Sample records for dense tree canopy

  1. A long-term study of tree seedling recruitment in Southern Appalachian forests: the effects of canopy gaps and shrub understories

    Treesearch

    Brian Beckage; James S. Clark; Barton D. Clinton; Bruce L. Haines

    2000-01-01

    We examined the importance of intermediate-sized gaps and a dense shrub layer on tree seedling recruitment in a Southern Appalachian deciduous forest. We created 12 canopy gaps under two contrasting understory conditions: 6 gaps were dominated by the dense, shade-producing shrub, Rhododendron maximum L., while the remaining gaps were relatively open...

  2. Survival of tree seedligns across space and time: estimates from long-term count data

    Treesearch

    Brian Beckage; Michael Lavina; James S. Clark

    2005-01-01

    Tree diversity in forests may be maintained by variability in seedling recruitment. Although forest ecologists have emphasized the importance of canopy gaps in generating spatial variability that might promote tree regeneration, the effects of canopy gaps on seedling recruitment may be offset by dense forest understories.Large annual...

  3. The effect of canopy closure on chimpanzee nest abundance in Lagoas de Cufada National Park, Guinea-Bissau.

    PubMed

    Sousa, Joana; Casanova, Catarina; Barata, André V; Sousa, Cláudia

    2014-04-01

    The present study aimed to gather baseline information about chimpanzee nesting and density in Lagoas de Cufada Natural Park (LCNP), in Guinea-Bissau. Old and narrow trails were followed to estimate chimpanzee density through marked-nest counts and to test the effect of canopy closure (woodland savannah, forest with a sparse canopy, and forest with a dense canopy) on nest distribution. Chimpanzee abundance was estimated at 0.79 nest builders/km(2), the lowest among the areas of Guinea-Bissau with currently studied chimpanzee populations. Our data suggest that sub-humid forest with a dense canopy accounts for significantly higher chimpanzee nest abundance (1.50 nests/km of trail) than sub-humid forest with a sparse canopy (0.49 nests/km of trail) or woodland savannah (0.30 nests/km of trail). Dense-canopy forests play an important role in chimpanzee nesting in the patchy and highly humanized landscape of LCNP. The tree species most frequently used for nesting are Dialium guineense (46%) and Elaeis guineensis (28%). E. guineensis contain nests built higher in the canopy, while D. guineense contain nests built at lower heights. Nests observed during baseline sampling and replications suggest seasonal variations in the tree species used for nest building.

  4. Challenges to estimating tree height via LiDAR in closed-canopy forest: a parable from western Oregon

    Treesearch

    Demetrios Gatziolis; Jeremy S. Fried; Vicente S. Monleon

    2010-01-01

    We examine the accuracy of tree height estimates obtained via light detection and ranging (LiDAR) in a temperate rainforest characterized by complex terrain, steep slopes, and high canopy cover. The evaluation was based on precise top and base locations for > 1,000 trees in 45 plots distributed across three forest types, a dense network of ground elevation...

  5. Dense understory dwarf bamboo alters the retention of canopy tree seeds

    NASA Astrophysics Data System (ADS)

    Qian, Feng; Zhang, Tengda; Guo, Qinxue; Tao, Jianping

    2016-05-01

    Tree seed retention is thought to be an important factor in the process of forest community regeneration. Although dense understory dwarf bamboo has been considered to have serious negative effects on the regeneration of forest community species, little attention has been paid to the relationship between dwarf bamboo and seed retention. In a field experiment we manipulated the density of Fargesia decurvata, a common understory dwarf bamboo, to investigate the retention of seeds from five canopy tree species in an evergreen and deciduous broad-leaved mixed forest in Jinfoshan National Nature Reserve, SW China. We found that the median survival time and retention ratio of seeds increased with the increase in bamboo density. Fauna discriminately altered seed retention in bamboo groves of different densities. Arthropods reduced seed survival the most, and seeds removed decreased with increasing bamboo density. Birds removed or ate more seeds in groves of medium bamboo density and consumed fewer seeds in dense or sparse bamboo habitats. Rodents removed a greater number of large and highly profitable seeds in dense bamboo groves but more small and thin-husked seeds in sparse bamboo groves. Seed characteristics, including seed size, seed mass and seed profitability, were important factors affecting seed retention. The results suggested that dense understory dwarf bamboo not only increased seeds concealment and reduced the probability and speed of seed removal but also influenced the trade-off between predation and risk of animal predatory strategies, thereby impacting the quantity and composition of surviving seeds. Our results also indicated that dense understory dwarf bamboo and various seed characteristics can provide good opportunities for seed storage and seed germination and has a potential positive effect on canopy tree regeneration.

  6. Effects of isolation on ant assemblages depend on microhabitat

    USGS Publications Warehouse

    Chen, Xuan; Adams, Benjamin; Layne, Michael; Swarzenski, Christopher M.; Norris, David O.; Hooper-Bui, Linda

    2017-01-01

    How isolation affects biological communities is a fundamental question in ecology and conservation biology. Local diversity (α) and regional diversity (γ) are consistently lower in insular areas. The pattern of species turnover (β diversity) and the influence of isolation on competitive interactions are less predictable. Differences in communities across microhabitats within an isolated patch could contribute to the variability in patterns related to isolation. Trees form characteristically dense and sparse patches (low vs. high isolation) in floating marshes in coastal Louisiana, and canopy and root areas around these trees could support distinct ant communities. Consequently, trees in floating marshes provide an ideal environment to study the effects of isolation on community assemblages in different microhabitats. We sampled ant communities in 120 trees during the summer of 2016. We found ant α diversity was not different between the canopy and roots, and the magnitude and directional effects of isolation on ants were inconsistent between the canopy and root areas. In the roots of sparse sites, ant diversity (α, β, and γ) was lower, species composition was changed, and the signature of interspecific competition was more prominent compared to dense sites. In the canopy, however, significant differences between dense and sparse sites were only detected in α and γ diversity, and ant species co‐occurrence was not significantly different from a random distribution. The inconsistent responses of ants in canopy and root areas to isolation may be due to the differences of species pool size, environmental harshness, and species interactions between strata. In addition, these findings indicate that communities in distinct microenvironments can respond differentially to habitat isolation. We suggest incorporating organisms from different microhabitats into future research to better understand the influence of isolation on the assembly of biological communities.

  7. Restoration of temperate savannas and woodlands

    Treesearch

    Brice B. Hanberry; John M. Kabrick; Peter W. Dunwiddie; Tibor Hartel; Theresa B. Jain; Benjamin O. Knapp

    2017-01-01

    Savannas and woodlands are open forest phases that occur along a gradient between grasslands and closed canopy forests. These ecosystems are characterized by open to nearly closed canopies of overstorey trees, relatively sparse midstorey and understorey woody vegetation, and dense, species-rich ground flora. In contrast to closed forests, the dominant and codominant...

  8. Effects of Rhododendron maximum thickest on tree seed dispersal, seedling morphology, and survivorship

    Treesearch

    Thomas T. Lei; Shawn W. Semones; John F. Walker; Barton D. Clinton; Erik T. Nilsen

    2002-01-01

    In the southern Appalachian forests, the regeneration of canopy trees is severely inhibited by Rhododendron maximum L., an evergreen understory shrub producing dense rhickets. While light availability is a major cause, other factors may also contribute to the absence of tree seedlings under R. maximum. We examined the effects of...

  9. Restoration of temperate savannas and woodlands [Chapter 11

    Treesearch

    Brice B. Hanberry; John M. Kabrick; Peter W. Dunwiddie; Tibor Hartel; Theresa B. Jain; Benjamin O. Knapp

    2017-01-01

    Savannas and woodlands are open forest phases that occur along a gradient between grasslands and closed canopy forests. These ecosystems are characterized by open to nearly closed canopies of overstorey trees, relatively sparse midstorey and understorey woody vegetation, and dense, species-rich ground flora. In contrast to closed forests, the dominant and codominant...

  10. Seasonal dynamics of radial growth and stem water deficit in co-occurring saplings and mature conifers under drought: Canopy density affects water stress experienced by saplings

    NASA Astrophysics Data System (ADS)

    Oberhuber, Walter

    2017-04-01

    Size-mediated climate sensitivity of trees will affect forest structure, composition and productivity under a warmer and drier climate. Therefore, the influence of tree size (saplings vs. mature trees) and site conditions on radial stem growth and stem water deficit of Picea abies (dry-mesic site; canopy cover [CC]: 70 %) and Pinus sylvestris (xeric site; CC: 30 %) were evaluated in a drought-prone inner Alpine environment (c. 750 m a.s.l.). Stem radius variations (SRVs) of saplings (mean stem diameter [SDM]: 2.3 cm) and co-occurring mature trees (SDM: 24 cm) were continuously recorded by dendrometers during two years (n = 6 - 8 individuals per species and size class). Growth-detrended SRVs (SSRV), which represent reversible shrinkage and swelling of tissues outside the cambium and contribute most to stem water storage capacity, were calculated by removing the Gompertz-modeled daily growth from SRVs. Dendrometer records revealed that irrespective of tree size, radial growth in Pinus sylvestris occurred in April-May, whereas the main growing period of Picea abies was April-June and May-June in saplings and mature trees, respectively. Growth-detrended SRVs were approximately twice as large in Pinus sylvestris compared to Picea abies indicating more intense exploitation of stem water reserves at the xeric site. Linear relationships between SSRVs of mature trees vs. saplings and climate-SSRV relationships revealed greater use of stem water reserves by mature Picea abies compared to saplings. This suggests that the strikingly depressed radial growth of Picea abies saplings was primarily caused by reduced carbon availability beneath the dense canopy. In contrast, a tree size effect on the seasonal dynamics of radial growth, stem water deficit and climate-SSRV relationships was mostly lacking in Pinus sylvestris, indicating comparable water status in mature trees and saplings under an open canopy. Results of this study provide evidence that development of a buffered microclimate under dense canopy mitigates water stress experienced by saplings and favors tree recruitment at drought-prone sites. This study was funded by the Austrian Science Fund (FWF): P25643-B16 "Carbon allocation and growth of Scots pine".

  11. Free-air fumigation of mature trees. A novel system for controlled ozone enrichment in grown-up beech and spruce canopies.

    PubMed

    Werner, Herbert; Fabian, Peter

    2002-01-01

    A novel system for continuous and controlled free-air fumigation of mature tree canopies with ozone is described. Ozone generated from oxygen is diluted with air in a pressurized tank and conducted into the canopies by a system of 100 PTFE tubes hanging down from a grid fixed above the crowns. With 45 calibrated outlets per tube providing a constant flow of 0.3 l/min each, a total volume of about 10*10*15 m3 comprising 5 beech and 5 spruce canopies is fumigated. The spatial ozone distribution in the fumigated volume as well as surrounding reference tree canopies is controlled by continuous measuring instruments installed at 4 levels and a dense array of passive samplers. The system will later be used for CO2 fumigation as well. Results of the first year of continuous operation, with 2 * ambient ozone levels having been achieved, are reported.

  12. A preliminary report on the measurements of forest canopies with C-band radar scatterometer at NASA/NSTL

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1985-01-01

    This paper presents preliminary results of C-band radar scatterometer measurements of forest canopies of southeastern forests in the vicinity of NASA/NSTL. The results are as follows: (1) the radar backscattering coefficients (BSC) of deciduous forests such as oak, maple, blackgum, and cypress are higher than those of coniferous forests such as slash pine plantation and natural pine; (2) at a large incidence angle, where polarization effect is significant, and by ranging measurement, the VV polarization BSC obtain peak value at the first few meters from the canopy top and decrease rather quickly, while the HH polarization BSC obtain peak value at longer distances from the canopy top and decrease rather slowly through the canopy; and (3) using the active radar calibrator for tree canopy attenuation measurement of a dense and a sparse live oak, it is found that the tree canopies with higher attenuations have higher BSC for all three polarizations, with VV polarization containing the largest differential (2.2 dB).

  13. Investigation of Techniques for Inventorying Forested Regions. Volume 1: Reflectance Modeling and Empirical Multispectral Analysis of Forest Canopy Components

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F. (Principal Investigator); Sadowski, F. G.; Malila, W. A.

    1977-01-01

    The author has identified the following significant results. Effects of vegetation density on overall canopy reflectance differed dramatically, depending on spectral band, base material, and vegetation type. For example, reflectance changes caused by variations in vegetation density were hardly apparant for a simulated burned surface in LANDSAT band 5, while large changes occurred in band 7. When increasing densities of tree overstory were placed over understories, intermediate to dense overstories effectively masked the understories and dominated the spectral signatures. Dramatic changes in reflectance occurred for canopies placed on a number of varying topographic positions. Such changes were seen to result in the spectral overlap of some nonforested with densely forested situations.

  14. The forest carnivores: marten and fisher

    Treesearch

    William J. Zielinski

    2014-01-01

    Martens and fishers, as predators, perform important functions that help sustain the integrity of ecosystems. Both species occur primarily in mature forest environments that are characterized by dense canopy, large-diameter trees, a diverse understory community, and abundant standing and downed dead trees. Martens occur in the upper montane forests, where the threat of...

  15. Striving for balance: maintaining marten habitat while reducing fuels

    Treesearch

    John Kirkland; Katie Moriarty

    2016-01-01

    Martens are small forest carnivores associated with dense, mature forests. These important indicators of a forest’s biodiversity are vulnerable to management activities that open the forest canopy or remove downed debris. Many fuel reduction treatment do just that: dense stands of trees are thinned to minimize fire hazard and future fire severity. Until recently, the...

  16. Queensland Seasons

    Atmospheric Science Data Center

    2016-05-27

    ... are in turn influenced by vegetation structure, terrain and soil type, and by the different solar illumination conditions on the two dates. ... wavelenths is strongly scattered between the leaf layers of the dense canopies, and the influence of shadows between the tree ...

  17. Tree thinning as an option to increase herbaceous yield of an encroached semi-arid savanna in South Africa

    PubMed Central

    Smit, Gert N

    2005-01-01

    Background The investigation was conducted in a savanna area covered by what was considered an undesirably dense stand of Colophospermum mopane trees, mainly because such a dense stand of trees often results in the suppression of herbaceous plants. The objectives of this study were to determine the influence of intensity of tree thinning on the dry matter yield of herbaceous plants (notably grasses) and to investigate differences in herbaceous species composition between defined subhabitats (under tree canopies, between tree canopies and where trees have been removed). Seven plots (65 × 180 m) were subjected to different intensities of tree thinning, ranging from a totally cleared plot (0 %) to plots thinned to the equivalent of 10 %, 20%, 35 %, 50% and 75 % of the leaf biomass of a control plot (100 %) with a tree density of 2711 plants ha-1. The establishment of herbaceous plants (grasses and forbs) in response to reduced competition from the woody plants was measured during three full growing seasons following the thinning treatments. Results The grass component reacted positively to the tree thinning in terms of total dry matter (DM) yield, but forbs were negatively influenced. Rainfall interacted with tree density and the differences between grass DM yields in thinned plots during years of below average rainfall were substantially higher than those of the control. At high tree densities, yields differed little between seasons of varying rainfall. The relation between grass DM yield and tree biomass was curvilinear, best described by the exponential regression equation. Subhabitat differentiation by C. mopane trees did provide some qualitative benefits, with certain desirable grass species showing a preference for the subhabitat under tree canopies. Conclusion While it can be concluded from this study that high tree densities suppress herbaceous production, the decision to clear/thin the C. mopane trees should include additional considerations. Thinning of C. mopane with the exclusive objective of increasing productivity of the grass layer would thus invariably involve a compromise situation where some trees should be left for the sake of the qualitative benefits on the herbaceous layer, soil enrichment, provision of browse and stability of the ecosystem. PMID:15921528

  18. Pacific island landbird monitoring annual report, National Park of American Samoa, Ta‘u and Tutuila units, 2011

    USGS Publications Warehouse

    Judge, Seth W.; Camp, Richard J.; Vaivai, Visa; Hart, Patrick J.

    2013-01-01

    NPSA canopy and understory composition was predominantly native, and trees formed a dense closed canopy at nearly 90% of the stations sampled. More than half of the tree heights in both units were taller than 5 m and the majority of slopes were steeper than 20 degrees. There were no clear dominant tree species in the mixed native forests. The most common tree species documented included Syzygium spp., Dysoxylum spp., Ficus spp., Hibiscus tiliaceus and Rhus taitensis (among others). There were significant differences in the distribution of bird densities between legacy and random transects. Determining differences in detection probabilities cannot be definitively assessed from a single survey. We recommend both panels be sampled in the future until bias in density and abundance can be evaluated, or if sampling may be reduced.

  19. Flood Control Root River Basin, Minnesota.

    DTIC Science & Technology

    1977-03-01

    occurs in drier sites principally due to the dense canopy of mature trees. Woody shrubs and some degree of tree reproduction occur more commonly among...plant species tolerant to alternate inundation and flood- water recession thrive while less tolerant species are absent. Woody species of vines ...animals of the Upper Mississippi River basin i) Comnon nwne Scientific name Status Present distribution Indiana bat Endangered, estimated Midwest and

  20. High-Resolution Forest Canopy Height Estimation in an African Blue Carbon Ecosystem

    NASA Technical Reports Server (NTRS)

    Lagomasino, David; Fatoyinbo, Temilola; Lee, Seung-Kuk; Simard, Marc

    2015-01-01

    Mangrove forests are one of the most productive and carbon dense ecosystems that are only found at tidally inundated coastal areas. Forest canopy height is an important measure for modeling carbon and biomass dynamics, as well as land cover change. By taking advantage of the flat terrain and dense canopy cover, the present study derived digital surface models (DSMs) using stereophotogrammetric techniques on high-resolution spaceborne imagery (HRSI) for southern Mozambique. A mean-weighted ground surface elevation factor was subtracted from the HRSI DSM to accurately estimate the canopy height in mangrove forests in southern Mozambique. The mean and H100 tree height measured in both the field and with the digital canopy model provided the most accurate results with a vertical error of 1.18-1.84 m, respectively. Distinct patterns were identified in the HRSI canopy height map that could not be discerned from coarse shuttle radar topography mission canopy maps even though the mode and distribution of canopy heights were similar over the same area. Through further investigation, HRSI DSMs have the potential of providing a new type of three-dimensional dataset that could serve as calibration/validation data for other DSMs generated from spaceborne datasets with much larger global coverage. HSRI DSMs could be used in lieu of Lidar acquisitions for canopy height and forest biomass estimation, and be combined with passive optical data to improve land cover classifications.

  1. Variation in crown light utilization characteristics among tropical canopy trees.

    PubMed

    Kitajima, Kaoru; Mulkey, Stephen S; Wright, S Joseph

    2005-02-01

    Light extinction through crowns of canopy trees determines light availability at lower levels within forests. The goal of this paper is the exploration of foliage distribution and light extinction in crowns of five canopy tree species in relation to their shoot architecture, leaf traits (mean leaf angle, life span, photosynthetic characteristics) and successional status (from pioneers to persistent). Light extinction was examined at three hierarchical levels of foliage organization, the whole crown, the outermost canopy and the individual shoots, in a tropical moist forest with direct canopy access with a tower crane. Photon flux density and cumulative leaf area index (LAI) were measured at intervals of 0.25-1 m along multiple vertical transects through three to five mature tree crowns of each species to estimate light extinction coefficients (K). Cecropia longipes, a pioneer species with the shortest leaf life span, had crown LAI <0.5. Among the remaining four species, crown LAI ranged from 2 to 8, and species with orthotropic terminal shoots exhibited lower light extinction coefficients (0.35) than those with plagiotropic shoots (0.53-0.80). Within each type, later successional species exhibited greater maximum LAI and total light extinction. A dense layer of leaves at the outermost crown of a late successional species resulted in an average light extinction of 61% within 0.5 m from the surface. In late successional species, leaf position within individual shoots does not predict the light availability at the individual leaf surface, which may explain their slow decline of photosynthetic capacity with leaf age and weak differentiation of sun and shade leaves. Later-successional tree crowns, especially those with orthotropic branches, exhibit lower light extinction coefficients, but greater total LAI and total light extinction, which contribute to their efficient use of light and competitive dominance.

  2. Direct uptake of canopy rainwater causes turgor-driven growth spurts in the mangrove Avicennia marina.

    PubMed

    Steppe, Kathy; Vandegehuchte, Maurits W; Van de Wal, Bart A E; Hoste, Pieter; Guyot, Adrien; Lovelock, Catherine E; Lockington, David A

    2018-03-17

    Mangrove forests depend on a dense structure of sufficiently large trees to fulfil their essential functions as providers of food and wood for animals and people, CO2 sinks and protection from storms. Growth of these forests is known to be dependent on the salinity of soil water, but the influence of foliar uptake of rainwater as a freshwater source, additional to soil water, has hardly been investigated. Under field conditions in Australia, stem diameter variation, sap flow and stem water potential of the grey mangrove (Avicennia marina (Forssk.) Vierh.) were simultaneously measured during alternating dry and rainy periods. We found that sap flow in A. marina was reversed, from canopy to roots, during and shortly after rainfall events. Simultaneously, stem diameters rapidly increased with growth rates up to 70 μm h-1, which is about 25-75 times the normal growth rate reported in temperate trees. A mechanistic tree model was applied to provide evidence that A. marina trees take up water through their leaves, and that this water contributes to turgor-driven stem growth. Our results indicate that direct uptake of freshwater by the canopy during rainfall supports mangrove tree growth and serve as a call to consider this water uptake pathway if we aspire to correctly assess influences of changing rainfall patterns on mangrove tree growth.

  3. Soil water availability and evaporative demand affect seasonal growth dynamics and use of stored water in co-occurring saplings and mature conifers under drought.

    PubMed

    Oberhuber, Walter

    2017-04-01

    High-resolution time series of stem radius variations (SRVs) record fluctuations in tree water status and temporal dynamics of radial growth. The focus of this study was to evaluate the influence of tree size (i.e., saplings vs. mature trees) and soil water availability on SRVs. Dendrometers were installed on Pinus sylvestris at an open xeric site and on Picea abies at a dry-mesic site, and the SRVs of co-occurring saplings and mature trees were analyzed during two consecutive years. The results revealed that irrespective of tree size, radial growth in P. sylvestris occurred in April-May, whereas the main growing period of P. abies was April-June (saplings) and May-June (mature trees). Linear relationships between growth-detrended SRVs (SSRVs) of mature trees vs. saplings and climate-SSRV relationships revealed greater use of water reserves by mature P. abies compared with saplings. This suggests that the strikingly depressed growth of saplings compared with mature P. abies was caused by source limitation, i.e., restricted photosynthesis beneath the dense canopy. In contrast, a tree size effect on the annual increment, SSRV, and climate-SSRV relationships was less obvious in P. sylvestris , indicating comparable water status in mature trees and saplings under an open canopy. The results of this study provided evidence that water availability and a canopy atmosphere can explain differences in temporal dynamics of radial growth and use of stem water reserves among mature trees and saplings.

  4. Assessing intra- and inter-regional climate effects on Douglas-fir biomass dynamics in Oregon and Washington, USA

    Treesearch

    David M. Bell; Andrew N. Gray

    2016-01-01

    While ecological succession shapes contemporary forest structure and dynamics, other factors like forest structure (dense vs. sparse canopies) and climate may alter structural trajectories. To assess potential sources of variation in structural trajectories, we examined proportional biomass change for a regionally dominant tree species, Douglas-fir (...

  5. Thinning interior live oak in California's Southern Sierra Nevada

    Treesearch

    Richard B. Standiford; Neil K. McDougald

    2015-01-01

    This study describes a thinning and resprout control study in Madera County. The study site was a dense, 40-year old interior live oak stand (Quercus wislizeni) that originated from resprouting, with 100 percent canopy cover. Tree thinning was initiated in 1998 in cooperation with the local Resource Conservation District to evaluate thinning...

  6. Forest understory trees can be segmented accurately within sufficiently dense airborne laser scanning point clouds.

    PubMed

    Hamraz, Hamid; Contreras, Marco A; Zhang, Jun

    2017-07-28

    Airborne laser scanning (LiDAR) point clouds over large forested areas can be processed to segment individual trees and subsequently extract tree-level information. Existing segmentation procedures typically detect more than 90% of overstory trees, yet they barely detect 60% of understory trees because of the occlusion effect of higher canopy layers. Although understory trees provide limited financial value, they are an essential component of ecosystem functioning by offering habitat for numerous wildlife species and influencing stand development. Here we model the occlusion effect in terms of point density. We estimate the fractions of points representing different canopy layers (one overstory and multiple understory) and also pinpoint the required density for reasonable tree segmentation (where accuracy plateaus). We show that at a density of ~170 pt/m² understory trees can likely be segmented as accurately as overstory trees. Given the advancements of LiDAR sensor technology, point clouds will affordably reach this required density. Using modern computational approaches for big data, the denser point clouds can efficiently be processed to ultimately allow accurate remote quantification of forest resources. The methodology can also be adopted for other similar remote sensing or advanced imaging applications such as geological subsurface modelling or biomedical tissue analysis.

  7. Eastern Hemlock Forests: Guidelines to Minimize the Impacts of Hemlock Woolly Adelgid

    Treesearch

    Jeffrey S. Ward; Michael E. Montgomery; Carole A.S.-J. Cheah; Brad P. Onken; Richard S. Cowles

    2004-01-01

    Eastern hemlock (Tsuga canadensis) is the most shade-tolerant and long-lived tree species in Eastern North America. Its unsurpassed ability to tolerate low light enables it to form dense canopies and stands that provide a unique habitat for many plant and wildlife species. Carolina hemlock (Tsuga caroliniana) is a relic species...

  8. The formation of dense understory layers in forests worldwide: consequences and implications for forest dynamics, biodiversity, and succession

    Treesearch

    Alejandro A. Royo; Walter P. Carson

    2010-01-01

    Alterations to natural herbivore and disturbance regimes often allow a select suite of forest understory plant species to dramatically spread and form persistent, mono-dominant thickets. Following their expansion, this newly established understory canopy can alter tree seedling recruitment rates and exert considerable control over the rate and direction of secondary...

  9. The formation of dense understory layers in the forest worldwide: consequences and implications for forest dynamics, biodiversity, and succession

    Treesearch

    Alejandro A. Royo; Walter P. Carson

    2010-01-01

    Alterations to natural herbivore and disturbance regimes often allow a select suite of forest understory plant species to dramatically spread and form persistent, mono-dominant thickets. Following their expansion, this newly established understory canopy can alter tree seedling recruitment rates and exert considerable control over the rate and direction of secondary...

  10. Influence of regional nighttime atmospheric regimes on canopy turbulence and gradients at a closed and open forest in mountain-valley terrain

    DOE PAGES

    Wharton, S.; Ma, S.; Baldocchi, D. D.; ...

    2017-02-07

    Stable stratification of the nocturnal lower boundary layer inhibits convective turbulence, such that turbulent vertical transfer of ecosystem carbon dioxide (CO 2), water vapor (H 2O) and energy is driven by mechanically forced turbulence, either from frictional forces near the ground or top of a plant canopy, or from shear generated aloft. The significance of this last source of turbulence on canopy flow characteristics in a closed and open forest canopy is addressed in this paper. We present micrometeorological observations of the lower boundary layer and canopy air space collected on nearly 200 nights using a combination of atmospheric lasermore » detection and ranging (lidar), eddy covariance (EC), and tower profiling instrumentation. Two AmeriFlux/Fluxnet sites in mountain-valley terrain in the Western U.S. are investigated: Wind River, a tall, dense conifer canopy, and Tonzi Ranch, a short, open oak canopy. On roughly 40% of nights lidar detected down-valley or downslope flows above the canopy at both sites. Nights with intermittent strong bursts of “top-down” forced turbulence were also observed above both canopies. The strongest of these bursts increased sub-canopy turbulence and reduced canopy virtual potential temperature (θv) gradient at Tonzi, but did not appear to change the flow characteristics within the dense Wind River canopy. At Tonzi we observed other times when high turbulence (via friction velocity, u*) was found just above the trees, yet CO2 and θv gradients remained large and suggested flow decoupling. These events were triggered by regional downslope flow. Lastly, a set of turbulence parameters is evaluated for estimating canopy turbulence mixing strength. The relationship between turbulence parameters and canopy θv gradients was found to be complex, although better agreement between the canopy θv gradient and turbulence was found for parameters based on the standard deviation of vertical velocity, or ratios of 3-D turbulence to mean flow, than for u*. These findings add evidence that the relationship between canopy turbulence, static stability, and canopy mixing is far from straightforward even within an open canopy.« less

  11. Influence of regional nighttime atmospheric regimes on canopy turbulence and gradients at a closed and open forest in mountain-valley terrain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wharton, S.; Ma, S.; Baldocchi, D. D.

    Stable stratification of the nocturnal lower boundary layer inhibits convective turbulence, such that turbulent vertical transfer of ecosystem carbon dioxide (CO 2), water vapor (H 2O) and energy is driven by mechanically forced turbulence, either from frictional forces near the ground or top of a plant canopy, or from shear generated aloft. The significance of this last source of turbulence on canopy flow characteristics in a closed and open forest canopy is addressed in this paper. We present micrometeorological observations of the lower boundary layer and canopy air space collected on nearly 200 nights using a combination of atmospheric lasermore » detection and ranging (lidar), eddy covariance (EC), and tower profiling instrumentation. Two AmeriFlux/Fluxnet sites in mountain-valley terrain in the Western U.S. are investigated: Wind River, a tall, dense conifer canopy, and Tonzi Ranch, a short, open oak canopy. On roughly 40% of nights lidar detected down-valley or downslope flows above the canopy at both sites. Nights with intermittent strong bursts of “top-down” forced turbulence were also observed above both canopies. The strongest of these bursts increased sub-canopy turbulence and reduced canopy virtual potential temperature (θv) gradient at Tonzi, but did not appear to change the flow characteristics within the dense Wind River canopy. At Tonzi we observed other times when high turbulence (via friction velocity, u*) was found just above the trees, yet CO2 and θv gradients remained large and suggested flow decoupling. These events were triggered by regional downslope flow. Lastly, a set of turbulence parameters is evaluated for estimating canopy turbulence mixing strength. The relationship between turbulence parameters and canopy θv gradients was found to be complex, although better agreement between the canopy θv gradient and turbulence was found for parameters based on the standard deviation of vertical velocity, or ratios of 3-D turbulence to mean flow, than for u*. These findings add evidence that the relationship between canopy turbulence, static stability, and canopy mixing is far from straightforward even within an open canopy.« less

  12. UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA

    USGS Publications Warehouse

    Sankey, Temuulen T.; Donager, Jonathon; McVay, Jason L.; Sankey, Joel B.

    2017-01-01

    Forest vegetation classification and structure measurements are fundamental steps for planning, monitoring, and evaluating large-scale forest changes including restoration treatments. High spatial and spectral resolution remote sensing data are critically needed to classify vegetation and measure their 3-dimensional (3D) canopy structure at the level of individual species. Here we test high-resolution lidar, hyperspectral, and multispectral data collected from unmanned aerial vehicles (UAV) and demonstrate a lidar-hyperspectral image fusion method in treated and control forests with varying tree density and canopy cover as well as in an ecotone environment to represent a gradient of vegetation and topography in northern Arizona, U.S.A. The fusion performs better (88% overall accuracy) than either data type alone, particularly for species with similar spectral signatures, but different canopy sizes. The lidar data provides estimates of individual tree height (R2 = 0.90; RMSE = 2.3 m) and crown diameter (R2 = 0.72; RMSE = 0.71 m) as well as total tree canopy cover (R2 = 0.87; RMSE = 9.5%) and tree density (R2 = 0.77; RMSE = 0.69 trees/cell) in 10 m cells across thin only, burn only, thin-and-burn, and control treatments, where tree cover and density ranged between 22 and 50% and 1–3.5 trees/cell, respectively. The lidar data also produces highly accurate digital elevation model (DEM) (R2 = 0.92; RMSE = 0.75 m). In comparison, 3D data derived from the multispectral data via structure-from-motion produced lower correlations with field-measured variables, especially in dense and structurally complex forests. The lidar, hyperspectral, and multispectral sensors, and the methods demonstrated here can be widely applied across a gradient of vegetation and topography for monitoring landscapes undergoing large-scale changes such as the forests in the southwestern U.S.A.

  13. Environmental Response of Small Urban Parks in Context of Dhaka City

    NASA Astrophysics Data System (ADS)

    Tabassum, S.

    2018-01-01

    Urban green spaces are essential element of urban life which, due to their structure and multi functionality, can play an exemplary role in the vitality and quality of urban life. Urban Parks are not only used as active recreational and leisure areas for its citizens but also an important catalyst for community development and enhancement. These spaces in the city act like its lungs and play a critical role in supporting the ecological and environmental system. In the dense urban areas, even Small Parks (less than one acre in size) can also contribute a lot to improve environmental quality of city life. In a populated city where it is difficult to incorporate large Public Parks, these small green area can complement large Public Park system. Accordingly the study is concerned to evaluate the environmental performances of Small Parks on the built environments of urban Dhaka. The analysis identifies that Small Parks has strong environmental impact, the intensity of which depends on the type and quality of its vegetation, its design parameters, connectivity and of course on surrounding urban morphology. And it is confirmed that park with more canopy tree is suitable for our environment and therefore a good combination of vegetation (wide canopy trees at periphery, medium canopy trees beside internal walkway and small canopy tree, shrub and grass cover elsewhere) are recommended for better environmental performance of Small Parks. The research will be an approach to find the ways and means to restore the Small Parks of Dhaka city to ensure the livability of the city and enhance the quality of city image.

  14. A First-Order Radiative Transfer Model for Microwave Radiometry of Forest Canopies at L-Band

    NASA Technical Reports Server (NTRS)

    Kurum, Mehmet; Lang, Roger H.; O'Neill, Peggy E.; Joseph, Alicia T.; Jackson, Thomas J.; Cosh, Michael H.

    2010-01-01

    In this study, a new first-order radiative transfer (RT) model is developed to more accurately account for vegetation canopy scattering by modifying the basic r-co model (the zero-order RT solution). In order to optimally utilize microwave radiometric data in soil moisture (SM) retrievals over moderately to densely vegetated landscapes, a quantitative understanding of the relationship between scattering mechanisms within vegetation canopies and the microwave brightness temperature is desirable. A first-order RT model is used to investigate this relationship and to perform a physical analysis of the scattered and emitted radiation from vegetated terrain. The new model is based on an iterative solution (successive orders of scattering) of the RT equations up to the first order. This formulation adds a new scattering term to the i-w model. The additional term represents emission by particles (vegetation components) in the vegetation layer and emission by the ground that is scattered once by particles in the layer. The new model is tested against 1.4 GHz brightness temperature measurements acquired over deciduous trees by a truck-mounted microwave instrument system called ComRAD in 2007. The model predictions are in good agreement with the data and they give quantitative understanding for the influence of first-order scattering within the canopy on the brightness temperature. The model results show that the scattering term is significant for trees and modifications are necessary to the T-w model when applied to dense vegetation. Numerical simulations also indicate that the scattering term has a negligible dependence on SM and is mainly a function of the angle and polarization of the microwave observation.

  15. Spatial and Temporal Variabilities of Solar and Longwave Radiation Fluxes below a Coniferous Forest in the French Alps

    NASA Astrophysics Data System (ADS)

    Sicart, J. E.; Ramseyer, V.; Lejeune, Y.; Essery, R.; Webster, C.; Rutter, N.

    2017-12-01

    At high altitudes and latitudes, snow has a large influence on hydrological processes. Large fractions of these regions are covered by forests, which have a strong influence on snow accumulation and melting processes. Trees absorb a large part of the incoming shortwave radiation and this heat load is mostly dissipated as longwave radiation. Trees shelter the snow surface from wind, so sub-canopy snowmelt depends mainly on the radiative fluxes: vegetation attenuates the transmission of shortwave radiation but enhances longwave irradiance to the surface. An array of 13 pyranometers and 11 pyrgeometers was deployed on the snow surface below a coniferous forest at the CEN-MeteoFrance Col de Porte station in the French Alps (1325 m asl) during the 2017 winter in order to investigate spatial and temporal variabilities of solar and infrared irradiances in different meteorological conditions. Sky view factors measured with hemispherical photographs at each radiometer location were in a narrow range from 0.2 to 0.3. The temperature of the vegetation was measured with IR thermocouples and an IR camera. In clear sky conditions, the attenuation of solar radiation by the canopy reached 96% and its spatial variability exceeded 100 W m-2. Longwave irradiance varied by 30 W m-2 from dense canopy to gap areas. In overcast conditions, the spatial variabilities of solar and infrared irradiances were reduced and remained closely related to the sky view factor. A simple radiative model taking into account the penetration through the canopy of the direct and diffuse solar radiation, and isotropic infrared emission of the vegetation as a blackbody emitter, accurately reproduced the dynamics of the radiation fluxes at the snow surface. Model results show that solar transmissivity of the canopy in overcast conditions is an excellent proxy of the sky view factor and the emitting temperature of the vegetation remained close to the air temperature in this typically dense Alpine forest.

  16. The shifting nature of vegetation controls on peak snowpack with varying slope and aspect

    NASA Astrophysics Data System (ADS)

    Biederman, J. A.; Harpold, A. A.; Broxton, P. D.; Brooks, P. D.

    2012-12-01

    The controls on peak seasonal snowpack are known to shift between forested and open environments as well as with slope and aspect. Peak snowpack is predicted well by interception models under uniformly dense canopy, while topography, wind and radiation are strong predictors in open areas. However, many basins have complex mosaics of forest canopy and small gaps, where snowpack controls involve complex interactions among climate, topography and forest structure. In this presentation we use a new fully distributed tree-scale model to investigate vegetation controls on snowpack for a range of slope and aspect, and we evaluate the energy balance in forest canopy and gap environments. The model is informed by airborne LiDAR and ground-based observations of climate, vegetation and snowpack. It represents interception, snow distribution by wind, latent and sensible heat fluxes, and radiative fluxes above and below the canopy at a grid scale of 1 m square on an hourly time step. First, the model is minimally calibrated using continuous records of snow depth and snow water equivalent (SWE). Next, the model is evaluated using distributed observations at peak accumulation. Finally, the domain is synthetically altered to introduce ranges of slope and aspect. Northerly aspects accumulate greater peak SWE than southerly aspects (e.g. 275 mm vs. 250 mm at a slope of 28 %) but show lower spatial variability (e. g. CV = 0.14 vs. CV = 0.17 at slope of 28 %). On northerly aspects, most of the snowpack remains shaded by vegetation, whereas on southerly aspects the northern portions of gaps and southern forest edges receive direct insolation during late winter. This difference in net radiation makes peak SWE in forest gaps and adjacent forest edges more sensitive to topography than SWE in areas under dense canopy. Tree-scale modeling of snow dynamics over synthetic terrain offers extensive possibilities to test interactions among vegetation and topographic controls.

  17. Canopy structure of tropical and sub-tropical rain forests in relation to conifer dominance analysed with a portable LIDAR system

    PubMed Central

    Aiba, Shin-ichiro; Akutsu, Kosuke; Onoda, Yusuke

    2013-01-01

    Background and Aims Globally, conifer dominance is restricted to nutient-poor habitats in colder, drier or waterlogged environments, probably due to competition with angiosperms. Analysis of canopy structure is important for understanding the mechanism of plant coexistence in relation to competition for light. Most conifers are shade intolerant, and often have narrow, deep, conical crowns. In this study it is predicted that conifer-admixed forests have less distinct upper canopies and more undulating canopy surfaces than angiosperm-dominated forests. Methods By using a ground-based, portable light detection and ranging (LIDAR) system, canopy structure was quantified for old-growth evergreen rainforests with varying dominance of conifers along altitudinal gradients (200–3100 m a.s.l.) on tropical and sub-tropical mountains (Mount Kinabalu, Malaysian Borneo and Yakushima Island, Japan) that have different conifer floras. Key Results Conifers dominated at higher elevations on both mountains (Podocarpaceae and Araucariaceae on Kinabalu and Cupressaceae and Pinaceae on Yakushima), but conifer dominance also varied with soil/substrate conditions on Kinabalu. Conifer dominance was associated with the existence of large-diameter conifers. Forests with higher conifer dominance showed a canopy height profile (CHP) more skewed towards the understorey on both Kinabalu and Yakushima. In contrast, angiosperm-dominated forests had a CHP skewed towards upper canopy, except for lowland dipterocarp forests and a sub-alpine scrub dominated by small-leaved Leptospermum recurvum (Myrtaceae) on Kinabalu. Forests with a less dense upper canopy had more undulating outer canopy surfaces. Mixed conifer–angiosperm forests on Yakushima and dipterocarp forests on Kinabalu showed similar canopy structures. Conclusions The results generally supported the prediction, suggesting that lower growth of angiosperm trees (except L. recurvum on Kinabalu) in cold and nutrient-poor environments results in a sparser upper canopy, which allows shade-intolerant conifers to co-occur with angiosperm trees either as emergents or as codominants in the open canopy. PMID:24197751

  18. Canopy structure of tropical and sub-tropical rain forests in relation to conifer dominance analysed with a portable LIDAR system.

    PubMed

    Aiba, Shin-ichiro; Akutsu, Kosuke; Onoda, Yusuke

    2013-12-01

    Globally, conifer dominance is restricted to nutient-poor habitats in colder, drier or waterlogged environments, probably due to competition with angiosperms. Analysis of canopy structure is important for understanding the mechanism of plant coexistence in relation to competition for light. Most conifers are shade intolerant, and often have narrow, deep, conical crowns. In this study it is predicted that conifer-admixed forests have less distinct upper canopies and more undulating canopy surfaces than angiosperm-dominated forests. By using a ground-based, portable light detection and ranging (LIDAR) system, canopy structure was quantified for old-growth evergreen rainforests with varying dominance of conifers along altitudinal gradients (200-3100 m a.s.l.) on tropical and sub-tropical mountains (Mount Kinabalu, Malaysian Borneo and Yakushima Island, Japan) that have different conifer floras. Conifers dominated at higher elevations on both mountains (Podocarpaceae and Araucariaceae on Kinabalu and Cupressaceae and Pinaceae on Yakushima), but conifer dominance also varied with soil/substrate conditions on Kinabalu. Conifer dominance was associated with the existence of large-diameter conifers. Forests with higher conifer dominance showed a canopy height profile (CHP) more skewed towards the understorey on both Kinabalu and Yakushima. In contrast, angiosperm-dominated forests had a CHP skewed towards upper canopy, except for lowland dipterocarp forests and a sub-alpine scrub dominated by small-leaved Leptospermum recurvum (Myrtaceae) on Kinabalu. Forests with a less dense upper canopy had more undulating outer canopy surfaces. Mixed conifer-angiosperm forests on Yakushima and dipterocarp forests on Kinabalu showed similar canopy structures. The results generally supported the prediction, suggesting that lower growth of angiosperm trees (except L. recurvum on Kinabalu) in cold and nutrient-poor environments results in a sparser upper canopy, which allows shade-intolerant conifers to co-occur with angiosperm trees either as emergents or as codominants in the open canopy.

  19. Turbulent Structures in a Pine Forest with a Deep and Sparse Trunk Space: Stand and Edge Regions

    NASA Astrophysics Data System (ADS)

    Dupont, Sylvain; Irvine, Mark R.; Bonnefond, Jean-Marc; Lamaud, Eric; Brunet, Yves

    2012-05-01

    Forested landscapes often exhibit large spatial variability in vertical and horizontal foliage distributions. This variability may affect canopy-atmosphere exchanges through its action on the development of turbulent structures. Here we investigate in neutral stratification the turbulent structures encountered in a maritime pine forest characterized by a high, dense foliated layer associated with a deep and sparse trunk space. Both stand and edge regions are considered. In situ measurements and the results of large-eddy simulations are used and analyzed together. In stand conditions, far from the edge, canopy-top structures appear strongly damped by the dense crown layer. Turbulent wind fluctuations within the trunk space, where the momentum flux vanishes, are closely related to these canopy-top structures through pressure diffusion. Consequently, autocorrelation and spectral analyses are not quite appropriate to characterize the vertical scale of coherent structures in this type of canopy, as pressure diffusion enhances the actual scale of structures. At frequencies higher than those associated with canopy-top structures, wind fluctuations related to wake structures developing behind tree stems are observed within the trunk space. They manifest themselves in wind velocity spectra as secondary peaks in the inertial subrange region, confirming the hypothesis of spectral short-cuts in vegetation canopies. In the edge region specific turbulent structures develop just below the crown layer, in addition to canopy-top structures. They are generated by the wind shear induced by the sub-canopy wind jet that forms at the edge. These structures provide a momentum exchange mechanism similar to that observed at the canopy top but in the opposite direction and with a lower magnitude. They may develop as in plane mixing-layer flows, with some perturbations induced by canopy-top structures. Wake structures are also observed within the trunk space in the edge region.

  20. Effective Tree Scattering at L-Band

    NASA Technical Reports Server (NTRS)

    Kurum, Mehmet; ONeill, Peggy E.; Lang, Roger H.; Joseph, Alicia T.; Cosh, Michael H.; Jackson, Thomas J.

    2011-01-01

    For routine microwave Soil Moisture (SM) retrieval through vegetation, the tau-omega [1] model [zero-order Radiative Transfer (RT) solution] is attractive due to its simplicity and eases of inversion and implementation. It is the model used in baseline retrieval algorithms for several planned microwave space missions, such as ESA's Soil Moisture Ocean Salinity (SMOS) mission (launched November 2009) and NASA's Soil Moisture Active Passive (SMAP) mission (to be launched 2014/2015) [2 and 3]. These approaches are adapted for vegetated landscapes with effective vegetation parameters tau and omega by fitting experimental data or simulation outputs of a multiple scattering model [4-7]. The model has been validated over grasslands, agricultural crops, and generally light to moderate vegetation. As the density of vegetation increases, sensitivity to the underlying SM begins to degrade significantly and errors in the retrieved SM increase accordingly. The zero-order model also loses its validity when dense vegetation (i.e. forest, mature corn, etc.) includes scatterers, such as branches and trunks (or stalks in the case of corn), which are large with respect to the wavelength. The tau-omega model (when applied over moderately to densely vegetated landscapes) will need modification (in terms of form or effective parameterization) to enable accurate characterization of vegetation parameters with respect to specific tree types, anisotropic canopy structure, presence of leaves and/or understory. More scattering terms (at least up to first-order at L-band) should be included in the RT solutions for forest canopies [8]. Although not really suitable to forests, a zero-order tau-omega model might be applied to such vegetation canopies with large scatterers, but that equivalent or effective parameters would have to be used [4]. This requires that the effective values (vegetation opacity and single scattering albedo) need to be evaluated (compared) with theoretical definitions of these parameters. In a recent study [9], effective vegetation opacity of coniferous trees was compared with two independent estimates of the same parameter. First, a zero-order RT model was fitted to multiangular microwave emissivity data in a least-square sense to provide effective vegetation optical depth as done in spaceborne retrieval algorithms. Second, a ratio between radar backscatter measurements with a corner reflector under trees and in an open area was calculated to obtain measured tree propagation characteristics. Finally, the theoretical propagation constant was determined by forward scattering theorem using detailed measurements of size/angle distributions and dielectric constants of the tree constituents (trunk, branches, and needles). Results indicated that the effective attenuation values are smaller than but of similar magnitude to both the theoretical and measured values. This study will complement the previous work [9] and will focus on characterization of effective scattering albedo by assuming that effective vegetation opacity is same as theoretical opacity. The resultant effective albedo will not be the albedo of single forest canopy element anymore, but it becomes a global parameter, which depends on all the processes taking place within the canopy including multiple scattering as described.

  1. Modeling Diurnal and Seasonal 3D Light Profiles in Amazon Forests

    NASA Astrophysics Data System (ADS)

    Morton, D. C.; Rubio, J.; Gastellu-Etchegorry, J.; Cook, B. D.; Hunter, M. O.; Yin, T.; Nagol, J. R.; Keller, M. M.

    2013-12-01

    The complex horizontal and vertical structure in tropical forests generates a diversity of light environments for canopy and understory trees. These 3D light profiles are dynamic on diurnal and seasonal time scales based on changes in solar illumination and the fraction of diffuse light. Understanding this variability is critical for improving ecosystem models and interpreting optical and LiDAR remote sensing data from tropical forests. Here, we initialized the Discrete Anisotropic Radiative Transfer (DART) model using dense airborne LiDAR data (>20 returns m2) from three forest sites in the central and eastern Amazon. Forest scenes derived from airborne LiDAR data were tested using modeled and observed large-footprint LiDAR data from the ICESat-GLAS sensor. Next, diurnal and seasonal profiles of photosynthetically active radiation (PAR) for each forest site were simulated under clear sky and cloudy conditions using DART. Incident PAR was summarized for canopy, understory, and ground levels. Our study illustrates the importance of realistic canopy models for accurate representation of LiDAR and optical radiative transfer. In particular, canopy rugosity and ground topography information from airborne LiDAR data provided critical 3D information that cannot be recreated using stem maps and allometric relationships for crown dimensions. The spatial arrangement of canopy trees altered PAR availability, even for dominant individuals, compared to downwelling measurements from nearby eddy flux towers. Pseudo-realistic branch and leaf architecture was also essential for recreating multiple scattering within canopies at near-infrared wavelengths commonly used for LiDAR remote sensing and quantifying PAR attenuation from shading within and between canopies. These findings point to the need for more spatial information on forest structure to improve the representation of light availability in models of tropical forest productivity.

  2. A Black Swan and Sub-continental Scale Dynamics in Humid, Late-Holocene Broadleaf Forests

    NASA Astrophysics Data System (ADS)

    Pederson, N.; Dyer, J.; McEwan, R.; Hessl, A. E.; Mock, C. J.; Orwig, D.; Rieder, H. E.; Cook, B. I.

    2012-12-01

    In humid regions with dense broadleaf-dominated forests where gap-dynamics is the prevailing disturbance regime, paleoecological evidence shows regional-scale changes in forest composition associated with climatic change. To investigate the potential for regional events in late-Holocene forests, we use tree-ring data from 76 populations covering 840,000 km2 and 5.3k tree recruitment dates spanning 1.4 million km2 in the eastern US to investigate the occurrence of simultaneous forest dynamics across a humid region. We compare regional forest dynamics with an independent set of annually-resolved tree ring record of hydroclimate to examine whether climate dynamics might drive forest dynamics in this humid region. In forests where light availability is an important limitation for tree recruitment, we document a pulse of tree recruitment during the mid- to late-1600s across the eastern US. This pulse, which can be inferred as large-scale canopy opening, occurred during an era that multiple proxies indicate as extended drought between two intense pluvial. Principal component analysis of the 76 populations indicates a step-change increase in average ring width during the late-1770s resembling a potential canopy accession event over 42,800 km2 of the southeastern US. Growth-release analysis of populations loading strongly on this eigenvector indicates severe canopy disturbance from 1775-1779 that peaked in 1776. The 1776 event follows a period with extended droughts and severe large-scale frost event. We hypothesize these climatic events lead to elevated tree mortality in the late-1770s and canopy accession for understory trees. Superposed epoch analysis reveals that spikes of elevated canopy disturbance from 1685-1850 CE are significantly associated with drought. Extreme value theory statistics indicates the 1776 event lies beyond the 99.9 quantile and nearly 7 sigmas above the 1685-1850 mean rate of disturbance. The time-series of canopy disturbance from 1685-1850 is so poorly described by a Gaussian distribution that it can be considered 'heavy tailed'. Preliminary results show that disturbance events that affect >3-5% of the trees in our dataset occur approximately every 200 years. The most extreme rates (>5%) occur approximately every 500-1000 years. These statistics indicate that the 1775-1779 heavy-tail event can also be considered a 'Black Swan', the rare event that has the potential to alter a system's trajectory further than common events. Our results challenge traditional views regarding characteristic disturbance regime in humid temperate forests, and speak to the importance of punctuated climatic events in shaping forest structure for centuries. Such an understanding is critical given the potential of more frequent extreme climatic events in the future.

  3. Phylogenetic Structure of Tree Species across Different Life Stages from Seedlings to Canopy Trees in a Subtropical Evergreen Broad-Leaved Forest.

    PubMed

    Jin, Yi; Qian, Hong; Yu, Mingjian

    2015-01-01

    Investigating patterns of phylogenetic structure across different life stages of tree species in forests is crucial to understanding forest community assembly, and investigating forest gap influence on the phylogenetic structure of forest regeneration is necessary for understanding forest community assembly. Here, we examine the phylogenetic structure of tree species across life stages from seedlings to canopy trees, as well as forest gap influence on the phylogenetic structure of forest regeneration in a forest of the subtropical region in China. We investigate changes in phylogenetic relatedness (measured as NRI) of tree species from seedlings, saplings, treelets to canopy trees; we compare the phylogenetic turnover (measured as βNRI) between canopy trees and seedlings in forest understory with that between canopy trees and seedlings in forest gaps. We found that phylogenetic relatedness generally increases from seedlings through saplings and treelets up to canopy trees, and that phylogenetic relatedness does not differ between seedlings in forest understory and those in forest gaps, but phylogenetic turnover between canopy trees and seedlings in forest understory is lower than that between canopy trees and seedlings in forest gaps. We conclude that tree species tend to be more closely related from seedling to canopy layers, and that forest gaps alter the seedling phylogenetic turnover of the studied forest. It is likely that the increasing trend of phylogenetic clustering as tree stem size increases observed in this subtropical forest is primarily driven by abiotic filtering processes, which select a set of closely related evergreen broad-leaved tree species whose regeneration has adapted to the closed canopy environments of the subtropical forest developed under the regional monsoon climate.

  4. Phylogenetic Structure of Tree Species across Different Life Stages from Seedlings to Canopy Trees in a Subtropical Evergreen Broad-Leaved Forest

    PubMed Central

    Jin, Yi; Qian, Hong; Yu, Mingjian

    2015-01-01

    Investigating patterns of phylogenetic structure across different life stages of tree species in forests is crucial to understanding forest community assembly, and investigating forest gap influence on the phylogenetic structure of forest regeneration is necessary for understanding forest community assembly. Here, we examine the phylogenetic structure of tree species across life stages from seedlings to canopy trees, as well as forest gap influence on the phylogenetic structure of forest regeneration in a forest of the subtropical region in China. We investigate changes in phylogenetic relatedness (measured as NRI) of tree species from seedlings, saplings, treelets to canopy trees; we compare the phylogenetic turnover (measured as βNRI) between canopy trees and seedlings in forest understory with that between canopy trees and seedlings in forest gaps. We found that phylogenetic relatedness generally increases from seedlings through saplings and treelets up to canopy trees, and that phylogenetic relatedness does not differ between seedlings in forest understory and those in forest gaps, but phylogenetic turnover between canopy trees and seedlings in forest understory is lower than that between canopy trees and seedlings in forest gaps. We conclude that tree species tend to be more closely related from seedling to canopy layers, and that forest gaps alter the seedling phylogenetic turnover of the studied forest. It is likely that the increasing trend of phylogenetic clustering as tree stem size increases observed in this subtropical forest is primarily driven by abiotic filtering processes, which select a set of closely related evergreen broad-leaved tree species whose regeneration has adapted to the closed canopy environments of the subtropical forest developed under the regional monsoon climate. PMID:26098916

  5. Conservation in Brazil's Chocolate Forest: The Unlikely Persistence of the Traditional Cocoa Agroecosystem.

    PubMed

    JOHNS

    1999-01-01

    / In southern Bahia, Brazil, the traditional cocoa agroecosystem with a dense shade canopy of native trees is now recognized as a secondary conservation route for highly endangered Atlantic Rainforest species. This "chocolate forest" of the densely shaded farms persists despite a massive 20-year Brazilian government modernization program in which shade was seen as a chief impediment to raising cocoa production. The objective of this study was to determine how this traditional agroecosystem endured. Although dense shade limits cocoa yield, it provides several agroecological benefits: control of insect pests and weeds, microclimate stability, and soil fertility maintenance. A keycomponent of modernization efforts was a shade-tree removal program designed to maximize cocoa production by using low shade and fertilizer while substituting agrochemicals for many beneficial roles of the overhead trees. This research found that many farmers rejected, or only partially accepted, the shade reduction process although it promised much higher cocoa yield and profit. Farmers employing a wide range of shading were interviewed, and it was found that decisions to remove or maintain the shade trees were linked to both agroecological and risk-minimization factors. Farmers' perceptions of the agroecological functions of the shade trees and individual willingness to entertain the economic risk associated with substituting agrochemicals for these were important. A less-profitable, but lower-risk approach of occasional fertilizer and agrochemical use with the traditional shade intact was a rational and widespread choice. Policies designed to maintain the traditional agroecosystem through the current economic crisis should heed the multiple functions of the overhead trees. KEY WORDS: Conservation; Brazil; Atlantic Rainforest; Cocoa; Agroecology; Risk; Agroforestry

  6. Calibration and Validation of Landsat Tree Cover in the Taiga-Tundra Ecotone

    NASA Technical Reports Server (NTRS)

    Montesano, Paul Mannix; Neigh, Christopher S. R.; Sexton, Joseph; Feng, Min; Channan, Saurabh; Ranson, Kenneth J.; Townshend, John R.

    2016-01-01

    Monitoring current forest characteristics in the taiga-tundra ecotone (TTE) at multiple scales is critical for understanding its vulnerability to structural changes. A 30 m spatial resolution Landsat-based tree canopy cover map has been calibrated and validated in the TTE with reference tree cover data from airborne LiDAR and high resolution spaceborne images across the full range of boreal forest tree cover. This domain-specific calibration model used estimates of forest height to determine reference forest cover that best matched Landsat estimates. The model removed the systematic under-estimation of tree canopy cover greater than 80% and indicated that Landsat estimates of tree canopy cover more closely matched canopies at least 2 m in height rather than 5 m. The validation improved estimates of uncertainty in tree canopy cover in discontinuous TTE forests for three temporal epochs (2000, 2005, and 2010) by reducing systematic errors, leading to increases in tree canopy cover uncertainty. Average pixel-level uncertainties in tree canopy cover were 29.0%, 27.1% and 31.1% for the 2000, 2005 and 2010 epochs, respectively. Maps from these calibrated data improve the uncertainty associated with Landsat tree canopy cover estimates in the discontinuous forests of the circumpolar TTE.

  7. Building capacity for providing canopy cover and canopy height at FIA plot locations using high-resolution imagery and leaf-off LiDAR

    Treesearch

    Rachel Riemann; Jarlath O' Neil-Dunne; Greg C. Liknes

    2012-01-01

    Tree canopy cover and canopy height information are essential for estimating volume, biomass, and carbon; defining forest cover; and characterizing wildlife habitat. The amount of tree canopy cover also influences water quality and quantity in both rural and urban settings. Tree canopy cover and canopy height are currently collected at FIA plots either in the field or...

  8. Investigating the limitations of tree species classification using the Combined Cluster and Discriminant Analysis method for low density ALS data from a dense forest region in Aggtelek (Hungary)

    NASA Astrophysics Data System (ADS)

    Koma, Zsófia; Deák, Márton; Kovács, József; Székely, Balázs; Kelemen, Kristóf; Standovár, Tibor

    2016-04-01

    Airborne Laser Scanning (ALS) is a widely used technology for forestry classification applications. However, single tree detection and species classification from low density ALS point cloud is limited in a dense forest region. In this study we investigate the division of a forest into homogenous groups at stand level. The study area is located in the Aggtelek karst region (Northeast Hungary) with a complex relief topography. The ALS dataset contained only 4 discrete echoes (at 2-4 pt/m2 density) from the study area during leaf-on season. Ground-truth measurements about canopy closure and proportion of tree species cover are available for every 70 meter in 500 square meter circular plots. In the first step, ALS data were processed and geometrical and intensity based features were calculated into a 5×5 meter raster based grid. The derived features contained: basic statistics of relative height, canopy RMS, echo ratio, openness, pulse penetration ratio, basic statistics of radiometric feature. In the second step the data were investigated using Combined Cluster and Discriminant Analysis (CCDA, Kovács et al., 2014). The CCDA method first determines a basic grouping for the multiple circle shaped sampling locations using hierarchical clustering and then for the arising grouping possibilities a core cycle is executed comparing the goodness of the investigated groupings with random ones. Out of these comparisons difference values arise, yielding information about the optimal grouping out of the investigated ones. If sub-groups are then further investigated, one might even find homogeneous groups. We found that low density ALS data classification into homogeneous groups are highly dependent on canopy closure, and the proportion of the dominant tree species. The presented results show high potential using CCDA for determination of homogenous separable groups in LiDAR based tree species classification. Aggtelek Karst/Slovakian Karst Caves" (HUSK/1101/221/0180, Aggtelek NP), data evaluation: 'Multipurpose assessment serving forest biodiversity conservation in the Carpathian region of Hungary', Swiss-Hungarian Cooperation Programme (SH/4/13 Project). BS contributed as an Alexander von Humboldt Research Fellow. J. Kovács, S. Kovács, N. Magyar, P. Tanos, I. G. Hatvani, and A. Anda (2014), Classification into homogeneous groups using combined cluster and discriminant analysis, Environmental Modelling & Software, 57, 52-59.

  9. Spatial correlations of Diceroprocta apache and its host plants: Evidence for a negative impact from Tamarix invasion

    USGS Publications Warehouse

    Ellingson, A.R.; Andersen, D.C.

    2002-01-01

    1. The hypothesis that the habitat-scale spatial distribution of the, Apache cicada Diceroprocta apache Davis is unaffected by the presence of the invasive exotic saltcedar Tamarix ramosissima was tested using data from 205 1-m2 quadrats placed within the flood-plain of the Bill Williams River, Arizona, U.S.A. Spatial dependencies within and between cicada density and habitat variables were estimated using Moran's I and its bivariate analogue to discern patterns and associations at spatial scales from 1 to 30 m. 2. Apache cicadas were spatially aggregated in high-density clusters averaging 3m in diameter. A positive association between cicada density, estimated by exuvial density, and the per cent canopy cover of a native tree, Goodding's willow Salix gooddingii, was detected in a non-spatial correlation analysis. No non-spatial association between cicada density and saltcedar canopy cover was detected. 3. Tests for spatial cross-correlation using the bivariate IYZ indicated the presence of a broad-scale negative association between cicada density and saltcedar canopy cover. This result suggests that large continuous stands of saltcedar are associated with reduced cicada density. In contrast, positive associations detected at spatial scales larger than individual quadrats suggested a spill-over of high cicada density from areas featuring Goodding's willow canopy into surrounding saltcedar monoculture. 4. Taken together and considered in light of the Apache cicada's polyphagous habits, the observed spatial patterns suggest that broad-scale factors such as canopy heterogeneity affect cicada habitat use more than host plant selection. This has implications for management of lower Colorado River riparian woodlands to promote cicada presence and density through maintenance or creation of stands of native trees as well as manipulation of the characteristically dense and homogeneous saltcedar canopies.

  10. Spatial correlations of Diceroprocta apache and its host plants: Evidence for a negative impact from Tamarix invasion

    USGS Publications Warehouse

    Ellingson, A.R.; Andersen, D.C.

    2002-01-01

    1. The hypothesis that the habitat-scale spatial distribution of the Apache cicada Diceroprocta apache Davis is unaffected by the presence of the invasive exotic saltcedar Tamarix ramosissima was tested using data from 205 1-m2 quadrats placed within the flood-plain of the Bill Williams River, Arizona, U.S.A. Spatial dependencies within and between cicada density and habitat variables were estimated using Moran's I and its bivariate analogue to discern patterns and associations at spatial scales from 1 to 30 m.2. Apache cicadas were spatially aggregated in high-density clusters averaging 3 m in diameter. A positive association between cicada density, estimated by exuvial density, and the per cent canopy cover of a native tree, Goodding's willow Salix gooddingii, was detected in a non-spatial correlation analysis. No non-spatial association between cicada density and saltcedar canopy cover was detected.3. Tests for spatial cross-correlation using the bivariate IYZ indicated the presence of a broad-scale negative association between cicada density and saltcedar canopy cover. This result suggests that large continuous stands of saltcedar are associated with reduced cicada density. In contrast, positive associations detected at spatial scales larger than individual quadrats suggested a spill-over of high cicada density from areas featuring Goodding's willow canopy into surrounding saltcedar monoculture.4. Taken together and considered in light of the Apache cicada's polyphagous habits, the observed spatial patterns suggest that broad-scale factors such as canopy heterogeneity affect cicada habitat use more than host plant selection. This has implications for management of lower Colorado River riparian woodlands to promote cicada presence and density through maintenance or creation of stands of native trees as well as manipulation of the characteristically dense and homogeneous saltcedar canopies.

  11. Construction of Open Burning Facility Moody Air Force Base, Georgia Environmental Assessment and Finding of No Significant Impact

    DTIC Science & Technology

    2009-01-01

    are smaller and more leathery, and the leaf canopy is less dense. The trees commonly found in the southeastern United States are pines ( Pinus spp...during periods of extreme drought . These periodic fires maintained the pine subclimax forest by controlling hardwood competition, encouraged the growth...cinnamomea), chain fern (Woodwardia virginica), and greenbrier (Smilax spp). In the transition areas from wetlands to uplands, pond pine ( Pinus serotina

  12. Tree diversity affects chlorophyll a fluorescence and other leaf traits of tree species in a boreal forest.

    PubMed

    Pollastrini, Martina; Nogales, Ana Garcia; Benavides, Raquel; Bonal, Damien; Finer, Leena; Fotelli, Mariangela; Gessler, Arthur; Grossiord, Charlotte; Radoglou, Kalliopi; Strasser, Reto J; Bussotti, Filippo

    2017-02-01

    An assemblage of tree species with different crown properties creates heterogeneous environments at the canopy level. Changes of functional leaf traits are expected, especially those related to light interception and photosynthesis. Chlorophyll a fluorescence (ChlF) properties in dark-adapted leaves, specific leaf area, leaf nitrogen content (N) and carbon isotope composition (δ13C) were measured on Picea abies (L.) H.Karst., Pinus sylvestris L. and Betula pendula Roth. in monospecific and mixed boreal forests in Europe, in order to test whether they were affected by stand species richness and composition. Photosynthetic efficiency, assessed by induced emission of leaf ChlF, was positively influenced in B. pendula by species richness, whereas P. abies showed higher photosynthetic efficiency in monospecific stands. Pinus sylvestris had different responses when it coexisted with P. abies or B. pendula. The presence of B. pendula, but not of P. abies, in the forest had a positive effect on the efficiency of photosynthetic electron transport and N in P. sylvestris needles, and the photosynthetic responses were positively correlated with an increase of leaf δ13C. These effects on P. sylvestris may be related to high light availability at the canopy level due to the less dense canopy of B. pendula. The different light requirements of coexisting species was the most important factor affecting the distribution of foliage in the canopy, driving the physiological responses of the mixed species. Future research directions claim to enhance the informative potential of the methods to analyse the responses of pure and mixed forests to environmental factors, including a broader set of plant species' functional traits and physiological responses. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Abundance of green tree frogs and insects in artificial canopy gaps in a bottomland hardwood forest.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horn, Scott; Hanula, James L.; Ulyshen, Michael D.

    2005-01-01

    Horn, Scott, James L. Hanula, Michael D. Ulyshen, and John C. Kilgo. 2005. Abundance of green tree frogs and insects in artificial canopy gaps in a bottomland hardwood forest. Am. Midl. Nat. 153:321-326. Abstract: We found more green tree frogs (Hyla cinerea) in canopy gaps than in closed canopy forest. Of the 331 green tree frogs observed, 88% were in canopy gaps. Likewise, higher numbers and biomasses of insects were captured in the open gap habitat. Flies were the most commonly collected insect group accounting for 54% of the total capture. These data suggest that one reason green tree frogsmore » were more abundant in canopy gaps was the increased availability of prey and that small canopy gaps provide early successional habitats that are beneficial to green tree frog populations.« less

  14. Legacy of Pre-Disturbance Spatial Pattern Determines Early Structural Diversity following Severe Disturbance in Montane Spruce Forests

    PubMed Central

    Bače, Radek; Svoboda, Miroslav; Janda, Pavel; Morrissey, Robert C.; Wild, Jan; Clear, Jennifer L.; Čada, Vojtěch; Donato, Daniel C.

    2015-01-01

    Background Severe canopy-removing disturbances are native to many temperate forests and radically alter stand structure, but biotic legacies (surviving elements or patterns) can lend continuity to ecosystem function after such events. Poorly understood is the degree to which the structural complexity of an old-growth forest carries over to the next stand. We asked how pre-disturbance spatial pattern acts as a legacy to influence post-disturbance stand structure, and how this legacy influences the structural diversity within the early-seral stand. Methods Two stem-mapped one-hectare forest plots in the Czech Republic experienced a severe bark beetle outbreak, thus providing before-and-after data on spatial patterns in live and dead trees, crown projections, down logs, and herb cover. Results Post-disturbance stands were dominated by an advanced regeneration layer present before the disturbance. Both major species, Norway spruce (Picea abies) and rowan (Sorbus aucuparia), were strongly self-aggregated and also clustered to former canopy trees, pre-disturbance snags, stumps and logs, suggesting positive overstory to understory neighbourhood effects. Thus, although the disturbance dramatically reduced the stand’s height profile with ~100% mortality of the canopy layer, the spatial structure of post-disturbance stands still closely reflected the pre-disturbance structure. The former upper tree layer influenced advanced regeneration through microsite and light limitation. Under formerly dense canopies, regeneration density was high but relatively homogeneous in height; while in former small gaps with greater herb cover, regeneration density was lower but with greater heterogeneity in heights. Conclusion These findings suggest that pre-disturbance spatial patterns of forests can persist through severe canopy-removing disturbance, and determine the spatial structure of the succeeding stand. Such patterns constitute a subtle but key legacy effect, promoting structural complexity in early-seral forests as well as variable successional pathways and rates. This influence suggests a continuity in spatial ecosystem structure that may well persist through multiple forest generations. PMID:26421726

  15. Experimental evaluation of the significance of the pressure transport term for the Turbulence Kinetic Energy Budget across contrasting forest architectures

    NASA Astrophysics Data System (ADS)

    Ehrnsperger, Laura; Wunder, Tobias; Thomas, Christoph

    2017-04-01

    Forests are one of the dominant vegetation types on Earth and are an important sink for carbon on our planet. Forests are special ecosystems due to their great canopy height und complex architecture consisting of a subcanopy and a canopy layer, which changes the mechanisms of turbulent exchange within the plant canopy. To date, the sinks and sources of turbulence in forest canopies are not completely understood, especially the role of the pressure transport remains unclear. The INTRAMIX experiment was conducted in a mountainous Norway spruce (Picea abies) forest at the Fluxnet Waldstein site (DE-Bay) in Bavaria, Germany, for a period of 10 weeks in order to experimentally evaluate the significance of the pressure transport to the TKE budget for the first time. The INTRAMIX data of the dense mountain forest was compared to observations from a sparse Ponderosa pine (Pinus ponderosa) stand in Oregon, USA, to study the influence of forest architecture. We hypothesized that the pressure transport is more important in dense forest canopies as the crown decouples the subcanopy from the buoyancy- and shear-driven flow above the canopy. It is also investigated how atmospheric stability influences the TKE budget. Based upon model results from literature we expect the pressure transport to act as a source for TKE especially under free convective and unstable dynamic stability. Results to date indicate that pressure transport is most important in the subcanopy with decreasing magnitude with increasing height. Nevertheless, pressure transport is a continuous source of TKE above the canopy, while in the canopy and subcanopy layer pressure transport acts both as a sink and source term for TKE. In the tree crown layer pressure transport is a source in the morning and afternoon hours and acts as a sink during the evening, while in the subcanopy pressure transport is a source around noon and during the night and acts as a sink in the early morning and afternoon hours. This complementary pattern suggests that the pressure transport is an important means for exchanging TKE across canopy layers.

  16. Tree leaf trade-offs are stronger for sub-canopy trees: leaf traits reveal little about growth rates in canopy trees.

    PubMed

    Wills, Jarrah; Herbohn, John; Hu, Jing; Sohel, Shawkat; Baynes, Jack; Firn, Jennifer

    2018-06-01

    Can morphological plant functional traits predict demographic rates (e.g., growth) within plant communities as diverse as tropical forests? This is one of the most important next-step questions in trait-based ecology and particularly for global reforestation efforts. Due to the diversity of tropical tree species and their longevity, it is difficult to predict their performance prior to reforestation efforts. In this study, we investigate if simple leaf traits are predictors of the more complex ecological process of plant growth in regenerating selectively logged natural forest within the Wet Tropics (WTs) bioregion of Australia. This study used a rich historical data set to quantify tree growth within plots located at Danbulla National Park and State Forest on the Atherton Tableland. Leaf traits were collected from trees that have exhibited fast or slow growth over the last ~50 yr of measurement. Leaf traits were found to be poor predictors of tree growth for trees that have entered the canopy; however, for sub-canopy trees, leaf traits had a stronger association with growth rates. Leaf phosphorus concentrations were the strongest predictor of Periodic Annual Increment (PAI) for trees growing within the sub-canopy, with trees with higher leaf phosphorus levels showing a higher PAI. Sub-canopy tree leaves also exhibited stronger trade-offs between leaf traits and adhere to theoretical predictions more so than for canopy trees. We suggest that, in order for leaf traits to be more applicable to reforestation, size dependence of traits and growth relationships need to be more carefully considered, particularly when reforestation practitioners assign mean trait values to tropical tree species from multiple canopy strata. © 2018 by the Ecological Society of America.

  17. Estimating average tree crown size using spatial information from Ikonos and QuickBird images: Across-sensor and across-site comparisons

    Treesearch

    Conghe Song; Matthew B. Dickinson; Lihong Su; Su Zhang; Daniel Yaussey

    2010-01-01

    The forest canopy is the medium for energy, mass, and momentum exchanges between the forest ecosystem and the atmosphere. Tree crown size is a critical aspect of canopy structure that significantly influences these biophysical processes in the canopy. Tree crown size is also strongly related to other canopy structural parameters, such as tree height, diameter at breast...

  18. Difficulties with estimating city-wide urban forest cover change from national, remotely-sensed tree canopy maps

    Treesearch

    Jeffrey T. Walton

    2008-01-01

    Two datasets of percent urban tree canopy cover were compared. The first dataset was based on a 1991 AVHRR forest density map. The second was the US Geological Survey's National Land Cover Database (NLCD) 2001 sub-pixel tree canopy. A comparison of these two tree canopy layers was conducted in 36 census designated places of western New York State. Reference data...

  19. The Racial/Ethnic Distribution of Heat Risk–Related Land Cover in Relation to Residential Segregation

    PubMed Central

    Morello-Frosch, Rachel; Cushing, Lara

    2013-01-01

    Objective: We examined the distribution of heat risk–related land cover (HRRLC) characteristics across racial/ethnic groups and degrees of residential segregation. Methods: Block group–level tree canopy and impervious surface estimates were derived from the 2001 National Land Cover Dataset for densely populated urban areas of the United States and Puerto Rico, and linked to demographic characteristics from the 2000 Census. Racial/ethnic groups in a given block group were considered to live in HRRLC if at least half their population experienced the absence of tree canopy and at least half of the ground was covered by impervious surface (roofs, driveways, sidewalks, roads). Residential segregation was characterized for metropolitan areas in the United States and Puerto Rico using the multigroup dissimilarity index. Results: After adjustment for ecoregion and precipitation, holding segregation level constant, non-Hispanic blacks were 52% more likely (95% CI: 37%, 69%), non-Hispanic Asians 32% more likely (95% CI: 18%, 47%), and Hispanics 21% more likely (95% CI: 8%, 35%) to live in HRRLC conditions compared with non-Hispanic whites. Within each racial/ethnic group, HRRLC conditions increased with increasing degrees of metropolitan area-level segregation. Further adjustment for home ownership and poverty did not substantially alter these results, but adjustment for population density and metropolitan area population attenuated the segregation effects, suggesting a mediating or confounding role. Conclusions: Land cover was associated with segregation within each racial/ethnic group, which may be explained partly by the concentration of racial/ethnic minorities into densely populated neighborhoods within larger, more segregated cities. In anticipation of greater frequency and duration of extreme heat events, climate change adaptation strategies, such as planting trees in urban areas, should explicitly incorporate an environmental justice framework that addresses racial/ethnic disparities in HRRLC. PMID:23694846

  20. The influence of multi-season imagery on models of canopy cover: A case study

    Treesearch

    John W. Coulston; Dennis M. Jacobs; Chris R. King; Ivey C. Elmore

    2013-01-01

    Quantifying tree canopy cover in a spatially explicit fashion is important for broad-scale monitoring of ecosystems and for management of natural resources. Researchers have developed empirical models of tree canopy cover to produce geospatial products. For subpixel models, percent tree canopy cover estimates (derived from fine-scale imagery) serve as the response...

  1. Modeling percent tree canopy cover: a pilot study

    Treesearch

    John W. Coulston; Gretchen G. Moisen; Barry T. Wilson; Mark V. Finco; Warren B. Cohen; C. Kenneth Brewer

    2012-01-01

    Tree canopy cover is a fundamental component of the landscape, and the amount of cover influences fire behavior, air pollution mitigation, and carbon storage. As such, efforts to empirically model percent tree canopy cover across the United States are a critical area of research. The 2001 national-scale canopy cover modeling and mapping effort was completed in 2006,...

  2. Estimating the Longwave Radiation Underneath the Forest Canopy in Snow-dominated Setting

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Kumar, M.; Link, T. E.

    2017-12-01

    Forest canopies alter incoming longwave radiation at the land surface, thus influencing snow cover energetics. The snow surface receives longwave radiation from the sky as well as from surrounding vegetation. The longwave radiation from trees is determined by its skin temperature, which shows significant heterogeneity depending on its position and morphometric attributes. Here our goal is to derive an effective tree temperature that can be used to estimate the longwave radiation received by the land surface pixel. To this end, we implement these three steps: 1) derive a relation between tree trunk surface temperature and the incident longwave radiation, shortwave radiation, and air temperature; 2) develop an inverse model to calculate the effective temperature by establishing a relationship between the effective temperature and the actual tree temperature; and 3) estimate the effective temperature using widely measured variables, such as solar radiation and forest density. Data used to derive aforementioned relations were obtained at the University of Idaho Experimental Forest, in northern Idaho. Tree skin temperature, incoming longwave radiation, solar radiation received by the tree surface, and air temperature were measured at an isolated tree and a tree within a homogeneous forest stand. Longwave radiation received by the land surface and the sky view factors were also measured at the same two locations. The calculated effective temperature was then compared with the measured tree trunk surface temperature. Additional longwave radiation measurements with pyrgeometer arrays were conducted under forests with different densities to evaluate the relationship between effective temperature and forest density. Our preliminary results show that when exposed to direct shortwave radiation, the tree surface temperature shows a significant difference from the air temperature. Under cloudy or shaded conditions, the tree surface temperature closely follows the air temperature. The effective tree temperature follows the air temperature in a dense forest stand, although it is significantly larger than the air temperature near the isolated tree. This discrepancy motivates us to explore ways to represent the effective tree temperature for stands with different densities.

  3. Tree canopy types constrain plant distributions in ponderosa pine-Gambel oak forests, northern Arizona

    Treesearch

    Scott R. Abella

    2009-01-01

    Trees in many forests affect the soils and plants below their canopies. In current high-density southwestern ponderosa pine (Pinus ponderosa) forests, managers have opportunities to enhance multiple ecosystem values by manipulating tree density, distribution, and canopy cover through tree thinning. I performed a study in northern Arizona ponderosa...

  4. Turbulent flows over sparse canopies

    NASA Astrophysics Data System (ADS)

    Sharma, Akshath; García-Mayoral, Ricardo

    2018-04-01

    Turbulent flows over sparse and dense canopies exerting a similar drag force on the flow are investigated using Direct Numerical Simulations. The dense canopies are modelled using a homogeneous drag force, while for the sparse canopy, the geometry of the canopy elements is represented. It is found that on using the friction velocity based on the local shear at each height, the streamwise velocity fluctuations and the Reynolds stress within the sparse canopy are similar to those from a comparable smooth-wall case. In addition, when scaled with the local friction velocity, the intensity of the off-wall peak in the streamwise vorticity for sparse canopies also recovers a value similar to a smooth-wall. This indicates that the sparse canopy does not significantly disturb the near-wall turbulence cycle, but causes its rescaling to an intensity consistent with a lower friction velocity within the canopy. In comparison, the dense canopy is found to have a higher damping effect on the turbulent fluctuations. For the case of the sparse canopy, a peak in the spectral energy density of the wall-normal velocity, and Reynolds stress is observed, which may indicate the formation of Kelvin-Helmholtz-like instabilities. It is also found that a sparse canopy is better modelled by a homogeneous drag applied on the mean flow alone, and not the turbulent fluctuations.

  5. Trade-off between light availability and soil fertility determine refugial conditions for the relict light-demanding species in lowland forests

    NASA Astrophysics Data System (ADS)

    Kiedrzyński, Marcin; Kurowski, Józef Krzysztof; Kiedrzyńska, Edyta

    2017-11-01

    Identifying potential refugial habitats in the face of rapid environmental change is a challenge faced by scientists and nature conservation managers. Relict populations and refugial habitats are the model objects in those studies. Based on the example of Actaea europaea from Central Poland, we analyse the habitat factors influencing relict populations of continental, light-demanding species in lowland forests and examine which habitats of studied species corresponding most closely to ancient vegetation. Our results indicate that the current refugial habitats of Actaea europaea include not only communities which are very similar to ancient open forest but also forests with a closed canopy. Although the populations are influenced by nitrogen and light availability, the co-occurrence of these two factors in forest communities is limited by dense canopy formation by hornbeam and beech trees on fertile soils and in more humid conditions. Our findings indicate that the future survival of relict, light-demanding communities in lowland forests requires low-intensity disturbances to be performed in tree-stands, according to techniques, which imitate traditional forests management.

  6. Canopy soil bacterial communities altered by severing host tree limbs

    PubMed Central

    Dangerfield, Cody R.; Nadkarni, Nalini M.

    2017-01-01

    Trees of temperate rainforests host a large biomass of epiphytic plants, which are associated with soils formed in the forest canopy. Falling of epiphytic material results in the transfer of carbon and nutrients from the canopy to the forest floor. This study provides the first characterization of bacterial communities in canopy soils enabled by high-depth environmental sequencing of 16S rRNA genes. Canopy soil included many of the same major taxonomic groups of Bacteria that are also found in ground soil, but canopy bacterial communities were lower in diversity and contained different operational taxonomic units. A field experiment was conducted with epiphytic material from six Acer macrophyllum trees in Olympic National Park, Washington, USA to document changes in the bacterial communities of soils associated with epiphytic material that falls to the forest floor. Bacterial diversity and composition of canopy soil was highly similar, but not identical, to adjacent ground soil two years after transfer to the forest floor, indicating that canopy bacteria are almost, but not completely, replaced by ground soil bacteria. Furthermore, soil associated with epiphytic material on branches that were severed from the host tree and suspended in the canopy contained altered bacterial communities that were distinct from those in canopy material moved to the forest floor. Therefore, the unique nature of canopy soil bacteria is determined in part by the host tree and not only by the physical environmental conditions associated with the canopy. Connection to the living tree appears to be a key feature of the canopy habitat. These results represent an initial survey of bacterial diversity of the canopy and provide a foundation upon which future studies can more fully investigate the ecological and evolutionary dynamics of these communities. PMID:28894646

  7. Canopy soil bacterial communities altered by severing host tree limbs.

    PubMed

    Dangerfield, Cody R; Nadkarni, Nalini M; Brazelton, William J

    2017-01-01

    Trees of temperate rainforests host a large biomass of epiphytic plants, which are associated with soils formed in the forest canopy. Falling of epiphytic material results in the transfer of carbon and nutrients from the canopy to the forest floor. This study provides the first characterization of bacterial communities in canopy soils enabled by high-depth environmental sequencing of 16S rRNA genes. Canopy soil included many of the same major taxonomic groups of Bacteria that are also found in ground soil, but canopy bacterial communities were lower in diversity and contained different operational taxonomic units. A field experiment was conducted with epiphytic material from six Acer macrophyllum trees in Olympic National Park, Washington, USA to document changes in the bacterial communities of soils associated with epiphytic material that falls to the forest floor. Bacterial diversity and composition of canopy soil was highly similar, but not identical, to adjacent ground soil two years after transfer to the forest floor, indicating that canopy bacteria are almost, but not completely, replaced by ground soil bacteria. Furthermore, soil associated with epiphytic material on branches that were severed from the host tree and suspended in the canopy contained altered bacterial communities that were distinct from those in canopy material moved to the forest floor. Therefore, the unique nature of canopy soil bacteria is determined in part by the host tree and not only by the physical environmental conditions associated with the canopy. Connection to the living tree appears to be a key feature of the canopy habitat. These results represent an initial survey of bacterial diversity of the canopy and provide a foundation upon which future studies can more fully investigate the ecological and evolutionary dynamics of these communities.

  8. Assessing canopy cover over streets and sidewalks in street tree populations

    Treesearch

    S.E. Maco; E.G. McPherson

    2002-01-01

    Total canopy cover and canopy cover over street and sidewalk surfaces were estimated for street trees in Davis, California, U.S. Calculations were made using simple trigonometric equations based on the results of a sample inventory. Canopy cover from public trees over streets and sidewalks varied between 4% and 46% by city zone, averaging 14% citywide. Consideration of...

  9. Comprehensive monitoring of Bangladesh tree cover inside and outside of forests, 2000-2014

    NASA Astrophysics Data System (ADS)

    Potapov, P.; Siddiqui, B. N.; Iqbal, Z.; Aziz, T.; Zzaman, B.; Islam, A.; Pickens, A.; Talero, Y.; Tyukavina, A.; Turubanova, S.; Hansen, M. C.

    2017-10-01

    A novel approach for satellite-based comprehensive national tree cover change assessment was developed and applied in Bangladesh, a country where trees outside of forests play an important role in the national economy and carbon sequestration. Tree cover change area was quantified using the integration of wall-to-wall Landsat-based mapping with a higher spatial resolution sample-based assessment. The total national tree canopy cover area was estimated as 3165 500 ± 186 600 ha in the year 2000, with trees outside forests making up 54% of total canopy cover. Total tree canopy cover increased by 135 700 (± 116 600) ha (4.3%) during the 2000-2014 time interval. Bangladesh exhibits a national tree cover dynamic where net change is rather small, but gross dynamics significant and variable by forest type. Despite the overall gain in tree cover, results revealed the ongoing clearing of natural forests, especially within the Chittagong hill tracts. While forests decreased their tree cover area by 83 600 ha, the trees outside forests (including tree plantations, village woodlots, and agroforestry) increased their canopy area by 219 300 ha. Our results demonstrated method capability to quantify tree canopy cover dynamics within a fine-scale agricultural landscape. Our approach for comprehensive monitoring of tree canopy cover may be recommended for operational implementation in Bangladesh and other countries with significant tree cover outside of forests.

  10. Differential effects of understory and overstory gaps on tree regeneration

    Treesearch

    Brian Beckage; Brian D. Kloppel; J. Alan Yenkley; Sharon F. Taylor; David C. Coleman

    2008-01-01

    Gaps in the forest canopy can increase the diversity of tree regeneration. Understory shrubs also compete with tree seedlings for limited resources and may depress tree recruitment We compared effects of shrub removal and canopy windthrow gups on seedling recruitment and understory resource levels. Shrub removal, with the canopy left intact, was associated with...

  11. Progression of ash canopy thinning and dieback outward from the initial infestation of emerald ash borer (Coleoptera: Buprestidae) in southeastern Michigan.

    PubMed

    Smitley, David; Davis, Terrance; Rebek, Eric

    2008-10-01

    Our objective was to characterize the rate at which ash (Fraxinus spp.) trees decline in areas adjacent to the leading edge of visible ash canopy thinning due to emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae). Trees in southeastern Michigan were surveyed from 2003 to 2006 for canopy thinning and dieback by comparing survey trees with a set of 11 standard photographs. Freeways stemming from Detroit in all directions were used as survey transects. Between 750 and 1,100 trees were surveyed each year. A rapid method of sampling populations of emerald ash borer was developed by counting emerald ash borer emergence holes with binoculars and then felling trees to validate binocular counts. Approximately 25% of the trees surveyed for canopy thinning in 2005 and 2006 also were sampled for emerald ash borer emergence holes using binoculars. Regression analysis indicates that 41-53% of the variation in ash canopy thinning can be explained by the number of emerald ash borer emergence holes per tree. Emerald ash borer emergence holes were found at every site where ash canopy thinning averaged > 40%. In 2003, ash canopy thinning averaged 40% at a distance of 19.3 km from the epicenter of the emerald ash borer infestation in Canton. By 2006, the point at which ash trees averaged 40% canopy thinning had increased to a distance of 51.2 km away from Canton. Therefore, the point at which ash trees averaged 40% canopy thinning, a state of decline clearly visible to the average person, moved outward at a rate of 10.6 km/yr during this period.

  12. Tree STEM and Canopy Biomass Estimates from Terrestrial Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Olofsson, K.; Holmgren, J.

    2017-10-01

    In this study an automatic method for estimating both the tree stem and the tree canopy biomass is presented. The point cloud tree extraction techniques operate on TLS data and models the biomass using the estimated stem and canopy volume as independent variables. The regression model fit error is of the order of less than 5 kg, which gives a relative model error of about 5 % for the stem estimate and 10-15 % for the spruce and pine canopy biomass estimates. The canopy biomass estimate was improved by separating the models by tree species which indicates that the method is allometry dependent and that the regression models need to be recomputed for different areas with different climate and different vegetation.

  13. Landsat Time-series for the Masses: Predicting Wood Biomass Growth from Tree-rings Using Departures from Mean Phenology in Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Foster, J. R.; D'Amato, A. W.; Itter, M.; Reinikainen, M.; Curzon, M.

    2017-12-01

    The terrestrial carbon cycle is perturbed when disturbances remove leaf biomass from the forest canopy during the growing season. Changes in foliar biomass arise from defoliation caused by insects, disease, drought, frost or human management. As ephemeral disturbances, these often go undetected and their significance to models that predict forest growth from climatic drivers remains unknown. Here, we seek to distinguish the roles of weather vs. canopy disturbance on forest growth by using dense Landsat time-series to quantify departures in mean phenology that in turn predict changes in leaf biomass. We estimated a foliar biomass index (FBMI) from 1984-2016, and predict plot-level wood growth over 28 years on 156 tree-ring monitoring plots in Minnesota, USA. We accessed the entire Landsat archive (sensors 4, 5 & 7) to compute FBMI using Google Earth Engine's cloud computing platform (GEE). GEE allows this pixel-level approach to be applied at any location; a feature we demonstrate with published wood-growth data from flux tower sites. Our Bayesian models predicted biomass changes from tree-ring plots as a function of Landsat FBMI and annual climate data. We expected model parameters to vary by tree functional groups defined by differences in xylem anatomy and leaf longevity, two traits with linkages to phenology, as reported in a recent review. We found that Landsat FBMI was a surprisingly strong predictor of aggregate wood-growth, explaining up to 80% of annual growth variation for some deciduous plots. Growth responses to canopy disturbance varied among tree functional groups, and the importance of some seasonal climate metrics diminished or changed sign when FBMI was included (e.g. fall and spring climatic water deficit), while others remained unchanged (current and lagged summer deficit). Insights emerging from these models can clear up sources of persistent uncertainty and open a new frontier for models of forest productivity.

  14. Assessing the Potential of Land Use Modification to Mitigate Ambient NO₂ and Its Consequences for Respiratory Health.

    PubMed

    Rao, Meenakshi; George, Linda A; Shandas, Vivek; Rosenstiel, Todd N

    2017-07-10

    Understanding how local land use and land cover (LULC) shapes intra-urban concentrations of atmospheric pollutants-and thus human health-is a key component in designing healthier cities. Here, NO₂ is modeled based on spatially dense summer and winter NO₂ observations in Portland-Hillsboro-Vancouver (USA), and the spatial variation of NO₂ with LULC investigated using random forest, an ensemble data learning technique. The NO 2 random forest model, together with BenMAP, is further used to develop a better understanding of the relationship among LULC, ambient NO₂ and respiratory health. The impact of land use modifications on ambient NO₂, and consequently on respiratory health, is also investigated using a sensitivity analysis. We find that NO₂ associated with roadways and tree-canopied areas may be affecting annual incidence rates of asthma exacerbation in 4-12 year olds by +3000 per 100,000 and -1400 per 100,000, respectively. Our model shows that increasing local tree canopy by 5% may reduce local incidences rates of asthma exacerbation by 6%, indicating that targeted local tree-planting efforts may have a substantial impact on reducing city-wide incidence of respiratory distress. Our findings demonstrate the utility of random forest modeling in evaluating LULC modifications for enhanced respiratory health.

  15. Classification of Snowfall Events and Their Effect on Canopy Interception Efficiency in a Temperate Montane Forest.

    NASA Astrophysics Data System (ADS)

    Roth, T. R.; Nolin, A. W.

    2015-12-01

    Forest canopies intercept as much as 60% of snowfall in maritime environments, while processes of sublimation and melt can reduce the amount of snow transferred from the canopy to the ground. This research examines canopy interception efficiency (CIE) as a function of forest and event-scale snowfall characteristics. We use a 4-year dataset of continuous meteorological measurements and monthly snow surveys from the Forest Elevation Snow Transect (ForEST) network that has forested and open sites at three elevations spanning the rain-snow transition zone to the upper seasonal snow zone. Over 150 individual storms were classified by forest and storm type characteristics (e.g. forest density, vegetation type, air temperature, snowfall amount, storm duration, wind speed, and storm direction). The between-site comparisons showed that, as expected, CIE was highest for the lower elevation (warmer) sites with higher forest density compared with the higher elevation sites where storm temperatures were colder, trees were smaller and forests were less dense. Within-site comparisons based on storm type show that this classification system can be used to predict CIE.Our results suggest that the coupling of forest type and storm type information can improve estimates of canopy interception. Understanding the effects of temperature and storm type in temperate montane forests is also valuable for future estimates of canopy interception under a warming climate.

  16. A comparison of three methods for measuring local urban tree canopy cover

    Treesearch

    Kristen L. King; Dexter H. Locke

    2013-01-01

    Measurements of urban tree canopy cover are crucial for managing urban forests and required for the quantification of the benefits provided by trees. These types of data are increasingly used to secure funding and justify large-scale planting programs in urban areas. Comparisons of tree canopy measurement methods have been conducted before, but a rapidly evolving set...

  17. Tree canopy change and neighborhood stability: A comparative analysis of Washington, D.C. and Baltimore, MD

    Treesearch

    Wen-Ching Chuang; Christopher G. Boone; Dexter H. Locke; J. Morgan Grove; Ali Whitmer; Geoffrey Buckley; Sainan Zhang

    2017-01-01

    Trees provide important health, ecosystem, and aesthetic services in urban areas, but they are unevenly distributed. Some neighborhoods have abundant tree canopy and others nearly none. We analyzed how neighborhood characteristics and changes in income over time related to the distribution of urban tree canopy in Washington, D.C. and Baltimore, MD. We used stepwise...

  18. Spatial contagiousness of canopy disturbance in tropical rain forest: an individual-tree-based test.

    PubMed

    Jansen, Patrick A; van der Meer, Peter J; Bongers, Frans

    2008-12-01

    Spatial contagiousness of canopy dynamics-the tendency of canopy disturbances to occur nearby existing canopy openings due to an elevated risk of tree fall around gaps-has been demonstrated in many temperate-zone forests, but only inferentially for tropical forests. Hypothesized mechanisms increasing the risk of tree fall around tropical forest gaps are (1) increased tree exposure to wind around gaps, (2) reduced stability of trees alongside gaps due to crown asymmetry, or (3) reduced tree health around gaps due to damage from prior disturbances. One hypothesized consequence of elevated disturbance levels around gaps would be that gap-edge zones offer relatively favorable prospects for seedling recruitment, growth, and survival. We tested whether disturbance levels are indeed elevated around natural canopy gaps in a neotropical rain forest in French Guiana, and more so as gaps are larger. We followed the fate of 5660 trees >10 cm stem diameter over five years across 12 ha of old-growth forest and analyzed the risk and magnitude of canopy disturbance events in relation to tree diameter and the proximity and size of natural canopy gaps. We found that the cumulative incidence of disturbance over the five-year survey was not significantly elevated around preexisting gaps, and only weakly related to gap size. Also, neither the risk nor the magnitude of canopy disturbances increased significantly with the proximity of gaps. Moreover, canopy disturbance risk around gaps was independent of gap size, while the magnitude of disturbance events around gaps was weakly related to gap size. Tree size was the major driver of disturbance risk as well as magnitude. We did find an elevated incidence of disturbance inside preexisting gaps, but this "repeat disturbance" was due to an elevated disturbance risk inside gaps, not around gaps. Overall, we found no strong evidence for canopy dynamics in this rain forest being spatially contagious. Our findings are consistent with the traditional view of tropical rain forests as mosaics of patches with predictable regeneration cycles.

  19. Estimating Leaf Area Index in Southeast Alaska: A Comparison of Two Techniques

    PubMed Central

    Eckrich, Carolyn A.; Flaherty, Elizabeth A.; Ben-David, Merav

    2013-01-01

    The relationship between canopy structure and light transmission to the forest floor is of particular interest for studying the effects of succession, timber harvest, and silviculture prescriptions on understory plants and trees. Indirect measurements of leaf area index (LAI) estimated using gap fraction analysis with linear and hemispheric sensors have been commonly used to assess radiation interception by the canopy, although the two methods often yield inconsistent results. We compared simultaneously obtained measurements of LAI from a linear ceptometer and digital hemispheric photography in 21 forest stands on Prince of Wales Island, Alaska. We assessed the relationship between these estimates and allometric LAI based on tree diameter at breast height (LAIDBH). LAI values measured at 79 stations in thinned, un-thinned controls, old-growth and clearcut stands were highly correlated between the linear sensor (AccuPAR) and hemispheric photography, but the latter was more negatively biased compared to LAIDBH. In contrast, AccuPAR values were more similar to LAIDBH in all stands with basal area less than 30 m2ha−1. Values produced by integrating hemispheric photographs over the zenith angles 0–75° (Ring 5) were highly correlated with those integrated over the zenith angles 0–60° (Ring 4), although the discrepancies between the two measures were significant. On average, the AccuPAR estimates were 53% higher than those derived from Ring 5, with most of the differences in closed canopy stands (unthinned controls and old-growth) and less so in clearcuts. Following typical patterns of canopy closure, AccuPAR LAI values were higher in dense control stands than in old-growth, whereas the opposite was derived from Ring 5 analyses. Based on our results we advocate the preferential use of linear sensors where canopy openness is low, canopies are tall, and leaf distributions are clumped and angles are variable, as is common in the conifer forests of coastal Alaska. PMID:24223718

  20. Tree Canopy Characterization for EO-1 Reflective and Thermal Infrared Validation Studies: Rochester, New York

    NASA Technical Reports Server (NTRS)

    Ballard, Jerrell R., Jr.; Smith, James A.

    2002-01-01

    The tree canopy characterization presented herein provided ground and tree canopy data for different types of tree canopies in support of EO-1 reflective and thermal infrared validation studies. These characterization efforts during August and September of 2001 included stem and trunk location surveys, tree structure geometry measurements, meteorology, and leaf area index (LAI) measurements. Measurements were also collected on thermal and reflective spectral properties of leaves, tree bark, leaf litter, soil, and grass. The data presented in this report were used to generate synthetic reflective and thermal infrared scenes and images that were used for the EO-1 Validation Program. The data also were used to evaluate whether the EO-1 ALI reflective channels can be combined with the Landsat-7 ETM+ thermal infrared channel to estimate canopy temperature, and also test the effects of separating the thermal and reflective measurements in time resulting from satellite formation flying.

  1. Parametrizing Evaporative Resistance for Heterogeneous Sparse Canopies through Novel Wind Tunnel Experimentation

    NASA Astrophysics Data System (ADS)

    Sloan, B.; Ebtehaj, A. M.; Guala, M.

    2017-12-01

    The understanding of heat and water vapor transfer from the land surface to the atmosphere by evapotranspiration (ET) is crucial for predicting the hydrologic water balance and climate forecasts used in water resources decision-making. However, the complex distribution of vegetation, soil and atmospheric conditions makes large-scale prognosis of evaporative fluxes difficult. Current ET models, such as Penman-Monteith and flux-gradient methods, are challenging to apply at the microscale due to ambiguity in determining resistance factors to momentum, heat and vapor transport for realistic landscapes. Recent research has made progress in modifying Monin-Obukhov similarity theory for dense plant canopies as well as providing clearer description of diffusive controls on evaporation at a smooth soil surface, which both aid in calculating more accurate resistance parameters. However, in nature, surfaces typically tend to be aerodynamically rough and vegetation is a mixture of sparse and dense canopies in non-uniform configurations. The goal of our work is to parameterize the resistances to evaporation based on spatial distributions of sparse plant canopies using novel wind tunnel experimentation at the St. Anthony Falls Laboratory (SAFL). The state-of-the-art SAFL wind tunnel was updated with a retractable soil box test section (shown in Figure 1), complete with a high-resolution scale and soil moisture/temperature sensors for recording evaporative fluxes and drying fronts. The existing capabilities of the tunnel were used to create incoming non-neutral stability conditions and measure 2-D velocity fields as well as momentum and heat flux profiles through PIV and hotwire anemometry, respectively. Model trees (h = 5 cm) were placed in structured and random configurations based on a probabilistic spacing that was derived from aerial imagery. The novel wind tunnel dataset provides the surface energy budget, turbulence statistics and spatial soil moisture data under varying atmospheric stability for each sparse canopy configuration. We will share initial data results and progress toward the development of new parametrizations that can account for the evolution of a canopy roughness sublayer on the momentum, heat and vapor resistance terms as a function of a stochastic representation of canopy spacing.

  2. Abundance of Green Tree Frogs and Insects in Artificial Canopy Gaps in a Bottomland Hardwood Forest.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horn, Scott; Hanula, James, L.; Ulyshen, Michael D.

    2005-04-01

    ABSTRACT - We found more green tree frogs ( Hyla cinerea) n canopv gaps than in closed canopy forest. Of the 331 green tree frogs observed, 88% were in canopv gaps. Likewise, higher numbers and biomasses of insects were captured in the open gap habitat Flies were the most commonlv collected insect group accounting for 54% of the total capture. These data suggest that one reason green tree frogs were more abundant in canopy gaps was the increased availability of prey and that small canopy gaps provide early successional habitats that are beneficial to green tree frog populations.

  3. Evaluating the national land cover database tree canopy and impervious cover estimates across the conterminous United States: a comparison with photo-interpreted estimates

    Treesearch

    David J. Nowak; Eric J. Greenfield

    2010-01-01

    The 2001 National Land Cover Database (NLCD) provides 30-m resolution estimates of percentage tree canopy and percentage impervious cover for the conterminous United States. Previous estimates that compared NLCD tree canopy and impervious cover estimates with photo-interpreted cover estimates within selected counties and places revealed that NLCD underestimates tree...

  4. Drought-induced changes in Amazon forest structure from repeat airborne lidar

    NASA Astrophysics Data System (ADS)

    Morton, D. C.; Leitold, V.; Longo, M.; Keller, M.; dos-Santos, M. N.; Scaranello, M. A., Sr.

    2017-12-01

    Drought events in tropical forests, including the 2015-2016 El Niño, may reduce net primary productivity and increase canopy tree mortality, thereby altering the short and long-term net carbon balance of tropical forests. Given the broad extent of drought impacts, forest inventory plots or eddy flux towers may not capture regional variability in forest response to drought. Here, we analyzed repeat airborne lidar data to evaluate canopy turnover from branch and tree fall before (2013-2014) and during (2014-2016) the recent El Niño drought in the eastern and central Brazilian Amazon. Coincident field surveys for a 16-ha subset of the lidar coverage provided complementary information to classify turnover areas by mechanism (branch, multiple branch, tree fall, multiple tree fall) and estimate the total coarse woody debris volume from canopy and understory tree mortality. Annualized rates of canopy turnover increased by 50%, on average, during the drought period in both intact and fragmented forests near Santarém, Pará. Turnover increased uniformly across all size classes, and there was limited evidence that taller trees contributed a greater proportion of turnover events in any size class in 2014-2016 compared to 2013-2014. This short-term increase in canopy turnover differs from findings in multi-year rainfall exclusion experiments that large trees were more sensitive to drought impacts. Field measurements confirmed the separability of the smallest (single branch) and largest damage classes (multiple tree falls), but single tree and multiple branch fall events generated similar coarse woody debris production and lidar-derived changes in canopy volume. Large-scale sampling possible with repeat airborne lidar data also captured strong local and regional gradients in canopy turnover. Differences in slope partially explained the north-south gradient in canopy turnover dynamics near Santarém, with larger increases in turnover on flatter terrain. Regional variability in canopy turnover in response to drought conditions highlights the need for a mechanistic representation of branch and tree fall dynamics in ecosystem models to resolve changes in net carbon balance from the increase in coarse woody debris production and reorganization of canopy light environments during drought years.

  5. Measuring Tree Properties and Responses Using Low-Cost Accelerometers

    DOE PAGES

    van Emmerik, Tim; Steele-Dunne, Susan; Hut, Rolf; ...

    2017-05-11

    Trees play a crucial role in the water, carbon and nitrogen cycle on local, regional and global scales. Understanding the exchange of momentum, heat, water, and CO 2 between trees and the atmosphere is important to assess the impact of drought, deforestation and climate change. Unfortunately, ground measurements of tree properties such as mass and canopy interception of precipitation are often expensive or difficult due to challenging environments. This paper aims to demonstrate the concept of using robust and affordable accelerometers to measure tree properties and responses. Tree sway is dependent on mass, canopy structure, drag coefficient, and wind forcing.more » By measuring tree acceleration, we can relate the tree motion to external forcing (e.g., wind, precipitation and related canopy interception) and tree physical properties (e.g., mass, elasticity). Using five months of acceleration data of 19 trees in the Brazilian Amazon, we show that the frequency spectrum of tree sway is related to mass, canopy interception of precipitation, and canopy–atmosphere turbulent exchange.« less

  6. Measuring Tree Properties and Responses Using Low-Cost Accelerometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Emmerik, Tim; Steele-Dunne, Susan; Hut, Rolf

    Trees play a crucial role in the water, carbon and nitrogen cycle on local, regional and global scales. Understanding the exchange of momentum, heat, water, and CO 2 between trees and the atmosphere is important to assess the impact of drought, deforestation and climate change. Unfortunately, ground measurements of tree properties such as mass and canopy interception of precipitation are often expensive or difficult due to challenging environments. This paper aims to demonstrate the concept of using robust and affordable accelerometers to measure tree properties and responses. Tree sway is dependent on mass, canopy structure, drag coefficient, and wind forcing.more » By measuring tree acceleration, we can relate the tree motion to external forcing (e.g., wind, precipitation and related canopy interception) and tree physical properties (e.g., mass, elasticity). Using five months of acceleration data of 19 trees in the Brazilian Amazon, we show that the frequency spectrum of tree sway is related to mass, canopy interception of precipitation, and canopy–atmosphere turbulent exchange.« less

  7. Measuring Tree Properties and Responses Using Low-Cost Accelerometers

    PubMed Central

    van Emmerik, Tim; Steele-Dunne, Susan; Hut, Rolf; Gentine, Pierre; Guerin, Marceau; Oliveira, Rafael S.; Wagner, Jim; Selker, John; van de Giesen, Nick

    2017-01-01

    Trees play a crucial role in the water, carbon and nitrogen cycle on local, regional and global scales. Understanding the exchange of momentum, heat, water, and CO2 between trees and the atmosphere is important to assess the impact of drought, deforestation and climate change. Unfortunately, ground measurements of tree properties such as mass and canopy interception of precipitation are often expensive or difficult due to challenging environments. This paper aims to demonstrate the concept of using robust and affordable accelerometers to measure tree properties and responses. Tree sway is dependent on mass, canopy structure, drag coefficient, and wind forcing. By measuring tree acceleration, we can relate the tree motion to external forcing (e.g., wind, precipitation and related canopy interception) and tree physical properties (e.g., mass, elasticity). Using five months of acceleration data of 19 trees in the Brazilian Amazon, we show that the frequency spectrum of tree sway is related to mass, canopy interception of precipitation, and canopy–atmosphere turbulent exchange. PMID:28492477

  8. Mapping Urban Tree Canopy Cover Using Fused Airborne LIDAR and Satellite Imagery Data

    NASA Astrophysics Data System (ADS)

    Parmehr, Ebadat G.; Amati, Marco; Fraser, Clive S.

    2016-06-01

    Urban green spaces, particularly urban trees, play a key role in enhancing the liveability of cities. The availability of accurate and up-to-date maps of tree canopy cover is important for sustainable development of urban green spaces. LiDAR point clouds are widely used for the mapping of buildings and trees, and several LiDAR point cloud classification techniques have been proposed for automatic mapping. However, the effectiveness of point cloud classification techniques for automated tree extraction from LiDAR data can be impacted to the point of failure by the complexity of tree canopy shapes in urban areas. Multispectral imagery, which provides complementary information to LiDAR data, can improve point cloud classification quality. This paper proposes a reliable method for the extraction of tree canopy cover from fused LiDAR point cloud and multispectral satellite imagery data. The proposed method initially associates each LiDAR point with spectral information from the co-registered satellite imagery data. It calculates the normalised difference vegetation index (NDVI) value for each LiDAR point and corrects tree points which have been misclassified as buildings. Then, region growing of tree points, taking the NDVI value into account, is applied. Finally, the LiDAR points classified as tree points are utilised to generate a canopy cover map. The performance of the proposed tree canopy cover mapping method is experimentally evaluated on a data set of airborne LiDAR and WorldView 2 imagery covering a suburb in Melbourne, Australia.

  9. [Changes of Forest Canopy Spectral Reflectance with Seasons in Lang Ya Mountains].

    PubMed

    Li, Wei-tao; Peng, Dao-li; Zhang, Yan; Wu, Jian; Chen, Tai-sheng

    2015-08-01

    The physiological mechanism and ecological structure of forest trees can change with the changes of years. In a certain extent, the changes were expressed through the canopy spectral features. The mastery of changing rules about spectral characteristics of trees over the years is benefit to remote sensing interpretation and provide scientific basis for the classification of different trees. The study adopted high-resolution spectrometer to measure the canopy spectral characteristics for seven major deciduous trees and seven evergreen trees to gain the spectrum curve of four different ages and calculate the first derivative curve. The analysis of changing rules about spectral characteristics of different deciduous trees and evergreen trees and the comparison of changes about spectrum of various trees in the visible and infrared band could find the best year and best band for identification of trees. The results showed that the canopy spectral reflectance of deciduous and evergreen trees increases with the increase of age. And the spectral changes of two species were most obvious in the near infrared band.

  10. Fire frequency and tree canopy structure influence plant species diversity in a forest-grassland ecotone

    Treesearch

    David W. Peterson; Peter B. Reich

    2008-01-01

    Disturbances and environmental heterogeneity are two factors thought to influence plant species diversity, but their effects are still poorly understood in many ecosystems. We surveyed understory vegetation and measured tree canopy cover on permanent plots spanning an experimental fire frequency gradient to test fire frequency and tree canopy effects on plant species...

  11. Does Rhododendron maximum L. (Ericaceae) Reduce the Availibility of Resources Above and Belowground for Canopy Tree Seedlings?

    Treesearch

    E.T. Nilsen; B.D. Clinton; T.T. Lei; O.K. Miller; S.W. Semones; J.F. Walker

    2000-01-01

    Subcanopy shrubs and perennial herbs inhibit recruitment of canopy trees in forests around the world. Although this phenomenon is widespread, and can have significant effects on community dynamics, the mechanisms of inhibition are not well understood. In the southern Appalachian region, Rhododendron maximum inhibits the recruitment of canopy trees...

  12. Detection of Aspens Using High Resolution Aerial Laser Scanning Data and Digital Aerial Images

    PubMed Central

    Säynäjoki, Raita; Packalén, Petteri; Maltamo, Matti; Vehmas, Mikko; Eerikäinen, Kalle

    2008-01-01

    The aim was to use high resolution Aerial Laser Scanning (ALS) data and aerial images to detect European aspen (Populus tremula L.) from among other deciduous trees. The field data consisted of 14 sample plots of 30 m × 30 m size located in the Koli National Park in the North Karelia, Eastern Finland. A Canopy Height Model (CHM) was interpolated from the ALS data with a pulse density of 3.86/m2, low-pass filtered using Height-Based Filtering (HBF) and binarized to create the mask needed to separate the ground pixels from the canopy pixels within individual areas. Watershed segmentation was applied to the low-pass filtered CHM in order to create preliminary canopy segments, from which the non-canopy elements were extracted to obtain the final canopy segmentation, i.e. the ground mask was analysed against the canopy mask. A manual classification of aerial images was employed to separate the canopy segments of deciduous trees from those of coniferous trees. Finally, linear discriminant analysis was applied to the correctly classified canopy segments of deciduous trees to classify them into segments belonging to aspen and those belonging to other deciduous trees. The independent variables used in the classification were obtained from the first pulse ALS point data. The accuracy of discrimination between aspen and other deciduous trees was 78.6%. The independent variables in the classification function were the proportion of vegetation hits, the standard deviation of in pulse heights, accumulated intensity at the 90th percentile and the proportion of laser points reflected at the 60th height percentile. The accuracy of classification corresponded to the validation results of earlier ALS-based studies on the classification of individual deciduous trees to tree species. PMID:27873799

  13. Vertical stratification of forest canopy for segmentation of understory trees within small-footprint airborne LiDAR point clouds

    NASA Astrophysics Data System (ADS)

    Hamraz, Hamid; Contreras, Marco A.; Zhang, Jun

    2017-08-01

    Airborne LiDAR point cloud representing a forest contains 3D data, from which vertical stand structure even of understory layers can be derived. This paper presents a tree segmentation approach for multi-story stands that stratifies the point cloud to canopy layers and segments individual tree crowns within each layer using a digital surface model based tree segmentation method. The novelty of the approach is the stratification procedure that separates the point cloud to an overstory and multiple understory tree canopy layers by analyzing vertical distributions of LiDAR points within overlapping locales. The procedure does not make a priori assumptions about the shape and size of the tree crowns and can, independent of the tree segmentation method, be utilized to vertically stratify tree crowns of forest canopies. We applied the proposed approach to the University of Kentucky Robinson Forest - a natural deciduous forest with complex and highly variable terrain and vegetation structure. The segmentation results showed that using the stratification procedure strongly improved detecting understory trees (from 46% to 68%) at the cost of introducing a fair number of over-segmented understory trees (increased from 1% to 16%), while barely affecting the overall segmentation quality of overstory trees. Results of vertical stratification of the canopy showed that the point density of understory canopy layers were suboptimal for performing a reasonable tree segmentation, suggesting that acquiring denser LiDAR point clouds would allow more improvements in segmenting understory trees. As shown by inspecting correlations of the results with forest structure, the segmentation approach is applicable to a variety of forest types.

  14. Plant functional group responses to fire frequency and tree canopy cover gradients in oak savannas and woodlands.

    Treesearch

    D.W. Peterson; P.B. Reich; K.J. Wrage

    2007-01-01

    We measured plant functional group cover and tree canopy cover on permanent plots within a long-term prescribed fire frequency experiment and used hierarchical linear modeling to assess plant functional group responses to fire frequency and tree canopy cover. Understory woody plant cover was highest in unburned woodlands and was negatively correlated with fire...

  15. Comparing alternative tree canopy cover estimates derived from digital aerial photography and field-based assessments

    Treesearch

    Tracey S. Frescino; Gretchen G. Moisen

    2012-01-01

    A spatially-explicit representation of live tree canopy cover, such as the National Land Cover Dataset (NLCD) percent tree canopy cover layer, is a valuable tool for many applications, such as defining forest land, delineating wildlife habitat, estimating carbon, and modeling fire risk and behavior. These layers are generated by predictive models wherein their accuracy...

  16. What's scale got to do with it? Models for urban tree canopy

    Treesearch

    Dexter H. Locke; Shawn M. Landry; Morgan Grove; Rinku Roy Chowdhury

    2016-01-01

    The uneven provisioning of ecosystem services has important policy implications; yet the spatial heterogeneity of tree canopy remains understudied. Private residential lands are important to the future of Philadelphia’s urban forest because a majority of the existing and possible tree canopy is located on residential land uses. This article examines the spatial...

  17. Testing a ground-based canopy model using the wind river canopy crane

    Treesearch

    Robert Van Pelt; Malcolm P. North

    1999-01-01

    A ground-based canopy model that estimates the volume of occupied space in forest canopies was tested using the Wind River Canopy Crane. A total of 126 trees in a 0.25 ha area were measured from the ground and directly from a gondola suspended from the crane. The trees were located in a low elevation, old-growth forest in the southern Washington Cascades. The ground-...

  18. The impact of forest structure and light utilization on carbon cycling in tropical forests

    NASA Astrophysics Data System (ADS)

    Morton, D. C.; Longo, M.; Leitold, V.; Keller, M. M.

    2015-12-01

    Light competition is a fundamental organizing principle of forest ecosystems, and interactions between forest structure and light availability provide an important constraint on forest productivity. Tropical forests maintain a dense, multi-layered canopy, based in part on abundant diffuse light reaching the forest understory. Climate-driven changes in light availability, such as more direct illumination during drought conditions, therefore alter the potential productivity of forest ecosystems during such events. Here, we used multi-temporal airborne lidar data over a range of Amazon forest conditions to explore the influence of forest structure on gross primary productivity (GPP). Our analysis combined lidar-based observations of canopy illumination and turnover in the Ecosystem Demography model (ED, version 2.2). The ED model was updated to specifically account for regional differences in canopy and understory illumination using lidar-derived measures of canopy light environments. Model simulations considered the influence of forest structure on GPP over seasonal to decadal time scales, including feedbacks from differential productivity between illuminated and shaded canopy trees on mortality rates and forest composition. Finally, we constructed simple scenarios with varying diffuse and direct illumination to evaluate the potential for novel plant-climate interactions under scenarios of climate change. Collectively, the lidar observations and model simulations underscore the need to account for spatial heterogeneity in the vertical structure of tropical forests to constrain estimates of tropical forest productivity under current and future climate conditions.

  19. Assessing the Potential of Land Use Modification to Mitigate Ambient NO2 and Its Consequences for Respiratory Health

    PubMed Central

    Rao, Meenakshi; George, Linda A.; Shandas, Vivek; Rosenstiel, Todd N.

    2017-01-01

    Understanding how local land use and land cover (LULC) shapes intra-urban concentrations of atmospheric pollutants—and thus human health—is a key component in designing healthier cities. Here, NO2 is modeled based on spatially dense summer and winter NO2 observations in Portland-Hillsboro-Vancouver (USA), and the spatial variation of NO2 with LULC investigated using random forest, an ensemble data learning technique. The NO2 random forest model, together with BenMAP, is further used to develop a better understanding of the relationship among LULC, ambient NO2 and respiratory health. The impact of land use modifications on ambient NO2, and consequently on respiratory health, is also investigated using a sensitivity analysis. We find that NO2 associated with roadways and tree-canopied areas may be affecting annual incidence rates of asthma exacerbation in 4–12 year olds by +3000 per 100,000 and −1400 per 100,000, respectively. Our model shows that increasing local tree canopy by 5% may reduce local incidences rates of asthma exacerbation by 6%, indicating that targeted local tree-planting efforts may have a substantial impact on reducing city-wide incidence of respiratory distress. Our findings demonstrate the utility of random forest modeling in evaluating LULC modifications for enhanced respiratory health. PMID:28698523

  20. A First-Order Radiative Transfer Model for Microwave Radiometry of Forest Canopies at L-Band

    NASA Technical Reports Server (NTRS)

    Kurum, Mehmet; Lang, Roger H.; O'Neill, Peggy E.; Joseph, Alicia T.; Jackson, Thomas J.; Cosh, Michael H.

    2011-01-01

    In this study, a first-order radiative transfer (RT) model is developed to more accurately account for vegetation canopy scattering by modifying the basic Tau-Omega model (the zero-order RT solution). In order to optimally utilize microwave radiometric data in soil moisture (SM) retrievals over vegetated landscapes, a quantitative understanding of the relationship between scattering mechanisms within vegetation canopies and the microwave brightness temperature is desirable. The first-order RT model is used to investigate this relationship and to perform a physical analysis of the scattered and emitted radiation from vegetated terrain. This model is based on an iterative solution (successive orders of scattering) of the RT equations up to the first order. This formulation adds a new scattering term to the . model. The additional term represents emission by particles (vegetation components) in the vegetation layer and emission by the ground that is scattered once by particles in the layer. The model is tested against 1.4-GHz brightness temperature measurements acquired over deciduous trees by a truck-mounted microwave instrument system called ComRAD in 2007. The model predictions are in good agreement with the data, and they give quantitative understanding for the influence of first-order scattering within the canopy on the brightness temperature. The model results show that the scattering term is significant for trees and modifications are necessary to the . model when applied to dense vegetation. Numerical simulations also indicate that the scattering term has a negligible dependence on SM and is mainly a function of the incidence angle and polarization of the microwave observation. Index Terms Emission,microwave radiometry, scattering, soil, vegetation.

  1. Whole-tree canopy enclosures: why cage a tree?

    Treesearch

    Jerome F. Grant; Abdul Hakeem; Paris L. Lambdin; Gregory J. Wiggins; Rusty J. Rhea

    2011-01-01

    The use of whole-tree canopy enclosures (i.e., cages) is not a typical approach to assessing biological parameters and interactions in a forest setting. However, the successful application of this technology may enable researchers to better understand certain types of tree/organismal interactions.

  2. Regional Estimates of Drought-Induced Tree Canopy Loss across Texas

    NASA Astrophysics Data System (ADS)

    Schwantes, A.; Swenson, J. J.; González-Roglich, M.; Johnson, D. M.; Domec, J. C.; Jackson, R. B.

    2015-12-01

    The severe drought of 2011 killed millions of trees across the state of Texas. Drought-induced tree-mortality can have significant impacts to carbon cycling, regional biophysics, and community composition. We quantified canopy cover loss across the state using remotely sensed imagery from before and after the drought at multiple scales. First, we classified ~200 orthophotos (1-m spatial resolution) from the National Agriculture Imagery Program, using a supervised maximum likelihood classification. Area of canopy cover loss in these classifications was highly correlated (R2 = 0.8) with ground estimates of canopy cover loss, measured in 74 plots across 15 different sites in Texas. These 1-m orthophoto classifications were then used to calibrate and validate coarser scale (30-m) Landsat imagery to create wall-to-wall tree canopy cover loss maps across the state of Texas. We quantified percent dead and live canopy within each pixel of Landsat to create continuous maps of dead and live tree cover, using two approaches: (1) a zero-inflated beta distribution model and (2) a random forest algorithm. Widespread canopy loss occurred across all the major natural systems of Texas, with the Edwards Plateau region most affected. In this region, on average, 10% of the forested area was lost due to the 2011 drought. We also identified climatic thresholds that controlled the spatial distribution of tree canopy loss across the state. However, surprisingly, there were many local hot spots of canopy loss, suggesting that not only climatic factors could explain the spatial patterns of canopy loss, but rather other factors related to soil, landscape, management, and stand density also likely played a role. As increases in extreme droughts are predicted to occur with climate change, it will become important to define methods that can detect associated drought-induced tree mortality across large regions. These maps could then be used (1) to quantify impacts to carbon cycling and regional biophysics, (2) to better understand the spatiotemporal dynamics of tree mortality, and (3) to calibrate and/or validate mortality algorithms in regional models.

  3. A GIS-based tool for estimating tree canopy cover on fixed-radius plots using high-resolution aerial imagery

    Treesearch

    Sara A. Goeking; Greg C. Liknes; Erik Lindblom; John Chase; Dennis M. Jacobs; Robert. Benton

    2012-01-01

    Recent changes to the Forest Inventory and Analysis (FIA) Program's definition of forest land precipitated the development of a geographic information system (GIS)-based tool for efficiently estimating tree canopy cover for all FIA plots. The FIA definition of forest land has shifted from a density-related criterion based on stocking to a 10 percent tree canopy...

  4. Random forests and stochastic gradient boosting for predicting tree canopy cover: Comparing tuning processes and model performance

    Treesearch

    Elizabeth A. Freeman; Gretchen G. Moisen; John W. Coulston; Barry T. (Ty) Wilson

    2015-01-01

    As part of the development of the 2011 National Land Cover Database (NLCD) tree canopy cover layer, a pilot project was launched to test the use of high-resolution photography coupled with extensive ancillary data to map the distribution of tree canopy cover over four study regions in the conterminous US. Two stochastic modeling techniques, random forests (RF...

  5. Spatially distinct responses within willow to bark stripping by deer: effects on insect herbivory

    NASA Astrophysics Data System (ADS)

    Tanaka, Motonobu; Nakamura, Masahiro

    2015-10-01

    Within individual plants, cervid herbivory may cause positive or negative plant-mediated effects on insect herbivores, depending on where it occurs. Using a combination of field observations and artificial bark-stripping experiments in Hokkaido, Japan, we examined the plant-mediated effects of bark stripping by sika deer ( Cervus nippon yesoensis) on insect herbivory in two spatially distinct parts of willow ( Salix udensis) trees: resprouting leaves below bark-stripping wounds and canopy leaves above. Natural and artificial bark stripping stimulated resprouting from trunks below wounds. Resprouting leaves on bark-stripped trees had lower total phenolics, condensed tannin, and C/N ratios than did canopy leaves on control trees. Herbivory rates were higher in resprouting leaves on bark-stripped trees than in canopy leaves on controls. Conversely, above-wound canopy leaves on bark-stripped trees had higher total phenolics than did those on controls, while herbivory rates were lower in the canopy leaves of bark-stripped trees than in those on controls. These results demonstrate that plant-mediated effects of bark stripping diverge between plant tissues below and above wounds in individual willow trees. We submit that focusing on multiple plant parts can elucidate plant-mediated effects at the whole-plant scale.

  6. Los Angeles 1-Million tree canopy cover assessment

    Treesearch

    Gregory E. McPherson; James R. Simpson; Qingfu Xiao; Wu Chunxia

    2008-01-01

    The Million Trees LA initiative intends to chart a course for sustainable growth through planting and stewardship of trees. The purpose of this study was to measure Los Angeles's existing tree canopy cover (TCC), determine if space exists for 1 million additional trees, and estimate future benefits from the planting. High resolution QuickBird remote sensing data,...

  7. Estimation of pedestrian level UV exposure under trees

    Treesearch

    Richard H. Grant; Gordon M. Heisler; Wei Gao

    2002-01-01

    Trees influence the amount of solar UV radiation that reaches pedestrians. A three-dimensional model was developed to predict the ultraviolet-B (UV-B) irradiance fields in open-tree canopies where the spacing between trees is equal to or greater than the width of individual tree crowns. The model predicted the relative irradiance (fraction of above-canopy irradiance)...

  8. Comparative assessment of methods for estimating tree canopy cover across a rural-to-urban gradient in the mid-Atlantic region of the USA

    Treesearch

    Rachel Riemann; Greg C. Liknes; Jarlath O' Neil-Dunne; Chris Toney; Tonya Lister

    2016-01-01

    Tree canopy cover significantly affects human and wildlife habitats, local hydrology, carbon cycles, fire behavior, and ecosystem services of all types. In addition, changes in tree canopy cover are both indicators and consequences of a wide variety of disturbances from urban development to climate change. There is growing demand for this information nationwide and...

  9. Growth, biomass production and photosynthesis of Cenchrus ciliaris L. under Acacia tortilis (Forssk.) Hayne based silvopastoral systems in semi arid tropics.

    PubMed

    Mishra, A K; Tiwari, H S; Bhatt, R K

    2010-11-01

    The growth, biomass production and photosynthesis of Cenchrus ciliaris was studied under the canopies of 17 yr old Acacia tortilis trees in semi arid tropical environment. On an average the full grown canopy of A. tortilis at the spacing of 4 x 4 m allowed 55% of total Photosynthetically Active Radiation (PAR) which in turn increased Relative Humidity (RH) and reduced under canopy temperature to -1.75 degrees C over the open air temperature. C. ciliaris attained higher height under the shade of A. tortilis. The tiller production and leaf area index decreased marginally under the shade of tree canopies as compared to the open grown grasses. C. ciliaris accumulated higher chlorophyll a and b under the shade of tree canopies indicating its shade adaptation potential. The assimilatory functions such as rate of photosynthesis, transpiration, stomatal conductance, photosynthetic water use efficiency (PN/TR) and carboxylation efficiency (PN/CINT) decreased under the tree canopies due to low availability of PAR. The total biomass production in term of fresh and dry weight decreased under the tree canopies. On average of 2 yr C. ciliaris had produced 12.78 t ha(-1) green and 3.72 -t ha(-1) dry biomass under the tree canopies of A. tortilis. The dry matter yield reduced to 38% under the tree canopies over the open grown grasses. The A. tortilis + C. ciliaris maintained higher soil moisture, organic carbon content and available N P K for sustainable biomass production for the longer period. The higher accumulation of crude protein, starch, sugar and nitrogen in leaves and stem of C. ciliaris indicates that this grass species also maintained its quality under A. tortilis based silvopastoral system. The photosynthesis and dry matter accumulation are closely associated with available PAR indicating that for sustainable production of this grass species in the silvopasture systems for longer period about 55% or more PAR is required.

  10. Patch to landscape patterns in post fire recruitment of a serotinous conifer

    USGS Publications Warehouse

    Ne'eman, Gidi; Fotheringham, C.J.; Keeley, J.E.

    1999-01-01

    Obligate seeding species are highly specialized to fire disturbance and many conifers such as cypress, which are adapted to high intensity stand-replacing fires, have canopy seed banks stored in serotinous cones. Resilience of these trees to fire disturbance is a function of disturbance frequency and one focus of this study was to determine the effect of patch age on postfire recruitment. A second focus was to determine the extent to which fire induced a landscape level change in the location of the forest boundary. Prior to a fire in 1994, a large Cupressus sargentii forest was a mosaic landscape of different aged patches of nearly pure cypress bordered by chaparral. Patches less than 60 years of age were relatively dense with roughly one tree every 1-2 m2 but older patches had thinned to one tree every 3-15 m2. Older trees had substantially greater canopy cone crops but the stand level seed bank size was not significantly correlated with stand age. Fire-dependent obligate seeding species are sensitive to fire return interval because of potential changes in the size of seed banks - facing both a potential 'immaturity risk' and a 'senescence risk'. At our site, C. sargentii regeneration was substantial in stands as young as 20 years, suggesting that fire return interval would need to be shorter than this to pose any significant risk. Reduced seedling recruitment in stands nearly 100 years of age may indicate risk from senescence is greater, however, even the lowest density seedling recruitment was many times greater than the density of mature forests - thus this cypress would appear to be resilient to a wide range of fire return intervals. Changes in landscape patterning of forest and chaparral are unlikely except after fire. Factors that inhibit tree establishment within the shrubland, as well as factors that affect shrub establishment within the forest border likely affect the 'permeability' of this ecotone. After the 1994 fire this boundary appeared to be stable in that cypress recruited best within the shadow of burned canopies and cypress were weak invaders of adjacent shrublands.

  11. Tree Death Leading To Ecosystem Renewal? Forecasting Carbon Storage As Eastern Forests Age

    NASA Astrophysics Data System (ADS)

    Curtis, P.; Gough, C. M.; Bohrer, G.; Nadelhoffer, K. J.; Ivanov, V. Y.

    2013-12-01

    The future trajectory of North American carbon (C) stocks remains uncertain as a subset of maturing trees die in mixed deciduous forests of the U.S. Midwest and East transitioning from early to middle and late succession. We are studying disturbance-structure-function relationships of aging forests in northern Michigan using long-term ecological and meteorological C cycling studies, a large-scale disturbance experiment, a 200-year forest chronosequence, and flux comparisons across three tower sites. We find that ecosystem responses to mortality are characterized by several processes that affect structure-function relationships and alter the way ecosystem functioning interacts with meteorological forcing. We subjected 39 ha of forest to moderate experimental disturbance, similar to that of age-related or climatically induced tree mortality. We found that the mortality of a third of all canopy trees minimally altered the balance between forest C uptake and release, as growth-limiting light and nitrogen resources were rapidly reallocated from dead and dying trees to undisturbed trees. Although disturbance-induced mortality increased soil N mineralization rates, nitrification, and denitrification, N exports from soils remained low. Upper canopy gap formation and a rise in structural complexity allowed increased photosynthetic contribution of sub-canopy vegetation to compensate for the death of canopy dominant trees. However, we found large differences between the transpirational response of maples and oaks to VPD and soil moisture, which led to relative declines in maple transpiration post-disturbance. These hydrologic differences may affect a species' ability to compete for resources following such a disturbance. Changes to canopy structure had a relatively small effect on roughness length and the turbulence forcing of fluxes from the canopy. We currently are studying how tree mortality driven changes in canopy structure affects within-canopy resource distribution and subsequent changes in leaf morphological, physiological and biochemical traits, how disturbance severity relates to the magnitude of C storage resilience, the impacts of clouds and aerosols on surface diffuse light and how they interact with canopy structure to modify C uptake, and how these processes change overall C assimilation given different forest age and disturbance histories. Along a conceptual continuum from structural to functional attributes, our results show that leaf area distribution and its heterogeneity, canopy light, water and nutrient use efficiency, canopy roughness length and turbulent mixing of canopy air, and the coupling between soil moisture and canopy density, all change with successional and disturbance processes and affect ecosystem C fluxes. Patchy mortality and related increases in structural complexity could, against expectations, enhance the C storage of some forests. Our finding that increases in canopy structural complexity improve resource-use efficiency provides a mechanism for maintaining high rates of C storage in aging forests.

  12. A Lidar Point Cloud Based Procedure for Vertical Canopy Structure Analysis And 3D Single Tree Modelling in Forest

    PubMed Central

    Wang, Yunsheng; Weinacker, Holger; Koch, Barbara

    2008-01-01

    A procedure for both vertical canopy structure analysis and 3D single tree modelling based on Lidar point cloud is presented in this paper. The whole area of research is segmented into small study cells by a raster net. For each cell, a normalized point cloud whose point heights represent the absolute heights of the ground objects is generated from the original Lidar raw point cloud. The main tree canopy layers and the height ranges of the layers are detected according to a statistical analysis of the height distribution probability of the normalized raw points. For the 3D modelling of individual trees, individual trees are detected and delineated not only from the top canopy layer but also from the sub canopy layer. The normalized points are resampled into a local voxel space. A series of horizontal 2D projection images at the different height levels are then generated respect to the voxel space. Tree crown regions are detected from the projection images. Individual trees are then extracted by means of a pre-order forest traversal process through all the tree crown regions at the different height levels. Finally, 3D tree crown models of the extracted individual trees are reconstructed. With further analyses on the 3D models of individual tree crowns, important parameters such as crown height range, crown volume and crown contours at the different height levels can be derived. PMID:27879916

  13. Abundance of green tree frogs and insects in artificial canopy gaps in a bottomland hardwood forest

    Treesearch

    Scott Horn; James L. Hanula; Michael D. Ulyshen; John C. Kilgo

    2005-01-01

    We found more green tree frogs (Hyla cinera) in canopy gaps than in closed canopy forest. Of the 331 gree ntree frogs observed, 88% were in canopy gaps. Likewise, higher numbers and biomasses of insects were captured in the open gap habitat. Flies were the most commonly collected insect group accounting for 54% of the total capture. These data...

  14. Mapping Species Composition of Forests and Tree Plantations in Northeastern Costa Rica with an Integration of Hyperspectral and Multitemporal Landsat Imagery

    NASA Technical Reports Server (NTRS)

    Fagan, Matthew E.; Defries, Ruth S.; Sesnie, Steven E.; Arroyo-Mora, J. Pablo; Soto, Carlomagno; Singh, Aditya; Townsend, Philip A.; Chazdon, Robin L.

    2015-01-01

    An efficient means to map tree plantations is needed to detect tropical land use change and evaluate reforestation projects. To analyze recent tree plantation expansion in northeastern Costa Rica, we examined the potential of combining moderate-resolution hyperspectral imagery (2005 HyMap mosaic) with multitemporal, multispectral data (Landsat) to accurately classify (1) general forest types and (2) tree plantations by species composition. Following a linear discriminant analysis to reduce data dimensionality, we compared four Random Forest classification models: hyperspectral data (HD) alone; HD plus interannual spectral metrics; HD plus a multitemporal forest regrowth classification; and all three models combined. The fourth, combined model achieved overall accuracy of 88.5%. Adding multitemporal data significantly improved classification accuracy (p less than 0.0001) of all forest types, although the effect on tree plantation accuracy was modest. The hyperspectral data alone classified six species of tree plantations with 75% to 93% producer's accuracy; adding multitemporal spectral data increased accuracy only for two species with dense canopies. Non-native tree species had higher classification accuracy overall and made up the majority of tree plantations in this landscape. Our results indicate that combining occasionally acquired hyperspectral data with widely available multitemporal satellite imagery enhances mapping and monitoring of reforestation in tropical landscapes.

  15. Leaf-on canopy closure in broadleaf deciduous forests predicted during winter

    USGS Publications Warehouse

    Twedt, Daniel J.; Ayala, Andrea J.; Shickel, Madeline R.

    2015-01-01

    Forest canopy influences light transmittance, which in turn affects tree regeneration and survival, thereby having an impact on forest composition and habitat conditions for wildlife. Because leaf area is the primary impediment to light penetration, quantitative estimates of canopy closure are normally made during summer. Studies of forest structure and wildlife habitat that occur during winter, when deciduous trees have shed their leaves, may inaccurately estimate canopy closure. We estimated percent canopy closure during both summer (leaf-on) and winter (leaf-off) in broadleaf deciduous forests in Mississippi and Louisiana using gap light analysis of hemispherical photographs that were obtained during repeat visits to the same locations within bottomland and mesic upland hardwood forests and hardwood plantation forests. We used mixed-model linear regression to predict leaf-on canopy closure from measurements of leaf-off canopy closure, basal area, stem density, and tree height. Competing predictive models all included leaf-off canopy closure (relative importance = 0.93), whereas basal area and stem density, more traditional predictors of canopy closure, had relative model importance of ≤ 0.51.

  16. Canopy architecture of a walnut orchard

    NASA Technical Reports Server (NTRS)

    Ustin, Susan L.; Martens, Scott N.; Vanderbilt, Vern C.

    1991-01-01

    A detailed dataset describing the canopy geometry of a walnut orchard was acquired to support testing and comparison of the predictions of canopy microwave and optical inversion models. Measured canopy properties included the quantity, size, and orientation of stems, leaves, and fruit. Eight trees receiving 100 percent of estimated potential evapotranspiration water use and eight trees receiving 33 percent of potential water use were measured. The vertical distributions of stem, leaf, and fruit properties are presented with respect to irrigation treatment. Zenith and probability distributions for stems and leaf normals are presented. These data show that, after two years of reduced irrigation, the trees receiving only 33 percent of their potential water requirement had reduced fruit yields, lower leaf area index, and altered allocation of biomass within the canopy.

  17. Soil cover by natural trees in agroforestry systems

    NASA Astrophysics Data System (ADS)

    Diaz-Ambrona, C. G. H.; Almoguera Millán, C.; Tarquis Alfonso, A.

    2009-04-01

    The dehesa is common agroforestry system in the Iberian Peninsula. These open oak parklands with silvo-pastoral use cover about two million hectares. Traditionally annual pastures have been grazed by cows, sheep and also goats while acorns feed Iberian pig diet. Evergreen oak (Quercus ilex L.) has other uses as fuelwood collection and folder after tree pruning. The hypothesis of this work is that tree density and canopy depend on soil types. We using the spanish GIS called SIGPAC to download the images of dehesa in areas with different soil types. True colour images were restoring to a binary code, previously canopy colour range was selected. Soil cover by tree canopy was calculated and number of trees. Processing result was comparable to real data. With these data we have applied a dynamic simulation model Dehesa to determine evergreen oak acorn and annual pasture production. The model Dehesa is divided into five submodels: Climate, Soil, Evergreen oak, Pasture and Grazing. The first three require the inputs: (i) daily weather data (maximum and minimum temperatures, precipitation and solar radiation); (ii) the soil input parameters for three horizons (thickness, field capacity, permanent wilting point, and bulk density); and (iii) the tree characterization of the dehesa (tree density, canopy diameter and height, and diameter of the trunk). The influence of tree on pasture potential production is inversely proportional to the canopy cover. Acorn production increase with tree canopy cover until stabilizing itself, and will decrease if density becomes too high (more than 80% soil tree cover) at that point there is competition between the trees. Main driving force for dehesa productivity is soil type for pasture, and tree cover for acorn production. Highest pasture productivity was obtained on soil Dystric Planosol (Alfisol), Dystric Cambisol and Chromo-calcic-luvisol, these soils only cover 22.4% of southwest of the Iberian peninssula. Lowest productivity was obtained on Dystric Lithosol.

  18. Forest-atmosphere BVOC exchange in diverse and structurally complex canopies: 1-D modeling of a mid-successional forest in northern Michigan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, Alexander M.; Cheng, Susan J.; Ashworth, Kirsti

    Foliar emissions of biogenic volatile organic compounds (BVOC)dimportant precursors of tropospheric ozone and secondary organic aerosolsdvary widely by vegetation type. Modeling studies to date typi-cally represent the canopy as a single dominant tree type or a blend of tree types, yet many forests are diverse with trees of varying height. To assess the sensitivity of biogenic emissions to tree height vari-ation, we compare two 1-D canopy model simulations in which BVOC emission potentials are homo-geneous or heterogeneous with canopy depth. The heterogeneous canopy emulates the mid-successional forest at the University of Michigan Biological Station (UMBS). In this case, high-isoprene-emitting fo-liagemore » (e.g., aspen and oak) is constrained to the upper canopy, where higher sunlight availability increases the light-dependent isoprene emission, leading to 34% more isoprene and its oxidation products as compared to the homogeneous simulation. Isoprene declines from aspen mortality are 10% larger when heterogeneity is considered. Overall, our results highlight the importance of adequately representing complexities of forest canopy structure when simulating light-dependent BVOC emissions and chemistry.« less

  19. Multi-temporal UAV-borne LiDAR point clouds for vegetation analysis - a case study

    NASA Astrophysics Data System (ADS)

    Mandlburger, Gottfried; Wieser, Martin; Hollaus, Markus; Pfennigbauer, Martin; Riegl, Ursula

    2016-04-01

    In the recent past the introduction of compact and lightweight LiDAR (Light Detection And Ranging) sensors together with progress in UAV (Unmanned Aerial Vehicle) technology allowed the integration of laser scanners on remotely piloted multicopter, helicopter-type and even fixed-wing platforms. The multi-target capabilities of state-of-the-art time-of-flight full-waveform laser sensors operated from low flying UAV-platforms has enabled capturing of the entire 3D structure of semi-transparent objects like deciduous forests under leaf-off conditions in unprecedented density and completeness. For such environments it has already been demonstrated that UAV-borne laser scanning combines the advantages of terrestrial laser scanning (high point density, short range) and airborne laser scanning (bird's eye perspective, homogeneous point distribution). Especially the oblique looking capabilities of scanners with a large field of view (>180°) enable capturing of vegetation from different sides resulting in a constantly high point density also in the sub canopy domain. Whereas the findings stated above were drawn based on a case study carried out in February 2015 with the Riegl VUX-1UAV laser scanner system mounted on a Riegl RiCopter octocopter UAV-platform over an alluvial forest at the Pielach River (Lower Austria), the site was captured a second time with the same sensor system and mission parameters at the end of the vegetation period on October 28th, 2015. The main goal of this experiment was to assess the impact of the late autumn foliage on the achievable 3D point density. Especially the entire understory vegetation and certain tree species (e.g. willow) were still in full leaf whereas the bigger trees (poplar) where already partly defoliated. The comparison revealed that, although both campaigns featured virtually the same laser shot count, the ground point density dropped from 517 points/m2 in February (leaf-off) to 267 points/m2 end of October (leaf-on). The decrease of ca. 50% is compensated by an increase in the upper canopy area (>20 m a.g.l.; Feb: 348 points/m2, Oct: 757 points/m2, increase rate: 118%). The greater leaf area in October results in more laser echoes from the canopy but the density decrease on the ground is not entirely attributed to shadowing from the upper canopy as the point distribution is nearly constant in the medium (10-20 m) and lower (0-10 m) sub-canopy area. The lower density on the ground is rather caused by a densely foliated shrub layer (0.15-3 m; Feb: 178 points/m2, Oct: 259 points/m2, increase rate: 46%). A sharp ground point density drop could be observed in areas covered by an invasive weed species (Fallopia japonica) which keeps its extremely dense foliage till late in the year. In summary, the preliminary point density study has shown the potential of UAV-borne, multi-temporal LiDAR for characterization of seasonal vegetation changes in deciduous environments. It is remarkable that even under leaf-on conditions a very high terrain point density is achievable. Except for the dense shrub layer, the case study has shown a similar 3D point distribution in the sub-canopy area for leaf-off and leaf-on data acquisition.

  20. Fine-Scale Genetic Structure of Monilinia fructicola During Brown Rot Epidemics Within Individual Peach Tree Canopies.

    PubMed

    Everhart, S E; Scherm, H

    2015-04-01

    The purpose of this study was to determine the fine-scale genetic structure of populations of the brown rot pathogen Monilinia fructicola within individual peach tree canopies to better understand within-tree plant pathogen diversity and to complement previous work on spatiotemporal development of brown rot disease at the canopy level. Across 3 years in a total of six trees, we monitored disease development, collected isolates from every M. fructicola symptom during the course of the season, and created high-resolution three-dimensional maps of all symptom and isolate locations within individual canopies using an electromagnetic digitizer. Each canopy population (65 to 173 isolates per tree) was characterized using a set of 13 microsatellite markers and analyzed for evidence of spatial genetic autocorrelation among isolates during the epidemic phase of the disease. Results showed high genetic diversity (average uh=0.529) and high genotypic diversity (average D=0.928) within canopies. The percentage of unique multilocus genotypes within trees was greater for blossom blight isolates (78.2%) than for fruit rot isolates (51.3%), indicating a greater contribution of clonal reproduction during the preharvest epidemic. For fruit rot isolates, between 54.2 and 81.7% of isolates were contained in one to four dominant clonal genotypes per tree having at least 10 members. All six fruit rot populations showed positive and significant spatial genetic autocorrelation for distance classes between 0.37 and 1.48 m. Despite high levels of within-tree pathogen diversity, the contribution of locally available inoculum combined with short-distance dispersal is likely the main factor generating clonal population foci and associated spatial genetic clustering within trees.

  1. the Role of Species, Structure, and Biochemical Traits in the Spatial Distribution of a Woodland Community

    NASA Astrophysics Data System (ADS)

    Adeline, K.; Ustin, S.; Roth, K. L.; Huesca Martinez, M.; Schaaf, C.; Baldocchi, D. D.; Gastellu-Etchegorry, J. P.

    2015-12-01

    The assessment of canopy biochemical diversity is critical for monitoring ecological and physiological functioning and for mapping vegetation change dynamics in relation to environmental resources. For example in oak woodland savannas, these dynamics are mainly driven by water constraints. Inversion using radiative transfer theory is one method for estimating canopy biochemistry. However, this approach generally only considers relatively simple scenarios to model the canopy due to the difficulty in encompassing stand heterogeneity with spatial and temporal consistency. In this research, we compared 3 modeling strategies for estimating canopy biochemistry variables (i.e. chlorophyll, carotenoids, water, dry matter) by coupling of the PROSPECT (leaf level) and DART (canopy level) models : i) a simple forest representation made of ellipsoid trees, and two representations taking into account the tree species and structural composition, and the landscape spatial pattern, using (ii) geometric tree crown shapes and iii) detailed tree crown and wood structure retrieved from terrestrial lidar acquisitions. AVIRIS 18m remote sensing data are up-scaled to simulate HyspIRI 30m images. Both spatial resolutions are validated by measurements acquired during 2013-2014 field campaigns (cover/tree inventory, LAI, leaf sampling, optical measures). The results outline the trade-off between accurate and abstract canopy modeling for inversion purposes and may provide perspectives to assess the impact of the California drought with multi-temporal monitoring of canopy biochemistry traits.

  2. Study of the effectiveness of several tree canopy types on roadside green belt in influencing the distribution of NO2 gas emitted from transportation

    NASA Astrophysics Data System (ADS)

    Desyana, R. D.; Sulistyantara, B.; Nasrullah, N.; Fatimah, I. S.

    2017-03-01

    Transportation is one significant factor which contributes to urban air pollution. One of the pollutants emitted from transportation which affect human’s health is NO2. Plants, especially trees, have high potential in reducing air pollutants from transportation through diffusion, absorbtion, adsorption and deposition. Purpose of this study was to analyze the effectiveness of several tree canopy types on roadside green belt in influencing distribution of NO2 gas emitted from transportation. The study conducted in three plots of tree canopy in Jagorawi Highway: Bungur (Lagerstroemia speciosa), Gmelina (Gmelina arborea) and Tanjung (Mimusops elengi). The tree canopy ability in absorbing pollutant is derived by comparing air quality on vegetated area with ambience air quality at control area (open field). Air sampling was conducted to measure NO2 concentration at elevation 1.5m, 5m and 10m at distance 0m, 10m and 30m, using Air Sampler Impinger. Concentration of NO2 was analyzed with Griess-Saltzman method. From this research, the result of ANOVA showed that tree plot (vegetated area) affected significantly to NO2 concentration. However the effect of distance from road and elevation was not significant. Among the plots, the highest NO2 concentration was found on Control plot (area without tree canopy), while the lowest NO2 concentration was found in Tanjung plot. Tanjung plot with round shape and high density canopy performed better in reducing NO2 than Bungur plot with round shape and medium density canopy, regardless the sampling elevation and distance. Gmelina plot performed the best in reducing horizontal distribution of NO2 concentration at elevation 1.5 and 5m, but the result at elevation 10m was not significant.

  3. Million trees Los Angeles canopy cover and benefit assessment

    Treesearch

    E.G. McPherson; J.R. Simpson; Q. Xiao; C. Wu

    2011-01-01

    The Million Trees LA initiative intends to improve Los Angeles’s environment through planting and stewardship of 1 million trees. The purpose of this study was to measure Los Angeles’s existing tree canopy cover (TCC), determine if space exists for 1 million additional trees, and estimate future benefits from the planting. High-resolution QuickBird remote sensing data...

  4. Comparing Individual Tree Segmentation Based on High Resolution Multispectral Image and Lidar Data

    NASA Astrophysics Data System (ADS)

    Xiao, P.; Kelly, M.; Guo, Q.

    2014-12-01

    This study compares the use of high-resolution multispectral WorldView images and high density Lidar data for individual tree segmentation. The application focuses on coniferous and deciduous forests in the Sierra Nevada Mountains. The tree objects are obtained in two ways: a hybrid region-merging segmentation method with multispectral images, and a top-down and bottom-up region-growing method with Lidar data. The hybrid region-merging method is used to segment individual tree from multispectral images. It integrates the advantages of global-oriented and local-oriented region-merging strategies into a unified framework. The globally most-similar pair of regions is used to determine the starting point of a growing region. The merging iterations are constrained within the local vicinity, thus the segmentation is accelerated and can reflect the local context. The top-down region-growing method is adopted in coniferous forest to delineate individual tree from Lidar data. It exploits the spacing between the tops of trees to identify and group points into a single tree based on simple rules of proximity and likely tree shape. The bottom-up region-growing method based on the intensity and 3D structure of Lidar data is applied in deciduous forest. It segments tree trunks based on the intensity and topological relationships of the points, and then allocate other points to exact tree crowns according to distance. The accuracies for each method are evaluated with field survey data in several test sites, covering dense and sparse canopy. Three types of segmentation results are produced: true positive represents a correctly segmented individual tree, false negative represents a tree that is not detected and assigned to a nearby tree, and false positive represents that a point or pixel cluster is segmented as a tree that does not in fact exist. They respectively represent correct-, under-, and over-segmentation. Three types of index are compared for segmenting individual tree from multispectral image and Lidar data: recall, precision and F-score. This work explores the tradeoff between the expensive Lidar data and inexpensive multispectral image. The conclusion will guide the optimal data selection in different density canopy areas for individual tree segmentation, and contribute to the field of forest remote sensing.

  5. Gainesville's urban forest canopy cover

    Treesearch

    Francisco Escobedo; Jennifer A. Seitz; Wayne Zipperer

    2009-01-01

    Ecosystem benefits from trees are linked directly to the amount of healthy urban forest canopy cover. Urban forest cover is dynamic and changes over time due to factors such as urban development, windstorms, tree removals, and growth. The amount of a city's canopy cover depends on its land use, climate, and people's preferences. This fact sheet examines how...

  6. Distribution of Carbon Uptake Capacity of Plant Functional Groups Across the Canopy Gradient in Old-Growth Tropical Wet Forest in Costa Rica

    NASA Astrophysics Data System (ADS)

    Oberbauer, S. F.; Cruz, H. O.; Ryan, M. G.; Clark, D. B.; Clark, D. A.; Olivas, P.

    2004-12-01

    Because of the difficulties of accessing leaves within tree crowns, little is known about the photosynthetic capacity of different functional groups within tropical rain forest canopies. To address this deficiency, we measured photosynthetic capacity (Amax) in situ along vertical transects through old-growth forest canopy using a mobile walkup tower at the La Selva Biological Station in Costa Rica. We asked: What groups are responsible for most C-fixation and at what height in the canopy does most C-fixation occur? Photosynthesis (using a LI-COR Li-6400) and total leaf area were measured for all vascular plant species encountered within the tower footprint (4.6 m2). Plants were grouped into trees, palms, ferns, lianas, epiphytes, herbs, Pentaclethra macroloba (the dominant canopy tree), and vines. Amax values differed among functional groups. The ranking of Amax among the groups was trees > P. macroloba > palms > lianas > vines > epiphytes > herbs > ferns. Trees and P. macroloba had the highest photosynthetic rates, but the maximum rates occur at different heights. Amax of P. macroloba increases with canopy height to a maximum 10.3 \\mumol m-2 s-1 at 17.5 m. Amax of trees increases with canopy height (r2 = 0.77) and attains the highest Amax at 32.5 m (10.6 \\mumol m-2 s-1). Palms and lianas presented similar patterns of Amax. However, lianas reach the canopy top whereas palms are shorter and were not observed above 27.5 m. The maximum photosynthetic rates for both groups were: lianas 9.2 \\mumol m-2 s-1 at 27.5 m and palms 9.6 \\mumol m-2 s-1 at 17.5 m. By scaling the functional group Amax values with their leaf area, we estimated that most of the photosynthetic capacity occurs between 17.5 m and 37.5 m and is attributed mainly to trees, followed by P. macroloba and then lianas.

  7. Canopy light heterogeneity drives leaf anatomical, eco-physiological, and photosynthetic changes in olive trees grown in a high-density plantation.

    PubMed

    Larbi, Ajmi; Vázquez, Saúl; El-Jendoubi, Hamdi; Msallem, Monji; Abadía, Javier; Abadía, Anunciación; Morales, Fermín

    2015-02-01

    In the field, leaves may face very different light intensities within the tree canopy. Leaves usually respond with light-induced morphological and photosynthetic changes, in a phenomenon known as phenotypic plasticity. Canopy light distribution, leaf anatomy, gas exchange, chlorophyll fluorescence, and pigment composition were investigated in an olive (Olea europaea, cvs. Arbequina and Arbosana) orchard planted with a high-density system (1,250 trees ha(-1)). Sampling was made from three canopy zones: a lower canopy (<1 m), a central one (1-2 m), and an upper one (>2 m). Light interception decreased significantly in the lower canopy when compared to the central and top ones. Leaf angle increased and photosynthetic rates and non-photochemical quenching (NPQ) decreased significantly and progressively from the upper canopy to the central and the lower canopies. The largest leaf areas were found in the lower canopy, especially in the cultivar Arbequina. The palisade and spongy parenchyma were reduced in thickness in the lower canopy when compared to the upper one, in the former due to a decrease in the number of cell layers from three to two (clearly distinguishable in the light and fluorescence microscopy images). In both cultivars, the concentration of violaxanthin-cycle pigments and β-carotene was higher in the upper than in the lower canopy. Furthermore, the de-epoxidized forms zeaxanthin and antheraxanthin increased significantly in those leaves from the upper canopy, in parallel to the NPQ increases. In conclusion, olive leaves react with morphological and photosynthetic changes to within-crown light gradients. These results strengthen the idea of olive trees as "modular organisms" that adjust the modules morphology and physiology in response to light intensity.

  8. The Forest Canopy as a Temporally and Spatially Dynamic Ecosystem: Preliminary Results of Biomass Scaling and Habitat Use from a Case Study in Large Eastern White Pines (Pinus Strobus)

    NASA Astrophysics Data System (ADS)

    Martin, J.; Laughlin, M. M.; Olson, E.

    2017-12-01

    Canopy processes can be viewed at many scales and through many lenses. Fundamentally, we may wish to start by treating each canopy as a unique surface, an ecosystem unto itself. By doing so, we can may make some important observations that greatly influence our ability to scale canopies to landscape, regional and global scales. This work summarizes an ongoing endeavor to quantify various canopy level processes on individual old and large Eastern white pine trees (Pinus strobus). Our work shows that these canopies contain complex structures that vary with height and as the tree ages. This phenomenon complicates the allometric scaling of these large trees using standard methods, but detailed measurements from within the canopy provided a method to constrain scaling equations. We also quantified how these canopies change and respond to canopy disturbance, and documented disproportionate variation of growth compared to the lower stem as the trees develop. Additionally, the complex shape and surface area allow these canopies to act like ecosystems themselves; despite being relatively young and more commonplace when compared to the more notable canopies of the tropics and the Pacific Northwestern US. The white pines of these relatively simple, near boreal forests appear to house various species including many lichens. The lichen species can cover significant portions of the canopy surface area (which may be only 25 to 50 years old) and are a sizable source of potential nitrogen additions to the soils below, as well as a modulator to hydrologic cycles by holding significant amounts of precipitation. Lastly, the combined complex surface area and focused verticality offers important habitat to numerous animal species, some of which are quite surprising.

  9. What controls stemflow? A LiDAR-based investigation of individual tree canopy structure, neighborhood conditions, and meteorological factors

    NASA Astrophysics Data System (ADS)

    Yankine, S. A.; Van Stan, J. T., II; Mesta, D. C.; Côté, J. F.; Hildebrandt, A.; Friesen, J.; Maldonado, G.

    2017-12-01

    Stemflow is a pointed hydrologic flux at the base of tree stems that has been linked to a host of biogeochemical processes in vegetated landscapes. Much work has been done to examine controls over stemflow water yield, finding three major factors: individual tree canopy structure, meteorological variables, and neighborhood conditions. However, the authors are unaware of any study to directly quantify all factors using a combination of terrestrial LiDAR and micrometeorological monitoring methods. This study directly quantifies individual Pinus palustris tree canopy characteristics (trunk volume and angle, branch volume and angle from 1st-to-3rd order, bark roughness, and height), 10-m radius neighborhood properties (number of trees, mean diameter and height, mean distance from study tree, and canopy overlap), and above-canopy storm conditions (magnitude, intensity, mean/max wind speed, and vapor pressure deficit) directly at the site. Stemflow production was 1% of rainfall, ranging from 0.3-59 L per storm from individual trees. Preliminary findings from storms (5-176 mm in magnitude) indicate that all individual tree characteristics, besides bark roughness, have little influence on stemflow generation. Bark roughness altered stemflow generation by affecting trunk water storage (0.1-0.7 mm) and wet trunk evaporation rates (0.005-0.03 mm/h). The strongest influence over stemflow generation from individual trees was the interaction between neighborhood characteristics and meteorological conditions (primarily rainfall amount and, secondarily, rainfall intensity).

  10. Competition for light between individual trees lowers reference canopy stomatal conductance: Results from a model

    NASA Astrophysics Data System (ADS)

    Loranty, Michael M.; Mackay, D. Scott; Ewers, Brent E.; Traver, Elizabeth; Kruger, Eric L.

    2010-12-01

    We have used an ecosystem model, TREES (Terrestrial Regional Ecosystem Exchange Simulator), to test the hypothesis that competition for light limits reference canopy stomatal conductance (GSref; conductance at 1 kPa vapor pressure deficit) for individual tree crowns. Sap flux (JS) data was collected at an aspen-dominated unmanaged early successional site, and at a sugar maple dominated midsuccessional site managed for timber production. Using a Monte Carlo approach, JS scaled canopy transpiration (EC) estimates were used to parameterize two versions of the model for each tree individually; a control model treated trees as isolated individuals, and a modified version incorporated the shading effects of neighboring individuals on incident radiation. Agreement between simulated and observed EC was better for maple than for aspen using the control model. Accounting for canopy heterogeneity using a three-dimensional canopy representation had minimal effects on estimates of GSref or model performance for individual maples. At the Aspen site the modified model resulted in improved EC estimates, particularly for trees with lower GSref and more shading by neighboring individuals. Our results imply a link between photosynthetic capacity, as mediated by competitive light environment, and GSref. We conclude that accounting for the effects of canopy heterogeneity on incident radiation improves modeled estimates of canopy carbon and water fluxes, especially for shade intolerant species. Furthermore our results imply a link between ecosystem structure and function that may be exploited to elucidate the impacts of forest structural heterogeneity on ecosystem fluxes of carbon and water via LiDAR remote sensing.

  11. Contamination of apple orchard soils and fruit trees with copper-based fungicides: sampling aspects.

    PubMed

    Wang, Quanying; Liu, Jingshuang; Liu, Qiang

    2015-01-01

    Accumulations of copper in orchard soils and fruit trees due to the application of Cu-based fungicides have become research hotspots. However, information about the sampling strategies, which can affect the accuracy of the following research results, is lacking. This study aimed to determine some sampling considerations when Cu accumulations in the soils and fruit trees of apple orchards are studied. The study was conducted in three apple orchards from different sites. Each orchard included two different histories of Cu-based fungicides usage, varying from 3 to 28 years. Soil samples were collected from different locations varying with the distances from tree trunk to the canopy drip line. Fruits and leaves from the middle heights of tree canopy at two locations (outer canopy and inner canopy) were collected. The variation in total soil Cu concentrations between orchards was much greater than the variation within orchards. Total soil Cu concentrations had a tendency to increase with the increasing history of Cu-based fungicides usage. Moreover, total soil Cu concentrations had the lowest values at the canopy drip line, while the highest values were found at the half distances between the trunk and the canopy drip line. Additionally, Cu concentrations of leaves and fruits from the outer parts of the canopy were significantly higher than from the inner parts. Depending on the findings of this study, not only the between-orchard variation but also the within-orchard variation should be taken into consideration when conducting future soil and tree samplings in apple orchards.

  12. Uav-Based Automatic Tree Growth Measurement for Biomass Estimation

    NASA Astrophysics Data System (ADS)

    Karpina, M.; Jarząbek-Rychard, M.; Tymków, P.; Borkowski, A.

    2016-06-01

    Manual in-situ measurements of geometric tree parameters for the biomass volume estimation are time-consuming and economically non-effective. Photogrammetric techniques can be deployed in order to automate the measurement procedure. The purpose of the presented work is an automatic tree growth estimation based on Unmanned Aircraft Vehicle (UAV) imagery. The experiment was conducted in an agriculture test field with scots pine canopies. The data was collected using a Leica Aibotix X6V2 platform equipped with a Nikon D800 camera. Reference geometric parameters of selected sample plants were measured manually each week. In situ measurements were correlated with the UAV data acquisition. The correlation aimed at the investigation of optimal conditions for a flight and parameter settings for image acquisition. The collected images are processed in a state of the art tool resulting in a generation of dense 3D point clouds. The algorithm is developed in order to estimate geometric tree parameters from 3D points. Stem positions and tree tops are identified automatically in a cross section, followed by the calculation of tree heights. The automatically derived height values are compared to the reference measurements performed manually. The comparison allows for the evaluation of automatic growth estimation process. The accuracy achieved using UAV photogrammetry for tree heights estimation is about 5cm.

  13. Parametrization of Drag and Turbulence for Urban Neighbourhoods with Trees

    NASA Astrophysics Data System (ADS)

    Krayenhoff, E. S.; Santiago, J.-L.; Martilli, A.; Christen, A.; Oke, T. R.

    2015-08-01

    Urban canopy parametrizations designed to be coupled with mesoscale models must predict the integrated effect of urban obstacles on the flow at each height in the canopy. To assess these neighbourhood-scale effects, results of microscale simulations may be horizontally-averaged. Obstacle-resolving computational fluid dynamics (CFD) simulations of neutrally-stratified flow through canopies of blocks (buildings) with varying distributions and densities of porous media (tree foliage) are conducted, and the spatially-averaged impacts on the flow of these building-tree combinations are assessed. The accuracy with which a one-dimensional (column) model with a one-equation (-) turbulence scheme represents spatially-averaged CFD results is evaluated. Individual physical mechanisms by which trees and buildings affect flow in the column model are evaluated in terms of relative importance. For the treed urban configurations considered, effects of buildings and trees may be considered independently. Building drag coefficients and length scale effects need not be altered due to the presence of tree foliage; therefore, parametrization of spatially-averaged flow through urban neighbourhoods with trees is greatly simplified. The new parametrization includes only source and sink terms significant for the prediction of spatially-averaged flow profiles: momentum drag due to buildings and trees (and the associated wake production of turbulent kinetic energy), modification of length scales by buildings, and enhanced dissipation of turbulent kinetic energy due to the small scale of tree foliage elements. Coefficients for the Santiago and Martilli (Boundary-Layer Meteorol 137: 417-439, 2010) parametrization of building drag coefficients and length scales are revised. Inclusion of foliage terms from the new parametrization in addition to the Santiago and Martilli building terms reduces root-mean-square difference (RMSD) of the column model streamwise velocity component and turbulent kinetic energy relative to the CFD model by 89 % in the canopy and 71 % above the canopy on average for the highest leaf area density scenarios tested: . RMSD values with the new parametrization are less than 20 % of mean layer magnitude for the streamwise velocity component within and above the canopy, and for above-canopy turbulent kinetic energy; RMSD values for within-canopy turbulent kinetic energy are negligible for most scenarios. The foliage-related portion of the new parametrization is required for scenarios with tree foliage of equal or greater height than the buildings, and for scenarios with foliage below roof height for building plan area densities less than approximately 0.25.

  14. Linkage between canopy water storage and drop size distributions of leaf drips

    NASA Astrophysics Data System (ADS)

    Nanko, Kazuki; Watanabe, Ai; Hotta, Norifumi; Suzuki, Masakazu

    2013-04-01

    Differences in drop size distribution (DSD) of leaf drips among tree species have been estimated and physically interpreted to clarify the leaf drip generation process. Leaf drip generation experiments for nine species were conducted in an indoor location without foliage vibration using an automatic mist spray. Broad-leaved species produced a similar DSD among species whose leaves had a matte surface and a second similar DSD among species whose leaves had a coated surface. The matte broad leaves produced a larger and wider range of DSDs than the coated broad leaves. Coated coniferous needles had a wider range of DSDs than the coated broad leaves and different DSDs were observed for different species. The species with shorter dense needles generated a larger DSD. The leaf drip diameter was calculated through the estimation of a state of equilibrium of a hanging drop on the leaves based on physical theory. The calculations indicated that the maximum diameter of leaf drips was determined by the contact angle, and the range of DSDs was determined by the variation in contact length and the contact diameter at the hanging points. The results revealed that leaf drip DSD changed due to variations in leaf hydrophobicity, leaf roughness, leaf geometry and leaf inclination among the different tree species. This study allows the modelization of throughfall DSD. Furthermore, it indicates the possibility of interpreting canopy water processes from canopy water storage to drainage through the contact angle and leaf drip DSD. The part of this study is published in Nanko et al. (2013, Agric. Forest. Meteorol. 169, 74-84).

  15. Vines and canopy contact: a route for snake predation on parrot nests.

    Treesearch

    SUSAN E. KOENIG; JOSEPH M. WUNDERLE; ERNESTO C. ENKERLINHOEFLICH

    2007-01-01

    Ornithologists have hypothesized that some tropical forest birds avoid snake predation by nesting in isolated trees that do not have vines and canopy contact with neighbouring trees. Here we review two complementary studies that support this hypothesis by demonstrating (1) that an abundance of vines and an interlocking canopy characterized Jamaican Black-billed Parrot...

  16. Where to nest? Ecological determinants of chimpanzee nest abundance and distribution at the habitat and tree species scale.

    PubMed

    Carvalho, Joana S; Meyer, Christoph F J; Vicente, Luis; Marques, Tiago A

    2015-02-01

    Conversion of forests to anthropogenic land-uses increasingly subjects chimpanzee populations to habitat changes and concomitant alterations in the plant resources available to them for nesting and feeding. Based on nest count surveys conducted during the dry season, we investigated nest tree species selection and the effect of vegetation attributes on nest abundance of the western chimpanzee, Pan troglodytes verus, at Lagoas de Cufada Natural Park (LCNP), Guinea-Bissau, a forest-savannah mosaic widely disturbed by humans. Further, we assessed patterns of nest height distribution to determine support for the anti-predator hypothesis. A zero-altered generalized linear mixed model showed that nest abundance was negatively related to floristic diversity (exponential form of the Shannon index) and positively with the availability of smaller-sized trees, reflecting characteristics of dense-canopy forest. A positive correlation between nest abundance and floristic richness (number of plant species) and composition indicated that species-rich open habitats are also important in nest site selection. Restricting this analysis to feeding trees, nest abundance was again positively associated with the availability of smaller-sized trees, further supporting the preference for nesting in food tree species from dense forest. Nest tree species selection was non-random, and oil palms were used at a much lower proportion (10%) than previously reported from other study sites in forest-savannah mosaics. While this study suggests that human disturbance may underlie the exclusive arboreal nesting at LCNP, better quantitative data are needed to determine to what extent the construction of elevated nests is in fact a response to predators able to climb trees. Given the importance of LCNP as refuge for Pan t. verus our findings can improve conservation decisions for the management of this important umbrella species as well as its remaining suitable habitats. © 2014 Wiley Periodicals, Inc.

  17. Three-dimensional estimates of tree canopies: Scaling from high-resolution UAV data to satellite observations

    NASA Astrophysics Data System (ADS)

    Sankey, T.; Donald, J.; McVay, J.

    2015-12-01

    High resolution remote sensing images and datasets are typically acquired at a large cost, which poses big a challenge for many scientists. Northern Arizona University recently acquired a custom-engineered, cutting-edge UAV and we can now generate our own images with the instrument. The UAV has a unique capability to carry a large payload including a hyperspectral sensor, which images the Earth surface in over 350 spectral bands at 5 cm resolution, and a lidar scanner, which images the land surface and vegetation in 3-dimensions. Both sensors represent the newest available technology with very high resolution, precision, and accuracy. Using the UAV sensors, we are monitoring the effects of regional forest restoration treatment efforts. Individual tree canopy width and height are measured in the field and via the UAV sensors. The high-resolution UAV images are then used to segment individual tree canopies and to derive 3-dimensional estimates. The UAV image-derived variables are then correlated to the field-based measurements and scaled to satellite-derived tree canopy measurements. The relationships between the field-based and UAV-derived estimates are then extrapolated to a larger area to scale the tree canopy dimensions and to estimate tree density within restored and control forest sites.

  18. Dynamics of transpiration, sap flow and use of stored water in tropical forest canopy trees.

    Treesearch

    Frederick C. Meinzer; Shelley A. James; Guillermo Goldstein

    2004-01-01

    In large trees the daily onset of transpiration causes water to be withdrawn from internal storage compartments resulting in lags between changes in transpiration and sap flow at the base of the tree. We measured time courses of sap flow, hydraulic resistance, plant water potential and stomatal resistance in co-occuring tropical forest canopy trees with trunk diameters...

  19. Marine Riparian Vegetation Communities of Puget Sound

    DTIC Science & Technology

    2007-02-01

    species . In areas of frequent disturbance, early successional trees , such as red alder and maple, dominated coastal forests. Douglas fir is currently...sea level to the mountain tops), forest types are broken into zones, represented by the dominant canopy ( tree ) species , or cli- max community, with...Within each zone, there is also vertical stratification of vegetation types, including dominant canopy tree species , understory trees and shrubs, and

  20. Composition and structure of an old-growth floodplain forest of the lower Kaskaskia River

    Treesearch

    John B. Taft

    2003-01-01

    Compositional and structural properties of canopy, shrub/sapling, and ground-cover strata were measured within an old-growth floodplain forest bordering the lower Kaskaskia River in southwestern Illinois. Basal area for trees was estimated at 31.8 m²/ha, tree density was 398 trees/ha with 27 species recorded in the canopy stratum. The dominant tree species...

  1. Microsite controls on tree seedling establishment in conifer forest canopy gaps

    Treesearch

    Andrew N. Gray; Thomas A. Spies

    1997-01-01

    Tree seedling establishment and growth were studied in experimental canopy gaps to assess the effect of heterogeneity of regeneration microsites within and among gaps in mature conifer forests. Seedlings were studied for two years in closed-canopy areas and in recently created gaps ranging in size from 40 to 2000 m2 in four stands of mature (90-...

  2. A stem-map model for predicting tree canopy cover of Forest Inventory and Analysis (FIA) plots

    Treesearch

    Chris Toney; John D. Shaw; Mark D. Nelson

    2009-01-01

    Tree canopy cover is an important stand characteristic that affects understory light, fuel moisture, decomposition rates, wind speed, and wildlife habitat. Canopy cover also is a component of most definitions of forest land used by US and international agencies. The USDA Forest Service Forest Inventory and Analysis (FIA) Program currently does not provide a national...

  3. Modelisation de l'architecture des forets pour ameliorer la teledetection des attributs forestiers

    NASA Astrophysics Data System (ADS)

    Cote, Jean-Francois

    The quality of indirect measurements of canopy structure, from in situ and satellite remote sensing, is based on knowledge of vegetation canopy architecture. Technological advances in ground-based, airborne or satellite remote sensing can now significantly improve the effectiveness of measurement programs on forest resources. The structure of vegetation canopy describes the position, orientation, size and shape of elements of the canopy. The complexity of the canopy in forest environments greatly limits our ability to characterize forest structural attributes. Architectural models have been developed to help the interpretation of canopy structural measurements by remote sensing. Recently, the terrestrial LiDAR systems, or TLiDAR (Terrestrial Light Detection and Ranging), are used to gather information on the structure of individual trees or forest stands. The TLiDAR allows the extraction of 3D structural information under the canopy at the centimetre scale. The methodology proposed in my Ph.D. thesis is a strategy to overcome the weakness in the structural sampling of vegetation cover. The main objective of the Ph.D. is to develop an architectural model of vegetation canopy, called L-Architect (LiDAR data to vegetation Architecture), and to focus on the ability to document forest sites and to get information on canopy structure from remote sensing tools. Specifically, L-Architect reconstructs the architecture of individual conifer trees from TLiDAR data. Quantitative evaluation of L-Architect consisted to investigate (i) the structural consistency of the reconstructed trees and (ii) the radiative coherence by the inclusion of reconstructed trees in a 3D radiative transfer model. Then, a methodology was developed to quasi-automatically reconstruct the structure of individual trees from an optimization algorithm using TLiDAR data and allometric relationships. L-Architect thus provides an explicit link between the range measurements of TLiDAR and structural attributes of individual trees. L-Architect has finally been applied to model the architecture of forest canopy for better characterization of vertical and horizontal structure with airborne LiDAR data. This project provides a mean to answer requests of detailed canopy architectural data, difficult to obtain, to reproduce a variety of forest covers. Because of the importance of architectural models, L-Architect provides a significant contribution for improving the capacity of parameters' inversion in vegetation cover for optical and lidar remote sensing. Mots-cles: modelisation architecturale, lidar terrestre, couvert forestier, parametres structuraux, teledetection.

  4. New datasets for quantifying snow-vegetation-atmosphere interactions in boreal birch and conifer forests

    NASA Astrophysics Data System (ADS)

    Reid, T. D.; Essery, R.; Rutter, N.; Huntley, B.; Baxter, R.; Holden, R.; King, M.; Hancock, S.; Carle, J.

    2012-12-01

    Boreal forests exert a strong influence on weather and climate by modifying the surface energy and radiation balance. However, global climate and numerical weather prediction models use forest parameter values from simple look-up tables or maps that are derived from limited satellite data, on large grid scales. In reality, Arctic landscapes are inherently heterogeneous, with highly variable land cover types and structures on a variety of spatial scales. There is value in collecting detailed field data for different areas of vegetation cover, to assess the accuracy of large-scale assumptions. To address these issues, a consortium of researchers funded by the UK's Natural Environment Research Council have collected extensive data on radiation, meteorology, snow cover and canopy structure at two contrasting Arctic forest sites. The chosen study sites were an area of boreal birch forest near Abisko, Sweden in March/April 2011 and mixed conifer forest at Sodankylä, Finland in March/April 2012. At both sites, arrays comprising ten shortwave pyranometers and four longwave pyrgeometers were deployed for periods of up to 50 days, under forest plots of varying canopy structures and densities. In addition, downwelling longwave irradiance and global and diffuse shortwave irradiances were recorded at nearby open sites representing the top-of-canopy conditions. Meteorological data were recorded at all sub-canopy and open sites using automatic weather stations. Over the same periods, tree skin temperatures were measured on selected trees using contact thermocouples, infrared thermocouples and thermal imagery. Canopy structure was accurately quantified through manual surveys, extensive hemispherical photography and terrestrial laser scans of every study plot. Sub-canopy snow depth and snow water equivalent were measured on fine-scale grids at each study plot. Regular site maintenance ensured a high quality dataset covering the important Arctic spring period. The data have several applications, for example in forest ecology, canopy radiative transfer models, snow hydrological modelling, and land surface schemes, for a variety of canopy types from sparse, leafless birch to dense pine and spruce. The work also allows the comparison of modern, highly detailed methods such as laser scanning and thermal imagery with older, well-established data collection methods. By combining these data with airborne and satellite remote sensing data, snow-vegetation-atmosphere interactions could be estimated over a wide area of the heterogeneous boreal landscape. This could improve estimates of crucial parameters such as land surface albedo on the grid scales required for global or regional weather and climate models.

  5. Effects of location within the tree canopy on carbohydrates, organic acids, amino acids and phenolic compounds in the fruit peel and flesh from three apple (Malus × domestica) cultivars

    PubMed Central

    Feng, Fengjuan; Li, Mingjun; Ma, Fengwang; Cheng, Lailiang

    2014-01-01

    Fruits from three cultivars of apple (Malus × domestica Borkh.)—‘McIntosh’, ‘Gala’ and ‘Mutsu’—were harvested from the exterior and interior of the tree canopy. Peel and flesh tissues were sampled separately to determine how the position of the fruit on the tree might affect the levels of the primary and secondary metabolites in the fruit. Fruit from the outer-canopy had a higher fresh weight and a higher soluble solids content compared with inner-canopy fruit. Both the flesh and peel of the outer-canopy fruit had higher concentrations of soluble sugars and sugar alcohols, but lower starch concentrations than the inner-canopy fruit. Canopy position did not significantly affect malic acid concentrations, except in the peel of ‘McIntosh’ and the flesh of ‘Mutsu’. Although levels of ascorbic and succinic acids were higher in the peel of the outer-canopy fruit, the responses of other organic acids to canopy position depended on tissue type and cultivar. Except for histidine, lysine, threonine and glycine, most amino acids accumulated at higher concentrations in the inner-canopy fruit. By contrast, levels of phenolic compounds from both the peel and flesh were significantly higher in the outer-canopy fruit. The significant effects of location within the canopy on both primary metabolites and secondary metabolites demonstrate the importance of light exposure on apple fruit quality. PMID:26504536

  6. Simulation of Canopy CO2/H2O Fluxes for a Rubber (Hevea Brasiliensis) Plantation in Central Cambodia: The Effect of the Regular Spacing of Planted Trees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumagai, Tomo'omi; Mudd, Ryan; Miyazawa, Yoshiyuki

    We developed a soil-vegetation-atmosphere transfer (SVAT) model applicable to simulating CO2 and H2O fluxes from the canopies of rubber plantations, which are characterized by distinct canopy clumping produced by regular spacing of plantation trees. Rubber (Hevea brasiliensis Müll. Arg.) plantations, which are rapidly expanding into both climatically optimal and sub-optimal environments throughout mainland Southeast Asia, potentially change the partitioning of water, energy, and carbon at multiple scales, compared with traditional land covers it is replacing. Describing the biosphere-atmosphere exchange in rubber plantations via SVAT modeling is therefore essential to understanding the impacts on environmental processes. The regular spacing of plantationmore » trees creates a peculiar canopy structure that is not well represented in most SVAT models, which generally assumes a non-uniform spacing of vegetation. Herein we develop a SVAT model applicable to rubber plantation and an evaluation method for its canopy structure, and examine how the peculiar canopy structure of rubber plantations affects canopy CO2 and H2O exchanges. Model results are compared with measurements collected at a field site in central Cambodia. Our findings suggest that it is crucial to account for intensive canopy clumping in order to reproduce observed rubber plantation fluxes. These results suggest a potentially optimal spacing of rubber trees to produce high productivity and water use efficiency.« less

  7. [Functional diversity characteristics of canopy tree species of Jianfengling tropical montane rainforest on Hainan Island, China.

    PubMed

    Xu, Ge Xi; Shi, Zuo Min; Tang, Jing Chao; Liu, Shun; Ma, Fan Qiang; Xu, Han; Liu, Shi Rong; Li, Yi de

    2016-11-18

    Based on three 1-hm 2 plots of Jianfengling tropical montane rainforest on Hainan Island, 11 commom used functional traits of canopy trees were measured. After combining with topographical factors and trees census data of these three plots, we compared the impacts of weighted species abundance on two functional dispersion indices, mean pairwise distance (MPD) and mean nearest taxon distance (MNTD), by using single- and multi-dimensional traits, respectively. The relationship between functional richness of the forest canopies and species abundance was analyzed. We used a null model approach to explore the variations in standardized size effects of MPD and MNTD, which were weighted by species abundance and eliminated the influences of species richness diffe-rences among communities, and assessed functional diversity patterns of the forest canopies and their responses to local habitat heterogeneity at community's level. The results showed that variation in MPD was greatly dependent on the dimensionalities of functional traits as well as species abundance. The correlations between weighted and non-weighted MPD based on different dimensional traits were relatively weak (R=0.359-0.628). On the contrary, functional traits and species abundance had relatively weak effects on MNTD, which brought stronger correlations between weighted and non-weighted MNTD based on different dimensional traits (R=0.746-0.820). Functional dispersion of the forest canopies were generally overestimated when using non-weighted MPD and MNTD. Functional richness of the forest canopies showed an exponential relationship with species abundance (F=128.20; R 2 =0.632; AIC=97.72; P<0.001), which might exist a species abundance threshold value. Patterns of functional diversity of the forest canopies based on different dimensional functional traits and their habitat responses showed variations in some degree. Forest canopies in the valley usually had relatively stronger biological competition, and functional diversity was higher than expected functional diversity randomized by null model, which indicated dispersed distribution of functional traits among canopy tree species in this habitat. However, the functional diversity of the forest canopies tended to be close or lower than randomization in the other habitat types, which demonstrated random or clustered distribution of the functional traits among canopy tree species.

  8. Landscape-scale changes in forest canopy structure across a partially logged tropical peat swamp

    NASA Astrophysics Data System (ADS)

    Wedeux, B. M. M.; Coomes, D. A.

    2015-07-01

    Forest canopy structure is strongly influenced by environmental factors and disturbance, and in turn influences key ecosystem processes including productivity, evapotranspiration and habitat availability. In tropical forests increasingly modified by human activities, the interplaying effects of environmental factors and disturbance legacies on forest canopy structure across landscapes are practically unexplored. We used high-fidelity airborne laser scanning (ALS) data to measure the canopy of old-growth and selectively logged peat swamp forest across a peat dome in Central Kalimantan, Indonesia, and quantified how canopy structure metrics varied with peat depth and under logging. Several million canopy gaps in different height cross-sections of the canopy were measured in 100 plots of 1 km2 spanning the peat dome, allowing us to describe canopy structure with seven metrics. Old-growth forest became shorter and had simpler vertical canopy profiles on deeper peat, consistently with previous work linking deep peat to stunted tree growth. Gap Size Frequency Distributions (GSFDs) indicated fewer and smaller canopy gaps on the deeper peat (i.e. the scaling exponent of pareto functions increased from 1.76 to 3.76 with peat depth). Areas subjected to concessionary logging until 2000, and informal logging since then, had the same canopy top height as old-growth forest, indicating the persistence of some large trees, but mean canopy height was significantly reduced; the total area of canopy gaps increased and the GSFD scaling exponent was reduced. Logging effects were most evident on the deepest peat, where nutrient depletion and waterlogged conditions restrain tree growth and recovery. A tight relationship exists between canopy structure and the peat deph gradient within the old-growth tropical peat swamp. This relationship breaks down after selective logging, with canopy structural recovery being modulated by environmental conditions.

  9. Urban trees and the risk of poor birth outcomes

    Treesearch

    Geoffrey H. Donovan; Yvonne L. Michael; David T. Butry; Amy D. Sullivan; John M. Chase

    2011-01-01

    This paper investigated whether greater tree-canopy cover is associated with reduced risk of poor birth outcomes in Portland, Oregon. Residential addresses were geocoded and linked to classified-aerial imagery to calculate tree-canopy cover in 50, 100, and 200 m buffers around each home in our sample (n=5696). Detailed data on maternal characteristics and additional...

  10. Light environment under Rhododendron maximum thickets and estimated carbon gain of regenerating forest tree seedlings

    Treesearch

    T.T. Lei; E.T. Nilsen; S.W. Semones

    2006-01-01

    Canopy tree recruitment is inhibited by evergreen shrubs in many forests. In the southern Appalachian mountains of the USA, thickets of Rhododendron maximum L. restrict dominant canopy tree seedling survival and persistence. Using R. maximum as a model system, we examined available light under the thickets and the photosynthetic...

  11. Effect of canopy structure and open-top chamber techniques on micrometeorological parameters and the gradients and transport of water vapor, carbon dioxide and ozone in the canopies of plum trees (`prunus salicina`) in the San Joaquin valley. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grantz, D.A.; Vaughn, D.L.; Metheny, P.A.

    1995-03-15

    Plum trees (Prunus salicina cv. Casselman) were exposed to ozone in open-top chambers (OTC) or chamberless plots, and trace gas concentrations and microenvironmental conditions were monitored within tree canopies inside the outside the OTC. Concentrations of ozone, carbon dioxide and water vapor, leaf and air temperature, light intensity, and wind speed were measured at nine positions in the tree canopies. The objectives were to: (1) map the distribution of microenvironmental parameters within the canopies inside and outside the OTC; (2) determine transport parameters for gas exchange, and (3) calculate ozone flux. Significant vertical and horizontal gradients were observed; gradients weremore » diminished and often inverted inside relative to outside the OTC due to air distribution at the bottom of the OCT. Ozone flux was readily modeled from measures of stomatal conductance, nonstomatal conductance and ozone concentration at the leaf surface.« less

  12. Temperature profile in apricot tree canopies under the soil and climate conditions of the Romanian Black Sea Coast.

    PubMed

    Paltineanu, Cristian; Septar, Leinar; Chitu, Emil

    2016-03-01

    The paper describes the temperature profiles determined by thermal imagery in apricot tree canopies under the semi-arid conditions of the Black Sea Coast in a chernozem of Dobrogea Region, Romania. The study analyzes the thermal vertical profile of apricot orchards for three representative cultivars during summertime. Measurements were done when the soil water content (SWC) was at field capacity (FC) within the rooting depth, after intense sprinkler irrigation applications. Canopy temperature was measured during clear sky days at three heights for both sides of the apricot trees, sunlit (south), and shaded (north). For the SWC studied, i.e., FC, canopy height did not induce a significant difference between the temperature of apricot tree leaves (Tc) and the ambient air temperature (Ta) within the entire vertical tree profile, and temperature measurements by thermal imagery can therefore be taken at any height on the tree crown leaves. Differences between sunlit and shaded sides of the canopy were significant. Because of these differences for Tc-Ta among the apricot tree cultivars studied, lower base lines (LBLs) should be determined for each cultivar separately. The use of thermal imagery technique under the conditions of semi-arid coastal areas with low range of vapor pressure deficit could be useful in irrigation scheduling of apricot trees. The paper discusses the implications of the data obtained in the experiment under the conditions of the coastal area of the Black Sea, Romania, and neighboring countries with similar climate, such as Bulgaria and Turkey.

  13. Effects of the interception of litterfall by the understory on carbon cycling in eucalyptus plantations of South China.

    PubMed

    Yang, Long; Wang, Jun; Huang, Yuhui; Hui, Dafeng; Wen, Meili

    2014-01-01

    For the purposes of forest restoration, carbon (C) fixation, and economic improvement, eucalyptus (Eucalyptus urophylla) has been widely planted in South China. The understory of eucalyptus plantations is often occupied by a dense community of the fern Dicranopteris dichotoma, which intercepts tree canopy leaf litter before it reaches the ground. To understand the effects of this interception of litterfall on C cycling in eucalyptus plantations, we quantified the mass of intercepted litter and the influences of litterfall interception on litter decomposition and soil respiration. The total mass of E. urophylla litterfall collected on the understory was similar to that collected by the traditional litter trap method. All of the eucalyptus litterfall is intercepted by the D. dichotoma canopy. Of the litterfall that was intercepted by D. dichotoma, 20-40% and 60-80% was intercepted by the top (50-100 cm) and bottom (0-50 cm) of the understory canopy, respectively. Intercepted litterfall decomposed faster at the bottom of understory canopy (at the base of the plants) than at the top, and decomposition was slower on the soil surface in the absence of understory than on any location in the understory canopy. Soil respiration was highest when both the understory and litter were present and was lowest when both the understory and litter were absent. These results indicate that litterfall interception changed carbon flow between aboveground and belowground through litter decomposition and soil respiration, which changed carbon cycling in eucalyptus plantations. The effects of the understory on litter decomposition and soil respiration should be considered in ecosystem carbon models.

  14. Seasonal Abundance of Aphids and Aphidophagous Insects in Pecan

    PubMed Central

    Dutcher, James D.; Karar, Haider; Abbas, Ghulam

    2012-01-01

    Seasonal occurrence of aphids and aphidophagous insects was monitored for six years (2006–2011) from full leaf expansion in May to leaf fall in October in “Desirable” variety pecan trees that were not treated with insecticides. Aphid outbreaks occurred two times per season, once in the spring and again in the late summer. Yellow pecan and blackmargined aphids exceeded the recommended treatment thresholds one time and black pecan aphids exceeded the recommended treatment levels three times over the six seasons. Increases in aphidophagous insect abundance coincided with aphid outbreaks in five of the six seasons. Among aphidophagous insects Harmonia axyridis and Olla v-nigrum were frequently collected in both the tree canopy and at the ground level, whereas, Coccinella septempunctata, Hippodamia convergens were rarely found in the tree canopy and commonly found at the ground level. Green lacewing abundance was higher in the ground level than in the tree canopy. Brown lacewings were more abundant in the tree canopy than at the ground level. Dolichopodid and syrphid fly abundance, at the ground level increased during peak aphid abundance in the tree canopy. Application of an aqueous solution of fermenting molasses to the pecan foliage during an aphid outbreak significantly increased the abundance of ladybeetles and lacewings and significantly reduced the abundance of yellow pecan, blackmargined and black pecan aphids. PMID:26466738

  15. High-resolution tree canopy mapping for New York City using LIDAR and object-based image analysis

    NASA Astrophysics Data System (ADS)

    MacFaden, Sean W.; O'Neil-Dunne, Jarlath P. M.; Royar, Anna R.; Lu, Jacqueline W. T.; Rundle, Andrew G.

    2012-01-01

    Urban tree canopy is widely believed to have myriad environmental, social, and human-health benefits, but a lack of precise canopy estimates has hindered quantification of these benefits in many municipalities. This problem was addressed for New York City using object-based image analysis (OBIA) to develop a comprehensive land-cover map, including tree canopy to the scale of individual trees. Mapping was performed using a rule-based expert system that relied primarily on high-resolution LIDAR, specifically its capacity for evaluating the height and texture of aboveground features. Multispectral imagery was also used, but shadowing and varying temporal conditions limited its utility. Contextual analysis was a key part of classification, distinguishing trees according to their physical and spectral properties as well as their relationships to adjacent, nonvegetated features. The automated product was extensively reviewed and edited via manual interpretation, and overall per-pixel accuracy of the final map was 96%. Although manual editing had only a marginal effect on accuracy despite requiring a majority of project effort, it maximized aesthetic quality and ensured the capture of small, isolated trees. Converting high-resolution LIDAR and imagery into usable information is a nontrivial exercise, requiring significant processing time and labor, but an expert system-based combination of OBIA and manual review was an effective method for fine-scale canopy mapping in a complex urban environment.

  16. Combining multiple isotopes and metagenomic to delineate the role of tree canopy nitrification in European forests along nitrogen deposition and climate gradients

    NASA Astrophysics Data System (ADS)

    Guerrieri, R.; Avila, A.; Barceló, A.; Elustondo, D.; Hellstein, S.; Magnani, F.; Mattana, S.; Matteucci, G.; Merilä, P.; Michalski, G. M.; Nicolas, M.; Vanguelova, E.; Verstraeten, A.; Waldner, P.; Watanabe, M.; Penuelas, J.; Mencuccini, M.

    2017-12-01

    Forest canopies influence our climate through carbon, water and energy exchanges with the atmosphere. However, less investigated is whether and how tree canopies change the chemical composition of precipitation, with important implications on forest nutrient cycling. Recently, we provided for the first time isotopic evidence that biological nitrification in tree canopies was responsible for significant changes in the amount of nitrate from rainfall to throughfall across two UK forests at high nitrogen (N) deposition [1]. This finding strongly suggested that bacteria and/or Archaea species of the phyllosphere are responsible for transforming atmospheric N before it reaches the soil. Despite microbial epiphytes representing an important component of tree canopies, attention has been mostly directed to their role as pathogens, while we still do not know whether and how they affect nutrient cycling. Our study aims to 1) characterize microbial communities harboured in tree canopies for two of the most dominant species in Europe (Fagus sylvatica L. and Pinus sylvestris L.) using metagenomic techniques, 2) quantify the functional genes related to nitrification but also to denitrification and N fixation, and 3) estimate the contribution of NO3 derived from biological canopy nitrification vs. atmospheric NO3 input by using δ15N, δ18O and δ17O of NO3in forest water. We considered i) twelve sites included in the EU ICP long term intensive forest monitoring network, chosen along a climate and nitrogen deposition gradient, spanning from Fennoscandia to the Mediterranean and ii) a manipulation experiment where N mist treatments were carried out either to the soil or over tree canopies. We will present preliminary results regarding microbial diversity in the phyllosphere, water (rainfall and throughfall) and soil samples over the gradient. Furthermore, we will report differences between the two investigated tree species for the phyllosphere core microbiome in terms of relative abundance of bacterial and Archaea classes and those species related to N cycling. Finally we will assess whether there are differences among tree species and sites in the number of functional genes related to N cycling and how they are related to the N deposition and/or climate. [1] Guerrieri et al. 2015 Global Change and Biology 21 (12): 4613-4626.

  17. i-Tree: Tools to assess and manage structure, function, and value of community forests

    NASA Astrophysics Data System (ADS)

    Hirabayashi, S.; Nowak, D.; Endreny, T. A.; Kroll, C.; Maco, S.

    2011-12-01

    Trees in urban communities can mitigate many adverse effects associated with anthropogenic activities and climate change (e.g. urban heat island, greenhouse gas, air pollution, and floods). To protect environmental and human health, managers need to make informed decisions regarding urban forest management practices. Here we present the i-Tree suite of software tools (www.itreetools.org) developed by the USDA Forest Service and their cooperators. This software suite can help urban forest managers assess and manage the structure, function, and value of urban tree populations regardless of community size or technical capacity. i-Tree is a state-of-the-art, peer-reviewed Windows GUI- or Web-based software that is freely available, supported, and continuously refined by the USDA Forest Service and their cooperators. Two major features of i-Tree are 1) to analyze current canopy structures and identify potential planting spots, and 2) to estimate the environmental benefits provided by the trees, such as carbon storage and sequestration, energy conservation, air pollution removal, and storm water reduction. To cover diverse forest topologies, various tools were developed within the i-Tree suite: i-Tree Design for points (individual trees), i-Tree Streets for lines (street trees), and i-Tree Eco, Vue, and Canopy (in the order of complexity) for areas (community trees). Once the forest structure is identified with these tools, ecosystem services provided by trees can be estimated with common models and protocols, and reports in the form of texts, charts, and figures are then created for users. Since i-Tree was developed with a client/server architecture, nationwide data in the US such as location-related parameters, weather, streamflow, and air pollution data are stored in the server and retrieved to a user's computer at run-time. Freely available remote-sensed images (e.g. NLCD and Google maps) are also employed to estimate tree canopy characteristics. As the demand for i-Tree grows internationally, environmental databases from more countries will be coupled with the software suite. Two more i-Tree applications, i-Tree Forecast and i-Tree Landscape are now under development. i-Tree Forecast simulates canopy structures for up to 100 years based on planting and mortality rates and adds capabilities for other i-Tree applications to estimate the benefits of future canopy scenarios. While most i-Tree applications employ a spatially lumped approach, i-Tree landscape employs a spatially distributed approach that allows users to map changes in canopy cover and ecosystem services through time and space. These new i-Tree tools provide an advanced platform for urban managers to assess the impact of current and future urban forests. i-Tree allows managers to promote effective urban forest management and sound arboricultural practices by providing information for advocacy and planning, baseline data for making informed decisions, and standardization for comparisons with other communities.

  18. Effects of tree canopy on rural highway pavement condition, safety, and maintenance.

    DOT National Transportation Integrated Search

    2017-02-01

    An integral part of Ohios roadscape is the canopy cover alongside and above the pavement. Roadside trees are valued for their natural beauty and because they provide shade, moderate temperature fluctuation, control evaporation, block air movement,...

  19. Modeling spatial and temporal dynamics of wind flow and potential fire behavior following a mountain pine beetle outbreak in a lodgepole pine forest

    Treesearch

    Chad M. Hoffman; Rodman Linn; Russell Parsons; Carolyn Sieg; Judith Winterkamp

    2015-01-01

    Patches of live, dead, and dying trees resulting from bark beetle-caused mortality alter spatial and temporal variability in the canopy and surface fuel complex through changes in the foliar moisture content of attacked trees and through the redistribution of canopy fuels. The resulting heterogeneous fuels complexes alter within-canopy wind flow, wind fluctuations, and...

  20. Applications of urban tree canopy assessment and prioritization tools: supporting collaborative decision making to achieve urban sustainability goals

    Treesearch

    Dexter H. Locke; J. Morgan Grove; Michael Galvin; Jarlath P.M. ONeil-Dunne; Charles Murphy

    2013-01-01

    Urban Tree Canopy (UTC) Prioritizations can be both a set of geographic analysis tools and a planning process for collaborative decision-making. In this paper, we describe how UTC Prioritizations can be used as a planning process to provide decision support to multiple government agencies, civic groups and private businesses to aid in reaching a canopy target. Linkages...

  1. Tree traits and canopy closure data from an experiment with 34 planted species native to Sabah, Borneo

    PubMed Central

    Gustafsson, Malin; Gustafsson, Lena; Alloysius, David; Falck, Jan; Yap, Sauwai; Karlsson, Anders; Ilstedt, Ulrik

    2016-01-01

    The data presented in this paper is supporting the research article “Life history traits predict the response to increased light among 33 tropical rainforest tree species” [3]. We show basic growth and survival data collected over the 6 years duration of the experiment, as well as data from traits inventories covering 12 tree traits collected prior to and after a canopy reduction treatment in 2013. Further, we also include canopy closure and forest light environment data from measurements with hemispherical photographs before and after the treatment. PMID:26900591

  2. Unsupervised individual tree crown detection in high-resolution satellite imagery

    DOE PAGES

    Skurikhin, Alexei N.; McDowell, Nate G.; Middleton, Richard S.

    2016-01-26

    Rapidly and accurately detecting individual tree crowns in satellite imagery is a critical need for monitoring and characterizing forest resources. We present a two-stage semiautomated approach for detecting individual tree crowns using high spatial resolution (0.6 m) satellite imagery. First, active contours are used to recognize tree canopy areas in a normalized difference vegetation index image. Given the image areas corresponding to tree canopies, we then identify individual tree crowns as local extrema points in the Laplacian of Gaussian scale-space pyramid. The approach simultaneously detects tree crown centers and estimates tree crown sizes, parameters critical to multiple ecosystem models. Asmore » a demonstration, we used a ground validated, 0.6 m resolution QuickBird image of a sparse forest site. The two-stage approach produced a tree count estimate with an accuracy of 78% for a naturally regenerating forest with irregularly spaced trees, a success rate equivalent to or better than existing approaches. In addition, our approach detects tree canopy areas and individual tree crowns in an unsupervised manner and helps identify overlapping crowns. Furthermore, the method also demonstrates significant potential for further improvement.« less

  3. Unsupervised individual tree crown detection in high-resolution satellite imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skurikhin, Alexei N.; McDowell, Nate G.; Middleton, Richard S.

    Rapidly and accurately detecting individual tree crowns in satellite imagery is a critical need for monitoring and characterizing forest resources. We present a two-stage semiautomated approach for detecting individual tree crowns using high spatial resolution (0.6 m) satellite imagery. First, active contours are used to recognize tree canopy areas in a normalized difference vegetation index image. Given the image areas corresponding to tree canopies, we then identify individual tree crowns as local extrema points in the Laplacian of Gaussian scale-space pyramid. The approach simultaneously detects tree crown centers and estimates tree crown sizes, parameters critical to multiple ecosystem models. Asmore » a demonstration, we used a ground validated, 0.6 m resolution QuickBird image of a sparse forest site. The two-stage approach produced a tree count estimate with an accuracy of 78% for a naturally regenerating forest with irregularly spaced trees, a success rate equivalent to or better than existing approaches. In addition, our approach detects tree canopy areas and individual tree crowns in an unsupervised manner and helps identify overlapping crowns. Furthermore, the method also demonstrates significant potential for further improvement.« less

  4. Olive Actual "on Year" Yield Forecast Tool Based on the Tree Canopy Geometry Using UAS Imagery.

    PubMed

    Sola-Guirado, Rafael R; Castillo-Ruiz, Francisco J; Jiménez-Jiménez, Francisco; Blanco-Roldan, Gregorio L; Castro-Garcia, Sergio; Gil-Ribes, Jesus A

    2017-07-30

    Olive has a notable importance in countries of Mediterranean basin and its profitability depends on several factors such as actual yield, production cost or product price. Actual "on year" Yield (AY) is production (kg tree -1 ) in "on years", and this research attempts to relate it with geometrical parameters of the tree canopy. Regression equation to forecast AY based on manual canopy volume was determined based on data acquired from different orchard categories and cultivars during different harvesting seasons in southern Spain. Orthoimages were acquired with unmanned aerial systems (UAS) imagery calculating individual crown for relating to canopy volume and AY. Yield levels did not vary between orchard categories; however, it did between irrigated orchards (7000-17,000 kg ha -1 ) and rainfed ones (4000-7000 kg ha -1 ). After that, manual canopy volume was related with the individual crown area of trees that were calculated by orthoimages acquired with UAS imagery. Finally, AY was forecasted using both manual canopy volume and individual tree crown area as main factors for olive productivity. AY forecast only by using individual crown area made it possible to get a simple and cheap forecast tool for a wide range of olive orchards. Finally, the acquired information was introduced in a thematic map describing spatial AY variability obtained from orthoimage analysis that may be a powerful tool for farmers, insurance systems, market forecasts or to detect agronomical problems.

  5. Relating FIA data to habitat classifications via tree-based models of canopy cover

    Treesearch

    Mark D. Nelson; Brian G. Tavernia; Chris Toney; Brian F. Walters

    2012-01-01

    Wildlife species-habitat matrices are used to relate lists of species with abundance of their habitats. The Forest Inventory and Analysis Program provides data on forest composition and structure, but these attributes may not correspond directly with definitions of wildlife habitats. We used FIA tree data and tree crown diameter models to estimate canopy cover, from...

  6. Trees grow on money: Urban tree canopy cover and environmental justice

    Treesearch

    Kirsten Schwarz; Michail Fragkias; Christopher G. Boone; Weiqi Zhou; Melissa McHale; J. Morgan Grove; Jarlath O' Neil-Dunne; Joseph P. McFadden; Geoffrey L. Buckley; Dan Childers; Laura Ogden; Stephanie Pincetl; Diane Pataki; Ali Whitmer; Mary L. Cadenasso; Steven Arthur Loiselle

    2015-01-01

    This study examines the distributional equity of urban tree canopy (UTC) cover for Baltimore, MD, Los Angeles, CA, New York, NY, Philadelphia, PA, Raleigh, NC, Sacramento, CA, and Washington, D.C. using high spatial resolution land cover data and census data. Data are analyzed at the Census Block Group levels using Spearman’s correlation, ordinary least squares...

  7. Seasonal photosynthesis and water relations of juvenile loblolly pine relative to stand density and canopy position

    Treesearch

    Zhenmin Tang; Jim L. Chambers; Mary A. Sword Sayer; James P. Barnett

    2003-01-01

    To assess the effects of stand density and canopy environment on tree physiology, we measured gas exchange responses of the same needle age class of 16-year-old loblolly pines (Pinus taeda L.) in thinned (512 trees ha-1) and non-thinned treatment plots (2,863 trees ha-1) in central Louisiana....

  8. The resilience of upland-oak forest canopy trees to chronic and acute precipitation manipulations

    Treesearch

    Paul J. Hanson; Timothy J. Tschaplinski; Stand D. Wullschleger; Donald e. Todd; Robert M. Auge

    2007-01-01

    Abstract—Implications of chronic (±33 percent) and acute (-100 percent) precipitation change were evaluated for trees of upland-oak forests of the eastern United States. Chronic manipulations have been conducted since 1993, and acute manipulations of dominant canopy trees (Quercus prinus; Liriodendron tulipifera) were initiated in 2003. Through 12...

  9. Canopy gaps and dead tree dynamics: poking holes in the forest.

    Treesearch

    Sally Duncan

    2002-01-01

    When large trees die, individually or in clumps, gaps are opened in the forest canopy. A shifting mosaic of patches, from small single-tree gaps to very large gaps caused by wildlife, is a natural part of the development of composition and structure in mature forests. Gaps increase the diversity of forests across the landscape and present local environments that...

  10. A Regional Simulation to Explore Impacts of Resource Use and Constraints

    DTIC Science & Technology

    2007-03-01

    mountaintops. (10) Deciduous Forest - This class is composed of forests, which contain at least 75% deciduous trees in the canopy, deciduous ... trees , pine plantations, and evergreen woodlands. (12) Mixed Forest - This class includes forests with mixed deciduous /coniferous canopies, natural...reflective surfaces. Classification of forested wetlands dominated by deciduous trees is probably more accurate than that in areas with 104

  11. An assessment of canopy stratification and tree species diversity following clearcutting in Central Appalachian hardwoods

    Treesearch

    Mark Benjamin Brashears; Mary Ann Fajvan; Thomas M. Schuler

    2004-01-01

    On high quality growing sites in West Virginia, shade intolerant tree species have increased in importance in third-generation forests following clearcutting. We investigated the effect of tree species canopy position on the Shannon-Weiner Diversity Index (H'), Pielou's evenness index (0, and species richness (S) using a chronosequence of 13 clearcuts. Two to...

  12. Tree density and permafrost thaw depth influence water limitations on stomatal conductance in Siberian Arctic boreal forests

    NASA Astrophysics Data System (ADS)

    Kropp, H.; Loranty, M. M.; Natali, S.; Kholodov, A. L.; Alexander, H. D.; Zimov, N.

    2017-12-01

    Boreal forests may experience increased water stress under global climate change as rising air temperatures increase evaporative demand and decrease soil moisture. Increases in plant water stress can decrease stomatal conductance, and ultimately, decrease primary productivity. A large portion of boreal forests are located in Siberia, and are dominated by deciduous needleleaf trees, Larix spp. We investigated the variability and drivers of canopy stomatal conductance in upland Larix stands with different stand density that arose from differing fire severity. Our measurements focus on an open canopy stand with low tree density and deep permafrost thaw depth, and a closed canopy stand with high tree density and shallow permafrost thaw depth. We measured canopy stomatal conductance, soil moisture, and micrometeorological variables. Our results demonstrate that canopy stomatal conductance was significantly lower in the closed canopy stand with a significantly higher sensitivity to increases in atmospheric evaporative demand. Canopy stomatal conductance in both stands was tightly coupled to precipitation that occurred over the previous week; however, the closed canopy stand showed a significantly greater sensitivity to increases in precipitation compared to the open canopy stand. Differences in access to deep versus shallow soil moisture and the physical characteristics of the soil profile likely contribute to differences in sensitivity to precipitation between the two stands. Our results indicate that Larix primary productivity may be highly sensitive to changes in evaporative demand and soil moisture that can result of global climate change. However, the effect of increasing air temperatures and changes in precipitation will differ significantly depending on stand density, thaw depth, and the hydraulic characteristics of the soil profile.

  13. Prediction of forest canopy and surface fuels from Lidar and satellite time series data in a bark beetle-affected forest

    USGS Publications Warehouse

    Bright, Benjamin C.; Hudak, Andrew T.; Meddens, Arjan J.H.; Hawbaker, Todd J.; Briggs, Jenny S.; Kennedy, Robert E.

    2017-01-01

    Wildfire behavior depends on the type, quantity, and condition of fuels, and the effect that bark beetle outbreaks have on fuels is a topic of current research and debate. Remote sensing can provide estimates of fuels across landscapes, although few studies have estimated surface fuels from remote sensing data. Here we predicted and mapped field-measured canopy and surface fuels from light detection and ranging (lidar) and Landsat time series explanatory variables via random forest (RF) modeling across a coniferous montane forest in Colorado, USA, which was affected by mountain pine beetles (Dendroctonus ponderosae Hopkins) approximately six years prior. We examined relationships between mapped fuels and the severity of tree mortality with correlation tests. RF models explained 59%, 48%, 35%, and 70% of the variation in available canopy fuel, canopy bulk density, canopy base height, and canopy height, respectively (percent root-mean-square error (%RMSE) = 12–54%). Surface fuels were predicted less accurately, with models explaining 24%, 28%, 32%, and 30% of the variation in litter and duff, 1 to 100-h, 1000-h, and total surface fuels, respectively (%RMSE = 37–98%). Fuel metrics were negatively correlated with the severity of tree mortality, except canopy base height, which increased with greater tree mortality. Our results showed how bark beetle-caused tree mortality significantly reduced canopy fuels in our study area. We demonstrated that lidar and Landsat time series data contain substantial information about canopy and surface fuels and can be used for large-scale efforts to monitor and map fuel loads for fire behavior modeling at a landscape scale.

  14. The influence of tree traits and storm event characteristics on stemflow production from isolated deciduous trees in an urban park

    NASA Astrophysics Data System (ADS)

    Carlyle-Moses, D. E.; Schooling, J. T.

    2014-12-01

    Urban tree canopy processes affect the volume and biogeochemistry of inputs to the hydrological cycle in cities. We studied stemflow from 37 isolated deciduous trees in an urban park in Kamloops, British Columbia which has a semi-arid climate dominated by small precipitation events. Precipitation and stemflow were measured on an event basis from June 12, 2012 to November 3, 2013. To clarify the effect of canopy traits on stemflow thresholds, rates, yields, percent, and funneling ratios, we analyzed branch angles, bark roughness, tree size, cover, leaf size, and branch and leader counts. High branch angles promoted stemflow in all trees, while bark roughness influenced stemflow differently for single- and multi-leader trees. The association between stemflow and numerous leaders deserves further study. Columnar-form trees often partitioned a large percentage of precipitation into stemflow, with event-scale values as high as 27.9 % recorded for an Armstrong Freeman Maple (Acer x freemanii 'Armstrong'). Under growing-season conditions funneling ratios as high as 196.9 were derived for an American Beech (Fagus grandifolia) individual. Among meteorological variables, rain depth was strongly correlated with stemflow yields; intra-storm break duration, rainfall intensity, rainfall inclination, wind speed, and vapour pressure deficit also played roles. Greater stemflow was associated with leafless canopies and with rain or mixed events versus snow. Results can inform climate-sensitive selection and siting of urban trees towards integrated rainwater management. For example, previous studies suggest that the reduction in storm-water generation by urban trees is accomplished through canopy interception loss alone. However, trees that partition large quantities of precipitation canopy-drainage as stemflow to the base of their trunks, where it has the potential to infiltrate into the soil media rather than fall on impervious surfaces as throughfall, may assist in reducing stormwater flow.

  15. Impact of Canopy Coupling on Canopy Average Stomatal Conductance Across Seven Tree Species in Northern Wisconsin

    NASA Astrophysics Data System (ADS)

    Ewers, B. E.; Mackay, D. S.; Samanta, S.; Ahl, D. E.; Burrows, S. S.; Gower, S. T.

    2001-12-01

    Land use changes over the last century in northern Wisconsin have resulted in a heterogeneous landscape composed of the following four main forest types: northern hardwoods, northern conifer, aspen/fir, and forested wetland. Based on sap flux measurements, aspen/fir has twice the canopy transpiration of northern hardwoods. In addition, daily transpiration was only explained by daily average vapor pressure deficit across the cover types. The objective of this study was to determine if canopy average stomatal conductance could be used to explain the species effects on tree transpiration. Our first hypothesis is that across all of the species, stomatal conductance will respond to vapor pressure deficit so as to maintain a minimum leaf water potential to prevent catostrophic cavitiation. The consequence of this hypothesis is that among species and individuals there is a proportionality between high stomatal conductance and the sensitivity of stomatal conductance to vapor pressure deficit. Our second hypothesis is that species that do not follow the proportionality deviate because the canopies are decoupled from the atmosphere. To test our two hypotheses we calculated canopy average stomatal conductance from sap flux measurements using an inversion of the Penman-Monteith equation. We estimated the canopy coupling using a leaf energy budget model that requires leaf transpiration and canopy aerodynamic conductance. We optimized the parameters of the aerodynamic conductance model using a Monte Carlo technique across six parameters. We determined the optimal model for each species by selecting parameter sets that resulted in the proportionality of our first hypothesis. We then tested the optimal energy budget models of each species by comparing leaf temperature and leaf width predicted by the models to measurements of each tree species. In red pine, sugar maple, and trembling aspen trees under high canopy coupling conditions, we found the hypothesized proportionality between high stomatal conductance and the sensitivity of stomatal conductance to vapor pressure deficit. In addition, the canopy conductance of trembling aspen was twice as high as sugar maple and the aspen trees showed much more variability.

  16. Regional climate modulates the canopy mosaic of favourable and risky microclimates for insects.

    PubMed

    Pincebourde, Sylvain; Sinoquet, Herve; Combes, Didier; Casas, Jerome

    2007-05-01

    1. One major gap in our ability to predict the impacts of climate change is a quantitative analysis of temperatures experienced by organisms under natural conditions. We developed a framework to describe and quantify the impacts of local climate on the mosaic of microclimates and physiological states of insects within tree canopies. This approach was applied to a leaf mining moth feeding on apple leaf tissues. 2. Canopy geometry was explicitly considered by mapping the 3D position and orientation of more than 26 000 leaves in an apple tree. Four published models for canopy radiation interception, energy budget of leaves and mines, body temperature and developmental rate of the leaf miner were integrated. Model predictions were compared with actual microclimate temperatures. The biophysical model accurately predicted temperature within mines at different positions within the tree crown. 3. Field temperature measurements indicated that leaf and mine temperature patterns differ according to the regional climatic conditions (cloudy or sunny) and depending on their location within the canopy. Mines in the sun can be warmer than those in the shade by several degrees and the heterogeneity of mine temperature was incremented by 120%, compared with that of leaf temperature. 4. The integrated model was used to explore the impact of both warm and exceptionally hot climatic conditions recorded during a heat wave on the microclimate heterogeneity at canopy scale. During warm conditions, larvae in sunlight-exposed mines experienced nearly optimal growth conditions compared with those within shaded mines. The developmental rate was increased by almost 50% in the sunny microhabitat compared with the shaded location. Larvae, however, experienced optimal temperatures for their development inside shaded mines during extreme climatic conditions, whereas larvae in exposed mines were overheating, leading to major risks of mortality. 5. Tree canopies act as both magnifiers and reducers of the climatic regime experienced in open air outside canopies. Favourable and risky spots within the canopy do change as a function of the climatic conditions at the regional scale. The shifting nature of the mosaic of suitable and risky habitats may explain the observed uniform distribution of leaf miners within tree canopies.

  17. Understory and small trees contribute importantly to stemflow of a lower montane cloud forest

    NASA Astrophysics Data System (ADS)

    González Martínez, T. M.; Wiliams-Linera, G.; Holwerda, F.

    2016-12-01

    Stemflow (Sf) measurements in rainforests and montane forests dominated by large trees rarely include the understory and small trees. In the present study, contributions of woody understory (> 1 m height and < 5 cm DBH), small trees (5 < DBH < 10 cm) and upper canopy trees (> 10 cm DBH) to overall Sf of a lower montane cloud forest in central Veracruz, Mexico, were quantified. Incident precipitation (P), Sf volume and vegetation structure were measured. Subsequently, stemflow funneling ratios (SFR) were calculated, and allometric relationships between tree basal area and Sf volume were used to scale up measurements from individual trees to the stand level. Additionally, two other common methods to calculate areal Sf were used for comparative purposes. Understory woody plants, small trees and upper canopy trees represented 96, 2 and 2 %, respectively, of the total density. Upper canopy trees had the lowest SFRs (1.6 ± 0.5 on average), while the lower understory (> 1 m and < 2 m height) had the highest (36.1 ± 6.4). Small trees and upper understory (> 2 m) presented similar SFRs (22.9 ± 5.4 and 20.2 ± 3.9, respectively). Different scaling methods yielded very similar results for all but the upper understory. Overall areal Sf during the study period was 19 mm (3.8 % of rainfall), to which the understory contributed 66.3 % (12.6 mm), small trees 12.6 % (2.4 mm) and upper canopy trees 21.1 % (4.0 mm). Our results suggest that woody understory vegetation and small trees can have an important role in Sf generation of tall humid tropical forests, provided that the density of plants in these groups is high enough.

  18. The water balance components of Mediterranean pine trees on a steep mountain slope during two hydrologically contrasting years

    NASA Astrophysics Data System (ADS)

    Eliades, Marinos; Bruggeman, Adriana; Lubczynski, Maciek W.; Christou, Andreas; Camera, Corrado; Djuma, Hakan

    2018-07-01

    Pines in semi-arid mountain environments manage to survive and thrive despite the limited soil water, due to shallow soil depths, and overall water scarcity. This study aims to develop a method for computing soil evaporation, bedrock water uptake and transpiration from a natural, open forest, based on sap flow (Heat Ratio Method), soil moisture and meteorological observations. The water balance of individual trees was conceptualized with a geometric approach, using canopy projected areas and Voronoi (Thiesen) polygons. The canopy approach assumes that the tree's root area extent is equal to its canopy projected area, while the Voronoi approach assumes that the tree roots exploit the open area that is closer to the tree than to any other tree. The methodology was applied in an open Pinus brutia forest (68% canopy cover) in Cyprus, characterized by steep slopes and fractured bedrock, during two hydrologically contrasting years (2015 wet, 2016 dry). Sap flow sensors, soil moisture sensors, throughfall and stemflow gauges were installed on and around eight trees. Rainfall was 507 mm in 2015 and 359 mm in 2016. According to the canopy approach, the sum of tree transpiration and soil evaporation exceeded the throughfall in both years, which implies that the trees' bedrock water uptake exceeds the surface runoff and drainage losses. This indicated that trees extend their roots beyond the canopy-projected areas and the use of the Voronoi polygons captures this effect. According to the stand scale water balance, average throughfall during the two years was 81% of the rainfall. Transpiration was 61% of the rainfall in 2015, but only 32% in 2016. On the contrary, the soil evaporation fraction increased from 26% in 2015 to 35% in the dry year of 2016. The contribution of bedrock water to tree transpiration was 77% of rainfall in 2015 and 66% in 2016. During the summer months, trees relied 100% on the uptake of water from the fractured bedrock to cover their transpiration needs. Average monthly transpiration areas ranged between 0.1 mm d-1 in October 2016 and 1.7 mm d-1 in April 2015. This study shows that bedrock uptake could be an essential water balance component of semi-arid, mountainous pine forests and should be accounted for in hydrologic models.

  19. Frankia and Alnus rubra canopy roots: an assessment of genetic diversity, propagule availability, and effects on soil nitrogen.

    PubMed

    Kennedy, Peter G; Schouboe, Jesse L; Rogers, Rachel H; Weber, Marjorie G; Nadkarni, Nalini M

    2010-02-01

    The ecological importance of microbial symbioses in terrestrial soils is widely recognized, but their role in soils that accumulate in forest canopies is almost entirely unknown. To address this gap, this study investigated the Frankia-Alnus rubra symbiosis in canopy and forest floor roots at Olympic National Park, WA, USA. Sixteen mature A. rubra trees were surveyed and Frankia genetic diversity in canopy and forest floor nodules was assessed with sequence-based nifH analyses. A seedling bioassay experiment was conducted to determine Frankia propagule availability in canopy and forest floor soils. Total soil nitrogen from both environments was also quantified. Nodules were present in the canopies of nine of the 16 trees sampled. Across the study area, Frankia canopy and forest floor assemblages were similar, with both habitats containing the same two genotypes. The composition of forest floor and canopy genotypes on the same tree was not always identical, however, suggesting that dispersal was not a strictly local phenomenon. Frankia seedling colonization was similar in canopy soils regardless of the presence of nodules as well as in forest floor soils, indicating that dispersal was not likely to be a major limiting factor. The total soil nitrogen of canopy soils was higher than that of forest floor soils, but the presence of Frankia nodules in canopy soils did not significantly alter soil nitrogen levels. Overall, this study indicates that the Frankia-A. rubra symbiosis is similar in canopy and forest floor environments. Because canopy roots are exposed to different environmental conditions within very small spatial areas and because those areas can be easily manipulated (e.g., fertilizer or watering treatments), they present microbial ecologists with a unique arena to examine root-microbe interactions.

  20. Methodology Investigation Characterization of Test Environment.

    DTIC Science & Technology

    1979-08-01

    canopy trees may be briefly deciduous, especially when flowering . Number of tree species is very large. Canopy: Trees 145 to 180 feet (45 to 55 m) tall...rooted palms are abundant. Shrub layer: Dwarf palms 5 to 8 feet (1.5 to 2.5 m) tall with undi- vided leaves usually abundant. Giant herbs with banana ...forest cover for agricultural purposes, corn and banana culture. These sites are now either abandoned or poorly maintained; in either case, tree

  1. The Effects of the Mountain Pine Beetle on Snow Accumulation and Melt Timing in the Headwaters of the Colorado River

    NASA Astrophysics Data System (ADS)

    Pugh, E. T.; Small, E. E.

    2010-12-01

    The high-elevation forests that are a primary source for Colorado’s domestic and agricultural water needs are changing rapidly due to an infestation by the mountain pine beetle (MPB). MPB are native to Colorado’s high elevation forests. However, the frequency of MPB infestation and resulting tree death has increased dramatically over the past 15 years. In Colorado, over 8,000 km2 of Lodgepole (Pinus contorta) and Ponderosa Pine (Pinus ponderosa) forest have been infested by MPB since 1996. It is predicted that the current epidemic will kill most of the pines in these areas; MPB are very destructive to forest canopies, often killing all of the overhead trees within lodgepole pine stands. Current widespread MPB outbreaks are not limited to Colorado; they are also impacting forests in much of the Western US and British Columbia, Canada. This study is focused on quantifying the impacts of widespread tree death on Colorado’s mountain snowpack. The data were collected one to three years after beetle infestation, at various stages of tree mortality. During the winters of 2009 and 2010, snowpack and meteorological properties were measured at eight pairs of dead and living lodgepole pine stands. All stands are located at an elevation of 2720 ± 32m, in a subalpine region along the headwaters of the Colorado River. Trees in living stands were generally smaller in diameter and more densely populated than trees in dead stands. In the red phase of tree death, snowpack accumulated equally beneath living and dead tree stands. Additionally, snow under all tree stands became isothermal on the same date regardless of mortality. However, the snow was depleted as much as one week earlier beneath red phase dead stands. Canopy transmission of solar radiation was not consistently different between living and red phase dead stands. We noted more ground litter in red phase dead stands which would decrease snowpack albedo and lead to the snowmelt differences observed. We also performed an albedo experiment to quantify the impact of surface litter on snow albedo. Results are also reported for more advanced grey phase dead stands. Lastly, we present a conceptual model of how the primary snow processes change with time as tree mortality progresses through various stages and introduce future work.

  2. Turbulent Flow Structure Inside a Canopy with Complex Multi-Scale Elements

    NASA Astrophysics Data System (ADS)

    Bai, Kunlun; Katz, Joseph; Meneveau, Charles

    2015-06-01

    Particle image velocimetry laboratory measurements are carried out to study mean flow distributions and turbulent statistics inside a canopy with complex geometry and multiple scales consisting of fractal, tree-like objects. Matching the optical refractive indices of the tree elements with those of the working fluid provides unobstructed optical paths for both illuminations and image acquisition. As a result, the flow fields between tree branches can be resolved in great detail, without optical interference. Statistical distributions of mean velocity, turbulence stresses, and components of dispersive fluxes are documented and discussed. The results show that the trees leave their signatures in the flow by imprinting wake structures with shapes similar to the trees. The velocities in both wake and non-wake regions significantly deviate from the spatially-averaged values. These local deviations result in strong dispersive fluxes, which are important to account for in canopy-flow modelling. In fact, we find that the streamwise normal dispersive flux inside the canopy has a larger magnitude (by up to four times) than the corresponding Reynolds normal stress. Turbulent transport in horizontal planes is studied in the framework of the eddy viscosity model. Scatter plots comparing the Reynolds shear stress and mean velocity gradient are indicative of a linear trend, from which one can calculate the eddy viscosity and mixing length. Similar to earlier results from the wake of a single tree, here we find that inside the canopy the mean mixing length decreases with increasing elevation. This trend cannot be scaled based on a single length scale, but can be described well by a model, which considers the coexistence of multi-scale branches. This agreement indicates that the multi-scale information and the clustering properties of the fractal objects should be taken into consideration in flows inside multi-scale canopies.

  3. Attaining the canopy in dry and moist tropical forests: strong differences in tree growth trajectories reflect variation in growing conditions.

    PubMed

    Brienen, Roel J W; Zuidema, Pieter A; Martínez-Ramos, Miguel

    2010-06-01

    Availability of light and water differs between tropical moist and dry forests, with typically higher understorey light levels and lower water availability in the latter. Therefore, growth trajectories of juvenile trees--those that have not attained the canopy--are likely governed by temporal fluctuations in light availability in moist forests (suppressions and releases), and by spatial heterogeneity in water availability in dry forests. In this study, we compared juvenile growth trajectories of Cedrela odorata in a dry (Mexico) and a moist forest (Bolivia) using tree rings. We tested the following specific hypotheses: (1) moist forest juveniles show more and longer suppressions, and more and stronger releases; (2) moist forest juveniles exhibit wider variation in canopy accession pattern, i.e. the typical growth trajectory to the canopy; (3) growth variation among dry forest juveniles persists over longer time due to spatial heterogeneity in water availability. As expected, the proportion of suppressed juveniles was higher in moist than in dry forest (72 vs. 17%). Moist forest suppressions also lasted longer (9 vs. 5 years). The proportion of juveniles that experienced releases in moist forest (76%) was higher than in dry forest (41%), and releases in moist forests were much stronger. Trees in the moist forest also had a wider variation in canopy accession patterns compared to the dry forest. Our results also showed that growth variation among juvenile trees persisted over substantially longer periods of time in dry forest (>64 years) compared to moist forest (12 years), most probably because of larger persistent spatial variation in water availability. Our results suggest that periodic increases in light availability are more important for attaining the canopy in moist forests, and that spatial heterogeneity in water availability governs long-term tree growth in dry forests.

  4. Change in hydraulic properties and leaf traits in a tall rainforest tree species subjected to long-term throughfall exclusion in the perhumid tropics

    NASA Astrophysics Data System (ADS)

    Schuldt, B.; Leuschner, C.; Horna, V.; Moser, G.; Köhler, M.; van Straaten, O.; Barus, H.

    2011-08-01

    A large-scale replicated throughfall exclusion experiment was conducted in a pre-montane perhumid rainforest in Sulawesi (Indonesia) exposing the trees for two years to pronounced soil desiccation. The lack of regularly occurring dry periods and shallow rooting patterns distinguish this experiment from similar experiments conducted in the Amazonian rainforest. We tested the hypotheses that a tree's sun canopy is more affected by soil drought than its shade crown, making tall trees particularly vulnerable even under a perhumid climate, and that extended drought periods stimulate an acclimation in the hydraulic system of the sun canopy. In the abundant and tall tree species Castanopsis acuminatissima (Fagaceae), we compared 31 morphological, anatomical, hydraulic and chemical variables of leaves, branches and the stem together with stem diameter growth between drought and control plots. There was no evidence of canopy dieback. However, the drought treatment led to a 30 % reduction in sapwood-specific hydraulic conductivity of sun canopy branches, possibly caused by the formation of smaller vessels and/or vessel filling by tyloses. Drought caused an increase in leaf size, but a decrease in leaf number, and a reduction in foliar calcium content. The δ13C and δ18O signatures of sun canopy leaves gave no indication of a permanent down-regulation of stomatal conductance during the drought, indicating that pre-senescent leaf shedding may have improved the water status of the remaining leaves. Annual stem diameter growth decreased during the drought, while the density of wood in the recently produced xylem increased in both the stem and sun canopy branches (marginally significant). The sun canopy showed a more pronounced drought response than the shade crown indicating that tall trees with a large sun canopy are more vulnerable to drought stress. We conclude that the extended drought prompted a number of medium- to long-term responses in the leaves, branches and the trunk, which may have reduced drought susceptibility. However, unlike a natural drought, our drought simulation experiment was carried out under conditions of high humidity, which may have dampened drought induced damages.

  5. Random forests and stochastic gradient boosting for predicting tree canopy cover: Comparing tuning processes and model performance

    Treesearch

    E. Freeman; G. Moisen; J. Coulston; B. Wilson

    2014-01-01

    Random forests (RF) and stochastic gradient boosting (SGB), both involving an ensemble of classification and regression trees, are compared for modeling tree canopy cover for the 2011 National Land Cover Database (NLCD). The objectives of this study were twofold. First, sensitivity of RF and SGB to choices in tuning parameters was explored. Second, performance of the...

  6. Evidence of hydraulic lift for pre-rainy season leaf out and dry-season stem water enrichment in Sclerocarya birrea, a tropical agroforestry tree

    NASA Astrophysics Data System (ADS)

    Ceperley, Natalie; Mande, Theophile; Rinaldo, Andrea; Parlange, Marc B.

    2014-05-01

    We use stable isotopes of water as tracers to follow water use by five Sclerocarya birrea trees in a catchment in South Eastern Burkina Faso interspersed with millet fields, gallery forest, Sudanian savanna, and fallow fields. Isotopic ratios were determined from water extracted from stems of the trees and sub-canopy soil of two of them, while nearby ground water, precipitation, and surface water was sampled weekly. A unique configuration of sensors connected with a wireless sensor network of meteorological stations measured sub-canopy shading, the temperature and humidity in the canopy, through-fall, and soil moisture under two of the trees. Both water extracted from sap and water extracted from soil is extremely enriched in the dry season, but drop to levels close to the ground water in February or March, which coincides with the growth of leaves. Dates of leaf out were confirmed by changes in δDH and δO18 concentrations of water, photographic documentation & pixel analysis, and analysis of sub-canopy radiation and proceeded the rise in humidity and flow that was later detected in the sub-canopy soil, the trunk of the tree (sap-flow), and atmosphere (canopy VPD). Examination of the isotopic signature suggests that size of tree plays an important role in duration and timing of this leaf-out as well as the degree of enrichment during the peak of the dry season. Further examination of the isotopic signatures of the roots suggested that the trees are performing hydraulic redistribution, or lifting the ground water and "sharing it" with the soil in the rooting zone in the dry season. The enriched level of xylem in this case is a product of water loss, and enrichment, along the travel path of the water from the roots to the tip of the stem, as evidenced by the variation according to size of tree. Vapor pressure deficit, soil water, and soil moisture interactions support this picture of interacting controls, separate from hydrologic triggers on the water movement in the tree.

  7. Microhabitats and canopy cover moderate high summer temperatures in a fragmented Mediterranean landscape.

    PubMed

    Keppel, Gunnar; Anderson, Sharolyn; Williams, Craig; Kleindorfer, Sonia; O'Connell, Christopher

    2017-01-01

    Extreme heat events will become more frequent under anthropogenic climate change, especially in Mediterranean ecosystems. Microhabitats can considerably moderate (buffer) the effects of extreme weather events and hence facilitate the persistence of some components of the biodiversity. We investigate the microclimatic moderation provided by two important microhabitats (cavities formed by the leaves of the grass-tree Xanthorrhoea semiplana F.Muell., Xanthorrhoeaceae; and inside the leaf-litter) during the summer of 2015/16 on the Fleurieu Peninsula of South Australia. We placed microsensors inside and outside these microhabitats, as well as above the ground below the forest canopy. Grass-tree and leaf-litter microhabitats significantly buffered against high temperatures and low relative humidity, compared to ground-below-canopy sensors. There was no significant difference between grass-tree and leaf-litter temperatures: in both microhabitats, daily temperature variation was reduced, day temperatures were 1-5°C cooler, night temperatures were 0.5-3°C warmer, and maximum temperatures were up to 14.4°C lower, compared to ground-below-canopy sensors. Grass-tree and leaf-litter microhabitats moderated heat increase at an average rate of 0.24°C temperature per 1°C increase of ambient temperature in the ground-below-canopy microhabitat. The average daily variation in temperature was determined by the type (grass-tree and leaf-litter versus ground-below-canopy) of microhabitat (explaining 67%), the amount of canopy cover and the area of the vegetation fragment (together explaining almost 10% of the variation). Greater canopy cover increased the amount of microclimatic moderation provided, especially in the leaf-litter. Our study highlights the importance of microhabitats in moderating macroclimatic conditions. However, this moderating effect is currently not considered in species distribution modelling under anthropogenic climate change nor in the management of vegetation. This shortcoming will have to be addressed to obtain realistic forecasts of future species distributions and to achieve effective management of biodiversity.

  8. Web-FACE: a new canopy free-air CO2 enrichment system for tall trees in mature forests.

    PubMed

    Pepin, Steeve; Körner, Christian

    2002-09-01

    The long-term responses of forests to atmospheric CO2 enrichment have been difficult to determine experimentally given the large scale and complex structure of their canopy. We have developed a CO2 exposure system that uses the free-air CO2 enrichment (FACE) approach but was designed for tall canopy trees. The system consists of a CO2-release system installed within the crown of adult trees using a 45-m tower crane, a CO2 monitoring system and an automated regulation system. Pure CO2 gas is released from a network of small tubes woven into the forest canopy (web-FACE), and CO2 is emitted from small laser-punched holes. The set point CO2 concentration ([CO2]) of 500 µmol mol(-1) is controlled by a pulse-width modulation routine that adjusts the rate of CO2 injection as a function of measured [CO2] in the canopy. CO2 consumption for the enrichment of 14 tall canopy trees was about 2 tons per day over the whole growing season. The seasonal daytime mean CO2 concentration was 520 µmol mol(-1). One-minute averages of CO2 measurements conducted at canopy height in the center of the CO2-enriched zone were within ±20% and ±10% of the target concentration for 76% and 47% of the exposure time, respectively. Despite the size of the canopy and the windy site conditions, performance values correspond to about 75% of that reported for conventional forest FACE with the added advantage of a much simpler and less intrusive infrastructure. Stable carbon isotope signals captured by 80 Bermuda grass (Cynodon dactylon) seedlings distributed within the canopy of treated and control tree districts showed a clearly delineated area, with some nearby individuals having been exposed to a gradient of [CO2], which is seen as added value. Time-integrated values of [CO2] derived from the C isotope composition of C. dactylon leaves indicated a mean (±SD) concentration of 513±63 µmol mol(-1) in the web-FACE canopy area. In view of the size of the forest and the rough natural canopy, web-FACE is a most promising avenue towards natural forest experiments, which are greatly needed.

  9. Facilitation or Competition? Tree Effects on Grass Biomass across a Precipitation Gradient

    PubMed Central

    Moustakas, Aristides; Kunin, William E.; Cameron, Tom C.; Sankaran, Mahesh

    2013-01-01

    Savanna ecosystems are dominated by two distinct plant life forms, grasses and trees, but the interactions between them are poorly understood. Here, we quantified the effects of isolated savanna trees on grass biomass as a function of distance from the base of the tree and tree height, across a precipitation gradient in the Kruger National Park, South Africa. Our results suggest that mean annual precipitation (MAP) mediates the nature of tree-grass interactions in these ecosystems, with the impact of trees on grass biomass shifting qualitatively between 550 and 737 mm MAP. Tree effects on grass biomass were facilitative in drier sites (MAP≤550 mm), with higher grass biomass observed beneath tree canopies than outside. In contrast, at the wettest site (MAP = 737 mm), grass biomass did not differ significantly beneath and outside tree canopies. Within this overall precipitation-driven pattern, tree height had positive effect on sub-canopy grass biomass at some sites, but these effects were weak and not consistent across the rainfall gradient. For a more synthetic understanding of tree-grass interactions in savannas, future studies should focus on isolating the different mechanisms by which trees influence grass biomass, both positively and negatively, and elucidate how their relative strengths change over broad environmental gradients. PMID:23451137

  10. Wind shear, sensible heat flux and atmospheric stability within a forest canopy

    NASA Astrophysics Data System (ADS)

    Piringer, M.; Polreich, E.

    2009-09-01

    The scientific project "ROSALIA”, carried out in co-operation between ZAMG and the Austrian Federal Research and Training Centre for Forests, Natural Hazards, and Landscape, investigated the meteorological impacts on pollen emission and spread in a typical Central European forest of mixed deciduous and coniferous trees. The study area is the "Lehrforst Rosalia” of BOKU University approx. 60 km south of the city of Vienna in undulating terrain (300 - 750 m altitude). In this area, two meteorological towers of similar construction, one at crest height, the other in the small valley of the river "Ofenbach” near a meteorological ground station, have been equipped with 3D ultrasonic anemometers: one has been placed on top of the upper tower to representatively measure the gradient flow; the tower in the valley has been equipped with 3 instruments, one at the lowermost platform near ground, the second in the middle of the forest canopy, the third on top of the tower situated within the transition zone between the canopy and the "free” boundary layer where the gradient winds dominate. The sonic anemometers measure the three-dimensional wind vector; in addition, the sound velocity is derived, from which the so-called "sonic temperature” is calculated to derive the sensible heat flux. Other quantities are the means, standard deviations, and covariances of the wind components and the momentum flux, the Monin-Obukhov stability parameter, and the friction velocity. In the sloping dense forest canopy surrounding the tower, complex meteorological conditions and frequent decoupling of above-canopy and within-canopy flow has to be expected. The presence of a thick leaf canopy results in a stronger decoupling between the flow above and inside the canopy. As the investigation period covers April and May 2009, this gives the opportunity to discern between leaf-off (at the beginning) and leaf-on periods, with a proposed increase in decoupling with time. The aim of the study is to derive characteristic patterns of wind and atmospheric stability within the forest canopy for leaf-off and leaf-on periods as well as for days of intense versus negligible pollen production.

  11. High within-canopy variation in isoprene emission potentials in temperate trees: Implications for predicting canopy-scale isoprene fluxes

    NASA Astrophysics Data System (ADS)

    Niinemets, ÜLo; Copolovici, Lucian; Hüve, Katja

    2010-12-01

    Isoprene emission potential (ES) varies in tree canopies, and such variations have potentially major implications for predicting canopy level emissions. So far, quantitative relationships of ES with irradiance are missing, and interspecific variation in ES plasticity and potential effects on canopy level emissions have not been characterized. ES, foliage structural, chemical, and photosynthetic characteristics were studied relative to integrated within-canopy daily quantum flux density (Qint) in temperate deciduous tree species Quercus robur, Populus tremula, Salix alba, and Salix caprea, and canopy isoprene emissions were calculated considering observed variation in ES and under different simplifying assumptions. Strong positive curvilinear relationships between nitrogen and dry mass per unit area, photosynthetic potentials and ES per area with Qint were observed. Structural, chemical, and photosynthetic traits varied 1.5-fold to 4-fold and ES per area 3-fold to 27-fold within the canopy. ES variation reflected accumulation of mesophyll cell layers and greater emission capacity of average cells. Species with largest structural and photosynthetic plasticity had greatest plasticity in ES. Relative to the simulation considering within-canopy variation in ES, the bias from assuming a constant ES varied between -8% and +68%, and it scaled positively with ES plasticity. The bias of big-leaf simulations varied between -22% and -35%, and it scaled negatively with ES plasticity. A generalized canopy response function of ES developed for all species resulted in the lowest bias between -11% and 6% and can be recommended for practical applications. The results highlight huge within-canopy and interspecific variation in ES and demonstrate that ignoring these variations strongly biases canopy emission predictions.

  12. Landscape-scale changes in forest canopy structure across a partially logged tropical peat swamp

    NASA Astrophysics Data System (ADS)

    Wedeux, B. M. M.; Coomes, D. A.

    2015-11-01

    Forest canopy structure is strongly influenced by environmental factors and disturbance, and in turn influences key ecosystem processes including productivity, evapotranspiration and habitat availability. In tropical forests increasingly modified by human activities, the interplay between environmental factors and disturbance legacies on forest canopy structure across landscapes is practically unexplored. We used airborne laser scanning (ALS) data to measure the canopy of old-growth and selectively logged peat swamp forest across a peat dome in Central Kalimantan, Indonesia, and quantified how canopy structure metrics varied with peat depth and under logging. Several million canopy gaps in different height cross-sections of the canopy were measured in 100 plots of 1 km2 spanning the peat dome, allowing us to describe canopy structure with seven metrics. Old-growth forest became shorter and had simpler vertical canopy profiles on deeper peat, consistent with previous work linking deep peat to stunted tree growth. Gap size frequency distributions (GSFDs) indicated fewer and smaller canopy gaps on the deeper peat (i.e. the scaling exponent of Pareto functions increased from 1.76 to 3.76 with peat depth). Areas subjected to concessionary logging until 2000, and illegal logging since then, had the same canopy top height as old-growth forest, indicating the persistence of some large trees, but mean canopy height was significantly reduced. With logging, the total area of canopy gaps increased and the GSFD scaling exponent was reduced. Logging effects were most evident on the deepest peat, where nutrient depletion and waterlogged conditions restrain tree growth and recovery. A tight relationship exists between canopy structure and peat depth gradient within the old-growth tropical peat swamp forest. This relationship breaks down after selective logging, with canopy structural recovery, as observed by ALS, modulated by environmental conditions. These findings improve our understanding of tropical peat swamp ecology and provide important insights for managers aiming to restore degraded forests.

  13. Albedo and its Relationship to Land Cover and the Urban Heat Island in the Boston Metropolitan Region

    NASA Astrophysics Data System (ADS)

    Trlica, A.; Hutyra, L.; Wang, J.; Schaaf, C.; Erb, A.

    2016-12-01

    The urban built environment creates key changes in the biophysical character of the landscape, including the creation of Urban Heat Islands (UHIs) with increased near-surface temperatures in and around cities. Alteration in surface albedo is believed to partially drive UHIs through greater absorption of solar energy, but few empirical studies have specifically quantified albedo across a heterogeneous urban landscape, or investigated linkages between albedo, the UHI, and other surface socio-biophysical characteristics at a high enough spatial resolution to discern urban-scale features. This study used data derived from observations by Landsat and other remote sensing platforms to measure albedo across a varied urban landscape centered on Boston, Massachusetts, and examined the relationship between albedo, several key indicators of urban surface character (canopy cover, impervious fraction, and population density) and land surface temperature at resolutions of both 30 and 500 m. Albedo tended to be lower in areas with highest urbanization intensity indicators compared to rural undeveloped areas, and areas with lower albedo tended also to have higher median daytime summer surface temperatures. A k-means classification utilizing all the data available for each pixel revealed several distinct patterns of urban land cover corresponding mainly to the density of population and constructed surfaces and their impact on tree canopy cover. Mean 30-m summer surface temperatures ranged from 40.0 °C (SD = 2.6) in urban core areas to 26.2 °C (SD = 1.1) in nearby forest, but we only observed correspondingly large albedo decreases in the highest density urban core, with mean albedo of 0.116 (SD = 0.015) compared with 0.155 (SD = 0.015) in forest. Observations show that lower albedo in the Boston metropolitan region may be an important component of the local UHI in the most densely built-up urban core regions, while the UHI temperature effect in less densely settled peripheral regions is more likely to be driven primarily by reduced evapotranspiration due to diminished tree canopy and greater impervious surface coverage. These results empirically characterize surface albedo across a suite of land cover categories and biophysical characteristics and reveal how albedo relates to surface temperatures in this urbanized region.

  14. The reflection for dense plant canopies from the one-angle radiative transfer equation

    NASA Technical Reports Server (NTRS)

    Ganapol, B. D.; Lawless, James G. (Technical Monitor)

    1994-01-01

    An essential component of remote sensing of vegetation canopies from satellites is fundamental understanding. Since passive remote is driven by photons, the modeling of photon interactions with vegetation is a basic building block in that understanding. Several such photon transport models have been developed during the past two decades and continue to be developed. Different approaches have been followed including monte carlo, radiosity methods, geometric shadowing, and radiative transfer. In general, each approach has application for canopies with specific attributes. This presentation concerns the application of radiative transfer to dense vegetation canopies in which the soil does not participate. The approach taken here is novel in that a consistent theory for photon transport for non-rotationally invariant leaf scattering is developed in a canopy with a general leaf angle distribution (LAD). The theory is limited to the one-angle approximation (azimuthally averaged radiance) and is based on Chandrasekhar's analytical theory. While such a model is admittedly only approximate, it does fulfill a unique function in our search for understanding. In particular, the model is simple in its construct yet contains the essential features of canopy architecture that are mainly responsible for observed responses. Thus, this model will not only be a predictive tool but also an educational one. The mathematical setting is the radiative transfer equation in a dense (semiinfinite) canopy. The leaf scattering phase function is assumed to be Lambertian with different reflectance and transmittance. In addition, abaxial and adaxial differentiation is allowed which effectively destroys optical reciprocity. The analytical solution for the canopy BRDF is obtained by manipulation of the integral transport equation (a la Chandrasekhar) for a general LAD. With discretization of the. leaf angle, the resulting set of integral equations are solved iteratively including an acceleration procedure when the single scatter albedo is near one (in the NIR). Results will be compared to the LARS soybean canopy radiances as well as to broadleaf results from a recent Ames experiment.

  15. Explaining biomass growth of tropical canopy trees: the importance of sapwood.

    PubMed

    van der Sande, Masha T; Zuidema, Pieter A; Sterck, Frank

    2015-04-01

    Tropical forests are important in worldwide carbon (C) storage and sequestration. C sequestration of these forests may especially be determined by the growth of canopy trees. However, the factors driving variation in growth among such large individuals remain largely unclear. We evaluate how crown traits [total leaf area, specific leaf area and leaf nitrogen (N) concentration] and stem traits [sapwood area (SA) and sapwood N concentration] measured for individual trees affect absolute biomass growth for 43 tropical canopy trees belonging to four species, in a moist forest in Bolivia. Biomass growth varied strongly among trees, between 17.3 and 367.3 kg year(-1), with an average of 105.4 kg year(-1). We found that variation in biomass growth was chiefly explained by a positive effect of SA, and not by tree size or other traits examined. SA itself was positively associated with sapwood growth, sapwood lifespan and basal area. We speculate that SA positively affects the growth of individual trees mainly by increasing water storage, thus securing water supply to the crown. These positive roles of sapwood on growth apparently offset the increased respiration costs incurred by more sapwood. This is one of the first individual-based studies to show that variation in sapwood traits-and not crown traits-explains variation in growth among tropical canopy trees. Accurate predictions of C dynamics in tropical forests require similar studies on biomass growth of individual trees as well as studies evaluating the dual effect of sapwood (water provision vs. respiratory costs) on tropical tree growth.

  16. Tree Canopy Cover Mapping Using LiDAR in Urban Barangays of Cebu City, Central Philippines

    NASA Astrophysics Data System (ADS)

    Ejares, J. A.; Violanda, R. R.; Diola, A. G.; Dy, D. T.; Otadoy, J. B.; Otadoy, R. E. S.

    2016-06-01

    This paper investigates tree canopy cover mapping of urban barangays (smallest administrative division in the Philippines) in Cebu City using LiDAR (Light Detection and Ranging). Object-Based Image Analysis (OBIA) was used to extract tree canopy cover. Multi-resolution segmentation and a series of assign-class algorithm in eCognition software was also performed to extract different land features. Contextual features of tree canopies such as height, area, roundness, slope, length-width and elliptic fit were also evaluated. The results showed that at the time the LiDAR data was collected (June 24, 2014), the tree cover was around 25.11 % (or 15,674,341.8 m2) of the city's urban barangays (or 62,426,064.6 m2). Among all urban barangays in Cebu City, Barangay Busay had the highest cover (55.79 %) while barangay Suba had the lowest (0.8 %). The 16 barangays with less than 10 % tree cover were generally located in the coastal area, presumably due to accelerated urbanization. Thirty-one barangays have tree cover ranging from 10.59--27.3 %. Only 3 barangays (i.e., Lahug, Talamban, and Busay) have tree cover greater than 30 %. The overall accuracy of the analysis was 96.6 % with the Kappa Index of Agreement or KIA of 0.9. From the study, a grouping can be made of the city's urban barangays with regards to tree cover. The grouping will be useful to urban planners not only in allocating budget to the tree planting program of the city but also in planning and creation of urban parks and playgrounds.

  17. Wood properties and trunk allometry of co-occurring rainforest canopy trees in a cyclone-prone environment.

    PubMed

    Read, Jennifer; Evans, Robert; Sanson, Gordon D; Kerr, Stuart; Jaffré, Tanguy

    2011-11-01

    New Caledonia commonly experiences cyclones, so trees there are expected to have enhanced wood traits and trunk allometry that confer resistance to wind damage. We ask whether there is evidence of a trade-off between these traits and growth rate among species. Wood traits, including density, microfibril angle (MFA), and modulus of elasticity (MOE), ratio of tree height to stem diameter, and growth rate were investigated in mature trees of 15 co-occurring canopy species in a New Caledonian rainforest. In contrast to some studies, wood density did not correlate negatively with growth increment. Among angiosperms, wood density and MOE correlated positively with diameter-adjusted tree height, and MOE correlated positively with stem-diameter growth increment. Tall slender trees achieved high stiffness with high efficiency with respect to wood density, in part by low MFA, and with a higher diameter growth increment but a lower buckling safety factor. However, some tree species of a similar niche differed in whole-tree resistance to wind damage and achieved wood stiffness in different ways. There was no evidence of a growth-safety trade-off in these trees. In forests that regularly experience cyclones, there may be stronger selection for high wood density and/or stiffness in fast-growing trees of the upper canopy, with the potential growth trade-off amortized by access to the upper canopy and by other plant traits. Furthermore, decreasing wood density does not necessarily decrease resistance to wind damage, resistance being influenced by other characteristics including cell-level traits (e.g., MFA) and whole-plant architecture.

  18. An application of the lottery competition model to a montane rainforest community of two canopy trees, ohia (Metrosideros polymorpha) and koa (Acacia koa) on Mauna Loa, Hawaii

    USGS Publications Warehouse

    Hatfield, J.S.; Link, W.A.; Dawson, D.K.; Lindquist, E.L.

    1992-01-01

    This rainforest occurs on Mauna Loa at 1500-2000 m elevation. Earthwatch volunteers, studying the habitat of 8 native forest bird species (3 endangered), identified 2382 living canopy trees, and 99 dead trees, on 68 study plots, 400 m2 each. Ohia made up 88% of the canopy; koa was 12%. The two-species lottery competition model, a stochastic model in which coexistence of species results from variation in recruitment and death rates, predicts a quadratic-beta distribution for the proportion of space occupied by one species. A discrete version was fit to the live tree data and a likelihood ratio test (p=0.02) was used to test if the mean death rates were equal. This test was corroborated by a contingency table analysis (p=0.03) based on dead trees. Parameter estimates from the two analyses were similar.

  19. Behavioral activities of male Cerulean Warblers in relation to habitat characteristics

    USGS Publications Warehouse

    Wood, Petra Bohall; Perkins, Kelly A.

    2012-01-01

    Activities of 29 male Cerulean Warblers (Setophaga cerulea) were quantified on two sites in West Virginia during May–June 2005. Singing and foraging were the most common of 11 observed behavioral activities (81.6%), while maintenance and mating behaviors were uncommonly observed. Male activity differed among vegetative strata (P  =  0.02) with lower- and mid-canopy strata used most often (70% of observations), especially for foraging, perching, and preening. The upper-canopy was used primarily for singing, particularly within core areas of territories and in association with canopy gaps. Foraging occurred more than expected outside of core areas. Males were associated with canopy gaps during 30% of observations, but the distribution of behavioral activities was not significantly related (P  =  0.06) to gap presence. Males used 23 different tree species for a variety of activities with oaks (Quercus spp.) used most often on the xeric site and black cherry (Prunus serotina) and black locust (Robinia pseudoacacia) on the mesic site. Tree species used for singing differed between core and non-core areas (P < 0.0001) but distribution of singing and foraging activity did not differ among tree species (P  =  0.13). Cerulean Warblers appear to be flexible in use of tree species. Their use of different canopy strata for different behavioral activities provides an explanation for the affinity this species exhibits for a vertically stratified forest canopy.

  20. Measurement of tree canopy architecture

    NASA Technical Reports Server (NTRS)

    Martens, S. N.; Ustin, S. L.; Norman, J. M.

    1991-01-01

    The lack of accurate extensive geometric data on tree canopies has retarded development and validation of radiative transfer models. A stratified sampling method was devised to measure the three-dimensional geometry of 16 walnut trees which had received irrigation treatments of either 100 or 33 per cent of evapotranspirational (ET) demand for the previous two years. Graphic reconstructions of the three-dimensional geometry were verified by 58 independent measurements. The distributions of stem- and leaf-size classes, lengths, and angle classes were determined and used to calculate leaf area index (LAI), stem area, and biomass. Reduced irrigation trees have lower biomass of stems, leaves and fruit, lower LAI, steeper leaf angles and altered biomass allocation to large stems. These data can be used in ecological models that link canopy processes with remotely sensed measurements.

  1. Mapping Urban Tree Canopy Coverage and Structure using Data Fusion of High Resolution Satellite Imagery and Aerial Lidar

    NASA Astrophysics Data System (ADS)

    Elmes, A.; Rogan, J.; Williams, C. A.; Martin, D. G.; Ratick, S.; Nowak, D.

    2015-12-01

    Urban tree canopy (UTC) coverage is a critical component of sustainable urban areas. Trees provide a number of important ecosystem services, including air pollution mitigation, water runoff control, and aesthetic and cultural values. Critically, urban trees also act to mitigate the urban heat island (UHI) effect by shading impervious surfaces and via evaporative cooling. The cooling effect of urban trees can be seen locally, with individual trees reducing home HVAC costs, and at a citywide scale, reducing the extent and magnitude of an urban areas UHI. In order to accurately model the ecosystem services of a given urban forest, it is essential to map in detail the condition and composition of these trees at a fine scale, capturing individual tree crowns and their vertical structure. This paper presents methods for delineating UTC and measuring canopy structure at fine spatial resolution (<1m). These metrics are essential for modeling the HVAC benefits from UTC for individual homes, and for assessing the ecosystem services for entire urban areas. Such maps have previously been made using a variety of methods, typically relying on high resolution aerial or satellite imagery. This paper seeks to contribute to this growing body of methods, relying on a data fusion method to combine the information contained in high resolution WorldView-3 satellite imagery and aerial lidar data using an object-based image classification approach. The study area, Worcester, MA, has recently undergone a large-scale tree removal and reforestation program, following a pest eradication effort. Therefore, the urban canopy in this location provides a wide mix of tree age class and functional type, ideal for illustrating the effectiveness of the proposed methods. Early results show that the object-based classifier is indeed capable of identifying individual tree crowns, while continued research will focus on extracting crown structural characteristics using lidar-derived metrics. Ultimately, the resulting fine resolution UTC map will be compared with previously created UTC maps of the same area but for earlier dates, producing a canopy change map corresponding to the Worcester area tree removal and replanting effort.

  2. Canopy gaps affect long-term patterns of tree growth and mortality in mature and old-growth forests in the Pacific Northwest

    Treesearch

    Andrew N. Gray; Thomas A. Spies; Robert J. Pabst

    2012-01-01

    Canopy gaps created by tree mortality can affect the speed and trajectory of vegetation growth. Species’ population dynamics, and spatial heterogeneity in mature forests. Most studies focus on plant development within gaps, yet gaps also affect the mortality and growth of surrounding trees, which influence shading and root encroachment into gaps and determine whether,...

  3. Using laser altimetry-based segmentation to refine automated tree identification in managed forests of the Black Hills, South Dakota

    Treesearch

    Eric Rowell; Carl Selelstad; Lee Vierling; Lloyd Queen; Wayne Sheppard

    2006-01-01

    The success of a local maximum (LM) tree detection algorithm for detecting individual trees from lidar data depends on stand conditions that are often highly variable. A laser height variance and percent canopy cover (PCC) classification is used to segment the landscape by stand condition prior to stem detection. We test the performance of the LM algorithm using canopy...

  4. The relationship between tree canopy and crime rates across an urban-rural gradient in the greater Baltimore region

    Treesearch

    Austin Troy; J. Morgan Grove; Jarlath O' Neill-Dunne

    2012-01-01

    The extent to which urban tree cover influences crime is in debate in the literature. This research took advantage of geocoded crime point data and high resolution tree canopy data to address this question in Baltimore City and County, MD, an area that includes a significant urban-rural gradient. Using ordinary least squares and spatially adjusted regression and...

  5. Taxonomic identity determines N2 fixation by canopy trees across lowland tropical forests.

    PubMed

    Wurzburger, Nina; Hedin, Lars O

    2016-01-01

    Legumes capable of fixing atmospheric N2 are abundant and diverse in many tropical forests, but the factors determining ecological patterns in fixation are unresolved. A long-standing idea is that fixation depends on soil nutrients (N, P or Mo), but recent evidence shows that fixation may also differ among N2-fixing species. We sampled canopy-height trees across five species and one species group of N2-fixers along a landscape P gradient, and manipulated P and Mo to seedlings in a shadehouse. Our results identify taxonomy as the major determinant of fixation, with P (and possibly Mo) only influencing fixation following tree-fall disturbances. While 44% of trees did not fix N2, other trees fixed at high rates, with two species functioning as superfixers across the landscape. Our results raise the possibility that fixation is determined by biodiversity, evolutionary history and species-specific traits (tree growth rate, canopy stature and response to disturbance) in the tropical biome. © 2015 John Wiley & Sons Ltd/CNRS.

  6. UAV hyperspectral and lidar data analysis for vegetation applications

    NASA Astrophysics Data System (ADS)

    Sankey, Temuulen; Sankey, Joel; Donager, Jonathon

    2017-04-01

    High spatial and spectral resolution remote sensing data are critically needed to classify forest vegetation and measure their structure at the level of individual species and canopies. Here we test high-resolution lidar and hyperspectral data from unmanned aerial vehicles (UAV) and demonstrate a lidar-hyperspectral image fusion method in treated and control forests with varying tree density and canopy cover as well as in an ecotone with a gradient of vegetation and topography in northern Arizona, USA. The fusion performs better (88% overall accuracy) than either data type alone, particularly for species with similar spectral signature, but different canopy sizes. The lidar data provides estimates of individual tree height (R2=0.90; RMSE=2.3m) and crown diameter (R2=0.72; RMSE=0.71m) as well as total tree canopy cover (R2=0.87; RMSE=9.5%) and tree density (R2=0.77; RMSE=0.69 trees/cell) in 10 m cells across thin only, burn only, thin-and-burn, and control treatments, where tree cover and density ranged between 22-50% and 1-3.5 trees/cell, respectively. The lidar data also produces high accuracy DEM (R2=0.95; RMSE=0.43m). The lidar and hyperspectral sensors and methods demonstrated here can be widely applied across a gradient of vegetation and topography for monitoring ecosystem changes.

  7. BOREAS TE-18 GeoSail Canopy Reflectance Model

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Huemmrich, K. Fred

    2000-01-01

    The SAIL (Scattering from Arbitrarily Inclined Leaves) model was combined with the Jasinski geo metric model to simulate canopy spectral reflectance and absorption of photosynthetically active radiation for discontinuous canopies. This model is called the GeoSail model. Tree shapes are described by cylinders or cones distributed over a plane. Spectral reflectance and transmittance of trees are calculated from the SAIL model to determine the reflectance of the three components used in the geometric model: illuminated canopy, illuminated background, shadowed canopy, and shadowed background. The model code is Fortran. sample input and output data are provided in ASCII text files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Activity Archive Center (DAAC).

  8. Evaluation of a laser scanning sensor for variable-rate tree sprayer development

    USDA-ARS?s Scientific Manuscript database

    Accurate canopy measurement capabilities are prerequisites to automate variable-rate sprayers. A 270° radial range laser scanning sensor was tested for its scanning accuracy to detect tree canopy profiles. Signals from the laser sensor and a ground speed sensor were processed with an embedded comput...

  9. Sub-Pixel Mapping of Tree Canopy, Impervious Surfaces, and Cropland in the Laurentian Great Lakes Basin Using MODIS Time-Series Data

    EPA Science Inventory

    This research examined sub-pixel land-cover classification performance for tree canopy, impervious surface, and cropland in the Laurentian Great Lakes Basin (GLB) using both timeseries MODIS (MOderate Resolution Imaging Spectroradiometer) NDVI (Normalized Difference Vegetation In...

  10. Canopy Height and Vertical Structure from Multibaseline Polarimetric InSAR: First Results of the 2016 NASA/ESA AfriSAR Campaign

    NASA Astrophysics Data System (ADS)

    Lavalle, M.; Hensley, S.; Lou, Y.; Saatchi, S. S.; Pinto, N.; Simard, M.; Fatoyinbo, T. E.; Duncanson, L.; Dubayah, R.; Hofton, M. A.; Blair, J. B.; Armston, J.

    2016-12-01

    In this paper we explore the derivation of canopy height and vertical structure from polarimetric-interferometric SAR (PolInSAR) data collected during the 2016 AfriSAR campaign in Gabon. AfriSAR is a joint effort between NASA and ESA to acquire multi-baseline L- and P-band radar data, lidar data and field data over tropical forests and savannah sites to support calibration, validation and algorithm development in preparation for the NISAR, GEDI and BIOMASS missions. Here we focus on the L-band UAVSAR dataset acquired over the Lope National Park in Central Gabon to demonstrate mapping of canopy height and vertical structure using PolInSAR and tomographic techniques. The Lope site features a natural gradient of forest biomass from the forest-savanna boundary (< 100 Mg/ha) to dense undisturbed humid tropical forests (> 400 Mg/ha). Our dataset includes 9 long-baseline, full-polarimetric UAVSAR acquisitions along with field and lidar data from the Laser Vegetation Ice Sensor (LVIS). We first present a brief theoretical background of the PolInSAR and tomographic techniques. We then show the results of our PolInSAR algorithms to create maps of canopy height generated via inversion of the random-volume-over-ground (RVOG) and random-motion-over-ground (RVoG) models. In our approach multiple interferometric baselines are merged incoherently to maximize the interferometric sensitivity over a broad range of tree heights. Finally we show how traditional tomographic algorithms are used for the retrieval of the full vertical canopy profile. We compare our results from the different PolInSAR/tomographic algorithms to validation data derived from lidar and field data.

  11. Effects of the Interception of Litterfall by the Understory on Carbon Cycling in Eucalyptus Plantations of South China

    PubMed Central

    Huang, Yuhui; Hui, Dafeng; Wen, Meili

    2014-01-01

    For the purposes of forest restoration, carbon (C) fixation, and economic improvement, eucalyptus (Eucalyptus urophylla) has been widely planted in South China. The understory of eucalyptus plantations is often occupied by a dense community of the fern Dicranopteris dichotoma, which intercepts tree canopy leaf litter before it reaches the ground. To understand the effects of this interception of litterfall on C cycling in eucalyptus plantations, we quantified the mass of intercepted litter and the influences of litterfall interception on litter decomposition and soil respiration. The total mass of E. urophylla litterfall collected on the understory was similar to that collected by the traditional litter trap method. All of the eucalyptus litterfall is intercepted by the D. dichotoma canopy. Of the litterfall that was intercepted by D. dichotoma, 20–40% and 60–80% was intercepted by the top (50–100 cm) and bottom (0–50 cm) of the understory canopy, respectively. Intercepted litterfall decomposed faster at the bottom of understory canopy (at the base of the plants) than at the top, and decomposition was slower on the soil surface in the absence of understory than on any location in the understory canopy. Soil respiration was highest when both the understory and litter were present and was lowest when both the understory and litter were absent. These results indicate that litterfall interception changed carbon flow between aboveground and belowground through litter decomposition and soil respiration, which changed carbon cycling in eucalyptus plantations. The effects of the understory on litter decomposition and soil respiration should be considered in ecosystem carbon models. PMID:24959853

  12. Tree Mortality Decreases Water Availability and Ecosystem Resilience to Drought in Piñon-Juniper Woodlands in the Southwestern U.S.: Tree Mortality in Semiarid Biomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morillas, L.; Pangle, R. E.; Maurer, G. E.

    Climate-driven tree mortality has increased globally in response to warmer temperature and more severe drought. To examine how tree mortality in semi-arid biomes impacts surface water balance, we experimentally manipulated a piñon-juniper (PJ) woodland by girdling all adult piñon trees in a 4 ha area, decreasing piñon basal area by ~65%. Over 3.5 years (2009-2013), we compared water flux measurements from this girdled site with those from a nearby intact PJ woodland. Before and after girdling, the ratio of evapotranspiration (ET) to incoming precipitation was similar between the two sites. Girdling altered the partitioning of ET such that the contributionmore » of canopy transpiration to ET decreased 9-14% over the study period, relative to the intact control, while non-canopy ET increased. We attributed the elevated non-canopy ET in the girdled site each year to winter increases in sublimation, and summer increases in both soil evaporation and below-canopy transpiration. Although we expected that mortality of a canopy dominant would increase the availability of water and other resources to surviving vegetation, we observed a decrease in both soil volumetric water content and sap flow rates in the remaining trees at the girdled site, relative to the control. This post-girdling decrease in the performance of the remaining trees occurred during the severe 2011-2012 drought, suggesting that piñon mortality may trigger feedback mechanisms that leave PJ woodlands drier relative to undisturbed sites, and potentially more vulnerable to drought.« less

  13. Variation in woody plant mortality and dieback from severe drought among soils, plant groups, and species within a northern Arizona ecotone.

    PubMed

    Koepke, Dan F; Kolb, Thomas E; Adams, Henry D

    2010-08-01

    Vegetation change from drought-induced mortality can alter ecosystem community structure, biodiversity, and services. Although drought-induced mortality of woody plants has increased globally with recent warming, influences of soil type, tree and shrub groups, and species are poorly understood. Following the severe 2002 drought in northern Arizona, we surveyed woody plant mortality and canopy dieback of live trees and shrubs at the forest-woodland ecotone on soils derived from three soil parent materials (cinder, flow basalt, sedimentary) that differed in texture and rockiness. Our first of three major findings was that soil parent material had little effect on mortality of both trees and shrubs, yet canopy dieback of trees was influenced by parent material; dieback was highest on the cinder for pinyon pine (Pinus edulis) and one-seed juniper (Juniperus monosperma). Ponderosa pine (Pinus ponderosa) dieback was not sensitive to parent material. Second, shrubs had similar mortality, but greater canopy dieback, than trees. Third, pinyon and ponderosa pines had greater mortality than juniper, yet juniper had greater dieback, reflecting different hydraulic characteristics among these tree species. Our results show that impacts of severe drought on woody plants differed among tree species and tree and shrub groups, and such impacts were widespread over different soils in the southwestern U.S. Increasing frequency of severe drought with climate warming will likely cause similar mortality to trees and shrubs over major soil types at the forest-woodland ecotone in this region, but due to greater mortality of other tree species, tree cover will shift from a mixture of species to dominance by junipers and shrubs. Surviving junipers and shrubs will also likely have diminished leaf area due to canopy dieback.

  14. Environmental tolerance of an invasive riparian tree and its potential for continued spread in the southwestern US

    USGS Publications Warehouse

    Reynolds, L.V.; Cooper, D.J.

    2010-01-01

    Questions: Exotic plant invasion may be aided by facilitation and broad tolerance of environmental conditions, yet these processes are poorly understood in species-rich ecosystems such as riparian zones. In the southwestern United States (US) two plant species have invaded riparian zones: tamarisk (Tamarix ramosissima, T. chinensis, and their hybrids) and Russian olive (Elaeagnus angustifolia). We addressed the following questions: (1) is Russian olive able to tolerate drier and shadier conditions than cottonwood and tamarisk? (2) Can tamarisk and cottonwood facilitate Russian olive invasion? Location: Arid riparian zones, southwestern US. Methods: We analyzed riparian tree seedling requirements in a controlled experiment, performed empirical field studies, and analyzed stable oxygen isotopes to determine the water sources used by Russian olive. Results: Russian olive survival was significantly higher in dense shade and low moisture conditions than tamarisk and cottonwood. Field observations indicated Russian olive established where flooding cannot occur, and under dense canopies of tamarisk, cottonwood, and Russian olive. Tamarisk and native riparian plant species seedlings cannot establish in these dry, shaded habitats. Russian olive can rely on upper soil water until 15 years of age, before utilizing groundwater. Conclusions: We demonstrate that even though there is little evidence of facilitation by cottonwood and tamarisk, Russian olive is able to tolerate dense shade and low moisture conditions better than tamarisk and cottonwood. There is great potential for continued spread of Russian olive throughout the southwestern US because large areas of suitable habitat exist that are not yet inhabited by this species. ?? 2010 International Association for Vegetation Science.

  15. Allometric constraints to inversion of canopy structure from remote sensing

    NASA Astrophysics Data System (ADS)

    Wolf, A.; Berry, J. A.; Asner, G. P.

    2008-12-01

    Canopy radiative transfer models employ a large number of vegetation architectural and leaf biochemical attributes. Studies of leaf biochemistry show a wide array of chemical and spectral diversity that suggests that several leaf biochemical constituents can be independently retrieved from multi-spectral remotely sensed imagery. In contrast, attempts to exploit multi-angle imagery to retrieve canopy structure only succeed in finding two or three of the many unknown canopy arhitectural attributes. We examine a database of over 5000 destructive tree harvests from Eurasia to show that allometry - the covariation of plant form across a broad range of plant size and canopy density - restricts the architectural diversity of plant canopies into a single composite variable ranging from young canopies with many short trees with small crowns to older canopies with fewer trees and larger crowns. Moreover, these architectural attributes are closely linked to biomass via allometric constraints such as the "self-thinning law". We use the measured variance and covariance of plant canopy architecture in these stands to drive the radiative transfer model DISORD, which employs the Li-Strahler geometric optics model. This correlations introduced in the Monte Carlo study are used to determine which attributes of canopy architecture lead to important variation that can be observed by multi-angle or multi-spectral satellite observations, using the sun-view geometry characteristic of MODIS observations in different biomes located at different latitude bands. We conclude that although multi-angle/multi-spectral remote sensing is only sensitive to some of the many unknown canopy attributes that ecologists would wish to know, the strong allometric covariation between these attributes and others permits a large number of inferrences, such as forest biomass, that will be meaningful next-generation vegetation products useful for data assimilation.

  16. The symbiotic relationship between dominant canopy trees and soil microbes affects the nitrogen source utilization of co-existing understory trees

    NASA Astrophysics Data System (ADS)

    Iwaoka, C.; Hyodo, F.; Taniguchi, T.; Shi, W.; Du, S.; Yamanaka, N.; Tateno, R.

    2017-12-01

    The symbiotic relationship between dominant canopy trees and soil microbes such as mycorrhiza or nitrogen (N) fixer are important determinants of soil N dynamics of a forest. However, it is not known how and to what extent the symbiotic relationship of dominant canopy trees with soil microbes affect the N source of co-existing trees in forest. We measured the δ15N of surface soils (0-10 cm), leaves, and roots of the dominant canopy trees and common understory trees in an arbuscular mycorrhizal N-fixing black locust (Robinia pseudoacacia) plantation and an ectomycorrhizal oak (Quercus liaotungensis) natural forest in a China dryland. We also analyzed the soil dissolved N content in soil extracts and absorbed by ion exchange resin, and soil ammonia-oxidizer abundance using real-time PCR. The δ15N of soil and leaves were higher in the black locust forest than in the oak forest, although the δ15N of fine roots was similar in the two forests, in co-existing understory trees as well as dominant canopy trees. Accordingly, the δ15N of leaves was similar to or higher than that of fine roots in the black locust forest, whereas it was consistently lower than that of fine roots in the oak forest. In the black locust forest, the soil dissolved organic N and ammonium N contents were less abundant but the nitrate N contents in soils and absorbed by the ion exchange resin and ammonia-oxidizer abundance were greater, due to N fixation or less uptake of organic N from arbuscular mycorrhiza. In contrast, the soil dissolved organic N and ammonium N contents were more abundant in the oak forest, whereas the N content featured very low nitrate, due to ectomycorrhizal ability to access organic N. These results suggest that the main N source is nitrate N in the black locust forest, but dissolved organic N or ammonium N in the oak forest. N fixation or high N loss due to high N availability would cause high δ15N in soil and leaves in black locust forest. On the other hand, low soil N availability in the oak forest may make 15N fractionation more active in roots via mycorrhizal association, resulting in higher δ15N in fine roots than in leaves. In conclusion, the symbiotic relationship between dominant canopy trees and soil microbes affected the N source of not only the dominant trees but also co-existing understory trees via the control of soil N dynamics.

  17. Components of ecosystem evaporation in a temperate coniferous rainforest, with canopy transpiration scaled using sapwood density.

    PubMed

    Barbour, M M; Hunt, J E; Walcroft, A S; Rogers, G N D; McSeveny, T M; Whitehead, D

    2005-02-01

    Here we develop and test a method to scale sap velocity measurements from individual trees to canopy transpiration (E(c)) in a low-productivity, old-growth rainforest dominated by the conifer Dacrydium cupressinum. Further, E(c) as a component of the ecosystem water balance is quantified in relation to forest floor evaporation rates and measurements of ecosystem evaporation using eddy covariance (E(eco)) in conditions when the canopy was dry and partly wet. Thermal dissipation probes were used to measure sap velocity of individual trees, and scaled to transpiration at the canopy level by dividing trees into classes based on sapwood density and canopy position (sheltered or exposed). When compared with ecosystem eddy covariance measurements, E(c) accounted for 51% of E(eco) on dry days, and 22% of E(eco) on wet days. Low transpiration rates, and significant contributions to E(eco) from wet canopy evaporation and understorey transpiration (35%) and forest floor evaporation (25%), were attributable to the unique characteristics of the forest: in particular, high rainfall, low leaf area index, low stomatal conductance and low productivity associated with severe nutrient limitation.

  18. Forest canopy structural properties. Chapter 14

    Treesearch

    Marie-Louise Smith; Jeanne Anderson; Matthew Fladeland

    2008-01-01

    The forest canopy is the interface between the land and the atmosphere, fixing atmospheric carbon into biomass and releasing oxygen and water. The arrangement of individual trees, differences in species morphology, the availability of light and soil nutrients, and many other factors determine canopy structure. Overviews of approaches for basic measurements of canopy...

  19. Response of birds to thinning young Douglas-fir forests

    USGS Publications Warehouse

    Hayes, John P.; Weikel, Jennifer M.; Huso, Manuela M. P.; Erickson, Janet L.

    2003-01-01

    As a result of recent fire history and decades of even-aged forest management, many coniferous forests in western Oregon are composed of young (20-50 yrs), densely stocked Douglas-fir stands. Often these stands are structurally simple - a single canopy layer with one or two overstory tree species - and have a relatively sparse understory. The lack of structural complexity in these stands may limit the availability of key habitat components for several species of vertebrates, including birds. Thinning may increase structural diversity by reducing competition among overstory trees and increasing the amount of sunlight reaching the forest floor, thereby increasing development of understory vegetation. Existing old-growth forests may have developed under lower densities than is typical of contemporary plantations. Thus, thinning also may be a tool for accelerating the development of late-successional forest conditions in some circumstances. In addition to the potential increases in structural and biological diversity, thinning frequently is used to optimize wood fiber production and to generate timber revenue.

  20. Extracting forest canopy structure from spatial information of high resolution optical imagery: tree crown size versus leaf area index

    Treesearch

    C. Song; M.B. Dickinson

    2008-01-01

    Leaves are the primary interface where energy, water and carbon exchanges occur between the forest ecosystems and the atmosphere. Leaf area index (LAI) is a measure of the amount of leaf area in a stand, and the tree crown size characterizes how leaves are clumped in the canopy. Both LAI and tree crown size are of essential ecological and management value. There is a...

  1. Remote measurement of canopy water content in giant sequoias (Sequoiadendron giganteum) during drought

    USGS Publications Warehouse

    Martin, Roberta E.; Asner, Gregory P.; Francis, Emily; Ambrose, Anthony; Baxter, Wendy; Das, Adrian J.; Vaughn, Nicolas R.; Paz-Kagan, Tarin; Dawson, Todd E.; Nydick, Koren R.; Stephenson, Nathan L.

    2018-01-01

    California experienced severe drought from 2012 to 2016, and there were visible changes in the forest canopy throughout the State. In 2014, unprecedented foliage dieback was recorded in giant sequoia (Sequoiadendron giganteum) trees in Sequoia National Park, in the southern California Sierra Nevada mountains. Although visible changes in sequoia canopies can be recorded, biochemical and physiological responses to drought stress in giant sequoia canopies are not well understood. Ground-based measurements provide insight into the mechanisms of drought responses in trees, but are often limited to few individuals, especially in trees of tall stature such as giant sequoia. Recent studies demonstrate that remotely measured forest canopy water content (CWC) is a general indicator of canopy response to drought, but the underpinning leaf- to canopy-level causes of observed variation in CWC remain poorly understood. We combined field and airborne remote sensing measurements taken in 2015 and 2016 to assess the biophysical responses of giant sequoias to drought. In 49 study trees, CWC was related to leaf water potential, but not to the other foliar traits, suggesting that changes in CWC were made at whole-canopy rather than leaf scales. We found a non-random, spatially varying pattern in mapped CWC, with lower CWC values at lower elevation and along the outer edges of the groves. This pattern was also observed in empirical measurements of foliage dieback from the ground, and in mapped CWC across multiple sequoia groves in this region, supporting the hypothesis that drought stress is expressed in canopy-level changes in giant sequoias. The fact that we can clearly detect a relationship between CWC and foliage dieback, even without taking into account prior variability or new leaf growth, strongly suggests that remotely sensed CWC, and changes in CWC, are a useful measure of water stress in giant sequoia, and valuable for assessing and managing these iconic forests in drought.

  2. Drying of Floodplain Forests Associated with Water-Level Decline in the Apalachicola River, Florida - Interim Results, 2006

    USGS Publications Warehouse

    Darst, Melanie R.; Light, Helen M.

    2007-01-01

    Floodplain forests of the Apalachicola River, Florida, are drier in composition today (2006) than they were before 1954, and drying is expected to continue for at least the next 50 years. Drier forest composition is probably caused by water-level declines that occurred as a result of physical changes in the main channel after 1954 and decreased flows in spring and summer months since the 1970s. Forest plots sampled from 2004 to 2006 were compared to forests sampled in the late 1970s (1976-79) using a Floodplain Index (FI) based on species dominance weighted by the Floodplain Species Category, a value that represents the tolerance of tree species to inundation and saturation in the floodplain and consequently, the typical historic floodplain habitat for that species. Two types of analyses were used to determine forest changes over time: replicate plot analysis comparing present (2004-06) canopy composition to late 1970s canopy composition at the same locations, and analyses comparing the composition of size classes of trees on plots in late 1970s and in present forests. An example of a size class analysis would be a comparison of the composition of the entire canopy (all trees greater than 7.5 cm (centimeter) diameter at breast height (dbh)) to the composition of the large canopy tree size class (greater than or equal to 25 cm dbh) at one location. The entire canopy, which has a mixture of both young and old trees, is probably indicative of more recent hydrologic conditions than the large canopy, which is assumed to have fewer young trees. Change in forest composition from the pre-1954 period to approximately 2050 was estimated by combining results from three analyses. The composition of pre-1954 forests was represented by the large canopy size class sampled in the late 1970s. The average FI for canopy trees was 3.0 percent drier than the average FI for the large canopy tree size class, indicating that the late 1970s forests were 3.0 percent drier than pre-1954 forests. The change from the late 1970s to the present was based on replicate plot analysis. The composition of 71 replicate plots sampled from 2004 to 2006 averaged 4.4 percent drier than forests sampled in the late 1970s. The potential composition of future forests (2050 or later) was estimated from the composition of the present subcanopy tree size class (less than 7.5 cm and greater than or equal to 2.5 cm dbh), which contains the greatest percentage of young trees and is indicative of recent hydrologic conditions. Subcanopy trees are the driest size class in present forests, with FIs averaging 31.0 percent drier than FIs for all canopy trees. Based on results from all three sets of data, present floodplain forests average 7.4 percent drier in composition than pre-1954 forests and have the potential to become at least 31.0 percent drier in the future. An overall total change in floodplain forests to an average composition 38.4 percent drier than pre-1954 forests is expected within approximately 50 years. The greatest effects of water-level decline have occurred in tupelo-cypress swamps where forest composition has become at least 8.8 percent drier in 2004-06 than in pre-1954 years. This change indicates that a net loss of swamps has already occurred in the Apalachicola River floodplain, and further losses are expected to continue over the next 50 years. Drying of floodplain forests will result in some low bottomland hardwood forests changing in composition to high bottomland hardwood forests. The composition of high bottomland hardwoods will also change, although periodic flooding is still occurring and will continue to limit most of the floodplain to bottomland hardwood species that are adapted to at least short periods of inundation and saturation.

  3. Canopy arthropod responses to experimental canopy opening and debris deposition in a tropical rainforest subject to hurricanes

    Treesearch

    Timothy D. Schowalter; Michael R. Willig; Steven J. Presley

    2014-01-01

    We analyzed responses of canopy arthropods on seven representative early and late successional overstory and understory tree species to a canopy trimming experiment designed to separate effects of canopy opening and debris pulse (resulting from hurricane disturbance) in a tropical rainforest ecosystem at the Luquillo Experimental Forest Long-Term Ecological Research (...

  4. Comparison of modeled backscatter with SAR data at P-band

    NASA Technical Reports Server (NTRS)

    Wang, Yong; Davis, Frank W.; Melack, John M.

    1992-01-01

    In recent years several analytical models were developed to predict microwave scattering by trees and forest canopies. These models contribute to the understanding of radar backscatter over forested regions to the extent that they capture the basic interactions between microwave radiation and tree canopies, understories, and ground layers as functions of incidence angle, wavelength, and polarization. The Santa Barbara microwave model backscatter model for woodland (i.e. with discontinuous tree canopies) combines a single-tree backscatter model and a gap probability model. Comparison of model predictions with synthetic aperture radar (SAR) data and L-band (lambda = 0.235 m) is promising, but much work is still needed to test the validity of model predictions at other wavelengths. The validity of the model predictions at P-band (lambda = 0.68 m) for woodland stands at our Mt. Shasta test site was tested.

  5. Spring leaf flush in aspen (Populus tremuloides) clones is altered by long-term growth at elevated carbon dioxide and elevated ozone concentration.

    PubMed

    McGrath, Justin M; Karnosky, David F; Ainsworth, Elizabeth A

    2010-04-01

    Early spring leaf out is important to the success of deciduous trees competing for light and space in dense forest plantation canopies. In this study, we investigated spring leaf flush and how long-term growth at elevated carbon dioxide concentration ([CO(2)]) and elevated ozone concentration ([O(3)]) altered leaf area index development in a closed Populus tremuloides (aspen) canopy. This work was done at the Aspen FACE experiment where aspen clones have been grown since 1997 in conditions simulating the [CO(2)] and [O(3)] predicted for approximately 2050. The responses of two clones were compared during the first month of spring leaf out when CO(2) fumigation had begun, but O(3) fumigation had not. Trees in elevated [CO(2)] plots showed a stimulation of leaf area index (36%), while trees in elevated [O(3)] plots had lower leaf area index (-20%). While individual leaf area was not significantly affected by elevated [CO(2)], the photosynthetic operating efficiency of aspen leaves was significantly improved (51%). There were no significant differences in the way that the two aspen clones responded to elevated [CO(2)]; however, the two clones responded differently to long-term growth at elevated [O(3)]. The O(3)-sensitive clone, 42E, had reduced individual leaf area when grown at elevated [O(3)] (-32%), while the tolerant clone, 216, had larger mature leaf area at elevated [O(3)] (46%). These results indicate a clear difference between the two clones in their long-term response to elevated [O(3)], which could affect competition between the clones, and result in altered genotypic composition in future atmospheric conditions. Published by Elsevier Ltd.

  6. Water transport dynamics in trees and stands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pallardy, S.G.; Cermak, J.; Ewers, F.W.

    1995-07-01

    Water transport dynamics in trees and stands of conifers have certain features that are characteristic of this group and are at least rare among angiosperms. Among these features is the xylem transport system that is dependent on tracheids for long-distance water transport. Tracheid-containing xylem is relatively inefficient, a property that can reduce submaximum allowable rates of gas exchange, but tracheids also offer substantial capacity for water storage and high resistance to freezing-induced dysfunction. Thus, they are quite compatible with the typical evergreen habit and long transpiration season of conifers. At the stand level, canopy transpiration in conifers is primarily controlledmore » by stomatal conductance. In contrast, in dense canopies of angio-sperms, particularly those of tropical forests with limited air mixing, stand transpiration is limited by radiation input rather than by stomatal control. Because of their evergreen habit a greater proportion of evapotranspiration in conifer forests is associated with evaporation of water intercepted by the tree crowns. Other features of transport dynamics are characteristic of most conifers, but are not unique to this group. Among these features are typically shallow root systems that often must supply water in winter to replace transpiration needs of evergreen species, common occurrence of mycorrhizae that enhance mineral and water uptake, and drought tolerance adaptations that include elements of both dehydration avoidance (e.g., stomatal closure under water stress, shifts in allocation of dry matter to below-ground sinks) and dehydration tolerance (e.g., capacity for acclimation of photosynthetic apparatus to drought, osmotic adjustment). Transpiration rates from conifer foliage often are lower than those of deciduous angiosperms, probably because of the lower maximum capacity of tracheid-bearing xylem to transport water.« less

  7. Canopy disturbance and tree recruitment over two centuries in a managed longleaf pine landscape

    Treesearch

    Neil Pederson; J. Morgan Varner; Brian J. Palik

    2008-01-01

    Disturbance history was reconstructed across an 11300 ha managed longleaf pine (Pinus palustris Mill.) landscape in southwestern Georgia, USA. Our specific objectives were to: (i) determine forest age structure; (ii) reconstruct disturbance history through the relationship between canopy disturbance, tree recruitment and growth; and (iii) explore the...

  8. THE ROLE OF TYLOSES IN CROWN HYDRAULIC FAILURE OF MATURE WALNUT TREES AFFLICTED WITH APOPLEXY DISORDER

    USDA-ARS?s Scientific Manuscript database

    In the Central Valley of California, mature walnut trees afflicted with apoplexy disorder exhibit rapid and complete canopy defoliation within a few weeks of symptom initiation. Symptoms are typically found throughout the entire canopy and are initially expressed as wilting and chlorosis followed b...

  9. Manage postharvest deficit irrigation of peach trees using canopy to air temperature

    USDA-ARS?s Scientific Manuscript database

    A field study was conducted to use mid-day canopy to air temperature difference (delta T) to manage postharvest deficit irrigation of peach trees in San Joaquin Valley of California and its performance was evaluated. Delta T thresholds were selected, based on previous years’ stem water potential and...

  10. Olive Actual “on Year” Yield Forecast Tool Based on the Tree Canopy Geometry Using UAS Imagery

    PubMed Central

    Sola-Guirado, Rafael R.; Castillo-Ruiz, Francisco J.; Jiménez-Jiménez, Francisco; Blanco-Roldan, Gregorio L.; Gil-Ribes, Jesus A.

    2017-01-01

    Olive has a notable importance in countries of Mediterranean basin and its profitability depends on several factors such as actual yield, production cost or product price. Actual “on year” Yield (AY) is production (kg tree−1) in “on years”, and this research attempts to relate it with geometrical parameters of the tree canopy. Regression equation to forecast AY based on manual canopy volume was determined based on data acquired from different orchard categories and cultivars during different harvesting seasons in southern Spain. Orthoimages were acquired with unmanned aerial systems (UAS) imagery calculating individual crown for relating to canopy volume and AY. Yield levels did not vary between orchard categories; however, it did between irrigated orchards (7000–17,000 kg ha−1) and rainfed ones (4000–7000 kg ha−1). After that, manual canopy volume was related with the individual crown area of trees that were calculated by orthoimages acquired with UAS imagery. Finally, AY was forecasted using both manual canopy volume and individual tree crown area as main factors for olive productivity. AY forecast only by using individual crown area made it possible to get a simple and cheap forecast tool for a wide range of olive orchards. Finally, the acquired information was introduced in a thematic map describing spatial AY variability obtained from orthoimage analysis that may be a powerful tool for farmers, insurance systems, market forecasts or to detect agronomical problems. PMID:28758945

  11. Disturbance, life history traits, and dynamics in an old-growth forest landscape of southeastern Europe.

    PubMed

    Nagel, Thomas A; Svoboda, Miroslav; Kobal, Milan

    2014-06-01

    Much of our understanding of natural forest dynamics in the temperate region of Europe is based on observational studies in old-growth remnants that have emphasized small-scale gap dynamics and equilibrium stand structure and composition. Relatively little attention has been given to the role of infrequent disturbance events in forest dynamics. In this study, we analyzed dendroecological data from four stands and three windthrow patches in an old-growth landscape in the Dinaric Mountains of Bosnia and Herzegovina to examine disturbance history, tree life history traits, and compositional dynamics. Over all stands, most decades during the past 340 years experienced less than 10% canopy loss, yet each stand showed evidence of periodic intermediate-severity disturbances that removed > 40% of the canopy, some of which were synchronized over the study area landscape. Analysis of radial growth patterns indicated several life history differences among the dominant canopy trees; beech was markedly older than fir, while growth patterns of dead and dying trees suggested that fir was able to tolerate longer periods of suppressed growth in shade. Maple had the fastest radial growth and accessed the canopy primarily through rapid early growth in canopy gaps, whereas most beech and fir experienced a period of suppressed growth prior to canopy accession. Peaks in disturbance were roughly linked to increased recruitment, but mainly of shade-tolerant beech and fir; less tolerant species (i.e., maple, ash, and elm) recruited successfully on some of the windthown sites where advance regeneration of beech and fir was less abundant. The results challenge the traditional notions of stability in temperate old-growth forests of Europe and highlight the nonequilibrial nature of canopy composition due to unique histories of disturbance and tree life history differences. These findings provide valuable information for developing natural disturbance-based silvicultural systems, as well as insight into maintaining less shade-tolerant, but valuable broadleaved trees in temperate forests of Europe.

  12. Reconstruction of forest geometries from terrestrial laser scanning point clouds for canopy radiative transfer modelling

    NASA Astrophysics Data System (ADS)

    Bremer, Magnus; Schmidtner, Korbinian; Rutzinger, Martin

    2015-04-01

    The architecture of forest canopies is a key parameter for forest ecological issues helping to model the variability of wood biomass and foliage in space and time. In order to understand the nature of subpixel effects of optical space-borne sensors with coarse spatial resolution, hypothetical 3D canopy models are widely used for the simulation of radiative transfer in forests. Thereby, radiation is traced through the atmosphere and canopy geometries until it reaches the optical sensor. For a realistic simulation scene we decompose terrestrial laser scanning point cloud data of leaf-off larch forest plots in the Austrian Alps and reconstruct detailed model ready input data for radiative transfer simulations. The point clouds are pre-classified into primitive classes using Principle Component Analysis (PCA) using scale adapted radius neighbourhoods. Elongated point structures are extracted as tree trunks. The tree trunks are used as seeds for a Dijkstra-growing procedure, in order to obtain single tree segmentation in the interlinked canopies. For the optimized reconstruction of branching architectures as vector models, point cloud skeletonisation is used in combination with an iterative Dijkstra-growing and by applying distance constraints. This allows conducting a hierarchical reconstruction preferring the tree trunk and higher order branches and avoiding over-skeletonization effects. Based on the reconstructed branching architectures, larch needles are modelled based on the hierarchical level of branches and the geometrical openness of the canopy. For radiative transfer simulations, branch architectures are used as mesh geometries representing branches as cylindrical pipes. Needles are either used as meshes or as voxel-turbids. The presented workflow allows an automatic classification and single tree segmentation in interlinked canopies. The iterative Dijkstra-growing using distance constraints generated realistic reconstruction results. As the mesh representation of branches proved to be sufficient for the simulation approach, the modelling of huge amounts of needles is much more efficient in voxel-turbid representation.

  13. Physical attributes of some clouds amid a forest ecosystem's trees

    USGS Publications Warehouse

    DeFelice, Thomas P.

    2002-01-01

    Cloud or fog water collected by forest canopies of any elevation could represent significant sources of required moisture and nutrients for forest ecosystems, human consumption, and as an alternative source of water for agriculture and domestic use. The physical characteristics of fogs and other clouds have been well studied, and this information can be useful to water balance or canopy–cloud interaction model verification and to calibration or training of satellite-borne sensors to recognize atmospheric attributes, such as optical thickness, albedo, and cloud properties. These studies have taken place above-canopy or within canopy clearings and rarely amid the canopy. Simultaneous physical and chemical characteristics of clouds amid and above the trees of a mountain forest, located about 3.3 km southwest of Mt. Mitchell, NC, were collected between 13 and 22 June 1993. This paper summarizes the physical characteristics of the cloud portions amid the trees. The characteristic cloud amid the trees (including cloud and precipitation periods) contained 250 droplet/cm3 with a mean diameter of 9.5 μm and liquid water content (LWC) of 0.11 g m−3. The cloud droplets exhibited a bimodal distribution with modes at about 2 and 8 μm and a mean diameter near 5 μm during precipitation-free periods, whereas the concurrent above-canopy cloud droplets had a unimodal distribution with a mode near 6 μm and a mean diameter of 6 μm. The horizontal cloud water flux is nonlinearly related to the rate of collection onto that surface amid the trees, especially for the Atmospheric Sciences Research Center (ASRC) sampling device, whereas it is linear when the forward scattering spectrometer probe (FSSP) are is used. These findings suggest that statements about the effects clouds have on surfaces they encounter, which are based on above-canopy or canopy-clearing data, can be misleading, if not erroneous.

  14. Assessing fire effects on forest spatial structure using a fusion of Landsat and airborne LiDAR data in Yosemite National Park

    USGS Publications Warehouse

    Kane, Van R.; North, Malcolm P.; Lutz, James A.; Churchill, Derek J.; Roberts, Susan L.; Smith, Douglas F.; McGaughey, Robert J.; Kane, Jonathan T.; Brooks, Matthew L.

    2014-01-01

    Mosaics of tree clumps and openings are characteristic of forests dominated by frequent, low- and moderate-severity fires. When restoring these fire-suppressed forests, managers often try to reproduce these structures to increase ecosystem resilience. We examined unburned and burned forest structures for 1937 0.81 ha sample areas in Yosemite National Park, USA. We estimated severity for fires from 1984 to 2010 using the Landsat-derived Relativized differenced Normalized Burn Ratio (RdNBR) and measured openings and canopy clumps in five height strata using airborne LiDAR data. Because our study area lacked concurrent field data, we identified methods to allow structural analysis using LiDAR data alone. We found three spatial structures, canopy-gap, clump-open, and open, that differed in spatial arrangement and proportion of canopy and openings. As fire severity increased, the total area in canopy decreased while the number of clumps increased, creating a patchwork of openings and multistory tree clumps. The presence of openings > 0.3 ha, an approximate minimum gap size needed to favor shade-intolerant pine regeneration, increased rapidly with loss of canopy area. The range and variation of structures for a given fire severity were specific to each forest type. Low- to moderate-severity fires best replicated the historic clump-opening patterns that were common in forests with frequent fire regimes. Our results suggest that managers consider the following goals for their forest restoration: 1) reduce total canopy cover by breaking up large contiguous areas into variable-sized tree clumps and scattered large individual trees; 2) create a range of opening sizes and shapes, including ~ 50% of the open area in gaps > 0.3 ha; 3) create multistory clumps in addition to single story clumps; 4) retain historic densities of large trees; and 5) vary treatments to include canopy-gap, clump-open, and open mosaics across project areas to mimic the range of patterns found for each forest type in our study.

  15. The hydraulic limitation hypothesis revisited.

    PubMed

    Ryan, Michael G; Phillips, Nathan; Bond, Barbara J

    2006-03-01

    We proposed the hydraulic limitation hypothesis (HLH) as a mechanism to explain universal patterns in tree height, and tree and stand biomass growth: height growth slows down as trees grow taller, maximum height is lower for trees of the same species on resource-poor sites and annual wood production declines after canopy closure for even-aged forests. Our review of 51 studies that measured one or more of the components necessary for testing the hypothesis showed that taller trees differ physiologically from shorter, younger trees. Stomatal conductance to water vapour (g(s)), photosynthesis (A) and leaf-specific hydraulic conductance (K L) are often, but not always, lower in taller trees. Additionally, leaf mass per area is often greater in taller trees, and leaf area:sapwood area ratio changes with tree height. We conclude that hydraulic limitation of gas exchange with increasing tree size is common, but not universal. Where hydraulic limitations to A do occur, no evidence supports the original expectation that hydraulic limitation of carbon assimilation is sufficient to explain observed declines in wood production. Any limit to height or height growth does not appear to be related to the so-called age-related decline in wood production of forests after canopy closure. Future work on this problem should explicitly link leaf or canopy gas exchange with tree and stand growth, and consider a more fundamental assumption: whether tree biomass growth is limited by carbon availability.

  16. A neighborhood analysis of the consequences of Quercus suber decline for regeneration dynamics in Mediterranean forests.

    PubMed

    Ibáñez, Beatriz; Gómez-Aparicio, Lorena; Stoll, Peter; Ávila, José M; Pérez-Ramos, Ignacio M; Marañón, Teodoro

    2015-01-01

    In forests, the vulnerable seedling stage is largely influenced by the canopy, which modifies the surrounding environment. Consequently, any alteration in the characteristics of the canopy, such as those promoted by forest dieback, might impact regeneration dynamics. Our work analyzes the interaction between canopy neighbors and seedlings in Mediterranean forests affected by the decline of their dominant species (Quercus suber). Our objective was to understand how the impacts of neighbor trees and shrubs on recruitment could affect future dynamics of these declining forests. Seeds of the three dominant tree species (Quercus suber, Olea europaea and Quercus canariensis) were sown in six sites during two consecutive years. Using a spatially-explicit, neighborhood approach we developed models that explained the observed spatial variation in seedling emergence, survival, growth and photochemical efficiency as a function of the size, identity, health, abundance and distribution of adult trees and shrubs in the neighborhood. We found strong neighborhood effects for all the performance estimators, particularly seedling emergence and survival. Tree neighbors positively affected emergence, independently of species identity or health. Alternatively, seedling survival was much lower in neighborhoods dominated by defoliated and dead Q. suber trees than in neighborhoods dominated by healthy trees. For the two oak species, these negative effects were consistent over the three years of the experimental seedlings. These results indicate that ongoing changes in species' relative abundance and canopy trees' health might alter the successional trajectories of Mediterranean oak-forests through neighbor-specific impacts on seedlings. The recruitment failure of dominant late-successional oaks in the gaps opened after Q. suber death would indirectly favor the establishment of other coexisting woody species, such as drought-tolerant shrubs. This could lead current forests to shift into open systems with lower tree cover. Adult canopy decline would therefore represent an additional factor threatening the recruitment of Quercus forests worldwide.

  17. Exploring links between greenspace and sudden unexpected death: A spatial analysis.

    PubMed

    Wu, Jianyong; Rappazzo, Kristen M; Simpson, Ross J; Joodi, Golsa; Pursell, Irion W; Mounsey, J Paul; Cascio, Wayne E; Jackson, Laura E

    2018-04-01

    Greenspace has been increasingly recognized as having numerous health benefits. However, its effects are unknown concerning sudden unexpected death (SUD), commonly referred to as sudden cardiac death, which constitutes a large proportion of mortality in the United States. Because greenspace can promote physical activity, reduce stress and buffer air pollutants, it may have beneficial effects for people at risk of SUD, such as those with heart disease, hypertension, and diabetes mellitus. Using several spatial techniques, this study explored the relationship between SUD and greenspace. We adjudicated 396 SUD cases that occurred from March 2013 to February 2015 among reports from emergency medical services (EMS) that attended out-of-hospital deaths in Wake County (central North Carolina, USA). We measured multiple greenspace metrics in each census tract, including the percentages of forest, grassland, average tree canopy, tree canopy diversity, near-road tree canopy and greenway density. The associations between SUD incidence and these greenspace metrics were examined using Poisson regression (non-spatial) and Bayesian spatial models. The results from both models indicated that SUD incidence was inversely associated with both greenway density (adjusted risk ratio [RR] = 0.82, 95% credible/ confidence interval [CI]: 0.69-0.97) and the percentage of forest (adjusted RR = 0.90, 95% CI: 0.81-0.99). These results suggest that increases in greenway density by 1 km/km 2 and in forest by 10% were associated with a decrease in SUD risk of 18% and 10%, respectively. The inverse relationship was not observed between SUD incidence and other metrics, including grassland, average tree canopy, near-road tree canopy and tree canopy diversity. This study implies that greenspace, specifically greenways and forest, may have beneficial effects for people at risk of SUD. Further studies are needed to investigate potential causal relationships between greenspace and SUD, and potential mechanisms such as promoting physical activity and reducing stress. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Spatial Patterns of Soil Organic Carbon Relative to Tree Size and Canopy Distribution in a Semi-Desert Grassland

    NASA Astrophysics Data System (ADS)

    Throop, H. L.; Archer, S.

    2004-12-01

    The abundance of woody species in grasslands and savannas has increased globally over the past century. Recent estimates suggest that this proliferation of woody plants may account for a significant fraction of the Northern Hemisphere C sink, although a large degree of uncertainty exists in the magnitude and spatial distribution of these plant and soil pools. While field-based inventories have made progress in assessing the role of aboveground woody growth in ecosystem C inventories, the effect of woody proliferation on soil organic carbon (SOC) remains controversial, despite the fact that the majority of ecosystem C in these systems is typically belowground. Elevated levels of SOC underneath woody plant canopies have been widely reported, but little is known about the spatial distribution of SOC relative to tree canopies. Understanding the spatial distribution of SOC is critical, however, to developing accurate landscape-scale assessments of woody proliferation impacts on ecosystem C pools. We quantified the influence of encroaching mesquite trees (Fabaceae: Prosopis velutina) on the concentration of SOC and total nitrogen (TN) in a semi-desert grassland in southern Arizona. SOC concentrations near the boles of large trees (basal diameter 85-102 cm) were approximately double that of SOC in intercanopy zones (0.9% vs. 0.4% SOC by weight). SOC declined moving out from the bole to the canopy edge, at which point it was equivalent to inter-canopy spaces. Small to medium-sized trees (basal diameters less than 85 cm) had minimal influence on SOC concentrations. Patterns of TN values mirrored those of SOC in all cases, although TN values were roughly an order of magnitude lower than SOC values. These data suggest that accurate accounting of landscape-level SOC stocks will require developing area-weighting algorithms that account for tree size and bole-to-canopy gradients.

  19. Evidence for substantial forestry canopy processing of nitrogen deposition using isotopic tracer experiments in low deposition conditions

    NASA Astrophysics Data System (ADS)

    Ferraretto, Daniele; Heal, Kate

    2017-04-01

    Temperate forest ecosystems are significant sinks for nitrogen deposition (Ndep) yielding benefits such as protection of waterbodies from eutrophication and enhanced sequestration of atmospheric CO2. Previous studies have shown evidence of biological nitrification and Ndep processing and retention in forest canopies. However, this was reported only at sites with high environmental or experimentally enhanced rates of Ndep (˜18 kg N ha-1 y-1) and has not yet been demonstrated in low Ndep environments. We have used bulk field hydrochemical measurements and labelled isotopic experiments to assess canopy processing in a lower Ndep environment (˜7 kg N ha-1 year-1) at a Sitka spruce plantation in Perthshire, Scotland, representing the dominant tree species (24%) in woodlands in Great Britain. Analysis of 4.5 years of measured N fluxes in rainfall (RF) and fogwater onto the canopy and throughfall (TF) and stemflow (SF) below the canopy suggests strong transformation and uptake of Ndep in the forest canopy. Annual canopy Ndep uptake was ˜4.7 kg N ha-1 year-1, representing 60-76% of annual Ndep. To validate these plot-scale results and track N uptake within the forest canopy in different seasons, double 15N-labelled NH4NO3 (98%) solution was sprayed in summer and winter onto the canopy of three trees at the measurement site. RF, TF and SF samples have been collected and analysed for 15NH4 and 15NO3. Comparing the amount of labelled N recovered under the sample trees with the measured δ15N signal is expected to provide further evidence of the role of forest canopies in actively processing and retaining atmospheric N deposition.

  20. Age-related effects on leaf area/sapwood area relationships, canopy transpiration and carbon gain of Norway spruce stands (Picea abies) in the Fichtelgebirge, Germany.

    PubMed

    Köstner, B; Falge, E; Tenhunen, J D

    2002-06-01

    Stand age is an important structural determinant of canopy transpiration (E(c)) and carbon gain. Another more functional parameter of forest structure is the leaf area/sapwood area relationship, A(L)/A(S), which changes with site conditions and has been used to estimate leaf area index of forest canopies. The interpretation of age-related changes in A(L)/A(S) and the question of how A(L)/A(S) is related to forest functions are of current interest because they may help to explain forest canopy fluxes and growth. We conducted studies in mature stands of Picea abies (L.) Karst. varying in age from 40 to 140 years, in tree density from 1680 to 320 trees ha(-1), and in tree height from 15 to 30 m. Structural parameters were measured by biomass harvests of individual trees and stand biometry. We estimated E(c) from scaled-up xylem sap flux of trees, and canopy-level fluxes were predicted by a three-dimensional microclimate and gas exchange model (STANDFLUX). In contrast to pine species, A(L)/A(S) of P. abies increased with stand age from 0.26 to 0.48 m(2) cm(-2). Agreement between E(c) derived from scaled-up sap flux and modeled canopy transpiration was obtained with the same parameterization of needle physiology independent of stand age. Reduced light interception per leaf area and, as a consequence, reductions in net canopy photosynthesis (A(c)), canopy conductance (g(c)) and E(c) were predicted by the model in the older stands. Seasonal water-use efficiency (WUE = A(c)/E(c)), derived from scaled-up sap flux and stem growth as well as from model simulation, declined with increasing A(L)/A(S) and stand age. Based on the different behavior of age-related A(L)/A(S) in Norway spruce stands compared with other tree species, we conclude that WUE rather than A(L)/A(S) could represent a common age-related property of all species. We also conclude that, in addition to hydraulic limitations reducing carbon gain in old stands, a functional change in A(L)/A(S) that is related to reduced light interception per leaf area provides another potential explanation for reduced carbon gain in old stands of P. abies, even when hydraulic constraints increase in response to changes in canopy architecture and aging.

  1. Leaf traits in relation to crown development, light interception and growth of elite families of loblolly and slash pine.

    PubMed

    Chmura, Daniel J; Tjoelker, Mark G

    2008-05-01

    Crown architecture and size influence leaf area distribution within tree crowns and have large effects on the light environment in forest canopies. The use of selected genotypes in combination with silvicultural treatments that optimize site conditions in forest plantations provide both a challenge and an opportunity to study the biological and environmental determinants of forest growth. We investigated tree growth, crown development and leaf traits of two elite families of loblolly pine (Pinus taeda L.) and one family of slash pine (P. elliottii Mill.) at canopy closure. Two contrasting silvicultural treatments -- repeated fertilization and control of competing vegetation (MI treatment), and a single fertilization and control of competing vegetation treatment (C treatment) -- were applied at two experimental sites in the West Gulf Coastal Plain in Texas and Louisiana. At a common tree size (diameter at breast height), loblolly pine trees had longer and wider crowns, and at the plot-level, intercepted a greater fraction of photosynthetic photon flux than slash pine trees. Leaf-level, light-saturated assimilation rates (A(max)) and both mass- and area-based leaf nitrogen (N) decreased, and specific leaf area (SLA) increased with increasing canopy depth. Leaf-trait gradients were steeper in crowns of loblolly pine trees than of slash pine trees for SLA and leaf N, but not for A(max). There were no species differences in A(max), except in mass-based photosynthesis in upper crowns, but the effect of silvicultural treatment on A(max) differed between sites. Across all crown positions, A(max) was correlated with leaf N, but the relationship differed between sites and treatments. Observed patterns of variation in leaf properties within crowns reflected acclimation to developing light gradients in stands with closing canopies. Tree growth was not directly related to A(max), but there was a strong correlation between tree growth and plot-level light interception in both species. Growth efficiency was unaffected by silvicultural treatment. Thus, when coupled with leaf area and light interception at the crown and canopy levels, A(max) provides insight into family and silvicultural effects on tree growth.

  2. Hydrological and biogeochemical variation of stemflow from live, stressed, and dead codominant deciduous canopy trees

    NASA Astrophysics Data System (ADS)

    Frost, E. E.; Levia, D. F.

    2011-12-01

    Stemflow, a critical localized point source of both water and nutrients in forested ecosystems, was examined as a function of species and mortality in a mid-Atlantic deciduous forest. Thirty trees across two species, Fagus grandifolia [American beech] and Liriodendron tulipifera [yellow poplar], and three mortality classes, live, stressed, and dead, were sampled and analyzed on an event basis for one year. Significant interspecific differences in volume and nutrient content of stemflow were found that were attributable to differences in canopy structure between the species. Funneling ratios across all three mortality classes were significantly different for F. grandifolia and between dead and live/stressed classes for L. tulipifera. Stemflow volumes from the dead trees of both species were a fraction of that from live and stressed trees. This was attributable to increased relative water storage capacities, canopy crown position, and the lack of surface area contributing to stemflow generation in upper canopy. Concentrations of nutrients in stemflow from dead trees were significantly higher than those found in both live and stressed stems for most nutrients analyzed. Enrichment ratios from dead stems were generally lower given the reduced volumes observed. Given the multi-decadal impact of standing dead trees in forest ecosystems and the uncertainty of changes in morality patterns in forests, additional research is warranted to further quantify the hydrobiochemical impact of stemflow from dying stems over their entire lifecycle.

  3. Assessing and Correcting Topographic Effects on Forest Canopy Height Retrieval Using Airborne LiDAR Data

    PubMed Central

    Duan, Zhugeng; Zhao, Dan; Zeng, Yuan; Zhao, Yujin; Wu, Bingfang; Zhu, Jianjun

    2015-01-01

    Topography affects forest canopy height retrieval based on airborne Light Detection and Ranging (LiDAR) data a lot. This paper proposes a method for correcting deviations caused by topography based on individual tree crown segmentation. The point cloud of an individual tree was extracted according to crown boundaries of isolated individual trees from digital orthophoto maps (DOMs). Normalized canopy height was calculated by subtracting the elevation of centres of gravity from the elevation of point cloud. First, individual tree crown boundaries are obtained by carrying out segmentation on the DOM. Second, point clouds of the individual trees are extracted based on the boundaries. Third, precise DEM is derived from the point cloud which is classified by a multi-scale curvature classification algorithm. Finally, a height weighted correction method is applied to correct the topological effects. The method is applied to LiDAR data acquired in South China, and its effectiveness is tested using 41 field survey plots. The results show that the terrain impacts the canopy height of individual trees in that the downslope side of the tree trunk is elevated and the upslope side is depressed. This further affects the extraction of the location and crown of individual trees. A strong correlation was detected between the slope gradient and the proportions of returns with height differences more than 0.3, 0.5 and 0.8 m in the total returns, with coefficient of determination R2 of 0.83, 0.76, and 0.60 (n = 41), respectively. PMID:26016907

  4. Characterizing 2-D snow stratigraphy in forests based on high-resolution snow penetrometry

    NASA Astrophysics Data System (ADS)

    Teich, M.; Loewe, H.; Jenkins, M. J.; Schneebeli, M.

    2016-12-01

    Snow stratigraphy, the characteristic layering within a seasonal snowpack, has important implications for snow remote sensing, hydrology and avalanches. Forests modify snowpack properties through interception of falling snow by tree crowns, the reduction of near-surface wind speeds, and changes to the energy balance beneath and around trees leading to a highly variable stratigraphy in space and time. The lack of snowpack observations in forests limits our ability to understand the spatio-temporal evolution of snow stratigraphy as a function of forest structure and to observe snowpack response to changes in forest cover. We examined the snowpack in field campaigns using the SnowMicroPen (SMP) under tree canopies in an Engelmann spruce forest in the central Rocky Mountains in Utah, USA. Data were collected in plots beneath canopies of undisturbed, bark beetle-disturbed and salvage logged forest stands, and a non-forested meadow. In 2015 weekly-repeated SMP penetration measurements were taken along 10 m transects at 0.3 m intervals. In the winter of 2016 bi-weekly measurements were collected along 20 m transects every 0.5 m. Using a statistical model, we derived 2-D snow density profiles as a measure of stratigraphy. The small-scale patterns in snow density revealed a more heterogeneous stratigraphy in undisturbed dense stands and also beneath bark beetle-disturbed forest. In contrast, snow stratigraphy was more homogeneous in the harvested plot despite standing small diameter trees and woody debris with effective heights up to 95 cm. As expected, snow depth and layering in non-forested plots varied only slightly over the small spatial extent sampled. Observed patterns changed throughout the snow season dependent upon snow and meteorological conditions. The results contribute to the general understanding of forest-snowpack interactions at high spatial resolution, and can be used to validate snowpack and microwave models for avalanche formation processes and SWE retrieval in forests.

  5. Using Airborne LIDAR Data to Determine Old vs. Young Cottonwood Trees in the Riparian Corridor of the San Pedro River

    NASA Astrophysics Data System (ADS)

    Farid, A.; Goodrich, D.; Sartori, M.; Sorooshian, S.

    2003-12-01

    Quantification of vegetation patterns and properties is needed to determine their role in the landscape and to develop management plans to conserve natural resources. Vegetation patterns can be mapped from the ground, or by using aerial photography or satellite imagery. However, quantifying the physical properties of vegetation patterns with ground-based or remote sensing technology is difficult, time consuming, and often costly. Digital data from an airborne lidar (light detecting and ranging) instrument offers an alternative method for quantifying vegetation properties and patterns. Using lidar, a study was conducted in the San Pedro National Riparian Conservation Area in an attempt to differentiate young and old Cottonwood trees in southeastern Arizona as young and old cottonwoods have significantly different water use per unit area of canopy. The lidar data was acquired in June 2003, using Optech's ALTM (Airborne Laser Terrain Mapper), during flyovers conducted at an altitude of 750 m. It has been demonstrated that the height of old and young cottonwood canopies can be measured by using lidar. Canopy heights measured with the lidar show a good degree of correlation with ground-based measurements. Methodologically, the first step required is to differentiate old from young cottonwood canopies by the differences in canopy height obtained from lidar data. In addition to vegetation heights, spatial patterns of crown area, canopy cover, and intensity of return laser pulse are measured for both old and young cottonwood trees with the lidar data. The second stage of this study demonstrates that these other parameters of old and young cottonwood trees, when extrapolated from lidar, are significantly different. This study indicates the potential of airborne lidar data to distinguish between different ages of cottonwood forest canopy for large areas quickly and quantitatively.

  6. A novel transferable individual tree crown delineation model based on Fishing Net Dragging and boundary classification

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Im, Jungho; Quackenbush, Lindi J.

    2015-12-01

    This study provides a novel approach to individual tree crown delineation (ITCD) using airborne Light Detection and Ranging (LiDAR) data in dense natural forests using two main steps: crown boundary refinement based on a proposed Fishing Net Dragging (FiND) method, and segment merging based on boundary classification. FiND starts with approximate tree crown boundaries derived using a traditional watershed method with Gaussian filtering and refines these boundaries using an algorithm that mimics how a fisherman drags a fishing net. Random forest machine learning is then used to classify boundary segments into two classes: boundaries between trees and boundaries between branches that belong to a single tree. Three groups of LiDAR-derived features-two from the pseudo waveform generated along with crown boundaries and one from a canopy height model (CHM)-were used in the classification. The proposed ITCD approach was tested using LiDAR data collected over a mountainous region in the Adirondack Park, NY, USA. Overall accuracy of boundary classification was 82.4%. Features derived from the CHM were generally more important in the classification than the features extracted from the pseudo waveform. A comprehensive accuracy assessment scheme for ITCD was also introduced by considering both area of crown overlap and crown centroids. Accuracy assessment using this new scheme shows the proposed ITCD achieved 74% and 78% as overall accuracy, respectively, for deciduous and mixed forest.

  7. [The changes of forest canopy spectral reflectance with seasons in Xiaoxing'anling].

    PubMed

    Xu, Guang-Cai; Pang, Yong; Li, Zeng-Yuan; Zhao, Kai-Rui; Liu, Lu-Xia

    2013-12-01

    The ASD FieldSpec portable spectrometer was adopted to collect canopy reflectance spectrum data of the 9 main tree species in study area by a long-term observation to get the data of the four seasons Then the smoothed reflectance curve and the first derivation curve from 350 to 1400 nm and several commonly used vegetation spectral characteristic parameters were generated to analyse seasonal change characteristics and variation of the 9 tree species in visible and near-infrared band and to explore the best band characteristics and period for species identification. The results showed that different trees had different and rather unique spectral features during the four seasons. The spectral characteristics of the deciduous trees have regular changes with the cycle of the seasons, whereas those of the evergreen tree species have no significant changes in one year. As well changes in the spectral characteristics could effectively reflect forest phenology changes, and it is proposed that the optimal strategy for tree species classification may be the integration and analysis of multi-seasonal spectral data. Evergreen trees and deciduous trees in the winter have obvious differences in the canopy spectral characteristics and the best single-season remote sensing data for tree species recognition is in summer.

  8. Changes in Mauna Kea Dry Forest Structure 2000-2014

    USGS Publications Warehouse

    Banko, Paul C.; Brinck, Kevin W.

    2014-01-01

    Changes in the structure of the subalpine vegetation of Palila Critical Habitat on the southwestern slope of Mauna Kea Volcano, Hawai‘i, were analyzed using 12 metrics of change in māmane (Sophora chrysophylla) and naio (Myoporum sandwicense) trees surveyed on plots in 2000 and 2014. These two dominant species were analyzed separately, and changes in their structure indicated changes in the forest’s health. There was a significant increase in māmane minimum crown height (indicating a higher ungulate “browse line”), canopy area, canopy volume, percentage of trees with ungulate damage, and percentage of dead trees. No significant changes were observed in māmane maximum crown height, proportion of plots with trees, sapling density, proportion of plots with saplings, or the height distribution of trees. The only significant positive change was for māmane tree density. Significantly negative changes were observed for naio minimum crown height, tree height, canopy area, canopy volume, and percentage of dead trees. No significant changes were observed in naio tree density, proportion of plots with trees, proportion of plots with saplings, or percentage of trees with ungulate damage. Significantly positive changes were observed in naio sapling density and the height distribution of trees. There was also a significant increase in the proportion of māmane vs. naio trees in the survey area. The survey methods did not allow us to distinguish among potential factors driving these changes for metrics other than the percentage of trees with ungulate damage. Continued ungulate browsing and prolonged drought are likely the factors contributing most to the observed changes in vegetation, but tree disease or insect infestation of māmane, or naio, and competition from alien grasses and other weeds could also be causing or exacerbating the impacts to the forest. Although māmane tree density has increased since 2000, this study also demonstrates that efforts by managers to remove sheep (Ovis spp.) from Palila Critical Habitat have not overcome the ability of sheep to continue to damage māmane trees and impede restoration of the vegetation.

  9. Prospects for quantifying structure, floristic composition and species richness of tropical forests

    USGS Publications Warehouse

    Gillespie, T.W.; Brock, J.; Wright, C.W.

    2004-01-01

    Airborne spectral and light detection and ranging (lidar) sensors have been used to quantify biophysical characteristics of tropical forests. Lidar sensors have provided high-resolution data on forest height, canopy topography, volume, and gap size; and provided estimates on number of strata in a forest, successional status of forests, and above-ground biomass. Spectral sensors have provided data on vegetation types, foliar biochemistry content of forest canopies, tree and canopy phenology, and spectral signatures for selected tree species. A number of advances are theoretically possible with individual and combined spectral and lidar sensors for the study of forest structure, floristic composition and species richness. Delineating individual canopies of over-storey trees with small footprint lidar and discrimination of tree architectural types with waveform distributions is possible and would provide scientists with a new method to study tropical forest structure. Combined spectral and lidar data can be used to identify selected tree species and identify the successional status of tropical forest fragments in order to rank forest patches by levels of species richness. It should be possible in the near future to quantify selected patterns of tropical forests at a higher resolution than can currently be undertaken in the field or from space. ?? 2004 Taylor and Francis Ltd.

  10. Physiological and foliar symptom response of Prunus serotina, Fraxinus americana and Acer rubrum canopy trees to ozone under differing site conditions

    Treesearch

    M. Schaub; J.M. Skelly; J.W. Zhang; J.A. Ferdinand; J.E. Savage; R.E. Stevenson; D.D. Davis; K.C. Steiner

    2005-01-01

    The crowns of five canopy dominant black cherry ( Prunus serotina Ehrh.), five white ash ( Fraxinus americana L.), and six red maple ( Acer rubrum L.) trees on naturally differing environmental conditions were accessed with scaffold towers within a mixed hardwood forest stand in central Pennsylvania....

  11. Seven-year responses of trees to experimental hurricane effects in a tropical rainforest, Puerto Rico

    Treesearch

    Jess K. Zimmerman; James Aaron Hogan; Aaron B. Shiels; John E. Bithorn; Samuel Matta Carmona; Nicholas Brokaw

    2014-01-01

    We experimentally manipulated key components of severe hurricane disturbance, canopy openness and detritus deposition, to determine the independent and interactive effects of these components on tree recruitment, forest structure, and diversity in a wet tropical forest in the Luquillo Experimental Forest, Puerto Rico. Canopy openness was increased by trimming branches...

  12. Use of game-theoretical methods in biochemistry and biophysics.

    PubMed

    Schuster, Stefan; Kreft, Jan-Ulrich; Schroeter, Anja; Pfeiffer, Thomas

    2008-04-01

    Evolutionary game theory can be considered as an extension of the theory of evolutionary optimisation in that two or more organisms (or more generally, units of replication) tend to optimise their properties in an interdependent way. Thus, the outcome of the strategy adopted by one species (e.g., as a result of mutation and selection) depends on the strategy adopted by the other species. In this review, the use of evolutionary game theory for analysing biochemical and biophysical systems is discussed. The presentation is illustrated by a number of instructive examples such as the competition between microorganisms using different metabolic pathways for adenosine triphosphate production, the secretion of extracellular enzymes, the growth of trees and photosynthesis. These examples show that, due to conflicts of interest, the global optimum (in the sense of being the best solution for the whole system) is not always obtained. For example, some yeast species use metabolic pathways that waste nutrients, and in a dense tree canopy, trees grow taller than would be optimal for biomass productivity. From the viewpoint of game theory, the examples considered can be described by the Prisoner's Dilemma, snowdrift game, Tragedy of the Commons and rock-scissors-paper game.

  13. The influence of current speed and vegetation density on flow structure in two macrotidal eelgrass canopies

    USGS Publications Warehouse

    Lacy, Jessica R.; Wyllie-Echeverria, Sandy

    2011-01-01

    The influence of eelgrass (Zostera marina) on near-bed currents, turbulence, and drag was investigated at three sites in two eelgrass canopies of differing density and at one unvegetated site in the San Juan archipelago of Puget Sound, Washington, USA. Eelgrass blade length exceeded 1 m. Velocity profiles up to 1.5 m above the sea floor were collected over a spring-neap tidal cycle with a downward-looking pulse-coherent acoustic Doppler profiler above the canopies and two acoustic Doppler velocimeters within the canopies. The eelgrass attenuated currents by a minimum of 40%, and by more than 70% at the most densely vegetated site. Attenuation decreased with increasing current speed. The data were compared to the shear-layer model of vegetated flows and the displaced logarithmic model. Velocity profiles outside the meadows were logarithmic. Within the canopies, most profiles were consistent with the shear-layer model, with a logarithmic layer above the canopy. However, at the less-dense sites, when currents were strong, shear at the sea floor and above the canopy was significant relative to shear at the top of the canopy, and the velocity profiles more closely resembled those in a rough-wall boundary layer. Turbulence was strong at the canopy top and decreased with height. Friction velocity at the canopy top was 1.5–2 times greater than at the unvegetated, sandy site. The coefficient of drag CD on the overlying flow derived from the logarithmic velocity profile above the canopy, was 3–8 times greater than at the unvegetated site (0.01–0.023 vs. 2.9 × 10−3).

  14. Under-canopy snow accumulation and ablation measured with airborne scanning LiDAR altimetry and in-situ instrumental measurements, southern Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Kirchner, P. B.; Bales, R. C.; Musselman, K. N.; Molotch, N. P.

    2012-12-01

    We investigated the influence of canopy on snow accumulation and melt in a mountain forest using paired snow on and snow off scanning LiDAR altimetry, synoptic measurement campaigns and in-situ time series data of snow depth, SWE, and radiation collected from the Kaweah River watershed, Sierra Nevada, California. Our analysis of forest cover classified by dominant species and 1 m2 grided mean under canopy snow accumulation calculated from airborne scanning LiDAR, demonstrate distinct relationships between forest class and under-canopy snow depth. The five forest types were selected from carefully prepared 1 m vegetation classifications and named for their dominant tree species, Giant Sequoia, Jeffrey Pine, White Fir, Red Fir, Sierra Lodgepole, Western White Pine, and Foxtail Pine. Sufficient LiDAR returns for calculating mean snow depth per m2 were available for 31 - 44% of the canopy covered area and demonstrate a reduction in snow depth of 12 - 24% from adjacent open areas. The coefficient of variation in snow depth under canopies ranged from 0.2 - 0.42 and generally decreased as elevation increased. Our analysis of snow density snows no statistical significance between snow under canopies and in the open at higher elevations with a weak significance for snow under canopies at lower elevations. Incident radiation measurements made at 15 minute intervals under forest canopies show an input of up to 150 w/m2 of thermal radiation from vegetation to the snow surface on forest plots. Snow accumulated on the mid to high elevation forested slopes of the Sierra Nevada represents the majority of winter snow storage. However snow estimates in forested environments demonstrate a high level of uncertainty due to the limited number of in-situ observations and the inability of most remote sensing platforms to retrieve reflectance under dense vegetation. Snow under forest canopies is strongly mediated by forest cover and decoupled from the processes that dictate accumulation and ablation of snow in open locations, where almost all precipitation and meteorlogic measurements concerning snow are made. Snow accumulation is intercepted by vegetation until it accumulates to a depth equal to or greater than the height of the vegetation, is reduced by the amount of sublimation or evaporation occurring while on the canopy and is redistributed beneath the canopy at a different density or as liquid water. Ablation processes are dictated by the energy environment surrounding vegetation where sensible heat is mediated by shading of short wave radiation.

  15. On the accurate estimation of gap fraction during daytime with digital cover photography

    NASA Astrophysics Data System (ADS)

    Hwang, Y. R.; Ryu, Y.; Kimm, H.; Macfarlane, C.; Lang, M.; Sonnentag, O.

    2015-12-01

    Digital cover photography (DCP) has emerged as an indirect method to obtain gap fraction accurately. Thus far, however, the intervention of subjectivity, such as determining the camera relative exposure value (REV) and threshold in the histogram, hindered computing accurate gap fraction. Here we propose a novel method that enables us to measure gap fraction accurately during daytime under various sky conditions by DCP. The novel method computes gap fraction using a single DCP unsaturated raw image which is corrected for scattering effects by canopies and a reconstructed sky image from the raw format image. To test the sensitivity of the novel method derived gap fraction to diverse REVs, solar zenith angles and canopy structures, we took photos in one hour interval between sunrise to midday under dense and sparse canopies with REV 0 to -5. The novel method showed little variation of gap fraction across different REVs in both dense and spares canopies across diverse range of solar zenith angles. The perforated panel experiment, which was used to test the accuracy of the estimated gap fraction, confirmed that the novel method resulted in the accurate and consistent gap fractions across different hole sizes, gap fractions and solar zenith angles. These findings highlight that the novel method opens new opportunities to estimate gap fraction accurately during daytime from sparse to dense canopies, which will be useful in monitoring LAI precisely and validating satellite remote sensing LAI products efficiently.

  16. Canopy structure on forest lands in western Oregon: differences among forest types and stand ages

    Treesearch

    Anne C.S. McIntosh; Andrew N. Gray; Steven L. Garman

    2009-01-01

    Canopy structure is an important attribute affecting economic and ecological values of forests in the Pacific Northwest. However, canopy cover and vertical layering are rarely measured directly; they are usually inferred from other forest measurements. In this study, we quantified and compared vertical and horizontal patterns of tree canopy structure and understory...

  17. Differential stemflow yield from European beech saplings: the role and respective importance of individual canopy structure metrics

    NASA Astrophysics Data System (ADS)

    Levia, Delphis; Michalzik, Beate

    2013-04-01

    Stemflow yield from individual trees varies as a function of both meteorological conditions and canopy structure. The importance and differential effects of various metrics of canopy structure in relation to stemflow yield is inadequately understood and the subject of debate among forest hydrologists. It is possible to evaluate the role and respective importance of individual canopy structure metrics by holding meteorological conditions constant. Twelve isolated experimental European beech (Fagus sylvatica L.) saplings in Jena, Germany were exposed to identical meteorological conditions to examine the effects of canopy structure on stemflow production during the 2012 growing season. The canopy structure metrics being evaluated include: trunk diameter, trunk lean, tree height, projected crown area, branch inclination angle, branch count, and biomass (foliar and woody). Principal components analysis and multiple regression are utilized to determine the relative importance of different canopy structure metrics on stemflow yield. Experimental results will provide insight as to which metrics of canopy structure most strongly govern stemflow production. Ultimately, with a more thorough understanding of the unique contributions of various canopy structural metrics to stemflow yield, a useful conceptual guide of stemflow generation can be formulated on the basis of canopy structure for management purposes. Sponsor note: This research was funded by the Alexander von Humboldt Foundation.

  18. Seasonal patterns of cytokinins and microclimate and the mediation of gas exchange among canopy layers of mature Acer saccharum trees.

    PubMed

    Reeves, Ian; Emery, R J Neil

    2007-11-01

    Seasonal patterns of cytokinins (CKs) and microclimate were examined in the upper, middle and lower canopy layers of mature Acer saccharum Marsh. (sugar maple) trees to elucidate the potential role of CKs in the mediation of gas exchange. The upper canopy showed a distinctly dissimilar microclimate from the middle and lower canopy layers with higher photosynthetically active radiation and wind speed, but showed no corresponding differences in transpiration (E) or stomatal conductance (g(s)). Although E and g(s) tended to be higher in the upper canopy than in the middle and lower canopies, the differences were not significant, indicating regulation beyond the passive response to changes in microclimate. The upper canopy accumulated significantly higher concentrations of CKs, predominantly as ribosides, and all canopy layers showed distinct seasonal patterns in CK profiles. Multiple regression models showed significant relationships between both g(s) and E and foliar CK concentration, although these relationships varied among canopy layers. The relationships were strongest in the middle and lower canopy layers where there was less fluctuation in leaf water status and less variability in abiotic variables. The relationships between gas exchange parameters and leaf CK concentration began to decouple near the end of the growing season as foliar phytohormone concentrations changed with the approach of dormancy.

  19. Competition and facilitation structure plant communities under nurse tree canopies in extremely stressful environments.

    PubMed

    Al-Namazi, Ali A; El-Bana, Magdy I; Bonser, Stephen P

    2017-04-01

    Nurse plant facilitation in stressful environments can produce an environment with relatively low stress under its canopy. These nurse plants may produce the conditions promoting intense competition between coexisting species under the canopy, and canopies may establish stress gradients, where stress increases toward the edge of the canopy. Competition and facilitation on these stress gradients may control species distributions in the communities under canopies. We tested the following predictions: (1) interactions between understory species shift from competition to facilitation in habitats experiencing increasing stress from the center to the edge of canopy of a nurse plant, and (2) species distributions in understory communities are controlled by competitive interactions at the center of canopy, and facilitation at the edge of the canopy. We tested these predictions using a neighbor removal experiment under nurse trees growing in arid environments. Established individuals of each of four of the most common herbaceous species in the understory were used in the experiment. Two species were more frequent in the center of the canopy, and two species were more frequent at the edge of the canopy. Established individuals of each species were subjected to neighbor removal or control treatments in both canopy center and edge habitats. We found a shift from competitive to facilitative interactions from the center to the edge of the canopy. The shift in the effect of neighbors on the target species can help to explain species distributions in these canopies. Canopy-dominant species only perform well in the presence of neighbors in the edge microhabitat. Competition from canopy-dominant species can also limit the performance of edge-dominant species in the canopy microhabitat. The shift from competition to facilitation under nurse plant canopies can structure the understory communities in extremely stressful environments.

  20. Are tree ontogenetic structure and allometric relationship independent of vegetation formation type? A case study with Cordia oncocalyx in the Brazilian caatinga

    NASA Astrophysics Data System (ADS)

    Silveira, Andréa P.; Martins, Fernando R.; Araújo, Francisca S.

    2012-08-01

    In temperate and tropical rainforests, ontogenetic structure and allometry during tree ontogeny are often associated with light gradients. Light is not considered a limiting resource in deciduous thorny woodland (DTW), but establishment and growth occur during a short rainy period, when the canopy is fully leaved and light in the understory may be modified. Our aim was to investigate whether the light gradient in DTW and the biomechanical limitations of tree growth would be enough to produce an ontogenetic structure and allometric growth similar to rainforest canopy trees. We investigated the ontogenetic stages and diameter-height relationship of Cordia oncocalyx (Boraginaceae), a dominant canopy tree of the DTW of semiarid northeastern Brazil. We tagged, measured and classified the ontogenetic stages of 2.895 individuals in a 1 ha area (5°6'58.1″S and 40°52'19.4″W). In the rainy season only 4.7% of the light falling on the canopy reached the ground. Initial ontogenetic stages, mainly infant (50.9%) and seedling (42.1%), were predominant in the population, with the remaining 7% distributed among juvenile, immature, virginile and reproductive. The ontogenetic structure was similar to that of rainforest tree species, but the population formed both permanent seed and infant banks in response to long dry periods and erratic rainy spells. Like many other Boraginaceae tree species in tropical rainforests, C. oncocalyx has a Prévost architectural model, but allometric growth was quite different from rainforest trees. C. oncocalyx invested slightly more in diameter at first, then in height and finally invested greatly in diameter and attained an asymptotic height. The continued high investment in diameter growth at late stages and the asymptotic height point to low tree density and more frequent xylem embolism as the main drivers of tree allometric shape in DTW. This indicates that tree ontogenetic structure and allometric relationships depend on vegetation formation type.

  1. How does warming affect carbon allocation, respiration and residence time in trees? An isotope tracer approach in a eucalypt

    NASA Astrophysics Data System (ADS)

    Pendall, E.; Drake, J. E.; Furze, M.; Barton, C. V.; Carillo, Y.; Richter, A.; Tjoelker, M. G.

    2017-12-01

    Climate warming has the potential to alter the balance between photosynthetic carbon assimilation and respiratory losses in forest trees, leading to uncertainty in predicting their future physiological functioning. In a previous experiment, warming decreased canopy CO2 assimilation (A) rates of Eucalyptus tereticornis trees, but respiration (R) rates were usually not significantly affected, due to physiological acclimation to temperature. This led to a slight increase in (R/A) and thus decrease in plant carbon use efficiency with climate warming. In contrast to carbon fluxes, the effect of warming on carbon allocation and residence time in trees has received less attention. We conducted a study to test the hypothesis that warming would decrease the allocation of C belowground owing to reduced cost of nutrient uptake. E. parramattensis trees were grown in the field in unique whole-tree chambers operated at ambient and ambient +3 °C temperature treatments (n=3 per treatment). We applied a 13CO2 pulse and followed the label in CO2 respired from leaves, roots, canopy and soil, in plant sugars, and in rhizosphere microbes over a 3-week period in conjunction with measurements of tree growth. The 9-m tall, 57 m3 whole-tree chambers were monitored for CO2 concentrations in independent canopy and below ground (root and soil) compartments; periodic monitoring of δ13C values in air in the compartments allowed us to quantify the amount of 13CO2 assimilated and respired by each tree. Warmed trees grew faster and assimilated more of the label than control trees, but the 13C allocation to canopy, root and soil respiration was not altered. However, warming appeared to reduce the residence time of carbon respired from leaves, and especially from roots and soil, indicating that autotrophic respiration has the potential to feedback to climate change. This experiment provides insights into how warming may affect the fate of assimilated carbon from the leaf to the ecosystem scale.

  2. Canopy tree species drive local heterogeneity in soil nitrogen availability in a lowland tropical forest

    NASA Astrophysics Data System (ADS)

    Osborne, B. B.; Nasto, M.; Asner, G. P.; Balzotti, C.; Cleveland, C. C.; Taylor, P.; Townsend, A. R.; Porder, S.

    2016-12-01

    The high phylogenetic and functional diversity of tree species in lowland tropical forests make field-based investigations of organismal influences on soil nutrient cycling challenging. Here, we used remotely-detected canopy nitrogen (N) data from the Carnegie Airborne Observatory to identify and characterize ¼ ha plots of a mature forest with either high or low canopy N on the Osa Peninsula in Costa Rica. Specifically we were interested in mechanisms by which foliar N might influence soil N, or the reverse. A non-dimensional scaling analysis suggested that high and low canopy N plots differ in their emergent (≥40 cm DBH) tree communities, though there were few putative N fixers in any of the plots. We found litterfall mass was similar beneath all canopies. However, mean DOC solubility of litter was 0.40% of dry biomass in low canopy N plots compared to 0.26% in high N plots. Additionally, litter leachate C:N was twice as high in litter from the low canopy N plots (61±1.4) compared with litter from the high N plots (30±1.4). We found strong positive correlations between canopy N and concentrations of soil KCl-extractable soil NO3- and net nitrification and net N mineralization rates (N=5; P<0.0001 in all cases). Under high canopy N, mean NO3-N concentrations were roughly an order of magnitude higher than beneath low N canopies (2.7±0.39 and 0.19±0.05, respectively). We hypothesize that differences in litter chemistry lead to differences in leachate quality that promote high soil N under canopies with high foliar N. Our findings suggest that remote sensing of foliar characteristics may offer an effective way to study spatial patterns in soil biogeochemistry in diverse tropical forests.

  3. Comparison of trap types and colors for capturing emerald ash borer adults at different population densities.

    PubMed

    Poland, Therese M; Mccullough, Deborah G

    2014-02-01

    Results of numerous trials to evaluate artificial trap designs and lures for detection of Agrilus planipennis Fairmaire, the emerald ash borer, have yielded inconsistent results, possibly because of different A. planipennis population densities in the field sites. In 2010 and 2011, we compared 1) green canopy traps, 2) purple canopy traps, 3) green double-decker traps, and 4) purple double-decker traps in sites representing a range of A. planipennis infestation levels. Traps were baited with cis-3-hexenol in both years, plus an 80:20 mixture of Manuka and Phoebe oil (2010) or Manuka oil alone (2011). Condition of trees bearing canopy traps, A. planipennis infestation level of trees in the vicinity of traps, and number of A. planipennis captured per trap differed among sites in both years. Overall in both years, more females, males, and beetles of both sexes were captured on double-decker traps than canopy traps, and more beetles of both sexes (2010) or females (2011) were captured on purple traps than green traps. In 2010, detection rates were higher for purple (100%) and green double-decker traps (100%) than for purple (82%) or green canopy traps (64%) at sites with very low to low A. planipennis infestation levels. Captures of A. planipennis on canopy traps consistently increased with the infestation level of the canopy trap-bearing trees. Differences among trap types were most pronounced at sites with low A. planipennis densities, where more beetles were captured on purple double-decker traps than on green canopy traps in both years.

  4. Evaluating Uncertainties in Sap Flux Scaled Estimates of Forest Transpiration, Canopy Conductance and Photosynthesis

    NASA Astrophysics Data System (ADS)

    Ward, E. J.; Bell, D. M.; Clark, J. S.; Kim, H.; Oren, R.

    2009-12-01

    Thermal dissipation probes (TDPs) are a common method for estimating forest transpiration and canopy conductance from sap flux rates in trees, but their implementation is plagued by uncertainties arising from missing data and variability in the diameter and canopy position of trees, as well as sapwood conductivity within individual trees. Uncertainties in estimates of canopy conductance also translate into uncertainties in carbon assimilation in models such as the Canopy Conductance Constrained Carbon Assimilation (4CA) model that combine physiological and environmental data to estimate photosynthetic rates. We developed a method to propagate these uncertainties in the scaling and imputation of TDP data to estimates of canopy transpiration and conductance using a state-space Jarvis-type conductance model in a hierarchical Bayesian framework. This presentation will focus on the impact of these uncertainties on estimates of water and carbon fluxes using 4CA and data from the Duke Free Air Carbon Enrichment (FACE) project, which incorporates both elevated carbon dioxide and soil nitrogen treatments. We will also address the response of canopy conductance to vapor pressure deficit, incident radiation and soil moisture, as well as the effect of treatment-related stand structure differences in scaling TDP measurements. Preliminary results indicate that in 2006, a year of normal precipitation (1127 mm), canopy transpiration increased in elevated carbon dioxide ~8% on a ground area basis. In 2007, a year with a pronounced drought (800 mm precipitation), this increase was only present in the combined carbon dioxide and fertilization treatment. The seasonal dynamics of water and carbon fluxes will be discussed in detail.

  5. Assessing alternative measures of tree canopy cover: Photo-interpreted NAIP and ground-based estimates

    Treesearch

    Chris Toney; Greg Liknes; Andy Lister; Dacia Meneguzzo

    2012-01-01

    In preparation for the development of the National Land Cover Database (NLCD) 2011 tree canopy cover layer, a pilot project for research and method development was completed in 2010 by the USDA Forest Service Forest Inventory and Analysis (FIA) program and Remote Sensing Applications Center (RSAC).This paper explores one of several topics investigated during the NLCD...

  6. Repeated prescribed fires alter gap-phase regeneration in mixed-oak forests

    Treesearch

    Todd F. Hutchinson; Robert P. Long; Joanne Rebbeck; Elaine Kennedy Sutherland; Daniel A. Yaussy

    2012-01-01

    Oak dominance is declining in the central hardwoods region, as canopy oaks are being replaced by shade-tolerant trees that are abundant in the understory of mature stands. Although prescribed fire can reduce understory density, oak seedlings often fail to show increased vigor after fire, as the canopy remains intact. In this study, we examine the response of tree...

  7. Canopy gap size influences niche partitioning of the ground-layer plant community in a northern temperate forest

    Treesearch

    Christel C. Kern; Rebecca A. Montgomery; Peter B. Reich; Terry F. Strong

    2013-01-01

    The Gap Partitioning Hypothesis (GPH) posits that gaps create heterogeneity in resources crucial for tree regeneration in closed-canopy forests, allowing trees with contrasting strategies to coexist along resource gradients. Few studies have examined gap partitioning of temperate, ground-layer vascular plants. We used a ground-layer plant community of a temperate...

  8. Characterizing the canopy gap structure of a disturbed forest using Fourier transform

    Treesearch

    R. A. Sommerfeld; J. E. Lundquist; J. Smith

    2000-01-01

    Diseases and other small-scale disturbances alter spatial patterns of heterogeneity in forests by killing trees. Canopy gaps caused by tree death are a common feature of forests. Because gaps are caused by different disturbances acting at different times and places, operationally determining the locations of gap edges is often difficult. In this study, digital image...

  9. Canopy arthropod response to density and distribution of green trees retained after partial harvest.

    Treesearch

    Timothy D. Schowalter; Yanli Zhang; Robert A. Progar

    2005-01-01

    We measured canopy arthropod responses to six contrasting green-tree retention treatments at six locations (blocks) in western Oregon and Washington as part of the Demonstration of Ecosystem Management Options (DEMO) study. Treatments were 100% retention (uncut), 75% retention with three 1-ha harvested gaps, 40% dispersed retention, 40% aggregated retention with five 1...

  10. COVER: A user's guide to the CANOPY and SHRUBS extension of the Stand Prognosis Model

    Treesearch

    Melinda Moeur

    1985-01-01

    The COVER model predicts vertical and horizontal tree canopy closure, tree foliage biomass, and the probability of occurrence, height, and cover of shrubs in forest stands. This paper documents use of the COVER program, an adjunct to the Stand Prognosis Model. Preparation of input, interpretation of output, program control, model characteristics, and example...

  11. Effects of urban tree canopy loss on land surface temperature magnitude and timing

    Treesearch

    Arthur Elmes; John Rogan; Christopher Williams; Samuel Ratick; David Nowak; Deborah Martin

    2017-01-01

    Urban Tree Canopy (UTC) plays an important role in moderating the Surface Urban Heat Island (SUHI) effect, which poses threats to human health due to substantially increased temperatures relative to rural areas. UTC coverage is associated with reduced urban temperatures, and therefore benefits both human health and reducing energy use in cities. Measurement of this...

  12. Atmospheric Inputs of Nitrogen, Carbon, and Phosphorus across an Urban Area: Unaccounted Fluxes and Canopy Influences

    NASA Astrophysics Data System (ADS)

    Decina, Stephen M.; Templer, Pamela H.; Hutyra, Lucy R.

    2018-02-01

    Rates of atmospheric deposition are declining across the United States, yet urban areas remain hotspots of atmospheric deposition. While past studies show elevated rates of inorganic nitrogen (N) deposition in cities, less is known about atmospheric inputs of organic N, organic carbon (C), and organic and inorganic phosphorus (P), all of which can affect ecosystem processes, water quality, and air quality. Further, the effect of the tree canopy on amounts and forms of nutrients reaching urban ground surfaces is not well-characterized. We measured growing season rates of total N, organic C, and total P in bulk atmospheric inputs, throughfall, and soil solution around the greater Boston area. We found that organic N constitutes a third of total N inputs, organic C inputs are comparable to rural inputs, and inorganic P inputs are 1.2 times higher than those in sewage effluent. Atmospheric inputs are enhanced two-to-eight times in late spring and are elevated beneath tree canopies, suggesting that trees augment atmospheric inputs to ground surfaces. Additionally, throughfall inputs may directly enter runoff when trees extend above impervious surfaces, as is the case with 26.1% of Boston's tree canopy. Our results indicate that the urban atmosphere is a significant source of elemental inputs that may impact urban ecosystems and efforts to improve water quality, particularly in terms of P. Further, as cities create policies encouraging tree planting to provide ecosystem services, locating trees above permeable surfaces to reduce runoff nutrient loads may be essential to managing urban biogeochemical cycling and water quality.

  13. Growing Canopy on a College Campus: Understanding Urban Forest Change through Archival Records and Aerial Photography.

    PubMed

    Roman, Lara A; Fristensky, Jason P; Eisenman, Theodore S; Greenfield, Eric J; Lundgren, Robert E; Cerwinka, Chloe E; Hewitt, David A; Welsh, Caitlin C

    2017-12-01

    Many municipalities are setting ambitious tree canopy cover goals to increase the extent of their urban forests. A historical perspective on urban forest development can help cities strategize how to establish and achieve appropriate tree cover targets. To understand how long-term urban forest change occurs, we examined the history of trees on an urban college campus: the University of Pennsylvania in Philadelphia, PA. Using a mixed methods approach, including qualitative assessments of archival records (1870-2017), complemented by quantitative analysis of tree cover from aerial imagery (1970-2012), our analysis revealed drastic canopy cover increase in the late 20th and early 21st centuries along with the principle mechanisms of that change. We organized the historical narrative into periods reflecting campus planting actions and management approaches; these periods are also connected to broader urban greening and city planning movements, such as City Beautiful and urban sustainability. University faculty in botany, landscape architecture, and urban design contributed to the design of campus green spaces, developed comprehensive landscape plans, and advocated for campus trees. A 1977 Landscape Development Plan was particularly influential, setting forth design principles and planting recommendations that enabled the dramatic canopy cover gains we observed, and continue to guide landscape management today. Our results indicate that increasing urban tree cover requires generational time scales and systematic management coupled with a clear urban design vision and long-term commitments. With the campus as a microcosm of broader trends in urban forest development, we conclude with a discussion of implications for municipal tree cover planning.

  14. Growing Canopy on a College Campus: Understanding Urban Forest Change through Archival Records and Aerial Photography

    NASA Astrophysics Data System (ADS)

    Roman, Lara A.; Fristensky, Jason P.; Eisenman, Theodore S.; Greenfield, Eric J.; Lundgren, Robert E.; Cerwinka, Chloe E.; Hewitt, David A.; Welsh, Caitlin C.

    2017-12-01

    Many municipalities are setting ambitious tree canopy cover goals to increase the extent of their urban forests. A historical perspective on urban forest development can help cities strategize how to establish and achieve appropriate tree cover targets. To understand how long-term urban forest change occurs, we examined the history of trees on an urban college campus: the University of Pennsylvania in Philadelphia, PA. Using a mixed methods approach, including qualitative assessments of archival records (1870-2017), complemented by quantitative analysis of tree cover from aerial imagery (1970-2012), our analysis revealed drastic canopy cover increase in the late 20th and early 21st centuries along with the principle mechanisms of that change. We organized the historical narrative into periods reflecting campus planting actions and management approaches; these periods are also connected to broader urban greening and city planning movements, such as City Beautiful and urban sustainability. University faculty in botany, landscape architecture, and urban design contributed to the design of campus green spaces, developed comprehensive landscape plans, and advocated for campus trees. A 1977 Landscape Development Plan was particularly influential, setting forth design principles and planting recommendations that enabled the dramatic canopy cover gains we observed, and continue to guide landscape management today. Our results indicate that increasing urban tree cover requires generational time scales and systematic management coupled with a clear urban design vision and long-term commitments. With the campus as a microcosm of broader trends in urban forest development, we conclude with a discussion of implications for municipal tree cover planning.

  15. Investigating the Potential of Land Use Modifications to Mitigate the Respiratory Health Impacts of NO2: A Case Study in the Portland-Vancouver Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Rao, Meenakshi

    The health impacts of urban air pollution are a growing concern in our rapidly urbanizing world. Urban air pollutants show high intra-urban spatial variability linked to urban land use and land cover (LULC). This correlation of air pollutants with LULC is widely recognized; LULC data is an integral input into a wide range of models, especially land use regression models developed by epidemiologists to study the impact of air pollution on human health. Given the demonstrated links between LULC and urban air pollution, and between urban air pollution and health, an interesting question arises: what is the potential of LULC modifications to mitigate the health impacts of urban air pollution? In this dissertation we assess the potential of LULC modifications to mitigate the health impacts of NO2, a respiratory irritant and strong marker for combustion-related air pollution, in the Portland-Vancouver metropolitan area in northwestern USA. We begin by measuring summer and winter NO2 in the area using a spatially dense network of passive NO 2 samplers. We next develop an annual average model for NO2 based on the observational data, using random forest--for the first time in the realm of urban air pollution--to disentangle the effects of highly correlated LULC variables on ambient NO2 concentrations. We apply this random forest (LURF) model to a 200m spatial grid covering the study area, and use this 200m LURF model to quantify the effect of different urban land use categories on ambient concentrations of NO2. Using the changes in ambient NO2 concentrations resulting from land use modifications as input to BenMAP (a health benefits assessment tool form the US EPA), we assess the NO2-related health impact associated with each land use category and its modifications. We demonstrate how the LURF model can be used to assess the respiratory health benefits of competing land use modifications, including city-wide and local-scale mitigation strategies based on modifying tree canopy and vehicle miles traveled (VMT). Planting trees is a common land cover modification strategy undertaken by cities to reduce air pollution. Statistical models such as LUR and LURF demonstrate a correlation between tree cover and reduced air pollution, but they cannot demonstrate causation. Hence, we run the atmospheric chemistry and transport model CMAQ to examine to what extent the dry deposition mechanism can explain the reduction of NO2 which statistical models associate with tree canopy. Results from our research indicate that even though the Portland-Vancouver area is in compliance with the US EPA NO2 standards, ambient concentrations of NO2 still create an annual health burden of at least 40 million USD. Our model suggests that NO2 associated with high intensity development and VMT may be creating an annual health burden of 7 million and 3.3 million USD respectively. Existing tree canopy, on the other hand, is associated with an annual health benefit of 1.4 million USD. LULC modifications can mitigate some fraction of this health burden. A 2% increase in tree canopy across the study area may reduce incidence rates of asthma exacerbation by as much as 7%. We also find that increasing tree canopy is a more effective strategy than reducing VMT in terms of mitigating the health burden of NO 2. CMAQ indicates that the amount of NO2 removed by dry deposition is an order of magnitude smaller than that predicted by our statistical model. About one-third of the difference can be explained by the lower NO2 values predicted by CMAQ, and one-third may be attributable to parameterization of stomatal uptake.

  16. Investigating the Relationships between Canopy Characteristics and Snow Depth Distribution at Fine Scales: Preliminary Results from the SnowEX TLS Campaign

    NASA Astrophysics Data System (ADS)

    Glenn, N. F.; Uhlmann, Z.; Spaete, L.; Tennant, C.; Hiemstra, C. A.; McNamara, J.

    2017-12-01

    Predicting changes in forested seasonal snowpacks under altered climate scenarios is one of the most pressing hydrologic challenges facing today's society. Airborne- and satellite-based remote sensing methods hold the potential to transform measurements of terrestrial water stores in snowpack, improve process representations of snowpack accumulation and ablation, and to generate high quality predictions that inform potential strategies to better manage water resources. While the effects of forest on snowpack are well documented, many of the fine-scale processes influenced by the forest-canopy are not directly accounted for because most snow models don't explicitly represent canopy structure and canopy heterogeneity. This study investigates the influence of forest canopy on snowpack distribution at fine scales and quantifies the influence of canopy heterogeneity on snowpack accumulation and ablation processes. We use terrestrial laser scanning (TLS) data collected during the SnowEX campaign to discover how the relationships between canopy and snow distributions change across scales. Our sample scales range from individual trees to patches of trees across the Grand Mesa, CO, SnowEx site.

  17. Incorporating Canopy Cover for Airborne-Derived Assessments of Forest Biomass in the Tropical Forests of Cambodia

    PubMed Central

    Singh, Minerva; Evans, Damian; Coomes, David A.; Friess, Daniel A.; Suy Tan, Boun; Samean Nin, Chan

    2016-01-01

    This research examines the role of canopy cover in influencing above ground biomass (AGB) dynamics of an open canopied forest and evaluates the efficacy of individual-based and plot-scale height metrics in predicting AGB variation in the tropical forests of Angkor Thom, Cambodia. The AGB was modeled by including canopy cover from aerial imagery alongside with the two different canopy vertical height metrics derived from LiDAR; the plot average of maximum tree height (Max_CH) of individual trees, and the top of the canopy height (TCH). Two different statistical approaches, log-log ordinary least squares (OLS) and support vector regression (SVR), were used to model AGB variation in the study area. Ten different AGB models were developed using different combinations of airborne predictor variables. It was discovered that the inclusion of canopy cover estimates considerably improved the performance of AGB models for our study area. The most robust model was log-log OLS model comprising of canopy cover only (r = 0.87; RMSE = 42.8 Mg/ha). Other models that approximated field AGB closely included both Max_CH and canopy cover (r = 0.86, RMSE = 44.2 Mg/ha for SVR; and, r = 0.84, RMSE = 47.7 Mg/ha for log-log OLS). Hence, canopy cover should be included when modeling the AGB of open-canopied tropical forests. PMID:27176218

  18. Incorporating Canopy Cover for Airborne-Derived Assessments of Forest Biomass in the Tropical Forests of Cambodia.

    PubMed

    Singh, Minerva; Evans, Damian; Coomes, David A; Friess, Daniel A; Suy Tan, Boun; Samean Nin, Chan

    2016-01-01

    This research examines the role of canopy cover in influencing above ground biomass (AGB) dynamics of an open canopied forest and evaluates the efficacy of individual-based and plot-scale height metrics in predicting AGB variation in the tropical forests of Angkor Thom, Cambodia. The AGB was modeled by including canopy cover from aerial imagery alongside with the two different canopy vertical height metrics derived from LiDAR; the plot average of maximum tree height (Max_CH) of individual trees, and the top of the canopy height (TCH). Two different statistical approaches, log-log ordinary least squares (OLS) and support vector regression (SVR), were used to model AGB variation in the study area. Ten different AGB models were developed using different combinations of airborne predictor variables. It was discovered that the inclusion of canopy cover estimates considerably improved the performance of AGB models for our study area. The most robust model was log-log OLS model comprising of canopy cover only (r = 0.87; RMSE = 42.8 Mg/ha). Other models that approximated field AGB closely included both Max_CH and canopy cover (r = 0.86, RMSE = 44.2 Mg/ha for SVR; and, r = 0.84, RMSE = 47.7 Mg/ha for log-log OLS). Hence, canopy cover should be included when modeling the AGB of open-canopied tropical forests.

  19. Turbulent mixing and fluid transport within Florida Bay seagrass meadows

    NASA Astrophysics Data System (ADS)

    Hansen, Jennifer C. R.; Reidenbach, Matthew A.

    2017-10-01

    Seagrasses serve an important function in the ecology of Florida Bay, providing critical nursery habitat and a food source for a variety of organisms. They also create significant benthic structure that induces drag, altering local hydrodynamics that can influence mixing and nutrient dynamics. Thalassia testudinum seagrass meadows were investigated to determine how shoot density and morphometrics alter local wave conditions, the generation of turbulence, and fluid exchange above and within the canopy. Sparsely vegetated and densely vegetated meadows were monitored, with shoot densities of 259 ± 26 and 484 ± 78 shoots m-2, respectively. The temporal and spatial structure of velocity and turbulence were measured using acoustic Doppler velocimeters and an in situ particle image velocimetry (PIV) system positioned both above and within the seagrass canopy. The retention of fluid within the canopy was determined by examining e-folding times calculated from the concentration curves of dye plumes released within the seagrass canopy. Results show that a shear layer with an inflection point develops at the top of the seagrass canopy, which generates instabilities that impart turbulence into the seagrass meadow. Compared to the overlying water column, turbulence was enhanced within the sparse canopy due to flow interaction with the seagrass blades, but reduced within the dense canopy. Wave generated oscillatory motion penetrated deeper into the canopy than unidirectional currents, enhancing fluid exchange. Both shoot density and the relative magnitude of wave- versus current-driven flow conditions were found to be important controls on turbulent exchange of water masses across the canopy-water interface.

  20. Analysis of the effect of evergreen and deciduous trees on urban nitrogen dioxide levels in the U.S. using land-use regression

    NASA Astrophysics Data System (ADS)

    Rao, M.; George, L. A.

    2012-12-01

    Nitrogen dioxide (NO2), an atmospheric pollutant generated primarily by anthropogenic combustion processes, is typically found at higher concentrations in urban areas compared to non-urbanized environments. Elevated NO2 levels have multiple ecosystem effects at different spatial scales. At the local scale, elevated levels affect human health directly and through the formation of secondary pollutants such as ozone and aerosols; at the regional scale secondary pollutants such as nitric acid and organic nitrates have deleterious effects on non-urbanized areas; and, at the global scale, nitrogen oxide emissions significantly alter the natural biogeochemical nitrogen cycle. As cities globally become larger and larger sources of nitrogen oxide emissions, it is important to assess possible mitigation strategies to reduce the impact of emissions locally, regionally and globally. In this study, we build a national land-use regression (LUR) model to compare the impacts of deciduous and evergreen trees on urban NO2 levels in the United States. We use the EPA monitoring network values of NO2 levels for 2006, the 2006 NLCD tree canopy data for deciduous and evergreen canopies, and the US Census Bureau's TIGER shapefiles for roads, railroads, impervious area & population density as proxies for NO2 sources on-road traffic, railroad traffic, off-road and area sources respectively. Our preliminary LUR model corroborates previous LUR studies showing that the presence of trees is associated with reduced urban NO2 levels. Additionally, our model indicates that deciduous and evergreen trees reduce NO2 to different extents, and that the amount of NO2 reduced varies seasonally. The model indicates that every square kilometer of deciduous canopy within a 2km buffer is associated with a reduction in ambient NO2 levels of 0.64 ppb in summer and 0.46ppb in winter. Similarly, every square kilometer of evergreen tree canopy within a 2 km buffer is associated with a reduction in ambient NO2 by 0.53 ppb in summer and 0.84 ppb in winter. Thus, the model indicates that deciduous trees are associated with a 30% smaller reduction in NO2 in winter as compared to summer, while evergreens are associated with a 60% increase in the reduction of NO2 in winter, for every square kilometer of deciduous or evergreen canopy within a 2 km buffer. Leaf- and local canopy-level studies have shown that trees are a sink for urban NO2 through deposition as well as stomatal and cuticular uptake. The winter time versus summer time effects suggest that leaf-level deposition may not be the only uptake mechanism and points to the need for a more holistic analysis of tree and canopy-level deposition for urban air pollution models. Since deposition velocities for NO2 vary by tree species, the reduction may also vary by species. These findings have implications for designing cities to reduce the impact of air pollution.

  1. Topographic Distributions of Emergent Trees in Tropical Forests of the Osa Peninsula, Costa Rica

    NASA Astrophysics Data System (ADS)

    Balzotti, C.; Asner, G. P.; Taylor, P.; Cole, R. J.; Osborne, B. B.; Cleveland, C. C.; Porder, S.; Townsend, A. R.

    2015-12-01

    Tropical rainforests are reservoirs of terrestrial carbon and biodiversity. Large and often emergent trees store disproportionately large amounts of aboveground carbon and greatly influence the structure and functioning of tropical rainforests. Despite their importance, controls on the abundance and distribution of emergent trees are largely unknown across tropical landscapes. Conventional field approaches are limited in their ability to characterize patterns in emergent trees across vast landscapes with varying environmental conditions and floristic composition. Here we used a high-resolution light detection and ranging (LiDAR) sensor, aboard the Carnegie Airborne Observatory Airborne Taxonomic Mapping System (CAO-AToMS), to examine the abundance and distribution of tall emergent tree canopies (ETC) relative to surrounding tree canopies (STC), across the Osa Peninsula, a geologically and topographically diverse region of Costa Rica. The abundance of ETC was clearly influenced by fine-scale topographic variation, with distribution patterns that held across a variety of geologic substrates. Specifically, the density of ETC was much greater on lower slopes and in valleys, compared to upper slopes and ridges. Furthermore, using the CAO high-fidelity imaging spectrometer, ETC had a different spectral signature than that of the STC. Most notably, ETC had lower foliar N than STC, which was verified with an independent field survey of canopy leaf chemistry. The underlying mechanisms to explain the topographic-dependence of ETCs and linkages to canopy N are unknown, and remain an important area of research.

  2. Time series of canopy intercepted water and dew observed in a tropical tree plantation by means of microwave radiometry

    NASA Astrophysics Data System (ADS)

    Schneebeli, M.; Wolf, S.; Kunert, N.; Eugster, W.; Mätzler, C.

    2012-04-01

    During summer and autumn 2007, a 11 GHz microwave radiometer was deployed in an experimental tree plantation in Sardinilla, Panama. With this instrument, the opacity of the tree canopy was derived from incoming brightness temperatures received on the ground. A collocated eddy-covariance flux tower measured water vapor fluxes and meteorological variables above the canopy. It was found that canopy intercepted rain and dew formation modulated the diurnal opacity cycle. With an enhanced canopy opacity model accounting for water deposited on the leaves, we quantified the influence of canopy stored water (i.e. intercepted water and dew) on the opacity. With this technique it was possible to directly monitor high resolution time series of dew formation and rain interception during a period of two weeks. In contrast to through-fall measurements, this new technique allows to determine the amount of intercepted rain more precisely and during day and night since evaporation effects do not hamper the accuracy of the method. We found that during light rainfall up to 60% of the rain amount is intercepted by the canopy whereas during periods of intense rainfall, only 4% were intercepted. On average, about 15% of the rain amount was intercepted during rainfalls of medium intensities. By comparing the interception with the water vapor flux time series it was found that intercepted water is evaporated rapidly after it is deposited on the leaves, which resulted in an enhanced water vapor flux. Our study also provides the first direct measurements and quantifications of the temporal evolution of dew formation and evaporation in a tree canopy on a diurnal base. Dew accumulated during the night and until about 2 h after sunrise, when the water vapor flux began to exceed the dew formation rate. The dew continued to evaporate for another 3.5 h until the surface of the leaves was completely dry. On average, 0.17 mm of dew was formed during the night. Dew evaporation contributed 5% to the total water vapor flux measured above the canopy.

  3. El Niño drought increased canopy turnover in Amazon forests.

    PubMed

    Leitold, Veronika; Morton, Douglas C; Longo, Marcos; Dos-Santos, Maiza Nara; Keller, Michael; Scaranello, Marcos

    2018-03-25

    Amazon droughts, including the 2015-2016 El Niño, may reduce forest net primary productivity and increase canopy tree mortality, thereby altering both the short- and the long-term net forest carbon balance. Given the broad extent of drought impacts, inventory plots or eddy flux towers may not capture regional variability in forest response to drought. We used multi-temporal airborne Lidar data and field measurements of coarse woody debris to estimate patterns of canopy turnover and associated carbon losses in intact and fragmented forests in the central Brazilian Amazon between 2013-2014 and 2014-2016. Average annualized canopy turnover rates increased by 65% during the drought period in both intact and fragmented forests. The average size and height of turnover events was similar for both time intervals, in contrast to expectations that the 2015-2016 El Niño drought would disproportionally affect large trees. Lidar-biomass relationships between canopy turnover and field measurements of coarse woody debris were modest (R 2  ≈ 0.3), given similar coarse woody debris production and Lidar-derived changes in canopy volume from single tree and multiple branch fall events. Our findings suggest that El Niño conditions accelerated canopy turnover in central Amazon forests, increasing coarse woody debris production by 62% to 1.22 Mg C ha -1  yr -1 in drought years . No claim to original US Government works New Phytologist © 2018 New Phytologist Trust.

  4. Effects of rainfall exclusion on leaf gas exchange traits and osmotic adjustment in mature canopy trees of Dryobalanops aromatica (Dipterocarpaceae) in a Malaysian tropical rain forest.

    PubMed

    Inoue, Yuta; Ichie, Tomoaki; Kenzo, Tanaka; Yoneyama, Aogu; Kumagai, Tomo'omi; Nakashizuka, Tohru

    2017-10-01

    Climate change exposes vegetation to unusual levels of drought, risking a decline in productivity and an increase in mortality. It still remains unclear how trees and forests respond to such unusual drought, particularly Southeast Asian tropical rain forests. To understand leaf ecophysiological responses of tropical rain forest trees to soil drying, a rainfall exclusion experiment was conducted on mature canopy trees of Dryobalanops aromatica Gaertn.f. (Dipterocarpaceae) for 4 months in an aseasonal tropical rain forest in Sarawak, Malaysia. The rainfall was intercepted by using a soft vinyl chloride sheet. We compared the three control and three treatment trees with respect to leaf water use at the top of the crown, including stomatal conductance (gsmax), photosynthesis (Amax), leaf water potential (predawn: Ψpre; midday: Ψmid), leaf water potential at turgor loss point (πtlp), osmotic potential at full turgor (π100) and a bulk modulus of elasticity (ε). Measurements were taken using tree-tower and canopy-crane systems. During the experiment, the treatment trees suffered drought stress without evidence of canopy dieback in comparison with the control trees; e.g., Ψpre and Ψmid decreased with soil drying. Minimum values of Ψmid in the treatment trees decreased during the experiment, and were lower than πtlp in the control trees. However, the treatment trees also decreased their πtlp by osmotic adjustment, and the values were lower than the minimum values of their Ψmid. In addition, the treatment trees maintained gs and Amax especially in the morning, though at midday, values decreased to half those of the control trees. Decreasing leaf water potential by osmotic adjustment to maintain gs and Amax under soil drying in treatment trees was considered to represent anisohydric behavior. These results suggest that D. aromatica may have high leaf adaptability to drought by regulating leaf water consumption and maintaining turgor pressure to improve its leaf water relations. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. The role of forest floor and trees to the ecosystem scale methane budget of boreal forests

    NASA Astrophysics Data System (ADS)

    Pihlatie, Mari; Halmeenmäki, Elisa; Peltola, Olli; Haikarainen, Iikka; Heinonsalo, Jussi; Santalahti, Minna; Putkinen, Anuliina; Fritze, Hannu; Urban, Otmar; Machacova, Katerina

    2016-04-01

    Boreal forests are considered as a sink of atmospheric methane (CH4) due to the activity of CH4 oxidizing bacteria (methanotrophs) in the soil. This soil CH4 sink is especially strong for upland forest soils, whereas forests growing on organic soils may act as small sources due to the domination of CH4 production by methanogens in the anaerobic parts of the soil. The role of trees to the ecosystem-scale CH4 fluxes has until recently been neglected due to the perception that trees do not contribute to the CH4 exchange, and also due to difficulties in measuring the CH4 exchange from trees. Findings of aerobic CH4 formation in plants and emissions from tree-stems in temperate and tropical forests during the past decade demonstrate that our understanding of CH4 cycling in forest ecosystems is not complete. Especially the role of forest canopies still remain unresolved, and very little is known of CH4 fluxes from trees in boreal region. We measured the CH4 exchange of tree-stems and tree-canopies from pine (Pinus sylvestris), spruce (Picea abies) and birch (Betula pubescens, Betula pendula) trees growing in Southern Finland (SMEAR II station) on varying soil conditions, from upland mineral soils to paludified soil. We compared the CH4 fluxes from trees to forest-floor CH4 exchange, both measured by static chambers, and to CH4 fluxes measured above the forest canopy by a flux gradient technique. We link the CH4 fluxes from trees and forest floor to physiological activity of the trees, such as transpiration, sap-flow, CO2 net ecosystem exchange (NEE), soil properties such as temperature and moisture, and to the presence of CH4 producing methanogens and CH4 oxidizing methanotrophs in trees or soil. The above canopy CH4 flux measurements show that the whole forest ecosystem was a small source of CH4 over extended periods in the spring and summer 2012, 2014 and 2015. Throughout the 2013-2014 measurements, the forest floor was in total a net sink of CH4, with variation between high CH4 uptake in the dominating dry upland areas and high emissions from the few wet spots of the forest. All the studied tree species emitted small amounts of CH4 from the stems and shoots, with emission rates depending on the season, tree species and soil conditions. Especially, CH4 emissions from birch canopies were high and can therefore contribute significantly to the ecosystem-scale CH4 fluxes. Processes behind the canopy and stem CH4emission remain unresolved, however, ongoing analysis of the methanogens and methanotrophs within the plant-soil systems will reveal whether CH4 production or consumption is of microbial origin. Also, comparison of the CH4 fluxes from trees and forest floor to sap-flow, transpiration, and NEE as well as soil parameters will help to explain the seasonality and mechanisms involved in the CH4 emissions.

  6. Canopy-scale relationships between foliar nitrogen and albedo are not observed in leaf reflectance and transmittance within temperate deciduous tree species

    Treesearch

    Megan K. Bartlett; Scott V. Ollinger; David Y. Hollinger; Haley F. Wicklein; Andrew D. Richardson

    2011-01-01

    Strong positive correlations between the maximum rate of canopy photosynthesis, canopy-averaged foliar nitrogen concentration, and canopy albedo have been shown in previous studies. While leaf-level relationships between photosynthetic capacity and foliar nitrogen are well documented, it is not clear whether leaf-level relationships between solar-weighted reflectance...

  7. Effects of Kaolin Application on Light Absorption and Distribution, Radiation Use Efficiency and Photosynthesis of Almond and Walnut Canopies

    PubMed Central

    Rosati, Adolfo; Metcalf, Samuel G.; Buchner, Richard P.; Fulton, Allan E.; Lampinen, Bruce D.

    2007-01-01

    Background and Aims Kaolin applied as a suspension to plant canopies forms a film on leaves that increases reflection and reduces absorption of light. Photosynthesis of individual leaves is decreased while the photosynthesis of the whole canopy remains unaffected or even increases. This may result from a better distribution of light within the canopy following kaolin application, but this explanation has not been tested. The objective of this work was to study the effects of kaolin application on light distribution and absorption within tree canopies and, ultimately, on canopy photosynthesis and radiation use efficiency. Methods Photosynthetically active radiation (PAR) incident on individual leaves within the canopy of almond (Prunus dulcis) and walnut (Juglans regia) trees was measured before and after kaolin application in order to study PAR distribution within the canopy. The PAR incident on, and reflected and transmitted by, the canopy was measured on the same day for kaolin-sprayed and control trees in order to calculate canopy PAR absorption. These data were then used to model canopy photosynthesis and radiation use efficiency by a simple method proposed in previous work, based on the photosynthetic response to incident PAR of a top-canopy leaf. Key Results Kaolin increased incident PAR on surfaces of inner-canopy leaves, although there was an estimated 20 % loss in PAR reaching the photosynthetic apparatus, due to increased reflection. Assuming a 20 % loss of PAR, modelled photosynthesis and photosynthetic radiation use efficiency (PRUE) of kaolin-coated leaves decreased by only 6·3 %. This was due to (1) more beneficial PAR distribution within the kaolin-sprayed canopy, and (2) with decreasing PAR, leaf photosynthesis decreases less than proportionally, due to the curvature of the photosynthesis response-curve to PAR. The relatively small loss in canopy PRUE (per unit of incident PAR), coupled with the increased incident PAR on the leaf surface on inner-canopy leaves, resulted in an estimated increase in modelled photosynthesis of the canopy (+9 % in both walnut and almond). The small loss in PRUE (per unit of incident PAR) resulted in an increase in radiation use efficiency per unit of absorbed PAR, which more than compensated for the minor (7 %) reduction in canopy PAR absorption. Conclusions The results explain the apparently contradictory findings in the literature of positive or no effects of kaolin applications on canopy photosynthesis and yield, despite the decrease in photosynthesis by individual leaves when measured at the same PAR. PMID:17138580

  8. Effects of kaolin application on light absorption and distribution, radiation use efficiency and photosynthesis of almond and walnut canopies.

    PubMed

    Rosati, Adolfo; Metcalf, Samuel G; Buchner, Richard P; Fulton, Allan E; Lampinen, Bruce D

    2007-02-01

    Kaolin applied as a suspension to plant canopies forms a film on leaves that increases reflection and reduces absorption of light. Photosynthesis of individual leaves is decreased while the photosynthesis of the whole canopy remains unaffected or even increases. This may result from a better distribution of light within the canopy following kaolin application, but this explanation has not been tested. The objective of this work was to study the effects of kaolin application on light distribution and absorption within tree canopies and, ultimately, on canopy photosynthesis and radiation use efficiency. Photosynthetically active radiation (PAR) incident on individual leaves within the canopy of almond (Prunus dulcis) and walnut (Juglans regia) trees was measured before and after kaolin application in order to study PAR distribution within the canopy. The PAR incident on, and reflected and transmitted by, the canopy was measured on the same day for kaolin-sprayed and control trees in order to calculate canopy PAR absorption. These data were then used to model canopy photosynthesis and radiation use efficiency by a simple method proposed in previous work, based on the photosynthetic response to incident PAR of a top-canopy leaf. Kaolin increased incident PAR on surfaces of inner-canopy leaves, although there was an estimated 20 % loss in PAR reaching the photosynthetic apparatus, due to increased reflection. Assuming a 20 % loss of PAR, modelled photosynthesis and photosynthetic radiation use efficiency (PRUE) of kaolin-coated leaves decreased by only 6.3 %. This was due to (1) more beneficial PAR distribution within the kaolin-sprayed canopy, and (2) with decreasing PAR, leaf photosynthesis decreases less than proportionally, due to the curvature of the photosynthesis response-curve to PAR. The relatively small loss in canopy PRUE (per unit of incident PAR), coupled with the increased incident PAR on the leaf surface on inner-canopy leaves, resulted in an estimated increase in modelled photosynthesis of the canopy (+9 % in both walnut and almond). The small loss in PRUE (per unit of incident PAR) resulted in an increase in radiation use efficiency per unit of absorbed PAR, which more than compensated for the minor (7 %) reduction in canopy PAR absorption. The results explain the apparently contradictory findings in the literature of positive or no effects of kaolin applications on canopy photosynthesis and yield, despite the decrease in photosynthesis by individual leaves when measured at the same PAR.

  9. Do the rich get richer? Varying effects of tree species identity and diversity on the richness of understory taxa

    USGS Publications Warehouse

    Champagne, Juilette; Paine, C. E. Timothy; Schoolmaster, Donald; Stejskal, Robert; Volařík, Daniel; Šebesta, Jan; Trnka, Filip; Koutecký, Tomáš; Švarc, Petr; Svátek, Martin; Hector, Andy; Matula, Radim

    2016-01-01

    Understory herbs and soil invertebrates play key roles in soil formation and nutrient cycling in forests. Studies suggest that diversity in the canopy and in the understory are positively associated, but these studies often confound the effects of tree species diversity with those of tree species identity and abiotic conditions. We combined extensive field sampling with structural equation modeling to evaluate the simultaneous effects of tree diversity on the species diversity of understory herbs, beetles, and earthworms. The diversity of earthworms and saproxylic beetles was directly and positively associated with tree diversity, presumably because species of both these taxa specialize on certain species of trees. Tree identity also strongly affected diversity in the understory, especially for herbs, likely as a result of interspecific differences in canopy light transmittance or litter decomposition rates. Our results suggest that changes in forest management will disproportionately affect certain understory taxa. For instance, changes in canopy diversity will affect the diversity of earthworms and saproxylic beetles more than changes in tree species composition, whereas the converse would be expected for understory herbs and detritivorous beetles. We conclude that the effects of tree diversity on understory taxa can vary from positive to negative and may affect biogeochemical cycling in temperate forests. Thus, maintaining high diversity in temperate forests can promote the diversity of multiple taxa in the understory.

  10. Induced spatial heterogeneity in forest canopies: responses of small mammals.

    Treesearch

    A.B. Carey

    2001-01-01

    We hypothesized that creating a mosaic of interspersed patches of different densities of canopy trees in a second-growth Douglas-fir (Pseudotsuga menziesiz) forest would accelerate development of biocomplexity (diversity in ecosystem structure, composition, and processes) by promoting spatial heterogeneity in understory, midstory, and canopy,...

  11. Evaporation components of a boreal forest: variations during the growing season

    NASA Astrophysics Data System (ADS)

    Grelle, A.; Lundberg, A.; Lindroth, A.; Morén, A.-S.; Cienciala, E.

    1997-10-01

    To improve the understanding of interactions between the boreal forest and the climate system as a key issue for global climate change, the water budget of a mixed pine and spruce forest in central Sweden was estimated by measurements of the water flux components and the total evaporation flux during the period 16 May-31 October 1995. Total evaporation was measured using eddy correlation and the components were obtained using measurements of precipitation, throughfall, tree transpiration, and forest floor evaporation. On a daily basis, tree transpiration was the dominant evaporation component during the vegetation period. However, it could be efficiently blocked by a wet canopy associated with large interception evaporation. The accumulated total evaporation was 399 mm, transpiration was 243 mm, forest floor evaporation was 56 mm and interception evaporation was 74 mm. The accumulated sum of interception, transpiration, and floor evaporation was 51 mm larger than the actual measured total evaporation. This difference was mainly attributed to the fact that transpiration was measured in a rather dense 50-year-old stand while total evaporation represented the average conditions of older, roughly 100-year-old stands. To compare eddy-correlation measurements with small-scale measurements of evaporation components, a source area analysis was made to select the flux data that give the best representation of the investigated stand. Especially under stable atmospheric conditions the requirements for surface homogeneity were very high and extreme care had to be taken to be aware of the flux source areas. Canopy water storage was determined by two methods: by the water balance of the canopy, which gave a result of 3.3 mm; and by the so-called minimum method based on plots of throughfall versus precipitation, which gave a much lower value of 1.5 mm. Seasonal interception evaporation constituted 30% of the precipitation.

  12. Three Different Methods of Estimating LAI in a Small Watershed

    NASA Astrophysics Data System (ADS)

    Speckman, H. N.; Ewers, B. E.; Beverly, D.

    2015-12-01

    Leaf area index (LAI) is a critical input of models that improve predictive understanding of ecology, hydrology, and climate change. Multiple techniques exist to quantify LAI, most of which are labor intensive, and all often fail to converge on similar estimates. . Recent large-scale bark beetle induced mortality greatly altered LAI, which is now dominated by younger and more metabolically active trees compared to the pre-beetle forest. Tree mortality increases error in optical LAI estimates due to the lack of differentiation between live and dead branches in dense canopy. Our study aims to quantify LAI using three different LAI methods, and then to compare the techniques to each other and topographic drivers to develop an effective predictive model of LAI. This study focuses on quantifying LAI within a small (~120 ha) beetle infested watershed in Wyoming's Snowy Range Mountains. The first technique estimated LAI using in-situ hemispherical canopy photographs that were then analyzed with Hemisfer software. The second LAI estimation technique was use of the Kaufmann 1982 allometrerics from forest inventories conducted throughout the watershed, accounting for stand basal area, species composition, and the extent of bark beetle driven mortality. The final technique used airborne light detection and ranging (LIDAR) first DMS returns, which were used to estimating canopy heights and crown area. LIDAR final returns provided topographical information and were then ground-truthed during forest inventories. Once data was collected, a fractural analysis was conducted comparing the three methods. Species composition was driven by slope position and elevation Ultimately the three different techniques provided very different estimations of LAI, but each had their advantage: estimates from hemisphere photos were well correlated with SWE and snow depth measurements, forest inventories provided insight into stand health and composition, and LIDAR were able to quickly and efficiently cover a very large area.

  13. Structural adjustments in resprouting trees drive differences in post-fire transpiration.

    PubMed

    Nolan, Rachael H; Mitchell, Patrick J; Bradstock, Ross A; Lane, Patrick N J

    2014-02-01

    Following disturbance many woody species are capable of resprouting new foliage, resulting in a reduced leaf-to-sapwood area ratio and altered canopy structure. We hypothesized that such changes would promote adjustments in leaf physiology, resulting in higher rates of transpiration per unit leaf area, consistent with the mechanistic framework proposed by Whitehead et al. (Whitehead D, Jarvis PG, Waring RH (1984) Stomatal conductance, transpiration and resistance to water uptake in a Pinus sylvestris spacing experiment. Can J For Res 14:692-700). We tested this in Eucalyptus obliqua L'Hér following a wildfire by comparing trees with unburnt canopies with trees that had been subject to 100% canopy scorch and were recovering their leaf area via resprouting. In resprouting trees, foliage was distributed along the trunk and on lateral branches, resulting in shorter hydraulic path lengths. We evaluated measurements of whole-tree transpiration and structural and physiological traits expected to drive any changes in transpiration. We used these structural and physiological measurements to parameterize the Whitehead et al. equation, and found that the expected ratio of transpiration per unit leaf area between resprouting and unburnt trees was 3.41. This is similar to the observed ratio of transpiration per unit leaf area, measured from sapflow observations, which was 2.89 (i.e., resprouting trees had 188% higher transpiration per unit leaf area). Foliage at low heights (<2 m) was found to be significantly different to foliage in the tree crown (14-18 m) in a number of traits, including higher specific leaf area, midday leaf water potential and higher rates of stomatal conductance and photosynthesis. We conclude that these post-fire adjustments in resprouting trees help to drive increased stomatal conductance and hydraulic efficiency, promoting the rapid return of tree-scale transpiration towards pre-disturbance levels. These transient patterns in canopy transpiration have important implications for modelling stand-level water fluxes in forests capable of resprouting, which is frequently done on the basis of the leaf area index.

  14. Gender-specific patterns of aboveground allocation, canopy conductance and water use in a dominant riparian tree species: Acer negundo.

    PubMed

    Hultine, K R; Bush, S E; West, A G; Burtch, K G; Pataki, D E; Ehleringer, J R

    2008-09-01

    Acer negundo Sarg. (box elder) is a dioecious tree species that dominates riparian systems at mid elevations throughout the southwest and Intermountain West of the United States. Previous studies have shown that female A. negundo trees occur at higher frequencies along stream margins, whereas males occur at higher frequencies in drier microsites. To better understand the adaptive significance of sex ratio biases and their impact on the ecohydrology of riparian ecosystems, we examined whole-plant water relations and hydraulic properties of mature male and female A. negundo trees occurring within 1 m of a perennial stream channel. We hypothesized that (1) females would have significantly greater canopy water fluxes than males (particularly during periods of seed production: May-June), and (2) xylem in females is more hydraulically efficient but more vulnerable to cavitation than xylem in males. Mean sap flux density (J(s)) during the early growing season (May and June) was 43% higher in female trees than in male trees (n = 6 and 7 trees respectively, P < 0.0001). Mean J(s) in July and August remained 17% higher in females than in males (P = 0.0009). Mean canopy stomatal conductance per unit leaf area (g(s,leaf)) in May and June was on average 140% higher in females than in males (P < 0.0001). Mean g(s,leaf) in July and August remained 69% higher in female trees than in male trees (P < 0.0001). Canopy stomatal conductance scaled to basal area was 90 and 31% higher in females relative to males during May-June and July-August, respectively (P < 0.0001 during both periods). Conversely, there were no apparent differences in either branch hydraulic conductance or branch xylem cavitation vulnerability between genders. These results improve our capacity to describe the adaptive forces that shape the spatial distribution of male and female trees in dioecious species, and their consequences for ecohydrological processes in riparian ecosystems.

  15. Canopy reflectance modeling in a tropical wooded grassland

    NASA Technical Reports Server (NTRS)

    Simonett, David

    1988-01-01

    The Li-Strahler canopy reflectance model, driven by LANDSAT Thematic Mapper (TM) data, provided regional estimates of tree size and density in two bioclimatic zones in Africa. This model exploits tree geometry in an inversion technique to predict average tree size and density from reflectance data using a few simple patameters measured in the field and in the imagery. Reflectance properties of the trees were measured in the study sites using a pole-mounted radiometer. The measurements showed that the assumptions of the simple Li-Strahler model are reasonable for these woodlands. The field radiometer measurements were used to calculate the normalized difference vegetation index (NDVI), and the integrated NDVI over the canopy was related to crown volume. Predictions of tree size and density from the canopy model were used with allometric equations from the literature to estimate woody biomass and potential foliar biomass for the sites and for the regions. Estimates were compared with independent measurements made in the Sahelian sites, and to typical values from the literature for these regions and for similar woodlands. In order to apply the inversion procedure regionally, an area must first be stratified into woodland cover classes, and dry-season TM data were used to generate a stratum map of the study areas with reasonable accuracy. The method used was unsupervised classification of multi-data principal components images.

  16. Phytophthora species in tanoak trees, canopy-drip, soil, and streams in the sudden oak death epidemic area of south-western Oregon, USA

    Treesearch

    Paul Reeser; Wendy Sutton; Everett Hansen.

    2011-01-01

    Various Phytophthora species were recovered from tanoak trees, tanoak canopy drip, soils, and streams, which were sampled as part of a larger survey and management effort aimed at limiting the spread of Phytophthora ramorum Werres, De Cock & Man in't Veld (the causal agent of sudden oak death) in an epidemic area...

  17. Individual tree detection from Unmanned Aerial Vehicle (UAV) derived canopy height model in an open canopy mixed conifer forest

    Treesearch

    Midhun Mohan; Carlos Alberto Silva; Carine Klauberg; Prahlad Jat; Glenn Catts; Adrian Cardil; Andrew Thomas Hudak; Mahendra Dia

    2017-01-01

    Advances in Unmanned Aerial Vehicle (UAV) technology and data processing capabilities have made it feasible to obtain high-resolution imagery and three dimensional (3D) data which can be used for forest monitoring and assessing tree attributes. This study evaluates the applicability of low consumer grade cameras attached to UAVs and structure-from-motion (SfM)...

  18. Cover of tall trees best predicts California spotted owl habitat

    Treesearch

    Malcolm P. North; Jonathan T. Kane; Van R. Kane; Gregory P. Asner; William Berigan; Derek J. Churchill; Scott Conway; R.J. Gutiérrez; Sean Jeronimo; John Keane; Alexander Koltunov; Tina Mark; Monika Moskal; Thomas Munton; Zachary Peery; Carlos Ramirez; Rahel Sollmann; Angela White; Sheila Whitmore

    2017-01-01

    Restoration of western dry forests in the USA often focuses on reducing fuel loads. In the range of the spotted owl, these treatments may reduce canopy cover and tree density, which could reduce preferred habitat conditions for the owl and other sensitive species. In particular, high canopy cover (≥70%) has been widely reported to be an important feature of spotted owl...

  19. Axial and radial water transport and internal water storage in tropical forest canopy trees.

    Treesearch

    Shelley A. James; Frederick C. Meinzer; Guillermo Goldstein; David Woodruff; Timothy Jones; Teresa Restom; Monica Mejia; Michael Clearwater; Paula Campanello

    2003-01-01

    Heat and stable isotope tracers were used to study axial and radial water transport in relation to sapwood anatomical characteristics and internal water storage in four canopy tree species of a seasonally dry tropical forest in Panama. Anatomical characteristics of the wood and radial profiles of sap flow were measured at the base, upper trunk, and crown of a single...

  20. Sampling intensity and normalizations: Exploring cost-driving factors in nationwide mapping of tree canopy cover

    Treesearch

    John Tipton; Gretchen Moisen; Paul Patterson; Thomas A. Jackson; John Coulston

    2012-01-01

    There are many factors that will determine the final cost of modeling and mapping tree canopy cover nationwide. For example, applying a normalization process to Landsat data used in the models is important in standardizing reflectance values among scenes and eliminating visual seams in the final map product. However, normalization at the national scale is expensive and...

  1. Amazon Forest Structure from IKONOS Satellite Data and the Automated Characterization of Forest Canopy Properties

    Treesearch

    Michael Palace; Michael Keller; Gregory P. Asner; Stephen Hagen; Bobby Braswell

    2008-01-01

    We developed an automated tree crown analysis algorithm using 1-m panchromatic IKONOS satellite images to examine forest canopy structure in the Brazilian Amazon. The algorithm was calibrated on the landscape level with tree geometry and forest stand data at the Fazenda Cauaxi (3.75◦ S, 48.37◦ W) in the eastern Amazon, and then compared with forest...

  2. Bark and ambrosia beetles and their associated fungi colonizing stressed walnut in Missouri and Indiana

    Treesearch

    Sharon Reed; James English; Jennifer Juzwik; Matt Ginzel

    2013-01-01

    Thousand cankers disease (TCD) is a growing threat to black walnut, an economically and ecologically important tree in the eastern US. Trees in the earliest stages of TCD do not display symptoms. In later stages, leaves of the canopy become yellow, wilt, and ultimately die, yet remain attached to their branches. Eventually, all branches in the canopy may die, leading...

  3. Repeatability in photo-interpretation of tree canopy cover and its effect on predictive mapping

    Treesearch

    Thomas A. Jackson; Gretchen G. Moisen; Paul L. Patterson; John Tipton

    2012-01-01

    In this study, we explore repeatability in photo-interpreted imagery from the National Agriculture Imagery Program that was sampled as part of the National Land Cover Database 2011 Tree Canopy Cover pilot project. Data were collected in 5 diverse pilot areas in the US, including one each in Oregon, Utah, Kansas, Michigan and Georgia. Repeatability metrics. The intra-...

  4. Xylem vulnerability curves of canopy branches of mature trees from Caxiuana and Tapajos National Forests, Para, Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Thomas; Moorcroft, Paul

    Raw data for xylem vulnerability curves measured on upper canopy branches of mature trees from the Caxiuana and Tapajos National Forests, Para, Brazil. Tapajos samples were harvested from km67 transects, which is nearby the decommissioned throughfall-exclusion, drought-experiment plots. Caxiuana samples were harvested from trees growing in the throughfall-exclusion, drought-experiment plots. Data were collected in 2011 and 2012. Dataset includes: date of measurement, site ID, plot ID, tree ID (species, tree tag #), xylem pressure, percent loss of conductivity. Air injection method was used. Data reference: Powell et al. (2017) Differences in xylem cavitation resistance and leaf hydraulic traits explain differencesmore » in drought tolerance among mature Amazon rainforest trees. Global Change Biology.« less

  5. Intra-Urban Variability in Elemental Carbon Deposition to Tree Canopies

    NASA Astrophysics Data System (ADS)

    Barrett, T. E.; Ponette-González, A.; Rindy, J. E.; Sheesley, R. J.

    2017-12-01

    Urban areas cover <1% of the earth's land surface, yet they represent globally significant sources of atmospheric elemental carbon (EC). A product of incomplete fossil fuel, biofuel, and biomass combustion, EC is a powerful climate-forcing agent and a significant component of fine particulate matter in urban atmospheres. Thus, understanding the factors that govern EC removal in urban areas could help mitigate climate change, while improving air quality for urban residents. EC particles can be removed from the atmosphere in precipitation (wet and fog deposition) or they can settle directly onto receptor surfaces (dry deposition). Only limited measurements indicate that EC deposition is higher in urban than in rural and remote regions. However, EC deposition likely exhibits considerable intra-urban variability, with tree canopies serving as potentially important sinks for EC on the cityscape. The goal of this research is to quantify spatial variability in total (wet + dry) EC deposition to urban tree canopies in the Dallas-Fort Worth Metroplex. Using a stratified non-random sampling design, 41 oak trees (22 post oak (Quercus stellata) and 19 live oak (Quercus virginiana)) were selected near (<100 m) and far from roads (>100 m) for measurements of throughfall (water that falls from the canopy to the forest floor). Additionally, 16 bulk rainfall samplers were deployed in grassy areas with no canopy cover. Results from one rain event indicate a volume weighted mean concentration of 83 µg EC L-1 in post oak throughfall, 36 µg EC L-1 in live oak throughfall, and 4 µg EC L-1 in bulk rainfall. Total EC deposition to oak tree canopies was 2.0 ± 2.1 (SD) mg m-2 for post oak and 0.7 ± 0.3 mg m-2 for live oak. Bulk rainfall deposition was 0.08 ± 0.1 mg m-2. Our preliminary findings show that trees are effective urban air filters, removing 9-25 times more EC from the atmosphere than rainwater alone. Resolving surface controls on atmospheric EC removal is key to developing and assessing near-term climate and air quality mitigation strategies.

  6. Automatic extraction of tree crowns from aerial imagery in urban environment

    NASA Astrophysics Data System (ADS)

    Liu, Jiahang; Li, Deren; Qin, Xunwen; Yang, Jianfeng

    2006-10-01

    Traditionally, field-based investigation is the main method to investigate greenbelt in urban environment, which is costly and low updating frequency. In higher resolution image, the imagery structure and texture of tree canopy has great similarity in statistics despite the great difference in configurations of tree canopy, and their surface structures and textures of tree crown are very different from the other types. In this paper, we present an automatic method to detect tree crowns using high resolution image in urban environment without any apriori knowledge. Our method catches unique structure and texture of tree crown surface, use variance and mathematical expectation of defined image window to position the candidate canopy blocks coarsely, then analysis their inner structure and texture to refine these candidate blocks. The possible spans of all the feature parameters used in our method automatically generate from the small number of samples, and HOLE and its distribution as an important characteristics are introduced into refining processing. Also the isotropy of candidate image block and holes' distribution is integrated in our method. After introduction the theory of our method, aerial imageries were used ( with a resolution about 0.3m ) to test our method, and the results indicate that our method is an effective approach to automatically detect tree crown in urban environment.

  7. Tree species diversity affects decomposition through modified micro-environmental conditions across European forests.

    PubMed

    Joly, François-Xavier; Milcu, Alexandru; Scherer-Lorenzen, Michael; Jean, Loreline-Katia; Bussotti, Filippo; Dawud, Seid Muhie; Müller, Sandra; Pollastrini, Martina; Raulund-Rasmussen, Karsten; Vesterdal, Lars; Hättenschwiler, Stephan

    2017-05-01

    Different tree species influence litter decomposition directly through species-specific litter traits, and indirectly through distinct modifications of the local decomposition environment. Whether these indirect effects on decomposition are influenced by tree species diversity is presently not clear. We addressed this question by studying the decomposition of two common substrates, cellulose paper and wood sticks, in a total of 209 forest stands of varying tree species diversity across six major forest types at the scale of Europe. Tree species richness showed a weak but positive correlation with the decomposition of cellulose but not with that of wood. Surprisingly, macroclimate had only a minor effect on cellulose decomposition and no effect on wood decomposition despite the wide range in climatic conditions among sites from Mediterranean to boreal forests. Instead, forest canopy density and stand-specific litter traits affected the decomposition of both substrates, with a particularly clear negative effect of the proportion of evergreen tree litter. Our study suggests that species richness and composition of tree canopies modify decomposition indirectly through changes in microenvironmental conditions. These canopy-induced differences in the local decomposition environment control decomposition to a greater extent than continental-scale differences in macroclimatic conditions. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  8. Canopy disturbance intervals, early growth rates, and canopy accession trends of oak-dominated old-growth forests

    Treesearch

    James S. Rentch; Ray R., Jr. Hicks

    2003-01-01

    Using a radial growth averaging technique, changes in growth rates of overstory oaks were used to quantify canopy disturbance events at five old-growth sites. On average, at least one canopy disturbance occurred on these sites every 3 years; larger multiple-tree disturbances occurred every 17 years. Although there was some variation by site and by historical period,...

  9. Quantifying seasonal dynamics of canopy structure and function using inexpensive narrowband spectral radiometers

    NASA Astrophysics Data System (ADS)

    Vierling, L. A.; Garrity, S. R.; Campbell, G.; Coops, N. C.; Eitel, J.; Gamon, J. A.; Hilker, T.; Krofcheck, D. J.; Litvak, M. E.; Naupari, J. A.; Richardson, A. D.; Sonnentag, O.; van Leeuwen, M.

    2011-12-01

    Increasing the spatial and temporal density of automated environmental sensing networks is necessary to quantify shifts in plant structure (e.g., leaf area index) and function (e.g., photosynthesis). Improving detection sensitivity can facilitate a mechanistic understanding by better linking plant processes to environmental change. Spectral radiometer measurements can be highly useful for tracking plant structure and function from diurnal to seasonal time scales and calibrating and validating satellite- and aircraft-based spectral measurements. However, dense ground networks of such instruments are challenging to establish due to the cost and complexity of automated instrument deployment. We therefore developed simple to operate, lightweight and inexpensive narrowband (~10nm bandwidth) spectral instruments capable of continuously measuring four to six discrete bands that have proven capacity to describe key physiological processes and structural features of plant canopies. These bands are centered at 530, 570, 675, 800, 880, and 970 nm to enable calculation of the physiological reflectance index (PRI), normalized difference vegetation index (NDVI), green NDVI (gNDVI), and water band index (WBI) collected above and within vegetation canopies. To date, measurements have been collected above grassland, semi-arid shrub steppe, piñon-juniper woodland, dense conifer forest, mixed deciduous-conifer forest, and cropland canopies, with additional measurements collected along vertical transects through a temperate conifer rainforest. Findings from this work indicate not only that key shifts in plant phenology, physiology, and structure can be captured using such instruments, but that the temporally dense nature of the measurements can help to disentangle heretofore unreported complexities of simultaneous phenological and structural change on canopy reflectance.

  10. Detecting tree-fall gap disturbances in tropical rain forests with airborne lidar

    NASA Astrophysics Data System (ADS)

    Espirito-Santo, F. D. B.; Saatchi, S.; Keller, M.

    2017-12-01

    Forest inventory studies in the Amazon indicate a large terrestrial carbon sink. However, field plots may fail to represent forest mortality processes at landscape-scales of tropical forests. Here we characterize the frequency distribution of tree-fall gap disturbances in natural forests of tropical forests using a novel combination of forest inventory and airborne lidar data. We quantify gap size frequency distribution along vertical and horizontal dimensions in ten Neotropical forest canopies distributed across gradients of climate and landscapes using airborne lidar measurements. We assessed all canopy openings related to each class of tree height which yields a three dimensional structure of the distribution of canopy gaps. Gap frequency distributions from lidar CHM data vary markedly with minimum gap size thresholds, but we found that natural forest disturbances (tree-fall gaps) follow a power-law distribution with narrow range of power-law exponents (-1.2 to -1.3). These power-law exponents from gap frequency distributions provide insights into how natural forest disturbances are distributed over tropical forest landscape.

  11. Ecohydrological Responses of Dense Canopies to Environmental Variability Part 1: Interplay Between Vertical Structure and Photosynthetic Pathway

    USDA-ARS?s Scientific Manuscript database

    Vegetation acclimation to changing climate, in particular elevated atmospheric concentrations of carbon dioxide (CO2), has been observed to include modifications to the biochemical and eco physiological functioning of leaves and the structural components of the canopy. These responses have the poten...

  12. Identifying Roads and Trains Under Canopy Using Lidar

    DTIC Science & Technology

    2007-09-01

    OVERVIEW...................................................................................................17 B. DATA SET LOCATIONS ...imaging systems to detect, track and locate operations in these dense canopy environments is severely limited. One possibility for “seeing through...in detecting, tracking and locating illicit operations previously undetectable. The purpose of this thesis is to determine if roads and trails2 are

  13. Multiresolution quantification of deciduousness in West-Central African forests

    NASA Astrophysics Data System (ADS)

    Viennois, G.; Barbier, N.; Fabre, I.; Couteron, P.

    2013-11-01

    The characterization of leaf phenology in tropical forests is of major importance for forest typology as well as to improve our understanding of earth-atmosphere-climate interactions or biogeochemical cycles. The availability of satellite optical data with a high temporal resolution has permitted the identification of unexpected phenological cycles, particularly over the Amazon region. A primary issue in these studies is the relationship between the optical reflectance of pixels of 1 km or more in size and ground information of limited spatial extent. In this paper, we demonstrate that optical data with high to very-high spatial resolution can help bridge this scale gap by providing snapshots of the canopy that allow discernment of the leaf-phenological stage of trees and the proportions of leaved crowns within the canopy. We also propose applications for broad-scale forest characterization and mapping in West-Central Africa over an area of 141 000 km2. Eleven years of the Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI) data were averaged over the wet and dry seasons to provide a data set of optimal radiometric quality at a spatial resolution of 250 m. Sample areas covered at a very-high (GeoEye) and high (SPOT-5) spatial resolution were used to identify forest types and to quantify the proportion of leaved trees in the canopy. The dry-season EVI was positively correlated with the proportion of leaved trees in the canopy. This relationship allowed the conversion of EVI into canopy deciduousness at the regional level. On this basis, ecologically important forest types could be mapped, including young secondary, open Marantaceae, Gilbertiodendron dewevrei and swamp forests. We show that in West-Central African forests, a large share of the variability in canopy reflectance, as captured by the EVI, is due to variation in the proportion of leaved trees in the upper canopy, thereby opening new perspectives for biodiversity and carbon-cycle applications.

  14. Multiresolution quantification of deciduousness in West Central African forests

    NASA Astrophysics Data System (ADS)

    Viennois, G.; Barbier, N.; Fabre, I.; Couteron, P.

    2013-04-01

    The characterization of leaf phenology in tropical forests is of major importance and improves our understanding of earth-atmosphere-climate interactions. The availability of satellite optical data with a high temporal resolution has permitted the identification of unexpected phenological cycles, particularly over the Amazon region. A primary issue in these studies is the relationship between the optical reflectance of pixels of 1 km or more in size and ground information of limited spatial extent. In this paper, we demonstrate that optical data with high to very-high spatial resolution can help bridge this scale gap by providing snapshots of the canopy that allow discernment of the leaf-phenological stage of trees and the proportions of leaved crowns within the canopy. We also propose applications for broad-scale forest characterization and mapping in West Central Africa over an area of 141 000 km2. Eleven years of the Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI) data were averaged over the wet and dry seasons to provide a dataset of optimal radiometric quality at a spatial resolution of 250 m. Sample areas covered at a very-high (GeoEye) and high (SPOT-5) spatial resolution were used to identify forest types and to quantify the proportion of leaved trees in the canopy. The dry season EVI was positively correlated with the proportion of leaved trees in the canopy. This relationship allowed the conversion of EVI into canopy deciduousness at the regional level. On this basis, ecologically important forest types could be mapped, including young secondary, open Marantaceae, Gilbertiodendron dewevrei and swamp forests. We show that in west central African forests, a large share of the variability in canopy reflectance, as captured by the EVI, is due to variation in the proportion of leaved trees in the upper canopy, thereby opening new perspectives for biodiversity and carbon-cycle applications.

  15. Response of Demographic Rates of Tropical Trees to Light Availability: Can Position-Based Competition Indices Replace Information from Canopy Census Data?

    PubMed Central

    Grote, Steffi; Condit, Richard; Hubbell, Stephen; Wirth, Christian; Rüger, Nadja

    2013-01-01

    For trees in tropical forests, competition for light is thought to be a central process that offers opportunities for niche differentiation through light gradient partitioning. In previous studies, a canopy index based on three-dimensional canopy census data has been shown to be a good predictor of species-specific demographic rates across the entire tree community on Barro Colorado Island, Panama, and has allowed quantifying between-species variation in light response. However, almost all other forest census plots lack data on the canopy structure. Hence, this study aims at assessing whether position-based neighborhood competition indices can replace information from canopy census data and produce similar estimates of the interspecific variation of light responses. We used inventory data from the census plot at Barro Colorado Island and calculated neighborhood competition indices with varying relative effects of the size and distance of neighboring trees. Among these indices, we selected the one that was most strongly correlated with the canopy index. We then compared outcomes of hierarchical Bayesian models for species-specific recruitment and growth rates including either the canopy index or the selected neighborhood competition index as predictor. Mean posterior estimates of light response parameters were highly correlated between models (r>0.85) and indicated that most species regenerate and grow better in higher light. Both light estimation approaches consistently found that the interspecific variation of light response was larger for recruitment than for growth rates. However, the classification of species into different groups of light response, e.g. weaker than linear (decelerating) vs. stronger than linear (accelerating) differed between approaches. These results imply that while the classification into light response groups might be biased when using neighborhood competition indices, they may be useful for determining species rankings and between-species variation of light response and therefore enable large comparative studies between different forest census plots. PMID:24324723

  16. A cool experimental approach to explain elevational treelines, but can it explain them?

    PubMed

    Bader, Maaike Y; Loranger, Hannah; Zotz, Gerhard

    2014-09-01

    At alpine treeline, trees give way to low-stature alpine vegetation. The main reason may be that tree canopies warm up less in the sun and experience lower average temperatures than alpine vegetation. Low growth temperatures limit tissue formation more than carbon gain, but whether this mechanism universally determines potential treeline elevations is the subject of debate. To study low-temperature limitation in two contrasting treeline tree species, Fajardo and Piper (American Journal of Botany 101: 788-795) grew potted seedlings at ground level or suspended at tree-canopy height (2 m), introducing a promising experimental method for studying the effects of alpine-vegetation and tree-canopy microclimates on tree growth. On the basis of this experiment, the authors concluded that lower temperatures at 2 m caused carbon limitation in one of the species and that treeline-forming mechanisms may thus be taxon-dependent. Here we contest that this important conclusion can be drawn based on the presented experiment, because of confounding effects of extreme root-zone temperature fluctuations and potential drought conditions. To interpret the results of this elegant experiment without logistically challenging technical modifications and to better understand how low temperature leads to treeline formation, studies on effects of fluctuating vs. stable temperatures are badly needed. Other treeline research priorities are interactions between temperature and other climatic factors and differences in microclimate between tree canopies with contrasting morphology and physiology. In spite of our criticism of this particular study, we agree that the development of a universal treeline theory should include continuing explorations of taxon-specific treeline-forming mechanisms. © 2014 Botanical Society of America, Inc.

  17. Differential Impact of Passive versus Active Irrigation on Urban Forests in Semiarid Regions

    NASA Astrophysics Data System (ADS)

    Luketich, A. M.; Papuga, S. A.; Crimmins, M.

    2017-12-01

    The network of trees within a city provides a variety of ecosystem services such as flood mitigation and reduced heat island effects. To maintain these `urban forests' in semiarid cities, the use of scarce water resources for irrigation is often necessary. Rainwater harvesting has been widely adopted in Tucson, AZ as a sustainable water source for trees, but the effects of passive water harvesting versus active irrigation on tree canopy productivity and microclimate is largely unquantified. We hypothesize that regardless of whether trees are passively or actively irrigated, deep soil moisture will be elevated compared to natural conditions; however, we expect that increased deep soil moisture conditions will be more frequent using active irrigation. Additionally, we hypothesize that similar to natural settings, urban trees will need access deep soil moisture for transpiration. Therefore, we expect that actively irrigated trees will have more periods of transpiration than passively irrigated trees and that this will result in elevated and sustained phenological activity. We also expect that this difference will translate to more ecosystem services for a longer portion of the year in actively irrigated urban forests. Here, we compare key ecohydrological indicators of passive and active irrigation systems at two sites in Tucson, AZ. Our measurements include soil moisture, transpiration, air temperature, soil temperature, below- and within- canopy temperatures, and canopy phenology. Our first year of results suggest there are differences in transpiration, canopy greening and microclimate between the two irrigation techniques and that the magnitude of these differences are highly seasonal. This research can help to improve understanding of the practices and function of green infrastructure in semiarid cities and inform models that attempt to aggregate the influence of these urban forests for understanding watershed management strategies.

  18. Canopy area of large trees explains aboveground biomass variations across neotropical forest landscapes

    NASA Astrophysics Data System (ADS)

    Meyer, Victoria; Saatchi, Sassan; Clark, David B.; Keller, Michael; Vincent, Grégoire; Ferraz, António; Espírito-Santo, Fernando; d'Oliveira, Marcus V. N.; Kaki, Dahlia; Chave, Jérôme

    2018-06-01

    Large tropical trees store significant amounts of carbon in woody components and their distribution plays an important role in forest carbon stocks and dynamics. Here, we explore the properties of a new lidar-derived index, the large tree canopy area (LCA) defined as the area occupied by canopy above a reference height. We hypothesize that this simple measure of forest structure representing the crown area of large canopy trees could consistently explain the landscape variations in forest volume and aboveground biomass (AGB) across a range of climate and edaphic conditions. To test this hypothesis, we assembled a unique dataset of high-resolution airborne light detection and ranging (lidar) and ground inventory data in nine undisturbed old-growth Neotropical forests, of which four had plots large enough (1 ha) to calibrate our model. We found that the LCA for trees greater than 27 m (˜ 25-30 m) in height and at least 100 m2 crown size in a unit area (1 ha), explains more than 75 % of total forest volume variations, irrespective of the forest biogeographic conditions. When weighted by average wood density of the stand, LCA can be used as an unbiased estimator of AGB across sites (R2 = 0.78, RMSE = 46.02 Mg ha-1, bias = -0.63 Mg ha-1). Unlike other lidar-derived metrics with complex nonlinear relations to biomass, the relationship between LCA and AGB is linear and remains unique across forest types. A comparison with tree inventories across the study sites indicates that LCA correlates best with the crown area (or basal area) of trees with diameter greater than 50 cm. The spatial invariance of the LCA-AGB relationship across the Neotropics suggests a remarkable regularity of forest structure across the landscape and a new technique for systematic monitoring of large trees for their contribution to AGB and changes associated with selective logging, tree mortality and other types of tropical forest disturbance and dynamics.

  19. Canopy tree species determine herb layer biomass and species composition on a reclaimed mine spoil heap.

    PubMed

    Rawlik, Mateusz; Kasprowicz, Marek; Jagodziński, Andrzej M; Kaźmierowski, Cezary; Łukowiak, Remigiusz; Grzebisz, Witold

    2018-09-01

    According facilitative models of succession, trees are great forest ecosystem engineers. The strength of tree stand influences on habitat were tested in rather homogenous conditions where heterogeneity of site condition was not an important influence. We hypothesized that canopy composition affects total aboveground vascular herb layer biomass (THB) and species composition of herb layer plant biomass (SCHB) more significantly than primary soil fertility or slope exposure. The study was conducted in 227 randomly selected research plots in seven types of forest stands: pure with Alnus glutinosa, Betula pendula, Pinus sylvestris, Quercus petraea and Robinia pseudoacacia, and mixed with dominance of Acer pseudoplatanus or Betula pendula located on hilltop and northern, eastern, western, and southern slopes on a reclaimed, afforested post-mining spoil heap of the Bełchatów Brown Coal Mine (Poland). Generalized linear models (GLZ) showed that tree stand species were the best predictors of THB. Non-parametric variance tests showed significantly higher (nearly four times) THB under canopies of A. glutinosa, R. pseudoacacia, B. pendula and Q. petraea, compared to the lowest THB found under canopies of P. sylvestris and mixed with A. pseudoplatanus. Redundancy Analysis (RDA) showed that SCHB was significantly differentiated along gradients of light-nutrient herb layer species requirements. RDA and non-parametric variance tests showed that SCHB under canopies of A. glutinosa, R. pseudoacacia and mixed with A. pseudoplatanus had large shares of nitrophilous ruderal species (32%, 31% and 11%, respectively), whereas SCHB under B. pendula, Q. petraea, mixed with B. pendula and P. sylvestris were dominated by light-demanding meadow (49%, 51%, 51% and 36%, respectively) and Poaceae species. The results indicated the dominant role of tree stand composition in habitat-forming processes, and although primary site properties had minor importance, they were also modified by tree stand species. Copyright © 2018. Published by Elsevier B.V.

  20. Emerald ash borer and the urban forest: Changes in landslide potential due to canopy loss scenarios in the City of Pittsburgh, PA.

    PubMed

    Pfeil-McCullough, Erin; Bain, Daniel J; Bergman, Jeffery; Crumrine, Danielle

    2015-12-01

    Emerald ash borer is expected to kill thousands of ash trees in the eastern U.S. This research develops tools to predict the effect of ash tree loss from the urban canopy on landslide susceptibility in Pittsburgh, PA. A spatial model was built using the SINMAP (Stability INdex MAPping) model coupled with spatially explicit scenarios of tree loss (0%, 25%, 50%, and 75% loss of ash trees from the canopy). Ash spatial distributions were estimated via Monte Carlo methods and available vegetation plot data. Ash trees are most prevalent on steeper slopes, likely due to urban development patterns. Therefore, ash loss disproportionately increases hillslope instability. A 75% loss of ash resulted in roughly 800 new potential landslide initiation locations. Sensitivity testing reveals that variations in rainfall rates, and friction angles produce minor changes to model results relative to the magnitude of parameter variation, but reveal high model sensitivity to soil density and root cohesion values. The model predictions demonstrate the importance of large canopy species to urban hillslope stability, particularly on steep slopes and in areas where soils tend to retain water. To improve instability predictions, better characterization of urban soils, particularly spatial patterns of compaction and species specific root cohesion is necessary. The modeling framework developed in this research will enhance assessment of changes in landslide risk due to tree mortality, improving our ability to design economically and ecologically sustainable urban systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Effects of branch height on leaf gas exchange, branch hydraulic conductance and branch sap flux in open-grown ponderosa pine.

    PubMed

    Hubbard, Robert M; Bond, Barbara J; Senock, Randy S; Ryan, Michael G

    2002-06-01

    Recent studies have shown that stomata respond to changes in hydraulic conductance of the flow path from soil to leaf. In open-grown tall trees, branches of different heights may have different hydraulic conductances because of differences in path length and growth. We determined if leaf gas exchange, branch sap flux, leaf specific hydraulic conductance, foliar carbon isotope composition (delta13C) and ratios of leaf area to sapwood area within branches were dependent on branch height (10 and 25 m) within the crowns of four open-grown ponderosa pine (Pinus ponderosa Laws.) trees. We found no difference in leaf gas exchange or leaf specific hydraulic conductance from soil to leaf between the upper and lower canopy of our study trees. Branch sap flux per unit leaf area and per unit sapwood area did not differ between the 10- and 25-m canopy positions; however, branch sap flux per unit sapwood area at the 25-m position had consistently lower values. Branches at the 25-m canopy position had lower leaf to sapwood area ratios (0.17 m2 cm-2) compared with branches at the 10-m position (0.27 m2 cm-2) (P = 0.03). Leaf specific conductance of branches in the upper crown did not differ from that in the lower crown. Other studies at our site indicate lower hydraulic conductance, sap flux, whole-tree canopy conductance and photosynthesis in old trees compared with young trees. This study suggests that height alone may not explain these differences.

  2. Case study: Rainfall partitioning across a natural-to-urban forest gradient during an extreme rain event

    NASA Astrophysics Data System (ADS)

    Akin, B. H.; Van Stan, J. T., II; Cote, J. F.; Jarvis, M. T.; Underwood, J.; Friesen, J.; Hildebrandt, A.; Maldonado, G.

    2017-12-01

    Trees' partitioning of rainfall is an important first process along the rainfall-to-runoff pathway that has economically significant influences on urban stormwater management. However, important knowledge gaps exist regarding (1) its role during extreme storms and (2) how this role changes as forest structure is altered by urbanization. Little research has been conducted on canopy rainfall partitioning during large, intense storms, likely because canopy water storage is rapidly overwhelmed (i.e., 1-3 mm) by short duration events exceeding, for example, 80 mm of rainfall. However, canopy structure controls more than just storage; it also affects the time for rain to drain to the surface (becoming throughfall) and the micrometeorological conditions that drive wet canopy evaporation. In fact, observations from an example extreme ( 100 mm with maximum 5-minute intensities exceeding 55 mm/h) storm across a urban-to-natural gradient in pine forests in southeast Georgia (USA), show that storm intensities were differentially dampened by 33% (tree row), 28% (forest fragment), and 17% (natural forests). In addition, maximum wet canopy evaporation rates were higher for the exposed tree row (0.18 mm/h) than for the partially-enclosed fragment canopy (0.14 mm/h) and the closed canopy natural forest site (0.11). This resulted in interception percentages decreasing from urban-to-natural stand structures (25% to 16%). A synoptic analysis of the extreme storm in this case study also shows that the mesoscale meteorological conditions that developed the heavy rainfall is expected to occur more often with projected climate changes.

  3. Seasonal differences in freezing tolerance of yellow-cedar and western hemlock trees at a site affected by yellow-cedar decline

    Treesearch

    Paul G. Schaberg; Paul E. Hennon; Amore, David V. D; Gary J. Hawley; Catherine H. Borer; Catherine H. Borer

    2005-01-01

    To assess whether inadequate cold hardiness could be a contributor to yellow-cedar (Chamaecyparis nootkatensis (D. Don) Spach) decline, we measured the freezing tolerance of foliage from yellow-cedar trees in closed-canopy (nondeclining) and open-canopy (declining at elevations below 130 m) stands at three sites along an elevational gradient in the heart of the decline...

  4. NLCD tree canopy cover (TCC) maps of the contiguous United States and coastal Alaska

    Treesearch

    Robert Benton; Bonnie Ruefenacht; Vicky Johnson; Tanushree Biswas; Craig Baker; Mark Finco; Kevin Megown; John Coulston; Ken Winterberger; Mark Riley

    2015-01-01

    A tree canopy cover (TCC) map is one of three elements in the National Land Cover Database (NLCD) 2011 suite of nationwide geospatial data layers. In 2010, the USDA Forest Service (USFS) committed to creating the TCC layer as a member of the Multi-Resolution Land Cover (MRLC) consortium. A general methodology for creating the TCC layer was reported at the 2012 FIA...

  5. Forest service contributions to the national land cover database (NLCD): Tree Canopy Cover Production

    Treesearch

    Bonnie Ruefenacht; Robert Benton; Vicky Johnson; Tanushree Biswas; Craig Baker; Mark Finco; Kevin Megown; John Coulston; Ken Winterberger; Mark Riley

    2015-01-01

    A tree canopy cover (TCC) layer is one of three elements in the National Land Cover Database (NLCD) 2011 suite of nationwide geospatial data layers. In 2010, the USDA Forest Service (USFS) committed to creating the TCC layer as a member of the Multi-Resolution Land Cover (MRLC) consortium. A general methodology for creating the TCC layer was reported at the 2012 FIA...

  6. Response of giant sequoia canopy foliage to elevated concentrations of atmospheric ozone

    Treesearch

    Nancy Grulke; P.R. Miller; D. Scioli

    1996-01-01

    We examined the physiological response of foliage in the upper third of the canopy of 125-year-old giant sequoia (Sequoiadendron giganteum Buchholz.) trees to a 61-day exposure to 0.25x, 1x, 2x or 3x ambient ozone concentration. Four branch exposure chambers, one per ozone treatment, were installed on 1-m long secondary branches of each tree at a...

  7. Integrating the effects of forest cover on slope stability in a deterministic landslide susceptibility model (TRIGRS 2.0)

    NASA Astrophysics Data System (ADS)

    Zieher, T.; Rutzinger, M.; Bremer, M.; Meissl, G.; Geitner, C.

    2014-12-01

    The potentially stabilizing effects of forest cover in respect of slope stability have been the subject of many studies in the recent past. Hence, the effects of trees are also considered in many deterministic landslide susceptibility models. TRIGRS 2.0 (Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability; USGS) is a dynamic, physically-based model designed to estimate shallow landslide susceptibility in space and time. In the original version the effects of forest cover are not considered. As for further studies in Vorarlberg (Austria) TRIGRS 2.0 is intended to be applied in selected catchments that are densely forested, the effects of trees on slope stability were implemented in the model. Besides hydrological impacts such as interception or transpiration by tree canopies and stems, root cohesion directly influences the stability of slopes especially in case of shallow landslides while the additional weight superimposed by trees is of minor relevance. Detailed data on tree positions and further attributes such as tree height and diameter at breast height were derived throughout the study area (52 km²) from high-resolution airborne laser scanning data. Different scenarios were computed for spruce (Picea abies) in the study area. Root cohesion was estimated area-wide based on published correlations between root reinforcement and distance to tree stems depending on the stem diameter at breast height. In order to account for decreasing root cohesion with depth an exponential distribution was assumed and implemented in the model. Preliminary modelling results show that forest cover can have positive effects on slope stability yet strongly depending on tree age and stand structure. This work has been conducted within C3S-ISLS, which is funded by the Austrian Climate and Energy Fund, 5th ACRP Program.

  8. Phenology, seed dispersal and difficulties in natural recruitment of the canopy tree Pachira quinata (Malvaceae).

    PubMed

    Castellanos, Maria Clara; Stevenson, Pablo R

    2011-06-01

    Life history and recruitment information of tropical trees in natural populations is scarce even for important commercial species. This study focused on a widely exploited Neotropical canopy species, Pachira quinata (Malvaceae), at the southernmost, wettest limit of its natural distribution, in the Colombian Amazonia. We studied phenological patterns, seed production and natural densities; assessed the importance of seed dispersal and density-dependent effects on recruitment, using field experiments. At this seasonal forest P. quinata was overrepresented by large adult trees and had very low recruitment caused by the combination of low fruit production, high seed predation and very high seedling mortality under continuous canopies mostly due to damping off pathogens. There was no evidence of negative distance or density effects on recruitment, but a clear requirement of canopy gaps for seedling survival and growth, where pathogen incidence was drastically reduced. In spite of the strong dependence on light for survival of seedlings, seeds germinated readily in the dark. At the study site, the population of P. quinata appeared to be declining, likely because recruitment depended on the rare combination of large gap formation with the presence of reproductive trees nearby. The recruitment biology of this species makes it very vulnerable to any type of logging in natural populations.

  9. Pasture succession in the Neotropics: extending the nucleation hypothesis into a matrix discontinuity hypothesis.

    PubMed

    Peterson, Chris J; Dosch, Jerald J; Carson, Walter P

    2014-08-01

    The nucleation hypothesis appears to explain widespread patterns of succession in tropical pastures, specifically the tendency for isolated trees to promote woody species recruitment. Still, the nucleation hypothesis has usually been tested explicitly for only short durations and in some cases isolated trees fail to promote woody recruitment. Moreover, at times, nucleation occurs in other key habitat patches. Thus, we propose an extension, the matrix discontinuity hypothesis: woody colonization will occur in focal patches that function to mitigate the herbaceous vegetation effects, thus providing safe sites or regeneration niches. We tested predictions of the classical nucleation hypothesis, the matrix discontinuity hypothesis, and a distance from forest edge hypothesis, in five abandoned pastures in Costa Rica, across the first 11 years of succession. Our findings confirmed the matrix discontinuity hypothesis: specifically, rotting logs and steep slopes significantly enhanced woody colonization. Surprisingly, isolated trees did not consistently significantly enhance recruitment; only larger trees did so. Finally, woody recruitment consistently decreased with distance from forest. Our results as well as results from others suggest that the nucleation hypothesis needs to be broadened beyond its historical focus on isolated trees or patches; the matrix discontinuity hypothesis focuses attention on a suite of key patch types or microsites that promote woody species recruitment. We argue that any habitat discontinuities that ameliorate the inhibition by dense graminoid layers will be foci for recruitment. Such patches could easily be manipulated to speed the transition of pastures to closed canopy forests.

  10. Interactions between leaf nitrogen status and longevity in relation to N cycling in three contrasting European forest canopies

    NASA Astrophysics Data System (ADS)

    Wang, L.; Ibrom, A.; Korhonen, J. F. J.; Arnoud Frumau, K. F.; Wu, J.; Pihlatie, M.; Schjoerring, J. K.

    2012-07-01

    Seasonal and spatial variations in foliar nitrogen (N) parameters were investigated in three European forests with different tree species, viz. beech (Fagus sylvatica L.), Douglas fir (Pseudotsuga menziesii, Mirb., Franco) and Scots pine (Pinus sylvestris L.) in Denmark, The Netherlands and Finland, respectively. This was done in order to obtain information about functional acclimation, tree internal N conservation and its relevance for both ecosystem internal N cycling and foliar N exchange with the atmosphere. Leaf N pools generally showed much higher seasonal variability in beech trees than in the coniferous canopies. The concentrations of N and chlorophyll in the beech leaves were synchronized with the seasonal course of solar radiation implying close physiological acclimation, which was not observed in the coniferous needles. During phases of intensive N metabolism in the beech leaves, the NH4+ concentration rose considerably. This was compensated for by a strong pH decrease resulting in relatively low Γ values (ratio between tissue NH4+ and H+). The Γ values in the coniferous were even smaller than in beech, indicating low probability of NH3 emissions from the foliage to the atmosphere as an N conserving mechanism. The reduction in foliage N content during senescence was interpreted as N re-translocation from the senescing leaves into the rest of the trees. The N re-translocation efficiency (ηr) ranged from 37 to 70% and decreased with the time necessary for full renewal of the canopy foliage. Comparison with literature data from in total 23 tree species showed a general tendency for ηr to on average be reduced by 8% per year the canopy stays longer, i.e. with each additional year it takes for canopy renewal. The boreal pine site returned the lowest amount of N via foliage litter to the soil, while the temperate Douglas fir stand which had the largest peak canopy N content and the lowestηr returned the highest amount of N to the soil. These results support the hypothesis that a high N status, e.g. as a consequence of chronically high atmospheric N inputs, increases ecosystem internal over tree-bulk-tissue internal N cycling in conifer stands. The two evergreen tree species investigated in the present study behaved very differently in all relevant parameters, i.e. needle longevity, Nc and ηr, showing that generalisations on tree internal vs. ecosystem internal N cycling cannot be made on the basis of the leaf habit alone.

  11. Effects of structural complexity on within-canopy light environments and leaf traits in a northern mixed deciduous forest

    NASA Astrophysics Data System (ADS)

    Fotis, A. T.; Curtis, P.

    2016-12-01

    Canopy structure influences forest productivity through its effects on the distribution of radiation and the light-induced changes in leaf physiological traits. Due to the difficulty of accessing and measuring forest canopies, few field-based studies have quantitatively linked these divergent scales of canopy functioning. The objective of our study was to investigate how canopy structure affects light profiles within a forest canopy and whether leaves of mature trees adjust morphologically and biochemically to the light environments characteristic of canopies with different structural complexity. We used a combination of light detection and ranging (LiDAR) data and hemispherical photographs to quantify canopy structure and light environments, respectively, and a telescoping pole to sample leaves. Leaf mass per area (LMA), nitrogen on an area basis (Narea) and chlorophyll on a mass basis (Chlmass) were measured in four co-dominant species (Acer rubrum, Fagus grandifolia, Pinus strobus and Quercus rubra) at different heights in plots with similar leaf area index (LAI) but contrasting canopy complexity (rugosity). We found that more complex canopies had greater porosity and reduced light variability in the midcanopy while total light interception was unchanged relative to less complex canopies. Leaves of F. grandifolia, Q. rubra, and P. strobus shifted towards sun-acclimation phenotypes with increasing canopy complexity while leaves of A. rubrum became more shade-acclimated (lower LMA) in the upper canopy of more complex stands, despite no differences in total light interception. Broadleaf species showed further acclimation by increasing Narea and reducing Chlmass as LMA increased, while P. strobus showed no change in Narea and Chlmass with increasing LMA. Our results provide new insight on how light distribution and leaf acclimation in mature trees might be altered when natural and anthropogenic disturbances cause structural changes in the canopy.

  12. Canopy rainfall partitioning across an urbanization gradient in forest structure as characterized by terrestrial LiDAR

    NASA Astrophysics Data System (ADS)

    Mesta, D. C.; Van Stan, J. T., II; Yankine, S. A.; Cote, J. F.; Jarvis, M. T.; Hildebrandt, A.; Friesen, J.; Maldonado, G.

    2017-12-01

    As urbanization expands, greater forest area is shifting from natural stand structures to urban stand structures, like forest fragments and landscaped tree rows. Changes in forest canopy structure have been found to drastically alter the amount of rainwater reaching the surface. However, stormwater management models generally treat all forest structures (beyond needle versus broadleaved) similarly. This study examines the rainfall partitioning of Pinus spp. canopies along a natural-to-urban forest gradient and compares these to canopy structural measurements using terrestrial LiDAR. Throughfall and meteorological observations were also used to estimate parameters of the commonly-used Gash interception model. Preliminary findings indicate that as forest structure changed from natural, closed canopy conditions to semi-closed canopy fragments and, ultimately, to exposed urban landscaping tree rows, the interchange between throughfall and rainfall interception also changed. This shift in partitioning between throughfall and rainfall interception may be linked to intuitive parameters, like canopy closure and density, as well as more complex metrics, like the fine-scale patterning of gaps (ie, lacunarity). Thus, results indicate that not all forests of the same species should be treated the same by stormwater models. Rather, their canopy structural characteristics should be used to vary their hydrometeorological interactions.

  13. Global patterns and determinants of forest canopy height.

    PubMed

    Tao, Shengli; Guo, Qinghua; Li, Chao; Wang, Zhiheng; Fang, Jingyun

    2016-12-01

    Forest canopy height is an important indicator of forest biomass, species diversity, and other ecosystem functions; however, the climatic determinants that underlie its global patterns have not been fully explored. Using satellite LiDAR-derived forest canopy heights and field measurements of the world's giant trees, combined with climate indices, we evaluated the global patterns and determinants of forest canopy height. The mean canopy height was highest in tropical regions, but tall forests (>50 m) occur at various latitudes. Water availability, quantified by the difference between annual precipitation and annual potential evapotranspiration (P-PET), was the best predictor of global forest canopy height, which supports the hydraulic limitation hypothesis. However, in striking contrast with previous studies, the canopy height exhibited a hump-shaped curve along a gradient of P-PET: it initially increased, then peaked at approximately 680 mm of P-PET, and finally declined, which suggests that excessive water supply negatively affects the canopy height. This trend held true across continents and forest types, and it was also validated using forest inventory data from China and the United States. Our findings provide new insights into the climatic controls of the world's giant trees and have important implications for forest management and improvement of forest growth models. © 2016 by the Ecological Society of America.

  14. Do the rich get richer? Varying effects of tree species identity and diversity on the richness of understory taxa.

    PubMed

    Chamagne, Juliette; Paine, C E Timothy; Schoolmaster, Donald R; Stejskal, Robert; Volarřík, Daniel; Šebesta, Jan; Trnka, Filip; Koutecký, Tomáš; Švarc, Petr; Svátek, Martin; Hector, Andy; Matula, Radim

    2016-09-01

    Understory herbs and soil invertebrates play key roles in soil formation and nutrient cycling in forests. Studies suggest that diversity in the canopy and in the understory are positively associated, but these studies often confound the effects of tree species diversity with those of tree species identity and abiotic conditions. We combined extensive field sampling with structural equation modeling to evaluate the simultaneous effects of tree diversity on the species diversity of understory herbs, beetles, and earthworms. The diversity of earthworms and saproxylic beetles was directly and positively associated with tree diversity, presumably because species of both these taxa specialize on certain species of trees. Tree identity also strongly affected diversity in the understory, especially for herbs, likely as a result of interspecific differences in canopy light transmittance or litter decomposition rates. Our results suggest that changes in forest management will disproportionately affect certain understory taxa. For instance, changes in canopy diversity will affect the diversity of earthworms and saproxylic beetles more than changes in tree species composition, whereas the converse would be expected for understory herbs and detritivorous beetles. We conclude that the effects of tree diversity on understory taxa can vary from positive to negative and may affect biogeochemical cycling in temperate forests. Thus, maintaining high diversity in temperate forests can promote the diversity of multiple taxa in the understory. © 2016 by the Ecological Society of America.

  15. Leaf reflectance variation along a vertical crown gradient of two deciduous tree species in a Belgian industrial habitat.

    PubMed

    Khavaninzadeh, Ali Reza; Veroustraete, Frank; Van Wittenberghe, Shari; Verrelst, Jochem; Samson, Roeland

    2015-09-01

    The reflectometry of leaf asymmetry is a novel approach in the bio-monitoring of tree health in urban or industrial habitats. Leaf asymmetry responds to the degree of environmental pollution and reflects structural changes in a leaf due to environmental pollution. This paper describes the boundary conditions to scale up from leaf to canopy level reflectance, by describing the variability of adaxial and abaxial leaf reflectance, hence leaf asymmetry, along the crown height gradients of two tree species. Our findings open a research pathway towards bio-monitoring based on the airborne remote sensing of tree canopies and their leaf asymmetric properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Soil morphology of canopy and intercanopy sites in a pinon-Juniper woodland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davenport, D.W.; Wilcox, B.P.; Breshear, D.D.

    1996-11-01

    Pinon-juniper woodlands in the semiarid western USA have expanded as much as fivefold during the last 150 yr, often accompanied by losses of understory vegetation and increasing soil erosion. We conducted this study to determine the differences in soil morphology between canopy and intercanopy locations within a pinon (Pinus edulis Engelm.)-juniper [Juniperus monosperma (Engelm.) Sarg.] woodland with uniform parent material, topography, and climate. The woodland studied, located near Los Alamos, NM, has a mean tree age of 135 yr. We examined soil morphology by augering 135 profiles in a square grid pattern and comparing soils under pinon and juniper canopiesmore » with intercanopy soils. Only two of the 17 morphological properties compared showed significant differences. The B horizons make up a slightly greater proportion of total profile thickness in intercanopy soils, and there are higher percentages of coarse fragments in the lower portions of canopy soil profiles. Canopy soils have lower mean pH and higher mean organic C than intercanopy soils. Regression analysis showed that most soil properties did not closely correspond with tree size, but total soil thickness and B horizon thickness are significantly greater under the largest pinon trees, and soil reaction is lower under the largest juniper trees. Our findings suggest that during the period in which pinon-juniper woodlands have been expanding, the trees have had only minor effects on soil morphology. 36 refs., 4 figs., 4 tabs.« less

  17. Remote sensing of submerged aquatic vegetation in lower Chesapeake Bay - A comparison of Landsat MSS to TM imagery

    NASA Technical Reports Server (NTRS)

    Ackleson, S. G.; Klemas, V.

    1987-01-01

    Landsat MSS and TM imagery, obtained simultaneously over Guinea Marsh, VA, as analyzed and compares for its ability to detect submerged aquatic vegetation (SAV). An unsupervised clustering algorithm was applied to each image, where the input classification parameters are defined as functions of apparent sensor noise. Class confidence and accuracy were computed for all water areas by comparing the classified images, pixel-by-pixel, to rasterized SAV distributions derived from color aerial photography. To illustrate the effect of water depth on classification error, areas of depth greater than 1.9 m were masked, and class confidence and accuracy recalculated. A single-scattering radiative-transfer model is used to illustrate how percent canopy cover and water depth affect the volume reflectance from a water column containing SAV. For a submerged canopy that is morphologically and optically similar to Zostera marina inhabiting Lower Chesapeake Bay, dense canopies may be isolated by masking optically deep water. For less dense canopies, the effect of increasing water depth is to increase the apparent percent crown cover, which may result in classification error.

  18. Progressive forest canopy water loss during the 2012-2015 California drought.

    PubMed

    Asner, Gregory P; Brodrick, Philip G; Anderson, Christopher B; Vaughn, Nicholas; Knapp, David E; Martin, Roberta E

    2016-01-12

    The 2012-2015 drought has left California with severely reduced snowpack, soil moisture, ground water, and reservoir stocks, but the impact of this estimated millennial-scale event on forest health is unknown. We used airborne laser-guided spectroscopy and satellite-based models to assess losses in canopy water content of California's forests between 2011 and 2015. Approximately 10.6 million ha of forest containing up to 888 million large trees experienced measurable loss in canopy water content during this drought period. Severe canopy water losses of greater than 30% occurred over 1 million ha, affecting up to 58 million large trees. Our measurements exclude forests affected by fire between 2011 and 2015. If drought conditions continue or reoccur, even with temporary reprieves such as El Niño, we predict substantial future forest change.

  19. Monitoring tree health with a dual-wavelength terrestrial laser scanner

    NASA Astrophysics Data System (ADS)

    Hancock, S.

    2013-12-01

    Steven Hancock1, Rachel Gaulton1, Mark Danson2 1School of Civil Engineering and Geosciences, Newcastle University, UK, steven.hancock@ncl.ac.uk, rachel.gaulton@ncl.ac.uk 2 School of Environment and Life Sciences, University of Salford, UK, F.M.Danson@salford.ac.uk Forests are a vital part of the Earth's carbon cycle and drive interactions between the land and atmosphere. Accurate and repeatable measurement of forests is essential for understanding the Earth system. Terrestrial laser scanning can be a powerful tool for characterising forests. However, there are a number of issues that have yet to be resolved. Commercial laser scanners are optimised for measuring buildings and other hard targets. Vegetation canopies are complex and porous, confounding standard interpretation techniques. Commercial systems struggle with partial hits and cannot distinguish leaf from wood (Danson et al 2007). A new generation of terrestrial laser scanners, optimised for vegetation measurement, are in development. The Salford Advanced Laser Canopy Analyser (SALCA, Gaulton et al 2013) aims to overcome these issues using full-waveform analysis and two wavelengths (1064 nm and 1545 nm), allowing the characterisation of a porous canopy, the identification of leaf and wood and derivation of information on leaf biochemistry. Gaulton et al (2013) showed that SALCA is capable of measuring the Equivalent Water Thickness (EWT) of individual leaves in laboratory conditions. In this study, the method was applied to complete tree canopies. A controlled experiment simulating a small 'forest' of potted broadleaved (Tilia cordata) and coniferous trees (Pinus nigra) was established and groups subjected to different moisture stresses over a one month period. Trees were repeatedly scanned by SALCA and regular measurements were made of leaf EWT, stomatal conductance, chlorophyll content, spectral properties (using an ASD field spectroradiometer) and, for a limited number of trees, leaf area (by destructive harvesting). Trees were arranged so that some were clearly visible to the scanner and could be analysed individually (a best case scenario) whilst others were grouped to form a denser, more realistic canopy (a worse case scenario). A method was developed to simultaneously extract canopy structure (leaf area, tree height and clumping) and leaf biochemistry (EWT) from the laser scanner data. These results were compared to ground to assess their accuracy. References Danson, F. M., Hetherington D., Morsdorf F., Koetz B., Allgower B., 2007. Forest canopy gap fraction from terrestrial laser scanning. IEEE Geoscience and Remote Sensing Letters, 4, 157-160. Gaulton R., Danson F. M., Ramirez F. A., Gunawan O., 2013. The potential of dual-wavelength laser scanning for estimating vegetation moisture content. Remote Sensing of Environment, 132, 32-39.

  20. Changes in composition, structure and aboveground biomass over seventy-six years (1930-2006) in the Black Rock Forest, Hudson Highlands, southeastern New York State.

    PubMed

    Schuster, W S F; Griffin, K L; Roth, H; Turnbull, M H; Whitehead, D; Tissue, D T

    2008-04-01

    We sought to quantify changes in tree species composition, forest structure and aboveground forest biomass (AGB) over 76 years (1930-2006) in the deciduous Black Rock Forest in southeastern New York, USA. We used data from periodic forest inventories, published floras and a set of eight long-term plots, along with species-specific allometric equations to estimate AGB and carbon content. Between the early 1930s and 2000, three species were extirpated from the forest (American elm (Ulmus americana L.), paper birch (Betula papyrifera Marsh.) and black spruce (Picea mariana (nigra) (Mill.) BSP)) and seven species invaded the forest (non-natives tree-of-heaven (Ailanthus altissima (Mill.) Swingle) and white poplar (Populus alba L.) and native, generally southerly distributed, southern catalpa (Catalpa bignonioides Walt.), cockspur hawthorn (Crataegus crus-galli L.), red mulberry (Morus rubra L.), eastern cottonwood (Populus deltoides Bartr.) and slippery elm (Ulmus rubra Muhl.)). Forest canopy was dominated by red oak and chestnut oak, but the understory tree community changed substantially from mixed oak-maple to red maple-black birch. Density decreased from an average of 1500 to 735 trees ha(-1), whereas basal area doubled from less than 15 m(2) ha(-1) to almost 30 m(2) ha(-1) by 2000. Forest-wide mean AGB from inventory data increased from about 71 Mg ha(-1) in 1930 to about 145 Mg ha(-1) in 1985, and mean AGB on the long-term plots increased from 75 Mg ha(-1) in 1936 to 218 Mg ha(-1) in 1998. Over 76 years, red oak (Quercus rubra L.) canopy trees stored carbon at about twice the rate of similar-sized canopy trees of other species. However, there has been a significant loss of live tree biomass as a result of canopy tree mortality since 1999. Important constraints on long-term biomass increment have included insect outbreaks and droughts.

  1. Biodiversity Meets the Atmosphere: A Global View of Forest Canopies

    Treesearch

    C. M. P. Ozanne; D. Anhuf; S. L. Boulter; M. Keller; R. L. Kitching; C. Korner; F. C. Meinzer; A. W. Mitchell; T. Nakashizuka; P. L. Silva Dias; N. E. Stork; S. J. Wright; M Yoshimura

    2003-01-01

    The forest canopy is the functional interface between 90% of Earth’s terrestrial biomass and the atmosphere. Multidisciplinary research in the canopy has expanded concepts of global species richness, physiological processes, and the provision of ecosystem services. Trees respond in a species-specific manner to elevated carbon dioxide levels, while climate change...

  2. Use of the forest canopy by bats.

    Treesearch

    L. Wunder; A.B. Carey

    1994-01-01

    Of the 15 species of bats in the Pacific Northwest, 11 are known to make regular use of the forest canopy for roosting, foraging, and reproduction. This paper reviews roosting requirements, foraging, and the importance of landscape-scale factors to canopy using species in the Northwest. Many northwest bats use several different types of tree roosts. Common roosting...

  3. Effects of a willow overstory on planted seedlings in a bottomland restoration

    Treesearch

    C. J. Dulohery; Randy K. Kolka; M. R. McKevlin

    2000-01-01

    Four bottomland tree species (green ash, bald cypress, water tupelo, and swamp chestnut oak) were planted under four levels of willow canopy (intact canopy, 60% thinned with herbicide, complete control with herbicide, and complete mechanical removal plus control with herbicide). Through age 5, species selection rather than canopy control treatment was the dominant...

  4. Water use in forest canopy black cherry trees and its relationship to leaf gas exchange and environment

    Treesearch

    B. J. Joyce; K. C. Steiner; J. M. Skelly

    1996-01-01

    Models of canopy gas exchange are needed to connect leaf-level measurement to higher scales. Because of the correspondence between leaf gas exchange and water use, it may be possible to predict variation in leaf gas exchange at the canopy level by monitoring rates of branch water use.

  5. Voxel-Based 3-D Tree Modeling from Lidar Images for Extracting Tree Structual Information

    NASA Astrophysics Data System (ADS)

    Hosoi, F.

    2014-12-01

    Recently, lidar (light detection and ranging) has been used to extracting tree structural information. Portable scanning lidar systems can capture the complex shape of individual trees as a 3-D point-cloud image. 3-D tree models reproduced from the lidar-derived 3-D image can be used to estimate tree structural parameters. We have proposed the voxel-based 3-D modeling for extracting tree structural parameters. One of the tree parameters derived from the voxel modeling is leaf area density (LAD). We refer to the method as the voxel-based canopy profiling (VCP) method. In this method, several measurement points surrounding the canopy and optimally inclined laser beams are adopted for full laser beam illumination of whole canopy up to the internal. From obtained lidar image, the 3-D information is reproduced as the voxel attributes in the 3-D voxel array. Based on the voxel attributes, contact frequency of laser beams on leaves is computed and LAD in each horizontal layer is obtained. This method offered accurate LAD estimation for individual trees and woody canopy trees. For more accurate LAD estimation, the voxel model was constructed by combining airborne and portable ground-based lidar data. The profiles obtained by the two types of lidar complemented each other, thus eliminating blind regions and yielding more accurate LAD profiles than could be obtained by using each type of lidar alone. Based on the estimation results, we proposed an index named laser beam coverage index, Ω, which relates to the lidar's laser beam settings and a laser beam attenuation factor. It was shown that this index can be used for adjusting measurement set-up of lidar systems and also used for explaining the LAD estimation error using different types of lidar systems. Moreover, we proposed a method to estimate woody material volume as another application of the voxel tree modeling. In this method, voxel solid model of a target tree was produced from the lidar image, which is composed of consecutive voxels that filled the outer surface and the interior of the stem and large branches. From the model, the woody material volume of any part of the target tree can be directly calculated easily by counting the number of corresponding voxels and multiplying the result by the per-voxel volume.

  6. Estimating the influence of different urban canopy cover types on atmospheric particulate matter (PM10) pollution abatement in London UK.

    NASA Astrophysics Data System (ADS)

    Tallis, Matthew; Freer-Smith, Peter; Sinnett, Danielle; Aylott, Matthew; Taylor, Gail

    2010-05-01

    In the urban environment atmospheric pollution by PM10 (particulate matter with a diameter less than 10 x 10-6 m) is a problem that can have adverse effects on human health, particularly increasing rates of respiratory disease. The main contributors to atmospheric PM10 in the urban environment are road traffic, industry and power production. The urban tree canopy is a receptor for removing PM10s from the atmosphere due to the large surface areas generated by leaves and air turbulence created by the structure of the urban forest. In this context urban greening has long been known as a mechanism to contribute towards PM10 removal from the air, furthermore, tree canopy cover has a role in contributing towards a more sustainable urban environment. The work reported here has been carried out within the BRIDGE project (SustainaBle uRban plannIng Decision support accountinG for urban mEtabolism). The aim of this project is to assess the fluxes of energy, water, carbon dioxide and particulates within the urban environment and develope a DSS (Decision Support System) to aid urban planners in sustainable development. A combination of published urban canopy cover data from ground, airborne and satellite based surveys was used. For each of the 33 London boroughs the urban canopy was classified to three groups, urban woodland, street trees and garden trees and each group quantified in terms of ground cover. The total [PM10] for each borough was taken from the LAEI (London Atmospheric Emissions Inventory 2006) and the contribution to reducing [PM10] was assessed for each canopy type. Deposition to the urban canopy was assessed using the UFORE (Urban Forest Effects Model) approach. Deposition to the canopy, boundary layer height and percentage reduction of the [PM10] in the atmosphere was assessed using both hourly meterological data and [PM10] and seasonal data derived from annual models. Results from hourly and annual data were compared with measured values. The model was then applied to future predictions of annual [PM10] and future canopy cover scenarios for London. The contribution of each canopy type subjected to the different atmospheric [PM10] of the 33 London boroughs now and in the future will be discussed. Implementing these findings into a decision support system (DSS) for sustainable urban planning will also be discussed.

  7. Seasonality on the rainfall partitioning of a fast-growing tree plantation under Mediterranean conditions

    NASA Astrophysics Data System (ADS)

    molina, antonio; llorens, pilar; biel, carme

    2014-05-01

    Studies on rainfall interception in fast-growing tree plantations are less numerous than those in natural forests. Trees in these plantations are regularly distributed, and the canopy cover is clumped but changes quickly, resulting on high variability in the volume and composition of water that reach the soil. In addition, irrigation supply is normally required in semiarid areas to get optimal wood production; consequently, knowing rainfall interception and its yearly evolution is crucial to manage the irrigation scheme properly. This work studies the rainfall partitioning seasonality in a cherry tree (Prunus avium) plantation orientated to timber production under Mediterranean conditions. The monitoring design started on March 2012 and consists of a set of 58 throughfall tipping buckets randomly distributed (based on a 1x1 m2 grid) in a plot of 128 m2 with 8 trees. Stemflow is measured in all the trees with 2 tipping buckets and 6 accumulative collectors. Canopy cover is regularly measured throughout the study period, in leaf and leafless periods, by mean of sky-orientated photographs taken 50 cm above the center of each tipping bucket. Others tree biometrics are also measured such as diameter and leaf area index. Meteorological conditions are measured at 2 m above the forest cover. This work presents the first analyses describing the rainfall partitioning and its dependency on canopy cover, distance to tree and meteorological conditions. The modified Gash' model for rainfall interception in dispersed vegetation is also preliminary evaluated.

  8. A tree canopy height delineation method based on Morphological Reconstruction—Open Crown Decomposition

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Jing, L.; Li, Y.; Tang, Y.; Li, H.; Lin, Q.

    2016-04-01

    For the purpose of forest management, high resolution LIDAR and optical remote sensing imageries are used for treetop detection, tree crown delineation, and classification. The purpose of this study is to develop a self-adjusted dominant scales calculation method and a new crown horizontal cutting method of tree canopy height model (CHM) to detect and delineate tree crowns from LIDAR, under the hypothesis that a treetop is radiometric or altitudinal maximum and tree crowns consist of multi-scale branches. The major concept of the method is to develop an automatic selecting strategy of feature scale on CHM, and a multi-scale morphological reconstruction-open crown decomposition (MRCD) to get morphological multi-scale features of CHM by: cutting CHM from treetop to the ground; analysing and refining the dominant multiple scales with differential horizontal profiles to get treetops; segmenting LiDAR CHM using watershed a segmentation approach marked with MRCD treetops. This method has solved the problems of false detection of CHM side-surface extracted by the traditional morphological opening canopy segment (MOCS) method. The novel MRCD delineates more accurate and quantitative multi-scale features of CHM, and enables more accurate detection and segmentation of treetops and crown. Besides, the MRCD method can also be extended to high optical remote sensing tree crown extraction. In an experiment on aerial LiDAR CHM of a forest of multi-scale tree crowns, the proposed method yielded high-quality tree crown maps.

  9. Simple Forest Canopy Thermal Exitance Model

    NASA Technical Reports Server (NTRS)

    Smith J. A.; Goltz, S. M.

    1999-01-01

    We describe a model to calculate brightness temperature and surface energy balance for a forest canopy system. The model is an extension of an earlier vegetation only model by inclusion of a simple soil layer. The root mean square error in brightness temperature for a dense forest canopy was 2.5 C. Surface energy balance predictions were also in good agreement. The corresponding root mean square errors for net radiation, latent, and sensible heat were 38.9, 30.7, and 41.4 W/sq m respectively.

  10. Canopy and leaf composition drive patterns of nutrient release from pruning residues in a coffee agroforest.

    PubMed

    Tully, Katherine L; Lawrence, Deborah

    2012-06-01

    In a coffee agroforest, the crop is cultivated under the shade of fruit-bearing and nitrogen (N)-fixing trees. These trees are periodically pruned to promote flowering and fruiting as well as to make nutrients stored in tree biomass available to plants. We investigated the effect of canopy composition and substrate quality on decomposition rates and patterns of nutrient release from pruning residues in a coffee agroforest located in Costa Rica's Central Valley. Initial phosphorus (P) release was enhanced under a canopy composed solely of N-fixing, Erythrina poeppigiana compared to a mixed canopy of Erythrina and Musa acuminata (banana). Both initial and final N release were similar under the two canopy types. However, after five months of decomposition, a higher proportion of initial N had been released under the single canopy. Although patterns of decomposition and nutrient release were not predicted by initial substrate quality, mass loss in leaf mixtures rates were well predicted by mean mass loss of their component species. This study identifies specific pruning regimes that may regulate N and P release during crucial growth periods, and it suggests that strategic pruning can enhance nutrient availability. For example, during the onset of rapid fruit growth, a two-species mixture may release more P than a three-species mixture. However, by the time of the harvest, the two- and three-species mixtures have released roughly the same amount of N and P. These nutrients do not always follow the same pattern, as N release can be maximized in single-species substrates, while P release is often facilitated in species mixtures. Our study indicates the importance of management practices in mediating patterns of nutrient release. Future research should investigate how canopy composition and farm management can also mediate on-farm nutrient losses.

  11. The feasibility of using a universal Random Forest model to map tree height across different locations and vegetation types

    NASA Astrophysics Data System (ADS)

    Su, Y.; Guo, Q.; Jin, S.; Gao, S.; Hu, T.; Liu, J.; Xue, B. L.

    2017-12-01

    Tree height is an important forest structure parameter for understanding forest ecosystem and improving the accuracy of global carbon stock quantification. Light detection and ranging (LiDAR) can provide accurate tree height measurements, but its use in large-scale tree height mapping is limited by the spatial availability. Random Forest (RF) has been one of the most commonly used algorithms for mapping large-scale tree height through the fusion of LiDAR and other remotely sensed datasets. However, how the variances in vegetation types, geolocations and spatial scales of different study sites influence the RF results is still a question that needs to be addressed. In this study, we selected 16 study sites across four vegetation types in United States (U.S.) fully covered by airborne LiDAR data, and the area of each site was 100 km2. The LiDAR-derived canopy height models (CHMs) were used as the ground truth to train the RF algorithm to predict canopy height from other remotely sensed variables, such as Landsat TM imagery, terrain information and climate surfaces. To address the abovementioned question, 22 models were run under different combinations of vegetation types, geolocations and spatial scales. The results show that the RF model trained at one specific location or vegetation type cannot be used to predict tree height in other locations or vegetation types. However, by training the RF model using samples from all locations and vegetation types, a universal model can be achieved for predicting canopy height across different locations and vegetation types. Moreover, the number of training samples and the targeted spatial resolution of the canopy height product have noticeable influence on the RF prediction accuracy.

  12. The behavior of the microwave emission of a conifer canopy during the fall-winter in Sodankylä, Finland

    NASA Astrophysics Data System (ADS)

    Li, Q.; Kelly, R. E. J.; Lemmetyinen, J.; Kontu, A.

    2017-12-01

    Spaceborne passive microwave (PM) systems are an important tool for estimating snow water equivalent (SWE) or snow depth (SD) in winter landscapes. However, because spaceborne radiometer footprints have a coarse spatial resolution, the measured upwelling brightness temperature (Tb) typically is a mixed signal propagated from multiple sources. Tree canopies can effectively attenuate microwave emission from the sub-canopy terrain beneath and can also have a strong emission signal. Therefore, these two combined observed processes decrease the sensitivity of the observed signal to SWE or SD. To evaluate the detailed behavior of the microwave emission from a forest landscape, the experiment focused on snow and vegetation radiative transfer processes was conducted at an established field site operated by the Finnish Meteorological Institute's Arctic Research Station in Sodankylä, Finland. In this experiment, downwelling Tbs from a target tree (Scots pine) was measured by an multi-frequency, dual polarization radiometer from Septermber 2016 to March 2017. A dendrometer and thermistor installed on the tree trunk at the height of 2 meters and 4 meters measured the sap flow and skin temperature of the tree. An adjacent weather station measured the air temperature. Snow cover conditions of the canopy was determined by an assessment web camera image time series. The three main findings are that first, the emissivity was positively correlated with tree skin temperatures below 0°C, but not when temperatures were at or greater than than 0°C. Furthermore, lower frequency channel observations were more sensitive to these physical temperatures than higher frequencies. Second, the Tb difference between horizontal and vertical polarizations were also negatively correlated with physical temperatures less than 0°C, but not when the physical temperatures were greater than 0°C. In addition, the Tb polarization differences of the lower frequency channels are more sensitive to temperature than for the higher frequency channels. Third, although the snow on the canopy can influence the microwave Tb response, this influence was found to be relatively small compared with other factors, suggesting that the difference of the canopy Tbs during the snow-covered and no-snow-covered periods were not statistically significant.

  13. How many trees are enough? Tree death and the urban canopy

    Treesearch

    Lara A. Roman

    2014-01-01

    Massive city tree planting campaigns have invigorated the urban forestry movement, and engaged politicians, planners, and the public in urban greening. Million tree initiatives have been launched in Los Angeles, CA; Denver, CO; New York City, NY; Philadelphia, PA, and other cities. Sacramento, CA even has a five million tree program. These...

  14. Field guide to red tree vole nests

    Treesearch

    Damon B. Lesmeister; James K. Swingle

    2017-01-01

    Surveys for red tree vole (Arborimus longicaudus) nests require tree climbing because the species is a highly specialized arboreal rodent that live in the tree canopy of coniferous forests in western Oregon and northwestern California. Tree voles are associated with old coniferous forest (≥80 years old) that are structurally complex, but are often...

  15. Brooklyn's urban forest

    Treesearch

    David J. Nowak; Daniel E. Crane; Jack C. Stevens; Myriam Ibarra

    2002-01-01

    An assessment of trees in Brooklyn, New York, reveal that this borough has approximately 610,000 trees with canopies that cover 11.4 percent of the area. The most common trees are estimated to be tree of heaven, white mulberry, black locust, Norway maple and black cherry. Brooklyn's trees currently store approximately 172,000 metric tons of carbon with an...

  16. Primary and Secondary Controls on Measurements of Forest Height Using Large-Footprint Lidar at the Hubbard Brook LTER

    NASA Technical Reports Server (NTRS)

    Knox, Robert G.; Blair, J. Bryan; Schwarz, Paul A.; Hofton, Michelle A.; Dubayah, Ralph; Smith, David E. (Technical Monitor)

    2000-01-01

    On September 26, 1999, we mapped canopy structure over 90% of the Hubbard Brook Experimental Forest in White Mountain National Forest, New Hampshire, using the Laser Vegetation Imaging Sensor (LVIS). This airborne instrument was configured to emulate data expected from the Vegetation Canopy Lidar (VCL) space mission. We compared above ground heights of the tallest surfaces detected by lidar with average forest canopy heights estimated from tree-based measurements in or near 346 0.05 ha plots (made in autumn of 1997 and 1998). Vegetation heights had by far the predominant influence on lidar top heights, but with this large data set we were able to measure two significant secondary effects: those of steepness or slope of the underlying terrain and of tree crown form. The size of the slope effect was intermediate between that expected from models of homogeneous canopy layers and for solitary tree crowns. The first detected surfaces were also proportionately taller for plots with more basal area in broad leaved northern hardwoods than for mostly coniferous plots. We expected this because of the contrast between the shapes of cumulative distributions of surface area for elliptical or hemi-elliptical tree crowns and those for conical crowns. Correcting for these secondary effects, when appropriate data are available for calibration, may improve vegetation structure estimates in regional studies using VCL or similar lidar data sources.

  17. Accuracy Assessment of Crown Delineation Methods for the Individual Trees Using LIDAR Data

    NASA Astrophysics Data System (ADS)

    Chang, K. T.; Lin, C.; Lin, Y. C.; Liu, J. K.

    2016-06-01

    Forest canopy density and height are used as variables in a number of environmental applications, including the estimation of biomass, forest extent and condition, and biodiversity. The airborne Light Detection and Ranging (LiDAR) is very useful to estimate forest canopy parameters according to the generated canopy height models (CHMs). The purpose of this work is to introduce an algorithm to delineate crown parameters, e.g. tree height and crown radii based on the generated rasterized CHMs. And accuracy assessment for the extraction of volumetric parameters of a single tree is also performed via manual measurement using corresponding aerial photo pairs. A LiDAR dataset of a golf course acquired by Leica ALS70-HP is used in this study. Two algorithms, i.e. a traditional one with the subtraction of a digital elevation model (DEM) from a digital surface model (DSM), and a pit-free approach are conducted to generate the CHMs firstly. Then two algorithms, a multilevel morphological active-contour (MMAC) and a variable window filter (VWF), are implemented and used in this study for individual tree delineation. Finally, experimental results of two automatic estimation methods for individual trees can be evaluated with manually measured stand-level parameters, i.e. tree height and crown diameter. The resulting CHM generated by a simple subtraction is full of empty pixels (called "pits") that will give vital impact on subsequent analysis for individual tree delineation. The experimental results indicated that if more individual trees can be extracted, tree crown shape will became more completely in the CHM data after the pit-free process.

  18. Integration of ALS and TLS for calibration and validation of LAI profiles from large footprint lidar

    NASA Astrophysics Data System (ADS)

    Armston, J.; Tang, H.; Hancock, S.; Hofton, M. A.; Dubayah, R.; Duncanson, L.; Fatoyinbo, T. E.; Blair, J. B.; Disney, M.

    2016-12-01

    The Global Ecosystem Dynamics Investigation (GEDI) is designed to provide measurements of forest vertical structure and above-ground biomass density (AGBD) over tropical and temperate regions. The GEDI is a multi-beam waveform lidar that will acquire transects of forest canopy vertical profiles in conditions of up to 99% canopy cover. These are used to produce a number of canopy height and profile metrics to model habitat suitability and AGBD. These metrics include vertical leaf area index (LAI) profiles, which require some pre-launch refinement of large-footprint waveform processing methods for separating canopy and ground returns and estimation of their reflectance. Previous research developments in modelling canopy gap probability to derive canopy and ground reflectance from waveforms have primarily used data from small-footprint instruments, however development of a generalized spatial model with uncertainty will be useful for interpreting and modelling waveforms from large-footprint instruments such as the NASA Land Vegetation and Ice Sensor (LVIS) with a view to implementation for GEDI. Here we present an analysis of waveform lidar data from the NASA Land Vegetation and Ice Sensor (LVIS), which were acquired in Gabon in February 2016 to support the NASA/ESA AfriSAR campaign. AfriSAR presents a unique opportunity to test refined methods for retrieval of LAI profiles in high above-ground biomass rainforests (up to 600 Mg/ha) with dense canopies (>90% cover), where the greatest uncertainty exists. Airborne and Terrestrial Laser Scanning data (TLS) were also collected, enabling quantification of algorithm performance in plots of dense canopy cover. Refinement of canopy gap probability and LAI profile modelling from large-footprint lidar was based on solving for canopy and ground reflectance parameters spatially by penalized least-squares. The sensitivities of retrieved cover and LAI profiles to variation in canopy and ground reflectance showed improvement compared to assuming a constant ratio. We evaluated the use of spatially proximate simple waveforms to interpret more complex waveforms with poor separation of canopy and ground returns. This work has direct implications for GEDI algorithm refinement.

  19. Spray penetration and natural enemy survival in dense and sparse plant canopies treated with Carbaryl: implications for conventional and biological control

    USDA-ARS?s Scientific Manuscript database

    Ornamental plant producers often rely on chemical control to manage insect pests. However, cultural practices, such as pruning, can influence plant architecture which may, in turn, affect pesticide penetration. Spray penetration was studied to determine the effect of canopy density on beneficial ins...

  20. Foliar ozone injury on different-sized Prumus serotina Ehrh. trees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fredericksen, T.S.; Skelly, J.M.; Steiner, K.C.

    1995-06-01

    Black cherry (Prunus serotina Ehrh.) is a common tree species in the eastern U.S. that is highly sensitive to ozone relative to other associated deciduous tree species. Because of difficulties in conducting exposure-response experiments on large trees, air pollution studies have often utilized seedlings and extrapolated the results to predict the potential response of larger forest trees. However, physiological differences between seedlings and mature forest trees may alter responses to air pollutants. A comparative study of seedling, sapling, and canopy black cherry trees was conducted to determine the response of different-sized trees to known ozone exposures and amounts of ozonemore » uptake. Apparent foliar sensitivity to ozone, observed as a dark adaxial leaf stipple, decreased with increasing tree size. An average of 46% of seedling leaf area was symptomatic by early September, compared to 15% - 20% for saplings and canopy trees. In addition to visible symptoms, seedlings also appeared to have greater rates of early leaf abscission than larger trees. Greater sensitivity (i.e., foliar symptoms) per unit exposure with decreasing tree size was closely correlated with rates of stomatal conductance. However, after accounting for differences in stomatal conductance, sensitivity appeared to increase with tree size.« less

  1. Three-dimensional feature extraction and geometric mappings for improved parameter estimation in forested terrain using airborne LiDAR data

    NASA Astrophysics Data System (ADS)

    Lee, Heezin

    Scanning laser ranging technology is well suited for measuring point-to-point distances because of its ability to generate small beam divergences. As a result, many of the laser pulses emitted from airborne light detection and ranging (LiDAR) systems are able to reach the ground underneath tree canopies through small (10 cm scale) gaps in the foliage. Using high pulse rate lasers and fast optical scanners, airborne LiDAR systems can provide both high spatial resolution and canopy penetration, and these data have become more widely available in recent years for use in environmental and forestry applications. The small-footprint, discrete-return Airborne Laser Swath Mapping (ALSM) system at the University of Florida (UF) is used to directly measure ground surface elevations and the three-dimensional (3D) distribution of the vegetative material above the soil surface. Field of view geometric mappings are explored to find optical gaps inside forests. First, a method is developed to detect walking trails in natural forests that are obscured from above by the canopy. Several features are derived from the ALSM data and used to constrain the search space and infer the location of trails. Second, a robust and simple procedure for estimating intercepted photosynthetically active radiation (IPAR), which is an important measure of forest timber productivity and of daylight visibility in forested terrain, is presented. Simple scope functions that isolate the relevant LiDAR reflections between observer locations and the sun are defined and shown to give good agreement between the LiDAR-derived estimates and values of IPAR measured in situ. A conical scope function with an angular divergence from the centerline of +/-7° provided the best agreement with the in situ measurements. This scope function yielded remarkably consistent IPAR estimates for different pine species and growing conditions. The developed idea could be extended, through potential future work, to characterize the spatial distribution of attenuation of GPS (L-band) microwave signals and of detectability from the sky for military personnel operating in forested terrain. Measuring individual trees can provide valuable information about forests, and airborne LiDAR sensors have been recently used to identify individual trees and measure structural tree parameters. Past results, however, have been mixed because of reliance on interpolated (image) versions of the LiDAR measurements and search methods that do not adapt to variations in canopies. In this work, an adaptive clustering method is developed using 3D airborne LiDAR data acquired over two distinctly different managed pine forests in North-Central Florida, USA. A critical issue in isolating individual trees is determining the appropriate size of the moving window (search radius) when locating seed points. The proposed approach works directly on the 3D "cloud" of LiDAR points and adapts to irregular canopy sizes. The region growing step yields collectively exhaustive sets in an initial segmentation of tree canopies. An agglomerative clustering step is then used to merge clusters that represent parts of whole canopies using the locally varying height distribution. The overall tree detection accuracy achieved is 95.1% with no significant bias. The tree detection enables subsequent estimation of tree height and vertical crown length to an accuracy of better than 0.8 m and 1.5 m, respectively. Lastly, a compact representation of the different geometric characteristics of the segmented LiDAR points is introduced using spin images as a new tool that can potentially help tree detection in complex natural forests.

  2. Are leaf chemistry signatures preserved at the canopy level?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borel, C.C.; Gerstl, S.A.W.

    1994-05-01

    Imaging spectrometers have the potential to be very useful in remote sensing of canopy chemistry constituents such as nitrogen and lignin. In this study under the HIRIS project the question of how leaf chemical composition which is reflected in leaf spectral features in the reflectance and transmittance is affected by canopy architecture was investigated. Several plants were modeled with high fidelity and a radiosity model was used to compute the canopy spectral signature over the visible and near infrared. We found that chemical constituent specific signatures such as absorptions are preserved and in the case of low absorption are actuallymore » enhanced. For moderately dense canopies the amount of a constituent depends also on the total leaf area.« less

  3. Canopy Gap Characteristics and Drought Influences in Oak Forests of the Coweeta Basin

    Treesearch

    B.D. Clinton; L.R. Boring

    1993-01-01

    Canopy gaps in southern Appalachian mixed-Quercus forests were characterized to assess the impact of the 1985-l988 record drought on patterns of tree mortality in relation to topographic variables and changes in overstory composition. Using permanent transects, we sampled 68 canopy gaps within the Coweeta Basin. Among l-5 yr old gaps, the most...

  4. Effects of acidic deposition and soil acidification on sugar maple trees in the Adirondack Mountains, New York

    USGS Publications Warehouse

    Sullivan, Timothy J.; Lawrence, Gregory B.; Bailey, Scott W.; McDonnell, Todd C.; McPherson, G.T.

    2013-01-01

    This study documents the effects of acidic deposition and soil acid-base chemistry on the growth, regeneration, and canopy condition of sugar maple (SM) trees in the Adirondack Mountains of New York. Sugar maple is the dominant canopy species throughout much of the northern hardwood forest in the State. A field study was conducted in 2009 in which 50 study plots within 20 small Adirondack watersheds were sampled and evaluated for soil acid-base chemistry and SM growth, canopy condition, and regeneration. Atmospheric sulfur (S) and nitrogen (N) deposition were estimated for each plot. Trees growing on soils with poor acid-base chemistry (low exchangeable calcium and % base saturation) that receive relatively high levels of atmospheric S and N deposition exhibited little to no SM seedling regeneration, decreased canopy condition, and short-to long-term growth declines compared with study plots having better soil condition and lower levels of atmospheric deposition. These results suggest that the ecosystem services provided by SM in the western and central Adirondack Mountain region, including aesthetic, cultural, and monetary values, are at risk from ongoing soil acidification caused in large part by acidic deposition.

  5. Azinphos-methyl residues in apples and spatial distribution of fluorescein in vase-shaped apple trees.

    PubMed

    Bélanger, A; Bostanian, N J; Boivin, G; Boudreau, F

    1991-06-01

    Vase-shaped standard apple trees cv. McIntosh were sprayed with azinphos-methyl at pink, pink and 1st cover and 1st cover only. Residue analyses by gas chromatography revealed detectable residues on foliage until mid summer. At harvest, negligible residue levels were found on the peel and the whole apple. On four trees, fluorescein was sprayed in the same manner as the insecticide and maximum levels of the dye were detected on the outside lower canopy along the row. Minimal concentration of fluorescein was detected on the inner upper canopy away from the direction of the row.

  6. Simulated transient thermal infrared emissions of forest canopies during rainfall events

    NASA Astrophysics Data System (ADS)

    Ballard, Jerrell R.; Hawkins, William R.; Howington, Stacy E.; Kala, Raju V.

    2017-05-01

    We describe the development of a centimeter-scale resolution simulation framework for a theoretical tree canopy that includes rainfall deposition, evaporation, and thermal infrared emittance. Rainfall is simulated as discrete raindrops with specified rate. The individual droplets will either fall through the canopy and intersect the ground; adhere to a leaf; bounce or shatter on impact with a leaf resulting in smaller droplets that are propagated through the canopy. Surface physical temperatures are individually determined by surface water evaporation, spatially varying within canopy wind velocities, solar radiation, and water vapor pressure. Results are validated by theoretical canopy gap and gross rainfall interception models.

  7. Evapotranspiration modelled from stands of three broad-leaved tropical trees in Costa Rica

    NASA Astrophysics Data System (ADS)

    Bigelow, Seth

    2001-10-01

    To examine the impact of tree species on the water cycle in a wet tropical region, annual evapotranspiration (ET) was estimated in Costa Rican plantations of three native, broad-leaved tree species that contrasted strongly in leaf size, leaf area and phenology. Evapotranspiration was estimated using the Penman-Monteith equation for transpiration from the dry canopy, the equilibrium equation for evaporation from the understory and a modified Rutter model of interception for evaporation of water from the canopy when wetted by rainfall. Canopy conductance was estimated from stomatal conductance, leaf area and leaf boundary-layer conductance; canopy storage capacity and filling rate were estimated from throughfall measurements. Micrometeorological instruments were mounted on a scaffolding tower.Mean stomatal conductance, which ranged from 0·1 to 0·7 mol m-2 s-1, was similar to boundary-layer conductance, 0·1 to 0·5 mol m-2 s-1, indicating decoupling of stomata from atmospheric conditions. Mean canopy conductance varied from 0·6 to 0·7 mol m-2 s-1 in the 1994 wet season then dropped to 0·3-0·4 mol m-2 s-1 in stands of the two deciduous species, Cordia and Cedrela, as a result of reduced leaf area during the dry season. Despite increased understory evaporation, dry-season ET from these stands was only 78-81% of ET in stands of the evergreen species, Hyeronima. Maximum canopy water depth varied from 0·2 to 2·2 mm, causing modelled interception to vary from 6% to 25% of annual ET. Higher dry-season transpiration rates along with high rates of evaporation of intercepted rainfall in all seasons led to 14% higher annual ET in Hyeronima stands (1509 mm) than in stands of the species with lowest ET,

  8. Beneath the veil: Plant growth form influences the strength of species richness-productivity relationships in forests

    USGS Publications Warehouse

    Oberle, B.; Grace, J.B.; Chase, J.M.

    2009-01-01

    Aim: Species richness has been observed to increase with productivity at large spatial scales, though the strength of this relationship varies among functional groups. In forests, canopy trees shade understorey plants, and for this reason we hypothesize that species richness of canopy trees will depend on macroclimate, while species richness of shorter growth forms will additionally be affected by shading from the canopy. In this study we test for differences in species richness-productivity relationships (SRPRs) among growth forms (canopy trees, shrubs, herbaceous species) in small forest plots. Location: We analysed 231 plots ranging from 34.0?? to 48.3?? N latitude and from 75.0?? to 124.2?? W longitude in the United States. Methods: We analysed data collected by the USDA Forest Inventory and Analysis program for plant species richness partitioned into different growth forms, in small plots. We used actual evapotranspiration as a macroclimatic estimate of regional productivity and calculated the area of light-blocking tissue in the immediate area surrounding plots for an estimate of the intensity of local shading. We estimated and compared SRPRs for different partitions of the species richness dataset using generalized linear models and we incorporated the possible indirect effects of shading using a structural equation model. Results: Canopy tree species richness increased strongly with regional productivity, while local shading primarily explained the variation in herbaceous plant richness. Shrub species richness was related to both regional productivity and local shading. Main conclusions: The relationship between total forest plant species richness and productivity at large scales belies strong effects of local interactions. Counter to the pattern for overall richness, we found that understorey herbaceous plant species richness does not respond to regional productivity gradients, and instead is strongly influenced by canopy density, while shrub species richness is under multivariate control. ?? 2009 Blackwell Publishing.

  9. Impacts of Water Stress on Forest Recovery and Its Interaction with Canopy Height.

    PubMed

    Xu, Peipei; Zhou, Tao; Yi, Chuixiang; Luo, Hui; Zhao, Xiang; Fang, Wei; Gao, Shan; Liu, Xia

    2018-06-13

    Global climate change is leading to an increase in the frequency, intensity, and duration of drought events, which can affect the functioning of forest ecosystems. Because human activities such as afforestation and forest attributes such as canopy height may exhibit considerable spatial differences, such differences may alter the recovery paths of drought-impacted forests. To accurately assess how climate affects forest recovery, a quantitative evaluation on the effects of forest attributes and their possible interaction with the intensity of water stress is required. Here, forest recovery following extreme drought events was analyzed for Yunnan Province, southwest China. The variation in the recovery of forests with different water availability and canopy heights was quantitatively assessed at the regional scale by using canopy height data based on light detection and ranging (LiDAR) measurements, enhanced vegetation index data, and standardized precipitation evapotranspiration index (SPEI) data. Our results indicated that forest recovery was affected by water availability and canopy height. Based on the enhanced vegetation index measures, shorter trees were more likely to recover than taller ones after drought. Further analyses demonstrated that the effect of canopy height on recovery rates after drought also depends on water availability—the effect of canopy height on recovery diminished as water availability increased after drought. Additional analyses revealed that when the water availability exceeded a threshold (SPEI > 0.85), no significant difference in the recovery was found between short and tall trees ( p > 0.05). In the context of global climate change, future climate scenarios of RCP2.6 and RCP8.5 showed more frequent water stress in Yunnan by the end of the 21st century. In summary, our results indicated that canopy height casts an important influence on forest recovery and tall trees have greater vulnerability and risk to dieback and mortality from drought. These results may have broad implications for policies and practices of forest management.

  10. Development of laser-guided precision sprayers for tree crop applications

    USDA-ARS?s Scientific Manuscript database

    Tree crops in nurseries and orchards have great variations in shapes, sizes, canopy densities and gaps between in-row trees. The variability requires future sprayers to be flexible to spray the amount of chemicals that can match tree structures. A precision air-assisted sprayer was developed to appl...

  11. Sustainable development and use of ecosystems with non-forest trees

    USDA-ARS?s Scientific Manuscript database

    Non-forest trees are components of managed ecosystems including orchards and agroforestry systems and natural ecosystems such as savannas and riparian corridors. Each of these ecosystems includes trees but does not have a complete tree canopy or spatial extent necessary to create a true forest ecosy...

  12. Attaining the canopy in dry and moist tropical forests: strong differences in tree growth trajectories reflect variation in growing conditions

    PubMed Central

    Zuidema, Pieter A.; Martínez-Ramos, Miguel

    2009-01-01

    Availability of light and water differs between tropical moist and dry forests, with typically higher understorey light levels and lower water availability in the latter. Therefore, growth trajectories of juvenile trees—those that have not attained the canopy—are likely governed by temporal fluctuations in light availability in moist forests (suppressions and releases), and by spatial heterogeneity in water availability in dry forests. In this study, we compared juvenile growth trajectories of Cedrela odorata in a dry (Mexico) and a moist forest (Bolivia) using tree rings. We tested the following specific hypotheses: (1) moist forest juveniles show more and longer suppressions, and more and stronger releases; (2) moist forest juveniles exhibit wider variation in canopy accession pattern, i.e. the typical growth trajectory to the canopy; (3) growth variation among dry forest juveniles persists over longer time due to spatial heterogeneity in water availability. As expected, the proportion of suppressed juveniles was higher in moist than in dry forest (72 vs. 17%). Moist forest suppressions also lasted longer (9 vs. 5 years). The proportion of juveniles that experienced releases in moist forest (76%) was higher than in dry forest (41%), and releases in moist forests were much stronger. Trees in the moist forest also had a wider variation in canopy accession patterns compared to the dry forest. Our results also showed that growth variation among juvenile trees persisted over substantially longer periods of time in dry forest (>64 years) compared to moist forest (12 years), most probably because of larger persistent spatial variation in water availability. Our results suggest that periodic increases in light availability are more important for attaining the canopy in moist forests, and that spatial heterogeneity in water availability governs long-term tree growth in dry forests. Electronic supplementary material The online version of this article (doi:10.1007/s00442-009-1540-5) contains supplementary material, which is available to authorized users. PMID:20033820

  13. Effects of trees on momentum exchange within and above a real urban environment

    NASA Astrophysics Data System (ADS)

    Salesky, S.; Giometto, M. G.; Christen, A.; Egli, P. E.; Schmid, M. F.; Tooke, T. R.; Coops, N. C.; Parlange, M. B.

    2017-12-01

    Large-eddy simulations (LES) are used to gain insight into the effects of trees on momentum transfer rates characterizing the atmosphere within and above a real urban canopy. Several areas are considered that are part of a neighbourhood in the city of Vancouver, BC, Canada where a small fraction of trees are taller than buildings. In this area, eight years of continuous wind and turbulence measurements are available from a 30 m meteorological tower. Buildings and vegetation geometries are obtained from airborne light detection and ranging (LiDAR) data. In the LES algorithm, buildings are accounted through an immersed boundary method, whereas vegetation is parameterized via a location-specific leaf area density. LES are performed varying wind direction and leaf area densities. Surface roughness lengths (z0) from both LES and tower measurements are sensitive to the 0 ≤ LAI/λ < 3 parameter, where LAI is the leaf area index and λ is the frontal area fraction of buildings characterizing a given canopy. For instance, tower measurements predict a 19% seasonal increase in z0, slightly lower than the 27% increase featured by LES for the most representative canopy (leaves-off LAI/λ = 0.74, leaves-on LAI/λ = 2.24). Removing vegetation from such a canopy would cause a dramatic drop of approximately 50% in z0 when compared to the reference summer value. The momentum displacement height (d) from LES also consistently increases as LAI/λ increases, due to the disproportionate amount of drag that the (few) relatively taller trees exert on the flow. Within the urban canopy, the effects of trees are twofold: on one hand, they act as a direct momentum sink for the mean flow; on the other, they reduce downward turbulent transport of high-momentum fluid, significantly reducing the wind intensity at the heights where people live and buildings consume energy.

  14. Long-term fertilization determines different metabolomic profiles and responses in saplings of three rainforest tree species with different adult canopy position.

    PubMed

    Gargallo-Garriga, Albert; Wright, S Joseph; Sardans, Jordi; Pérez-Trujillo, Míriam; Oravec, Michal; Večeřová, Kristýna; Urban, Otmar; Fernández-Martínez, Marcos; Parella, Teodor; Peñuelas, Josep

    2017-01-01

    Tropical rainforests are frequently limited by soil nutrient availability. However, the response of the metabolic phenotypic plasticity of trees to an increase of soil nutrient availabilities is poorly understood. We expected that increases in the ability of a nutrient that limits some plant processes should be detected by corresponding changes in plant metabolome profile related to such processes. We studied the foliar metabolome of saplings of three abundant tree species in a 15 year field NPK fertilization experiment in a Panamanian rainforest. The largest differences were among species and explained 75% of overall metabolome variation. The saplings of the large canopy species, Tetragastris panamensis, had the lowest concentrations of all identified amino acids and the highest concentrations of most identified secondary compounds. The saplings of the "mid canopy" species, Alseis blackiana, had the highest concentrations of amino acids coming from the biosynthesis pathways of glycerate-3P, oxaloacetate and α-ketoglutarate, and the saplings of the low canopy species, Heisteria concinna, had the highest concentrations of amino acids coming from the pyruvate synthesis pathways. The changes in metabolome provided strong evidence that different nutrients limit different species in different ways. With increasing P availability, the two canopy species shifted their metabolome towards larger investment in protection mechanisms, whereas with increasing N availability, the sub-canopy species increased its primary metabolism. The results highlighted the proportional distinct use of different nutrients by different species and the resulting different metabolome profiles in this high diversity community are consistent with the ecological niche theory.

  15. High temporal resolution tracing of up-and downward carbon transport in oak trees

    NASA Astrophysics Data System (ADS)

    Bloemen, Jasper; Ingrisch, Johannes; Bahn, Michael

    2017-04-01

    Carbon (C) allocation defines the flows of C between plant organs and their storage pools and metabolic processes and is therefore considered as an important determinant of forest C budgets and their responses to climate change. In trees, assimilates derived from leaf photosynthesis are transported via the phloem to above- and belowground sink tissues, where partitioning between growth, storage, and respiration occurs. At the same time, root- and aboveground respired CO2 can be dissolved in water and transported in the xylem tissue, thereby representing a secondary C flux of large magnitude. The relative magnitude of both fluxes in a same set of trees and their concurrent role in C allocation remains unclear. In this study, we 13C pulse labeled five year old potted oak (Quercus rubra) trees to investigate both the role of C transport via the phloem and xylem in C allocation. To this end trees were randomly assigned to two 13C labeling experiments: 1) a canopy labeling experiment using transparent canopy chambers and 2) a stem labeling experiment based on the infusion of 13C labeled water in the stem base. We used high-resolution laser-based measurements of the isotopic composition of stem and soil CO2 efflux to monitor both the down-and upward transport of 13C label. Additional tissue samples at stem, canopy and root level were analyzed to validate the assimilation of the label in tree tissues during transport. Overall, after both labeling experiments enrichment was observed in both stem and soil CO2 efflux, showing that the 13C label was removed from both xylem and phloem transport during up- and downward transport, respectively. Higher enrichments of CO2 efflux were observed after stem labeling as compared to canopy labeling, which implies that xylem transport strongly contributes to C lost to the atmosphere. This study is the first to show combined results from tracing of xylem and phloem transport of C for a same set of trees at high temporal resolution using a 13C labeling approach. Moreover, they extend results from previous studies on the tracing of phloem transport in trees to a tracing of both xylem and canopy transport as well as results from studies on the internal CO2 transport in species with high transpiration rates like poplar to species with lower transpiration rates like oak. The results further demonstrate the complex interplay of phloem and xylem transport of carbon and its role for the emission of respired CO2 from trees into the atmosphere.

  16. Response of a boreal forest to canopy opening: assessing vertical and lateral tree growth with multi-temporal lidar data.

    PubMed

    Vepakomma, Udayalakshmi; St-Onge, Benoit; Kneeshaw, Daniel

    2011-01-01

    Fine-scale height-growth response of boreal trees to canopy openings is difficult to measure from the ground, and there are important limitations in using stereophotogrammetry in defining gaps and determining individual crowns and height. However, precise knowledge on height growth response to different openings is critical for refining partial harvesting techniques. In this study, we question whether conifers and hardwoods respond equally in terms of sapling growth or lateral growth to openings. We also ask to what distance gaps affect tree growth into the forest. We use multi-temporal lidar to characterize tree/sapling height and lateral growth responses over five years to canopy openings and high resolution images to identify conifers and hardwoods. Species-class-wise height-growth patterns of trees/saplings in various neighborhood contexts were determined across a 6-km matrix of Canadian boreal mixed deciduous coniferous forests. We then use statistical techniques to probe how these growth responses vary by spatial location with respect to the gap edge. Results confirm that both mechanisms of gap closure contribute to the closing of canopies at a rate of 1.2% per annum. Evidence also shows that both hardwood and conifer gap edge trees have a similar lateral growth (average of 22 cm/yr) and similar rates of height growth irrespective of their location and initial height. Height growth of all saplings, however, was strongly dependent on their position within the gap and the size of the gap. Results suggest that hardwood and softwood saplings in gaps have greatest growth rates at distances of 0.5-2 m and 1.5-4 m from the gap edge and in openings smaller than 800 m2 and 250 m2, respectively. Gap effects on the height growth of trees in the intact forest were evident up to 30 m and 20 m from gap edges for hardwood and softwood overstory trees, respectively. Our results thus suggest that foresters should consider silvicultural techniques that create many small openings in mixed coniferous deciduous boreal forests to maximize the growth response of both residual and regenerating trees.

  17. Effects of structural complexity on within-canopy light environments and leaf traits in a northern mixed deciduous forest.

    PubMed

    Fotis, Alexander T; Curtis, Peter S

    2017-10-01

    Canopy structure influences forest productivity through its effects on the distribution of radiation and the light-induced changes in leaf physiological traits. Due to the difficulty of accessing and measuring forest canopies, few field-based studies have quantitatively linked these divergent scales of canopy functioning. The objective of our study was to investigate how canopy structure affects light profiles within a forest canopy and whether leaves of mature trees adjust morphologically and biochemically to the light environments characteristic of canopies with different structural complexity. We used a combination of light detection and ranging (LiDAR) data and hemispherical photographs to quantify canopy structure and light environments, respectively, and a telescoping pole to sample leaves. Leaf mass per area (LMA), nitrogen on an area basis (Narea) and chlorophyll on a mass basis (Chlmass) were measured in red maple (Acer rubrum), american beech (Fagus grandifolia), white pine (Pinus strobus), and northern red oak (Quercus rubra) at different heights in plots with similar leaf area index but contrasting canopy complexity (rugosity). We found that more complex canopies had greater porosity and reduced light variability in the midcanopy while total light interception was unchanged relative to less complex canopies. Leaf phenotypes of F. grandifolia, Q. rubra and P. strobus were more sun-acclimated in the midstory of structurally complex canopies while leaf phenotypes of A. rubrum were more shade-acclimated (lower LMA) in the upper canopy of more complex stands, despite no differences in total light interception. Broadleaf species showed further differences in acclimation with increased Narea and reduced Chlmass in leaves with higher LMA, while P. strobus showed no change in Narea and Chlmass with higher LMA. Our results provide new insight on how light distribution and leaf acclimation in mature trees might be altered when natural and anthropogenic disturbances cause structural changes in the canopy. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Leaf angle, tree species, and the functioning of broadleaf deciduous forest ecosystems

    NASA Astrophysics Data System (ADS)

    McNeil, B. E.; Brzostek, E. R.; Fahey, R. T.; King, C. J.; Flamenco, E. A.; Rescorl, S.; Erazo, D.; Heimerl, T.

    2016-12-01

    The effects of temperate forests on the global cycles of carbon, water, and energy depends strongly on how individual tree species adjust to the novel environmental conditions of the Anthropocene. Here, we seek to identify and understand ecological variability in one important component of tree canopies, the inclination angles of leaves. Leaf angle has important effects on forest albedo, photosynthesis, and evapotranspiration, but there is relatively little data to constrain the many models that include (or perhaps should include) this essential aspect of canopy architecture. We employ a relatively new technique for using an electronic protractor to measure leaf angles from leveled digital photographs. From a suite of observation platforms (e.g. UAVs, eddy flux towers, old fire towers) in Connecticut, Indiana, Maryland, Michigan, Pennsylvania, and West Virginia, USA, we have measured leaf angles periodically throughout the 2014, 2015, and 2016 growing seasons. Based on over 25,000 measurements taken from 15 tree species, we find highly significant differences in mean leaf angle by canopy position, tree species, location, and observation date. In addition to replicating findings where upper-canopy sun leaves are more vertical than lower-canopy shade leaves, our analysis on sun leaves also finds other ecologically meaningful differences. For instance, we find that the mesic, shade tolerant sugar maple had significantly more horizontal leaf angles than drought-resistant species such as white oak. Species also appear to have unique patterns of leaf angle phenology, with most species tending toward more vertical leaf angles during droughty conditions later in the year. We discuss these empirical results in light of an emerging theoretical framework that positions leaf angle as a functional trait. Like leaf traits such as %N or SLA, we suggest that leaf angle is an essential part of the adaptive resource strategy of each tree species. Finally, by linking our leaf angle data to new observations of spatial and temporal variations in near infrared reflectance measured from UAV, airborne, and satellite sensors, we highlight how species-specific patterns of leaf angle phenology could provide a new mechanism to better constrain model predictions of energy, water, and carbon fluxes from temperate forests.

  19. Bark Beetle Impacts on Ecosystem Processes are Over Quickly and Muted Spatially

    NASA Astrophysics Data System (ADS)

    Ewers, B. E.; Norton, U.; Borkhuu, B.; Reed, D. E.; Peckham, S. D.; Biederman, J. A.; King, A.; Gochis, D. J.; Brooks, P. D.; Harpold, A. A.; Frank, J. M.; Massman, W. J.; Mackay, D. S.; Pendall, E. G.

    2013-12-01

    The recent epidemic of bark beetles across western North America has impacted conifers from low to high elevations from New Mexico to Yukon. The mechanism of mortality is clear, with both mountain pine and spruce beetles killing trees by introducing xylem occluding blue stain fungi which dramatically stops transpiration. The visual impact of this outbreak is stunning, with mortality of canopy trees over 90% in some stands. However, emerging work shows that the impact on ecosystem processes is not as dramatic. We hypothesize that increased soil water and nitrogen sets up rapid succession of plant communities, which quickly restores ecosystem processing of water, carbon and nitrogen, while spatial patchiness of mortality and belowground responses mutes the impact as spatial scale increases from stands to watersheds. In support of our hypothesis we found 1) Soil nitrogen and moisture increase within one growing season but decrease to the same as uninfested stands five years later. 2) Soil respiration is correlated with live tree basal area suggesting a large component of autotrophic respiration. 3) Once stands have more than 50% basal area mortality, seedling density increases up to five fold and total non-tree understory cover increased two fold both within five years after infestation. 4) Ecosystem scale estimates of water vapor fluxes do not decline as rapidly as overstory leaf area. 5) Stable isotopes of snow, soil and stream water suggest that increased below canopy evapotranspiration nearly compensates for reduced canopy transpiration. 6) Nested watershed data shows that precipitation variations are much more important in regulating streamflow than changes in canopies from bark beetle induced mortality. These results were tested in the Terrestrial Regional Ecosystem Exchange Simulator (TREES) model. TREES was able to predict annual changes in the carbon fluxes but had difficulty simulating soil moisture and annual water budgets likely due to inadequate abiotic water vapor flux mechanisms and an explicit understory canopy layer. Our results show that ecosystems are resilient to the bark beetle epidemic and the resulting ecosystem process change is much less dramatic than might be expected based on the visual impact.

  20. Edge-to-Stem Variability in Wet-Canopy Evaporation From an Urban Tree Row

    NASA Astrophysics Data System (ADS)

    Van Stan, John T.; Norman, Zachary; Meghoo, Adrian; Friesen, Jan; Hildebrandt, Anke; Côté, Jean-François; Underwood, S. Jeffrey; Maldonado, Gustavo

    2017-11-01

    Evaporation from wet-canopy (E_C) and stem (E_S) surfaces during rainfall represents a significant portion of municipal-to-global scale hydrologic cycles. For urban ecosystems, E_C and E_S dynamics play valuable roles in stormwater management. Despite this, canopy-interception loss studies typically ignore crown-scale variability in E_C and assume (with few indirect data) that E_S is generally {<}2% of total wet-canopy evaporation. We test these common assumptions for the first time with a spatially-distributed network of in-canopy meteorological monitoring and 45 surface temperature sensors in an urban Pinus elliottii tree row to estimate E_C and E_S under the assumption that crown surfaces behave as "wet bulbs". From December 2015 through July 2016, 33 saturated crown periods (195 h of 5-min observations) were isolated from storms for determination of 5-min evaporation rates ranging from negligible to 0.67 mm h^{-1}. Mean E_S (0.10 mm h^{-1}) was significantly lower (p < 0.01) than mean E_C (0.16 mm h^{-1}). But, E_S values often equalled E_C and, when scaled to trunk area using terrestrial lidar, accounted for 8-13% (inter-quartile range) of total wet-crown evaporation (E_S+E_C scaled to surface area). E_S contributions to total wet-crown evaporation maximized at 33%, showing a general underestimate (by 2-17 times) of this quantity in the literature. Moreover, results suggest wet-crown evaporation from urban tree rows can be adequately estimated by simply assuming saturated tree surfaces behave as wet bulbs, avoiding problematic assumptions associated with other physically-based methods.

  1. CFD simulation of pesticide spray from air-assisted sprayers in an apple orchard: Tree deposition and off-target losses

    NASA Astrophysics Data System (ADS)

    Hong, Se-Woon; Zhao, Lingying; Zhu, Heping

    2018-02-01

    The ultimate goal of a pesticide spraying system is to provide adequate coverage on intended canopies with a minimum amount of spray materials and off-target waste. Better spray coverage requires an understanding of the fate and transport of spray droplets carried by turbulent airflows in orchards. In this study, an integrated computational fluid dynamics (CFD) model was developed to predict displacement of pesticide spray droplets discharged from an air-assisted sprayer, depositions onto tree canopies, and off-target deposition and airborne drift in an apple orchard. Pesticide droplets discharged from a moving sprayer were tracked using the Lagrangian particle transport model, and the deposition model was applied to droplets entering porous canopy zones. Measurements of the droplet deposition and drift in the same orchard were used to validate the model simulations. Good agreement was found between the measured and simulated spray concentrations inside tree canopies and off-target losses (ground deposition and airborne drifts) with the overall relative errors of 22.1% and 40.6%, respectively, under three growth stages. The CFD model was able to estimate the mass balance of pesticide droplets in the orchard, which was practically difficult to investigate by measurements in field conditions. As the foliage of trees became denser, spray deposition inside canopies increased from 8.5% to 65.8% and airborne drift and ground deposition decreased from 25.8% to 7.0% and 47.8% to 21.2%, respectively. Higher wind speed also increased the spray airborne drift downwind of the orchard. This study demonstrates that CFD model can be used to evaluate spray application performance and design and operate sprayers with increased spray efficiencies and reduced drift potentials.

  2. Forest tree species clssification based on airborne hyper-spectral imagery

    NASA Astrophysics Data System (ADS)

    Dian, Yuanyong; Li, Zengyuan; Pang, Yong

    2013-10-01

    Forest precision classification products were the basic data for surveying of forest resource, updating forest subplot information, logging and design of forest. However, due to the diversity of stand structure, complexity of the forest growth environment, it's difficult to discriminate forest tree species using multi-spectral image. The airborne hyperspectral images can achieve the high spatial and spectral resolution imagery of forest canopy, so it will good for tree species level classification. The aim of this paper was to test the effective of combining spatial and spectral features in airborne hyper-spectral image classification. The CASI hyper spectral image data were acquired from Liangshui natural reserves area. Firstly, we use the MNF (minimum noise fraction) transform method for to reduce the hyperspectral image dimensionality and highlighting variation. And secondly, we use the grey level co-occurrence matrix (GLCM) to extract the texture features of forest tree canopy from the hyper-spectral image, and thirdly we fused the texture and the spectral features of forest canopy to classify the trees species using support vector machine (SVM) with different kernel functions. The results showed that when using the SVM classifier, MNF and texture-based features combined with linear kernel function can achieve the best overall accuracy which was 85.92%. It was also confirm that combine the spatial and spectral information can improve the accuracy of tree species classification.

  3. Potential energy savings in buildings by an urban tree planting programme in California

    Treesearch

    E.G. McPherson; J.R. Simpson

    2003-01-01

    Tree canopy cover data from aerial photographs and building energy simulations were applied to estimate energy savings from existing trees and new plantings in California. There are approximately 177.3 million energy-conserving trees in California communities and 241.6 million empty planting sites. Existing trees are projected to reduce annual air conditioning energy...

  4. Synergistic interactions between leaf beetle herbivory and fire enhance tamarisk (Tamarix spp.) mortality

    USGS Publications Warehouse

    Drus, Gail M.; Dudley, Tom L.; Antonio, Carla M.; Even, Thomas J.; Brooks, Matt L.; Matchett, J.R.

    2014-01-01

    The combined effects of herbivory and fire on plant mortality were investigated using prescribed burns of tamarisk (Tamarix ramosissima Lebed) exposed to herbivory by the saltcedar leaf beetle (Chrysomelidae: Diorhabda carinulata Desbrocher). Tamarix stands in the Humboldt Sink (NV, USA) were divided into three treatments: summer burn (August 2006), fall burn (October 2006) and control (unburned), and litter depth was manipulated to vary fire intensity within burn seasons. A gradient of existing herbivory impact was described with three plant condition metrics prior to fire: reduced proportions of green canopy, percent root crown starch sampled at the height of the growing season (August 2006), and percent root crown starch measured during dormancy (December 2006). August root crown starch concentration and proportion green canopy were strongly correlated, although the proportion green canopy predicted mortality better than August root crown starch. December root crown starch concentration was more depleted in unburned trees and in trees burned during the summer than in fall burn trees. Mortality in summer burned trees was higher than fall burned trees due to higher fire intensity, but December root crown starch available for resprouting in the spring was also lower in summer burned trees. The greatest mortality was observed in trees with the lowest December root crown starch concentration which were exposed to high fire intensity. Disproportionate changes in the slope and curvature of prediction traces as fire intensity and December starch reach reciprocal maximum and minimum levels indicate that beetle herbivory and fire intensity are synergistic.

  5. Adult mortality in a low-density tree population using high-resolution remote sensing.

    PubMed

    Kellner, James R; Hubbell, Stephen P

    2017-06-01

    We developed a statistical framework to quantify mortality rates in canopy trees observed using time series from high-resolution remote sensing. By timing the acquisition of remote sensing data with synchronous annual flowering in the canopy tree species Handroanthus guayacan, we made 2,596 unique detections of 1,006 individual adult trees within 18,883 observation attempts on Barro Colorado Island, Panama (BCI) during an 11-yr period. There were 1,057 observation attempts that resulted in missing data due to cloud cover or incomplete spatial coverage. Using the fraction of 123 individuals from an independent field sample that were detected by satellite data (109 individuals, 88.6%), we estimate that the adult population for this species on BCI was 1,135 individuals. We used a Bayesian state-space model that explicitly accounted for the probability of tree detection and missing observations to compute an annual adult mortality rate of 0.2%·yr -1 (SE = 0.1, 95% CI = 0.06-0.45). An independent estimate of the adult mortality rate from 260 field-checked trees closely matched the landscape-scale estimate (0.33%·yr -1 , SE = 0.16, 95% CI = 0.12-0.74). Our proof-of-concept study shows that one can remotely estimate adult mortality rates for canopy tree species precisely in the presence of variable detection and missing observations. © 2017 by the Ecological Society of America.

  6. Environmental correlates of plant diversity in Korean temperate forests

    NASA Astrophysics Data System (ADS)

    Černý, Tomáš; Doležal, Jiří; Janeček, Štěpán; Šrůtek, Miroslav; Valachovič, Milan; Petřík, Petr; Altman, Jan; Bartoš, Michael; Song, Jong-Suk

    2013-02-01

    Mountainous areas of the Korean Peninsula are among the biodiversity hotspots of the world's temperate forests. Understanding patterns in spatial distribution of their species richness requires explicit consideration of different environmental drivers and their effects on functionally differing components. In this study, we assess the impact of both geographical and soil variables on the fine-scale (400 m2) pattern of plant diversity using field data from six national parks, spanning a 1300 m altitudinal gradient. Species richness and the slopes of species-area curves were calculated separately for the tree, shrub and herb layer and used as response variables in regression tree analyses. A cluster analysis distinguished three dominant forest communities with specific patterns in the diversity-environment relationship. The most widespread middle-altitude oak forests had the highest tree richness but the lowest richness of herbaceous plants due to a dense bamboo understory. Total richness was positively associated with soil reaction and negatively associated with soluble phosphorus and solar radiation (site dryness). Tree richness was associated mainly with soil factors, although trees are frequently assumed to be controlled mainly by factors with large-scale impact. A U-shaped relationship was found between herbaceous plant richness and altitude, caused by a distribution pattern of dwarf bamboo in understory. No correlation between the degree of canopy openness and herb layer richness was detected. Slopes of the species-area curves indicated the various origins of forest communities. Variable diversity-environment responses in different layers and communities reinforce the necessity of context-dependent differentiation for the assessment of impacts of climate and land-use changes in these diverse but intensively exploited regions.

  7. Compensating effect of sap velocity for stand density leads to uniform hillslope-scale forest transpiration across a steep valley cross-section

    NASA Astrophysics Data System (ADS)

    Renner, Maik; Hassler, Sibylle; Blume, Theresa; Weiler, Markus; Hildebrandt, Anke; Guderle, Marcus; Schymanski, Stan; Kleidon, Axel

    2016-04-01

    Roberts (1983) found that forest transpiration is relatively uniform across different climatic conditions and suggested that forest transpiration is a conservative process compensating for environmental heterogeneity. Here we test this hypothesis at a steep valley cross-section composed of European Beech in the Attert basin in Luxemburg. We use sapflow, soil moisture, biometric and meteorological data from 6 sites along a transect to estimate site scale transpiration rates. Despite opposing hillslope orientation, different slope angles and forest stand structures, we estimated relatively similar transpiration responses to atmospheric demand and seasonal transpiration totals. This similarity is related to a negative correlation between sap velocity and site-average sapwood area. At the south facing sites with an old, even-aged stand structure and closed canopy layer, we observe significantly lower sap velocities but similar stand-average transpiration rates compared to the north-facing sites with open canopy structure, tall dominant trees and dense understorey. This suggests that plant hydraulic co-ordination allows for flexible responses to environmental conditions leading to similar transpiration rates close to the water and energy limits despite the apparent heterogeneity in exposition, stand density and soil moisture. References Roberts, J. (1983). Forest transpiration: A conservative hydrological process? Journal of Hydrology 66, 133-141.

  8. From open to closed canopy: A century of change in Douglas-fir forest, Orcas Island, Washington

    USGS Publications Warehouse

    Peterson, D.L.; Hammer, R.D.

    2001-01-01

    During the past century, forest structure on south-facing slopes of Mount Constitution, Orcas Island, Washington, has changed from open-grown Douglas-fir (Pseudotsuga menziesii) mixed with prairie to primarily closed canopy forest. Density of open-grown Douglas-fir was approximately 7 stems/ha in the 19th century, while current density of trees in closed-canopy mature forest is 426 stems/ha. Trees occur at intermediate densities in areas of transition from savanna-like stands to closed canopy. Analysis of fire scars indicates that at least seven fires have occurred on Mount Constitution since 1736, but only one fire has occurred since 1893, which suggests that the recent increase in stem density has been caused primarily by fire exclusion. The high stem densities currently found in this landscape put the relict (120-350+ years old) Douglas-fir at risk from contemporary fires, which would likely be high-intensity crown fires. Given the transition of forests on Orcas Island during the 20th century to closed canopy structure, undisturbed open-grown coniferous forest is now extremely rare in the San Juan Islands.

  9. The Effects of Fine-scale Soil Moisture and Canopy Heterogeneities on Energy and Soil Water Fluxes in a Temperate Mixed Deciduous Forest

    NASA Astrophysics Data System (ADS)

    He, L.; Ivanov, V. Y.; Bohrer, G.; Maurer, K.; Vogel, C. S.; Moghaddam, M.

    2011-12-01

    Vegetation is heterogeneous at different scales, influencing spatially variable energy and water exchanges between land-surface and atmosphere. Current land surface parameterizations of large-scale models consider spatial variability at a scale of a few kilometers and treat vegetation cover as aggregated patches with uniform properties. However, the coupling mechanisms between fine-scale soil moisture, vegetation, and energy fluxes such as evapotranspiration are strongly nonlinear; the aggregation of surface variations may produce biased energy fluxes. This study aims to improve the understanding of the scale impact in atmosphere-biosphere-hydrosphere interactions, which affects predictive capabilities of land surface models. The study uses a high-resolution, physically-based ecohydrological model tRIBS + VEGGIE as a data integration tool to upscale the heterogeneity of canopy distribution resolved at a few meters to the watershed scale. The study was carried out for a spatially heterogeneous, temperate mixed forest environment of Northern Michigan located near the University of Michigan Biological Station (UMBS). Energy and soil water dynamics were simulated at the tree-canopy resolution in the horizontal plane for a small domain (~2 sq. km) located within a footprint of the AmeriFlux tower. A variety of observational data were used to constrain and confirm the model, including a 3-m profile continuous soil moisture dataset and energy flux data (measured at the AmeriFlux tower footprint). A scenario with a spatially uniform canopy, corresponding to the commonly used 'big-leaf' scheme in land surface parameterizations was used to infer the effects of coarse-scale averaging. To gain insights on how heterogeneous canopy and soil moisture interact and contribute to the domain-averaged transpiration, several scenarios of tree-scale leaf area and soil moisture spatial variability were designed. Specifically, for the same mean states, the scenarios of variability of canopy biomass account for the spatial distribution of photosynthesis (and thus the stomatal resistance), the aerodynamic and leaf boundary layer resistances as well as the differential radiation forcing due to tall tree exposure and lateral shading of short trees. The numerical experiments show that by transpiring spatially varying amounts of water, heterogeneous canopies adjust the spatial soil water state to the scaled inverse of the canopy biomass regardless of the initial moisture state. Such a spatial distribution can be further wiped out because of the differential water stress. The aggregation of canopy-scale atmosphere-biosphere-hydrosphere interactions demonstrates non-linear relationship between soil moisture and evapotranspiration, influencing domain-averaged energy fluxes.

  10. Landscape-scale effects of fire severity on mixed-conifer and red fir forest structure in Yosemite National Park

    USGS Publications Warehouse

    Kane, Van R.; Lutz, James A.; Roberts, Susan L.; Smith, Douglas F.; McGaughey, Robert J.; Povak, Nicholas A.; Brooks, Matthew L.

    2013-01-01

    While fire shapes the structure of forests and acts as a keystone process, the details of how fire modifies forest structure have been difficult to evaluate because of the complexity of interactions between fires and forests. We studied this relationship across 69.2 km2 of Yosemite National Park, USA, that was subject to 32 fires ⩾40 ha between 1984 and 2010. Forests types included ponderosa pine (Pinus ponderosa), white fir-sugar pine (Abies concolor/Pinus lambertiana), and red fir (Abies magnifica). We estimated and stratified burned area by fire severity using the Landsat-derived Relativized differenced Normalized Burn Ratio (RdNBR). Airborne LiDAR data, acquired in July 2010, measured the vertical and horizontal structure of canopy material and landscape patterning of canopy patches and gaps. Increasing fire severity changed structure at the scale of fire severity patches, the arrangement of canopy patches and gaps within fire severity patches, and vertically within tree clumps. Each forest type showed an individual trajectory of structural change with increasing fire severity. As a result, the relationship between estimates of fire severity such as RdNBR and actual changes appears to vary among forest types. We found three arrangements of canopy patches and gaps associated with different fire severities: canopy-gap arrangements in which gaps were enclosed in otherwise continuous canopy (typically unburned and low fire severities); patch-gap arrangements in which tree clumps and gaps alternated and neither dominated (typically moderate fire severity); and open-patch arrangements in which trees were scattered across open areas (typically high fire severity). Compared to stands outside fire perimeters, increasing fire severity generally resulted first in loss of canopy cover in lower height strata and increased number and size of gaps, then in loss of canopy cover in higher height strata, and eventually the transition to open areas with few or no trees. However, the estimated fire severities at which these transitions occurred differed for each forest type. Our work suggests that low severity fire in red fir forests and moderate severity fire in ponderosa pine and white fir-sugar pine forests would restore vertical and horizontal canopy structures believed to have been common prior to the start of widespread fire suppression in the early 1900s. The fusion of LiDAR and Landsat data identified post-fire structural conditions that would not be identified by Landsat alone, suggesting a broad applicability of combining Landsat and LiDAR data for landscape-scale structural analysis for fire management.

  11. Structural diversity promotes productivity of mixed, uneven-aged forests in southwestern Germany.

    PubMed

    Dănescu, Adrian; Albrecht, Axel T; Bauhus, Jürgen

    2016-10-01

    Forest diversity-productivity relationships have been intensively investigated in recent decades. However, few studies have considered the interplay between species and structural diversity in driving productivity. We analyzed these factors using data from 52 permanent plots in southwestern Germany with more than 53,000 repeated tree measurements. We used basal area increment as a proxy for productivity and hypothesized that: (1) structural diversity would increase tree and stand productivity, (2) diversity-productivity relationships would be weaker for species diversity than for structural diversity, and (3) species diversity would also indirectly impact stand productivity via changes in size structure. We measured diversity using distance-independent indices. We fitted separate linear mixed-effects models for fir, spruce and beech at the tree level, whereas at the stand level we pooled all available data. We tested our third hypothesis using structural equation modeling. Structural and species diversity acted as direct and independent drivers of stand productivity, with structural diversity being a slightly better predictor. Structural diversity, but not species diversity, had a significant, albeit asymmetric, effect on tree productivity. The functioning of structurally diverse, mixed forests is influenced by both structural and species diversity. These sources of trait diversity contribute to increased vertical stratification and crown plasticity, which in turn diminish competitive interferences and lead to more densely packed canopies per unit area. Our research highlights the positive effects of species diversity and structural diversity on forest productivity and ecosystem dynamics.

  12. Canopy structure and tree condition of young, mature, and old-growth Douglas-fir/hardwood forests

    Treesearch

    B.B. Bingham; J.O. Sawyer

    1992-01-01

    Sixty-two Douglas-fir/hardwood stands ranging from 40 to 560 years old were used to characterize the density; diameter, and height class distributions of canopy hardwoods and conifers in young (40 -100 yr), mature (101 - 200 yr) and old-growth (>200 yr) forests. The crown, bole, disease, disturbance, and cavity conditions of canopy conifers and hardwoods were...

  13. Mean and Turbulent Flow Statistics in a Trellised Agricultural Canopy

    NASA Astrophysics Data System (ADS)

    Miller, Nathan E.; Stoll, Rob; Mahaffee, Walter F.; Pardyjak, Eric R.

    2017-10-01

    Flow physics is investigated in a two-dimensional trellised agricultural canopy to examine that architecture's unique signature on turbulent transport. Analysis of meteorological data from an Oregon vineyard demonstrates that the canopy strongly influences the flow by channelling the mean flow into the vine-row direction regardless of the above-canopy wind direction. Additionally, other flow statistics in the canopy sub-layer show a dependance on the difference between the above-canopy wind direction and the vine-row direction. This includes an increase in the canopy displacement height and a decrease in the canopy-top shear length scale as the above-canopy flow rotates from row-parallel towards row-orthogonal. Distinct wind-direction-based variations are also observed in the components of the stress tensor, turbulent kinetic energy budget, and the energy spectra. Although spectral results suggest that sonic anemometry is insufficient for resolving all of the important scales of motion within the canopy, the energy spectra peaks still exhibit dependencies on the canopy and the wind direction. These variations demonstrate that the trellised-canopy's effect on the flow during periods when the flow is row-aligned is similar to that seen by sparse canopies, and during periods when the flow is row-orthogonal, the effect is similar to that seen by dense canopies.

  14. Classification of savanna tree species, in the Greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a Random Forest data mining environment

    NASA Astrophysics Data System (ADS)

    Naidoo, L.; Cho, M. A.; Mathieu, R.; Asner, G.

    2012-04-01

    The accurate classification and mapping of individual trees at species level in the savanna ecosystem can provide numerous benefits for the managerial authorities. Such benefits include the mapping of economically useful tree species, which are a key source of food production and fuel wood for the local communities, and of problematic alien invasive and bush encroaching species, which can threaten the integrity of the environment and livelihoods of the local communities. Species level mapping is particularly challenging in African savannas which are complex, heterogeneous, and open environments with high intra-species spectral variability due to differences in geology, topography, rainfall, herbivory and human impacts within relatively short distances. Savanna vegetation are also highly irregular in canopy and crown shape, height and other structural dimensions with a combination of open grassland patches and dense woody thicket - a stark contrast to the more homogeneous forest vegetation. This study classified eight common savanna tree species in the Greater Kruger National Park region, South Africa, using a combination of hyperspectral and Light Detection and Ranging (LiDAR)-derived structural parameters, in the form of seven predictor datasets, in an automated Random Forest modelling approach. The most important predictors, which were found to play an important role in the different classification models and contributed to the success of the hybrid dataset model when combined, were species tree height; NDVI; the chlorophyll b wavelength (466 nm) and a selection of raw, continuum removed and Spectral Angle Mapper (SAM) bands. It was also concluded that the hybrid predictor dataset Random Forest model yielded the highest classification accuracy and prediction success for the eight savanna tree species with an overall classification accuracy of 87.68% and KHAT value of 0.843.

  15. Urban trees and forests of the Chicago region

    Treesearch

    David J. Nowak; Robert E. III Hoehn; Allison R. Bodine; Daniel E. Crane; John F. Dwyer; Veta Bonnewell; Gary Watson

    2013-01-01

    An analysis of trees in the Chicago region of Illinois reveals that this area has about 157,142,000 trees with tree and shrub canopy that covers 21.0 percent of the region. The most common tree species are European buckthorn, green ash, boxelder, black cherry, and American elm. Trees in the Chicago region currently store about 16.9 million tons of carbon (61.9 million...

  16. An assessment of fisher (Pekania pennanti) tolerance to forest management intensity on the landscape

    Treesearch

    William J. Zielinski; Craig M. Thompson; Kathryn L. Purcell; James D. Garner

    2013-01-01

    Forest restoration intended to reduce the overabundance of dense vegetation can be at odds with wildlife habitat conservation, particularly for species of wildlife that are strongly associated with structurally diverse forests with dense canopies. The fisher (Pekania pennanti), a mesopredator that occurs in mid-elevation forests of the southern...

  17. Whole-tree water transport scales with sapwood capacitance in tropical forest canopy trees.

    Treesearch

    F.C. Meinzer; S.A. James; G. Goldstein; D. Woodruff

    2003-01-01

    The present study examines the manner in which several whole-tree water transport properties scale with species specific variation in sapwood water storage capacity. The hypothesis that constraints on relationships between sapwood capacitance and other water relations characteristics lead to predictable scaling relationships between intrinsic capacitance and whole-tree...

  18. Assessing urban forest effects and values, Chicago's urban forest

    Treesearch

    David J. Nowak; Robert E. III Hoehn; Daniel E. Crane; Jack C. Stevens; Cherie Leblanc Fisher

    2010-01-01

    An analysis of trees in Chicago, IL, reveals that this city has about 3,585,000 trees with canopies that cover 17.2 percent of the area. The most common tree species are white ash, mulberry species, green ash, and tree-of-heaven. Chicago's urban forest currently stores about 716,000 tons of carbon...

  19. Maintenance cost, toppling risk and size of trees in a self-thinning stand.

    PubMed

    Larjavaara, Markku

    2010-07-07

    Wind routinely topples trees during storms, and the likelihood that a tree is toppled depends critically on its allometry. Yet none of the existing theories to explain tree allometry consider wind drag on tree canopies. Since leaf area index in crowded, self-thinning stands is independent of stand density, the drag force per unit land can also be assumed to be independent of stand density, with only canopy height influencing the total toppling moment. Tree stem dimensions and the self-thinning biomass can then be computed by further assuming that the risk of toppling over and stem maintenance per unit land area are independent of stand density, and that stem maintenance cost is a linear function of stem surface area and sapwood volume. These assumptions provide a novel way to understand tree allometry and lead to a self-thinning line relating tree biomass and stand density with a power between -3/2 and -2/3 depending on the ratio of maintenance of sapwood and stem surface. (c) 2010 Elsevier Ltd. All rights reserved.

  20. Reduced dry season transpiration is coupled with shallow soil water use in tropical montane forest trees.

    PubMed

    Muñoz-Villers, Lyssette E; Holwerda, Friso; Alvarado-Barrientos, M Susana; Geissert, Daniel R; Dawson, Todd E

    2018-06-25

    Tropical montane cloud forests (TMCF) are ecosystems particularly sensitive to climate change; however, the effects of warmer and drier conditions on TMCF ecohydrology remain poorly understood. To investigate functional responses of TMCF trees to reduced water availability, we conducted a study during the 2014 dry season in the lower altitudinal limit of TMCF in central Veracruz, Mexico. Temporal variations of transpiration, depth of water uptake and tree water sources were examined for three dominant, brevi-deciduous species using micrometeorological, sap flow and soil moisture measurements, in combination with oxygen and hydrogen stable isotope composition of rainfall, tree xylem, soil and stream water. Over the course of the dry season, reductions in crown conductance and transpiration were observed in canopy species (43 and 34%, respectively) and mid-story trees (23 and 8%), as atmospheric demand increased and soil moisture decreased. Canopy species consistently showed more depleted isotope values compared to mid-story trees. However, MixSIAR Bayesian model results showed that the evaporated (enriched) soil water pool was the main source for trees despite reduced soil moisture. Additionally, while increases in tree water uptake from deeper to shallower soil water sources occurred, concomitant decreases in transpiration were observed as the dry season progressed. A larger reduction in deep soil water use was observed for canopy species (from 79 ± 19 to 24 ± 20%) compared to mid-story trees (from 12 ± 17 to 10 ± 12%). The increase in shallower soil water sources may reflect a trade-off between water and nutrient requirements in this forest.

  1. Characterizing tree canopy temperature heterogeneity using an unmanned aircraft-borne thermal imager

    NASA Astrophysics Data System (ADS)

    Messinger, M.; Powell, R.; Silman, M.; Wright, M.; Nicholson, W.

    2013-12-01

    Leaf temperature (Tleaf) is an important control on many physiological processes such as photosynthesis and respiration, is a key variable for characterizing canopy energy fluxes, and is a valuable metric for identifying plant water stress or disease. Traditional methods of Tleaf measurement involve either the use of thermocouples, a time and labor-intensive method that samples sparsely in space, or the use of air temperature (Tair) as a proxy measure, which can introduce inaccuracies due to near constant canopy-atmosphere energy flux. Thermal infrared (TIR) imagery provides an efficient means of collecting Tleaf for large areas. Existing satellite and aircraft-based TIR imagery is, however, limited by low spatial and/or temporal resolution, while crane-mounted camera systems have strictly limited spatial extents. Unmanned aerial systems (UAS) offer new opportunities to acquire high spatial and temporal resolution imagery on demand. Here, we demonstrate the feasibility of collecting tree canopy Tleaf data using a small multirotor UAS fitted with a high spatial resolution TIR imager. The goals of this pilot study were to a) characterize basic patterns of within crown Tleaf for 4 study species and b) identify trends in Tleaf between species with varying leaf morphologies and canopy structures. TIR imagery was acquired for individual tree crowns of 4 species common to the North Carolina Piedmont ecoregion (Quercus phellos, Pinus strobus, Liriodendron tulipifera, Magnolia grandiflora) in an urban park environment. Due to significantly above-average summer precipitation, we assumed that none of the sampled trees was limited by soil water availability. We flew the TIR imaging system over 3-4 individuals of each of the 4 target species on 3 separate days. Imagery of all individuals was collected within the same 2-hour period in the afternoon on all days. There was low wind and partly cloudy skies during imaging. Tair, relative humidity, and wind speed were recorded at each site. Emissivity was assumed to be 0.98 for all species. Acquired images had a pixel resolution of <3 cm and measurement accuracy of ×1° C. We found the UAS-borne TIR imaging system to be an effective tool for collection of high resolution canopy imagery. The system imaged all targeted crowns quickly and reliably, providing a viable alternative to current methods of canopy Tleaf measurement. Analysis of the imagery indicated significant variability in Tleaf both within and between crowns. We identified trends in Tleaf related to average leaf size, shape, and crown structural traits. These data on the heterogeneity of Tleaf can further our understanding of canopy-atmosphere energy exchange. This pilot study demonstrates the promise of UAS-borne TIR sensors for acquiring high spatial resolution imagery at the scale of individual tree crowns.

  2. Branching out to residential lands: Missions and strategies of five tree distribution programs in the U.S.

    Treesearch

    Vi D. Nguyen; Lara A. Roman; Dexter H. Locke; Sarah K. Mincey; Jessica R. Sanders; Erica Smith Fichman; Mike Duran-Mitchell; Sarah Lumban Tobing

    2017-01-01

    Residential lands constitute a major component of existing and possible tree canopy in many cities in the United States. To expand the urban forest on these lands, some municipalities and nonprofit organizations have launched residential yard tree distribution programs, also known as tree giveaway programs. This paper describes the operations of five tree distribution...

  3. A method to study response of large trees to different amounts of available soil water

    Treesearch

    D.H. Marx; Shi-Jean S. Sung; J.S. Cunningham; M.D. Thompson; L.M. White

    1995-01-01

    A method was developed to manipulate available soil water on large trees by intercepting thrufall with gutters placed under tree canopies and irrigating the intercepted thrufall onto other trees. With this design, trees were exposed for 2 years to either 25% less thrufall, normal thrufall, or 25% additional thrufall.Undercanopy construction in these plots moderately...

  4. A Method to Study Response of Large Trees to Different Amounts of Available Soil Water

    Treesearch

    Donald H. Marx; Shi-jean S. Sung; James S. Cunningham; Michael D. Thompson; Linda M. White

    1995-01-01

    A method was developed to manipulate available soil water on large trees by intercepting thrufall with gutters placed under tree canopies and irrigating the intercepted thrufall onto other trees. With this design, trees were exposed for 2 years to either 25 percent less thrufall, normal tbrufall,or 25 percent additional thrufall. Undercanopy construction in these plots...

  5. Impact of Acacia tortilis ssp. raddiana tree on wheat and barley yield in the south of Tunisia

    NASA Astrophysics Data System (ADS)

    Noumi, Zouhaier; Abdallah, Fathia; Torre, Franck; Michalet, Richard; Touzard, Blaise; Chaieb, Mohamed

    2011-03-01

    In the past, Acacia tortilis ssp. raddiana (Savi) Brenan colonised thousands of hectares in central and southern Tunisia. Nowadays, the geographical distribution of A. tortilis ssp. raddiana is restricted to the National Park of Bou-Hedma (central Tunisia). The Acacia is of considerable interest for local populations and may be considered as a "foundation species" under arid climate. This study examines the effects of Acacia canopy on soil fertility and cereal productivity. The improvement in soil fertility and microclimate provided by A. tortilis ssp. raddiana is known to facilitate the establishment of new species, but little is known about the interaction between the tree species and the cereals cultivated by local farmers. We studied the effect of A. tortilis ssp. raddiana canopy on the yield of three cereals crops ( Hordeum vulgare L., Triticum sativum L. and Triticum aestivum L.). We seeded 168 plots (15 × 15 m) under the tree canopy and in open areas on four different landform types (glacis, plain, wadis, and jessours) and measured cereal yield over two contrasting years (wet and dry). We found that: (1) precipitation and geomorphology are more important in determining cereal yield than canopy cover, (2) these effects on water availability are species-specific with no effect on the stress-tolerant barley. We finally discuss the potential negative effects of Acacia trees which may have balanced the positive effects found for nutrient in our study.

  6. Tests of a habitat suitability model for black-capped chickadees

    USGS Publications Warehouse

    Schroeder, Richard L.

    1990-01-01

    The black-capped chickadee (Parus atricapillus) Habitat Suitability Index (HSI) model provides a quantitative rating of the capability of a habitat to support breeding, based on measures related to food and nest site availability. The model assumption that tree canopy volume can be predicted from measures of tree height and canopy closure was tested using data from foliage volume studies conducted in the riparian cottonwood habitat along the South Platte River in Colorado. Least absolute deviations (LAD) regression showed that canopy cover and over story tree height yielded volume predictions significantly lower than volume estimated by more direct methods. Revisions to these model relations resulted in improved predictions of foliage volume. The relation between the HSI and estimates of black-capped chickadee population densities was examined using LAD regression for both the original model and the model with the foliage volume revisions. Residuals from these models were compared to residuals from both a zero slope model and an ideal model. The fit model for the original HSI differed significantly from the ideal model, whereas the fit model for the original HSI did not differ significantly from the ideal model. However, both the fit model for the original HSI and the fit model for the revised HSI did not differ significantly from a model with a zero slope. Although further testing of the revised model is needed, its use is recommended for more realistic estimates of tree canopy volume and habitat suitability.

  7. Melicope stonei, section Pelea (Rutaceae), a new species from Kaua‘i, Hawaiian Islands: with notes on its distribution, ecology, conservation status, and phylogenetic placement

    PubMed Central

    Wood, Kenneth R.; Appelhans, Marc S.; Wagner, Warren L.

    2017-01-01

    Abstract Melicope stonei K.R. Wood, Appelhans & W.L. Wagner (section Pelea, Rutaceae), a new endemic tree species from Kaua‘i, Hawaiian Islands, is described and illustrated with notes on its distribution, ecology, conservation status, and phylogenetic placement. The new species differs from its Hawaiian congeners by its unique combination of distinct carpels and ramiflorous inflorescences arising on stems below the leaves; plants monoecious; leaf blades (5–)8–30 × (4–)6–11 cm, with abaxial surface densely tomentose, especially along midribs; and very long petioles of up to 9 cm. Since its discovery in 1988, 94 individuals have been documented and are confined to a 1.5 km2 region of unique high canopy mesic forest. Melicope stonei represents a new Critically Endangered (CR) single island endemic species on Kaua‘i. PMID:29033653

  8. Melicope stonei, section Pelea (Rutaceae), a new species from Kaua'i, Hawaiian Islands: with notes on its distribution, ecology, conservation status, and phylogenetic placement.

    PubMed

    Wood, Kenneth R; Appelhans, Marc S; Wagner, Warren L

    2017-01-01

    Melicope stonei K.R. Wood, Appelhans & W.L. Wagner (section Pelea, Rutaceae), a new endemic tree species from Kaua'i, Hawaiian Islands, is described and illustrated with notes on its distribution, ecology, conservation status, and phylogenetic placement. The new species differs from its Hawaiian congeners by its unique combination of distinct carpels and ramiflorous inflorescences arising on stems below the leaves; plants monoecious; leaf blades (5-)8-30 × (4-)6-11 cm, with abaxial surface densely tomentose, especially along midribs; and very long petioles of up to 9 cm. Since its discovery in 1988, 94 individuals have been documented and are confined to a 1.5 km 2 region of unique high canopy mesic forest. Melicope stonei represents a new Critically Endangered (CR) single island endemic species on Kaua'i.

  9. Light drives vertical gradients of leaf morphology in a sugar maple (Acer saccharum) forest.

    PubMed

    Coble, Adam P; Cavaleri, Molly A

    2014-02-01

    Leaf mass per area (LMA, g m(-2)) is an essential trait for modeling canopy function due to its strong association with photosynthesis, respiration and leaf nitrogen. Leaf mass per area, which is influenced by both leaf thickness and density (LMA = thickness × density), generally increases from the bottom to the top of tree canopies, yet the mechanisms behind this universal pattern are not yet resolved. For decades, the light environment was assumed to be the most influential driver of within-canopy variation in LMA, yet recent evidence has shown hydrostatic gradients to be more important in upper canopy positions, especially in tall evergreen trees in temperate and tropical forests. The aim of this study was to disentangle the importance of various environmental drivers on vertical LMA gradients in a mature sugar maple (Acer saccharum Marshall) forest. We compared LMA, leaf density and leaf thickness relationships with height, light and predawn leaf water potential (ΨPre) within a closed and an exposed canopy to assess leaf morphological traits at similar heights but different light conditions. Contrary to our expectations and recent findings in the literature, we found strong evidence that light was the primary driver of vertical gradients in leaf morphology. At similar heights (13-23 m), LMA was greater within the exposed canopy than the closed canopy, and light had a stronger influence over LMA compared with ΨPre. Light also had a stronger influence over both leaf thickness and density compared with ΨPre; however, the increase in LMA within both canopy types was primarily due to increasing leaf thickness with increasing light availability. This study provides strong evidence that canopy structure and crown exposure, in addition to height, should be considered as a parameter for determining vertical patterns in LMA and modeling canopy function.

  10. Forest Trees in Human Modified Landscapes: Ecological and Genetic Drivers of Recruitment Failure in Dysoxylum malabaricum (Meliaceae)

    PubMed Central

    Ismail, Sascha A.; Ghazoul, Jaboury; Ravikanth, Gudasalamani; Kushalappa, Cheppudira G.; Uma Shaanker, Ramanan; Kettle, Chris J.

    2014-01-01

    Tropical agro-forest landscapes are global priority areas for biodiversity conservation. Little is known about the ability of these landscapes to sustain large late successional forest trees upon which much forest biodiversity depends. These landscapes are subject to fragmentation and additional habitat degradation which may limit tree recruitment and thus compromise numerous ecosystem services including carbon storage and timber production. Dysoxylum malabaricum is a large canopy tree species in the Meliaceae, a family including many important tropical timber trees. This species is found in highly fragmented forest patches within a complex agro-forest landscape of the Western Ghats biodiversity hot spot, South India. In this paper we combined a molecular assessment of inbreeding with ecological and demographic data to explore the multiple threats to recruitment of this tree species. An evaluation of inbreeding, using eleven microsatellite loci in 297 nursery-reared seedlings collected form low and high density forest patches embedded in an agro-forest matrix, shows that mating between related individuals in low density patches leads to reduced seedling performance. By quantifying habitat degradation and tree recruitment within these forest patches we show that increasing canopy openness and the increased abundance of pioneer tree species lead to a general decline in the suitability of forest patches for the recruitment of D. malabaricum. We conclude that elevated inbreeding due to reduced adult tree density coupled with increased degradation of forest patches, limit the recruitment of this rare late successional tree species. Management strategies which maintain canopy cover and enhance local densities of adult trees in agro-forest mosaics will be required to ensure D. malabaricum persists in these landscapes. Our study highlights the need for a holistic understanding of the incipient processes that threaten populations of many important and rare tropical tree species in human dominated agro-forest landscapes. PMID:24558500

  11. Analytical framework for reconstructing heterogeneous environmental variables from mammal community structure.

    PubMed

    Louys, Julien; Meloro, Carlo; Elton, Sarah; Ditchfield, Peter; Bishop, Laura C

    2015-01-01

    We test the performance of two models that use mammalian communities to reconstruct multivariate palaeoenvironments. While both models exploit the correlation between mammal communities (defined in terms of functional groups) and arboreal heterogeneity, the first uses a multiple multivariate regression of community structure and arboreal heterogeneity, while the second uses a linear regression of the principal components of each ecospace. The success of these methods means the palaeoenvironment of a particular locality can be reconstructed in terms of the proportions of heavy, moderate, light, and absent tree canopy cover. The linear regression is less biased, and more precisely and accurately reconstructs heavy tree canopy cover than the multiple multivariate model. However, the multiple multivariate model performs better than the linear regression for all other canopy cover categories. Both models consistently perform better than randomly generated reconstructions. We apply both models to the palaeocommunity of the Upper Laetolil Beds, Tanzania. Our reconstructions indicate that there was very little heavy tree cover at this site (likely less than 10%), with the palaeo-landscape instead comprising a mixture of light and absent tree cover. These reconstructions help resolve the previous conflicting palaeoecological reconstructions made for this site. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. An Intercomparison of Large-Extent Tree Canopy Cover Geospatial Datasets

    NASA Astrophysics Data System (ADS)

    Bender, S.; Liknes, G.; Ruefenacht, B.; Reynolds, J.; Miller, W. P.

    2017-12-01

    As a member of the Multi-Resolution Land Characteristics Consortium (MRLC), the U.S. Forest Service (USFS) is responsible for producing and maintaining the tree canopy cover (TCC) component of the National Land Cover Database (NLCD). The NLCD-TCC data are available for the conterminous United States (CONUS), coastal Alaska, Hawai'i, Puerto Rico, and the U.S. Virgin Islands. The most recent official version of the NLCD-TCC data is based primarily on reference data from 2010-2011 and is part of the multi-component 2011 version of the NLCD. NLCD data are updated on a five-year cycle. The USFS is currently producing the next official version (2016) of the NLCD-TCC data for the United States, and it will be made publicly-available in early 2018. In this presentation, we describe the model inputs, modeling methods, and tools used to produce the 30-m NLCD-TCC data. Several tree cover datasets at 30-m, as well as datasets at finer resolution, have become available in recent years due to advancements in earth observation data and their availability, computing, and sensors. We compare multiple tree cover datasets that have similar resolution to the NLCD-TCC data. We also aggregate the tree class from fine-resolution land cover datasets to a percent canopy value on a 30-m pixel, in order to compare the fine-resolution datasets to the datasets created directly from 30-m Landsat data. The extent of the tree canopy cover datasets included in the study ranges from global and national to the state level. Preliminary investigation of multiple tree cover datasets over the CONUS indicates a high amount of spatial variability. For example, in a comparison of the NLCD-TCC and the Global Land Cover Facility's Landsat Tree Cover Continuous Fields (2010) data by MRLC mapping zones, the zone-level root mean-square deviation ranges from 2% to 39% (mean=17%, median=15%). The analysis outcomes are expected to inform USFS decisions with regard to the next cycle (2021) of NLCD-TCC production.

  13. Modeling of forest canopy BRDF using DIRSIG

    NASA Astrophysics Data System (ADS)

    Rengarajan, Rajagopalan; Schott, John R.

    2016-05-01

    The characterization and temporal analysis of multispectral and hyperspectral data to extract the biophysical information of the Earth's surface can be significantly improved by understanding its aniosotropic reflectance properties, which are best described by a Bi-directional Reflectance Distribution Function (BRDF). The advancements in the field of remote sensing techniques and instrumentation have made hyperspectral BRDF measurements in the field possible using sophisticated goniometers. However, natural surfaces such as forest canopies impose limitations on both the data collection techniques, as well as, the range of illumination angles that can be collected from the field. These limitations can be mitigated by measuring BRDF in a virtual environment. This paper presents an approach to model the spectral BRDF of a forest canopy using the Digital Image and Remote Sensing Image Generation (DIRSIG) model. A synthetic forest canopy scene is constructed by modeling the 3D geometries of different tree species using OnyxTree software. The field collected spectra from the Harvard forest is used to represent the optical properties of the tree elements. The canopy radiative transfer is estimated using the DIRSIG model for specific view and illumination angles to generate BRDF measurements. A full hemispherical BRDF is generated by fitting the measured BRDF to a semi-empirical BRDF model. The results from fitting the model to the measurement indicates a root mean square error of less than 5% (2 reflectance units) relative to the forest's reflectance in the VIS-NIR-SWIR region. The process can be easily extended to generate a spectral BRDF library for various biomes.

  14. Leaf aging of Amazonian canopy trees as revealed by spectral and physiochemical measurements.

    PubMed

    Chavana-Bryant, Cecilia; Malhi, Yadvinder; Wu, Jin; Asner, Gregory P; Anastasiou, Athanasios; Enquist, Brian J; Cosio Caravasi, Eric G; Doughty, Christopher E; Saleska, Scott R; Martin, Roberta E; Gerard, France F

    2017-05-01

    Leaf aging is a fundamental driver of changes in leaf traits, thereby regulating ecosystem processes and remotely sensed canopy dynamics. We explore leaf reflectance as a tool to monitor leaf age and develop a spectra-based partial least squares regression (PLSR) model to predict age using data from a phenological study of 1099 leaves from 12 lowland Amazonian canopy trees in southern Peru. Results demonstrated monotonic decreases in leaf water (LWC) and phosphorus (P mass ) contents and an increase in leaf mass per unit area (LMA) with age across trees; leaf nitrogen (N mass ) and carbon (C mass ) contents showed monotonic but tree-specific age responses. We observed large age-related variation in leaf spectra across trees. A spectra-based model was more accurate in predicting leaf age (R 2  = 0.86; percent root mean square error (%RMSE) = 33) compared with trait-based models using single (R 2  = 0.07-0.73; %RMSE = 7-38) and multiple (R 2  = 0.76; %RMSE = 28) predictors. Spectra- and trait-based models established a physiochemical basis for the spectral age model. Vegetation indices (VIs) including the normalized difference vegetation index (NDVI), enhanced vegetation index 2 (EVI2), normalized difference water index (NDWI) and photosynthetic reflectance index (PRI) were all age-dependent. This study highlights the importance of leaf age as a mediator of leaf traits, provides evidence of age-related leaf reflectance changes that have important impacts on VIs used to monitor canopy dynamics and productivity and proposes a new approach to predicting and monitoring leaf age with important implications for remote sensing. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  15. Operational Tree Species Mapping in a Diverse Tropical Forest with Airborne Imaging Spectroscopy.

    PubMed

    Baldeck, Claire A; Asner, Gregory P; Martin, Robin E; Anderson, Christopher B; Knapp, David E; Kellner, James R; Wright, S Joseph

    2015-01-01

    Remote identification and mapping of canopy tree species can contribute valuable information towards our understanding of ecosystem biodiversity and function over large spatial scales. However, the extreme challenges posed by highly diverse, closed-canopy tropical forests have prevented automated remote species mapping of non-flowering tree crowns in these ecosystems. We set out to identify individuals of three focal canopy tree species amongst a diverse background of tree and liana species on Barro Colorado Island, Panama, using airborne imaging spectroscopy data. First, we compared two leading single-class classification methods--binary support vector machine (SVM) and biased SVM--for their performance in identifying pixels of a single focal species. From this comparison we determined that biased SVM was more precise and created a multi-species classification model by combining the three biased SVM models. This model was applied to the imagery to identify pixels belonging to the three focal species and the prediction results were then processed to create a map of focal species crown objects. Crown-level cross-validation of the training data indicated that the multi-species classification model had pixel-level producer's accuracies of 94-97% for the three focal species, and field validation of the predicted crown objects indicated that these had user's accuracies of 94-100%. Our results demonstrate the ability of high spatial and spectral resolution remote sensing to accurately detect non-flowering crowns of focal species within a diverse tropical forest. We attribute the success of our model to recent classification and mapping techniques adapted to species detection in diverse closed-canopy forests, which can pave the way for remote species mapping in a wider variety of ecosystems.

  16. Operational Tree Species Mapping in a Diverse Tropical Forest with Airborne Imaging Spectroscopy

    PubMed Central

    Baldeck, Claire A.; Asner, Gregory P.; Martin, Robin E.; Anderson, Christopher B.; Knapp, David E.; Kellner, James R.; Wright, S. Joseph

    2015-01-01

    Remote identification and mapping of canopy tree species can contribute valuable information towards our understanding of ecosystem biodiversity and function over large spatial scales. However, the extreme challenges posed by highly diverse, closed-canopy tropical forests have prevented automated remote species mapping of non-flowering tree crowns in these ecosystems. We set out to identify individuals of three focal canopy tree species amongst a diverse background of tree and liana species on Barro Colorado Island, Panama, using airborne imaging spectroscopy data. First, we compared two leading single-class classification methods—binary support vector machine (SVM) and biased SVM—for their performance in identifying pixels of a single focal species. From this comparison we determined that biased SVM was more precise and created a multi-species classification model by combining the three biased SVM models. This model was applied to the imagery to identify pixels belonging to the three focal species and the prediction results were then processed to create a map of focal species crown objects. Crown-level cross-validation of the training data indicated that the multi-species classification model had pixel-level producer’s accuracies of 94–97% for the three focal species, and field validation of the predicted crown objects indicated that these had user’s accuracies of 94–100%. Our results demonstrate the ability of high spatial and spectral resolution remote sensing to accurately detect non-flowering crowns of focal species within a diverse tropical forest. We attribute the success of our model to recent classification and mapping techniques adapted to species detection in diverse closed-canopy forests, which can pave the way for remote species mapping in a wider variety of ecosystems. PMID:26153693

  17. Change in hydraulic properties and leaf traits of a tall rainforest tree species subjected to long-term throughfall exclusion in the perhumid tropics

    NASA Astrophysics Data System (ADS)

    Schuldt, B.; Leuschner, C.; Horna, V.; Moser, G.; Köhler, M.; Barus, H.

    2010-11-01

    In a throughfall displacement experiment on Sulawesi, Indonesia, three 0.16 ha stands of a premontane perhumid rainforest were exposed to a two-year soil desiccation period that reduced the soil moisture in the upper soil layers beyond the conventional wilting point. About 25 variables, including leaf morphological and chemical traits, stem diameter growth and hydraulic properties of the xylem in the trunk and terminal twigs, were investigated in trees of the tall-growing tree species Castanopsis acuminatissima (Fagaceae) by comparing desiccated roof plots with nearby control plots. We tested the hypotheses that this tall and productive species is particularly sensitive to drought, and the exposed upper sun canopy is more affected than the shade canopy. Hydraulic conductivity in the xylem of terminal twigs normalised to vessel lumen area was reduced by 25%, leaf area-specific conductivity by 10-33% during the desiccation treatment. Surprisingly, the leaves present at the end of the drought treatment were significantly larger, but not smaller in the roof plots, though reduced in number (about 30% less leaves per unit of twig sapwood area), which points to a drought effect on the leaf bud formation while the remaining leaves may have profited from a surplus of water. Mean vessel diameter and axial conductivity in the outermost xylem of the trunk were significantly reduced and wood density increased, while annual stem diameter increment decreased by 26%. In contradiction to our hypotheses, (i) we found no signs of major damage to the C. acuminatissima trees nor to any other drought sensitivity of tall trees, and (ii) the exposed upper canopy was not more drought susceptible than the shade canopy.

  18. Forest disturbance spurs growth of modeling and technology

    NASA Astrophysics Data System (ADS)

    Bohrer, G.; Matheny, A. M.; Mirfenderesgi, G.; Morin, T. H.; Rey Sanchez, A. C.; Gough, C. M.; Vogel, C. S.; Nadelhoffer, K. J.; Curtis, P.

    2016-12-01

    As new opportunities for scientific exploration open, needs for data generate a drive for innovative developments of new research tools. The Forest Accelerated Succession ExperimenT (FASET) was enacted in 2007, continuous flux observations at the University of Michigan Biological Station (UMBS) since 2000. FASET is a large-scale ecological experiment testing the immediate and intermediate term effects of disturbance, and eventually, the role of succession and community composition on forest flux dynamics. Decades-long tree-level observations in the UMBS forest, combined with the long term flux observations allowed us to match the bottom-up accumulated response of individual trees with the top-down whole-plot response measured from the flux tower. However, data describing tree-level canopy structure and hydrological response over an entire plot were not readily available. Unintentionally, FASET became both a motivation and a test-bed for new research tools and approaches. We expanded the operation and analysis approach for a portable canopy LiDARfor 3-D measurements meter-scale canopy structure. We matched canopy LiDAR measurements with root measurements from ground penetrating radar. To study the hydrological effects of the disturbance, we instrumented a large number of trees with Granier-style sap flux sensors. We further developed an approach to use frequency domain reflectometry sensors for continuous measurements of tree water content. We developed an approach to combine plot census, allometry and sap-flux observations in a bottom-up fashion to compare with plot-level EC transpiration rates. We found that while the transpirational water demand in the disturbance plot increased, overall evapotranspiration decreased. This decrease, however, is not uniform across species. A new individual-plant to ecosystem scale hydrodynamic model (FETCH2) demonstrates how specific traits translate to intra-daily differences in plot-level transpiration dynamics.

  19. A numerical study of atmospheric perturbations induced by heat from a wildland fire: sensitivity to vertical canopy structure and heat source strength

    Treesearch

    Michael T. Kiefer; Shiyuan Zhong; Warren E. Heilman; Joseph J. Charney; Xindi Bian

    2018-01-01

    An improved understanding of atmospheric perturbations within and above a forest during a wildland fire has relevance to many aspects of wildland fires including fire spread, smoke transport and dispersion, and tree mortality. In this study, the ARPS-CANOPY model, a version of the Advanced Regional Prediction System (ARPS) model with a canopy parameterization, is...

  20. Water Stress Impacts Tree-Atmosphere Interaction in the Amazon

    NASA Astrophysics Data System (ADS)

    van Emmerik, T. H. M.; Steele-Dunne, S. C.; Gentine, P.; Oliveira, R. S.; Van De Giesen, N.

    2017-12-01

    Land-atmosphere interactions depend on momentum exchange from the atmosphere to the canopy, which depends on the tree drag coefficient. It is known that the drag coefficient, and thus tree-atmosphere interaction, can vary strongly within a canopy. Yet, only few measurements are available to study the variation of tree-atmosphere interaction in time and space, and in response to vegetation water stress. Recent work [1] demonstrated how accelerometers can be used to study tree properties and responses. For this study, accelerometers were used to derive a measure of tree-atmosphere interaction for 19 individual trees of seven different species in the Brazilian Amazon. This study demonstrates that under field conditions, tree-atmosphere interaction can vary considerably in time and space. The five month measurement period included the transitioning from the wet to the dry season. We demonstrate that increased tree water deficit, measured with dendrometers, is related to observed changes in tree-atmosphere interaction, which is hypothesized to be caused by water stress induced changes in tree mass. References [1]. van Emmerik, T.; Steele-Dunne, S.; Hut, R.; Gentine, P.; Guerin, M.; Oliveira, R.S.; Wagner, J.; Selker, J.; van de Giesen, N. Measuring Tree Properties and Responses Using Low-Cost Accelerometers. Sensors 2017, 17, 1098.

  1. Energy efficiency and reduction of CO2 emissions from campsites management in a protected area.

    PubMed

    Del Moretto, Deny; Branca, Teresa Annunziata; Colla, Valentina

    2018-09-15

    Campsites can be a pollution source, mainly due to the energy consumption. In addition, the green areas, thanks to the direct CO 2 sequestration and the shading, indirectly prevent the CO 2 emissions related to energy consumption. The methodology presented in this paper allowed assessing the annual CO 2 emissions directly related to the campsite management and the consequent environmental impact in campsite clusters in Tuscany. The software i-Tree Canopy was exploited, enabling to evaluate in terms of "canopy" the tonnes of CO 2 sequestered by the vegetation within each campsite. Energy and water consumptions from 2012 to 2015 were assessed for each campsite. As far as the distribution of sequestered CO 2 is concerned, the campsites ranking was in accordance to their size. According to the indicator "T-Tree" or canopy cover, a larger area of the canopy cover allows using less outdoor areas covered by trees for the sequestration of the remaining amount of pollutants. The analysis shows that the considered campsites, that are located in a highly naturalistic Park, present significant positive aspects both in terms of CO 2 emission reductions and of energy efficiency. However, significant margins of improvement are also possible and they were analysed in the paper. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Measured and modelled leaf and stand-scale productivity across a soil moisture gradient and a severe drought.

    PubMed

    Wright, J K; Williams, M; Starr, G; McGee, J; Mitchell, R J

    2013-02-01

    Environmental controls on carbon dynamics operate at a range of interacting scales from the leaf to landscape. The key questions of this study addressed the influence of water and nitrogen (N) availability on Pinus palustris (Mill.) physiology and primary productivity across leaf and canopy scales, linking the soil-plant-atmosphere (SPA) model to leaf and stand-scale flux and leaf trait/canopy data. We present previously unreported ecophysiological parameters (e.g. V(cmax) and J(max)) for P. palustris and the first modelled estimates of its annual gross primary productivity (GPP) across xeric and mesic sites and under extreme drought. Annual mesic site P. palustris GPP was ∼23% greater than at the xeric site. However, at the leaf level, xeric trees had higher net photosynthetic rates, and water and light use efficiency. At the canopy scale, GPP was limited by light interception (canopy level), but co-limited by nitrogen and water at the leaf level. Contrary to expectations, the impacts of an intense growing season drought were greater at the mesic site. Modelling indicated a 10% greater decrease in mesic GPP compared with the xeric site. Xeric P. palustris trees exhibited drought-tolerant behaviour that contrasted with mesic trees' drought-avoidance behaviour. © 2012 Blackwell Publishing Ltd.

  3. The potential of the tree water potential.

    PubMed

    Steppe, Kathy

    2018-06-12

    Non-invasive quantification of tree water potential is one of the grand challenges for assessing the fate of trees and forests in the coming decades. Tree water potential is a robust and direct indicator of tree water status and is preferably used to track how trees, forests and vegetation in general respond to changes in climate and drought. In this issue of Tree Physiology, Dietrich et al. (2018) predict the daily canopy water potential of mature temperate trees from tree water deficit derived from stem diameter variation measurements.

  4. Model-based conifer crown surface reconstruction from multi-ocular high-resolution aerial imagery

    NASA Astrophysics Data System (ADS)

    Sheng, Yongwei

    2000-12-01

    Tree crown parameters such as width, height, shape and crown closure are desirable in forestry and ecological studies, but they are time-consuming and labor intensive to measure in the field. The stereoscopic capability of high-resolution aerial imagery provides a way to crown surface reconstruction. Existing photogrammetric algorithms designed to map terrain surfaces, however, cannot adequately extract crown surfaces, especially for steep conifer crowns. Considering crown surface reconstruction in a broader context of tree characterization from aerial images, we develop a rigorous perspective tree image formation model to bridge image-based tree extraction and crown surface reconstruction, and an integrated model-based approach to conifer crown surface reconstruction. Based on the fact that most conifer crowns are in a solid geometric form, conifer crowns are modeled as a generalized hemi-ellipsoid. Both the automatic and semi-automatic approaches are investigated to optimal tree model development from multi-ocular images. The semi-automatic 3D tree interpreter developed in this thesis is able to efficiently extract reliable tree parameters and tree models in complicated tree stands. This thesis starts with a sophisticated stereo matching algorithm, and incorporates tree models to guide stereo matching. The following critical problems are addressed in the model-based surface reconstruction process: (1) the problem of surface model composition from tree models, (2) the occlusion problem in disparity prediction from tree models, (3) the problem of integrating the predicted disparities into image matching, (4) the tree model edge effect reduction on the disparity map, (5) the occlusion problem in orthophoto production, and (6) the foreshortening problem in image matching, which is very serious for conifer crown surfaces. Solutions to the above problems are necessary for successful crown surface reconstruction. The model-based approach was applied to recover the canopy surface of a dense redwood stand using tri-ocular high-resolution images scanned from 1:2,400 aerial photographs. The results demonstrate the approach's ability to reconstruct complicated stands. The model-based approach proposed in this thesis is potentially applicable to other surfaces recovering problems with a priori knowledge about objects.

  5. Nest Records of Wreathed Hornbill (Rhyticeros undulates) in Gunung Gentong Station, Mount Ungaran Central Java

    NASA Astrophysics Data System (ADS)

    Rahayuningsih, M.; Kartijomo, NE; Retnaningsih, A.; Munir, M.; Dahlan, J.

    2017-04-01

    The remaining forest of Mount Ungaran, Central Javais the suitable habitat of Wreathed Hornbill (Rhyticeros undulatus), especially for a nesting site. The objective of the study was to analyse the nest record and characteristics of habitat around the nest, especially in Gunung Gentong station. The research was conducted from 2010-2016 using exploration method. The methodhabitat profile of the vertical structure tree canopy was taken by plot size 60 × 20 m. Measurements were taken to the standing of vegetation, canopy closure, the direction of the canopy, height canopy, a former branch of the vegetation height, and stem diameter. The Result of the study showed that Gunung Gentong is one of the research station that we have been recorded for nesting site on 2010-2015. Atotal of the nest record on Gunung Genting station was 10 nests. Estimate the elevation of nest location between 939-1240 AMSL. The tree species that used for nesting was Syzygium glabatrum, Syzygium antisepticum, Ceratoxylon formosum, and Ficus sp

  6. An estimate of the number of tropical tree species

    Treesearch

    J. W. Ferry Slik; Victor Arroyo-Rodriguez; Shin-Ichiro and others Aiba

    2015-01-01

    The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fishers alpha and an approximate pantropical stem...

  7. Trade-offs between water transport capacity and drought resistance in neotropical canopy liana and tree species.

    PubMed

    De Guzman, Mark E; Santiago, Louis S; Schnitzer, Stefan A; Álvarez-Cansino, Leonor

    2017-10-01

    In tropical forest canopies, it is critical for upper shoots to efficiently provide water to leaves for physiological function while safely preventing loss of hydraulic conductivity due to cavitation during periods of soil water deficit or high evaporative demand. We compared hydraulic physiology of upper canopy trees and lianas in a seasonally dry tropical forest to test whether trade-offs between safety and efficiency of water transport shape differences in hydraulic function between these two major tropical woody growth forms. We found that lianas showed greater maximum stem-specific hydraulic conductivity than trees, but lost hydraulic conductivity at less negative water potentials than trees, resulting in a negative correlation and trade-off between safety and efficiency of water transport. Lianas also exhibited greater diurnal changes in leaf water potential than trees. The magnitude of diurnal water potential change was negatively correlated with sapwood capacitance, indicating that lianas are highly reliant on conducting capability to maintain leaf water status, whereas trees relied more on stored water in stems to maintain leaf water status. Leaf nitrogen concentration was related to maximum leaf-specific hydraulic conductivity only for lianas suggesting that greater water transport capacity is more tied to leaf processes in lianas compared to trees. Our results are consistent with a trade-off between safety and efficiency of water transport and may have implications for increasing liana abundance in neotropical forests. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. A field study on solar-induced chlorophyll fluorescence and pigment parameters along a vertical canopy gradient of four tree species in an urban environment.

    PubMed

    Van Wittenberghe, Shari; Alonso, Luis; Verrelst, Jochem; Hermans, Inge; Valcke, Roland; Veroustraete, Frank; Moreno, José; Samson, Roeland

    2014-01-01

    To better understand the potential uses of vegetation indices based on the sun-induced upward and downward chlorophyll fluorescence at leaf and at canopy scales, a field study was carried out in the city of Valencia (Spain). Fluorescence yield (FY) indices were derived for trees at different traffic intensity locations and at three canopy heights. This allowed investigating within-tree and between-tree variations of FY indices for four tree species. Several FY indices showed a significant (p < 0.05) and important effect of tree location for the species Morus alba (white mulberry) and Phoenix canariensis (Canary Island date palm). The upward FY parameters of M. alba, and the upward to downward ratios at 687 and 741 nm for both species, were significantly related to tree location. It was found that not the total chlorophyll (Chl) content, but rather the Chl a/b ratio showed the strongest correlations with several of the indices applied. Chl a/b was lowest at the bottom level of the highest traffic intensity location for both species due to an increased Chl b, indicating a larger light harvesting complex related to Photosystem II (LHCII) as a response to limiting light. The leaf deposits from traffic observed at this sampling location possibly led to a shading effect, resulting further in an adaptive response of the photosynthetic system and subsequent difference of FY indices. This study therefore indicated the importance of the size of LHCII on the fluorescence emission, observed under different traffic generated pollution conditions. © 2013.

  9. VIEW ALONG SEVENTEENTH STREET. NOTE THE MATURE SILK OAK TREES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW ALONG SEVENTEENTH STREET. NOTE THE MATURE SILK OAK TREES LINING THE STREET, WHICH DO NOT PROVIDE A CANOPY VIEW FACING NORTHWEST. - Hickam Field, Hickam Historic Housing, Honolulu, Honolulu County, HI

  10. Design and performance of combined infrared canopy and belowground warming in the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment.

    PubMed

    Rich, Roy L; Stefanski, Artur; Montgomery, Rebecca A; Hobbie, Sarah E; Kimball, Bruce A; Reich, Peter B

    2015-06-01

    Conducting manipulative climate change experiments in complex vegetation is challenging, given considerable temporal and spatial heterogeneity. One specific challenge involves warming of both plants and soils to depth. We describe the design and performance of an open-air warming experiment called Boreal Forest Warming at an Ecotone in Danger (B4WarmED) that addresses the potential for projected climate warming to alter tree function, species composition, and ecosystem processes at the boreal-temperate ecotone. The experiment includes two forested sites in northern Minnesota, USA, with plots in both open (recently clear-cut) and closed canopy habitats, where seedlings of 11 tree species were planted into native ground vegetation. Treatments include three target levels of plant canopy and soil warming (ambient, +1.7°C, +3.4°C). Warming was achieved by independent feedback control of voltage input to aboveground infrared heaters and belowground buried resistance heating cables in each of 72-7.0 m(2) plots. The treatments emulated patterns of observed diurnal, seasonal, and annual temperatures but with superimposed warming. For the 2009 to 2011 field seasons, we achieved temperature elevations near our targets with growing season overall mean differences (∆Tbelow ) of +1.84°C and +3.66°C at 10 cm soil depth and (∆T(above) ) of +1.82°C and +3.45°C for the plant canopies. We also achieved measured soil warming to at least 1 m depth. Aboveground treatment stability and control were better during nighttime than daytime and in closed vs. open canopy sites in part due to calmer conditions. Heating efficacy in open canopy areas was reduced with increasing canopy complexity and size. Results of this study suggest the warming approach is scalable: it should work well in small-statured vegetation such as grasslands, desert, agricultural crops, and tree saplings (<5 m tall). © 2015 John Wiley & Sons Ltd.

  11. Measuring urban tree loss dynamics across residential landscapes.

    PubMed

    Ossola, Alessandro; Hopton, Matthew E

    2018-01-15

    The spatial arrangement of urban vegetation depends on urban morphology and socio-economic settings. Urban vegetation changes over time because of human management. Urban trees are removed due to hazard prevention or aesthetic preferences. Previous research attributed tree loss to decreases in canopy cover. However, this provides little information about location and structural characteristics of trees lost, as well as environmental and social factors affecting tree loss dynamics. This is particularly relevant in residential landscapes where access to residential parcels for field surveys is limited. We tested whether multi-temporal airborne LiDAR and multi-spectral imagery collected at a 5-year interval can be used to investigate urban tree loss dynamics across residential landscapes in Denver, CO and Milwaukee, WI, covering 400,705 residential parcels in 444 census tracts. Position and stem height of trees lost were extracted from canopy height models calculated as the difference between final (year 5) and initial (year 0) vegetation height derived from LiDAR. Multivariate regression models were used to predict number and height of tree stems lost in residential parcels in each census tract based on urban morphological and socio-economic variables. A total of 28,427 stems were lost from residential parcels in Denver and Milwaukee over 5years. Overall, 7% of residential parcels lost one stem, averaging 90.87 stems per km 2 . Average stem height was 10.16m, though trees lost in Denver were taller compared to Milwaukee. The number of stems lost was higher in neighborhoods with higher canopy cover and developed before the 1970s. However, socio-economic characteristics had little effect on tree loss dynamics. The study provides a simple method for measuring urban tree loss dynamics within and across entire cities, and represents a further step toward high resolution assessments of the three-dimensional change of urban vegetation at large spatial scales. Published by Elsevier B.V.

  12. Influence of Acacia trees on soil nutrient levels in arid lands

    NASA Astrophysics Data System (ADS)

    De Boever, Maarten; Gabriels, Donald; Ouessar, Mohamed; Cornelis, Wim

    2014-05-01

    The potential of scattered trees as keystone structures in restoring degraded environments is gaining importance. Scattered trees have strong influence on their abiotic environment, mainly causing changes in microclimate, water budget and soil properties. They often function as 'nursing trees', facilitating the recruitment of other plants. Acacia raddiana is such a keystone species which persists on the edge of the Sahara desert. The study was conducted in a forest-steppe ecosystem in central Tunisia where several reforestation campaigns with Acacia took place. To indentify the impact of those trees on soil nutrients, changes in nutrient levels under scattered trees of three age stages were examined for the upper soil layer (0-10 cm) at five microsites with increasing distance from the trunk. In addition, changes in soil nutrient levels with depth underneath and outside the canopy were determined for the 0-30 cm soil layer. Higher concentrations of organic matter (OM) were found along the gradient from underneath to outside the canopy for large trees compared to medium and small trees, especially at microsites close to the trunk. Levels of soluble K, electrical conductivity (EC), available P, OM, total C and N decreased whereas pH and levels of soluble Mg increased with increasing distance from tree. Levels of soluble Ca and Na remained unchanged along the gradient. At the microsite closest to the trunk a significant decrease in levels of soluble K, EC, OM, available P, total C and N, while a significant increase in pH was found with increasing depth. The concentration of other nutrients remained unchanged or declined not differently underneath compared to outside the canopy with increasing depth. Differences in nutrient levels were largely driven by greater inputs of organic matter under trees. Hence, Acacia trees can affect the productivity and reproduction of understory species with the latter in term an important source of organic matter. This positive feedback mechanism is of crucial importance for soil nutrient conservation and the restoration of degraded arid environments.

  13. Effects of tsaoko (Fructus tsaoko) cultivating on tree diversity and canopy structure in the habitats of eastern hoolock gibbon (Hoolock leuconedys)

    PubMed Central

    Sheng-Dong, YUAN; Han-Lan, FEI; Shao-Han, ZHU; Liang-Wei, CUI; Huai-Sen, AI; Peng-Fei, FAN

    2014-01-01

    In this study, the quadrat method was used to study the effects of tsaoko (Fructus tsaoko) plantation on tree diversity and canopy structure of two natural habitats of eastern hoolock gibbon (Hoolock leuconedys): Nankang (characterized by extensive tsaoko plantation) and Banchang (relatively well reserved and without tsaoko plantation). Totally, 102 tree species from 25 families and 16 woody liana species from 10 families were recorded in Nankang, whereas 108 tree species from 30 families and 17 woody liana species from 12 families were recorded in Banchang. Although the tree species between two habitats is different, both habitats are characterized by enriched food resources for eastern hoolock gibbons, sharing similar dominant plant families. Due to tsaoko plantation, tree density proportion and diversity of forest layerⅠ (>20 m) in Nankang were both significantly decreased, but the tree density of layerⅡ (10−20 m) increased. Likewise, in conjunction with these behavioral observations, we also address potential impacts of tsaoko plantation on the behavior of eastern hoolock gibbon. PMID:24866494

  14. (abstract) Characterization of Tree Water Status and Dielectric Constant Changes of North American Boreal Forests in Combination with Synthetic Aperture Radar Remote Sensing

    NASA Technical Reports Server (NTRS)

    McDonald, K. C.; Zimmerman, R.; Way, J. B.

    1994-01-01

    The occurrence and magnitude of temporal and spatial tree water status changes in the boreal environment were studied in a floodplain forest in Alaska and in four forest types of Central Canada. Under limited water supply conditions from the rooted soil zone in early spring (freeze/thaw transition) and during summer, trees show declining water potentials. Coincidental change in tree water potential, tree transpiration and tree dielectric constant had been observed in previous studies performed in Mediterranean ecotones. If radar is sensitive to chances in tree water status as reflected through changes in dielectric constant, then radar remote sensing could be used to monitor the water status of forests. The SAR imagery is examined to determine the response of the radar backscatter to the ground based observations of the water status of forest canopies. Comparisons are made between stands and also along the large North-South gradient between sites. Data from SAR are used to examine the radar response to canopy physiological state as related to vegetation freeze/thaw and growing season length.

  15. Spectral Reflectance and Vegetation Index Changes in Deciduous Forest Foliage Following Tree Removal: Potential for Deforestation Monitoring

    NASA Astrophysics Data System (ADS)

    Peng, D.; Hu, Y.; Li, Z.

    2016-05-01

    It is important to detect and quantify deforestation to guide strategic decisions regarding environment, socioeconomic development, and climate change. In the present study, we conducted a field experiment to examine spectral reflectance and vegetation index changes in poplar and locust tree foliage with different leaf area indices over the course of three sunny days, following tree removal from the canopy. The spectral reflectance of foliage from harvested trees was measured using an ASD FieldSpec Prospectroradiometer; synchronous meteorological data were also obtained. We found that reflectance in short-wave infrared and red-edge reflectance was more time sensitive after tree removal than reflectance in other spectral regions, and that the normalized difference water index (NDWI) and the red-edge chlorophyll index (CIRE) were the preferred indicators of these changes from several indices evaluated. Synthesized meteorological environments were found to influence water and chlorophyll contents after tree removal, and this subsequently changed the spectral canopy reflectance. Our results indicate the potential for such tree removal to be detected with NDWI or CIRE from the second day of a deforestation event.

  16. Final Environmental Assessment for the Deactivation/Facility Disposition of Atlas Space Launch Complex (SLC-36) at Cape Canaveral Air Force Station, Florida

    DTIC Science & Technology

    2005-08-01

    canopy, which is constantly pruned and shaped by windborne salt spray. Coastal strand forms a dense thicket of shrubs, usually dominated by live...oak (Quercus virginiana ), buckthorn (Bumelia [Sideroxylon] tenax), sea grape (Coccoloba uvifera), wax myrtle, and saw palmetto (Serenoa repens...Station #4. Coastal oak scrub consists of dense, salt- pruned thickets of live oak, sand live oak, myrtle oak, and buckthorn, sometimes densely

  17. Pacific Island landbird monitoring annual report, Haleakalā National Park, 2012

    USGS Publications Warehouse

    Judge, Seth W.; Camp, Richard J.; Hart, Patrick J.

    2013-01-01

    Haleakalā National Park (HALE) was surveyed for landbirds and habitat characteristics from March 20 through July 26, 2012. This information provides data in the time-series of landbird monitoring for long-term trends in forest bird distribution, density, and abundance. The Kīpahulu District of eastern Haleakalā Volcano was surveyed using point-transect distance sampling to estimate bird abundance. We surveyed 160 stations and detected a total of 2,830 birds from 12 species. Half of the species were native and half were non-native. Numbers of detections per species ranged from 1 to 849. There were sufficient detections of seven species to allow density estimation. Āpapane (Himatione sanguinea) was the most widely distributed and abundant native species detected in the survey. ‘Alauahio (Paroreomyza montana newtoni), Maui ‘Amakihi (Hemignathus virens wilsoni), and I‘iwi (Vestiaria coccinea) were widespread and occurred in relatively modest densities. Only eight Kiwikiu (Pseudonestor xanthophrys) and 20 ‘Ākohekohe (Palmeria dolei) were detected and were restricted to high elevation wet forest. We estimated an abundance of 495 ± 261individuals of Kiwikiu in a 2,036 ha inference area which likely includes the entire suitable habitat for this species in HALE. For ‘Ākohekohe, we estimated an abundance of 1,150 ± 389 individuals in the 1,458 ha inference area. There was a strong representation of non-native landbirds in the survey area. The Japanese White-eye (Zosterops japonicus), Japanese Bush-warbler (Cettia diphone), and Red-billed Leiothrix (Leiothrix lutea) accounted for nearly half of all landbird detections. Each species was common in predominantly native forests. Vegetation and topographic characteristics were recorded on 160 landbird monitoring stations. HALE canopy and understory composition was predominantly native, especially at elevations above 1,100 m. Much of the forest canopy was comprised of `ohi`a (Metrosideros polymorpha) interspersed with mature olapa (Cheirodendron platyphyllum). This canopy class occurred at 92.5% of the stations surveyed. More than three-quarters (77.5%) of the monitoring stations had a dense canopy with most crowns interlocking (> 60% cover). More than half (52%) of the stations surveyed had trees taller than 10 m, while almost a third (31%) had trees 5-10 m. Only 17% of the stations had a canopy shorter than 5 m. The native shrubs Vaccinium calycinum, Broussaisia arguta, and Leptecophylla tameiameae were the most common understory plants recorded, occurring at more than 30% of the stations sampled. Native mosses and ferns were also common at stations, occurring at more than 90% of the stations sampled. The invasive Psidium cattleainum, Clidemia hirta, and Hedychium gardnerianum occurred at approximately 14% of the stations sampled, predominantly at elevations below 1,100 m.

  18. Houston’s Urban Forest, 2015

    Treesearch

    David J. Nowak; Allison R. Bodine; Robert E. Hoehn; Christopher B. Edgar; Gretchen Riley; Dudley R. Hartel; Kerry J. Dooley; Sharon M. Stanton; Mark A. Hatfield; Thomas J. Brandeis; Tonya W. Lister

    2017-01-01

    An analysis of the urban forest in Houston, Texas, reveals that this area has an estimated 33.3 million live trees with tree canopy that covers 18.4 percent of the city. Roughly 19.2 million of the city’s trees are located on private lands. The most common tree species are yaupon, Chinese tallowtree, Chinese privet, Japanese privet, and sugarberry. Trees in Houston...

  19. Assessing urban forest effects and values: Douglas County, Kansas

    Treesearch

    David J. Nowak; Allison R. Bodine; Robert E. Hoehn; Alexis Ellis; Kim Bomberger; Daniel E. Crane; Theodore A. Endreny; Thomas Taggert; Emily. Stephan

    2014-01-01

    An analysis of trees in Douglas County, Kansas, reveals that this area has about 14,164,000 trees with tree and shrub canopy that covers 25.2 percent of the county. The most common tree species are American elm, northern hackberry, eastern redcedar, Osage-orange, and honeylocust. Trees in Douglas County currently store about 1.7 million tons of carbon (6.4 million tons...

  20. Assessing urban forest effects and values: the greater Kansas City region

    Treesearch

    David J. Nowak; Allison R. Bodine; Robert E. III Hoehn; Daniel E. Crane; Alexis Ellis; Theodore A. Endreny; Yang Yang; Tom Jacobs; Kassie Shelton

    2013-01-01

    An analysis of trees in the greater Kansas City region of Missouri and Kansas reveals that this area has about 249,450,000 trees with tree and shrub canopy that covers 28.3 percent of the region. The most common tree species are American elm, northern hackberry, Osage-orange, honeylocust, and eastern redcedar. Trees in the greater Kansas City region currently store...

  1. How to select the best tree planting locations to enhance air pollution removal in the MillionTreesNYC initiative

    Treesearch

    Arianna Morani; David J. Nowak; Satoshi Hirabayashi; Carlo Calfapietra

    2011-01-01

    Highest priority zones for tree planting within New York City were selected by using a planting priority index developed combining three main indicators: pollution concentration, population density and low canopy cover. This new tree population was projected through time to estimate potential air quality and carbon bene!ts. Those trees will likely remove more than 10...

  2. Wildlife response to stand structure of deciduous woodlands

    Treesearch

    Robert A. Hodorff; Carolyn Hull Sieg; Raymond L. Linder

    1988-01-01

    Deciduous woodlands provide important habitat for wildlife but comprise Fraxinus pennsylvanica) woodlands in northwestern South Dakota. Closed-canopy stands were multilayered communities with dense...

  3. The ecological services of plant communities in parks for climate control and recreation-A case study in Shanghai, China.

    PubMed

    Li, Zhigang; Chen, Dan; Cai, Shize; Che, Shengquan

    2018-01-01

    Mitigating extreme heat in urban areas is beneficial and sometimes critical to human health. Thriving plant communities in community parks play an important role in mitigating extreme heat through providing cooling effect, while inevitably affecting how people perceive the benefits of using community parks for recreation. Thus, the impacts of plant communities on the thermal environment should be quantified to determine the optimal structure of the plant community. The goal would be to harmonize the functions of improving the thermal environment with the preferences people have related to the recreational benefits of plant communities with various levels of vegetation density. In this paper, the correlations between the structural characteristics of plant communities and their function in mitigating the thermal environment were investigated on calm summer days in Xincheng Central Park, Minhang District, Shanghai, China. In addition to analyzing the plant communities present and their effects on the park microclimate, a questionnaire was employed to determine the plant community preferences of recreational park users. The results showed that plant communities could reduce the air temperature by 1.23-2.42 °C and increase the relative humidity by 2.4-4.2% during the daytime. The microclimate conditions in plant communities with varying vegetation densities were significantly different. The canopy density and leaf area index primarily controlled the temperature reduction, while the canopy density and total canopy cover ratio primarily controlled the increase in humidity; meanwhile, these correlations varied at different times of the day. Moreover, most of the park users preferred a moderately dense plant community which met their environmental perceptions for recreation in parks. Age or education level variables of park users would also predict preferences for different plant community densities. Ultimately, one plant community pattern with appropriate canopy density (60%), leaf area index (≥3) and canopy cover ratio (total 0.80-1.20, with 0.6-0.75 for trees and 0.20-0.45 for shrubs/woodland area) was recommended, which would harmonize the functions of the mitigation of the thermal environment with most people's perception of a desirable vegetation density.

  4. The ecological services of plant communities in parks for climate control and recreation—A case study in Shanghai, China

    PubMed Central

    Li, Zhigang; Chen, Dan; Cai, Shize; Che, Shengquan

    2018-01-01

    Mitigating extreme heat in urban areas is beneficial and sometimes critical to human health. Thriving plant communities in community parks play an important role in mitigating extreme heat through providing cooling effect, while inevitably affecting how people perceive the benefits of using community parks for recreation. Thus, the impacts of plant communities on the thermal environment should be quantified to determine the optimal structure of the plant community. The goal would be to harmonize the functions of improving the thermal environment with the preferences people have related to the recreational benefits of plant communities with various levels of vegetation density. In this paper, the correlations between the structural characteristics of plant communities and their function in mitigating the thermal environment were investigated on calm summer days in Xincheng Central Park, Minhang District, Shanghai, China. In addition to analyzing the plant communities present and their effects on the park microclimate, a questionnaire was employed to determine the plant community preferences of recreational park users. The results showed that plant communities could reduce the air temperature by 1.23–2.42 °C and increase the relative humidity by 2.4–4.2% during the daytime. The microclimate conditions in plant communities with varying vegetation densities were significantly different. The canopy density and leaf area index primarily controlled the temperature reduction, while the canopy density and total canopy cover ratio primarily controlled the increase in humidity; meanwhile, these correlations varied at different times of the day. Moreover, most of the park users preferred a moderately dense plant community which met their environmental perceptions for recreation in parks. Age or education level variables of park users would also predict preferences for different plant community densities. Ultimately, one plant community pattern with appropriate canopy density (60%), leaf area index (≥3) and canopy cover ratio (total 0.80–1.20, with 0.6–0.75 for trees and 0.20–0.45 for shrubs/woodland area) was recommended, which would harmonize the functions of the mitigation of the thermal environment with most people’s perception of a desirable vegetation density. PMID:29694401

  5. Use of sleeping trees by ursine colobus monkeys (Colobus vellerosus) demonstrates the importance of nearby food.

    PubMed

    Teichroeb, Julie A; Holmes, Teresa D; Sicotte, Pascale

    2012-07-01

    Examination of the characteristics and locations of sleeping sites helps to document the social and ecological pressures acting on animals. We investigated sleeping tree choice for four groups of Colobus vellerosus, an arboreal folivore, on 298 nights at the Boabeng-Fiema Monkey Sanctuary, Ghana using five non-mutually exclusive hypotheses: predation avoidance, access to food, range and resource defense, thermoregulation, and a null hypothesis of random selection. C. vellerosus utilized 31 tree species as sleeping sites and the species used differed per group depending on their availability. Groups used multiple sleeping sites and minimized their travel costs by selecting trees near feeding areas. The percentage that a food species was fed upon annually was correlated with the use of that species as a sleeping tree. Ninety percent of the sleeping trees were in a phenophase with colobus food items. Entire groups slept in non-food trees on only one night. These data strongly support the access to food hypothesis. Range and resource defense was also important to sleeping site choice. Groups slept in exclusively used areas of their home range more often than expected, but when other groups were spotted on the edge of the core area, focal groups approached the intruders, behaved aggressively, and slept close to them, seemingly to prevent an incursion into their core range. However, by sleeping high in the canopy, in large, emergent trees with dense foliage, positioning themselves away from the main trunk on medium-sized branches, and by showing low rates of site reuse, C. vellerosus also appeared to be avoiding predation in their sleeping site choices. Groups left their sleep sites later after cooler nights but did not show behavioral thermoregulation, such as huddling. This study suggests that access to food, range and resource defense, and predation avoidance were more important considerations in sleeping site selection than thermoregulation for ursine colobus.

  6. Slope variation and population structure of tree species from different ecological groups in South Brazil.

    PubMed

    Bianchini, Edmilson; Garcia, Cristina C; Pimenta, José A; Torezan, José M D

    2010-09-01

    Size structure and spatial arrangement of 13 abundant tree species were determined in a riparian forest fragment in Paraná State, South Brazil (23°16'S and 51°01'W). The studied species were Aspidosperma polyneuron Müll. Arg., Astronium graveolens Jacq. and Gallesia integrifolia (Spreng) Harms (emergent species); Alseis floribunda Schott, Ruprechtia laxiflora Meisn. and Bougainvillea spectabilis Willd. (shade-intolerant canopy species); Machaerium paraguariense Hassl, Myroxylum peruiferum L. and Chrysophyllum gonocarpum (Mart. & Eichler ex Miq.) Engl. (shade-tolerant canopy species); Sorocea bonplandii (Baill.) Bürger, Trichilia casaretti C. Dc, Trichilia catigua A. Juss. and Actinostemon concolor (Spreng.) Müll. Arg. (understory small trees species). Height and diameter structures and basal area of species were analyzed. Spatial patterns and slope correlation were analyzed by Moran's / spatial autocorrelation coefficient and partial Mantel test, respectively. The emergent and small understory species showed the highest and the lowest variations in height, diameter and basal area. Size distribution differed among emergent species and also among canopy shade-intolerant species. The spatial pattern ranged among species in all groups, except in understory small tree species. The slope was correlated with spatial pattern for A. polyneuron, A. graveolens, A. floribunda, R. laxiflora, M. peruiferum and T. casaretti. The results indicated that most species occurred in specific places, suggesting that niche differentiation can be an important factor in structuring the tree community.

  7. Aboveground Tree Growth Varies with Belowground Carbon Allocation in a Tropical Rainforest Environment

    PubMed Central

    Raich, James W.; Clark, Deborah A.; Schwendenmann, Luitgard; Wood, Tana E.

    2014-01-01

    Young secondary forests and plantations in the moist tropics often have rapid rates of biomass accumulation and thus sequester large amounts of carbon. Here, we compare results from mature forest and nearby 15–20 year old tree plantations in lowland Costa Rica to evaluate differences in allocation of carbon to aboveground production and root systems. We found that the tree plantations, which had fully developed, closed canopies, allocated more carbon belowground - to their root systems - than did mature forest. This increase in belowground carbon allocation correlated significantly with aboveground tree growth but not with canopy production (i.e., leaf fall or fine litter production). In contrast, there were no correlations between canopy production and either tree growth or belowground carbon allocation. Enhanced allocation of carbon to root systems can enhance plant nutrient uptake, providing nutrients beyond those required for the production of short-lived tissues such as leaves and fine roots, and thus enabling biomass accumulation. Our analyses support this deduction at our site, showing that enhanced allocation of carbon to root systems can be an important mechanism promoting biomass accumulation during forest growth in the moist tropics. Identifying factors that control when, where and for how long this occurs would help us to improve models of forest growth and nutrient cycling, and to ascertain the role that young forests play in mitigating increased atmospheric carbon dioxide. PMID:24945351

  8. Large-Eddy-Simulation of a flow over a submerged rigid canopy

    NASA Astrophysics Data System (ADS)

    Monti, Alessandro; Omidyeganeh, Mohammad; Pinelli, Alfredo

    2017-11-01

    We have performed a wall-resolved Large-Eddy-Simulation of flow over a shallow submerged rigid canopy (H / h = 4 ; H and h are the open channel and the canopy heights respectively) in a transitional/dense regime (Nepf ARFM 44, 2011), at low Reynolds number (Reb =Ubulk H / ν = 6000). An immersed boundary method (Favier et al. JCP 261, 2013) has been adopted to represent filamentous rigid elements of the canopy. The presence of the permeable and porous canopy induces a typical inflection point in the mean velocity profile, depicting two separated and developed layers, outer boundary layer and in-canopy uniform flow. The aim of the work is to explore and unravel the mechanisms of the interaction between the fluid flow and the rigid canopy by identifying the physical parameters that govern the mixing mechanisms within the different flow layers and by exploring the impact of the sweep/ejection events at the canopy edge. The results show that the flow is characterised by large scale stream- and span-wise vortices and regions of different dynamics that affect also the filamentous layer, hence the mixing mechanisms.

  9. Effects of prescribed burning on leaves and flowering Quercus garryana

    Treesearch

    David H. Peter; James K. Agee; Douglas G. Sprugel

    2011-01-01

    Many woodland understories are managed with prescribed fire. While prescribed burns intended to manipulate understory vegetation and fuels usually do not cause excessive tree mortality, sublethal canopy damage may occur and can affect tree vigor and reproductive output. We monitored Quercus garryana trees in western Washington, USA with multiple...

  10. Arboreal nests of Phenacomys longgicaudus in Oregon.

    Treesearch

    A.M. Gillesberg; A.B. Carey

    1991-01-01

    Searching felled trees proved effective for finding nests of Phenacomys longicaudus; 117 nests were found in 50 trees. Nests were located throughout the live crowns, but were concentrated in the lower two-thirds of the canopy. Abundance of nests increased with tree size; old-growth forests provide optimum habitat.

  11. Pre-outbreak forest conditions mediate the effects of spruce beetle outbreaks on fuels in subalpine forests of Colorado.

    PubMed

    Mietkiewicz, Nathan; Kulakowski, Dominik; Veblen, Thomas T

    2018-03-01

    Over the past 30 years, forest disturbances have increased in size, intensity, and frequency globally, and are predicted to continue increasing due to climate change, potentially relaxing the constraints of vegetation properties on disturbance regimes. However, the consequences of the potentially declining importance of vegetation in determining future disturbance regimes are not well understood. Historically, bark beetles preferentially attack older trees and stands in later stages of development. However, as climate warming intensifies outbreaks by promoting growth of beetle populations and compromising tree defenses, smaller diameter trees and stands in early stages of development now are being affected by outbreaks. To date, no study has considered how stand age and other pre-outbreak forest conditions mediate the effects of outbreaks on surface and aerial fuel arrangements. We collected fuels data across a chronosequence of post-outbreak sites affected by spruce beetle (SB) between the 1940s and the 2010s, stratified by young (<130 yr) and old (>130 yr) post-fire stands. Canopy and surface fuel loads were calculated for each tree and stand, and available crown fuel load, crown bulk density, and canopy bulk densities were estimated. Canopy bulk density and density of live canopy individuals were reduced in all stands affected by SB, though foliage loss was proportionally greater in old stands as compared to young stands. Fine surface fuel loads in young stands were three times greater shortly (<30 yr) following outbreak as compared to young stands not affected by outbreak, after which the abundance of fine surface fuels decreased to below endemic (i.e., non-outbreak) levels. In both young and old stands, the net effect of SB outbreaks during the 20th and 21st centuries reduced total canopy fuels and increased stand-scale spatial heterogeneity of canopy fuels following outbreak. Importantly, the decrease in canopy fuels following outbreaks was greater in young post-fire stands than in older stands, suggesting that SB outbreaks may more substantially reduce risk of active crown fire when they affect stands in earlier stages of development. The current study shows that the effects of SB outbreaks on forest structure and on fuel profiles are strongly contingent on pre-outbreak conditions as determined by pre-outbreak disturbance history. © 2018 by the Ecological Society of America.

  12. A methodology for investigating interdependencies between measured throughfall, meteorological variables and canopy structure on a small catchment.

    NASA Astrophysics Data System (ADS)

    Maurer, Thomas; Gustavos Trujillo Siliézar, Carlos; Oeser, Anne; Pohle, Ina; Hinz, Christoph

    2016-04-01

    In evolving initial landscapes, vegetation development depends on a variety of feedback effects. One of the less understood feedback loops is the interaction between throughfall and plant canopy development. The amount of throughfall is governed by the characteristics of the vegetation canopy, whereas vegetation pattern evolution may in turn depend on the spatio-temporal distribution of throughfall. Meteorological factors that may influence throughfall, while at the same time interacting with the canopy, are e.g. wind speed, wind direction and rainfall intensity. Our objective is to investigate how throughfall, vegetation canopy and meteorological variables interact in an exemplary eco-hydrological system in its initial development phase, in which the canopy is very heterogeneous and rapidly changing. For that purpose, we developed a methodological approach combining field methods, raster image analysis and multivariate statistics. The research area for this study is the Hühnerwasser ('Chicken Creek') catchment in Lower Lusatia, Brandenburg, Germany, where after eight years of succession, the spatial distribution of plant species is highly heterogeneous, leading to increasingly differentiated throughfall patterns. The constructed 6-ha catchment offers ideal conditions for our study due to the rapidly changing vegetation structure and the availability of complementary monitoring data. Throughfall data were obtained by 50 tipping bucket rain gauges arranged in two transects and connected via a wireless sensor network that cover the predominant vegetation types on the catchment (locust copses, dense sallow thorn bushes and reeds, base herbaceous and medium-rise small-reed vegetation, and open areas covered by moss and lichens). The spatial configuration of the vegetation canopy for each measurement site was described via digital image analysis of hemispheric photographs of the canopy using the ArcGIS Spatial Analyst, GapLight and ImageJ software. Meteorological data from two on-site weather stations (wind direction, wind speed, air temperature, air humidity, insolation, soil temperature, precipitation) were provided by the 'Research Platform Chicken Creek' (https://www.tu-cottbus.de/projekte/en/oekosysteme/startseite.html). Data were combined and multivariate statistical analysis (PCA, cluster analysis, regression trees) were conducted using the R-software to i) obtain statistical indices describing the relevant characteristics of the data and ii) to identify the determining factors for throughfall intensity. The methodology is currently tested and results will be presented. Preliminary evaluation of the image analysis approach showed only marginal, systematic deviation of results for the different software tools applied, which makes the developed workflow a viable tool for canopy characterization. Results from this study will have a broad spectrum of possible applications, for instance the development / calibration of rainfall interception models, the incorporation into eco-hydrological models, or to test the fault tolerance of wireless rainfall sensor networks.

  13. ADVANCED URBANIZED METEOROLOGICAL MODELING AND AIR QUALITY SIMULATIONS WITH CMAQ AT NEIGHBORHOOD SCALES

    EPA Science Inventory

    We present results from a study testing the new boundary layer parameterization method, the canopy drag approach (DA) which is designed to explicitly simulate the effects of buildings, street and tree canopies on the dynamic, thermodynamic structure and dispersion fields in urban...

  14. Protection of individual ash trees from emerald ash borer (Coleoptera: Buprestidae) with basal soil applications of imidacloprid.

    PubMed

    Smitley, D R; Rebek, E J; Royalty, R N; Davis, T W; Newhouse, K F

    2010-02-01

    We conducted field trials at five different locations over a period of 6 yr to investigate the efficacy of imidacloprid applied each spring as a basal soil drench for protection against emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae). Canopy thinning and emerald ash borer larval density were used to evaluate efficacy for 3-4 yr at each location while treatments continued. Test sites included small urban trees (5-15 cm diameter at breast height [dbh]), medium to large (15-65 cm dbh) trees at golf courses, and medium to large street trees. Annual basal drenches with imidacloprid gave complete protection of small ash trees for three years. At three sites where the size of trees ranged from 23 to 37 cm dbh, we successfully protected all ash trees beginning the test with <60% canopy thinning. Regression analysis of data from two sites reveals that tree size explains 46% of the variation in efficacy of imidacloprid drenches. The smallest trees (<30 cm dbh) remained in excellent condition for 3 yr, whereas most of the largest trees (>38 cm dbh) declined to a weakened state and undesirable appearance. The five-fold increase in trunk and branch surface area of ash trees as the tree dbh doubles may account for reduced efficacy on larger trees, and suggests a need to increase treatment rates for larger trees.

  15. Opportunities and challenges to conserve water on the landscape in snow-dominated forests: The quest for the radiative minima and more...

    NASA Astrophysics Data System (ADS)

    Link, T. E.; Kumar, M.; Pomeroy, J. W.; Seyednasrollah, B.; Ellis, C. R.; Lawler, R.; Essery, R.

    2012-12-01

    In mountainous, forested environments, vegetation exerts a strong control on snowcover dynamics that affect ecohydrological processes, streamflow regimes, and riparian health. Snowcover deposition and ablation patterns in forests are controlled by a complex combination of canopy interception processes coupled with radiative and turbulent heat flux patterns related to topographic and canopy cover variations. In seasonal snow environments, snowcover ablation dynamics in forests are dominated by net radiation. Recent research indicates that in small canopy gaps a net radiation minima relative to both open and forested environments can occur, but depends strongly on solar angle, gap size, slope, canopy height and stem density. The optimal gap size to minimize radiation to snow was estimated to have a diameter between 1 and 2 times the surrounding vegetation height. Physically-based snowmelt simulations indicate that gaps may increase SWE and desynchronize snowmelt by approximately 3 weeks between north and south facing slopes, relative to undisturbed forests. On east and west facing slopes, small gaps cause melt to be slightly delayed relative to intact forests, and have a minimal effect on melt synchronicity between slopes. Recent research focused on canopy thinning also indicates that a net radiation minima occurs in canopies of intermediate densities. Physically-based radiative transfer simulations using a discrete tree-based model indicate that in mid-latitude level forests, the annually-integrated radiative minima occurs at a tree spacing of 2.65 relative to the canopy height. The radiative minima was found to occur in denser forests on south-facing slopes and sparser forests on north-facing slopes. The radiative minimums in thinned forests are controlled by solar angle, crown geometry and density, tree spacing, slope, and aspect. These results indicate that both gap and homogeneous forest thinning may be used to reduce snowmelt rates or alter melt synchronicity, but the exact configuration will be highly spatially variable. Development of management strategies to conserve water on the landscape to enhance forest and riparian health in a changing climate must also rigorously evaluate the effects of canopy thinning and specific hydrometeorological conditions on net radiation, turbulent fluxes, and snow interception processes.

  16. Measuring canopy loss and climatic thresholds from an extreme drought along a fivefold precipitation gradient across Texas.

    PubMed

    Schwantes, Amanda M; Swenson, Jennifer J; González-Roglich, Mariano; Johnson, Daniel M; Domec, Jean-Christophe; Jackson, Robert B

    2017-12-01

    Globally, trees are increasingly dying from extreme drought, a trend that is expected to increase with climate change. Loss of trees has significant ecological, biophysical, and biogeochemical consequences. In 2011, a record drought caused widespread tree mortality in Texas. Using remotely sensed imagery, we quantified canopy loss during and after the drought across the state at 30-m spatial resolution, from the eastern pine/hardwood forests to the western shrublands, a region that includes the boundaries of many species ranges. Canopy loss observations in ~200 multitemporal fine-scale orthophotos (1-m) were used to train coarser Landsat imagery (30-m) to create 30-m binary statewide canopy loss maps. We found that canopy loss occurred across all major ecoregions of Texas, with an average loss of 9.5%. The drought had the highest impact in post oak woodlands, pinyon-juniper shrublands and Ashe juniper woodlands. Focusing on a 100-km by ~1,000-km transect spanning the State's fivefold east-west precipitation gradient (~1,500 to ~300 mm), we compared spatially explicit 2011 climatic anomalies to our canopy loss maps. Much of the canopy loss occurred in areas that passed specific climatic thresholds: warm season anomalies in mean temperature (+1.6°C) and vapor pressure deficit (VPD, +0.66 kPa), annual percent deviation in precipitation (-38%), and 2011 difference between precipitation and potential evapotranspiration (-1,206 mm). Although similarly low precipitation occurred during the landmark 1950s drought, the VPD and temperature anomalies observed in 2011 were even greater. Furthermore, future climate data under the representative concentration pathway 8.5 trajectory project that average values will surpass the 2011 VPD anomaly during the 2070-2099 period and the temperature anomaly during the 2040-2099 period. Identifying vulnerable ecological systems to drought stress and climate thresholds associated with canopy loss will aid in predicting how forests will respond to a changing climate and how ecological landscapes will change in the near term. © 2017 John Wiley & Sons Ltd.

  17. Spatial radiation environment in a heterogeneous oak woodland using a three-dimensional radiative transfer model and multiple constraints from observations

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Ryu, Y.; Ustin, S.; Baldocchi, D. D.

    2009-12-01

    B15: Remote Characterization of Vegetation Structure: Including Research to Inform the Planned NASA DESDynI and ESA BIOMASS Missions Title: Spatial radiation environment in a heterogeneous oak woodland using a three-dimensional radiative transfer model and multiple constraints from observations Hideki Kobayashi, Youngryel Ryu, Susan Ustin, and Dennis Baldocchi Abstract Accurate evaluations of radiation environments of visible, near infrared, and thermal infrared wavebands in forest canopies are important to estimate energy, water, and carbon fluxes. Californian oak woodlands are sparse and highly clumped so that radiation environments are extremely heterogeneous spatially. The heterogeneity of radiation environments also varies with wavebands which depend on scattering and emission properties. So far, most of modeling studies have been performed in one dimensional radiative transfer models with (or without) clumping effect in the forest canopies. While some studies have been performed by using three dimensional radiative transfer models, several issues are still unresolved. For example, some 3D models calculate the radiation field with individual tree basis, and radiation interactions among trees are not considered. This interaction could be important in the highly scattering waveband such as near infrared. The objective of this study is to quantify the radiation field in the oak woodland. We developed a three dimensional radiative transfer model, which includes the thermal waveband. Soil/canopy energy balances and canopy physiology models, CANOAK, are incorporated in the radiative transfer model to simulate the diurnal patterns of thermal radiation fields and canopy physiology. Airborne LiDAR and canopy gap data measured by the several methods (digital photographs and plant canopy analyzer) were used to constrain the forest structures such as tree positions, crown sizes and leaf area density. Modeling results were tested by a traversing radiometer system that measured incoming photosynthetically active radiation and net radiation at forest floor and spatial variations in canopy reflectances taken by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). In this study, we show how the model with available measurements can reproduce the spatially heterogeneous radiation environments in the oak woodland.

  18. Fine-scale habitat use by orang-utans in a disturbed peat swamp forest, central Kalimantan, and implications for conservation management.

    PubMed

    Morrogh-Bernard, Helen C; Husson, Simon J; Harsanto, Fransiskus A; Chivers, David J

    2014-01-01

    This study was conducted to see how orang-utans (Pongo pygmaeus wurmbii) were coping with fine-scale habitat disturbance in a selectively logged peat swamp forest in Central Kalimantan, Borneo. Seven habitat classes were defined, and orang-utans were found to use all of these, but were selective in their preference for certain classes over others. Overall, the tall forest classes (≥20 m) were preferred. They were preferred for feeding, irrespective of canopy connectivity, whereas classes with a connected canopy (canopy cover ≥75%), irrespective of canopy height, were preferred for resting and nesting, suggesting that tall trees are preferred for feeding and connected canopy for security and protection. The smaller forest classes (≤10 m high) were least preferred and were used mainly for travelling from patch to patch. Thus, selective logging is demonstrated here to be compatible with orang-utan survival as long as large food trees and patches of primary forest remain. Logged forest, therefore, should not automatically be designated as 'degraded'. These findings have important implications for forest management, forest classification and the designation of protected areas for orang-utan conservation.

  19. Thermal infrared imaging of the temporal variability in stomatal conductance for fruit trees

    NASA Astrophysics Data System (ADS)

    Struthers, Raymond; Ivanova, Anna; Tits, Laurent; Swennen, Rony; Coppin, Pol

    2015-07-01

    Repeated measurements using thermal infrared remote sensing were used to characterize the change in canopy temperature over time and factors that influenced this change on 'Conference' pear trees (Pyrus communis L.). Three different types of sensors were used, a leaf porometer to measure leaf stomatal conductance, a thermal infrared camera to measure the canopy temperature and a meteorological sensor to measure weather variables. Stomatal conductance of water stressed pear was significantly lower than in the control group 9 days after stress began. This decrease in stomatal conductance reduced transpiration, reducing evaporative cooling that increased canopy temperature. Using thermal infrared imaging with wavelengths between 7.5 and13 μm, the first significant difference was measured 18 days after stress began. A second order derivative described the average rate of change of the difference between the stress treatment and control group. The average rate of change for stomatal conductance was 0.06 (mmol m-2 s-1) and for canopy temperature was -0.04 (°C) with respect to days. Thermal infrared remote sensing and data analysis presented in this study demonstrated that the differences in canopy temperatures between the water stress and control treatment due to stomata regulation can be validated.

  20. Environmental constraints on the invasion of Triadica sebifera in the eastern United States: an experimental field assessment.

    PubMed

    Pattison, Robert R; Mack, Richard N

    2009-01-01

    Identifying the environmental constraints that affect the distribution of an invasive species is fundamental to its effective control. Triadica sebifera (Chinese tallow tree) has invaded the southeastern United States, but its potential for further range and habitat extension has been unresolved. We explored experimentally environmental factors in macro- and microhabitats that affect its persistence at five widely separated sites along the Atlantic seaboard of the United States and at two sites inland; three sites occur well beyond the tree's current range. At each site, seeds and young vegetative plants (0.5-0.65 m tall) of T. sebifera were placed in four microhabitats (closed-canopy upland, closed-canopy lowland, open-canopy upland, and open-canopy lowland). Plant growth, leaf CO(2) assimilation rates, leaf N concentrations and delta(13)C ratios, and stem water potential were measured for two growing seasons. Percent seed germination was consistently higher in open-canopy microhabitats and lowest at northern and inland sites. T. sebifera grew in all open-canopy microhabitats, even 300-500 km beyond its current distribution. Plant growth in closed-canopy habitats was lower, attributable to lower carbon gain per unit leaf area in shaded compared with open-canopy environments, especially at northern and inland sites. Neither competition, other than canopy shade, nor grazing was a key constraint on distribution at any scale. Our results demonstrate that T. sebifera is dispersal limited at landscape scales but limited locally by dispersal and overstory shade; it has yet to occupy the full extent of its new range in North America. Quantifying environmental factors both within and well beyond a species' current range can effectively highlight the limits on its distribution.

  1. Influence of Crown Biomass Estimators and Distribution on Canopy Fuel Characteristics in Ponderosa Pine Stands of the Black Hills

    Treesearch

    Tara Keyser; Frederick Smith

    2009-01-01

    Two determinants of crown fire hazard are canopy bulk density (CBD) and canopy base height (CBH). The Fire and Fuels Extension to the Forest Vegetation Simulator (FFE-FVS) is a model that predicts CBD and CBH. Currently, FFE-FVS accounts for neither geographic variation in tree allometries nor the nonuniform distribution of crown mass when one is estimating CBH and CBD...

  2. Using Remote Sensing Technologies to Quantify the Effects of Beech Bark Disease on the Structure, Composition, and Function of a Late-Successional Forest

    NASA Astrophysics Data System (ADS)

    Stuart-Haëntjens, E. J.; Ricart, R. D.; Fahey, R. T.; Fotis, A. T.; Gough, C. M.

    2016-12-01

    Ecological theory maintains that as forests age, the rate at which carbon (C) is stored declines because C released through organic matter decomposition offsets declining C sequestration in new vegetative growth. Recent observational studies are challenging this long-held hypothesis, with limited evidence suggesting higher-than-expected rates in late-successional forests could be, counterintuitively, tied to canopy structural changes associated with low intensity tree mortality. As forests age, canopy structural complexity may increase when old trees die and form upper canopy gaps that release subcanopy vegetation. This provides one explanation for observations of sustained high production in old forests. Recent studies have found that this increased structural complexity and resource-use efficiency maintain C storage in mid-successional deciduous forests; whether a similar mechanism extends to late-successional forests is unknown. We will present how a slow, moderate disturbance affects the structure and C sequestration of late-successional forests. Our study site is a forest recently infected by Beech Bark Disease (BBD), which will result in the eventual mortality of American beech trees in this late successional forest in Northern Michigan, at the University of Michigan Biological Station. American Beech, Hemlock, Sugar Maple, and White Pine dominate the landscape, with American Beech making up 30% of the canopy trees on average. At the plot scale American Beech is distributed heterogeneously, comprising 1% to 60% of total plot basal area, making it possible to examine the interplay between disturbance severity, canopy structural change, and primary production resilience in this forest. Within each of the 13 plots, species and stem diameter were collected in 1992, 1994, 2014, and 2016, with future remeasurements planned. We will discuss how ground-based lidar coupled with airborne spectral (IR and RGB) imagery are being used to track canopy BBD-related structural changes over time and space, and to link structural changes with late-successional primary production. Our hypothesis is that, up to a presently unknown disturbance threshold, moderate disturbance from BBD sustains primary production in this late successional forest by partially, but not fully, rewinding ecological succession.

  3. Within-twig leaf distribution patterns differ among plant life-forms in a subtropical Chinese forest.

    PubMed

    Meng, Fengqun; Cao, Rui; Yang, Dongmei; Niklas, Karl J; Sun, Shucun

    2013-07-01

    In theory, plants can alter the distribution of leaves along the lengths of their twigs (i.e., within-twig leaf distribution patterns) to optimize light interception in the context of the architectures of their leaves, branches and canopies. We hypothesized that (i) among canopy tree species sharing similar light environments, deciduous trees will have more evenly spaced within-twig leaf distribution patterns compared with evergreen trees (because deciduous species tend to higher metabolic demands than evergreen species and hence require more light), and that (ii) shade-adapted evergreen species will have more evenly spaced patterns compared with sun-adapted evergreen ones (because shade-adapted species are generally light-limited). We tested these hypotheses by measuring morphological traits (i.e., internode length, leaf area, lamina mass per area, LMA; and leaf and twig inclination angles to the horizontal) and physiological traits (i.e., light-saturated net photosynthetic rates, Amax; light saturation points, LSP; and light compensation points, LCP), and calculated the 'evenness' of within-twig leaf distribution patterns as the coefficient of variation (CV; the higher the CV, the less evenly spaced leaves) of within-twig internode length for 9 deciduous canopy tree species, 15 evergreen canopy tree species, 8 shade-adapted evergreen shrub species and 12 sun-adapted evergreen shrub species in a subtropical broad-leaved rainforest in eastern China. Coefficient of variation was positively correlated with large LMA and large leaf and twig inclination angles, which collectively specify a typical trait combination adaptive to low light interception, as indicated by both ordinary regression and phylogenetic generalized least squares analyses. These relationships were also valid within the evergreen tree species group (which had the largest sample size). Consistent with our hypothesis, in the canopy layer, deciduous species (which were characterized by high LCP, LSP and Amax) had more even leaf distribution patterns than evergreen species (which had low LCP, LSP and Amax); shade-adapted evergreen species had more even leaf distribution patterns than sun-adapted evergreen species. We propose that the leaf distribution pattern (i.e., 'evenness' CV, which is an easily measured functional trait) can be used to distinguish among life-forms in communities similar to the one examined in this study.

  4. Analyzing the uncertainties in use of forest-derived biomass equations for open-grown trees in agricultural land

    Treesearch

    Xinhua Zhou; Michele M. Schoeneberger; James R. Brandle; Tala N. Awada; Jianmin Chu; Derrel L. Martin; Jihong Li; Yuqiang Li; Carl W. Mize

    2014-01-01

    Quantifying carbon in agroforestry trees requires biomass equations that capture the growth differences (e.g., tree specific gravity and architecture) created in the more open canopies of agroforestry plantings compared with those generally encountered in forests. Whereas forest-derived equations are available, equations for open-grown trees are not. Data from...

  5. The influence of conifer forest canopy cover on the accuracy of two individual tree measurement algorithms using lidar data

    Treesearch

    Michael J. Falkowski; Alistair M.S. Smith; Paul E. Gessler; Andrew T. Hudak; Lee A. Vierling; Jeffrey S. Evans

    2008-01-01

    Individual tree detection algorithms can provide accurate measurements of individual tree locations, crown diameters (from aerial photography and light detection and ranging (lidar) data), and tree heights (from lidar data). However, to be useful for forest management goals relating to timber harvest, carbon accounting, and ecological processes, there is a need to...

  6. The urban forests of Philadelphia

    Treesearch

    David J. Nowak; Allison R. Bodine; Robert Hoehn; Alexis Ellis; Sarah C. Low; Lara A. Roman; Jason G. Henning; Emily Stephan; Tom Taggert; Ted Endreny

    2016-01-01

    An analysis of the urban forest in Philadelphia, Pennsylvania, reveals that this city has an estimated 2.9 million trees (encompassing all woody plants greater than 1 inch diameter at breast height [d.b.h]) with tree canopy that covers 20 percent of the city. The most common tree species are spicebush, black cherry, ash, tree-of-heaven, and boxelder, but the most...

  7. It's not easy going green: Obstacles to tree-planting programs in East Baltimore

    Treesearch

    Michael Battaglia; Geoffrey L. Buckley; Michael Galvin; Morgan Grove

    2014-01-01

    In 2006, government officials in Baltimore announced plans to double the city's tree canopy over the next thirty years. While the effort has already produced positive results, many parts of the city still lack trees. In this paper we consider whether two neighborhoods in East Baltimore — Berea and Madison-Eastend — are suitable locations for tree...

  8. Austin's Urban Forest, 2014

    Treesearch

    David J. Nowak; Allison R. Bodine; Robert E. Hoehn; Christopher B. Edgar; Dudley R. Hartel; Tonya W. Lister; Thomas J. Brandeis

    2016-01-01

    An analysis of the urban forest in Austin, Texas, reveals that this area has an estimated 33.8 million trees with tree canopy that covers 30.8 percent of the city. The most common tree species are Ashe juniper, cedar elm, live oak, sugarberry, and Texas persimmon. Trees in Austin currently store about 1.9 million tons of carbon (7.0 million tons of carbon dioxide [CO...

  9. Canopy Density Mapping on Ultracam-D Aerial Imagery in Zagros Woodlands, Iran

    NASA Astrophysics Data System (ADS)

    Erfanifard, Y.; Khodaee, Z.

    2013-09-01

    Canopy density maps express different characteristics of forest stands, especially in woodlands. Obtaining such maps by field measurements is so expensive and time-consuming. It seems necessary to find suitable techniques to produce these maps to be used in sustainable management of woodland ecosystems. In this research, a robust procedure was suggested to obtain these maps by very high spatial resolution aerial imagery. It was aimed to produce canopy density maps by UltraCam-D aerial imagery, newly taken in Zagros woodlands by Iran National Geographic Organization (NGO), in this study. A 30 ha plot of Persian oak (Quercus persica) coppice trees was selected in Zagros woodlands, Iran. The very high spatial resolution aerial imagery of the plot purchased from NGO, was classified by kNN technique and the tree crowns were extracted precisely. The canopy density was determined in each cell of different meshes with different sizes overlaid on the study area map. The accuracy of the final maps was investigated by the ground truth obtained by complete field measurements. The results showed that the proposed method of obtaining canopy density maps was efficient enough in the study area. The final canopy density map obtained by a mesh with 30 Ar (3000 m2) cell size had 80% overall accuracy and 0.61 KHAT coefficient of agreement which shows a great agreement with the observed samples. This method can also be tested in other case studies to reveal its capability in canopy density map production in woodlands.

  10. Trees and Streets as Drivers of Urban Stormwater Nutrient Pollution.

    PubMed

    Janke, Benjamin D; Finlay, Jacques C; Hobbie, Sarah E

    2017-09-05

    Expansion of tree cover is a major management goal in cities because of the substantial benefits provided to people, and potentially to water quality through reduction of stormwater volume by interception. However, few studies have addressed the full range of potential impacts of trees on urban runoff, which includes deposition of nutrient-rich leaf litter onto streets connected to storm drains. We analyzed the influence of trees on stormwater nitrogen and phosphorus export across 19 urban watersheds in Minneapolis-St. Paul, MN, U.S.A., and at the scale of individual streets within one residential watershed. Stormwater nutrient concentrations were highly variable across watersheds and strongly related to tree canopy over streets, especially for phosphorus. Stormwater nutrient loads were primarily related to road density, the dominant control over runoff volume. Street canopy exerted opposing effects on loading, where elevated nutrient concentrations from trees near roads outweighed the weak influence of trees on runoff reduction. These results demonstrate that vegetation near streets contributes substantially to stormwater nutrient pollution, and therefore to eutrophication of urban surface waters. Urban landscape design and management that account for trees as nutrient pollution sources could improve water quality outcomes, while allowing cities to enjoy the myriad benefits of urban forests.

  11. 76 FR 63719 - Endangered and Threatened Wildlife and Plants; 12-Month Finding on a Petition To List a Distinct...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... species at that time. On October 28, 2008, we published a 90-day finding for the dusky tree vole in the... that live in conifer forests and spend almost all of their time in the tree canopy. Tree voles rarely... tree vole as a subspecies, the more recent research on tree vole genetics and analyses attempting to...

  12. Assessing urban forest effects and values, Los Angeles' urban forest

    Treesearch

    David J. Nowak; Robert E. III Hoehn; Daniel E. Crane; Lorraine Weller; Antonio Davila

    2011-01-01

    An analysis of trees in Los Angeles, CA, reveals that this area has about 6 million trees with tree and shrub canopies that cover 24.9 percent of the city. The most common tree species are Italian cypress, scrub oak, laurel sumac, Mexican fan palm, and Indian laurel, Trees in Los Angeles currently store about 1.3 million tons of carbon (4.7 million tons CO2...

  13. Assessing urban forest effects and values, Philladelphia's urban forest

    Treesearch

    David J. Nowak; Robert E., III Hoehn; Daniel E. Crane; Jack C. Stevens; Jeffrey T. Walton

    2007-01-01

    An analysis of trees in Philadelphia reveals that this city has about 2.1 million trees with canopies that cover 15.7 percent of the area. The most common tree species are black cherry, crabapple, and tree of heaven. The urban forest currently stores about 530,000 tons of carbon valued at $9.8 million. In addition, these trees remove about 16,100 tons of carbon per...

  14. Coordinated changes in photosynthesis, water relations and leaf nutritional traits of canopy trees along a precipitation gradient in lowland tropical forest.

    PubMed

    Santiago, Louis S; Kitajima, Kaoru; Wright, S Joseph; Mulkey, Stephen S

    2004-05-01

    We investigated leaf physiological traits of dominant canopy trees in four lowland Panamanian forests with contrasting mean annual precipitation (1,800, 2,300, 3,100 and 3,500 mm). There was near complete turn-over of dominant canopy tree species among sites, resulting in greater dominance of evergreen species with long-lived leaves as precipitation increased. Mean structural and physiological traits changed along this gradient as predicted by cost-benefit theories of leaf life span. Nitrogen content per unit mass (Nmass) and light- and CO2-saturated photosynthetic rates per unit mass (Pmass) of upper canopy leaves decreased with annual precipitation, and these changes were partially explained by increasing leaf thickness and decreasing specific leaf area (SLA). Comparison of 1,800 mm and 3,100 mm sites, where canopy access was available through the use of construction cranes, revealed an association among extended leaf longevity, greater structural defense, higher midday leaf water potential, and lower Pmass, Nmass, and SLA at wetter sites. Shorter leaf life spans and more enriched foliar delta15N values in drier sites suggest greater resorption and re-metabolism of leaf N in drier forest. Greater dominance of short-lived leaves with relatively high Pmass in drier sites reflects a strategy to maximize photosynthesis when water is available and to minimize water loss and respiration costs during rainless periods. Overall, our study links coordinated change in leaf functional traits that affect productivity and nutrient cycling to seasonality in lowland tropical forests. Copyright 2004 Springer-Verlag

  15. A grass-fire cycle eliminates an obligate-seeding tree in a tropical savanna.

    PubMed

    Bowman, David M J S; MacDermott, Harry J; Nichols, Scott C; Murphy, Brett P

    2014-11-01

    A grass-fire cycle in Australian tropical savannas has been postulated as driving the regional decline of the obligate-seeding conifer Callitris intratropica and other fire-sensitive components of the regional flora and fauna, due to proliferation of flammable native grasses. We tested the hypothesis that a high-biomass invasive savanna grass drives a positive feedback process where intense fires destroy fire-sensitive trees, and the reduction in canopy cover facilitates further invasion by grass. We undertook an observational and experimental study using, as a model system, a plantation of C. intratropica that has been invaded by an African grass, gamba (Andropogon gayanus) in the Northern Territory, Australia. We found that high grass biomass was associated with reduced canopy cover and restriction of foliage to the upper canopy of surviving stems, and mortality of adult trees was very high (>50%) even in areas with low fuel loads (1 t·ha(-1)). Experimental fires, with fuel loads >10 t·ha(-1), typical of the grass-invasion front, caused significant mortality due to complete crown scorch. Lower fuel loads cause reduced canopy cover through defoliation of the lower canopy. These results help explain how increases in grass biomass are coupled with the decline of C. intratropica throughout northern Australia by causing a switch from litter and sparse perennial grass fuels, and hence low-intensity surface fires, to heavy annual grass fuel loads that sustain fires that burn into the midstorey. This study demonstrates that changes in fuel type can alter fire regimes with substantial knock-on effects on the biota.

  16. A grass–fire cycle eliminates an obligate-seeding tree in a tropical savanna

    PubMed Central

    Bowman, David M J S; MacDermott, Harry J; Nichols, Scott C; Murphy, Brett P

    2014-01-01

    A grass–fire cycle in Australian tropical savannas has been postulated as driving the regional decline of the obligate-seeding conifer Callitris intratropica and other fire-sensitive components of the regional flora and fauna, due to proliferation of flammable native grasses. We tested the hypothesis that a high-biomass invasive savanna grass drives a positive feedback process where intense fires destroy fire-sensitive trees, and the reduction in canopy cover facilitates further invasion by grass. We undertook an observational and experimental study using, as a model system, a plantation of C. intratropica that has been invaded by an African grass, gamba (Andropogon gayanus) in the Northern Territory, Australia. We found that high grass biomass was associated with reduced canopy cover and restriction of foliage to the upper canopy of surviving stems, and mortality of adult trees was very high (>50%) even in areas with low fuel loads (1 t·ha−1). Experimental fires, with fuel loads >10 t·ha−1, typical of the grass-invasion front, caused significant mortality due to complete crown scorch. Lower fuel loads cause reduced canopy cover through defoliation of the lower canopy. These results help explain how increases in grass biomass are coupled with the decline of C. intratropica throughout northern Australia by causing a switch from litter and sparse perennial grass fuels, and hence low-intensity surface fires, to heavy annual grass fuel loads that sustain fires that burn into the midstorey. This study demonstrates that changes in fuel type can alter fire regimes with substantial knock-on effects on the biota. PMID:25505543

  17. Measured and predicted changes in tree and stand water use following high-intensity thinning of an 8-year-old Eucalyptus nitens plantation.

    PubMed

    Medhurst, Jane L; Battaglia, Michael; Beadle, Christopher L

    2002-08-01

    We investigated changes in the pattern of water use of an 8-year-old Eucalyptus nitens (Deane and Maiden) Maiden plantation soon after thinning. Sap flow sensors using heat pulse technology were deployed across three stands thinned to a final density of 100, 250 or 600 trees ha-1 plus an unthinned control (1250 trees ha-1). Changes in the relationship between tree size and daily water use were measured for 4 to 7 months after thinning. Thinning had no effect on sapwood water content. The increase in tree water use as a result of thinning was driven largely by significant changes in the radial pattern of sap velocity through the sapwood. The use of a canopy fraction factor in the Penman-Monteith equation to account for discontinuous canopies showed promise as a simple and effective method of scaling the model to predict transpiration from thinned plantations.

  18. Forest fire in the central Himalaya: climate and recovery of trees

    NASA Astrophysics Data System (ADS)

    Sharma, Subrat; Rikhari, H. C.

    A forest fire event is influenced by climatic conditions and is supported by accumulation of fuel on forest floor. After forest fire, photosynthetically active solar radiation was reduced due to accumulation of ash and dust particles in atmosphere. Post-fire impacts on Quercus leucotrichophora, Rhododendron arboreum and Lyonia ovalifolia in a broadleaf forest were analysed after a wild fire. Bark depth damage was greatest for L. ovalifolia and least for Q. leucotrichophora. Regeneration of saplings was observed for all the tree species through sprouting. Epicormic recovery was observed for the trees of all the species. Young trees of Q. leucotrichophora (<40 cm circumference at breast height) were susceptible to fire as evident by the lack of sprouting. Under-canopy tree species have a high potential for recovery as evident by greater length and diameter of shoots and numbers of buds and leaves per shoot than canopy species. Leaf area, leaf moisture and specific leaf area were greater in the deciduous species, with few exceptions, than in evergreen species.

  19. Crown-Level Tree Species Classification Using Integrated Airborne Hyperspectral and LIDAR Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Wu, J.; Wang, Y.; Kong, X.; Bao, H.; Ni, Y.; Ma, L.; Jin, J.

    2018-05-01

    Mapping tree species is essential for sustainable planning as well as to improve our understanding of the role of different trees as different ecological service. However, crown-level tree species automatic classification is a challenging task due to the spectral similarity among diversified tree species, fine-scale spatial variation, shadow, and underlying objects within a crown. Advanced remote sensing data such as airborne Light Detection and Ranging (LiDAR) and hyperspectral imagery offer a great potential opportunity to derive crown spectral, structure and canopy physiological information at the individual crown scale, which can be useful for mapping tree species. In this paper, an innovative approach was developed for tree species classification at the crown level. The method utilized LiDAR data for individual tree crown delineation and morphological structure extraction, and Compact Airborne Spectrographic Imager (CASI) hyperspectral imagery for pure crown-scale spectral extraction. Specifically, four steps were include: 1) A weighted mean filtering method was developed to improve the accuracy of the smoothed Canopy Height Model (CHM) derived from LiDAR data; 2) The marker-controlled watershed segmentation algorithm was, therefore, also employed to delineate the tree-level canopy from the CHM image in this study, and then individual tree height and tree crown were calculated according to the delineated crown; 3) Spectral features within 3 × 3 neighborhood regions centered on the treetops detected by the treetop detection algorithm were derived from the spectrally normalized CASI imagery; 4) The shape characteristics related to their crown diameters and heights were established, and different crown-level tree species were classified using the combination of spectral and shape characteristics. Analysis of results suggests that the developed classification strategy in this paper (OA = 85.12 %, Kc = 0.90) performed better than LiDAR-metrics method (OA = 79.86 %, Kc = 0.81) and spectral-metircs method (OA = 71.26, Kc = 0.69) in terms of classification accuracy, which indicated that the advanced method of data processing and sensitive feature selection are critical for improving the accuracy of crown-level tree species classification.

  20. Vertical variations in wood CO2 efflux for live emergent trees in a Bornean tropical rainforest.

    PubMed

    Katayama, Ayumi; Kume, Tomonori; Komatsu, Hikaru; Ohashi, Mizue; Matsumoto, Kazuho; Ichihashi, Ryuji; Kumagai, Tomo'omi; Otsuki, Kyoichi

    2014-05-01

    Difficult access to 40-m-tall emergent trees in tropical rainforests has resulted in a lack of data related to vertical variations in wood CO2 efflux, even though significant variations in wood CO2 efflux are an important source of errors when estimating whole-tree total wood CO2 efflux. This study aimed to clarify vertical variations in wood CO2 efflux for emergent trees and to document the impact of the variations on the whole-tree estimates of stem and branch CO2 efflux. First, we measured wood CO2 efflux and factors related to tree morphology and environment for seven live emergent trees of two dipterocarp species at four to seven heights of up to ∼ 40 m for each tree using ladders and a crane. No systematic tendencies in vertical variations were observed for all the trees. Wood CO2 efflux was not affected by stem and air temperature, stem diameter, stem height or stem growth. The ratios of wood CO2 efflux at the treetop to that at breast height were larger in emergent trees with relatively smaller diameters at breast height. Second, we compared whole-tree stem CO2 efflux estimates using vertical measurements with those based on solely breast height measurements. We found similar whole-tree stem CO2 efflux estimates regardless of the patterns of vertical variations in CO2 efflux because the surface area in the canopy, where wood CO2 efflux often differed from that at breast height, was very small compared with that at low stem heights, resulting in little effect of the vertical variations on the estimate. Additionally, whole-tree branch CO2 efflux estimates using measured wood CO2 efflux in the canopy were considerably different from those measured using only breast height measurements. Uncertainties in wood CO2 efflux in the canopy did not cause any bias in stem CO2 efflux scaling, but affected branch CO2 efflux. © The Author 2014. Published by Oxford University Press. All rights reserved.

  1. [Satellite remote sensing retrieval of canopy nitrogen nutritional status of apple trees at blossom stage].

    PubMed

    Wang, Ling; Zhao, Geng-Xing; Zhu, Xi-Cun; Wang, Rui-Yan; Chang, Chun-Yan

    2013-10-01

    Taking Qixia City of Shandong, China as the study area, and based on the Landsat-5 TM and ALOS AVNIR-2 images, the canopy retrieval reflectance of apple trees at blossom stage was acquired. In combining with the measured reflectance of sample trees, the nitrogen-sensitive spectral indices were constructed and selected. By using the sensitive spectral indices as the independent variables, the nitrogen retrieval models were established, and the model with the best accuracy was used for spatial retrieve. The correlations between the spectral indices and the nitrogen nutritional status were in the order of canopy > leaf > flower. The sensitive indices were mainly composed of green, red, and near infrared bands. The accuracy of the retrieval models was in the order of support vector regression > multi-variable stepwise regression > one-variable regression. The retrieval results based on different images were similar, and showed that the leaf nitrogen content was mainly of grades 3-4 (27-33 g x kg(-1)), and the canopy nitrogen nutrient indices were mainly of grades 2-4 (TM: 38-47 g x kg(-1); ALOS: 32-41 g x kg(-1)). The spatial distribution of the retrieval nitrogen nutritional status based on different images also showed the similar trend, i. e., the nitrogen nutritional status was higher in the north and south than that in the middle part of the study area, and the areas with the high grades of leaf nitrogen and canopy nitrogen were mainly located in Sujiadian Town and Songshan subdistrict in the northwest, Zangjiazhuang Town and Tingkou Town in the northeast, and Shewopo Town in the south, which were consistent with the distribution of the key towns for apple production in Qixia City. This study provided a feasible method for the acquisition of nitrogen nutritional status of apple trees on macroscopic scale, and also, provided reference for other similar remote sensing retrievals.

  2. Interactions between Canopy Structure and Herbaceous Biomass along Environmental Gradients in Moist Forest and Dry Miombo Woodland of Tanzania.

    PubMed

    Shirima, Deo D; Pfeifer, Marion; Platts, Philip J; Totland, Ørjan; Moe, Stein R

    2015-01-01

    We have limited understanding of how tropical canopy foliage varies along environmental gradients, and how this may in turn affect forest processes and functions. Here, we analyse the relationships between canopy leaf area index (LAI) and above ground herbaceous biomass (AGBH) along environmental gradients in a moist forest and miombo woodland in Tanzania. We recorded canopy structure and herbaceous biomass in 100 permanent vegetation plots (20 m × 40 m), stratified by elevation. We quantified tree species richness, evenness, Shannon diversity and predominant height as measures of structural variability, and disturbance (tree stumps), soil nutrients and elevation as indicators of environmental variability. Moist forest and miombo woodland differed substantially with respect to nearly all variables tested. Both structural and environmental variables were found to affect LAI and AGBH, the latter being additionally dependent on LAI in moist forest but not in miombo, where other factors are limiting. Combining structural and environmental predictors yielded the most powerful models. In moist forest, they explained 76% and 25% of deviance in LAI and AGBH, respectively. In miombo woodland, they explained 82% and 45% of deviance in LAI and AGBH. In moist forest, LAI increased non-linearly with predominant height and linearly with tree richness, and decreased with soil nitrogen except under high disturbance. Miombo woodland LAI increased linearly with stem density, soil phosphorous and nitrogen, and decreased linearly with tree species evenness. AGBH in moist forest decreased with LAI at lower elevations whilst increasing slightly at higher elevations. AGBH in miombo woodland increased linearly with soil nitrogen and soil pH. Overall, moist forest plots had denser canopies and lower AGBH compared with miombo plots. Further field studies are encouraged, to disentangle the direct influence of LAI on AGBH from complex interrelationships between stand structure, environmental gradients and disturbance in African forests and woodlands.

  3. [Effect of thinning intensities on fruiting regularities of Quercus liaotungensis forests in Huang-long and Qiaoshan mountains.

    PubMed

    Huang, Cai Zhi; Zhang, Wen Hui; Li, Gang; Yu, Shi Chuan; You, Jian Jian

    2016-11-18

    In order to clarify the impact of thinning intensities on fruiting regularity of Quercus liaotungensis forests, we took the Q. liaotungensis half-mature forests in Huanglong and Qiaoshan mountains on south of the Loess Plateau as the object of study, which were under close-to-natural management of different thinning intensities (CK, 10%, 20% and 30%). An analysis was made on stand density and percent of seed trees, seed number of sample tree and unit area, seed spatial distributions, seed characteristics of the Q. liaotungensis forests after 5 years of thinning. The results showed that, percent of seed trees, seed number per sample tree and percent of developed seeds of Q. liaotungensis forests increased with the increasing intensity, and showed a pattern of 30%>20%>10%>CK. Seed number per area reached the maximum number under 20% thinning, and showed a pattern of 20%>30%>CK>10%. From the seed spatial distribution in the canopy, the upper accounted for 73.6%, while the lower had 26.4%. The sunny side of canopy layer set relatively the most fruits of 65.8%, shady side only had 34.2%. Under thinning, further improving was geater under lower canopy than under upper canopy and so was on shady side than on sunny side. The seed long diameter, seed short diameter and 1000-seed mass of Q. liaotungensis forests increased with the increasing intensity, which reached the maximum under 30% thinning. 10% thinning did not significantly impact Q. liaotungensis fruiting, the thinning intensity of 20% was most conducive to the seed quantity and quality improvement of Q. liaotungensis, while the thinning intensity of 30% did not improve the fruiting, and lowered the total number of seeds. It was proposed that 20% thinning should be chosen (canopy density of 0.7) to effectively improve fruiting and quality of Q. liaotungensis.

  4. Influence of tree canopy on N₂ fixation by pasture legumes and soil rhizobial abundance in Mediterranean oak woodlands.

    PubMed

    Carranca, C; Castro, I V; Figueiredo, N; Redondo, R; Rodrigues, A R F; Saraiva, I; Maricato, R; Madeira, M A V

    2015-02-15

    Symbiotic N2 fixation is of primordial significance in sustainable agro-forestry management as it allows reducing the use of mineral N in the production of mixed stands and by protecting the soils from degradation. Thereby, on a 2-year basis, N2 fixation was evaluated in four oak woodlands under Mediterranean conditions using a split-plot design and three replicates. (15)N technique was used for determination of N2 fixation rate. Variations in environmental conditions (temperature, rainfall, radiation) by the cork tree canopy as well as the age of stands and pasture management can cause great differences in vegetation growth, legume N2 fixation, and soil rhizobial abundance. In the present study, non-legumes dominated the swards, in particular beneath the tree canopy, and legumes represented only 42% of total herbage. A 2-fold biomass reduction was observed in the oldest sown pasture in relation to the medium-age sward (6 t DW ha(-1)yr(-1)). Overall, competition of pasture growth for light was negligible, but soil rhizobial abundance and symbiotic N2 fixation capacity were highly favored by this environmental factor in the spring and outside the influence of tree canopy. Nitrogen derived from the atmosphere was moderate to high (54-72%) in unsown and sown swards. Inputs of fixed N2 increased from winter to spring due to more favorable climatic conditions (temperature and light intensity) for both rhizobia and vegetation growths. Assuming a constant fixation rate at each seasonal period, N2 fixation capacity increased from about 0.10 kg N ha(-1) per day in the autumn-winter period to 0.15 kg N ha(-1) per day in spring. Belowground plant material contributed to 11% of accumulated N in pasture legumes and was not affected by canopy. Size of soil fixing bacteria contributed little to explain pasture legumes N. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Remotely sensed predictors of conifer tree mortality during severe drought

    NASA Astrophysics Data System (ADS)

    Brodrick, P. G.; Asner, G. P.

    2017-11-01

    Widespread, drought-induced forest mortality has been documented on every forested continent over the last two decades, yet early pre-mortality indicators of tree death remain poorly understood. Remotely sensed physiological-based measures offer a means for large-scale analysis to understand and predict drought-induced mortality. Here, we use laser-guided imaging spectroscopy from multiple years of aerial surveys to assess the impact of sustained canopy water loss on tree mortality. We analyze both gross canopy mortality in 2016 and the change in mortality between 2015 and 2016 in millions of sampled conifer forest locations throughout the Sierra Nevada mountains in California. On average, sustained water loss and gross mortality are strongly related, and year-to-year water loss within the drought indicates subsequent mortality. Both relationships are consistent after controlling for location and tree community composition, suggesting that these metrics may serve as indicators of mortality during a drought.

  6. Vegetation correlates of gibbon density in the peat-swamp forest of the Sabangau catchment, Central Kalimantan, Indonesia.

    PubMed

    Hamard, Marie; Cheyne, Susan M; Nijman, Vincent

    2010-06-01

    Understanding the complex relationship between primates and their habitats is essential for effective conservation plans. Peat-swamp forest has recently been recognized as an important habitat for the Southern Bornean gibbon (Hylobates albibarbis), but information is scarce on the factors that link gibbon density to characteristics of this unique ecosystem. Our aims in this study were firstly to estimate gibbon density in different forest subtypes in a newly protected, secondary peat-swamp forest in the Sabangau Catchment, Indonesia, and secondly to identify which vegetation characteristics correlate with gibbon density. Data collection was conducted in a 37.1 km(2) area, using auditory sampling methods and vegetation "speed plotting". Gibbon densities varied between survey sites from 1.39 to 3.92 groups/km(2). Canopy cover, tree height, density of large trees and food availability were significantly correlated with gibbon density, identifying the preservation of tall trees and good canopy cover as a conservation priority for the gibbon population in the Sabangau forest. This survey indicates that selective logging, which specifically targets large trees and disrupts canopy cover, is likely to have adverse effects on gibbon populations in peat-swamp forests, and calls for greater protection of these little-studied ecosystems. (c) 2010 Wiley-Liss, Inc.

  7. Tree species effects on topsoil properties in an old tropical plantation

    NASA Astrophysics Data System (ADS)

    Bauters, Marijn; Boeckx, Pascal; Ampoorter, Evy; Verbeeck, Hans; Döetterl, Sebastian; Baert, Geert; Verheyen, Kris

    2016-04-01

    Forest biogeochemistry is strongly linked to the functional strategies of the tree community and the topsoil. Research has long documented that tree species affect soil properties in forests. Our current understanding on this interaction is mainly based on common garden experiments in temperate forest and needs to be extended to other ecosystems if we want to understand this interaction in natural forests worldwide. Using a 77-year-old tropical experimental plantation from central Africa, we examined the relationship between canopy and litter chemical traits and topsoil properties. By the current diversity in this site, the unique setup allowed us to extend the current knowledge from temperate and simplified systems to near-natural tropical forests, and thus bridge the gap between planted monocultures in common gardens, and correlative studies in natural systems. We linked the species-specific leaf and litter chemical traits to the topsoil cation composition, acidity, pH and soil organic matter. We found that average canopy trait values were a better predictor for the topsoil than the litter chemistry. Canopy base cation content positively affected topsoil pH and negatively affected acidity. These, in turn strongly determined the soil organic carbon contents of the topsoil, which ranged a tree-fold in the experiment.

  8. Leaf Phenology of Amazonian Canopy Trees as Revealed by Spectral and Physiochemical Measurements

    NASA Astrophysics Data System (ADS)

    Chavana-Bryant, C.; Gerard, F. F.; Malhi, Y.; Enquist, B. J.; Asner, G. P.

    2013-12-01

    The phenological dynamics of terrestrial ecosystems reflect the response of the Earth's biosphere to inter- and intra-annual dynamics of climatic and hydrological regimes. Some Dynamic Global Vegetation Models (GDVMs) have predicted that by 2050 the Amazon rainforest will begin to dieback (Cox et al. 2000, Nature) or that the ecosystem will become unsustainable (Salazar et al. 2007, GRL). One major component in DGVMs is the simulation of vegetation phenology, however, modelers are challenged with the estimation of tropical phenology which is highly complex. Current modeled phenology is based on observations of temperate vegetation and accurate representation of tropical phenology is long overdue. Remote sensing (RS) data are a key tool in monitoring vegetation dynamics at regional and global scales. Of the many RS techniques available, time-series analysis of vegetation indices (VIs) has become the most common approach in monitoring vegetation phenology (Samanta et al. 2010, GRL; Bradley et al. 2011, GCB). Our research focuses on investigating the influence that age related variation in the spectral reflectance and physiochemical properties of leaves may have on VIs of tropical canopies. In order to do this, we collected a unique leaf and canopy phenological dataset at two different Amazonian sites: Inselberg, French Guyana (FG) and Tambopata, Peru (PE). Hyperspectral reflectance measurements were collected from 4,102 individual leaves sampled to represent different leaf ages and vertical canopy positions (top, mid and low canopy) from 20 different canopy tree species (8 in FG and 12 in PE). These leaf spectra were complemented with 1) leaf physical measurements: fresh and dry weight, area and thickness, LMA and LWC and 2) leaf chemical measurements: %N, %C, %P, C:N and d13C. Canopy level observations included top-of-canopy reflectance measurements obtained using a multispectral 16-band radiometer, leaf demography (tot. number and age distribution) and branch structural measurements (space between leaves, min. and max. season's growth and diameter) of two 1m branches harvested from each canopy level. Both leaf and canopy-level observations where collected monthly when trees where not in flush and weekly during the period of leaf flushing. Here, we present our leaf spectral and physiochemical results. Results show 1) changes in leaf spectral and physiochemical properties related to leaf age, 2) the most significant changes in the leaves' spectrum during different stages in their life cycle, and 3) how leaf spectral changes are related to changes in the chemical and physical properties of the leaves as they progress through their life cycle. Future work will involve the incorporation of leaf and canopy observations into a light canopy interaction model to investigate the possibility that seasonal variation in VIs may be driven by leaf aging as well as by the shedding or appearance of new leaves.

  9. Ozone exposure, uptake, and response of different-sized black cherry trees

    Treesearch

    Todd S. Frederickson; John M. Skelly; Kim C. Steiner; Thomas E. Kolb

    1996-01-01

    Differences in exposure, uptake and relative sensitivity to ozone between seedling, sapling, and canopy black cherry (Prunus serotina Ehrh.) trees were characterized during two growing seasons in north central Pennsylvania. Open-grown trees of all sizes received a similar amount of ozone exposure. Seedlings had greater foliar ozone injury, expressed...

  10. Stand conditions associated with tree regeneration in sierran mixed-conifer forests.

    Treesearch

    Andrew N. Gray; Harold S.J. Zald; Ruth A. Kern; Malcolm North

    2005-01-01

    Fire suppression has significantly increased canopy cover, litter depth, and stem density in many western forests, altering microsite conditions that affect tree seedling establishment. We conducted studies in a mixed-conifer forest in the Sierra Nevada, California, to determine relationships between established understory trees and microsite quality, and to examine...

  11. Seedling mortality in Hawaiian rain forest: The role of small-scale physical disturbance

    USGS Publications Warehouse

    Drake, D.R.; Pratt, L.W.

    2001-01-01

    Most montane rain forests on the island of Hawaii consist of a closed canopy formed by Cibotium spp. tree ferns beneath an open canopy of emergent Metrosideros polymorpha trees. We used artificial seedlings to assess the extent to which physical disturbance caused by the senescing fronds of tree ferns and the activities of feral pigs might limit tree regeneration. Artificial seedlings were established terrestrially (N = 300) or epiphytically (N = 300) on tree fern stems. Half of the seedlings on each substrate were in an exclosure lacking feral pigs and half were in forest with pigs present. After one year, the percentage of seedlings damaged was significantly greater among terrestrial seedlings (25.7%) than epiphytic seedlings (11.3%). Significantly more terrestrial seedlings were damaged in the presence of pigs (31.3%) than in the absence of pigs (20.0%). Senescing fronds of tree ferns were responsible for 60.3 percent of the damaged seedlings. Physical disturbance is potentially a major cause of seedling mortality and may reduce the expected half-life of a seedling cohort to less than two years.

  12. Effect of Different Tree canopies on the Brightness Temperature of Snowpack

    NASA Astrophysics Data System (ADS)

    Mousavi, S.; De Roo, R. D.; Brucker, L.

    2017-12-01

    Snow stores the water we drink and is essential to grow food that we eat. But changes in snow quantities such as snow water equivalent (SWE) are underway and have serious consequences. So, effective management of the freshwater reservoir requires to monitor frequently (weekly or better) the spatial distribution of SWE and snowpack wetness. Both microwave radar and radiometer systems have long been considered as relevant remote sensing tools in retrieving globally snow physical parameters of interest thanks to their all-weather operation capability. However, their observations are sensitive to the presence of tree canopies, which in turns impacts SWE estimation. To address this long-lasting challenge, we parked a truck-mounted microwave radiometer system for an entire winter in a rare area where it exists different tree types in the different cardinal directions. We used dual-polarization microwave radiometers at three different frequencies (1.4, 19, and 37 GHz), mounted on a boom truck to observe continuously the snowpack surrounding the truck. Observations were recorded at different incidence angles. These measurements have been collected in Grand Mesa National Forest, Colorado as part of the NASA SnowEx 2016-17. In this presentation, the effect of Engelmann Spruce and Aspen trees on the measured brightness temperature of snow is discussed. It is shown that Engelmann Spruce trees increases the brightness temperature of the snowpack more than Aspen trees do. Moreover, the elevation angular dependence of the measured brightness temperatures of snowpack with and without tree canopies is investigated in the context of SWE retrievals. A time-lapse camera was monitoring a snow post installed in the sensors' field of view to characterize the brightness temperature change as snow depth evolved. Also, our study takes advantage of the snowpit measurements that were collected near the radiometers' field of view.

  13. Direct and indirect effects of a dense understory on tree seedling recruitment in temperate forests: habitat-mediated predation versus competition

    Treesearch

    Alejandro A. Royo; Walter P. Carson

    2008-01-01

    In forests characterized by a dense woody and herbaceous understory layer, seedling recruitment is often directly suppressed via interspecific competition. Alternatively, these dense layers may indirectly lower tree recruitment by providing a haven for seed and seedling predators that prey on neighboring plant species. To simultaneously...

  14. Tree Mortality Decreases Water Availability and Ecosystem Resilience to Drought in Piñon-Juniper Woodlands in the Southwestern U.S.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morillas, Laura; Pangle, Robert E.; Maurer, Gregory E.

    Climate-driven tree mortality has increased globally in response to warmer temperature and more severe drought. To examine how tree mortality in semiarid biomes impacts surface water balance, we experimentally manipulated a piñon-juniper (PJ) woodland by girdling all adult piñon trees in a 4 ha area, decreasing piñon basal area by ~65%. Over 3.5 years (2009–2013), we compared water flux measurements from this girdled site with those from a nearby intact PJ woodland. Before and after girdling, the ratio of evapotranspiration (ET) to incoming precipitation was similar between the two sites. Girdling altered the partitioning of ET such that the contributionmore » of canopy transpiration to ET decreased 9–14% over the study period, relative to the intact control, while noncanopy ET increased. We attributed the elevated noncanopy ET in the girdled site each year to winter increases in sublimation and summer increases in both soil evaporation and below-canopy transpiration. Although we expected that mortality of a canopy dominant would increase the availability of water and other resources to surviving vegetation, we observed a decrease in both soil volumetric water content and sap flow rates in the remaining trees at the girdled site, relative to the control. Furthermore, this postgirdling decrease in the performance of the remaining trees occurred during the severe 2011–2012 drought, suggesting that piñon mortality may trigger feedback mechanisms that leave PJ woodlands drier relative to undisturbed sites and potentially more vulnerable to drought.« less

  15. Tree Mortality Decreases Water Availability and Ecosystem Resilience to Drought in Piñon-Juniper Woodlands in the Southwestern U.S.

    NASA Astrophysics Data System (ADS)

    Morillas, L.; Pangle, R. E.; Maurer, G. E.; Pockman, W. T.; McDowell, N.; Huang, C.-W.; Krofcheck, D. J.; Fox, A. M.; Sinsabaugh, R. L.; Rahn, T. A.; Litvak, M. E.

    2017-12-01

    Climate-driven tree mortality has increased globally in response to warmer temperature and more severe drought. To examine how tree mortality in semiarid biomes impacts surface water balance, we experimentally manipulated a piñon-juniper (PJ) woodland by girdling all adult piñon trees in a 4 ha area, decreasing piñon basal area by 65%. Over 3.5 years (2009-2013), we compared water flux measurements from this girdled site with those from a nearby intact PJ woodland. Before and after girdling, the ratio of evapotranspiration (ET) to incoming precipitation was similar between the two sites. Girdling altered the partitioning of ET such that the contribution of canopy transpiration to ET decreased 9-14% over the study period, relative to the intact control, while noncanopy ET increased. We attributed the elevated noncanopy ET in the girdled site each year to winter increases in sublimation and summer increases in both soil evaporation and below-canopy transpiration. Although we expected that mortality of a canopy dominant would increase the availability of water and other resources to surviving vegetation, we observed a decrease in both soil volumetric water content and sap flow rates in the remaining trees at the girdled site, relative to the control. This postgirdling decrease in the performance of the remaining trees occurred during the severe 2011-2012 drought, suggesting that piñon mortality may trigger feedback mechanisms that leave PJ woodlands drier relative to undisturbed sites and potentially more vulnerable to drought.

  16. Tree Mortality Decreases Water Availability and Ecosystem Resilience to Drought in Piñon-Juniper Woodlands in the Southwestern U.S.

    DOE PAGES

    Morillas, Laura; Pangle, Robert E.; Maurer, Gregory E.; ...

    2017-11-17

    Climate-driven tree mortality has increased globally in response to warmer temperature and more severe drought. To examine how tree mortality in semiarid biomes impacts surface water balance, we experimentally manipulated a piñon-juniper (PJ) woodland by girdling all adult piñon trees in a 4 ha area, decreasing piñon basal area by ~65%. Over 3.5 years (2009–2013), we compared water flux measurements from this girdled site with those from a nearby intact PJ woodland. Before and after girdling, the ratio of evapotranspiration (ET) to incoming precipitation was similar between the two sites. Girdling altered the partitioning of ET such that the contributionmore » of canopy transpiration to ET decreased 9–14% over the study period, relative to the intact control, while noncanopy ET increased. We attributed the elevated noncanopy ET in the girdled site each year to winter increases in sublimation and summer increases in both soil evaporation and below-canopy transpiration. Although we expected that mortality of a canopy dominant would increase the availability of water and other resources to surviving vegetation, we observed a decrease in both soil volumetric water content and sap flow rates in the remaining trees at the girdled site, relative to the control. Furthermore, this postgirdling decrease in the performance of the remaining trees occurred during the severe 2011–2012 drought, suggesting that piñon mortality may trigger feedback mechanisms that leave PJ woodlands drier relative to undisturbed sites and potentially more vulnerable to drought.« less

  17. Modeling bidirectional reflectance of forests and woodlands using Boolean models and geometric optics

    NASA Technical Reports Server (NTRS)

    Strahler, Alan H.; Jupp, David L. B.

    1990-01-01

    Geometric-optical discrete-element mathematical models for forest canopies have been developed using the Boolean logic and models of Serra. The geometric-optical approach is considered to be particularly well suited to describing the bidirectional reflectance of forest woodland canopies, where the concentration of leaf material within crowns and the resulting between-tree gaps make plane-parallel, radiative-transfer models inappropriate. The approach leads to invertible formulations, in which the spatial and directional variance provides the means for remote estimation of tree crown size, shape, and total cover from remotedly sensed imagery.

  18. Functional traits enhance invasiveness of bamboos over co-occurring tree saplings in the semideciduous Atlantic Forest

    NASA Astrophysics Data System (ADS)

    Montti, Lía; Villagra, Mariana; Campanello, Paula I.; Gatti, M. Genoveva; Goldstein, Guillermo

    2014-01-01

    Many woody bamboo species are forest understory plants that become invasive after disturbance. They can grow rapidly forming a dense, nearly monospecific understory that inhibits tree regeneration. The principal aim of this study was to understand what functional traits of bamboos allow them to outcompete tree seedlings and saplings and become successful species in the semideciduous Atlantic Forests of northeastern Argentina. We studied leaf and whole-plant functional traits of two bamboo species of the genus Chusquea and five co-occurring saplings of common tree species growing under similar solar radiation and soil nutrient availabilities. Nutrient addition had no effect on bamboo or tree sapling survival and growth after two years. Tree species with high-light requirements had higher growth rates and developed relatively thin leaves with high photosynthetic capacity per unit leaf area and short leaf life-span when growing in gaps, but had lower survival rates in the understory. The opposite pattern was observed in shade-tolerant species that were able to survive in the understory but had lower photosynthetic capacity and growth than light-requiring species in gaps. Bamboos exhibited a high plasticity in functional traits and leaf characteristics that enabled them to grow rapidly in gaps (e.g., higher photosynthetic capacity per unit dry mass and clonal reproduction in gaps than in the understory) but at the same time to tolerate closed-canopy conditions (they had thinner leaves and a relatively longer leaf life-span in the understory compared to gaps). Photosynthetic capacity per unit dry mass was higher in bamboos than in trees. Bamboo plasticity in key functional traits, such as clonal reproduction at the plant level and leaves with a relatively low C cost and high photosynthesis rates, allows them to colonize disturbed forests with consequences at the community and ecosystem levels. Increasing disturbance in some forests worldwide will likely enhance bamboo invasion resulting in profound negative impacts on forest diversity, structure and function in the long term.

  19. Are Temperate Canopy Spiders Tree-Species Specific?

    PubMed Central

    Mupepele, Anne-Christine; Müller, Tobias; Dittrich, Marcus; Floren, Andreas

    2014-01-01

    Arboreal spiders in deciduous and coniferous trees were investigated on their distribution and diversity. Insecticidal knock-down was used to comprehensively sample spiders from 175 trees from 2001 to 2003 in the Białowieża forest and three remote forests in Poland. We identified 140 species from 9273 adult spiders. Spider communities were distinguished between deciduous and coniferous trees. The richest fauna was collected from Quercus where beta diversity was also highest. A tree-species-specific pattern was clearly observed for Alnus, Carpinus, Picea and Pinus trees and also for those tree species that were fogged in only four or three replicates, namely Betula and Populus. This hitherto unrecognised association was mainly due to the community composition of common species identified in a Dufrene-Legendre indicator species analysis. It was not caused by spatial or temporal autocorrelation. Explaining tree-species specificity for generalist predators like spiders is difficult and has to involve physical and ecological tree parameters like linkage with the abundance of prey species. However, neither did we find a consistent correlation of prey group abundances with spiders nor could differences in spider guild composition explain the observed pattern. Our results hint towards the importance of deterministic mechanisms structuring communities of generalist canopy spiders although the casual relationship is not yet understood. PMID:24586251

  20. Are temperate canopy spiders tree-species specific?

    PubMed

    Mupepele, Anne-Christine; Müller, Tobias; Dittrich, Marcus; Floren, Andreas

    2014-01-01

    Arboreal spiders in deciduous and coniferous trees were investigated on their distribution and diversity. Insecticidal knock-down was used to comprehensively sample spiders from 175 trees from 2001 to 2003 in the Białowieża forest and three remote forests in Poland. We identified 140 species from 9273 adult spiders. Spider communities were distinguished between deciduous and coniferous trees. The richest fauna was collected from Quercus where beta diversity was also highest. A tree-species-specific pattern was clearly observed for Alnus, Carpinus, Picea and Pinus trees and also for those tree species that were fogged in only four or three replicates, namely Betula and Populus. This hitherto unrecognised association was mainly due to the community composition of common species identified in a Dufrene-Legendre indicator species analysis. It was not caused by spatial or temporal autocorrelation. Explaining tree-species specificity for generalist predators like spiders is difficult and has to involve physical and ecological tree parameters like linkage with the abundance of prey species. However, neither did we find a consistent correlation of prey group abundances with spiders nor could differences in spider guild composition explain the observed pattern. Our results hint towards the importance of deterministic mechanisms structuring communities of generalist canopy spiders although the casual relationship is not yet understood.

Top