process efficient and compact but it also results in remarkable energy savings that prolong the overall network lifetime. In addition, the proposed scheme decreases both the clustering overhead and the average distance between cluster heads and their members.

  16. An Energy-Efficient and Compact Clustering Scheme with Temporary Support Nodes for Cognitive Radio Sensor Networks

    PubMed Central

    Salim, Shelly; Moh, Sangman; Choi, Dongmin; Chung, Ilyong

    2014-01-01

    A cognitive radio sensor network (CRSN) is a wireless sensor network whose sensor nodes are equipped with cognitive radio capability. Clustering is one of the most challenging issues in CRSNs, as all sensor nodes, including the cluster head, have to use the same frequency band in order to form a cluster. However, due to the nature of heterogeneous channels in cognitive radio, it is difficult for sensor nodes to find a cluster head. This paper proposes a novel energy-efficient and compact clustering scheme named clustering with temporary support nodes (CENTRE). CENTRE efficiently achieves a compact cluster formation by adopting two-phase cluster formation with fixed duration. By introducing a novel concept of temporary support nodes to improve the cluster formation, the proposed scheme enables sensor nodes in a network to find a cluster head efficiently. The performance study shows that not only is the clustering process efficient and compact but it also results in remarkable energy savings that prolong the overall network lifetime. In addition, the proposed scheme decreases both the clustering overhead and the average distance between cluster heads and their members. PMID:25116905

  17. Instruction manual for operating the Sensys System for temporary traffic counts

    DOT National Transportation Integrated Search

    2010-01-01

    This instruction manual provides information and the procedures for using the Sensys System, which was initially designed to operate in a server controlled network, for temporary traffic counts. The instructions will allow the user to fully understan...

  18. Highly survivable bed pressure mat remote patient monitoring system for mHealth.

    PubMed

    Joshi, Vilas; Holtzman, Megan; Arcelus, Amaya; Goubran, Rafik; Knoefel, Frank

    2012-01-01

    The high speed mobile networks like 4G and beyond are making a ubiquitous remote patient monitoring (RPM) system using multiple sensors and wireless sensor networks a realistic possibility. The high speed wireless RPM system will be an integral part of the mobile health (mHealth) paradigm reducing cost and providing better service to the patients. While the high speed wireless RPM system will allow clinicians to monitor various chronic and acute medical conditions, the reliability of such system will depend on the network Quality of Service (QoS). The RPM system needs to be resilient to temporary reduced network QoS. This paper presents a highly survivable bed pressure mat RPM system design using an adaptive information content management methodology for the monitored sensor data. The proposed design improves the resiliency of the RPM system under adverse network conditions like congestion and/or temporary loss of connectivity. It also shows how the proposed RPM system can reduce the information rate and correspondingly reduce the data transfer rate by a factor of 5.5 and 144 to address temporary network congestion. The RPM system data rate reduction results in a lower specificity and sensitivity for the features being monitored but increases the survivability of the system from 1 second to 2.4 minutes making it highly robust.

  19. Validating Large Scale Networks Using Temporary Local Scale Networks

    USDA-ARS?s Scientific Manuscript database

    The USDA NRCS Soil Climate Analysis Network and NOAA Climate Reference Networks are nationwide meteorological and land surface data networks with soil moisture measurements in the top layers of soil. There is considerable interest in scaling these point measurements to larger scales for validating ...

  20. Controlling the degradation kinetics of porous iron by poly(lactic-co-glycolic acid) infiltration for use as temporary medical implants

    PubMed Central

    Yusop, Abdul Hakim Md; Daud, Nurizzati Mohd; Nur, Hadi; Kadir, Mohammed Rafiq Abdul; Hermawan, Hendra

    2015-01-01

    Iron and its alloy have been proposed as biodegradable metals for temporary medical implants. However, the formation of iron oxide and iron phosphate on their surface slows down their degradation kinetics in both in vitro and in vivo scenarios. This work presents new approach to tailor degradation behavior of iron by incorporating biodegradable polymers into the metal. Porous pure iron (PPI) was vacuum infiltrated by poly(lactic-co-glycolic acid) (PLGA) to form fully dense PLGA-infiltrated porous iron (PIPI) and dip coated into the PLGA to form partially dense PLGA-coated porous iron (PCPI). Results showed that compressive strength and toughness of the PIPI and PCPI were higher compared to PPI. A strong interfacial interaction was developed between the PLGA layer and the iron surface. Degradation rate of PIPI and PCPI was higher than that of PPI due to the effect of PLGA hydrolysis. The fast degradation of PIPI did not affect the viability of human fibroblast cells. Finally, this work discusses a degradation mechanism for PIPI and the effect of PLGA incorporation in accelerating the degradation of iron. PMID:26057073

  1. 3D velocity imaging of Hikurangi subduction beneath the Wellington region, New Zealand

    NASA Astrophysics Data System (ADS)

    Wech, A.; Henrys, S. A.; Sutherland, R.; Seward, A. M.; Stern, T. A.; Sato, H.; Okaya, D. A.; Bassett, D.

    2011-12-01

    We present first results from the Seismic Array HiKurangi Experiment (SAHKE). This joint project involving institutions from New Zealand, Japan and the USA aims to investigate the subduction zone fault characteristics beneath the southernmost part of New Zealand's North Island. Situated above where the Pacific Plate is subducting beneath the Australian plate at a rate of ~42 mm/yr, the Wellington region provides a unique opportunity to investigate the frictional properties, geometry, and seismic potential of a shallow, locked megathrust fault. Here the coupled plate interface is 20-30 km deep beneath land and can be sampled with onshore-offshore data from 3 sides. An added interest to this project is that the elevated, oceanic, Hikurangi plateau has entered the subduction zone, east of Wellington, but it is still unclear how far the plateau has advanced westward into the subduction zone. SAHKE combines active and passive source data comprising 4 distinct data sets. 1) A dense temporary array of 50 seismometers with ~7 km spacing augmented 25 regional network instruments to record 49 local and 45 teleseismic earthquakes over a four month period. 2) These stations also recorded 69,000 offshore airgun shots from 17 lines crisscrossing two sides of the array. 3) An additional coast-to-coast transect of 50 stations cutting through the temporary array recorded ~2000 offshore shots on either side. 4) 1000 stations with 100m spacing along that same transect separately recorded 12 in-line, 500 kg onshore dynamite explosions. First inspection of the recent onshore shot gathers show excellent signal to noise and a band of three strong reflectors between 20 and 38 km at the western end of the profile. We combine shot and earthquake recordings to simultaneously invert ~750,000 first arrivals for velocity structure and hypocenters in the densely sampled volume. First results from 3D, Vp tomography and relocated hypocenters agree with previous studies and suggest the later weak signals are reflections from the top of the Pacific plate. Our improved velocity model provides a high-resolution geometry of the subducting plate to support interpretation of other phases identified in SAHKE shot gathers.

  2. Monitoring the Restart of a High-Rate Wastewater Disposal Well in the Val d'Agri Oilfield (Italy)

    NASA Astrophysics Data System (ADS)

    De Gori, P.; Improta, L.; Moretti, M.; Colasanti, G.; Criscuoli, F.

    2015-12-01

    The Val d'Agri Quaternary basin in the Southern Apennine range of Italy hosts the largest inland oil field in Europe. Wastewater coming from the oil exploitation is re-injected by a high-rate disposal well into strongly fractured limestones of the hydrocarbon carbonate reservoir. Disposal activity has induced micro-seismicity since the beginning of injection in June 2006. Around 220 small magnitude events (ML < 2.3) were recorded between 2006 and 2013 by the trigger-mode monitoring local network managed by the oil company and by the National Seismic Network of Istituto Nazionale di Geofisica e Vulcanologia. The induced micro-seismicity illuminated a pre-existing high-angle fault located 1 km below the well. Since June 2006, wastewater has been re-injected with only short interruptions due acid stimulations. In January 2015 disposal activity was halted due to technical operations in the oil refinery and wastewater injection restarted after two weeks. We installed 5 short-period stations within 10 km of the disposal well to carefully monitor the re-start phase and the subsequent 3 months of disposal activity. This temporary network was complemented by stations of the National Seismic Network giving this final configuration:9 stations within 10 km of the well with the closest station 2 km apart, 13 stations within 20 km. Here we report on the preliminary analysis of the local earthquake recorded during the survey focusing on the events occurred in the injection area. The seismicity rate is compared with injection data.In spite of the dense network, we found that the rate of induced seismicity (both the number and energy of events) is very low when compared to the seismicity recorded during the first 5 years of injection activity carried out with comparable rate and pressure.

  3. An iterative network partition algorithm for accurate identification of dense network modules

    PubMed Central

    Sun, Siqi; Dong, Xinran; Fu, Yao; Tian, Weidong

    2012-01-01

    A key step in network analysis is to partition a complex network into dense modules. Currently, modularity is one of the most popular benefit functions used to partition network modules. However, recent studies suggested that it has an inherent limitation in detecting dense network modules. In this study, we observed that despite the limitation, modularity has the advantage of preserving the primary network structure of the undetected modules. Thus, we have developed a simple iterative Network Partition (iNP) algorithm to partition a network. The iNP algorithm provides a general framework in which any modularity-based algorithm can be implemented in the network partition step. Here, we tested iNP with three modularity-based algorithms: multi-step greedy (MSG), spectral clustering and Qcut. Compared with the original three methods, iNP achieved a significant improvement in the quality of network partition in a benchmark study with simulated networks, identified more modules with significantly better enrichment of functionally related genes in both yeast protein complex network and breast cancer gene co-expression network, and discovered more cancer-specific modules in the cancer gene co-expression network. As such, iNP should have a broad application as a general method to assist in the analysis of biological networks. PMID:22121225

  4. Deploying temporary networks for upscaling of sparse network stations

    USDA-ARS?s Scientific Manuscript database

    Soil observations networks at the national scale play an integral role in hydrologic modeling, drought assessment, agricultural decision support, and our ability to understand climate change. Understanding soil moisture variability is necessary to apply these measurements to model calibration, busin...

  5. Automatic Earthquake Detection and Location by Waveform coherency in Alentejo (South Portugal) Using CatchPy

    NASA Astrophysics Data System (ADS)

    Custodio, S.; Matos, C.; Grigoli, F.; Cesca, S.; Heimann, S.; Rio, I.

    2015-12-01

    Seismic data processing is currently undergoing a step change, benefitting from high-volume datasets and advanced computer power. In the last decade, a permanent seismic network of 30 broadband stations, complemented by dense temporary deployments, covered mainland Portugal. This outstanding regional coverage currently enables the computation of a high-resolution image of the seismicity of Portugal, which contributes to fitting together the pieces of the regional seismo-tectonic puzzle. Although traditional manual inspections are valuable to refine automatic results they are impracticable with the big data volumes now available. When conducted alone they are also less objective since the criteria is defined by the analyst. In this work we present CatchPy, a scanning algorithm to detect earthquakes in continuous datasets. Our main goal is to implement an automatic earthquake detection and location routine in order to have a tool to quickly process large data sets, while at the same time detecting low magnitude earthquakes (i.e. lowering the detection threshold). CatchPY is designed to produce an event database that could be easily located using existing location codes (e.g.: Grigoli et al. 2013, 2014). We use CatchPy to perform automatic detection and location of earthquakes that occurred in Alentejo region (South Portugal), taking advantage of a dense seismic network deployed in the region for two years during the DOCTAR experiment. Results show that our automatic procedure is particularly suitable for small aperture networks. The event detection is performed by continuously computing the short-term-average/long-term-average of two different characteristic functions (CFs). For the P phases we used a CF based on the vertical energy trace while for S phases we used a CF based on the maximum eigenvalue of the instantaneous covariance matrix (Vidale 1991). Seismic event location is performed by waveform coherence analysis, scanning different hypocentral coordinates (Grigoli et al. 2013, 2014). The reliability of automatic detections, phase pickings and locations are tested trough the quantitative comparison with manual results. This work is supported by project QuakeLoc, reference: PTDC/GEO-FIQ/3522/2012

  6. Sources of high frequency seismic noise: insights from a dense network of ~250 stations in northern Alsace (France)

    NASA Astrophysics Data System (ADS)

    Vergne, Jerome; Blachet, Antoine; Lehujeur, Maximilien

    2015-04-01

    Monitoring local or regional seismic activity requires stations having a low level of background seismic noise at frequencies higher than few tenths of Hertz. Network operators are well aware that the seismic quality of a site depends on several aspects, among them its geological setting and the proximity of roads, railways, industries or trees. Often, the impact of each noise source is only qualitatively known which precludes estimating the quality of potential future sites before they are tested or installed. Here, we want to take advantage of a very dense temporary network deployed in Northern Alsace (France) to assess the effect of various kinds of potential sources on the level of seismic noise observed in the frequency range 0.2-50 Hz. In September 2014, more than 250 seismic stations (FairfieldNodal@ Zland nodes with 10Hz vertical geophone) have been installed every 1.5 km over a ~25km diameter disc centred on the deep geothermal sites of Soultz-sous-Forêts and Rittershoffen. This region exhibits variable degrees of human imprints from quite remote areas to sectors with high traffic roads and big villages. It also encompasses both the deep sedimentary basin of the Rhine graben and the piedmont of the Vosges massif with exposed bedrock. For each site we processed the continuous data to estimate probability density functions of the power spectral densities. At frequencies higher than 1 Hz most sites show a clear temporal modulation of seismic noise related to human activity with the well-known variations between day and night and between weekdays and weekends. Moreover we observe a clear evolution of the spatial distribution of seismic noise levels with frequency. Basically, between 0.5 and 4 Hz the geological setting modulates the level of seismic noise. At higher frequencies, the amplitude of seismic noise appears mostly related to the distance to nearby roads. Based on road maps and traffic estimation, a forward approach is performed to model the induced seismic noise. Effects of other types of seismic sources, such as industries or wind, are also observed but usually have a more limited spatial extension and a specific signature in the spectrograms.

  7. A One-year Follow-up Study on Predictors of Temporary Leaves and Drop-outs among Students at a Women's Junior College

    PubMed Central

    Murai, Hideko; Nakayama, Takeo

    2008-01-01

    Background In Japan, the temporary leave and drop-out rate of university or junior college students has been increasing in recent years, and many cases have been attributed to psychological problems. To establish a mental health support system for entering students, we conducted a questionnaire and follow-up survey, and explored predictors of temporary leaves and drop-outs among junior college women. Methods Our sample consisted of 485 first-year female students attending a junior college in Osaka, Japan. Between 1998 and 2002, the following factors were assessed: lifestyle, college life, subjective well-being measured by the General Well-Being Schedule (GWBS), self-esteem, and emotional support network. A follow-up survey was conducted during 1 year. Results Thirty-seven women, who had taken temporary leaves or had dropped out during the first year, showed unfavorable responses to lifestyle, college life and/or subjective well-being compared with other students. No differences in self-esteem and emotional support network were found between the two groups. A multiple regression analysis showed that non-existence of interesting club activity, smoking, and low level of life satisfaction and emotional stability measured by the GWBS were predictors of temporary leaves and drop-outs. Conclusion It may be possible to determine which students are at risk for taking temporary leaves or dropping out based on their psychological state and lifestyle at the time of enrollment in college. More support is needed to continue the students at school who are at high risk for taking temporary leaves or dropping out. PMID:18305364

  8. A one-year follow-up study on predictors of temporary leaves and drop-outs among students at a women's junior college.

    PubMed

    Murai, Hideko; Nakayama, Takeo

    2008-01-01

    In Japan, the temporary leave and drop-out rate of university or junior college students has been increasing in recent years, and many cases have been attributed to psychological problems. To establish a mental health support system for entering students, we conducted a questionnaire and follow-up survey, and explored predictors of temporary leaves and drop-outs among junior college women. Our sample consisted of 485 first-year female students attending a junior college in Osaka, Japan. Between 1998 and 2002, the following factors were assessed: lifestyle, college life, subjective well-being measured by the General Well-Being Schedule (GWBS), self-esteem, and emotional support network. A follow-up survey was conducted during 1 year. Thirty-seven women, who had taken temporary leaves or had dropped out during the first year, showed unfavorable responses to lifestyle, college life and/or subjective well-being compared with other students. No differences in self-esteem and emotional support network were found between the two groups. A multiple regression analysis showed that non-existence of interesting club activity, smoking, and low level of life satisfaction and emotional stability measured by the GWBS were predictors of temporary leaves and drop-outs. It may be possible to determine which students are at risk for taking temporary leaves or dropping out based on their psychological state and lifestyle at the time of enrollment in college. More support is needed to continue the students at school who are at high risk for taking temporary leaves or dropping out.

  9. Investigation of Alien Wavelength Quality in Live Multi-Domain, Multi-Vendor Link Using Advanced Simulation Tool

    NASA Astrophysics Data System (ADS)

    Nordal Petersen, Martin; Nuijts, Roeland; Lange Bjørn, Lars

    2014-05-01

    This article presents an advanced optical model for simulation of alien wavelengths in multi-domain and multi-vendor dense wavelength-division multiplexing networks. The model aids optical network planners with a better understanding of the non-linear effects present in dense wavelength-division multiplexing systems and better utilization of alien wavelengths in future applications. The limiting physical effects for alien wavelengths are investigated in relation to power levels, channel spacing, and other factors. The simulation results are verified through experimental setup in live multi-domain dense wavelength-division multiplexing systems between two national research networks: SURFnet in Holland and NORDUnet in Denmark.

  10. Microearthquake networks and earthquake prediction

    USGS Publications Warehouse

    Lee, W.H.K.; Steward, S. W.

    1979-01-01

    A microearthquake network is a group of highly sensitive seismographic stations designed primarily to record local earthquakes of magnitudes less than 3. Depending on the application, a microearthquake network will consist of several stations or as many as a few hundred . They are usually classified as either permanent or temporary. In a permanent network, the seismic signal from each is telemetered to a central recording site to cut down on the operating costs and to allow more efficient and up-to-date processing of the data. However, telemetering can restrict the location sites because of the line-of-site requirement for radio transmission or the need for telephone lines. Temporary networks are designed to be extremely portable and completely self-contained so that they can be very quickly deployed. They are most valuable for recording aftershocks of a major earthquake or for studies in remote areas.  

  11. A Low Collision and High Throughput Data Collection Mechanism for Large-Scale Super Dense Wireless Sensor Networks.

    PubMed

    Lei, Chunyang; Bie, Hongxia; Fang, Gengfa; Gaura, Elena; Brusey, James; Zhang, Xuekun; Dutkiewicz, Eryk

    2016-07-18

    Super dense wireless sensor networks (WSNs) have become popular with the development of Internet of Things (IoT), Machine-to-Machine (M2M) communications and Vehicular-to-Vehicular (V2V) networks. While highly-dense wireless networks provide efficient and sustainable solutions to collect precise environmental information, a new channel access scheme is needed to solve the channel collision problem caused by the large number of competing nodes accessing the channel simultaneously. In this paper, we propose a space-time random access method based on a directional data transmission strategy, by which collisions in the wireless channel are significantly decreased and channel utility efficiency is greatly enhanced. Simulation results show that our proposed method can decrease the packet loss rate to less than 2 % in large scale WSNs and in comparison with other channel access schemes for WSNs, the average network throughput can be doubled.

  12. The 2012 Emilia seismic sequence (Northern Italy): Imaging the thrust fault system by accurate aftershock location

    NASA Astrophysics Data System (ADS)

    Govoni, Aladino; Marchetti, Alessandro; De Gori, Pasquale; Di Bona, Massimo; Lucente, Francesco Pio; Improta, Luigi; Chiarabba, Claudio; Nardi, Anna; Margheriti, Lucia; Agostinetti, Nicola Piana; Di Giovambattista, Rita; Latorre, Diana; Anselmi, Mario; Ciaccio, Maria Grazia; Moretti, Milena; Castellano, Corrado; Piccinini, Davide

    2014-05-01

    Starting from late May 2012, the Emilia region (Northern Italy) was severely shaken by an intense seismic sequence, originated from a ML 5.9 earthquake on May 20th, at a hypocentral depth of 6.3 km, with thrust-type focal mechanism. In the following days, the seismic rate remained high, counting 50 ML ≥ 2.0 earthquakes a day, on average. Seismicity spreads along a 30 km east-west elongated area, in the Po river alluvial plain, in the nearby of the cities Ferrara and Modena. Nine days after the first shock, another destructive thrust-type earthquake (ML 5.8) hit the area to the west, causing further damage and fatalities. Aftershocks following this second destructive event extended along the same east-westerly trend for further 20 km to the west, thus illuminating an area of about 50 km in length, on the whole. After the first shock struck, on May 20th, a dense network of temporary seismic stations, in addition to the permanent ones, was deployed in the meizoseismal area, leading to a sensible improvement of the earthquake monitoring capability there. A combined dataset, including three-component seismic waveforms recorded by both permanent and temporary stations, has been analyzed in order to obtain an appropriate 1-D velocity model for earthquake location in the study area. Here we describe the main seismological characteristics of this seismic sequence and, relying on refined earthquakes location, we make inferences on the geometry of the thrust system responsible for the two strongest shocks.

  13. Phase-Change Thermoplastic Elastomer Blends for Tunable Shape Memory by Physical Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mineart, Kenneth P.; Tallury, Syamal S.; Li, Tao

    Shape-memory polymers (SMPs) change shape upon exposure to an environmental stimulus.1-3 They are of considerable importance in the ongoing development of stimuli-responsive biomedical4,5 and deployable6 devices, and their function depends on the presence of two components.7 The first provides mechanical rigidity to ensure retention of one or more temporary strain states and also serves as a switch capable of releasing a temporary strain state. The second, a network-forming component, is required to restore the polymer to a prior strain state upon stimulation. In thermally-activated SMPs, the switching element typically relies on a melting or glass transition temperature,1-3,7 and broad ormore » multiple switches permit several temporary strain states.8-10 Chemical integration of network-forming and switching species endows SMPs with specific properties.8,10,11 Here, we demonstrate that phase-change materials incorporated into network-forming macromolecules yield shape-memory polymer blends (SMPBs) with physically tunable switching temperatures and recovery kinetics for use in multi-responsive laminates and shape-change electronics.« less

  14. An Adaptive Channel Access Method for Dynamic Super Dense Wireless Sensor Networks.

    PubMed

    Lei, Chunyang; Bie, Hongxia; Fang, Gengfa; Zhang, Xuekun

    2015-12-03

    Super dense and distributed wireless sensor networks have become very popular with the development of small cell technology, Internet of Things (IoT), Machine-to-Machine (M2M) communications, Vehicular-to-Vehicular (V2V) communications and public safety networks. While densely deployed wireless networks provide one of the most important and sustainable solutions to improve the accuracy of sensing and spectral efficiency, a new channel access scheme needs to be designed to solve the channel congestion problem introduced by the high dynamics of competing nodes accessing the channel simultaneously. In this paper, we firstly analyzed the channel contention problem using a novel normalized channel contention analysis model which provides information on how to tune the contention window according to the state of channel contention. We then proposed an adaptive channel contention window tuning algorithm in which the contention window tuning rate is set dynamically based on the estimated channel contention level. Simulation results show that our proposed adaptive channel access algorithm based on fast contention window tuning can achieve more than 95 % of the theoretical optimal throughput and 0 . 97 of fairness index especially in dynamic and dense networks.

  15. Accretionary nature of the crust of Central and East Java (Indonesia) revealed by local earthquake travel-time tomography

    NASA Astrophysics Data System (ADS)

    Haberland, Christian; Bohm, Mirjam; Asch, Günter

    2014-12-01

    Reassessment of travel time data from an exceptionally dense, amphibious, temporary seismic network on- and offshore Central and Eastern Java (MERAMEX) confirms the accretionary nature of the crust in this segment of the Sunda subduction zone (109.5-111.5E). Traveltime data of P- and S-waves of 244 local earthquakes were tomographically inverted, following a staggered inversion approach. The resolution of the inversion was inspected by utilizing synthetic recovery tests and analyzing the model resolution matrix. The resulting images show a highly asymmetrical crustal structure. The images can be interpreted to show a continental fragment of presumably Gondwana origin in the coastal area (east of 110E), which has been accreted to the Sundaland margin. An interlaced anomaly of high seismic velocities indicating mafic material can be interpreted to be the mantle part of the continental fragment, or part of obducted oceanic lithosphere. Lower than average crustal velocities of the Java crust are likely to reflect ophiolitic and metamorphic rocks of a subduction melange.

  16. Using algebra for massively parallel processor design and utilization

    NASA Technical Reports Server (NTRS)

    Campbell, Lowell; Fellows, Michael R.

    1990-01-01

    This paper summarizes the author's advances in the design of dense processor networks. Within is reported a collection of recent constructions of dense symmetric networks that provide the largest know values for the number of nodes that can be placed in a network of a given degree and diameter. The constructions are in the range of current potential engineering significance and are based on groups of automorphisms of finite-dimensional vector spaces.

  17. RESIF Seismology Datacentre : Recently Released Data and New Services. Computing with Dense Seisimic Networks Data.

    NASA Astrophysics Data System (ADS)

    Volcke, P.; Pequegnat, C.; Grunberg, M.; Lecointre, A.; Bzeznik, B.; Wolyniec, D.; Engels, F.; Maron, C.; Cheze, J.; Pardo, C.; Saurel, J. M.; André, F.

    2015-12-01

    RESIF is a nationwide french project aimed at building a high quality observation system to observe and understand the inner earth. RESIF deals with permanent seismic networks data as well as mobile networks data, including dense/semi-dense arrays. RESIF project is distributed among different nodes providing qualified data to the main datacentre in Université Grenoble Alpes, France. Data control and qualification is performed by each individual nodes : the poster will provide some insights on RESIF broadband seismic component data quality control. We will then present data that has been recently made publicly available. Data is distributed through worldwide FDSN and european EIDA standards protocols. A new web portal is now opened to explore and download seismic data and metadata. The RESIF datacentre is also now connected to Grenoble University High Performance Computing (HPC) facility : a typical use-case will be presented using iRODS technologies. The use of dense observation networks is increasing, bringing challenges in data growth and handling : we will present an example where HDF5 data format was used as an alternative to usual seismology data formats.

  18. Module discovery by exhaustive search for densely connected, co-expressed regions in biomolecular interaction networks.

    PubMed

    Colak, Recep; Moser, Flavia; Chu, Jeffrey Shih-Chieh; Schönhuth, Alexander; Chen, Nansheng; Ester, Martin

    2010-10-25

    Computational prediction of functionally related groups of genes (functional modules) from large-scale data is an important issue in computational biology. Gene expression experiments and interaction networks are well studied large-scale data sources, available for many not yet exhaustively annotated organisms. It has been well established, when analyzing these two data sources jointly, modules are often reflected by highly interconnected (dense) regions in the interaction networks whose participating genes are co-expressed. However, the tractability of the problem had remained unclear and methods by which to exhaustively search for such constellations had not been presented. We provide an algorithmic framework, referred to as Densely Connected Biclustering (DECOB), by which the aforementioned search problem becomes tractable. To benchmark the predictive power inherent to the approach, we computed all co-expressed, dense regions in physical protein and genetic interaction networks from human and yeast. An automatized filtering procedure reduces our output which results in smaller collections of modules, comparable to state-of-the-art approaches. Our results performed favorably in a fair benchmarking competition which adheres to standard criteria. We demonstrate the usefulness of an exhaustive module search, by using the unreduced output to more quickly perform GO term related function prediction tasks. We point out the advantages of our exhaustive output by predicting functional relationships using two examples. We demonstrate that the computation of all densely connected and co-expressed regions in interaction networks is an approach to module discovery of considerable value. Beyond confirming the well settled hypothesis that such co-expressed, densely connected interaction network regions reflect functional modules, we open up novel computational ways to comprehensively analyze the modular organization of an organism based on prevalent and largely available large-scale datasets. Software and data sets are available at http://www.sfu.ca/~ester/software/DECOB.zip.

  19. Smoke monitoring network on 2006 Northern California fires

    Treesearch

    Brenda Belongie; Suraj Ahuja

    2007-01-01

    Long-duration fire activity during the 2006 northern California fire season presented an excellent opportunity to create a temporary air-quality/smoke-monitoring network in the complex terrain across northwestern California. The network was established through cooperative interagency coordination of Federal officials, the California Air Resources Board (CARB), and...

  20. Ambient seismic noise monitoring of the Super-Sauze landslide from a very dense temporary seismic array

    NASA Astrophysics Data System (ADS)

    Chtouki, Toufik; Vergne, Jerome; Provost, Floriane; Malet, Jean-Philippe; Burtin, Arnaud; Hibert, Clément

    2017-04-01

    The Super-Sauze landslide is located on the southern part of the Barcelonnette Basin (French Alps) and has developed in a soft clay-shale environment. It is one of the four sites continuously monitored through a wide variety of geophysical and hydro-geological techniques in the framework of the OMIV French national landslide observatory. From early June to mid-July 2016, a temporary dense seismic array has been installed in the most active part of the landslide and at its surroundings. 50 different sites with an average inter-station distance of 50m have been instrumented with 150 miniaturized and autonomous seismic stations (Zland nodes), allowing a continuous record of the seismic signal at frequencies higher than 0.2Hz over an almost regular grid. Concurrently, a Ground-Based InSAR device allowed for a precise and continuous monitoring of the surface deformation. Overall, this experiment is intended to better characterize the spatio-temporal evolution of the deformation processes related to various type of forcing. We analyze the continuous records of ambient seismic noise recorded by the dense array. Using power spectral densities, we characterize the various types of natural and anthropogenic seismic sources, including the effect of water turbulence and bedload transport in the small nearby torrents. We also compute the correlation of the ambient diffuse seismic noise in various frequency bands for the 2448 station pairs to recover the empirical Green functions between them. The temporal evolution of the coda part of these noise correlation functions allows monitoring and localizing shear wave velocity variations in the sliding mass. Here we present some preliminary results of this analysis and compare the seismic variations to meteorological data and surface deformation.

  1. Distributed Multihop Clustering Approach for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Israr, Nauman; Awan, Irfan

    Prolonging the life time of Wireless Sensor Networks (WSNs) has been the focus of current research. One of the issues that needs to be addressed along with prolonging the network life time is to ensure uniform energy consumption across the network in WSNs especially in case of random network deployment. Cluster based routing algorithms are believed to be the best choice for WSNs because they work on the principle of divide and conquer and also improve the network life time considerably compared to flat based routing schemes. In this paper we propose a new routing strategy based on two layers clustering which exploits the redundancy property of the network in order to minimise duplicate data transmission and also make the intercluster and intracluster communication multihop. The proposed algorithm makes use of the nodes in a network whose area coverage is covered by the neighbouring nodes. These nodes are marked as temporary cluster heads and later use these temporary cluster heads randomly for multihop intercluster communication. Performance studies indicate that the proposed algorithm solves effectively the problem of load balancing across the network and is more energy efficient compared to the enhanced version of widely used Leach algorithm.

  2. Cooperative Game-Based Energy Efficiency Management over Ultra-Dense Wireless Cellular Networks

    PubMed Central

    Li, Ming; Chen, Pengpeng; Gao, Shouwan

    2016-01-01

    Ultra-dense wireless cellular networks have been envisioned as a promising technique for handling the explosive increase of wireless traffic volume. With the extensive deployment of small cells in wireless cellular networks, the network spectral efficiency (SE) is improved with the use of limited frequency. However, the mutual inter-tier and intra-tier interference between or among small cells and macro cells becomes serious. On the other hand, more chances for potential cooperation among different cells are introduced. Energy efficiency (EE) has become one of the most important problems for future wireless networks. This paper proposes a cooperative bargaining game-based method for comprehensive EE management in an ultra-dense wireless cellular network, which highlights the complicated interference influence on energy-saving challenges and the power-coordination process among small cells and macro cells. Especially, a unified EE utility with the consideration of the interference mitigation is proposed to jointly address the SE, the deployment efficiency (DE), and the EE. In particular, closed-form power-coordination solutions for the optimal EE are derived to show the convergence property of the algorithm. Moreover, a simplified algorithm is presented to reduce the complexity of the signaling overhead, which is significant for ultra-dense small cells. Finally, numerical simulations are provided to illustrate the efficiency of the proposed cooperative bargaining game-based and simplified schemes. PMID:27649170

  3. An automated method for finding molecular complexes in large protein interaction networks

    PubMed Central

    Bader, Gary D; Hogue, Christopher WV

    2003-01-01

    Background Recent advances in proteomics technologies such as two-hybrid, phage display and mass spectrometry have enabled us to create a detailed map of biomolecular interaction networks. Initial mapping efforts have already produced a wealth of data. As the size of the interaction set increases, databases and computational methods will be required to store, visualize and analyze the information in order to effectively aid in knowledge discovery. Results This paper describes a novel graph theoretic clustering algorithm, "Molecular Complex Detection" (MCODE), that detects densely connected regions in large protein-protein interaction networks that may represent molecular complexes. The method is based on vertex weighting by local neighborhood density and outward traversal from a locally dense seed protein to isolate the dense regions according to given parameters. The algorithm has the advantage over other graph clustering methods of having a directed mode that allows fine-tuning of clusters of interest without considering the rest of the network and allows examination of cluster interconnectivity, which is relevant for protein networks. Protein interaction and complex information from the yeast Saccharomyces cerevisiae was used for evaluation. Conclusion Dense regions of protein interaction networks can be found, based solely on connectivity data, many of which correspond to known protein complexes. The algorithm is not affected by a known high rate of false positives in data from high-throughput interaction techniques. The program is available from . PMID:12525261

  4. Cooperative Game-Based Energy Efficiency Management over Ultra-Dense Wireless Cellular Networks.

    PubMed

    Li, Ming; Chen, Pengpeng; Gao, Shouwan

    2016-09-13

    Ultra-dense wireless cellular networks have been envisioned as a promising technique for handling the explosive increase of wireless traffic volume. With the extensive deployment of small cells in wireless cellular networks, the network spectral efficiency (SE) is improved with the use of limited frequency. However, the mutual inter-tier and intra-tier interference between or among small cells and macro cells becomes serious. On the other hand, more chances for potential cooperation among different cells are introduced. Energy efficiency (EE) has become one of the most important problems for future wireless networks. This paper proposes a cooperative bargaining game-based method for comprehensive EE management in an ultra-dense wireless cellular network, which highlights the complicated interference influence on energy-saving challenges and the power-coordination process among small cells and macro cells. Especially, a unified EE utility with the consideration of the interference mitigation is proposed to jointly address the SE, the deployment efficiency (DE), and the EE. In particular, closed-form power-coordination solutions for the optimal EE are derived to show the convergence property of the algorithm. Moreover, a simplified algorithm is presented to reduce the complexity of the signaling overhead, which is significant for ultra-dense small cells. Finally, numerical simulations are provided to illustrate the efficiency of the proposed cooperative bargaining game-based and simplified schemes.

  5. The deeper structure of the southern Dead Sea basin derived from neural network analysis of velocity and attenuation tomography

    NASA Astrophysics Data System (ADS)

    Braeuer, Benjamin; Haberland, Christian; Bauer, Klaus; Weber, Michael

    2014-05-01

    The Dead Sea basin is a pull-apart basin at the Dead Sea transform fault, the boundary between the African and the Arabian plates. Though the DSB has been studied for a long time, the available knowledge - based mainly on surface geology, drilling and seismic reflection surveys - gives only a partial picture of its shallow structure. Therefore, within the framework of the international DESIRE (DEad Sea Integrated REsearch) project, a dense temporary local seismological network was operated in the southern Dead Sea area. Within 18 month of recording 650 events were detected. In addition to an already published tomography study revealing the distribution of P velocities and the Vp/Vs ratios a 2D P-wave attenuation tomography (parameter Qp) was performed. The neural network technique of Self-organizing maps (SOM) is used for the joint interpretation of these three parameters (Vp, Vp/Vs, Qp). The resulting clusters in the petrophysical parameter space are assigned to the main lithological units below the southern part of the Dead Sea basin: (1) The basin sediments characterized by strong attenuation, high vp/vs ratios and low P velocities. (2) The pre-basin sediments characterized by medium to strong attenuation, low Vp/Vs ratios and medium P velocities. (3) The basement characterized by low to moderate attenuation, medium vp/vs ratios and high P velocities. Thus, the asymmetric southern Dead Sea basin is filled with basin sediments down to depth of 7 to 12 km. Below the basin sediments, the pre-basin sediments are extending to a depth between 13 and 18 km.

  6. Experimental damage detection of wind turbine blade using thin film sensor array

    NASA Astrophysics Data System (ADS)

    Downey, Austin; Laflamme, Simon; Ubertini, Filippo; Sarkar, Partha

    2017-04-01

    Damage detection of wind turbine blades is difficult due to their large sizes and complex geometries. Additionally, economic restraints limit the viability of high-cost monitoring methods. While it is possible to monitor certain global signatures through modal analysis, obtaining useful measurements over a blade's surface using off-the-shelf sensing technologies is difficult and typically not economical. A solution is to deploy dedicated sensor networks fabricated from inexpensive materials and electronics. The authors have recently developed a novel large-area electronic sensor measuring strain over very large surfaces. The sensing system is analogous to a biological skin, where local strain can be monitored over a global area. In this paper, we propose the utilization of a hybrid dense sensor network of soft elastomeric capacitors to detect, localize, and quantify damage, and resistive strain gauges to augment such dense sensor network with high accuracy data at key locations. The proposed hybrid dense sensor network is installed inside a wind turbine blade model and tested in a wind tunnel to simulate an operational environment. Damage in the form of changing boundary conditions is introduced into the monitored section of the blade. Results demonstrate the ability of the hybrid dense sensor network, and associated algorithms, to detect, localize, and quantify damage.

  7. Reconstruction of in-plane strain maps using hybrid dense sensor network composed of sensing skin

    NASA Astrophysics Data System (ADS)

    Downey, Austin; Laflamme, Simon; Ubertini, Filippo

    2016-12-01

    The authors have recently developed a soft-elastomeric capacitive (SEC)-based thin film sensor for monitoring strain on mesosurfaces. Arranged in a network configuration, the sensing system is analogous to a biological skin, where local strain can be monitored over a global area. Under plane stress conditions, the sensor output contains the additive measurement of the two principal strain components over the monitored surface. In applications where the evaluation of strain maps is useful, in structural health monitoring for instance, such signal must be decomposed into linear strain components along orthogonal directions. Previous work has led to an algorithm that enabled such decomposition by leveraging a dense sensor network configuration with the addition of assumed boundary conditions. Here, we significantly improve the algorithm’s accuracy by leveraging mature off-the-shelf solutions to create a hybrid dense sensor network (HDSN) to improve on the boundary condition assumptions. The system’s boundary conditions are enforced using unidirectional RSGs and assumed virtual sensors. Results from an extensive experimental investigation demonstrate the good performance of the proposed algorithm and its robustness with respect to sensors’ layout. Overall, the proposed algorithm is seen to effectively leverage the advantages of a hybrid dense network for application of the thin film sensor to reconstruct surface strain fields over large surfaces.

  8. New constraints on micro-seismicity and stress state in the western part of the North Anatolian Fault Zone: Observations from a dense seismic array

    NASA Astrophysics Data System (ADS)

    Altuncu Poyraz, Selda; Teoman, M. Uğur; Türkelli, Niyazi; Kahraman, Metin; Cambaz, Didem; Mutlu, Ahu; Rost, Sebastian; Houseman, Gregory A.; Thompson, David A.; Cornwell, David; Utkucu, Murat; Gülen, Levent

    2015-08-01

    With the aim of extensively investigating the crustal structure beneath the western segment of the North Anatolian Fault Zone where it splays into northern and southern branches, a temporary seismic network (dense array for North Anatolia-DANA) consisting of 70 stations was deployed in early May 2012 and operated for 18 months in the Sakarya region during the FaultLab experiment. Out of 2437 events contaminated by explosions, we extracted 1371 well located earthquakes. The enhanced station coverage having a nominal station spacing of 7 km, lead to a minimum magnitude calculation of 0.1. Horizontal and vertical location uncertainties within the array do not exceed 0.8 km and 0.9 km, respectively. We observe considerable seismic activity along both branches of the fault where the depth of the seismogenic zone was mostly confined to 15 km. Using our current earthquake catalog we obtained a b-value of 1. We also mapped the b-value variation with depth and observed a gradual decrease. Furthermore, we determined the source parameters of 41 earthquakes with magnitudes greater than 1.8 using P-wave first motion polarity method. Regional Moment Tensor Inversion method was also applied to earthquakes with magnitudes greater than 3.0. Focal mechanism solutions confirm that Sakarya and its vicinity is stressed by a compressional regime showing a primarily oblique-slip motion character. Stress tensor analysis indicates that the maximum principal stress is aligned in WNW-ESE direction and the tensional axis is aligned in NNE-SSW direction.

  9. Empirical Bayes conditional independence graphs for regulatory network recovery.

    PubMed

    Mahdi, Rami; Madduri, Abishek S; Wang, Guoqing; Strulovici-Barel, Yael; Salit, Jacqueline; Hackett, Neil R; Crystal, Ronald G; Mezey, Jason G

    2012-08-01

    Computational inference methods that make use of graphical models to extract regulatory networks from gene expression data can have difficulty reconstructing dense regions of a network, a consequence of both computational complexity and unreliable parameter estimation when sample size is small. As a result, identification of hub genes is of special difficulty for these methods. We present a new algorithm, Empirical Light Mutual Min (ELMM), for large network reconstruction that has properties well suited for recovery of graphs with high-degree nodes. ELMM reconstructs the undirected graph of a regulatory network using empirical Bayes conditional independence testing with a heuristic relaxation of independence constraints in dense areas of the graph. This relaxation allows only one gene of a pair with a putative relation to be aware of the network connection, an approach that is aimed at easing multiple testing problems associated with recovering densely connected structures. Using in silico data, we show that ELMM has better performance than commonly used network inference algorithms including GeneNet, ARACNE, FOCI, GENIE3 and GLASSO. We also apply ELMM to reconstruct a network among 5492 genes expressed in human lung airway epithelium of healthy non-smokers, healthy smokers and individuals with chronic obstructive pulmonary disease assayed using microarrays. The analysis identifies dense sub-networks that are consistent with known regulatory relationships in the lung airway and also suggests novel hub regulatory relationships among a number of genes that play roles in oxidative stress and secretion. Software for running ELMM is made available at http://mezeylab.cb.bscb.cornell.edu/Software.aspx. ramimahdi@yahoo.com or jgm45@cornell.edu Supplementary data are available at Bioinformatics online.

  10. A measure of the denseness of a phylogenetic network. [by sequenced proteins from extant species

    NASA Technical Reports Server (NTRS)

    Holmquist, R.

    1978-01-01

    An objective measure of phylogenetic denseness is developed to examine various phylogenetic criteria: alpha- and beta-hemoglobin, myoglobin, cytochrome c, and the parvalbumin family. Attention is given to the number of nucleotide replacements separating homologous sequences, and to the topology of the network (in other words, to the qualitative nature of the network as defined by how closely the studied species are related). Applications include quantitative comparisons of species origin, relation, and rates of evolution.

  11. Locating overlapping dense subgraphs in gene (protein) association networks and predicting novel protein functional groups among these subgraphs

    NASA Astrophysics Data System (ADS)

    Palla, Gergely; Derenyi, Imre; Farkas, Illes J.; Vicsek, Tamas

    2006-03-01

    Most tasks in a cell are performed not by individual proteins, but by functional groups of proteins (either physically interacting with each other or associated in other ways). In gene (protein) association networks these groups show up as sets of densely connected nodes. In the yeast, Saccharomyces cerevisiae, known physically interacting groups of proteins (called protein complexes) strongly overlap: the total number of proteins contained by these complexes by far underestimates the sum of their sizes (2750 vs. 8932). Thus, most functional groups of proteins, both physically interacting and other, are likely to share many of their members with other groups. However, current algorithms searching for dense groups of nodes in networks usually exclude overlaps. With the aim to discover both novel functions of individual proteins and novel protein functional groups we combine in protein association networks (i) a search for overlapping dense subgraphs based on the Clique Percolation Method (CPM) (Palla, G., et.al. Nature 435, 814-818 (2005), http://angel.elte.hu/clustering), which explicitly allows for overlaps among the groups, and (ii) a verification and characterization of the identified groups of nodes (proteins) with the help of standard annotation databases listing known functions.

  12. Extracting Communities from Complex Networks by the k-Dense Method

    NASA Astrophysics Data System (ADS)

    Saito, Kazumi; Yamada, Takeshi; Kazama, Kazuhiro

    To understand the structural and functional properties of large-scale complex networks, it is crucial to efficiently extract a set of cohesive subnetworks as communities. There have been proposed several such community extraction methods in the literature, including the classical k-core decomposition method and, more recently, the k-clique based community extraction method. The k-core method, although computationally efficient, is often not powerful enough for uncovering a detailed community structure and it produces only coarse-grained and loosely connected communities. The k-clique method, on the other hand, can extract fine-grained and tightly connected communities but requires a substantial amount of computational load for large-scale complex networks. In this paper, we present a new notion of a subnetwork called k-dense, and propose an efficient algorithm for extracting k-dense communities. We applied our method to the three different types of networks assembled from real data, namely, from blog trackbacks, word associations and Wikipedia references, and demonstrated that the k-dense method could extract communities almost as efficiently as the k-core method, while the qualities of the extracted communities are comparable to those obtained by the k-clique method.

  13. Dense Matching Comparison Between Census and a Convolutional Neural Network Algorithm for Plant Reconstruction

    NASA Astrophysics Data System (ADS)

    Xia, Y.; Tian, J.; d'Angelo, P.; Reinartz, P.

    2018-05-01

    3D reconstruction of plants is hard to implement, as the complex leaf distribution highly increases the difficulty level in dense matching. Semi-Global Matching has been successfully applied to recover the depth information of a scene, but may perform variably when different matching cost algorithms are used. In this paper two matching cost computation algorithms, Census transform and an algorithm using a convolutional neural network, are tested for plant reconstruction based on Semi-Global Matching. High resolution close-range photogrammetric images from a handheld camera are used for the experiment. The disparity maps generated based on the two selected matching cost methods are comparable with acceptable quality, which shows the good performance of Census and the potential of neural networks to improve the dense matching.

  14. Broadband Ground Motion Observation and Simulation for the 2016 Kumamoto Earthquake

    NASA Astrophysics Data System (ADS)

    Miyake, H.; Chimoto, K.; Yamanaka, H.; Tsuno, S.; Korenaga, M.; Yamada, N.; Matsushima, T.; Miyakawa, K.

    2016-12-01

    During the 2016 Kumamoto earthquake, strong motion data were widely recorded by the permanent dense triggered strong motion network of K-NET/KiK-net and seismic intensity meters installed by local government and JMA. Seismic intensities close to the MMI 9-10 are recorded twice at the Mashiki town, and once at the Nishihara village and KiK-net Mashiki (KMMH16 ground surface). Near-fault records indicate extreme ground motion exceeding 400 cm/s in 5% pSv at a period of 1 s for the Mashiki town and 3-4 s for the Nishihara village. Fault parallel velocity components are larger between the Mashiki town and the Nishihara village, on the other hand, fault normal velocity components are larger inside the caldera of the Aso volcano. The former indicates rupture passed through along-strike stations, and the latter stations located at the forward rupture direction (e.g., Miyatake, 1999). In addition to the permanent observation, temporary continuous strong motion stations were installed just after the earthquake in the Kumamoto city, Mashiki town, Nishihara village, Minami-Aso village, and Aso town, (e.g., Chimoto et al., 2016; Tsuno et al., 2016; Yamanaka et al. 2016). This study performs to estimate strong motion generation areas for the 2016 Kumamoto earthquake sequence using the empirical Green's function method, then to simulate broadband ground motions for both the permanent and temporary strong motion stations. Currently the target period range is between 0.1 s to 5-10 s due to the signal-to-noise ratio of element earthquakes used for the empirical Green's functions. We also care fault dimension parameters N within 4 to 10 to avoid spectral sags and artificial periodicity. The simulated seismic intensities as well as fault normal and parallel velocity components will be discussed.

  15. 2005 Tri-Service Infrastructure Systems Conference and Exhibition. Volume 7, Tracks 7 and 8

    DTIC Science & Technology

    2005-08-04

    dense soils have the potential to wash-out and erode with fluid rotary methods and over excavation and hydraulic fracturing can result. Short...circuiting is possible outside of the temporary or outer casing or through weak soils to grade. Hydraulic fracturing may take place due to soil properties...prevented the potential for hydraulic fracturing of the sensitive dam prior to grouting. Sonic drilling was selected from a ran of proposed

  16. Automatic Ship Detection in Remote Sensing Images from Google Earth of Complex Scenes Based on Multiscale Rotation Dense Feature Pyramid Networks

    NASA Astrophysics Data System (ADS)

    Yang, Xue; Sun, Hao; Fu, Kun; Yang, Jirui; Sun, Xian; Yan, Menglong; Guo, Zhi

    2018-01-01

    Ship detection has been playing a significant role in the field of remote sensing for a long time but it is still full of challenges. The main limitations of traditional ship detection methods usually lie in the complexity of application scenarios, the difficulty of intensive object detection and the redundancy of detection region. In order to solve such problems above, we propose a framework called Rotation Dense Feature Pyramid Networks (R-DFPN) which can effectively detect ship in different scenes including ocean and port. Specifically, we put forward the Dense Feature Pyramid Network (DFPN), which is aimed at solving the problem resulted from the narrow width of the ship. Compared with previous multi-scale detectors such as Feature Pyramid Network (FPN), DFPN builds the high-level semantic feature-maps for all scales by means of dense connections, through which enhances the feature propagation and encourages the feature reuse. Additionally, in the case of ship rotation and dense arrangement, we design a rotation anchor strategy to predict the minimum circumscribed rectangle of the object so as to reduce the redundant detection region and improve the recall. Furthermore, we also propose multi-scale ROI Align for the purpose of maintaining the completeness of semantic and spatial information. Experiments based on remote sensing images from Google Earth for ship detection show that our detection method based on R-DFPN representation has a state-of-the-art performance.

  17. Class network routing

    DOEpatents

    Bhanot, Gyan [Princeton, NJ; Blumrich, Matthias A [Ridgefield, CT; Chen, Dong [Croton On Hudson, NY; Coteus, Paul W [Yorktown Heights, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Steinmacher-Burow, Burkhard D [Mount Kisco, NY; Takken, Todd E [Mount Kisco, NY; Vranas, Pavlos M [Bedford Hills, NY

    2009-09-08

    Class network routing is implemented in a network such as a computer network comprising a plurality of parallel compute processors at nodes thereof. Class network routing allows a compute processor to broadcast a message to a range (one or more) of other compute processors in the computer network, such as processors in a column or a row. Normally this type of operation requires a separate message to be sent to each processor. With class network routing pursuant to the invention, a single message is sufficient, which generally reduces the total number of messages in the network as well as the latency to do a broadcast. Class network routing is also applied to dense matrix inversion algorithms on distributed memory parallel supercomputers with hardware class function (multicast) capability. This is achieved by exploiting the fact that the communication patterns of dense matrix inversion can be served by hardware class functions, which results in faster execution times.

  18. A Novel Characterization of Amalgamated Networks in Natural Systems

    PubMed Central

    Barranca, Victor J.; Zhou, Douglas; Cai, David

    2015-01-01

    Densely-connected networks are prominent among natural systems, exhibiting structural characteristics often optimized for biological function. To reveal such features in highly-connected networks, we introduce a new network characterization determined by a decomposition of network-connectivity into low-rank and sparse components. Based on these components, we discover a new class of networks we define as amalgamated networks, which exhibit large functional groups and dense connectivity. Analyzing recent experimental findings on cerebral cortex, food-web, and gene regulatory networks, we establish the unique importance of amalgamated networks in fostering biologically advantageous properties, including rapid communication among nodes, structural stability under attacks, and separation of network activity into distinct functional modules. We further observe that our network characterization is scalable with network size and connectivity, thereby identifying robust features significant to diverse physical systems, which are typically undetectable by conventional characterizations of connectivity. We expect that studying the amalgamation properties of biological networks may offer new insights into understanding their structure-function relationships. PMID:26035066

  19. Chimera-like states in structured heterogeneous networks

    NASA Astrophysics Data System (ADS)

    Li, Bo; Saad, David

    2017-04-01

    Chimera-like states are manifested through the coexistence of synchronous and asynchronous dynamics and have been observed in various systems. To analyze the role of network topology in giving rise to chimera-like states, we study a heterogeneous network model comprising two groups of nodes, of high and low degrees of connectivity. The architecture facilitates the analysis of the system, which separates into a densely connected coherent group of nodes, perturbed by their sparsely connected drifting neighbors. It describes a synchronous behavior of the densely connected group and scaling properties of the induced perturbations.

  20. International postseismic response after the Mw=7.8 April 16, 2016 Pedernales Earthquake in Ecuador

    NASA Astrophysics Data System (ADS)

    Font, Y.; Ruiz, M. C.; Alvarado, A. P.; Mercerat, D.; Beck, S. L.; Leon Rios, S.; Meltzer, A.; Charvis, P.; Regnier, M. M.; Jarrin, P.; Rietbrock, A.; Vasconez, F.; Dionicio, V.; Calvache, M. L.; Singaucho, J. C.; Pazmino, A.; Rolandone, F.; Mothes, P. A.; Nocquet, J. M.; Martin, X.; Viracucha, C.; Audin, L.; Saillard, M.; Laurendeau, A.; Perrault, M.; Garth, T.; Pernoud, M.; Barros, J. G.; Yates, B.; Malengros, D.; Oregioni, D.; Villegas Lanza, J. C.; Cisneros, D.; Gomez, J.; Montes, L.; Beauval, C. M.; Bertrand, E.; Delouis, B.; Ruiz Paspuel, A. G.; Freymueller, J. T.; Williams, K.; La Femina, P.; Fuenzalida, A.; Mariniere, J.; Cheze, J.; Gueguen, P.; Maron, C.; Michaud, F.; Yepes, H. A.; Palacios, P.; Vallee, M.; Deschamps, A.; Gabriela, P.; Ambrois, D.; Ramos, C.; Courboulex, F.

    2016-12-01

    The Pedernales earthquake is a large Mw7.8 subduction earthquake caused by the relative convergence between the Nazca and South American plates. It occured north of the city of Pedernales, at 21 km depth and struck the coastal and densely populated Manabi Province, causing many casualties, structural damages and widespread surficial deformation. The 2016 epicenter was located near the Mw 7.8 1942 epicenter. Both events are similar in size and probably ruptured the same segment, which also corresponds to the southern part of the 1906 Mw8.8 Ecuador-Colombia megathrust rupture zone. Immediately after the earthquake, an international team from Ecuador, France, Colombia, the United Kingdom, Peru and the United States coordinated a scientific response with the respective financial support of EPN, IRD and CNRS, SGC, NERC and NSF. Equipment was provided by IGEPN, IRD, CEREMA, SGC, LIVERPOOL, IRIS PASSCAL and UNAVCO. Within a 1.5 month, the team progressively deployed a temporary seismic network of about 70 accelerometer and seismic stations, and 17 continuous GPS stations, complementing the permanent seismic, accelerometer and geodetic network of the IG-EPN. The dense network covers the 300 x 150 km wide area affected by the earthquake, including a trench-parallel line of 10 ocean bottom seismometers deployed by the R/V Orion of INOCAR for 6 months, assuring a minimized azimuthal gap. Intense seismicity is observed up to 150 km N- and S-ward from the rupture zone aligning mainly along 3 seismic strips roughly perpendicular to the trench and also near the rupture area. Peak ground and spectral accelerations are compared with existing ground-motion prediction equations (GMPEs) developed for interface earthquakes. Different soil investigations were realized to highlight soil characteristics in cities. The geodetic observations captured the immediate afterslip and will help determining the time history of afterslip and viscoelastic relaxation in response to this earthquake. A field survey was conducted on-land to describe the coseismic tectonic deformations and damages to buildings. At sea, a multibeam bathymetry survey of the margin over the rupture zone was conducted by the R/V Orion, making it possible to tentatively estimate and quantify sea-floor deformation after and before the earthquake.

  1. Reserch on Spatial and Temporal Distribution of Color Steel Building Based on Multi-Source High-Resolution Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Yang, S. W.; Ma, J. J.; Wang, J. M.

    2018-04-01

    As representative vulnerable regions of the city, dense distribution areas of temporary color steel building are a major target for control of fire risks, illegal buildings, environmental supervision, urbanization quality and enhancement for city's image. In the domestic and foreign literature, the related research mainly focuses on fire risks and violation monitoring. However, due to temporary color steel building's special characteristics, the corresponding research about temporal and spatial distribution, and influence on urban spatial form etc. has not been reported. Therefore, firstly, the paper research aim plans to extract information of large-scale color steel building from high-resolution images. Secondly, the color steel plate buildings were classified, and the spatial and temporal distribution and aggregation characteristics of small (temporary buildings) and large (factory building, warehouse, etc.) buildings were studied respectively. Thirdly, the coupling relationship between the spatial distribution of color steel plate and the spatial pattern of urban space was analysed. The results show that there is a good coupling relationship between the color steel plate building and the urban spatial form. Different types of color steel plate building represent the pattern of regional differentiation of urban space and the phased pattern of urban development.

  2. The Military Applications of Cloud Computing Technologies

    DTIC Science & Technology

    2013-05-23

    tactical networks will potentially cause some unique issues when implementing the JIE. Tactical networks are temporary in nature , and are utilized...connected ABCS clients will receive software updates and security patches as they are published over the network , rather than catching up after an extended...approach from the previous JNN network model, in that it introduces a limited, wireless capability to a unit’s LAN that will enable limited, on-the

  3. HID-1 controls formation of large dense core vesicles by influencing cargo sorting and trans-Golgi network acidification

    PubMed Central

    Hummer, Blake H.; de Leeuw, Noah F.; Burns, Christian; Chen, Lan; Joens, Matthew S.; Hosford, Bethany; Fitzpatrick, James A. J.; Asensio, Cedric S.

    2017-01-01

    Large dense core vesicles (LDCVs) mediate the regulated release of neuropeptides and peptide hormones. They form at the trans-Golgi network (TGN), where their soluble content aggregates to form a dense core, but the mechanisms controlling biogenesis are still not completely understood. Recent studies have implicated the peripheral membrane protein HID-1 in neuropeptide sorting and insulin secretion. Using CRISPR/Cas9, we generated HID-1 KO rat neuroendocrine cells, and we show that the absence of HID-1 results in specific defects in peptide hormone and monoamine storage and regulated secretion. Loss of HID-1 causes a reduction in the number of LDCVs and affects their morphology and biochemical properties, due to impaired cargo sorting and dense core formation. HID-1 KO cells also exhibit defects in TGN acidification together with mislocalization of the Golgi-enriched vacuolar H+-ATPase subunit isoform a2. We propose that HID-1 influences early steps in LDCV formation by controlling dense core formation at the TGN. PMID:29074564

  4. Residual topography and gravity anomalies reveal structural controls on co-seismic slip in the 2011 Mw 9.0 Tohoku-oki earthquake

    NASA Astrophysics Data System (ADS)

    Bassett, D.; Watts, A. B.; Sandwell, D. T.; Fialko, Y. A.

    2016-12-01

    We performed shear wave splitting analysis on 203 permanent (French RLPB, CEA and Catalonian networks) and temporary (PYROPE and IberArray experiments) broad-band stations around the Pyrenees. These measurements considerably enhance the spatial resolution and coverage of seismic anisotropy in that region. In particular, we characterize with different shear wave splitting analysis methods the small-scale variations of splitting parameters φ and δt along three dense transects crossing the western and central Pyrenees with an interstation spacing of about 7 km. While we find a relatively coherent seismic anisotropy pattern in the Pyrenean domain, we observe abrupt changes of splitting parameters in the Aquitaine Basin and delay times along the Pyrenees. We moreover observe coherent fast directions despite complex lithospheric structures in Iberia and the Massif Central. This suggests that two main sources of anisotropy are required to interpret seismic anisotropy in this region: (i) lithospheric fabrics in the Aquitaine Basin (probably frozen-in Hercynian anisotropy) and in the Pyrenees (early and late Pyrenean dynamics); (ii) asthenospheric mantle flow beneath the entire region (imprint of the western Mediterranean dynamics since the Oligocene).

  5. Upper-mantle deformation beneath the Pyrenean domain inferred from SKS splitting in northern Spain and southern France

    NASA Astrophysics Data System (ADS)

    Bonnin, Mickaël; Chevrot, Sébastien; Gaudot, Ianis; Haugmard, Méric

    2017-08-01

    We performed shear wave splitting analysis on 203 permanent (French RLPB, CEA and Catalonian networks) and temporary (PyrOPE and IberArray experiments) broad-band stations around the Pyrenees. These measurements considerably enhance the spatial resolution and coverage of seismic anisotropy in that region. In particular, we characterize with different shear wave splitting analysis methods the small-scale variations of splitting parameters ϕ and δt along three dense transects crossing the western and central Pyrenees with an interstation spacing of about 7 km. While we find a relatively coherent seismic anisotropy pattern in the Pyrenean domain, we observe abrupt changes of splitting parameters in the Aquitaine Basin and delay times along the Pyrenees. We moreover observe coherent fast directions despite complex lithospheric structures in Iberia and the Massif Central. This suggests that two main sources of anisotropy are required to interpret seismic anisotropy in this region: (i) lithospheric fabrics in the Aquitaine Basin (probably frozen-in Hercynian anisotropy) and in the Pyrenees (early and late Pyrenean dynamics); (ii) asthenospheric mantle flow beneath the entire region (imprint of the western Mediterranean dynamics since the Oligocene).

  6. Upper-Mantle Deformation Beneath the Pyrenean Domain Inferred from SKS Splitting in Northern Spain and Southern France

    NASA Astrophysics Data System (ADS)

    Bonnin, M. J. A.; Chevrot, S.; Gaudot, I.; Haugmard, M.

    2017-12-01

    We performed shear wave splitting analysis on 203 permanent (French RLPB, CEA and Catalonian networks) and temporary (PYROPE and IberArray experiments) broad-band stations around the Pyrenees. These measurements considerably enhance the spatial resolution and coverage of seismic anisotropy in that region. In particular, we characterize with different shear wave splitting analysis methods the small-scale variations of splitting parameters φ and δt along three dense transects crossing the western and central Pyrenees with an interstation spacing of about 7 km. While we find a relatively coherent seismic anisotropy pattern in the Pyrenean domain, we observe abrupt changes of splitting parameters in the Aquitaine Basin and delay times along the Pyrenees. We moreover observe coherent fast directions despite complex lithospheric structures in Iberia and the Massif Central. This suggests that two main sources of anisotropy are required to interpret seismic anisotropy in this region: (i) lithospheric fabrics in the Aquitaine Basin (probably frozen-in Hercynian anisotropy) and in the Pyrenees (early and late Pyrenean dynamics); (ii) asthenospheric mantle flow beneath the entire region (imprint of the western Mediterranean dynamics since the Oligocene).

  7. From sparse to dense and from assortative to disassortative in online social networks

    PubMed Central

    Li, Menghui; Guan, Shuguang; Wu, Chensheng; Gong, Xiaofeng; Li, Kun; Wu, Jinshan; Di, Zengru; Lai, Choy-Heng

    2014-01-01

    Inspired by the analysis of several empirical online social networks, we propose a simple reaction-diffusion-like coevolving model, in which individuals are activated to create links based on their states, influenced by local dynamics and their own intention. It is shown that the model can reproduce the remarkable properties observed in empirical online social networks; in particular, the assortative coefficients are neutral or negative, and the power law exponents γ are smaller than 2. Moreover, we demonstrate that, under appropriate conditions, the model network naturally makes transition(s) from assortative to disassortative, and from sparse to dense in their characteristics. The model is useful in understanding the formation and evolution of online social networks. PMID:24798703

  8. From sparse to dense and from assortative to disassortative in online social networks.

    PubMed

    Li, Menghui; Guan, Shuguang; Wu, Chensheng; Gong, Xiaofeng; Li, Kun; Wu, Jinshan; Di, Zengru; Lai, Choy-Heng

    2014-05-06

    Inspired by the analysis of several empirical online social networks, we propose a simple reaction-diffusion-like coevolving model, in which individuals are activated to create links based on their states, influenced by local dynamics and their own intention. It is shown that the model can reproduce the remarkable properties observed in empirical online social networks; in particular, the assortative coefficients are neutral or negative, and the power law exponents γ are smaller than 2. Moreover, we demonstrate that, under appropriate conditions, the model network naturally makes transition(s) from assortative to disassortative, and from sparse to dense in their characteristics. The model is useful in understanding the formation and evolution of online social networks.

  9. Source and Path Calibration in Regions of Poor Crustal Propagation Using Temporary, Large-Aperture, High-Resolution Seismic Arrays (Postprint). Annual Report 3

    DTIC Science & Technology

    2012-06-04

    central Tibetan Plateau. Automated hypocenter locations in south- central Tibet were finalized. Refinements included an update of the model used for... central Tibet. A subset of ~7,900 events with 25+ arrivals is considered well-located based on kilometer-scale differences relative to manually located...propagation in the Nepal Himalaya and the south- central Tibetan Plateau. The 2002–2005 experiment consisted of 233 stations along a dense 800 km linear

  10. African Cenozoic hotpot tectonism: new insights from continent-scale body-wave tomography

    NASA Astrophysics Data System (ADS)

    Bastow, I. D.; Boyce, A.; Caunt, E.; Guilloud De Courbeville, J.; Desai, S.; Kounoudis, R.; Golos, E. M.; Burdick, S.; van der Hilst, R. D.

    2017-12-01

    The African plate is an ideal study locale for mantle plumes and Cenozoic hotspot tectonism. On the eastern side of the continent, the uplifted East African and Ethiopian plateaus, and the 30Ma Ethiopian Traps, are widely considered to be the result of the African Superplume: a broad thermochemical anomaly that originates below southern Africa. Precisely where and how the superplume traverses the mantle transition zone is debated however. On the western side of the continent, the Cameroon Volcanic Line is a hotspot track with no age-progression; it is less easily attributed to the effects of a mantle plume. Central to our understanding of these issues is an improved picture of mantle seismic structure. Body-wave studies of African mantle wave-speed structure are typically limited to regional relative arrival-time studies that utilize data from temporary seismograph networks of aperture less than 1000km. The resulting tomographic images are higher resolution than continent-scale surface-wave models, but anomaly amplitudes cannot be compared from region to region using the relative arrival-time approach: the 0% contour in each region refers to the regional, not global mean. The challenge is thus to incorporate the often-noisy body-wave data from temporary seismograph networks into a continent-scale absolute delay-time model. We achieve this using the new Absolute Arrival-time Recovery Method (AARM) method of Boyce et. al., (2017) and the tomographic inversion approach described by Li et. al., (2008). We invert for mantle wavespeed structure using data recorded since 1990 by temporary networks in the Atlas Mountains, Cameroon, South Africa, East African Rift system, Ethiopia and Madagascar. Our model is well resolved to lower mantle depths beneath these temporary networks, and offers the most detailed picture yet of mantle wavespeed structure beneath Africa. The contrast between East African and Cameroon mantle structure suggests multiple development mechanisms for hotspot tectonism across the African continent.

  11. Social Networks, Social Circles, and Job Satisfaction.

    ERIC Educational Resources Information Center

    Hurlbert, Jeanne S.

    1991-01-01

    Tests the hypothesis that social networks serve as a social resource that effects job satisfaction through the provision of social support. Argues that three types of networks are likely to affect job satisfaction: dense networks, social circles composed of co-workers, and kin-centered networks. (JOW)

  12. Infoseconomics: A Utility Model for Information Security

    DTIC Science & Technology

    2010-09-01

    are stricter controls on the Secret network, and fewer people have access to it, meaning that breaches occur less frequently. Consider some perishable...decide whether to store and transmit the information on the Secret network or on the Confidential network. Traditionally, we would simply look at the...to be stored on the Secret network. But given that the information is perishable, maybe we can accept a temporary increased risk if this is outweighed

  13. Dense deconvolution net: Multi path fusion and dense deconvolution for high resolution skin lesion segmentation.

    PubMed

    He, Xinzi; Yu, Zhen; Wang, Tianfu; Lei, Baiying; Shi, Yiyan

    2018-01-01

    Dermoscopy imaging has been a routine examination approach for skin lesion diagnosis. Accurate segmentation is the first step for automatic dermoscopy image assessment. The main challenges for skin lesion segmentation are numerous variations in viewpoint and scale of skin lesion region. To handle these challenges, we propose a novel skin lesion segmentation network via a very deep dense deconvolution network based on dermoscopic images. Specifically, the deep dense layer and generic multi-path Deep RefineNet are combined to improve the segmentation performance. The deep representation of all available layers is aggregated to form the global feature maps using skip connection. Also, the dense deconvolution layer is leveraged to capture diverse appearance features via the contextual information. Finally, we apply the dense deconvolution layer to smooth segmentation maps and obtain final high-resolution output. Our proposed method shows the superiority over the state-of-the-art approaches based on the public available 2016 and 2017 skin lesion challenge dataset and achieves the accuracy of 96.0% and 93.9%, which obtained a 6.0% and 1.2% increase over the traditional method, respectively. By utilizing Dense Deconvolution Net, the average time for processing one testing images with our proposed framework was 0.253 s.

  14. Locating and Modeling Regional Earthquakes with Broadband Waveform Data

    NASA Astrophysics Data System (ADS)

    Tan, Y.; Zhu, L.; Helmberger, D.

    2003-12-01

    Retrieving source parameters of small earthquakes (Mw < 4.5), including mechanism, depth, location and origin time, relies on local and regional seismic data. Although source characterization for such small events achieves a satisfactory stage in some places with a dense seismic network, such as TriNet, Southern California, a worthy revisit to the historical events in these places or an effective, real-time investigation of small events in many other places, where normally only a few local waveforms plus some short-period recordings are available, is still a problem. To address this issue, we introduce a new type of approach that estimates location, depth, origin time and fault parameters based on 3-component waveform matching in terms of separated Pnl, Rayleigh and Love waves. We show that most local waveforms can be well modeled by a regionalized 1-D model plus different timing corrections for Pnl, Rayleigh and Love waves at relatively long periods, i.e., 4-100 sec for Pnl, and 8-100 sec for surface waves, except for few anomalous paths involving greater structural complexity, meanwhile, these timing corrections reveal similar azimuthal patterns for well-located cluster events, despite their different focal mechanisms. Thus, we can calibrate the paths separately for Pnl, Rayleigh and Love waves with the timing corrections from well-determined events widely recorded by a dense modern seismic network or a temporary PASSCAL experiment. In return, we can locate events and extract their fault parameters by waveform matching for available waveform data, which could be as less as from two stations, assuming timing corrections from the calibration. The accuracy of the obtained source parameters is subject to the error carried by the events used for the calibration. The detailed method requires a Green­_s function library constructed from a regionalized 1-D model together with necessary calibration information, and adopts a grid search strategy for both hypercenter and focal mechanism. We show that the whole process can be easily automated and routinely provide reliable source parameter estimates with a couple of broadband stations. Two applications in the Tibet Plateau and Southern California will be presented along with comparisons of results against other methods.

  15. Deterministic quantum dense coding networks

    NASA Astrophysics Data System (ADS)

    Roy, Saptarshi; Chanda, Titas; Das, Tamoghna; Sen(De), Aditi; Sen, Ujjwal

    2018-07-01

    We consider the scenario of deterministic classical information transmission between multiple senders and a single receiver, when they a priori share a multipartite quantum state - an attempt towards building a deterministic dense coding network. Specifically, we prove that in the case of two or three senders and a single receiver, generalized Greenberger-Horne-Zeilinger (gGHZ) states are not beneficial for sending classical information deterministically beyond the classical limit, except when the shared state is the GHZ state itself. On the other hand, three- and four-qubit generalized W (gW) states with specific parameters as well as the four-qubit Dicke states can provide a quantum advantage of sending the information in deterministic dense coding. Interestingly however, numerical simulations in the three-qubit scenario reveal that the percentage of states from the GHZ-class that are deterministic dense codeable is higher than that of states from the W-class.

  16. IrisDenseNet: Robust Iris Segmentation Using Densely Connected Fully Convolutional Networks in the Images by Visible Light and Near-Infrared Light Camera Sensors

    PubMed Central

    Arsalan, Muhammad; Naqvi, Rizwan Ali; Kim, Dong Seop; Nguyen, Phong Ha; Owais, Muhammad; Park, Kang Ryoung

    2018-01-01

    The recent advancements in computer vision have opened new horizons for deploying biometric recognition algorithms in mobile and handheld devices. Similarly, iris recognition is now much needed in unconstraint scenarios with accuracy. These environments make the acquired iris image exhibit occlusion, low resolution, blur, unusual glint, ghost effect, and off-angles. The prevailing segmentation algorithms cannot cope with these constraints. In addition, owing to the unavailability of near-infrared (NIR) light, iris recognition in visible light environment makes the iris segmentation challenging with the noise of visible light. Deep learning with convolutional neural networks (CNN) has brought a considerable breakthrough in various applications. To address the iris segmentation issues in challenging situations by visible light and near-infrared light camera sensors, this paper proposes a densely connected fully convolutional network (IrisDenseNet), which can determine the true iris boundary even with inferior-quality images by using better information gradient flow between the dense blocks. In the experiments conducted, five datasets of visible light and NIR environments were used. For visible light environment, noisy iris challenge evaluation part-II (NICE-II selected from UBIRIS.v2 database) and mobile iris challenge evaluation (MICHE-I) datasets were used. For NIR environment, the institute of automation, Chinese academy of sciences (CASIA) v4.0 interval, CASIA v4.0 distance, and IIT Delhi v1.0 iris datasets were used. Experimental results showed the optimal segmentation of the proposed IrisDenseNet and its excellent performance over existing algorithms for all five datasets. PMID:29748495

  17. IrisDenseNet: Robust Iris Segmentation Using Densely Connected Fully Convolutional Networks in the Images by Visible Light and Near-Infrared Light Camera Sensors.

    PubMed

    Arsalan, Muhammad; Naqvi, Rizwan Ali; Kim, Dong Seop; Nguyen, Phong Ha; Owais, Muhammad; Park, Kang Ryoung

    2018-05-10

    The recent advancements in computer vision have opened new horizons for deploying biometric recognition algorithms in mobile and handheld devices. Similarly, iris recognition is now much needed in unconstraint scenarios with accuracy. These environments make the acquired iris image exhibit occlusion, low resolution, blur, unusual glint, ghost effect, and off-angles. The prevailing segmentation algorithms cannot cope with these constraints. In addition, owing to the unavailability of near-infrared (NIR) light, iris recognition in visible light environment makes the iris segmentation challenging with the noise of visible light. Deep learning with convolutional neural networks (CNN) has brought a considerable breakthrough in various applications. To address the iris segmentation issues in challenging situations by visible light and near-infrared light camera sensors, this paper proposes a densely connected fully convolutional network (IrisDenseNet), which can determine the true iris boundary even with inferior-quality images by using better information gradient flow between the dense blocks. In the experiments conducted, five datasets of visible light and NIR environments were used. For visible light environment, noisy iris challenge evaluation part-II (NICE-II selected from UBIRIS.v2 database) and mobile iris challenge evaluation (MICHE-I) datasets were used. For NIR environment, the institute of automation, Chinese academy of sciences (CASIA) v4.0 interval, CASIA v4.0 distance, and IIT Delhi v1.0 iris datasets were used. Experimental results showed the optimal segmentation of the proposed IrisDenseNet and its excellent performance over existing algorithms for all five datasets.

  18. The INGV seismic monitoring system: activities during the first month of the 2016 Amatrice seismic sequence.

    NASA Astrophysics Data System (ADS)

    Scognamiglio, L.; Margheriti, L.; Moretti, M.; Pintore, S.

    2016-12-01

    At 01:36:32 UTC on August 24, 2016 an earthquake of ML=6.0 occurred in Central Italy, near Amatrice village; 21 s after the origin time, the first automatic location became available while the first magnitude estimate followed 47s after. The INGV seismologists on duty provided the alert to the Italian Civil Protection Department and thereby triggered the seismic emergency protocol In the hours after the earthquake, hundreds of events were recorded by the Italian Seismic Network of the INGV. SISMIKO, the coordinating body of the emergency seismic network, was activated few minutes after the mainshock. The main goal of this emergency group is to install temporary dense seismic network integrated with the existing permanent networks in the epicentral area to better constrain the aftershock hypocenters. From August the 24th to the 30th, SISMIKO deployed 18 seismic stations, generally six components (equipped with both seismometer and accelerometer), 13 of which were transmitting in real-time to the INGV seismic surveillance room in Rome. All data acquired are available at the European Integrated Data Archive (EIDA). The seismic sequence in the first month generated thousands of earthquakes which were processed and detected by the INGV automated localization system. We analyzed the performance of this system. Hundreds of those events were located by seismologists on shifts, the others were left to be analyzed by the Bollettino Sismico Italiano (BSI). The procedures of the BSI revise and integrate all available data. This allows for a better constrained location and for a more realistic hypocentral depth estimation. The first eight hours of August 24th were the most critical for the INGV surveillance room. Data recorded in these hours were carefully re-analyzed by BSI operators and the number of located events increased from 133 to 408, while the magnitude of completeness dropped significantly from about 3.5 to 2.7.

  19. Shear Wave Structure of Umbria and Marche, Italy, Strong Motion Seismometer Sites Affected by the 1997-98 Umbria-Marche, Italy, Earthquake Sequence

    USGS Publications Warehouse

    Kayen, Robert; Scasserra, Giuseppe; Stewart, Jonathan P.; Lanzo, Giuseppe

    2008-01-01

    A long sequence of earthquakes, eight with magnitudes between 5 and 6, struck the Umbria and Marche regions of central Italy between September 26, 1997 and July 1998. The earthquake swarm caused severe structural damage, particularly to masonry buildings, and resulted in the loss of twelve lives and about 150 injuries. The source of the events was a single seismogenic structure that consists of several faults with a prevailing northwest-southeast strike and crosses the Umbria-Marche border. The focal mechanism of the largest shocks indicates that the events were the product of shallow extensional normal faulting along a NE-SW extension perpendicular to the trend of the Apennines. The network of analog seismometer stations in the Umbria and Marche regions recorded motions of the main September and October 1997 events and a dense array of mobile digital stations, installed since September 29, recorded most of the swarm. The permanent national network Rete Accelerometrica Nazionale (RAN) is administered and maintained by Dipartimento delle Protezione Civile (DPC: Civil Protection Department); the temporary array was managed by Servizio Sismico Nazionale (SSN) in cooperation with small agencies and Universities. ENEA, the operator of many seismometer stations in Umbria, is the public Italian National Agency for New Technologies, Energy and the Environment. Many of the temporary and permanent stations in the Italian seismic network have little or no characterization of seismic velocities. In this study, we investigated 17 Italian sites using an active-source approach that employs low frequency harmonic waves to measure the dispersive nature of surface waves in the ground. We used the Spectral Analysis of Surface Wave (SASW) approach, coupled with an array of harmonic-wave electro-mechanical sources that are driven in-phase to excite the ground. An inversion algorithm using a non-linear least-squares best-fit method is used to compute shear wave velocities for up to 100 meters of the soil column. A draft report was published in the summer of 2008, followed by a comment period, lengthy discussions with Italian colleagues, and improved knowledge of the subsurface at the sites from soil logs. Four of the sites were reprocessed in order to correct issues with phase unwrapping of the field dispersion curves that complicated the velocity profile calculations at the lowest velocity sites. This report presents the final results from the reprocessing effort.

  20. Validating the BERMS in situ soil moisture network with a large scale temporary network

    USDA-ARS?s Scientific Manuscript database

    Calibration and validation of soil moisture satellite products requires data records of large spatial and temporal extent, but obtaining this data can be challenging. These challenges can include remote locations, and expense of equipment. One location with a long record of soil moisture data is th...

  1. Thermoreversible Folding as a Route to the Unique Shape-Memory Character in Ductile Polymer Networks.

    PubMed

    McBride, Matthew K; Podgorski, Maciej; Chatani, Shunsuke; Worrell, Brady T; Bowman, Christopher N

    2018-06-21

    Ductile, cross-linked films were folded as a means to program temporary shapes without the need for complex heating cycles or specialized equipment. Certain cross-linked polymer networks, formed here with the thiol-isocyanate reaction, possessed the ability to be pseudoplastically deformed below the glass transition, and the original shape was recovered during heating through the glass transition. To circumvent the large forces required to plastically deform a glassy polymer network, we have utilized folding, which localizes the deformation in small creases, and achieved large dimensional changes with simple programming procedures. In addition to dimension changes, three-dimensional objects such as swans and airplanes were developed to demonstrate applying origami principles to shape memory. We explored the fundamental mechanical properties that are required to fold polymer sheets and observed that a yield point that does not correspond to catastrophic failure is required. Unfolding occurred during heating through the glass transition, indicating the vitrification of the network that maintained the temporary, folded shape. Folding was demonstrated as a powerful tool to simply and effectively program ductile shape-memory polymers without the need for thermal cycling.

  2. Monitoring the Storm Tide of Hurricane Wilma in Southwestern Florida, October 2005

    USGS Publications Warehouse

    Soderqvist, Lars E.; Byrne, Michael J.

    2007-01-01

    Temporary monitoring stations employing non-vented pressure transducers were used to augment an existing U.S. Geological Survey coastal monitoring network to document the inland water levels related to the storm tide of Hurricane Wilma on the southwestern coast of Florida. On October 22, 2005, an experimental network consisting of 30 temporary stations was deployed over 90 miles of coastline to record the magnitude, extent, and timing of hurricane storm tide and coastal flooding. Sensors were programmed to record time, temperature, and barometric or water pressure. Water pressure was adjusted for changes in barometric pressure and salinity, and then converted to feet of water above the sensor. Elevation surveys using optical levels were conducted to reference storm tide water-level data and high-water marks to the North American Vertical Datum of 1988 (NAVD 88). Storm tide water levels more than 5 feet above NAVD 88 were recorded by sensors at several locations along the southwestern Florida coast. Temporary storm tide monitoring stations used for this effort have demonstrated their value in: (1) furthering the understanding of storm tide by allowing the U.S. Geological Survey to extend the scope of data collection beyond that of existing networks, and (2) serving as backup data collection at existing monitoring stations by utilizing nearby structures that are more likely to survive a major hurricane.

  3. The GANSSER seismological network in Bhutan

    NASA Astrophysics Data System (ADS)

    Hetényi, G.

    2013-12-01

    Our project investigates the Geodynamics ANd Seismic Structure of the Eastern-Himalaya Region (GANSSER). It aims to reveal the first seismological images beneath Bhutan and as such is a tribute to the late Augusto Gansser, geological discoverer of Bhutan [1]. Project GANSSER builds on the deployment of a temporary broadband seismometer network. This consists of 38 stations deployed across the Kingdom of Bhutan. Two south-north segments in the western and eastern part of the country constitute densely spaced lines of ca. 7 km inter-station distance with respectively 16 and 14 stations. The main technique to apply is receiver functions in order to image the Moho as it deepens from India to Tibet, thus revealing how the crust thickens in the Eastern Himalayas. Further 8 stations are located in-between these lines, in the central part of the country. The main purpose here is to characterize the seismicity of the country in a homogeneous manner. Altogether, the station network will allow the application of different classical seismological techniques, such as teleseismic, local earthquake, ambient noise and attenuation tomography. The dataset will also be exploited to try to locate landslides that cause a significant hazard, especially in and after the summer monsoon season. The station network described above has been deployed in January 2013 and is planned to operate until spring 2014. A first visit to the stations in April 2013 found operational conditions better than the average for temporary seismological networks. Data recovery in this time period exceeded 90%. Power spectral density diagrams indicate that the noise levels at our station sites are within the bounds of the Peterson Noise Model bounds [2] and in some cases are significantly less than the high-noise model. Starting April 2013 remote communications pathways with one third of the stations are tested. The scientific goals of Project GANSSER include: the determination of the structure and physical properties of the crust and the lithosphere; the mapping of seismic activity in the country and its eventual seasonal variation; joint interpretation with gravity data acquired in 2010-2012; landslide and debris flow detection and localization. Among the goals are the preliminary site tests in preparation for the permanent seismic observatory for Bhutan. Seismotectonic studies based on this project will compare different segments of the Himalayas and may shed light on the origin of the apparent seismic gap in Bhutan. The project will also play a role in building the basic knowledge towards mapping the seismic hazard in Bhutan within the next few years. This poster will present the station geometry, and preliminary information about the seismic data; it will also provide the opportunity to discuss the scientific objectives of the project with conference attendees. [1] A. Gansser, Geology of the Bhutan Himalayas (Birkhäuser, Basel, 1983), p 183. [2] J. Peterson, Observations and modelling of seismic background noise (USGS, Albuquerque, 1993)

  4. ClueNet: Clustering a temporal network based on topological similarity rather than denseness.

    PubMed

    Crawford, Joseph; Milenković, Tijana

    2018-01-01

    Network clustering is a very popular topic in the network science field. Its goal is to divide (partition) the network into groups (clusters or communities) of "topologically related" nodes, where the resulting topology-based clusters are expected to "correlate" well with node label information, i.e., metadata, such as cellular functions of genes/proteins in biological networks, or age or gender of people in social networks. Even for static data, the problem of network clustering is complex. For dynamic data, the problem is even more complex, due to an additional dimension of the data-their temporal (evolving) nature. Since the problem is computationally intractable, heuristic approaches need to be sought. Existing approaches for dynamic network clustering (DNC) have drawbacks. First, they assume that nodes should be in the same cluster if they are densely interconnected within the network. We hypothesize that in some applications, it might be of interest to cluster nodes that are topologically similar to each other instead of or in addition to requiring the nodes to be densely interconnected. Second, they ignore temporal information in their early steps, and when they do consider this information later on, they do so implicitly. We hypothesize that capturing temporal information earlier in the clustering process and doing so explicitly will improve results. We test these two hypotheses via our new approach called ClueNet. We evaluate ClueNet against six existing DNC methods on both social networks capturing evolving interactions between individuals (such as interactions between students in a high school) and biological networks capturing interactions between biomolecules in the cell at different ages. We find that ClueNet is superior in over 83% of all evaluation tests. As more real-world dynamic data are becoming available, DNC and thus ClueNet will only continue to gain importance.

  5. Dense modifiable interconnections utilizing photorefractive volume holograms

    NASA Astrophysics Data System (ADS)

    Psaltis, Demetri; Qiao, Yong

    1990-11-01

    This report describes an experimental two-layer optical neural network built at Caltech. The system uses photorefractive volume holograms to implement dense, modifiable synaptic interconnections and liquid crystal light valves (LCVS) to perform nonlinear thresholding operations. Kanerva's Sparse, Distributed Memory was implemented using this network and its ability to recognize handwritten character-alphabet (A-Z) has been demonstrated experimentally. According to Kanerva's model, the first layer has fixed, random weights of interconnections and the second layer is trained by sum-of-outer-products rule. After training, the recognition rates of the network on the training set (104 patterns) and test set (520 patterns) are 100 and 50 percent, respectively.

  6. Enterprise virtual private network (VPN) with dense wavelength division multiplexing (DWDM) design

    NASA Astrophysics Data System (ADS)

    Carranza, Aparicio

    An innovative computer simulation and modeling tool for metropolitan area optical data communication networks is presented. These models address the unique requirements of Virtual Private Networks for enterprise data centers, which may comprise a mixture of protocols including ESCON, FICON, Fibre Channel, Sysplex protocols (ETR, CLO, ISC); and other links interconnected over dark fiber using Dense Wavelength Division Multiplexing (DWDM). Our models have the capability of designing a network with minimal inputs; to compute optical link budgets; suggest alternative configurations; and also optimize the design based on user-defined performance metrics. The models make use of Time Division Multiplexing (TDM) wherever possible for lower data rate traffics. Simulation results for several configurations are presented and they have been validated by means of experiments conducted on the IBM enterprise network testbed in Poughkeepsie, N.Y.

  7. METHOD OF MAKING REFRACTORY BODIES

    DOEpatents

    Andersen, J.C.

    1960-05-31

    A method is given for the manufacture of silicon carbide bodies that are characterized by high density, high purity, and superior resistance to oxidative deterioration. Dense silicon bodies are obtained by a process in which granular silicon carbide, a carbonizable material, and a carbonaceous material are mixed together, the mixture is shaped as desired, and then the shape is fired in the presence of more than the stoichiometric amount of silicon. The carbonizable material preferably includes a temporary binder that is set before the firing step to hold the mix in shape for firing.

  8. Shell-corona microgels from double interpenetrating networks.

    PubMed

    Rudyak, Vladimir Yu; Gavrilov, Alexey A; Kozhunova, Elena Yu; Chertovich, Alexander V

    2018-04-18

    Polymer microgels with a dense outer shell offer outstanding features as universal carriers for different guest molecules. In this paper, microgels formed by an interpenetrating network comprised of collapsed and swollen subnetworks are investigated using dissipative particle dynamics (DPD) computer simulations, and it is found that such systems can form classical core-corona structures, shell-corona structures, and core-shell-corona structures, depending on the subchain length and molecular mass of the system. The core-corona structures consisting of a dense core and soft corona are formed at small microgel sizes when the subnetworks are able to effectively separate in space. The most interesting shell-corona structures consist of a soft cavity in a dense shell surrounded with a loose corona, and are found at intermediate gel sizes; the area of their existence depends on the subchain length and the corresponding mesh size. At larger molecular masses the collapsing network forms additional cores inside the soft cavity, leading to the core-shell-corona structure.

  9. Efficient Usage of Dense GNSS Networks in Central Europe for the Visualization and Investigation of Ionospheric TEC Variations

    PubMed Central

    Zanimonskiy, Yevgen M.; Yampolski, Yuri M.; Figurski, Mariusz

    2017-01-01

    The technique of the orthogonal projection of ionosphere electronic content variations for mapping total electron content (TEC) allows us to visualize ionospheric irregularities. For the reconstruction of global ionospheric characteristics, numerous global navigation satellite system (GNSS) receivers located in different regions of the Earth are used as sensors. We used dense GNSS networks in central Europe to detect and investigate a special type of plasma inhomogeneities, called travelling ionospheric disturbances (TID). Such use of GNSS sensors allows us to reconstruct the main TID parameters, such as spatial dimensions, velocities, and directions of their movement. The paper gives examples of the restoration of dynamic characteristics of ionospheric irregularities for quiet and disturbed geophysical conditions. Special attention is paid to the dynamics of ionospheric disturbances stimulated by the magnetic storms of two St. Patrick’s Days (17 March 2013 and 2015). Additional opportunities for the remote sensing of the ionosphere with the use of dense regional networks of GNSS receiving sensors have been noted too. PMID:28994718

  10. Efficient Usage of Dense GNSS Networks in Central Europe for the Visualization and Investigation of Ionospheric TEC Variations.

    PubMed

    Nykiel, Grzegorz; Zanimonskiy, Yevgen M; Yampolski, Yuri M; Figurski, Mariusz

    2017-10-10

    The technique of the orthogonal projection of ionosphere electronic content variations for mapping total electron content (TEC) allows us to visualize ionospheric irregularities. For the reconstruction of global ionospheric characteristics, numerous global navigation satellite system (GNSS) receivers located in different regions of the Earth are used as sensors. We used dense GNSS networks in central Europe to detect and investigate a special type of plasma inhomogeneities, called travelling ionospheric disturbances (TID). Such use of GNSS sensors allows us to reconstruct the main TID parameters, such as spatial dimensions, velocities, and directions of their movement. The paper gives examples of the restoration of dynamic characteristics of ionospheric irregularities for quiet and disturbed geophysical conditions. Special attention is paid to the dynamics of ionospheric disturbances stimulated by the magnetic storms of two St. Patrick's Days (17 March 2013 and 2015). Additional opportunities for the remote sensing of the ionosphere with the use of dense regional networks of GNSS receiving sensors have been noted too.

  11. New Directions for Corporate Careers.

    ERIC Educational Resources Information Center

    Lemke, James M.; And Others

    1995-01-01

    Includes "Introduction" (Lemke); "Career Sidestepping" (Prescott); "Temporary Work Life" (Farrugia); "Electronic Recruiter" (Lemke); "Aerospace Network" (Hoffner); "Multimedia: The Future of Adult Learning" (Golub); and "Teleworking: Commuting on the Information Highway" (Petrie). (JOW)

  12. On the reliability of Quake-Catcher Network earthquake detections

    USGS Publications Warehouse

    Yildirim, Battalgazi; Cochran, Elizabeth S.; Chung, Angela I.; Christensen, Carl M.; Lawrence, Jesse F.

    2015-01-01

    Over the past two decades, there have been several initiatives to create volunteer‐based seismic networks. The Personal Seismic Network, proposed around 1990, used a short‐period seismograph to record earthquake waveforms using existing phone lines (Cranswick and Banfill, 1990; Cranswicket al., 1993). NetQuakes (Luetgert et al., 2010) deploys triaxial Micro‐Electromechanical Systems (MEMS) sensors in private homes, businesses, and public buildings where there is an Internet connection. Other seismic networks using a dense array of low‐cost MEMS sensors are the Community Seismic Network (Clayton et al., 2012; Kohler et al., 2013) and the Home Seismometer Network (Horiuchi et al., 2009). One main advantage of combining low‐cost MEMS sensors and existing Internet connection in public and private buildings over the traditional networks is the reduction in installation and maintenance costs (Koide et al., 2006). In doing so, it is possible to create a dense seismic network for a fraction of the cost of traditional seismic networks (D’Alessandro and D’Anna, 2013; D’Alessandro, 2014; D’Alessandro et al., 2014).

  13. Studies of planning behavior of aircraft pilots in normal, abnormal, and emergency situations

    NASA Technical Reports Server (NTRS)

    Johannsen, G.; Rouse, W. B.; Hillmann, K.

    1981-01-01

    A methodology for the study of human planning behavior in complex dynamic systems is presented and applied to the study of aircraft pilot behavior in normal, abnormal and emergency situations. The method measures the depth of planning, that is the level of detail employed with respect to a specific task, according to responses to a verbal questionnaire, and compares planning depth with variables relating to time, task criticality and the probability of increased task difficulty. In two series of experiments, depth of planning was measured on a five- or ten-point scale during various phases of flight in a HFB-320 simulator under normal flight conditions, abnormal scenarios involving temporary runway closure due to snow removal or temporary CAT-III conditions due to a dense fog, and emergency scenarios involving engine shut-down or hydraulic pressure loss. Results reveal a dichotomy between event-driven and time-driven planning, different effects of automation in abnormal and emergency scenarios and a low correlation between depth of planning and workload or flight performance.

  14. Insights into failed lexical retrieval from network science.

    PubMed

    Vitevitch, Michael S; Chan, Kit Ying; Goldstein, Rutherford

    2014-02-01

    Previous network analyses of the phonological lexicon (Vitevitch, 2008) observed a web-like structure that exhibited assortative mixing by degree: words with dense phonological neighborhoods tend to have as neighbors words that also have dense phonological neighborhoods, and words with sparse phonological neighborhoods tend to have as neighbors words that also have sparse phonological neighborhoods. Given the role that assortative mixing by degree plays in network resilience, we examined instances of real and simulated lexical retrieval failures in computer simulations, analysis of a slips-of-the-ear corpus, and three psycholinguistic experiments for evidence of this network characteristic in human behavior. The results of the various analyses support the hypothesis that the structure of words in the mental lexicon influences lexical processing. The implications of network science for current models of spoken word recognition, language processing, and cognitive psychology more generally are discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Insights into failed lexical retrieval from network science

    PubMed Central

    Vitevitch, Michael S.; Chan, Kit Ying; Goldstein, Rutherford

    2013-01-01

    Previous network analyses of the phonological lexicon (Vitevitch, 2008) observed a web-like structure that exhibited assortative mixing by degree: words with dense phonological neighborhoods tend to have as neighbors words that also have dense phonological neighborhoods, and words with sparse phonological neighborhoods tend to have as neighbors words that also have sparse phonological neighborhoods. Given the role that assortative mixing by degree plays in network resilience, we examined instances of real and simulated lexical retrieval failures in computer simulations, analysis of a slips-of-the-ear corpus, and three psycholinguistic experiments for evidence of this network characteristic in human behavior. The results of the various analyses support the hypothesis that the structure of words in the mental lexicon influences lexical processing. The implications of network science for current models of spoken word recognition, language processing, and cognitive psychology more generally are discussed. PMID:24269488

  16. Seismotectonics of the 2014 Chiang Rai, Thailand, earthquake sequence

    NASA Astrophysics Data System (ADS)

    Pananont, P.; Herman, M. W.; Pornsopin, P.; Furlong, K. P.; Habangkaem, S.; Waldhauser, F.; Wongwai, W.; Limpisawad, S.; Warnitchai, P.; Kosuwan, S.; Wechbunthung, B.

    2017-08-01

    On 5 May 2014, a Mw 6.2 strike-slip earthquake occurred in the Mae Lao region of Chiang Rai province in Thailand. This earthquake took place in a region of known faults and caused substantial damage and injuries, although the region had been previously identified as having a relatively low earthquake hazard. Detailed field reconnaissance and deployment of a dense, temporary, network of broadband seismometers allowed details of the damage and its relationship to seismicity to be analyzed. The aftershock sequence associated with this main shock occurs on two well-defined trends, reflecting the two potential fault planes in earthquake mechanisms for the main shock and the majority of the aftershocks. The damage area was relatively large for an event of this magnitude, but building damage was largely limited to the primary rupture region, while liquefaction and other ground failure are spatially associated with the rupture area and along regional rivers. Stress modeling, combined with the time series and pattern of aftershock activity, leads us to propose that slip near the northern termination of the main shock rupture continued slightly onto a conjugate fault, helping to trigger the distinct pattern of two discrete, conjugate trends of aftershock activity that mirror the kinematics of the main shock fault mechanism.

  17. Communication, advice exchange and job satisfaction of nursing staff: a social network analyses of 35 long-term care units.

    PubMed

    van Beek, Adriana P A; Wagner, Cordula; Spreeuwenberg, Peter P M; Frijters, Dinnus H M; Ribbe, Miel W; Groenewegen, Peter P

    2011-06-01

    The behaviour of individuals is affected by the social networks in which they are embedded. Networks are also important for the diffusion of information and the influence of employees in organisations. Yet, at the moment little is known about the social networks of nursing staff in healthcare settings. This is the first study that investigates informal communication and advice networks of nursing staff in long-term care. We examine the structure of the networks, how they are related to the size of units and characteristics of nursing staff, and their relationship with job satisfaction. We collected social network data of 380 nursing staff of 35 units in group projects and psychogeriatric units in nursing homes and residential homes in the Netherlands. Communication and advice networks were analyzed in a social network application (UCINET), focusing on the number of contacts (density) between nursing staff on the units. We then studied the correlation between the density of networks, size of the units and characteristics of nursing staff. We used multilevel analyses to investigate the relationship between social networks and job satisfaction of nursing staff, taking characteristics of units and nursing staff into account. Both communication and advice networks were negatively related to the number of residents and the number of nursing staff of the units. Communication and advice networks were more dense when more staff worked part-time. Furthermore, density of communication networks was positively related to the age of nursing staff of the units. Multilevel analyses showed that job satisfaction differed significantly between individual staff members and units and was influenced by the number of nursing staff of the units. However, this relationship disappeared when density of communication networks was added to the model. Overall, communication and advice networks of nursing staff in long-term care are relatively dense. This fits with the high level of cooperation that is needed to provide good care to residents. Social networks are more dense in small units and are also shaped by characteristics of staff members. The results furthermore show that communication networks are important for staff's job satisfaction.

  18. Communication, advice exchange and job satisfaction of nursing staff: a social network analyses of 35 long-term care units

    PubMed Central

    2011-01-01

    Background The behaviour of individuals is affected by the social networks in which they are embedded. Networks are also important for the diffusion of information and the influence of employees in organisations. Yet, at the moment little is known about the social networks of nursing staff in healthcare settings. This is the first study that investigates informal communication and advice networks of nursing staff in long-term care. We examine the structure of the networks, how they are related to the size of units and characteristics of nursing staff, and their relationship with job satisfaction. Methods We collected social network data of 380 nursing staff of 35 units in group projects and psychogeriatric units in nursing homes and residential homes in the Netherlands. Communication and advice networks were analyzed in a social network application (UCINET), focusing on the number of contacts (density) between nursing staff on the units. We then studied the correlation between the density of networks, size of the units and characteristics of nursing staff. We used multilevel analyses to investigate the relationship between social networks and job satisfaction of nursing staff, taking characteristics of units and nursing staff into account. Results Both communication and advice networks were negatively related to the number of residents and the number of nursing staff of the units. Communication and advice networks were more dense when more staff worked part-time. Furthermore, density of communication networks was positively related to the age of nursing staff of the units. Multilevel analyses showed that job satisfaction differed significantly between individual staff members and units and was influenced by the number of nursing staff of the units. However, this relationship disappeared when density of communication networks was added to the model. Conclusions Overall, communication and advice networks of nursing staff in long-term care are relatively dense. This fits with the high level of cooperation that is needed to provide good care to residents. Social networks are more dense in small units and are also shaped by characteristics of staff members. The results furthermore show that communication networks are important for staff's job satisfaction. PMID:21631936

  19. Measuring distance through dense weighted networks: The case of hospital-associated pathogens

    PubMed Central

    Smieszek, Timo; Henderson, Katherine L.; Johnson, Alan P.

    2017-01-01

    Hospital networks, formed by patients visiting multiple hospitals, affect the spread of hospital-associated infections, resulting in differences in risks for hospitals depending on their network position. These networks are increasingly used to inform strategies to prevent and control the spread of hospital-associated pathogens. However, many studies only consider patients that are received directly from the initial hospital, without considering the effect of indirect trajectories through the network. We determine the optimal way to measure the distance between hospitals within the network, by reconstructing the English hospital network based on shared patients in 2014–2015, and simulating the spread of a hospital-associated pathogen between hospitals, taking into consideration that each intermediate hospital conveys a delay in the further spread of the pathogen. While the risk of transferring a hospital-associated pathogen between directly neighbouring hospitals is a direct reflection of the number of shared patients, the distance between two hospitals far-away in the network is determined largely by the number of intermediate hospitals in the network. Because the network is dense, most long distance transmission chains in fact involve only few intermediate steps, spreading along the many weak links. The dense connectivity of hospital networks, together with a strong regional structure, causes hospital-associated pathogens to spread from the initial outbreak in a two-step process: first, the directly surrounding hospitals are affected through the strong connections, second all other hospitals receive introductions through the multitude of weaker links. Although the strong connections matter for local spread, weak links in the network can offer ideal routes for hospital-associated pathogens to travel further faster. This hold important implications for infection prevention and control efforts: if a local outbreak is not controlled in time, colonised patients will appear in other regions, irrespective of the distance to the initial outbreak, making import screening ever more difficult. PMID:28771581

  20. A Hyper-Dense GNSS Receiver Network for Monitoring Time and Spatial Variations of Precipitable Water Vapor (PWV)

    NASA Astrophysics Data System (ADS)

    Tsuda, T.; Ito, N.; Takeda, Y.; Realini, E.; Shinbori, A.

    2016-12-01

    We employ the GNSS meteorology technique to measure precipitable water vapor (PWV) from the propagation delay of GNSS signal in the atmosphere. We installed a hyper-dense GNSS network using 15 receivers with a horizontal spacing of 1-2 km in Uji, Japan (Uji network). We also obtained precipitation with a rain gauge at a nearby operational weather station and rain cloud distribution by an X-band radar. We selected 40 days from April 2011 to March 2013, when considerable precipitation was detected. Difference in PWV within 10 km was 3-10 mm during a heavy rain. We found PWV increased 10-20 minutes before a passage of a rain cloud. The maximum value of PWV correlated well with the amount of precipitation on the ground. The variance of PWV between the GNSS sites was enhanced during a heavy rain. For a future practical hyper-dense GNSS network system with many receivers, we consider to use inexpensive single frequency (SF) receivers. Because SF receiver cannot eliminate the ionospheric delay by itself, we interpolate the delay referring the delay measured by the nearby dual frequency (DF) receivers. We investigated ionospheric delay by the Uji network, taking advantages of Quasi-Zenith Satellite System (QZSS) that gives signals at high elevation angles. During a travelling ionospheric disturbance (TID), a wavy structure with a horizontal scale of several tens km was recognized. The ionospheric delay was compensated by a linear and quadratic interpolation, then the resulting error of PWV compared with DF solution was about 1.50 mm in RMS. For a real-time estimation of PWV, we used real-time satellite clock information corrected by GEONET. Difference of PWV between the real-time analysis and the post processing with the final orbit was 0.7 mm in RMS. We estimated an overall error of PWV with a dense SF-receiver network on a real-time basis was 1.7 mm in RMS.

  1. The Continued Reduction in Dense Fog in the Southern California Region: Possible Causes

    NASA Astrophysics Data System (ADS)

    LaDochy, S.; Witiw, M.

    2012-05-01

    Dense fog appears to be decreasing in many parts of the world, especially in western cities. Dense fog (visibility <400 m) is disappearing in the urban southern California area also. There the decrease in dense fog events can be explained mainly by declining particulate levels, Pacific sea surface temperatures (SST), and increased urban warming. Using hourly data from 1948 to the present, we looked at the relationship between fog events in the region and contributing factors and trends over time. Initially a strong relationship was suggested between the occurrence of dense fog and the phases of an atmosphere-ocean cycle: the Pacific Decadal Oscillation (PDO). However, closer analysis revealed the importance to fog variability of an increasing urban heat island and the amount of atmospheric suspended particulate matter. Results show a substantial decrease in the occurrence of very low visibilities (<400 m) at the two airport stations in close proximity to the Pacific Ocean, LAX (Los Angeles International) and LGB (Long Beach International). A downward trend in particulate concentrations, coupled with an upward trend in urban temperatures were associated with the decrease in dense fog occurrence at both LAX and LGB. LAX dense fog that reached over 300 h in 1950 dropped steadily, with 0 h recorded in 1997. Since 1997, there has been a slight recovery with both 2008 and 2009 recording over 30 h of dense fog at both locations. In this study we examine whether the upturn is a temporary reversal of the trend. To remove the urban effect, we also included fog data from Vandenberg Air Force Base (VBG), located in a relatively sparsely populated area approximately 200 km to the north of metropolitan Los Angeles. Particulates, urban heat island, and Pacific SSTs all seem to be contributing factors to the decrease in fog in southern California, along with large-scale atmosphere-ocean interaction cycles. Case studies of local and regional dense fog in southern California point to the importance of strong, low inversions and to a lesser contributor, Santa Ana winds. Both are associated with large-scale atmospheric circulation patterns, which have changed markedly over the period of studied. These changes point to continued decreases in dense fog in the region.

  2. ClueNet: Clustering a temporal network based on topological similarity rather than denseness

    PubMed Central

    Milenković, Tijana

    2018-01-01

    Network clustering is a very popular topic in the network science field. Its goal is to divide (partition) the network into groups (clusters or communities) of “topologically related” nodes, where the resulting topology-based clusters are expected to “correlate” well with node label information, i.e., metadata, such as cellular functions of genes/proteins in biological networks, or age or gender of people in social networks. Even for static data, the problem of network clustering is complex. For dynamic data, the problem is even more complex, due to an additional dimension of the data—their temporal (evolving) nature. Since the problem is computationally intractable, heuristic approaches need to be sought. Existing approaches for dynamic network clustering (DNC) have drawbacks. First, they assume that nodes should be in the same cluster if they are densely interconnected within the network. We hypothesize that in some applications, it might be of interest to cluster nodes that are topologically similar to each other instead of or in addition to requiring the nodes to be densely interconnected. Second, they ignore temporal information in their early steps, and when they do consider this information later on, they do so implicitly. We hypothesize that capturing temporal information earlier in the clustering process and doing so explicitly will improve results. We test these two hypotheses via our new approach called ClueNet. We evaluate ClueNet against six existing DNC methods on both social networks capturing evolving interactions between individuals (such as interactions between students in a high school) and biological networks capturing interactions between biomolecules in the cell at different ages. We find that ClueNet is superior in over 83% of all evaluation tests. As more real-world dynamic data are becoming available, DNC and thus ClueNet will only continue to gain importance. PMID:29738568

  3. PollyNET - an emerging network of automated raman-polarizarion lidars for continuous aerosolprofiling

    NASA Astrophysics Data System (ADS)

    Baars, Holger; Althausen, Dietrich; Engelmann, Ronny; Heese, Birgit; Ansmann, Albert; Wandinger, Ulla; Hofer, Julian; Skupin, Annett; Komppula, Mika; Giannakaki, Eleni; Filioglou, Maria; Bortoli, Daniele; Silva, Ana Maria; Pereira, Sergio; Stachlewska, Iwona S.; Kumala, Wojciech; Szczepanik, Dominika; Amiridis, Vassilis; Marinou, Eleni; Kottas, Michail; Mattis, Ina; Müller, Gerhard

    2018-04-01

    PollyNET is a network of portable, automated, and continuously measuring Ramanpolarization lidars of type Polly operated by several institutes worldwide. The data from permanent and temporary measurements sites are automatically processed in terms of optical aerosol profiles and displayed in near-real time at polly.tropos.de. According to current schedules, the network will grow by 3-4 systems during the upcoming 2-3 years and will then comprise 11 permanent stations and 2 mobile platforms.

  4. Integration and Analysis of Neighbor Discovery and Link Quality Estimation in Wireless Sensor Networks

    PubMed Central

    Radi, Marjan; Dezfouli, Behnam; Abu Bakar, Kamalrulnizam; Abd Razak, Shukor

    2014-01-01

    Network connectivity and link quality information are the fundamental requirements of wireless sensor network protocols to perform their desired functionality. Most of the existing discovery protocols have only focused on the neighbor discovery problem, while a few number of them provide an integrated neighbor search and link estimation. As these protocols require a careful parameter adjustment before network deployment, they cannot provide scalable and accurate network initialization in large-scale dense wireless sensor networks with random topology. Furthermore, performance of these protocols has not entirely been evaluated yet. In this paper, we perform a comprehensive simulation study on the efficiency of employing adaptive protocols compared to the existing nonadaptive protocols for initializing sensor networks with random topology. In this regard, we propose adaptive network initialization protocols which integrate the initial neighbor discovery with link quality estimation process to initialize large-scale dense wireless sensor networks without requiring any parameter adjustment before network deployment. To the best of our knowledge, this work is the first attempt to provide a detailed simulation study on the performance of integrated neighbor discovery and link quality estimation protocols for initializing sensor networks. This study can help system designers to determine the most appropriate approach for different applications. PMID:24678277

  5. Examining the Acquisition of Phonological Word Forms with Computational Experiments

    ERIC Educational Resources Information Center

    Vitevitch, Michael S.; Storkel, Holly L.

    2013-01-01

    It has been hypothesized that known words in the lexicon strengthen newly formed representations of novel words, resulting in words with dense neighborhoods being learned more quickly than words with sparse neighborhoods. Tests of this hypothesis in a connectionist network showed that words with dense neighborhoods were learned better than words…

  6. Structural Transitions in Densifying Networks

    NASA Astrophysics Data System (ADS)

    Lambiotte, R.; Krapivsky, P. L.; Bhat, U.; Redner, S.

    2016-11-01

    We introduce a minimal generative model for densifying networks in which a new node attaches to a randomly selected target node and also to each of its neighbors with probability p . The networks that emerge from this copying mechanism are sparse for p <1/2 and dense (average degree increasing with number of nodes N ) for p ≥1/2 . The behavior in the dense regime is especially rich; for example, individual network realizations that are built by copying are disparate and not self-averaging. Further, there is an infinite sequence of structural anomalies at p =2/3 , 3/4 , 4/5 , etc., where the N dependences of the number of triangles (3-cliques), 4-cliques, undergo phase transitions. When linking to second neighbors of the target can occur, the probability that the resulting graph is complete—all nodes are connected—is nonzero as N →∞ .

  7. Impact of branching on the elasticity of actin networks

    PubMed Central

    Pujol, Thomas; du Roure, Olivia; Fermigier, Marc; Heuvingh, Julien

    2012-01-01

    Actin filaments play a fundamental role in cell mechanics: assembled into networks by a large number of partners, they ensure cell integrity, deformability, and migration. Here we focus on the mechanics of the dense branched network found at the leading edge of a crawling cell. We develop a new technique based on the dipolar attraction between magnetic colloids to measure mechanical properties of branched actin gels assembled around the colloids. This technique allows us to probe a large number of gels and, through the study of different networks, to access fundamental relationships between their microscopic structure and their mechanical properties. We show that the architecture does regulate the elasticity of the network: increasing both capping and branching concentrations strongly stiffens the networks. These effects occur at protein concentrations that can be regulated by the cell. In addition, the dependence of the elastic modulus on the filaments’ flexibility and on increasing internal stress has been studied. Our overall results point toward an elastic regime dominated by enthalpic rather than entropic deformations. This result strongly differs from the elasticity of diluted cross-linked actin networks and can be explained by the dense dendritic structure of lamellipodium-like networks. PMID:22689953

  8. Using Cross-Correlation Methods to Characterize Earthquakes Associated with the Socorro Magma Body

    NASA Astrophysics Data System (ADS)

    Vieceli, R.; Bilek, S. L.; Worthington, L. L.; Schmandt, B.; Aster, R. C.; Dodge, D. A.; Pyle, M. L.; Walter, W. R.

    2017-12-01

    The Socorro Magma Body (SMB), a thin, sill-like body with a top surface-depth of 19 km situated within the Rio Grande Rift in central New Mexico, is one of the largest recognized continental mid-crustal magma bodies in the world by area. SMB-associated inflation leads to slow regional uplift of a few mm/yr and has been linked to longstanding concentrated shallow seismicity (< 10 km depth) with variable spatial and temporal occurrence, including early 20th century events of magnitude 5.5 - 6. Recent small earthquakes (magnitudes 3 to -1) have been monitored with a variety of broadband and short-term local seismic networks over the past several decades, but these routine catalogs have not been relocated or fully interpreted in terms of newer models of the structure, or its emplacement and history. In February 2015 seismic data were collected above the northern and most rapidly uplifting region of the SMB with a densely spaced temporary array, consisting of seven broadband and 804 short period Fairfield nodal vertical component seismographs. The total array area was 50 x 25 km with typical node spacing of 300 m along a road network. In this study, we exploit all available seismic network data in a cross-correlation framework developed at Lawrence Livermore National Laboratory to detect events and characterize earthquake swarms, clusters, and patterns occurring over the last 15 years. We use a power detector to build an initial catalog of small magnitude earthquakes, including 33 events (M <= 2.5) recorded during the February 2015 deployment, as templates to detect additional events. We also develop an updated shallow velocity model for the region and refine event hypocenters using Bayesloc, a bayesian, multiple-event location algorithm. This enhanced seismicity catalog will be utilized in interpreting the recent seismicity of the SMB. LLNL-ABS-735529

  9. Two Novel Rab2 Interactors Regulate Dense-core Vesicle Maturation

    PubMed Central

    Ailion, Michael; Hannemann, Mandy; Dalton, Susan; Pappas, Andrea; Watanabe, Shigeki; Hegermann, Jan; Liu, Qiang; Han, Hsiao-Fen; Gu, Mingyu; Goulding, Morgan Q.; Sasidharan, Nikhil; Schuske, Kim; Hullett, Patrick; Eimer, Stefan; Jorgensen, Erik M.

    2014-01-01

    Summary Peptide neuromodulators are released from a unique organelle: the dense-core vesicle. Dense-core vesicles are generated at the trans-Golgi, and then sort cargo during maturation before being secreted. To identify proteins that act in this pathway, we performed a genetic screen in Caenorhabditis elegans for mutants defective in dense-core vesicle function. We identified two conserved Rab2-binding proteins: RUND-1, a RUN domain protein, and CCCP-1, a coiled-coil protein. RUND-1 and CCCP-1 colocalize with RAB-2 at the Golgi, and rab-2, rund-1 and cccp-1 mutants have similar defects in sorting soluble and transmembrane dense-core vesicle cargos. RUND-1 also interacts with the Rab2 GAP protein TBC-8 and the BAR domain protein RIC-19, a RAB-2 effector. In summary, a new pathway of conserved proteins controls the maturation of dense-core vesicles at the trans-Golgi network. PMID:24698274

  10. Clustering P-Wave Receiver Functions To Constrain Subsurface Seismic Structure

    NASA Astrophysics Data System (ADS)

    Chai, C.; Larmat, C. S.; Maceira, M.; Ammon, C. J.; He, R.; Zhang, H.

    2017-12-01

    The acquisition of high-quality data from permanent and temporary dense seismic networks provides the opportunity to apply statistical and machine learning techniques to a broad range of geophysical observations. Lekic and Romanowicz (2011) used clustering analysis on tomographic velocity models of the western United States to perform tectonic regionalization and the velocity-profile clusters agree well with known geomorphic provinces. A complementary and somewhat less restrictive approach is to apply cluster analysis directly to geophysical observations. In this presentation, we apply clustering analysis to teleseismic P-wave receiver functions (RFs) continuing efforts of Larmat et al. (2015) and Maceira et al. (2015). These earlier studies validated the approach with surface waves and stacked EARS RFs from the USArray stations. In this study, we experiment with both the K-means and hierarchical clustering algorithms. We also test different distance metrics defined in the vector space of RFs following Lekic and Romanowicz (2011). We cluster data from two distinct data sets. The first, corresponding to the western US, was by smoothing/interpolation of receiver-function wavefield (Chai et al. 2015). Spatial coherence and agreement with geologic region increase with this simpler, spatially smoothed set of observations. The second data set is composed of RFs for more than 800 stations of the China Digital Seismic Network (CSN). Preliminary results show a first order agreement between clusters and tectonic region and each region cluster includes a distinct Ps arrival, which probably reflects differences in crustal thickness. Regionalization remains an important step to characterize a model prior to application of full waveform and/or stochastic imaging techniques because of the computational expense of these types of studies. Machine learning techniques can provide valuable information that can be used to design and characterize formal geophysical inversion, providing information on spatial variability in the subsurface geology.

  11. Assessment of eruption intensity using infrasound waveform inversion at Mt. Etna, Italy.

    NASA Astrophysics Data System (ADS)

    Diaz Moreno, A.; Iezzi, A. M.; Lamb, O. D.; Zuccarello, L.; Fee, D.; De Angelis, S.

    2017-12-01

    Mt. Etna, Italy, a 3,330 m stratovolcano, is one of the most active volcanoes in the world. It is topped by five craters: Voragine, Bocca Nuova, the North-East, South-East, and New South-East Crater. Its activity during the past decade can be separated into two main types: i) nearly-continuous degassing interspersed by mild-to-vigorous Strombolian activity within the summit craters, and ii) effusive flank eruptions. In June 2017, we deployed a large temporary network of 14 infrasound sensors (Chaparral UHP60) and 12 broadband seismometers (Guralp EX-120s). We also recorded Thermal Infrared (TIR) and Unmanned Aerial Vehicle images of activity at the summit vents. Our primary objective is to quantify the intensity and mechanisms of infrasound sources at Mt. Etna, and use these results to improve models of volcanic plumes. From June 2017 until the time of writing, the infrasound network detected signals associated with nearly-continuous degassing and discrete small-to-moderate explosions originating at two distinct locations within the Voragine Crater and the New South-East Crater, respectively. During periods of increased explosive activity, we recorded 20-30 discrete events/day with infrasonic amplitudes of up to 7.5 Pa at 1 km distance from the active vent. The explosions exhibited sinusoidal acoustic waveforms, often with similar characteristics, durations of 1-3 s, and a 2 Hz peak frequency. Due to the relatively dense station coverage and the azimuthal distribution of the network, our deployment offers an opportunity to characterize, with unprecedented resolution, infrasound sources at Mt. Etna. Here we present preliminary results of 3D acoustic wave-field simulations, using a Finite Difference Time Domain modelling scheme, and a preliminary assessment of volumetric eruption rates through acoustic waveform inversion. We investigate the effects of local topography and atmospheric winds on the propagation of the acoustic wavefield, and discuss the implications for infrasound-based assessments of eruption intensity. Our network will be deployed through August 2017, with the hopes of catching larger and more diverse eruptions as well.

  12. High Resolution Vp and Vp/Vs Local Earthquake Tomography of the Val d'Agri Region (Southern Apennines, Italy).

    NASA Astrophysics Data System (ADS)

    Improta, L.; Bagh, S.; De Gori, P.; Pastori, M.; Piccinini, D.; Valoroso, L.; Anselmi, M.; Buttinelli, M.; Chiarabba, C.

    2015-12-01

    The Val d'Agri (VA) Quaternary basin in the southern Apennines extensional belt hosts the largest oilfield in onshore Europe and normal-fault systems with high (up to M7) seismogenic potential. Frequent small-magnitude swarms related to both active crustal extension and anthropogenic activity have occurred in the region. Causal factors for induced seismicity are a water impoundment with severe seasonal oscillations and a high-rate wastewater injection well. We analyzed around 1200 earthquakes (ML<3.3) occurred in the VA and surrounding regions between 2001-2014. We integrated waveforms recorded at 46 seismic stations belonging to 3 different networks: a dense temporary network installed by INGV in 2005-2006, the permanent national network of INGV, and the trigger-mode monitoring network managed by the local operator ENI petroleum company. We used local earthquake tomography to investigate static and transient features of the crustal velocity structure and to accurately locate earthquakes. Vp and Vp/Vs models are parameterized by a 3x3x2 km spacing and well resolved down to about 12 km depth. The complex Vp model illuminates broad antiformal structures corresponding to wide ramp-anticlines involving Mesozoic carbonates of the Apulia hydrocarbon reservoir, and NW-SE trending low Vp regions related to thrust-sheet-top clastic basins. The VA basin corresponds to shallow low-Vp region. Focal mechanisms show normal faulting kinematics with minor strike slip solutions in agreement with the local extensional regime. Earthquake locations and focal solutions depict shallow (< 5 km depth) E-dipping extensional structures beneath the artificial lake located in the southern sector of the basin, and along the western margin of the VA. A few swarms define relatively deep transfer structures accommodating the differential extension between main normal faults. The spatio-temporal distribution of around 220 events correlates with wastewater disposal activity, illuminating a NE-dipping fault between 2-5 km depth in the carbonate reservoir. The fault measures 5 km along dip and corresponds to a pre-existing thrust fault favorably oriented with respect to the local extensional field.

  13. A Multilevel Gamma-Clustering Layout Algorithm for Visualization of Biological Networks

    PubMed Central

    Hruz, Tomas; Lucas, Christoph; Laule, Oliver; Zimmermann, Philip

    2013-01-01

    Visualization of large complex networks has become an indispensable part of systems biology, where organisms need to be considered as one complex system. The visualization of the corresponding network is challenging due to the size and density of edges. In many cases, the use of standard visualization algorithms can lead to high running times and poorly readable visualizations due to many edge crossings. We suggest an approach that analyzes the structure of the graph first and then generates a new graph which contains specific semantic symbols for regular substructures like dense clusters. We propose a multilevel gamma-clustering layout visualization algorithm (MLGA) which proceeds in three subsequent steps: (i) a multilevel γ-clustering is used to identify the structure of the underlying network, (ii) the network is transformed to a tree, and (iii) finally, the resulting tree which shows the network structure is drawn using a variation of a force-directed algorithm. The algorithm has a potential to visualize very large networks because it uses modern clustering heuristics which are optimized for large graphs. Moreover, most of the edges are removed from the visual representation which allows keeping the overview over complex graphs with dense subgraphs. PMID:23864855

  14. 77 FR 7229 - Culturally Significant Objects Imported for Exhibition Determinations: “Nomads and Networks: The...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-10

    ...,'' imported from abroad for temporary exhibition within the United States, are of cultural significance. The... that the exhibition or display of the exhibit objects at the Institute for the Study of the Ancient...

  15. Dense wavelength division multiplexing devices for metropolitan-area datacom and telecom networks

    NASA Astrophysics Data System (ADS)

    DeCusatis, Casimer M.; Priest, David G.

    2000-12-01

    Large data processing environments in use today can require multi-gigabyte or terabyte capacity in the data communication infrastructure; these requirements are being driven by storage area networks with access to petabyte data bases, new architecture for parallel processing which require high bandwidth optical links, and rapidly growing network applications such as electronic commerce over the Internet or virtual private networks. These datacom applications require high availability, fault tolerance, security, and the capacity to recover from any single point of failure without relying on traditional SONET-based networking. These requirements, coupled with fiber exhaust in metropolitan areas, are driving the introduction of dense optical wavelength division multiplexing (DWDM) in data communication systems, particularly for large enterprise servers or mainframes. In this paper, we examine the technical requirements for emerging nextgeneration DWDM systems. Protocols for storage area networks and computer architectures such as Parallel Sysplex are presented, including their fiber bandwidth requirements. We then describe two commercially available DWDM solutions, a first generation 10 channel system and a recently announced next generation 32 channel system. Technical requirements, network management and security, fault tolerant network designs, new network topologies enabled by DWDM, and the role of time division multiplexing in the network are all discussed. Finally, we present a description of testing conducted on these networks and future directions for this technology.

  16. P- and S- wave velocity structure in and around the Itoigawa-Shizuoka Tectonic Line (ISTL) fault system revealed by dense seismic array observations

    NASA Astrophysics Data System (ADS)

    Panayotopoulos, Y.; Hirata, N.; Sato, H.; Iwasaki, T.; Kato, A.; Imanishi, K.; Kuwahara, Y.; Cho, I.

    2008-12-01

    The ISTL is a major tectonic structure that divides the Japanese Island arc into northeast and southwest parts. It was formed as a normal fault in the early Miocene and represents the southwestern boundary of the northern Fossa Mangna rift basin to the north, and the boundary between the Japanese arc accretionary prism units and the Izu-Bonin arc crust to the south. Previous studies have provided the sallow structure of the different ISTL fault segments, but the detailed crustal structure along the ISTL is yet to be revealed. The online permanent seismic station network in the area is not sufficient to accurately locate the earthquakes occurring in the area and also not dense enough to provide a detailed structure of the earth's crust. Over the past 3 years we have installed temporary seismic stations along the STL. We have deployed 60 stations in the southern, 58 stations in the central and 60 stations in the northern ISTL regions. We have combined the data retrieved from the temporary stations with the data available from the online permanent stations in the ISTL area and manually re-picked 63,275 P- and 68,847 S- wave arrival times from 1,945 events from the 5th August 2003 to 31st December 2006. The Double Difference tomography method (Zhang and Thurber, 2003) was used in order to accurately relocate the hypocenters and obtain a 3D P- and S- wave velocity (Vp and Vs) structure beneath the ISTL fault system. The relocated hypocenters in the southern ISTL coincide with the deeper extension of the active faults in the area. The relocated hypocenters are deeper than those reported by the Japan Meteorological Agency (JMA) in the northern ISTL and shallower at the central and southern parts. The average depth of the hypocenters is shallower in the northern ISTL (3 - 8 km) and gets progressively deeper towards the central (8-15 km) and southern (15-25 km) ISTL. The tomographic analysis has provided a detailed Vp and Vs image of the crust in the area below the ISTL. The 3D velocity model that we have acquired of the crustal structure in the area is in accordance with the geological boundaries. The northern tomograms fit accurately with the deeper extension of the Matsumoto basin and the central uplift zone geological units. In the central ISTL, the Yatsugatake volcano magmatic conduit was imaged. In the southern ISTL, we imaged the downwards continuation of the low grade metamorphic rocks that constitute the Chichibu-Shimanto belts of the southwest acrretionary prism of the Japanese arc, and of the igneous rocks that form the Izu-Bonin arc crust.

  17. Spatial analysis of storm depths from an Arizona raingage network

    NASA Technical Reports Server (NTRS)

    Fennessey, N. M.; Eagleson, P. S.; Qinliang, W.; Rodriguez-Iturbe, I.

    1986-01-01

    Eight years of summer rainstorm observations are analyzed by a dense network of 93 raingages operated by the U.S. Department of Agriculture, Agricultural Research Service, in the 150 km Walnut Gulch experimental catchment near Tucson, Arizona. Storms are defined by the total depths collected at each raingage during the noon-to-noon period for which there was depth recorded at any of the gages. For each of the resulting 428 storm days, the gage depths are interpolated onto a dense grid and the resulting random field analyzed to obtain moments, isohyetal plots, spatial correlation function, variance function, and the spatial distribution of storm depth.

  18. Statistical analysis of modal properties of a cable-stayed bridge through long-term structural health monitoring with wireless smart sensor networks

    NASA Astrophysics Data System (ADS)

    Asadollahi, Parisa; Li, Jian

    2016-04-01

    Understanding the dynamic behavior of complex structures such as long-span bridges requires dense deployment of sensors. Traditional wired sensor systems are generally expensive and time-consuming to install due to cabling. With wireless communication and on-board computation capabilities, wireless smart sensor networks have the advantages of being low cost, easy to deploy and maintain and therefore facilitate dense instrumentation for structural health monitoring. A long-term monitoring project was recently carried out for a cable-stayed bridge in South Korea with a dense array of 113 smart sensors, which feature the world's largest wireless smart sensor network for civil structural monitoring. This paper presents a comprehensive statistical analysis of the modal properties including natural frequencies, damping ratios and mode shapes of the monitored cable-stayed bridge. Data analyzed in this paper is composed of structural vibration signals monitored during a 12-month period under ambient excitations. The correlation between environmental temperature and the modal frequencies is also investigated. The results showed the long-term statistical structural behavior of the bridge, which serves as the basis for Bayesian statistical updating for the numerical model.

  19. Mechanisms for Prolonging Network Lifetime in Wireless Sensor Networks

    ERIC Educational Resources Information Center

    Yang, Yinying

    2010-01-01

    Sensors are used to monitor and control the physical environment. A Wireless Sensor Network (WSN) is composed of a large number of sensor nodes that are densely deployed either inside the phenomenon or very close to it [18][5]. Sensor nodes measure various parameters of the environment and transmit data collected to one or more sinks, using…

  20. The AlpArray-CASE project: temporary broadband seismic network deployment and characterization

    NASA Astrophysics Data System (ADS)

    Dasović, Iva; Molinari, Irene; Stipčević, Josip; Šipka, Vesna; Salimbeni, Simone; Jarić, Dejan; Prevolnik, Snježan; Kissling, Eduard; Clinton, John; Giardini, Domenico

    2017-04-01

    While the northern part of the Adriatic microplate will be accurately imaged within the AlpArray project, its central and southern parts deserve detailed studies to obtain a complete picture of its structure and evolution. The Adriatic microplate forms the upper plate in the Western and Central Alps whereas it forms the lower plate in the Apennines and the Dinarides. However, the tectonics of Adriatic microplate is not well constrained and remains controversial, especially with regard to its contact with the Dinarides. The primary goal of the Central Adriatic Seismic Experiment (CASE) is to provide high quality seismological data and to shed light on seismicity and 3D lithospheric structure of the central Adriatic microplate and its boundaries. The CASE project is an international AlpArray Complementary Experiment carried out by four institutions: Department of Earth Sciences and Swiss Seismological Service of ETH Zürich (CH), Department of Geophysics and Croatian Seismological Service of Faculty of Science at University of Zagreb (HR), Republic Hydrometeorological Service of Republic of Srpska (BIH) and Istituto Nazionale di Geofisica e Vulcanologia (I). It establishes a temporary seismic network, expected to be operational at least for one year, composed by existing permanent and temporary seismic stations operated by the institutions involved and newly deployed temporary seismic stations, installed in November and December 2016, provided by ETH Zürich and INGV: five in Croatia, four in Bosnia and Herzegovina and two in Italy. In this work, we present stations sites and settings and discuss their characteristics in terms of site-effects and noise level of each station. In particular, we analyse the power spectral density estimates in order to investigate major sources of noise and background noise.

  1. Efficient Graph-Based Resource Allocation Scheme Using Maximal Independent Set for Randomly- Deployed Small Star Networks

    PubMed Central

    Zhou, Jian; Wang, Lusheng; Wang, Weidong; Zhou, Qingfeng

    2017-01-01

    In future scenarios of heterogeneous and dense networks, randomly-deployed small star networks (SSNs) become a key paradigm, whose system performance is restricted to inter-SSN interference and requires an efficient resource allocation scheme for interference coordination. Traditional resource allocation schemes do not specifically focus on this paradigm and are usually too time consuming in dense networks. In this article, a very efficient graph-based scheme is proposed, which applies the maximal independent set (MIS) concept in graph theory to help divide SSNs into almost interference-free groups. We first construct an interference graph for the system based on a derived distance threshold indicating for any pair of SSNs whether there is intolerable inter-SSN interference or not. Then, SSNs are divided into MISs, and the same resource can be repetitively used by all the SSNs in each MIS. Empirical parameters and equations are set in the scheme to guarantee high performance. Finally, extensive scenarios both dense and nondense are randomly generated and simulated to demonstrate the performance of our scheme, indicating that it outperforms the classical max K-cut-based scheme in terms of system capacity, utility and especially time cost. Its achieved system capacity, utility and fairness can be close to the near-optimal strategy obtained by a time-consuming simulated annealing search. PMID:29113109

  2. Optoelectronic Integrated Circuits For Neural Networks

    NASA Technical Reports Server (NTRS)

    Psaltis, D.; Katz, J.; Kim, Jae-Hoon; Lin, S. H.; Nouhi, A.

    1990-01-01

    Many threshold devices placed on single substrate. Integrated circuits containing optoelectronic threshold elements developed for use as planar arrays of artificial neurons in research on neural-network computers. Mounted with volume holograms recorded in photorefractive crystals serving as dense arrays of variable interconnections between neurons.

  3. Maturation State and Matrix Microstructure Regulate Interstitial Cell Migration in Dense Connective Tissues.

    PubMed

    Qu, Feini; Li, Qing; Wang, Xiao; Cao, Xuan; Zgonis, Miltiadis H; Esterhai, John L; Shenoy, Vivek B; Han, Lin; Mauck, Robert L

    2018-02-19

    Few regenerative approaches exist for the treatment of injuries to adult dense connective tissues. Compared to fetal tissues, adult connective tissues are hypocellular and show limited healing after injury. We hypothesized that robust repair can occur in fetal tissues with an immature extracellular matrix (ECM) that is conducive to cell migration, and that this process fails in adults due to the biophysical barriers imposed by the mature ECM. Using the knee meniscus as a platform, we evaluated the evolving micromechanics and microstructure of fetal and adult tissues, and interrogated the interstitial migratory capacity of adult meniscal cells through fetal and adult tissue microenvironments with or without partial enzymatic digestion. To integrate our findings, a computational model was implemented to determine how changing biophysical parameters impact cell migration through these dense networks. Our results show that the micromechanics and microstructure of the adult meniscus ECM sterically hinder cell mobility, and that modulation of these ECM attributes via an exogenous matrix-degrading enzyme permits migration through this otherwise impenetrable network. By addressing the inherent limitations to repair imposed by the mature ECM, these studies may define new clinical strategies to promote repair of damaged dense connective tissues in adults.

  4. Seismo-Tectonics of the 2014 Chiang Rai, Thailand, Earthquake Sequence

    NASA Astrophysics Data System (ADS)

    Furlong, K. P.; Pananont, P.; Herman, M. W.; Waldhauser, F.; Pornsopin, P.; Warnitchai, P.; Kosuwan, S.

    2016-12-01

    On 5 May 2014, a Mw 6.2 strike-slip earthquake struck in the Mae Lao region of Chiang Rai province in Thailand. This earthquake occurred in a region of known faults, but identified as relatively low earthquake hazard, and caused substantial damage and injuries. Detailed field reconnaissance and deployment of a dense, temporary seismometer network allowed details of the damage and its relationship to seismicity to be analyzed. The aftershock sequence associated with this mainshock occurs on two well-defined trends, reflecting the two potential fault planes in earthquake focal mechanisms for the mainshock and the majority of the aftershocks. The damage area was relatively large for an event of this magnitude, but primarily occurs within the primary rupture (aftershock) region or along regional rivers with soils susceptible to liquefaction of other ground failure. Stress modeling combined with the time-series and pattern of aftershock activity lead us to propose that the initial mainshock rupture continued slightly onto its conjugate faults near its northern termination, helping to trigger the distinct pattern of two discrete, conjugate trends of aftershock activity that mirror the kinematics of the mainshock fault mechanism. Although this earthquake occurred in a region of known faults, it cannot be directly linked to a previously mapped structure. This coupled with the substantial damage from the event indicates that there is potentially a higher earthquake hazard in northern and central Thailand than previously recognized.

  5. Strategy for the deployment of a dense broadband temporary array in the Alps: lessons learnt from the CIFALPS experiment

    NASA Astrophysics Data System (ADS)

    Coralie, Aubert; Anne, Paul; Stefano, Solarino; Sandrine, Roussel; Simone, Salimbeni; Pierre, Zangelmi; Glenn, Cougoulat; Yinshuang, Ai; Weiwei, Xu; Yumei, He; Liang, Zhao

    2013-04-01

    The CIFALPS (China-Italy-France Alps seismic survey) experiment is a common project of IGGCAS (China), ISTerre (France) and INGV (Italy). It aims at getting new high-resolution passive seismic data on the crustal and upper mantle structure of the southwestern Alps. In this framework, we have installed a temporary broadband seismic array across the southwestern Alps from the Rhône valley (France) to the Po plain (Italy). The main sub-array of CIFALPS is a 350-km long roughly linear profile of 46 stations trending WSW-ENE from Bollène (France) to north of Alessandria (Italy). The average station spacing is 10 km in the outer parts of the belt, and it reduces to 5 km in the internal Alps. Nine additional temporary stations located ~40 km to the north and south of the main profile complement the permanent broadband networks to improve the 3-D constraints on the deep structures. Stations are equipped with Nanometrics Taurus data acquisition systems, and Trillium 120P/A, CMG3-ESP or CMG40T broadband sensors. The array was installed in the summer of 2012 and will be operated at least to April 2013. Because our schedule was tight, we had to achieve site selections in only 3-4 months in spite of strong constraints on site location related to short interstation spacing. Most sites are located in basements of buildings for security reasons and mains power supply. As most sensors are true broadband (90s or 120s), we put much effort on vault design to insure good thermal insulation and low noise at long periods. The vaults also had to be easily and rapidly built and they should be easily and totally removed at the end of the experiment. We used the PQLX software for quality control of our sites and vault design. The performances of our vaults are good for the vertical component with noise levels at 100s period in the range -185 dB (low noise model) to -165 dB. They are less good for horizontal components (noise level close to high noise model at periods > 20s) due to atmospheric pressure and temperature variations. Stations located outside buildings do not have better performances at 100s than stations located in basements. Two of our six stations installed outside buildings are prone to mass centering problems due to tilting of the concrete slab in soft soil. For state-of-health control and data transmission, we are testing 2G and 3G communication modems at 4 remote stations but with limited success. Database preparation and management benefitted from the expertise of engineers of the seismic datacenter of ISTerre. The experience gained on all technical aspects of a temporary experiment will provide valuable input for the preparation of the future AlpArray project.

  6. Temporary Losses of Highway Capacity and Impacts on Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, S.M.

    2002-07-31

    Traffic congestion and its impacts significantly affect the nation's economic performance and the public's quality of life. In most urban areas, travel demand routinely exceeds highway capacity during peak periods. In addition, events such as crashes, vehicle breakdowns, work zones, adverse weather, and suboptimal signal timing cause temporary capacity losses, often worsening the conditions on already congested highway networks. The impacts of these temporary capacity losses include delay, reduced mobility, and reduced reliability of the highway system. They can also cause drivers to re-route or reschedule trips. Prior to this study, no nationwide estimates of temporary losses of highway capacitymore » had been made by type of capacity-reducing event. Such information is vital to formulating sound public policies for the highway infrastructure and its operation. This study is an initial attempt to provide nationwide estimates of the capacity losses and delay caused by temporary capacity-reducing events. The objective of this study was to develop and implement methods for producing national-level estimates of the loss of capacity on the nation's highway facilities due to temporary phenomena as well as estimates of the impacts of such losses. The estimates produced by this study roughly indicate the magnitude of problems that are likely be addressed by the Congress during the next re-authorization of the Surface Transportation Programs. The scope of the study includes all urban and rural freeways and principal arterials in the nation's highway system for 1999. Specifically, this study attempts to quantify the extent of temporary capacity losses due to crashes, breakdowns, work zones, weather, and sub-optimal signal timing. These events can cause impacts such as capacity reduction, delays, trip rescheduling, rerouting, reduced mobility, and reduced reliability. This study focuses on the reduction of capacity and resulting delays caused by the temporary events mentioned above. Impacts other than capacity losses and delay, such as re-routing, rescheduling, reduced mobility, and reduced reliability, are not covered in this phase of research.« less

  7. An Assessment of the Seismicity of the Bursa Region from a Temporary Seismic Network

    NASA Astrophysics Data System (ADS)

    Gok, Elcin; Polat, Orhan

    2012-04-01

    A temporary earthquake station network of 11 seismological recorders was operated in the Bursa region, south of the Marmara Sea in the northwest of Turkey, which is located at the southern strand of the North Anatolian Fault Zone (NAFZ). We located 384 earthquakes out of a total of 582 recorded events that span the study area between 28.50-30.00°E longitudes and 39.75-40.75°N latitudes. The depth of most events was found to be less than 29 km, and the magnitude interval ranges were between 0.3 ≤ ML ≤ 5.4, with RMS less than or equal to 0.2. Seismic activities were concentrated southeast of Uludag Mountain (UM), in the Kestel-Igdir area and along the Gemlik Fault (GF). In the study, we computed 10 focal mechanisms from temporary and permanents networks. The predominant feature of the computed focal mechanisms is the relatively widespread near horizontal northwest-southeast (NW-SE) T-axis orientation. These fault planes have been used to obtain the orientation and shape factor (R, magnitude stress ratio) of the principal stress tensors (σ1, σ2, σ3). The resulting stress tensors reveal σ1 closer to the vertical (oriented NE-SW) and σ2, σ3 horizontal with R = 0.5. These results confirm that Bursa and its vicinity could be defined by an extensional regime showing a primarily normal to oblique-slip motion character. It differs from what might be expected from the stress tensor inversion for the NAFZ. Different fault patterns related to structural heterogeneity from the north to the south in the study area caused a change in the stress regime from strike-slip to normal faulting.

  8. A light and faster regional convolutional neural network for object detection in optical remote sensing images

    NASA Astrophysics Data System (ADS)

    Ding, Peng; Zhang, Ye; Deng, Wei-Jian; Jia, Ping; Kuijper, Arjan

    2018-07-01

    Detection of objects from satellite optical remote sensing images is very important for many commercial and governmental applications. With the development of deep convolutional neural networks (deep CNNs), the field of object detection has seen tremendous advances. Currently, objects in satellite remote sensing images can be detected using deep CNNs. In general, optical remote sensing images contain many dense and small objects, and the use of the original Faster Regional CNN framework does not yield a suitably high precision. Therefore, after careful analysis we adopt dense convoluted networks, a multi-scale representation and various combinations of improvement schemes to enhance the structure of the base VGG16-Net for improving the precision. We propose an approach to reduce the test-time (detection time) and memory requirements. To validate the effectiveness of our approach, we perform experiments using satellite remote sensing image datasets of aircraft and automobiles. The results show that the improved network structure can detect objects in satellite optical remote sensing images more accurately and efficiently.

  9. Digital services using quadrature amplitude modulation (QAM) over CATV analog DWDM system

    NASA Astrophysics Data System (ADS)

    Yeh, JengRong; Selker, Mark D.; Trail, J.; Piehler, David; Levi, Israel

    2000-04-01

    Dense Wavelength Division Multiplexing (DWDM) has recently gained great popularity as it provides a cost effective way to increase the transmission capacity of the existing fiber cable plant. For a long time, Dense WDM was exclusively used for baseband digital applications, predominantly in terrestrial long haul networks and in some cases in metropolitan and enterprise networks. Recently, the performance of DWDM components and frequency-stabilized lasers has substantially improved while the costs have down significantly. This makes a variety of new optical network architectures economically viable. The first commercial 8- wavelength DWDM system designed for Hybrid Fiber Coax networks was reported in 1998. This type of DWDM system utilizes Sub-Carrier Multiplexing (SCM) of Quadrature Amplitude Modulated (QAM) signals to transport IP data digital video broadcast and Video on Demand on ITU grid lightwave carriers. The ability of DWDM to provide scalable transmission capacity in the optical layer with SCM granularity is now considered by many to be the most promising technology for future transport and distribution of broadband multimedia services.

  10. Studies of infrasound propagation using the USArray seismic network (Invited)

    NASA Astrophysics Data System (ADS)

    Hedlin, M. A.; Degroot-Hedlin, C. D.; Walker, K. T.

    2010-12-01

    Although there are currently ~ 100 infrasound arrays worldwide, more than ever before, the station density is still insufficient to provide validation for detailed propagation modeling. Much structure in the atmosphere is short-lived and occurs at spatial scales much smaller than the average distance between infrasound stations. Relatively large infrasound signals can be observed on seismic channels due to coupling at the Earth's surface. Recent research, using data from the 70-km spaced 400-station USArray and other seismic network deployments, has shown the value of dense seismic network data for filling in the gaps between infrasound arrays. The dense sampling of the infrasound wavefield has allowed us to observe complete travel-time branches of infrasound signals and shed more light on the nature of infrasound propagation. We present early results from our studies of impulsive atmospheric sources, such as series of UTTR rocket motor detonations in Utah. The Utah blasts have been well recorded by USArray seismic stations and infrasound arrays in Nevada and Washington State. Recordings of seismic signals from a series of six events in 2007 are used to pinpoint the shot times to < 1 second. Variations in the acoustic branches and signal arrival times at the arrays are used to probe variations in atmospheric structure. Although we currently use coupled signals we anticipate studying dense acoustic network recordings as the USArray is currently being upgraded with infrasound microphones. These new sensors will allow us to make semi-continental scale network recordings of infrasound signals free of concerns about how the signals observed on seismic channels were modified when being coupled to seismic.

  11. Source-Sink Colonization as a Possible Strategy of Insects Living in Temporary Habitats.

    PubMed

    Frouz, Jan; Kindlmann, Pavel

    2015-01-01

    Continuous colonization and re-colonization is critical for survival of insect species living in temporary habitats. When insect populations in temporary habitats are depleted, some species may escape extinction by surviving in permanent, but less suitable habitats, in which long-term population survival can be maintained only by immigration from other populations. Such situation has been repeatedly described in nature, but conditions when and how this occurs and how important this phenomenon is for insect metapopulation survival are still poorly known, mainly because it is difficult to study experimentally. Therefore, we used a simulation model to investigate, how environmental stochasticity, growth rate and the incidence of dispersal affect the positive effect of permanent but poor ("sink") habitats on the likelihood of metapopulation persistence in a network of high quality but temporary ("source") habitats. This model revealed that permanent habitats substantially increase the probability of metapopulation persistence of insect species with poor dispersal ability if the availability of temporary habitats is spatio-temporally synchronized. Addition of permanent habitats to a system sometimes enabled metapopulation persistence even in cases in which the metapopulation would otherwise go extinct, especially for species with high growth rates. For insect species with low growth rates the probability of a metapopulation persistence strongly depended on the proportions of "source" to "source" and "sink" to "source" dispersal rates.

  12. Core-periphery structure requires something else in the network

    NASA Astrophysics Data System (ADS)

    Kojaku, Sadamori; Masuda, Naoki

    2018-04-01

    A network with core-periphery structure consists of core nodes that are densely interconnected. In contrast to a community structure, which is a different meso-scale structure of networks, core nodes can be connected to peripheral nodes and peripheral nodes are not densely interconnected. Although core-periphery structure sounds reasonable, we argue that it is merely accounted for by heterogeneous degree distributions, if one partitions a network into a single core block and a single periphery block, which the famous Borgatti–Everett algorithm and many succeeding algorithms assume. In other words, there is a strong tendency that high-degree and low-degree nodes are judged to be core and peripheral nodes, respectively. To discuss core-periphery structure beyond the expectation of the node’s degree (as described by the configuration model), we propose that one needs to assume at least one block of nodes apart from the focal core-periphery structure, such as a different core-periphery pair, community or nodes not belonging to any meso-scale structure. We propose a scalable algorithm to detect pairs of core and periphery in networks, controlling for the effect of the node’s degree. We illustrate our algorithm using various empirical networks.

  13. Seismic and Geodetic Monitoring of the Nicoya, Costa Rica, Seismic Gap

    NASA Astrophysics Data System (ADS)

    Protti, M.; Gonzalez, V.; Schwartz, S.; Dixon, T.; Kato, T.; Kaneda, Y.; Simila, G.; Sampson, D.

    2007-05-01

    The Nicoya segment of the Middle America Trench has been recognized as a mature seismic gap with potential to generate a large earthquake in the near future (it ruptured with large earthquakes in 1853, 1900 and 1950). Low level of background seismicity and fast crustal deformation of the forearc are indicatives of strong coupling along the plate interface. Given its high seismic potential, the available data and especially the fact that the Nicoya peninsula extends over large part of the rupture area, this gap was selected as one of the two sites for a MARGINS-SEIZE experiment. With the goal of documenting the evolution of loading and stress release along this seismic gap, an international effort involving several institutions from Costa Rica, the United States and Japan is being carried out for over a decade in the region. This effort involves the installation of temporary and permanent seismic and geodetic networks. The seismic network includes short period, broad band and strong motion instruments. The seismic monitoring has provided valuable information on the geometry and characteristics of the plate interface. The geodetic network includes temporary and permanent GPS stations as well as surface and borehole tiltmeters. The geodetic networks have helped quantify the extend and degree of coupling. A continuously recording, three- station GPS network on the Nicoya Peninsula, Costa Rica, recorded what we believe is the first slow slip event observed along the plate interface of the Costa Rica subduction zone. We will present results from these monitoring networks. Collaborative international efforts are focused on expanding these seismic and geodetic networks to provide improved resolution of future creep events, to enhanced understanding of the mechanical behavior of the Nicoya subduction segment of the Middle American Trench and possibly capture the next large earthquake and its potential precursor deformation.

  14. Emergency seismic and CGPS networks: a first employment for the L'Aquila Mw 6.3 earthquake

    NASA Astrophysics Data System (ADS)

    Abruzzese, L.; Avallone, A.; Cecere, G.; Cattaneo, M.; Cardinale, V.; Castagnozzi, A.; Cogliano, R.; Criscuoli, F.; D'Agostino, N.; D'Ambrosio, C.; de Luca, G.; D'Anastasio, E.; Falco, L.; Flammia, V.; Migliari, F.; Minichiello, F.; Memmolo, A.; Monachesi, G.; Moschillo, R.; Pignone, M.; Pucillo, S.; Selvaggi, G.; Zarrilli, L.; Delladio, A.; Govoni, A.; Franceschi, D.; de Martin, M.; Moretti, M.

    2009-12-01

    During the last 2 years, the Istituto Nazionale di Geofisica e Vulcanologia (INGV) developed an important real-time temporary seismic network infrastructure in order to densify the Italian National Seismic Network in epicentral areas thus enhancing the localization of the micro-seismicity after main earthquake events. This real-time temporary seismic network is constituted by various mobile and autonomous seismic stations that in group of three are telemetered to a Very Small Aperture Terminal (VSAT). This system uses a dedicated bandwidth on UHF, Wi-Fi and satellite frequency that allows the data flow in real-time at INGV centre in Rome (and Grottaminarda as backup center). The deployment of the seismic network is managed in a geographical information systems (GIS) by particular scenarios that visualizes, for the epicentral area, information about instrumental seismicity, seismic risk, macroseismic felts and territorial data. Starting from digital terrain model, the surface spatial analysis (Viewshed, Observer Point) allows the geographic arrangement of the stations and relative scenarios. The April, 6th, 2009 Mw 6.3 L'Aquila destructive earthquake represented the first real-case to test the entire emergency seismic network infrastructure. Less than 6 hours after the earthquake occurrence, a first accelerometer station was already sending data at INGV seismic monitoring headquarters. A total number of 9 seismic stations have been installed within 3 days after the earthquake. Furthermore, 5 permanent GPS stations have been installed in the epicentral area within 1 to 9 days after the main shock to detect the post-seismic deformation induced by the earthquake. We will show and describe the details of the Emergency Seismic Network infrastructure, and the first results from the collected data.

  15. Testing continuous earthquake detection and location in Alentejo (South Portugal) by waveform coherency analysis

    NASA Astrophysics Data System (ADS)

    Matos, Catarina; Grigoli, Francesco; Cesca, Simone; Custódio, Susana

    2015-04-01

    In the last decade a permanent seismic network of 30 broadband stations, complemented by dense temporary deployments, covered Portugal. This extraordinary network coverage enables now the computation of a high-resolution image of the seismicity of Portugal, which in turn will shed light on the seismotectonics of Portugal. The large data volumes available cannot be analyzed by traditional time-consuming manual location procedures. In this presentation we show first results on the automatic detection and location of earthquakes occurred in a selected region in the south of Portugal Our main goal is to implement an automatic earthquake detection and location routine in order to have a tool to quickly process large data sets, while at the same time detecting low magnitude earthquakes (i.e., lowering the detection threshold). We present a modified version of the automatic seismic event location by waveform coherency analysis developed by Grigoli et al. (2013, 2014), designed to perform earthquake detections and locations in continuous data. The event detection is performed by continuously computing the short-term-average/long-term-average of two different characteristic functions (CFs). For the P phases we used a CF based on the vertical energy trace, while for S phases we used a CF based on the maximum eigenvalue of the instantaneous covariance matrix (Vidale 1991). Seismic event detection and location is obtained by performing waveform coherence analysis scanning different hypocentral coordinates. We apply this technique to earthquakes in the Alentejo region (South Portugal), taking advantage from a small aperture seismic network installed in the south of Portugal for two years (2010 - 2011) during the DOCTAR experiment. In addition to the good network coverage, the Alentejo region was chosen for its simple tectonic setting and also because the relationship between seismicity, tectonics and local lithospheric structure is intriguing and still poorly understood. Inside the target area the seismicity clusters mainly within two clouds, oriented SE-NW and SW-NE. Should these clusters be seen as the expression of local active faults? Are they associated to lithological transitions? Or do the locations obtained from the previously sparse permanent network have large errors and generate fake clusters? We present preliminary results from this study, and compare them with manual locations. This work is supported by project QuakeLoc, reference: PTDC/GEO-FIQ/3522/2012

  16. Characterization and classification of invertebrates as indicators of flow permanence in headwater streams

    EPA Science Inventory

    Headwater streams represent a large proportion of river networks and many have temporary flow. Litigation has questioned whether these streams are jurisdictional under the Clean Water Act. Our goal was to identify indicators of flow permanence by comparing invertebrate assemblage...

  17. Clustering-based energy-saving algorithm in ultra-dense network

    NASA Astrophysics Data System (ADS)

    Huang, Junwei; Zhou, Pengguang; Teng, Deyang; Zhang, Renchi; Xu, Hao

    2017-06-01

    In Ultra-dense Networks (UDN), dense deployment of low power small base stations will cause serious small cells interference and a large amount of energy consumption. The purpose of this paper is to explore the method of reducing small cells interference and energy saving system in UDN, and we innovatively propose a sleep-waking-active (SWA) scheme. The scheme decreases the user outage causing by failure to detect users’ service requests, shortens the opening time of active base stations directly switching to sleep mode; we further proposes a Vertex Surrounding Clustering(VSC) algorithm, which first colours the small cells with the most strongest interference and next extends to the adjacent small cells. VSC algorithm can use the least colour to stain the small cell, reduce the number of iterations and promote the efficiency of colouring. The simulation results show that SWA scheme can effectively improve the system Energy Efficiency (EE), the VSC algorithm can reduce the small cells interference and optimize the users’ Spectrum Efficiency (SE) and throughput.

  18. Detection of mass regions in mammograms by bilateral analysis adapted to breast density using similarity indexes and convolutional neural networks.

    PubMed

    Bandeira Diniz, João Otávio; Bandeira Diniz, Pedro Henrique; Azevedo Valente, Thales Levi; Corrêa Silva, Aristófanes; de Paiva, Anselmo Cardoso; Gattass, Marcelo

    2018-03-01

    The processing of medical image is an important tool to assist in minimizing the degree of uncertainty of the specialist, while providing specialists with an additional source of detect and diagnosis information. Breast cancer is the most common type of cancer that affects the female population around the world. It is also the most deadly type of cancer among women. It is the second most common type of cancer among all others. The most common examination to diagnose breast cancer early is mammography. In the last decades, computational techniques have been developed with the purpose of automatically detecting structures that maybe associated with tumors in mammography examination. This work presents a computational methodology to automatically detection of mass regions in mammography by using a convolutional neural network. The materials used in this work is the DDSM database. The method proposed consists of two phases: training phase and test phase. The training phase has 2 main steps: (1) create a model to classify breast tissue into dense and non-dense (2) create a model to classify regions of breast into mass and non-mass. The test phase has 7 step: (1) preprocessing; (2) registration; (3) segmentation; (4) first reduction of false positives; (5) preprocessing of regions segmented; (6) density tissue classification (7) second reduction of false positives where regions will be classified into mass and non-mass. The proposed method achieved 95.6% of accuracy in classify non-dense breasts tissue and 97,72% accuracy in classify dense breasts. To detect regions of mass in non-dense breast, the method achieved a sensitivity value of 91.5%, and specificity value of 90.7%, with 91% accuracy. To detect regions in dense breasts, our method achieved 90.4% of sensitivity and 96.4% of specificity, with accuracy of 94.8%. According to the results achieved by CNN, we demonstrate the feasibility of using convolutional neural networks on medical image processing techniques for classification of breast tissue and mass detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. UMTS rapid response real-time seismic networks: implementation and strategies at INGV

    NASA Astrophysics Data System (ADS)

    Govoni, A.; Margheriti, L.; Moretti, M.; Lauciani, V.; Sensale, G.; Bucci, A.; Criscuoli, F.

    2015-12-01

    Universal Mobile Telecommunications System (UMTS) and its evolutions are nowadays the most affordable and widespread data communication infrastructure available almost world wide. Moreover the always growing cellular phone market is pushing the development of new devices with higher performances and lower power consumption. All these characteristics make UMTS really useful for the implementation of an "easy to deploy" temporary real-time seismic station. Despite these remarkable features, there are many drawbacks that must be properly taken in account to effectively transmit the seismic data: Internet security, signal and service availability, power consumption. - Internet security: exposing seismological data services and seismic stations to the Internet is dangerous, attack prone and can lead to downtimes in the services, so we setup a dedicated Virtual Private Network (VPN) service to protect all the connected devices. - Signal and service availability: while for temporary experiment a carefull planning and an accurate site selection can minimize the problem, this is not always the case with rapid response networks. Moreover, as with any other leased line, the availability of the UMTS service during a seismic crisis is basically unpredictable. Nowadays in Italy during a major national emergency a Committee of the Italian Civil Defense ensures unified management and coordination of emergency activities. Inside it the telecom companies are committed to give support to the crisis management improving the standards in their communication networks. - Power consumption: it is at least of the order of that of the seismic station and, being related to data flow and signal quality is largely unpredictable. While the most secure option consists in adding a second independent solar power supply to the seismic station, this is not always a very convenient solution since it doubles the cost and doubles the equipment on site. We found that an acceptable trade-off is to add an inexpensive Low Voltage Disconnect (LVD) circuit to the UMTS router power supply that switches off the data transmission when the power is low. This greatly reduces the probability of data loss but lowers the real-time data availabilty. This approach guarantees on the average a satisfactory data acquistion rate, only in very few cases and when the real-time data is extremely important for a particular site we needed to double the power supply on the site. Overall the UMTS data transmission has been used in most temporary seismic experiments and in all seismic emergencies happened in Italy since 2010 and has proved to be a very cost effective approach with real-time data acquisition rates usually greater than 97 % and all the benefits that result from the fast integration of the temporary data in the National Network monitoring system and in the EIDA data bank.

  20. A bandwidth-efficient service for local information dissemination in sparse to dense roadways.

    PubMed

    Garcia-Lozano, Estrella; Campo, Celeste; Garcia-Rubio, Carlos; Cortes-Martin, Alberto; Rodriguez-Carrion, Alicia; Noriega-Vivas, Patricia

    2013-07-05

    Thanks to the research on Vehicular Ad Hoc Networks (VANETs), we will be able to deploy applications on roadways that will contribute to energy efficiency through a better planning of long trips. With this goal in mind, we have designed a gas/charging station advertising system, which takes advantage of the broadcast nature of the network. We have found that reducing the number of total sent packets is important, as it allows for a better use of the available bandwidth. We have designed improvements for a distance-based flooding scheme, so that it can support the advertising application with good results in sparse to dense roadway scenarios.

  1. A Bandwidth-Efficient Service for Local Information Dissemination in Sparse to Dense Roadways

    PubMed Central

    Garcia-Lozano, Estrella; Campo, Celeste; Garcia-Rubio, Carlos; Cortes-Martin, Alberto; Rodriguez-Carrion, Alicia; Noriega-Vivas, Patricia

    2013-01-01

    Thanks to the research on Vehicular Ad Hoc Networks (VANETs), we will be able to deploy applications on roadways that will contribute to energy efficiency through a better planning of long trips. With this goal in mind, we have designed a gas/charging station advertising system, which takes advantage of the broadcast nature of the network. We have found that reducing the number of total sent packets is important, as it allows for a better use of the available bandwidth. We have designed improvements for a distance-based flooding scheme, so that it can support the advertising application with good results in sparse to dense roadway scenarios. PMID:23881130

  2. Climate Influence on Deep Sea Populations

    PubMed Central

    Company, Joan B.; Puig, Pere; Sardà, Francesc; Palanques, Albert; Latasa, Mikel; Scharek, Renate

    2008-01-01

    Dynamics of biological processes on the deep-sea floor are traditionally thought to be controlled by vertical sinking of particles from the euphotic zone at a seasonal scale. However, little is known about the influence of lateral particle transport from continental margins to deep-sea ecosystems. To address this question, we report here how the formation of dense shelf waters and their subsequent downslope cascade, a climate induced phenomenon, affects the population of the deep-sea shrimp Aristeus antennatus. We found evidence that strong currents associated with intense cascading events correlates with the disappearance of this species from its fishing grounds, producing a temporary fishery collapse. Despite this initial negative effect, landings increase between 3 and 5 years after these major events, preceded by an increase of juveniles. The transport of particulate organic matter associated with cascading appears to enhance the recruitment of this deep-sea living resource, apparently mitigating the general trend of overexploitation. Because cascade of dense water from continental shelves is a global phenomenon, we anticipate that its influence on deep-sea ecosystems and fisheries worldwide should be larger than previously thought. PMID:18197243

  3. Interactions among human behavior, social networks, and societal infrastructures: A Case Study in Computational Epidemiology

    NASA Astrophysics Data System (ADS)

    Barrett, Christopher L.; Bisset, Keith; Chen, Jiangzhuo; Eubank, Stephen; Lewis, Bryan; Kumar, V. S. Anil; Marathe, Madhav V.; Mortveit, Henning S.

    Human behavior, social networks, and the civil infrastructures are closely intertwined. Understanding their co-evolution is critical for designing public policies and decision support for disaster planning. For example, human behaviors and day to day activities of individuals create dense social interactions that are characteristic of modern urban societies. These dense social networks provide a perfect fabric for fast, uncontrolled disease propagation. Conversely, people’s behavior in response to public policies and their perception of how the crisis is unfolding as a result of disease outbreak can dramatically alter the normally stable social interactions. Effective planning and response strategies must take these complicated interactions into account. In this chapter, we describe a computer simulation based approach to study these issues using public health and computational epidemiology as an illustrative example. We also formulate game-theoretic and stochastic optimization problems that capture many of the problems that we study empirically.

  4. Cell Selection Game for Densely-Deployed Sensor and Mobile Devices In 5G Networks Integrating Heterogeneous Cells and the Internet of Things.

    PubMed

    Wang, Lusheng; Wang, Yamei; Ding, Zhizhong; Wang, Xiumin

    2015-09-18

    With the rapid development of wireless networking technologies, the Internet of Things and heterogeneous cellular networks (HCNs) tend to be integrated to form a promising wireless network paradigm for 5G. Hyper-dense sensor and mobile devices will be deployed under the coverage of heterogeneous cells, so that each of them could freely select any available cell covering it and compete for resource with others selecting the same cell, forming a cell selection (CS) game between these devices. Since different types of cells usually share the same portion of the spectrum, devices selecting overlapped cells can experience severe inter-cell interference (ICI). In this article, we study the CS game among a large amount of densely-deployed sensor and mobile devices for their uplink transmissions in a two-tier HCN. ICI is embedded with the traditional congestion game (TCG), forming a congestion game with ICI (CGI) and a congestion game with capacity (CGC). For the three games above, we theoretically find the circular boundaries between the devices selecting the macrocell and those selecting the picocells, indicated by the pure strategy Nash equilibria (PSNE). Meanwhile, through a number of simulations with different picocell radii and different path loss exponents, the collapse of the PSNE impacted by severe ICI (i.e., a large number of picocell devices change their CS preferences to the macrocell) is profoundly revealed, and the collapse points are identified.

  5. Cell Selection Game for Densely-Deployed Sensor and Mobile Devices In 5G Networks Integrating Heterogeneous Cells and the Internet of Things

    PubMed Central

    Wang, Lusheng; Wang, Yamei; Ding, Zhizhong; Wang, Xiumin

    2015-01-01

    With the rapid development of wireless networking technologies, the Internet of Things and heterogeneous cellular networks (HCNs) tend to be integrated to form a promising wireless network paradigm for 5G. Hyper-dense sensor and mobile devices will be deployed under the coverage of heterogeneous cells, so that each of them could freely select any available cell covering it and compete for resource with others selecting the same cell, forming a cell selection (CS) game between these devices. Since different types of cells usually share the same portion of the spectrum, devices selecting overlapped cells can experience severe inter-cell interference (ICI). In this article, we study the CS game among a large amount of densely-deployed sensor and mobile devices for their uplink transmissions in a two-tier HCN. ICI is embedded with the traditional congestion game (TCG), forming a congestion game with ICI (CGI) and a congestion game with capacity (CGC). For the three games above, we theoretically find the circular boundaries between the devices selecting the macrocell and those selecting the picocells, indicated by the pure strategy Nash equilibria (PSNE). Meanwhile, through a number of simulations with different picocell radii and different path loss exponents, the collapse of the PSNE impacted by severe ICI (i.e., a large number of picocell devices change their CS preferences to the macrocell) is profoundly revealed, and the collapse points are identified. PMID:26393617

  6. ViNEL: A Virtual Networking Lab for Cyber Defense Education

    ERIC Educational Resources Information Center

    Reinicke, Bryan; Baker, Elizabeth; Toothman, Callie

    2018-01-01

    Professors teaching cyber security classes often face challenges when developing workshops for their students: How does one quickly and efficiently configure and deploy an operating system for a temporary learning/testing environment? Faculty teaching these classes spend countless hours installing, configuring and deploying multiple system…

  7. Life of Lambda

    ERIC Educational Resources Information Center

    Futhey, Tracy

    2005-01-01

    In this column, the author discusses the four key questions related to the National LambdaRail (NLR) networking technology. NLR uses Dense Wave Division Multiplexing (DWDM) to enable multiple networks to coexist on a national fiber footprint, and is owned and operated not by carriers, but by the research and education community. The NLR Board…

  8. GRA12, a Toxoplasma dense granule protein associated with the intravacuolar membranous nanotubular network.

    PubMed

    Michelin, Adeline; Bittame, Amina; Bordat, Yann; Travier, Laetitia; Mercier, Corinne; Dubremetz, Jean-François; Lebrun, Maryse

    2009-02-01

    The intracellular protozoan parasite Toxoplasma gondii develops within the parasitophorous vacuole (PV), an intracellular niche in which it secretes proteins from secretory organelles named dense granules and rhoptries. Here, we describe a new dense granule protein that should now be referred to as GRA12, and that displays no homology with other proteins. Immunofluorescence and immuno-electron microscopy showed that GRA12 behaves similarly to both GRA2 and GRA6. It is secreted into the PV from the anterior pole of the parasite soon after the beginning of invasion, transits to the posterior invaginated pocket of the parasite where a membranous tubulovesicular network is first assembled, and finally resides throughout the vacuolar space, associated with the mature membranous nanotubular network. GRA12 fails to localise at the parasite posterior end in the absence of GRA2. Within the vacuolar space, like the other GRA proteins, GRA12 exists in both a soluble and a membrane-associated form. Using affinity chromatography experiments, we showed that in both the parasite and the PV soluble fractions, GRA12 is purified with the complex of GRA proteins associated with a tagged version of GRA2 and that this association is lost in the PV membranous fraction.

  9. Modeling propagation of infrasound signals observed by a dense seismic network.

    PubMed

    Chunchuzov, I; Kulichkov, S; Popov, O; Hedlin, M

    2014-01-01

    The long-range propagation of infrasound from a surface explosion with an explosive yield of about 17.6 t TNT that occurred on June 16, 2008 at the Utah Test and Training Range (UTTR) in the western United States is simulated using an atmospheric model that includes fine-scale layered structure of the wind velocity and temperature fields. Synthetic signal parameters (waveforms, amplitudes, and travel times) are calculated using parabolic equation and ray-tracing methods for a number of ranges between 100 and 800 km from the source. The simulation shows the evolution of several branches of stratospheric and thermospheric signals with increasing range from the source. Infrasound signals calculated using a G2S (ground-to-space) atmospheric model perturbed by small-scale layered wind velocity and temperature fluctuations are shown to agree well with recordings made by the dense High Lava Plains seismic network located at an azimuth of 300° from UTTR. The waveforms of calculated infrasound arrivals are compared with those of seismic recordings. This study illustrates the utility of dense seismic networks for mapping an infrasound field with high spatial resolution. The parabolic equation calculations capture both the effect of scattering of infrasound into geometric acoustic shadow zones and significant temporal broadening of the arrivals.

  10. Evaluating the Reverse Time Migration Method on the dense Lapnet / Polenet seismic array in Europe

    NASA Astrophysics Data System (ADS)

    Dupont, Aurélien; Le Pichon, Alexis

    2013-04-01

    In this study, results are obtained using the reverse time migration method used as benchmark to evaluate the implemented method by Walker et al., (2010, 2011). Explosion signals recorded by the USArray and extracted from the TAIRED catalogue (TA Infrasound Reference Event Database user community / Vernon et al., 2012) are investigated. The first one is an explosion at Camp Minden, Louisiana (2012-10-16 04:25:00 UTC) and the second one is a natural gas explosion near Price, Utah (2012-11-20 15:20:00 UTC). We compare our results to automatic solutions (www.iris.edu/spud/infrasoundevent). The good agreement between both solutions validates our detection method. In a second time, we analyse data from the Lapnet / Polenet dense seismic network (Kozlovskaya et al., 2008). Detection and location in two-dimensional space and time of infrasound events presumably due to acoustic-to-seismic coupling, during the 2007-2009 period in Europe, are presented. The aim of this work is to integrate near-real time network performance predictions at regional scales to improve automatic detection of infrasonic sources. The use of dense seismic networks provides a valuable tool to monitor infrasonic phenomena, since seismic location has recently proved to be more accurate than infrasound locations due to the large number of seismic sensors.

  11. Development of low-cost meteorological observation system based on wireless network for poor-visibility occurred by snowstorm

    NASA Astrophysics Data System (ADS)

    Kobayashi, Y.; Watanabe, K.; Imai, M.; Watanabe, K.; Naruse, N.; Takahashi, Y.

    2016-12-01

    Hyper-densely monitoring for poor-visibility occurred by snowstorm is needed to make an alert system, because the snowstorm is difficult to predict from the observation only at a representative point. There are some problems in the previous approaches for the poor-visibility monitoring using video analyses or visibility meters; these require a wired network monitoring (a large amount of data: 10MB/sec at least) and the system cost is high (10,000 at each point). Thus, the risk of poor-visibility has been mainly measured at specific point such as airport and mountain pass, and estimated by simulation two dimensionally. To predict it two dimensionally and accurately, we have developed a low-cost meteorological system to observe the snowstorm hyper-densely. We have developed a low-cost visibility meter which works as the reduced intensity of semiconducting laser light when snow particles block off. Our developed system also has a capability of extending a hyper-densely observation in real-time on wireless network using Zigbee; A/D conversion and wireless data sent from temperature and illuminance sensors. We use a semiconducting laser chip (5) for the light source and a reflection mechanism by the use of three mirrors so as to send the light to a non-sensitive illuminance sensor directly. Thus, our visibility detecting system ($500) becomes much cheaper than previous one. We have checked the correlation between the reduced intensity taken by our system and the visibility recorded by conventional video camera. The value for the correlation coefficient was -0.67, which indicates a strong correlation. It means that our developed system is practical. In conclusion, we have developed low-cost meteorological detecting system to observe poor-visibility occurred by snowstorm, having a potential of hyper-densely monitoring on wireless network, and have made sure the practicability.

  12. Performance Evaluation of FAST TCP Traffic-Flows in Multihomed MANETs

    NASA Astrophysics Data System (ADS)

    Mudassir, Mumajjed Ul; Akram, Adeel

    In Mobile Ad hoc Networks (MANETs) an efficient communication protocol is required at the transport layer. Mobile nodes moving around will have temporary and rather short-lived connectivity with each other and the Internet, thus requiring efficient utilization of network resources. Moreover the problems arising due to high mobility, collision and congestion must also be considered. Multihoming allows higher reliability and enhancement of network throughput. FAST TCP is a new promising transport layer protocol developed for high-speed high-latency networks. In this paper, we have analyzed the performance of FAST TCP traffic flows in multihomed MANETs and compared it with standard TCP (TCP Reno) traffic flows in non-multihomed MANETs.

  13. NY-uHMT: A dense hydro-meteorological network to characterize urban land-atmosphere interactions

    NASA Astrophysics Data System (ADS)

    Ramamurthy, P.; Lakhankar, T.; Khanbilvardi, R.; Devineni, N.

    2016-12-01

    Most people in the US live in large Metropolitan areas that have a dense urban core in the center, dominated by built surfaces and surrounded by residential/suburban areas that consist a mix of built, vegetated and permeable surfaces. This creates a gradient in the hydro-meteorological environment giving rise to complex land-atmosphere interactions. Current modeling platforms and observational techniques like tower measurements do not adequately account for the underlying heterogeneity. To address this critical gap in our understanding we have instituted a dense network of sensors in the New York Metropolitan area. This unique urban sensor network consists of instrumentation to monitor soil moisture at multiple depths along with air temperature, relative humidity and precipitation, with room to add additional sensors in the future. The network is autonomous and connected to a centralized server using cellular towers. Apart from describing the spatial variability in hydro-meteorological quantities the network will also aid in conducting high-resolution numerical simulations to study and forecast urban weather and climate. In one such simulation conducted to partition the influence of storage flux, wind pattern and circulation and soil moisture deficit on urban heat island intensity (UHI), we found that the daily variability in UHI in NYC was sensitive to available energy and wind pattern. The long-term trend in UHI was however related to soil moisture deficit. In fact a prolonged heat wave period witnessed during summer 2006 correlated well with an extended dry period and the daily UHI in NYC almost doubled. Moreover, the urban soils also suffered from high degree of dessication, owing to drier urban boundary layer.

  14. Systems-level analysis of risk genes reveals the modular nature of schizophrenia.

    PubMed

    Liu, Jiewei; Li, Ming; Luo, Xiong-Jian; Su, Bing

    2018-05-19

    Schizophrenia (SCZ) is a complex mental disorder with high heritability. Genetic studies (especially recent genome-wide association studies) have identified many risk genes for schizophrenia. However, the physical interactions among the proteins encoded by schizophrenia risk genes remain elusive and it is not known whether the identified risk genes converge on common molecular networks or pathways. Here we systematically investigated the network characteristics of schizophrenia risk genes using the high-confidence protein-protein interactions (PPI) from the human interactome. We found that schizophrenia risk genes encode a densely interconnected PPI network (P = 4.15 × 10 -31 ). Compared with the background genes, the schizophrenia risk genes in the interactome have significantly higher degree (P = 5.39 × 10 -11 ), closeness centrality (P = 7.56 × 10 -11 ), betweeness centrality (P = 1.29 × 10 -11 ), clustering coefficient (P = 2.22 × 10 -2 ), and shorter average shortest path length (P = 7.56 × 10 -11 ). Based on the densely interconnected PPI network, we identified 48 hub genes and 4 modules formed by highly interconnected schizophrenia genes. We showed that the proteins encoded by schizophrenia hub genes have significantly more direct physical interactions. Gene ontology (GO) analysis revealed that cell adhesion, cell cycle, immune system response, and GABR-receptor complex categories were enriched in the modules formed by highly interconnected schizophrenia risk genes. Our study reveals that schizophrenia risk genes encode a densely interconnected molecular network and demonstrates the modular nature of schizophrenia. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Medicare, Medicaid, and Children's Health Insurance Programs: Announcement of the Extension of Temporary Moratoria on Enrollment of Part B Non-Emergency Ground Ambulance Suppliers and Home Health Agencies in Designated Geographic Locations. Extension of temporary moratoria.

    PubMed

    2018-01-30

    This document announces the extension of statewide temporary moratoria on the enrollment of new Medicare Part B non-emergency ground ambulance providers and suppliers and Medicare home health agencies, subunits, and branch locations in Florida, Illinois, Michigan, Texas, Pennsylvania, and New Jersey, as applicable, to prevent and combat fraud, waste, and abuse. This extension also applies to the enrollment of new non-emergency ground ambulance suppliers and home health agencies, subunits, and branch locations in Medicaid and the Children's Health Insurance Program in those states. For purposes of these moratoria, providers that were participating as network providers in one or more Medicaid managed care organizations prior to January 1, 2018 will not be considered "newly enrolling" when they are required to enroll with the State Medicaid agency pursuant to a new statutory requirement, and thus will not be subject to the moratoria.

  16. 75 FR 34796 - Order Granting Application for Extension of a Temporary Conditional Exemption Pursuant to Section...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-62280] Order Granting Application for Extension... International Securities Exchange, LLC Relating to the Ownership Interest of International Securities Exchange Holdings, Inc. in an Electronic Communications Network June 11, 2010. I. Introduction On December 22, 2008...

  17. KSC-03pd1116

    NASA Image and Video Library

    2003-04-09

    KENNEDY SPACE CENTER, FLA. -- Temporary camp worker Michael Trujillo of North New Mexico displays chaps in the supply tent at the Nacogdoches site. The chaps are used by U.S. Forest Service, Environmental Protection Agency and space program workers searching through dense forests in East Texas. Kennedy Space Center workers are participating in the Columbia Recovery efforts at the Lufkin (Texas) Command Center, four field sites in East Texas, and the Barksdale, La., hangar site. KSC is working with representatives from other NASA Centers and with those from a number of federal, state and local agencies in the recovery effort. KSC provides vehicle technical expertise in the field to identify, collect and return Shuttle hardware to KSC.

  18. Microbial responses to changes in flow status in temporary headwater streams: a cross-system comparison

    PubMed Central

    Febria, Catherine M.; Hosen, Jacob D.; Crump, Byron C.; Palmer, Margaret A.; Williams, D. Dudley

    2015-01-01

    Microbial communities are responsible for the bulk of biogeochemical processing in temporary headwater streams, yet there is still relatively little known about how community structure and function respond to periodic drying. Moreover, the ability to sample temporary habitats can be a logistical challenge due to the limited capability to measure and predict the timing, intensity and frequency of wet-dry events. Unsurprisingly, published datasets on microbial community structure and function are limited in scope and temporal resolution and vary widely in the molecular methods applied. We compared environmental and microbial community datasets for permanent and temporary tributaries of two different North American headwater stream systems: Speed River (Ontario, Canada) and Parkers Creek (Maryland, USA). We explored whether taxonomic diversity and community composition were altered as a result of flow permanence and compared community composition amongst streams using different 16S microbial community methods (i.e., T-RFLP and Illumina MiSeq). Contrary to our hypotheses, and irrespective of method, community composition did not respond strongly to drying. In both systems, community composition was related to site rather than drying condition. Additional network analysis on the Parkers Creek dataset indicated a shift in the central microbial relationships between temporary and permanent streams. In the permanent stream at Parkers Creek, associations of methanotrophic taxa were most dominant, whereas associations with taxa from the order Nitrospirales were more dominant in the temporary stream, particularly during dry conditions. We compared these results with existing published studies from around the world and found a wide range in community responses to drying. We conclude by proposing three hypotheses that may address contradictory results and, when tested across systems, may expand understanding of the responses of microbial communities in temporary streams to natural and human-induced fluctuations in flow-status and permanence. PMID:26089816

  19. L(p) approximation capabilities of sum-of-product and sigma-pi-sigma neural networks.

    PubMed

    Long, Jinling; Wu, Wei; Nan, Dong

    2007-10-01

    This paper studies the L(p) approximation capabilities of sum-of-product (SOPNN) and sigma-pi-sigma (SPSNN) neural networks. It is proved that the set of functions that are generated by the SOPNN with its activation function in $L_{loc};p(\\mathcal{R})$ is dense in $L;p(\\mathcal{K})$ for any compact set $\\mathcal{K}\\subset \\mathcal{R};N$, if and only if the activation function is not a polynomial almost everywhere. It is also shown that if the activation function of the SPSNN is in ${L_{loc};\\infty(\\mathcal{R})}$, then the functions generated by the SPSNN are dense in $L;p(\\mathcal{K})$ if and only if the activation function is not a constant (a.e.).

  20. Connectome sensitivity or specificity: which is more important?

    PubMed

    Zalesky, Andrew; Fornito, Alex; Cocchi, Luca; Gollo, Leonardo L; van den Heuvel, Martijn P; Breakspear, Michael

    2016-11-15

    Connectomes with high sensitivity and high specificity are unattainable with current axonal fiber reconstruction methods, particularly at the macro-scale afforded by magnetic resonance imaging. Tensor-guided deterministic tractography yields sparse connectomes that are incomplete and contain false negatives (FNs), whereas probabilistic methods steered by crossing-fiber models yield dense connectomes, often with low specificity due to false positives (FPs). Densely reconstructed probabilistic connectomes are typically thresholded to improve specificity at the cost of a reduction in sensitivity. What is the optimal tradeoff between connectome sensitivity and specificity? We show empirically and theoretically that specificity is paramount. Our evaluations of the impact of FPs and FNs on empirical connectomes indicate that specificity is at least twice as important as sensitivity when estimating key properties of brain networks, including topological measures of network clustering, network efficiency and network modularity. Our asymptotic analysis of small-world networks with idealized modular structure reveals that as the number of nodes grows, specificity becomes exactly twice as important as sensitivity to the estimation of the clustering coefficient. For the estimation of network efficiency, the relative importance of specificity grows linearly with the number of nodes. The greater importance of specificity is due to FPs occurring more prevalently between network modules rather than within them. These spurious inter-modular connections have a dramatic impact on network topology. We argue that efforts to maximize the sensitivity of connectome reconstruction should be realigned with the need to map brain networks with high specificity. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Sexual networks, surveillance, and geographical space during syphilis outbreaks in rural North Carolina.

    PubMed

    Doherty, Irene A; Serre, Marc L; Gesink, Dionne; Adimora, Adaora A; Muth, Stephen Q; Leone, Peter A; Miller, William C

    2012-11-01

    Sexually transmitted infections (STIs) spread along sexual networks whose structural characteristics promote transmission that routine surveillance may not capture. Cases who have partners from multiple localities may operate as spatial network bridges, thereby facilitating geographical dissemination. We investigated how surveillance, sexual networks, and spatial bridges relate to each other for syphilis outbreaks in rural counties of North Carolina. We selected from the state health department's surveillance database cases diagnosed with primary, secondary, or early latent syphilis during October 1998 to December 2002 and who resided in central and southeastern North Carolina, along with their sex partners and their social contacts irrespective of infection status. We applied matching algorithms to eliminate duplicate names and create a unique roster of partnerships from which networks were compiled and graphed. Network members were differentiated by disease status and county of residence. In the county most affected by the outbreak, densely connected networks indicative of STI outbreaks were consistent with increased incidence and a large case load. In other counties, the case loads were low with fluctuating incidence, but network structures suggested the presence of outbreaks. In a county with stable, low incidence and a high number of cases, the networks were sparse and dendritic, indicative of endemic spread. Outbreak counties exhibited densely connected networks within well-defined geographic boundaries and low connectivity between counties; spatial bridges did not seem to facilitate transmission. Simple visualization of sexual networks can provide key information to identify communities most in need of resources for outbreak investigation and disease control.

  2. Making Initial Earthquake Catalogs from a Temporary Seismic Network for Monitoring Aftershocks

    NASA Astrophysics Data System (ADS)

    Park, J.; Kang, T. S.; Kim, K. H.; Rhie, J.; Kim, Y.

    2017-12-01

    The ML 5.1 foreshock and the ML 5.8 mainshock earthquakes occurred consecutively in Gyeongju, the southeastern part of the Korean Peninsula, on September 12, 2016. A temporary seismic network was installed quickly to observe aftershocks followed this mainshock event in the vicinity of the epicenter. The network was consisting of 27 stations equipped with broadband sensors initially and it has been operated in off-line system which required a periodic manual backup of the recorded data. We detected P-triggers and associated events by using SeisComP3 to make an initial catalogue of aftershock events rapidly. If necessary, manual picking was performed to obtain precise P- and S-arrival times from a module, scolv, included in SeisComP3. For cross-checking of reliable identification of seismic phases, a seismic python package, PhasePApy, was applied in parallel with SeisComP3. Then we get the precise relocated coordinates and depth of the aftershock events using the velellipse algorithm. The resulting dataset comprises of an initial aftershock catalog. The catalog will provide the means to address some important questions and issues on seismogenesis in this intraplate seismicity region including the 2016 Gyeongju earthquake sequence and to improve seismic hazard estimation of the region.

  3. Setting the baseline before geothermal exploration begins: the search of microseismic activity in the Geneva Basin, Western Switzerland

    NASA Astrophysics Data System (ADS)

    Antunes, Verónica; Lupi, Matteo; Carrier, Aurore; Planès, Thomas; Martin, François

    2017-04-01

    Switzerland is moving towards the development of renewable energies. Following this trend, SIG (Services Industriels de Genève) and the Canton of Geneva is investing in the exploration of geothermal energy. Before the exploration takes place it is crucial to understand the rate of seismic activity in the region and its relationship with the existing faults. Historical and instrumental times suggest the presence of active faults in the region but to date little is known about the seismic activity in the Geneva Basin. Tectonic maps show the presence of major faults crossing the basin and recent seismic events indicate that such systems are still active on a regional scale. However, available data indicate infrequent and dispersed activity. This can be partially due to the small number of permanent stations in the area. To understand where micro-seismic activity may be located around and within the Geneva Basin we have deployed a temporary network composed of 20 broadband stations. With the densification of the network it could be possible to capture and localise small magnitude seismic events (i.e. M less than 1). Here we present the preliminary results obtained during the first months of the temporary network deployment.

  4. VISIONET: intuitive visualisation of overlapping transcription factor networks, with applications in cardiogenic gene discovery.

    PubMed

    Nim, Hieu T; Furtado, Milena B; Costa, Mauro W; Rosenthal, Nadia A; Kitano, Hiroaki; Boyd, Sarah E

    2015-05-01

    Existing de novo software platforms have largely overlooked a valuable resource, the expertise of the intended biologist users. Typical data representations such as long gene lists, or highly dense and overlapping transcription factor networks often hinder biologists from relating these results to their expertise. VISIONET, a streamlined visualisation tool built from experimental needs, enables biologists to transform large and dense overlapping transcription factor networks into sparse human-readable graphs via numerically filtering. The VISIONET interface allows users without a computing background to interactively explore and filter their data, and empowers them to apply their specialist knowledge on far more complex and substantial data sets than is currently possible. Applying VISIONET to the Tbx20-Gata4 transcription factor network led to the discovery and validation of Aldh1a2, an essential developmental gene associated with various important cardiac disorders, as a healthy adult cardiac fibroblast gene co-regulated by cardiogenic transcription factors Gata4 and Tbx20. We demonstrate with experimental validations the utility of VISIONET for expertise-driven gene discovery that opens new experimental directions that would not otherwise have been identified.

  5. Talking the talk, walking the walk: social network norms, communication patterns, and condom use among the male partners of female sex workers in La Romana, Dominican Republic.

    PubMed

    Barrington, Clare; Latkin, Carl; Sweat, Michael D; Moreno, Luis; Ellen, Jonathan; Kerrigan, Deanna

    2009-06-01

    Male partners of female sex workers are rarely targeted by HIV prevention interventions in the commercial sex industry, despite recognition of their central role and power in condom use negotiation. Social networks offer a naturally existing social structure to increase male participation in preventing HIV. The purpose of this study was to explore the relationship between social network norms and condom use among male partners of female sex workers in La Romana, Dominican Republic. Male partners (N =318) were recruited from 36 sex establishments to participate in a personal network survey. Measures of social network norms included 1) perceived condom use by male social network members and 2) encouragement to use condoms from social network members. Other social network characteristics included composition, density, social support, and communication. The primary behavioral outcome was consistent condom use by male partners with their most recent female sex worker partner during the last 3 months. In general, men reported small, dense networks with high levels of communication about condoms and consistent condom use. Multivariate logistic regression revealed consistent condom use was significantly more likely among male partners who perceived that some or all of their male social network members used condoms consistently. Perceived condom use was, in turn, significantly associated with dense networks, expressing dislike for condoms, and encouragement to use condoms from social network members. Findings suggest that the tight social networks of male partners may help to explain the high level of condom use and could provide an entry point for HIV prevention efforts with men. Such efforts should tap into existing social dynamics and patterns of communication to promote pro-condom norms and reduce HIV-related vulnerability among men and their sexual partners.

  6. Adaptive MANET multipath routing algorithm based on the simulated annealing approach.

    PubMed

    Kim, Sungwook

    2014-01-01

    Mobile ad hoc network represents a system of wireless mobile nodes that can freely and dynamically self-organize network topologies without any preexisting communication infrastructure. Due to characteristics like temporary topology and absence of centralized authority, routing is one of the major issues in ad hoc networks. In this paper, a new multipath routing scheme is proposed by employing simulated annealing approach. The proposed metaheuristic approach can achieve greater and reciprocal advantages in a hostile dynamic real world network situation. Therefore, the proposed routing scheme is a powerful method for finding an effective solution into the conflict mobile ad hoc network routing problem. Simulation results indicate that the proposed paradigm adapts best to the variation of dynamic network situations. The average remaining energy, network throughput, packet loss probability, and traffic load distribution are improved by about 10%, 10%, 5%, and 10%, respectively, more than the existing schemes.

  7. Fast Distributed Dynamics of Semantic Networks via Social Media.

    PubMed

    Carrillo, Facundo; Cecchi, Guillermo A; Sigman, Mariano; Slezak, Diego Fernández

    2015-01-01

    We investigate the dynamics of semantic organization using social media, a collective expression of human thought. We propose a novel, time-dependent semantic similarity measure (TSS), based on the social network Twitter. We show that TSS is consistent with static measures of similarity but provides high temporal resolution for the identification of real-world events and induced changes in the distributed structure of semantic relationships across the entire lexicon. Using TSS, we measured the evolution of a concept and its movement along the semantic neighborhood, driven by specific news/events. Finally, we showed that particular events may trigger a temporary reorganization of elements in the semantic network.

  8. Fast Distributed Dynamics of Semantic Networks via Social Media

    PubMed Central

    Carrillo, Facundo; Cecchi, Guillermo A.; Sigman, Mariano; Fernández Slezak, Diego

    2015-01-01

    We investigate the dynamics of semantic organization using social media, a collective expression of human thought. We propose a novel, time-dependent semantic similarity measure (TSS), based on the social network Twitter. We show that TSS is consistent with static measures of similarity but provides high temporal resolution for the identification of real-world events and induced changes in the distributed structure of semantic relationships across the entire lexicon. Using TSS, we measured the evolution of a concept and its movement along the semantic neighborhood, driven by specific news/events. Finally, we showed that particular events may trigger a temporary reorganization of elements in the semantic network. PMID:26074953

  9. Protein complexes and functional modules in molecular networks

    NASA Astrophysics Data System (ADS)

    Spirin, Victor; Mirny, Leonid A.

    2003-10-01

    Proteins, nucleic acids, and small molecules form a dense network of molecular interactions in a cell. Molecules are nodes of this network, and the interactions between them are edges. The architecture of molecular networks can reveal important principles of cellular organization and function, similarly to the way that protein structure tells us about the function and organization of a protein. Computational analysis of molecular networks has been primarily concerned with node degree [Wagner, A. & Fell, D. A. (2001) Proc. R. Soc. London Ser. B 268, 1803-1810; Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabasi, A. L. (2000) Nature 407, 651-654] or degree correlation [Maslov, S. & Sneppen, K. (2002) Science 296, 910-913], and hence focused on single/two-body properties of these networks. Here, by analyzing the multibody structure of the network of protein-protein interactions, we discovered molecular modules that are densely connected within themselves but sparsely connected with the rest of the network. Comparison with experimental data and functional annotation of genes showed two types of modules: (i) protein complexes (splicing machinery, transcription factors, etc.) and (ii) dynamic functional units (signaling cascades, cell-cycle regulation, etc.). Discovered modules are highly statistically significant, as is evident from comparison with random graphs, and are robust to noise in the data. Our results provide strong support for the network modularity principle introduced by Hartwell et al. [Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. (1999) Nature 402, C47-C52], suggesting that found modules constitute the "building blocks" of molecular networks.

  10. Imaging the Western Iberia Seismic Structure from the Crust to the Upper Mantle from Ambient Noise Tomography

    NASA Astrophysics Data System (ADS)

    Silveira, Graça; Kiselev, Sergey; Stutzmann, Eleonore; Schimmel, Martin; Haned, Abderrahmane; Dias, Nuno; Morais, Iolanda; Custódio, Susana

    2015-04-01

    Ambient Noise Tomography (ANT) is now widely used to image the subsurface seismic structure, with a resolution mainly dependent on the seismic network coverage. Most of these studies are limited to Rayleigh waves for periods shorter than 40/45 s and, as a consequence, they can image only the crust or, at most, the uppermost mantle. Recently, some studies successfully showed that this analysis could be extended to longer periods, thus allowing a deeper probing. In this work we present the combination of two complementary datasets. The first was obtained from the analysis of ambient noise in the period range 5-50 sec, for Western Iberia, using a dense temporary seismic network that operated between 2010 and 2012. The second one was computed for a global study, in the period range 30-250 sec, from analysis of 150 stations of the global networks GEOSCOPE and GSN. In both datasets, the Empirical Green Functions are computed by phase cross-correlation. The ambient noise phase cross-correlations are stacked using the time-frequency domain phase weighted stack (Schimmel et al. 2011, Geoph. J. Int., 184, 494-506). A bootstrap approach is used to measure the group velocities between pairs of stations and to estimate the corresponding error. We observed a good agreement between the dispersion measurements on both short period and long period datasets for most of the grid nodes. They are then inverted to obtain the 3D S-wave model from the crust to the upper mantle, using a bayesian approach. A simulated annealing method is applied, in which the number of splines that describes the model is adapted within the inversion. We compare the S-wave velocity model at some selected profiles with the S-wave velocity models gathered from Ps and Sp receiver functions joint inversion. Both results, issued from ambient noise tomography and body wave's analysis for the crust and upper mantle are consistent. This work is supported by project AQUAREL (PTDC/CTEGIX/116819/2010) and is a contribution to project QuakeLoc-PT (PTDC/GEO-FIQ/3522/2012).

  11. Migration Imaging of the Java Subduction Zones

    NASA Astrophysics Data System (ADS)

    Dokht, Ramin M. H.; Gu, Yu Jeffrey; Sacchi, Mauricio D.

    2018-02-01

    Imaging of tectonically complex regions can greatly benefit from dense network data and resolution enhancement techniques. Conventional methods in the analysis of SS precursors stack the waveforms to obtain an average discontinuity depth, but smearing due to large Fresnel zones can degrade the fine-scale topography on the discontinuity. To provide a partial solution, we introduce a depth migration algorithm based on the common scattering point method while considering nonspecular diffractions from mantle transition zone discontinuities. Our analysis indicates that, beneath the Sunda arc, the depth of the 410 km discontinuity (the 410) is elevated by 30 km and the 660 km discontinuity (the 660) is depressed by 20-40 km; the region of the strongest anticorrelation is correlated with the morphology of the subducting Indo-Australian slab. In eastern Java, a "flat" 410 coincides with a documented slab gap, showing length scales greater than 400 km laterally and 200 km vertically. This observation could be explained by the arrival of a buoyant oceanic plateau at the Java trench at approximately 8 Ma ago, which may have caused a temporary cessation of subduction and formed a tear in the subducting slab. Our results highlight contrasting depths of the 410 and 660 along the shallow-dipping slab below the Banda trench. The 660, however, becomes significantly uplifted beneath the Banda Sea, which is accompanied by enhanced reflection amplitudes. We interpret these observations as evidence for a subslab low-velocity zone, possibly related to the lower mantle upwelling beneath the subducting slab.

  12. Image the heterogeneous structure of Colima volcano complex using ambient noise and teleseismic tomography

    NASA Astrophysics Data System (ADS)

    Dai, Y.; Yang, T.

    2017-12-01

    As one of the most active stratovolcano in present world, Colima volcano has aroused extensive researches about its structure and mechanism. Preceded studies have described the deep internal structure of Jalisco subduction zone and attributed the surface volcanism to the subduction of Rivera plate and Cocos plate here, but the image of crustal structure remains vague. Thus our work aims to depict the lithosphere structure and magma system, trying to understand the material transportation of Colima volcano. Two dense networks of temporary stations, CODEX and MARS, were deployed in the studying area during 2006-2007, collected adequate seismic data for tomography. We used ambient noise tomography to obtain both the phase velocity maps and azimuthal anisotropic character of crust. Those results show a shallow magma chamber right beneath the Colima volcano reaching a depth of 8km and its azimuthal anisotropic character ,which is of larger magnitude and northeast-ward in the connection part, indicates the material probably flow from central Mexico volcanic zone in the superficial crust. Hereafter, we combine the ambient noise tomography with surface wave tomography which corresponding to deeper structure. Phase velocity information from two methods are then used to invert a 3D heterogeneous model, which well presents the complex lithosphere structure of this area and shows the connection between the mantle window and magma chamber, giving the clues of how the magma materials transport from source to surface to support the constant eruption of Colima volcano.

  13. Ionospheric modifications detected by a dense network of single frequency GNSS receivers

    NASA Astrophysics Data System (ADS)

    Mrak, S.; Semeter, J. L.

    2017-12-01

    It has been predicted that the region of totality during a total solar eclipse can launch atmospheric gravity waves with large enough amplitude to cause traveling ionospheric disturbances (TIDs). We report initial results from a remote sensing campaign involving a dense hybrid network of single- and dual-frequency GNSS receivers deployed underneath the 21 August 2017 solar eclipse. The campaign took place in central Missouri, involving 84 Trimble dual-frequency receivers, complemented by 2 additional 50 Hz dual-frequency receivers and 15 single-frequency receivers, together constructing 100 receivers with average mutual separation of less than 25 km and with a time resolution of 1 second or better. The initial results show a crescent shaped enhancement bulge in front of region of totality, extending all the way from Canada to Gulf of Mexico. In addition, in the path of totality is noticed a great depletion region, followed by a pair of transverse waves propagating in west-east direction. In the following months, we will explore the transition region carried by the totality by a virtue of hyper dense network of GNSS receivers with 1 second resolution. In addition to TEC data decomposition we will explore effects of the totality on the raw measurements (phase, code and signal intensity), and to the navigation solution which is likely to be effected by a different propagation conditions with respect to other days.

  14. Temporary Network Development Capability in High Velocity Environments: A Dynamic Capability Study of Disaster Relief Organizations

    ERIC Educational Resources Information Center

    O'Brien, William Ross

    2010-01-01

    Organizations involved in crisis relief after a natural disaster face the multifaceted challenge of significantly changing needs of their various stakeholders, limited, ambiguous and even incorrect information, and highly compressed time limitations. Yet the performance of these organization in these high velocity environments is critical for the…

  15. Journeys to the Self: Using Movie Directors in the Classroom

    ERIC Educational Resources Information Center

    Alvarez, Jose Luis; Miller, Paddy; Levy, Jan; Svejenova, Silviya

    2004-01-01

    This article suggests that temporary (project based) filmmaking organizations, and film directors as their leaders, lend themselves to examining a plethora of leadership issues, from social sources of power to competencies in network organizations. It advances for classroom discussion and teaching the cases of Almodovar and Coppola as examples of…

  16. Order Short-Term Memory Capacity Predicts Nonword Reading and Spelling in First and Second Grade

    ERIC Educational Resources Information Center

    Binamé, Florence; Poncelet, Martine

    2016-01-01

    Recent theories of short-term memory (STM) distinguish between item information, which reflects the temporary activation of long-term representations stored in the language system, and serial-order information, which is encoded in a specific representational system that is independent of the language network. Some studies examining the…

  17. Controlling the trajectories of bubble trains at a microfluidic junction

    NASA Astrophysics Data System (ADS)

    Parthiban, Pravien; Khan, Saif

    2011-11-01

    The increasing number of applications facilitated by digital microfluidic flows has resulted in a sustained interest in not only understanding the diverse, interesting and often complex dynamics associated with such flows in microchannel networks but also in developing facile strategies to control them. We find that there are readily accessible flow speeds wherein resistance to flow in microchannels decreases with an increase in the number of confined bubbles present, and exploit this intriguing phenomenon to sort all bubble of a train exclusively into one of the arms of a nominally symmetric microfluidic loop. We also demonstrate how the arm into which the train filters into can be chosen by applying a temporary external stimulus by means of an additional flow of the continuous liquid into one the arms of the loop. Furthermore, we show how by tuning the magnitude and period of this temporary stimulus we can switch controllably, the traffic of bubbles between both arms of the loop even when the loop is asymmetric. The results of this work should aid in developing viable methods to regulate traffic of digital flows in microfluidic networks.

  18. Coherent ultra dense wavelength division multiplexing passive optical networks

    NASA Astrophysics Data System (ADS)

    Shahpari, Ali; Ferreira, Ricardo; Ribeiro, Vitor; Sousa, Artur; Ziaie, Somayeh; Tavares, Ana; Vujicic, Zoran; Guiomar, Fernando P.; Reis, Jacklyn D.; Pinto, Armando N.; Teixeira, António

    2015-12-01

    In this paper, we firstly review the progress in ultra-dense wavelength division multiplexing passive optical network (UDWDM-PON), by making use of the key attributes of this technology in the context of optical access and metro networks. Besides the inherit properties of coherent technology, we explore different modulation formats and pulse shaping. The performance is experimentally demonstrated through a 12 × 10 Gb/s bidirectional UDWDM-PON over hybrid 80 km standard single mode fiber (SSMF) and optical wireless link. High density, 6.25 GHz grid, Nyquist shaped 16-ary quadrature amplitude modulation (16QAM) and digital frequency shifting are some of the properties exploited together in the tests. Also, bidirectional transmission in fiber, relevant in the context, is analyzed in terms of nonlinear and back-reflection effects on receiver sensitivity. In addition, as a basis for the discussion on market readiness, we experimentally demonstrate real-time detection of a Nyquist-shaped quaternary phase-shift keying (QPSK) signal using simple 8-bit digital signal processing (DSP) on a field-programmable gate array (FPGA).

  19. Dense fibrillar collagen is a potent inducer of invadopodia via a specific signaling network

    PubMed Central

    Swatkoski, Stephen; Matsumoto, Kazue; Campbell, Catherine B.; Petrie, Ryan J.; Dimitriadis, Emilios K.; Li, Xin; Mueller, Susette C.; Bugge, Thomas H.; Gucek, Marjan

    2015-01-01

    Cell interactions with the extracellular matrix (ECM) can regulate multiple cellular activities and the matrix itself in dynamic, bidirectional processes. One such process is local proteolytic modification of the ECM. Invadopodia of tumor cells are actin-rich proteolytic protrusions that locally degrade matrix molecules and mediate invasion. We report that a novel high-density fibrillar collagen (HDFC) matrix is a potent inducer of invadopodia, both in carcinoma cell lines and in primary human fibroblasts. In carcinoma cells, HDFC matrix induced formation of invadopodia via a specific integrin signaling pathway that did not require growth factors or even altered gene and protein expression. In contrast, phosphoproteomics identified major changes in a complex phosphosignaling network with kindlin2 serine phosphorylation as a key regulatory element. This kindlin2-dependent signal transduction network was required for efficient induction of invadopodia on dense fibrillar collagen and for local degradation of collagen. This novel phosphosignaling mechanism regulates cell surface invadopodia via kindlin2 for local proteolytic remodeling of the ECM. PMID:25646088

  20. A Framework for Real-Time Collection, Analysis, and Classification of Ubiquitous Infrasound Data

    NASA Astrophysics Data System (ADS)

    Christe, A.; Garces, M. A.; Magana-Zook, S. A.; Schnurr, J. M.

    2015-12-01

    Traditional infrasound arrays are generally expensive to install and maintain. There are ~10^3 infrasound channels on Earth today. The amount of data currently provided by legacy architectures can be processed on a modest server. However, the growing availability of low-cost, ubiquitous, and dense infrasonic sensor networks presents a substantial increase in the volume, velocity, and variety of data flow. Initial data from a prototype ubiquitous global infrasound network is already pushing the boundaries of traditional research server and communication systems, in particular when serving data products over heterogeneous, international network topologies. We present a scalable, cloud-based approach for capturing and analyzing large amounts of dense infrasonic data (>10^6 channels). We utilize Akka actors with WebSockets to maintain data connections with infrasound sensors. Apache Spark provides streaming, batch, machine learning, and graph processing libraries which will permit signature classification, cross-correlation, and other analytics in near real time. This new framework and approach provide significant advantages in scalability and cost.

  1. The 2009-11 SAHKE Experiment: Preliminary 3D Vp imaging across the interseismically locked southern Hikurangi margin, Wellington, New Zealand

    NASA Astrophysics Data System (ADS)

    Henrys, S. A.; Wech, A.; Sato, H.; Stern, T. A.; Okaya, D. A.; Iwasaki, T.; Savage, M. K.; Mochizuki, K.; Kurashimo, E.; Sutherland, R.

    2013-12-01

    We present a preliminary 3D Vp model from the Seismic Array HiKurangi Experiment (SAHKE). This joint project involving New Zealand, Japan, and US institutions aims to investigate the subduction zone fault characteristics beneath Wellington. Situated above where the Pacific Plate is subducting beneath the Australian plate at a rate of c. 42 mm/yr, the Wellington region provides a unique opportunity to investigate the frictional properties, geometry, and seismic potential of a shallow, locked megathrust fault. Here the coupled plate interface is 20-30 km deep beneath land and can be sampled with onshore/offshore data from 3 sides. We have published a 2D Vp model [Henrys et al., 2013] incorporating coast-to-coast onshore-offshore transect of 50 stations and utilising first arrivals from 2000 offshore MCS shots on either side. The transect velocity model also combined first arrivals from 800 stations with 100 m spacing recorded from 12 in-line, 500 kg onshore dynamite explosions. We have expanded the transect data to now include (i) first arrivals from the dense temporary array of 50 seismometers with c. 7 km spacing augmented with 25 regional network instruments to record 49 local and 45 teleseismic earthquakes over a four month period and (ii), 69,000 offshore airgun shots from 17 MCS lines crisscrossing two sides of the array. We combine all shot and earthquake recordings to simultaneously invert c. 750,000 first arrivals for velocity structure and hypocenters in the densely sampled volume. First results from 3D, Vp tomography and relocated hypocenters provide improved resolution over previous studies. Our improved velocity model provides a high-resolution geometry of the subducting plate to support interpretation of other phases identified in SAHKE shot gathers and local earthquakes. Henrys, S., A. Wech, R. Sutherland, T. Stern, M. Savage, H. Sato, K. Mochizuki, T. Iwasaki, D. Okaya, A. Seward, B. Tozer, J. Townend, E. Kurashimo, T. Iidaka, and T. Ishiyama (2013), SAHKE geophysical transect reveals crustal and subduction zone structure at the southern Hikurangi margin, New Zealand, Geochemistry, Geophysics, Geosystems.

  2. Seismic variability and structural controls on fluid migration in Northern Oklahoma

    NASA Astrophysics Data System (ADS)

    Lambert, C.; Keranen, K. M.; Stevens, N. T.

    2016-12-01

    The broad region of seismicity in northern Oklahoma encompasses distinct structural settings; notably, the area contains both high-length, high-offset faults bounding a major structural uplift (the Nemaha uplift), and also encompasses regions of distributed, low-length, low-offset faults on either side of the uplift. Seismicity differs between these structural settings in mode of migration, rate, magnitude, and mechanism. Here we use our catalog from 2015-2016, acquired using a dense network of 55 temporary broadband seismometers, complemented by data from 40+ regional stations, including the IRIS Wavefields stations. We compare seismicity between these structural settings using precise earthquake locations, focal mechanism solutions, and body-wave tomography. Within and along the dominant Nemaha uplift, earthquakes rarely occur on one of the primary uplift-bounding faults. Earthquakes instead occur within the uplift on isolated, discrete faults, and migrate gradually along these faults at 20-30 m/day. The regions peripheral to the uplift hosted the majority of earthquakes within the year, on multiple series of frequently unmapped, densely-spaced, subparallel faults. We did not detect a similar slow migration along these faults. Earthquakes instead occurred via progressive failure of individual segments along a fault, or jumped abruptly from one fault to another nearby. Mechanisms in both regions are dominantly strike-slip, with the interpreted dominant fault plane orientation rotating from N100E in the Wavefields area (west of the uplift) to N50E (within the uplift). We interpret that the distinct variation in seismicity may result from the variation in fault density and length between the uplift and the surrounding regions. Seismic velocity within the upper basement of the uplift is lower than the velocity on either side, possibly indicative of enhanced fracturing within the uplift, as seen in the Nemaha uplift to the north. The fracturing, along with the large faults, may create fluid pathways that facilitate pressure diffusion. Conversely, outside of the uplift, the numerous small-offset faults that are reactivated appear to be less efficient fluid pathways, inhibiting pressure diffusion and resulting in a higher seismicity rate.

  3. The production route selection algorithm in virtual manufacturing networks

    NASA Astrophysics Data System (ADS)

    Krenczyk, D.; Skolud, B.; Olender, M.

    2017-08-01

    The increasing requirements and competition in the global market are challenges for the companies profitability in production and supply chain management. This situation became the basis for construction of virtual organizations, which are created in response to temporary needs. The problem of the production flow planning in virtual manufacturing networks is considered. In the paper the algorithm of the production route selection from the set of admissible routes, which meets the technology and resource requirements and in the context of the criterion of minimum cost is proposed.

  4. Global Mapping of the Yeast Genetic Interaction Network

    NASA Astrophysics Data System (ADS)

    Tong, Amy Hin Yan; Lesage, Guillaume; Bader, Gary D.; Ding, Huiming; Xu, Hong; Xin, Xiaofeng; Young, James; Berriz, Gabriel F.; Brost, Renee L.; Chang, Michael; Chen, YiQun; Cheng, Xin; Chua, Gordon; Friesen, Helena; Goldberg, Debra S.; Haynes, Jennifer; Humphries, Christine; He, Grace; Hussein, Shamiza; Ke, Lizhu; Krogan, Nevan; Li, Zhijian; Levinson, Joshua N.; Lu, Hong; Ménard, Patrice; Munyana, Christella; Parsons, Ainslie B.; Ryan, Owen; Tonikian, Raffi; Roberts, Tania; Sdicu, Anne-Marie; Shapiro, Jesse; Sheikh, Bilal; Suter, Bernhard; Wong, Sharyl L.; Zhang, Lan V.; Zhu, Hongwei; Burd, Christopher G.; Munro, Sean; Sander, Chris; Rine, Jasper; Greenblatt, Jack; Peter, Matthias; Bretscher, Anthony; Bell, Graham; Roth, Frederick P.; Brown, Grant W.; Andrews, Brenda; Bussey, Howard; Boone, Charles

    2004-02-01

    A genetic interaction network containing ~1000 genes and ~4000 interactions was mapped by crossing mutations in 132 different query genes into a set of ~4700 viable gene yeast deletion mutants and scoring the double mutant progeny for fitness defects. Network connectivity was predictive of function because interactions often occurred among functionally related genes, and similar patterns of interactions tended to identify components of the same pathway. The genetic network exhibited dense local neighborhoods; therefore, the position of a gene on a partially mapped network is predictive of other genetic interactions. Because digenic interactions are common in yeast, similar networks may underlie the complex genetics associated with inherited phenotypes in other organisms.

  5. Epidemics in Adaptive Social Networks with Temporary Link Deactivation

    NASA Astrophysics Data System (ADS)

    Tunc, Ilker; Shkarayev, Maxim S.; Shaw, Leah B.

    2013-04-01

    Disease spread in a society depends on the topology of the network of social contacts. Moreover, individuals may respond to the epidemic by adapting their contacts to reduce the risk of infection, thus changing the network structure and affecting future disease spread. We propose an adaptation mechanism where healthy individuals may choose to temporarily deactivate their contacts with sick individuals, allowing reactivation once both individuals are healthy. We develop a mean-field description of this system and find two distinct regimes: slow network dynamics, where the adaptation mechanism simply reduces the effective number of contacts per individual, and fast network dynamics, where more efficient adaptation reduces the spread of disease by targeting dangerous connections. Analysis of the bifurcation structure is supported by numerical simulations of disease spread on an adaptive network. The system displays a single parameter-dependent stable steady state and non-monotonic dependence of connectivity on link deactivation rate.

  6. NOW: A Workflow Language for Orchestration in Nomadic Networks

    NASA Astrophysics Data System (ADS)

    Philips, Eline; van der Straeten, Ragnhild; Jonckers, Viviane

    Existing workflow languages for nomadic or mobile ad hoc networks do not offer adequate support for dealing with the volatile connections inherent to these environments. Services residing on mobile devices are exposed to (temporary) network failures, which should be considered the rule rather than the exception. This paper proposes a nomadic workflow language built on top of an ambient-oriented programming language which supports dynamic service discovery and communication primitives resilient to network failures. Our proposed language provides high level workflow abstractions for control flow and supports rich network and service failure detection and handling through compensating actions. Moreover, we introduce a powerful variable binding mechanism which enables dynamic data flow between services in a nomadic environment. By adding this extra layer of abstraction on top of an ambient-oriented programming language, the application programmer is offered a flexible way to develop applications for nomadic networks.

  7. Shear-induced organization of forces in dense suspensions: signatures of discontinuous shear thickening

    NASA Astrophysics Data System (ADS)

    Sarkar, Sumantra; Shatoff, Elan; Ramola, Kabir; Mari, Romain; Morris, Jeffrey; Chakraborty, Bulbul

    2017-06-01

    Dense suspensions can exhibit an abrupt change in their viscosity in response to increasing shear rate. The origin of this discontinuous shear thickening (DST) has been ascribed to the transformation of lubricated contacts to frictional, particle-on-particle contacts. Recent research on the flowing and jamming behavior of dense suspensions has explored the intersection of ideas from granular physics and Stokesian fluid dynamics to better understand this transition from lubricated to frictional rheology. DST is reminiscent of classical phase transitions, and a key question is how interactions between the microscopic constituents give rise to a macroscopic transition. In this paper, we extend a formalism that has proven to be successful in understanding shear jamming of dry grains to dense suspensions. Quantitative analysis of the collective evolution of the contactforce network accompanying the DST transition demonstrates clear changes in the distribution of microscopic variables, and leads to the identification of an "order parameter" characterizing DST.

  8. Local Crystalline Structure in an Amorphous Protein Dense Phase

    PubMed Central

    Greene, Daniel G.; Modla, Shannon; Wagner, Norman J.; Sandler, Stanley I.; Lenhoff, Abraham M.

    2015-01-01

    Proteins exhibit a variety of dense phases ranging from gels, aggregates, and precipitates to crystalline phases and dense liquids. Although the structure of the crystalline phase is known in atomistic detail, little attention has been paid to noncrystalline protein dense phases, and in many cases the structures of these phases are assumed to be fully amorphous. In this work, we used small-angle neutron scattering, electron microscopy, and electron tomography to measure the structure of ovalbumin precipitate particles salted out with ammonium sulfate. We found that the ovalbumin phase-separates into core-shell particles with a core radius of ∼2 μm and shell thickness of ∼0.5 μm. Within this shell region, nanostructures comprised of crystallites of ovalbumin self-assemble into a well-defined bicontinuous network with branches ∼12 nm thick. These results demonstrate that the protein gel is comprised in part of nanocrystalline protein. PMID:26488663

  9. Ecohydrological and subsurface controls on drought-induced contraction and disconnection of stream networks

    NASA Astrophysics Data System (ADS)

    Godsey, S.; Kirchner, J. W.; Whiting, J. A.

    2016-12-01

    Temporary headwater streams - both intermittent and ephemeral waterways - supply water to approximately 1/3 of the US population, and 60% of streams used for drinking water are temporary. Stream ecologists increasingly recognize that a gradient of processes across the drying continuum affect ecosystems at dynamic terrestrial-aquatic interfaces. Understanding the hydrological controls across that gradient of drying may improve management of these sensitive systems. One possible control on surface flows includes transpiration losses from either the riparian zone or the entire watershed. We mapped several stream networks under extreme low flow conditions brought on by severe drought in central Idaho and California in 2015. Compared to previous low-flow stream length estimates, the active drainage network had generally decreased by a very small amount across these sites, perhaps because stored water buffered the precipitation decrease, or because flowing channel heads are fixed by focused groundwater flow emerging at springs. We also examined the apparent sources of water for both riparian and hillslope trees using isotopic techniques. During drought conditions, we hypothesized that riparian trees - but not those far from flowing streams - would be sustained by streamflow recharging riparian aquifers, and thus would transpire water that was isotopically similar to streamflow because little soil water would remain available below the wilting point and stream water would be sustain those trees. We found a more complex pattern, but in most places stream water and water transpired by trees were isotopically distinct regardless of flow intermittency or tree location. We also found that hillslope trees outside of the riparian zone appeared to be using different waters from those used by riparian trees. Finally, we explore subsurface controls on network extent, showing that bedrock characteristics can influence network stability and contraction patterns.

  10. Cortical Dynamics in Presence of Assemblies of Densely Connected Weight-Hub Neurons

    PubMed Central

    Setareh, Hesam; Deger, Moritz; Petersen, Carl C. H.; Gerstner, Wulfram

    2017-01-01

    Experimental measurements of pairwise connection probability of pyramidal neurons together with the distribution of synaptic weights have been used to construct randomly connected model networks. However, several experimental studies suggest that both wiring and synaptic weight structure between neurons show statistics that differ from random networks. Here we study a network containing a subset of neurons which we call weight-hub neurons, that are characterized by strong inward synapses. We propose a connectivity structure for excitatory neurons that contain assemblies of densely connected weight-hub neurons, while the pairwise connection probability and synaptic weight distribution remain consistent with experimental data. Simulations of such a network with generalized integrate-and-fire neurons display regular and irregular slow oscillations akin to experimentally observed up/down state transitions in the activity of cortical neurons with a broad distribution of pairwise spike correlations. Moreover, stimulation of a model network in the presence or absence of assembly structure exhibits responses similar to light-evoked responses of cortical layers in optogenetically modified animals. We conclude that a high connection probability into and within assemblies of excitatory weight-hub neurons, as it likely is present in some but not all cortical layers, changes the dynamics of a layer of cortical microcircuitry significantly. PMID:28690508

  11. A Gap-Filling Procedure for Hydrologic Data Based on Kalman Filtering and Expectation Maximization: Application to Data from the Wireless Sensor Networks of the Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Coogan, A.; Avanzi, F.; Akella, R.; Conklin, M. H.; Bales, R. C.; Glaser, S. D.

    2017-12-01

    Automatic meteorological and snow stations provide large amounts of information at dense temporal resolution, but data quality is often compromised by noise and missing values. We present a new gap-filling and cleaning procedure for networks of these stations based on Kalman filtering and expectation maximization. Our method utilizes a multi-sensor, regime-switching Kalman filter to learn a latent process that captures dependencies between nearby stations and handles sharp changes in snowfall rate. Since the latent process is inferred using observations across working stations in the network, it can be used to fill in large data gaps for a malfunctioning station. The procedure was tested on meteorological and snow data from Wireless Sensor Networks (WSN) in the American River basin of the Sierra Nevada. Data include air temperature, relative humidity, and snow depth from dense networks of 10 to 12 stations within 1 km2 swaths. Both wet and dry water years have similar data issues. Data with artificially created gaps was used to quantify the method's performance. Our multi-sensor approach performs better than a single-sensor one, especially with large data gaps, as it learns and exploits the dominant underlying processes in snowpack at each site.

  12. Fast algorithm for automatically computing Strahler stream order

    USGS Publications Warehouse

    Lanfear, Kenneth J.

    1990-01-01

    An efficient algorithm was developed to determine Strahler stream order for segments of stream networks represented in a Geographic Information System (GIS). The algorithm correctly assigns Strahler stream order in topologically complex situations such as braided streams and multiple drainage outlets. Execution time varies nearly linearly with the number of stream segments in the network. This technique is expected to be particularly useful for studying the topology of dense stream networks derived from digital elevation model data.

  13. Performance Evaluation of AODV with Blackhole Attack

    NASA Astrophysics Data System (ADS)

    Dara, Karuna

    2010-11-01

    A Mobile Ad Hoc Network (MANET) is a temporary network set up by a wireless mobile computers moving arbitrary in the places that have no network infrastructure. These nodes maintain connectivity in a decentralized manner. Since the nodes communicate with each other, they cooperate by forwarding data packets to other nodes in the network. Thus the nodes find a path to the destination node using routing protocols. However, due to security vulnerabilities of the routing protocols, mobile ad-hoc networks are unprotected to attacks of the malicious nodes. One of these attacks is the Black Hole Attack against network integrity absorbing all data packets in the network. Since the data packets do not reach the destination node on account of this attack, data loss will occur. In this paper, we simulated the black hole attack in various mobile ad-hoc network scenarios using AODV routing protocol of MANET and have tried to find a effect if number of nodes are increased with increase in malicious nodes.

  14. Polarization Analysis of the September 2005 Northern Cascadia Episodic Tremor and Slip Event

    NASA Astrophysics Data System (ADS)

    Wech, A. G.; Creager, K. C.

    2006-12-01

    The region of Northern Cascadia, extending from the Olympic Mountains and Puget Sound to southern Vancouver Island, down-dip of the subduction "locked" zone has repeatedly experienced episodes of slow slip. This episodic slip, observed to take place over a period of two to several weeks, is accompanied by a seismic tremor signal. Based on the average recurrence interval of 14 months, the last episodic tremor and slip (ETS) event was expected to occur in September, 2005. Indeed, it began on September 3. In order to record this event, we deployed an array of 11 three-component seismometers on the northern side of the Olympic Peninsula augmenting Pacific Northwest Seismographic Network stations as well as the first few EarthScope BigFoot stations and Plate Boundary Observatory borehole seismometers. This seismic array was comprised of six short-period and five broadband instruments with average spacings of 500 m and 2200 m respectively. In conjunction with this Earthscope seismic deployment, we also installed a dense network of 29 temporary, continuous GPS stations across the entire Olympic Peninsula to integrate seismic and geodetic observations. Based on past geodetic observations, a dominant assumption for the source of tremor is fault-slip in the direction of subduction, which can be tested using polarization of the seismic tremor. Using waveform cross- correlation to invert for the direction of slowness, we observed the tremor signal to migrate directly under our array. As the source passed beneath the array, tremor polarization stabilized to coincide with the direction of subduction. During a four day period starting September 8, the normalized eigenvalue associated with the dominant linear polarization jumped from ~0.7 to a stable 0.9 value. Also during this time, the polarization azimuth stabilized to a value of 57 +/- 8 degrees, close to the angle of subduction (56 degrees) suggesting that the tremor is caused by slip in the direction of relative plate motion on one or more faults.

  15. SMAP Validation Experiment 2015 (SMAPVEX15)

    NASA Astrophysics Data System (ADS)

    Colliander, A.; Jackson, T. J.; Cosh, M. H.; Misra, S.; Crow, W. T.; Chae, C. S.; Moghaddam, M.; O'Neill, P. E.; Entekhabi, D.; Yueh, S. H.

    2015-12-01

    NASA's (National Aeronautics and Space Administration) Soil Moisture Active Passive (SMAP) mission was launched in January 2015. The objective of the mission is global mapping of soil moisture and freeze/thaw state. For soil moisture algorithm validation, the SMAP project and NASA coordinated SMAPVEX15 around the Walnut Gulch Experimental Watershed (WGEW) in Tombstone, Arizona on August 1-19, 2015. The main goals of SMAPVEX15 are to understand the effects and contribution of heterogeneity on the soil moisture retrievals, evaluate the impact of known RFI sources on retrieval, and analyze the brightness temperature product calibration and heterogeneity effects. Additionally, the campaign aims to contribute to the validation of GPM (Global Precipitation Mission) data products. The campaign will feature three airborne microwave instruments: PALS (Passive Active L-band System), UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar) and AirMOSS (Airborne Microwave Observatory of Subcanopy and Subsurface). PALS has L-band radiometer and radar, and UAVSAR and AirMOSS have L- and P-band synthetic aperture radars, respectively. The PALS instrument will map the area on seven days coincident with SMAP overpasses; UAVSAR and AirMOSS on four days. WGEW was selected as the experiment site due to the rainfall patterns in August and existing dense networks of precipitation gages and soil moisture sensors. An additional temporary network of approximately 80 soil moisture stations was deployed in the region. Rainfall observations were supplemented with two X-band mobile scanning radars, approximately 25 tipping bucket rain gauges, three laser disdrometers, and three vertically-profiling K-band radars. Teams were on the field to take soil moisture samples for gravimetric soil moisture, bulk density and rock fraction determination as well as to measure surface roughness and vegetation water content. In this talk we will present preliminary results from the experiment including comparisons between SMAP and PALS soil moisture retrievals with respect to the in situ measurements. Acknowledgement: This work was carried out in part at Jet Propulsion Laboratory, California Institute of Technology under contract with National Aeronautics and Space Administration.

  16. Data from deployment of temporary seismic stations in northern Norway and Finland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maercklin, N; Mykkeltveit, S; Schweitzer, J

    2005-02-11

    This short contribution is a description of data now available in NORSAR's data archives from a temporary deployment during 2002-2004 of six seismic stations in northern Norway and Finland. Explosions in underground as well as open-pit mines in the Khibiny massif of the Kola Peninsula of northwestern Russia are conducted on a frequent and relatively regular basis. It was decided to supplement the network of permanent stations in northern Fennoscandia and northwest Russia with temporarily deployed stations, in order to record these explosions, as well as other mining explosions and natural events occurring in this general area. As shown inmore » Fig. 6.4.1, the six temporary stations were deployed along two profile lines, extending westwards from the Khibini massif. The rationale for this deployment was to collect data to examine distance as well as azimuthal dependence of seismic discriminants. As can be seen from Fig. 6.4.1 the southernmost of the two profile lines runs through the permanent seismic array ARCES in northern Norway.« less

  17. Regional and local variations in atmospheric aerosols using ground-based sun photometry during Distributed Regional Aerosol Gridded Observation Networks (DRAGON) in 2012

    NASA Astrophysics Data System (ADS)

    Sano, Itaru; Mukai, Sonoyo; Nakata, Makiko; Holben, Brent N.

    2016-11-01

    Aerosol mass concentrations are affected by local emissions as well as long-range transboundary (LRT) aerosols. This work investigates regional and local variations of aerosols based on Distributed Regional Aerosol Gridded Observation Networks (DRAGON). We constructed DRAGON-Japan and DRAGON-Osaka in spring of 2012. The former network covers almost all of Japan in order to obtain aerosol information in regional scale over Japanese islands. It was determined from the DRAGON-Japan campaign that the values of aerosol optical thickness (AOT) decrease from west to east during an aerosol episode. In fact, the highest AOT was recorded at Fukue Island at the western end of the network, and the value was much higher than that of urban areas. The latter network (DRAGON-Osaka) was set as a dense instrument network in the megalopolis of Osaka, with a population of 12 million, to better understand local aerosol dynamics in urban areas. AOT was further measured with a mobile sun photometer attached to a car. This transect information showed that aerosol concentrations rapidly changed in time and space together when most of the Osaka area was covered with moderate LRT aerosols. The combined use of the dense instrument network (DRAGON-Osaka) and high-frequency measurements provides the motion of aerosol advection, which coincides with the wind vector around the layer between 700 and 850 hPa as provided by the reanalysis data of the National Centers for Environmental Prediction (NCEP).

  18. Regional and Local Variations in Atmospheric Aerosols Using Ground-Based Sun Photometry During Distributed Regional Aerosol Gridded Observation Networks (DRAGON) in 2012

    NASA Technical Reports Server (NTRS)

    Sano, Itaru; Mukai, Sonoyo; Nakata, Makiko; Holben, Brent N.

    2016-01-01

    Aerosol mass concentrations are affected by local emissions as well as long-range transboundary (LRT) aerosols. This work investigates regional and local variations of aerosols based on Distributed Regional Aerosol Gridded Observation Networks (DRAGON).We constructed DRAGON-Japan and DRAGON-Osaka in spring of 2012. The former network covers almost all of Japan in order to obtain aerosol information in regional scale over Japanese islands. It was determined from the DRAGON-Japan campaign that the values of aerosol optical thickness (AOT) decrease from west to east during an aerosol episode. In fact, the highest AOT was recorded at Fukue Island at the western end of the network, and the value was much higher than that of urban areas. The latter network (DRAGON-Osaka) was set as a dense instrument network in the megalopolis of Osaka, with a population of 12 million, to better understand local aerosol dynamics in urban areas. AOT was further measured with a mobile sun photometer attached to a car. This transect information showed that aerosol concentrations rapidly changed in time and space together when most of the Osaka area was covered with moderate LRT aerosols. The combined use of the dense instrument network (DRAGON-Osaka) and high-frequency measurements provides the motion of aerosol advection, which coincides with the wind vector around the layer between 700 and 850 hPa as provided by the reanalysis data of the National Centers for Environmental Prediction (NCEP).

  19. Memory-Efficient Analysis of Dense Functional Connectomes.

    PubMed

    Loewe, Kristian; Donohue, Sarah E; Schoenfeld, Mircea A; Kruse, Rudolf; Borgelt, Christian

    2016-01-01

    The functioning of the human brain relies on the interplay and integration of numerous individual units within a complex network. To identify network configurations characteristic of specific cognitive tasks or mental illnesses, functional connectomes can be constructed based on the assessment of synchronous fMRI activity at separate brain sites, and then analyzed using graph-theoretical concepts. In most previous studies, relatively coarse parcellations of the brain were used to define regions as graphical nodes. Such parcellated connectomes are highly dependent on parcellation quality because regional and functional boundaries need to be relatively consistent for the results to be interpretable. In contrast, dense connectomes are not subject to this limitation, since the parcellation inherent to the data is used to define graphical nodes, also allowing for a more detailed spatial mapping of connectivity patterns. However, dense connectomes are associated with considerable computational demands in terms of both time and memory requirements. The memory required to explicitly store dense connectomes in main memory can render their analysis infeasible, especially when considering high-resolution data or analyses across multiple subjects or conditions. Here, we present an object-based matrix representation that achieves a very low memory footprint by computing matrix elements on demand instead of explicitly storing them. In doing so, memory required for a dense connectome is reduced to the amount needed to store the underlying time series data. Based on theoretical considerations and benchmarks, different matrix object implementations and additional programs (based on available Matlab functions and Matlab-based third-party software) are compared with regard to their computational efficiency. The matrix implementation based on on-demand computations has very low memory requirements, thus enabling analyses that would be otherwise infeasible to conduct due to insufficient memory. An open source software package containing the created programs is available for download.

  20. Memory-Efficient Analysis of Dense Functional Connectomes

    PubMed Central

    Loewe, Kristian; Donohue, Sarah E.; Schoenfeld, Mircea A.; Kruse, Rudolf; Borgelt, Christian

    2016-01-01

    The functioning of the human brain relies on the interplay and integration of numerous individual units within a complex network. To identify network configurations characteristic of specific cognitive tasks or mental illnesses, functional connectomes can be constructed based on the assessment of synchronous fMRI activity at separate brain sites, and then analyzed using graph-theoretical concepts. In most previous studies, relatively coarse parcellations of the brain were used to define regions as graphical nodes. Such parcellated connectomes are highly dependent on parcellation quality because regional and functional boundaries need to be relatively consistent for the results to be interpretable. In contrast, dense connectomes are not subject to this limitation, since the parcellation inherent to the data is used to define graphical nodes, also allowing for a more detailed spatial mapping of connectivity patterns. However, dense connectomes are associated with considerable computational demands in terms of both time and memory requirements. The memory required to explicitly store dense connectomes in main memory can render their analysis infeasible, especially when considering high-resolution data or analyses across multiple subjects or conditions. Here, we present an object-based matrix representation that achieves a very low memory footprint by computing matrix elements on demand instead of explicitly storing them. In doing so, memory required for a dense connectome is reduced to the amount needed to store the underlying time series data. Based on theoretical considerations and benchmarks, different matrix object implementations and additional programs (based on available Matlab functions and Matlab-based third-party software) are compared with regard to their computational efficiency. The matrix implementation based on on-demand computations has very low memory requirements, thus enabling analyses that would be otherwise infeasible to conduct due to insufficient memory. An open source software package containing the created programs is available for download. PMID:27965565

  1. Spatial and temporal variation of water temperature regimes on the Snoqualmie River network

    Treesearch

    Ashley E. Steel; Colin Sowder; Erin E. Peterson

    2016-01-01

    Although mean temperatures change annually and are highly correlated with elevation, the entire thermal regime on the Snoqualmie River, Washington, USA does not simply shift with elevation or season. Particular facets of the thermal regime have unique spatial patterns on the river network and at particular times of the year. We used a spatially and temporally dense...

  2. Weak Ties and Self-Regulation in Job Search: The Effects of Goal Orientation on Networking

    ERIC Educational Resources Information Center

    Hatala, John-Paul; Yamkovenko, Bogdan

    2016-01-01

    The purpose of this study is to empirically investigate the relationship between the self-regulatory variable of goal orientation and the extent to which job seekers reach out to and use weak ties in their job search. Weak ties, as defined by Granovettor, are connections to densely knit networks outside the individual's direct contacts who could…

  3. 3D morphometry of valley networks on Mars from HRSC/MEX DEMs: Implications for climatic evolution through time

    NASA Astrophysics Data System (ADS)

    Ansan, V.; Mangold, N.

    2013-09-01

    valley networks have been identified mainly in the Noachian heavily cratered uplands. Eight dense branching valley networks were studied in Noachian terrains of Huygens, Newcomb and Kepler craters, south Tyrrhena Terra, and Thaumasia, in Hesperian terrains of Echus Plateau and west Eberswalde craters, and in Amazonian terrains of Alba Patera, using images and digital elevation models from the Mars Express High Resolution Stereo Camera to determine 2D and 3D morphometric parameters. Extracted geomorphic parameters show similar geometry to terrestrial valleys: drainage densities, organization from bifurcation ratios and lengths ratios, Hack exponent consistent with terrestrial values of ~0.6, and progressive deepening of valleys with increasing Strahler order. In addition, statistics on valley depths indicate a deeper incision of Noachian valleys compared to younger post-Noachian valleys (<25 m for Amazonian ones compared to >100 m for Noachian ones), showing a strong difference in fluvial erosion. These characteristics show that dense Martian valley networks formed by overland flows in relation to a global atmospheric water cycle in Noachian epoch and confirm that the later stages of activity may be related to shorter duration of activity, distinct climatic conditions, and/or regional processes, or conditions.

  4. Field-scale moisture estimates using COSMOS sensors: a validation study with temporary networks and leaf-area-indices

    USDA-ARS?s Scientific Manuscript database

    The Cosmic-ray Soil Moisture Observing System (COSMOS) is a new and innovative method for estimating surface and near surface soil moisture at large (~700 m) scales. This system accounts for liquid water within its measurement volume. Many of the sites used in the early validation of the system had...

  5. A Bayesian Network Meta-Analysis to Synthesize the Influence of Contexts of Scaffolding Use on Cognitive Outcomes in STEM Education

    ERIC Educational Resources Information Center

    Belland, Brian R.; Walker, Andrew E.; Kim, Nam Ju

    2017-01-01

    Computer-based scaffolding provides temporary support that enables students to participate in and become more proficient at complex skills like problem solving, argumentation, and evaluation. While meta-analyses have addressed between-subject differences on cognitive outcomes resulting from scaffolding, none has addressed within-subject gains.…

  6. Overlapping communities from dense disjoint and high total degree clusters

    NASA Astrophysics Data System (ADS)

    Zhang, Hongli; Gao, Yang; Zhang, Yue

    2018-04-01

    Community plays an important role in the field of sociology, biology and especially in domains of computer science, where systems are often represented as networks. And community detection is of great importance in the domains. A community is a dense subgraph of the whole graph with more links between its members than between its members to the outside nodes, and nodes in the same community probably share common properties or play similar roles in the graph. Communities overlap when nodes in a graph belong to multiple communities. A vast variety of overlapping community detection methods have been proposed in the literature, and the local expansion method is one of the most successful techniques dealing with large networks. The paper presents a density-based seeding method, in which dense disjoint local clusters are searched and selected as seeds. The proposed method selects a seed by the total degree and density of local clusters utilizing merely local structures of the network. Furthermore, this paper proposes a novel community refining phase via minimizing the conductance of each community, through which the quality of identified communities is largely improved in linear time. Experimental results in synthetic networks show that the proposed seeding method outperforms other seeding methods in the state of the art and the proposed refining method largely enhances the quality of the identified communities. Experimental results in real graphs with ground-truth communities show that the proposed approach outperforms other state of the art overlapping community detection algorithms, in particular, it is more than two orders of magnitude faster than the existing global algorithms with higher quality, and it obtains much more accurate community structure than the current local algorithms without any priori information.

  7. An advanced modelling tool for simulating complex river systems.

    PubMed

    Trancoso, Ana Rosa; Braunschweig, Frank; Chambel Leitão, Pedro; Obermann, Matthias; Neves, Ramiro

    2009-04-01

    The present paper describes MOHID River Network (MRN), a 1D hydrodynamic model for river networks as part of MOHID Water Modelling System, which is a modular system for the simulation of water bodies (hydrodynamics and water constituents). MRN is capable of simulating water quality in the aquatic and benthic phase and its development was especially focused on the reproduction of processes occurring in temporary river networks (flush events, pools formation, and transmission losses). Further, unlike many other models, it allows the quantification of settled materials at the channel bed also over periods when the river falls dry. These features are very important to secure mass conservation in highly varying flows of temporary rivers. The water quality models existing in MOHID are base on well-known ecological models, such as WASP and ERSEM, the latter allowing explicit parameterization of C, N, P, Si, and O cycles. MRN can be coupled to the basin model, MOHID Land, with computes runoff and porous media transport, allowing for the dynamic exchange of water and materials between the river and surroundings, or it can be used as a standalone model, receiving discharges at any specified nodes (ASCII files of time series with arbitrary time step). These features account for spatial gradients in precipitation which can be significant in Mediterranean-like basins. An interface has been already developed for SWAT basin model.

  8. 1D and 2D site amplification effects at Tarcento (Friuli, NE Italy), 30 years later

    NASA Astrophysics Data System (ADS)

    Cauzzi, Carlo; Faccioli, Ezio; Costa, Giovanni

    2011-01-01

    A temporary accelerometer network has been installed in Tarcento (Friuli, NE Italy), a small town heavily hit by the 1976-1977 Friuli earthquake sequence, as a part of an ongoing research project aimed at ground motion simulation and generation of shakemaps in the near-field of an earthquake. The network operated from October 2008 to April 2010 and consisted of three K2 accelerographs with internal Episensor, distributed over a linear array of about 1.5 km length. Tarcento town had been chosen, at the end of the 1970s, as the ideal site for a pilot microzonation study, the first of this kind in Italy, in which a substantial number of field (and laboratory) tests were carried out in order to assess the mechanical properties of local alluvium deposits and their complex (3D) geometrical configuration. The data from the temporary network, illustrated herein, allow for proper verification and review of some of the quantitative predictions formulated in the 1980 study. As argued in the discussion section, we also believe that the data are apt to provide valuable information of more general interest on the complex seismic response of alluvium-filled valleys, and we show therein how the observations can be interpreted in the light of presently available parametric simulation studies and simplified criteria for handling basin amplification effects.

  9. Techno-Economic Analysis of FiWi Access Networks Based on 802.11ac WLAN and NG-PON2 Networks

    NASA Astrophysics Data System (ADS)

    Breskovic, Damir; Begusic, Dinko

    2017-05-01

    In this article, techno-economic analysis of a fiber-wireless access network is presented. With high bandwidth capacity of the gigabit passive optical network and with cost-effectiveness of very high throughput 802.11ac wireless local area networks that enable user mobility in the wireless segment, fiber-wireless access networks can be considered as an alternative to the fiber-to-the-home architecture for next generation access networks. Analysis based on the proposed scenario here, shows that a fiber-wireless access network is a more cost-effective solution in densely populated areas, but with some introduced improvements, even other geotypes can be considered as a commercially-viable solution.

  10. Data analysis of a dense GPS network operated during the ESCOMPTE campaign: first results

    NASA Astrophysics Data System (ADS)

    Walpersdorf, A.; Bock, O.; Doerflinger, E.; Masson, F.; van Baelen, J.; Somieski, A.; Bürki, B.

    The experiment GPS/H 2O involving 17 GPS receivers has been operated for two weeks in June 2001 in a dense network around Marseille. This project was integrated into the ESCOMPTE campaign. This paper will focus on the GPS analysis in preparation of the tomographic inversion of GPS slant delays. As first results, GPS tropospheric parameters zenith delays and horizontal gradients have been extracted. For a first visualization of the humidity field overlying the network, zenith delays have been transformed into precipitable water. Successive humidity fields are presented for a period of sudden drop in humidity, indicating some spatial resolution in the small network. The time series of horizontal gradients evaluated at individual sites are compared to correlated zenith delay variations over the whole network (horizontal gradient of zenith delays), showing that in the small size network horizontal atmospheric structure is reflected by both types of parameters. To compare these two quantities, scaling of zenith delays due to different station altitudes was necessary. In this way, a GPS internal validation of the individual gradients by comparison with the horizontal gradient of zenith delays has been established. Differential features along transects across the network indicate a good spatial resolution of tropospheric phenomena, encouraging for the further tomographic exploitation of the data. Moreover, individual and zenith delay gradients weight differently atmospheric horizontal gradients occurring at different heights. This different sensitivity has been used for a first identification of a vertical atmospheric structure from GPS tropospheric delays, by observing an inclined frontal zone crossing the network.

  11. Improving rainfall estimation from commercial microwave links using METEOSAT SEVIRI cloud cover information

    NASA Astrophysics Data System (ADS)

    Boose, Yvonne; Doumounia, Ali; Chwala, Christian; Moumouni, Sawadogo; Zougmoré, François; Kunstmann, Harald

    2017-04-01

    The number of rain gauges is declining worldwide. A recent promising method for alternative precipitation measurements is to derive rain rates from the attenuation of the microwave signal between remote antennas of mobile phone base stations, so called commercial microwave links (CMLs). In European countries, such as Germany, the CML technique can be used as a complementary method to the existing gauge and radar networks improving their products, for example, in mountainous terrain and urban areas. In West African countries, where a dense gauge or radar network is absent, the number of mobile phone users is rapidly increasing and so are the CML networks. Hence, the CML-derived precipitation measurements have high potential for applications such as flood warning and support of agricultural planning in this region. For typical CML bandwidths (10-40 GHz), the relationship of attenuation to rain rate is quasi-linear. However, also humidity, wet antennas or electronic noise can lead to signal interference. To distinguish these fluctuations from actual attenuation due to rain, a temporal wet (rain event occurred)/ dry (no rain event) classification is usually necessary. In dense CML networks this is possible by correlating neighboring CML time series. Another option is to use the correlation between signal time series of different frequencies or bidirectional signals. The CML network in rural areas is typically not dense enough for correlation analysis and often only one polarization and one frequency are available along a CML. In this work we therefore use cloud cover information derived from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) radiometer onboard the geostationary satellite METEOSAT for a wet (pixels along link are cloud covered)/ dry (no cloud along link) classification. We compare results for CMLs in Burkina Faso and Germany, which differ meteorologically (rain rate and duration, droplet size distributions) and technically (CML frequencies, lengths, signal level) and use rain gauge data as ground truth for validation.

  12. Is the seismicity swarm at long-dormant Jailolo volcano (Indonesia) a signature of a magmatic unrest?

    NASA Astrophysics Data System (ADS)

    Passarelli, Luigi; Cesca, Simone; Heryandoko, Nova; Lopez Comino, Jose Angel; Strollo, Angelo; Rivalta, Eleonora; Rohadi, Supryianto; Dahm, Torsten; Milkereit, Claus

    2017-04-01

    Magmatic unrest is challenging to detect when monitoring is sparse and there is little knowledge about the volcano. This is especially true for long-dormant volcanoes. Geophysical observables like seismicity, deformation, temperature and gas emission are reliable indicators of ongoing volcanic unrest caused by magma movements. Jailolo volcano is a Holocene volcano belonging to the Halmahera volcanic arc in the Northern Moluccas Islands, Indonesia. Global databases of volcanic eruptions have no records of its eruptive activity and no geological investigation has been carried out to better assess the past eruptive activity at Jailolo. It probably sits on the northern rim of an older caldera which now forms the Jailolo bay. Hydrothermal activity is intense with several hot-springs and steaming ground spots around the Jailolo volcano. In November 2015 an energetic seismic swarm started and lasted until late February 2016 with four earthquakes with M>5 recorded by global seismic networks. At the time of the swarm no close geophysical monitoring network was available around Jailolo volcano except for a broadband station at 30km distant. We installed last summer a local dense multi-parametric monitoring network with 36 seismic stations, 6 GPS and 2 gas monitoring stations around Jailolo volcano. We revised the focal mechanisms of the larger events and used single station location methods in order to exploit the little information available at the time of the swarm activity. We also combined the old sparse data with our local dense network. Migration of hypocenters and inversion of the local stress field derived by focal mechanisms analysis indicate that the Nov-Feb seismicity swarm may be related to a magmatic intrusion at shallow depth. Data from our dense network confirms ongoing micro-seismic activity underneath Jailolo volcano but there are no indications of new magma intrusion. Our findings indicate that magmatic unrest occurred at Jailolo volcano and call for a revision of the volcanic hazard.

  13. Strategy of thunderstorm measurement with super dense ground-based observation network

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Sato, M.

    2014-12-01

    It's not easy to understand the inside structure and developing process of thunderstorm only with existing meteorological instruments since its horizontal extent of the storm cell is sometimes smaller than an order of 10 km while one of the densest ground network in Japan, AMEDAS, consists of sites located every 17 km in average and the resolution of meteorological radar is 1-2 km in general. Even the X-band radar realizes the resolution of 250 m or larger. Here we suggest a new super dense observation network with simple and low cost sensors that can be used for measurement both of raindrop and vertical electric field change caused by cloud-to-ground lightning discharge. This sensor consists of two aluminum plates with a diameter of 10-20 cm. We carried out an observation campaign in summer of 2013 in the foothills of Mt. Yastugatake, Yamanashi and Nagano prefectures in Japan, installing 6 plate-type sensors at a distance of about 4 km. Horizontal location, height and charge amount of each lightning discharge are estimated successfully based on the information of electric field changes at several observing sites. Moreover, it was found that the thunderstorm has a very narrow structure well smaller than 300 m that cannot be measured by any other ways, counting the positive and negative pulses caused by attachment of raindrop to the sensor plate, respectively. We plan to construct a new super dense observation network in the north Kanto region, Japan, where the lightning activity is most prominent in summer Japan, distributing more than several tens of sensors at every 4 km or shorter, such as an order of 100 m at minimum. This kind of new type network will reveal the unknown fine structures of thunderstorms and open the door for constructing real time alert system of torrential rainfall and lightning stroke especially in the city area.

  14. Accounting for spatiotemporal errors of gauges: A critical step to evaluate gridded precipitation products

    NASA Astrophysics Data System (ADS)

    Tang, Guoqiang; Behrangi, Ali; Long, Di; Li, Changming; Hong, Yang

    2018-04-01

    Rain gauge observations are commonly used to evaluate the quality of satellite precipitation products. However, the inherent difference between point-scale gauge measurements and areal satellite precipitation, i.e. a point of space in time accumulation v.s. a snapshot of time in space aggregation, has an important effect on the accuracy and precision of qualitative and quantitative evaluation results. This study aims to quantify the uncertainty caused by various combinations of spatiotemporal scales (0.1°-0.8° and 1-24 h) of gauge network designs in the densely gauged and relatively flat Ganjiang River basin, South China, in order to evaluate the state-of-the-art satellite precipitation, the Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG). For comparison with the dense gauge network serving as "ground truth", 500 sparse gauge networks are generated through random combinations of gauge numbers at each set of spatiotemporal scales. Results show that all sparse gauge networks persistently underestimate the performance of IMERG according to most metrics. However, the probability of detection is overestimated because hit and miss events are more likely fewer than the reference numbers derived from dense gauge networks. A nonlinear error function of spatiotemporal scales and the number of gauges in each grid pixel is developed to estimate the errors of using gauges to evaluate satellite precipitation. Coefficients of determination of the fitting are above 0.9 for most metrics. The error function can also be used to estimate the required minimum number of gauges in each grid pixel to meet a predefined error level. This study suggests that the actual quality of satellite precipitation products could be better than conventionally evaluated or expected, and hopefully enables non-subject-matter-expert researchers to have better understanding of the explicit uncertainties when using point-scale gauge observations to evaluate areal products.

  15. High performance shape memory polymer networks based on rigid nanoparticle cores

    PubMed Central

    Song, Jie

    2010-01-01

    Smart materials that can respond to external stimuli are of widespread interest in biomedical science. Thermal-responsive shape memory polymers, a class of intelligent materials that can be fixed at a temporary shape below their transition temperature (Ttrans) and thermally triggered to resume their original shapes on demand, hold great potential as minimally invasive self-fitting tissue scaffolds or implants. The intrinsic mechanism for shape memory behavior of polymers is the freezing and activation of the long-range motion of polymer chain segments below and above Ttrans, respectively. Both Ttrans and the extent of polymer chain participation in effective elastic deformation and recovery are determined by the network composition and structure, which are also defining factors for their mechanical properties, degradability, and bioactivities. Such complexity has made it extremely challenging to achieve the ideal combination of a Ttrans slightly above physiological temperature, rapid and complete recovery, and suitable mechanical and biological properties for clinical applications. Here we report a shape memory polymer network constructed from a polyhedral oligomeric silsesquioxane nanoparticle core functionalized with eight polyester arms. The cross-linked networks comprising this macromer possessed a gigapascal-storage modulus at body temperature and a Ttrans between 42 and 48 °C. The materials could stably hold their temporary shapes for > 1 year at room temperature and achieve full shape recovery ≤ 51 °C in a matter of seconds. Their versatile structures allowed for tunable biodegradability and biofunctionalizability. These materials have tremendous promise for tissue engineering applications. PMID:20375285

  16. Community structure and scale-free collections of Erdős-Rényi graphs.

    PubMed

    Seshadhri, C; Kolda, Tamara G; Pinar, Ali

    2012-05-01

    Community structure plays a significant role in the analysis of social networks and similar graphs, yet this structure is little understood and not well captured by most models. We formally define a community to be a subgraph that is internally highly connected and has no deeper substructure. We use tools of combinatorics to show that any such community must contain a dense Erdős-Rényi (ER) subgraph. Based on mathematical arguments, we hypothesize that any graph with a heavy-tailed degree distribution and community structure must contain a scale-free collection of dense ER subgraphs. These theoretical observations corroborate well with empirical evidence. From this, we propose the Block Two-Level Erdős-Rényi (BTER) model, and demonstrate that it accurately captures the observable properties of many real-world social networks.

  17. Studies Of Infrasonic Propagation Using Dense Seismic Networks

    NASA Astrophysics Data System (ADS)

    Hedlin, M. A.; deGroot-Hedlin, C. D.; Drob, D. P.

    2011-12-01

    Although there are approximately 100 infrasonic arrays worldwide, more than ever before, the station density is still insufficient to provide validation for detailed propagation modeling. Relatively large infrasonic signals can be observed on seismic channels due to coupling at the Earth's surface. Recent research, using data from the 70-km spaced 400-station USArray and other seismic network deployments, has shown the value of dense seismic network data for filling in the gaps between infrasonic arrays. The dense sampling of the infrasonic wavefield has allowed us to observe complete travel-time branches of infrasound and address important research problems in infrasonic propagation. We present our analysis of infrasound created by a series of rocket motor detonations that occurred at the UTTR facility in Utah in 2007. These data were well recorded by the USArray seismometers. We use the precisely located blasts to assess the utility of G2S mesoscale models and methods to synthesize infrasonic propagation. We model the travel times of the branches using a ray-based approach and the complete wavefield using a FDTD algorithm. Although results from both rays and FDTD approaches predict the travel times to within several seconds, only about 40% of signals are predicted using rays largely due to penetration of sound into shadow zones. FDTD predicts some sound penetration into the shadow zone, but the observed shadow zones, as defined by the seismic data, have considerably narrower spatial extent than either method predicts, perhaps due to un-modeled small-scale structure in the atmosphere.

  18. Deployment of a Testbed in a Brazilian Research Network using IPv6 and Optical Access Technologies

    NASA Astrophysics Data System (ADS)

    Martins, Luciano; Ferramola Pozzuto, João; Olimpio Tognolli, João; Chaves, Niudomar Siqueira De A.; Reggiani, Atilio Eduardo; Hortêncio, Claudio Antonio

    2012-04-01

    This article presents the implementation of a testbed and the experimental results obtained with it on the Brazilian Experimental Network of the government-sponsored "GIGA Project." The use of IPv6 integrated to current and emerging optical architectures and technologies, such as dense wavelength division multiplexing and 10-gigabit Ethernet on the core and gigabit capable passive optical network and optical distribution network on access, were tested. These protocols, architectures, and optical technologies are promising and part of a brand new worldwide technological scenario that has being fairly adopted in the networks of enterprises and providers of the world.

  19. Star polymers as unit cells for coarse-graining cross-linked networks

    NASA Astrophysics Data System (ADS)

    Molotilin, Taras Y.; Maduar, Salim R.; Vinogradova, Olga I.

    2018-03-01

    Reducing the complexity of cross-linked polymer networks by preserving their main macroscale properties is key to understanding them, and a crucial issue is to relate individual properties of the polymer constituents to those of the reduced network. Here we study polymer networks in a good solvent, by considering star polymers as their unit elements, and first quantify the interaction between their centers of masses. We then reduce the complexity of a network by replacing sets of its bridged star polymers by equivalent effective soft particles with dense cores. Our coarse graining allows us to approximate complex polymer networks by much simpler ones, keeping their relevant mechanical properties, as illustrated in computer experiments.

  20. Nutrient mitigation in a temporary river basin.

    PubMed

    Tzoraki, Ourania; Nikolaidis, Nikolaos P; Cooper, David; Kassotaki, Elissavet

    2014-04-01

    We estimate the nutrient budget in a temporary Mediterranean river basin. We use field monitoring and modelling tools to estimate nutrient sources and transfer in both high and low flow conditions. Inverse modelling by the help of PHREEQC model validated the hypothesis of a losing stream during the dry period. Soil and Water Assessment Tool model captured the water quality of the basin. The 'total daily maximum load' approach is used to estimate the nutrient flux status by flow class, indicating that almost 60% of the river network fails to meet nitrogen criteria and 50% phosphate criteria. We recommend that existing well-documented remediation measures such as reforestation of the riparian area or composting of food process biosolids should be implemented to achieve load reduction in close conjunction with social needs.

  1. Mobility and Congestion in Dynamical Multilayer Networks with Finite Storage Capacity

    NASA Astrophysics Data System (ADS)

    Manfredi, S.; Di Tucci, E.; Latora, V.

    2018-02-01

    Multilayer networks describe well many real interconnected communication and transportation systems, ranging from computer networks to multimodal mobility infrastructures. Here, we introduce a model in which the nodes have a limited capacity of storing and processing the agents moving over a multilayer network, and their congestions trigger temporary faults which, in turn, dynamically affect the routing of agents seeking for uncongested paths. The study of the network performance under different layer velocities and node maximum capacities reveals the existence of delicate trade-offs between the number of served agents and their time to travel to destination. We provide analytical estimates of the optimal buffer size at which the travel time is minimum and of its dependence on the velocity and number of links at the different layers. Phenomena reminiscent of the slower is faster effect and of the Braess' paradox are observed in our dynamical multilayer setup.

  2. Mobility and Congestion in Dynamical Multilayer Networks with Finite Storage Capacity.

    PubMed

    Manfredi, S; Di Tucci, E; Latora, V

    2018-02-09

    Multilayer networks describe well many real interconnected communication and transportation systems, ranging from computer networks to multimodal mobility infrastructures. Here, we introduce a model in which the nodes have a limited capacity of storing and processing the agents moving over a multilayer network, and their congestions trigger temporary faults which, in turn, dynamically affect the routing of agents seeking for uncongested paths. The study of the network performance under different layer velocities and node maximum capacities reveals the existence of delicate trade-offs between the number of served agents and their time to travel to destination. We provide analytical estimates of the optimal buffer size at which the travel time is minimum and of its dependence on the velocity and number of links at the different layers. Phenomena reminiscent of the slower is faster effect and of the Braess' paradox are observed in our dynamical multilayer setup.

  3. Two-dimensional plasmons in lateral carbon nanotube network structures and their effect on the terahertz radiation detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryzhii, V.; Institute of Ultra High Frequency Semiconductor Electronics of RAS, Moscow 117105; Center for Photonics and Infrared Engineering, Bauman Moscow State Technical University, Moscow 111005

    2016-07-28

    We consider the carrier transport and plasmonic phenomena in the lateral carbon nanotube (CNT) networks forming the device channel with asymmetric electrodes. One electrode is the Ohmic contact to the CNT network and the other contact is the Schottky contact. These structures can serve as detectors of the terahertz (THz) radiation. We develop the device model for collective response of the lateral CNT networks which comprise a mixture of randomly oriented semiconductor CNTs (s-CNTs) and quasi-metal CNTs (m-CNTs). The proposed model includes the concept of the collective two-dimensional (2D) plasmons in relatively dense networks of randomly oriented CNTs (CNT “felt”)more » and predicts the detector responsivity spectral characteristics exhibiting sharp resonant peaks at the signal frequencies corresponding to the 2D plasmonic resonances. The detection mechanism is the rectification of the ac current due the nonlinearity of the Schottky contact current-voltage characteristics under the conditions of a strong enhancement of the potential drop at this contact associated with the plasmon excitation. The detector responsivity depends on the fractions of the s- and m-CNTs. The burning of the near-contact regions of the m-CNTs or destruction of these CNTs leads to a marked increase in the responsivity in agreement with our experimental data. The resonant THz detectors with sufficiently dense lateral CNT networks can compete and surpass other THz detectors using plasmonic effects at room temperatures.« less

  4. Mammoth Mountain, California broadband seismic experiment

    NASA Astrophysics Data System (ADS)

    Dawson, P. B.; Pitt, A. M.; Wilkinson, S. K.; Chouet, B. A.; Hill, D. P.; Mangan, M.; Prejean, S. G.; Read, C.; Shelly, D. R.

    2013-12-01

    Mammoth Mountain is a young cumulo-volcano located on the southwest rim of Long Valley caldera, California. Current volcanic processes beneath Mammoth Mountain are manifested in a wide range of seismic signals, including swarms of shallow volcano-tectonic earthquakes, upper and mid-crustal long-period earthquakes, swarms of brittle-failure earthquakes in the lower crust, and shallow (3-km depth) very-long-period earthquakes. Diffuse emissions of C02 began after a magmatic dike injection beneath the volcano in 1989, and continue to present time. These indications of volcanic unrest drive an extensive monitoring effort of the volcano by the USGS Volcano Hazards Program. As part of this effort, eleven broadband seismometers were deployed on Mammoth Mountain in November 2011. This temporary deployment is expected to run through the fall of 2013. These stations supplement the local short-period and broadband seismic stations of the Northern California Seismic Network (NCSN) and provide a combined network of eighteen broadband stations operating within 4 km of the summit of Mammoth Mountain. Data from the temporary stations are not available in real-time, requiring the merging of the data from the temporary and permanent networks, timing of phases, and relocation of seismic events to be accomplished outside of the standard NCSN processing scheme. The timing of phases is accomplished through an interactive Java-based phase-picking routine, and the relocation of seismicity is achieved using the probabilistic non-linear software package NonLinLoc, distributed under the GNU General Public License by Alomax Scientific. Several swarms of shallow volcano-tectonic earthquakes, spasmodic bursts of high-frequency earthquakes, a few long-period events located within or below the edifice of Mammoth Mountain and numerous mid-crustal long-period events have been recorded by the network. To date, about 900 of the ~2400 events occurring beneath Mammoth Mountain since November 2011 have been relocated. Our goal is to derive high-resolution three-dimensional P- and S-wave velocity structure models of Mammoth Mountain. These models will enable more precise locations of the local seismicity, full waveform inversions of long-period seismicity, derivation of moment tensors for the seemingly brittle-failure high-frequency earthquakes, analyses of shear-wave splitting, and high-resolution relative relocation of seismicity using double differences.

  5. Two problems in multiphase biological flows: Blood flow and particulate transport in microvascular network, and pseudopod-driven motility of amoeboid cells

    NASA Astrophysics Data System (ADS)

    Bagchi, Prosenjit

    2016-11-01

    In this talk, two problems in multiphase biological flows will be discussed. The first is the direct numerical simulation of whole blood and drug particulates in microvascular networks. Blood in microcirculation behaves as a dense suspension of heterogeneous cells. The erythrocytes are extremely deformable, while inactivated platelets and leukocytes are nearly rigid. A significant progress has been made in recent years in modeling blood as a dense cellular suspension. However, many of these studies considered the blood flow in simple geometry, e.g., straight tubes of uniform cross-section. In contrast, the architecture of a microvascular network is very complex with bifurcating, merging and winding vessels, posing a further challenge to numerical modeling. We have developed an immersed-boundary-based method that can consider blood cell flow in physiologically realistic and complex microvascular network. In addition to addressing many physiological issues related to network hemodynamics, this tool can be used to optimize the transport properties of drug particulates for effective organ-specific delivery. Our second problem is pseudopod-driven motility as often observed in metastatic cancer cells and other amoeboid cells. We have developed a multiscale hydrodynamic model to simulate such motility. We study the effect of cell stiffness on motility as the former has been considered as a biomarker for metastatic potential. Funded by the National Science Foundation.

  6. A Spiking Neural Simulator Integrating Event-Driven and Time-Driven Computation Schemes Using Parallel CPU-GPU Co-Processing: A Case Study.

    PubMed

    Naveros, Francisco; Luque, Niceto R; Garrido, Jesús A; Carrillo, Richard R; Anguita, Mancia; Ros, Eduardo

    2015-07-01

    Time-driven simulation methods in traditional CPU architectures perform well and precisely when simulating small-scale spiking neural networks. Nevertheless, they still have drawbacks when simulating large-scale systems. Conversely, event-driven simulation methods in CPUs and time-driven simulation methods in graphic processing units (GPUs) can outperform CPU time-driven methods under certain conditions. With this performance improvement in mind, we have developed an event-and-time-driven spiking neural network simulator suitable for a hybrid CPU-GPU platform. Our neural simulator is able to efficiently simulate bio-inspired spiking neural networks consisting of different neural models, which can be distributed heterogeneously in both small layers and large layers or subsystems. For the sake of efficiency, the low-activity parts of the neural network can be simulated in CPU using event-driven methods while the high-activity subsystems can be simulated in either CPU (a few neurons) or GPU (thousands or millions of neurons) using time-driven methods. In this brief, we have undertaken a comparative study of these different simulation methods. For benchmarking the different simulation methods and platforms, we have used a cerebellar-inspired neural-network model consisting of a very dense granular layer and a Purkinje layer with a smaller number of cells (according to biological ratios). Thus, this cerebellar-like network includes a dense diverging neural layer (increasing the dimensionality of its internal representation and sparse coding) and a converging neural layer (integration) similar to many other biologically inspired and also artificial neural networks.

  7. SKS splitting results in central Italy and Dinaric region inside the AlpArray-CASE project

    NASA Astrophysics Data System (ADS)

    Salimbeni, S.; Prevolnik, S.; Pondrelli, S.; Molinari, I.; Stipcevic, J.; Kissling, E.; Šipka, V.; Herak, M.

    2017-12-01

    In the framework of the AlpArray project (AlpArray Seismic Network, 2015), the complementary "Central Adriatic Seismic Experiment" (CASE; AlpArray Seismic Network, 2016) was established as collaboration between ETH Zürich, University of Zagreb, INGV and Republic Hydrometeorological Service of Republic of Srpska. The CASE project consists of 9 temporary stations, installed in October 2016, located in Bosnia and Herzegovina, Croatia and Italy. Temporary broadband seismic stations, with the permanent stations present in the region shared by the Croatian Seismological Service and INGV, make an almost continuous transect cutting the Central-Southern Appenines, the central Adriatic region, central External Dinarides and finishing at the eastern margin of the Internal Dinarides. The presence of the the Apenninic and Dinarides slabs, verging in opposite directions and plunging along the opposite sides of the Adriatic plate, make this area a peculiar spot to understand the complex dynamic of the region. Various tomographic images (e.g. Bijwaard and Spakman, 2000; Piromallo and Morelli, 2003) shows not continuous slabs under the Appenines and the Dinarides, suggesting the presence of slab-gaps right beneath the region covered by the CASE experiment. Here we present the preliminary results of the SKS splitting analysis performed on the data recorded by the temporary and permanent seismic stations included in the CASE project. The new results, in combination with previous interpretation, will provide clues about how Northern and Southern Apennines are connected at depth, how the slab rollback of the Apennines thrust belt acted and if and how the Apennines are in relation with the Dinaric region. Together with the measurements from previous studies and from the AlpArray project, our new data will support the mapping of the seismic anisotropy deformation pattern from Western Alps to Pannonian region.

  8. Hepatocyte nuclear factor-4 alpha in noise-induced cochlear neuropathy.

    PubMed

    Groth, Jane Bjerg; Kao, Shyan-Yuan; Briët, Martijn C; Stankovic, Konstantina M

    2016-12-01

    Noise-induced hearing loss (NIHL) is a problem of profound clinical significance and growing magnitude. Alarmingly, even moderate noise levels, previously assumed to cause only temporary shifts in auditory thresholds ("temporary" NIHL), are now known to cause cochlear synaptopathy and subsequent neuropathy. To uncover molecular mechanisms of this neuropathy, a network analysis of genes reported to have significantly altered expression after temporary threshold shift-inducing noise exposure was performed. The transcription factor Hepatocyte Nuclear Factor-4 alpha (HNF4α), which had not previously been studied in the context of cochlear response to noise, was identified as a hub of a top-ranking network. Hnf4α expression and localization using quantitative RT-PCR and in situ hybridization, respectively, were described in adolescent and adult mice exposed to neuropathic noise levels in adolescence. Isoforms α3 and α12 in the cochlea were also identified. At every age examined, Hnf4α mRNA expression in the cochlear apex was similar to expression in the base. Hnf4α expression was evident in select cochlear cells, including spiral ganglion neurons (SGNs) and hair cells, and was significantly upregulated from 6 to 70 weeks of age, especially in SGNs. This age-related Hnf4α upregulation was inhibited by neuropathic noise exposure in adolescence. Hnf4α silencing with shRNA transfection into auditory neuroblast cells (VOT-33) reduced cell viability, as measured with the MTT assay, suggesting that Hnf4α may be involved in SGN survival. Our results motivate future studies of HNF4α in cochlear pathophysiology, especially because HNF4α mutations and polymorphisms are associated with human diseases that may include hearing loss. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1374-1386, 2016. © 2016 Wiley Periodicals, Inc.

  9. Building a Successful Technology Cluster

    EPA Science Inventory

    Silicon Valley is the iconic cluster—a dense regional network of companies, universities, research institutions, and other stakeholders involved in a single industry. Many regions have sought to replicate the success of Silicon Valley, which has produced technological innov...

  10. Effect of soil temperature on optical frequency transfer through unidirectional dense-wavelength-division-multiplexing fiber-optic links.

    PubMed

    Pinkert, T J; Böll, O; Willmann, L; Jansen, G S M; Dijck, E A; Groeneveld, B G H M; Smets, R; Bosveld, F C; Ubachs, W; Jungmann, K; Eikema, K S E; Koelemeij, J C J

    2015-02-01

    Results of optical frequency transfer over a carrier-grade dense-wavelength-division-multiplexing (DWDM) optical fiber network are presented. The relation between soil temperature changes on a buried optical fiber and frequency changes of an optical carrier through the fiber is modeled. Soil temperatures, measured at various depths by the Royal Netherlands Meteorology Institute (KNMI) are compared with observed frequency variations through this model. A comparison of a nine-day record of optical frequency measurements through the 2×298  km fiber link with soil temperature data shows qualitative agreement. A soil temperature model is used to predict the link stability over longer periods (days-months-years). We show that optical frequency dissemination is sufficiently stable to distribute and compare, e.g., rubidium frequency standards over standard DWDM optical fiber networks using unidirectional fibers.

  11. Assessing the detection capability of a dense infrasound network in the southern Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Che, Il-Young; Le Pichon, Alexis; Kim, Kwangsu; Shin, In-Cheol

    2017-08-01

    The Korea Infrasound Network (KIN) is a dense seismoacoustic array network consisting of eight small-aperture arrays with an average interarray spacing of ∼100 km. The processing of the KIN historical recordings over 10 yr in the 0.05-5 Hz frequency band shows that the dominant sources of signals are microbaroms and human activities. The number of detections correlates well with the seasonal and daily variability of the stratospheric wind dynamics. The quantification of the spatiotemporal variability of the KIN detection performance is simulated using a frequency-dependent semi-empirical propagation modelling technique. The average detection thresholds predicted for the region of interest by using both the KIN arrays and the International Monitoring System (IMS) infrasound station network at a given frequency of 1.6 Hz are estimated to be 5.6 and 10.0 Pa for two- and three-station coverage, respectively, which was about three times lower than the thresholds predicted by using only the IMS stations. The network performance is significantly enhanced from May to August, with detection thresholds being one order of magnitude lower than the rest of the year due to prevailing steady stratospheric winds. To validate the simulations, the amplitudes of ground-truth repeated surface mining explosions at an open-pit limestone mine were measured over a 19-month period. Focusing on the spatiotemporal variability of the stratospheric winds which control to first order where infrasound signals are expected to be detected, the predicted detectable signal amplitude at the mine and the detection capability at one KIN array located at a distance of 175 km are found to be in good agreement with the observations from the measurement campaign. The detection threshold in summer is ∼2 Pa and increases up to ∼300 Pa in winter. Compared with the low and stable thresholds in summer, the high temporal variability of the KIN performance is well predicted throughout the year. Simulations show that the performance of the global infrasound network of the IMS is significantly improved by adding KIN. This study shows the usefulness of dense regional networks to enhance detection capability in regions of interest in the context of future verification of the Comprehensive Nuclear-Test-Ban Treaty.

  12. Three-dimensional seismic velocity structure and earthquake relocations at Katmai, Alaska

    USGS Publications Warehouse

    Murphy, Rachel; Thurber, Clifford; Prejean, Stephanie G.; Bennington, Ninfa

    2014-01-01

    We invert arrival time data from local earthquakes occurring between September 2004 and May 2009 to determine the three-dimensional (3D) upper crustal seismic structure in the Katmai volcanic region. Waveforms for the study come from the Alaska Volcano Observatory's permanent network of 20 seismic stations in the area (predominantly single-component, short period instruments) plus a densely spaced temporary array of 11 broadband, 3-component stations. The absolute and relative arrival times are used in a double-difference seismic tomography inversion to solve for 3D P- and S-wave velocity models for an area encompassing the main volcanic centers. The relocated hypocenters provide insight into the geometry of seismogenic structures in the area, revealing clustering of events into four distinct zones associated with Martin, Mageik, Trident-Novarupta, and Mount Katmai. The seismic activity extends from about sea level to 2 km depth (all depths referenced to mean sea level) beneath Martin, is concentrated near 2 km depth beneath Mageik, and lies mainly between 2 and 4 km depth below Katmai and Trident-Novarupta. Many new features are apparent within these earthquake clusters. In particular, linear features are visible within all clusters, some associated with swarm activity, including an observation of earthquake migration near Trident in 2008. The final velocity model reveals a possible zone of magma storage beneath Mageik, but there is no clear evidence for magma beneath the Katmai-Novarupta area where the 1912 eruptive activity occurred, suggesting that the storage zone for that eruption may have largely been evacuated, or remnant magma has solidified.

  13. Detailed seismicity analysis revealing the dynamics of the southern Dead Sea area

    NASA Astrophysics Data System (ADS)

    Braeuer, B.; Asch, G.; Hofstetter, R.; Haberland, Ch.; Jaser, D.; El-Kelani, R.; Weber, M.

    2014-10-01

    Within the framework of the international DESIRE (DEad Sea Integrated REsearch) project, a dense temporary local seismological network was operated in the southern Dead Sea area. During 18 recording months, 648 events were detected. Based on an already published tomography study clustering, focal mechanisms, statistics and the distribution of the microseismicity in relation to the velocity models from the tomography are analysed. The determined b value of 0.74 leads to a relatively high risk of large earthquakes compared to the moderate microseismic activity. The distribution of the seismicity indicates an asymmetric basin with a vertical strike-slip fault forming the eastern boundary of the basin, and an inclined western boundary, made up of strike-slip and normal faults. Furthermore, significant differences between the area north and south of the Bokek fault were observed. South of the Bokek fault, the western boundary is inactive while the entire seismicity occurs on the eastern boundary and below the basin-fill sediments. The largest events occurred here, and their focal mechanisms represent the northwards transform motion of the Arabian plate along the Dead Sea Transform. The vertical extension of the spatial and temporal cluster from February 2007 is interpreted as being related to the locking of the region around the Bokek fault. North of the Bokek fault similar seismic activity occurs on both boundaries most notably within the basin-fill sediments, displaying mainly small events with strike-slip mechanism and normal faulting in EW direction. Therefore, we suggest that the Bokek fault forms the border between the single transform fault and the pull-apart basin with two active border faults.

  14. Seismicity and velocity structures along the south-Alpine thrust front of the Venetian Alps (NE-Italy)

    NASA Astrophysics Data System (ADS)

    Anselmi, M.; Govoni, A.; De Gori, P.; Chiarabba, C.

    2011-12-01

    In this paper we show the seismicity and velocity structure of a segment of the Alpine retro-belt front along the continental collision margin of the Venetian Alps (NE Italy). Our goal is to gain insight on the buried structures and deep fault geometry in a "silent" area, i.e., an area with poor instrumental seismicity but high potential for future earthquakes, as indicated by historical earthquakes (1695 Me = 6.7 Asolo and 1936 Ms = 5.8 Bosco del Cansiglio). Local earthquakes recorded by a dense temporary seismic network are used to compute 3-D Vp and Vp/Vs tomographic images, yielding well resolved images of the upper crust underneath the south-Alpine front. We show the presence of two main distinct high Vp S-verging thrust units, the innermost coincides with the piedmont hill and the outermost is buried under a thick pile of sediments in the Po plain. Background seismicity and Vp/Vs anomalies, interpreted as cracked fluid-filled volumes, suggest that the NE portion of the outermost blind thrust and its oblique/lateral ramps may be a zone of high fluid pressure prone to future earthquakes. Three-dimensional focal mechanisms show compressive and transpressive solutions, in agreement with the tectonic setting, stress field maps and geodetic observations. The bulk of the microseismicity is clustered in two different areas, both in correspondence of inherited lateral ramps of the thrust system. Tomographic images highlight the influence of the paleogeographic setting in the tectonic style and seismic activity of the region.

  15. Discovering Social Circles in Ego Networks (Author’s Manuscript)

    DTIC Science & Technology

    2013-01-10

    ego-network. We expect that circles are formed by densely-connected sets of alters ( Newman , 2006). However, different circles overlap heavily, i.e...umbrella of community detection (Lancichinetti and Fortunato, 2009a; Schaeffer, 2007; Leskovec et al., 2010; Porter et al., 2009; Newman , 2004). While...MCMC) sampler ( Newman and Barkema, 1999) which efficiently updates node-community memberships by ‘collapsing’ nodes that have common features and

  16. Nonvolatile Ionic Two-Terminal Memory Device

    NASA Technical Reports Server (NTRS)

    Williams, Roger M.

    1990-01-01

    Conceptual solid-state memory device nonvolatile and erasable and has only two terminals. Proposed device based on two effects: thermal phase transition and reversible intercalation of ions. Transfer of sodium ions between source of ions and electrical switching element increases or decreases electrical conductance of element, turning switch "on" or "off". Used in digital computers and neural-network computers. In neural networks, many small, densely packed switches function as erasable, nonvolatile synaptic elements.

  17. Exploration of the integration of care for persons with a traumatic brain injury using social network analysis methodology.

    PubMed

    Lamontagne, Marie-Eve

    2013-01-01

    Integration is a popular strategy to increase the quality of care within systems of care. However, there is no common language, approach or tool allowing for a valid description, comparison and evaluation of integrated care. Social network analysis could be a viable methodology to provide an objective picture of integrated networks. To illustrate social network analysis use in the context of systems of care for traumatic brain injury. We surveyed members of a network using a validated questionnaire to determine the links between them. We determined the density, centrality, multiplexity, and quality of the links reported. The network was described as moderately dense (0.6), the most prevalent link was knowledge, and four organisation members of a consortium were central to the network. Social network analysis allowed us to create a graphic representation of the network. Social network analysis is a useful methodology to objectively characterise integrated networks.

  18. Multi-Dimensional Prioritization of Dental Caries Candidate Genes and Its Enriched Dense Network Modules

    PubMed Central

    Wang, Quan; Jia, Peilin; Cuenco, Karen T.; Feingold, Eleanor; Marazita, Mary L.; Wang, Lily; Zhao, Zhongming

    2013-01-01

    A number of genetic studies have suggested numerous susceptibility genes for dental caries over the past decade with few definite conclusions. The rapid accumulation of relevant information, along with the complex architecture of the disease, provides a challenging but also unique opportunity to review and integrate the heterogeneous data for follow-up validation and exploration. In this study, we collected and curated candidate genes from four major categories: association studies, linkage scans, gene expression analyses, and literature mining. Candidate genes were prioritized according to the magnitude of evidence related to dental caries. We then searched for dense modules enriched with the prioritized candidate genes through their protein-protein interactions (PPIs). We identified 23 modules comprising of 53 genes. Functional analyses of these 53 genes revealed three major clusters: cytokine network relevant genes, matrix metalloproteinases (MMPs) family, and transforming growth factor-beta (TGF-β) family, all of which have been previously implicated to play important roles in tooth development and carious lesions. Through our extensive data collection and an integrative application of gene prioritization and PPI network analyses, we built a dental caries-specific sub-network for the first time. Our study provided insights into the molecular mechanisms underlying dental caries. The framework we proposed in this work can be applied to other complex diseases. PMID:24146904

  19. Finding Hierarchical and Overlapping Dense Subgraphs using Nucleus Decompositions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seshadhri, Comandur; Pinar, Ali; Sariyuce, Ahmet Erdem

    Finding dense substructures in a graph is a fundamental graph mining operation, with applications in bioinformatics, social networks, and visualization to name a few. Yet most standard formulations of this problem (like clique, quasiclique, k-densest subgraph) are NP-hard. Furthermore, the goal is rarely to nd the \\true optimum", but to identify many (if not all) dense substructures, understand their distribution in the graph, and ideally determine a hierarchical structure among them. Current dense subgraph nding algorithms usually optimize some objective, and only nd a few such subgraphs without providing any hierarchy. It is also not clear how to account formore » overlaps in dense substructures. We de ne the nucleus decomposition of a graph, which represents the graph as a forest of nuclei. Each nucleus is a subgraph where smaller cliques are present in many larger cliques. The forest of nuclei is a hierarchy by containment, where the edge density increases as we proceed towards leaf nuclei. Sibling nuclei can have limited intersections, which allows for discovery of overlapping dense subgraphs. With the right parameters, the nuclear decomposition generalizes the classic notions of k-cores and k-trusses. We give provable e cient algorithms for nuclear decompositions, and empirically evaluate their behavior in a variety of real graphs. The tree of nuclei consistently gives a global, hierarchical snapshot of dense substructures, and outputs dense subgraphs of higher quality than other state-of-theart solutions. Our algorithm can process graphs with tens of millions of edges in less than an hour.« less

  20. First demonstration and field trial on multi-user UDWDM-PON full duplex PSK-PSK with single monolithic integrated dual-output-DFB-SOA based ONUs.

    PubMed

    Chu, GuangYong; Maho, Anaëlle; Cano, Iván; Polo, Victor; Brenot, Romain; Debrégeas, Hélène; Prat, Josep

    2016-10-15

    We demonstrate a monolithically integrated dual-output DFB-SOA, and conduct the field trial on a multi-user bidirectional coherent ultradense wavelength division multiplexing-passive optical network (UDWDM-PON). To the best of our knowledge, this is the first achievement of simplified single integrated laser-based neighboring coherent optical network units (ONUs) with a 12.5 GHz channel spaced ultra-dense access network, including both downstream and upstream, taking the benefits of low footprint and low-temperature dependence.

  1. Location Capability and Site Characterization Installing a Borehole VBB Seismometer: the OGS Experience in Ferrara (Italy)

    NASA Astrophysics Data System (ADS)

    Pesaresi, D.; Barnaba, C.

    2014-12-01

    The Centro di Ricerche Sismologiche (CRS, Seismological Research Centre) of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS, Italian National Institute for Oceanography and Experimental Geophysics) in Udine (Italy) after the strong earthquake of magnitude M=6.4 occurred in 1976 in the Italian Friuli-Venezia Giulia region, started to operate the Northeastern Italy Seismic Network: it currently consists of 19 very sensitive broad band and 17 simpler short period seismic stations, all telemetered to and acquired in real time at the OGS CRS data centre in Udine. The southwestern edge of the OGS seismic network stands on the Po alluvial basin: earthquake localization and characterization in this area is affected by the presence of soft alluvial deposits. Following the ML=5.9 earthquake that struck the Emilia region around Ferrara in Northern Italy on May 20, 2012, a cooperation of Istituto Nazionale di Geofisica e Vulcanologia, OGS, the Comune di Ferrara and the University of Ferrara lead to the reinstallation of a previously existing very broad band (VBB) borehole seismic station in Ferrara and to the deployment of a temporary seismographic network consisting of eight portable seismological stations, to record the local earthquakes that occurred during the seismic sequence. The aim of the OGS intervention was on one hand to extend its real time seismic monitoring capabilities toward South-West, including Ferrara and its surroundings, and on the other hand to evaluate seismic site responses in the area. We will introduce details of the Ferrara VBB borehole station and the OGS temporary seismographic network configuration and installation. We will then illustrate the location capability performances, and finally we will shortly describe seismic site characterization with surface/borehole comparisons in terms of seismic noise, site amplification and resonance frequencies.

  2. Epidemic spreading on complex networks with community structures

    PubMed Central

    Stegehuis, Clara; van der Hofstad, Remco; van Leeuwaarden, Johan S. H.

    2016-01-01

    Many real-world networks display a community structure. We study two random graph models that create a network with similar community structure as a given network. One model preserves the exact community structure of the original network, while the other model only preserves the set of communities and the vertex degrees. These models show that community structure is an important determinant of the behavior of percolation processes on networks, such as information diffusion or virus spreading: the community structure can both enforce as well as inhibit diffusion processes. Our models further show that it is the mesoscopic set of communities that matters. The exact internal structures of communities barely influence the behavior of percolation processes across networks. This insensitivity is likely due to the relative denseness of the communities. PMID:27440176

  3. Team of rivals: alliance formation in territorial songbirds is predicted by vocal signal structure

    PubMed Central

    Goodwin, Sarah E.; Podos, Jeffrey

    2014-01-01

    Cooperation and conflict are regarded as diametric extremes of animal social behaviour, yet the two may intersect under rare circumstances. We here report that territorial competitors in a common North American songbird species, the chipping sparrow (Spizella passerina), sometimes form temporary coalitions in the presence of simulated territorial intruders. Moreover, analysis of birds’ vocal mating signals (songs) reveals that coalitions occur nearly exclusively under specific triadic relationships, in which vocal performances of allies and simulated intruders exceed those of residents. Our results provide the first evidence that animals like chipping sparrows rely on precise assessments of mating signal features, as well as relative comparisons of signal properties among multiple animals in communication networks, when deciding when and with whom to form temporary alliances against a backdrop of competition and rivalry. PMID:24573153

  4. Team of rivals: alliance formation in territorial songbirds is predicted by vocal signal structure.

    PubMed

    Goodwin, Sarah E; Podos, Jeffrey

    2014-02-01

    Cooperation and conflict are regarded as diametric extremes of animal social behaviour, yet the two may intersect under rare circumstances. We here report that territorial competitors in a common North American songbird species, the chipping sparrow (Spizella passerina), sometimes form temporary coalitions in the presence of simulated territorial intruders. Moreover, analysis of birds' vocal mating signals (songs) reveals that coalitions occur nearly exclusively under specific triadic relationships, in which vocal performances of allies and simulated intruders exceed those of residents. Our results provide the first evidence that animals like chipping sparrows rely on precise assessments of mating signal features, as well as relative comparisons of signal properties among multiple animals in communication networks, when deciding when and with whom to form temporary alliances against a backdrop of competition and rivalry.

  5. The Making of the "Precarious" Examining Indian Immigrant IT Workers in Canada and Their Transnational Networks with Body Shops in India

    ERIC Educational Resources Information Center

    Maitra, Srabani

    2015-01-01

    Since the 1990s, temporary staffing agencies have been playing a key role in managing and supplying a ready pool of skilled workers to the global IT market. Yet, such agencies often regulate their workforce to maintain flexible, low-cost and accommodating workers. Due to continuing racial and gendered barriers, many immigrant Indian IT…

  6. Directed network modules

    NASA Astrophysics Data System (ADS)

    Palla, Gergely; Farkas, Illés J.; Pollner, Péter; Derényi, Imre; Vicsek, Tamás

    2007-06-01

    A search technique locating network modules, i.e. internally densely connected groups of nodes in directed networks is introduced by extending the clique percolation method originally proposed for undirected networks. After giving a suitable definition for directed modules we investigate their percolation transition in the Erdos-Rényi graph both analytically and numerically. We also analyse four real-world directed networks, including Google's own web-pages, an email network, a word association graph and the transcriptional regulatory network of the yeast Saccharomyces cerevisiae. The obtained directed modules are validated by additional information available for the nodes. We find that directed modules of real-world graphs inherently overlap and the investigated networks can be classified into two major groups in terms of the overlaps between the modules. Accordingly, in the word-association network and Google's web-pages, overlaps are likely to contain in-hubs, whereas the modules in the email and transcriptional regulatory network tend to overlap via out-hubs.

  7. Prediction-based association control scheme in dense femtocell networks.

    PubMed

    Sung, Nak Woon; Pham, Ngoc-Thai; Huynh, Thong; Hwang, Won-Joo; You, Ilsun; Choo, Kim-Kwang Raymond

    2017-01-01

    The deployment of large number of femtocell base stations allows us to extend the coverage and efficiently utilize resources in a low cost manner. However, the small cell size of femtocell networks can result in frequent handovers to the mobile user, and consequently throughput degradation. Thus, in this paper, we propose predictive association control schemes to improve the system's effective throughput. Our design focuses on reducing handover frequency without impacting on throughput. The proposed schemes determine handover decisions that contribute most to the network throughput and are proper for distributed implementations. The simulation results show significant gains compared with existing methods in terms of handover frequency and network throughput perspective.

  8. Controllability of structural brain networks

    NASA Astrophysics Data System (ADS)

    Gu, Shi; Pasqualetti, Fabio; Cieslak, Matthew; Telesford, Qawi K.; Yu, Alfred B.; Kahn, Ari E.; Medaglia, John D.; Vettel, Jean M.; Miller, Michael B.; Grafton, Scott T.; Bassett, Danielle S.

    2015-10-01

    Cognitive function is driven by dynamic interactions between large-scale neural circuits or networks, enabling behaviour. However, fundamental principles constraining these dynamic network processes have remained elusive. Here we use tools from control and network theories to offer a mechanistic explanation for how the brain moves between cognitive states drawn from the network organization of white matter microstructure. Our results suggest that densely connected areas, particularly in the default mode system, facilitate the movement of the brain to many easily reachable states. Weakly connected areas, particularly in cognitive control systems, facilitate the movement of the brain to difficult-to-reach states. Areas located on the boundary between network communities, particularly in attentional control systems, facilitate the integration or segregation of diverse cognitive systems. Our results suggest that structural network differences between cognitive circuits dictate their distinct roles in controlling trajectories of brain network function.

  9. Earthquake Monitoring: SeisComp3 at the Swiss National Seismic Network

    NASA Astrophysics Data System (ADS)

    Clinton, J. F.; Diehl, T.; Cauzzi, C.; Kaestli, P.

    2011-12-01

    The Swiss Seismological Service (SED) has an ongoing responsibility to improve the seismicity monitoring capability for Switzerland. This is a crucial issue for a country with low background seismicity but where a large M6+ earthquake is expected in the next decades. With over 30 stations with spacing of ~25km, the SED operates one of the densest broadband networks in the world, which is complimented by ~ 50 realtime strong motion stations. The strong motion network is expected to grow with an additional ~80 stations over the next few years. Furthermore, the backbone of the network is complemented by broadband data from surrounding countries and temporary sub-networks for local monitoring of microseismicity (e.g. at geothermal sites). The variety of seismic monitoring responsibilities as well as the anticipated densifications of our network demands highly flexible processing software. We are transitioning all software to the SeisComP3 (SC3) framework. SC3 is a fully featured automated real-time earthquake monitoring software developed by GeoForschungZentrum Potsdam in collaboration with commercial partner, gempa GmbH. It is in its core open source, and becoming a community standard software for earthquake detection and waveform processing for regional and global networks across the globe. SC3 was originally developed for regional and global rapid monitoring of potentially tsunamagenic earthquakes. In order to fulfill the requirements of a local network recording moderate seismicity, SED has tuned configurations and added several modules. In this contribution, we present our SC3 implementation strategy, focusing on the detection and identification of seismicity on different scales. We operate several parallel processing "pipelines" to detect and locate local, regional and global seismicity. Additional pipelines with lower detection thresholds can be defined to monitor seismicity within dense subnets of the network. To be consistent with existing processing procedures, the nonlinloc algorithm was implemented for manual and automatic locations using 1D and 3D velocity models; plugins for improved automatic phase picking and Ml computation were developed; and the graphical user interface for manual review was extended (including pick uncertainty definition; first motion focal mechanisms; interactive review of station magnitude waveforms; full inclusion of strong motion data). SC3 locations are fully compatible with those derived from the existing in-house processing tools and are stored in a database derived from the QuakeML data model. The database is shared with the SED alerting software, which merges origins from both SC3 and external sources in realtime and handles the alerting procedure. With the monitoring software being transitioned to SeisComp3, acquisition, archival and dissemination of SED waveform data now conforms to the seedlink and ArcLink protocols and continuous archives can be accessed via SED and all EIDA (European Integrated Data Archives) web-sites. Further, a SC3 module for waveform parameterisation has been developed, allowing rapid computation of peak values of ground motion and other engineering parameters within minutes of a new event. An output of this module is USGS ShakeMap XML. n minutes of a new event. An output of this module is USGS ShakeMap XML.

  10. Rapid changes in synaptic vesicle cytochemistry after depolarization of cultured cholinergic sympathetic neurons

    PubMed Central

    1985-01-01

    Sympathetic neurons taken from rat superior cervical ganglia and grown in culture acquire cholinergic function under certain conditions. These cholinergic sympathetic neurons, however, retain a number of adrenergic properties, including the enzymes involved in the synthesis of norepinephrine (NE) and the storage of measurable amounts of NE. These neurons also retain a high affinity uptake system for NE; despite this, the majority of the synaptic vesicles remain clear even after incubation in catecholamines. The present study shows, however, that if these neurons are depolarized before incubation in catecholamine, the synaptic vesicles acquire dense cores indicative of amine storage. These manipulations are successful when cholinergic function is induced with either a medium that contains human placental serum and embryo extract or with heart-conditioned medium, and when the catecholamine is either NE or 5-hydroxydopamine. In some experiments, neurons are grown at low densities and shown to have cholinergic function by electrophysiological criteria. After incubation in NE, only 6% of the synaptic vesicles have dense cores. In contrast, similar neurons depolarized (80 mM K+) before incubation in catecholamine contain 82% dense-cored vesicles. These results are confirmed in network cultures where the percentage of dense-cored vesicles is increased 2.5 to 6.5 times by depolarizing the neurons before incubation with catecholamine. In both single neurons and in network cultures, the vesicle reloading is inhibited by reducing vesicle release during depolarization with an increased Mg++/Ca++ ratio or by blocking NE uptake either at the plasma membrane (desipramine) or at the vesicle membrane (reserpine). In addition, choline appears to play a competitive role because its presence during incubation in NE or after reloading results in decreased numbers of dense-cored vesicles. We conclude that the depolarization step preceding catecholamine incubation acts to empty the vesicles of acetylcholine, thus allowing them to reload with catecholamine. These data also suggest that the same vesicles may contain both neurotransmitters simultaneously. PMID:4008529

  11. Satellite relay telemetry in the surveillance of active volcanoes and major fault zones

    NASA Technical Reports Server (NTRS)

    Eaton, J. P.; Ward, P. L.

    1972-01-01

    A review was made of efforts to develop a dense telemetered microearthquake network to study earthquake mechanics along the San Andreas fault and the strain mechanics of the Kilauea Volcano. The principle elements and objectives of the ERTS-A proposal are outlined. Some of the aspects of the earthquake network and the results obtained from it as well as some promising experiments in computerized record processing are discussed.

  12. A Dynamic Optimization Technique for Siting the NASA-Clark Atlanta Urban Rain Gauge Network (NCURN)

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Taylor, Layi

    2003-01-01

    NASA satellites and ground instruments have indicated that cities like Atlanta, Georgia may create or alter rainfall. Scientists speculate that the urban heat island caused by man-made surfaces in cities impact the heat and wind patterns that form clouds and rainfall. However, more conclusive evidence is required to substantiate findings from satellites. NASA, along with scientists at Clark Atlanta University, are implementing a dense, urban rain gauge network in the metropolitan Atlanta area to support a satellite validation program called Studies of PRecipitation Anomalies from Widespread Urban Landuse (SPRAWL). SPRAWL will be conducted during the summer of 2003 to further identify and understand the impact of urban Atlanta on precipitation variability. The paper provides an. overview of SPRAWL, which represents one of the more comprehensive efforts in recent years to focus exclusively on urban-impacted rainfall. The paper also introduces a novel technique for deploying rain gauges for SPRAWL. The deployment of the dense Atlanta network is unique because it utilizes Geographic Information Systems (GIS) and Decision Support Systems (DSS) to optimize deployment of the rain gauges. These computer aided systems consider access to roads, drainage systems, tree cover, and other factors in guiding the deployment of the gauge network. GIS and DSS also provide decision-makers with additional resources and flexibility to make informed decisions while considering numerous factors. Also, the new Atlanta network and SPRAWL provide a unique opportunity to merge the high-resolution, urban rain gauge network with satellite-derived rainfall products to understand how cities are changing rainfall patterns, and possibly climate.

  13. Energy-efficient STDP-based learning circuits with memristor synapses

    NASA Astrophysics Data System (ADS)

    Wu, Xinyu; Saxena, Vishal; Campbell, Kristy A.

    2014-05-01

    It is now accepted that the traditional von Neumann architecture, with processor and memory separation, is ill suited to process parallel data streams which a mammalian brain can efficiently handle. Moreover, researchers now envision computing architectures which enable cognitive processing of massive amounts of data by identifying spatio-temporal relationships in real-time and solving complex pattern recognition problems. Memristor cross-point arrays, integrated with standard CMOS technology, are expected to result in massively parallel and low-power Neuromorphic computing architectures. Recently, significant progress has been made in spiking neural networks (SNN) which emulate data processing in the cortical brain. These architectures comprise of a dense network of neurons and the synapses formed between the axons and dendrites. Further, unsupervised or supervised competitive learning schemes are being investigated for global training of the network. In contrast to a software implementation, hardware realization of these networks requires massive circuit overhead for addressing and individually updating network weights. Instead, we employ bio-inspired learning rules such as the spike-timing-dependent plasticity (STDP) to efficiently update the network weights locally. To realize SNNs on a chip, we propose to use densely integrating mixed-signal integrate-andfire neurons (IFNs) and cross-point arrays of memristors in back-end-of-the-line (BEOL) of CMOS chips. Novel IFN circuits have been designed to drive memristive synapses in parallel while maintaining overall power efficiency (<1 pJ/spike/synapse), even at spike rate greater than 10 MHz. We present circuit design details and simulation results of the IFN with memristor synapses, its response to incoming spike trains and STDP learning characterization.

  14. A network model framework for prioritizing wetland conservation in the Great Plains

    USGS Publications Warehouse

    Albanese, Gene; Haukos, David A.

    2017-01-01

    ContextPlaya wetlands are the primary habitat for numerous wetland-dependent species in the Southern Great Plains of North America. Plant and wildlife populations that inhabit these wetlands are reciprocally linked through the dispersal of individuals, propagules and ultimately genes among local populations.ObjectiveTo develop and implement a framework using network models for conceptualizing, representing and analyzing potential biological flows among 48,981 spatially discrete playa wetlands in the Southern Great Plains.MethodsWe examined changes in connectivity patterns and assessed the relative importance of wetlands to maintaining these patterns by targeting wetlands for removal based on network centrality metrics weighted by estimates of habitat quality and probability of inundation.ResultsWe identified several distinct, broad-scale sub networks and phase transitions among playa wetlands in the Southern Plains. In particular, for organisms that can disperse >2 km a dense and expansive wetland sub network emerges in the Southern High Plains. This network was characterized by localized, densely connected wetland clusters at link distances (h) >2 km but <5 km and was most sensitive to changes in wetland availability (p) and configuration when h = 4 km, and p = 0.2–0.4. It transitioned to a single, large connected wetland system at broader spatial scales even when the proportion of inundated wetland was relatively low (p = 0.2).ConclusionsOur findings suggest that redundancy in the potential for broad and fine-scale movements insulates this system from damage and facilitates system-wide connectivity among populations with different dispersal capacities.

  15. Bridge damage detection using spatiotemporal patterns extracted from dense sensor network

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Gong, Yongqiang; Laflamme, Simon; Phares, Brent; Sarkar, Soumik

    2017-01-01

    The alarmingly degrading state of transportation infrastructures combined with their key societal and economic importance calls for automatic condition assessment methods to facilitate smart management of maintenance and repairs. With the advent of ubiquitous sensing and communication capabilities, scalable data-driven approaches is of great interest, as it can utilize large volume of streaming data without requiring detailed physical models that can be inaccurate and computationally expensive to run. Properly designed, a data-driven methodology could enable fast and automatic evaluation of infrastructures, discovery of causal dependencies among various sub-system dynamic responses, and decision making with uncertainties and lack of labeled data. In this work, a spatiotemporal pattern network (STPN) strategy built on symbolic dynamic filtering (SDF) is proposed to explore spatiotemporal behaviors in a bridge network. Data from strain gauges installed on two bridges are generated using finite element simulation for three types of sensor networks from a density perspective (dense, nominal, sparse). Causal relationships among spatially distributed strain data streams are extracted and analyzed for vehicle identification and detection, and for localization of structural degradation in bridges. Multiple case studies show significant capabilities of the proposed approach in: (i) capturing spatiotemporal features to discover causality between bridges (geographically close), (ii) robustness to noise in data for feature extraction, (iii) detecting and localizing damage via comparison of bridge responses to similar vehicle loads, and (iv) implementing real-time health monitoring and decision making work flow for bridge networks. Also, the results demonstrate increased sensitivity in detecting damages and higher reliability in quantifying the damage level with increase in sensor network density.

  16. Monitoring Bloom Dynamics of a Common Coastal Bioluminescent Ctenophore

    DTIC Science & Technology

    2010-09-30

    photodiodes. IMPACT/APPLICATIONS More frequent and more rapidly developing jellyfish blooms, especially Mnemiopsis leidyi as well as Harmful Algal...To meet the need for a bioluminescent jellyfish monitoring and forecasting system, predictive models will depend upon dense networks of sensor

  17. Extrapolating regional probability of drying of headwater streams using discrete observations and gauging networks

    NASA Astrophysics Data System (ADS)

    Beaufort, Aurélien; Lamouroux, Nicolas; Pella, Hervé; Datry, Thibault; Sauquet, Eric

    2018-05-01

    Headwater streams represent a substantial proportion of river systems and many of them have intermittent flows due to their upstream position in the network. These intermittent rivers and ephemeral streams have recently seen a marked increase in interest, especially to assess the impact of drying on aquatic ecosystems. The objective of this paper is to quantify how discrete (in space and time) field observations of flow intermittence help to extrapolate over time the daily probability of drying (defined at the regional scale). Two empirical models based on linear or logistic regressions have been developed to predict the daily probability of intermittence at the regional scale across France. Explanatory variables were derived from available daily discharge and groundwater-level data of a dense gauging/piezometer network, and models were calibrated using discrete series of field observations of flow intermittence. The robustness of the models was tested using an independent, dense regional dataset of intermittence observations and observations of the year 2017 excluded from the calibration. The resulting models were used to extrapolate the daily regional probability of drying in France: (i) over the period 2011-2017 to identify the regions most affected by flow intermittence; (ii) over the period 1989-2017, using a reduced input dataset, to analyse temporal variability of flow intermittence at the national level. The two empirical regression models performed equally well between 2011 and 2017. The accuracy of predictions depended on the number of continuous gauging/piezometer stations and intermittence observations available to calibrate the regressions. Regions with the highest performance were located in sedimentary plains, where the monitoring network was dense and where the regional probability of drying was the highest. Conversely, the worst performances were obtained in mountainous regions. Finally, temporal projections (1989-2016) suggested the highest probabilities of intermittence (> 35 %) in 1989-1991, 2003 and 2005. A high density of intermittence observations improved the information provided by gauging stations and piezometers to extrapolate the temporal variability of intermittent rivers and ephemeral streams.

  18. A biological approach to assembling tissue modules through endothelial capillary network formation.

    PubMed

    Riesberg, Jeremiah J; Shen, Wei

    2015-09-01

    To create functional tissues having complex structures, bottom-up approaches to assembling small tissue modules into larger constructs have been emerging. Most of these approaches are based on chemical reactions or physical interactions at the interface between tissue modules. Here we report a biological assembly approach to integrate small tissue modules through endothelial capillary network formation. When adjacent tissue modules contain appropriate extracellular matrix materials and cell types that support robust endothelial capillary network formation, capillary tubules form and grow across the interface, resulting in assembly of the modules into a single, larger construct. It was shown that capillary networks formed in modules of dense fibrin gels seeded with human umbilical vein endothelial cells (HUVECs) and mesenchymal stem cells (MSCs); adjacent modules were firmly assembled into an integrated construct having a strain to failure of 117 ± 26%, a tensile strength of 2208 ± 83 Pa and a Young's modulus of 2548 ± 574 Pa. Under the same culture conditions, capillary networks were absent in modules of dense fibrin gels seeded with either HUVECs or MSCs alone; adjacent modules disconnected even when handled gently. This biological assembly approach eliminates the need for chemical reactions or physical interactions and their associated limitations. In addition, the integrated constructs are prevascularized, and therefore this bottom-up assembly approach may also help address the issue of vascularization, another key challenge in tissue engineering. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Electrical conductivity modeling and experimental study of densely packed SWCNT networks.

    PubMed

    Jack, D A; Yeh, C-S; Liang, Z; Li, S; Park, J G; Fielding, J C

    2010-05-14

    Single-walled carbon nanotube (SWCNT) networks have become a subject of interest due to their ability to support structural, thermal and electrical loadings, but to date their application has been hindered due, in large part, to the inability to model macroscopic responses in an industrial product with any reasonable confidence. This paper seeks to address the relationship between macroscale electrical conductivity and the nanostructure of a dense network composed of SWCNTs and presents a uniquely formulated physics-based computational model for electrical conductivity predictions. The proposed model incorporates physics-based stochastic parameters for the individual nanotubes to construct the nanostructure such as: an experimentally obtained orientation distribution function, experimentally derived length and diameter distributions, and assumed distributions of chirality and registry of individual CNTs. Case studies are presented to investigate the relationship between macroscale conductivity and nanostructured variations in the bulk stochastic length, diameter and orientation distributions. Simulation results correspond nicely with those available in the literature for case studies of conductivity versus length and conductivity versus diameter. In addition, predictions for the increasing anisotropy of the bulk conductivity as a function of the tube orientation distribution are in reasonable agreement with our experimental results. Examples are presented to demonstrate the importance of incorporating various stochastic characteristics in bulk conductivity predictions. Finally, a design consideration for industrial applications is discussed based on localized network power emission considerations and may lend insight to the design engineer to better predict network failure under high current loading applications.

  20. Thunderstorm monitoring with VLF network and super dense meteorological observation system

    NASA Astrophysics Data System (ADS)

    Takahashi, Yukihiro; Sato, Mitsuteru

    2015-04-01

    It's not easy to understand the inside structure and developing process of thunderstorm only with existing meteorological instruments since its horizontal extent of the storm cell is sometimes smaller than an order of 10 km while one of the densest ground network in Japan, AMEDAS, consists of sites located every 17 km in average and the resolution of meteorological radar is 1-2 km in general. Even the X-band radar realizes the resolution of 250 m or larger. Here we suggest a thunderstorm monitoring system consisting of the network of VLF radio wave receivers and the super dense meteorological observation system with simple and low cost plate-type sensors that can be used for measurement both of raindrop and vertical electric field change caused by cloud-to-ground lightning discharge, adding to basic equipments for meteorological measurements. The plate-type sensor consists of two aluminum plates with a diameter of 10-20 cm. We carried out an observation campaign in summer of 2013 in the foothills of Mt. Yastugatake, Yamanashi and Nagano prefectures in Japan, installing 6 plate-type sensors at a distance of about 4 km. Horizontal location, height and charge amount of each lightning discharge are estimated successfully based on the information of electric field changes at several observing sites. Moreover, it was found that the thunderstorm has a very narrow structure smaller than 300 m that cannot be measured by any other ways, counting the positive and negative pulses caused by attachment of raindrop to the sensor plate, respectively. We plan to construct a new super dense observation network in the north Kanto region, Japan, where the lightning activity is most prominent in summer Japan and surrounded by our VLF systems developed for detecting sferics from lightning discharge, distributing more than several tens of sensors at every 4 km or shorter, such as an order of 100 m at minimum. This kind of new type network will reveal the unknown fine structures of thunderstorms and open the door for constructing real time alert system of torrential rainfall and lightning stroke especially in the city area.

  1. Information flows in hierarchical networks and the capability of organizations to successfully respond to failures, crises, and disasters

    NASA Astrophysics Data System (ADS)

    Helbing, Dirk; Ammoser, Hendrik; Kühnert, Christian

    2006-04-01

    In this paper we discuss the problem of information losses in organizations and how they depend on the organization network structure. Hierarchical networks are an optimal organization structure only when the failure rate of nodes or links is negligible. Otherwise, redundant information links are important to reduce the risk of information losses and the related costs. However, as redundant information links are expensive, the optimal organization structure is not a fully connected one. It rather depends on the failure rate. We suggest that sidelinks and temporary, adaptive shortcuts can improve the information flows considerably by generating small-world effects. This calls for modified organization structures to cope with today's challenges of businesses and administrations, in particular, to successfully respond to crises or disasters.

  2. Community structure in networks

    NASA Astrophysics Data System (ADS)

    Newman, Mark

    2004-03-01

    Many networked systems, including physical, biological, social, and technological networks, appear to contain ``communities'' -- groups of nodes within which connections are dense, but between which they are sparser. The ability to find such communities in an automated fashion could be of considerable use. Communities in a web graph for instance might correspond to sets of web sites dealing with related topics, while communities in a biochemical network or an electronic circuit might correspond to functional units of some kind. We present a number of new methods for community discovery, including methods based on ``betweenness'' measures and methods based on modularity optimization. We also give examples of applications of these methods to both computer-generated and real-world network data, and show how our techniques can be used to shed light on the sometimes dauntingly complex structure of networked systems.

  3. A statistical intercomparison between "urban" and "rural" precipitation chemistry data from greater Manchester and two nearby secondary national network sites in the United Kingdom

    NASA Astrophysics Data System (ADS)

    Lee, David S.; Longhurst, James W. S.

    Precipitation chemistry data from a dense urban monitoring network in Greater Manchester, northwest England, were compared with interpolated values from the U.K. secondary national acid deposition monitoring network for the year 1988. Differences were found to be small. However, when data from individual sites from the Greater Manchester network were compared with data from the two nearest secondary national network sites, significant differences were found using simple and complex statistical analyses. Precipitation chemistry at rural sites could be similar to that at urban sites, but the sources of some ions were thought to be different. The synoptic-scale gradients of precipitation chemistry, as shown by the secondary national network, also accounted for some of the differences.

  4. Structure of the Social Support Network of Patients with Severe and Persistent Psychiatric Disorders in Follow-Ups to Primary Health Care.

    PubMed

    de Souza, Jacqueline; de Almeida, Letícia Yamawaka; Moll, Marciana Fernandes; Silva, Lucas Duarte; Ventura, Carla Aparecida Arena

    2016-02-01

    The objective of this study is to analyze the characteristics of social support networks of patients with psychiatric disorders at follow-up to primary care. This is a cross-sectional qualitative research study. Forty-five interviews were held with patients and their supporters. The results showed small and dense networks, with a strong emphasis on the bonds with formal supporters and a scant network of informal supporters. It is recommended to develop strategies to improve social support networks and use this as an outcome indicator related to social integration of these patients and to the quality of services involved with outpatient healthcare. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Discovering Network Structure Beyond Communities

    NASA Astrophysics Data System (ADS)

    Nishikawa, Takashi; Motter, Adilson E.

    2011-11-01

    To understand the formation, evolution, and function of complex systems, it is crucial to understand the internal organization of their interaction networks. Partly due to the impossibility of visualizing large complex networks, resolving network structure remains a challenging problem. Here we overcome this difficulty by combining the visual pattern recognition ability of humans with the high processing speed of computers to develop an exploratory method for discovering groups of nodes characterized by common network properties, including but not limited to communities of densely connected nodes. Without any prior information about the nature of the groups, the method simultaneously identifies the number of groups, the group assignment, and the properties that define these groups. The results of applying our method to real networks suggest the possibility that most group structures lurk undiscovered in the fast-growing inventory of social, biological, and technological networks of scientific interest.

  6. An empirical evaluation of lightweight random walk based routing protocol in duty cycle aware wireless sensor networks.

    PubMed

    Mian, Adnan Noor; Fatima, Mehwish; Khan, Raees; Prakash, Ravi

    2014-01-01

    Energy efficiency is an important design paradigm in Wireless Sensor Networks (WSNs) and its consumption in dynamic environment is even more critical. Duty cycling of sensor nodes is used to address the energy consumption problem. However, along with advantages, duty cycle aware networks introduce some complexities like synchronization and latency. Due to their inherent characteristics, many traditional routing protocols show low performance in densely deployed WSNs with duty cycle awareness, when sensor nodes are supposed to have high mobility. In this paper we first present a three messages exchange Lightweight Random Walk Routing (LRWR) protocol and then evaluate its performance in WSNs for routing low data rate packets. Through NS-2 based simulations, we examine the LRWR protocol by comparing it with DYMO, a widely used WSN protocol, in both static and dynamic environments with varying duty cycles, assuming the standard IEEE 802.15.4 in lower layers. Results for the three metrics, that is, reliability, end-to-end delay, and energy consumption, show that LRWR protocol outperforms DYMO in scalability, mobility, and robustness, showing this protocol as a suitable choice in low duty cycle and dense WSNs.

  7. An Overview of the Micro Pulse Lidar Network (MPLNET)

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth

    2010-01-01

    The NASA Micro Pulse Lidar Network (MPLNET) is a federated network of Micro Pulse Lidar (MPL) systems designed to measure aerosol and cloud vertical structure continuously, day and night, over long time periods required to contribute to climate change studies and provide ground validation for models and satellite sensors in the NASA Earth Observing System (FOS). At present, there are eighteen active sites worldwide, and several more in the planning stage. Numerous temporary sites are deployed in support of various field campaigns. Most MPLNET sites are co-located with sites in the NASA Aerosol Robotic Network (AERONET) to provide both column and vertically resolved aerosol and cloud data. MPLNET data and more information on the project are available at http://mpinet.gsfc.nasa.gov . Here we present a summary of the first ten years of MPLNET, along with an overview of our current status, specifically our version two data products and applications. Future network plans will be presented, with a focus on our activities in South East Asia.

  8. Shallow and Deep Groundwater Contributions to Ephemeral Streamflow Generation

    NASA Astrophysics Data System (ADS)

    Zimmer, M. A.; McGlynn, B. L.

    2016-12-01

    Our understanding of streamflow generation processes in low relief, humid landscapes is limited. To address this, we utilized an ephemeral-to-intermittent drainage network in the Piedmont region of the United States to gain new understanding about the drivers of ephemeral streamflow generation, stream-groundwater interactions, and longitudinal expansion and contraction of the stream network. We used hydrometric and chemical data collected within zero through second order catchments to characterize streamflow and overland, shallow soil, and deep subsurface flow across landscape positions. Results showed bi-directionality in stream-groundwater gradients that were dependent on catchment storage state. This led to annual groundwater recharge magnitudes that were similar to annual streamflow. Perched shallow and deep water table contributions shifted dominance with changes in catchment storage state, producing distinct stream hydrograph recession constants. Active channel length versus runoff followed a consistent relationship independent of storage state, but exhibited varying discharge-solute hysteresis directions. Together, our results suggest that temporary streams can act as both important groundwater recharge and discharge locations across the landscape, especially in this region where ephemeral drainage densities are among the highest recorded. Our results also highlight that the internal catchment dynamics that generate temporary streams play an important role in dictating biogeochemical fluxes at the landscape scale.

  9. The Installation of Satellite Modems on SEIS-UK Supported Remote Seismic Deployments

    NASA Astrophysics Data System (ADS)

    Horleston, A. C.; Brisbourne, A.; Hawthorn, D.

    2006-12-01

    SEIS-UK, as the UK's NERC funded national seismic equipment facility, is frequently involved in large, often remote, temporary seismic networks (running for up to 2 years). Up till now all these deployments have been managed solely by on-site maintenance but now SEIS-UK is investing in a number of satellite modems. The Michrosat 2400 OEM Modems, provided by Wireless Innovations Ltd, will be integrated within Guralp DCM data-logger units and will be used to provide regular state-of-health reports from remote networks. They will also provide the user the facility to communicate with the deployed systems, apply configuration changes and request system re-boots. This should lead to less instrument down-time and allow for more focussed site visits and thus, hopefully, reduce the cost (and servicing time) of remote installations. The Michrosat Modems are relatively low-powered and draw a maximum current of 2.5A (at 4.4v) for a few microseconds when initialising a call, dropping to bursts of approximately 1A when transmitting. This makes them ideally suited to temporary deployments relying on solar charged battery power. We will present examples of the configuration and typical deployment of the modems and the types of data transmitted.

  10. Study of Spectral Attenuation Laws of Seismic Waves for Michoacán state, México

    NASA Astrophysics Data System (ADS)

    Vazquez Rosas, R.; Aguirre, J.; Mijares Arellano, H.

    2009-12-01

    Several attenuation relationships have been developed for Mexico, mostly after the earthquake of September 19, 1985, an event that gave great impetus to the development of engineering seismology in Mexico. Since 1985, the number of seismic stations in the country has increased significantly, especially between the Coast of Guerrero and Mexico City. This is due to the infamous large amplifications observed in the lake area of Mexico City with respect to hard ground sites. Some studies have analyzed how seismic waves are attenuated or amplified from the Pacific Coast toward the inland. The attenuation relationship used for seismic hazard assessment in Mexico is that of Ordaz (1989), which uses data from the Guerrero acceleration network. Another recent study is that of García et al. (2005), which uses more recent data from intraplate earthquakes recorded at the Guerrero acceleration network. It is important to note that, since these relations were derived for only part of the Mexican subduction zone and for certain types of seismic sources, caution should be exercised when using them for earthquake risk studies in other regions of Mexico. In the present work, we study the state of Michoacán, one of the most important seimogenic zones in Mexico. Three kinds of sources exist in the state, producing tectonic earthquakes, volcanic earthquakes, and events due to local faults in the region. For this reason, it is of vital importance to study the propagation of seismic waves within Michoacán state, and in this paper in particular we study their attenuation. We installed a temporary network consisting of 7 accelerograph stations across the state, at the following locations: Faro de Brucerías, Aguililla, Apatzingán, Taretán, Pátzcuaro, Morelia, and Maravatío. The stations form a line that is perpendicular to the coastline and has a total length of 366 km, while the distance between neighboring stations varies from 60 to 80 km. Among all the seismic events recorded at this temporary network, we select 8 events that originated along the coastline of Michoacán, with moment magnitudes ranging from 4.3 to 5.1 Mw. Using these records, we calculate Q values for frequencies between 0.1 and 10 Hz, which is the frequency range of interest for Earthquake Engineering. According to our preliminary results, the attenuation estimated is significantly larger than what the attenuation laws predict for the states of Guerrero and Colima. One limitation of this study is that we used relatively small-magnitude earthquakes. This was a consequence of the relatively short operation period of the temporary network, which had to be limited to 3 months.

  11. Optimal Base Station Density of Dense Network: From the Viewpoint of Interference and Load.

    PubMed

    Feng, Jianyuan; Feng, Zhiyong

    2017-09-11

    Network densification is attracting increasing attention recently due to its ability to improve network capacity by spatial reuse and relieve congestion by offloading. However, excessive densification and aggressive offloading can also cause the degradation of network performance due to problems of interference and load. In this paper, with consideration of load issues, we study the optimal base station density that maximizes the throughput of the network. The expected link rate and the utilization ratio of the contention-based channel are derived as the functions of base station density using the Poisson Point Process (PPP) and Markov Chain. They reveal the rules of deployment. Based on these results, we obtain the throughput of the network and indicate the optimal deployment density under different network conditions. Extensive simulations are conducted to validate our analysis and show the substantial performance gain obtained by the proposed deployment scheme. These results can provide guidance for the network densification.

  12. A user exposure based approach for non-structural road network vulnerability analysis

    PubMed Central

    Jin, Lei; Wang, Haizhong; Yu, Le; Liu, Lin

    2017-01-01

    Aiming at the dense urban road network vulnerability without structural negative consequences, this paper proposes a novel non-structural road network vulnerability analysis framework. Three aspects of the framework are mainly described: (i) the rationality of non-structural road network vulnerability, (ii) the metrics for negative consequences accounting for variant road conditions, and (iii) the introduction of a new vulnerability index based on user exposure. Based on the proposed methodology, a case study in the Sioux Falls network which was usually threatened by regular heavy snow during wintertime is detailedly discussed. The vulnerability ranking of links of Sioux Falls network with respect to heavy snow scenario is identified. As a result of non-structural consequences accompanied by conceivable degeneration of network, there are significant increases in generalized travel time costs which are measurements for “emotionally hurt” of topological road network. PMID:29176832

  13. Locating sources within a dense sensor array using graph clustering

    NASA Astrophysics Data System (ADS)

    Gerstoft, P.; Riahi, N.

    2017-12-01

    We develop a model-free technique to identify weak sources within dense sensor arrays using graph clustering. No knowledge about the propagation medium is needed except that signal strengths decay to insignificant levels within a scale that is shorter than the aperture. We then reinterpret the spatial coherence matrix of a wave field as a matrix whose support is a connectivity matrix of a graph with sensors as vertices. In a dense network, well-separated sources induce clusters in this graph. The geographic spread of these clusters can serve to localize the sources. The support of the covariance matrix is estimated from limited-time data using a hypothesis test with a robust phase-only coherence test statistic combined with a physical distance criterion. The latter criterion ensures graph sparsity and thus prevents clusters from forming by chance. We verify the approach and quantify its reliability on a simulated dataset. The method is then applied to data from a dense 5200 element geophone array that blanketed of the city of Long Beach (CA). The analysis exposes a helicopter traversing the array and oil production facilities.

  14. Computation and Learning in Neural Networks With Binary Weights

    DTIC Science & Technology

    1992-11-28

    alternatively, the total number of component updates before convergence is 0(n 3 ). We follow this with an average case analysis, similar in flavour to...anecdotal evidence in support of it in ’Well, maybe an imp. I I situations where the network has a more "distributed" flavour with relatively dense...Within the hipocampus, there is a three stage sequence of processing consisting of granule cells (which 3 receive from the entorhinal cortex), the CA3

  15. Self-diffusion in dense granular shear flows.

    PubMed

    Utter, Brian; Behringer, R P

    2004-03-01

    Diffusivity is a key quantity in describing velocity fluctuations in granular materials. These fluctuations are the basis of many thermodynamic and hydrodynamic models which aim to provide a statistical description of granular systems. We present experimental results on diffusivity in dense, granular shear flows in a two-dimensional Couette geometry. We find that self-diffusivities D are proportional to the local shear rate gamma; with diffusivities along the direction of the mean flow approximately twice as large as those in the perpendicular direction. The magnitude of the diffusivity is D approximately gamma;a(2), where a is the particle radius. However, the gradient in shear rate, coupling to the mean flow, and strong drag at the moving boundary lead to particle displacements that can appear subdiffusive or superdiffusive. In particular, diffusion appears to be superdiffusive along the mean flow direction due to Taylor dispersion effects and subdiffusive along the perpendicular direction due to the gradient in shear rate. The anisotropic force network leads to an additional anisotropy in the diffusivity that is a property of dense systems and has no obvious analog in rapid flows. Specifically, the diffusivity is suppressed along the direction of the strong force network. A simple random walk simulation reproduces the key features of the data, such as the apparent superdiffusive and subdiffusive behavior arising from the mean velocity field, confirming the underlying diffusive motion. The additional anisotropy is not observed in the simulation since the strong force network is not included. Examples of correlated motion, such as transient vortices, and Lévy flights are also observed. Although correlated motion creates velocity fields which are qualitatively different from collisional Brownian motion and can introduce nondiffusive effects, on average the system appears simply diffusive.

  16. Prediction-based association control scheme in dense femtocell networks

    PubMed Central

    Pham, Ngoc-Thai; Huynh, Thong; Hwang, Won-Joo; You, Ilsun; Choo, Kim-Kwang Raymond

    2017-01-01

    The deployment of large number of femtocell base stations allows us to extend the coverage and efficiently utilize resources in a low cost manner. However, the small cell size of femtocell networks can result in frequent handovers to the mobile user, and consequently throughput degradation. Thus, in this paper, we propose predictive association control schemes to improve the system’s effective throughput. Our design focuses on reducing handover frequency without impacting on throughput. The proposed schemes determine handover decisions that contribute most to the network throughput and are proper for distributed implementations. The simulation results show significant gains compared with existing methods in terms of handover frequency and network throughput perspective. PMID:28328992

  17. Contagion on complex networks with persuasion

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Min; Zhang, Li-Jie; Xu, Xin-Jian; Fu, Xinchu

    2016-03-01

    The threshold model has been widely adopted as a classic model for studying contagion processes on social networks. We consider asymmetric individual interactions in social networks and introduce a persuasion mechanism into the threshold model. Specifically, we study a combination of adoption and persuasion in cascading processes on complex networks. It is found that with the introduction of the persuasion mechanism, the system may become more vulnerable to global cascades, and the effects of persuasion tend to be more significant in heterogeneous networks than those in homogeneous networks: a comparison between heterogeneous and homogeneous networks shows that under weak persuasion, heterogeneous networks tend to be more robust against random shocks than homogeneous networks; whereas under strong persuasion, homogeneous networks are more stable. Finally, we study the effects of adoption and persuasion threshold heterogeneity on systemic stability. Though both heterogeneities give rise to global cascades, the adoption heterogeneity has an overwhelmingly stronger impact than the persuasion heterogeneity when the network connectivity is sufficiently dense.

  18. Contagion on complex networks with persuasion

    PubMed Central

    Huang, Wei-Min; Zhang, Li-Jie; Xu, Xin-Jian; Fu, Xinchu

    2016-01-01

    The threshold model has been widely adopted as a classic model for studying contagion processes on social networks. We consider asymmetric individual interactions in social networks and introduce a persuasion mechanism into the threshold model. Specifically, we study a combination of adoption and persuasion in cascading processes on complex networks. It is found that with the introduction of the persuasion mechanism, the system may become more vulnerable to global cascades, and the effects of persuasion tend to be more significant in heterogeneous networks than those in homogeneous networks: a comparison between heterogeneous and homogeneous networks shows that under weak persuasion, heterogeneous networks tend to be more robust against random shocks than homogeneous networks; whereas under strong persuasion, homogeneous networks are more stable. Finally, we study the effects of adoption and persuasion threshold heterogeneity on systemic stability. Though both heterogeneities give rise to global cascades, the adoption heterogeneity has an overwhelmingly stronger impact than the persuasion heterogeneity when the network connectivity is sufficiently dense. PMID:27029498

  19. Contagion on complex networks with persuasion.

    PubMed

    Huang, Wei-Min; Zhang, Li-Jie; Xu, Xin-Jian; Fu, Xinchu

    2016-03-31

    The threshold model has been widely adopted as a classic model for studying contagion processes on social networks. We consider asymmetric individual interactions in social networks and introduce a persuasion mechanism into the threshold model. Specifically, we study a combination of adoption and persuasion in cascading processes on complex networks. It is found that with the introduction of the persuasion mechanism, the system may become more vulnerable to global cascades, and the effects of persuasion tend to be more significant in heterogeneous networks than those in homogeneous networks: a comparison between heterogeneous and homogeneous networks shows that under weak persuasion, heterogeneous networks tend to be more robust against random shocks than homogeneous networks; whereas under strong persuasion, homogeneous networks are more stable. Finally, we study the effects of adoption and persuasion threshold heterogeneity on systemic stability. Though both heterogeneities give rise to global cascades, the adoption heterogeneity has an overwhelmingly stronger impact than the persuasion heterogeneity when the network connectivity is sufficiently dense.

  20. Exploration of the integration of care for persons with a traumatic brain injury using social network analysis methodology

    PubMed Central

    Lamontagne, Marie-Eve

    2013-01-01

    Introduction Integration is a popular strategy to increase the quality of care within systems of care. However, there is no common language, approach or tool allowing for a valid description, comparison and evaluation of integrated care. Social network analysis could be a viable methodology to provide an objective picture of integrated networks. Goal of the article To illustrate social network analysis use in the context of systems of care for traumatic brain injury. Method We surveyed members of a network using a validated questionnaire to determine the links between them. We determined the density, centrality, multiplexity, and quality of the links reported. Results The network was described as moderately dense (0.6), the most prevalent link was knowledge, and four organisation members of a consortium were central to the network. Social network analysis allowed us to create a graphic representation of the network. Conclusion Social network analysis is a useful methodology to objectively characterise integrated networks. PMID:24250281

  1. Association between housing type and γ-GTP increase after the Great East Japan Earthquake.

    PubMed

    Murakami, Aya; Sugawara, Yumi; Tomata, Yasutake; Sugiyama, Kemmyo; Kaiho, Yu; Tanji, Fumiya; Tsuji, Ichiro

    2017-09-01

    It has been reported that alcohol consumption increases after natural disasters, with an impact on health. However, the impact of relocation upon drinking behavior has been unclear. The aim of this study was to clarify the association between housing type and the impact of alcohol consumption on health after the Great East Japan Earthquake (GEJE) of 2011. We analyzed 569 residents living in devastated areas of Ishinomaki city, who had undergone assessment of their γ-GTP levels at health check-ups in both 2010 and 2013, and had given details of the type of housing they occupied in 2013. The housing types were categorized into five groups: "same housing as that before the GEJE", "prefabricated temporary housing", "privately rented temporary housing/rental housing", "homes of relatives", and "reconstructed housing". We used fixed-effect regression analysis to examine the association between housing type after the GEJE and changes in γ-GTP after adjustment for age, BMI, housing damage, number of people in household, smoking status, presence of illness, psychological distress, and social network. The mean age of the participants was 71.5 years and 46.2% of them were men. The proportion of individuals who drank heavily, and suffered from psychological distress and insomnia, was highest among those living in privately rented temporary housing/rental housing. Compared with individuals who continued to occupy the same housing as those before the GEJE, the effect of change in γ-GTP was significantly higher in individuals who had moved to privately rented temporary housing/rental housing (b = 9.5, SE = 4.4, p < 0.05). Our present findings reveal that disaster victims who have moved to privately rented temporary housing/rental housing are at highest risk of negative health effects due to alcohol drinking. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Data quality control and tools in passive seismic experiments exemplified on the Czech broadband seismic pool MOBNET in the AlpArray collaborative project

    NASA Astrophysics Data System (ADS)

    Vecsey, Luděk; Plomerová, Jaroslava; Jedlička, Petr; Munzarová, Helena; Babuška, Vladislav; AlpArray Working Group

    2017-12-01

    This paper focuses on major issues related to the data reliability and network performance of 20 broadband (BB) stations of the Czech (CZ) MOBNET (MOBile NETwork) seismic pool within the AlpArray seismic experiments. Currently used high-resolution seismological applications require high-quality data recorded for a sufficiently long time interval at seismological observatories and during the entire time of operation of the temporary stations. In this paper we present new hardware and software tools we have been developing during the last two decades while analysing data from several international passive experiments. The new tools help to assure the high-quality standard of broadband seismic data and eliminate potential errors before supplying data to seismological centres. Special attention is paid to crucial issues like the detection of sensor misorientation, timing problems, interchange of record components and/or their polarity reversal, sensor mass centring, or anomalous channel amplitudes due to, for example, imperfect gain. Thorough data quality control should represent an integral constituent of seismic data recording, preprocessing, and archiving, especially for data from temporary stations in passive seismic experiments. Large international seismic experiments require enormous efforts from scientists from different countries and institutions to gather hundreds of stations to be deployed in the field during a limited time period. In this paper, we demonstrate the beneficial effects of the procedures we have developed for acquiring a reliable large set of high-quality data from each group participating in field experiments. The presented tools can be applied manually or automatically on data from any seismic network.

  3. Shape-Memory Hydrogels: Evolution of Structural Principles To Enable Shape Switching of Hydrophilic Polymer Networks.

    PubMed

    Löwenberg, Candy; Balk, Maria; Wischke, Christian; Behl, Marc; Lendlein, Andreas

    2017-04-18

    The ability of hydrophilic chain segments in polymer networks to strongly interact with water allows the volumetric expansion of the material and formation of a hydrogel. When polymer chain segments undergo reversible hydration depending on environmental conditions, smart hydrogels can be realized, which are able to shrink/swell and thus alter their volume on demand. In contrast, implementing the capacity of hydrogels to switch their shape rather than volume demands more sophisticated chemical approaches and structural concepts. In this Account, the principles of hydrogel network design, incorporation of molecular switches, and hydrogel microstructures are summarized that enable a spatially directed actuation of hydrogels by a shape-memory effect (SME) without major volume alteration. The SME involves an elastic deformation (programming) of samples, which are temporarily fixed by reversible covalent or physical cross-links resulting in a temporary shape. The material can reverse to the original shape when these molecular switches are affected by application of a suitable stimulus. Hydrophobic shape-memory polymers (SMPs), which are established with complex functions including multiple or reversible shape-switching, may provide inspiration for the molecular architecture of shape-memory hydrogels (SMHs), but cannot be identically copied in the world of hydrophilic soft materials. For instance, fixation of the temporary shape requires cross-links to be formed also in an aqueous environment, which may not be realized, for example, by crystalline domains from the hydrophilic main chains as these may dissolve in presence of water. Accordingly, dual-shape hydrogels have evolved, where, for example, hydrophobic crystallizable side chains have been linked into hydrophilic polymer networks to act as temperature-sensitive temporary cross-links. By incorporating a second type of such side chains, triple-shape hydrogels can be realized. Considering the typically given light permeability of hydrogels and the fully hydrated state with easy permeation by small molecules, other types of stimuli like light, pH, or ions can be employed that may not be easily used in hydrophobic SMPs. In some cases, those molecular switches can respond to more than one stimulus, thus increasing the number of opportunities to induce actuation of these synthetic hydrogels. Beyond this, biopolymer-based hydrogels can be equipped with a shape switching function when facilitating, for example, triple helix formation in proteins or ionic interactions in polysaccharides. Eventually, microstructured SMHs such as hybrid or porous structures can combine the shape-switching function with an improved performance by helping to overcome frequent shortcomings of hydrogels such as low mechanical strength or volume change upon temporary cross-link cleavage. Specifically, shape switching without major volume alteration is possible in porous SMHs by decoupling small volume changes of pore walls on the microscale and the macroscopic sample size. Furthermore, oligomeric rather than short aliphatic side chains as molecular switches allow stabilization of the sample volumes. Based on those structural principles and switching functionalities, SMHs have already entered into applications as soft actuators and are considered, for example, for cell manipulation in biomedicine. In the context of those applications, switching kinetics, switching forces, and reversibility of switching are aspects to be further explored.

  4. Low-rank network decomposition reveals structural characteristics of small-world networks

    NASA Astrophysics Data System (ADS)

    Barranca, Victor J.; Zhou, Douglas; Cai, David

    2015-12-01

    Small-world networks occur naturally throughout biological, technological, and social systems. With their prevalence, it is particularly important to prudently identify small-world networks and further characterize their unique connection structure with respect to network function. In this work we develop a formalism for classifying networks and identifying small-world structure using a decomposition of network connectivity matrices into low-rank and sparse components, corresponding to connections within clusters of highly connected nodes and sparse interconnections between clusters, respectively. We show that the network decomposition is independent of node indexing and define associated bounded measures of connectivity structure, which provide insight into the clustering and regularity of network connections. While many existing network characterizations rely on constructing benchmark networks for comparison or fail to describe the structural properties of relatively densely connected networks, our classification relies only on the intrinsic network structure and is quite robust with respect to changes in connection density, producing stable results across network realizations. Using this framework, we analyze several real-world networks and reveal new structural properties, which are often indiscernible by previously established characterizations of network connectivity.

  5. Dyadic Interactions in Service Encounter: Bayesian SEM Approach

    NASA Astrophysics Data System (ADS)

    Sagan, Adam; Kowalska-Musiał, Magdalena

    Dyadic interactions are an important aspects in service encounters. They may be observed in B2B distribution channels, professional services, buying centers, family decision making or WOM communications. The networks consist of dyadic bonds that form dense but weak ties among the actors.

  6. Application distribution model and related security attacks in VANET

    NASA Astrophysics Data System (ADS)

    Nikaein, Navid; Kanti Datta, Soumya; Marecar, Irshad; Bonnet, Christian

    2013-03-01

    In this paper, we present a model for application distribution and related security attacks in dense vehicular ad hoc networks (VANET) and sparse VANET which forms a delay tolerant network (DTN). We study the vulnerabilities of VANET to evaluate the attack scenarios and introduce a new attacker`s model as an extension to the work done in [6]. Then a VANET model has been proposed that supports the application distribution through proxy app stores on top of mobile platforms installed in vehicles. The steps of application distribution have been studied in detail. We have identified key attacks (e.g. malware, spamming and phishing, software attack and threat to location privacy) for dense VANET and two attack scenarios for sparse VANET. It has been shown that attacks can be launched by distributing malicious applications and injecting malicious codes to On Board Unit (OBU) by exploiting OBU software security holes. Consequences of such security attacks have been described. Finally, countermeasures including the concepts of sandbox have also been presented in depth.

  7. Using Network Theory to Understand Seismic Noise in Dense Arrays

    NASA Astrophysics Data System (ADS)

    Riahi, N.; Gerstoft, P.

    2015-12-01

    Dense seismic arrays offer an opportunity to study anthropogenic seismic noise sources with unprecedented detail. Man-made sources typically have high frequency, low intensity, and propagate as surface waves. As a result attenuation restricts their measurable footprint to a small subset of sensors. Medium heterogeneities can further introduce wave front perturbations that limit processing based on travel time. We demonstrate a non-parametric technique that can reliably identify very local events within the array as a function of frequency and time without using travel-times. The approach estimates the non-zero support of the array covariance matrix and then uses network analysis tools to identify clusters of sensors that are sensing a common source. We verify the method on simulated data and then apply it to the Long Beach (CA) geophone array. The method exposes a helicopter traversing the array, oil production facilities with different characteristics, and the fact that noise sources near roads tend to be around 10-20 Hz.

  8. Low latency network and distributed storage for next generation HPC systems: the ExaNeSt project

    NASA Astrophysics Data System (ADS)

    Ammendola, R.; Biagioni, A.; Cretaro, P.; Frezza, O.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Paolucci, P. S.; Pastorelli, E.; Pisani, F.; Simula, F.; Vicini, P.; Navaridas, J.; Chaix, F.; Chrysos, N.; Katevenis, M.; Papaeustathiou, V.

    2017-10-01

    With processor architecture evolution, the HPC market has undergone a paradigm shift. The adoption of low-cost, Linux-based clusters extended the reach of HPC from its roots in modelling and simulation of complex physical systems to a broader range of industries, from biotechnology, cloud computing, computer analytics and big data challenges to manufacturing sectors. In this perspective, the near future HPC systems can be envisioned as composed of millions of low-power computing cores, densely packed — meaning cooling by appropriate technology — with a tightly interconnected, low latency and high performance network and equipped with a distributed storage architecture. Each of these features — dense packing, distributed storage and high performance interconnect — represents a challenge, made all the harder by the need to solve them at the same time. These challenges lie as stumbling blocks along the road towards Exascale-class systems; the ExaNeSt project acknowledges them and tasks itself with investigating ways around them.

  9. Spatial evolutionary public goods game on complete graph and dense complex networks

    NASA Astrophysics Data System (ADS)

    Kim, Jinho; Chae, Huiseung; Yook, Soon-Hyung; Kim, Yup

    2015-03-01

    We study the spatial evolutionary public goods game (SEPGG) with voluntary or optional participation on a complete graph (CG) and on dense networks. Based on analyses of the SEPGG rate equation on finite CG, we find that SEPGG has two stable states depending on the value of multiplication factor r, illustrating how the ``tragedy of the commons'' and ``an anomalous state without any active participants'' occurs in real-life situations. When r is low (), the state with only loners is stable, and the state with only defectors is stable when r is high (). We also derive the exact scaling relation for r*. All of the results are confirmed by numerical simulation. Furthermore, we find that a cooperator-dominant state emerges when the number of participants or the mean degree, , decreases. We also investigate the scaling dependence of the emergence of cooperation on r and . These results show how ``tragedy of the commons'' disappears when cooperation between egoistic individuals without any additional socioeconomic punishment increases.

  10. Sociometric network structure and its association with methamphetamine use norms among homeless youth

    PubMed Central

    Barman-Adhikari, Anamika; Begun, Stephanie; Rice, Eric; Yoshioka-Maxwell, Amanda; Perez-Portillo, Andrea

    2016-01-01

    Homeless youths' social networks are consistently linked with their substance use. Social networks influence behavior through several mechanisms, especially social norms. This study used sociometric analyses to understand whether social norms of drug use behaviors are clustered in network structures and whether these perceived norms (descriptive and injunctive) influence youths' drug use behaviors. An event-based approach was used to delineate boundaries of the two sociometric networks of homeless youth, one in Los Angeles, CA (n = 160) and the other in Santa Monica, CA (n = 130). Network characteristics included centrality (i.e., popularity) and cohesiveness (location in dense subnetworks). The primary outcome was recent methamphetamine use. Results revealed that both descriptive and injunctive norms influenced methamphetamine use. Network cohesion was found to be associated with perception of both descriptive and injunctive norms in both networks, however in opposite directions. Network interventions therefore might be effective if designed to capitalize on social influence that naturally occurs in cohesive parts of networks. PMID:27194667

  11. Short-term memory capacity in networks via the restricted isometry property.

    PubMed

    Charles, Adam S; Yap, Han Lun; Rozell, Christopher J

    2014-06-01

    Cortical networks are hypothesized to rely on transient network activity to support short-term memory (STM). In this letter, we study the capacity of randomly connected recurrent linear networks for performing STM when the input signals are approximately sparse in some basis. We leverage results from compressed sensing to provide rigorous nonasymptotic recovery guarantees, quantifying the impact of the input sparsity level, the input sparsity basis, and the network characteristics on the system capacity. Our analysis demonstrates that network memory capacities can scale superlinearly with the number of nodes and in some situations can achieve STM capacities that are much larger than the network size. We provide perfect recovery guarantees for finite sequences and recovery bounds for infinite sequences. The latter analysis predicts that network STM systems may have an optimal recovery length that balances errors due to omission and recall mistakes. Furthermore, we show that the conditions yielding optimal STM capacity can be embodied in several network topologies, including networks with sparse or dense connectivities.

  12. Water and sediment transport modeling of a large temporary river basin in Greece.

    PubMed

    Gamvroudis, C; Nikolaidis, N P; Tzoraki, O; Papadoulakis, V; Karalemas, N

    2015-03-01

    The objective of this research was to study the spatial distribution of runoff and sediment transport in a large Mediterranean watershed (Evrotas River Basin) consisting of temporary flow tributaries and high mountain areas and springs by focusing on the collection and use of a variety of data to constrain the model parameters and characterize hydrologic and geophysical processes at various scales. Both monthly and daily discharge data (2004-2011) and monthly sediment concentration data (2010-2011) from an extended monitoring network of 8 sites were used to calibrate and validate the Soil and Water Assessment Tool (SWAT) model. In addition flow desiccation maps showing wet and dry aquatic states obtained during a dry year were used to calibrate the simulation of low flows. Annual measurements of sediment accumulation in two reaches were used to further calibrate the sediment simulation. Model simulation of hydrology and sediment transport was in good agreement with field observations as indicated by a variety of statistical measures used to evaluate the goodness of fit. A water balance was constructed using a 12 year long (2000-2011) simulation. The average precipitation of the basin for this period was estimated to be 903 mm yr(-1). The actual evapotranspiration was 46.9% (424 mm yr(-1)), and the total water yield was 13.4% (121 mm yr(-1)). The remaining 33.4% (302 mm yr(-1)) was the amount of water that was lost through the deep groundwater of Taygetos and Parnonas Mountains to areas outside the watershed and for drinking water demands (6.3%). The results suggest that the catchment has on average significant water surplus to cover drinking water and irrigation demands. However, the situation is different during the dry years, where the majority of the reaches (85% of the river network are perennial and temporary) completely dry up as a result of the limited rainfall and the substantial water abstraction for irrigation purposes. There is a large variability in the sediment yield within the catchment with the highest annual sediment yield (3.5 t ha(-1)yr(-1)) to be generated from the western part of the watershed. The developed methodology facilitated the simulation of hydrology and sediment transport of the catchment providing consistent results and suggesting its usefulness as a tool for temporary rivers management. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. birgHPC: creating instant computing clusters for bioinformatics and molecular dynamics.

    PubMed

    Chew, Teong Han; Joyce-Tan, Kwee Hong; Akma, Farizuwana; Shamsir, Mohd Shahir

    2011-05-01

    birgHPC, a bootable Linux Live CD has been developed to create high-performance clusters for bioinformatics and molecular dynamics studies using any Local Area Network (LAN)-networked computers. birgHPC features automated hardware and slots detection as well as provides a simple job submission interface. The latest versions of GROMACS, NAMD, mpiBLAST and ClustalW-MPI can be run in parallel by simply booting the birgHPC CD or flash drive from the head node, which immediately positions the rest of the PCs on the network as computing nodes. Thus, a temporary, affordable, scalable and high-performance computing environment can be built by non-computing-based researchers using low-cost commodity hardware. The birgHPC Live CD and relevant user guide are available for free at http://birg1.fbb.utm.my/birghpc.

  14. Programming temporal shapeshifting

    NASA Astrophysics Data System (ADS)

    Hu, Xiaobo; Zhou, Jing; Vatankhah-Varnosfaderani, Mohammad; Daniel, William F. M.; Li, Qiaoxi; Zhushma, Aleksandr P.; Dobrynin, Andrey V.; Sheiko, Sergei S.

    2016-09-01

    Shapeshifting enables a wide range of engineering and biomedical applications, but until now transformations have required external triggers. This prerequisite limits viability in closed or inert systems and puts forward the challenge of developing materials with intrinsically encoded shape evolution. Herein we demonstrate programmable shape-memory materials that perform a sequence of encoded actuations under constant environment conditions without using an external trigger. We employ dual network hydrogels: in the first network, covalent crosslinks are introduced for elastic energy storage, and in the second one, temporary hydrogen-bonds regulate the energy release rate. Through strain-induced and time-dependent reorganization of the reversible hydrogen-bonds, this dual network allows for encoding both the rate and pathway of shape transformations on timescales from seconds to hours. This generic mechanism for programming trigger-free shapeshifting opens new ways to design autonomous actuators, drug-release systems and active implants.

  15. Design of a stateless low-latency router architecture for green software-defined networking

    NASA Astrophysics Data System (ADS)

    Saldaña Cercós, Silvia; Ramos, Ramon M.; Ewald Eller, Ana C.; Martinello, Magnos; Ribeiro, Moisés. R. N.; Manolova Fagertun, Anna; Tafur Monroy, Idelfonso

    2015-01-01

    Expanding software defined networking (SDN) to transport networks requires new strategies to deal with the large number of flows that future core networks will have to face. New south-bound protocols within SDN have been proposed to benefit from having control plane detached from the data plane offering a cost- and energy-efficient forwarding engine. This paper presents an overview of a new approach named KeyFlow to simultaneously reduce latency, jitter, and power consumption in core network nodes. Results on an emulation platform indicate that round trip time (RTT) can be reduced above 50% compared to the reference protocol OpenFlow, specially when flow tables are densely populated. Jitter reduction has been demonstrated experimentally on a NetFPGA-based platform, and 57.3% power consumption reduction has been achieved.

  16. On the sufficiency of pairwise interactions in maximum entropy models of networks

    NASA Astrophysics Data System (ADS)

    Nemenman, Ilya; Merchan, Lina

    Biological information processing networks consist of many components, which are coupled by an even larger number of complex multivariate interactions. However, analyses of data sets from fields as diverse as neuroscience, molecular biology, and behavior have reported that observed statistics of states of some biological networks can be approximated well by maximum entropy models with only pairwise interactions among the components. Based on simulations of random Ising spin networks with p-spin (p > 2) interactions, here we argue that this reduction in complexity can be thought of as a natural property of some densely interacting networks in certain regimes, and not necessarily as a special property of living systems. This work was supported in part by James S. McDonnell Foundation Grant No. 220020321.

  17. Information jet: Handling noisy big data from weakly disconnected network

    NASA Astrophysics Data System (ADS)

    Aurongzeb, Deeder

    Sudden aggregation (information jet) of large amount of data is ubiquitous around connected social networks, driven by sudden interacting and non-interacting events, network security threat attacks, online sales channel etc. Clustering of information jet based on time series analysis and graph theory is not new but little work is done to connect them with particle jet statistics. We show pre-clustering based on context can element soft network or network of information which is critical to minimize time to calculate results from noisy big data. We show difference between, stochastic gradient boosting and time series-graph clustering. For disconnected higher dimensional information jet, we use Kallenberg representation theorem (Kallenberg, 2005, arXiv:1401.1137) to identify and eliminate jet similarities from dense or sparse graph.

  18. Water Catchment and Storage Monitoring

    NASA Astrophysics Data System (ADS)

    Bruenig, Michael; Dunbabin, Matt; Moore, Darren

    2010-05-01

    Sensors and Sensor Networks technologies provide the means for comprehensive understanding of natural processes in the environment by radically increasing the availability of empirical data about the natural world. This step change is achieved through a dramatic reduction in the cost of data acquisition and many orders of magnitude increase in the spatial and temporal granularity of measurements. Australia's Commonwealth Scientific and Industrial Research Organisation (CSIRO) is undertaking a strategic research program developing wireless sensor network technology for environmental monitoring. As part of this research initiative, we are engaging with government agencies to densely monitor water catchments and storages, thereby enhancing understanding of the environmental processes that affect water quality. In the Gold Coast hinterland in Queensland, Australia, we are building sensor networks to monitor restoration of rainforest within the catchment, and to monitor methane flux release and water quality in the water storages. This poster will present our ongoing work in this region of eastern Australia. The Springbrook plateau in the Gold Coast hinterland lies within a World Heritage listed area, has uniquely high rainfall, hosts a wide range of environmental gradients, and forms part of the catchment for Gold Coast's water storages. Parts of the plateau are being restored from agricultural grassland to native rainforest vegetation. Since April 2008, we have had a 10-node, multi-hop sensor network deployed there to monitor microclimate variables. This network will be expanded to 50-nodes in February 2010, and to around 200-nodes and 1000 sensors by mid-2011, spread over an area of approximately 0.8 square kilometers. The extremely dense microclimate sensing will enhance knowledge of the environmental factors that enhance or inhibit the regeneration of native rainforest. The final network will also include nodes with acoustic and image sensing capability for monitoring higher level parameters such as fauna diversity. The regenerating rainforest environment presents a number of interesting challenges for wireless sensor networks related to energy harvesting and to reliable low-power wireless communications through dense and wet vegetation. Located downstream from the Springbrook plateau, the Little Nerang and Hinze dams are the two major water supply storages for the Gold Coast region. In September 2009 we fitted methane, light, wind, and sonar sensors to our autonomous electric boat platform and successfully demonstrated autonomous collection of methane flux release data on Little Nerang Dam. Sensor and boat status data were relayed back to a human operator on the shore of the dam via a small network of our Fleck™ nodes. The network also included 4 floating nodes each fitted with a string of 6 temperature sensors for profiling temperature at different water depths. We plan to expand the network further during 2010 to incorporate floating methane nodes, additional temperature sensing nodes, as well as land-based microclimate nodes. The overall monitoring system will provide significant data to understand the connected catchment-to-storage system and will provide continuous data to monitor and understand change trends within this world heritage area.

  19. Seismotectonic significance of the 2008–2010 Walloon Brabant seismic swarm in the Brabant Massif, Belgium

    USGS Publications Warehouse

    Van Noten, Koen; Lecocq, Thomas; Shah, Anjana K.; Camelbeeck, Thierry

    2015-01-01

    Between 12 July 2008 and 18 January 2010 a seismic swarm occurred close to the town of Court-Saint-Etienne, 20 km SE of Brussels (Belgium). The Belgian network and a temporary seismic network covering the epicentral area established a seismic catalogue in which magnitude varies between ML -0.7 and ML 3.2. Based on waveform cross-correlation of co-located earthquakes, the spatial distribution of the hypocentre locations was improved considerably and shows a dense cluster displaying a 200 m-wide, 1.5-km long, NW-SE oriented fault structure at a depth range between 5 and 7 km, located in the Cambrian basement rocks of the Lower Palaeozoic Anglo-Brabant Massif. Waveform comparison of the largest events of the 2008–2010 swarm with an ML 4.0 event that occurred during swarm activity between 1953 and 1957 in the same region shows similar P- and S-wave arrivals at the Belgian Uccle seismic station. The geometry depicted by the hypocentral distribution is consistent with a nearly vertical, left-lateral strike-slip fault taking place in a current local WNW–ESE oriented local maximum horizontal stress field. To determine a relevant tectonic structure, a systematic matched filtering approach of aeromagnetic data, which can approximately locate isolated anomalies associated with hypocentral depths, has been applied. Matched filtering shows that the 2008–2010 seismic swarm occurred along a limited-sized fault which is situated in slaty, low-magnetic rocks of the Mousty Formation. The fault is bordered at both ends with obliquely oriented magnetic gradients. Whereas the NW end of the fault is structurally controlled, its SE end is controlled by a magnetic gradient representing an early-orogenic detachment fault separating the low-magnetic slaty Mousty Formation from the high-magnetic Tubize Formation. The seismic swarm is therefore interpreted as a sinistral reactivation of an inherited NW–SE oriented isolated fault in a weakened crust within the Cambrian core of the Brabant Massif.

  20. Broadband Array Analysis of the 2005 Episodic Tremor and Slip Event in Northern Cascadia

    NASA Astrophysics Data System (ADS)

    Wech, A.; Creager, K.; McCausland, W.; Frassetto, A.; Qamar, A.; Derosier, S.; Carmichael, J.; Malone, S.; Johnson, D.

    2005-12-01

    The region of Cascadia from the Olympic Mountains through southern Vancouver Island and down-dip of the subduction megathrust has repeatedly experienced episodes of slow slip. This episodic slip, which has been observed to take place over a period of two to several weeks, is accompanied by a seismic tremor signal. Based on the average recurrence interval of 14 months, the next episodic tremor and slip (ETS) event should occur within six weeks of mid-September, 2005. Indeed, it appears to have begun on September 3, as this abstract was being written. In order to record this anticipated event, we deployed an array of 11 three-component seismometers on the northern side of the Olympic Peninsula augmenting Pacific Northwest Seismographic Network stations as well as the first few EarthScope BigFoot stations and Plate Boundary Observatory borehole seismometers. This seismic array was comprised of six short-period and five broadband instruments with spacings of 500 m and 2200 m respectively. In conjunction with this Earthscope seismic deployment, we also installed a dense network of 29 temporary, continuous GPS stations across the entire Olympic Peninsula to integrate seismic and geodetic observations. One of the primary goals of this research is to utilize the broadband instrumentation in the array to investigate the possible correlation of low frequency energy with the rest of the tremor activity. ETS has been carefully investigated at high-frequency (seismic tremor at 2-6 Hz) and very low-frequency (slip occurring over weeks, observed by GPS). An important goal of this experiment is to investigate the possibility that the tremor generates intermediate, low-frequency signals. Preliminary analysis of short-period array recordings of the July, 2004 ETS event suggests that the tremor displays signs of lower-frequency energy (~0.5 Hz) correlated with its higher frequency activity. Our array should enable us to distinguish low- frequency signals originating in the direction of high-frequency tremor from noise in other directions. We will present an analysis of the low-frequency energy associated with this slip event.

  1. Updated Tomographic Seismic Imaging at Kilauea Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Okubo, P.; Johnson, J.; Felts, E. S.; Flores, N.

    2013-12-01

    Improved and more detailed geophysical, geological, and geochemical observations and measurements at Kilauea, along with prolonged eruptions at its summit caldera and east rift zone, are encouraging more ambitious interpretation and modeling of volcanic processes over a range of temporal and spatial scales. We are updating three-dimensional models of seismic wave-speed distributions within Kilauea using local earthquake arrival time tomography to support waveform-based modeling of seismic source mechanisms. We start from a tomographic model derived from a combination of permanent seismic stations comprising the Hawaiian Volcano Observatory (HVO) seismographic network and a dense deployment of temporary stations in the Kilauea caldera region in 1996. Using P- and S-wave arrival times measured from the HVO network for local earthquakes from 1997 through 2012, we compute velocity models with the finite difference tomographic seismic imaging technique implemented by Benz and others (1996), and applied to numerous volcanoes including Kilauea. Particular impetus to our current modeling was derived from a focused effort to review seismicity occurring in Kilauea's summit caldera and adjoining regions in 2012. Our results reveal clear P-wave low-velocity features at and slightly below sea level beneath Kilauea's summit caldera, lying between Halemaumau Crater and the north-facing scarps that mark the southern caldera boundary. The results are also suggestive of changes in seismic velocity distributions between 1996 and 2012. One example of such a change is an apparent decrease in the size and southeastward extent, compared to the earlier model, of the low VP feature imaged with the more recent data. However, we recognize the distinct possibility that these changes are reflective of differences in earthquake and seismic station distributions in the respective datasets, and we need to further populate the more recent HVO seismicity catalogs to possibly address this concern. We also look forward to more complete implementation at HVO of seismic imaging techniques that use ambient seismic noise retrieved from continuous seismic recordings, and to using earthquake arrival times and ambient seismic noise jointly to tomographically image Kilauea.

  2. Active Tectonics Around Pisagua, Northern Chile Gap: Seismological and Neotectonic Approaches

    NASA Astrophysics Data System (ADS)

    Comte, D.; Carrizo, D.; Peyrat, S.

    2013-12-01

    Northern Chile is a recognized mature seismic gap that is reaching the end of its megathrust cycle. Deformation associated with the convergence between the Nazca and the South American Plates is mainly absorbed along the interplate contact, but also partially accommodated along the upper plate. Even though distribution of the active deformation along this plate has been documented mainly in the backarc region, Late Cenozoic structures have been recognized along the forearc suggesting that some part of this deformation is also accommodated along the coastal region. Recent paleoseismological studies suggest that some of these structures are tectonically active and some could be potentially active, capable to generate shallow intraplate earthquakes (Mw˜7). However, seismological and geodetical evidences of the fault activation mechanisms are poorly documented, and the activation process remain not elucidate. Currently, Northern Chile seismic gap is monitored by regional seismic networks and partially studied by temporary local seismological experiments. Results of these studies suggest the presence of shallow seismicity along the forearc, but the relationships between upper plate faults and the seismicity has not been yet explored. We perform a detailed seismotectonic analysis of the subduction-forearc system in the central part of the Northern Chile seismic gap to establish relationships between the plate contact deformation and the upper plate faults. We present preliminary results of data recorded by a dense seismic network (three components continuous recording) deployed around Pisagua, between the coastline and the Central Depression, during several months. Pisagua region was chosen because the forearc faults exhibit an extraordinary well-preserved morphotectonic expression, and the upper part of the seismogenic interplate contact shows abundant continental intraplate seismicity that could be associated with the faults systems. The data recorded in this area allow us to better constrain the 3D geometry of faults related to plate contact using morphotectonis fault signature, well-located shallow seismicity and passive tomography. By this way, the architecture of the major forearc faults in the study area is determined for the first time using geological and geophysical approaches. Through this work, we contribute to better understand the physical relations between dynamics of the plate contact and the coastal fault activation.

  3. Non-double-couple microearthquakes at Long Valley caldera, California, provide evidence for hydraulic fracturing

    USGS Publications Warehouse

    Foulger, G.R.; Julian, B.R.; Hill, D.P.; Pitt, A.M.; Malin, P.E.; Shalev, E.

    2004-01-01

    Most of 26 small (0.4??? M ???3.1) microearthquakes at Long Valley caldera in mid-1997, analyzed using data from a dense temporary network of 69 digital three-component seismometers, have significantly non-double-couple focal mechanisms, inconsistent with simple shear faulting. We determined their mechanisms by inverting P - and S -wave polarities and amplitude ratios using linear-programming methods, and tracing rays through a three-dimensional Earth model derived using tomography. More than 80% of the mechanisms have positive (volume increase) isotropic components and most have compensated linear-vector dipole components with outward-directed major dipoles. The simplest interpretation of these mechanisms is combined shear and extensional faulting with a volume-compensating process, such as rapid flow of water, steam, or CO2 into opening tensile cracks. Source orientations of earthquakes in the south moat suggest extensional faulting on ESE-striking subvertical planes, an orientation consistent with planes defined by earthquake hypocenters. The focal mechanisms show that clearly defined hypocentral planes in different locations result from different source processes. One such plane in the eastern south moat is consistent with extensional faulting, while one near Casa Diablo Hot Springs reflects en echelon right-lateral shear faulting. Source orientations at Mammoth Mountain vary systematically with location, indicating that the volcano influences the local stress field. Events in a 'spasmodic burst' at Mammoth Mountain have practically identical mechanisms that indicate nearly pure compensated tensile failure and high fluid mobility. Five earthquakes had mechanisms involving small volume decreases, but these may not be significant. No mechanisms have volumetric moment fractions larger than that of a force dipole, but the reason for this fact is unknown. Published by Elsevier B.V.

  4. Shape memory polymer network with thermally distinct elasticity and plasticity.

    PubMed

    Zhao, Qian; Zou, Weike; Luo, Yingwu; Xie, Tao

    2016-01-01

    Stimuli-responsive materials with sophisticated yet controllable shape-changing behaviors are highly desirable for real-world device applications. Among various shape-changing materials, the elastic nature of shape memory polymers allows fixation of temporary shapes that can recover on demand, whereas polymers with exchangeable bonds can undergo permanent shape change via plasticity. We integrate the elasticity and plasticity into a single polymer network. Rational molecular design allows these two opposite behaviors to be realized at different temperature ranges without any overlap. By exploring the cumulative nature of the plasticity, we demonstrate easy manipulation of highly complex shapes that is otherwise extremely challenging. The dynamic shape-changing behavior paves a new way for fabricating geometrically complex multifunctional devices.

  5. Describing the Neuron Axons Network of the Human Brain by Continuous Flow Models

    NASA Astrophysics Data System (ADS)

    Hizanidis, J.; Katsaloulis, P.; Verganelakis, D. A.; Provata, A.

    2014-12-01

    The multifractal spectrum Dq (Rényi dimensions) is used for the analysis and comparison between the Neuron Axons Network (NAN) of healthy and pathological human brains because it conveys information about the statistics in many scales, from the very rare to the most frequent network configurations. Comparison of the Fractional Anisotropy Magnetic Resonance Images between healthy and pathological brains is performed with and without noise reduction. Modelling the complex structure of the NAN in the human brain is undertaken using the dynamics of the Lorenz model in the chaotic regime. The Lorenz multifractal spectra capture well the human brain characteristics in the large negative q's which represent the rare network configurations. In order to achieve a closer approximation in the positive part of the spectrum (q > 0) two independent modifications are considered: a) redistribution of the dense parts of the Lorenz model's phase space into their neighbouring areas and b) inclusion of additive uniform noise in the Lorenz model. Both modifications, independently, drive the Lorenz spectrum closer to the human NAN one in the positive q region without destroying the already good correspondence of the negative spectra. The modelling process shows that the unmodified Lorenz model in its full chaotic regime has a phase space distribution with high fluctuations in its dense parts, while the fluctuations in the human brain NAN are smoother. The induced modifications (phase space redistribution or additive noise) moderate the fluctuations only in the positive part of the Lorenz spectrum leading to a faithful representation of the human brain axons network in all scales.

  6. Data Verification Tools for Minimizing Management Costs of Dense Air-Quality Monitoring Networks.

    PubMed

    Miskell, Georgia; Salmond, Jennifer; Alavi-Shoshtari, Maryam; Bart, Mark; Ainslie, Bruce; Grange, Stuart; McKendry, Ian G; Henshaw, Geoff S; Williams, David E

    2016-01-19

    Aiming at minimizing the costs, both of capital expenditure and maintenance, of an extensive air-quality measurement network, we present simple statistical methods that do not require extensive training data sets for automated real-time verification of the reliability of data delivered by a spatially dense hybrid network of both low-cost and reference ozone measurement instruments. Ozone is a pollutant that has a relatively smooth spatial spread over a large scale although there can be significant small-scale variations. We take advantage of these characteristics and demonstrate detection of instrument calibration drift within a few days using a rolling 72 h comparison of hourly averaged data from the test instrument with that from suitably defined proxies. We define the required characteristics of the proxy measurements by working from a definition of the network purpose and specification, in this case reliable determination of the proportion of hourly averaged ozone measurements that are above a threshold in any given day, and detection of calibration drift of greater than ±30% in slope or ±5 parts-per-billion in offset. By analyzing results of a study of an extensive deployment of low-cost instruments in the Lower Fraser Valley, we demonstrate that proxies can be established using land-use criteria and that simple statistical comparisons can identify low-cost instruments that are not stable and therefore need replacing. We propose that a minimal set of compliant reference instruments can be used to verify the reliability of data from a much more extensive network of low-cost devices.

  7. Grass-Roots Leadership in Appalachia: A Contradiction in Terms?

    ERIC Educational Resources Information Center

    Salstrom, Paul

    1991-01-01

    The cultural values of rural Appalachia have been antithetical to the explicit leadership needed in activist movements for social change. "Subsistence, barter, and borrow" economic systems, pervasive in Appalachia, are based on nonmonetary, voluntary reciprocity within dense insider networks, not the formal contracts of both capitalist…

  8. Understanding the influence of all nodes in a network

    PubMed Central

    Lawyer, Glenn

    2015-01-01

    Centrality measures such as the degree, k-shell, or eigenvalue centrality can identify a network's most influential nodes, but are rarely usefully accurate in quantifying the spreading power of the vast majority of nodes which are not highly influential. The spreading power of all network nodes is better explained by considering, from a continuous-time epidemiological perspective, the distribution of the force of infection each node generates. The resulting metric, the expected force, accurately quantifies node spreading power under all primary epidemiological models across a wide range of archetypical human contact networks. When node power is low, influence is a function of neighbor degree. As power increases, a node's own degree becomes more important. The strength of this relationship is modulated by network structure, being more pronounced in narrow, dense networks typical of social networking and weakening in broader, looser association networks such as the Internet. The expected force can be computed independently for individual nodes, making it applicable for networks whose adjacency matrix is dynamic, not well specified, or overwhelmingly large. PMID:25727453

  9. Structure and function of complex brain networks

    PubMed Central

    Sporns, Olaf

    2013-01-01

    An increasing number of theoretical and empirical studies approach the function of the human brain from a network perspective. The analysis of brain networks is made feasible by the development of new imaging acquisition methods as well as new tools from graph theory and dynamical systems. This review surveys some of these methodological advances and summarizes recent findings on the architecture of structural and functional brain networks. Studies of the structural connectome reveal several modules or network communities that are interlinked by hub regions mediating communication processes between modules. Recent network analyses have shown that network hubs form a densely linked collective called a “rich club,” centrally positioned for attracting and dispersing signal traffic. In parallel, recordings of resting and task-evoked neural activity have revealed distinct resting-state networks that contribute to functions in distinct cognitive domains. Network methods are increasingly applied in a clinical context, and their promise for elucidating neural substrates of brain and mental disorders is discussed. PMID:24174898

  10. From high spatial resolution imagery to spatial indicators : Application for hydromorphy follow-up on Bourgneuf wetland

    NASA Astrophysics Data System (ADS)

    Bailly, J. S.; Puech, C.; Lukac, F.; Massé, J.

    2003-04-01

    On Atlantic coastal wetlands, the understanding of hydrological processes may refer to hydraulic surface structures characterization as small ditches or channels networks, permanent and temporary water bodies. Moreover to improve the understanding, this characerization should be realized regarding different seasons and different spatial scales: elementary parcel, managment unit and whole wetland scales. In complement to usual observations on a few local ground points, high spatial resolution remote sensing may be a good information support for extraction and characterization on elementary objects, especially water bodies, permanents or temporary ones and ditches. To carry out a floow-up on wetlands, a seasonal image acquisition rate, reachable from most of satelite systems, is in that case informative for hydrological needs. In this work, georeferencing methods on openfield wetlands have been handled with care in order to use diachronic images or combined geographical data; lack of relief, short vegetation and well structured landscape make this preprocess easier in comparison to other landscape situations. In this presentation we focus on spatial hydromorphy parameters constructed from images with specific processes. Especially, hydromorphy indicators for parcels or managment units have been developped using an IRC winter-spring-summer metric resolution set of images: these descriptors are based on water areas evolution or hydrophyl vegetations presence traducing hydrodynamic submersion behaviour in temporary water bodies. An other example presents a surface water network circulation indicator elaborated on IRC aerial photography combined with vectorized geographic database. This indicator is based on ditches width and vegetation presence : a specific process uses vectorized geo data set to define transects across ditches on which classified image analysis is carried out (supervised classification). These first results proposing hydromorphy descriptors from very high resolution don't give complete indicators for follow-up and monitoring of coastal wetlands, but their combinaison, aggregation should present good technical bases to carry it out with success.

  11. What many years of tremor reveals about the Mexican Sweet Spot

    NASA Astrophysics Data System (ADS)

    Husker, A. L.; Avila, L.; Gonzalez, G.; Frank, W.; Kostoglodov, V.

    2017-12-01

    Different temporary seismic deployments have detected and located tectonic tremor in Mexico. These different temporary studies have lasted for a maximum of a few years. However, the long-term SSE's occur every 4 years. The permanent network is too sparse to locate SSEs, however one station is located in the main tremor region and has very low noise. We use spectral detection to create a catalog from its installation in March 2009 to the present. The catalog corresponds with the catalog determined during the temporary GGAP seismic network deployment, which gives us confidence that the single station detection works. Two separate large long term SSEs (2009-2010 and 2014) occur in this time span. We find a good correlation between the tremor and slip at the beginning of the SSEs. However, we find differences in both in the later stages of the SSEs. The 2009-2010 SSE appeared to be ending towards the end of 2009, however it was reactivated by the Feb. 27, 2010 M8.8 Chilean earthquake. The tremor showed a small many day burst (similar to other bursts) associated with the earthquake, but did not resume the high continuous tremor rate associated with the beginning of the SSE or seen during other large SSEs. The tremor rate at the end of the 2014 SSE stayed high for many months after the SSE and did not return to the background inter-SSE rate until the middle of 2015, about 6 months after the SSE ended. The background tremor rate is roughly 1 hour/day and remains constant over the entire period. This rate is actually comprised of many bursts that can last for up to 2 weeks with up to 80 hours of tremor during that time. The very constant long-term tremor rate made up of bursts can be explained by a simple stick-slip model.

  12. WDM PONs based on colorless technology

    NASA Astrophysics Data System (ADS)

    Saliou, Fabienne; Simon, Gael; Chanclou, Philippe; Pizzinat, Anna; Lin, Huafeng; Zhou, Enyu; Xu, Zhiguang

    2015-12-01

    Wavelength Division Multiplexing (WDM) Passive Optical Network (PON) is foreseen to be part of the Next Generation Passive Optical Networks. Business and mobile fronthaul networks already express the need to develop WDM PONs in the access segment. Fixed wavelength transceivers based on Coarse WDM are already available to respond to today's market needs but Dense WDM technologies will be needed and colorless technologies are essential to provide simple and cost-effective WDM PON systems. We propose in this paper to demonstrate the capabilities of a DWDM PON system prototype based on self-seeded RSOAs and designed to transmit CPRI over 60 km of fiber at 2.5 Gbit/s.

  13. Livermore Big Artificial Neural Network Toolkit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Essen, Brian Van; Jacobs, Sam; Kim, Hyojin

    2016-07-01

    LBANN is a toolkit that is designed to train artificial neural networks efficiently on high performance computing architectures. It is optimized to take advantages of key High Performance Computing features to accelerate neural network training. Specifically it is optimized for low-latency, high bandwidth interconnects, node-local NVRAM, node-local GPU accelerators, and high bandwidth parallel file systems. It is built on top of the open source Elemental distributed-memory dense and spars-direct linear algebra and optimization library that is released under the BSD license. The algorithms contained within LBANN are drawn from the academic literature and implemented to work within a distributed-memory framework.

  14. A global interaction network maps a wiring diagram of cellular function

    PubMed Central

    Costanzo, Michael; VanderSluis, Benjamin; Koch, Elizabeth N.; Baryshnikova, Anastasia; Pons, Carles; Tan, Guihong; Wang, Wen; Usaj, Matej; Hanchard, Julia; Lee, Susan D.; Pelechano, Vicent; Styles, Erin B.; Billmann, Maximilian; van Leeuwen, Jolanda; van Dyk, Nydia; Lin, Zhen-Yuan; Kuzmin, Elena; Nelson, Justin; Piotrowski, Jeff S.; Srikumar, Tharan; Bahr, Sondra; Chen, Yiqun; Deshpande, Raamesh; Kurat, Christoph F.; Li, Sheena C.; Li, Zhijian; Usaj, Mojca Mattiazzi; Okada, Hiroki; Pascoe, Natasha; Luis, Bryan-Joseph San; Sharifpoor, Sara; Shuteriqi, Emira; Simpkins, Scott W.; Snider, Jamie; Suresh, Harsha Garadi; Tan, Yizhao; Zhu, Hongwei; Malod-Dognin, Noel; Janjic, Vuk; Przulj, Natasa; Troyanskaya, Olga G.; Stagljar, Igor; Xia, Tian; Ohya, Yoshikazu; Gingras, Anne-Claude; Raught, Brian; Boutros, Michael; Steinmetz, Lars M.; Moore, Claire L.; Rosebrock, Adam P.; Caudy, Amy A.; Myers, Chad L.; Andrews, Brenda; Boone, Charles

    2017-01-01

    We generated a global genetic interaction network for Saccharomyces cerevisiae, constructing over 23 million double mutants, identifying ~550,000 negative and ~350,000 positive genetic interactions. This comprehensive network maps genetic interactions for essential gene pairs, highlighting essential genes as densely connected hubs. Genetic interaction profiles enabled assembly of a hierarchical model of cell function, including modules corresponding to protein complexes and pathways, biological processes, and cellular compartments. Negative interactions connected functionally related genes, mapped core bioprocesses, and identified pleiotropic genes, whereas positive interactions often mapped general regulatory connections among gene pairs, rather than shared functionality. The global network illustrates how coherent sets of genetic interactions connect protein complex and pathway modules to map a functional wiring diagram of the cell. PMID:27708008

  15. Enhancement of Beaconless Location-Based Routing with Signal Strength Assistance for Ad-Hoc Networks

    NASA Astrophysics Data System (ADS)

    Chen, Guowei; Itoh, Kenichi; Sato, Takuro

    Routing in Ad-hoc networks is unreliable due to the mobility of the nodes. Location-based routing protocols, unlike other protocols which rely on flooding, excel in network scalability. Furthermore, new location-based routing protocols, like, e. g. BLR [1], IGF [2], & CBF [3] have been proposed, with the feature of not requiring beacons in MAC-layer, which improve more in terms of scalability. Such beaconless routing protocols can work efficiently in dense network areas. However, these protocols' algorithms have no ability to avoid from routing into sparse areas. In this article, historical signal strength has been added as a factor into the BLR algorithm, which avoids routing into sparse area, and consequently improves the global routing efficiency.

  16. A Modeling Framework for Inference of Surface Emissions Using Mobile Observations

    NASA Astrophysics Data System (ADS)

    Fasoli, B.; Mitchell, L.; Crosman, E.; Mendoza, D. L.; Lin, J. C.

    2016-12-01

    Our ability to quantify surface emissions depends on the precision of observations and the spatial density of measurement networks. Mobile measurement techniques offer a cost effective strategy for quantifying atmospheric conditions over space without requiring a dense network of in-situ sites. However, interpretation of these data and inversion of dispersed measurements to estimate surface emissions can be difficult. We introduce a framework using the Stochastic Time-Inverted Lagrangian Transport (STILT) model that assimilates both spatially resolved observations and an emissions inventory to better estimate surface fluxes. Salt Lake City is a unique laboratory for the study of urban carbon emissions. It is the only U.S. city that utilizes light-rail trains to continuously measure high frequency carbon dioxide (CO2) and methane (CH4); it is home to one of the longest and most spatially resolved high precision CO2 measurement networks (air.utah.edu); and it is one of four cities in the world for which the Hestia anthropogenic emissions inventory has been produced which characterizes CO2 emissions at the scale of individual buildings and roadways. Using these data and modeling resources, we evaluate spatially resolved CO2 measurements and transported CO2 emissions on hourly timescales at a dense spatial resolution across Salt Lake City.

  17. SPECTRE (www.noveltis.fr/spectre): a web Service for Ionospheric Products

    NASA Astrophysics Data System (ADS)

    Jeansou, E.; Crespon, F.; Garcia, R.; Helbert, J.; Moreaux, G.; Lognonne, P.

    2005-12-01

    The dense GPS networks developed for geodesic applications appear to be very efficient ionospheric sensors because of interaction between plasma and electromagnetic waves. Indeed, the dual frequency receivers provide data from which the Slant Total Electron Content (STEC) can be easily extracted to compute Vertical Total Electron Content (VTEC) maps. The SPECTRE project, Service and Products for ionospheric Electron Content and Tropospheric Refractivity over Europe, is currently a pre-operational service providing VTEC maps with high time and space resolution after 3 days time delay (http://www.noveltis.fr/spectre and http://ganymede.ipgp.jussieu.fr/spectre). This project is a part of SWENET, SpaceWeather European Network, initiated by the European Space Agency. The SPECTRE data products are useful for many applications. We will present these applications in term of interest for the scientific community with a special focus on spaceweather and transient ionospheric perturbations related to Earthquakes. Moreover, the pre-operational extensions of SPECTRE to the californian (SCIGN/BARD) and japanese (GEONET) dense GPS networks will be presented. Then the method of 3D tomography of the electron density from GPS data will be presented and its resolution discussed. The expected improvements of the 3D tomographic images by new tomographic reconstruction algorithms and by the advent of the Galileo system will conclude the presentation.

  18. Embedded 100 Gbps Photonic Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuznia, Charlie

    This innovation to fiber optic component technology increases the performance, reduces the size and reduces the power consumption of optical communications within dense network systems, such as advanced distributed computing systems and data centers. VCSEL technology is enabling short-reach (< 100 m) and >100 Gbps optical interconnections over multi-mode fiber in commercial applications.

  19. Deaf Sociality and the Deaf Lutheran Church in Adamorobe, Ghana

    ERIC Educational Resources Information Center

    Kusters, Annelies

    2014-01-01

    This article provides an ethnographic analysis of "deaf sociality" in Adamorobe, a village in Ghana, where the relatively high prevalence of hereditary deafness has led to dense social and spatial connections. Deaf people are part of their hearing environment particularly through family networks, and produce deaf sociality through many…

  20. Class, Kinship Density, and Conjugal Role Segregation.

    ERIC Educational Resources Information Center

    Hill, Malcolm D.

    1988-01-01

    Studied conjugal role segregation in 150 married women from intact families in working-class community. Found that, although involvement in dense kinship networks was associated with conjugal role segregation, respondents' attitudes toward marital roles and phase of family cycle when young children were present were more powerful predictors of…

  1. Synopsis of the D- and E-regions during the energy budget campaign

    NASA Technical Reports Server (NTRS)

    Friedrich, M.; Baker, K. D.; Dickinson, P. H. G.; Dumbs, A.; Grandal, B.; Andreassen, O.; Thrane, E. V.; Smith, L. G.; Stauning, P.; Torkar, K. M.

    1985-01-01

    Electron density profiles derived from rocket-borne measurements are presented. These data were obtained at two different sites in northern Scandinavia under various degrees of geophysical disturbance. The observed electron density profiles are related to ionospheric absorption as observed with the dense riometer network in that area.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedrich, M.; Baker, K.D.; Brekke, A.

    Electron density profiles from ground-based and rocket-borne measurements conducted at three sites in northern Scandinavia under various degrees of geophysical disturbances are presented. These data are checked against an instantaneous picture of the ionospheric absorption obtained via the dense riometer network. A map of the riometer absorption and measured electron densities over Scandinavia is given.

  3. Packet error rate analysis of decode-and-forward free-space optical cooperative networks in the presence of random link blockage

    NASA Astrophysics Data System (ADS)

    Zdravković, Nemanja; Cvetkovic, Aleksandra; Milic, Dejan; Djordjevic, Goran T.

    2017-09-01

    This paper analyses end-to-end packet error rate (PER) of a free-space optical decode-and-forward cooperative network over a gamma-gamma atmospheric turbulence channel in the presence of temporary random link blockage. Closed-form analytical expressions for PER are derived for the cases with and without transmission links being prone to blockage. Two cooperation protocols (denoted as 'selfish' and 'pilot-adaptive') are presented and compared, where the latter accounts for the presence of blockage and adapts transmission power. The influence of scintillation, link distance, average transmitted signal power, network topology and probability of an uplink and/or internode link being blocked are discussed when the destination applies equal gain combining. The results show that link blockage caused by obstacles can degrade system performance, causing an unavoidable PER floor. The implementation of the pilot-adaptive protocol improves performance when compared to the selfish protocol, diminishing internode link blockage and lowering the PER floor, especially for larger networks.

  4. Cross-Disciplinary Network Comparison: Matchmaking Between Hairballs

    PubMed Central

    Yan, Koon-Kiu; Wang, Daifeng; Sethi, Anurag; Muir, Paul; Kitchen, Robert; Cheng, Chao; Gerstein, Mark

    2016-01-01

    Biological systems are complex. In particular, the interactions between molecular components often form dense networks that, more often than not, are criticized for being inscrutable ‘hairballs’. We argue that one way of untangling these hairballs is through cross-disciplinary network comparison—leveraging advances in other disciplines to obtain new biological insights. In some cases, such comparisons enable the direct transfer of mathematical formalism between disciplines, precisely describing the abstract associations between entities and allowing us to apply a variety of sophisticated formalisms to biology. In cases where the detailed structure of the network does not permit the transfer of complete formalisms between disciplines, comparison of mechanistic interactions in systems for which we have significant day-to-day experience can provide analogies for interpreting relatively more abstruse biological networks. Here, we illustrate how these comparisons benefit the field with a few specific examples related to network growth, organizational hierarchies, and the evolution of adaptive systems. PMID:27047991

  5. Unveiling the molecular mechanism of self-healing in a telechelic, supramolecular polymer network

    PubMed Central

    Yan, Tingzi; Schröter, Klaus; Herbst, Florian; Binder, Wolfgang H.; Thurn-Albrecht, Thomas

    2016-01-01

    Reversible polymeric networks can show self-healing properties due to their ability to reassemble after application of stress and fracture, but typically the relation between equilibrium molecular dynamics and self-healing kinetics has been difficult to disentangle. Here we present a well-characterized, self-assembled bulk network based on supramolecular assemblies, that allows a clear distinction between chain dynamics and network relaxation. Small angle x-ray scattering and rheological measurements provide evidence for a structurally well-defined, dense network of interconnected aggregates giving mechanical strength to the material. Different from a covalent network, the dynamic character of the supramolecular bonds enables macroscopic flow on a longer time scale and the establishment of an equilibrium structure. A combination of linear and nonlinear rheological measurements clearly identifies the terminal relaxation process as being responsible for the process of self-healing. PMID:27581380

  6. Relating Topological Determinants of Complex Networks to Their Spectral Properties: Structural and Dynamical Effects

    NASA Astrophysics Data System (ADS)

    Castellano, Claudio; Pastor-Satorras, Romualdo

    2017-10-01

    The largest eigenvalue of a network's adjacency matrix and its associated principal eigenvector are key elements for determining the topological structure and the properties of dynamical processes mediated by it. We present a physically grounded expression relating the value of the largest eigenvalue of a given network to the largest eigenvalue of two network subgraphs, considered as isolated: the hub with its immediate neighbors and the densely connected set of nodes with maximum K -core index. We validate this formula by showing that it predicts, with good accuracy, the largest eigenvalue of a large set of synthetic and real-world topologies. We also present evidence of the consequences of these findings for broad classes of dynamics taking place on the networks. As a by-product, we reveal that the spectral properties of heterogeneous networks built according to the linear preferential attachment model are qualitatively different from those of their static counterparts.

  7. Network analysis of physics discussion forums and links to course success

    NASA Astrophysics Data System (ADS)

    Traxler, Adrienne; Gavrin, Andrew; Lindell, Rebecca

    2017-01-01

    Large introductory science courses tend to isolate students, with negative consequences for long-term retention in college. Many active learning courses build collaboration and community among students as an explicit goal, and social network analysis has been used to track the development and beneficial effects of these collaborations. Here we supplement such work by conducting network analysis of online course discussion forums in two semesters of an introductory physics class. Online forums provide a tool for engaging students with each other outside of class, and offer new opportunities to commuter or non-traditional students with limited on-campus time. We look for correlations between position in the forum network (centrality) and final course grades. Preliminary investigation has shown weak correlations in the very dense full-semester network, so we will consider reduced ''backbone'' networks that highlight the most consistent links between students. Future work and implications for instruction will also be discussed.

  8. On the feasibility of measuring urban air pollution by wireless distributed sensor networks.

    PubMed

    Moltchanov, Sharon; Levy, Ilan; Etzion, Yael; Lerner, Uri; Broday, David M; Fishbain, Barak

    2015-01-01

    Accurate evaluation of air pollution on human-wellbeing requires high-resolution measurements. Standard air quality monitoring stations provide accurate pollution levels but due to their sparse distribution they cannot capture the highly resolved spatial variations within cities. Similarly, dedicated field campaigns can use tens of measurement devices and obtain highly dense spatial coverage but normally deployment has been limited to short periods of no more than few weeks. Nowadays, advances in communication and sensory technologies enable the deployment of dense grids of wireless distributed air monitoring nodes, yet their sensor ability to capture the spatiotemporal pollutant variability at the sub-neighborhood scale has never been thoroughly tested. This study reports ambient measurements of gaseous air pollutants by a network of six wireless multi-sensor miniature nodes that have been deployed in three urban sites, about 150 m apart. We demonstrate the network's capability to capture spatiotemporal concentration variations at an exceptional fine resolution but highlight the need for a frequent in-situ calibration to maintain the consistency of some sensors. Accordingly, a procedure for a field calibration is proposed and shown to improve the system's performance. Overall, our results support the compatibility of wireless distributed sensor networks for measuring urban air pollution at a sub-neighborhood spatial resolution, which suits the requirement for highly spatiotemporal resolved measurements at the breathing-height when assessing exposure to urban air pollution. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Flood Monitoring using X-band Dual-polarization Radar Network

    NASA Astrophysics Data System (ADS)

    Chandrasekar, V.; Wang, Y.; Maki, M.; Nakane, K.

    2009-09-01

    A dense weather radar network is an emerging concept advanced by the Center for Collaborative Adaptive Sensing of the Atmosphere (CASA). Using multiple radars observing over a common will create different data outcomes depending on the characteristics of the radar units employed and the network topology. To define this a general framework is developed to describe the radar network space, and formulations are obtained that can be used for weather radar network characterization. Current weather radar surveillance networks are based upon conventional sensing paradigm of widely-separated, standalone sensing systems using long range radars that operate at wavelengths in 5-10 cm range. Such configuration has limited capability to observe close to the surface of the earth because of the earth's curvature but also has poorer resolution at far ranges. The dense network radar system, observes and measures weather phenomenon such as rainfall and severe weather close to the ground at higher spatial and temporal resolution compared to the current paradigm. In addition the dense network paradigm also is easily adaptable to complex terrain. Flooding is one of the most common natural hazards in the world. Especially, excessive development decreases the response time of urban watersheds and complex terrain to rainfall and increases the chance of localized flooding events over a small spatial domain. Successful monitoring of urban floods requires high spatiotemporal resolution, accurate precipitation estimation because of the rapid flood response as well as the complex hydrologic and hydraulic characteristics in an urban environment. This paper reviews various aspects in radar rainfall mapping in urban coverage using dense X-band dual-polarization radar networks. By reducing the maximum range and operating at X-band, one can ensure good azimuthal resolution with a small-size antenna and keep the radar beam closer to the ground. The networked topology helps to achieve satisfactory sensitivity and fast temporal update across the coverage. Strong clutter is expected from buildings in the neighborhood which act as perfect reflectors. The reduction in radar size enables flexible deployment, such as rooftop installation, with small infrastructure requirement, which is critical in a metropolitan region. Dual-polarization based technologies can be implemented for real-time mitigation of rain attenuations and accurate estimation of rainfall. The NSF Engineering Research Center for Collaborative Adaptive Sensing of the Atmosphere (CASA) is developing the technologies and the systems for network centric weather observation. The Differential propagation phase (Kdp) has higher sensitivity at X-band compared to S and C band. It is attractive to use Kdp to derive Quantitative Precipitation Estimation (QPE) because it is immune to rain attenuation, calibration biases, partial beam blockage, and hail contamination. Despite the advantage of Kdp for radar QPE, the estimation of Kdp itself is a challenge as the range derivative of the differential propagation phase profiles. An adaptive Kdp algorithm was implemented in the CASA IP1 testbed that substantially reduces the fluctuation in light rain and the bias at heavy rain. The Kdp estimation also benefits from the higher resolution in the IP1 radar network. The performance of the IP1 QPE product was evaluated for all major rain events against the USDA Agriculture Research Service's gauge network (MicroNet) in the Little Washita watershed, which comprises 20 weather stations in the center of the test bed. The cross-comparison with gauge measurements shows excellent agreement for the storm events during the Spring Experiments of 2007 and 2008. The hourly rainfall estimates compared to the gauge measurements have a very small bias of few percent and a normalized standard error of 21%. The IP1 testbed was designed with overlapping coverage among its radar nodes. The study area is covered by multiple radars and the aspect of network composition is also evaluated. The independence of Kdp on the radar calibration enables flexibility in combining the collocated Kdp estimates from all the radar nodes. Radar QPE can be improved from the composite Kdp field from the radar with lowest beam height and nearest slant range, or from the radar with the best Kdp estimates. More importantly, the data availability is greatly enhanced by the overlapped topology in cases of heavy rainfall, demonstrating the operational strength of the network centric radar system. The National Research Institute for Earth Science and Disaster Prevention (NIED), Japan, is in the process of establishing an X-band radar network (X-Net) in Metropolitan Tokyo area. Colorado State University and NIED have formed a partnership to initiate a joint program for urban flood monitoring using X-band dual-polarization radar network. This paper will also present some preliminary plans for this program.

  10. Weighted networks as randomly reinforced urn processes

    NASA Astrophysics Data System (ADS)

    Caldarelli, Guido; Chessa, Alessandro; Crimaldi, Irene; Pammolli, Fabio

    2013-02-01

    We analyze weighted networks as randomly reinforced urn processes, in which the edge-total weights are determined by a reinforcement mechanism. We develop a statistical test and a procedure based on it to study the evolution of networks over time, detecting the “dominance” of some edges with respect to the others and then assessing if a given instance of the network is taken at its steady state or not. Distance from the steady state can be considered as a measure of the relevance of the observed properties of the network. Our results are quite general, in the sense that they are not based on a particular probability distribution or functional form of the random weights. Moreover, the proposed tool can be applied also to dense networks, which have received little attention by the network community so far, since they are often problematic. We apply our procedure in the context of the International Trade Network, determining a core of “dominant edges.”

  11. Modeling the coevolution of topology and traffic on weighted technological networks

    NASA Astrophysics Data System (ADS)

    Xie, Yan-Bo; Wang, Wen-Xu; Wang, Bing-Hong

    2007-02-01

    For many technological networks, the network structures and the traffic taking place on them mutually interact. The demands of traffic increment spur the evolution and growth of the networks to maintain their normal and efficient functioning. In parallel, a change of the network structure leads to redistribution of the traffic. In this paper, we perform an extensive numerical and analytical study, extending results of Wang [Phys. Rev. Lett. 94, 188702 (2005)]. By introducing a general strength-coupling interaction driven by the traffic increment between any pair of vertices, our model generates networks of scale-free distributions of strength, weight, and degree. In particular, the obtained nonlinear correlation between vertex strength and degree, and the disassortative property demonstrate that the model is capable of characterizing weighted technological networks. Moreover, the generated graphs possess both dense clustering structures and an anticorrelation between vertex clustering and degree, which are widely observed in real-world networks. The corresponding theoretical predictions are well consistent with simulation results.

  12. Concentrations of hormones, pharmaceuticals and other micropollutants in groundwater affected by septic systems in New England and New York.

    PubMed

    Phillips, P J; Schubert, C; Argue, D; Fisher, I; Furlong, E T; Foreman, W; Gray, J; Chalmers, A

    2015-04-15

    Septic-system discharges can be an important source of micropollutants (including pharmaceuticals and endocrine active compounds) to adjacent groundwater and surface water systems. Groundwater samples were collected from well networks tapping glacial till in New England (NE) and sandy surficial aquifer New York (NY) during one sampling round in 2011. The NE network assesses the effect of a single large septic system that receives discharge from an extended health care facility for the elderly. The NY network assesses the effect of many small septic systems used seasonally on a densely populated portion of Fire Island. The data collected from these two networks indicate that hydrogeologic and demographic factors affect micropollutant concentrations in these systems. The highest micropollutant concentrations from the NE network were present in samples collected from below the leach beds and in a well downgradient of the leach beds. Total concentrations for personal care/domestic use compounds, pharmaceutical compounds and plasticizer compounds generally ranged from 1 to over 20 μg/L in the NE network samples. High tris(2-butoxyethyl phosphate) plasticizer concentrations in wells beneath and downgradient of the leach beds (>20 μg/L) may reflect the presence of this compound in cleaning agents at the extended health-care facility. The highest micropollutant concentrations for the NY network were present in the shoreline wells and reflect groundwater that is most affected by septic system discharges. One of the shoreline wells had personal care/domestic use, pharmaceutical, and plasticizer concentrations ranging from 0.4 to 5.7 μg/L. Estradiol equivalency quotient concentrations were also highest in a shoreline well sample (3.1 ng/L). Most micropollutant concentrations increase with increasing specific conductance and total nitrogen concentrations for shoreline well samples. These findings suggest that septic systems serving institutional settings and densely populated areas in coastal settings may be locally important sources of micropollutants to adjacent aquifer and marine systems. Published by Elsevier B.V.

  13. A symmetric multivariate leakage correction for MEG connectomes

    PubMed Central

    Colclough, G.L.; Brookes, M.J.; Smith, S.M.; Woolrich, M.W.

    2015-01-01

    Ambiguities in the source reconstruction of magnetoencephalographic (MEG) measurements can cause spurious correlations between estimated source time-courses. In this paper, we propose a symmetric orthogonalisation method to correct for these artificial correlations between a set of multiple regions of interest (ROIs). This process enables the straightforward application of network modelling methods, including partial correlation or multivariate autoregressive modelling, to infer connectomes, or functional networks, from the corrected ROIs. Here, we apply the correction to simulated MEG recordings of simple networks and to a resting-state dataset collected from eight subjects, before computing the partial correlations between power envelopes of the corrected ROItime-courses. We show accurate reconstruction of our simulated networks, and in the analysis of real MEGresting-state connectivity, we find dense bilateral connections within the motor and visual networks, together with longer-range direct fronto-parietal connections. PMID:25862259

  14. The Community Seismic Network: Enabling Observations Through Citizen Science Participation

    NASA Astrophysics Data System (ADS)

    Kohler, M. D.; Clayton, R. W.; Heaton, T. H.; Bunn, J.; Guy, R.; Massari, A.; Chandy, K. M.

    2017-12-01

    The Community Seismic Network is a dense accelerometer array deployed in the greater Los Angeles area and represents the future of densely instrumented urban cities where localized vibration measurements are collected continuously throughout the free-field and built environment. The hardware takes advantage of developments in the semiconductor industry in the form of inexpensive MEMS accelerometers that are each coupled with a single board computer. The data processing and archival architecture borrows from developments in cloud computing and network connectedness. The ability to deploy densely in the free field and in upper stories of mid/high-rise buildings is enabled by community hosts for sensor locations. To this end, CSN has partnered with the Los Angeles Unified School District (LAUSD), the NASA-Jet Propulsion Laboratory (JPL), and commercial and civic building owners to host sensors. At these sites, site amplification estimates from RMS noise measurements illustrate the lateral variation in amplification over length scales of 100 m or less, that correlate with gradients in the local geology such as sedimentary basins that abut crystalline rock foothills. This is complemented by high-resolution, shallow seismic velocity models obtained using an H/V method. In addition, noise statistics are used to determine the reliability of sites for ShakeMap and earthquake early warning data. The LAUSD and JPL deployments are examples of how situational awareness and centralized warning products such as ShakeMap and ShakeCast are enabled by citizen science participation. Several buildings have been instrumented with at least one triaxial accelerometer per floor, providing measurements for real-time structural health monitoring through local, customized displays. For real-time and post-event evaluation, the free-field and built environment CSN data and products illustrate the feasibility of order-of-magnitude higher spatial resolution mapping compared to what is currently possible with traditional, regional seismic networks. The JPL experiment in particular represents a miniature prototype for city-wide earthquake monitoring that combines free-field measurements for ground shaking intensities, with mid-rise building response through advanced fragility curve computations.

  15. Stream Intermittency Sensors Monitor the Onset and Duration of Stream Flow Along a Channel Network During Storms

    NASA Astrophysics Data System (ADS)

    Jensen, C.; McGuire, K. J.

    2017-12-01

    Headwater streams are spatially extensive, accounting for a majority of global stream length, and supply downstream water bodies with water, sediment, organic matter, and pollutants. Much of this transmission occurs episodically during storms when stream flow and connectivity are high. Many headwaters are temporary streams that expand and contract in length in response to storms and seasonality. Understanding where and when streams carry flow is critical for conserving headwaters and protecting downstream water quality, but storm events are difficult to study in small catchments. The rise and fall of stream flow occurs rapidly in headwaters, making observation of the entire stream network difficult. Stream intermittency sensors that detect the presence or absence of water can reveal wetting and drying patterns over short time scales. We installed 50 intermittency sensors along the channel network of a small catchment (35 ha) in the Valley and Ridge of southwest Virginia. Previous work shows stream length is highly variable in this shale catchment, as the drainage density spans two orders of magnitude. The sensors record data every 15 minutes for one year to capture different seasons, antecedent moisture conditions, and precipitation rates. We seek to determine whether hysteresis between stream flow and network length occurs on the rising and falling limbs of events and if reach-scale characteristics such as valley width explain spatial patterns of flow duration. Our results indicate reaches with a wide, sediment-filled valley floor carry water for shorter periods of time than confined channel segments with steep valley side slopes. During earlier field mapping surveys, we only observed flow in a few of the tributaries for the wettest conditions mapped. The sensors now show that these tributaries flow more frequently during much smaller storms, but only for brief periods of time (< 1 hour). The high temporal sampling resolution of the sensors permits a more realistic estimate of flow duration in temporary streams, which field surveys may, otherwise, underestimate. Such continuous datasets on stream network length will allow researchers to more accurately assess the value of headwater reaches for contributions to environmental services such as aquatic habitat, hyporheic exchange, and mass fluxes of solutes.

  16. Core network infrastructure supporting the VLT at ESO Paranal in Chile

    NASA Astrophysics Data System (ADS)

    Reay, Harold

    2000-06-01

    In October 1997 a number of projects were started at ESO's Paranal Observatory at Cerro Paranal in Chile to upgrade the communications infrastructure in place at the time. The planned upgrades were to internal systems such as computer data networks and telephone installations and also data links connecting Paranal to other ESO sites. This paper details the installation work carried out on the Paranal Core Network (PCN) during the period of October 1997 to December 1999. These installations were to provide both short term solutions to the requirement for reliable high bandwidth network connectivity between Paranal and ESO HQ in Garching, Germany in time for UTI (Antu) first light and perhaps more importantly, to provide the core systems necessary for a site moving towards operational status. This paper explains the reasons for using particular cable types, network topology, and fiber backbone design and implementation. We explain why it was decided to install the PCN in two distinct stages and how equipment used in temporary installations was re-used in the Very Large Telescope networks. Finally we describe the tools used to monitor network and satellite link performance and will discuss whether network backbone bandwidth meets the expected utilization and how this bandwidth can easily be increased in the future should there be a requirement.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Xiaobo; Zhou, Jing; Vatankhah-Varnosfaderani, Mohammad

    Shapeshifting enables a wide range of engineering and biomedical applications, but until now transformations have required external triggers. This prerequisite limits viability in closed or inert systems and puts forward the challenge of developing materials with intrinsically encoded shape evolution. Herein we demonstrate programmable shape-memory materials that perform a sequence of encoded actuations under constant environment conditions without using an external trigger. We employ dual network hydrogels: in the first network, covalent crosslinks are introduced for elastic energy storage, and in the second one, temporary hydrogen-bonds regulate the energy release rate. Through strain-induced and time-dependent reorganization of the reversible hydrogen-bonds,more » this dual network allows for encoding both the rate and pathway of shape transformations on timescales from seconds to hours. In conclusion, this generic mechanism for programming trigger-free shapeshifting opens new ways to design autonomous actuators, drug-release systems and active implants.« less

  18. Programming temporal shapeshifting

    DOE PAGES

    Hu, Xiaobo; Zhou, Jing; Vatankhah-Varnosfaderani, Mohammad; ...

    2016-09-27

    Shapeshifting enables a wide range of engineering and biomedical applications, but until now transformations have required external triggers. This prerequisite limits viability in closed or inert systems and puts forward the challenge of developing materials with intrinsically encoded shape evolution. Herein we demonstrate programmable shape-memory materials that perform a sequence of encoded actuations under constant environment conditions without using an external trigger. We employ dual network hydrogels: in the first network, covalent crosslinks are introduced for elastic energy storage, and in the second one, temporary hydrogen-bonds regulate the energy release rate. Through strain-induced and time-dependent reorganization of the reversible hydrogen-bonds,more » this dual network allows for encoding both the rate and pathway of shape transformations on timescales from seconds to hours. In conclusion, this generic mechanism for programming trigger-free shapeshifting opens new ways to design autonomous actuators, drug-release systems and active implants.« less

  19. Agreement dynamics on interaction networks with diverse topologies

    NASA Astrophysics Data System (ADS)

    Barrat, Alain; Baronchelli, Andrea; Dall'Asta, Luca; Loreto, Vittorio

    2007-06-01

    We review the behavior of a recently introduced model of agreement dynamics, called the "Naming Game." This model describes the self-organized emergence of linguistic conventions and the establishment of simple communication systems in a population of agents with pairwise local interactions. The mechanisms of convergence towards agreement strongly depend on the network of possible interactions between the agents. In particular, the mean-field case in which all agents communicate with all the others is not efficient, since a large temporary memory is requested for the agents. On the other hand, regular lattice topologies lead to a fast local convergence but to a slow global dynamics similar to coarsening phenomena. The embedding of the agents in a small-world network represents an interesting tradeoff: a local consensus is easily reached, while the long-range links allow to bypass coarsening-like convergence. We also consider alternative adaptive strategies which can lead to faster global convergence.

  20. On the Inference of the Cosmic-ray Ionization Rate ζ from the HCO+-to-DCO+ Abundance Ratio: The Effect of Nuclear Spin

    NASA Astrophysics Data System (ADS)

    Shingledecker, Christopher N.; Bergner, Jennifer B.; Le Gal, Romane; Öberg, Karin I.; Hincelin, Ugo; Herbst, Eric

    2016-10-01

    The chemistry of dense interstellar regions was analyzed using a time-dependent gas-grain astrochemical simulation and a new chemical network that incorporates deuterated chemistry, taking into account nuclear spin states for the hydrogen chemistry and its deuterated isotopologues. With this new network, the utility of the [HCO+]/[DCO+] abundance ratio as a probe of the cosmic-ray ionization rate has been re-examined, with special attention paid to the effect of the initial value of the ortho-to-para ratio (OPR) of molecular hydrogen. After discussing the use of the probe for cold cores, we compare our results with previous theoretical and observational results for a molecular cloud close to the supernova remnant W51C, which is thought to have an enhanced cosmic-ray ionization rate ζ caused by the nearby γ-ray source. In addition, we attempt to use our approach to estimate the cosmic-ray ionization rate for L1174, a dense core with an embedded star. Beyond the previously known sensitivity of [HCO+]/[DCO+] to ζ, we demonstrate its additional dependence on the initial OPR and, secondarily, on the age of the source, its temperature, and its density. We conclude that the usefulness of the [HCO+]/[DCO+] abundance ratio in constraining the cosmic-ray ionization rate in dense regions increases with the age of the source and the ionization rate as the ratio becomes far less sensitive to the initial value of the OPR.

  1. Effect of Grain Size on Differential Desorption of Volatile Species and on Non-ideal MHD Diffusivity

    NASA Astrophysics Data System (ADS)

    Zhao, Bo; Caselli, Paola; Li, Zhi-Yun

    2018-05-01

    We developed a chemical network for modeling the chemistry and non-ideal MHD effects from the collapsing dense molecular clouds to protostellar disks. First, we re-formulated the cosmic-ray desorption rate by considering the variations of desorption rate over the grain size distribution. We find that the differential desorption of volatile species is amplified by the grains larger than 0.1 μm, because larger grains are heated to a lower temperature by cosmic-rays and hence more sensitive to the variations in binding energies. As a result, atomic nitrogen N is ˜2 orders of magnitude more abundant than CO; N2H+ also becomes a few times more abundant than HCO+ due to the increased gas-phase N2. However, the changes in ionization fraction due to freeze-out and desorption only have minor effects on the non-ideal MHD diffusivities. Our chemical network confirms that the very small grains (VSGs: below a few 100 Å) weakens the efficiency of both ambipolar diffusion and Hall effect. In collapsing dense cores, a maximum ambipolar diffusion is achieved when truncating the MRN size distribution at 0.1 μm, and for a maximum Hall effect, the truncation occurs at 0.04 μm. We conclude that the grain size distribution is crucial to the differential depletion between CO and N2 related molecules, as well as to the non-ideal MHD diffusivities in dense cores.

  2. Immediate and Longitudinal Alterations of Functional Networks after Thalamotomy in Essential Tremor

    PubMed Central

    Jang, Changwon; Park, Hae-Jeong; Chang, Won Seok; Pae, Chongwon; Chang, Jin Woo

    2016-01-01

    Thalamotomy at the ventralis intermedius nucleus has been an effective treatment method for essential tremor, but how the brain network changes immediately responding to this deliberate lesion and then reorganizes afterwards are not clear. Taking advantage of a non-cranium-opening MRI-guided focused ultrasound ablation technique, we investigated functional network changes due to a focal lesion. To classify the diverse time courses of those network changes with respect to symptom-related long-lasting treatment effects and symptom-unrelated transient effects, we applied graph-theoretic analyses to longitudinal resting-state functional magnetic resonance imaging data before and 1 day, 7 days, and 3 months after thalamotomy with essential tremor. We found reduced average connections among the motor-related areas, reduced connectivity between substantia nigra and external globus pallidum and reduced total connection in the thalamus after thalamotomy, which are all associated with clinical rating scales. The average connectivity among whole brain regions and inter-hemispheric network asymmetry show symptom-unrelated transient increases, indicating temporary reconfiguration of the whole brain network. In summary, thalamotomy regulates interactions over the motor network via symptom-related connectivity changes but accompanies transient, symptom-unrelated diaschisis in the global brain network. This study suggests the significance of longitudinal network analysis, combined with minimal-invasive treatment techniques, in understanding time-dependent diaschisis in the brain network due to a focal lesion. PMID:27822200

  3. Characterization of Localized Filament Corrosion Products at the Anodic Head on a Model Mg-Zn-Zr Alloy Surface

    DOE PAGES

    Rossouw, David; Fu, Dong; Leonard, Donovan N.; ...

    2017-02-15

    In this study, localized filament corrosion products at the anodic head on a model Mg-1%Zn-0.4%Zr alloy surface were characterized by electron microscopy techniques of site-specific lamella prepared by focused ion beam milling. It is revealed that the anodic head propagates underneath a largely intact thin and dense MgO surface film and comprises dense aggregates of nano-crystalline MgO within a nano-porous Mg(OH) 2 network. In conclusion, the findings contribute new supportive direct imaging insight into the source of the enhanced H 2 evolution that accompanies anodic dissolution of Mg and its alloys.

  4. Characterization of Localized Filament Corrosion Products at the Anodic Head on a Model Mg-Zn-Zr Alloy Surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossouw, David; Fu, Dong; Leonard, Donovan N.

    In this study, localized filament corrosion products at the anodic head on a model Mg-1%Zn-0.4%Zr alloy surface were characterized by electron microscopy techniques of site-specific lamella prepared by focused ion beam milling. It is revealed that the anodic head propagates underneath a largely intact thin and dense MgO surface film and comprises dense aggregates of nano-crystalline MgO within a nano-porous Mg(OH) 2 network. In conclusion, the findings contribute new supportive direct imaging insight into the source of the enhanced H 2 evolution that accompanies anodic dissolution of Mg and its alloys.

  5. Intrinsic connectivity of neural networks in the awake rabbit.

    PubMed

    Schroeder, Matthew P; Weiss, Craig; Procissi, Daniel; Disterhoft, John F; Wang, Lei

    2016-04-01

    The way in which the brain is functionally connected into different networks has emerged as an important research topic in order to understand normal neural processing and signaling. Since some experimental manipulations are difficult or unethical to perform in humans, animal models are better suited to investigate this topic. Rabbits are a species that can undergo MRI scanning in an awake and conscious state with minimal preparation and habituation. In this study, we characterized the intrinsic functional networks of the resting New Zealand White rabbit brain using BOLD fMRI data. Group independent component analysis revealed seven networks similar to those previously found in humans, non-human primates and/or rodents including the hippocampus, default mode, cerebellum, thalamus, and visual, somatosensory, and parietal cortices. For the first time, the intrinsic functional networks of the resting rabbit brain have been elucidated demonstrating the rabbit's applicability as a translational animal model. Without the confounding effects of anesthetics or sedatives, future experiments may employ rabbits to understand changes in neural connectivity and brain functioning as a result of experimental manipulation (e.g., temporary or permanent network disruption, learning-related changes, and drug administration). Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Sociometric network structure and its association with methamphetamine use norms among homeless youth.

    PubMed

    Barman-Adhikari, Anamika; Begun, Stephanie; Rice, Eric; Yoshioka-Maxwell, Amanda; Perez-Portillo, Andrea

    2016-07-01

    Homeless youths' social networks are consistently linked with their substance use. Social networks influence behavior through several mechanisms, especially social norms. This study used sociometric analyses to understand whether social norms of drug use behaviors are clustered in network structures and whether these perceived norms (descriptive and injunctive) influence youths' drug use behaviors. An event-based approach was used to delineate boundaries of the two sociometric networks of homeless youth, one in Los Angeles, CA (n = 160) and the other in Santa Monica, CA (n = 130). Network characteristics included centrality (i.e., popularity) and cohesiveness (location in dense subnetworks). The primary outcome was recent methamphetamine use. Results revealed that both descriptive and injunctive norms influenced methamphetamine use. Network cohesion was found to be associated with perception of both descriptive and injunctive norms in both networks, however in opposite directions. Network interventions therefore might be effective if designed to capitalize on social influence that naturally occurs in cohesive parts of networks. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Motif formation and industry specific topologies in the Japanese business firm network

    NASA Astrophysics Data System (ADS)

    Maluck, Julian; Donner, Reik V.; Takayasu, Hideki; Takayasu, Misako

    2017-05-01

    Motifs and roles are basic quantities for the characterization of interactions among 3-node subsets in complex networks. In this work, we investigate how the distribution of 3-node motifs can be influenced by modifying the rules of an evolving network model while keeping the statistics of simpler network characteristics, such as the link density and the degree distribution, invariant. We exemplify this problem for the special case of the Japanese Business Firm Network, where a well-studied and relatively simple yet realistic evolving network model is available, and compare the resulting motif distribution in the real-world and simulated networks. To better approximate the motif distribution of the real-world network in the model, we introduce both subgraph dependent and global additional rules. We find that a specific rule that allows only for the merging process between nodes with similar link directionality patterns reduces the observed excess of densely connected motifs with bidirectional links. Our study improves the mechanistic understanding of motif formation in evolving network models to better describe the characteristic features of real-world networks with a scale-free topology.

  8. A dense Black Carbon network in the region of Paris, France: Implementation, objectives, and first results

    NASA Astrophysics Data System (ADS)

    Sciare, Jean; Petit, Jean-Eudes; Sarda-Esteve, Roland; Bonnaire, Nicolas; Gros, Valérie; Pernot, Pierre; Ghersi, Véronique; Ampe, Christophe; Songeur, Charlotte; Brugge, Benjamin; Debert, Christophe; Favez, Olivier; Le Priol, Tiphaine; Mocnik, Grisa

    2013-04-01

    Motivations. Road traffic and domestic wood burning emissions are two major contributors of particulate pollution in our cities. These two sources emit ultra-fine, soot containing, particles in the atmosphere, affecting health adversely, increasing morbidity and mortality from cardiovascular and respiratory conditions and casing lung cancer. A better characterization of soot containing aerosol sources in our major cities provides useful information for policy makers for assessment, implementation and monitoring of strategies to tackle air pollution issues affecting human health with additional benefits for climate change. Objectives. This study on local sources of primary Particulate Matter (PM) in the megacity of Paris is a follow-up of several programs (incl. EU-FP7-MEGAPOLI) that have shown that fine PM - in the Paris background atmosphere - is mostly secondary and imported. A network of 14 stations of Black Carbon has been implemented in the larger region of Paris to provide highly spatially resolved long term survey of local combustion aerosols. To our best knowledge, this is the first time that such densely BC network is operating over a large urban area, providing novel information on the spatial/temporal distribution of combustion aerosols within a post-industrialized megacity. Experimental. As part of the PRIMEQUAL "PREQUALIF" project, a dense Black Carbon network (of 14 stations) has been installed over the city of Paris beginning of 2012 in order to produce spatially resolved Equivalent Black Carbon (EBC) concentration maps with high time resolution through modeling and data assimilation. This network is composed of various real-time instruments (Multi-Angle Absorption Photometer, MAAP by THERMO; Multi-wavelength Aethalometers by MAGEE Scientific) implemented in contrasted sites (rural background, urban background, traffic) complementing the regulated measurements (PM, NOx) in the local air quality network AIRPARIF (http://www.airparif.asso.fr/). Contribution of imported versus local EBC is calculated using the "Lenschow" methodology (Lenschow et al., 2001), whereas the influence of domestic wood burning EBC (vs traffic) over the region of Paris is evaluated using the Aethalometer model developed by Sandradewi et al. (2008). Results and discussion. First results of this BC network are presented here including the temporal variations of EBC from wood burning (domestic heating) and fossil fuel (traffic) for the various sites (1-year observation for rural background and traffic sites; 4-year observations for urban background). The local versus imported contributions of EBC are also presented and discussed for these 2 sources. References. Lenschow, P., et al., Some ideas about the sources of PM10, Atmospheric Environment 35 Supplement No. 1 (2001) S23-S33 Sandradewi, J., et al., Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter, Environ. Sci. Technol., 42, 3316-3323, 2008

  9. Upper mantle structure beneath the northern part of the East African Plateau using data from the NE Uganda temporary seismic network

    NASA Astrophysics Data System (ADS)

    Bressers, C. A.; Nyblade, A.; Tugume, F.

    2017-12-01

    Data from a newly installed temporary seismic array in northeastern Uganda are incorporated into an existing body wave tomography model of eastern Africa to improve imaging of the upper mantle beneath the northern part of the East African Plateau. Nine temporary broadband stations were installed in January 2017 and will be operated through 2018 to obtain data for resolving structure under the northern part of the plateau as well as the East African rift in northern Kenya. Preliminary tomography models incorporate several months of data from stations in NE Uganda, plus many years of data from over 200 seismic stations throughout eastern Africa used in previously published body wave tomography models. The data come from teleseismic earthquakes with mb ≥ 5.5 at a distance from each station of 30° to 90°. P and S wave travel time residuals have been obtained using a multichannel cross correlation method and inverted using VanDecar's method to produce 3D tomographic images of the upper mantle. The preliminary results exhibit better resolved structure under the northern part of the East African Plateau than pervious models and suggest that the fast-wave speed anomaly in the upper mantle associated with the Tanzanian Craton—which is bounded by the Western and Eastern branches of the rift system—extends across most of northern Uganda.

  10. Predicting the cumulative effect of multiple disturbances on seagrass connectivity.

    PubMed

    Grech, Alana; Hanert, Emmanuel; McKenzie, Len; Rasheed, Michael; Thomas, Christopher; Tol, Samantha; Wang, Mingzhu; Waycott, Michelle; Wolter, Jolan; Coles, Rob

    2018-03-15

    The rate of exchange, or connectivity, among populations effects their ability to recover after disturbance events. However, there is limited information on the extent to which populations are connected or how multiple disturbances affect connectivity, especially in coastal and marine ecosystems. We used network analysis and the outputs of a biophysical model to measure potential functional connectivity and predict the impact of multiple disturbances on seagrasses in the central Great Barrier Reef World Heritage Area (GBRWHA), Australia. The seagrass networks were densely connected, indicating that seagrasses are resilient to the random loss of meadows. Our analysis identified discrete meadows that are important sources of seagrass propagules and that serve as stepping stones connecting various different parts of the network. Several of these meadows were close to urban areas or ports and likely to be at risk from coastal development. Deep water meadows were highly connected to coastal meadows and may function as a refuge, but only for non-foundation species. We evaluated changes to the structure and functioning of the seagrass networks when one or more discrete meadows were removed due to multiple disturbance events. The scale of disturbance required to disconnect the seagrass networks into two or more components was on average >245 km, about half the length of the metapopulation. The densely connected seagrass meadows of the central GBRWHA are not limited by the supply of propagules; therefore, management should focus on improving environmental conditions that support natural seagrass recruitment and recovery processes. Our study provides a new framework for assessing the impact of global change on the connectivity and persistence of coastal and marine ecosystems. Without this knowledge, management actions, including coastal restoration, may prove unnecessary and be unsuccessful. © 2018 John Wiley & Sons Ltd.

  11. Informatics technology mimics ecology: dense, mutualistic collaboration networks are associated with higher publication rates.

    PubMed

    Sorani, Marco D

    2012-01-01

    Information technology (IT) adoption enables biomedical research. Publications are an accepted measure of research output, and network models can describe the collaborative nature of publication. In particular, ecological networks can serve as analogies for publication and technology adoption. We constructed network models of adoption of bioinformatics programming languages and health IT (HIT) from the literature.We selected seven programming languages and four types of HIT. We performed PubMed searches to identify publications since 2001. We calculated summary statistics and analyzed spatiotemporal relationships. Then, we assessed ecological models of specialization, cooperativity, competition, evolution, biodiversity, and stability associated with publications.Adoption of HIT has been variable, while scripting languages have experienced rapid adoption. Hospital systems had the largest HIT research corpus, while Perl had the largest language corpus. Scripting languages represented the largest connected network components. The relationship between edges and nodes was linear, though Bioconductor had more edges than expected and Perl had fewer. Spatiotemporal relationships were weak. Most languages shared a bioinformatics specialization and appeared mutualistic or competitive. HIT specializations varied. Specialization was highest for Bioconductor and radiology systems. Specialization and cooperativity were positively correlated among languages but negatively correlated among HIT. Rates of language evolution were similar. Biodiversity among languages grew in the first half of the decade and stabilized, while diversity among HIT was variable but flat. Compared with publications in 2001, correlation with publications one year later was positive while correlation after ten years was weak and negative.Adoption of new technologies can be unpredictable. Spatiotemporal relationships facilitate adoption but are not sufficient. As with ecosystems, dense, mutualistic, specialized co-habitation is associated with faster growth. There are rapidly changing trends in external technological and macroeconomic influences. We propose that a better understanding of how technologies are adopted can facilitate their development.

  12. Topology of genetic associations between regional gray matter volume and intellectual ability: Evidence for a high capacity network.

    PubMed

    Bohlken, Marc M; Brouwer, Rachel M; Mandl, René C W; Hedman, Anna M; van den Heuvel, Martijn P; van Haren, Neeltje E M; Kahn, René S; Hulshoff Pol, Hilleke E

    2016-01-01

    Intelligence is associated with a network of distributed gray matter areas including the frontal and parietal higher association cortices and primary processing areas of the temporal and occipital lobes. Efficient information transfer between gray matter regions implicated in intelligence is thought to be critical for this trait to emerge. Genetic factors implicated in intelligence and gray matter may promote a high capacity for information transfer. Whether these genetic factors act globally or on local gray matter areas separately is not known. Brain maps of phenotypic and genetic associations between gray matter volume and intelligence were made using structural equation modeling of 3T MRI T1-weighted scans acquired in 167 adult twins of the newly acquired U-TWIN cohort. Subsequently, structural connectivity analyses (DTI) were performed to test the hypothesis that gray matter regions associated with intellectual ability form a densely connected core. Gray matter regions associated with intellectual ability were situated in the right prefrontal, bilateral temporal, bilateral parietal, right occipital and subcortical regions. Regions implicated in intelligence had high structural connectivity density compared to 10,000 reference networks (p=0.031). The genetic association with intelligence was for 39% explained by a genetic source unique to these regions (independent of total brain volume), this source specifically implicated the right supramarginal gyrus. Using a twin design, we show that intelligence is genetically represented in a spatially distributed and densely connected network of gray matter regions providing a high capacity infrastructure. Although genes for intelligence have overlap with those for total brain volume, we present evidence that there are genes for intelligence that act specifically on the subset of brain areas that form an efficient brain network. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Monitoring inland storm tide and flooding from Hurricane Irene along the Atlantic Coast of the United States, August 2011

    USGS Publications Warehouse

    McCallum, Brian E.; Painter, Jaime A.; Frantz, Eric R.

    2012-01-01

    The U.S. Geological Survey (USGS) deployed a temporary monitoring network of water-level sensors at 212 locations along the Atlantic coast from South Carolina to Maine during August 2011 to record the timing, areal extent, and magnitude of inland hurricane storm tide and coastal flooding generated by Hurricane Irene. Water-level sensor locations were selected to augment existing tide-gage networks to ensure adequate monitoring in areas forecasted to have substantial storm tide. As defined by the National Oceanic and Atmospheric Administration (NOAA; 2011a,b), storm tide is the water-level rise generated by a coastal storm as a result of the combination of storm surge and astronomical tide.

  14. Shape memory polymer network with thermally distinct elasticity and plasticity

    PubMed Central

    Zhao, Qian; Zou, Weike; Luo, Yingwu; Xie, Tao

    2016-01-01

    Stimuli-responsive materials with sophisticated yet controllable shape-changing behaviors are highly desirable for real-world device applications. Among various shape-changing materials, the elastic nature of shape memory polymers allows fixation of temporary shapes that can recover on demand, whereas polymers with exchangeable bonds can undergo permanent shape change via plasticity. We integrate the elasticity and plasticity into a single polymer network. Rational molecular design allows these two opposite behaviors to be realized at different temperature ranges without any overlap. By exploring the cumulative nature of the plasticity, we demonstrate easy manipulation of highly complex shapes that is otherwise extremely challenging. The dynamic shape-changing behavior paves a new way for fabricating geometrically complex multifunctional devices. PMID:26824077

  15. Long reach DWDM-PON with 12.5 GHz channel spacing based on comb source seeding

    NASA Astrophysics Data System (ADS)

    Zhou, Zhao; Nie, Hai-tao; Wang, Yao-jun

    2016-07-01

    A long reach dense wavelength division multiplexing passive optical network (DWDM-PON) with 12.5 GHz channel spacing is proposed and experimentally demonstrated. An optical frequency comb source is used to provide the multiwavelength seeding light, while reflective semiconductor optical amplifiers (RSOAs) are installed in both optical line terminal (OLT) and optical network units (ONUs) as colorless transmitter. The experimental results show that the bidirectional transmission for 1.2 Gbit/s data rate is achieved over 80 km single mode fiber (SMF).

  16. Superimposing various biophysical and social scales in a rapidly changing rural area (SW Niger)

    NASA Astrophysics Data System (ADS)

    Leduc, Christian; Massuel, Sylvain; Favreau, Guillaume; Cappelaere, Bernard; Leblanc, Marc; Bachir, Salifou; Ousmane, Boureïma

    2014-05-01

    In SW Niger, close to Niamey, a detailed hydrological survey has been developed for the last 20 years (international experiments HAPEX-SAHEL and later AMMA), investigating the distribution of water in atmosphere, surface, soil and aquifers. It covers an area of about 10 000 km2, with a series of imbricated scales of instrumentation, in time and space. This dense long term field observation led to many major scientific results. Among them, one of the most original and paradoxical is the continuous rise of the water table, even during the severe droughts of the 1970s and 1980s (about 3 m in the last 30 years). In spite of a large apparent homogeneity of the biophysical environment throughout the region, numerous heterogeneities exist at different scales, complicating the hydrological analysis. On the surface, the hydrological system was, ~6000 years ago, a structured drainage network leading to the Niger River. It was later broken into much smaller elements by aeolian dunes deposited during arid episodes and the study area now appears as a juxtaposition of hundreds of small endorheic catchments (most often 1 to 20 km2) where the surface runoff finally ends in temporary ponds. During most violent rainy events, erosion can be locally very severe and modify durably the size of the catchment and the local hydrology. Conversely, during smaller rainy events, surface runoff may never reach the ponds because it infiltrates in more permeable zones at mid-slope. The actual surface area of the catchment contributing to the surface runoff thus varies considerably with time. Because of their great number, only a few catchments are instrumented and extrapolation of measurements to ungauged catchments is an additional difficulty. Most of water temporarily stored in ponds infiltrates and recharges groundwater. The Continental Terminal (CT) aquifer system is made of three independent layers, of which the upper one (CT3) is only considered here. The CT aquifer systems is a transboundary aquifer that extends far beyond the study area, over about 150 000 km2. It is also heterogeneous. Like surface flows, but at a different scale, groundwater flows are marked by a strong endorheism. For example the Dantiandou closed piezometric depression extends over about approximately 5000 km2. These natural closed depressions are explained only by evapotranspiration uptake, weak in absolute terms (a few mm.a-1) but with a very high impact on hydrodynamics because of poor permeability and porosity. Both density of observations and hydraulic continuity of the CT3 aquifer give a fine idea of groundwater changes in the whole area. Human activities, continuously adapting in this poor rural area, add another complexity to the hydrological diversity in surface and ground water. The replacement of the natural vegetation with millet fields and fallow increased the surface runoff, and consequently water accumulation in temporary pools and then CT3 recharge. In the SE part of the study area, the water table has risen up to outcropping in the lowest valley bottoms. These new permanent ponds reflect groundwater while temporary ponds still reflect surface dynamics. This new component of the hydrological landscape induces several consequences, in physical and human dimensions. Evaporation strongly affects the permanent water and increases its salinity while the natural mineralization of groundwater is very low. The easier access to water resources allows a significant development of local gardening, which modifies the social functioning of villages (e.g. land rights between villages and within a village, diversification of crops and sources of income, new sales channels). Different physically based models (for surface and ground water) were built, with a significant discrepancy between their respective quantification of water flows at the region scale. Extrapolation of surface fluxes from the few instrumented catchments to a much larger mosaic of non-instrumented catchments is only partially compatible with the geochemical and hydrodynamic calculations for the CT3 aquifer. This leads to many questions about the representativeness of instrumentation (in spite of dense observations), the heterogeneity of the landscape (perhaps even stronger than supposed, complementarities and differences between methods, etc.). Similarly, the diversity and evolution of human behaviours facing new situations (population growth, environmental changes) are essential elements to take into account, not always easily accessible to hydrologists.

  17. Multiple-predators-based capture process on complex networks

    NASA Astrophysics Data System (ADS)

    Ramiz Sharafat, Rajput; Pu, Cunlai; Li, Jie; Chen, Rongbin; Xu, Zhongqi

    2017-03-01

    The predator/prey (capture) problem is a prototype of many network-related applications. We study the capture process on complex networks by considering multiple predators from multiple sources. In our model, some lions start from multiple sources simultaneously to capture the lamb by biased random walks, which are controlled with a free parameter $\\alpha$. We derive the distribution of the lamb's lifetime and the expected lifetime $\\left\\langle T\\right\\rangle $. Through simulation, we find that the expected lifetime drops substantially with the increasing number of lions. We also study how the underlying topological structure affects the capture process, and obtain that locating on small-degree nodes is better than large-degree nodes to prolong the lifetime of the lamb. Moreover, dense or homogeneous network structures are against the survival of the lamb.

  18. Inequality measures perform differently in global and local assessments: An exploratory computational experiment

    NASA Astrophysics Data System (ADS)

    Chiang, Yen-Sheng

    2015-11-01

    Inequality measures are widely used in both the academia and public media to help us understand how incomes and wealth are distributed. They can be used to assess the distribution of a whole society-global inequality-as well as inequality of actors' referent networks-local inequality. How different is local inequality from global inequality? Formalizing the structure of reference groups as a network, the paper conducted a computational experiment to see how the structure of complex networks influences the difference between global and local inequality assessed by a selection of inequality measures. It was found that local inequality tends to be higher than global inequality when population size is large; network is dense and heterophilously assorted, and income distribution is less dispersed. The implications of the simulation findings are discussed.

  19. A Solution to the Mysteries of Morality

    ERIC Educational Resources Information Center

    DeScioli, Peter; Kurzban, Robert

    2013-01-01

    We propose that moral condemnation functions to guide bystanders to choose the same side as other bystanders in disputes. Humans interact in dense social networks, and this poses a problem for bystanders when conflicts arise: which side, if any, to support. Choosing sides is a difficult strategic problem because the outcome of a conflict…

  20. Variability of winds and temperature in the Bergen area

    NASA Astrophysics Data System (ADS)

    Schönbein, Daniel; Ólafsson, Haraldur; Asle Olseth, Jan; Furevik, Birgitte

    2017-04-01

    In recent years, observations have been made by a dense network of automatic weather stations in the Bergen area in W-Norway (Bergen School of Meteorology). Here, cases are presented that feature large spatial variability in winds and temperature and the ability of a numerical model to reproduce this variability is assessed.

  1. Suppressing turbulence of self-propelling rods by strongly coupled passive particles.

    PubMed

    Su, Yen-Shuo; Wang, Hao-Chen; I, Lin

    2015-03-01

    The strong turbulence suppression, mainly for large-scale modes, of two-dimensional self-propelling rods, by increasing the long-range coupling strength Γ of low-concentration passive particles, is numerically demonstrated. It is found that large-scale collective rod motion in forms of swirls or jets is mainly contributed from well-aligned dense patches, which can push small poorly aligned rod patches and uncoupled passive particles. The more efficient momentum transfer and dissipation through increasing passive particle coupling leads to the formation of a more ordered and slowed down network of passive particles, which competes with coherent dense active rod clusters. The frustration of active rod alignment ordering and coherent motion by the passive particle network, which interrupt the inverse cascading of forming large-scale swirls, is the key for suppressing collective rod motion with scales beyond the interpassive distance, even in the liquid phase of passive particles. The loosely packed active rods are weakly affected by increasing passive particle coupling due to the weak rod-particle interaction. They mainly contribute to the small-scale modes and high-speed motion.

  2. Protein-protein interaction networks (PPI) and complex diseases

    PubMed Central

    Safari-Alighiarloo, Nahid; Taghizadeh, Mohammad; Rezaei-Tavirani, Mostafa; Goliaei, Bahram

    2014-01-01

    The physical interaction of proteins which lead to compiling them into large densely connected networks is a noticeable subject to investigation. Protein interaction networks are useful because of making basic scientific abstraction and improving biological and biomedical applications. Based on principle roles of proteins in biological function, their interactions determine molecular and cellular mechanisms, which control healthy and diseased states in organisms. Therefore, such networks facilitate the understanding of pathogenic (and physiologic) mechanisms that trigger the onset and progression of diseases. Consequently, this knowledge can be translated into effective diagnostic and therapeutic strategies. Furthermore, the results of several studies have proved that the structure and dynamics of protein networks are disturbed in complex diseases such as cancer and autoimmune disorders. Based on such relationship, a novel paradigm is suggested in order to confirm that the protein interaction networks can be the target of therapy for treatment of complex multi-genic diseases rather than individual molecules with disrespect the network. PMID:25436094

  3. Protein complex prediction in large ontology attributed protein-protein interaction networks.

    PubMed

    Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian; Li, Yanpeng; Xu, Bo

    2013-01-01

    Protein complexes are important for unraveling the secrets of cellular organization and function. Many computational approaches have been developed to predict protein complexes in protein-protein interaction (PPI) networks. However, most existing approaches focus mainly on the topological structure of PPI networks, and largely ignore the gene ontology (GO) annotation information. In this paper, we constructed ontology attributed PPI networks with PPI data and GO resource. After constructing ontology attributed networks, we proposed a novel approach called CSO (clustering based on network structure and ontology attribute similarity). Structural information and GO attribute information are complementary in ontology attributed networks. CSO can effectively take advantage of the correlation between frequent GO annotation sets and the dense subgraph for protein complex prediction. Our proposed CSO approach was applied to four different yeast PPI data sets and predicted many well-known protein complexes. The experimental results showed that CSO was valuable in predicting protein complexes and achieved state-of-the-art performance.

  4. Identifying protein complexes in PPI network using non-cooperative sequential game.

    PubMed

    Maulik, Ujjwal; Basu, Srinka; Ray, Sumanta

    2017-08-21

    Identifying protein complexes from protein-protein interaction (PPI) network is an important and challenging task in computational biology as it helps in better understanding of cellular mechanisms in various organisms. In this paper we propose a noncooperative sequential game based model for protein complex detection from PPI network. The key hypothesis is that protein complex formation is driven by mechanism that eventually optimizes the number of interactions within the complex leading to dense subgraph. The hypothesis is drawn from the observed network property named small world. The proposed multi-player game model translates the hypothesis into the game strategies. The Nash equilibrium of the game corresponds to a network partition where each protein either belong to a complex or form a singleton cluster. We further propose an algorithm to find the Nash equilibrium of the sequential game. The exhaustive experiment on synthetic benchmark and real life yeast networks evaluates the structural as well as biological significance of the network partitions.

  5. A community detection algorithm based on structural similarity

    NASA Astrophysics Data System (ADS)

    Guo, Xuchao; Hao, Xia; Liu, Yaqiong; Zhang, Li; Wang, Lu

    2017-09-01

    In order to further improve the efficiency and accuracy of community detection algorithm, a new algorithm named SSTCA (the community detection algorithm based on structural similarity with threshold) is proposed. In this algorithm, the structural similarities are taken as the weights of edges, and the threshold k is considered to remove multiple edges whose weights are less than the threshold, and improve the computational efficiency. Tests were done on the Zachary’s network, Dolphins’ social network and Football dataset by the proposed algorithm, and compared with GN and SSNCA algorithm. The results show that the new algorithm is superior to other algorithms in accuracy for the dense networks and the operating efficiency is improved obviously.

  6. Shelter, housing and recovery: a comparison of u.s. Disasters.

    PubMed

    Bolin, R; Stanford, L

    1991-03-01

    In this paper we examine the issues associated with the temporary sheltering and housing of victims after natural disasters in the United States. Specific topics addressed include differential access to shelter and housing aid according to social class, ethnicity and related demographic factors; the relationship between post-disaster shelter and housing and long-term recovery; the role of social support networks in the sheltering of victims; and the implications of the research for the provision of shelter and housing aid after disasters.

  7. Effect of correlations on controllability transition in network control

    PubMed Central

    Nie, Sen; Wang, Xu-Wen; Wang, Bing-Hong; Jiang, Luo-Luo

    2016-01-01

    The network control problem has recently attracted an increasing amount of attention, owing to concerns including the avoidance of cascading failures of power-grids and the management of ecological networks. It has been proven that numerical control can be achieved if the number of control inputs exceeds a certain transition point. In the present study, we investigate the effect of degree correlation on the numerical controllability in networks whose topological structures are reconstructed from both real and modeling systems, and we find that the transition point of the number of control inputs depends strongly on the degree correlation in both undirected and directed networks with moderately sparse links. More interestingly, the effect of the degree correlation on the transition point cannot be observed in dense networks for numerical controllability, which contrasts with the corresponding result for structural controllability. In particular, for directed random networks and scale-free networks, the influence of the degree correlation is determined by the types of correlations. Our approach provides an understanding of control problems in complex sparse networks. PMID:27063294

  8. Using GPS TEC measurements to probe ionospheric spatial spectra at mid-latitudes

    NASA Astrophysics Data System (ADS)

    Lay, E. H.; Parker, P. A.; Light, M. E.; Carrano, C. S.; Debchoudhury, S.; Haaser, R. A.

    2017-12-01

    The physics of how random ionospheric structure causes signal degradation is well understood as weak forward scattering through an effective diffraction grating created by plasma irregularities in the ionosphere. However, the spatial scale spectrum of those irregularities required for input into scintillation models and models of traveling ionospheric disturbances is poorly characterized, particularly at the kilometer to tens of kilometer scale lengths important for very-high-frequency (VHF) scintillation prediction. Furthermore, the majority of characterization studies have been performed in low-latitude or high-latitude regions where geomagnetic activity dominates the physical processes. At mid-latitudes, tropospheric and geomagnetic phenomena compete in disturbing the ionosphere, and it is not well understood how these multiple sources affect the drivers that influence the spatial spectrum. In this study, we are interested in mid-latitude electron density irregularities on the order of 10s of kilometers that would affect VHF signals. Data from the GPS networks Japan GEONET and the Plate Boundary Observatory (PBO, UNAVCO) in the western United States were analyzed for this study. Japan GEONET is a dense network of GPS receivers (station spacing of tens of km), with fairly evenly spaced positions over all of Japan. The PBO, on the other hand, has several pockets of extremely dense coverage (station spacing within a few km), but is less dense on average. We analyze a day with a large solar storm (2015/03/17, St. Patrick's Day Storm) to allow high scintillation potential at mid-latitudes, a day with low geomagnetic activity and low thunderstorm activity (2016/01/31), and a day with low geomagnetic activity and high thunderstorm activity (2015/08/02). We then perform two-dimensional spatial analyses on the TEC data from these two networks on scale lengths of 20 to 200 km to infer the spatial scale spectra.

  9. Graph Theory-Based Analysis of the Lymph Node Fibroblastic Reticular Cell Network.

    PubMed

    Novkovic, Mario; Onder, Lucas; Bocharov, Gennady; Ludewig, Burkhard

    2017-01-01

    Secondary lymphoid organs have developed segregated niches that are able to initiate and maintain effective immune responses. Such global organization requires tight control of diverse cellular components, specifically those that regulate lymphocyte trafficking. Fibroblastic reticular cells (FRCs) form a densely interconnected network in lymph nodes and provide key factors necessary for T cell migration and retention, and foster subsequent interactions between T cells and dendritic cells. Development of integrative systems biology approaches has made it possible to elucidate this multilevel complexity of the immune system. Here, we present a graph theory-based analysis of the FRC network in murine lymph nodes, where generation of the network topology is performed using high-resolution confocal microscopy and 3D reconstruction. This approach facilitates the analysis of physical cell-to-cell connectivity, and estimation of topological robustness and global behavior of the network when it is subjected to perturbation in silico.

  10. Effects of Cultural Tightness-Looseness and Social Network Density on Expression of Positive and Negative Emotions: A Large-Scale Study of Impression Management by Facebook Users.

    PubMed

    Liu, Pan; Chan, David; Qiu, Lin; Tov, William; Tong, Victor Joo Chuan

    2018-05-01

    Using data from 13,789 Facebook users across U.S. states, this study examined the main effects of societal-level cultural tightness-looseness and its interaction effects with individuals' social network density on impression management (IM) in terms of online emotional expression. Results showed that individuals from culturally tight (vs. loose) states were more likely to express positive emotions and less likely to express negative emotions. Meanwhile, for positive emotional expression, there was a tightness-looseness by social network density interaction effect. In culturally tight states, individuals with dense (vs. sparse) networks were more likely to express positive emotions, while in culturally loose states this pattern was reversed. For negative emotional expression, however, no such interaction was observed. Our findings highlight the influence of cultural norms and social network structure on emotional expressions as IM strategies.

  11. Modular analysis of the probabilistic genetic interaction network.

    PubMed

    Hou, Lin; Wang, Lin; Qian, Minping; Li, Dong; Tang, Chao; Zhu, Yunping; Deng, Minghua; Li, Fangting

    2011-03-15

    Epistatic Miniarray Profiles (EMAP) has enabled the mapping of large-scale genetic interaction networks; however, the quantitative information gained from EMAP cannot be fully exploited since the data are usually interpreted as a discrete network based on an arbitrary hard threshold. To address such limitations, we adopted a mixture modeling procedure to construct a probabilistic genetic interaction network and then implemented a Bayesian approach to identify densely interacting modules in the probabilistic network. Mixture modeling has been demonstrated as an effective soft-threshold technique of EMAP measures. The Bayesian approach was applied to an EMAP dataset studying the early secretory pathway in Saccharomyces cerevisiae. Twenty-seven modules were identified, and 14 of those were enriched by gold standard functional gene sets. We also conducted a detailed comparison with state-of-the-art algorithms, hierarchical cluster and Markov clustering. The experimental results show that the Bayesian approach outperforms others in efficiently recovering biologically significant modules.

  12. Locating influential nodes in complex networks

    PubMed Central

    Malliaros, Fragkiskos D.; Rossi, Maria-Evgenia G.; Vazirgiannis, Michalis

    2016-01-01

    Understanding and controlling spreading processes in networks is an important topic with many diverse applications, including information dissemination, disease propagation and viral marketing. It is of crucial importance to identify which entities act as influential spreaders that can propagate information to a large portion of the network, in order to ensure efficient information diffusion, optimize available resources or even control the spreading. In this work, we capitalize on the properties of the K-truss decomposition, a triangle-based extension of the core decomposition of graphs, to locate individual influential nodes. Our analysis on real networks indicates that the nodes belonging to the maximal K-truss subgraph show better spreading behavior compared to previously used importance criteria, including node degree and k-core index, leading to faster and wider epidemic spreading. We further show that nodes belonging to such dense subgraphs, dominate the small set of nodes that achieve the optimal spreading in the network. PMID:26776455

  13. Uncovering the community structure in signed social networks based on greedy optimization

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Yan, Jiaqi; Yang, Yu; Chen, Junhua

    2017-05-01

    The formality of signed relationships has been recently adopted in a lot of complicated systems. The relations among these entities are complicated and multifarious. We cannot indicate these relationships only by positive links, and signed networks have been becoming more and more universal in the study of social networks when community is being significant. In this paper, to identify communities in signed networks, we exploit a new greedy algorithm, taking signs and the density of these links into account. The main idea of the algorithm is the initial procedure of signed modularity and the corresponding update rules. Specially, we employ the “Asymmetric and Constrained Belief Evolution” procedure to evaluate the optimal number of communities. According to the experimental results, the algorithm is proved to be able to run well. More specifically, the proposed algorithm is very efficient for these networks with medium size, both dense and sparse.

  14. A Dense Small-Scale Seismic Network in the Ngorongoro Conservation Area (Northern Tanzania)

    NASA Astrophysics Data System (ADS)

    Parisi, L.; Lombardo, L.; Rodriguez-Mustafa, M.; Mai, P. M.

    2017-12-01

    A temporary deployment consisting of sixteen broadband seismic stations is conducted for the first time in the Ngorongoro Conservation Area (NCA, Northern Tanzania), located at the boundary between the Tanzanian Craton and East African Rift. A deep knowledge of the faulting systems and tectonics of the area is needed to better understand the contribution of the synsedimentary faults to the deposition of the Olduvai and surrounding basins affecting the landscapes of the Homo Habilis first settlements. Complex fault systems have been mapped in the field but their connection, especially at depth, is not well known. A first batch of ten instruments was installed in June 2016. In June 2017 two stations were dismissed and a second batch of six stations was installed in new locations. The current network of fourteen stations will record until May 2018. Stations are equipped with Nanometrics Trillium Compact Posthole 120 s sensor and Centaur digitiser recording continuously at 200 Hz. The whole network covers 1400 km2 and station interspace ranges from 8 to 15 km. We analyse probabilistic power spectra densities of the seismic noise to obtain insights of its origin and test the performances of the stations. Although factories do not exist in the area and most of the stations are far from roads, ambient noise in the range 0.01 - 1 s is relatively high (between -120 dB and -100dB at 0.1 s) probably because of the abundance of livestock living in the NCA. Ambient noise in the period range 1 - 10 s (secondary microseisms) decreases from east to west. Although the main source of the microseisms is located in the Indian Ocean (east of the study area), a contribution from the low period tremors coming from the nearby active volcano Ol Doinyo Lengai (north-east of the study area) is expected. Whereas the longer period noise (10 - 100 s) is very low in the vertical component seismograms, it is higher than the high noise model in the horizontal components for most of the stations. Although this can be due to sensor insulation issues, we find a strong variability even for sensors installed in the same conditions. We also present the first seismicity map of the NCA by using the first year of data. We detect events with ML ranging between 0.7 and 3.0, mostly located south where major fault systems have not been mapped at the surface yet.

  15. The EUROSEISTEST Experimental Test Site in Greece

    NASA Astrophysics Data System (ADS)

    Pitilakis, K.; Manos, G.; Raptakis, D.; Anastasiadis, A.; Makra, K.; Manakou, M.

    2009-04-01

    The European experimental site EUROSEISTEST has been established since 1993 in the epicentral area of the June 20th 1978 earthquake (40.8˚ N, 23.2˚ E, Ms 6.5, Imax VIII+ MSK, Papazachos et al., 1979), located in the active tectonic Mygdonian basin, 30km NNE from Thessaloniki, Greece. Euroseistest has been funded by the European Commission - Directorate General for Research and Development under the framework of consecutive EC research projects (EuroseisTest, EuroseisMod and Eurroseisrisk). It is specially designed and dedicated to conduct experimental and theoretical studies on site effects, soil and site characterization and soil-foundation-structure interaction phenomena. The geological, geophysical and geotechnical conditions of the Euroseistest valley (Mygdonian graben) is very well constrained through numerous in situ campaigns and laboratory tests. The permanent accelerometric network comprises 21 digital 3D stations, including vertical arrays down to 200m (schist bedrock), covering a surface of about 100 sq Km. The site is also covered by a permanent seismological network. A number of high quality recordings, from temporary and permanent arrays, gave the possibility to perform advanced experimental and theoretical studies on site effects (e.g. Raptakis et al., 1998; Pitilakis et al., 1999; Raptakis et al., 2000; Chávez-García et al., 2000; Makra, 2000; Makra et al., 2001 & 2005). The main advantage of Euroseistest is the detailed knowledge of the 3D geological-geotechnical structure of the basin (Manakou, 2007) and its dense permanent accelerometric network. For this reason the site has been recently selected by CEA to validate and check the advanced numerical codes to be used in Cadarache ITER project. Besides the study of site effects, Euroseistest offers interesting possibilities to study SSI problems through two model structures (scaled 1:3). A 6-storey building and a bridge pier, which have been constructed and instrumented in the centre of the valley, close to the main vertical array. Euroseistest experimental site provides a rigorous high quality database comprising geological, geotechnical, geophysical and seismological data, as well as a valuable set of experimental facilities to study both experimentally and theoretically complex site effects and soil-foundation structure problems. Numerous publications have been already released (see in the web page). It is foreseen to strengthen in the near future the possibility to provide wide access to European and international scientific community to perform joint studies, to validate their models and to improve or develop new ones.

  16. Disclosure of Temporary Exposures as Permanent Website Applications through the Patrimonial Survey

    NASA Astrophysics Data System (ADS)

    Corso, Juan; Garcia-Almirall, Pilar; López, Daniel; Casals, Jordi

    2017-10-01

    In a context of web application in the field of the dissemination of cultural heritage, this article advances in a methodology for the optimization of points clouds obtained through the technology of Laser Scanner (TLS). Identifying the potential of TLS surveys as interactive models that allow the cultural heritage to be perpetuated over time. This point cloud optimization is developed with free software, focusing its exploitation on an interactive web application, which has made it possible to convert two temporary museum exhibitions into permanent exhibitions in virtual format. Developed in conjunction with the Museu d’Història de la Ciutat de Barcelona. The case study focuses on the Palau Reial Major, Gothic style, formed by the chapel of Santa Àgata (built in 1302, on the Roman wall) and Saló del Tinell (built between 1359 and 1370, on the Roman remains). Located in the Plaça del Rei, in the old town of Barcelona. In this application is very important the visual impact, it requires to represent a faithful model of the interior of the building, from the point of view of color and lighting, avoiding the transparencies of the model through a dense cloud of dots, without occlusions, this requires a great quantity of positions. This implies a clear methodology, using different techniques such as photographic proyection, given the complexity of lighting of the building, as much for the artificial lighting as for the lighting of the stained glass. In this process, there were 84 positions that provide greater density of points, which are optimized with free programs. The temporary exhibitions of the case studies, elaborated by the MUHBA in the Saló del Tinell are: “Indianas, 1736-1847. The origins of industrial Barcelona” exposed from May 19, 2012 to March 3, 2013 and “El Món del 1714” exposed from December 20 to September 28, 2014. Both are based on a tour with showcases and exhibitors where different objects of a museum character are shown, such as looms, cloths, dresses, books, among others, accompanied by panels with texts and images that contain the information that each exhibition shows. Virtual applications allow such temporary exposures to become an interactive model, in which information can be permanently consulted. A virtual tour where the user can interact with the information panels and observe in detail the different objects of the exhibition. The results of this work manage to generate a powerful mechanism of diffusion and approximation to the society of the cultural heritage that, otherwise, as a whole as exhibition would disappear.

  17. Brain networks predict metabolism, diagnosis and prognosis at the bedside in disorders of consciousness.

    PubMed

    Chennu, Srivas; Annen, Jitka; Wannez, Sarah; Thibaut, Aurore; Chatelle, Camille; Cassol, Helena; Martens, Géraldine; Schnakers, Caroline; Gosseries, Olivia; Menon, David; Laureys, Steven

    2017-08-01

    Recent advances in functional neuroimaging have demonstrated novel potential for informing diagnosis and prognosis in the unresponsive wakeful syndrome and minimally conscious states. However, these technologies come with considerable expense and difficulty, limiting the possibility of wider clinical application in patients. Here, we show that high density electroencephalography, collected from 104 patients measured at rest, can provide valuable information about brain connectivity that correlates with behaviour and functional neuroimaging. Using graph theory, we visualize and quantify spectral connectivity estimated from electroencephalography as a dense brain network. Our findings demonstrate that key quantitative metrics of these networks correlate with the continuum of behavioural recovery in patients, ranging from those diagnosed as unresponsive, through those who have emerged from minimally conscious, to the fully conscious locked-in syndrome. In particular, a network metric indexing the presence of densely interconnected central hubs of connectivity discriminated behavioural consciousness with accuracy comparable to that achieved by expert assessment with positron emission tomography. We also show that this metric correlates strongly with brain metabolism. Further, with classification analysis, we predict the behavioural diagnosis, brain metabolism and 1-year clinical outcome of individual patients. Finally, we demonstrate that assessments of brain networks show robust connectivity in patients diagnosed as unresponsive by clinical consensus, but later rediagnosed as minimally conscious with the Coma Recovery Scale-Revised. Classification analysis of their brain network identified each of these misdiagnosed patients as minimally conscious, corroborating their behavioural diagnoses. If deployed at the bedside in the clinical context, such network measurements could complement systematic behavioural assessment and help reduce the high misdiagnosis rate reported in these patients. These metrics could also identify patients in whom further assessment is warranted using neuroimaging or conventional clinical evaluation. Finally, by providing objective characterization of states of consciousness, repeated assessments of network metrics could help track individual patients longitudinally, and also assess their neural responses to therapeutic and pharmacological interventions. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.

  18. Extracting the regional common-mode component of GPS station position time series from dense continuous network

    NASA Astrophysics Data System (ADS)

    Tian, Yunfeng; Shen, Zheng-Kang

    2016-02-01

    We develop a spatial filtering method to remove random noise and extract the spatially correlated transients (i.e., common-mode component (CMC)) that deviate from zero mean over the span of detrended position time series of a continuous Global Positioning System (CGPS) network. The technique utilizes a weighting scheme that incorporates two factors—distances between neighboring sites and their correlations of long-term residual position time series. We use a grid search algorithm to find the optimal thresholds for deriving the CMC that minimizes the root-mean-square (RMS) of the filtered residual position time series. Comparing to the principal component analysis technique, our method achieves better (>13% on average) reduction of residual position scatters for the CGPS stations in western North America, eliminating regional transients of all spatial scales. It also has advantages in data manipulation: less intervention and applicable to a dense network of any spatial extent. Our method can also be used to detect CMC irrespective of its origins (i.e., tectonic or nontectonic), if such signals are of particular interests for further study. By varying the filtering distance range, the long-range CMC related to atmospheric disturbance can be filtered out, uncovering CMC associated with transient tectonic deformation. A correlation-based clustering algorithm is adopted to identify stations cluster that share the common regional transient characteristics.

  19. The Benefits of Using Dense Temperature Sensor Networks to Monitor Urban Warming

    NASA Astrophysics Data System (ADS)

    Twine, T. E.; Snyder, P. K.; Kucharik, C. J.; Schatz, J.

    2015-12-01

    Urban heat islands (UHIs) occur when urban and suburban areas experience temperatures that are elevated relative to their rural surroundings because of differences in the fraction of gray and green infrastructure. Studies have shown that communities most at risk for impacts from climate-related disasters (i.e., lower median incomes, higher poverty, lower education, and minorities) tend to live in the hottest areas of cities. Development of adequate climate adaptation tools for cities relies on knowledge of how temperature varies across space and time. Traditionally, a city's urban heat island has been quantified using near-surface air temperature measurements from a few sites. This methodology assumes (1) that the UHI can be characterized by the difference in air temperature from a small number of points, and (2) that these few points represent the urban and rural signatures of the region. This methodology ignores the rich information that could be gained from measurements across the urban to rural transect. This transect could traverse elevations, water bodies, vegetation fraction, and other land surface properties. Two temperature sensor networks were designed and implemented in the Minneapolis-Saint Paul, MN and Madison, WI metropolitan areas beginning in 2011 and 2012, respectively. Both networks use the same model sensor and record temperature every 15 minutes from ~150 sensors. Data from each network has produced new knowledge of how temperature varies diurnally and seasonally across the cities and how the UHI magnitude is influenced by weather phenomena (e.g., wind, snow cover, heat waves) and land surface characteristics such as proximity to inland lakes. However, the two metropolitan areas differ in size, population, structure, and orientation to water bodies. In addition, the sensor networks were established in very different manners. We describe these differences and present lessons learned from the design and ongoing efforts of these two dense networks located in the Midwest USA.

  20. Source characterization of a small earthquake cluster at Edmond, Oklahoma using a very dense array

    NASA Astrophysics Data System (ADS)

    Ng, R.; Nakata, N.

    2017-12-01

    Recent seismicity in Oklahoma has caught the attention of the public in the last few years since seismicity is commonly related to loss in urban areas. To account for the increase in public interest, improve the understanding of damaging ground motions produced in earthquakes and develop better seismic hazard assessment, we must characterize the seismicity in Oklahoma and its associated structure and source parameters. Regional changes in subsurface stresses have increased seismic activities due to reactivation of faults in places such as central Oklahoma. It is imperative for seismic investigation and modeling to characterize subsurface structural features that may influence the damaging effects of ground motion. We analyze the full-waveform data collected from a temporary dense array of 72 portable seismometers with a 110 meter spacing that were active for a one-month period from May to June 2017, deployed at Edmond, Oklahoma. The data from this one-month duration array captured over 10,000 events and enabled us to make measurements of small-scale lateral variations of earthquake wavefields. We examine the waveform for events using advanced methods of detection, location and determine the source mechanism. We compare our results with selected events listed in the Oklahoma Geological Survey (OGS) and United States Geological Survey (USGS) catalogue. Based on the detection and located small events, we will discuss the causative fault structure at the area and present the results of the investigation.

  1. Visualizing weighted networks: a performance comparison of adjacency matrices versus node-link diagrams

    NASA Astrophysics Data System (ADS)

    McIntire, John P.; Osesina, O. Isaac; Bartley, Cecilia; Tudoreanu, M. Eduard; Havig, Paul R.; Geiselman, Eric E.

    2012-06-01

    Ensuring the proper and effective ways to visualize network data is important for many areas of academia, applied sciences, the military, and the public. Fields such as social network analysis, genetics, biochemistry, intelligence, cybersecurity, neural network modeling, transit systems, communications, etc. often deal with large, complex network datasets that can be difficult to interact with, study, and use. There have been surprisingly few human factors performance studies on the relative effectiveness of different graph drawings or network diagram techniques to convey information to a viewer. This is particularly true for weighted networks which include the strength of connections between nodes, not just information about which nodes are linked to other nodes. We describe a human factors study in which participants performed four separate network analysis tasks (finding a direct link between given nodes, finding an interconnected node between given nodes, estimating link strengths, and estimating the most densely interconnected nodes) on two different network visualizations: an adjacency matrix with a heat-map versus a node-link diagram. The results should help shed light on effective methods of visualizing network data for some representative analysis tasks, with the ultimate goal of improving usability and performance for viewers of network data displays.

  2. Realizations of highly heterogeneous collagen networks via stochastic reconstruction for micromechanical analysis of tumor cell invasion

    NASA Astrophysics Data System (ADS)

    Nan, Hanqing; Liang, Long; Chen, Guo; Liu, Liyu; Liu, Ruchuan; Jiao, Yang

    2018-03-01

    Three-dimensional (3D) collective cell migration in a collagen-based extracellular matrix (ECM) is among one of the most significant topics in developmental biology, cancer progression, tissue regeneration, and immune response. Recent studies have suggested that collagen-fiber mediated force transmission in cellularized ECM plays an important role in stress homeostasis and regulation of collective cellular behaviors. Motivated by the recent in vitro observation that oriented collagen can significantly enhance the penetration of migrating breast cancer cells into dense Matrigel which mimics the intravasation process in vivo [Han et al. Proc. Natl. Acad. Sci. USA 113, 11208 (2016), 10.1073/pnas.1610347113], we devise a procedure for generating realizations of highly heterogeneous 3D collagen networks with prescribed microstructural statistics via stochastic optimization. Specifically, a collagen network is represented via the graph (node-bond) model and the microstructural statistics considered include the cross-link (node) density, valence distribution, fiber (bond) length distribution, as well as fiber orientation distribution. An optimization problem is formulated in which the objective function is defined as the squared difference between a set of target microstructural statistics and the corresponding statistics for the simulated network. Simulated annealing is employed to solve the optimization problem by evolving an initial network via random perturbations to generate realizations of homogeneous networks with randomly oriented fibers, homogeneous networks with aligned fibers, heterogeneous networks with a continuous variation of fiber orientation along a prescribed direction, as well as a binary system containing a collagen region with aligned fibers and a dense Matrigel region with randomly oriented fibers. The generation and propagation of active forces in the simulated networks due to polarized contraction of an embedded ellipsoidal cell and a small group of cells are analyzed by considering a nonlinear fiber model incorporating strain hardening upon large stretching and buckling upon compression. Our analysis shows that oriented fibers can significantly enhance long-range force transmission in the network. Moreover, in the oriented-collagen-Matrigel system, the forces generated by a polarized cell in collagen can penetrate deeply into the Matrigel region. The stressed Matrigel fibers could provide contact guidance for the migrating cell cells, and thus enhance their penetration into Matrigel. This suggests a possible mechanism for the observed enhanced intravasation by oriented collagen.

  3. Understanding Charge Transport in Mixed Networks of Semiconducting Carbon Nanotubes

    PubMed Central

    2016-01-01

    The ability to select and enrich semiconducting single-walled carbon nanotubes (SWNT) with high purity has led to a fast rise of solution-processed nanotube network field-effect transistors (FETs) with high carrier mobilities and on/off current ratios. However, it remains an open question whether it is best to use a network of only one nanotube species (monochiral) or whether a mix of purely semiconducting nanotubes but with different bandgaps is sufficient for high performance FETs. For a range of different polymer-sorted semiconducting SWNT networks, we demonstrate that a very small amount of narrow bandgap nanotubes within a dense network of large bandgap nanotubes can dominate the transport and thus severely limit on-currents and effective carrier mobility. Using gate-voltage-dependent electroluminescence, we spatially and spectrally reveal preferential charge transport that does not depend on nominal network density but on the energy level distribution within the network and carrier density. On the basis of these results, we outline rational guidelines for the use of mixed SWNT networks to obtain high performance FETs while reducing the cost for purification. PMID:26867006

  4. Tensor Toolbox for MATLAB v. 3.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kola, Tamara; Bader, Brett W.; Acar Ataman, Evrim NMN

    Tensors (also known as multidimensional arrays or N-way arrays) are used in a variety of applications ranging from chemometrics to network analysis. The Tensor Toolbox provides classes for manipulating dense, sparse, and structured tensors using MATLAB's object-oriented features. It also provides algorithms for tensor decomposition and factorization, algorithms for computing tensor eigenvalues, and methods for visualization of results.

  5. Radar Resource Management in a Dense Target Environment

    DTIC Science & Technology

    2014-03-01

    problem faced by networked MFRs . While relaxing our assumptions concerning information gain presents numerous challenges worth exploring, future research...linear programming MFR multifunction phased array radar MILP mixed integer linear programming NATO North Atlantic Treaty Organization PDF probability...1: INTRODUCTION Multifunction phased array radars ( MFRs ) are capable of performing various tasks in rapid succession. The performance of target search

  6. The impact of roads on the timber rattlesnake (Crotalus horridus) in eastern Texas

    Treesearch

    D. Craig Rudolph; Shirley J. Burgdorf; Richard N. Conner; James G. Dickson

    1998-01-01

    Roads and associated vehicular traffic have the potential to significantly impact vertebrate populations. In eastern Texas we compared the densities of paved and unpaved roads within 2 and 4 km radii of timber rattlesnake (Crotalus horridus) ocations and of random points. Road networks were significantly more dense at random points than at snake...

  7. Spatial characteristics of observed precipitation fields: A catalog of summer storms in Arizona, Volume 1

    NASA Technical Reports Server (NTRS)

    Fennessey, N. M.; Eagleson, P. S.; Qinliang, W.; Rodrigues-Iturbe, I.

    1986-01-01

    Eight years of summer raingage observations are analyzed for a dense, 93 gage, network operated by the U. S. Department of Agriculture, Agricultural Research Service, in their 150 sq km Walnut Gulch catchment near Tucson, Arizona. Storms are defined by the total depths collected at each raingage during the noon to noon period for which there was depth recorded at any of the gages. For each of the resulting 428 storms, the 93 gage depths are interpolated onto a dense grid and the resulting random field is anlyzed. Presented are: storm depth isohyets at 2 mm contour intervals, first three moments of point storm depth, spatial correlation function, spatial variance function, and the spatial distribution of total rainstorm depth.

  8. Modulation of attentional networks by food-related disinhibition.

    PubMed

    Hege, Maike A; Stingl, Krunoslav T; Veit, Ralf; Preissl, Hubert

    2017-07-01

    The risk of weight gain is especially related to disinhibition, which indicates the responsiveness to external food stimuli with associated disruptions in eating control. We adapted a food-related version of the attention network task and used functional magnetic resonance imaging to study the effects of disinhibition on attentional networks in 19 normal-weight participants. High disinhibition scores were associated with a rapid reorienting response to food pictures after invalid cueing and with an enhanced alerting effect of a warning cue signalizing the upcoming appearance of a food picture. Imaging data revealed activation of a right-lateralized ventral attention network during reorienting. The faster the reorienting and the higher the disinhibition score, the less activation of this network was observed. The alerting contrast showed activation in visual, temporo-parietal and anterior sites. These modulations of attentional networks by food-related disinhibition might be related to an attentional bias to energy dense and palatable food and increased intake of food in disinhibited individuals. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. A range-based predictive localization algorithm for WSID networks

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Chen, Junjie; Li, Gang

    2017-11-01

    Most studies on localization algorithms are conducted on the sensor networks with densely distributed nodes. However, the non-localizable problems are prone to occur in the network with sparsely distributed sensor nodes. To solve this problem, a range-based predictive localization algorithm (RPLA) is proposed in this paper for the wireless sensor networks syncretizing the RFID (WSID) networks. The Gaussian mixture model is established to predict the trajectory of a mobile target. Then, the received signal strength indication is used to reduce the residence area of the target location based on the approximate point-in-triangulation test algorithm. In addition, collaborative localization schemes are introduced to locate the target in the non-localizable situations. Simulation results verify that the RPLA achieves accurate localization for the network with sparsely distributed sensor nodes. The localization accuracy of the RPLA is 48.7% higher than that of the APIT algorithm, 16.8% higher than that of the single Gaussian model-based algorithm and 10.5% higher than that of the Kalman filtering-based algorithm.

  10. Moving beyond Stylized Economic Network Models: The Hybrid World of the Indian Firm Ownership Network1

    PubMed Central

    Mani, Dalhia; Moody, James

    2014-01-01

    A central theme of economic sociology has been to highlight the complexity and diversity of real world markets, but many network models of economic social structure ignore this feature and rely instead on stylized one-dimensional characterizations. Here, the authors return to the basic insight of structural diversity in economic sociology. Using the Indian interorganizational ownership network as their case, they discover a composite—or “hybrid”—model of economic networks that combines elements of prior stylized models. The network contains a disconnected periphery conforming closely to a “transactional” model; a semiperiphery characterized by small, dense clusters with sporadic links, as predicted in “small-world” models; and finally a nested core composed of clusters connected via multiple independent paths. The authors then show how a firm’s position within the mesolevel structure is associated with demographic features such as age and industry and differences in the extent to which firms engage in multiplex and high-value exchanges. PMID:25418990

  11. Cascaded multiplexed optical link on a telecommunication network for frequency dissemination.

    PubMed

    Lopez, Olivier; Haboucha, Adil; Kéfélian, Fabien; Jiang, Haifeng; Chanteau, Bruno; Roncin, Vincent; Chardonnet, Christian; Amy-Klein, Anne; Santarelli, Giorgio

    2010-08-02

    We demonstrate a cascaded optical link for ultrastable frequency dissemination comprised of two compensated links of 150 km and a repeater station. Each link includes 114 km of Internet fiber simultaneously carrying data traffic through a dense wavelength division multiplexing technology, and passes through two routing centers of the telecommunication network. The optical reference signal is inserted in and extracted from the communication network using bidirectional optical add-drop multiplexers. The repeater station operates autonomously ensuring noise compensation on the two links and the ultra-stable signal optical regeneration. The compensated link shows a fractional frequency instability of 3 x 10(-15) at one second measurement time and 5 x 10(-20) at 20 hours. This work paves the way to a wide dissemination of ultra-stable optical clock signals between distant laboratories via the Internet network.

  12. F-actin cross-linking enhances the stability of force generation in disordered actomyosin networks

    NASA Astrophysics Data System (ADS)

    Jung, Wonyeong; Murrell, Michael P.; Kim, Taeyoon

    2015-12-01

    Myosin molecular motors and actin cross-linking proteins (ACPs) are known to mediate the generation and transmission of mechanical forces within the cortical F-actin cytoskeleton that drive major cellular processes such as cell division and migration. However, how motors and ACPs interact collectively over diverse timescales to modulate the time-dependent mechanical properties of the cytoskeleton remains unclear. In this study, we present a three-dimensional agent-based computational model of the cortical actomyosin network to quantitatively determine the effects of motor activity and the density and kinetics of ACPs on the accumulation and maintenance of mechanical tension within a disordered actomyosin network. We found that motors accumulate large stress quickly by behaving as temporary cross-linkers although this stress is relaxed over time unless there are sufficient passive ACPs to stabilize the network. Stabilization by ACPs helps motors to generate forces up to their maximum potential, leading to significant enhancement of the efficiency and stability of stress generation. Thus, we demonstrated that the force-dependent kinetics of ACP dissociation plays a critical role for the accumulation and sustainment of stress and the structural remodeling of networks.

  13. Implementation of a Synchronized Oscillator Circuit for Fast Sensing and Labeling of Image Objects

    PubMed Central

    Kowalski, Jacek; Strzelecki, Michal; Kim, Hyongsuk

    2011-01-01

    We present an application-specific integrated circuit (ASIC) CMOS chip that implements a synchronized oscillator cellular neural network with a matrix size of 32 × 32 for object sensing and labeling in binary images. Networks of synchronized oscillators are a recently developed tool for image segmentation and analysis. Its parallel network operation is based on a “temporary correlation” theory that attempts to describe scene recognition as if performed by the human brain. The synchronized oscillations of neuron groups attract a person’s attention if he or she is focused on a coherent stimulus (image object). For more than one perceived stimulus, these synchronized patterns switch in time between different neuron groups, thus forming temporal maps that code several features of the analyzed scene. In this paper, a new oscillator circuit based on a mathematical model is proposed, and the network architecture and chip functional blocks are presented and discussed. The proposed chip is implemented in AMIS 0.35 μm C035M-D 5M/1P technology. An application of the proposed network chip for the segmentation of insulin-producing pancreatic islets in magnetic resonance liver images is presented. PMID:22163803

  14. Advanced mobility handover for mobile IPv6 based wireless networks.

    PubMed

    Safa Sadiq, Ali; Fisal, Norsheila Binti; Ghafoor, Kayhan Zrar; Lloret, Jaime

    2014-01-01

    We propose an Advanced Mobility Handover scheme (AMH) in this paper for seamless mobility in MIPv6-based wireless networks. In the proposed scheme, the mobile node utilizes a unique home IPv6 address developed to maintain communication with other corresponding nodes without a care-of-address during the roaming process. The IPv6 address for each MN during the first round of AMH process is uniquely identified by HA using the developed MN-ID field as a global permanent, which is identifying uniquely the IPv6 address of MN. Moreover, a temporary MN-ID is generated by access point each time an MN is associated with a particular AP and temporarily saved in a developed table inside the AP. When employing the AMH scheme, the handover process in the network layer is performed prior to its default time. That is, the mobility handover process in the network layer is tackled by a trigger developed AMH message to the next access point. Thus, a mobile node keeps communicating with the current access point while the network layer handover is executed by the next access point. The mathematical analyses and simulation results show that the proposed scheme performs better as compared with the existing approaches.

  15. Southeast Asian Summer Burning: A Micro Pulse Lidar Network Study of Aerosol Particle Physical Properties near Fires in Borneo and Sumatra

    NASA Astrophysics Data System (ADS)

    Lolli, S.; Welton, E. J.; Holben, B. N.; Campbell, J. R.

    2013-12-01

    In August and September 2012, as part of the continuing Seven South East Asian Studies (7-SEAS) project, three autonomous elastic-scattering 355 nm lidars were deployed by the NASA Micro Pulse Lidar Network (MPLNET) to Sumatra and Borneo, measuring the vertical profile of aerosol particle scattering during peak burning season. In coordination with the Aerosol Robotic Network (AERONET), a regional characterization of aerosol particle physical properties and distribution was performed. In addition to a permanent regional network site at Singapore, the three temporary sites established for this research include Jambi (Sumatra, Indonesia), Kuching (northwest Borneo, Malaysia) and Palangkaraya (south-central Borneo, Indonesia). In this paper, we discuss the mission and instruments, and introduce data products available to the community through the MPLNET online website. We further describe initial results of the study, including a contrast of mean vertical scattering profiles versus those observed near active fire sources at Jambi and Palangkaraya, and resolve longer-range particle evolution at receptor sites, like Kuching, that are most commonly 1-2 days downwind of larger fire complexes.

  16. Unsupervised sputum color image segmentation for lung cancer diagnosis based on a Hopfield neural network

    NASA Astrophysics Data System (ADS)

    Sammouda, Rachid; Niki, Noboru; Nishitani, Hiroshi; Nakamura, S.; Mori, Shinichiro

    1997-04-01

    The paper presents a method for automatic segmentation of sputum cells with color images, to develop an efficient algorithm for lung cancer diagnosis based on a Hopfield neural network. We formulate the segmentation problem as a minimization of an energy function constructed with two terms, the cost-term as a sum of squared errors, and the second term a temporary noise added to the network as an excitation to escape certain local minima with the result of being closer to the global minimum. To increase the accuracy in segmenting the regions of interest, a preclassification technique is used to extract the sputum cell regions within the color image and remove those of the debris cells. The former is then given with the raw image to the input of Hopfield neural network to make a crisp segmentation by assigning each pixel to label such as background, cytoplasm, and nucleus. The proposed technique has yielded correct segmentation of complex scene of sputum prepared by ordinary manual staining method in most of the tested images selected from our database containing thousands of sputum color images.

  17. Temporary Losses of Highway Capacity and Impacts on Performance: Phase 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, S.M.

    2004-11-10

    Traffic congestion and its impacts significantly affect the nation's economic performance and the public's quality of life. In most urban areas, travel demand routinely exceeds highway capacity during peak periods. In addition, events such as crashes, vehicle breakdowns, work zones, adverse weather, railroad crossings, large trucks loading/unloading in urban areas, and other factors such as toll collection facilities and sub-optimal signal timing cause temporary capacity losses, often worsening the conditions on already congested highway networks. The impacts of these temporary capacity losses include delay, reduced mobility, and reduced reliability of the highway system. They can also cause drivers to re-routemore » or reschedule trips. Such information is vital to formulating sound public policies for the highway infrastructure and its operation. In response to this need, Oak Ridge National Laboratory, sponsored by the Federal Highway Administration (FHWA), made an initial attempt to provide nationwide estimates of the capacity losses and delay caused by temporary capacity-reducing events (Chin et al. 2002). This study, called the Temporary Loss of Capacity (TLC) study, estimated capacity loss and delay on freeways and principal arterials resulting from fatal and non-fatal crashes, vehicle breakdowns, and adverse weather, including snow, ice, and fog. In addition, it estimated capacity loss and delay caused by sub-optimal signal timing at intersections on principal arterials. It also included rough estimates of capacity loss and delay on Interstates due to highway construction and maintenance work zones. Capacity loss and delay were estimated for calendar year 1999, except for work zone estimates, which were estimated for May 2001 to May 2002 due to data availability limitations. Prior to the first phase of this study, which was completed in May of 2002, no nationwide estimates of temporary losses of highway capacity by type of capacity-reducing event had been made. This report describes the second phase of the TLC study (TLC2). TLC2 improves upon the first study by expanding the scope to include delays from rain, toll collection facilities, railroad crossings, and commercial truck pickup and delivery (PUD) activities in urban areas. It includes estimates of work zone capacity loss and delay for all freeways and principal arterials, rather than for Interstates only. It also includes improved estimates of delays caused by fog, snow, and ice, which are based on data not available during the initial phase of the study. Finally, computational errors involving crash and breakdown delay in the original TLC report are corrected.« less

  18. A likely universal model of fracture scaling and its consequence for crustal hydromechanics

    NASA Astrophysics Data System (ADS)

    Davy, P.; Le Goc, R.; Darcel, C.; Bour, O.; de Dreuzy, J. R.; Munier, R.

    2010-10-01

    We argue that most fracture systems are spatially organized according to two main regimes: a "dilute" regime for the smallest fractures, where they can grow independently of each other, and a "dense" regime for which the density distribution is controlled by the mechanical interactions between fractures. We derive a density distribution for the dense regime by acknowledging that, statistically, fractures do not cross a larger one. This very crude rule, which expresses the inhibiting role of large fractures against smaller ones but not the reverse, actually appears be a very strong control on the eventual fracture density distribution since it results in a self-similar distribution whose exponents and density term are fully determined by the fractal dimension D and a dimensionless parameter γ that encompasses the details of fracture correlations and orientations. The range of values for D and γ appears to be extremely limited, which makes this model quite universal. This theory is supported by quantitative data on either fault or joint networks. The transition between the dilute and dense regimes occurs at about a few tenths of a kilometer for faults systems and a few meters for joints. This remarkable difference between both processes is likely due to a large-scale control (localization) of the fracture growth for faulting that does not exist for jointing. Finally, we discuss the consequences of this model on the flow properties and show that these networks are in a critical state, with a large number of nodes carrying a large amount of flow.

  19. Site characterization in densely fractured dolomite: Comparison of methods

    USGS Publications Warehouse

    Muldoon, M.; Bradbury, K.R.

    2005-01-01

    One of the challenges in characterizing fractured-rock aquifers is determining whether the equivalent porous medium approximation is valid at the problem scale. Detailed hydrogeologic characterization completed at a small study site in a densely fractured dolomite has yielded an extensive data set that was used to evaluate the utility of the continuum and discrete-fracture approaches to aquifer characterization. There are two near-vertical sets of fractures at the site; near-horizontal bedding-plane partings constitute a third fracture set. Eighteen boreholes, including five coreholes, were drilled to a depth of ???10.6 m. Borehole geophysical logs revealed several laterally extensive horizontal fractures and dissolution zones. Flowmeter and short-interval packer testing identified which of these features were hydraulically important. A monitoring system, consisting of short-interval piezometers and multilevel samplers, was designed to monitor four horizontal fractures and two dissolution zones. The resulting network consisted of >70 sampling points and allowed detailed monitoring of head distributions in three dimensions. Comparison of distributions of hydraulic head - and hydraulic conductivity determined by these two approaches suggests that even in a densely fractured-carbonate aquifer, a characterization approach using traditional long-interval monitoring wells is inadequate to characterize ground water movement for the purposes of regulatory monitoring or site remediation. In addition, traditional multiwell pumping tests yield an average or bulk hydraulic conductivity that is not adequate for predicting rapid ground water travel times through the fracture network, and the pumping test response does not appear to be an adequate tool for assessing whether the porous medium approximation is valid. Copyright ?? 2005 National Ground Water Association.

  20. ON THE INFERENCE OF THE COSMIC-RAY IONIZATION RATE ζ FROM THE HCO{sup +}-to-DCO{sup +} ABUNDANCE RATIO: THE EFFECT OF NUCLEAR SPIN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shingledecker, Christopher N.; Le Gal, Romane; Hincelin, Ugo

    2016-10-20

    The chemistry of dense interstellar regions was analyzed using a time-dependent gas–grain astrochemical simulation and a new chemical network that incorporates deuterated chemistry, taking into account nuclear spin states for the hydrogen chemistry and its deuterated isotopologues. With this new network, the utility of the [HCO{sup +}]/[DCO{sup +}] abundance ratio as a probe of the cosmic-ray ionization rate has been re-examined, with special attention paid to the effect of the initial value of the ortho-to-para ratio (OPR) of molecular hydrogen. After discussing the use of the probe for cold cores, we compare our results with previous theoretical and observational resultsmore » for a molecular cloud close to the supernova remnant W51C, which is thought to have an enhanced cosmic-ray ionization rate ζ caused by the nearby γ -ray source. In addition, we attempt to use our approach to estimate the cosmic-ray ionization rate for L1174, a dense core with an embedded star. Beyond the previously known sensitivity of [HCO{sup +}]/[DCO{sup +}] to ζ , we demonstrate its additional dependence on the initial OPR and, secondarily, on the age of the source, its temperature, and its density. We conclude that the usefulness of the [HCO{sup +}]/[DCO{sup +}] abundance ratio in constraining the cosmic-ray ionization rate in dense regions increases with the age of the source and the ionization rate as the ratio becomes far less sensitive to the initial value of the OPR.« less

  1. Quantifying seasonal dynamics of canopy structure and function using inexpensive narrowband spectral radiometers

    NASA Astrophysics Data System (ADS)

    Vierling, L. A.; Garrity, S. R.; Campbell, G.; Coops, N. C.; Eitel, J.; Gamon, J. A.; Hilker, T.; Krofcheck, D. J.; Litvak, M. E.; Naupari, J. A.; Richardson, A. D.; Sonnentag, O.; van Leeuwen, M.

    2011-12-01

    Increasing the spatial and temporal density of automated environmental sensing networks is necessary to quantify shifts in plant structure (e.g., leaf area index) and function (e.g., photosynthesis). Improving detection sensitivity can facilitate a mechanistic understanding by better linking plant processes to environmental change. Spectral radiometer measurements can be highly useful for tracking plant structure and function from diurnal to seasonal time scales and calibrating and validating satellite- and aircraft-based spectral measurements. However, dense ground networks of such instruments are challenging to establish due to the cost and complexity of automated instrument deployment. We therefore developed simple to operate, lightweight and inexpensive narrowband (~10nm bandwidth) spectral instruments capable of continuously measuring four to six discrete bands that have proven capacity to describe key physiological processes and structural features of plant canopies. These bands are centered at 530, 570, 675, 800, 880, and 970 nm to enable calculation of the physiological reflectance index (PRI), normalized difference vegetation index (NDVI), green NDVI (gNDVI), and water band index (WBI) collected above and within vegetation canopies. To date, measurements have been collected above grassland, semi-arid shrub steppe, piñon-juniper woodland, dense conifer forest, mixed deciduous-conifer forest, and cropland canopies, with additional measurements collected along vertical transects through a temperate conifer rainforest. Findings from this work indicate not only that key shifts in plant phenology, physiology, and structure can be captured using such instruments, but that the temporally dense nature of the measurements can help to disentangle heretofore unreported complexities of simultaneous phenological and structural change on canopy reflectance.

  2. Aerial Images and Convolutional Neural Network for Cotton Bloom Detection.

    PubMed

    Xu, Rui; Li, Changying; Paterson, Andrew H; Jiang, Yu; Sun, Shangpeng; Robertson, Jon S

    2017-01-01

    Monitoring flower development can provide useful information for production management, estimating yield and selecting specific genotypes of crops. The main goal of this study was to develop a methodology to detect and count cotton flowers, or blooms, using color images acquired by an unmanned aerial system. The aerial images were collected from two test fields in 4 days. A convolutional neural network (CNN) was designed and trained to detect cotton blooms in raw images, and their 3D locations were calculated using the dense point cloud constructed from the aerial images with the structure from motion method. The quality of the dense point cloud was analyzed and plots with poor quality were excluded from data analysis. A constrained clustering algorithm was developed to register the same bloom detected from different images based on the 3D location of the bloom. The accuracy and incompleteness of the dense point cloud were analyzed because they affected the accuracy of the 3D location of the blooms and thus the accuracy of the bloom registration result. The constrained clustering algorithm was validated using simulated data, showing good efficiency and accuracy. The bloom count from the proposed method was comparable with the number counted manually with an error of -4 to 3 blooms for the field with a single plant per plot. However, more plots were underestimated in the field with multiple plants per plot due to hidden blooms that were not captured by the aerial images. The proposed methodology provides a high-throughput method to continuously monitor the flowering progress of cotton.

  3. Site characterization in densely fractured dolomite: comparison of methods.

    PubMed

    Muldoon, Maureen; Bradbury, Ken R

    2005-01-01

    One of the challenges in characterizing fractured-rock aquifers is determining whether the equivalent porous medium approximation is valid at the problem scale. Detailed hydrogeologic characterization completed at a small study site in a densely fractured dolomite has yielded an extensive data set that was used to evaluate the utility of the continuum and discrete-fracture approaches to aquifer characterization. There are two near-vertical sets of fractures at the site; near-horizontal bedding-plane partings constitute a third fracture set. Eighteen boreholes, including five coreholes, were drilled to a depth of approximately 10.6 m. Borehole geophysical logs revealed several laterally extensive horizontal fractures and dissolution zones. Flowmeter and short-interval packer testing identified which of these features were hydraulically important. A monitoring system, consisting of short-interval piezometers and multilevel samplers, was designed to monitor four horizontal fractures and two dissolution zones. The resulting network consisted of >70 sampling points and allowed detailed monitoring of head distributions in three dimensions. Comparison of distributions of hydraulic head and hydraulic conductivity determined by these two approaches suggests that even in a densely fractured-carbonate aquifer, a characterization approach using traditional long-interval monitoring wells is inadequate to characterize ground water movement for the purposes of regulatory monitoring or site remediation. In addition, traditional multiwell pumping tests yield an average or bulk hydraulic conductivity that is not adequate for predicting rapid ground water travel times through the fracture network, and the pumping test response does not appear to be an adequate tool for assessing whether the porous medium approximation is valid.

  4. Introduction

    NASA Astrophysics Data System (ADS)

    Callegati, Franco; Aracil, Javier; López, Víctor

    At the present time, optical transmission systems are capable of sending data over hundreds of wavelengths on a single fiber thanks to dense wavelength division multiplexing (DWDM) technologies, reaching bit rates on the order of gigabits per second per wavelength and terabits per second per fiber. In the last decade the availability of such a huge bandwidth caused transport networks to be considered as having infinite capacity. The recent massive deployment of Asymmetric Digital Subscriber Line (ADSL) and broadband wireless access solutions, as well as the outburst of new multimedia network services (such as Skype, YouTube, Joost, etc.) caused a significant increase of end user traffic and bandwidth demands. Therefore, the apparently “infinite” capacity of optical networks appears much more “finite” today, despite the latest developments in photonic transmission.

  5. A Global Protein Kinase and Phosphatase Interaction Network in Yeast

    PubMed Central

    Breitkreutz, Ashton; Choi, Hyungwon; Sharom, Jeffrey R.; Boucher, Lorrie; Neduva, Victor; Larsen, Brett; Lin, Zhen-Yuan; Breitkreutz, Bobby-Joe; Stark, Chris; Liu, Guomin; Ahn, Jessica; Dewar-Darch, Danielle; Reguly, Teresa; Tang, Xiaojing; Almeida, Ricardo; Qin, Zhaohui Steve; Pawson, Tony; Gingras, Anne-Claude; Nesvizhskii, Alexey I.; Tyers, Mike

    2011-01-01

    The interactions of protein kinases and phosphatases with their regulatory subunits and substrates underpin cellular regulation. We identified a kinase and phosphatase interaction (KPI) network of 1844 interactions in budding yeast by mass spectrometric analysis of protein complexes. The KPI network contained many dense local regions of interactions that suggested new functions. Notably, the cell cycle phosphatase Cdc14 associated with multiple kinases that revealed roles for Cdc14 in mitogen-activated protein kinase signaling, the DNA damage response, and metabolism, whereas interactions of the target of rapamycin complex 1 (TORC1) uncovered new effector kinases in nitrogen and carbon metabolism. An extensive backbone of kinase-kinase interactions cross-connects the proteome and may serve to coordinate diverse cellular responses. PMID:20489023

  6. Atomic switch networks as complex adaptive systems

    NASA Astrophysics Data System (ADS)

    Scharnhorst, Kelsey S.; Carbajal, Juan P.; Aguilera, Renato C.; Sandouk, Eric J.; Aono, Masakazu; Stieg, Adam Z.; Gimzewski, James K.

    2018-03-01

    Complexity is an increasingly crucial aspect of societal, environmental and biological phenomena. Using a dense unorganized network of synthetic synapses it is shown that a complex adaptive system can be physically created on a microchip built especially for complex problems. These neuro-inspired atomic switch networks (ASNs) are a dynamic system with inherent and distributed memory, recurrent pathways, and up to a billion interacting elements. We demonstrate key parameters describing self-organized behavior such as non-linearity, power law dynamics, and multistate switching regimes. Device dynamics are then investigated using a feedback loop which provides control over current and voltage power-law behavior. Wide ranging prospective applications include understanding and eventually predicting future events that display complex emergent behavior in the critical regime.

  7. All optical OFDM transmission for passive optical networks

    NASA Astrophysics Data System (ADS)

    Kachare, Nitin; Ashik T., J.; Bai, K. Kalyani; Kumar, D. Sriram

    2017-06-01

    This paper demonstrates the idea of data transmission at a very higher rate (Tbits/s) through optical fibers in a passive optical network using the most efficient data transmission technique widely used in wireless communication that is orthogonal frequency division multiplexing. With an increase in internet users, data traffic has also increased significantly and the current dense wavelength division multiplexing (DWDM) systems may not support the next generation passive optical networks (PONs) requirements. The approach discussed in this paper allows to increase the downstream data rate per user and extend the standard single-mode fiber reach for future long-haul applications. All-optical OFDM is a promising solution for terabit per second capable single wavelength transmission, with high spectral efficiency and high tolerance to chromatic dispersion.

  8. Protocol Independent Adaptive Route Update for VANET

    PubMed Central

    Rasheed, Asim; Qayyum, Amir

    2014-01-01

    High relative node velocity and high active node density have presented challenges to existing routing approaches within highly scaled ad hoc wireless networks, such as Vehicular Ad hoc Networks (VANET). Efficient routing requires finding optimum route with minimum delay, updating it on availability of a better one, and repairing it on link breakages. Current routing protocols are generally focused on finding and maintaining an efficient route, with very less emphasis on route update. Adaptive route update usually becomes impractical for dense networks due to large routing overheads. This paper presents an adaptive route update approach which can provide solution for any baseline routing protocol. The proposed adaptation eliminates the classification of reactive and proactive by categorizing them as logical conditions to find and update the route. PMID:24723807

  9. 32 CFR 147.30 - Temporary eligibility for access at the confidential and secret levels and temporary eligibility...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 1 2013-07-01 2013-07-01 false Temporary eligibility for access at the confidential and secret levels and temporary eligibility for âLâ access authorization. 147.30 Section 147.30... Temporary Access § 147.30 Temporary eligibility for access at the confidential and secret levels and...

  10. 32 CFR 147.30 - Temporary eligibility for access at the confidential and secret levels and temporary eligibility...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 1 2012-07-01 2012-07-01 false Temporary eligibility for access at the confidential and secret levels and temporary eligibility for âLâ access authorization. 147.30 Section 147.30... Temporary Access § 147.30 Temporary eligibility for access at the confidential and secret levels and...

  11. 32 CFR 147.30 - Temporary eligibility for access at the confidential and secret levels and temporary eligibility...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Temporary eligibility for access at the confidential and secret levels and temporary eligibility for âLâ access authorization. 147.30 Section 147.30... Temporary Access § 147.30 Temporary eligibility for access at the confidential and secret levels and...

  12. 32 CFR 147.30 - Temporary eligibility for access at the confidential and secret levels and temporary eligibility...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 1 2011-07-01 2011-07-01 false Temporary eligibility for access at the confidential and secret levels and temporary eligibility for âLâ access authorization. 147.30 Section 147.30... Temporary Access § 147.30 Temporary eligibility for access at the confidential and secret levels and...

  13. 32 CFR 147.30 - Temporary eligibility for access at the confidential and secret levels and temporary eligibility...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 1 2014-07-01 2014-07-01 false Temporary eligibility for access at the confidential and secret levels and temporary eligibility for âLâ access authorization. 147.30 Section 147.30... Temporary Access § 147.30 Temporary eligibility for access at the confidential and secret levels and...

  14. Tagging and tracking individual networks within a complex mitochondrial web with photoactivatable GFP.

    PubMed

    Twig, Gilad; Graf, Solomon A; Wikstrom, Jakob D; Mohamed, Hibo; Haigh, Sarah E; Elorza, Alvaro; Deutsch, Motti; Zurgil, Naomi; Reynolds, Nicole; Shirihai, Orian S

    2006-07-01

    Assembly of mitochondria into networks supports fuel metabolism and calcium transport and is involved in the cellular response to apoptotic stimuli. A mitochondrial network is defined as a continuous matrix lumen whose boundaries limit molecular diffusion. Observation of individual networks has proven challenging in live cells that possess dense populations of mitochondria. Investigation into the electrical and morphological properties of mitochondrial networks has therefore not yielded consistent conclusions. In this study we used matrix-targeted, photoactivatable green fluorescent protein to tag single mitochondrial networks. This approach, coupled with real-time monitoring of mitochondrial membrane potential, permitted the examination of matrix lumen continuity and fusion and fission events over time. We found that adjacent and intertwined mitochondrial structures often represent a collection of distinct networks. We additionally found that all areas of a single network are invariably equipotential, suggesting that a heterogeneous pattern of membrane potential within a cell's mitochondria represents differences between discrete networks. Interestingly, fission events frequently occurred without any gross morphological changes and particularly without fragmentation. These events, which are invisible under standard confocal microscopy, redefine the mitochondrial network boundaries and result in electrically disconnected daughter units.

  15. Reconstruction of Complex Network based on the Noise via QR Decomposition and Compressed Sensing.

    PubMed

    Li, Lixiang; Xu, Dafei; Peng, Haipeng; Kurths, Jürgen; Yang, Yixian

    2017-11-08

    It is generally known that the states of network nodes are stable and have strong correlations in a linear network system. We find that without the control input, the method of compressed sensing can not succeed in reconstructing complex networks in which the states of nodes are generated through the linear network system. However, noise can drive the dynamics between nodes to break the stability of the system state. Therefore, a new method integrating QR decomposition and compressed sensing is proposed to solve the reconstruction problem of complex networks under the assistance of the input noise. The state matrix of the system is decomposed by QR decomposition. We construct the measurement matrix with the aid of Gaussian noise so that the sparse input matrix can be reconstructed by compressed sensing. We also discover that noise can build a bridge between the dynamics and the topological structure. Experiments are presented to show that the proposed method is more accurate and more efficient to reconstruct four model networks and six real networks by the comparisons between the proposed method and only compressed sensing. In addition, the proposed method can reconstruct not only the sparse complex networks, but also the dense complex networks.

  16. Self-organized emergence of multilayer structure and chimera states in dynamical networks with adaptive couplings

    NASA Astrophysics Data System (ADS)

    Kasatkin, D. V.; Yanchuk, S.; Schöll, E.; Nekorkin, V. I.

    2017-12-01

    We report the phenomenon of self-organized emergence of hierarchical multilayered structures and chimera states in dynamical networks with adaptive couplings. This process is characterized by a sequential formation of subnetworks (layers) of densely coupled elements, the size of which is ordered in a hierarchical way, and which are weakly coupled between each other. We show that the hierarchical structure causes the decoupling of the subnetworks. Each layer can exhibit either a two-cluster state, a periodic traveling wave, or an incoherent state, and these states can coexist on different scales of subnetwork sizes.

  17. Application of UDWDM technology in FTTH networks

    NASA Astrophysics Data System (ADS)

    Lamperski, Jan; Stepczak, Piotr

    2015-12-01

    In the paper we presented results of investigation of an original ultra dense wavelength division technology based on optical comb generator and its implementation for FTTH networks. The optical comb generator used a ring configuration with an acousto-optic frequency shifter (AOFS) which ensured obtaining very stable optical carrier frequency distances. Properties of an optical comb generator module determined stability of the UDWDM transmitter. Key properties of a selective components based on all fiber Fabry-Perot resonant cavity were presented. Operation of direct and coherent detection DWDM systems were shown. New configurations of FTTH UDWDM architecture have been proposed.

  18. Counting motifs in dynamic networks.

    PubMed

    Mukherjee, Kingshuk; Hasan, Md Mahmudul; Boucher, Christina; Kahveci, Tamer

    2018-04-11

    A network motif is a sub-network that occurs frequently in a given network. Detection of such motifs is important since they uncover functions and local properties of the given biological network. Finding motifs is however a computationally challenging task as it requires solving the costly subgraph isomorphism problem. Moreover, the topology of biological networks change over time. These changing networks are called dynamic biological networks. As the network evolves, frequency of each motif in the network also changes. Computing the frequency of a given motif from scratch in a dynamic network as the network topology evolves is infeasible, particularly for large and fast evolving networks. In this article, we design and develop a scalable method for counting the number of motifs in a dynamic biological network. Our method incrementally updates the frequency of each motif as the underlying network's topology evolves. Our experiments demonstrate that our method can update the frequency of each motif in orders of magnitude faster than counting the motif embeddings every time the network changes. If the network evolves more frequently, the margin with which our method outperforms the existing static methods, increases. We evaluated our method extensively using synthetic and real datasets, and show that our method is highly accurate(≥ 96%) and that it can be scaled to large dense networks. The results on real data demonstrate the utility of our method in revealing interesting insights on the evolution of biological processes.

  19. Rich club network analysis shows distinct patterns of disruption in frontotemporal dementia and Alzheimer’s disease

    PubMed Central

    Daianu, Madelaine; Jahanshad, Neda; Villalon-Reina, Julio E.; Mendez, Mario F.; Bartzokis, George; Jimenez, Elvira E.; Joshi, Aditi; Barsuglia, Joseph; Thompson, Paul M.

    2015-01-01

    Diffusion imaging and brain connectivity analyses can reveal the underlying organizational patterns of the human brain, described as complex networks of densely interlinked regions. Here, we analyzed 1.5-Tesla whole-brain diffusion-weighted images from 64 participants – 15 patients with behavioral variant frontotemporal (bvFTD) dementia, 19 with early-onset Alzheimer’s disease (EOAD), and 30 healthy elderly controls. Based on whole-brain tractography, we reconstructed structural brain connectivity networks to map connections between cortical regions. We examined how bvFTD and EOAD disrupt the weighted ‘rich club’ – a network property where high-degree network nodes are more interconnected than expected by chance. bvFTD disrupts both the nodal and global organization of the network in both low- and high-degree regions of the brain. EOAD targets the global connectivity of the brain, mainly affecting the fiber density of high-degree (highly connected) regions that form the rich club network. These rich club analyses suggest distinct patterns of disruptions among different forms of dementia. PMID:26161050

  20. Enabling Comprehension of Patient Subgroups and Characteristics in Large Bipartite Networks: Implications for Precision Medicine

    PubMed Central

    Bhavnani, Suresh K.; Chen, Tianlong; Ayyaswamy, Archana; Visweswaran, Shyam; Bellala, Gowtham; Rohit, Divekar; Kevin E., Bassler

    2017-01-01

    A primary goal of precision medicine is to identify patient subgroups based on their characteristics (e.g., comorbidities or genes) with the goal of designing more targeted interventions. While network visualization methods such as Fruchterman-Reingold have been used to successfully identify such patient subgroups in small to medium sized data sets, they often fail to reveal comprehensible visual patterns in large and dense networks despite having significant clustering. We therefore developed an algorithm called ExplodeLayout, which exploits the existence of significant clusters in bipartite networks to automatically “explode” a traditional network layout with the goal of separating overlapping clusters, while at the same time preserving key network topological properties that are critical for the comprehension of patient subgroups. We demonstrate the utility of ExplodeLayout by visualizing a large dataset extracted from Medicare consisting of readmitted hip-fracture patients and their comorbidities, demonstrate its statistically significant improvement over a traditional layout algorithm, and discuss how the resulting network visualization enabled clinicians to infer mechanisms precipitating hospital readmission in specific patient subgroups. PMID:28815099

  1. Dynamical influence processes on networks: general theory and applications to social contagion.

    PubMed

    Harris, Kameron Decker; Danforth, Christopher M; Dodds, Peter Sheridan

    2013-08-01

    We study binary state dynamics on a network where each node acts in response to the average state of its neighborhood. By allowing varying amounts of stochasticity in both the network and node responses, we find different outcomes in random and deterministic versions of the model. In the limit of a large, dense network, however, we show that these dynamics coincide. We construct a general mean-field theory for random networks and show this predicts that the dynamics on the network is a smoothed version of the average response function dynamics. Thus, the behavior of the system can range from steady state to chaotic depending on the response functions, network connectivity, and update synchronicity. As a specific example, we model the competing tendencies of imitation and nonconformity by incorporating an off-threshold into standard threshold models of social contagion. In this way, we attempt to capture important aspects of fashions and societal trends. We compare our theory to extensive simulations of this "limited imitation contagion" model on Poisson random graphs, finding agreement between the mean-field theory and stochastic simulations.

  2. Linking dynamics of the inhibitory network to the input structure

    PubMed Central

    Komarov, Maxim

    2017-01-01

    Networks of inhibitory interneurons are found in many distinct classes of biological systems. Inhibitory interneurons govern the dynamics of principal cells and are likely to be critically involved in the coding of information. In this theoretical study, we describe the dynamics of a generic inhibitory network in terms of low-dimensional, simplified rate models. We study the relationship between the structure of external input applied to the network and the patterns of activity arising in response to that stimulation. We found that even a minimal inhibitory network can generate a great diversity of spatio-temporal patterning including complex bursting regimes with non-trivial ratios of burst firing. Despite the complexity of these dynamics, the network’s response patterns can be predicted from the rankings of the magnitudes of external inputs to the inhibitory neurons. This type of invariant dynamics is robust to noise and stable in densely connected networks with strong inhibitory coupling. Our study predicts that the response dynamics generated by an inhibitory network may provide critical insights about the temporal structure of the sensory input it receives. PMID:27650865

  3. A generalised significance test for individual communities in networks.

    PubMed

    Kojaku, Sadamori; Masuda, Naoki

    2018-05-09

    Many empirical networks have community structure, in which nodes are densely interconnected within each community (i.e., a group of nodes) and sparsely across different communities. Like other local and meso-scale structure of networks, communities are generally heterogeneous in various aspects such as the size, density of edges, connectivity to other communities and significance. In the present study, we propose a method to statistically test the significance of individual communities in a given network. Compared to the previous methods, the present algorithm is unique in that it accepts different community-detection algorithms and the corresponding quality function for single communities. The present method requires that a quality of each community can be quantified and that community detection is performed as optimisation of such a quality function summed over the communities. Various community detection algorithms including modularity maximisation and graph partitioning meet this criterion. Our method estimates a distribution of the quality function for randomised networks to calculate a likelihood of each community in the given network. We illustrate our algorithm by synthetic and empirical networks.

  4. OpenFlow arbitrated programmable network channels for managing quantum metadata

    DOE PAGES

    Dasari, Venkat R.; Humble, Travis S.

    2016-10-10

    Quantum networks must classically exchange complex metadata between devices in order to carry out information for protocols such as teleportation, super-dense coding, and quantum key distribution. Demonstrating the integration of these new communication methods with existing network protocols, channels, and data forwarding mechanisms remains an open challenge. Software-defined networking (SDN) offers robust and flexible strategies for managing diverse network devices and uses. We adapt the principles of SDN to the deployment of quantum networks, which are composed from unique devices that operate according to the laws of quantum mechanics. We show how quantum metadata can be managed within a software-definedmore » network using the OpenFlow protocol, and we describe how OpenFlow management of classical optical channels is compatible with emerging quantum communication protocols. We next give an example specification of the metadata needed to manage and control quantum physical layer (QPHY) behavior and we extend the OpenFlow interface to accommodate this quantum metadata. Here, we conclude by discussing near-term experimental efforts that can realize SDN’s principles for quantum communication.« less

  5. OpenFlow arbitrated programmable network channels for managing quantum metadata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasari, Venkat R.; Humble, Travis S.

    Quantum networks must classically exchange complex metadata between devices in order to carry out information for protocols such as teleportation, super-dense coding, and quantum key distribution. Demonstrating the integration of these new communication methods with existing network protocols, channels, and data forwarding mechanisms remains an open challenge. Software-defined networking (SDN) offers robust and flexible strategies for managing diverse network devices and uses. We adapt the principles of SDN to the deployment of quantum networks, which are composed from unique devices that operate according to the laws of quantum mechanics. We show how quantum metadata can be managed within a software-definedmore » network using the OpenFlow protocol, and we describe how OpenFlow management of classical optical channels is compatible with emerging quantum communication protocols. We next give an example specification of the metadata needed to manage and control quantum physical layer (QPHY) behavior and we extend the OpenFlow interface to accommodate this quantum metadata. Here, we conclude by discussing near-term experimental efforts that can realize SDN’s principles for quantum communication.« less

  6. Topological distortion and reorganized modular structure of gut microbial co-occurrence networks in inflammatory bowel disease

    NASA Astrophysics Data System (ADS)

    Baldassano, Steven N.; Bassett, Danielle S.

    2016-05-01

    The gut microbiome plays a key role in human health, and alterations of the normal gut flora are associated with a variety of distinct disease states. Yet, the natural dependencies between microbes in healthy and diseased individuals remain far from understood. Here we use a network-based approach to characterize microbial co-occurrence in individuals with inflammatory bowel disease (IBD) and healthy (non-IBD control) individuals. We find that microbial networks in patients with IBD differ in both global structure and local connectivity patterns. While a “core” microbiome is preserved, network topology of other densely interconnected microbe modules is distorted, with potent inflammation-mediating organisms assuming roles as integrative and highly connected inter-modular hubs. We show that while both networks display a rich-club organization, in which a small set of microbes commonly co-occur, the healthy network is more easily disrupted by elimination of a small number of key species. Further investigation of network alterations in disease might offer mechanistic insights into the specific pathogens responsible for microbiome-mediated inflammation in IBD.

  7. 32 CFR 147.31 - Temporary eligibility for access at the top secret levels and temporary eligibility for “Q...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 1 2011-07-01 2011-07-01 false Temporary eligibility for access at the top secret levels and temporary eligibility for âQâ access authorization: For someone who is the subject of a... Guidelines for Temporary Access § 147.31 Temporary eligibility for access at the top secret levels and...

  8. 32 CFR 147.31 - Temporary eligibility for access at the top secret levels and temporary eligibility for “Q...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 1 2014-07-01 2014-07-01 false Temporary eligibility for access at the top secret levels and temporary eligibility for âQâ access authorization: For someone who is the subject of a... Guidelines for Temporary Access § 147.31 Temporary eligibility for access at the top secret levels and...

  9. 32 CFR 147.31 - Temporary eligibility for access at the top secret levels and temporary eligibility for “Q...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 1 2012-07-01 2012-07-01 false Temporary eligibility for access at the top secret levels and temporary eligibility for âQâ access authorization: For someone who is the subject of a... Guidelines for Temporary Access § 147.31 Temporary eligibility for access at the top secret levels and...

  10. 32 CFR 147.31 - Temporary eligibility for access at the top secret levels and temporary eligibility for “Q...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 1 2013-07-01 2013-07-01 false Temporary eligibility for access at the top secret levels and temporary eligibility for âQâ access authorization: For someone who is the subject of a... Guidelines for Temporary Access § 147.31 Temporary eligibility for access at the top secret levels and...

  11. 32 CFR 147.31 - Temporary eligibility for access at the top secret levels and temporary eligibility for “Q...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Guidelines for Temporary Access § 147.31 Temporary eligibility for access at the top secret levels and... 32 National Defense 1 2010-07-01 2010-07-01 false Temporary eligibility for access at the top secret levels and temporary eligibility for âQâ access authorization: For someone who is the subject of a...

  12. Detection and assessment of flood susceptible irrigation networks in Licab, Nueva Ecija, Philippines using LiDAR DTM

    NASA Astrophysics Data System (ADS)

    Alberto, R. T.; Hernando, P. J. C.; Tagaca, R. C.; Celestino, A. B.; Palado, G. C.; Camaso, E. E.; Damian, G. B.

    2017-09-01

    Climate change has wide-ranging effects on the environment and socio-economic and related sectors which includes water resources, agriculture and food security, human health, terrestrial ecosystems, coastal zones and biodiversity. Farmers are under pressure to the changing weather and increasing unpredictable water supply. Because of rainfall deficiencies, artificial application of water has been made through irrigation. Irrigation is a basic determinant of agriculture because its inadequacies are the most powerful constraints on the increase of agricultural production. Irrigation networks are permanent and temporary conduits that supply water to agricultural areas from an irrigation source. Detection of irrigation networks using LiDAR DTM, and flood susceptible assessment of irrigation networks could give baseline information on the development and management of sustainable agriculture. Map Gully Depth (MGD) in Whitebox GAT was used to generate the potential irrigation networks. The extracted MGD was overlaid in ArcGIS as guide in the digitization of potential irrigation networks. A flood hazard map was also used to identify the flood susceptible irrigation networks in the study area. The study was assessed through field validation of points which were generated using random sampling method. Results of the study showed that most of the detected irrigation networks have low to moderate susceptibility to flooding while the rest have high susceptibility to flooding which is due to shifting weather. These irrigation networks may cause flood when it overflows that could also bring huge damage to rice and other agricultural areas.

  13. Aerosol Remote Sensing from AERONET, the Ground-Based Satellite

    NASA Technical Reports Server (NTRS)

    Holben, Brent N.

    2012-01-01

    Atmospheric particles including mineral dust, biomass burning smoke, pollution from carbonaceous aerosols and sulfates, sea salt, impact air quality and climate. The Aerosol Robotic Network (AERONET) program, established in the early 1990s, is a federation of ground-based remote sensing aerosol networks of Sun/sky radiometers distributed around the world, which provides a long-term, continuous and readily accessible public domain database of aerosol optical (e.g., aerosol optical depth) and microphysical (e.g., aerosol volume size distribution) properties for aerosol characterization, validation of satellite retrievals, and synergism with Earth science databases. Climatological aerosol properties will be presented at key worldwide locations exhibiting discrete dominant aerosol types. Further, AERONET's temporary mesoscale network campaign (e.g., UAE2, TIGERZ, DRAGON-USA.) results that attempt to quantify spatial and temporal variability of aerosol properties, establish validation of ground-based aerosol retrievals using aircraft profile measurements, and measure aerosol properties on compatible spatial scales with satellite retrievals and aerosol transport models allowing for more robust validation will be discussed.

  14. Pro-hormone Secretogranin II Regulates Dense Core Secretory Granule Biogenesis in Catecholaminergic Cells*

    PubMed Central

    Courel, Maïté; Soler-Jover, Alex; Rodriguez-Flores, Juan L.; Mahata, Sushil K.; Elias, Salah; Montero-Hadjadje, Maïté; Anouar, Youssef; Giuly, Richard J.; O'Connor, Daniel T.; Taupenot, Laurent

    2010-01-01

    Processes underlying the formation of dense core secretory granules (DCGs) of neuroendocrine cells are poorly understood. Here, we present evidence that DCG biogenesis is dependent on the secretory protein secretogranin (Sg) II, a member of the granin family of pro-hormone cargo of DCGs in neuroendocrine cells. Depletion of SgII expression in PC12 cells leads to a decrease in both the number and size of DCGs and impairs DCG trafficking of other regulated hormones. Expression of SgII fusion proteins in a secretory-deficient PC12 variant rescues a regulated secretory pathway. SgII-containing dense core vesicles share morphological and physical properties with bona fide DCGs, are competent for regulated exocytosis, and maintain an acidic luminal pH through the V-type H+-translocating ATPase. The granulogenic activity of SgII requires a pH gradient along this secretory pathway. We conclude that SgII is a critical factor for the regulation of DCG biogenesis in neuroendocrine cells, mediating the formation of functional DCGs via its pH-dependent aggregation at the trans-Golgi network. PMID:20061385

  15. New science at the meso frontier: Dense nanostructure architectures for electrical energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubloff, Gary W.; Lee, Sang Bok

    2015-08-01

    We examine the scientific challenges and opportunities presented at the mesoscale in the context of employing nanostructures for electrical energy storage. In order to capitalize on the power–energy and charge/discharge cycling stability that nanostructures offer, massive assemblies of nanostructures in networks must be organized into dense mesoscale architectures. With a fairly wide variety of architectures already demonstrated and more expected, the essential questions are whether regular or random 3-D arrangements are favorable, which embodiments should show best performance, and at what dimensional scaling? Dense packing raises challenging new questions about ion available and transport in highly confined electrolyte nanoenvironments, asmore » well as designs to balance ion transport in electrolyte and electron transport in electrodes over distances long compared to nanostructure characteristic dimensions. Architectures and dimensional scaling present important issues of defects, statistical outliers, and their dynamic evolution, which in turn control degradation and failure phenomena. These considerations promise a rich set of mesoscale scientific challenges crucial to exploiting storage nanostructures in mesoscale architectures for energy storage.« less

  16. Pro-hormone secretogranin II regulates dense core secretory granule biogenesis in catecholaminergic cells.

    PubMed

    Courel, Maïté; Soler-Jover, Alex; Rodriguez-Flores, Juan L; Mahata, Sushil K; Elias, Salah; Montero-Hadjadje, Maïté; Anouar, Youssef; Giuly, Richard J; O'Connor, Daniel T; Taupenot, Laurent

    2010-03-26

    Processes underlying the formation of dense core secretory granules (DCGs) of neuroendocrine cells are poorly understood. Here, we present evidence that DCG biogenesis is dependent on the secretory protein secretogranin (Sg) II, a member of the granin family of pro-hormone cargo of DCGs in neuroendocrine cells. Depletion of SgII expression in PC12 cells leads to a decrease in both the number and size of DCGs and impairs DCG trafficking of other regulated hormones. Expression of SgII fusion proteins in a secretory-deficient PC12 variant rescues a regulated secretory pathway. SgII-containing dense core vesicles share morphological and physical properties with bona fide DCGs, are competent for regulated exocytosis, and maintain an acidic luminal pH through the V-type H(+)-translocating ATPase. The granulogenic activity of SgII requires a pH gradient along this secretory pathway. We conclude that SgII is a critical factor for the regulation of DCG biogenesis in neuroendocrine cells, mediating the formation of functional DCGs via its pH-dependent aggregation at the trans-Golgi network.

  17. Rich-Cores in Networks

    PubMed Central

    Ma, Athen; Mondragón, Raúl J.

    2015-01-01

    A core comprises of a group of central and densely connected nodes which governs the overall behaviour of a network. It is recognised as one of the key meso-scale structures in complex networks. Profiling this meso-scale structure currently relies on a limited number of methods which are often complex and parameter dependent or require a null model. As a result, scalability issues are likely to arise when dealing with very large networks together with the need for subjective adjustment of parameters. The notion of a rich-club describes nodes which are essentially the hub of a network, as they play a dominating role in structural and functional properties. The definition of a rich-club naturally emphasises high degree nodes and divides a network into two subgroups. Here, we develop a method to characterise a rich-core in networks by theoretically coupling the underlying principle of a rich-club with the escape time of a random walker. The method is fast, scalable to large networks and completely parameter free. In particular, we show that the evolution of the core in World Trade and C. elegans networks correspond to responses to historical events and key stages in their physical development, respectively. PMID:25799585

  18. Rich-cores in networks.

    PubMed

    Ma, Athen; Mondragón, Raúl J

    2015-01-01

    A core comprises of a group of central and densely connected nodes which governs the overall behaviour of a network. It is recognised as one of the key meso-scale structures in complex networks. Profiling this meso-scale structure currently relies on a limited number of methods which are often complex and parameter dependent or require a null model. As a result, scalability issues are likely to arise when dealing with very large networks together with the need for subjective adjustment of parameters. The notion of a rich-club describes nodes which are essentially the hub of a network, as they play a dominating role in structural and functional properties. The definition of a rich-club naturally emphasises high degree nodes and divides a network into two subgroups. Here, we develop a method to characterise a rich-core in networks by theoretically coupling the underlying principle of a rich-club with the escape time of a random walker. The method is fast, scalable to large networks and completely parameter free. In particular, we show that the evolution of the core in World Trade and C. elegans networks correspond to responses to historical events and key stages in their physical development, respectively.

  19. Community Detection in Signed Networks: the Role of Negative ties in Different Scales

    PubMed Central

    Esmailian, Pouya; Jalili, Mahdi

    2015-01-01

    Extracting community structure of complex network systems has many applications from engineering to biology and social sciences. There exist many algorithms to discover community structure of networks. However, it has been significantly under-explored for networks with positive and negative links as compared to unsigned ones. Trying to fill this gap, we measured the quality of partitions by introducing a Map Equation for signed networks. It is based on the assumption that negative relations weaken positive flow from a node towards a community, and thus, external (internal) negative ties increase the probability of staying inside (escaping from) a community. We further extended the Constant Potts Model, providing a map spectrum for signed networks. Accordingly, a partition is selected through balancing between abridgment and expatiation of a signed network. Most importantly, multi-scale spectrum of signed networks revealed how informative are negative ties in different scales, and quantified the topological placement of negative ties between dense positive ones. Moreover, an inconsistency was found in the signed Modularity: as the number of negative ties increases, the density of positive ties is neglected more. These results shed lights on the community structure of signed networks. PMID:26395815

  20. 5G: rethink mobile communications for 2020+.

    PubMed

    Chih-Lin, I; Han, Shuangfeng; Xu, Zhikun; Sun, Qi; Pan, Zhengang

    2016-03-06

    The 5G network is anticipated to meet the challenging requirements of mobile traffic in the 2020s, which are characterized by super high data rate, low latency, high mobility, high energy efficiency and high traffic density. This paper provides an overview of China Mobile's 5G vision and potential solutions. Three key characteristics of 5G are analysed, i.e. super fast, soft and green. The main 5G R&D themes are further elaborated, which include five fundamental rethinkings of the traditional design methodologies. The 5G network design considerations are also discussed, with cloud radio access network, ultra-dense network, software defined network and network function virtualization examined as key potential solutions towards a green and soft 5G network. The paradigm shift to user-centric network operation from the traditional cell-centric operation is also investigated, where the decoupled downlink and uplink, control and data, and adaptive multiple connections provide sufficient means to achieve a user-centric 5G network with 'no more cells'. The software defined air interface is investigated under a uniform framework and can adaptively adapt the parameters to well satisfy various requirements in different 5G scenarios. © 2016 The Author(s).

  1. What We Don't Learn in the Classroom: The Acquisition of Sociolinguistic Competence during Study Abroad

    ERIC Educational Resources Information Center

    Kennedy, Kristen M.

    2012-01-01

    This study examines the acquisition of target-like patterns of variation by 22 American learners of French during study abroad (SA) in France and correlates such acquisition with the creation of dense, multiplex, exchange-based social networks (Milroy 1980) with native speakers (NSs) during the SA period. In this longitudinal study, naturalistic…

  2. Synopsis of D- and E-region electron densities during the energy budget campaign

    NASA Technical Reports Server (NTRS)

    Friedrich, M.; Baker, K. D.; Brekke, A.; Dickinson, P. H. G.; Dumbs, A.; Grandal, B.; Thrane, E. V.; Smith, L. G.; Torkar, K. M.

    1982-01-01

    Electron density profiles from ground-based and rocket-borne measurements conducted at three sites in northern Scandinavia under various degrees of geophysical disturbances are presented. These data are checked against an instantaneous picture of the ionospheric absorption obtained via the dense riometer network. A map of the riometer absorption and measured electron densities over Scandinavia is given.

  3. LightDenseYOLO: A Fast and Accurate Marker Tracker for Autonomous UAV Landing by Visible Light Camera Sensor on Drone.

    PubMed

    Nguyen, Phong Ha; Arsalan, Muhammad; Koo, Ja Hyung; Naqvi, Rizwan Ali; Truong, Noi Quang; Park, Kang Ryoung

    2018-05-24

    Autonomous landing of an unmanned aerial vehicle or a drone is a challenging problem for the robotics research community. Previous researchers have attempted to solve this problem by combining multiple sensors such as global positioning system (GPS) receivers, inertial measurement unit, and multiple camera systems. Although these approaches successfully estimate an unmanned aerial vehicle location during landing, many calibration processes are required to achieve good detection accuracy. In addition, cases where drones operate in heterogeneous areas with no GPS signal should be considered. To overcome these problems, we determined how to safely land a drone in a GPS-denied environment using our remote-marker-based tracking algorithm based on a single visible-light-camera sensor. Instead of using hand-crafted features, our algorithm includes a convolutional neural network named lightDenseYOLO to extract trained features from an input image to predict a marker's location by visible light camera sensor on drone. Experimental results show that our method significantly outperforms state-of-the-art object trackers both using and not using convolutional neural network in terms of both accuracy and processing time.

  4. An intelligent surveillance platform for large metropolitan areas with dense sensor deployment.

    PubMed

    Fernández, Jorge; Calavia, Lorena; Baladrón, Carlos; Aguiar, Javier M; Carro, Belén; Sánchez-Esguevillas, Antonio; Alonso-López, Jesus A; Smilansky, Zeev

    2013-06-07

    This paper presents an intelligent surveillance platform based on the usage of large numbers of inexpensive sensors designed and developed inside the European Eureka Celtic project HuSIMS. With the aim of maximizing the number of deployable units while keeping monetary and resource/bandwidth costs at a minimum, the surveillance platform is based on the usage of inexpensive visual sensors which apply efficient motion detection and tracking algorithms to transform the video signal in a set of motion parameters. In order to automate the analysis of the myriad of data streams generated by the visual sensors, the platform's control center includes an alarm detection engine which comprises three components applying three different Artificial Intelligence strategies in parallel. These strategies are generic, domain-independent approaches which are able to operate in several domains (traffic surveillance, vandalism prevention, perimeter security, etc.). The architecture is completed with a versatile communication network which facilitates data collection from the visual sensors and alarm and video stream distribution towards the emergency teams. The resulting surveillance system is extremely suitable for its deployment in metropolitan areas, smart cities, and large facilities, mainly because cheap visual sensors and autonomous alarm detection facilitate dense sensor network deployments for wide and detailed coverage.

  5. Effects of Chinese mineral strategies on the U.S. minerals industry

    USGS Publications Warehouse

    McCartan, L.; Menzie, W.D.; Morse, D.E.; Papp, J.F.; Plunkert, P.A.; Tse, P.-K.

    2006-01-01

    For more than two decades now, China has been undergoing rapid economic growth and industrialization. The industrialization and urbanization of the once rural, farming nation is leading to increased consumption of mineral commodities to build infrastructure and to make into consumer goods. This increased consumption has led to higher mineral prices, lower stocks and, in some cases, temporary shortages of minerals. Chinese mineral producers and manufacturers are responding by building capacity, restructuring and modernizing industrial sectors and establishing international network that compete with those of the United States and other nations.

  6. Seismic Data for Evaluation of Ground Motion Hazards in Las Vegas in Support of Test Site Readiness Ground Motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, A

    2008-01-16

    In this report we describe the data sets used to evaluate ground motion hazards in Las Vegas from nuclear tests at the Nevada Test Site. This analysis is presented in Rodgers et al. (2005, 2006) and includes 13 nuclear explosions recorded at the John Blume and Associates network, the Little Skull Mountain earthquake and a temporary deployment of broadband station in Las Vegas. The data are available in SAC format on CD-ROM as an appendix to this report.

  7. Statistical evaluation of the performance of gridded monthly precipitation products from reanalysis data, satellite estimates, and merged analyses over China

    NASA Astrophysics Data System (ADS)

    Deng, Xueliang; Nie, Suping; Deng, Weitao; Cao, Weihua

    2018-04-01

    In this study, we compared the following four different gridded monthly precipitation products: the National Centers for Environmental Prediction version 2 (NCEP-2) reanalysis data, the satellite-based Climate Prediction Center Morphing technique (CMORPH) data, the merged satellite-gauge Global Precipitation Climatology Project (GPCP) data, and the merged satellite-gauge-model data from the Beijing Climate Center Merged Estimation of Precipitation (BMEP). We evaluated the performances of these products using monthly precipitation observations spanning the period of January 2003 to December 2013 from a dense, national, rain gauge network in China. Our assessment involved several statistical techniques, including spatial pattern, temporal variation, bias, root-mean-square error (RMSE), and correlation coefficient (CC) analysis. The results show that NCEP-2, GPCP, and BMEP generally overestimate monthly precipitation at the national scale and CMORPH underestimates it. However, all of the datasets successfully characterized the northwest to southeast increase in the monthly precipitation over China. Because they include precipitation gauge information from the Global Telecommunication System (GTS) network, GPCP and BMEP have much smaller biases, lower RMSEs, and higher CCs than NCEP-2 and CMORPH. When the seasonal and regional variations are considered, NCEP-2 has a larger error over southern China during the summer. CMORPH poorly reproduces the magnitude of the precipitation over southeastern China and the temporal correlation over western and northwestern China during all seasons. BMEP has a lower RMSE and higher CC than GPCP over eastern and southern China, where the station network is dense. In contrast, BMEP has a lower CC than GPCP over western and northwestern China, where the gauge network is relatively sparse.

  8. Mapping the distribution of packing topologies within protein interiors shows predominant preference for specific packing motifs

    PubMed Central

    2011-01-01

    Background Mapping protein primary sequences to their three dimensional folds referred to as the 'second genetic code' remains an unsolved scientific problem. A crucial part of the problem concerns the geometrical specificity in side chain association leading to densely packed protein cores, a hallmark of correctly folded native structures. Thus, any model of packing within proteins should constitute an indispensable component of protein folding and design. Results In this study an attempt has been made to find, characterize and classify recurring patterns in the packing of side chain atoms within a protein which sustains its native fold. The interaction of side chain atoms within the protein core has been represented as a contact network based on the surface complementarity and overlap between associating side chain surfaces. Some network topologies definitely appear to be preferred and they have been termed 'packing motifs', analogous to super secondary structures in proteins. Study of the distribution of these motifs reveals the ubiquitous presence of typical smaller graphs, which appear to get linked or coalesce to give larger graphs, reminiscent of the nucleation-condensation model in protein folding. One such frequently occurring motif, also envisaged as the unit of clustering, the three residue clique was invariably found in regions of dense packing. Finally, topological measures based on surface contact networks appeared to be effective in discriminating sequences native to a specific fold amongst a set of decoys. Conclusions Out of innumerable topological possibilities, only a finite number of specific packing motifs are actually realized in proteins. This small number of motifs could serve as a basis set in the construction of larger networks. Of these, the triplet clique exhibits distinct preference both in terms of composition and geometry. PMID:21605466

  9. Monitoring of persistent organic pollutants in Africa. Part 2: design of a network to monitor the continental and intercontinental background.

    PubMed

    Lammel, G; Dobrovolný, P; Dvorská, A; Chromá, K; Brázdil, R; Holoubek, I; Hosek, J

    2009-11-01

    A network for the study of long-term trends of the continental background in Africa and the intercontinental background of persistent organic pollutants as resulting from long-range transport of contaminants from European, South Asian, and other potential source regions, as well as by watching supposedly pristine regions, i.e. the Southern Ocean and Antarctica is designed. The results of a pilot phase sampling programme in 2008 and meteorological and climatological information from the period 1961-2007 was used to apply objective criteria for the selection of stations for the monitoring network: out the original 26 stations six have been rejected because of suggested strong local sources of POPs and three others because of local meteorological effects, which may prevent part of the time long-range transported air to reach the sampling site. Representativeness of the meteorological patterns during the pilot phase with respect to climatology was assessed by comparison of the more local airflow situation as given by climatological vs. observed wind roses and by comparison of backward trajectories with the climatological wind (NCEP/NCAR re-analyses). With minor exceptions advection to nine inspected stations was typical for present-day climate during the pilot phase, 2008. Six to nine stations would cover satisfyingly large and densely populated regions of North-eastern, West and East Africa and its neighbouring seas, the Mediterranean, Northern and Equatorial Atlantic Ocean, the Western Indian Ocean and the Southern Ocean. Among the more densely populated areas Southern Cameroon, parts of the Abessinian plateau and most of the Great Lakes area would not be covered. The potential of the network is not hampered by on-going long-term changes of the advection to the selected stations, as these do hardly affect the coverage of target areas.

  10. 42 CFR 438.706 - Special rules for temporary management.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... temporary management. (a) Optional imposition of sanction. The State may impose temporary management only if... sanction. The State must impose temporary management (regardless of any other sanction that may be imposed... right to terminate enrollment. (c) Hearing. The State may not delay imposition of temporary management...

  11. Sequential detection of temporal communities by estrangement confinement.

    PubMed

    Kawadia, Vikas; Sreenivasan, Sameet

    2012-01-01

    Temporal communities are the result of a consistent partitioning of nodes across multiple snapshots of an evolving network, and they provide insights into how dense clusters in a network emerge, combine, split and decay over time. To reliably detect temporal communities we need to not only find a good community partition in a given snapshot but also ensure that it bears some similarity to the partition(s) found in the previous snapshot(s), a particularly difficult task given the extreme sensitivity of community structure yielded by current methods to changes in the network structure. Here, motivated by the inertia of inter-node relationships, we present a new measure of partition distance called estrangement, and show that constraining estrangement enables one to find meaningful temporal communities at various degrees of temporal smoothness in diverse real-world datasets. Estrangement confinement thus provides a principled approach to uncovering temporal communities in evolving networks.

  12. A three-dimensional microelectrode array composed of vertically aligned ultra-dense carbon nanotube networks

    NASA Astrophysics Data System (ADS)

    Nick, C.; Yadav, S.; Joshi, R.; Schneider, J. J.; Thielemann, C.

    2015-07-01

    Electrodes based on carbon nanotubes are a promising approach to manufacture highly sensitive sensors with a low limit of signal detection and a high signal-to-noise ratio. This is achieved by dramatically increasing the electrochemical active surface area without increasing the overall geometrical dimensions. Typically, carbon nanotube electrodes are nearly planar and composed of randomly distributed carbon nanotube networks having a limited surface gain for a specific geometrical surface area. To overcome this limitation, we have introduced vertically aligned carbon nanotube (VACNT) networks as electrodes, which are arranged in a microelectrode pattern of 60 single electrodes. Each microelectrode features a very high aspect ratio of more than 300 and thus a dramatically increased surface area. These microelectrodes composed of VACNT networks display dramatically decreased impedance over the entire frequency range compared to planar microelectrodes caused by the enormous capacity increase. This is experimentally verified by electrochemical impedance spectroscopy and cyclic voltammetry.

  13. Impact of nonlinearity phenomenon FWM in DWDM optical link considering dispersive fiber

    NASA Astrophysics Data System (ADS)

    Puche, William S.; Amaya, Ferney O.; Sierra, Javier E.

    2013-12-01

    The increasing demand of network traffic requires new research centers; improve their communications networks, due to the excessive use of mobile and portable devices wanting to have greater access to the network by downloading interactive content quickly and effectively. For our case analyze optical network link through simulation results assuming a DWDM (Dense wavelength Division Multiplexing) optical link, considering the nonlinearity phenomenon FWM (Four Mixed Wavelength) in order to compare their performance, assuming transmission bit rates to 2.5 Gbps and 10 Gbps, using three primary wavelengths of 1450 nm, 1550 nm and 1650 nm for the transmission of information, whose separation is 100 GHz to generate 16 channels or user information. Tests were conducted to analyze optical amplifiers EDFAs link robustness at a maximum distance of 200 km and identify parameters OSNR, SNR and BER, for a robust and effective transmission

  14. DLP technolgy: applications in optical networking

    NASA Astrophysics Data System (ADS)

    Yoder, Lars A.; Duncan, Walter M.; Koontz, Elisabeth M.; So, John; Bartlett, Terry A.; Lee, Benjamin L.; Sawyers, Bryce D.; Powell, Donald; Rancuret, Paul

    2001-11-01

    For the past five years, Digital Light Processing (DLP) technology from Texas Instruments has made significant inroads in the projection display market. With products encompassing the world's smallest data & video projectors, HDTVs, and digital cinema, DLP is an extremely flexible technology. At the heart of these display solutions is Texas Instruments Digital Micromirror Device (DMD), a semiconductor-based light switch array of thousands of individually addressable, tiltable, mirror-pixels. With success of the DMD as a spatial light modulator in the visible regime, the use of DLP technology under the constraints of coherent, infrared light for optical networking applications is being explored. As a coherent light modulator, the DMD device can be used in Dense Wavelength Division Multiplexed (DWDM) optical networks to dynamically manipulate and shape optical signals. This paper will present the fundamentals of using DLP with coherent wavefronts, discuss inherent advantages of the technology, and present several applications for DLP in dynamic optical networks.

  15. Interconnect Performance Evaluation of SGI Altix 3700 BX2, Cray X1, Cray Opteron Cluster, and Dell PowerEdge

    NASA Technical Reports Server (NTRS)

    Fatoohi, Rod; Saini, Subbash; Ciotti, Robert

    2006-01-01

    We study the performance of inter-process communication on four high-speed multiprocessor systems using a set of communication benchmarks. The goal is to identify certain limiting factors and bottlenecks with the interconnect of these systems as well as to compare these interconnects. We measured network bandwidth using different number of communicating processors and communication patterns, such as point-to-point communication, collective communication, and dense communication patterns. The four platforms are: a 512-processor SGI Altix 3700 BX2 shared-memory machine with 3.2 GB/s links; a 64-processor (single-streaming) Cray XI shared-memory machine with 32 1.6 GB/s links; a 128-processor Cray Opteron cluster using a Myrinet network; and a 1280-node Dell PowerEdge cluster with an InfiniBand network. Our, results show the impact of the network bandwidth and topology on the overall performance of each interconnect.

  16. Multi-shape memory polymers achieved by the spatio-assembly of 3D printable thermoplastic building blocks.

    PubMed

    Li, Hongze; Gao, Xiang; Luo, Yingwu

    2016-04-07

    Multi-shape memory polymers were prepared by the macroscale spatio-assembly of building blocks in this work. The building blocks were methyl acrylate-co-styrene (MA-co-St) copolymers, which have the St-block-(St-random-MA)-block-St tri-block chain sequence. This design ensures that their transition temperatures can be adjusted over a wide range by varying the composition of the middle block. The two St blocks at the chain ends can generate a crosslink network in the final device to achieve strong bonding force between building blocks and the shape memory capacity. Due to their thermoplastic properties, 3D printing was employed for the spatio-assembly to build devices. This method is capable of introducing many transition phases into one device and preparing complicated shapes via 3D printing. The device can perform a complex action via a series of shape changes. Besides, this method can avoid the difficult programing of a series of temporary shapes. The control of intermediate temporary shapes was realized via programing the shapes and locations of building blocks in the final device.

  17. Composite oxygen ion transport element

    DOEpatents

    Chen, Jack C [Getzville, NY; Besecker, Charles J [Batavia, IL; Chen, Hancun [Williamsville, NY; Robinson, Earil T [Mentor, OH

    2007-06-12

    A composite oxygen ion transport element that has a layered structure formed by a dense layer to transport oxygen ions and electrons and a porous support layer to provide mechanical support. The dense layer can be formed of a mixture of a mixed conductor, an ionic conductor, and a metal. The porous support layer can be fabricated from an oxide dispersion strengthened metal, a metal-reinforced intermetallic alloy, a boron-doped Mo.sub.5Si.sub.3-based intermetallic alloy or combinations thereof. The support layer can be provided with a network of non-interconnected pores and each of said pores communicates between opposite surfaces of said support layer. Such a support layer can be advantageously employed to reduce diffusion resistance in any type of element, including those using a different material makeup than that outlined above.

  18. 42 CFR 488.415 - Temporary management.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 5 2012-10-01 2012-10-01 false Temporary management. 488.415 Section 488.415... Compliance for Long-Term Care Facilities with Deficiencies § 488.415 Temporary management. (a) Definition. Temporary management means the temporary appointment by CMS or the State of a substitute facility manager or...

  19. 42 CFR 488.415 - Temporary management.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 5 2014-10-01 2014-10-01 false Temporary management. 488.415 Section 488.415... Compliance for Long-Term Care Facilities with Deficiencies § 488.415 Temporary management. (a) Definition. Temporary management means the temporary appointment by CMS or the State of a substitute facility manager or...

  20. 42 CFR 488.415 - Temporary management.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 5 2013-10-01 2013-10-01 false Temporary management. 488.415 Section 488.415... Compliance for Long-Term Care Facilities with Deficiencies § 488.415 Temporary management. (a) Definition. Temporary management means the temporary appointment by CMS or the State of a substitute facility manager or...

  1. 42 CFR 488.415 - Temporary management.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 5 2011-10-01 2011-10-01 false Temporary management. 488.415 Section 488.415... Compliance for Long-Term Care Facilities with Deficiencies § 488.415 Temporary management. (a) Definition. Temporary management means the temporary appointment by CMS or the State of a substitute facility manager or...

  2. 5 CFR 213.3199 - Temporary organizations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Temporary organizations. 213.3199 Section... SERVICE Excepted Schedules Schedule A § 213.3199 Temporary organizations. Positions on the staffs of temporary organizations, as defined in 5 U.S.C. 3161(a). Appointments may not exceed 3 years, but temporary...

  3. 48 CFR 37.112 - Government use of private sector temporaries.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... use of private sector temporaries. Contracting officers may enter into contracts with temporary help service firms for the brief or intermittent use of the skills of private sector temporaries. Services... part 300, subpart E, Use of Private Sector Temporaries, and agency procedures. [56 FR 55380, Oct. 25...

  4. 42 CFR 488.415 - Temporary management.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Temporary management. 488.415 Section 488.415... Compliance for Long-Term Care Facilities with Deficiencies § 488.415 Temporary management. (a) Definition. Temporary management means the temporary appointment by CMS or the State of a substitute facility manager or...

  5. 38 CFR 60.7 - Duration of temporary lodging.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2011-07-01 2011-07-01 false Duration of temporary lodging. 60.7 Section 60.7 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS (CONTINUED) FISHER HOUSES AND OTHER TEMPORARY LODGING § 60.7 Duration of temporary lodging. Temporary lodging...

  6. 8 CFR 244.14 - Withdrawal of Temporary Protected Status.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 8 Aliens and Nationality 1 2012-01-01 2012-01-01 false Withdrawal of Temporary Protected Status... TEMPORARY PROTECTED STATUS FOR NATIONALS OF DESIGNATED STATES § 244.14 Withdrawal of Temporary Protected Status. (a) Authority of USCIS. USCIS may withdraw the status of an alien granted Temporary Protected...

  7. 8 CFR 244.14 - Withdrawal of Temporary Protected Status.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 8 Aliens and Nationality 1 2014-01-01 2014-01-01 false Withdrawal of Temporary Protected Status... TEMPORARY PROTECTED STATUS FOR NATIONALS OF DESIGNATED STATES § 244.14 Withdrawal of Temporary Protected Status. (a) Authority of USCIS. USCIS may withdraw the status of an alien granted Temporary Protected...

  8. 8 CFR 244.14 - Withdrawal of Temporary Protected Status.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 8 Aliens and Nationality 1 2013-01-01 2013-01-01 false Withdrawal of Temporary Protected Status... TEMPORARY PROTECTED STATUS FOR NATIONALS OF DESIGNATED STATES § 244.14 Withdrawal of Temporary Protected Status. (a) Authority of USCIS. USCIS may withdraw the status of an alien granted Temporary Protected...

  9. Temporary employment and health: a review.

    PubMed

    Virtanen, Marianna; Kivimäki, Mika; Joensuu, Matti; Virtanen, Pekka; Elovainio, Marko; Vahtera, Jussi

    2005-06-01

    We aimed to review evidence on the relationship between temporary employment and health, and to see whether the association is dependent on outcome measure, instability of employment, and contextual factors. We systematically searched for studies of temporary employment and various health outcomes and critically appraised 27 studies. The review suggests higher psychological morbidity among temporary workers compared with permanent employees. According to some studies, temporary workers also have a higher risk of occupational injuries but their sickness absence is lower. Morbidity may be higher in temporary jobs with high employment instability and in countries with a lower number of temporary workers and unemployed workers. The evidence indicates an association between temporary employment and psychological morbidity. The health risk may depend on instability of temporary employment and the context. Confounding by occupation may have biased some of the studies. Additional research to clarify the role of employment instability, hazard accumulation, and selection is recommended.

  10. Controllability of protein-protein interaction phosphorylation-based networks: Participation of the hub 14-3-3 protein family

    PubMed Central

    Uhart, Marina; Flores, Gabriel; Bustos, Diego M.

    2016-01-01

    Posttranslational regulation of protein function is an ubiquitous mechanism in eukaryotic cells. Here, we analyzed biological properties of nodes and edges of a human protein-protein interaction phosphorylation-based network, especially of those nodes critical for the network controllability. We found that the minimal number of critical nodes needed to control the whole network is 29%, which is considerably lower compared to other real networks. These critical nodes are more regulated by posttranslational modifications and contain more binding domains to these modifications than other kinds of nodes in the network, suggesting an intra-group fast regulation. Also, when we analyzed the edges characteristics that connect critical and non-critical nodes, we found that the former are enriched in domain-to-eukaryotic linear motif interactions, whereas the later are enriched in domain-domain interactions. Our findings suggest a possible structure for protein-protein interaction networks with a densely interconnected and self-regulated central core, composed of critical nodes with a high participation in the controllability of the full network, and less regulated peripheral nodes. Our study offers a deeper understanding of complex network control and bridges the controllability theorems for complex networks and biological protein-protein interaction phosphorylation-based networked systems. PMID:27195976

  11. A social network typology and sexual risk-taking among men who have sex with men in Cape Town and Port Elizabeth, South Africa

    PubMed Central

    de Voux, Alex; Baral, Stefan; Bekker, Linda-Gail; Beyrer, Chris; Phaswana-Mafuya, Nancy; Siegler, Aaron; Sullivan, Patrick; Winskell, Kate; Stephenson, Rob

    2016-01-01

    Despite the high prevalence of HIV among men who have sex with men in South Africa, very little is known about their lived realities, including their social and sexual networks. Given the influence of social network structure on sexual risk behaviours, a better understanding of the social contexts of men who have sex with men is essential for informing the design of HIV programming and messaging. This study explored social network connectivity, an understudied network attribute, examining self-reported connectivity between friends, family and sex partners. Data were collected in Cape Town and Port Elizabeth, South Africa from 78 men who have sex with men who participated in in-depth interviews which included a social network mapping component. Five social network types emerged from the content analysis of these social network maps based on the level of connectivity between family, friends and sex partners, and ranged from disconnected to densely connected networks. The ways in which participants reported sexual risk-taking differed across the five network types revealing diversity in social network profiles. HIV programming and messaging for this population can greatly benefit from recognising the diversity in lived realities and social connections between men who have sex with men. PMID:26569376

  12. A social network typology and sexual risk-taking among men who have sex with men in Cape Town and Port Elizabeth, South Africa.

    PubMed

    de Voux, Alex; Baral, Stefan D; Bekker, Linda-Gail; Beyrer, Chris; Phaswana-Mafuya, Nancy; Siegler, Aaron J; Sullivan, Patrick S; Winskell, Kate; Stephenson, Rob

    2016-01-01

    Despite the high prevalence of HIV among men who have sex with men in South Africa, very little is known about their lived realities, including their social and sexual networks. Given the influence of social network structure on sexual risk behaviours, a better understanding of the social contexts of men who have sex with men is essential for informing the design of HIV programming and messaging. This study explored social network connectivity, an understudied network attribute, examining self-reported connectivity between friends, family and sex partners. Data were collected in Cape Town and Port Elizabeth, South Africa, from 78 men who have sex with men who participated in in-depth interviews that included a social network mapping component. Five social network types emerged from the content analysis of these social network maps based on the level of connectivity between family, friends and sex partners, and ranged from disconnected to densely connected networks. The ways in which participants reported sexual risk-taking differed across the five network types, revealing diversity in social network profiles. HIV programming and messaging for this population can greatly benefit from recognising the diversity in lived realities and social connections between men who have sex with men.

  13. Loops in hierarchical channel networks

    NASA Astrophysics Data System (ADS)

    Katifori, Eleni; Magnasco, Marcelo

    2012-02-01

    Nature provides us with many examples of planar distribution and structural networks having dense sets of closed loops. An archetype of this form of network organization is the vasculature of dicotyledonous leaves, which showcases a hierarchically-nested architecture. Although a number of methods have been proposed to measure aspects of the structure of such networks, a robust metric to quantify their hierarchical organization is still lacking. We present an algorithmic framework that allows mapping loopy networks to binary trees, preserving in the connectivity of the trees the architecture of the original graph. We apply this framework to investigate computer generated and natural graphs extracted from digitized images of dicotyledonous leaves and animal vasculature. We calculate various metrics on the corresponding trees and discuss the relationship of these quantities to the architectural organization of the original graphs. This algorithmic framework decouples the geometric information from the metric topology (connectivity and edge weight) and it ultimately allows us to perform a quantitative statistical comparison between predictions of theoretical models and naturally occurring loopy graphs.

  14. Pattern classification by memristive crossbar circuits using ex situ and in situ training.

    PubMed

    Alibart, Fabien; Zamanidoost, Elham; Strukov, Dmitri B

    2013-01-01

    Memristors are memory resistors that promise the efficient implementation of synaptic weights in artificial neural networks. Whereas demonstrations of the synaptic operation of memristors already exist, the implementation of even simple networks is more challenging and has yet to be reported. Here we demonstrate pattern classification using a single-layer perceptron network implemented with a memrisitive crossbar circuit and trained using the perceptron learning rule by ex situ and in situ methods. In the first case, synaptic weights, which are realized as conductances of titanium dioxide memristors, are calculated on a precursor software-based network and then imported sequentially into the crossbar circuit. In the second case, training is implemented in situ, so the weights are adjusted in parallel. Both methods work satisfactorily despite significant variations in the switching behaviour of the memristors. These results give hope for the anticipated efficient implementation of artificial neuromorphic networks and pave the way for dense, high-performance information processing systems.

  15. Pattern classification by memristive crossbar circuits using ex situ and in situ training

    NASA Astrophysics Data System (ADS)

    Alibart, Fabien; Zamanidoost, Elham; Strukov, Dmitri B.

    2013-06-01

    Memristors are memory resistors that promise the efficient implementation of synaptic weights in artificial neural networks. Whereas demonstrations of the synaptic operation of memristors already exist, the implementation of even simple networks is more challenging and has yet to be reported. Here we demonstrate pattern classification using a single-layer perceptron network implemented with a memrisitive crossbar circuit and trained using the perceptron learning rule by ex situ and in situ methods. In the first case, synaptic weights, which are realized as conductances of titanium dioxide memristors, are calculated on a precursor software-based network and then imported sequentially into the crossbar circuit. In the second case, training is implemented in situ, so the weights are adjusted in parallel. Both methods work satisfactorily despite significant variations in the switching behaviour of the memristors. These results give hope for the anticipated efficient implementation of artificial neuromorphic networks and pave the way for dense, high-performance information processing systems.

  16. Vertex centrality as a measure of information flow in Italian Corporate Board Networks

    NASA Astrophysics Data System (ADS)

    Grassi, Rosanna

    2010-06-01

    The aim of this article is to investigate the governance models of companies listed on the Italian Stock Exchange by using a network approach, which describes the interlinks between boards of directors. Following mainstream literature, I construct a weighted graph representing the listed companies (vertices) and their relationships (weighted edges), the Corporate Board Network; I then apply three different vertex centrality measures: degree, betweenness and flow betweenness. What emerges from the network construction and by applying the degree centrality is a structure with a large number of connections but not particularly dense, where the presence of a small number of highly connected nodes (hubs) is evident. Then I focus on betweenness and flow betweenness; indeed I expect that these centrality measures may give a representation of the intensity of the relationship between companies, capturing the volume of information flowing from one vertex to another. Finally, I investigate the possible scale-free structure of the network.

  17. Pure F-actin networks are distorted and branched by steps in the critical-point drying method.

    PubMed

    Resch, Guenter P; Goldie, Kenneth N; Hoenger, Andreas; Small, J Victor

    2002-03-01

    Elucidation of the ultrastructural organization of actin networks is crucial for understanding the molecular mechanisms underlying actin-based motility. Results obtained from cytoskeletons and actin comets prepared by the critical-point procedure, followed by rotary shadowing, support recent models incorporating actin filament branching as a main feature of lamellipodia and pathogen propulsion. Since actin branches were not evident in earlier images obtained by negative staining, we explored how these differences arise. Accordingly, we have followed the structural fate of dense networks of pure actin filaments subjected to steps of the critical-point drying protocol. The filament networks have been visualized in parallel by both cryo-electron microscopy and negative staining. Our results demonstrate the selective creation of branches and other artificial structures in pure F-actin networks by the critical-point procedure and challenge the reliability of this method for preserving the detailed organization of actin assemblies that drive motility. (c) 2002 Elsevier Science (USA).

  18. Extracting the field-effect mobilities of random semiconducting single-walled carbon nanotube networks: A critical comparison of methods

    NASA Astrophysics Data System (ADS)

    Schießl, Stefan P.; Rother, Marcel; Lüttgens, Jan; Zaumseil, Jana

    2017-11-01

    The field-effect mobility is an important figure of merit for semiconductors such as random networks of single-walled carbon nanotubes (SWNTs). However, owing to their network properties and quantum capacitance, the standard models for field-effect transistors cannot be applied without modifications. Several different methods are used to determine the mobility with often very different results. We fabricated and characterized field-effect transistors with different polymer-sorted, semiconducting SWNT network densities ranging from low (≈6 μm-1) to densely packed quasi-monolayers (≈26 μm-1) with a maximum on-conductance of 0.24 μS μm-1 and compared four different techniques to evaluate the field-effect mobility. We demonstrate the limits and requirements for each method with regard to device layout and carrier accumulation. We find that techniques that take into account the measured capacitance on the active device give the most reliable mobility values. Finally, we compare our experimental results to a random-resistor-network model.

  19. The life cycle of platelet granules.

    PubMed

    Sharda, Anish; Flaumenhaft, Robert

    2018-01-01

    Platelet granules are unique among secretory vesicles in both their content and their life cycle. Platelets contain three major granule types-dense granules, α-granules, and lysosomes-although other granule types have been reported. Dense granules and α-granules are the most well-studied and the most physiologically important. Platelet granules are formed in large, multilobulated cells, termed megakaryocytes, prior to transport into platelets. The biogenesis of dense granules and α-granules involves common but also distinct pathways. Both are formed from the trans -Golgi network and early endosomes and mature in multivesicular bodies, but the formation of dense granules requires trafficking machinery different from that of α-granules. Following formation in the megakaryocyte body, both granule types are transported through and mature in long proplatelet extensions prior to the release of nascent platelets into the bloodstream. Granules remain stored in circulating platelets until platelet activation triggers the exocytosis of their contents. Soluble N -ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, located on both the granules and target membranes, provide the mechanical energy that enables membrane fusion during both granulogenesis and exocytosis. The function of these core fusion engines is controlled by SNARE regulators, which direct the site, timing, and extent to which these SNAREs interact and consequently the resulting membrane fusion. In this review, we assess new developments in the study of platelet granules, from their generation to their exocytosis.

  20. Informatics Technology Mimics Ecology: Dense, Mutualistic Collaboration Networks Are Associated with Higher Publication Rates

    PubMed Central

    Sorani, Marco D.

    2012-01-01

    Information technology (IT) adoption enables biomedical research. Publications are an accepted measure of research output, and network models can describe the collaborative nature of publication. In particular, ecological networks can serve as analogies for publication and technology adoption. We constructed network models of adoption of bioinformatics programming languages and health IT (HIT) from the literature. We selected seven programming languages and four types of HIT. We performed PubMed searches to identify publications since 2001. We calculated summary statistics and analyzed spatiotemporal relationships. Then, we assessed ecological models of specialization, cooperativity, competition, evolution, biodiversity, and stability associated with publications. Adoption of HIT has been variable, while scripting languages have experienced rapid adoption. Hospital systems had the largest HIT research corpus, while Perl had the largest language corpus. Scripting languages represented the largest connected network components. The relationship between edges and nodes was linear, though Bioconductor had more edges than expected and Perl had fewer. Spatiotemporal relationships were weak. Most languages shared a bioinformatics specialization and appeared mutualistic or competitive. HIT specializations varied. Specialization was highest for Bioconductor and radiology systems. Specialization and cooperativity were positively correlated among languages but negatively correlated among HIT. Rates of language evolution were similar. Biodiversity among languages grew in the first half of the decade and stabilized, while diversity among HIT was variable but flat. Compared with publications in 2001, correlation with publications one year later was positive while correlation after ten years was weak and negative. Adoption of new technologies can be unpredictable. Spatiotemporal relationships facilitate adoption but are not sufficient. As with ecosystems, dense, mutualistic, specialized co-habitation is associated with faster growth. There are rapidly changing trends in external technological and macroeconomic influences. We propose that a better understanding of how technologies are adopted can facilitate their development. PMID:22279593

Top