Science.gov

Sample records for densities refractive indices

  1. Densities, surface tensions, and refractive indices of the water + 1,3-propanediol system

    SciTech Connect

    Lee, J.W.; Park, S.B.; Lee, H.

    2000-04-01

    Various working fluids have been proposed to satisfy specific conditions required for such systems as air-cooled absorption chillers, low-temperature heat-driven heat pumps, and solar-powered absorption chillers. Densities, surface tensions, and refractive indices of the binary water + 1,3-propanediol system were measured at temperatures of 298.15, 303.15, 308.15, 313.15, 318.15, and 323.15 K and at 1,3-propanediol mass fractions of 0.00, 0.10, 0.20, 0.40, 0.60, 0.80, and 1.00, respectively. The measured data were well correlated with the simple polynomial equations. The average absolute deviations were found to be 0.123% for density, 0.77% for surface tension, and 0.045% for refractive index.

  2. DENSITIES AND REFRACTIVE INDICES OF AQUEOUS SOLUTIONS. DIETHYLENETRIAMINE, TRIETHYLENETETRAMINE, AND TETRAETHYLENEPENTAMINE.

    DTIC Science & Technology

    diethylenetriamine, triethylenetetramine, and tetraethylenepentamine . The purification procedures and methods of analysis described by Chu and Thompson were employed. Refractive index and density data were determined at 25C. (Author)

  3. Indices of refraction for the HITRAN compilation

    NASA Technical Reports Server (NTRS)

    Massie, S. T.

    1994-01-01

    Indices of refraction of sulfuric acid solutions, water, and ice, which will become part of the HITRAN database, are discussed. Representative calculations are presented for the sulfate aerosol, to illustrate the broadband spectral features of i.r. aerosol extinction spectra. Values of the sulfuric acid mass density are used in an application of the Lorentz-Lorenz equation, which is used to estimate the sensitivity of extinction coefficients to temperature dependent refractive indices.

  4. Densities, refractive indices, and excess molar volumes of the ternary systems water + methanol + 1-octanol and water + ethanol + 1-octanol and their binary mixtures at 298. 15 K

    SciTech Connect

    Arce, A.; Blanco, A.; Soto, A.; Vidal, I. )

    1993-04-01

    The densities, refractive indices, and excess molar volumes of the ternary systems water + methanol + 1-octanol and water + ethanol + 1-octanol have been determined at 298.15 K. These physical properties are easily measured, and the authors' tabulated data thus allow indirect determination of the composition of arbitrary mixtures. The authors have found no directly comparable data in the literature, though data are available for the binary mixtures formed by these components and for other ternary mixtures containing these binary systems. The excess volumes have been correlated using Redlich-Kister functions.

  5. The real part of the refractive indices and effective densities for chemically segregated ambient aerosols in Guangzhou by a single particle aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Bi, X.; Qiu, N.; Han, B.; Lin, Q.; Peng, L.; Chen, D.; Wang, X.; Peng, P.; Sheng, G.; Zhou, Z.

    2015-12-01

    Microphysical properties of atmospheric aerosols are essential to better evaluate their radiative forcing. This paper first presents an estimate of the real part of the refractive indices (n) and effective densities (ρeff) of chemically segregated atmospheric aerosols in China. Vacuum aerodynamic diameter, chemical compositions, and light scattering intensities of individual particles were simultaneously measured by a single particle aerosol mass spectrometer (SPAMS) during fall of 2012 in Guangzhou. On the basis of Mie theory, n and ρeff were estimated for 17 particle types in four categories: organics (OC), elemental carbon (EC), internally mixed EC and OC (ECOC), and metal rich, respectively. Results indicate the presence of spherical or nearly spherical shape for majority of particle types, whose partial scattering cross section vs. sizes were well fitted to Mie theoretical modeling results. While sharing n in a narrow range (1.47-1.53), majority of particle types exhibited a wide range of ρeff (0.87-1.51 g cm-3). OC group is associated with the lowest ρeff (0.87-1.07 g cm-3), while metal rich group with the highest ones (1.29-1.51 g cm-3). It is noteworthy that a specific EC type exhibits a complex scattering curve vs. size due to the presence of both compact and irregularly shape particles. Overall, the results on detailed relationship between physical and chemical properties benefits future researches on the impact of aerosols on visibility and climate.

  6. Refractive Indices of Gases at Microwave Frequencies

    ERIC Educational Resources Information Center

    Goodhead, D. T.; And Others

    1976-01-01

    Describes a simple microwave interferometer capable of measuring small phase shifts. Proposes laboratory exercises involving the use of the interferometer in the determination of refractive indices of gases and the analysis of the reflection in a test chamber. (Author/CP)

  7. The real part of the refractive indices and effective densities for chemically segregated ambient aerosols in Guangzhou measured by a single-particle aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Zhang, Guohua; Bi, Xinhui; Qiu, Ning; Han, Bingxue; Lin, Qinhao; Peng, Long; Chen, Duohong; Wang, Xinming; Peng, Ping'an; Sheng, Guoying; Zhou, Zhen

    2016-03-01

    Knowledge on the microphysical properties of atmospheric aerosols is essential to better evaluate their radiative forcing. This paper presents an estimate of the real part of the refractive indices (n) and effective densities (ρeff) of chemically segregated atmospheric aerosols in Guangzhou, China. Vacuum aerodynamic diameter, chemical compositions, and light-scattering intensities of individual particles were simultaneously measured by a single-particle aerosol mass spectrometer (SPAMS) during the fall of 2012. On the basis of Mie theory, n at a wavelength of 532 nm and ρeff were estimated for 17 particle types in four categories: organics (OC), elemental carbon (EC), internally mixed EC and OC (ECOC), and Metal-rich. The results indicate the presence of spherical or nearly spherical shapes for the majority of particle types, whose partial scattering cross-section versus sizes were well fitted to Mie theoretical modeling results. While sharing n in a narrow range (1.47-1.53), majority of particle types exhibited a wide range of ρeff (0.87-1.51 g cm-3). The OC group is associated with the lowest ρeff (0.87-1.07 g cm-3), and the Metal-rich group with the highest ones (1.29-1.51 g cm-3). It is noteworthy that a specific EC type exhibits a complex scattering curve versus size due to the presence of both compact and irregularly shaped particles. Overall, the results on the detailed relationship between physical and chemical properties benefits future research on the impact of aerosols on visibility and climate.

  8. Measuring Variable Refractive Indices Using Digital Photos

    ERIC Educational Resources Information Center

    Lombardi, S.; Monroy, G.; Testa, I.; Sassi, E.

    2010-01-01

    A new procedure for performing quantitative measurements in teaching optics is presented. Application of the procedure to accurately measure the rate of change of the variable refractive index of a water-denatured alcohol mixture is described. The procedure can also be usefully exploited for measuring the constant refractive index of distilled…

  9. EDITORIAL: Sensitive structures: refractive indices in nanotechnology Sensitive structures: refractive indices in nanotechnology

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2012-12-01

    Refractive index effects using nanoscale systems are frequently applied in new imaging, sensing and even visibility cloaking technology. In this issue, researchers in Japan use simulations and experiments to describe the confinement of optical vortices in nanoscale fin structures and the sensitivity of these systems to the refractive index of the surrounding media [1]. The effects of refraction as light rays pass between different media were recorded as long ago as the first century AD, by Ptolemy [2]. Over the following centuries the phenomena inspired Ibn Sahl in 984 [3], Thomas Harriot in 1602 [4], Willebrord Snellius in 1621 [5] and Rene Descartes in 1637 [6] to independently derive the more accurate and elegant equation for refraction so familiar to us today. Recent studies of the interactions between light and matter continue to reveal a wealth of phenomena that originate in the effects of the refractive indices of materials. Nanostructures can be used to manipulate conditions that affect the refractive indices of materials, such as temperature. A E Aliev et al at the University of Texas reported a striking demonstration of temperature-dependent refractive index effects using a free-standing, highly aligned carbon nanotube aerogel sheet [7]. They used the extremely low thermal capacitance and high heat transfer ability of transparent carbon nanotube sheets to enable high-frequency modulation of the sheet temperature over an enormous temperature range. The resulting sharp, rapidly changing gradient of the refractive index in the surrounding liquid or gas makes objects seem to disappear and can be used for visibility cloaking. Light-matter interaction resonances, where light is confined at the nanoscale, can be extremely sensitive to changes in the refractive index of the surrounding media [8], even allowing single-molecule detection [9]. Plasmons, the collective oscillations of electrons in response to incident light, are a typical example. Researchers at Rice

  10. Comment on "Refractive indices of biaxial crystals evaluated from the refractive indices ellipsoid equation"

    NASA Astrophysics Data System (ADS)

    Hernández-Rodríguez, Cecilio; Fragoso-López, Ana Belén

    2014-02-01

    In 2007 Yin, Zhang and Tian [1] [Yin et al., 2007] derived the expressions of the refractive indices of biaxial crystals evaluated from the refractive indices ellipsoid equation. In the past we have researched about the simultaneous measurement of birefringence and optical activity in different crystals [2] [Hernández-Rodríguez et al., 2000], [3] [Hernández-Rodríguez and Gómez-Garrido, 2000], [4] [Herreros-Cedrés et al., 2003], [5] [Herreros-Cedrés et al., 2005] and [6] [Herreros-Cedrés et al., 2007], and recently, when we used their methods for the study of nonlinear crystals such as KTiOAsO4 (KTA) and KTiOPO4 (KTP), we found some errors in some expressions in their paper which were used by other authors [7] [Gao et al., 2003].

  11. Lens Design Using Group Indices of Refraction

    NASA Technical Reports Server (NTRS)

    Vaughan, A. H.

    1995-01-01

    An approach to lens design is described in which the ratio of the group velocity to the speed of light (the group index) in glass is used, in conjunction with the more familiar phase index of refraction, to control certain chromatic properties of a system of thin lenses in contact. The first-order design of thin-lens systems is illustrated by examples incorporating the methods described.

  12. Interferometric Methods of Measuring Refractive Indices and Double-Refraction of Fibres.

    ERIC Educational Resources Information Center

    Hamza, A. A.; El-Kader, H. I. Abd

    1986-01-01

    Presents two methods used to measure the refractive indices and double-refraction of fibers. Experiments are described, with one involving the use of Pluta microscope in the double-beam interference technique, the other employing the multiple-beam technique. Immersion liquids are discussed that can be used in the experiments. (TW)

  13. Achromatic doublets using group indices of refraction

    NASA Astrophysics Data System (ADS)

    Rosete-Aguilar, M.; Estrada-Silva, F. C.; Román-Moreno, C. J.; Ortega-Martínez, R.

    2008-03-01

    One main function of short pulses is to concentrate energy in time and space [1]. The use of refractive lenses allows us to concentrate energy in a small volume of focusing around the focal point of the lens. When using refractive lenses, there are three effects that affect the concentration of energy around the focal point of the lens. These are the group velocity dispersion (GVD), the propagation time difference (PTD), and the aberrations of the lens. In this paper, we study lenses which are diffraction limited so that the monochromatic aberrations are negligible; the group velocity dispersion and the propagation time difference are the main effects affecting the spreading of the pulse at the focus. We will show that for 100-fs pulses the spatial spreading is larger than the temporal spreading of the pulse. It is already known that the effect of spatial spreading of the pulse due to PTD can be reduced by using achromatic optics. We use the theory proposed by A. Vaughan to analyze simple lenses and normal achromatic doublets, where normal means doublets that we can buy from catalogs. We then use the Vaughan theory to design achromatic doublets in phase and group, which produce no spatial spreading of the pulse, i.e., PTD = 0, when the doublet is designed for the carrier of the pulse. We compare these phase and group achromatic doublets with normal achromatic doublets. Finally, we show that apochromatic optics can give a much better correction of PTD than using normal achromatic doublets.

  14. Intermolecular interaction in plant oils from refractive and density measurements

    NASA Astrophysics Data System (ADS)

    Andriyevsky, B.; Andriyevska, L.; Piecuch, T.

    2010-12-01

    Refractive indices n and density ρ of three plant oils (Anise, Nigelle, and Juniper berries) have been measured in the temperature range of 10-60°C. The model of the effective electric field E' acting on a molecule in the material, E' = E + x4π P, with the unlimited value of the coefficient of polarization input x has been applied to the analysis of the results obtained. The value x of the oils studied have been found to be in the range of 0.193-0.269, which is smaller than a similar value for water ( x water > 0.3), known as a strong polar liquid.

  15. Temperature and concentration dependences of density and refraction of aqueous duloxetine solutions

    NASA Astrophysics Data System (ADS)

    Deosarkar, S. D.; Deoraye, S. M.; Kalyankar, T. M.

    2014-07-01

    Present paper reports the measured densities (ρ) and refractive indices ( n D) of aqueous solutions of Duloxetine drug in wide range of molal concentrations ( m = 0.0101-0.1031 mol kg-1) and at different temperatures (297.15, 302.15, and 307.15 K). Apparent molar volumes (φv) of drug were calculated from density data and fitted to Masson's relation and partial molar volumes (φ{v/0}) were evaluated at different temperatures. Concentration dependence of refractive index ( n D = Kc + n {D/0}) at experimental temperature has been studied. Density and refractive index data has been used for the calculation of specific refractions ( R D). Experimental (ρ and n D) and calculated (φv, φ{v/0}, and R D) properties have been interpreted in terms of concentration and temperature effects on structural fittings and drug-water interactions.

  16. Calculation of refraction indices of triple chalcogenide crystals

    NASA Astrophysics Data System (ADS)

    Kamenshchikov, V. N.; Suslikov, L. M.

    2015-04-01

    We use Harrison's bond-orbital method to calculate high frequency refraction indices of AgGaS2, CdGa2S4, and CdGa2Se4 crystals. We demonstrate a satisfactory agreement between obtained results and experimental data.

  17. X-ray refraction effect and density determination of steep-gradient, high-density plasma

    NASA Astrophysics Data System (ADS)

    Miyanaga, N.; Kato, Y.; Yamanaka, C.

    1982-12-01

    X-ray defraction due to the steep density gradient of a laser-produced plasma has been observed. Distribution of the density gradient was determined from the measured refraction angle. Estimation of the radial density profile and the density scale length in the high-density region near the ablation surface are presented.

  18. Aqueous ammonium thiocyanate solutions as refractive index-matching fluids with low density and viscosity

    NASA Astrophysics Data System (ADS)

    Borrero-Echeverry, D.; Morrison, B. C. A.

    2016-07-01

    We show that aqueous solutions of ammonium thiocyanate ({NH}4{SCN}) can be used to match the index of refraction of several transparent materials commonly used in experiments, while maintaining low viscosity and density compared to other common refractive index-matching liquids. We present empirical models for estimating the index of refraction, density, and kinematic viscosity of these solutions as a function of temperature and concentration. Finally, we summarize the chemical compatibility of ammonium thiocyanate with materials commonly used in apparatus.

  19. Refraction indices of spatially nonuniform magnetic systems and nanostructures from the first principles

    NASA Astrophysics Data System (ADS)

    Pozhar, Liudmila A.

    2010-05-01

    An equilibrium two-time temperature Green's function (TTGF)-based, quantum statistical mechanical approach has been used to derive from the first principles an explicit expression for the tensor of "local" refraction indices of spatially nonuniform systems in weak external electromagnetic (EM) fields in the linear approximation with regard to the field magnitudes. Written in terms of the TTGF-based, first-principle tensorial dielectric and magnetic susceptibilities, the obtained formula for the local tensor of refraction indices (TRI) is applicable to any system, including individual nanoscale objects, such as quantum dots and wires, magnetic nanostructures, composite materials, or spatially nonuniform, bulk magnetic materials. An explicit expression for the space-time Fourier transform (STFT) of the dielectric susceptibility tensor used in TRI is derived in terms of STFTs of the charge density—charge density TTGFs, while the corresponding STFT of the magnetic susceptibility tensor also includes STFTs of the microcurrent—microcurrent TTGFs. The STFTs of the equilibrium TTGFs featuring in the susceptibilities, and thus necessary to calculate TRI, can be obtained by equilibrium quantum statistical mechanical means, modeling and simulations, or from experimental data. Two TRI regimes of significant interest for applications that can be realized in spatially inhomogeneous magnetic systems have been identified.

  20. Stratospheric aerosol acidity, density, and refractive index deduced from SAGE 2 and NMC temperature data

    NASA Technical Reports Server (NTRS)

    Yue, G. K.; Poole, L. R.; Wang, P.-H.; Chiou, E. W.

    1994-01-01

    Water vapor concentrations obtained by the Stratospheric Aerosol and Gas Experiment 2 (SAGE 2) and collocated temperatures provided by the National Meteorological Center (NMC) from 1986 to 1990 are used to deduce seasonally and zonally averaged acidity, density, and refractive index of stratospheric aerosols. It is found that the weight percentage of sulfuric acid in the aerosols increases from about 60 just above the tropopause to about 86 at 35 km. The density increases from about 1.55 to 1.85 g/cu cm between the same altitude limits. Some seasonal variations of composition and density are evident at high latitudes. The refractive indices at 1.02, 0.694, and 0.532 micrometers increase, respectively, from about 1.425, 1.430, and 1.435 just above the tropopause to about 1.445, 1.455, and 1.458 at altitudes above 27 km, depending on the season and latitude. The aerosol properties presented can be used in models to study the effectiveness of heterogeneous chemistry, the mass loading of stratospheric aerosols, and the extinction and backscatter of aerosols at different wavelengths. Computed aerosol surface areas, rate coefficients for the heterogeneous reaction ClONO2 + H2O yields HOCl + HNO3 and aerosol mass concentrations before and after the Pinatubo eruption in June 1991 are shown as sample applications.

  1. Refractive indices of polymer-dispersed liquid-crystal film materials: Epoxy-based systems

    NASA Astrophysics Data System (ADS)

    Vaz, Nuno A.; Montgomery, G. Paul, Jr.

    1987-10-01

    Polymer-dispersed liquid crystal (PDLC) films are potentially useful in applications requiring electrically controllable light transmission. In these applications, both a high on-state transmittance and a strong off-state attenuation are often needed over a wide operating temperature range. These transmittance characteristics depend strongly on the refractive indices of the materials in the PDLC films. We have measured the temperature dependent refractive indices of typical PDLC film materials and the temperature dependent electro-optic transmittance of a PDLC film composed of liquid crystal microdroplets dispersed in an epoxy matrix. We show that our refractive index measurements can account for all the features in the measured transmittance characteristics and discuss several methods for controlling refractive indices to optimize electro-optic transmittance over an extended temperature range. We have also measured the room temperature refractive indices of mixtures of epoxy resins and hardeners as a function of composition. We discuss the problems associated with predicting the refractive indices of such mixtures in terms of either the volume fractions or mole fractions of the mixture components. These considerations are important in matching refractive indices of droplets and matrix materials to maximize on-state transmittance. The refractive indices of epoxy matrix materials increase monotonically with time during their chemical cure. The measured time dependence can be described by a simple model in which the concentrations of the reacting resin and hardener each decay exponentially in time with their own characteristic time constants while the concentration of the cured polymer increases. Finally, we relate the measured rates of index change with temperature to the coefficients of volume expansion of PDLC film materials; the results are used to discuss the mechanical stability of PDLC films.

  2. Determination of refractive indices of biconvex lenses by use of a Michelson interferometer.

    PubMed

    Chhaniwal, Vani K; Anand, Arun; Narayanamurthy, C S

    2006-06-10

    Measurements of lens parameters such as focal length, radius of curvature, and refractive index are important. We describe a measurement method that utilizes a Michelson interferometer to determine parameters of thin, convex lenses. The real fringe system formed by a Michelson interferometer is used to determine the focal lengths and the radii of curvature of the lenses. The refractive index of the lens material is determined from the thin-lens formula. We were able to determine the refractive indices to an accuracy as great as 99.97%. A detailed theoretical and experimental analysis is given.

  3. [Measurement and analysis on complex refraction indices of pear pollen in infrared band].

    PubMed

    Li, Le; Hu, Yi-hua; Gu, You-lin; Chen, Wei; Zhao, Yi-zheng; Chen, Shan-jing

    2015-01-01

    Pollen is an important part of bioaerosols, and its complex refractive index is a crucial parameter for study on optical characteristics and detection, identification of bioaerosols. The reflection spectra of pear pollen within the 2. 5 - 15µm waveband were measured by squash method. Based on the measured data, the complex refractive index of pear pollen within the wave-band of 2. 5 to 15 µm was calculated by using Kramers-Kroning (K-K) relation, and calculation deviation about incident angle and different reflectivities at high and low frequencies.were analyzed. The results indicate that 18 degrees angle of incidence and different reflectivities at high and low frequencies have little effect on the results, and it is practicable to calculate the complex refractive index of pollen based on its reflection spectral data. The data of complex refractive index of pollen have some reference value for optical characteristics of pollen, detection and identification of bioaerosols.

  4. Investigative Studies of Refractive Indices of Liquids and a Demonstration of Refraction by the Use of a Laser Pointer and a Lazy Susan

    ERIC Educational Resources Information Center

    Wong, Siu Ling; Mak, Se-yuen

    2008-01-01

    We describe the design of a simple homemade apparatus for the measurement of the refractive indices of liquids and demonstration of refraction. A circular transparent plastic tank and a lazy Susan are held concentrically. A laser pointer is mounted on the lazy Susan with its laser beam pointing radially through the centre of the plastic tank.…

  5. Determination of the Dispersion of the Principal Refractive Indices for Birefringent Polypropylene Films

    NASA Astrophysics Data System (ADS)

    Bezruchenko, V. S.; Murauski, An. A.; Muravsky, Al. A.

    2014-07-01

    We present a novel method for determining the dispersion of the refractive indices of birefringent films, based on treatment of transmission spectra, in which we observe interference of light. The dispersion curves n x (λ) and n y (λ) were determined by treatment of transmission spectra obtained for normal incidence of radiation on a P2-25 birefringent fi lm, and n z (λ) was determined for oblique incidence of radiation. From the results of determination of the dispersions of the principal refractive indices of a birefringent P2-25 polypropylene film (Mogilevkhimvolokno OAO, Belarus), we established that the sample is a negative biaxial retarder with N z = 2.9.

  6. Refractive Indices and Some Other Optical Properties of Synthetic Emerald: Temperature Dependence

    DTIC Science & Technology

    2000-09-29

    The temperature dependence of the refractive indices for ordinary and extraordinary rays of mercury spectrum three lines and laser line independently...temperature growth and this dependence has quasilinear character. Emerald has quite low birefringence values that increases slightly along with the temperature

  7. Indication of advanced orthokeratology as an additional treatment after refractive surgeries

    NASA Astrophysics Data System (ADS)

    Mitsui, Iwane; Yamada, Yoshida

    2005-04-01

    Ortho-K was indicated for twenty-three eyes of thirteen patients after refractive surgeries such as RK(1) ,PRK(2), and LASIK(3). The average of their Uncorrective Visual Acuity (UCVA) after surgeries was 20/30 or worse, and mean spherical equivalent (SE) was -2.42D. They were followed at least two years wearing of Advanced Ortho-K lenses during night. The following studies were examined on their auto-refraction, auto-keratometry, uncorrected and corrected visual acuity, intra-ocular pressure, corneal endothelium, corneal thickness, corneal curvature, and corneal shape for more than two years. 95% of the patients improved in UCVA up to 20/20 or better, 86% of them improved up to 20/15 or better, and 76% of them improved up to 20/10. The mean SEs improved to -1.20+/-1.02D during six months, - 1.03+/-0.83D during one year, and -0.73+/-0.64D during two years. Astigmatism also slightly decreased. Ophthalmologic examinations showed no abnormalities including flap formation, intra-ocular pressure, and endothelium. Among the refractive surgeries as well as RK and PRK, LASIK has been most popularly spread all over the world. However, patient's quality of vision is not always satisfied during and/or after refractive surgeries, because of several complications such as instability of flap formation, unexpected keratoectasia, diffuse lamellar keratitis, epithelial ingrowth, irregularity of corneal surface which caused myopia regression. In such cases, additional surgical procedures should not be indicated easily. However, Ortho-K is safe and effective enough to correct refractive errors still remained or re-appeared after refractive surgeries. It enables to restore the corneal irregularity to the ideal shape.

  8. Refractive index enhancement with vanishing absorption in short, high-density vapor cells

    NASA Astrophysics Data System (ADS)

    Simmons, Z. J.; Proite, N. A.; Miles, J.; Sikes, D. E.; Yavuz, D. D.

    2012-05-01

    It has recently been predicted and experimentally demonstrated that the refractive index of a vapor may be enhanced while maintaining vanishing absorption by using the interference of two Raman transitions, one absorptive and one amplifying in nature. In this paper, we present a detailed experimental study of this technique in a 1-mm-long rubidium (Rb) vapor cell with densities exceeding 1014 cm-3. We study the optimization of the achieved refractive index as various experimental parameters are varied and discuss a number of limitations of the current experiments. We also present a detailed discussion of possible experimental improvements and future prospects of this technique.

  9. Airborne Lidar Point Cloud Density Indices

    NASA Astrophysics Data System (ADS)

    Shih, P. T.; Huang, C.-M.

    2006-12-01

    Airborne lidar is useful for collecting a large volume and high density of points with three dimensional coordinates. Among these points are terrain points, as well as those points located aboveground. For DEM production, the density of the terrain points is an important quality index. While the penetration rate of laser points is dependent on the surface type characteristics, there are also different ways to present the point density. Namely, the point density could be measured by subdividing the surveyed area into cells, then computing the ratio of the number of points in each respective cell to its area. In this case, there will be one density value for each cell. The other method is to construct the TIN, and count the number of triangles in the cell, divided by the area of the cell. Aside from counting the number of triangles, the area of the largest, or the 95% ranking, triangle, could be used as an index as well. The TIN could also be replaced by Voronoi diagrams (Thiessen Polygon), and a polygon with even density could be derived from human interpretation. The nature of these indices is discussed later in this research paper. Examples of different land cover types: bare earth, built-up, low vegetation, low density forest, and high density forest; are extracted from point clouds collected in 2005 by ITRI under a contract from the Ministry of the Interior. It is found that all these indices are capable of reflecting the differences of the land cover type. However, further investigation is necessary to determine which the most descriptive one is.

  10. Passive device based on plastic optical fibers to determine the indices of refraction of liquids.

    PubMed

    Zubia, J; Garitaonaindía, G; Arrúe, J

    2000-02-20

    We have designed and measured a passive device based on plastic optical fibers (POF's) that one can use to determine the indices of refraction of liquids. A complementary software has also been designed to simulate the behavior of the device. We report on the theoretical model developed for the device, its implementation in a simulation software program, and the results of the simulation. A comparison of the experimental and calculated results is also shown and discussed.

  11. XUV complex refractive indices of aerosols in the atmospheres of Titan and the primitive Earth

    NASA Astrophysics Data System (ADS)

    Gavilan, Lisseth; Neumann, Maciej; Bulkin, Pavel; Popescu, Horia; Steffan, Martin; Esser, Norbert; Carrasco, Nathalie

    2016-10-01

    The complex refractive indices of tholins, simulating aerosols in the atmosphere of Titan and the primitive earth, have been measured over a wide spectral range, including the soft X-ray, vacuum-ultraviolet (VUV), and UV-Visible. The soft X-ray and VUV spectral ranges are in particular relevant to radiative transfer models of solar irradiation of primitive atmospheres (Lammer et al. 2008) and may elucidate the (anti-)greenhouse potential of photochemical aerosols.Thin films were grown using the PAMPRE capacitively coupled plasma setup (Szopa et al. 2006; Carrasco et al. 2009). Gas mixtures consisting of CH4/N2 with 5:95 ratios were used to simulate Titan's atmospheric composition. For the primitive Earth, gas mixtures of N2/CO2/H2 and N2/CO2/CH4 were used as described in Fleury et al. (2014).State-of-the-art laboratory techniques were used to determine the refractive indices of such tholin films. These include VUV ellipsometry (performed in collaboration with the Metrology Light Source in Berlin) and synchrotron X-ray spectroscopy (performed at the SEXTANTS beamline of the SOLEIL synchrotron). While VUV spectroscopy reveals new electronic transitions due to plasmon resonances in tholins, X-ray spectra reveal the C and O absorption edges of these solids. The refractive indices are compared to results from Khare et al. (1984). Implications on the optical properties of these aerosol analogs on the radiative modeling of primitive atmospheres will be discussed.

  12. Volumetric Properties, Viscosities, and Refractive Indices of the Binary Systems 1-Butanol + PEG 200, + PEG 400, and + TEGDME

    NASA Astrophysics Data System (ADS)

    Živković, N.; Šerbanović, S.; Kijevčanin, M.; Živković, E.

    2013-06-01

    Densities, viscosities, and refractive indices of three binary systems consisting of 1-butanol with polyethylene glycols of different molecular weights (PEG 200 and PEG 400) or tetraethylene glycol dimethyl ether (TEGDME) were measured at ten temperatures (288.15, 293.15, 298.15, 303.15, 308.15, 313.15, 318.15, 323.15, 328.15, and 333.15) K and atmospheric pressure. Densities of the selected binary mixtures were measured with an Anton Paar DMA 5000 digital vibrating U-tube densimeter, refractive indices were measured with an automatic Anton Paar RXA-156 refractometer, while for viscosity measurements, a digital Stabinger SVM 3000/G2 viscometer was used. From these data, excess molar volumes were calculated and fitted to the Redlich-Kister equation. The obtained results have been analyzed in terms of specific molecular interactions and mixing behavior between mixture components, as well as the influence of temperature on them. Viscosity data were also correlated by Grunberg-Nissan, Eyring-UNIQUAC, three-body McAlister, and Eyring-NRTL models.

  13. Binary and Ternary Mixtures of Biopolymers and Water: Viscosity, Refractive Index, and Density

    NASA Astrophysics Data System (ADS)

    Silva, Bárbara Louise L. D.; Costa, Bernardo S.; Garcia-Rojas, Edwin E.

    2016-08-01

    Biopolymers have been the focus of intense research because of their wide applicability. The thermophysical properties of solutions containing biopolymers have fundamental importance for engineering calculations, as well as for thermal load calculations, energy expenditure, and development of new products. In this work, the thermophysical properties of binary and ternary solutions of carboxymethylcellulose and/or high methoxylation pectin and water at different temperatures have been investigated taking into consideration different biopolymer concentrations. The experimental data related to the thermophysical properties were correlated to obtain empirical models that can describe the temperature-concentration combined effect on the density, refractive index, and dynamic viscosity. From data obtained from the experiments, the density, refractive index, and dynamic viscosity increase with increasing biopolymer concentration and decrease with increasing temperature. The polynomial models showed a good fit to the experimental data and high correlation coefficients (R2ge 0.98) for each studied system.

  14. Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices.

    PubMed

    Zhu, Bofeng; Ren, Guobin; Zheng, Siwen; Lin, Zhen; Jian, Shuisheng

    2013-07-15

    We propose in this paper a dielectric-graphene-dielectric tunable infrared waveguide based on multilayer metamaterials with ultrahigh refractive indices. The waveguide modes with different orders are systematically analyzed with numerical simulations based on both multilayer structures and effective medium approach. The waveguide shows hyperbolic dispersion properties from mid-infrared to far-infrared wavelength, which means the modes with ultrahigh mode indices could be supported in the waveguide. Furthermore, the optical properties of the waveguide modes could be tuned by the biased voltages on graphene layers. The waveguide may have various promising applications in the quantum cascade lasers and bio-sensing.

  15. Measurements of the refractive indices and refractive index increment of a synthetic PMMA solutions at 488 nm

    NASA Astrophysics Data System (ADS)

    Ghazy, R.; El-Baradie, B.; El-Shaer, A.; El-Mekawey, F.

    1999-12-01

    We describe a Mach-Zehnder interferometer (MZI) method for measuring the refractive index (RI) of polymethyl-methacrylate (PMMA) solution in both acetone and methyl-ethyl-ketone (MEK). The measurements are made as a function of concentration values 4, 8, 12, 16 and 20 g/l at a wavelength of 488 nm with a high degree of accuracy tends to 1.4×10 -5. The refractive index increments (RIIs) d n/d c of PMMA in both investigated solvents are determined too. In addition, the RIIs Δ n as a function of concentration and the RIIs at zero concentration (d n/d c) c=0 are determined for both solvents accurately. The PMMA solutions in acetone and MEK solvents are chosen for laser light scattering investigations.

  16. Quantitative Mass Density Image Reconstructed from the Complex X-Ray Refractive Index

    PubMed Central

    Mukaide, Taihei; Iida, Atsuo; Watanabe, Masatoshi; Takada, Kazuhiro; Noma, Takashi

    2015-01-01

    We demonstrate a new analytical X-ray computed tomography technique for visualizing and quantifying the mass density of materials comprised of low atomic number elements with unknown atomic ratios. The mass density was obtained from the experimentally observed ratio of the imaginary and real parts of the complex X-ray refractive index. An empirical linear relationship between the X-ray mass attenuation coefficient of the materials and X-ray energy was found for X-ray energies between 8 keV and 30 keV. The mass density image of two polymer fibers was quantified using the proposed technique using a scanning-type X-ray microbeam computed tomography system equipped with a wedge absorber. The reconstructed mass density agrees well with the calculated one. PMID:26114770

  17. Computation of Mass Density Images from X-ray Refraction-Angle Images

    SciTech Connect

    Wernick,M.; Yang, Y.; Mondal, I.; Chapman, D.; Hasnah, M.; Parham, C.; Pisano, E.; Zhong, Z.

    2006-01-01

    In this paper, we investigate the possibility of computing quantitatively accurate images of mass density variations in soft tissue. This is a challenging task, because density variations in soft tissue, such as the breast, can be very subtle. Beginning from an image of refraction angle created by either diffraction-enhanced imaging (DEI) or multiple-image radiography (MIR), we estimate the mass-density image using a constrained least squares (CLS) method. The CLS algorithm yields accurate density estimates while effectively suppressing noise. Our method improves on an analytical method proposed by Hasnah et al (2005 Med. Phys. 32 549-52), which can produce significant artifacts when even a modest level of noise is present. We present a quantitative evaluation study to determine the accuracy with which mass density can be determined in the presence of noise. Based on computer simulations, we find that the mass-density estimation error can be as low as a few per cent for typical density variations found in the breast. Example images computed from less-noisy real data are also shown to illustrate the feasibility of the technique. We anticipate that density imaging may have application in assessment of water content of cartilage resulting from osteoarthritis, in evaluation of bone density, and in mammographic interpretation.

  18. Consistency of dimensional distributions and refractive indices of desert dust measured over Lampedusa with IASI radiances

    NASA Astrophysics Data System (ADS)

    Liuzzi, Giuliano; Masiello, Guido; Serio, Carmine; Meloni, Daniela; Di Biagio, Claudia; Formenti, Paola

    2017-02-01

    In the context of the ChArMEx campaign, we present here some results concerning the quantitative comparison between simulated and observed radiances in the presence of atmospheric desert dust, between June and July 2013 in the southern Mediterranean Basin, in the air mass above the island of Lampedusa. In particular, comparisons have been performed between radiances as observed by the Infrared Atmospheric Sounder Interferometer (IASI) and those simulated using the σ-IASI-as radiative transfer model, which takes into account aerosol extinction effect through a set of fast parameterizations. Simulations have been carried out using different sets of input complex refractive indices, which take into account the parent soils of the aerosols. Their accuracy also relies on the quality of the characterization of desert dust microphysical properties, achieved through direct measurements in the ChArMEx experiment. On the one hand, the fact that the model can ingest such a variable input proves its feasibility. On the other hand, this work goes through a direct validation of different refractive index sets for desert dust in the thermal infrared, and pursues an assessment of the sensitivity of IASI data with respect to the dimensional distribution of desert dust particles. Results show a good consistency between calculations and observations, especially in the spectral interval 800-1000 cm-1; further, the comparison between calculations and observations suggests that further efforts are needed to better characterize desert dust optical properties in the shortwave (above 2000 cm-1). Whatever the case, we show that it is necessary to properly tune the refractive indices according to the geographical origin of the observed aerosol.

  19. Application of the discrete dipole approximation to very large refractive indices: Filtered coupled dipoles revived.

    PubMed

    Yurkin, Maxim A; Min, Michiel; Hoekstra, Alfons G

    2010-09-01

    We compared three formulations of the discrete dipole approximation (DDA) for simulation of light scattering by particles with refractive indices m=10+10i , 0.1+i , and 1.6+0.01i . These formulations include the filtered coupled dipoles (FCD), the lattice dispersion relation (LDR) and the radiative reaction correction. We compared the number of iterations required for the convergence of the iterative solver (proportional to simulation time) and the accuracy of final results. We showed that the LDR performance for m=10+10i is especially bad, while the FCD is a good option for all cases studied. Moreover, we analyzed the detailed structure of DDA errors and the spectrum of the DDA interaction matrix to understand the performance of the FCD. In particular, this spectrum, obtained with the FCD for particles smaller than the wavelength, falls into the bounds, physically implied for the spectrum of the infinite-dimensional integral scattering operator, contrary to two other DDA formulations. Finally, such extreme refractive indices can now be routinely simulated using modern desktop computers using the publicly available ADDA code, which includes an efficient implementation of the FCD.

  20. Structural properties of aqueous metoprolol succinate solutions. Density, viscosity, and refractive index at 311 K

    NASA Astrophysics Data System (ADS)

    Deosarkar, S. D.; Kalyankar, T. M.

    2013-06-01

    Density, viscosity and refractive index of aqueous solutions of metoprolol succinate of different concentrations (0.005-0.05 mol dm-3) were measured at 38°C. Apparent molar volume of resultant solutions were calculated and fitted to the Masson's equation and apparent molar volume at infinite dilution was determined graphically. Viscosity data of solutions has been fitted to the Jone-Dole equation and viscosity A- and B-coefficients were determined graphically. Physicochemical data obtained were discussed in terms of molecular interactions.

  1. Refractive index modulation vs. before-bleach optical density modulation characteristics of silver halide phase holograms

    NASA Astrophysics Data System (ADS)

    Bányász, I.

    2005-01-01

    A large number of plane-wave holograms were recorded in Agfa-Gevaert 8E75HD holographic plates, at a wide range of bias exposures and fringe visibilities. The plates were processed with various combinations of developers (AAC, Pyrogallol and Catechol) and bleaching agents (R-9 and EDTA). A pair of absorption and phase holograms was recorded at each value of the recording parameters. Optical densities before bleaching were determined using the absorption holograms. Then each phase grating was studied by phase-contrast microscopy, using a high-power immersion (100×) objective. Thus modulation of the refractive index as a function of the bias exposure and the visibility of the recording interference pattern could be determined. To characterize the processing, the modulation of the refractive index of the processed phase holograms was related to the amplitude of the optical density modulation obtained at the development step. These characteristics are especially useful for the comparison of various bleaching agents used with the same developer. Characteristics of similar forms were obtained for all the processing types, with significant differences in the slope and extent of the curves, so that sensitivity, linearity and dynamic range of the processes could be compared directly.

  2. Modulation instability in a zigzag array of nonlinear waveguides with alternating positive and negative refractive indices

    SciTech Connect

    Dovgiy, A A

    2014-12-31

    The modulation instability is analytically investigated in a zigzag array of tunnel-coupled optical waveguides with alternating refractive indices and Kerr nonlinearity. Particular solutions to a system of coupled nonlinear equations are found. They describe the propagation of electromagnetic waves that are uniform along the waveguide and their instability is studied. It is shown that the coupling coefficient between the waveguides, which are non-nearest neighbours, has a significant effect on the instability of the waves in question. When the coupling coefficient exceeds a certain threshold, the modulation instability disappears regardless of the radiation power. The influence of the ratio of the wave amplitudes in adjacent waveguides to the instability of the particular solutions is studied. Different variants of the nonlinear response in waveguides are considered. The studies performed present a new unusual type of the modulation instability in nonlinear periodic systems. (metamaterials)

  3. Determination of ordinary and extraordinary refractive indices of nematic liquid crystals by using wedge cells

    NASA Astrophysics Data System (ADS)

    Kędzierski, J.; Raszewski, Z.; Kojdecki, M. A.; Kruszelnicki-Nowinowski, E.; Perkowski, P.; Piecek, W.; Miszczyk, E.; Zieliński, J.; Morawiak, P.; Ogrodnik, K.

    2010-06-01

    A new accurate and fast interference method for determining ordinary and extraordinary refractive indices of nematic liquid crystals is presented and discussed. The method relies on microscopic measurements of distances between interference fringes appearing in polarised parallel coherent monochromatic light beam transmitted normally to the surfaces through a wedge cell filled with a nematic. Both glass plates confining the cell are coated with a partly transparent thin film of metal which is deposited by evaporation in vacuum. Owing to the multiple reflections between the surfaces and a small edge angle, the interference fringes observed near the wedge apex edge are sharp and equidistant. To apply this method one needs only small amount of an investigated liquid crystal. Basic mathematical formulae and results of an experiment are briefly discussed.

  4. Low hazard refractive index and density-matched fluid for quantitative imaging of concentrated suspensions of particles

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Knapp, Y.; Deplano, V.

    2016-05-01

    A novel refractive index and density-matched liquid-solid suspension system taking into account chemical hazard and health concerns was developed and characterized. The solid phase is made of PMMA spheres, the refractive index of which being adapted with a mixture of 2,2'-thiodiethanol and phosphate-buffered saline (PBS), while the density is adapted with a mixture of PBS and glycerol. The proposed chemicals present low hazard characteristics in comparison with former solutions. Data collected from density and refractive index measurements of the solid phase and of the different fluid constituents are used to define a specific ternary mixture adapted to commercial grade micron-size particles. The defined mixture is validated in a micron-sized granular flow experiment. The described method can be applied to other low-density solids.

  5. Transparent, immiscible, surrogate liquids with matchable refractive indexes: Increased range of density and viscosity ratios

    NASA Astrophysics Data System (ADS)

    Cadillon, Jérémy; Saksena, Rajat; Pearlstein, Arne J.

    2016-12-01

    By replacing the "heavy" silicone oil used in the oil phase of Saksena, Christensen, and Pearlstein ["Surrogate immiscible liquid pairs with refractive indexes matchable over a wide range of density and viscosity ratios," Phys. Fluids 27, 087103 (2015)] by one with a twentyfold higher viscosity, and replacing the "light" silicone oil in that work by one with a viscosity fivefold lower and a density about 10% lower, we have greatly extended the range of viscosity ratio accessible by index-matching the adjustable-composition oil phase to an adjustable-composition 1,2-propanediol + CsBr + H2O aqueous phase and have also extended the range of accessible density ratios. The new system of index-matchable surrogate immiscible liquids is capable of achieving the density and viscosity ratios for liquid/liquid systems consisting of water with the entire range of light or medium crude oils over the temperature range from 40 °F (4.44 °C) to 200 °F (93.3 °C) and can access the density and viscosity ratios for water with some heavy crude oils over part of the same temperature range. It also provides a room-temperature, atmospheric-pressure surrogate for the liquid CO2 + H2O system at 0 °C over almost all of the pressure range of interest in sub-seabed CO2 sequestration.

  6. Determination of polar stratospheric cloud particle refractive indices by use of in situ optical measurements and T-matrix calculations.

    PubMed

    Scarchilli, Claudio; Adriani, Alberto; Cairo, Francesco; Di Donfrancesco, Guido; Buontempo, Carlo; Snels, Marcel; Moriconi, Maria Luisa; Deshler, Terry; Larsen, Niels; Luo, Beiping; Mauersberger, Konrad; Ovarlez, Joelle; Rosen, Jim; Schreiner, Jochen

    2005-06-01

    A new algorithm to infer structural parameters such as refractive index and asphericity of cloud particles has been developed by use of in situ observations taken by a laser backscattersonde and an optical particle counter during balloon stratospheric flights. All three main particles, liquid, ice, and a no-ice solid (NAT, nitric acid trihydrate) of polar stratospheric clouds, were observed during two winter flights performed from Kiruna, Sweden. The technique is based on use of the T-matrix code developed for aspherical particles to calculate the backscattering coefficient and particle depolarizing properties on the basis of size distribution and concentration measurements. The results of the calculations are compared with observations to estimated refractive indices and particle asphericity. The method has also been used in cases when the liquid and solid phases coexist with comparable influence on the optical behavior of the cloud to estimate refractive indices. The main results prove that the index of refraction for NAT particles is in the range of 1.37-1.45 at 532 nm. Such particles would be slightly prolate spheroids. The calculated refractive indices for liquid and ice particles are 1.51-1.55 and 1.31-1.33, respectively. The results for solid particles confirm previous measurements taken in Antarctica during 1992 and obtained by a comparison of lidar and optical particle counter data.

  7. Determination of polar stratospheric cloud particle refractive indices by use of in situ optical measurements and T-matrix calculations

    NASA Astrophysics Data System (ADS)

    Scarchilli, Claudio; Adriani, Alberto; Cairo, Francesco; di Donfrancesco, Guido; Buontempo, Carlo; Snels, Marcel; Moriconi, Maria Luisa; Deshler, Terry; Larsen, Niels; Luo, Beiping; Mauersberger, Konrad; Ovarlez, Joelle; Rosen, Jim; Schreiner, Jochen

    2005-06-01

    A new algorithm to infer structural parameters such as refractive index and asphericity of cloud particles has been developed by use of in situ observations taken by a laser backscattersonde and an optical particle counter during balloon stratospheric flights. All three main particles, liquid, ice, and a no-ice solid (NAT, nitric acid trihydrate) of polar stratospheric clouds, were observed during two winter flights performed from Kiruna, Sweden. The technique is based on use of the T-matrix code developed for aspherical particles to calculate the backscattering coefficient and particle depolarizing properties on the basis of size distribution and concentration measurements. The results of the calculations are compared with observations to estimated refractive indices and particle asphericity. The method has also been used in cases when the liquid and solid phases coexist with comparable influence on the optical behavior of the cloud to estimate refractive indices. The main results prove that the index of refraction for NAT particles is in the range of 1.37-1.45 at 532 nm. Such particles would be slightly prolate spheroids. The calculated refractive indices for liquid and ice particles are 1.51-1.55 and 1.31-1.33, respectively. The results for solid particles confirm previous measurements taken in Antarctica during 1992 and obtained by a comparison of lidar and optical particle counter data.

  8. Real refractive indices of infrared-characterized nitric-acid/ice films: Implications for optical measurements of polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Middlebrook, Ann M.; Berland, Brian S.; George, Steven M.; Tolbert, Margaret A.; Toon, Owen B.

    1994-01-01

    The infrared spectra of nitric-acid/ice films representative of polar stratospheric clouds (PSCs) were collected with simultaneous optical interference measurements to determine the real refractive indices at lambda = 632 nm. Ice and amphorous nitric-acid/ice films were prepared by condensation of water and nitric acid vapors onto a wedged Al2O3 substrate. The real refractive indices of these films were determined from the optical interference of a reflected helium-neon laser during film growth. The indices of the amphorous films varied smoothly from n = 1.30 for ice to n = 1.49 for nitric acid, similar to observations in previous work. We were unable to obtain the refractive index of crystlline films during adsorption because of optical scattering caused by surface roughness. Therefore crystlline nitric acid hydrate films were prepared by annealing amphorous nitric-acid/ice films. Further heating caused desorption of the crystalline hydrate films. During desorption, the refractive indices for ice, NAM (nitric acid monohydrate), alpha- and beta-NAT (nitric acid trihydrate) films were measured using the optical interference technique. In agreement with earlier data, the real refractive indices for ice and NAM determined in desorption were n = 1.30 +/- 0.01 and n = 1.53 +/- 0.03, respectively. The real refractive indices for alpha- and beta-NAT were found to be n = 1.51 +/- 0.01 and n greater than or equal to 1.46, respectively. Our measurements also suggest that the shape of crystalline nitric acid particles may depend on whether they nucleate from the liquid or by vapor deposition. If confirmed by future studies, this observation may provide a means of distinguishing the nucleation mechanism of crystalline PSCs.

  9. Accurate Measurements of Refractive Indices for Dielectrics in an Undergraduate Optics Laboratory for Science and Engineering Students

    ERIC Educational Resources Information Center

    Hsu, Wei-Tai; Bahrim, Cristian

    2009-01-01

    Based on our novel method recently published in the "Am. J. Phys." 77 337-43 (2009) for finding precise values of the indices of refraction for dielectrics from measurements of the polarized light reflected by the surface, in this paper we propose an improved technique for finding Brewster angles with a better precision, of 0.001 degrees, using…

  10. Comparison of discrete ordinate and Monte Carlo simulations of polarized radiative transfer in two coupled slabs with different refractive indices.

    PubMed

    Cohen, D; Stamnes, S; Tanikawa, T; Sommersten, E R; Stamnes, J J; Lotsberg, J K; Stamnes, K

    2013-04-22

    A comparison is presented of two different methods for polarized radiative transfer in coupled media consisting of two adjacent slabs with different refractive indices, each slab being a stratified medium with no change in optical properties except in the direction of stratification. One of the methods is based on solving the integro-differential radiative transfer equation for the two coupled slabs using the discrete ordinate approximation. The other method is based on probabilistic and statistical concepts and simulates the propagation of polarized light using the Monte Carlo approach. The emphasis is on non-Rayleigh scattering for particles in the Mie regime. Comparisons with benchmark results available for a slab with constant refractive index show that both methods reproduce these benchmark results when the refractive index is set to be the same in the two slabs. Computed results for test cases with coupling (different refractive indices in the two slabs) show that the two methods produce essentially identical results for identical input in terms of absorption and scattering coefficients and scattering phase matrices.

  11. The Effects of Experimental Conditions on the Refractive Index and Density of Low-Temperature Ices: Solid Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Moore, M. H.; Gerakines, P. A.

    2016-01-01

    We present the first study on the effects of the deposition technique on the measurements of the visible refractive index and the density of a low-temperature ice using solid carbon dioxide (CO2) at 14-70 K as an example. While our measurements generally agree with previous studies that show a dependence of index and density on temperature below 50 K, we also find that the measured values depend on the method used to create each sample. Below 50 K, we find that the refractive index varied by as much as 4% and the density by as much as 16% at a single temperature depending on the deposition method. We also show that the Lorentz-Lorenz approximation is valid for solid CO2 across the full 14-70 K temperature range, regardless of the deposition method used. Since the refractive index and density are important in calculations of optical constants and infrared (IR) band strengths of materials, our results suggest that the deposition method must be considered in cases where nvis and ? are not measured in the same experimental setup where the IR spectral measurements are made.

  12. Nonlinear refractive indices of nonlinear liquids: wavelength dependence and influence of retarded response

    NASA Astrophysics Data System (ADS)

    Kedenburg, Stefan; Steinmann, Andy; Hegenbarth, Robin; Steinle, Tobias; Giessen, Harald

    2014-12-01

    We use liquid-filled capillary fibers with different core diameters to precisely characterize the nonlinear refractive index of the highly nonlinear liquids carbon disulfide, nitrobenzene, and toluene. We present measurements with two different femtosecond pump sources at wavelengths of 1032 and 1560 nm. The large nonlinearity of the liquids results from the retarded nonlinear optical response of the liquid molecules which includes a strong non-instantaneous contribution due to molecular reorientation. The nonlinear refractive index of the liquids is determined by fitting numerical simulations based on solving the generalized nonlinear Schrödinger equation including retarded response to the measured broadened output spectra. Our work is important for the novel field of near- and mid-IR supercontinuum generation in liquid-core optical fibers.

  13. Moiré deflectometry using the Talbot-Lau interferometer as refraction diagnostic for High Energy Density plasmas at energies below 10 keV

    SciTech Connect

    Valdivia, M. P.; Stutman, D.; Finkenthal, M.

    2014-07-15

    The highly localized density gradients expected in High Energy Density (HED) plasma experiments can be characterized by x-ray phase-contrast imaging in addition to conventional attenuation radiography. Moiré deflectometry using the Talbot-Lau grating interferometer setup is an attractive HED diagnostic due to its high sensitivity to refraction induced phase shifts. We report on the adaptation of such a system for operation in the sub-10 keV range by using a combination of free standing and ultrathin Talbot gratings. This new x-ray energy explored matches well the current x-ray backlighters used for HED experiments, while also enhancing phase effects at lower electron densities. We studied the performance of the high magnification, low energy Talbot-Lau interferometer, for single image phase retrieval using Moiré fringe deflectometry. Our laboratory and simulation studies indicate that such a device is able to retrieve object electron densities from phase shift measurements. Using laboratory x-ray sources from 7 to 15 μm size we obtained accurate simultaneous measurements of refraction and attenuation for both sharp and mild electron density gradients.

  14. Simultaneous Retrieval of Effective Refractive Index and Density from Size Distribution and Light Scattering Data: Weakly-Absorbing Aerosol

    SciTech Connect

    Kassianov, Evgueni I.; Barnard, James C.; Pekour, Mikhail S.; Berg, Larry K.; Shilling, John E.; Flynn, Connor J.; Mei, Fan; Jefferson, Anne

    2014-10-01

    We propose here a novel approach for retrieving in parallel the effective density and real refractive index of weakly absorbing aerosol from optical and size distribution measurements. Here we define “weakly absorbing” as aerosol single-scattering albedos that exceed 0.95 at 0.5 um.The required optical measurements are the scattering coefficient and the hemispheric backscatter fraction, obtained in this work from an integrating nephelometer. The required size spectra come from a Scanning Mobility Particle Sizer and an Aerodynamic Particle Sizer. The performance of this approach is first evaluated using a sensitivity study with synthetically generated but measurement-related inputs. The sensitivity study reveals that the proposed approach is robust to random noise; additionally the uncertainties of the retrieval are almost linearly proportional to the measurement errors, and these uncertainties are smaller for the real refractive index than for the effective density. Next, actual measurements are used to evaluate our approach. These measurements include the optical, microphysical, and chemical properties of weakly absorbing aerosol which are representative of a variety of coastal summertime conditions observed during the Two-Column Aerosol Project (TCAP; http://campaign.arm.gov/tcap/). The evaluation includes calculating the root mean square error (RMSE) between the aerosol characteristics retrieved by our approach, and the same quantities calculated using the conventional volume mixing rule for chemical constituents. For dry conditions (defined in this work as relative humidity less than 55%) and sub-micron particles, a very good (RMSE~3%) and reasonable (RMSE~28%) agreement is obtained for the retrieved real refractive index (1.49±0.02) and effective density (1.68±0.21), respectively. Our approach permits discrimination between the retrieved aerosol characteristics of sub-micron and sub-10micron particles. The evaluation results also reveal that the

  15. Temperature dependence of nu3 and nu4 bandwidths and complex refractive indices for crystalline methane

    NASA Astrophysics Data System (ADS)

    Ngoh, M. A.; Khanna, R. K.; Fox, K.

    1993-03-01

    Infrared spectra of thin films of pure CH4 have been measured for a range of temperatures from 22 to 68 K. The bandwidth for the fundamental nu3 near 3000/cm varies from 12.7 to 33.2/cm, while that for nu4 near 1300/cm varies from 6.2 to 16.0/cm. The real and imaginary parts of the index of refraction also exhibit significant dependence on temperature. These broadband measurements at low temperatures are useful for an understanding of clouds and hazes in the atmosphere of Uranus, clouds and ices in the atmosphere of Titan, and ices on the surfaces of Pluto and Triton.

  16. Dependence on pressure of the refractive indices of wurtzite ZnO, GaN, and AlN

    SciTech Connect

    Goni, AR; Kaess, F; Reparaz, JS; Alonso, MI; Garriga, M; Callsen, G; Wagner, MR; Hoffmann, A; Sitar, Z

    2014-07-25

    We have measured both the ordinary and extraordinary refractive index of m-plane cuts of wurtzite ZnO, GaN, and AlN single crystals at room temperature and as a function of hydrostatic pressure up to 8 GPa. For that purpose we have developed an alternative optical interference method, called bisected-beam method, which leads, in general, to high contrast interference fringes. Its main feature, however, is to be particularly suitable for high pressure experiments with the diamond anvil cell, when the refractive index of the sample is low and similar to that of diamond and/or the pressure transmitting medium, as is the case here. For all three wide-gap materials we observe a monotonous decrease of the ordinary and extraordinary refractive indices with increasing pressure, being most pronounced for GaN, less marked for ZnO, and the smallest for AlN. The frequency dependence of the refractive indices was extrapolated to zero energy using a critical-point-plus-Lorentz-oscillator model of the ordinary and extraordinary dielectric function. In this way, we determined the variation with pressure of the electronic part (no-phonon contribution) of the static dielectric constant epsilon(infinity). Its volume derivative, r = d ln epsilon(infinity)/d ln V, serves as single scaling coefficient for comparison with experimental and/or theoretical results for other semiconductors, regarding the pressure effects on the dielectric properties. We have obtained an ordinary/extraordinary average value (r) over bar of 0.49(15) for ZnO, 1.22(9) for GaN, and 0.32(4) for AlN. With the values for the ordinary and extraordinary case being within experimental uncertainty, there is thus no apparent change in dielectric anisotropy under pressure for these wurtzite semiconductors. Results are discussed in terms of the pressure-dependent electronic band structure of the materials.

  17. Biosenseur optofluidique pour la detection d'indice de refraction volumique

    NASA Astrophysics Data System (ADS)

    Belanger, Joseph Andre

    This thesis paper shows the development of a microsystem used to measure the refractive index of samples having a volume similar to the one of a human cell. The device uses a Fabry-Perot cavity made of integrated silicon Bragg mirrors. Microfluidic channels allow the insertion of a solution in the cavity. The passage of a cell causes the refractive index in the cavity to change and hence changes the optical length of the cavity. This causes a spectral shift of the Fabry-Perot resonance. We are therefore able to detect changes in refractive index with high precision. The work of A. Leblanc-Hotte and R. St-Gelais shown in [1], [2], [3] and [4] presents the first versions of the device. The new design developed replaces rectangular waveguides by planar waveguide and integrated silicon lens. This allows a stable beam in one dimension, which should reduce divergence losses. Also, focusing the beam within a concave Fabry-Perot cavity enables an increase of the spatial resolution of the device. Geometrical optics simulations based on Matlab and Zemax were performed to determine the geometrical parameters to use for the device. Zemax simulations determined radii of curvature of the Bragg mirrors and the different length in the optical path. Matlab simulations have allowed us to visualize the Gaussian beam radius and so give us the minimum width of the lenses and the silicon Bragg mirrors. Also, using a Matlab code developed by R. St-Gelais in [4], we simulated the optical transmission of the device, which allowed us to assess the main optical losses and the expected Fabry-Perot signal. The device fabrication was performed in the Laboratoire de microfabrication of Polytechnic Montreal. The manufacturing process will be discussed in detail in this document. We characterized the devices optically. A sensitivity of 725nm/RIU was observed with the use of oil with certified refractive index. This result is consistent with the sensitivity of 500nm/RIU illustrated in [2] and the

  18. Measurements of refractive indices and thermo-optical coefficients using a white-light Michelson interferometer.

    PubMed

    Rocha, A C P; Silva, J R; Lima, S M; Nunes, L A O; Andrade, L H C

    2016-08-20

    A dispersive white-light Michelson interferometer was used to determine the wavelength dependence of the refractive index (n) in the visible range from 425 to 775 nm and the thermo-optical coefficient (dn/dT) of fused silica (FS) and borosilicate glass (BK7). For FS, the values obtained for n and dn/dT at 546 nm were 1.46079 and 11.3×10-6  K-1, respectively, while the values for BK7 glass were 1.51825 and 2.2×10-6  K-1, respectively, which is in good agreement with the literature. The accuracy of the methodology used for n was almost 10-6, enabling precise spectroscopic characterization of materials across a wide spectral range.

  19. Crystalline sulfur dioxide: Crystal field splittings, absolute band intensities and complex refractive indices derived from infrared spectra

    NASA Technical Reports Server (NTRS)

    Khanna, R. K.; Zhao, Guizhi

    1986-01-01

    The infrared absorption spectra of thin crystalline films of sulfur dioxide at 90 K are reported in the 2700 to 450/cm region. The observed multiplicity of the spectral features in the regions of fundamentals is attributed to factor group splittings of the modes in a biaxial crystal lattice and the naturally present minor S-34, S-36, and O-18 isotopic species. Complex refractive indices determined by an iterative Kramers-Kronig analysis of the extinction data, and absolute band strengths derived from them, are also reported in this region.

  20. Surrogate Immiscible Liquid Solution Pairs with Refractive Indexes Matchable Over a Wide Range of Density and Viscosity Ratios

    NASA Astrophysics Data System (ADS)

    Saksena, Rajat; Christensen, Kenneth T.; Pearlstein, Arne J.

    2014-11-01

    Use of laser diagnostics in liquid-liquid flows is limited by refractive index mismatch. This can be avoided using a surrogate pair of immiscible index-matched liquids, with density and viscosity ratios matching those of the original liquid pair. We demonstrate that a wide range of density and viscosity ratios is accessible using aqueous solutions of 1,2-propanediol and CsBr (for which index, density, and viscosity are available), and solutions of light and heavy silicone oils and 1-bromooctane (for which we measured the same properties at 119 compositions). For each liquid phase, polynomials in the composition variables were fitted to index and density and to the logarithm of kinematic viscosity, and the fits were used to determine accessible density and viscosity ratios for each matchable index. Index-matched solution pairs can be prepared with density and viscosity ratios equal to those for water-liquid CO2 at 0oC over a range of pressure, and for water-crude oil and water-trichloroethylene, each over a range of temperature. For representative index-matched solutions, equilibration changes index, density, and viscosity only slightly, and chemical analysis show that no component of either solution has significant interphase solubility. Partially supported by Intl. Inst. for Carbon-Neutral Energy Research.

  1. Concentration dependences of density, viscosity, refractive index, and other derived properties of metoclopramide aqueous solutions at 303.15 K

    NASA Astrophysics Data System (ADS)

    Sawale, R. T.; Deosarkar, S. D.; Kalyankar, T. M.

    2015-07-01

    Density ( ρ), viscosity ( η) and refractive index ( n D) of an antiemetic drug metoclopramide (4-amino-5-chloro- N-(2-(diethylamino)ethyl)-2-methoxybenzamide hydrochloride) solutions containing amino acids (glycine, D-alanine, L-cystine and L-histidine) were measured in the concentration range 0.01-0.17 mol/dm3 at 303.15 K. The apparent molar volume (φv) of this drug in aqueous amino acid solutions was calculated from the density data and fitted to the Massons relation, and the partial molar volume φ{v/0} of the drug was determined graphically. The partial molar volumes of transfer (Δtrφ{v/0}) of drug at infinite dilution from pure water to aqueous amino acid solutions were calculated and interpreted in terms of different interactions between the drug and amino acids.

  2. Simplified large African carnivore density estimators from track indices

    PubMed Central

    Ferreira, Sam M.; Funston, Paul J.; Somers, Michael J.

    2016-01-01

    Background The range, population size and trend of large carnivores are important parameters to assess their status globally and to plan conservation strategies. One can use linear models to assess population size and trends of large carnivores from track-based surveys on suitable substrates. The conventional approach of a linear model with intercept may not intercept at zero, but may fit the data better than linear model through the origin. We assess whether a linear regression through the origin is more appropriate than a linear regression with intercept to model large African carnivore densities and track indices. Methods We did simple linear regression with intercept analysis and simple linear regression through the origin and used the confidence interval for ß in the linear model y = αx + ß, Standard Error of Estimate, Mean Squares Residual and Akaike Information Criteria to evaluate the models. Results The Lion on Clay and Low Density on Sand models with intercept were not significant (P > 0.05). The other four models with intercept and the six models thorough origin were all significant (P < 0.05). The models using linear regression with intercept all included zero in the confidence interval for ß and the null hypothesis that ß = 0 could not be rejected. All models showed that the linear model through the origin provided a better fit than the linear model with intercept, as indicated by the Standard Error of Estimate and Mean Square Residuals. Akaike Information Criteria showed that linear models through the origin were better and that none of the linear models with intercept had substantial support. Discussion Our results showed that linear regression through the origin is justified over the more typical linear regression with intercept for all models we tested. A general model can be used to estimate large carnivore densities from track densities across species and study areas. The formula observed track density = 3.26 × carnivore density

  3. Statistical quality indicators for electron-density maps

    SciTech Connect

    Tickle, Ian J.

    2012-04-01

    A likelihood-based metric for scoring the local agreement of a structure model with the observed electron density is described. The commonly used validation metrics for the local agreement of a structure model with the observed electron density, namely the real-space R (RSR) and the real-space correlation coefficient (RSCC), are reviewed. It is argued that the primary goal of all validation techniques is to verify the accuracy of the model, since precision is an inherent property of the crystal and the data. It is demonstrated that the principal weakness of both of the above metrics is their inability to distinguish the accuracy of the model from its precision. Furthermore, neither of these metrics in their usual implementation indicate the statistical significance of the result. The statistical properties of electron-density maps are reviewed and an improved alternative likelihood-based metric is suggested. This leads naturally to a χ{sup 2} significance test of the difference density using the real-space difference density Z score (RSZD). This is a metric purely of the local model accuracy, as required for effective model validation and structure optimization by practising crystallographers prior to submission of a structure model to the PDB. A new real-space observed density Z score (RSZO) is also proposed; this is a metric purely of the model precision, as a substitute for other precision metrics such as the B factor.

  4. Light-induced changes of the refractive indices in a colloid of gold nanoparticles in a nematic liquid crystal.

    PubMed

    Lysenko, D; Ouskova, E; Ksondzyk, S; Reshetnyak, V; Cseh, L; Mehl, G H; Reznikov, Y

    2012-05-01

    It was shown that irradiation of a nematic liquid crystal doped with metal nanoparticles in the visible near the plasmon resonance band led to strong thermal changes of the refractive indices. The effect was studied by recording of dynamic optical gratings in the colloid. Nanoparticles "worked" as effective nano-heaters in a matrix causing the order parameter decrease around the particles. A large nonlinearity parameter (n (2) ≈ 10(-2) cm(2)/kW and fast response (≈ 0.7 ms), with no detectable particles' aggregation and excellent photo- thermo-stability make these colloids potentially attractive nonlinear optical media. Application of a dynamic holography technique allowed measuring the coefficients of thermal conductivity of the liquid crystal along the director k (||) = (0.4 ± 0.02) W m(-1)K(-1) and perpendicular to the director k (⊥) = (0.2 ± 0.01) W m(-1)K(-1).

  5. Surrogate immiscible liquid pairs with refractive indexes matchable over a wide range of density and viscosity ratios

    NASA Astrophysics Data System (ADS)

    Saksena, Rajat; Christensen, Kenneth T.; Pearlstein, Arne J.

    2015-08-01

    In liquid-liquid flows, use of optical diagnostics is limited by interphase refractive index mismatch, which leads to optical distortion and complicates data interpretation, and sometimes also by opacity. Both problems can be eliminated using a surrogate pair of immiscible index-matched transparent liquids, whose density and viscosity ratios match corresponding ratios for the original liquid pair. We show that a wide range of density and viscosity ratios is accessible using aqueous solutions of 1,2-propanediol and CsBr (for which index, density, and viscosity are available), and solutions of light and heavy silicone oils and 1-bromooctane (for which we measured the same properties at 119 compositions). For each liquid phase, polynomials in the composition variables, least-squares fitted to index and density and to the logarithm of kinematic viscosity, were used to determine accessible density and viscosity ratios for each matchable index. Index-matched solution pairs can be prepared with density and viscosity ratios equal to those for water-liquid CO2 at 0 °C over a range of pressure (allowing water-liquid CO2 behavior at inconveniently high pressure to be simulated by 1-bar experiments), and for water-crude oil and water-trichloroethylene (avoiding opacity and toxicity problems, respectively), each over a range of temperature. For representative index-matched solutions, equilibration changes index, density, and viscosity only slightly, and mass spectrometry and elemental analysis show that no component of either phase has significant interphase solubility. Finally, procedures are described for iteratively reducing the residual index mismatch in surrogate solution pairs prepared on the basis of approximate polynomial fits to experimental data, and for systematically dealing with nonzero interphase solubility.

  6. Statistical quality indicators for electron-density maps.

    PubMed

    Tickle, Ian J

    2012-04-01

    The commonly used validation metrics for the local agreement of a structure model with the observed electron density, namely the real-space R (RSR) and the real-space correlation coefficient (RSCC), are reviewed. It is argued that the primary goal of all validation techniques is to verify the accuracy of the model, since precision is an inherent property of the crystal and the data. It is demonstrated that the principal weakness of both of the above metrics is their inability to distinguish the accuracy of the model from its precision. Furthermore, neither of these metrics in their usual implementation indicate the statistical significance of the result. The statistical properties of electron-density maps are reviewed and an improved alternative likelihood-based metric is suggested. This leads naturally to a χ(2) significance test of the difference density using the real-space difference density Z score (RSZD). This is a metric purely of the local model accuracy, as required for effective model validation and structure optimization by practising crystallographers prior to submission of a structure model to the PDB. A new real-space observed density Z score (RSZO) is also proposed; this is a metric purely of the model precision, as a substitute for other precision metrics such as the B factor.

  7. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Refractive indices of superlattices made of III-V semiconductor compounds and their solid solutions and semiconductor waveguide laser structures

    NASA Astrophysics Data System (ADS)

    Unger, K.

    1988-11-01

    An analysis is made of the theoretical problems encountered in precision calculations of refractive indices of semiconductor materials arising in connection with the use of superlattices as active layers in double-heterostructure lasers and in connection with the use of the impurity-induced disordering effect, i.e., the ability to transform selectively a superlattice into a corresponding solid solution. This can be done by diffusion or ion implantation. A review is given of calculations of refractive indices based on the knowledge of the energy band structure and the role of disorder is considered particularly. An anomaly observed in the (InAl)As system is considered. It is shown that the local field effects and exciton transitions are important. A reasonable approach is clearly a direct calculation of the difference between the refractive indices of superlattices based on compounds and of those based on their solid solutions.

  8. Application of a liquid crystal spatial light modulator on optical roughness measurements by a speckle correlation method using two refractive indices

    NASA Astrophysics Data System (ADS)

    Muramatsu, M.; Eiju, T.; Shirai, T.; Matsuda, K.

    1997-07-01

    A system of roughness measurements using a CCD camera and a liquid crystal spatial light modulator (LCSLM) has been developed. The scattered light patterns from the surface, which is covered by liquids with several different refractive indices, are acquired by the CCD camera and stored in a frame grabber in a computer. The superposition of two arbitrary patterns is calculated by the computer and displayed on the LCSLM. It is then illuminated by coherent light to produce interference fringes of equal inclination at infinity. The surface roughness can be determined through the relationship between the fringe visibility and the difference of refractive indices. The performance of this system is estimated by experiments.

  9. Investigations on three and two coefficient Cauchy model for refractive indices of 5O.m and 6O.m liquid crystals

    NASA Astrophysics Data System (ADS)

    Raja Shekar, P. V.; Madhavi Latha, D.; Pisipati, V. G. K. M.

    2017-02-01

    The refractive indices of six members of N-(p-n-pentyloxy benzylidene)-p-n-alkyl anilines (5O.m), with m = 1, 2, 5, 6, 8 and 10 and two members of N-(p-n-hexyloxy benzylidene)-p-n-alkyl anilines (6O.m), with m = 2 and 4 LC compounds were measured with the help of modified spectrometer at four different wavelengths. The experimental data of wavelength dependent refractive indices is fitted using three and two coefficient Cauchy model. The applicability of these two models is assessed based on the fitting parameters as well as from the measured birefringence of liquid crystals.

  10. Rates, flux densities, and spectral indices of meteor radio afterglows

    NASA Astrophysics Data System (ADS)

    Obenberger, K. S.; Dowell, J. D.; Hancock, P. J.; Holmes, J. M.; Pedersen, T. R.; Schinzel, F. K.; Taylor, G. B.

    2016-07-01

    Using the narrowband all-sky imager mode of the Long Wavelength Array (LWA1), we have now detected 30 transients at 25.6 MHz, 1 at 34 MHz, and 93 at 38.0 MHz. While we have only optically confirmed that 37 of these events are radio afterglows from meteors, evidence suggests that most, if not all, are. Using the beam-forming mode of the LWA1, we have also captured the broadband spectra between 22.0 and 55.0 MHz of four events. We compare the smooth, spectral components of these four events and fit the frequency-dependent flux density to a power law, and find that the spectral index is time variable, with the spectrum steepening over time for each meteor afterglow. Using these spectral indices along with the narrowband flux density measurements of the 123 events at 25.6 and 38 MHz, we predict the expected flux densities and rates for meteor afterglows potentially observable by other low-frequency radio telescopes.

  11. Complex refractive indices in the near-ultraviolet spectral region of biogenic secondary organic aerosol aged with ammonia

    SciTech Connect

    Flores, J. M.; Washenfelder, Rebecca; Adler, Gabriela; Lee, H-J; Segev, Lior; Laskin, Julia; Laskin, Alexander; Nizkorodov, Sergey; Brown, Steven; Rudich, Yinon

    2014-05-14

    Atmospheric absorption by brown carbon aerosol may play an important role in global radiative forcing. Brown carbon arises from both primary and secondary sources, but the mechanisms and reactions for the latter are highly uncertain. One proposed mechanism is the reaction of ammonia or amino acids with carbonyl products in secondary organic aerosol (SOA). We generated SOA in situ by reacting biogenic alkenes (α-pinene, limonene, and α-humulene) with excess ozone, humidifying the resulting aerosol, and reacting the humidified aerosol with gaseous ammonia. We determined the complex refractive indices (RI) in the 360 – 420 nm range for these aerosols using broadband cavity enhanced spectroscopy (BBCES). The average real part (n) of the measured spectral range of the NH3-aged α-pinene SOA increased from n = 1.50 (±0.01) for the unreacted SOA to n = 1.57 (± 0.01) after a 1.5h exposure to 1.9 ppm NH3; whereas,the imaginary component (k) remained below k < 0.001 (± 0.002). For the limonene and α-humulene SOA the real part did not change significantly, and we observed a small change in the imaginary component of the RI. The imaginary component increased from k = 0.0 to an average k= 0.029 (± 0.021) for α-humulene SOA, and from k < 0.001 (± 0.002) to an average k = 0.032 (±0.019) for limonene SOA after a 1.5 h exposure to 1.3 and 1.9 ppm of NH3, respectively. Collected filter samples of the aged and unreacted α-pinene SOA and limonene SOA were analyzed off-line with nanospray desorption electrospray ionization high resolution mass spectrometry (nano-DESI/HR-MS), and in-situ with a Time-of-Fligh Aerosol Mass Spectrometer, confirming that the SOA reacted and that various nitrogen-containing reaction products formed. If we assume that NH3 aging reactions scale linearly with time and concentration, then a 1.5 h reaction with 1 ppm NH3 in the laboratory is equivalent to 24 h reaction with 63 ppbv NH3, indicating that the observed aerosol absorption will be limited

  12. Novel measurements of refractive index, density and mid-infrared integrated band strengths for solid O2, N2O and NO2 : N2O4 mixtures

    NASA Astrophysics Data System (ADS)

    Fulvio, D.; Sivaraman, B.; Baratta, G. A.; Palumbo, M. E.; Mason, N. J.

    2009-06-01

    We present novel measurements of the refractive index, density and integrated band strengths of mid-infrared features of solid N2O at 16 K and of NO2 and N2O4 in two frozen NO2:N2O4 mixtures deposited at 16 and 60 K. The refractive index and density measurements were performed also for frozen O2 deposited at 16 K. In this case, the integrated band strength values could not be determined since O2 is a homonuclear molecule and therefore its fundamental mode is not infrared active. The solid samples were analysed by infrared spectroscopy in the 8000.800 cm -1 range. The sample thickness was measured by the interference curve obtained using a He-Ne laser operating at 543 nm. The refractive index at this laser wavelength was obtained, by numerical methods, from the measured amplitude of the interference curve. The density values were obtained using the Lorentz-Lorenz relation. Integrated band strength values were then obtained by a linear fit of the integrated band intensities plotted versus column density values. The astrophysical relevance of these novel measurements is briefly discussed.

  13. Atmospheric refraction: a history

    NASA Astrophysics Data System (ADS)

    Lehn, Waldemar H.; van der Werf, Siebren

    2005-09-01

    We trace the history of atmospheric refraction from the ancient Greeks up to the time of Kepler. The concept that the atmosphere could refract light entered Western science in the second century B.C. Ptolemy, 300 years later, produced the first clearly defined atmospheric model, containing air of uniform density up to a sharp upper transition to the ether, at which the refraction occurred. Alhazen and Witelo transmitted his knowledge to medieval Europe. The first accurate measurements were made by Tycho Brahe in the 16th century. Finally, Kepler, who was aware of unusually strong refractions, used the Ptolemaic model to explain the first documented and recognized mirage (the Novaya Zemlya effect).

  14. Atmospheric refraction: a history.

    PubMed

    Lehn, Waldemar H; van der Werf, Siebren

    2005-09-20

    We trace the history of atmospheric refraction from the ancient Greeks up to the time of Kepler. The concept that the atmosphere could refract light entered Western science in the second century B.C. Ptolemy, 300 years later, produced the first clearly defined atmospheric model, containing air of uniform density up to a sharp upper transition to the ether, at which the refraction occurred. Alhazen and Witelo transmitted his knowledge to medieval Europe. The first accurate measurements were made by Tycho Brahe in the 16th century. Finally, Kepler, who was aware of unusually strong refractions, used the Ptolemaic model to explain the first documented and recognized mirage (the Novaya Zemlya effect).

  15. Modeling optical properties of human skin using Mie theory for particles with different size distributions and refractive indices

    NASA Astrophysics Data System (ADS)

    Bhandari, A.; Hamre, B.; Frette, Ø.; Stamnes, K.; Stamnes, J. J.

    2011-07-01

    We used size distributions of volume equivalent spherical particles with complex refractive index to model the inherent optical properties (IOPs) in four different layers of human skin at ten different wavelengths in the visible and near-infrared spectral bands. For each layer, we first computed the size-averaged absorption coefficient, scattering coefficient, and asymmetry factor for the collection of particles in a host medium using Mie theory and compared these IOPs in each layer with those obtained from a bio-optical model (BOM). This procedure was repeated, using an optimization scheme, until satisfactory agreement was obtained between the IOPs obtained from the particle size distribution and those given by the BOM. The size distribution as well as the complex refractive index of the particles, obtained from this modeling exercise, can be used to compute the phase matrix, which is an essential input to model polarized light transport in human skin tissue.

  16. Phase conjugate Twyman-Green interferometer for testing spherical surfaces and lenses and for measuring refractive indices of liquids or solid transparent materials

    NASA Technical Reports Server (NTRS)

    Shukla, R. P.; Dokhanian, Mostafa; Venkateswarlu, Putcha; George, M. C.

    1990-01-01

    The present paper describes an application of a phase conjugate Twyman-Green interferometer using barium titanate as a self-pumping mirror for testing optical components like concave and convex spherical mirrors and lenses. The aberrations introduced by the beam splitter while testing concave or convex spherical mirrors of large aperture are automatically eliminated due to self-focussing property of the phase conjugate mirror. There is no necessity for a good spherical surface as a reference surface unlike in classical Twyman-Green interferometer or Williams interferometer. The phase conjugate Twyman Green interferometer with a divergent illumination can be used as a test plate for checking spherical surfaces. A nondestructive technique for measuring the refractive indices of a Fabry Perot etalon by using a phase conjugate interferometer is also suggested. The interferometer is found to be useful for measuring the refractive indices of liquids and solid transparent materials with an accuracy of the order of + or - 0.0004.

  17. Dispersion relations of refractive indices suitable for KBe2BO3F2 crystal deep-ultraviolet applications.

    PubMed

    Li, Rukang; Wang, Lirong; Wang, Xiaoyang; Wang, Guiling; Chen, Chuangtian

    2016-12-20

    KBe2BO3F2 (KBBF) is the only nonlinear optical crystal available to generate deep-ultraviolet (DUV) laser output by direct harmonic generation. High-precision refractive indices, including in the DUV region, were measured, and starting from a double resonance model of polarizability, new dispersion relations of the refractive indices were deduced from the measured data. The predicted phase matching angles for second-harmonic generation down to 165 nm from the new relations agree well with the previous reported values. Moreover, the new dispersion relations show superior results in an even shorter wavelength range, giving perfectly calculated phase matching angles for fifth-harmonic generation down to as short as 149.8 nm.

  18. Molecular hydrogen emission as a density and temperature indicator

    NASA Astrophysics Data System (ADS)

    Wang, Xiang; Ferland, Gary J.; Baldwin, Jack A.; Loh, Edwin D.; Fabian, Andy C.; Williams, Robin

    2016-01-01

    Infrared observations have discovered a variety of objects, including filaments in the Crab Nebula and cool-core clusters of galaxies, where the 1-0 S(1) line is stronger than the infrared H I lines. A variety of processes could be responsible for this emission. Although many complete shock or PDR calculations of emission have been published, we know of no previous simple calculation that shows the emission spectrum and level populations of thermally excited low-density . We present a range of purely thermal collisional simulations, corresponding to constant gas kinetic temperature at different densities. We consider the cases where the collisions affecting H2 are predominantly with atomic or molecular hydrogen. The resulting level population (often called "excitation") diagrams show that excitation temperatures are sometimes lower than the gas kinetic temperature when the density is too low for the level populations to go to LTE. The atomic case goes to LTE at much lower densities than the molecular case due to larger collision rates. At low densities for the v=1 and 2 vibrational manifolds level populations are quasi-thermal, which could be misinterpreted as showing the gas is in LTE at high density. At low densities for the molecular case the level population diagrams are discontinuous between v=0 and 1 vibrational manifolds and between v=2, J=0, 1 and other higher J levels within the same vibrational manifold. These jumps could be used as density diagnostics. We show how much the H2 mass would be underestimated using the 1-0 S(1) line strength if the density is below that required for LTE. We give diagnostic diagrams showing level populations over a range of density and temperature. The density where the level populations are given by a Boltzmann distribution relative to the total molecular abundance (required to get the correct H2 mass), is shown for various cases. We discuss the implications of these results for the interpretation of H2 observations of the

  19. Absolute refractive indices and thermal coefficients of CaF2, SrF2, BaF2, and LiF near 157 nm.

    PubMed

    Burnett, John H; Gupta, Rajeev; Griesmann, Ulf

    2002-05-01

    We present high-accuracy measurements for wavelengths near 157 nm of the absolute index of refraction, the index dispersion, and the temperature dependence of the index for the ultraviolet optical materials with cubic symmetry: CaF2, SrF2, BaF2, and LiF. Accurate values of these quantities for these materials are needed for designs of the lens systems for F2 excimer-laser-based exposure tools for 157-nm photolithography. These tools are expected to use CaF2 as the primary optical material and possibly one of the others to correct for chromatic aberrations. These optical properties were measured by the minimum deviation method. Absolute refractive indices were obtained with an absolute accuracy of 5 x 10(-6) to 6 x 10(-6).

  20. Refractive keratoplasty

    SciTech Connect

    Schwab, I.R. )

    1987-01-01

    This book contains 12 chapters. Some of the titles are: Perspectives on refractive surgery; Radial keratotomy; The refractive aspects of corneal transplantation; Wedge resection and relating incisions; Laser surgery of the cornea; and All plastic corneal lenses.

  1. Direct measurements of the optical cross sections and refractive indices of individual volatile and hygroscopic aerosol particles.

    PubMed

    Mason, B J; Cotterell, M I; Preston, T C; Orr-Ewing, A J; Reid, J P

    2015-06-04

    We present measurements of the evolving extinction cross sections of individual aerosol particles (spanning 700-2500 nm in radius) during the evaporation of volatile components or hygroscopic growth using a combination of a single particle trap formed from a Bessel light beam and cavity ring-down spectroscopy. For single component organic aerosol droplets of 1,2,6-hexanetriol, polyethylene glycol 400, and glycerol, the slow evaporation of the organic component (over time scales of 1000 to 10,000 s) leads to a time-varying size and extinction cross section that can be used to estimate the refractive index of the droplet. Measurements on binary aqueous-inorganic aerosol droplets containing one of the inorganic solutes ammonium bisulfate, ammonium sulfate, sodium nitrate, or sodium chloride (over time scales of 1000 to 15,000 s) under conditions of changing relative humidity show that extinction cross-section measurements are consistent with expectations from accepted models for the variation in droplet refractive index with hygroscopic growth. In addition, we use these systems to establish an experimental protocol for future single particle extinction measurements. The advantages of mapping out the evolving light extinction cross-section of an individual particle over extended time frames accompanied by hygroscopic cycling or component evaporation are discussed.

  2. Marine seismic refraction data indicate Mesozoic syn-rift volcanism and seafloor-spreading in the northwestern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Eddy, Drew; van Avendonk, Harm; Christeson, Gail; Norton, Ian; Karner, Garry; Johnson, Chris; Kneller, Erik; Snedden, John

    2013-04-01

    The Gulf of Mexico is a small ocean basin that formed by continental rifting and seafloor-spreading between North America and the Yucatan Block during the Jurassic to early Cretaceous. The lack of good, deeply-penetrating geophysical data in the Gulf of Mexico has precluded prior reconstructions of the timing and location of the transition from rifting to seafloor-spreading, as well as the degree to which magmatism influenced these geological processes. To illuminate the deep structure of this enigmatic region, we acquired four marine seismic refraction profiles in the northern Gulf of Mexico from the shelf to deep water as part of the Fall 2010 Gulf of Mexico Basin Opening (GUMBO) project. Here, we present the data and resulting seismic velocity structures of two GUMBO profiles in the northwestern Gulf of Mexico. GUMBO Line 1 extends ~330 km offshore south Texas from Matagorda Island across Alaminos Canyon to the central Gulf. GUMBO Line 2 extends ~400 km from the shelf offshore western Louisiana across the Sigsbee Escarpment. On both lines, ocean-bottom seismometers at 10-km spacing recorded 150m-spaced airgun shots over offsets up to 80 km. We use travel times from these long-offset reflections and refractions to image seismic velocities in the sediments, crystalline crust, and upper mantle using a tomographic inversion. On average, seismic velocities increase with depth from 2 km/s near the seafloor to 5 km/s near the interpreted base of salt. On both profiles we observe a large amount of lateral heterogeneity in the sediments due to salt tectonics. The deeper seismic velocity structure along GUMBO Line 1 also exhibits substantial lateral heterogeneity (4.5 km/s to 7 km/s) that may be consistent with crystallization of thin, ultraslow-spreading oceanic crust alternating with emplacement of exhumed mantle lithosphere. If the basement here is indeed oceanic, the prominent magnetic anomaly along the Texas coastline may represent the expression of synrift volcanism

  3. Testing a novel μ-Raman method to retrieve refractive index and density field from femtosecond laser-written optical waveguides

    NASA Astrophysics Data System (ADS)

    Tejerina, M. R.; Torchia, G. A.

    2016-11-01

    In this work, we analysed the refractive index field and other local material properties of femtosecond laser-written waveguides properly combining a novel and direct Raman strategy, waveguides coupling and instrumented nano-indentation. At first, we measured a 2D Raman map within the cross section of femtosecond laser-written waveguides. Then, the Raman Phonon Deformation Constants of lithium niobate were employed to retrieve the strain and density variation from the A1(TO) phonon shifts in the analysed region. We test the results obtained with different combinations of phonons by computing the numerical guided modes and comparing them with those experimentally measured. As a relevant finding, we found that the combination of the A1(TO)1 and A1(TO)4 phonon shifting is the most proper one to compute strain, density and refractive index variation, almost in this kind of waveguide. Finally, a linear path across waveguides cross section was explored with instrumented nano-indentation and the expected variation of local density was detected through a softening of the elastic module observed in the region directly modified by the ultra-fast laser.

  4. Refractive Surgery

    PubMed Central

    Kellum, Keith

    2000-01-01

    The concept of surgically altering the eye to correct refractive errors has been considered for hundreds of years, but only in the past 60 years has interest grown considerably due to the development of modern refractive surgery techniques such as astigmatic keratotomies to correct astigmatism induced by cataract surgery and future technologies currently being investigated. Modern refractive surgery is more involved than setting the correct parameters on the laser. Patient selection and examination, proper technique, and postoperative follow-up for potential complications are essential for a successful refractive procedure. Critical evaluation of new techniques is vital to avoid the pitfall of overly exuberant enthusiasm for new and unproven methods of refractive surgery. Kellum K. Refractive surgery. The Ochsner Journal 2000; 2:164-167. PMID:21765686

  5. Comparison of various bleaching processes for silver halide holographic emulsions using the refractive index modulation versus before-bleach optical density characteristics

    NASA Astrophysics Data System (ADS)

    Banyasz, Istvan

    2004-09-01

    A large number of plane-wave holograms were recorded in Agfa-Gevaert 8E75HD holographic plates, at a wide range of bias exposures and fringe visibilities. The plates were processed by various combinations of developers (AAC, Pyrogallol and Catechol) and bleaching agents (R-9 and EDTA). A pair of absorption and phase holograms was recorded at each value of the recording parameters. Optical densities before bleaching were determined using the absorption holograms. Then each phase grating was studied by phase-contrast microscopy, using a high-power immersion (100 X) objective. Thus modulation of the refractive index as a function of the bias exposure and the visibility of the recording interference pattern could be determined. To characterize the processing, the modulation of the refractive index of the processed phase holograms was related to the amplitude of the optical density modulation obtained at the development step. These characteristics are especially useful for the comparison of various bleaching agents used with the same developer. Characteristics of similar forms were obtained for all the processing types, with significant differences in the slope and extent of the curves, so that sensitivity, linearity and dynamic range of the processes could be compared directly.

  6. Atmospheric microwave refractivity and refraction

    NASA Technical Reports Server (NTRS)

    Yu, E.; Hodge, D. B.

    1980-01-01

    The atmospheric refractivity can be expressed as a function of temperature, pressure, water vapor content, and operating frequency. Based on twenty-year meteorological data, statistics of the atmospheric refractivity were obtained. These statistics were used to estimate the variation of dispersion, attenuation, and refraction effects on microwave and millimeter wave signals propagating along atmospheric paths. Bending angle, elevation angle error, and range error were also developed for an exponentially tapered, spherical atmosphere.

  7. Sacrificial polymer thin-film template with tunability to construct high-density Au nanoparticle arrays and their refractive index sensing.

    PubMed

    Yuan, Weiyong; Lu, Zhisong; Wang, Huili; Li, Chang Ming

    2013-10-07

    Great challenges still remain to assemble metal nanoparticles on a substrate with tunability, high density, robust stability, good dispersion and well-retained properties for various applications. Herein a new concept using a polymer thin-film as a sacrificial template is investigated to fabricate highly dense and well-dispersed nanoparticle arrays. In contrast to a conventional "hard" template, the polymer template is a porous multilayered film allowing in situ growth of Au nanoparticles with a restricted ripening mode, and tuning the nanoparticle size and density of the arrays is possible by simply adjusting the loading conditions. The prepared substrate-attached nanoparticle arrays demonstrate good thermal and chemical stability, while offering highly sensitive and tunable localized surface plasmon resonance (LSPR) refractive index sensing with a broad linear dynamic range. This method could be extended to controllably fabricate other robust and "clean" nanoparticle arrays on various substrates for various applications including sensing, catalysis and optoelectronics.

  8. Implantable collamer lens for residual refractive error after corneal refractive surgery

    PubMed Central

    Chen, Xun; Wang, Xiao-Ying; Zhang, Xi; Chen, Zhi; Zhou, Xing-Tao

    2016-01-01

    AIM To assess the safety, efficacy, predictability and stability of implantable collamer lens (ICL) for residual refractive error after corneal refractive surgery. METHODS This study evaluated 19 eyes of 12 patients who underwent ICL implantation after corneal refractive surgeries. They were followed up for 1y to 5y of uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), manifest refractive error, flat and steep K value, axial length, intraocular pressure, corneal endothelial cell density, adverse events after ICL surgery. RESULTS The mean follow-up period was 39.05±19.22 mo (range, 1-5y). Spherical equivalent refractive error changed from -7.45±3.02 D preoperatively to -0.85±1.10 D 1wk to 1mo after ICL implantation, with the safety and efficacy indices being 1.12 and 1.15, respectively. A total of 52.63% of eyes were within ±0.5 D of the predicted spherical equivalents, 73.68% were within ±1.0 D. A trend of mild regression towards myopia with axial elongation after 5y was observed. One eye with mild anterior capsule opacity and retinal detachment 1y after surgery were observed. CONCLUSION ICL implantation is safe and effective for the correction of residual refractive error after corneal refractive surgeries, especially in moderate to high residual myopia. PMID:27803858

  9. Stocking density effects on broiler welfare: identifying sensitive ranges for different indicators.

    PubMed

    Buijs, S; Keeling, L; Rettenbacher, S; Van Poucke, E; Tuyttens, F A M

    2009-08-01

    Although stocking density is perceived as a topic of major importance, no consensus has been reached on what density would allow for good welfare. In the present study, the welfare of 4 replicates of birds stocked at 8, 19, 29, 40, 45, 51, 61, and 72 broilers per pen (or 6, 15, 23, 33, 35, 41, 47, and 56 kg actually achieved BW/m(2)) was studied using 6 welfare indicators. Density did not affect bursa weight, mortality, or concentrations of corticosterone metabolites in droppings but did influence leg health (P = 0.015) and footpad and hock dermatitis (P < 0.001) and tended to influence fearfulness (P = 0.078). However, not every increase in density or group size, or both, led to poorer welfare for the affected indicators: leg health and fearfulness showed unexpected peaks at intermediate densities. Furthermore, the indicators were influenced at different densities: leg strength showed a steep decrease from 6 to 23 kg/m(2), hock dermatitis rose from 35 to 56 kg/m(2), and footpad dermatitis and fearfulness were only significantly higher at the highest density of 56 kg/m(2). No threshold stocking density above which all aspects of welfare were suddenly altered was found in this study. Instead, different aspects of welfare were influenced at different densities or group sizes, or both. Thus, evaluating the effects of stocking density on welfare as a whole would require either identification of acceptable levels for each separate indicator or a weighting of the indicators in an integrated welfare score. A tentative attempt to such an integration, made using equal weights for all parameters, showed a decrease in welfare as density increased (P < 0.001). The lowest 2 densities (6 and 15 kg/m(2)) scored better than most middle densities (23, 33, 35, and 47 kg/m(2)), whereas all densities scored better than the highest density (56 kg/m(2)).

  10. Uncorrected refractive errors.

    PubMed

    Naidoo, Kovin S; Jaggernath, Jyoti

    2012-01-01

    Global estimates indicate that more than 2.3 billion people in the world suffer from poor vision due to refractive error; of which 670 million people are considered visually impaired because they do not have access to corrective treatment. Refractive errors, if uncorrected, results in an impaired quality of life for millions of people worldwide, irrespective of their age, sex and ethnicity. Over the past decade, a series of studies using a survey methodology, referred to as Refractive Error Study in Children (RESC), were performed in populations with different ethnic origins and cultural settings. These studies confirmed that the prevalence of uncorrected refractive errors is considerably high for children in low-and-middle-income countries. Furthermore, uncorrected refractive error has been noted to have extensive social and economic impacts, such as limiting educational and employment opportunities of economically active persons, healthy individuals and communities. The key public health challenges presented by uncorrected refractive errors, the leading cause of vision impairment across the world, require urgent attention. To address these issues, it is critical to focus on the development of human resources and sustainable methods of service delivery. This paper discusses three core pillars to addressing the challenges posed by uncorrected refractive errors: Human Resource (HR) Development, Service Development and Social Entrepreneurship.

  11. Broadband optical extinction measurements and complex refractive indices in the ultraviolet spectral region for biogenic secondary organic aerosol exposed to ammonia

    NASA Astrophysics Data System (ADS)

    Flores, J.; Washenfelder, R. A.; Lee, H.; Segev, L.; Nizkorodov, S.; Brown, S. S.; Rudich, Y.

    2013-12-01

    The interaction between aerosols and sunlight plays an important role in the radiative balance of Earth's atmosphere. Aerosols can both scatter and absorb solar radiation causing surface cooling and heating of the atmosphere. These interactions depend on the optical properties of the aerosols (i.e., complex refractive index). Secondary organic aerosol (SOA) account for a significant fraction of the tropospheric aerosol. However, their chemical, physical, and optical properties, especially as they are processed in the atmosphere (aging), are still poorly understood. In this study, SOA formed by the ozonolysis of various biogenic volatile organic compound (BVOC) precursors (α-pinene, limonene, and α-humulene) were exposed to humid air containing various concentrations of gaseous ammonia which has been shown to cause the biogenic SOA to ';brown' on filters. The extent of absorption of the SOA in the aerosol phase cause by the exposure to gaseous ammonia was measured by a newly developed instrument to measure aerosol extinction as a function of wavelength using Broadband Cavity Enhanced Spectroscopy (BBCES) with a broadband light source. Size-selected measurements of the humid SOA exposed to NH3 for about 1.5 hours were used to derive complex refractive indices (RI) as a function of wavelength in the UV spectral region (from 360 - 420nm). The imaginary part of the refractive index did not exceed 0.05 in the 360 - 420 nm range for SOA formed from the three BVOCs even at high concentrations of NH3 (>1ppm), allowing to place an upper limit of k = 0.05. Furthermore, the small k values are consistent with bulk UV-VIS measurements. However, for the α-pinene SOA, the real part of the RI slightly increased from n = 1.49 to n = 1.55 with negligible spectral dependence. For limonene and α-humulene the real part remind constant within error calculations. Based on these observations, reactive uptake of gaseous ammonia is not expected to significantly affect absorption and

  12. Spectroscopic refractive indices of monoclinic single crystal and ceramic Lutetium oxyorthosilicate (LSO) from 200 to 850 nm

    SciTech Connect

    Jellison Jr, Gerald Earle; Specht, Eliot D; Boatner, Lynn A; Singh, David J; Melcher, Charles L

    2012-01-01

    The four real values of the dielectric function tensor of the monoclinic crystal Lu2SiO5 or lutetium oxyorthosilicate (LSO) have been determined using generalized ellipsometry from 200 to 850 nm. The three principal values are fit to the Sellmeier model, and they indicate that the band gap of LSO is less than ~9 eV. The off-diagonal element 12 is non-zero over the entire spectrum, but it is very close to zero for wavelengths longer than ~400 nm, indicating that structurally monoclinic LSO is nearly optically orthorhombic in this wavelength region. The spectroscopic dielectric functions of three isotropic ceramic LSO samples are presented, which are consistent with the dielectric functions of single-crystal LSO when the effects of porosity are included. As a comparison, the dielectric functions are also determined using relativistic electronic structure and optical calculations based on the recently developed potential functional of Tran and Blaha (Phys. Rev. Lett. 102, 226401 (2009).)

  13. Sensitivity of condition indices to changing density in a white-tailed deer population

    USGS Publications Warehouse

    Sams, M.G.; Lochmiller, R.L.; Qualls, C.W.; Leslie, David M.

    1998-01-01

    The ways in which comprehensive condition profiles, incorporating morphometric, histologic, physiologic, and diet quality indices, responded to changes in density of a white-tailed deer (Odocoileus virginianus) population were examined. Changes in these condition indices were monitored in a northeastern Oklahoma deer herd as density declined from peaks of 80 and 72 deer/km2 in 1989 and 1990 (high-density) to lows of 39 and 41 deer/km2 in 1991 and 1992 (reduced-density), respectively. Compared to a reference population (6 deer/km2), deer sampled during high-density exhibited classic signs of nutritional stress such as low body and visceral organ masses (except elevated adrenal gland mass), low fecal nitrogen levels, reduced concentrations of serum albumin, elevated serum creatinine concentrations, and a high prevalence of parasitic infections. Although density declined by one half over the 4-yr study, gross indices of condition (in particular body mass and size) remained largely unchanged. However, selected organ masses, serum albumin and non-protein nitrogen constituents, and fecal nitrogen indices reflected improvements in nutritional status with reductions in density. Many commonly used indices of deer condition (fat reserves, hematocrit, total serum protein, and blood urea nitrogen) were not responsive to fluctuations in density. ?? Wildlife Disease Association 1998.

  14. UV spectroscopy, refractive indices and elastic properties of the (76 - x) TeO2·9P2O5·15ZnO·xLiNbO3 glass

    NASA Astrophysics Data System (ADS)

    Yousef, El Sayed; Al-Qaisi, Badriah

    2013-05-01

    Tellurite glass with composition (76 - x) TeO2·9P2O5·15ZnO·xLiNbO3 (where x = 12.5, 25, 30 and 35 in mol%) have been prepared by melt-quenching method. The optical properties of the glass were estimated by measuring UV-VIS spectroscopy and refractive indices at different wavelength. From the absorption edge studies, the optical energy gap (Eopt) and Urbach energy (ΔE) has been evaluated. Moreover mechanical properties with structural properties of the glasses were investigated by measuring both longitudinal and shear velocities by using the pulse-echo overlap technique at 5 MHz. The elastic moduli such as: longitudinal (λ), shear (μ), bulk (B) and Young's (Y) increase with the increase in LiNbO3 content in the prepared glasses matrix. The different physical parameters such as density, molar volume, oxygen molar volume, oxygen packing density, molar polarizability, Debye temperature, microhardness, Poisson's ratio, kinetic fragility and fractal bond connectivity have been computed and were found to depend on the glass composition.

  15. Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity.

    PubMed

    Domingo, Luis R; Ríos-Gutiérrez, Mar; Pérez, Patricia

    2016-06-09

    Theoretical reactivity indices based on the conceptual Density Functional Theory (DFT) have become a powerful tool for the semiquantitative study of organic reactivity. A large number of reactivity indices have been proposed in the literature. Herein, global quantities like the electronic chemical potential μ, the electrophilicity ω and the nucleophilicity N indices, and local condensed indices like the electrophilic P k + and nucleophilic P k - Parr functions, as the most relevant indices for the study of organic reactivity, are discussed.

  16. Multiple scattering induced negative refraction of matter waves

    PubMed Central

    Pinsker, Florian

    2016-01-01

    Starting from fundamental multiple scattering theory it is shown that negative refraction indices are feasible for matter waves passing a well-defined ensemble of scatterers. A simple approach to this topic is presented and explicit examples for systems of scatterers in 1D and 3D are stated that imply negative refraction for a generic incoming quantum wave packet. Essential features of the effective scattering field, densities and frequency spectrum of scatterers are considered. Additionally it is shown that negative refraction indices allow perfect transmission of the wave passing the ensemble of scatterers. Finally the concept of the superlens is discussed, since it is based on negative refraction and can be extended to matter waves utilizing the observations presented in this paper which thus paves the way to ‘untouchable’ quantum systems in analogy to cloaking devices for electromagnetic waves. PMID:26857266

  17. Multiple scattering induced negative refraction of matter waves.

    PubMed

    Pinsker, Florian

    2016-02-09

    Starting from fundamental multiple scattering theory it is shown that negative refraction indices are feasible for matter waves passing a well-defined ensemble of scatterers. A simple approach to this topic is presented and explicit examples for systems of scatterers in 1D and 3D are stated that imply negative refraction for a generic incoming quantum wave packet. Essential features of the effective scattering field, densities and frequency spectrum of scatterers are considered. Additionally it is shown that negative refraction indices allow perfect transmission of the wave passing the ensemble of scatterers. Finally the concept of the superlens is discussed, since it is based on negative refraction and can be extended to matter waves utilizing the observations presented in this paper which thus paves the way to 'untouchable' quantum systems in analogy to cloaking devices for electromagnetic waves.

  18. Cryogenic Refractive Indices of S-LAH55, S-LAH55V, S-LAH59, S-LAM3, S-NBM51, S-NPH2, S-PHM52, and S-TIH14 Glasses

    NASA Technical Reports Server (NTRS)

    Miller, Kevin H.; Quijada, Manuel A.; Leviton, Doug

    2015-01-01

    The Transiting Exoplanet Survey Satellite (TESS) is an explorer-class planet finder, whose principal goal is to detect small planets with bright host starts in the solar neighborhood. The TESS payload consists of four identical cameras with seven optical elements each that include various types of Ohara glass substrates. The successful implementation both panchromatic and thermal lens assembly designs for these cameras requires a fairly accurate (up to 1E-6) knowledge of the temperature and wavelength dependence of the refractive index in the wavelength and temperature range of operation. Hence, this paper is devoted to report on measurements of the refractive index over the wavelength range of 0.42-1.15 um and temperature range of 110-310 K for the following Ohara glasses: S-LAH55, S-LAH55V, SLAH59, S-LAM3, S-NBM51, S-NPH2, S-PHM52, and S-TIH14. The measurements were performed utilizing the Cryogenic High Accuracy Refraction Measuring System (CHARMS) facility at NASA's Goddard Space Flight Center. A dense coverage of the absolute refractive index for the title substrates in the aforementioned wavelength and temperature ranges was used to determine the thermo-optic coefficient (dn/dT) and dispersion relation (dn/d lambda) as a function of wavelength and temperature. A comparison of the measured indices with literature values, specifically the temperature-dependent refractive indices of S-PHM52 and S-TIH14, will be presented.

  19. Serengeti real estate: density vs. fitness-based indicators of lion habitat quality.

    PubMed

    Mosser, Anna; Fryxell, John M; Eberly, Lynn; Packer, Craig

    2009-10-01

    Habitat quality is typically inferred by assuming a direct relationship between consumer density and resource abundance, although it has been suggested that consumer fitness may be a more accurate measure of habitat quality. We examined density vs. fitness-based measures of habitat quality for lions in the Serengeti National Park, Tanzania. A 40-year average of female reproductive success (yearling cubs per female) was best explained by proximity to river confluences, whereas patterns of productivity (yearling cubs per km(2)) and adult female density (individuals per km(2)) were associated with more general measures of habitat quality and areas of shelter in poor habitat. This suggests that density may not accurately distinguish between high-quality 'source' areas and low-quality sites that merely provide refuges for effectively non-reproductive individuals. Our results indicate that density may be a misleading indicator of real estate value, particularly for populations that do not conform to an ideal free distribution.

  20. Use of burrow entrances to indicate densities of Townsend's ground squirrels

    USGS Publications Warehouse

    Van Horne, Beatrice; Schooley, R.L.; Knick, Steven T.; Olson, G.S.; Burnham, K.P.

    1997-01-01

    Counts of burrow entrances have been positively correlated with densities of semi-fossorial rodents and used as an index of densities. We evaluated their effectiveness in indexing densities of Townsend's ground squirrels (Spermophilus townsendii) in the Snake River Birds of Prey National Conservation Area (SRBOPNCA), Idaho, by comparing burrow entrance densities to densities of ground squirrels estimated from livetrapping in 2 consecutive years over which squirrel populations declined by >75%. We did not detect a consistent relation between burrow entrance counts and ground squirrel density estimates within or among habitat types. Scatter plots indicated that burrow entrances had little predictive power at intermediate densities. Burrow entrance counts did not reflect the magnitude of a between-year density decline. Repeated counts of entrances late in the squirrels' active season varied in a manner that would be difficult to use for calibration of transects sampled only once during this period. Annual persistence of burrow entrances varied between habitats. Trained observers were inconsistent in assigning active-inactive status to entrances. We recommend that burrow entrance counts not be used as measures or indices of ground squirrel densities in shrubsteppe habitats, and that the method be verified thoroughly before being used in other habitats.

  1. Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiO(x) using microring resonances.

    PubMed

    Arbabi, Amir; Goddard, Lynford L

    2013-10-01

    We present a method for determining the core and cladding refractive indices of a microring resonator from its measured quasi-transverse electric and magnetic resonant modes. We use single wavelength reflective microrings to resolve the azimuthal order ambiguity of the measured resonances. We perform accurate electromagnetic simulations to model the dependence of the resonances on geometrical and material parameters. We linearize the model and use the singular value decomposition method to find the best fit parameters for the measured data. At 1550 nm, we determine n(Si(3)N(4))=1.977±0.003 for stoichiometric silicon nitride deposited using low-pressure chemical vapor deposition (LPCVD) technique and n(SiO(x))=1.428±0.011 for plasma-enhanced chemical vapor deposition (PECVD) oxide. By measuring the temperature sensitivities of microring resonant modes with different polarizations, we find the thermo-optic coefficient of the stoichiometric silicon nitride to be dn(Si(3)N(4))/dT=(2.45±0.09)×10(-5) (RIU/°C) and the PECVD oxide to be dn(SiO(x))/dT=(0.95±0.10)×10(-5) (RIU/°C).

  2. Mass-specific optical absorption coefficients and imaginary part of the complex refractive indices of mineral dust components measured by a multi-wavelength photoacoustic spectrometer

    NASA Astrophysics Data System (ADS)

    Utry, N.; Ajtai, T.; Pintér, M.; Tombácz, E.; Illés, E.; Bozóki, Z.; Szabó, G.

    2015-01-01

    Mass-specific optical absorption coefficients (MACs) and the imaginary part (κ) of the refractive indices of various mineral dust components including silicate clays (illite, kaolin and bentonite), oxides (quartz, hematite and rutile), and carbonate (limestone) were determined at the wavelengths of 1064, 532, 355 and 266 nm. The MAC values were calculated from aerosol optical absorption coefficients measured by a multi-wavelength photoacoustic (PA) instrument, the mass concentration and the number size distribution of the generated aerosol samples as well as the size transfer functions of the measuring instruments. Values of κ were calculated from the measured and particle-loss-corrected data by using a Mie-theory-based retrieval algorithm. The determined values could be used for comparisons with calculated wavelength-dependent κ values typically deduced from bulk-phase measurements by using indirect measurement methods. Accordingly, the presented comparison of the measured and calculated aerosol optical absorption spectra revealed the strong need for standardized sample preparation and measurement methodology in case of bulk-phase measurements.

  3. Method of producing optical quality glass having a selected refractive index

    DOEpatents

    Poco, John F.; Hrubesh, Lawrence W.

    2000-01-01

    Optical quality glass having a selected refractive index is produced by a two stage drying process. A gel is produced using sol-gel chemistry techniques and first dried by controlled evaporation until the gel volume reaches a pre-selected value. This pre-selected volume determines the density and refractive index of the finally dried gel. The gel is refilled with solvent in a saturated vapor environment, and then dried again by supercritical extraction of the solvent to form a glass. The glass has a refractive index less than the full density of glass, and the range of achievable refractive indices depends on the composition of the glass. Glasses having different refractive indices chosen from an uninterrupted range of values can be produced from a single precursor solution.

  4. Effects of prebiotic, protein level, and stocking density on performance, immunity, and stress indicators of broilers.

    PubMed

    Houshmand, M; Azhar, K; Zulkifli, I; Bejo, M H; Kamyab, A

    2012-02-01

    An experiment was conducted to determine the effects of period on the performance, immunity, and some stress indicators of broilers fed 2 levels of protein and stocked at a normal or high stocking density. Experimental treatments consisted of a 2 × 2 × 2 factorial arrangement with 2 levels of prebiotic (with or without prebiotic), 2 levels of dietary CP [NRC-recommended or low CP level (85% of NRC-recommended level)], and 2 levels of stocking density (10 birds/m(2) as the normal density or 16 birds/m(2) as the high density), for a total of 8 treatments. Each treatment had 5 replicates (cages). Birds were reared in 3-tiered battery cages with wire floors in an open-sided housing system under natural tropical conditions. Housing and general management practices were similar for all treatment groups. Starter and finisher diets in mash form were fed from 1 to 21 d and 22 to 42 d of age, respectively. Supplementation with a prebiotic had no significant effect on performance, immunity, and stress indicators (blood glucose, cholesterol, corticosterone, and heterophil:lymphocyte ratio). Protein level significantly influenced broiler performance but did not affect immunity or stress indicators (except for cholesterol level). The normal stocking density resulted in better FCR and also higher antibody titer against Newcastle disease compared with the high stocking density. However, density had no significant effect on blood levels of glucose, cholesterol, corticosterone, and the heterophil:lymphocyte ratio. Significant interactions between protein level and stocking density were observed for BW gain and final BW. The results indicated that, under the conditions of this experiment, dietary addition of a prebiotic had no significant effect on the performance, immunity, and stress indicators of broilers.

  5. Calculation of aerosol optical properties under different assumptions on mixing state, refractive index, density and hygroscopicity: uncertainties and importance of representation of aerosol mixing state

    NASA Astrophysics Data System (ADS)

    Curci, Gabriele

    2015-04-01

    The calculation of aerosol optical properties from aerosol mass is a process subject to uncertainty related to necessary assumptions on the treatment of the chemical species mixing state, density, refractive index, and hygroscopic growth. We used the FlexAOD post-processing tool to calculate the optical properties (aerosol optical depth (AOD), single scattering albedo (SSA) and asymmetry parameter (g)) from chemistry-transport model aerosol profiles, using a wide range of assumptions on aerosol chemical and physical properties. We calculated that the most important factor of uncertainty is the assumption about the mixing state, for which we estimate an uncertainty of 30-35% on the simulated aerosol optical depth (AOD) and single scattering albedo (SSA). The choice of the core composition in the core-shell representation is of minor importance for calculation of AOD, while it is critical for the SSA. Other factors of uncertainty tested here have a maximum average impact of 10% each on calculated AOD, and an impact of a few percent on SSA and g. We then tested simple parameterizations of the aerosol mixing state, expressed as a function of the aerosol aging, and verified that they may be helpful in reducing the uncertainty when comparing simulations with AERONET retrievals.

  6. Cryogenic refractive indices of S-LAH55, S-LAH55V, S-LAH59, S-LAM3, S-NBM51, S-NPH2, S-PHM52, and S-TIH14 Glasses

    NASA Astrophysics Data System (ADS)

    Miller, Kevin H.; Quijada, Manuel A.; Leviton, Douglas B.

    2015-09-01

    The Transiting Exoplanet Survey Satellite (TESS) is an explorer-class planet finder whose principal goal is to detect small planets with bright host stars in the solar neighborhood. The TESS payload consists of four identical cameras with seven lens elements, each made from various Ohara glass. The successful implementation of both the panchromatic and the thermal aspect of these lens assemblies requires accurate knowledge of the thermal and spectral dependence of the refractive index in the wavelength and temperature ranges of operation. Hence, this paper reports measurements of the refractive index for the following Ohara glasses over the wavelength range 0.42 - 1.10 μm and temperature range ~120 - 300 K: S-LAH55, S-LAH55V, S-LAH59, S-LAM3, S-NBM51, S-NPH2, S-PHM52, and S-TIH14. The measurements were performed using the Cryogenic High Accuracy Refraction Measuring System (CHARMS) facility at NASA Goddard Space Flight Center. Dense coverage of absolute refractive indices of these glasses over the aforementioned wavelength and temperature ranges allowed accurate determination of spectral thermo-optic coefficients (dn/dT) and spectral dispersions (dn/dλ) as a function of temperature. A comparison of measured, temperature-dependent indices to literature values is presented for S-PHM52 and S-TIH14. A comparison to Ohara's catalog indices at room temperature is presented for all of the materials.

  7. The Thermospheric Density Model JB2008 using New EUV Solar and Geomagnetic Indices

    NASA Astrophysics Data System (ADS)

    Bowman, Bruce R.; Tobiska, W. Kent; Marcos, Frank; Huang, Cheryl

    A new empirical atmospheric density model, Jacchia-Bowman 2008, is developed as an improved revision to the Jacchia-Bowman 2006 model, which was previously developed based on the CIRA72 model diffusion equations. New solar indices computed from on-orbit sensor data are used for the solar irradiances in the extreme through far ultraviolet, including x-ray and Lyman-alpha wavelengths. New exospheric temperature equations are used to represent the thermospheric EUV heating. New semiannual density equations based on multiple 81-day average solar indices are used to represent the variations in the semiannual density cycle, which are shown to result from EUV heating. The geomagnetic storm effects are modeled using the Dst index to represent global density changes during storm times. The new model is validated through comparisons with accurate daily density drag data previously computed for numerous satellites in the altitude range of 175 to 1000 km. Model comparisons are computed for the JB2008, JB2006, Jacchia 1970, and NRLMSIS 2000 models. Additionally, CHAMP and GRACE accelerometer density data are used to validate the new geomagnetic storm equations.

  8. QPCR Determined Fecal Indicator Bacterial Densities in Marine Waters from Two Recreational Beaches

    EPA Science Inventory

    The use of real-time qPCR to determine fecal indicator bacteria (FIB) densities is currently being investigated by the U.S. EPA. The present recreational water quality guidelines, based on culturable FIB, prevent same day determinations of water quality whereas results from the ...

  9. Cryogenic Refractive Indices of S-LAH55, S-LAH55V, S-LAH59, S-LAM3, S-NBM51, S-NPH2, S-PHM52, and S-TIH14 Glasses

    NASA Technical Reports Server (NTRS)

    Miller, Kevin H.; Quijada, Manuel A.; Leviton, Douglas B.

    2015-01-01

    The Transiting Exoplanet Survey Satellite (TESS) is an explorer-class planet finder, whose principal goal is to detect small planets with bright host starts in the solar neighborhood. The TESS payload consists of four identical cameras and a Data Handling Unit (DHU) fitted with CCD detectors and associated electronics. Each camera consist of a lens assembly with seven optical elements that include various types of Ohara glass substrates. The successful implementation of a panchromatic and a thermal lens assembly design for these cameras requires a fairly accurate (up to 0.000001 (1e-6)) knowledge of the temperature- and wavelength-dependent of the refractive index in the wavelength and temperature range of operation. Hence, this paper is devoted to report on measurements of the refractive index over the wavelength range of 0.42-1.15 micrometers and temperature range of 110-300 K for the following Ohara glasses: S-LAH55, S-LAH55V, S-LAH59, S-LAM3, S-NBM51, S-NPH2, S-PHM52, and S-TIH14. The measurements were performed utilizing the Cryogenic High Accuracy Refraction Measuring System (CHARMS) facility at NASA's Goddard Space Flight Center. A dense coverage of the absolute refractive index for all these substrates in the aforementioned wavelength and temperature ranges was used to determine the thermo-optic coefficient (dndT) and dispersion relation (dnd) as a function of wavelength and temperature. A comparison of the measured indices with literature values, specifically the temperature-dependent refractive indices of S-PHM52 and S-TIH14 reported by Yamamuro et al. [Yamamuro et al., Opt. Eng. 45(8), 083401 (2006)], will be presented.

  10. Effects of refractive index mismatch in optical CT imaging of polymer gel dosimeters

    SciTech Connect

    Manjappa, Rakesh; Makki S, Sharath; Kanhirodan, Rajan; Kumar, Rajesh

    2015-02-15

    Purpose: Proposing an image reconstruction technique, algebraic reconstruction technique-refraction correction (ART-rc). The proposed method takes care of refractive index mismatches present in gel dosimeter scanner at the boundary, and also corrects for the interior ray refraction. Polymer gel dosimeters with high dose regions have higher refractive index and optical density compared to the background medium, these changes in refractive index at high dose results in interior ray bending. Methods: The inclusion of the effects of refraction is an important step in reconstruction of optical density in gel dosimeters. The proposed ray tracing algorithm models the interior multiple refraction at the inhomogeneities. Jacob’s ray tracing algorithm has been modified to calculate the pathlengths of the ray that traverses through the higher dose regions. The algorithm computes the length of the ray in each pixel along its path and is used as the weight matrix. Algebraic reconstruction technique and pixel based reconstruction algorithms are used for solving the reconstruction problem. The proposed method is tested with numerical phantoms for various noise levels. The experimental dosimetric results are also presented. Results: The results show that the proposed scheme ART-rc is able to reconstruct optical density inside the dosimeter better than the results obtained using filtered backprojection and conventional algebraic reconstruction approaches. The quantitative improvement using ART-rc is evaluated using gamma-index. The refraction errors due to regions of different refractive indices are discussed. The effects of modeling of interior refraction in the dose region are presented. Conclusions: The errors propagated due to multiple refraction effects have been modeled and the improvements in reconstruction using proposed model is presented. The refractive index of the dosimeter has a mismatch with the surrounding medium (for dry air or water scanning). The algorithm

  11. Low-Temperature Fabrication of Mesoporous Titanium Dioxide Thin Films with Tunable Refractive Indices for One-Dimensional Photonic Crystals and Sensors on Rigid and Flexible Substrates.

    PubMed

    Li, Cheng; Colella, Nicholas S; Watkins, James J

    2015-06-24

    Highly transparent mesoporous titanium dioxide (TiO2; anatase) thin films were prepared at room temperature via ultraviolet (UV) irradiation of hybrid polymer-TiO2 nanoparticle thin films. This approach utilized a UV-curable polymer in conjunction with the photocatalytic activity of TiO2 to form and degrade the organic component of the composite films in one step, producing films with well-controlled porosity and refractive index. By adjustment of the loading of TiO2 nanoparticles in the host polymer, the refractive index was tuned between 1.53 and 1.73. Facile control of these properties and mild processing conditions was leveraged to fabricate robust one-dimensional photonic crystals (Bragg mirrors) consisting entirely of TiO2 on silicon and flexible poly(ethylene terephthalate) substrates. The mesoporous Bragg mirrors were shown to be effective chemical vapor sensors with strong optical responses.

  12. Amphipod densities and indices of wetland quality across the upper-Midwest, USA

    USGS Publications Warehouse

    Anteau, M.J.; Afton, A.D.

    2008-01-01

    Nutritional, behavioral, and diet data for lesser scaup (Aythya affinis [Eyton, 1838]) indicates that there has been a decrease in amphipod (Gammarus lacustris [G. O. Sars, 1863] and Hyalella azteca [Saussure, 1858]) density and wetland quality throughout the upper-Midwest, USA. Accordingly, we estimated densities of Gammarus and Hyalella in six eco-physiographic regions of Iowa, Minnesota, and North Dakota; 356 randomly selected semipermanent and permanent wetlands were sampled during springs 2004 and 2005. We also examined indices of wetland quality (e.g., turbidity, fish communities, aquatic vegetation) among regions in a random subset of these wetlands (n = 267). Gammarus and Hyalella were present in 19% and 54% of wetlands sampled, respectively. Gammarus and Hyalella densities in North Dakota were higher than those in Iowa and Minnesota. Although historical data are limited, our regional mean (1 to 12 m-3) amphipod densities (Gammarus + Hyalella) were markedly lower than any of the historical density estimates. Fish, important predators of amphipods, occurred in 31%-45% of wetlands in North Dakota, 84% of wetlands in the Red River Valley, and 74%-84% of wetlands in Iowa and Minnesota. Turbidity in wetlands of Minnesota Morainal (4.0 NTU geometric mean) and Red River Valley (6.1 NTU) regions appeared low relative to that of the rest of the upper-Midwest (13.2-17.5 NTU). We conclude that observed estimates of amphipods, fish, and turbidity are consistent with low wetland quality, which has resulted in lower food availability for various wildlife species, especially lesser scaup, which use these wetlands in the upper-Midwest. ?? 2008, The Society of Wetland Scientists.

  13. Temporal fluctuations in oribatid mites indicate that density-independent factors favour parthenogenetic reproduction.

    PubMed

    Bluhm, Christian; Scheu, Stefan; Maraun, Mark

    2016-04-01

    We investigated the oribatid mite density, community structure and the percentage of parthenogenetic individuals in four different forest types across three regions in Germany in 2008 and once again in 2011. We compared temporal (inter-annual) fluctuations in population densities between sexually and parthenogenetically reproducing species of oribatid mites. We hypothesized that population densities in parthenogenetic oribatid mite species fluctuate more than in sexual ones. Further, we expected species composition and dominance of parthenogenetic species to differ between forest types and regions. Oribatid mite community structure did not differ between years but varied with forest type and region, indicating low species turnover in time. As hypothesized, temporal fluctuations were more pronounced in parthenogenetic as compared to sexual species. The percentage of parthenogenetic individuals was significantly higher in coniferous than in beech forests and significantly higher in Schorfheide-Chorin than in Hainich-Dün and Schwäbische Alb. The results indicate that parthenogenetic species flourish if populations are controlled by density-independent factors and dominate at sites were resources are plentiful and easily available, such as coniferous forests, and in regions with more acidic soils and thick organic layers, such as Schorfheide-Chorin. However, historical factors also may have contributed to the increased dominance of parthenogenetic species in the Schorfheide-Chorin, as this region was more heavily glaciated and this may have favoured parthenogenetic species. Overall, our study supports the hypothesis that parthenogenetic species benefit from the lack of density-dependent population control whereas the opposite is true for sexual species.

  14. Alternative Refractive Surgery Procedures

    MedlinePlus

    ... LASIK Alternative Refractive Surgery Procedures Laser Surgery Recovery Alternative Refractive Surgery Procedures Dec. 12, 2015 Today's refractive ... that releases controlled amounts of radio frequency (RF) energy, instead of a laser, to apply heat to ...

  15. The Development of New Solar Indices for use in Thermospheric Density Modeling

    NASA Technical Reports Server (NTRS)

    Tobiska, W. Kent; Bouwer, S. Dave; Bowman, Bruce R.

    2006-01-01

    New solar indices have been developed to improve thermospheric density modeling for research and operational purposes. Out of 11 new and 4 legacy indices and proxies, we have selected three (F10.7, S10.7, and M10.7) for use in the new JB2006 empirical thermospheric density model. In this work, we report on the development of these solar irradiance indices. The rationale for their use, their definitions, and their characteristics, including the ISO 21348 spectral category and sub-category, wavelength range, solar source temperature region, solar source feature, altitude region of terrestrial atmosphere absorption at unit optical depth, and terrestrial atmosphere thermal processes in the region of maximum energy absorption, are described. We also summarize for each solar index, the facility and instrument(s) used to observe the solar emission, the time frame over which the data exist, the measurement cadence, the data latency, and the research as well as operational availability. The new solar indices are provided in forecast (http://SpaceWx.com) as well as real-time and historical (http://sol.spacenvironment.net/jb2006/) time frames. We describe the forecast methodology, compare results with actual data for active and quiet solar conditions, and compare improvements in F10.7 forecasting with legacy High Accuracy Satellite Drag Model (HASDM) and NOAA SEC forecasts.

  16. Plant root tortuosity: an indicator of root path formation in soil with different composition and density

    PubMed Central

    Popova, Liyana; van Dusschoten, Dagmar; Nagel, Kerstin A.; Fiorani, Fabio; Mazzolai, Barbara

    2016-01-01

    Background and Aims Root soil penetration and path optimization are fundamental for root development in soil. We describe the influence of soil strength on root elongation rate and diameter, response to gravity, and root-structure tortuosity, estimated by average curvature of primary maize roots. Methods Soils with different densities (1·5, 1·6, 1·7 g cm−3), particle sizes (sandy loam; coarse sand mixed with sandy loam) and layering (monolayer, bilayer) were used. In total, five treatments were performed: Mix_low with mixed sand low density (three pots, 12 plants), Mix_medium - mixed sand medium density (three pots, 12 plants), Mix_high - mixed sand high density (three pots, ten plants), Loam_low sandy loam soil low density (four pots, 16 plants), and Bilayer with top layer of sandy loam and bottom layer mixed sand both of low density (four pots, 16 plants). We used non-invasive three-dimensional magnetic resonance imaging to quantify effects of these treatments. Key Results Roots grew more slowly [root growth rate (mm h–1); decreased 50 %] with increased diameters [root diameter (mm); increased 15 %] in denser soils (1·7 vs. 1·5 g cm–3). Root response to gravity decreased 23 % with increased soil compaction, and tortuosity increased 10 % in mixed sand. Response to gravity increased 39 % and tortuosity decreased 3 % in sandy loam. After crossing a bilayered–soil interface, roots grew more slowly, similar to roots grown in soil with a bulk density of 1·64 g cm–3, whereas the actual experimental density was 1·48±0·02 g cm–3. Elongation rate and tortuosity were higher in Mix_low than in Loam_low. Conclusions The present study increases our existing knowledge of the influence of physical soil properties on root growth and presents new assays for studying root growth dynamics in non-transparent media. We found that root tortuosity is indicative of root path selection, because it could result from both mechanical deflection and

  17. On the refractive index of sodium iodide solutions for index matching in PIV

    NASA Astrophysics Data System (ADS)

    Bai, Kunlun; Katz, Joseph

    2014-04-01

    Refractive index matching has become a popular technique for facilitating applications of modern optical diagnostic techniques, such as particle image velocimetry, in complex systems. By matching the refractive index of solid boundaries with that of the liquid, unobstructed optical paths can be achieved for illumination and image acquisition. In this research note, we extend previously provided data for the refractive index of aqueous solutions of sodium iodide (NaI) for concentrations reaching the temperature-dependent solubility limit. Results are fitted onto a quadratic empirical expression relating the concentration to the refractive index. Temperature effects are also measured. The present range of indices, 1.333-1.51, covers that of typical transparent solids, from silicone elastomers to several recently introduced materials that could be manufactured using rapid prototyping. We also review briefly previous measurements of the refractive index, viscosity, and density of NaI solutions, as well as prior research that has utilized this fluid.

  18. The dipole moment of the spin density as a local indicator for phase transitions

    PubMed Central

    Schmitz, D.; Schmitz-Antoniak, C.; Warland, A.; Darbandi, M.; Haldar, S.; Bhandary, S.; Eriksson, O.; Sanyal, B.; Wende, H.

    2014-01-01

    The intra-atomic magnetic dipole moment - frequently called 〈Tz〉 term - plays an important role in the determination of spin magnetic moments by x-ray absorption spectroscopy for systems with nonspherical spin density distributions. In this work, we present the dipole moment as a sensitive monitor to changes in the electronic structure in the vicinity of a phase transiton. In particular, we studied the dipole moment at the Fe2+ and Fe3+ sites of magnetite as an indicator for the Verwey transition by a combination of x-ray magnetic circular dichroism and density functional theory. Our experimental results prove that there exists a local change in the electronic structure at temperatures above the Verwey transition correlated to the known spin reorientation. Furthermore, it is shown that measurement of the dipole moment is a powerful tool to observe this transition in small magnetite nanoparticles for which it is usually screened by blocking effects in classical magnetometry. PMID:25041757

  19. The dipole moment of the spin density as a local indicator for phase transitions.

    PubMed

    Schmitz, D; Schmitz-Antoniak, C; Warland, A; Darbandi, M; Haldar, S; Bhandary, S; Eriksson, O; Sanyal, B; Wende, H

    2014-07-21

    The intra-atomic magnetic dipole moment - frequently called ⟨Tz⟩ term - plays an important role in the determination of spin magnetic moments by x-ray absorption spectroscopy for systems with nonspherical spin density distributions. In this work, we present the dipole moment as a sensitive monitor to changes in the electronic structure in the vicinity of a phase transiton. In particular, we studied the dipole moment at the Fe(2+) and Fe(3+) sites of magnetite as an indicator for the Verwey transition by a combination of x-ray magnetic circular dichroism and density functional theory. Our experimental results prove that there exists a local change in the electronic structure at temperatures above the Verwey transition correlated to the known spin reorientation. Furthermore, it is shown that measurement of the dipole moment is a powerful tool to observe this transition in small magnetite nanoparticles for which it is usually screened by blocking effects in classical magnetometry.

  20. Assessment of bone mineral density in the jaws and its relationship to radiomorphometric indices

    PubMed Central

    Gulsahi, A; Paksoy, CS; Ozden, S; Kucuk, NO; Cebeci, ARI; Genc, Y

    2010-01-01

    Objectives The aim of this study was to evaluate maxillary, mandibular and femoral neck bone mineral density using dual energy X-ray absorptiometry (DXA) and to determine any correlation between the bone mineral density of the jaws and panoramic radiomorphometric indices. Methods 49 edentulous patients (18 males and 31 females) aged between 41 and 78 years (mean age 60.2 ± 11.04) were examined by panoramic radiography. Bone mineral density (BMD) of the jaws and femoral neck was measured with a DXA; bone mineral density was calculated at the anterior, premolar and molar regions of the maxilla and mandible. Results The mean maxillary molar BMD (0.45 g cm−2) was significantly greater than the maxillary anterior and premolar BMD (0.31 g cm−2, P < 0.05). Furthermore, the mean mandibular anterior and premolar BMD (1.39 g cm−2 and 1.28 g cm−2, respectively) was significantly greater than the mean mandibular molar BMD (1.09 g cm−2, P < 0.01). Although BMD in the maxillary anterior and premolar regions were correlated, BMD in all the mandibular regions were highly correlated. Maxillary and mandibular BMD were not correlated with femoral BMD. In addition, mandibular cortical index (MCI) classification, mental index (MI) or panoramic mandibular index (PMI) values were not significantly correlated with the maxillary and mandibular BMDs (P > 0.05). Conclusions The BMD in this study was highest in the mandibular anterior region and lowest in the maxillary anterior and premolar regions. The BMD of the jaws was not correlated with either femoral BMD or panoramic radiomorphometric indices. PMID:20587652

  1. Kernel Density Surface Modelling as a Means to Identify Significant Concentrations of Vulnerable Marine Ecosystem Indicators

    PubMed Central

    Kenchington, Ellen; Murillo, Francisco Javier; Lirette, Camille; Sacau, Mar; Koen-Alonso, Mariano; Kenny, Andrew; Ollerhead, Neil; Wareham, Vonda; Beazley, Lindsay

    2014-01-01

    The United Nations General Assembly Resolution 61/105, concerning sustainable fisheries in the marine ecosystem, calls for the protection of vulnerable marine ecosystems (VME) from destructive fishing practices. Subsequently, the Food and Agriculture Organization (FAO) produced guidelines for identification of VME indicator species/taxa to assist in the implementation of the resolution, but recommended the development of case-specific operational definitions for their application. We applied kernel density estimation (KDE) to research vessel trawl survey data from inside the fishing footprint of the Northwest Atlantic Fisheries Organization (NAFO) Regulatory Area in the high seas of the northwest Atlantic to create biomass density surfaces for four VME indicator taxa: large-sized sponges, sea pens, small and large gorgonian corals. These VME indicator taxa were identified previously by NAFO using the fragility, life history characteristics and structural complexity criteria presented by FAO, along with an evaluation of their recovery trajectories. KDE, a non-parametric neighbour-based smoothing function, has been used previously in ecology to identify hotspots, that is, areas of relatively high biomass/abundance. We present a novel approach of examining relative changes in area under polygons created from encircling successive biomass categories on the KDE surface to identify “significant concentrations” of biomass, which we equate to VMEs. This allows identification of the VMEs from the broader distribution of the species in the study area. We provide independent assessments of the VMEs so identified using underwater images, benthic sampling with other gear types (dredges, cores), and/or published species distribution models of probability of occurrence, as available. For each VME indicator taxon we provide a brief review of their ecological function which will be important in future assessments of significant adverse impact on these habitats here and

  2. Kernel density surface modelling as a means to identify significant concentrations of vulnerable marine ecosystem indicators.

    PubMed

    Kenchington, Ellen; Murillo, Francisco Javier; Lirette, Camille; Sacau, Mar; Koen-Alonso, Mariano; Kenny, Andrew; Ollerhead, Neil; Wareham, Vonda; Beazley, Lindsay

    2014-01-01

    The United Nations General Assembly Resolution 61/105, concerning sustainable fisheries in the marine ecosystem, calls for the protection of vulnerable marine ecosystems (VME) from destructive fishing practices. Subsequently, the Food and Agriculture Organization (FAO) produced guidelines for identification of VME indicator species/taxa to assist in the implementation of the resolution, but recommended the development of case-specific operational definitions for their application. We applied kernel density estimation (KDE) to research vessel trawl survey data from inside the fishing footprint of the Northwest Atlantic Fisheries Organization (NAFO) Regulatory Area in the high seas of the northwest Atlantic to create biomass density surfaces for four VME indicator taxa: large-sized sponges, sea pens, small and large gorgonian corals. These VME indicator taxa were identified previously by NAFO using the fragility, life history characteristics and structural complexity criteria presented by FAO, along with an evaluation of their recovery trajectories. KDE, a non-parametric neighbour-based smoothing function, has been used previously in ecology to identify hotspots, that is, areas of relatively high biomass/abundance. We present a novel approach of examining relative changes in area under polygons created from encircling successive biomass categories on the KDE surface to identify "significant concentrations" of biomass, which we equate to VMEs. This allows identification of the VMEs from the broader distribution of the species in the study area. We provide independent assessments of the VMEs so identified using underwater images, benthic sampling with other gear types (dredges, cores), and/or published species distribution models of probability of occurrence, as available. For each VME indicator taxon we provide a brief review of their ecological function which will be important in future assessments of significant adverse impact on these habitats here and elsewhere.

  3. Refraction characteristics of phononic crystals

    NASA Astrophysics Data System (ADS)

    Nemat-Nasser, Sia

    2015-08-01

    Some of the most interesting refraction properties of phononic crystals are revealed by examining the anti-plane shear waves in doubly periodic elastic composites with unit cells containing rectangular and/or elliptical multi-inclusions. The corresponding band structure, group velocity, and energy-flux vector are calculated using a powerful mixed variational method that accurately and efficiently yields all the field quantities over multiple frequency pass-bands. The background matrix and the inclusions can be anisotropic, each having distinct elastic moduli and mass densities. Equifrequency contours and energy-flux vectors are readily calculated as functions of the wave-vector components. By superimposing the energy-flux vectors on equifrequency contours in the plane of the wave-vector components, and supplementing this with a three-dimensional graph of the corresponding frequency surface, a wealth of information is extracted essentially at a glance. This way it is shown that a composite with even a simple square unit cell containing a central circular inclusion can display negative or positive energy and phase velocity refractions, or simply performs a harmonic vibration (standing wave), depending on the frequency and the wave-vector. Moreover, that the same composite when interfaced with a suitable homogeneous solid can display: (1) negative refraction with negative phase velocity refraction; (2) negative refraction with positive phase velocity refraction; (3) positive refraction with negative phase velocity refraction; (4) positive refraction with positive phase velocity refraction; or even (5) complete reflection with no energy transmission, depending on the frequency, and direction and the wavelength of the plane-wave that is incident from the homogeneous solid to the interface. For elliptical and rectangular inclusion geometries, analytical expressions are given for the key calculation quantities. Expressions for displacement, velocity, linear momentum

  4. Refractive Index Enhancement in Gases

    DTIC Science & Technology

    2012-02-29

    experimentally demonstrated the key ingredients of this approach in Rubidium vapor where we have observe enhanced refractive index with vanishing absorption...beam, Ep. We have recently experimentally demonstrated this effect in a 1-mm-long Rubidium (Rb) vapor cell at high vapor densities. Here, we utilize

  5. The diffuse reduction in spleen density: an indicator of severe acute pancreatitis?

    PubMed Central

    Shao, Guangdong; Zhou, Yanmei; Song, Zengfu; Jiang, Maitao; Wang, Xiaoqian; Jin, Xiangren; Sun, Bei; Bai, Xuewei

    2016-01-01

    We observed that acute pancreatitis (AP) was associated with diffuse reduction in spleen density (DROSD) in some patients. Furthermore, the condition of these patients was more serious, and the potential relationship between DROSD and structural and functional injury of the spleen remained unclear. Therefore, we performed a preliminary exploration of these factors. We analysed pertinent clinical data for AP patients with normal spleen density (control group) and for those with DROSD (reduction group) at the First Affiliated Hospital of Harbin Medical University (June 2013–June 2015). We measured the immunoglobulin M (IgM) B-cells of the AP patients and examined pancreatic and splenic tissues from AP rats with optical microscopy and TEM. The reduction group had a higher acute physiology and chronic health evaluation II (APACHE II) score, a longer length of stay (LOS) and lower serum calcium than the control group. The levels of triglycerides (TG) and total cholesterol (TC) did not differ significantly between the two groups. The percentage of IgM memory B-cells was significantly lower in the DROSD group than in the control group. TEM revealed that the spleen T-lymphocytes were normal in AP rats, but pyroptotic and necrotic spleen B-cells were observed in the severe AP rats. In AP, DROSD was an independent indicator of more severe conditions. Furthermore, spleen B-lymphocytes showed obvious damage at the cellular level, and the immunological function of the spleen was down-regulated when AP was associated with DROSD. PMID:27920277

  6. Refractive index of plant cell walls

    NASA Technical Reports Server (NTRS)

    Gausman, H. W.; Allen, W. A.; Escobar, D. E.

    1974-01-01

    Air was replaced with media of higher refractive indices by vacuum infiltration in leaves of cucumber, blackeye pea, tomato, and string bean plants, and reflectance of noninfiltrated and infiltrated leaves was spectrophotometrically measured. Infiltrated leaves reflected less light than noninfiltrated leaves over the 500-2500-nm wavelength interval because cell wall-air interfaces were partly eliminated. Minimal reflectance should occur when the average refractive index of plant cell walls was matched by the infiltrating fluid. Although refractive indices that resulted in minimal reflectance differed among the four plant genera, an average value of 1.425 approximates the refractive index of plant cell walls for the four plant genera.

  7. Density, refractive index, interfacial tension, and viscosity of ionic liquids [EMIM][EtSO4], [EMIM][NTf2], [EMIM][N(CN)2], and [OMA][NTf2] in dependence on temperature at atmospheric pressure.

    PubMed

    Fröba, Andreas P; Kremer, Heiko; Leipertz, Alfred

    2008-10-02

    The density, refractive index, interfacial tension, and viscosity of ionic liquids (ILs) [EMIM][EtSO 4] (1-ethyl-3-methylimidazolium ethylsulfate), [EMIM][NTf 2] (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide), [EMIM][N(CN) 2] (1-ethyl-3-methylimidazolium dicyanimide), and [OMA][NTf 2] (trioctylmethylammonium bis(trifluoromethylsulfonyl)imide) were studied in dependence on temperature at atmospheric pressure both by conventional techniques and by surface light scattering (SLS). A vibrating tube densimeter was used for the measurement of density at temperatures from (273.15 to 363.15) K and the results have an expanded uncertainty ( k = 2) of +/-0.02%. Using an Abbe refractometer, the refractive index was measured for temperatures between (283.15 and 313.15) K with an expanded uncertainty ( k = 2) of about +/-0.0005. The interfacial tension was obtained from the pendant drop technique at a temperature of 293.15 K with an expanded uncertainty ( k = 2) of +/-1%. For higher and lower temperatures, the interfacial tension was estimated by an adequate prediction scheme based on the datum at 293.15 K and the temperature dependence of density. For the ILs studied within this work, at a first order approximation, the quantity directly accessible by the SLS technique was the ratio of surface tension to dynamic viscosity. By combining the experimental results of the SLS technique with density and interfacial tension from conventional techniques, the dynamic viscosity could be obtained for temperatures between (273.15 and 333.15) K with an estimated expanded uncertainty ( k = 2) of less than +/-3%. The measured density, refractive index, and viscosity are represented by interpolating expressions with differences between the experimental and calculated values that are comparable with but always smaller than the expanded uncertainties ( k = 2). Besides a comparison with the literature, the influence of structural variations on the thermophysical properties of the

  8. Alternative refrigerants CH[sub 2]F[sub 2] and C[sub 2]HF[sub 5]: Critical temperature, refractive index, surface tension, and estimates of liquid, vapor, and critical densities

    SciTech Connect

    Schmidt, J.W.; Moldover, M.R. . Thermophysics Div.)

    1994-01-01

    Refractive index data and capillary rise data are reported for CH[sub 2]F[sub 2] and C[sub 2]HF[sub 5], which are denoted as R32 and R125 by the refrigeration industry. For each fluid, the data extend from 296 K to the critical point and yield the critical temperature T[sub c] and the temperature-dependent capillary length. The refractive index data were combined with liquid density data at 303 K to determine the Lorentz-Lorenz constant k. This constant and the data were used to estimate the liquid, vapor, and critical densities, and the surface tension [sigma] up to the critical point. For both fluids, the surface tension [sigma] is given by the expression [sigma] = S[sub 0]t[sup 1.26]k[sub B]T[sub c](N[sub A]/V[sub c][sup 2/3]) with S[sub 0] = 5.5 for R32 and S[sub 0] = 6.0 for R125. Here k[sub B], N[sub A], T[sub c], and V[sub c] are the Boltzmann constant, the Avogadro constant, the critical temperature, and the molar critical volume, respectively, and t [triple bond] (T[sub c] [minus] T)/T[sub c]. The present values for S[sub 0] are close to the average value S[sub 0] = 5.7 for seven other refrigerants.

  9. Refractive corneal surgery - discharge

    MedlinePlus

    Nearsightedness surgery - discharge; Refractive surgery - discharge; LASIK - discharge; PRK - discharge ... You had refractive corneal surgery to help improve your vision. This surgery uses a laser to reshape your cornea. It corrects mild-to-moderate nearsightedness, ...

  10. Decay of aftershock density with distance indicates triggering by dynamic stress

    USGS Publications Warehouse

    Felzer, K.R.; Brodsky, E.E.

    2006-01-01

    The majority of earthquakes are aftershocks, yet aftershock physics is not well understood. Many studies suggest that static stress changes trigger aftershocks, but recent work suggests that shaking (dynamic stresses) may also play a role. Here we measure the decay of aftershocks as a function of distance from magnitude 2-6 mainshocks in order to clarify the aftershock triggering process. We find that for short times after the mainshock, when low background seismicity rates allow for good aftershock detection, the decay is well fitted by a single inverse power law over distances of 0.2-50 km. The consistency of the trend indicates that the same triggering mechanism is working over the entire range. As static stress changes at the more distant aftershocks are negligible, this suggests that dynamic stresses may be triggering all of these aftershocks. We infer that the observed aftershock density is consistent with the probability of triggering aftershocks being nearly proportional to seismic wave amplitude. The data are not fitted well by models that combine static stress change with the evolution of frictionally locked faults. ?? 2006 Nature Publishing Group.

  11. Refraction near the horizon

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.; Liller, William

    1990-01-01

    Variations in astronomical refraction near the horizon are examined. Sunset timings, a sextant mounted on a tripod, and a temperature profile are utilized to derive the variations in refraction data, collected from 7 locations. It is determined that the refraction ranges from 0.234 to 1.678 deg with an rms deviation of 0.16, and it is observed that the variation is larger than previously supposed. Some applications for the variation of refraction value are discussed.

  12. Path Integrals for Electronic Densities, Reactivity Indices, and Localization Functions in Quantum Systems

    PubMed Central

    Putz, Mihai V.

    2009-01-01

    The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr’s quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions – all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems. PMID:20087467

  13. A New Empirical Thermospheric Density Model JB2008 Using New Solar and Geomagnetic Indices

    DTIC Science & Technology

    2008-01-01

    Bowman, B.R., W. K. Tobiska, F.A. Marcos, C. Valladares, “The JB2006 empirical thermospheric density model,” Journal of Atmospheric and Solar - Terrestrial Physics , 2007...Kendra, “The thermosphere semiannual density response to solar EUV heating,” Journal of Atmospheric and Solar - Terrestrial Physics , 2008

  14. Path integrals for electronic densities, reactivity indices, and localization functions in quantum systems.

    PubMed

    Putz, Mihai V

    2009-11-10

    The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr's quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions - all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems.

  15. Refractive error blindness.

    PubMed Central

    Dandona, R.; Dandona, L.

    2001-01-01

    Recent data suggest that a large number of people are blind in different parts of the world due to high refractive error because they are not using appropriate refractive correction. Refractive error as a cause of blindness has been recognized only recently with the increasing use of presenting visual acuity for defining blindness. In addition to blindness due to naturally occurring high refractive error, inadequate refractive correction of aphakia after cataract surgery is also a significant cause of blindness in developing countries. Blindness due to refractive error in any population suggests that eye care services in general in that population are inadequate since treatment of refractive error is perhaps the simplest and most effective form of eye care. Strategies such as vision screening programmes need to be implemented on a large scale to detect individuals suffering from refractive error blindness. Sufficient numbers of personnel to perform reasonable quality refraction need to be trained in developing countries. Also adequate infrastructure has to be developed in underserved areas of the world to facilitate the logistics of providing affordable reasonable-quality spectacles to individuals suffering from refractive error blindness. Long-term success in reducing refractive error blindness worldwide will require attention to these issues within the context of comprehensive approaches to reduce all causes of avoidable blindness. PMID:11285669

  16. Preparation of Transparent Bulk TiO2/PMMA Hybrids with Improved Refractive Indices via an in Situ Polymerization Process Using TiO2 Nanoparticles Bearing PMMA Chains Grown by Surface-Initiated Atom Transfer Radical Polymerization.

    PubMed

    Maeda, Satoshi; Fujita, Masato; Idota, Naokazu; Matsukawa, Kimihiro; Sugahara, Yoshiyuki

    2016-12-21

    Transparent TiO2/PMMA hybrids with a thickness of 5 mm and improved refractive indices were prepared by in situ polymerization of methyl methacrylate (MMA) in the presence of TiO2 nanoparticles bearing poly(methyl methacrylate) (PMMA) chains grown using surface-initiated atom transfer radical polymerization (SI-ATRP), and the effect of the chain length of modified PMMA on the dispersibility of modified TiO2 nanoparticles in the bulk hybrids was investigated. The surfaces of TiO2 nanoparticles were modified with both m-(chloromethyl)phenylmethanoyloxymethylphosphonic acid bearing a terminal ATRP initiator and isodecyl phosphate with a high affinity for common organic solvents, leading to sufficient dispersibility of the surface-modified particles in toluene. Subsequently, SI-ATRP of MMA was achieved from the modified surfaces of the TiO2 nanoparticles without aggregation of the nanoparticles in toluene. The molecular weights of the PMMA chains cleaved from the modified TiO2 nanoparticles increased with increases in the prolonging of the polymerization period, and these exhibited a narrow distribution, indicating chain growth controlled by SI-ATRP. The nanoparticles bearing PMMA chains were well-dispersed in MMA regardless of the polymerization period. Bulk PMMA hybrids containing modified TiO2 nanoparticles with a thickness of 5 mm were prepared by in situ polymerization of the MMA dispersion. The transparency of the hybrids depended significantly on the chain length of the modified PMMA on the nanoparticles, because the modified PMMA of low molecular weight induced aggregation of the TiO2 nanoparticles during the in situ polymerization process. The refractive indices of the bulk hybrids could be controlled by adjusting the TiO2 content and could be increased up to 1.566 for 6.3 vol % TiO2 content (1.492 for pristine PMMA).

  17. Modification of TiO2 Nanoparticles with Oleyl Phosphate via Phase Transfer in the Toluene-Water System and Application of Modified Nanoparticles to Cyclo-Olefin-Polymer-Based Organic-Inorganic Hybrid Films Exhibiting High Refractive Indices.

    PubMed

    Takahashi, Shiori; Hotta, Shuhei; Watanabe, Akira; Idota, Naokazu; Matsukawa, Kimihiro; Sugahara, Yoshiyuki

    2017-01-18

    Oleyl-phosphate-modified TiO2 nanoparticles (OP_TiO2) were prepared via phase transfer from an aqueous phase containing dispersed TiO2 nanoparticles to a toluene phase containing oleyl phosphate (OP, a mixture of monoester and diester), and employed for the preparation of OP_TiO2/cyclo-olefin polymer (COP) hybrid films with high-refractive indices. The modification of TiO2 by OP was essentially completed by reaction at room temperature for 8 h, and essentially all the TiO2 nanoparticles in the aqueous phase were transferred to the toluene phase. The infrared and solid-state (13)C cross-polarization and magic-angle spinning (CP/MAS) NMR spectrum of OP_TiO2 showed the presence of oleyl groups originating from oleyl phosphate. The solid-state (31)P MAS NMR spectrum of OP_TiO2 exhibited new signals at -1.4, 2.1, and 4.8 ppm, indicating the formation of Ti-O-P bonds. CHN and inductively coupled plasma analyses revealed that the major species bound to the TiO2 surface was tridentate CH3(CH2)7CH═CH(CH2)8P(OTi)3. These results clearly indicate that the surfaces of the TiO2 nanoparticles were modified by OP moieties via phase transfer. OP_TiO2/COP hybrid films exhibited excellent optical transparency up to 19.1 vol % TiO2 loading, and the light transmittance of the hybrid films with 19.1 vol % TiO2 loading was 99.8% at 633 nm. The refractive index of these hybrid films rose to 1.83.

  18. Refraction of coastal ocean waves

    NASA Technical Reports Server (NTRS)

    Shuchman, R. A.; Kasischke, E. S.

    1981-01-01

    Refraction of gravity waves in the coastal area off Cape Hatteras, NC as documented by synthetic aperture radar (SAR) imagery from Seasat orbit 974 (collected on September 3, 1978) is discussed. An analysis of optical Fourier transforms (OFTs) from more than 70 geographical positions yields estimates of wavelength and wave direction for each position. In addition, independent estimates of the same two quantities are calculated using two simple theoretical wave-refraction models. The OFT results are then compared with the theoretical results. A statistical analysis shows a significant degree of linear correlation between the data sets. This is considered to indicate that the Seasat SAR produces imagery whose clarity is sufficient to show the refraction of gravity waves in shallow water.

  19. Developing a bubble number-density paleoclimatic indicator for glacier ice

    USGS Publications Warehouse

    Spencer, M.K.; Alley, R.B.; Fitzpatrick, J.J.

    2006-01-01

    Past accumulation rate can be estimated from the measured number-density of bubbles in an ice core and the reconstructed paleotemperature, using a new technique. Density increase and grain growth in polar firn are both controlled by temperature and accumulation rate, and the integrated effects are recorded in the number-density of bubbles as the firn changes to ice. An empirical model of these processes, optimized to fit published data on recently formed bubbles, reconstructs accumulation rates using recent temperatures with an uncertainty of 41% (P < 0.05). For modern sites considered here, no statistically significant trend exists between mean annual temperature and the ratio of bubble number-density to grain number-density at the time of pore close-off; optimum modeled accumulation-rate estimates require an eventual ???2.02 ?? 0.08 (P < 0.05) bubbles per close-off grain. Bubble number-density in the GRIP (Greenland) ice core is qualitatively consistent with independent estimates for a combined temperature decrease and accumulation-rate increase there during the last 5 kyr.

  20. In vivo measurement of the shape of the tissue-refractive-index correlation function and its applicationto detection of colorectal field carcinogenesis

    NASA Astrophysics Data System (ADS)

    Gomes, Andrew J.; Ruderman, Sarah; DelaCruz, Mart; Wali, Ramesh K.; Roy, Hemant K.; Backman, Vadim

    2012-04-01

    Polarization-gated spectroscopy is an established method to depth-selectively interrogate the structural properties of biological tissue. We employ this method in vivo in the azoxymethane (AOM)-treated rat model to monitor the morphological changes that occur in the field of a tumor during early carcinogenesis. The results demonstrate a statistically significant change in the shape of the refractive-index correlation function for AOM-treated rats versus saline-treated controls. Since refractive index is linearly proportional to mass density, these refractive-index changes can be directly linked to alterations in the spatial distribution patterns of macromolecular density. Furthermore, we found that alterations in the shape of the refractive-index correlation function shape were an indicator of both present and future risk of tumor development. These results suggest that noninvasive measurement of the shape of the refractive-index correlation function could be a promising marker of early cancer development.

  1. In vivo measurement of the shape of the tissue-refractive-index correlation function and its applicationto detection of colorectal field carcinogenesis

    PubMed Central

    Gomes, Andrew J.; Ruderman, Sarah; DelaCruz, Mart; Wali, Ramesh K.; Roy, Hemant K.

    2012-01-01

    Abstract. Polarization-gated spectroscopy is an established method to depth-selectively interrogate the structural properties of biological tissue. We employ this method in vivo in the azoxymethane (AOM)-treated rat model to monitor the morphological changes that occur in the field of a tumor during early carcinogenesis. The results demonstrate a statistically significant change in the shape of the refractive-index correlation function for AOM-treated rats versus saline-treated controls. Since refractive index is linearly proportional to mass density, these refractive-index changes can be directly linked to alterations in the spatial distribution patterns of macromolecular density. Furthermore, we found that alterations in the shape of the refractive-index correlation function shape were an indicator of both present and future risk of tumor development. These results suggest that noninvasive measurement of the shape of the refractive-index correlation function could be a promising marker of early cancer development. PMID:22559696

  2. Fully 3D refraction correction dosimetry system.

    PubMed

    Manjappa, Rakesh; Makki, S Sharath; Kumar, Rajesh; Vasu, Ram Mohan; Kanhirodan, Rajan

    2016-02-21

    The irradiation of selective regions in a polymer gel dosimeter results in an increase in optical density and refractive index (RI) at those regions. An optical tomography-based dosimeter depends on rayline path through the dosimeter to estimate and reconstruct the dose distribution. The refraction of light passing through a dose region results in artefacts in the reconstructed images. These refraction errors are dependant on the scanning geometry and collection optics. We developed a fully 3D image reconstruction algorithm, algebraic reconstruction technique-refraction correction (ART-rc) that corrects for the refractive index mismatches present in a gel dosimeter scanner not only at the boundary, but also for any rayline refraction due to multiple dose regions inside the dosimeter. In this study, simulation and experimental studies have been carried out to reconstruct a 3D dose volume using 2D CCD measurements taken for various views. The study also focuses on the effectiveness of using different refractive-index matching media surrounding the gel dosimeter. Since the optical density is assumed to be low for a dosimeter, the filtered backprojection is routinely used for reconstruction. We carry out the reconstructions using conventional algebraic reconstruction (ART) and refractive index corrected ART (ART-rc) algorithms. The reconstructions based on FDK algorithm for cone-beam tomography has also been carried out for comparison. Line scanners and point detectors, are used to obtain reconstructions plane by plane. The rays passing through dose region with a RI mismatch does not reach the detector in the same plane depending on the angle of incidence and RI. In the fully 3D scanning setup using 2D array detectors, light rays that undergo refraction are still collected and hence can still be accounted for in the reconstruction algorithm. It is found that, for the central region of the dosimeter, the usable radius using ART-rc algorithm with water as RI matched

  3. Fully 3D refraction correction dosimetry system

    NASA Astrophysics Data System (ADS)

    Manjappa, Rakesh; Sharath Makki, S.; Kumar, Rajesh; Mohan Vasu, Ram; Kanhirodan, Rajan

    2016-02-01

    The irradiation of selective regions in a polymer gel dosimeter results in an increase in optical density and refractive index (RI) at those regions. An optical tomography-based dosimeter depends on rayline path through the dosimeter to estimate and reconstruct the dose distribution. The refraction of light passing through a dose region results in artefacts in the reconstructed images. These refraction errors are dependant on the scanning geometry and collection optics. We developed a fully 3D image reconstruction algorithm, algebraic reconstruction technique-refraction correction (ART-rc) that corrects for the refractive index mismatches present in a gel dosimeter scanner not only at the boundary, but also for any rayline refraction due to multiple dose regions inside the dosimeter. In this study, simulation and experimental studies have been carried out to reconstruct a 3D dose volume using 2D CCD measurements taken for various views. The study also focuses on the effectiveness of using different refractive-index matching media surrounding the gel dosimeter. Since the optical density is assumed to be low for a dosimeter, the filtered backprojection is routinely used for reconstruction. We carry out the reconstructions using conventional algebraic reconstruction (ART) and refractive index corrected ART (ART-rc) algorithms. The reconstructions based on FDK algorithm for cone-beam tomography has also been carried out for comparison. Line scanners and point detectors, are used to obtain reconstructions plane by plane. The rays passing through dose region with a RI mismatch does not reach the detector in the same plane depending on the angle of incidence and RI. In the fully 3D scanning setup using 2D array detectors, light rays that undergo refraction are still collected and hence can still be accounted for in the reconstruction algorithm. It is found that, for the central region of the dosimeter, the usable radius using ART-rc algorithm with water as RI matched

  4. Refracting surface plasmon polaritons with nanoparticle arrays.

    PubMed

    Radko, Ilya P; Evlyukhin, Andrey B; Boltasseva, Alexandra; Bozhevolnyi, Sergey I

    2008-03-17

    Refraction of surface plasmon polaritons (SPPs) by various structures formed by a 100-nm-period square lattice of gold nanoparticles on top of a gold film is studied by leakage radiation microscopy. SPP refraction by a triangular-shaped nanoparticle array indicates that the SPP effective refractive index increases inside the array by a factor of approximately 1.08 (for the wavelength 800 nm) with respect to the SPP index at a flat surface. Observations of SPP focusing and deflection by circularly shaped areas as well as SPP waveguiding inside rectangular arrays are consistent with the SPP index increase deduced from the SPP refraction by triangular arrays. The SPP refractive index is found to decrease slightly for longer wavelengths within the wavelength range of 700-860 nm. Modeling based on the Green's tensor formalism is in a good agreement with the experimental results, opening the possibility to design nanoparticle arrays for specific applications requiring in-plane SPP manipulation.

  5. Relation of initial spacing and relative stand density indices to stand characteristics in a Douglas-fir plantation spacing trial

    USGS Publications Warehouse

    Curtis, Robert O.; Bansal, Sheel; Harrington, Constance A.

    2016-01-01

    This report presents updated information on a 1981 Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. menziesii) plantation spacing trial at 33 years from planting. Stand statistics at the most recent measurement were compared for initial spacing of 1 through 6 meters and associated relative densities. There was no clear relationship of spacing to top height. Diameter, live crown ratio, and percent survival increased with spacing; basal area and relative density decreased with increase in spacing. Volume in trees ≥ 4 cm diameter was greatest at 2 m spacing, while utilizable volume (trees ≥20 cm dbh) was greatest at 4 m spacing. Live crown ratio decreased and total crown projectional area increased with increasing relative density indices. Total crown projectional area was more closely related to relative density than to basal area.

  6. Density and Porosity of Shower Meteorites as Indicators of Meter-scale Asteroid Homogeneity

    NASA Astrophysics Data System (ADS)

    Macke, Robert; Britt, D.; Consolmagno, G.

    2008-09-01

    Meteorite showers containing multiple stones from the same event provide clues to the homogeneity of meteorite parent bodies over decimeter to meter scales. Small bodies that have been studied in detail show a high degree of surface mineralogical homogeneity in reflectance spectra (Abe et al., 2006a; Veverka et al., 2001) and no detectable large scale density variations (Abe et al., 2006b; Thomas et al., 2002). Large meteorite showers provide a direct sample of the possible variations in physical properties of small bodies. We present the results of density, porosity, and magnetic susceptibility measurements of at least ten stones each from seven meteorite showers in the collection at the Smithsonian Institution's National Museum of Natural History. This includes three carbonaceous chondrites (Allende, Murchison and Murray) and four ordinary chondrites. We find strong homogeneity within showers. For example, the mass-weighted average grain density of Allende we measured as 3.60 g/cm3, with individual stones ranging from 3.59 to 3.62 g/cm3 and typical uncertainties 0.03 or 0.04 g/cm3. Allende porosities averaged 18.8% and ranged from 17.8% to 19.5% with typical uncertainties of about 1.2%. We also studied one weathered find (Gold Basin) for clues regarding the uniformity of chondrite weathering. For five showers, we compare results with measurements made on additional stones at the Vatican Observatory and the American Museum of Natural History. This work was supported in part by a Smithsonian Institution Graduate Student Fellowship. Veverka, J. et al., 2001. Science 289, 2088. Abe S. et al., 2006b. Science 312, 1344. Abe M. et al., 2006a. Science 312, 1334. Thomas P. et al., 2002. Icarus 155, 18.

  7. Isaac Newton and the astronomical refraction.

    PubMed

    Lehn, Waldemar H

    2008-12-01

    In a short interval toward the end of 1694, Isaac Newton developed two mathematical models for the theory of the astronomical refraction and calculated two refraction tables, but did not publish his theory. Much effort has been expended, starting with Biot in 1836, in the attempt to identify the methods and equations that Newton used. In contrast to previous work, a closed form solution is identified for the refraction integral that reproduces the table for his first model (in which density decays linearly with elevation). The parameters of his second model, which includes the exponential variation of pressure in an isothermal atmosphere, have also been identified by reproducing his results. The implication is clear that in each case Newton had derived exactly the correct equations for the astronomical refraction; furthermore, he was the first to do so.

  8. Accompanying indicators of plasma potential when using impedance probes in low density plasma

    NASA Astrophysics Data System (ADS)

    Walker, David; Blackwell, David; Fernsler, Richard; Amatucci, William

    2016-09-01

    In earlier works, we used spheres of various sizes as impedance probes in demonstrating a method of determining plasma potential, φp, when the probe radius, rp, is much larger than λD. These works demonstrate a method of measuring plasma potential with an impedance probe by applying a small amplitude rf signal and tracking a minimum in Re (Zac) as a function of probe bias, Vb where Re (Zac) and Im(Zac) are available using a network analyzer through measurement of the reflection coefficient, Γ. However, for borderline cases where the requirement that rp >>λD begins to fail, Re (Zac) ( 1 /ne) can rise to k Ω's for even moderate levels of Vb, causing a large impedance mismatch with the network analyzer (Z0 = 50 Ω) . The purpose of the recent work is to demonstrate that Γ itself along with Im(Zac) and their derivatives are useful as accompanying indicators to Re (Zac) in these difficult cases. We will present experimental data along with model comparisons to demonstrate the usefulness and limits of the additional indicators. Work Supported by Naval Research Laboratory Base Program.

  9. Optofluidic two-dimensional grating volume refractive index sensor.

    PubMed

    Sarkar, Anirban; Shivakiran Bhaktha, B N; Khastgir, Sugata Pratik

    2016-09-10

    We present an optofluidic reservoir with a two-dimensional grating for a lab-on-a-chip volume refractive index sensor. The observed diffraction pattern from the device resembles the analytically obtained fringe pattern. The change in the diffraction pattern has been monitored in the far-field for fluids with different refractive indices. Reliable measurements of refractive index variations, with an accuracy of 6×10-3 refractive index units, for different fluids establishes the optofluidic device as a potential on-chip tool for monitoring dynamic refractive index changes.

  10. [Does refractive surgery really make eyeglasses superfluous?].

    PubMed

    Seiler, T

    2001-06-14

    Spectacles have become a problem of life-style in some societies. In the USA, in 1999 approximately 1 million LASIK operations have been performed to correct myopia and astigmatism and in Europe the frequency of refractive surgery stead by increases. However, only 3 to 5% of these operations are medically indicated. Refractive surgery is evaluated regarding safety and efficacy. Modern laser techniques demonstrate excellent refractive results: photorefractive keratectomy (PRK) achieved refractive success rates of 90% and more with complication rates of 0.5% and less. PRK is, therefore, a valuable technique for corrections of myopia up to -6.0 D. Similar efficacy is obtained with LASIK (laser in situ keratomileusis) in corrections up to -10 D, however, the complication rate is somewhat higher. Laser correction of hyperopia is equally successful regarding the refractive success but shows an even higher complication rate and the patient satisfaction is lower. Modern refractive laser surgery may replace spectacles in the majority of the cases, however, none of the techniques is free of complications. Therefore, we understand refractive surgery still to be inferior to the correction of ametropia by means of spectacles and any such operation should be attempted only after thorough discussion.

  11. Decay of aftershock density with distance does not indicate triggering by dynamic stress

    USGS Publications Warehouse

    Richards-Dinger, K.; Stein, R.S.; Toda, S.

    2010-01-01

    Resolving whether static or dynamic stress triggers most aftershocks and subsequent mainshocks is essential to understand earthquake interaction and to forecast seismic hazard. Felzer and Brodsky examined the distance distribution of earthquakes occurring in the first five minutes after 2 ≤ M  M  M ≥ 2 aftershocks showed a uniform power-law decay with slope −1.35 out to 50 km from the mainshocks. From this they argued that the distance decay could be explained only by dynamic triggering. Here we propose an alternative explanation for the decay, and subject their hypothesis to a series of tests, none of which it passes. At distances more than 300 m from the 2 ≤  M< 3 mainshocks, the seismicity decay 5 min before the mainshocks is indistinguishable from the decay five minutes afterwards, indicating that the mainshocks have no effect at distances outside their static triggering range. Omori temporal decay, the fundamental signature of aftershocks, is absent at distances exceeding 10 km from the mainshocks. Finally, the distance decay is found among aftershocks that occur before the arrival of the seismic wave front from the mainshock, which violates causality. We argue that Felzer and Brodsky implicitly assume that the first of two independent aftershocks along a fault rupture triggers the second, and that the first of two shocks in a creep- or intrusion-driven swarm triggers the second, when this need not be the case.

  12. Halogen bonding from a hard and soft acids and bases perspective: investigation by using density functional theory reactivity indices.

    PubMed

    Pinter, Balazs; Nagels, Nick; Herrebout, Wouter A; De Proft, Frank

    2013-01-07

    Halogen bonds between the trifluoromethyl halides CF(3)Cl, CF(3)Br and CF(3)I, and dimethyl ether, dimethyl sulfide, trimethylamine and trimethyl phosphine were investigated using Pearson's hard and soft acids and bases (HSAB) concept with conceptual DFT reactivity indices, the Ziegler-Rauk-type energy-decomposition analysis, the natural orbital for chemical valence (NOCV) framework and the non-covalent interaction (NCI) index. It is found that the relative importance of electrostatic and orbital (charge transfer) interactions varies as a function of both the donor and acceptor molecules. Hard and soft interactions were distinguished and characterised by atomic charges, electrophilicity and local softness indices. Dual-descriptor plots indicate an orbital σ hole on the halogen similar to the electrostatic σ hole manifested in the molecular electrostatic potential. The predicted high halogen-bond-acceptor affinity of N-heterocyclic carbenes was evidenced in the highest complexation energy for the hitherto unknown CF(3) I·NHC complex. The dominant NOCV orbital represents an electron-density deformation according to a n→σ*-type interaction. The characteristic signal found in the reduced density gradient versus electron-density diagram corresponds to the non-covalent interaction between contact atoms in the NCI plots, which is the manifestation of halogen bonding within the NCI theory. The unexpected C-X bond strengthening observed in several cases was rationalised within the molecular orbital framework.

  13. ON THE SOURCE OF ASTROMETRIC ANOMALOUS REFRACTION

    SciTech Connect

    Taylor, M. Suzanne; McGraw, John T.; Zimmer, Peter C.; Pier, Jeffrey R.

    2013-03-15

    More than a century ago, astronomers using transit telescopes to determine precise stellar positions were hampered by an unexplained periodic shifting of the stars they were observing. With the advent of CCD transit telescopes in the past three decades, this unexplained motion, termed 'anomalous refraction' by these early astronomers, is again being observed. Anomalous refraction is described as a low-frequency, large angular scale ({approx}2 Degree-Sign ) motion of the entire image plane with respect to the celestial coordinate system as observed and defined by astrometric catalogs. These motions, of typically several tenths of an arcsecond amplitude with timescales on the order of 10 minutes, are ubiquitous to ground-based drift-scan astrometric measurements regardless of location or telescopes used and have been attributed to the effect of tilting of equal-density layers of the atmosphere. The cause of this tilting has often been attributed to atmospheric gravity waves, but this cause has never been confirmed. Although theoretical models of atmospheric refraction show that atmospheric gravity waves are a plausible cause of anomalous refraction, an observational campaign specifically directed at defining this relationship provides clear evidence that anomalous refraction is not consistent with the passage of atmospheric gravity waves. The source of anomalous refraction is found to be meter-scale, slowly evolving quasi-coherent dynamical structures in the boundary layer below 60 m above ground level.

  14. Assumption-free estimation of the genetic contribution to refractive error across childhood

    PubMed Central

    St Pourcain, Beate; McMahon, George; Timpson, Nicholas J.; Evans, David M.; Williams, Cathy

    2015-01-01

    Purpose Studies in relatives have generally yielded high heritability estimates for refractive error: twins 75–90%, families 15–70%. However, because related individuals often share a common environment, these estimates are inflated (via misallocation of unique/common environment variance). We calculated a lower-bound heritability estimate for refractive error free from such bias. Methods Between the ages 7 and 15 years, participants in the Avon Longitudinal Study of Parents and Children (ALSPAC) underwent non-cycloplegic autorefraction at regular research clinics. At each age, an estimate of the variance in refractive error explained by single nucleotide polymorphism (SNP) genetic variants was calculated using genome-wide complex trait analysis (GCTA) using high-density genome-wide SNP genotype information (minimum N at each age=3,404). Results The variance in refractive error explained by the SNPs (“SNP heritability”) was stable over childhood: Across age 7–15 years, SNP heritability averaged 0.28 (SE=0.08, p<0.001). The genetic correlation for refractive error between visits varied from 0.77 to 1.00 (all p<0.001) demonstrating that a common set of SNPs was responsible for the genetic contribution to refractive error across this period of childhood. Simulations suggested lack of cycloplegia during autorefraction led to a small underestimation of SNP heritability (adjusted SNP heritability=0.35; SE=0.09). To put these results in context, the variance in refractive error explained (or predicted) by the time participants spent outdoors was <0.005 and by the time spent reading was <0.01, based on a parental questionnaire completed when the child was aged 8–9 years old. Conclusions Genetic variation captured by common SNPs explained approximately 35% of the variation in refractive error between unrelated subjects. This value sets an upper limit for predicting refractive error using existing SNP genotyping arrays, although higher-density genotyping in

  15. Alternative refrigerants R123a, R134, R141b, R142b, and R152a: Critical temperature, refractive index, surface tension, and estimates of liquid, vapor, and critical densities

    SciTech Connect

    Chae, Hee Baik; Schmidt, J.W.; Moldover, M.R. )

    1990-12-13

    Differential capillary rise and refractive index data are reported for five alternative refrigerants: R123a (CHClF-CClF{sub 2}), R134 (CHF{sub 2}-CHF{sub 2}), R141b (CCl{sub 2}F-CH{sub 3}), R142b (CClF{sub 2}-CH{sub 3}), and R152a (CHF{sub 2}-CH{sub 3}). The data extend from about 25{degree}C to the critical point of each fluid and directly yield the critical temperature {Tc} and the temperature-dependent capillary length. The present data were combined with liquid density data (near ambient temperature) to determine the Lorentz-Lorenz constant. The Lorentz-Lorenz relation is used to estimate the liquid, vapor, and critical densities, and the surface tension. The surface tension {sigma} of seven substituted ethane refrigerants (the present five and R123 (CHCl{sub 2}-CF{sub 3}) and R134a (CF{sub 3}-CH{sub 2}F)) is within {plus minus}10% of the expression: {sigma} = 64 mN/m{center dot}t{sup 1.26}, where t = ({Tc} {minus} T)/{Tc} is the reduced temperature measured from the critical temperature. The surface tension of the same seven refrigerants is within {plus minus}5% of the expression {sigma} = 5.7t{sup 1.26}k{sub B}{Tc}(N{sub A}/V{sub c}){sup 2/3}, where k{sub B}, N{sub A}, and V{sub c} are the Boltzmann constant, the Avogadro constant, and the molar critical volume, respectively.

  16. Influence of refractive correction on ocular dominance

    NASA Astrophysics Data System (ADS)

    Nakayama, Nanami; Kawamorita, Takushi; Uozato, Hiroshi

    2010-07-01

    We investigated the effects of refractive correction and refractive defocus on the assessment of sensory ocular dominance. In 25 healthy subjects (4 males and 21 females) aged between 20 and 31 years, a quantitative measurement of sensory ocular dominance was performed with refractive correction and the addition of a positive lens on the dominant eye. Sensory ocular dominance was measured with a chart using binocular rivalry targets. The reversal point changed after the addition of a +1.00 D lens on the dominant eye in all subjects. However, sighting ocular dominance and stereopsis did not change after the addition of a positive lens on the dominant eye ( P > 0:05, Wilcoxon test). These results suggest that refractive correction affects sensory ocular dominance, indicating the possible development of a new type of occlusion for amblyopia in the future.

  17. Hybrid high refractive index polymer coatings

    NASA Astrophysics Data System (ADS)

    Wang, Yubao; Flaim, Tony; Mercado, Ramil; Fowler, Shelly; Holmes, Douglas; Planje, Curtis

    2005-04-01

    Thermally curable hybrid high refractive index polymer solutions have been developed. These solutions are stable up to 6 months under room temperature storage conditions and can be easily spin-coated onto a desired substrate. When cured at elevated temperature, the hybrid polymer coating decomposes to form a metal oxide-rich film that has a high refractive index. The resulting films have refractive indices higher than 1.90 in the entire visible region and achieve film thicknesses of 300-900 nm depending on the level of metal oxide loading, cure temperature being used, and number of coatings. The formed films show greater than 90% internal transmission in the visible wavelength (400-700 nm). These hybrid high refractive index films are mechanically robust, are stable upon exposure to both heat and UV radiation, and are currently being investigated for microlithographic patterning potential.

  18. Broadband giant-refractive-index material based on mesoscopic space-filling curves

    PubMed Central

    Chang, Taeyong; Kim, Jong Uk; Kang, Seung Kyu; Kim, Hyowook; Kim, Do Kyung; Lee, Yong-Hee; Shin, Jonghwa

    2016-01-01

    The refractive index is the fundamental property of all optical materials and dictates Snell's law, propagation speed, wavelength, diffraction, energy density, absorption and emission of light in materials. Experimentally realized broadband refractive indices remain <40, even with intricately designed artificial media. Herein, we demonstrate a measured index >1,800 resulting from a mesoscopic crystal with a dielectric constant greater than three million. This gigantic enhancement effect originates from the space-filling curve concept from mathematics. The principle is inherently very broad band, the enhancement being nearly constant from zero up to the frequency of interest. This broadband giant-refractive-index medium promises not only enhanced resolution in imaging and raised fundamental absorption limits in solar energy devices, but also compact, power-efficient components for optical communication and increased performance in many other applications. PMID:27573337

  19. Broadband giant-refractive-index material based on mesoscopic space-filling curves

    NASA Astrophysics Data System (ADS)

    Chang, Taeyong; Kim, Jong Uk; Kang, Seung Kyu; Kim, Hyowook; Kim, Do Kyung; Lee, Yong-Hee; Shin, Jonghwa

    2016-08-01

    The refractive index is the fundamental property of all optical materials and dictates Snell's law, propagation speed, wavelength, diffraction, energy density, absorption and emission of light in materials. Experimentally realized broadband refractive indices remain <40, even with intricately designed artificial media. Herein, we demonstrate a measured index >1,800 resulting from a mesoscopic crystal with a dielectric constant greater than three million. This gigantic enhancement effect originates from the space-filling curve concept from mathematics. The principle is inherently very broad band, the enhancement being nearly constant from zero up to the frequency of interest. This broadband giant-refractive-index medium promises not only enhanced resolution in imaging and raised fundamental absorption limits in solar energy devices, but also compact, power-efficient components for optical communication and increased performance in many other applications.

  20. On the effective refractive index of blood

    NASA Astrophysics Data System (ADS)

    Nahmad-Rohen, Alexander; Contreras-Tello, Humberto; Morales-Luna, Gesuri; García-Valenzuela, Augusto

    2016-01-01

    We calculated the real and imaginary parts of the effective refractive index {n}{eff} of blood as functions of wavelength from 400 to 800 nm; we employed van de Hulst’s theory, together with the anomalous diffraction approximation, for the calculation. We modelled blood as a mixture of plasma and erythrocytes. Our results indicate that erythrocyte orientation has a strong effect on {n}{eff}, making blood an optically anisotropic medium except when the erythrocytes are randomly oriented. In the case in which their symmetry axis is perpendicular to the wave vector, {n}{eff} equals the refractive index of plasma at certain wavelengths. Furthermore, the erythrocytes’ shape affects their contribution to {n}{eff} in an important way, implying that studies on the effective refractive index of blood should avoid approximating them as spheres or spheroids. Finally, the effective refractive index of blood predicted by van de Hulst’s theory is different from what would be obtained by averaging the refractive indices of its constituents weighted by volume; such a volume-weighted average is appropriate only for haemolysed blood. We then measured the real part of the refractive index of various blood solutions using two different experimental setups. One of the most important results of our expriment is that {n}{eff} is measurable to a good degree of precision even for undiluted blood, although not all measuring apparatuses are appropriate. The experimental data is self-consistent and in reasonable agreement with our theoretical calculations.

  1. Negative refraction using Raman transitions and chirality

    SciTech Connect

    Sikes, D. E.; Yavuz, D. D.

    2011-11-15

    We present a scheme that achieves negative refraction with low absorption in far-off resonant atomic systems. The scheme utilizes Raman resonances and does not require the simultaneous presence of an electric-dipole transition and a magnetic-dipole transition near the same wavelength. We show that two interfering Raman tran-sitions coupled to a magnetic-dipole transition can achieve a negative index of refraction with low absorption through magnetoelectric cross-coupling. We confirm the validity of the analytical results with exact numerical simulations of the density matrix. We also discuss possible experimental implementations of the scheme in rare-earth metal atomic systems.

  2. Negative refraction and superconductivity

    NASA Astrophysics Data System (ADS)

    Amariti, Antonio; Forcella, Davide; Mariotti, Alberto; Siani, Massimo

    2011-10-01

    We discuss exotic properties of charged hydrodynamical systems, in the broken superconducting phase, probed by electromagnetic waves. Motivated by general arguments from hydrodynamics, we observe that negative refraction, namely the propagation in opposite directions of the phase velocities and of the energy flux, is expected for low enough frequencies. We corroborate this general idea by analyzing a holographic superconductor in the AdS/CFT correspondence, where the response functions can be explicitly computed. We study the dual gravitational theory both in the probe and in the backreacted case. We find that, while in the first case the refractive index is positive at every frequency, in the second case there is negative refraction at low enough frequencies. This is in agreement with hydrodynamic considerations.

  3. Refraction corrections for surveying

    NASA Technical Reports Server (NTRS)

    Lear, W. M.

    1979-01-01

    Optical measurements of range and elevation angle are distorted by the earth's atmosphere. High precision refraction correction equations are presented which are ideally suited for surveying because their inputs are optically measured range and optically measured elevation angle. The outputs are true straight line range and true geometric elevation angle. The 'short distances' used in surveying allow the calculations of true range and true elevation angle to be quickly made using a programmable pocket calculator. Topics covered include the spherical form of Snell's Law; ray path equations; and integrating the equations. Short-, medium-, and long-range refraction corrections are presented in tables.

  4. Index of Refraction Measurements Using a Laser Distance Meter

    ERIC Educational Resources Information Center

    Ochoa, Romulo; Fiorillo, Richard; Ochoa, Cris

    2014-01-01

    We present a simple method to determine the refractive indices of transparent media using a laser distance meter. Indices of refraction have been obtained by measuring the speed of light in materials. Some speed of light techniques use time-of-flight measurements in which pulses are emitted by lasers and the time interval is measured for the pulse…

  5. Star formation history of early-type galaxies in low density environments. I. Nuclear line-strength indices

    NASA Astrophysics Data System (ADS)

    Longhetti, M.; Rampazzo, R.; Bressan, A.; Chiosi, C.

    1998-06-01

    This paper is the first of a series \\cite[(Longhetti et al. 1997a,b)]{lon97} dedicated to the study of the star formation history in early-type galaxies which show fine structures and/or signatures of interaction. It presents nuclear line-strength indices for a sample composed of 21 shell galaxies, from the \\cite[Malin & Carter (1983)]{mal83} southern survey, and 30 members of isolated interacting pairs, from the \\cite[Reduzzi & Rampazzo (1995)]{red95} catalogue, located in low density environments. The spectral range covers 3700 Angstroms < lambda < 5700 Angstroms at 2.1 Angstroms FWHM resolution. We measure 16 red (lambda > 4200 Angstroms) indices defined by the Lick Group. Measures have been transformed into the Lick-IDS ``standard'' system. The procedure has been tested on a set of 5 elliptical galaxies selected from the \\cite[Gonzalez (1993)]{gon93} sample. We derive also three blue (lambda < 4200) indices, namely Delta (4000 Angstroms) defined by \\cite[Hamilton (1985)]{ham85}, H+K(CaII) and Hdelta /FeI defined by \\cite[Rose (1984, 1985)]{ros84}. Blue indices are correlated to the age of the last starburst occurred in a galaxy \\cite[(Leonardi & Rose 1996)]{leo96}. The determination of these indices, the estimate of the measurement errors and the correction for the galaxies velocity dispersions are discussed in detail. In the Appendix A we present the indices for a set of hot stars (T> 10000 K) which may be used for extending W92 fitting functions toward high temperatures. Based on observations obtained at ESO, La Silla, Chile. Tables 1-8 are also available in electronic form at CDS and Tables 9-15 are only available in electronic form at CDS: via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

  6. Effect of dietary probiotic and high stocking density on the performance, carcass yield, gut microflora, and stress indicators of broilers.

    PubMed

    Cengiz, Özcan; Köksal, Bekir H; Tatlı, Onur; Sevim, Ömer; Ahsan, Umair; Üner, Aykut G; Ulutaş, Pınar A; Beyaz, Devrim; Büyükyörük, Sadık; Yakan, Akın; Önol, Ahmet G

    2015-10-01

    A study was carried out to evaluate the effect of dietary probiotic supplementation and stocking density on the performance, relative carcass yield, gut microflora, and stress markers of broilers. One-day-old Ross 308 male broiler chickens (n = 480) were allocated to 4 experimental groups for 42 d. Each treatment had 8 replicates of 15 chicks each. Two groups were subjected to a high stocking density (HSD) of 20 birds/m² and the other 2 groups were kept at low stocking density (LSD) of 10 birds/m². A basal diet supplemented with probiotic 1 and 0.5 g/kg of diet (in starter and finisher diets, respectively) was fed to 2 treatments, one with HSD and the other with LSD, thereby making a 2 × 2 factorial arrangement. There was no interaction between stocking density (LSD and HSD) and dietary probiotic (supplemented and unsupplemented) for all the variables. Feed intake and weight gain were significantly low and feed conversion ratio was poor in broilers at HSD. Dietary probiotic significantly enhanced the feed intake and weight gain in starter phase only. Dietary probiotic supplementation had no effect (P > 0.05) on total aerobs, Salmonella sp., and Lactobacilli populations in the intestines of broilers. However, HSD reduced the Lactobacilli population only (P < 0.05). Relative breast yields were significantly higher in broilers reared at LSD than HSD. Thigh meat yield was higher in broilers in HSD group compared to LSD. Dietary probiotic did not affect the relative carcass yield and weight of lymphoid organs. Serum malondialdehyde, corticosterone, nitric oxide, and plasma heterophil:lymphocyte ratio were not affected either by stocking density or dietary probiotic supplementation. In conclusion, HSD negatively affected the performance and intestinal Lactobacilli population of broilers only, whereas probiotic supplementation enhanced the performance of broilers during the starter phase only. Total aerobes, Salmonella, Lactobacilli carcass yield, and stress indicators

  7. Conceptualization of Light Refraction

    ERIC Educational Resources Information Center

    Sokolowski, Andrzej

    2013-01-01

    There have been a number of papers dealing quantitatively with light refraction. Yet the conceptualization of the phenomenon that sets the foundation for a more rigorous math analysis is minimized. The purpose of this paper is to fill that gap. (Contains 3 figures.)

  8. Refraction corrections for surveying

    NASA Technical Reports Server (NTRS)

    Lear, W. M.

    1980-01-01

    Optical measurements of range and elevation angles are distorted by refraction of Earth's atmosphere. Theoretical discussion of effect, along with equations for determining exact range and elevation corrections, is presented in report. Potentially useful in optical site surveying and related applications, analysis is easily programmed on pocket calculator. Input to equation is measured range and measured elevation; output is true range and true elevation.

  9. Water quality, weather and environmental factors associated with fecal indicator organism density in beach sand at two recreational marine beaches.

    PubMed

    Heaney, Christopher D; Exum, Natalie G; Dufour, Alfred P; Brenner, Kristen P; Haugland, Richard A; Chern, Eunice; Schwab, Kellogg J; Love, David C; Serre, Marc L; Noble, Rachel; Wade, Timothy J

    2014-11-01

    Recent studies showing an association between fecal indicator organisms (FIOs) in sand and gastrointestinal (GI) illness among beachgoers with sand contact have important public health implications because of the large numbers of people who recreate at beaches and engage in sand contact activities. Yet, factors that influence fecal pollution in beach sand remain unclear. During the 2007 National Epidemiological and Environmental Assessment of Recreational (NEEAR) Water Study, sand samples were collected at three locations (60 m apart) on weekend days (Sat, Sun) and holidays between June and September at two marine beaches - Fairhope Beach, AL and Goddard Beach, RI - with nearby publicly-owned treatment works (POTWs) outfalls. F(+) coliphage, enterococci, Bacteroidales, fecal Bacteroides spp., and Clostridium spp. were measured in sand using culture and qPCR-based calibrator-cell equivalent methods. Water samples were also collected on the same days, times and transects as the 144 sand samples and were assayed using the same FIO measurements. Weather and environmental data were collected at the time of sample collection. Mean FIO concentrations in sand varied over time, but not space. Enterococci CFU and CCE densities in sand were not correlated, although other FIOs in sand were. The strongest correlation between FIO density in sand and water was fecal Bacteroides CCE, followed by enterococci CFU, Clostridium spp. CCE, and Bacteroidales CCE. Overall, the factors associated with FIO concentrations in sand were related to the sand-water interface (i.e., sand-wetting) and included daily average densities of FIOs in water, rainfall, and wave height. Targeted monitoring that focuses on daily trends of sand FIO variability, combined with information about specific water quality, weather, and environmental factors may inform beach monitoring and management decisions to reduce microbial burdens in beach sand. The views expressed in this paper are those of the authors and do

  10. Water quality, weather and environmental factors associated with fecal indicator organism density in beach sand at two recreational marine beaches

    PubMed Central

    Heaney, Christopher D.; Exum, Natalie G.; Dufour, Alfred P.; Brenner, Kristen P.; Haugland, Richard A.; Chern, Eunice; Schwab, Kellogg J.; Love, David C.; Serre, Marc L.; Noble, Rachel; Wade, Timothy J.

    2015-01-01

    Recent studies showing an association between fecal indicator organisms (FIOs) in sand and gastrointestinal (GI) illness among beachgoers with sand contact have important public health implications because of the large numbers of people who recreate at beaches and engage in sand contact activities. Yet, factors that influence fecal pollution in beach sand remain unclear. During the 2007 National Epidemiological and Environmental Assessment of Recreational (NEEAR) Water Study, sand samples were collected at three locations (60 m apart) on weekend days (Sat, Sun) and holidays between June and September at two marine beaches — Fairhope Beach, AL and Goddard Beach, RI — with nearby publicly-owned treatment works (POTWs) outfalls. F+ coliphage, enterococci, Bacteroidales, fecal Bacteroides spp., and Clostridium spp. were measured in sand using culture and qPCR-based calibrator-cell equivalent methods. Water samples were also collected on the same days, times and transects as the 144 sand samples and were assayed using the same FIO measurements. Weather and environmental data were collected at the time of sample collection. Mean FIO concentrations in sand varied over time, but not space. Enterococci CFU and CCE densities in sand were not correlated, although other FIOs in sand were. The strongest correlation between FIO density in sand and water was fecal Bacteroides CCE, followed by enterococci CFU, Clostridium spp. CCE, and Bacteroidales CCE. Overall, the factors associated with FIO concentrations in sand were related to the sand–water interface (i.e., sand-wetting) and included daily average densities of FIOs in water, rainfall, and wave height. Targeted monitoring that focuses on daily trends of sand FIO variability, combined with information about specific water quality, weather, and environmental factors may inform beach monitoring and management decisions to reduce microbial burdens in beach sand. The views expressed in this paper are those of the authors

  11. Age-related shifts in the density and distribution of genetic marker water quality indicators in cow and calf feces.

    PubMed

    Shanks, Orin C; Kelty, Catherine A; Peed, Lindsay; Sivaganesan, Mano; Mooney, Thomas; Jenkins, Michael

    2014-03-01

    Calves make up about 16% of the current bovine population in the United States and can excrete high levels of human pathogens in their feces. We describe the density and distribution of genetic markers from 9 PCR- and real-time quantitative PCR-based assays, including CF128, CF193, CowM2, CowM3, GenBac3, Entero1, EC23S857, CampF2, and ttr-6, commonly used to help assess ambient surface water quality. Each assay was tested against a collection of 381 individual bovine fecal samples representing 31 mother and calf pairings collected over a 10-month time period from time of birth through weaning. Genetic markers reported to be associated with ruminant and/or bovine fecal pollution were virtually undetected in calves for up to 115 days from birth, suggesting that physiological changes in calf ruminant function impact host-associated genetic marker shedding. In addition, general fecal indicator markers for Bacteroidales, Escherichia coli, and Enterococcus spp. exhibited three separate trends across time, indicating that these bacteria respond differently to age-related physiological and dietary changes during calf development. The results of this study suggest that currently available PCR-based water quality indicator technologies can under- or overestimate fecal pollution originating from calves and identify a need for novel calf-associated source identification methods.

  12. Slope of the lateral density function of extensive air showers around the knee region as an indicator of shower age

    NASA Astrophysics Data System (ADS)

    Dey, Rajat K.; Dam, Sandip

    2016-11-01

    Analyzing simulated extensive air shower (EAS) events generated with the Monte Carlo code CORSIKA, this paper critically studies the characteristics of lateral distribution of electrons in EAS around the knee energy region of the energy spectrum of primary cosmic rays. The study takes into account the issue of the lateral shower age parameter as an indicator of the stage of development of showers in the atmosphere. The correlation of the lateral shower age parameter with other EAS observables is examined, using simulated data in the context of its possible use in a multi-parameter study of EAS, with a view to obtaining information about the nature of the shower initiating primaries at sea level EAS experiments. It is shown that the observed slope of the lateral density function in the 3-dimensional plot, at least for the KASCADE data, supports the idea of a transition from light to heavy mass composition around the knee.

  13. Optical refractive index of air: dependence on pressure, temperature and composition.

    PubMed

    Owens, J C

    1967-01-01

    The theoretical background and present status of formulas for the refractive index of air are reviewed. In supplement to Edlén's recently revised formula for relative refractivity, the density dependence of refractive index is reanalyzed. New formulas are presented for both phase and group refractive index which are more useful over a wide range of pressure, temperature, and composition than any presently available. The application of the new formulas to optical distance measuring is briefly discussed.

  14. REVEALING VELOCITY DISPERSION AS THE BEST INDICATOR OF A GALAXY's COLOR, COMPARED TO STELLAR MASS, SURFACE MASS DENSITY, OR MORPHOLOGY

    SciTech Connect

    Wake, David A.; Van Dokkum, Pieter G.; Franx, Marijn

    2012-06-01

    Using data of nearby galaxies from the Sloan Digital Sky Survey we investigate whether stellar mass (M{sub star}), central velocity dispersion ({sigma}), surface mass density ({Sigma}), or the Sersic n parameter is best correlated with a galaxy's rest-frame color. Specifically, we determine how the mean color of galaxies varies with one parameter when another is fixed. When M{sub star} is fixed we see that strong trends remain with all other parameters, whereas residual trends are weaker when {Sigma}, n, or {sigma} is fixed. Overall {sigma} is the best indicator of a galaxy's typical color, showing the largest residual color dependence when any of the other three parameters are fixed, and M{sub star} is the poorest. Other studies have indicated that both the central black hole mass and possibly host dark matter halo properties (mass or concentration) are also better correlated with {sigma} than with M{sub star}, {Sigma}, or n. Therefore, it could be the case that the strong correlation between color and {sigma} reflects an underlying relationship between a galaxy's star formation history and/or present star formation rate and the properties of its dark matter halo and/or the feedback from its central supermassive black hole.

  15. Littoral Refractivity Prognostic Advancement

    DTIC Science & Technology

    2009-09-30

    situational awareness of the 3D radio-frequency (RF) propagation environment and a quantitative diagnostic and prognostic capability for assessing sub- and...Rev. 8-98) Prescribed by ANSI Std Z39-18 2 with the benchmark showing the quantitative improvement with each stage of model development...grid point. Modified the NSWCDD littoral clutter model ( LCM ) to accept COAMPS® derived refractivity fields. Analyzed the impact on ducting of

  16. Evaluation of a quantitative structure-property relationship (QSPR) for predicting mid-visible refractive index of secondary organic aerosol (SOA).

    PubMed

    Redmond, Haley; Thompson, Jonathan E

    2011-04-21

    In this work we describe and evaluate a simple scheme by which the refractive index (λ = 589 nm) of non-absorbing components common to secondary organic aerosols (SOA) may be predicted from molecular formula and density (g cm(-3)). The QSPR approach described is based on three parameters linked to refractive index-molecular polarizability, the ratio of mass density to molecular weight, and degree of unsaturation. After computing these quantities for a training set of 111 compounds common to atmospheric aerosols, multi-linear regression analysis was conducted to establish a quantitative relationship between the parameters and accepted value of refractive index. The resulting quantitative relationship can often estimate refractive index to ±0.01 when averaged across a variety of compound classes. A notable exception is for alcohols for which the model consistently underestimates refractive index. Homogenous internal mixtures can conceivably be addressed through use of either the volume or mole fraction mixing rules commonly used in the aerosol community. Predicted refractive indices reconstructed from chemical composition data presented in the literature generally agree with previous reports of SOA refractive index. Additionally, the predicted refractive indices lie near measured values we report for λ = 532 nm for SOA generated from vapors of α-pinene (R.I. 1.49-1.51) and toluene (R.I. 1.49-1.50). We envision the QSPR method may find use in reconstructing optical scattering of organic aerosols if mass composition data is known. Alternatively, the method described could be incorporated into in models of organic aerosol formation/phase partitioning to better constrain organic aerosol optical properties.

  17. A general relationship for the second virial refraction coefficient

    SciTech Connect

    Seminogov, V.N.; Sinel'nikov, S.P.; Timoshenko, N.I.; Yamnov, A.L.

    1986-05-01

    Experimental data have been used to obtain a general formula for the second virial refraction coefficient as a function of temperature. A qualitative analysis of the formula is given. Laser techinques have substantially extended the scope for optical methods in thermophysical research, including high-temperature processes. The general formula for the second virial refraction coefficient presented enables one to calculate polarizabilities at low densities.

  18. Influence of quantum Hall effect on wave refraction in ferrite-semiconductor superlattices

    NASA Astrophysics Data System (ADS)

    Tarkhanyan, Roland H.; Niarchos, Dimitris G.

    2008-12-01

    Peculiarities of wave refraction are investigated in periodic structures consisting of alternating layers of ferromagnetic insulator and GaAs-AlGaAs-type semiconductor bilayers. It is shown that in quantum Hall effect conditions, the refractive indices and consequently the refraction angles of the propagating waves are quantized.Two different geometries of the refracting plane are considered: (I) parallel and (II) perpendicular to the quantizing magnetic field. It is shown that in the first case, negative refraction through the lateral surface of the structure is possible. A frequency region is found where the refraction is negative for all angles of incidence and regardless of the sign of permittivity tensor components. Analytical expressions for both phase and group refractive indices are obtained.In the second case, one of the propagating waves (in the birefringent regime) is backward. Despite this, and unlike in the case of non-quantizing magnetic fields, negative refraction is impossible.

  19. Colored Flag by Double Refraction.

    ERIC Educational Resources Information Center

    Reid, Bill

    1994-01-01

    Describes various demonstrations that illustrate double refraction and rotation of the plane of polarization in stressed, transparent plastics, with the consequent production of colored designs. (ZWH)

  20. Modified Kramers-Kronig relations and sum rules for meromorphic total refractive index

    SciTech Connect

    Peiponen, Kai-Erik; Saarinen, Jarkko J.; Vartiainen, Erik M.

    2003-08-01

    Modified Kramers-Kronig relations and corresponding sum rules are shown to hold for the total refractive index that can be presented as a sum of complex linear and nonlinear refractive indices, respectively. It is suggested that a self-action process, involving the degenerate third-order nonlinear susceptibility, can yield a negative total refractive index at some spectral range.

  1. Measurement of the specific refractivities of CF4 and C2F6

    NASA Astrophysics Data System (ADS)

    Burner, A. W.; Goad, W. K.

    1980-07-01

    In order to relate the measured fringe shift of an interferometer to the density of a medium, the relation between density and refractive index, which is expressed by the specific refractivity, must be known. In the present paper, the specific refractivities of the wind tunnel test gases CF4 and C2F6 are determined in order to verify estimations based on the atomic refractivities of carbon and fluorine. A Twyman-Green two-beam interferometer with a 633-nm He-Ne laser light source was used to measure the specific refractivity as a function of fringe shift as the density of the gas was changed. Values of 0.122 and 0.131 cu cm/g were obtained for CF4 and C2F6 respectively at a temperature of 300 K, which are within 1% of the values computed from the atomic refractivities.

  2. Measurement of the specific refractivities of CF4 and C2F6

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Goad, W. K.

    1980-01-01

    In order to relate the measured fringe shift of an interferometer to the density of a medium, the relation between density and refractive index, which is expressed by the specific refractivity, must be known. In the present paper, the specific refractivities of the wind tunnel test gases CF4 and C2F6 are determined in order to verify estimations based on the atomic refractivities of carbon and fluorine. A Twyman-Green two-beam interferometer with a 633-nm He-Ne laser light source was used to measure the specific refractivity as a function of fringe shift as the density of the gas was changed. Values of 0.122 and 0.131 cu cm/g were obtained for CF4 and C2F6 respectively at a temperature of 300 K, which are within 1% of the values computed from the atomic refractivities.

  3. CHARMS: The Cryogenic, High-Accuracy Refraction Measuring System

    NASA Technical Reports Server (NTRS)

    Frey, Bradley; Leviton, Douglas

    2004-01-01

    The success of numerous upcoming NASA infrared (IR) missions will rely critically on accurate knowledge of the IR refractive indices of their constituent optical components at design operating temperatures. To satisfy the demand for such data, we have built a Cryogenic, High-Accuracy Refraction Measuring System (CHARMS), which, for typical 1R materials. can measure the index of refraction accurate to (+ or -) 5 x 10sup -3 . This versatile, one-of-a-kind facility can also measure refractive index over a wide range of wavelengths, from 0.105 um in the far-ultraviolet to 6 um in the IR, and over a wide range of temperatures, from 10 K to 100 degrees C, all with comparable accuracies. We first summarize the technical challenges we faced and engineering solutions we developed during the construction of CHARMS. Next we present our "first light," index of refraction data for fused silica and compare our data to previously published results.

  4. Refraction, including prisms.

    PubMed

    Hiatt, R L

    1991-02-01

    The literature in the past year on refraction is replete with several isolated but very important topics that have been of interest to strabismologists and refractionists for many decades. The refractive changes in scleral buckling procedures include an increase in axial length as well as an increase in myopia, as would be expected. Tinted lenses in dyslexia show little positive effect in the nonasthmatic patients in one study. The use of spectacles or bifocals as a way to control increase in myopia is refuted in another report. It has been shown that in accommodative esotropia not all patients will be able to escape the use of bifocals in the teenage years, even though surgery might be performed. The hope that disposable contact lenses would cut down on the instance of giant papillary conjunctivitis and keratitis has been given some credence, and the conventional theory that sclerosis alone is the cause of presbyopia is attacked. Also, gas permeable bifocal contact lenses are reviewed and the difficulties of correcting presbyopia by this method outlined. The practice of giving an aphakic less bifocal addition instead of a nonaphakic, based on the presumption of increased effective power, is challenged. In the review of prisms, the majority of articles concern prism adaption. The most significant report is that of the Prism Adaptation Study Research Group (Arch Ophthalmol 1990, 108:1248-1256), showing that acquired esotropia in particular has an increased incidence of stable and full corrections surgically in the prism adaptation group versus the control group.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Measurements of refractive index and physical thickness using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Song, Guiju; Wang, Xiangzhao; Ren, Hongwu; Zhang, Weizai; Zhang, Lianying; Fang, Zujie

    2000-05-01

    The measurements of refractive index and thickness of various transparent plates and films are very important for quality control. Additionally, the knowledge of refractive index, and thickness is significant in biomedicine for the treatment of many kinds of tumors. In this paper, we propose a new method for noninvasive and simultaneous measurement of refractive indices and physical thickness of specimens, which consist of surrounding and interior components with different refractive indices. In our experiment, we measure the refractive index and the physical thickness of a multimode fiber and a lotus root with a hollow hole, respectively. The experimental results verify the feasibility of this method.

  6. GRAVSAT/GEOPAUSE refraction study

    NASA Technical Reports Server (NTRS)

    Llewellyn, S. K.

    1977-01-01

    A ground station network tracked a high altitude spacecraft which in turn tracked a low orbiting satellite. Orbit data are relayed back to the ground stations. A refraction study was performed on this configuration to compute ionospheric and tropospheric refraction effects along the satellite and ground links.

  7. Density-dependent prophylaxis in the mealworm beetle Tenebrio molitor L. (Coleoptera: Tenebrionidae): cuticular melanization is an indicator of investment in immunity.

    PubMed Central

    Barnes, A I; Siva-Jothy, M T

    2000-01-01

    If there are costs involved with the maintenance of pathogen resistance, then higher investment in this trait is expected when the risk of pathogenesis is high. One situation in which the risk of pathogenesis is elevated is at increased conspecific density. This paper reports the results of a study of density-dependent polyphenism in pathogen resistance and immune function in the mealworm beetle Tenebrio molitor. Beetles reared at high larval densities showed lower mortality when exposed to a generalist entomopathogenic fungus and a higher degree of cuticular melanization than those reared solitarily. The degree of cuticular melanization was a strong indicator of resistance, with darker beetles being more resistant than lighter ones regardless of rearing density. No differences were found between rearing densities in the levels of phenoloxidase, an enzyme key to the insect immune response. The results show that pathogen resistance is phenotypically plastic in T. molitor, suggesting that the maintenance of this trait is costly. PMID:10687824

  8. Binocular vision and refractive surgery.

    PubMed

    Finlay, Alison L

    2007-05-01

    Binocular status can have an effect on the outcome of refractive surgery. Some accommodative deviations and anisometropia can be managed effectively. Fully accommodative esotropia has been successfully treated in young patients but the outcome can be less predictable in older patients. High anisometropes are usually unaffected by the change in aniseikonia following refractive surgery but there are exceptions. Failure to recognise and appropriately classify a binocular vision anomaly pre-surgically can result in symptoms that are difficult to manage post-operatively. Refractive surgery producing a binocular vision anomaly where there was none pre-operatively is less common. I present a review of the literature discussing the relationship between binocular vision anomalies and refractive surgery, illustrating the findings with published reports of successful and unsuccessful binocular postoperative outcomes. I argue that predicting the binocular outcome should be considered pre-operatively for every refractive surgery patient.

  9. Measurement of refractive index profile of non-symmetric, complex silica preforms with high refractive index differences

    NASA Astrophysics Data System (ADS)

    Probostova, Jana; Slanicka, Jiri; Mrazek, Jan; Podrazky, Ondrej; Benda, Adam; Peterka, Pavel

    2016-04-01

    Refractive index profile measurement is a key instrument for characterization of optical properties of preforms, which are used for drawing of high-quality optical fibers. Common industrial optical preform analyzers have been designed for measurement of simple symmetric structures such as step-index or graded-index preforms with refractive index close to the silica (n=1.457 at 633 nm). However, these conditions are usually far from more complex structures used in fiber lasers or in fiber sensor area. Preforms for the drawing of advanced optical fibers, such as Bragg, microstructure or photonic crystal fibers, are usually constituted from stacks with non-symmetric internal structure or composed of alternating layers with high refractive index contrasts. In this paper we present comparison of refractive index profile measurements of simple as well as complex structures with high refractive index differences simulating the Bragg structures. Commercial Photon Kinetics 2600 preform analyzer was used for the refractive index profile measurements. A set of concentrically arranged silica tubes was welded to form a complex preforms. Free space between the tubes was filled by immersion with varying refractive indices to simulate the Bragg structure. Up to three tubes were used for the analysis and the refractive indices of immersion were changed from 1.4 to 1.5. When refractive index of immersion was independently measured the structure of preform was defined. Profiles of these "known" structures were compared to measured data processed by originally proposed algorithm. The work provides an extension of issues of refractive index profile measurements in non-symmetric complex silica structures by a commercial preform analyzer and proposes more convenient methods of numeric data processing.

  10. Is the decrease of the total electron energy density a covalence indicator in hydrogen and halogen bonds?

    PubMed

    Angelina, Emilio L; Duarte, Darío J R; Peruchena, Nélida M

    2013-05-01

    In this work, halogen bonding (XB) and hydrogen bonding (HB) complexes were studied with the aim of analyzing the variation of the total electronic energy density H(r b ) with the interaction strengthening. The calculations were performed at the MP2/6-311++G(2d,2p) level of approximation. To explain the nature of such interactions, the atoms in molecules theory (AIM) in conjunction with reduced variational space self-consistent field (RVS) energy decomposition analysis were carried out. Based on the local virial theorem, an equation to decompose the total electronic energy density H(r b ) in two energy densities, (-G(r b )) and 1/4∇(2)ρ(r b ), was derived. These energy densities were linked with the RVS interaction energy components. Through the connection between both decomposition schemes, it was possible to conclude that the decrease in H(r b ) with the interaction strengthening observed in the HB as well as the XB complexes, is mainly due to the increase in the attractive electrostatic part of the interaction energy and in lesser extent to the increase in its covalent character, as is commonly considered.

  11. Metropolitan expansion and population density patterns in third world supercities as indicated by integration of space and ground data

    NASA Astrophysics Data System (ADS)

    Eyre, L. A.

    Monitoring of the urbanization process in the less developed countries of the world is limited by the inadequacy of ground data such as censuses and by their explosive rates of population growth and spatial expansion. By integrating Landsat satellite imagery and available population data, more accurate analyses are possible than by using either medium alone. Using this technique, built-up area, population and patterns of population density for the year 1978 are quantified for six Third World supercities with population in excess of six million: Calcutta, Shanghai, Cairo, Mexico City, Sao Paulo and Rio de Janeiro. Significant differences in density patterns between these cities appear to be related to economic level and culture.

  12. The inverse problem of refraction travel times, part II: Quantifying refraction nonuniqueness using a three-layer model

    USGS Publications Warehouse

    Ivanov, J.; Miller, R.D.; Xia, J.; Steeples, D.

    2005-01-01

    . Insufficient a priori information during the inversion is the reason why refraction methods often may not produce desired results or even fail. This work also demonstrates that the application of the smoothing constraints, typical when solving ill-posed inverse problems, has a dual and contradictory role when applied to the ill-posed inverse problem of refraction travel times. This observation indicates that smoothing constraints may play such a two-fold role when applied to other inverse problems. Other factors that contribute to inverse-refraction-problem nonuniqueness are also considered, including indeterminacy, statistical data-error distribution, numerical error and instability, finite data, and model parameters. ?? Birkha??user Verlag, Basel, 2005.

  13. Refractive index modulation in photo-thermo-refractive fibers

    NASA Astrophysics Data System (ADS)

    Rotari, Eugeniu; Glebova, Larissa; Glebov, Leonid

    2005-04-01

    Refractive index decrement was discovered in a fiber made from photo-thermo-refractive (PTR) glass. PTR glass is a fluorosilicate glass doped with cerium and silver which demonstrates refractive index change after UV exposure and thermal development due to precipitation of NaF nanocrystals in the irradiated areas. This glass is widely used for volume holographic optical elements recording. Photosensitivity in PTR optical fibers has been shown after exposure to radiation at 325 nm for about 1 J/cm2 followed by thermal development at 520°C. Refractive index difference between exposed and unexposed areas was about 1000 ppm. A Bragg mirror at 1088 nm was recorded in such fiber which showed narrow band reflection within 1 nm.

  14. Nonlinear refractive index of photo-thermo-refractive glass

    NASA Astrophysics Data System (ADS)

    Santran, Stephane; Martinez-Rosas, Miguel; Canioni, Lionel; Sarger, Laurent; Glebova, Larissa N.; Tirpak, Alan; Glebov, Leonid B.

    2006-03-01

    Nonlinear properties of a photo-thermo-refractive (PTR) glass are studied and compared with those in fused silica and a conventional optical glass. PTR glass is a new photosensitive medium for high-efficiency phase volume hologram recording which manifests a linear refractive index modulation after exposure to UV radiation followed by thermal treatment. Nonlinear optical properties of PTR glass exposed to femtosecond laser pulses are studied. Diffraction patterns in a propagated laser beam focused in the sample were detected by a CCD, while a nonlinear refractive index was measured by a collinear-orthogonal-polarization-pump-probe (COP3) method. It was found that nonlinear refractive index of PTRG is n2 = 3.3 × 10-20 m2/W (0.33 ppm cm2/GW) which is about the same as for the fused silica. It is important that n2 in PTR glass does not vary after UV exposure and thermal development.

  15. Complex refractive index of starch acetate used as a biodegradable pigment and filler of paper

    NASA Astrophysics Data System (ADS)

    Karvinen, Petri; Oksman, Antti; Silvennoinen, Raimo; Mikkonen, Hannu

    2007-05-01

    Complex refractive index of strongly depolarizing starch acetate is investigated as a function of bulk package density, which is compulsory parameter in analysis of light scattering from nanoscale starch acetate pigments and fillers. The measurements were made using a laser-goniometer and spectrophotometer to gain data for refractive index analysis according to the Brewster's law and Fresnel equations. The real part of refractive index was verified by microscopic immersion method.

  16. Dielectric Optical-Controllable Magnifying Lens by Nonlinear Negative Refraction

    PubMed Central

    Cao, Jianjun; Shang, Ce; Zheng, Yuanlin; Feng, Yaming; Chen, Xianfeng; Liang, Xiaogan; Wan, Wenjie

    2015-01-01

    A simple optical lens plays an important role for exploring the microscopic world in science and technology by refracting light with tailored spatially varying refractive indices. Recent advancements in nanotechnology enable novel lenses, such as, superlens and hyperlens, with sub-wavelength resolution capabilities by specially designed materials’ refractive indices with meta-materials and transformation optics. However, these artificially nano- or micro-engineered lenses usually suffer high losses from metals and are highly demanding in fabrication. Here, we experimentally demonstrate, for the first time, a nonlinear dielectric magnifying lens using negative refraction by degenerate four-wave mixing in a plano-concave glass slide, obtaining magnified images. Moreover, we transform a nonlinear flat lens into a magnifying lens by introducing transformation optics into the nonlinear regime, achieving an all-optical controllable lensing effect through nonlinear wave mixing, which may have many potential applications in microscopy and imaging science. PMID:26149952

  17. Dielectric Optical-Controllable Magnifying Lens by Nonlinear Negative Refraction

    NASA Astrophysics Data System (ADS)

    Cao, Jianjun; Shang, Ce; Zheng, Yuanlin; Feng, Yaming; Chen, Xianfeng; Liang, Xiaogan; Wan, Wenjie

    2015-07-01

    A simple optical lens plays an important role for exploring the microscopic world in science and technology by refracting light with tailored spatially varying refractive indices. Recent advancements in nanotechnology enable novel lenses, such as, superlens and hyperlens, with sub-wavelength resolution capabilities by specially designed materials’ refractive indices with meta-materials and transformation optics. However, these artificially nano- or micro-engineered lenses usually suffer high losses from metals and are highly demanding in fabrication. Here, we experimentally demonstrate, for the first time, a nonlinear dielectric magnifying lens using negative refraction by degenerate four-wave mixing in a plano-concave glass slide, obtaining magnified images. Moreover, we transform a nonlinear flat lens into a magnifying lens by introducing transformation optics into the nonlinear regime, achieving an all-optical controllable lensing effect through nonlinear wave mixing, which may have many potential applications in microscopy and imaging science.

  18. Photoresist Exposure Parameter Extraction from Refractive Index Change during Exposure

    NASA Astrophysics Data System (ADS)

    Sohn, Young-Soo; Sung, Moon-Gyu; Lee, Young-Mi; Lee, Eun-Mi; Oh, Jin-Kyung; Byun, Sung-Hwan; Jeong, Yeon-Un; Oh, Hye-Keun; An, Ilsin; Lee, Kun-Sang; Park, In-Ho; Cho, Joon-Yeon; Lee, Sang-Ho

    1998-12-01

    The refractive indices of photoresist are usually measured byan ellipsometer or spectrophotometer, but the values are limited to pre-exposure. It is known thatthe real and imaginary indices are changed during the exposure.But there is little report on these variations since itis difficult to measure this refractive index change at deep ultraviolet. The DillABC parameters show a significant variation with the resist and substrate thicknessas well as the experimental conditions.A method is suggested to extract the parameters from the refractive index changes.We can get the refractive index change and extract the Dill ABC exposure parameters from that.The multiple thin film interference calculation is used to fit the measured transmittance data.The results of our experiments and calculations for several resists including193 nm chemically amplified resists are compared with other methods.The results are agreed well with the full multilayer thin film simulation.

  19. Ultra-slow dynamics in low density amorphous ice revealed by deuteron NMR: indication of a glass transition.

    PubMed

    Löw, Florian; Amann-Winkel, Katrin; Loerting, Thomas; Fujara, Franz; Geil, Burkhard

    2013-06-21

    The postulated glass-liquid transition of low density amorphous ice (LDA) is investigated with deuteron NMR stimulated echo experiments. Such experiments give access to ultra-slow reorientations of water molecules on time scales expected for structural relaxation of glass formers close to the glass-liquid transition temperature. An involved data analysis is necessary to account for signal contributions originating from a gradual crystallization to cubic ice. Even if some ambiguities remain, our findings support the view that pressure amorphized LDA ices are of glassy nature and undergo a glass-liquid transition before crystallization.

  20. Recent advances in refractive surgery

    PubMed Central

    Yu, E Y; Jackson, W B

    1999-01-01

    Refractive errors are some of the most common ophthalmic abnormalities world-wide and are associated with significant morbidity. Tremendous advances in treating refractive errors have occurred over the past 20 years. The arrival of the excimer laser has allowed a level of accuracy in modifying the cornea that was unattainable before. Although refractive surgery is generally safe and effective, it does carry some risks. Careful patient selection, meticulous surgical technique and frequent follow-up can avoid most complications. The experience of a surgical team can also affect the outcome and the incidence of complications. The future should bring continued improvement in outcomes, fewer complications and exciting new options for treating refractive errors. PMID:10333840

  1. Effective spectral dispersion of refractive index modulation

    NASA Astrophysics Data System (ADS)

    Vojtíšek, Petr; Květoň, Milan; Richter, Ivan

    2017-04-01

    For diffraction effects inside photopolymer materials, which act as volume diffraction systems (e.g. gratings), refractive index modulation is one of the key parameters. Due to its importance it is necessary to study this parameter from many perspectives, one of which is its value for different spectral components, i.e. its spectral dispersion. In this paper, we discuss this property and present an approach to experimental and numerical extraction and analysis (via rigorous coupled wave analysis and Cauchy’s empirical relation) of the effective dispersion of refractive index modulation based on an analysis of transmittance maps measured in an angular-spectral plane. It is indicated that the inclusion of dispersion leads to a significantly better description of the real grating behavior (which is often necessary in various design implementations of diffraction gratings) and that this estimation can be carried out for all the diffraction orders present.

  2. Water Quality, Weather and Environmental Factors Associated with Fecal Indicator Organism Density in Beach Sand at Two Recreational Marine Beaches

    EPA Science Inventory

    Recent studies showing an association between fecal indicator organisms (FIOs and gastrointestinal (GI) illness among beachgoers wit sand contact have important public health implicatons because of the large numbers of people who recreate at beaches and engage in sand contact act...

  3. Age-related shifts in the density and distribution of genetic marker water quality indicators in cow and calf feces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies have shown that different adult bovine animal feeding practices dramatically influence fecal indicator bacteria shedding, however very little is known about milk-fed calves. Calves (= 6 months of age) make up about 16% of the current bovine population in the United States and can exc...

  4. Age-Related Shifts in the Density and Distribution of Genetic Marker Water Quality Indicators in Cow and Calf Feces

    EPA Science Inventory

    Recent studies have shown that different adult bovine animal feeding practices dramatically influence fecal indicator bacteria shedding, however very little is known about juvenile milk-fed calves. Calves (≤ 6 months of age) make up about 16% of the current bovine population in ...

  5. Ammonia Levels and Urine-Spot Characteristics as Cage-Change Indicators for High-Density Individually Ventilated Mouse Cages

    PubMed Central

    Washington, Ida M; Payton, Mark E

    2016-01-01

    Mouse cage and bedding changes are potentially stressful to mice and are also labor- and resource-intensive. These changes are often performed on a calendar-based schedule to maintain a clean microenvironment and limit the concentrations of ammonia to which mice and workers are exposed. The current study sought to establish a performance-based approach to mouse cage-changing that uses urine spot characteristics as visual indicators of intracage ammonia levels. Colorimetric ammonia indicators were used to measure ammonia levels in individually-ventilated cages (IVC) housing male or female mice (n =5 per cage) of various strains at 1 to 16 d after cage change. Urine spot characteristics were correlated with ammonia levels to create a visual indicator of the cage-change criterion of 25 ppm ammonia. Results demonstrated a consistent increase in ammonia levels with days since cage change, with cages reaching the cage-change criterion at approximately 10 d for IVC containing male mice and 16 d for those with female mice. Ammonia levels were higher for male than female mice but were not correlated with mouse age. However, urine spot diameter, color, and edge characteristics were strongly correlated with ammonia levels. Husbandry practices based on using urine spot characteristics as indicators of ammonia levels led to fewer weekly cage changes and concomitant savings in labor and resources. Therefore, urine spot characteristics can be used as visual indicators of intracage ammonia levels for use of a performance (urine spot)-based approach to cage-changing frequency that maintains animal health and wellbeing. PMID:27177558

  6. Effects of combined sewer overflow and stormwater on indicator bacteria concentrations in the Tama River due to the high population density of Tokyo Metropolitan area.

    PubMed

    Ham, Young-Sik; Kobori, Hiromi; Takasago, Masahisa

    2009-05-01

    The indicator bacteria (standard plate count, total coliform, and fecal coliform bacteria) concentrations have been investigated using six ambient habitats (population density, percent sewer penetration, stream flow rate (m(3)/sec), percent residential area, percent forest area and percent agricultural area) in the Tama River basin in Tokyo, Japan during June 2003 to January 2005. The downstream and tributary Tama River showed higher concentrations of TC and FC bacteria than the upstream waters, which exceeded an environmental quality standard for rivers and a bathing water quality criterion. It was estimated that combined sewer overflow (CSO) and stormwater effluents contributed -4-23% to the indicator bacteria concentrations of the Tama River. The results of multiple regression analyses show that the indicator bacteria concentrations of Tama River basin are significantly affected by population density. It is concluded that the Tama River received a significant bacterial contamination load originating from the anthropogenic source.

  7. Spatial and Temporal Heterogeneities of Aedes albopictus Density in La Reunion Island: Rise and Weakness of Entomological Indices

    PubMed Central

    Boyer, Sebastien; Foray, Coralie; Dehecq, Jean-Sebastien

    2014-01-01

    Following the 2006 Chikungunya disease in La Reunion, questions were raised concerning the monitoring survey of Aedes albopictus populations and the entomological indexes used to evaluate population abundance. The objectives of the present study were to determine reliable productivity indexes using a quantitative method to improve entomological surveys and mosquito control measures on Aedes albopictus. Between 2007 and 2011, 4 intervention districts, 24 cities, 990 areas and over 850,000 houses were used to fulfil those objectives. Four indexes including the classical Stegomyia index (House Index, Container Index, Breteau Index) plus an Infested Receptacle Index were studied in order to determine whether temporal (year, month, week) and/or spatial (districts, cities, areas) heterogeneities existed. Temporal variations have been observed with an increase of Ae. albopictus population density over the years, and a seasonality effect with a highest population during the hot and wet season. Spatial clustering was observed at several scales with an important autocorrelation at the area scale. Moreover, the combination among these results and the breeding site productivity obtained during these 5 years allowed us to propose recommendations to monitor Aedes albopictus by eliminating not the most finding sites but the most productive ones. As the other strategies failed in La Reunion, this new approach should should work better. PMID:24637507

  8. Are growth and density quantitative indicators of essential fish habitat quality? An application to the common sole Solea solea nursery grounds

    NASA Astrophysics Data System (ADS)

    Gilliers, C.; Le Pape, O.; Désaunay, Y.; Morin, J.; Guérault, D.; Amara, R.

    2006-08-01

    Bio-indicators were measured on juvenile fish to assess the quality of eight coastal and estuarine nursery grounds in the Eastern English Channel and in the Bay of Biscay during 3 years. Growth (size and otolith daily increment width), body condition (morphometric index) and abundance of juvenile common soles were analysed together with xenobiotic concentrations (heavy metals and organic contaminants). Condition indices displayed important variations and did not allow relevant estimation of environmental quality. On the contrary, growth and density indicators showed good steadiness above years but varied among sites. In spite of difficulties of interpreting these indicators on such a meso-scale approach, analyses highlighted the estuaries of Seine and Gironde. In these nursery areas, the levels of contamination were especially high, and the combination of fish growth performances and density was significantly lower than in other sites. The combination of these variables appears to provide reliable indicators of habitat quality and anthropogenic pressure on nursery grounds, especially highlighting contaminated areas. Such indicators may thus contribute to improve assessment of environmental quality of essential fish habitats with the aim of a sustainable management of fisheries resources. A study at a different scale, from this meso-scale nursery approach with more precise analyses, on local habitats, will nevertheless be necessary to optimize the relevance of these indicators for the assessment of essential fish habitat quality.

  9. Computational imaging using lightweight diffractive-refractive optics.

    PubMed

    Peng, Yifan; Fu, Qiang; Amata, Hadi; Su, Shuochen; Heide, Felix; Heidrich, Wolfgang

    2015-11-30

    Diffractive optical elements (DOE) show great promise for imaging optics that are thinner and more lightweight than conventional refractive lenses while preserving their light efficiency. Unfortunately, severe spectral dispersion currently limits the use of DOEs in consumer-level lens design. In this article, we jointly design lightweight diffractive-refractive optics and post-processing algorithms to enable imaging under white light illumination. Using the Fresnel lens as a general platform, we show three phase-plate designs, including a super-thin stacked plate design, a diffractive-refractive-hybrid lens, and a phase coded-aperture lens. Combined with cross-channel deconvolution algorithm, both spherical and chromatic aberrations are corrected. Experimental results indicate that using our computational imaging approach, diffractive-refractive optics is an alternative candidate to build light efficient and thin optics for white light imaging.

  10. The Predictive Power of Electronic Polarizability for Tailoring the Refractivity of High Index Glasses Optical Basicity Versus the Single Oscillator Model

    SciTech Connect

    McCloy, John S.; Riley, Brian J.; Johnson, Bradley R.; Schweiger, Michael J.; Qiao, Hong; Carlie, Nathan

    2010-06-01

    Four compositions of high density (~8 g/cm3) heavy metal oxide glasses composed of PbO, Bi2O3, and Ga2O3 were produced and refractivity parameters (refractive index and density) were computed and measured. Optical basicity was computed using three different models – average electronegativity, ionic-covalent parameter, and energy gap – and the basicity results were used to compute oxygen polarizability and subsequently refractive index. Refractive indices were measured in the visible and infrared at 0.633 μm, 1.55 μm, 3.39 μm, 5.35 μm, 9.29 μm, and 10.59 μm using a unique prism coupler setup, and data were fitted to the Sellmeier expression to obtain an equation of the dispersion of refractive index with wavelength. Using this dispersion relation, single oscillator energy, dispersion energy, and lattice energy were determined. Oscillator parameters were also calculated for the various glasses from their oxide values as an additional means of predicting index. Calculated dispersion parameters from oxides underestimate the index by 3 to 4%. Predicted glass index from optical basicity, based on component oxide energy gaps, underpredicts the index at 0.633 μm by only 2%, while other basicity scales are less accurate. The predicted energy gap of the glasses based on this optical basicity overpredicts the Tauc optical gap as determined by transmission measurements by 6 to 10%. These results show that for this system, density, refractive index in the visible, and energy gap can be reasonably predicted using only composition, optical basicity values for the constituent oxides, and partial molar volume coefficients. Calculations such as these are useful for a priori prediction of optical properties of glasses.

  11. Peripheral refraction and the development of refractive error: a review.

    PubMed

    Charman, W Neil; Radhakrishnan, Hema

    2010-07-01

    It has been suggested that emmetropic and low-hyperopic eyes in which the refractive error in the periphery of the visual field is relatively hyperopic with respect to the axial refraction may be at greater risk of developing myopia than eyes with similar refractions but relatively myopic peripheral refractive errors. The animal and human evidence to support this hypothesis is reviewed. The most persuasive studies are those in which emmetropization has been shown to occur in infant rhesus monkeys with ablated foveas but intact peripheral fields, and the demonstration that, in similar animals, lens-induced relative peripheral hyperopia produces central axial myopia. Evidence for emmetropization in animals with severed optic nerves suggests that emmetropization is primarily controlled at the retinal level but that the higher levels of the visual system play a significant role in refining the process: there appear to be no directly equivalent human studies. Since any contribution of the higher centres to the control of refractive development must depend upon the sensitivity to defocus, the results of human studies of the changes in depth-of-focus across the field and of the contribution of the retinal periphery to the accommodation response are discussed. Although peripheral resolution is relatively insensitive to focus, this is not the case for detection. Moreover accommodation occurs to peripheral stimuli out to a field angle of at least 10 deg, and the presence of a peripheral stimulus can influence the accommodation to a central target. Although the basic hypothesis that a relatively hyperopic peripheral refractive error can drive the development of human myopia remains unproven, the available data support the possibility of an interaction between the states of focus on axis and in the periphery.

  12. Photonic crystal negative refractive optics.

    PubMed

    Baba, Toshihiko; Abe, Hiroshi; Asatsuma, Tomohiko; Matsumoto, Takashi

    2010-03-01

    Photonic crystals (PCs) are multi-dimensional periodic gratings, in which the light propagation is dominated by Bragg diffraction that appears to be refraction at the flat surfaces of the PC. The refraction angle from positive to negative, perfectly or only partially obeying Snell's law, can be tailored using photonic band theory. The negative refraction enables novel prism, collimation, and lens effects. Because PCs usually consist of two transparent media, these effects occur at absorption-free frequencies, affording significant design flexibility for free-space optics. The PC slab, a high-index membrane with a two-dimensional airhole array, must be carefully designed to avoid reflection and diffraction losses. Light focusing based on negative refraction forms a parallel image of a light source, facilitating optical couplers and condenser lenses for wavelength demultiplexing. A compact wavelength demultiplexer can be designed by combining the prism and lens effects. The collimation effect is obtainable not only inside but also outside of the PC by optimizing negative refractive condition.

  13. Morphometric evaluation of the Afşin-Elbistan lignite basin using kernel density estimation and Getis-Ord's statistics of DEM derived indices, SE Turkey

    NASA Astrophysics Data System (ADS)

    Sarp, Gulcan; Duzgun, Sebnem

    2015-11-01

    A morphometric analysis of river network, basins and relief using geomorphic indices and geostatistical analyses of Digital Elevation Model (DEM) are useful tools for discussing the morphometric evolution of the basin area. In this study, three different indices including valley floor width to height ratio (Vf), stream gradient (SL), and stream sinuosity were applied to Afşin-Elbistan lignite basin to test the imprints of tectonic activity. Perturbations of these indices are usually indicative of differences in the resistance of outcropping lithological units to erosion and active faulting. To map the clusters of high and low indices values, the Kernel density estimation (K) and the Getis-Ord Gi∗ statistics were applied to the DEM-derived indices. The K method and Gi∗ statistic highlighting hot spots and cold spots of the SL index, the stream sinuosity and the Vf index values helped to identify the relative tectonic activity of the basin area. The results indicated that the estimation by the K and Gi∗ including three conceptualization of spatial relationships (CSR) for hot spots (percent volume contours 50 and 95 categorized as high and low respectively) yielded almost similar results in regions of high tectonic activity and low tectonic activity. According to the K and Getis-Ord Gi∗ statistics, the northern, northwestern and southern parts of the basin indicates a high tectonic activity. On the other hand, low elevation plain in the central part of the basin area shows a relatively low tectonic activity.

  14. A Newtonian approach to extraordinarily strong negative refraction.

    PubMed

    Yoon, Hosang; Yeung, Kitty Y M; Umansky, Vladimir; Ham, Donhee

    2012-08-02

    Metamaterials with negative refractive indices can manipulate electromagnetic waves in unusual ways, and can be used to achieve, for example, sub-diffraction-limit focusing, the bending of light in the 'wrong' direction, and reversed Doppler and Cerenkov effects. These counterintuitive and technologically useful behaviours have spurred considerable efforts to synthesize a broad array of negative-index metamaterials with engineered electric, magnetic or optical properties. Here we demonstrate another route to negative refraction by exploiting the inertia of electrons in semiconductor two-dimensional electron gases, collectively accelerated by electromagnetic waves according to Newton's second law of motion, where this acceleration effect manifests as kinetic inductance. Using kinetic inductance to attain negative refraction was theoretically proposed for three-dimensional metallic nanoparticles and seen experimentally with surface plasmons on the surface of a three-dimensional metal. The two-dimensional electron gas that we use at cryogenic temperatures has a larger kinetic inductance than three-dimensional metals, leading to extraordinarily strong negative refraction at gigahertz frequencies, with an index as large as -700. This pronounced negative refractive index and the corresponding reduction in the effective wavelength opens a path to miniaturization in the science and technology of negative refraction.

  15. Refractive index matching and clear emulsions.

    PubMed

    Sun, James Ziming; Erickson, Michael C E; Parr, James W

    2005-01-01

    Refractive index (RI) matching is a unique way of making clear emulsions to meet market trends. However, RI matching has not been sufficiently investigated in terms of physical principles and methodologies. Snell's law (n2 sin r2= n1 sin r1) is applicable to cosmetic emulsions. When oil phase and water phase have equal RI (n2 = n1) values, light will not bend as it strikes obliquely at the emulsion interface. Instead, light is transmitted through the emulsion without refraction, which produces clarity. Theoretical RI values in solution can be calculated with summation of the product of the weight percentage and refractive index of each ingredient (RI(mix) = [W1 x n1 + W2 x n2 + W3 x n3 + + Wn x nn]Wtau). Oil-phase RI values are normally at 1.4 or higher. Glycols are used to adjust the water phase RI, since they typically have larger RI values than water. Noticeable deviations from calculated RI values are seen in experimentally prepared solutions. Three basic deviation types are observed: negative, positive, and slightly negative or positive, which can occur in glycol aqueous solutions at different concentrations. The deviations are attributed to changes in molecular interaction between molecules in solution, which can lead to changes in specific gravity. Negative RI deviation corresponds to a decrease in specific gravity, and positive RI deviation corresponds to an increase in specific gravity. RI values will deviate from calculated values since an increase or decrease in specific gravity leads to a change in optical density.

  16. Relationships among oil density, gross composition, and thermal maturity indicators in northeastern Williston basin oils and their significance for expulsion thresholds and migration pathways

    SciTech Connect

    Osadetz, K.G.; Snowdon, L.R.; Brooks, P.W. )

    1991-06-01

    Oil density ({degree}API), gross composition, and biological market thermal maturity variations in northeastern Williston basin have stratigraphic and geographic significance controlled by migration pathways and source rock composition as it affects hydrocarbon generation and expulsion characteristics. When the depth and density of oil pools is compared to relationships predicted using the correlation between source rock thermal maturity and oil density, several different migration pathways can be inferred. Winnipegosis source oils indicate four paths. Most small pinnacle reef pools are sourced locally, but larger coalesced reefs contain oils migrated long distances through the Lower Member Winnipegosis Formation. Among oils that have migrated past Prairie salts, both locally sourced oils, like those on the flank of the Hummingbird Trough, and more mature, longer migrated oils in Saskatchewan Group reservoirs can be identified. Bakken oils have the longest migration pathways, controlled primarily by a lowstand shoreline sandstone on the eastern side of the basin. Lodgepole-sourced oils dominate Madison Group plays. Northwest of Steelman field, oil density increases primarily due to thermal maturity differences but also because of increasing biodegradation and water-washing that affect the western edge of the play trend. Along the margin of the Hummingbird Trough are a number of deep, medium-gravity pools whose oil compositions are entirely attributable to low thermal maturity and local migration pathways.

  17. Agreement Between pQCT- and DXA-Derived Indices of Bone Geometry, Density, and Theoretical Strength in Females of Varying Age, Maturity, and Physical Activity

    PubMed Central

    Dowthwaite, Jodi Noelle; Flowers, Portia PE; Scerpella, Tamara Ann

    2011-01-01

    Measurement of bone mass, geometry, density, and strength are critical in bone research and clinical studies. For peripheral quantitative computed tomography (pQCT), single and repeated measurements are particularly adversely affected by movement and positional variation. Dual-energy X-ray absorptiometry (DXA)–derived indices may alleviate these problems and provide useful alternative assessments. To evaluate this hypothesis, distal radius DXA and pQCT indices were compared in 101 healthy females aged 8.0 to 22.8 years (prepuberty to adulthood), reflecting a broad range of body sizes, physical maturity, and activity exposures. At the diaphysis, correlations were ρ =+0.74 to +0.98, with strong intermethod agreement for most indices. At the metaphysis, correlations were ρ =+0.64 to +0.97; intermethod agreement improved with modifications to the simplified geometric formulas more closely reflecting metaphyseal bone geometry. Further improvements may be possible because skeletal size and maturity-related biases in agreement were detected. Overall, DXA-derived indices may provide a useful assessment of bone geometry, density, and theoretical strength contingent on appropriate consideration of their limitations. PMID:21611973

  18. A refracting radio telescope. [using ionosphere as lens

    NASA Technical Reports Server (NTRS)

    Bernhardt, P.; Da Rosa, A. V.

    1977-01-01

    Observations of extraterrestrial radio sources at the lower end of the radio frequency spectrum are limited by reflection of waves from the topside ionosphere and by the large size of antenna apertures necessary for the realization of narrow beamwidths. The use of the ionosphere as a lens is considered. The lens is formed by the release of chemicals such as H2 and H2O at the F2-layer peak. These chemicals promote dissociative recombination of O(+) in the ionosphere resulting in a local reduction in plasma density. Gradients in electron density in the vicinity of the gas release tend to focus rays propagating through the depleted region. Preliminary calculations indicate that a lens capable of focusing cosmic radio waves in the 1 to 10 MHz frequency range may be produced by the release of 100 kg of H2 at the peak of the nighttime F layer. The beamwidth of a refracting radio telescope using this lens may be less than 1/5 degree.

  19. Refraction and reflection of diffusion fronts.

    PubMed

    Remhof, A; Wijngaarden, R J; Griessen, R

    2003-04-11

    Diffusion waves form the basis of several measurement technologies in materials science as well as in biological systems. They are, however, so heavily damped that their observation is a real challenge to the experimentalist. We show that accurate information about the refraction-like and reflection-like behavior of diffusion waves can be obtained by studying diffusion fronts. For this we use hydrogen in a metal as a model system and visualize its 2D migration with an optical indicator. The similarities between classical optics and diffusion, in particular, the applicability of Snell's law to diffusive systems are discussed. Our measurements are in good agreement with numerical simulations.

  20. Investigation of relationships between Aedes aegypti egg, larvae, pupae, and adult density indices where their main breeding sites were located indoors.

    PubMed

    Romero-Vivas, Claudia M E; Falconar, Andrew K I

    2005-03-01

    Aedes aegypti (L.) density indices obtained in a dengue fever (DF) endemic area were compared. One hundred and twenty premises, in an urban area of Colombia where dengue type-1 and type-2 virus cocirculated, were randomly selected and sampled for 7 months. The geometric mean monthly numbers (density index, DI) of Ae. aegypti eggs (ODI), 4th instar larvae (LDI), pupae (PDI), and adults (ADI) were calculated based on the use of ovitraps, nets, and manual aspirators, respectively. A negative temporal correlation was observed between the LDI and the ODI (r = -0.83, df = 5, and P < 0.01). Positive temporal correlations were only observed between the LDI and the PDI (r = 0.90, df = 5, and P < 00.5) and the Breteau and House indices (r = 0.86, df = 5, and P < 0.01). No other correlations were found between these indices and any of the other density indices or the incidence of suspected DF cases in residents, the temperature, the rainfall, or seasonal fluctuations. Our results were, therefore, probably due to the most productive Ae. aegypti breeding sites (large water containers) being located indoors within this study area. The number of adult female Ae. aegypti/person (n = 0.5) and pupae/person (n = 11) in our study area were lower and dramatically higher than the transmission thresholds previously reported for adult and pupae, respectively. Because there were confirmed DF cases during the study period, the transmission threshold based on the Ae. aegypti pupae was clearly more reliable. We found that the mean ovitrap premise index (OPI) was 98.2% during this study and that the mean larval (L-4th instars) premise index (LPI) was 59.2%, and therefore we suggest that the OPI and LPI would be more sensitive methods to gauge the effectiveness of A. aegypti control programs.

  1. Temperature and density characteristics of the Helicity Injected Torus-II spherical tokamak indicating closed flux sustainment using coaxial helicity injection

    SciTech Connect

    Hamp, W. T.; Jarboe, T. R.; Nelson, B. A.; O'Neill, R. G.; Raman, R.; Redd, A. J.; Stewart, B. T.; Mueller, D.

    2008-08-15

    The electron temperature and density profiles of plasmas in the Helicity Injected Torus [HIT-II: T. R. Jarboe et al., Phys. Plasmas 5, 1807 (1998)] experiment are measured by multipoint Thomson scattering (MPTS). The HIT-II device is a small low-aspect-ratio tokamak (major radius 0.3 m, minor radius 0.2 m, toroidal field of up to 0.5 T), capable of inductive ohmic (OH) current drive, Coaxial Helicity Injection (CHI) current drive, or combinations of both. The temperature and density characteristics have been characterized by a ruby laser MPTS diagnostic at up to six locations within the plasma for a single diagnostic time per discharge. Observed hollow temperature profiles of CHI discharges are inconsistent with open flux only predictions for CHI and indicate a closed flux region during CHI current drive.

  2. Delineating high-density areas in spatial Poisson fields from strip-transect sampling using indicator geostatistics: application to unexploded ordnance removal.

    PubMed

    Saito, Hirotaka; McKenna, Sean A

    2007-07-01

    An approach for delineating high anomaly density areas within a mixture of two or more spatial Poisson fields based on limited sample data collected along strip transects was developed. All sampled anomalies were transformed to anomaly count data and indicator kriging was used to estimate the probability of exceeding a threshold value derived from the cdf of the background homogeneous Poisson field. The threshold value was determined so that the delineation of high-density areas was optimized. Additionally, a low-pass filter was applied to the transect data to enhance such segmentation. Example calculations were completed using a controlled military model site, in which accurate delineation of clusters of unexploded ordnance (UXO) was required for site cleanup.

  3. Atmospheric refraction effects on baseline error in satellite laser ranging systems

    NASA Technical Reports Server (NTRS)

    Im, K. E.; Gardner, C. S.

    1982-01-01

    Because of the mathematical complexities involved in exact analyses of baseline errors, it is not easy to isolate atmospheric refraction effects; however, by making certain simplifying assumptions about the ranging system geometry, relatively simple expressions can be derived which relate the baseline errors directly to the refraction errors. The results indicate that even in the absence of other errors, the baseline error for intercontinental baselines can be more than an order of magnitude larger than the refraction error.

  4. Crystalline lens and refractive development.

    PubMed

    Iribarren, Rafael

    2015-07-01

    Individual refractive errors usually change along lifespan. Most children are hyperopic in early life. This hyperopia is usually lost during growth years, leading to emmetropia in adults, but myopia also develops in children during school years or during early adult life. Those subjects who remain emmetropic are prone to have hyperopic shifts in middle life. And even later, at older ages, myopic shifts are developed with nuclear cataract. The eye grows from 15 mm in premature newborns to approximately 24 mm in early adult years, but, in most cases, refractions are maintained stable in a clustered distribution. This growth in axial length would represent a refractive change of more than 40 diopters, which is compensated by changes in corneal and lens powers. The process which maintains the balance between the ocular components of refraction during growth is still under study. As the lens power cannot be measured in vivo, but can only be calculated based on the other ocular components, there have not been many studies of lens power in humans. Yet, recent studies have confirmed that the lens loses power during growth in children, and that hyperopic and myopic shifts in adulthood may be also produced by changes in the lens. These studies in children and adults give a picture of the changing power of the lens along lifespan. Other recent studies about the growth of the lens and the complexity of its internal structure give clues about how these changes in lens power are produced along life.

  5. Index of Refraction without Geometry

    ERIC Educational Resources Information Center

    Farkas, N.; Henriksen, P. N.; Ramsier, R. D.

    2006-01-01

    This article presents several activities that permit students to determine the index of refraction of transparent solids and liquids using simple equipment without the need for geometrical relationships, special lighting or optical instruments. Graphical analysis of the measured data is shown to be a useful method for determining the index of…

  6. REFLECTION AND REFRACTION, VOLUME 2.

    ERIC Educational Resources Information Center

    KLAUS, DAVID J.; AND OTHERS

    THIS VOLUME 2 OF A TWO-VOLUME SET PROVIDES AUTOINSTRUCTION IN PHYSICS. THE UNITS COVERED IN THIS VOLUME ARE (1) REFLECTION OF LIGHT, (2) PHOTOMETRY, (3) POLARIZATION, (4) REFRACTION OF LIGHT, (5) SNELL'S LAW, (6) LENSES, FOCUS, AND FOCAL POINTS, (7) IMAGE FORMATION, AND (8) ABERRATIONS, THE EYE, AND MAGNIFICATION. THE INTRODUCTION AND UNITS ON…

  7. Fiber optic refractive index monitor

    SciTech Connect

    Weiss, Jonathan David

    2002-01-01

    A sensor for measuring the change in refractive index of a liquid uses the lowest critical angle of a normal fiber optic to achieve sensitivity when the index of the liquid is significantly less than the index of the fiber core. Another embodiment uses a liquid filled core to ensure that its index is approximately the same as the liquid being measured.

  8. The influence of economic indicators, poultry density and the performance of veterinary services on the control of high-pathogenicity avian influenza in poultry.

    PubMed

    Pavade, G; Awada, L; Hamilton, K; Swayne, D E

    2011-12-01

    High-pathogenicity avian influenza (HPAI) and low-pathogenicity notifiable avian influenza (LPNAI) in poultry are notifiable diseases that must be reported to the World Organisation for Animal Health (OIE). There are variations between countries' responses to avian influenza (AI) outbreak situations based on their economic status, diagnostic capacity and other factors. The objective of this study was to ascertain the significant association between HPAI control data and a country's poultry density, the performance of its Veterinary Services, and its economic indicators (gross domestic product, agricultural gross domestic product, gross national income, human development index and Organisation for Economic Co-operation and Development [OECD] status). Results indicate that as poultry density increases for least developed countries there is an increase in the number and duration of HPAI outbreaks and in the time it takes to eradicate the disease. There was no significant correlation between HPAI control and any of the economic indicators except membership of the OECD. Member Countries, i.e. those with high-income economies, transparency and good governance, had shorter and significantly fewer HPAI outbreaks, quicker eradication times, lower mortality rates and higher culling rates than non-OECD countries. Furthermore, countries that had effective and efficient Veterinary Services (as measured by the ratings they achieved when they were assessed using the OIE Tool for the Evaluation of Performance of Veterinary Services) had better HPAI control measures.

  9. Highly tunable refractive index visible-light metasurface from block copolymer self-assembly.

    PubMed

    Kim, Ju Young; Kim, Hyowook; Kim, Bong Hoon; Chang, Taeyong; Lim, Joonwon; Jin, Hyeong Min; Mun, Jeong Ho; Choi, Young Joo; Chung, Kyungjae; Shin, Jonghwa; Fan, Shanhui; Kim, Sang Ouk

    2016-09-29

    The refractive index of natural transparent materials is limited to 2-3 throughout the visible wavelength range. Wider controllability of the refractive index is desired for novel optical applications such as nanoimaging and integrated photonics. We report that metamaterials consisting of period and symmetry-tunable self-assembled nanopatterns can provide a controllable refractive index medium for a broad wavelength range, including the visible region. Our approach exploits the independent control of permeability and permittivity with nanoscale objects smaller than the skin depth. The precise manipulation of the interobject distance in block copolymer nanopatterns via pattern shrinkage increased the effective refractive index up to 5.10. The effective refractive index remains above 3.0 over more than 1,000 nm wavelength bandwidth. Spatially graded and anisotropic refractive indices are also obtained with the design of transitional and rotational symmetry modification.

  10. Highly tunable refractive index visible-light metasurface from block copolymer self-assembly

    PubMed Central

    Kim, Ju Young; Kim, Hyowook; Kim, Bong Hoon; Chang, Taeyong; Lim, Joonwon; Jin, Hyeong Min; Mun, Jeong Ho; Choi, Young Joo; Chung, Kyungjae; Shin, Jonghwa; Fan, Shanhui; Kim, Sang Ouk

    2016-01-01

    The refractive index of natural transparent materials is limited to 2–3 throughout the visible wavelength range. Wider controllability of the refractive index is desired for novel optical applications such as nanoimaging and integrated photonics. We report that metamaterials consisting of period and symmetry-tunable self-assembled nanopatterns can provide a controllable refractive index medium for a broad wavelength range, including the visible region. Our approach exploits the independent control of permeability and permittivity with nanoscale objects smaller than the skin depth. The precise manipulation of the interobject distance in block copolymer nanopatterns via pattern shrinkage increased the effective refractive index up to 5.10. The effective refractive index remains above 3.0 over more than 1,000 nm wavelength bandwidth. Spatially graded and anisotropic refractive indices are also obtained with the design of transitional and rotational symmetry modification. PMID:27683077

  11. Fully interferometric controllable anomalous refraction efficiency using cross modulation with plasmonic metasurfaces.

    PubMed

    Liu, Zhaocheng; Chen, Shuqi; Li, Jianxiong; Cheng, Hua; Li, Zhancheng; Liu, Wenwei; Yu, Ping; Xia, Ji; Tian, Jianguo

    2014-12-01

    We present a method of fully interferometric, controllable anomalous refraction efficiency by introducing cross-modulated incident light based on plasmonic metasurfaces. Theoretical analyses and numerical simulations indicate that the anomalous and ordinary refracted beams generated from two opposite-helicity incident beams and following the generalized Snell's law will have a superposition for certain incident angles, and the anomalous refraction efficiency can be dynamically controlled by changing the relative phase of the incident sources. As the incident wavelength nears the resonant wavelength of the plasmonic metasurfaces, two equal-amplitude incident beams with opposite helicity can be used to control the anomalous refraction efficiency. Otherwise, two unequal-amplitude incident beams with opposite helicity can be used to fully control the anomalous refraction efficiency. This Letter may offer a further step in the development of controllable anomalous refraction.

  12. Highly tunable refractive index visible-light metasurface from block copolymer self-assembly

    NASA Astrophysics Data System (ADS)

    Kim, Ju Young; Kim, Hyowook; Kim, Bong Hoon; Chang, Taeyong; Lim, Joonwon; Jin, Hyeong Min; Mun, Jeong Ho; Choi, Young Joo; Chung, Kyungjae; Shin, Jonghwa; Fan, Shanhui; Kim, Sang Ouk

    2016-09-01

    The refractive index of natural transparent materials is limited to 2-3 throughout the visible wavelength range. Wider controllability of the refractive index is desired for novel optical applications such as nanoimaging and integrated photonics. We report that metamaterials consisting of period and symmetry-tunable self-assembled nanopatterns can provide a controllable refractive index medium for a broad wavelength range, including the visible region. Our approach exploits the independent control of permeability and permittivity with nanoscale objects smaller than the skin depth. The precise manipulation of the interobject distance in block copolymer nanopatterns via pattern shrinkage increased the effective refractive index up to 5.10. The effective refractive index remains above 3.0 over more than 1,000 nm wavelength bandwidth. Spatially graded and anisotropic refractive indices are also obtained with the design of transitional and rotational symmetry modification.

  13. Measurement of the refractive index of human teeth by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Meng, Zhuo; Yao, X. Steve; Yao, Hui; Liang, Yan; Liu, Tiegen; Li, Yanni; Wang, Guanhua; Lan, Shoufeng

    2009-05-01

    We describe a novel method based on optical coherence tomography (OCT) for the accurate measurement of the refractive index of in vitro human teeth. We obtain the refractive indices of enamel, dentin, and cementum to be 1.631+/-0.007, 1.540+/-0.013, and 1.582+/-0.010, respectively. The profile of the refractive index is readily obtained via an OCT B scan across a tooth. This method can be used to study the refractive index changes caused by dental decay and therefore has great potential for the clinical diagnosis of early dental caries.

  14. Effects of horizontal refractivity gradients on the accuracy of laser ranging to satellites

    NASA Technical Reports Server (NTRS)

    Gardner, C. S.

    1976-01-01

    Numerous formulas have been developed to partially correct laser ranging data for the effects of atmospheric refraction. All the formulas assume the atmospheric refractivity profile is spherically symmetric. The effects of horizontal refractivity gradients are investigated by ray tracing through spherically symmetric and three-dimensional refractivity profiles. The profiles are constructed from radiosonde data. The results indicate that the horizontal gradients introduce an rms error of approximately 3 cm when the satellite is near 10 deg elevation. The error decreases to a few millimeters near zenith.

  15. Evolution of graded refractive index in squid lenses.

    PubMed

    Sweeney, Alison M; Des Marais, David L; Ban, Yih-En Andrew; Johnsen, Sönke

    2007-08-22

    A lens with a graded refractive index is required for vision in aquatic animals with camera-type eyes. This optical design entails a radial gradient of protein density, with low density in external layers and high density in internal layers. To maintain the optical stability of the eye, different material properties are required for proteins in different regions of the lens. In low-density regions of the lens where slight protein aggregation causes significant light scattering, aggregation must be minimized. Squid lens S-crystallin proteins are evolutionarily derived from the glutathione S-transferase protein family. We used biochemistry, optical modelling and phylogenetics to study the evolution and material properties of S-crystallins. S-crystallins are differentially expressed in a radial gradient, suggesting a role in refractive index. This gradient in S-crystallin expression is correlated with their evolutionary history and biochemistry. S-crystallins have been under positive selection. This selection appears to have resulted in stabilization of derived S-crystallins via mutations in the dimer interface and extended electrostatic fields. These derived S-crystallins probably cause the glassy organization and stability of low refractive index lens layers. Our work elucidates the molecular and evolutionary mechanisms underlying the production and maintenance of camera-like optics in squid lenses.

  16. Triangulation in Random Refractive Distortions.

    PubMed

    Alterman, Marina; Schechner, Yoav Y; Swirski, Yohay

    2017-03-01

    Random refraction occurs in turbulence and through a wavy water-air interface. It creates distortion that changes in space, time and with viewpoint. Localizing objects in three dimensions (3D) despite this random distortion is important to some predators and also to submariners avoiding the salient use of periscopes. We take a multiview approach to this task. Refracted distortion statistics induce a probabilistic relation between any pixel location and a line of sight in space. Measurements of an object's random projection from multiple views and times lead to a likelihood function of the object's 3D location. The likelihood leads to estimates of the 3D location and its uncertainty. Furthermore, multiview images acquired simultaneously in a wide stereo baseline have uncorrelated distortions. This helps reduce the acquisition time needed for localization. The method is demonstrated in stereoscopic video sequences, both in a lab and a swimming pool.

  17. [Refractive surgery and flight safety].

    PubMed

    Draeger, J

    1998-09-01

    For both VFR and as IFR flight, visual assessment is the major source of information for the pilot. The new possibilities for change of refraction by means of corneal refractive surgery have led to an increasing demand from pilots for these new methods. Can these methods successfully be applied for aviation purposes? The valid regulations for medical standards of pilots, as well as the future international regulations such as JAR and ICAO, are explained in this respect. A report is given on the work of the Advisory Board of the German Federal Government Air Traffic Authority and on the cases treated so far and their outcome, and recommendations are expressed. Concerning the legal situation and clinical experience, advice for pilots, aviation medical examiners and ophthalmologists is given.

  18. Refractive keratoplasty. Keratophakia and keratomileusis.

    PubMed

    Troutman, R C; Swinger, C

    1982-01-01

    Early experience with the refractive keratoplasty techniques of José Barraquer--keratophakia and hypermetropic keratomileusis is presented. In contradistinction to the alloplastic lens substitutes currently being employed for the integral correction of aphakia, Barraquer's techniques would seem to offer a more permanent, more physiologic, full-time optical correction of the aphakic state. Their use is limited only by the condition of the patient's cornea and, in fact, may be applied not only in aphakia but also in phakic eyes with higher degrees of hyperopia or myopia. In the opinion of the authors, the refractive keratoplasty techniques of Barraquer can be performed by any well-instructed ophthalmic surgeon. These techniques offer to many patients a satisfactory, and potentially a physiologically superior alternative to alloplastic lens substitute for aphakic correction.

  19. Refractive keratoplasty: keratophakia and keratomileusis.

    PubMed

    Troutman, R C; Swinger, C

    1978-01-01

    We have presented our early experience with the refractive keratoplasty techniques of Doctor Jose Barraquer--keratophakia and hypermetropic keratomileusis. In contradistinction to the alloplastic lens substitutes currently being employed for the integral correction of aphakia, his techniques would seem to offer a more permanent, more physiologic, full-time optical correction of the aphakic state. Their use is limited only by the condition of the patient's corneaa and, in fact, may be applied not only in aphakia but also in phakic eyes with higher degrees of hyperopia or myopia. In the opinion of the authors, the refractive keratoplasty techniques of Barraquer can be perfored by any well-instructed ophthalmic surgeon. These techniques offer to many patients a satisfactory and potentially a physiologically superior alternative to alloplastic lens substitute for aphakic correction.

  20. Electro-refractive photonic device

    SciTech Connect

    Zortman, William A.; Watts, Michael R.

    2015-06-09

    The various technologies presented herein relate to phase shifting light to facilitate any of light switching, modulation, amplification, etc. Structures are presented where a second layer is juxtaposed between a first layer and a third layer with respective doping facilitating formation of p-n junctions at the interface between the first layer and the second layer, and between the second layer and the third layer. Application of a bias causes a carrier concentration change to occur at the p-n junctions which causes a shift in the effective refractive index per incremental change in an applied bias voltage. The effective refractive index enhancement can occur in both reverse bias and forward bias. The structure can be incorporated into a waveguide, an optical resonator, a vertical junction device, a horizontal junction device, a Mach-Zehnder interferometer, a tuneable optical filter, etc.

  1. On retrieving refractive index of dust-like particles using shape distributions of ellipsoids

    NASA Astrophysics Data System (ADS)

    Kemppinen, O.; Nousiainen, T.; Merikallio, S.; Räisänen, P.

    2015-06-01

    Ellipsoid-based retrievals are widely used for investigating optical properties of non-ellipsoidal atmospheric particles, such as dust. In this work, the applicability of ellipsoids for retrieving the refractive index of dust-like target model particles from scattering data is investigated. This is a pure modeling study, where stereogrammetrically retrieved model dust shapes are used as targets. The primary objective is to study whether the refractive index of these target particles can be inverted from their scattering matrices using ellipsoidal model particles. To achieve this, first scattering matrices for the target model particles with known refractive indices are computed. On one hand, a non-negative least squares fitting is performed, separately for different scattering matrix elements, for a set of 46 differently shaped ellipsoids by using different assumed refractive indices. Then, the fitting error is evaluated to establish whether the ellipsoidal base best matches the target scattering matrix elements when the correct refractive index is assumed. On the other hand, we also test whether the ellipsoids best match the target data with the correct refractive index, if a predefined (uniform) shape distribution for ellipsoids is assumed, instead of optimizing the shape distribution separately for each tested refractive index. The results show that for both of these approaches using the ellipsoids with the true refractive index produces good results, but also that for each element even better results are acquired by using wrong refractive indices. In addition, the best agreement is found for different scattering matrix elements using different refractive indices. The findings imply that the inversion of refractive index of non-ellipsoidal particles may not be reliable using ellipsoids. Furthermore, it is demonstrated that the differences in single-scattering albedo and asymmetry parameter between the best-match ellipsoid ensemble and the target particles may

  2. Retrieving microphysical properties of dust-like particles using ellipsoids: the case of refractive index

    NASA Astrophysics Data System (ADS)

    Kemppinen, O.; Nousiainen, T.; Merikallio, S.; Räisänen, P.

    2015-10-01

    Distributions of ellipsoids are often used to simulate the optical properties of non-ellipsoidal atmospheric particles, such as dust. In this work, the applicability of ellipsoids for retrieving the refractive index of dust-like target model particles from scattering data is investigated. This is a pure modeling study, in which stereogrammetrically retrieved model dust shapes are used as targets. The primary objective is to study whether the refractive index of these target particles can be inverted from their scattering matrices using ellipsoidal model particles. To achieve this, first scattering matrices for the target model particles with known refractive indices are computed. First, a non-negative least squares fitting is performed, individually for each scattering matrix element, for 46 differently shaped ellipsoids by using different assumed refractive indices. Then, the fitting error is evaluated to establish whether the ellipsoid ensemble best matches the target scattering matrix elements when the correct refractive index is assumed. Second, we test whether the ellipsoids best match the target data with the correct refractive index, when a predefined (uniform) shape distribution for ellipsoids is assumed, instead of optimizing the shape distribution separately for each tested refractive index. The results show not only that for both of these approaches using ellipsoids with the true refractive index produces good results but also that for each scattering matrix element even better results are acquired by using wrong refractive indices. In addition, the best agreement is obtained for different scattering matrix elements using different refractive indices. The findings imply that retrieval of refractive index of non-ellipsoidal particles whose single-scattering properties have been modeled with ellipsoids may not be reliable. Furthermore, it is demonstrated that the differences in single-scattering albedo and asymmetry parameter between the best

  3. Water absorption in a refractive index model for bacterial spores

    NASA Astrophysics Data System (ADS)

    Siegrist, K. M.; Thrush, E.; Airola, M.; Carr, A. K.; Limsui, D. M.; Boggs, N. T.; Thomas, M. E.; Carter, C. C.

    2009-05-01

    The complexity of biological agents can make it difficult to identify the important factors impacting scattering characteristics among variables such as size, shape, internal structure and biochemical composition, particle aggregation, and sample additives. This difficulty is exacerbated by the environmentally interactive nature of biological organisms. In particular, bacterial spores equilibrate with environmental humidity by absorption/desorption of water which can affect both the complex refractive index and the size/shape distributions of particles - two factors upon which scattering characteristics depend critically. Therefore accurate analysis of experimental data for determination of refractive index must take account of particle water content. First, spectral transmission measurements to determine visible refractive index done on suspensions of bacterial spores must account for water (or other solvent) uptake. Second, realistic calculations of aerosol scattering cross sections should consider effects of atmospheric humidity on particle water content, size and shape. In this work we demonstrate a method for determining refractive index of bacterial spores bacillus atropheus (BG), bacillus thuringiensis (BT) and bacillus anthracis Sterne (BAs) which accounts for these effects. Visible index is found from transmission measurements on aqueous and DMSO suspensions of particles, using an anomalous diffraction approximation. A simplified version of the anomalous diffraction theory is used to eliminate the need for knowledge of particle size. Results using this approach indicate the technique can be useful in determining the visible refractive index of particles when size and shape distributions are not well known but fall within the region of validity of anomalous dispersion theory.

  4. Empirical modelling to predict the refractive index of human blood

    NASA Astrophysics Data System (ADS)

    Yahya, M.; Saghir, M. Z.

    2016-02-01

    Optical techniques used for the measurement of the optical properties of blood are of great interest in clinical diagnostics. Blood analysis is a routine procedure used in medical diagnostics to confirm a patient’s condition. Measuring the optical properties of blood is difficult due to the non-homogenous nature of the blood itself. In addition, there is a lot of variation in the refractive indices reported in the literature. These are the reasons that motivated the researchers to develop a mathematical model that can be used to predict the refractive index of human blood as a function of concentration, temperature and wavelength. The experimental measurements were conducted on mimicking phantom hemoglobin samples using the Abbemat Refractometer. The results analysis revealed a linear relationship between the refractive index and concentration as well as temperature, and a non-linear relationship between refractive index and wavelength. These results are in agreement with those found in the literature. In addition, a new formula was developed based on empirical modelling which suggests that temperature and wavelength coefficients be added to the Barer formula. The verification of this correlation confirmed its ability to determine refractive index and/or blood hematocrit values with appropriate clinical accuracy.

  5. Laser refractive tomography of phase objects

    SciTech Connect

    Raskovskaya, I L

    2013-06-30

    The principles are outlined of laser refractive tomography - a method for reconstructing the values of the refractive index in the cross sections of phase objects, which involves the use of three-dimensional refractive images (3D refractograms) of structured laser radiation. A simulation algorithm is realised and examples are provided of characteristic 3D refractograms obtained by solving the direct problem of refraction of structured radiation. A method was developed for reconstructing the values of refractive index under conditions of strong refraction, which is based on the visualisation of ray trajectories inside an optically inhomogeneous medium. A classification is made of possible approaches to the solution of the inverse problem of refraction based on the visualisation of ray trajectories. Examples are given of cross section reconstruction and quantitative diagnostics of phase objects. (laser imaging)

  6. Linearly decayed evanescent optical field in planar refractive index well

    NASA Astrophysics Data System (ADS)

    Liu, Jianhua; Tao, Li

    2017-04-01

    Evanescent optical field with linearly decaying profile is theoretically analyzed at the critical angle of incidence in a planar structure of one dimensional refractive index well (RIW). The linearity of the evanescent field is due to the presence of the second refractive index barrier, which also shifts the position of total internal reflection (TIR) away from the critical angle. The decaying rate is determined by the refractive indices of the two barriers, as well as the width of the well. With this linearly decayed evanescent field (LDEF), various profiles across the well, for example uniform one, can be formed via appropriate combination of the LDEFs, which can promote new applications in fields of material analysis and sensing in the molecular scale.

  7. Time evolution of the probability density function of a gamma-ray burst: a possible indication of the turbulent origin of gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Bhatt, Nilay; Bhattacharyya, Subir

    2012-02-01

    The time series of a gamma-ray burst (GRB) is a non-stationary time series and all of its statistical properties vary with time. Considering that each GRB is a different manifestation of the same stochastic process, we have studied the time-dependent and time-averaged probability density functions (pdfs), which characterize the underlying stochastic process. The pdfs are fitted with a Gaussian distribution function. It has been argued that the Gaussian pdfs possibly indicate the turbulent origin of GRBs. The spectral and temporal evolutions of GRBs are also studied using the evolution of spectral forms, colour-colour diagrams and hysteresis loops. The results do not contradict the interpretation of the turbulence of GRBs.

  8. Optical negative refraction by four-wave mixing in thin metallic nanostructures

    NASA Astrophysics Data System (ADS)

    Palomba, Stefano; Zhang, Shuang; Park, Yongshik; Bartal, Guy; Yin, Xiaobo; Zhang, Xiang

    2012-01-01

    The law of refraction first derived by Snellius and later introduced as the Huygens-Fermat principle, states that the incidence and refracted angles of a light wave at the interface of two different materials are related to the ratio of the refractive indices in each medium. Whereas all natural materials have a positive refractive index and therefore exhibit refraction in the positive direction, artificially engineered negative index metamaterials have been shown capable of bending light waves negatively. Such a negative refractive index is the key to achieving a perfect lens that is capable of imaging well below the diffraction limit. However, negative index metamaterials are typically lossy, narrow band, and require complicated fabrication processes. Recently, an alternative approach to obtain negative refraction from a very thin nonlinear film has been proposed and experimentally demonstrated in the microwave region. However, such approaches use phase conjugation, which makes optical implementations difficult. Here, we report a simple but different scheme to demonstrate experimentally nonlinear negative refraction at optical frequencies using four-wave mixing in nanostructured metal films. The refractive index can be designed at will by simply tuning the wavelengths of the interacting waves, which could have potential impact on many important applications, such as superlens imaging.

  9. Effects of light refraction on the accuracy of camera calibration and reconstruction in underwater motion analysis.

    PubMed

    Kwon, Young-Hoo; Casebolt, Jeffrey B

    2006-01-01

    One of the most serious obstacles to accurate quantification of the underwater motion of a swimmer's body is image deformation caused by refraction. Refraction occurs at the water-air interface plane (glass) owing to the density difference. Camera calibration-reconstruction algorithms commonly used in aquatic research do not have the capability to correct this refraction-induced nonlinear image deformation and produce large reconstruction errors. The aim of this paper is to provide a through review of: the nature of the refraction-induced image deformation and its behaviour in underwater object-space plane reconstruction; the intrinsic shortcomings of the Direct Linear Transformation (DLT) method in underwater motion analysis; experimental conditions that interact with refraction; and alternative algorithms and strategies that can be used to improve the calibration-reconstruction accuracy. Although it is impossible to remove the refraction error completely in conventional camera calibration-reconstruction methods, it is possible to improve the accuracy to some extent by manipulating experimental conditions or calibration frame characteristics. Alternative algorithms, such as the localized DLT and the double-plane method are also available for error reduction. The ultimate solution for the refraction problem is to develop underwater camera calibration and reconstruction algorithms that have the capability to correct refraction.

  10. Effects of light refraction on the accuracy of camera calibration and reconstruction in underwater motion analysis.

    PubMed

    Kwon, Young-Hoo; Casebolt, Jeffrey B

    2006-07-01

    One of the most serious obstacles to accurate quantification of the underwater motion of a swimmer's body is image deformation caused by refraction. Refraction occurs at the water-air interface plane (glass) owing to the density difference. Camera calibration-reconstruction algorithms commonly used in aquatic research do not have the capability to correct this refraction-induced nonlinear image deformation and produce large reconstruction errors. The aim of this paper is to provide a thorough review of: the nature of the refraction-induced image deformation and its behaviour in underwater object-space plane reconstruction; the intrinsic shortcomings of the Direct Linear Transformation (DLT) method in underwater motion analysis; experimental conditions that interact with refraction; and alternative algorithms and strategies that can be used to improve the calibration-reconstruction accuracy. Although it is impossible to remove the refraction error completely in conventional camera calibration-reconstruction methods, it is possible to improve the accuracy to some extent by manipulating experimental conditions or calibration frame characteristics. Alternative algorithms, such as the localized DLT and the double-plane method are also available for error reduction. The ultimate solution for the refraction problem is to develop underwater camera calibration and reconstruction algorithms that have the capability to correct refraction.

  11. Refraction effects in soft x-ray multilayer blazed gratings.

    PubMed

    Voronov, D L; Salmassi, F; Meyer-Ilse, J; Gullikson, E M; Warwick, T; Padmore, H A

    2016-05-30

    A 2500 lines/mm Multilayer Blazed Grating (MBG) optimized for the soft x-ray wavelength range was fabricated and tested. The grating coated with a W/B4C multilayer demonstrated a record diffraction efficiency in the 2nd blazed diffraction order in the energy range from 500 to 1200 eV. Detailed investigation of the diffraction properties of the grating demonstrated that the diffraction efficiency of high groove density MBGs is not limited by the normal shadowing effects that limits grazing incidence x-ray grating performance. Refraction effects inherent in asymmetrical Bragg diffraction were experimentally confirmed for MBGs. The refraction affects the blazing properties of the MBGs and results in a shift of the resonance wavelength of the gratings and broadening or narrowing of the grating bandwidth depending on diffraction geometry. The true blaze angle of the MBGs is defined by both the real structure of the multilayer stack and by asymmetrical refraction effects. Refraction effects can be used as a powerful tool in providing highly efficient suppression of high order harmonics.

  12. Automation, Operation, and Data Analysis in the Cryogenic, High Accuracy, Refraction Measuring System (CHARMS)

    NASA Technical Reports Server (NTRS)

    Frey, Bradley; Leviton, Duoglas

    2005-01-01

    The Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA s Goddard Space Flight Center has been enhanced in a number of ways in the last year to allow the system to accurately collect refracted beam deviation readings automatically over a range of temperatures from 15 K to well beyond room temperature with high sampling density in both wavelength and temperature. The engineering details which make this possible are presented. The methods by which the most accurate angular measurements are made and the corresponding data reduction methods used to reduce thousands of observed angles to a handful of refractive index values are also discussed.

  13. Automation, Operation, and Data Analysis in the Cryogenic, High Accuracy, Refraction Measuring System (CHARMS)

    NASA Technical Reports Server (NTRS)

    Frey, Bradley J.; Leviton, Douglas B.

    2005-01-01

    The Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center has been enhanced in a number of ways in the last year to allow the system to accurately collect refracted beam deviation readings automatically over a range of temperatures from 15 K to well beyond room temperature with high sampling density in both wavelength and temperature. The engineering details which make this possible are presented. The methods by which the most accurate angular measurements are made and the corresponding data reduction methods used to reduce thousands of observed angles to a handful of refractive index values are also discussed.

  14. Hard X-ray index of refraction tomography of a whole rabbit knee joint: A feasibility study.

    PubMed

    Gasilov, S; Mittone, A; Horng, A; Geith, T; Bravin, A; Baumbach, T; Coan, P

    2016-12-01

    We report results of the computed tomography reconstruction of the index of refraction in a whole rabbit knee joint examined at the photon energy of 51keV. Refraction based images make it possible to delineate the bone, cartilage, and soft tissues without adjusting the contrast window width and level. Density variations, which are related to tissue composition and are not visible in absorption X-ray images, are detected in the obtained refraction based images. We discuss why refraction-based images provide better detectability of low contrast features than absorption images.

  15. Negative refraction in a laminate

    NASA Astrophysics Data System (ADS)

    Willis, J. R.

    2016-12-01

    This work is concerned with the reflection and transmission of waves at a plane interface between a homogeneous elastic half-space and a half-space of elastic material that is periodically laminated. The lamination is always in the direction of the x1-coordinate axis and the displacement is always longitudinal shear, so that the only non-zero displacement component is u3(x1 ,x2 , t). After an initial discussion of Floquet-Bloch waves in the laminated material, brief consideration is given to the reflection-transmission problem, when the interface between the two media is the plane x1 = 0. Nothing unusual emerges: there are just a single reflected wave and a single transmitted wave, undergoing positive group-velocity refraction. Then, the problem is considered when the interface between the two media is the plane x2 = 0. The periodic structure of the interface induces an infinite set of reflected waves and an infinite set of transmitted waves. All need to be taken into account, but most decay exponentially away from the interface. It had previously been recognized that, if the incident wave had appropriate frequency and angle of incidence, a propagating transmitted wave would be generated that would undergo negative group-velocity refraction - behaviour usually associated with a metamaterial. It is established by an example in this work that there is, in addition, a propagating transmitted wave with smaller wavelength but larger group velocity that undergoes positive group-velocity refraction. The work concludes with a brief discussion of this finding, including its implications for the utility (or not) of "effective medium" theory.

  16. Material and Optical Densities

    ERIC Educational Resources Information Center

    Gluck, Paul

    2007-01-01

    The bending of a laser beam in a medium with a density and refractive index gradient in the same direction has been described previously. When a transparent container is half filled with a salt or sugar solution and an equal amount of water is floated on top of it, then diffusion will create a concentration gradient from top to bottom. A laser…

  17. On a photonic density of states of cholesteric liquid crystal cells

    NASA Astrophysics Data System (ADS)

    Oganesyan, K. B.; Gevorgyan, A. H.; Kocharian, A. N.; Vardanyan, G. A.; Chilingaryan, Yu. S.; Santrosyan, E. A.; Rostovtsev, Y. V.

    2014-10-01

    The photonic densities of states (PDS) of the eigen polarizations (EPs) in a cholesteric liquid crystal (CLC) filled with the Fabry-Perot (FP) resonator are calculated. We obtained the dependences for the PDS on the FP resonator plates refractive indices. We showed, that the decrement and increment of the FP resonator plates refractive indices (started with the value, n = nm , where nm is the mean value of the CLC refractive index) lead to a sharp increase of the maximum PDS and, consequently, lead to a sharp decrement of the laser excitation threshold. The absorption and emission peculiarities of this system are investigated too. It is shown that the subject system can work as a low threshold laser.

  18. Investigation of refracting flows for acoustic suppression

    NASA Technical Reports Server (NTRS)

    Sloan, D.; Purves, R. B.; Farquhar, B. W.

    1977-01-01

    An experimental program to determine the possibility of using refracting flows for the suppression of aircraft inlet noise has been completed. Observations of wave behavior in accelerating duct flows have suggested that acoustic wave refraction could be used to direct inlet noise away from the ground upward to where it causes less annoyance. Measurements have also shown that acoustic wave refraction can cause large improvements in the effectiveness of acoustic lining material.

  19. Investigation of refracting flows for acoustic suppression

    NASA Technical Reports Server (NTRS)

    Sloan, D.; Purves, R. B.; Farquhar, B. W.

    1977-01-01

    An experimental investigation to determine the possibility of using refracting flows for the suppression of aircraft inlet noise is described. Observations of wave refraction in duct flows and measurements of the increase in effectiveness of acoustic linings due to refraction have suggested methods for the design of engine inlet ducts which can either suppress noise internally or direct it to where it causes less annoyance.

  20. Velocity aberration and atmospheric refraction in satellite laser communication experiments.

    PubMed

    Nugent, L J; Condon, R J

    1966-11-01

    The effects of satellite velocity aberration and atmospheric refraction on the direction of propagation of lagser radiation reflected from a satellite back to an observer on the earth are examined. A velocity aberration analysis for the two-dimensional case where the satellite passes directly overhead at velocity v is presented to first order in v/c in order to illustrate the method. The equations for the more general threedimensional case are then given to first order in v/c, and it is indicated that higher order treatments are normally unnecessary in typical experimental considerations. Following this, a simple approximate equation giving the atmospheric refraction to an accuracy of a few microradians is developed; it is indicated that greater accuracy is not important because of laser pointing limitations imposed by atmospheric scattering and turbulence. The atmospheric refraction equation depends only on the apparent zenith angle of the satellite reflector relative to the earth-based laser, on the satelli-te altitude, and on the index of refraction of the laser radiation in the atmosphere at the earth's surface. Both of these developments should be useful in the design and interpretation of satellite laser-communication experiments.

  1. Detecting motion through dynamic refraction.

    PubMed

    Alterman, Marina; Schechner, Yoav Y; Perona, Pietro; Shamir, Joseph

    2013-01-01

    Refraction causes random dynamic distortions in atmospheric turbulence and in views across a water interface. The latter scenario is experienced by submerged animals seeking to detect prey or avoid predators, which may be airborne or on land. Man encounters this when surveying a scene by a submarine or divers while wishing to avoid the use of an attention-drawing periscope. The problem of inverting random refracted dynamic distortions is difficult, particularly when some of the objects in the field of view (FOV) are moving. On the other hand, in many cases, just those moving objects are of interest, as they reveal animal, human, or machine activity. Furthermore, detecting and tracking these objects does not necessitate handling the difficult task of complete recovery of the scene. We show that moving objects can be detected very simply, with low false-positive rates, even when the distortions are very strong and dominate the object motion. Moreover, the moving object can be detected even if it has zero mean motion. While the object and distortion motions are random and unknown, they are mutually independent. This is expressed by a simple motion feature which enables discrimination of moving object points versus the background.

  2. Negative refraction in semiconductor metamaterials.

    PubMed

    Hoffman, Anthony J; Alekseyev, Leonid; Howard, Scott S; Franz, Kale J; Wasserman, Dan; Podolskiy, Viktor A; Narimanov, Evgenii E; Sivco, Deborah L; Gmachl, Claire

    2007-12-01

    An optical metamaterial is a composite in which subwavelength features, rather than the constituent materials, control the macroscopic electromagnetic properties of the material. Recently, properly designed metamaterials have garnered much interest because of their unusual interaction with electromagnetic waves. Whereas nature seems to have limits on the type of materials that exist, newly invented metamaterials are not bound by such constraints. These newly accessible electromagnetic properties make these materials an excellent platform for demonstrating unusual optical phenomena and unique applications such as subwavelength imaging and planar lens design. 'Negative-index materials', as first proposed, required the permittivity, epsilon, and permeability, mu, to be simultaneously less than zero, but such materials face limitations. Here, we demonstrate a comparatively low-loss, three-dimensional, all-semiconductor metamaterial that exhibits negative refraction for all incidence angles in the long-wave infrared region and requires only an anisotropic dielectric function with a single resonance. Using reflection and transmission measurements and a comprehensive model of the material, we demonstrate that our material exhibits negative refraction. This is furthermore confirmed through a straightforward beam optics experiment. This work will influence future metamaterial designs and their incorporation into optical semiconductor devices.

  3. Statistical Analysis of Refractivity in UAE

    NASA Astrophysics Data System (ADS)

    Al-Ansari, Kifah; Al-Mal, Abdulhadi Abu; Kamel, Rami

    2007-07-01

    This paper presents the results of the refractivity statistics in the UAE (United Arab Emirates) for a period of 14 years (1990-2003). Six sites have been considered using meteorological surface data (Abu Dhabi, Dubai, Sharjah, Al-Ain, Ras Al-Kaimah, and Al-Fujairah). Upper air (radiosonde) data were available at one site only, Abu Dhabi airport, which has been considered for the refractivity gradient statistics. Monthly and yearly averages are obtained for the two parameters, refractivity and refractivity gradient. Cumulative distributions are also provided.

  4. Refractive index change during exposure for 193-nm chemically amplified resists

    NASA Astrophysics Data System (ADS)

    Oh, Hye-Keun; Sohn, Young-Soo; Sung, Moon-Gyu; Lee, Young-Mi; Lee, Eun-Mi; Byun, Sung Hwan; An, Ilsin; Lee, Kun-Sang; Park, In-Ho

    1999-06-01

    Some of the important areas to be improved for lithography simulation are getting correct exposure parameters and determining the change of refractive index. It is known that the real and imaginary refractive indices are changed during exposure. We obtained these refractive index changes during exposure for 193 nm chemically amplified resists. The variations of the transmittance as well as the resist thickness were measured during ArF excimer laser exposure. We found that the refractive index change is directly related to the concentration of the photo acid generator and de-protected resin. It is important to know the exact values of acid concentration from the exposure parameters since a small difference in acid concentration magnifies the variation in the amplified de-protection during post exposure bake. We developed and used a method to extract Dill ABC exposure parameters for 193 nm chemically amplified resist from the refractive index change upon exposure.

  5. Decoupling the refractive index from the electrical properties of transparent conducting oxides via periodic superlattices

    PubMed Central

    Caffrey, David; Norton, Emma; Coileáin, Cormac Ó; Smith, Christopher M.; Bulfin, Brendan; Farrell, Leo; Shvets, Igor V.; Fleischer, Karsten

    2016-01-01

    We demonstrate an alternative approach to tuning the refractive index of materials. Current methodologies for tuning the refractive index of a material often result in undesirable changes to the structural or optoelectronic properties. By artificially layering a transparent conducting oxide with a lower refractive index material the overall film retains a desirable conductivity and mobility while acting optically as an effective medium with a modified refractive index. Calculations indicate that, with our refractive index change of 0.2, a significant reduction of reflective losses could be obtained by the utilisation of these structures in optoelectronic devices. Beyond this, periodic superlattice structures present a solution to decouple physical properties where the underlying electronic interaction is governed by different length scales. PMID:27623228

  6. Decoupling the refractive index from the electrical properties of transparent conducting oxides via periodic superlattices

    NASA Astrophysics Data System (ADS)

    Caffrey, David; Norton, Emma; Coileáin, Cormac Ó.; Smith, Christopher M.; Bulfin, Brendan; Farrell, Leo; Shvets, Igor V.; Fleischer, Karsten

    2016-09-01

    We demonstrate an alternative approach to tuning the refractive index of materials. Current methodologies for tuning the refractive index of a material often result in undesirable changes to the structural or optoelectronic properties. By artificially layering a transparent conducting oxide with a lower refractive index material the overall film retains a desirable conductivity and mobility while acting optically as an effective medium with a modified refractive index. Calculations indicate that, with our refractive index change of 0.2, a significant reduction of reflective losses could be obtained by the utilisation of these structures in optoelectronic devices. Beyond this, periodic superlattice structures present a solution to decouple physical properties where the underlying electronic interaction is governed by different length scales.

  7. Star formation history of early-type galaxies in low density environments. V. Blue line-strength indices for the nuclear region

    NASA Astrophysics Data System (ADS)

    Longhetti, M.; Bressan, A.; Chiosi, C.; Rampazzo, R.

    1999-05-01

    We analyze the star formation properties of a sample of 21 shell galaxies and 30 early-type galaxies members of interacting pairs, located in low density environments (Longhetti et al. 1998a, 1998b). The study is based on new models developed to interpret the information coming from `blue' Hdelta /FeI, H+K(CaII) and Delta 4000 line-strength indices proposed by Rose (1984; 1985) and Hamilton (1985). We find that the last star forming event that occurred in the nuclear region of shell galaxies is statistically old (from 0.1 up to several Gyr) with respect to the corresponding one in the sub-sample of pair galaxies (<0.1 Gyr or even ongoing star formation). If the stellar activity is somehow related to the formation of shells, as predicted by several dynamical models of galaxy interaction, shells have to be considered long lasting structures. Since pair members show evidence of very recent star formation, we suggest that either large reservoirs of gas have to be present to maintain active star formation, if these galaxies are on periodic orbits, or most of the pair members in the present sample are experiencing unbound encounters. Table~2 is available in electronic form only, at CDS: via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

  8. The association of very low-density lipoprotein receptor (VLDLR) haplotypes with egg production indicates VLDLR is a candidate gene for modulating egg production

    PubMed Central

    Wang, ZhePeng; Meng, GuoHua; Li, Na; Yu, MingFen; Liang, XiaoWei; Min, YuNa; Liu, FuZhu; Gao, YuPeng

    2016-01-01

    Abstract The very low-density lipoprotein receptor (VLDLR) transports egg yolk precursors into oocytes. However, our knowledge of the distribution patterns of VLDLR variants among breeds and their relationship to egg production is still incomplete. In this study, eight single nucleotide polymorphisms (SNPs) that account for 87% of all VLDLR variants were genotyped in Nick Chick (NC, n=91), Lohmann Brown (LohB, n=50) and Lueyang (LY, n=381) chickens, the latter being an Chinese indigenous breed. Egg production by NC and LY chickens was recorded from 17 to 50 weeks. Only four similar haplotypes were found in NC and LohB, of which two accounted for 100% of all NC haplotypes and 92.5% of LohB haplotypes. In contrast, there was considerable haplotypic diversity in LY. Comparison of egg production in LY showed that hens with NC-like haplotypes had a significantly higher production (p < 0.05) than those without the haplotypes. However, VLDLR expression was not significantly different between the haplotypes. These findings indicate a divergence in the distribution of VLDLR haplotypes between selected and non-selected breeds and suggest that the near fixation of VLDLR variants in NC and LohB is compatible with signature of selection. These data also support VLDLR as a candidate gene for modulating egg production. PMID:27560838

  9. Effect of parallel refraction on magnetospheric upper hybrid waves

    NASA Technical Reports Server (NTRS)

    Engel, J.; Kennel, C. F.

    1984-01-01

    Large amplitude (not less than 10 mV/m) electrostatic plasma waves near the upper hybrid (UH) frequency have been observed from 0 to 50 deg magnetic latitude (MLAT) during satellite plasma-pause crossings. A three-dimensional numerical ray-tracing calculation, based on an electron distribution measured during a GEOS 1 dayside intense upper-hybrid wave event, suggests how UH waves might achieve such large amplitudes away from the geomagnetic equator. Refractive effects largely control the wave amplification and, in particular, the unavoidable refraction due to parallel geomagnetic field gradients restricts growth to levels below those observed. However, a cold electron density gradient parallel to the field can lead to upper hybrid wave growth that can account for the observed emission levels.

  10. Strong refraction near the Venus surface - Effects observed by descent probes

    NASA Technical Reports Server (NTRS)

    Croft, T. A.

    1982-01-01

    The telemetry signals from Pioneer Venus probes indicated the strong downward refraction of radio waves. As the probes descended, the strength of the direct signal decreased because of absorption and refractive defocusing. During the last 30 km of descent there was a second measured component in addition to the direct signal. Strong atmospheric reaction is important in strengthening echoes that are scattered toward the earth. Such surface-reflected signals are good indicators of horizontal winds.

  11. S-wave refraction survey of alluvial aggregate

    USGS Publications Warehouse

    Ellefsen, Karl J.; Tuttle, Gary J.; Williams, Jackie M.; Lucius, Jeffrey E.

    2005-01-01

    An S-wave refraction survey was conducted in the Yampa River valley near Steamboat Springs, Colo., to determine how well this method could map alluvium, a major source of construction aggregate. At the field site, about 1 m of soil overlaid 8 m of alluvium that, in turn, overlaid sedimentary bedrock. The traveltimes of the direct and refracted S-waves were used to construct velocity cross sections whose various regions were directly related to the soil, alluvium, and bed-rock. The cross sections were constrained to match geologic logs that were developed from drill-hole data. This constraint minimized the ambiguity in estimates of the thickness and the velocity of the alluvium, an ambiguity that is inherent to the S-wave refraction method. In the cross sections, the estimated S-wave velocity of the alluvium changed in the horizontal direction, and these changes were attributed to changes in composition of the alluvium. The estimated S-wave velocity of the alluvium was practically constant in the vertical direc-tion, indicating that the fine layering observed in the geologic logs could not be detected. The S-wave refraction survey, in conjunction with independent information such as geologic logs, was found to be suitable for mapping the thickness of the alluvium.

  12. Polymers for refractive index change in intraocular lenses: a novel approach for photoinduced tuning of focal length

    NASA Astrophysics Data System (ADS)

    Träger, Jens; Kim, Hee-Cheol; Hampp, Norbert

    2006-02-01

    Before an intraocular lens (IOL) is implanted during cataract surgery, biometric data of the patient's eye have to be determined to calculate the thickness and shape of the IOL. In particular the postoperative anterior chamber depth is an important parameter to predict the correct shape of the IOL. This value, however, cannot be measured without significant uncertainities. We present a solution to this problem, describe novel polymers suitable for IOLs which refractive indices can be changed non-invasively in a photo-induced process. The focal length can be modified by about 2 D, which is sufficient to achive ideal acuteness of vision for almost all patients with implanted IOLs. The change in refractive index is accomplished by linking or cleaving bonds between a sufficiently large number of side groups of the polymer main chain in a photoinduced cyloaddition or cycloreversion, respectively. The photochemical reaction can also be triggered by a two-photon process (TPA) using a pulsed laser system, i.e. the energy required for bond breaking is provided by two photons in the visible range. Light in the UV as well as the visible range of the spectrum cannot induce undesired changes of the refractive index owing to the strong UV-absorption of the cornea and photon densities much too low for TPA, respectively. Due to the excellent spatial resolution that can be achieved with two-photon processes not only modification of the refractive index of the entire lens but also selectively in well defined areas is possible enabling the correction for aberrations such as astigmatism.

  13. Measurement of the Specific Refractivities of CF4 and C2F6

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Goad, W. K.

    1977-01-01

    In order to relate the measured fringe shift of an interferometer to density, the relation between density rho and refractive index n must be known. For gases where the refractive index is close to unity, this relation between density and refractive index is very closely approximated by (n - 1) = K rho where K is the specific refractivity, or the Gladstone-Dale constant. The specific refractivity, which is weakly dependent on wavelength and temperature, is readily available for a number of common test gases such as N2 and air. For more unique test gases such as CF4 and C2F6 for which refractive index data at optical wavelengths is not readily available, the constants can be estimated from the atomic refractivities of carbon and fluorine. In order to verify this estimation, a two-beam interferometer was used to experimentally determine the specific refractivities of CF4 and C2F6. This data was required for holographic interferometric measurements made at the Langley Hypersonic CF4 Tunnel. A Twyman-Green interferometer with a He-Ne laser light source of vacuum wavelength lambda equal to 633 nm was used to measure the constants. One beam of the two-beam interferometer passed through an optical cell of known inside length l which could be evacuated and slowly filled with the test gas to a density of 7.2 kg/cu m for CF4 or 5.7 kg/cu m for C2F6. If the refractive index (and hence density) is constant along the optical path through the cell, the fringe shift M and density change Delta rho are related M = 2Kl Delta rho/lambda for the double pass interferometer. Thus K can be determined by measuring the fringe shift as the density is changed. The output of a photodiode used to detect the fringe shift was recorded on a strip chart recorder. The rate of pressure increase of the test gas in the cell was controlled such that the fringes shifted at a rate of 0.5 to 1 fringe per sec. The pressure in the test cell was measured with a high accuracy quartz crystal pressure

  14. Retinal Image Simulation of Subjective Refraction Techniques.

    PubMed

    Perches, Sara; Collados, M Victoria; Ares, Jorge

    2016-01-01

    Refraction techniques make it possible to determine the most appropriate sphero-cylindrical lens prescription to achieve the best possible visual quality. Among these techniques, subjective refraction (i.e., patient's response-guided refraction) is the most commonly used approach. In this context, this paper's main goal is to present a simulation software that implements in a virtual manner various subjective-refraction techniques--including Jackson's Cross-Cylinder test (JCC)--relying all on the observation of computer-generated retinal images. This software has also been used to evaluate visual quality when the JCC test is performed in multifocal-contact-lens wearers. The results reveal this software's usefulness to simulate the retinal image quality that a particular visual compensation provides. Moreover, it can help to gain a deeper insight and to improve existing refraction techniques and it can be used for simulated training.

  15. Retinal Image Simulation of Subjective Refraction Techniques

    PubMed Central

    Perches, Sara; Collados, M. Victoria; Ares, Jorge

    2016-01-01

    Refraction techniques make it possible to determine the most appropriate sphero-cylindrical lens prescription to achieve the best possible visual quality. Among these techniques, subjective refraction (i.e., patient’s response-guided refraction) is the most commonly used approach. In this context, this paper’s main goal is to present a simulation software that implements in a virtual manner various subjective-refraction techniques—including Jackson’s Cross-Cylinder test (JCC)—relying all on the observation of computer-generated retinal images. This software has also been used to evaluate visual quality when the JCC test is performed in multifocal-contact-lens wearers. The results reveal this software’s usefulness to simulate the retinal image quality that a particular visual compensation provides. Moreover, it can help to gain a deeper insight and to improve existing refraction techniques and it can be used for simulated training. PMID:26938648

  16. Simulation of imperfections in plastic lenses - transferring local refractive index changes into surface shape modifications

    NASA Astrophysics Data System (ADS)

    Arasa, Josep; Pizarro, Carles; Blanco, Patricia

    2016-06-01

    Injection molded plastic lenses have continuously improved their performance regarding optical quality and nowadays are as usual as glass lenses in image forming devices. However, during the manufacturing process unavoidable fluctuations in material density occur, resulting in local changes in the distribution of refractive index, which degrade the imaging properties of the polymer lens. Such material density fluctuations correlate to phase delays, which opens a path for their mapping. However, it is difficult to transfer the measured variations in refractive index into conventional optical simulation tool. Thus, we propose a method to convert the local variations in refractive index into local changes of one surface of the lens, which can then be described as a free-form surface, easy to introduce in conventional simulation tools. The proposed method was tested on a commercial gradient index (GRIN) lens for a set of six different object positions, using the MTF sagittal and tangential cuts to compare the differences between the real lens and a lens with homogenous refractive index, and the last surface converted into a free-form shape containing the internal refractive index changes. The same procedure was used to reproduce the local refractive index changes of an injected plastic lens with local index changes measured using an in-house built polariscopic arrangement, showing the capability of the method to provide successful results.

  17. Complex refractive index of Martian dust - Mariner 9 ultraviolet observations

    NASA Technical Reports Server (NTRS)

    Pang, K.; Ajello, J. M.; Hord, C. W.; Egan, W. G.

    1976-01-01

    Mariner 9 ultraviolet spectrometer observations of the 1971 dust clouds obscuring the surface of Mars have been analyzed by matching the observed dust phase function with Mie scattering calculations for size distributions of homogeneous and isotropic material. Preliminary results indicate an effective particle radius of not less than 0.2. The real component of the index of refraction is not less than 1.8 at both 268 and 305 nm; corresponding values for the imagery component are 0.02 and 0.01. These values are consistent with those found by Mead (1970) for the visible and near-visible wavelengths. The refractive index and the absorption coefficient increase rapidly with decreasing wavelength in going from the visible to the ultraviolet, indicating the presence of an ultraviolet absorption band which may shield organisms from ultraviolet irradiation.

  18. Refraction of cylindrical converging shock wave at an air/helium gaseous interface

    NASA Astrophysics Data System (ADS)

    Zhai, Zhigang; Li, Wei; Si, Ting; Luo, Xisheng; Yang, Jiming; Lu, Xiyun

    2017-01-01

    Refraction of a cylindrical converging shock wave at an inclined air/helium interface is investigated. Experimentally, based on the shock dynamics theory, a special wall profile is designed to generate a perfectly cylindrical converging shock wave. A soap film technique is developed to form an inclined discontinuous air/helium interface, and high-speed schlieren photography is adopted to capture the flow. Numerical simulations are also performed to compare with the experimental counterparts and to show details of refraction. In this work, two initial incident angles (45° and 60°) are considered. As the incident shock converges inward, the shock intensity increases while the incident angle decreases, causing possible transitions among the wave patterns. For the case of 45°, an irregular refraction of free precursor refraction (FPR) first occurs and gradually transits into regular refraction, while for the case of 60°, various irregular refractions of twin von Neumann refraction (TNR), twin regular refraction (TRR), free precursor von Neumann refraction (FNR), and FPR occur in sequence. The transition sequences do not belong to any groups described in the planar counterpart, indicating that the classification of the refraction phenomenon in the planar case is not exhaustive or cannot be applied to the converging case. It is also the first time to observe the transition from FNR to FPR, providing an experimental evidence for the previous numerical results. It is deemed that the difference between the velocities of the incident and transmitted shocks propagating along the interface is the primary factor that induces the transitions among wave patterns.

  19. Temperature-dependent Refractive Index of Silicon and Germanium

    NASA Technical Reports Server (NTRS)

    Frey, Bradley J.; Leviton, Douglas B.; Madison, Timothy J.

    2006-01-01

    Silicon and germanium are perhaps the two most well-understood semiconductor materials in the context of solid state device technologies and more recently micromachining and nanotechnology. Meanwhile, these two materials are also important in the field of infrared lens design. Optical instruments designed for the wavelength range where these two materials are transmissive achieve best performance when cooled to cryogenic temperatures to enhance signal from the scene over instrument background radiation. In order to enable high quality lens designs using silicon and germanium at cryogenic temperatures, we have measured the absolute refractive index of multiple prisms of these two materials using the Cryogenic, High-Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, as a function of both wavelength and temperature. For silicon, we report absolute refractive index and thermo-optic coefficient (dn/dT) at temperatures ranging from 20 to 300 K at wavelengths from 1.1 to 5.6 pin, while for germanium, we cover temperatures ranging from 20 to 300 K and wavelengths from 1.9 to 5.5 microns. We compare our measurements with others in the literature and provide temperature-dependent Sellmeier coefficients based on our data to allow accurate interpolation of index to other wavelengths and temperatures. Citing the wide variety of values for the refractive indices of these two materials found in the literature, we reiterate the importance of measuring the refractive index of a sample from the same batch of raw material from which final optical components are cut when absolute accuracy greater than k5 x 10" is desired.

  20. DISCRIMINATING BETWEEN CLOUDY, HAZY, AND CLEAR SKY EXOPLANETS USING REFRACTION

    SciTech Connect

    Misra, Amit K.; Meadows, Victoria S.

    2014-11-01

    We propose a method to distinguish between cloudy, hazy, and clear sky (free of clouds and hazes) exoplanet atmospheres that could be applicable to upcoming large aperture space- and ground-based telescopes such as the James Webb Space Telescope (JWST) and the European Extremely Large Telescope (E-ELT). These facilities will be powerful tools for characterizing transiting exoplanets, but only after a considerable amount of telescope time is devoted to a single planet. A technique that could provide a relatively rapid means of identifying haze-free targets (which may be more valuable targets for characterization) could potentially increase the science return for these telescopes. Our proposed method utilizes broadband observations of refracted light in the out-of-transit spectrum. Light refracted through an exoplanet atmosphere can lead to an increase of flux prior to ingress and subsequent to egress. Because this light is transmitted at pressures greater than those for typical cloud and haze layers, the detection of refracted light could indicate a cloud- or haze-free atmosphere. A detection of refracted light could be accomplished in <10 hr for Jovian exoplanets with JWST and <5 hr for super-Earths/mini-Neptunes with E-ELT. We find that this technique is most effective for planets with equilibrium temperatures between 200 and 500 K, which may include potentially habitable planets. A detection of refracted light for a potentially habitable planet would strongly suggest the planet was free of a global cloud or haze layer, and therefore a promising candidate for follow-up observations.

  1. Negative Refraction in Rare-Earth Doped Crystals

    DTIC Science & Technology

    2016-06-09

    refraction remained an academic curiosity for a long time , it is now well-understood that negative refraction may have important and far-reaching...of negative refraction remained an academic curiosity for a long time , it is now well-understood that negative refraction may have important and far...concept of negative refraction remained an academic curiosity for a long time , it is now well-understood that negative refraction may have important and

  2. Targeted alteration of real and imaginary refractive index of biological cells by histological staining.

    PubMed

    Cherkezyan, L; Subramanian, H; Stoyneva, V; Rogers, J D; Yang, S; Damania, D; Taflove, A; Backman, V

    2012-05-15

    Various staining techniques are commonly used in biomedical research to investigate cellular morphology. By inducing absorption of light, staining dyes change the intracellular refractive index due to the Kramers-Kronig relationship. We present a method for creating 2D maps of real and imaginary refractive indices of stained biological cells using their thickness and absorptance. We validate our technique on dyed polystyrene microspheres and quantify the alteration in refractive index of stained biological cells. We reveal that specific staining of individual organelles can increase their scattering cross-section by orders of magnitudes, implying a major impact in the field of biophotonics.

  3. Targeted alteration of real and imaginary refractive index of biological cells by histological staining

    PubMed Central

    Cherkezyan, Lusik; Subramanian, Hariharan; Stoyneva, Valentina; Rogers, Jeremy D.; Yang, Seungmoo; Damania, Dhwanil; Taflove, Allen; Backman, Vadim

    2012-01-01

    Various staining techniques are commonly used in biomedical research to investigate cellular morphology. By inducing absorption of light, staining dyes change the intracellular refractive index due to the Kramers-Kronig relationship. We present a method for creating 2-D maps of real and imaginary refractive indices of stained biological cells using their thickness and absorptance. We validate our technique on dyed polystyrene microspheres and quantify the alteration in refractive index of stained biological cells. We reveal that specific staining of individual organelles can increase their scattering cross-section by orders of magnitudes implying a major impact in the field of biophotonics. PMID:22627509

  4. Ray tracing evaluation of a technique for correcting the refraction errors in satellite tracking data

    NASA Technical Reports Server (NTRS)

    Gardner, C. S.; Rowlett, J. R.; Hendrickson, B. E.

    1978-01-01

    Errors may be introduced in satellite laser ranging data by atmospheric refractivity. Ray tracing data have indicated that horizontal refractivity gradients may introduce nearly 3-cm rms error when satellites are near 10-degree elevation. A correction formula to compensate for the horizontal gradients has been developed. Its accuracy is evaluated by comparing it to refractivity profiles. It is found that if both spherical and gradient correction formulas are employed in conjunction with meteorological measurements, a range resolution of one cm or less is feasible for satellite elevation angles above 10 degrees.

  5. Influence of the relative refractive index on the depolarization of multiply scattered waves.

    PubMed

    Kim, A D; Moscoso, M

    2001-08-01

    Using the theory of radiative transfer, we investigate the interaction between polarized waves and a multiple scattering medium as functions of the relative index of refraction. To study this problem, we consider circularly and linearly polarized continuous waves incident upon a medium containing spherical scatterers. With an accurate spectral method, we compute the transmitted Stokes parameters through media containing different sized scatterers and different indices of refraction. Our numerical results show that the circular depolarization length exhibits a strong dependence on the relative index of refraction, while the linear depolarization length does not.

  6. An Assessment of Atmospheric Refractivity in the Northern Marginal Ice Zone.

    DTIC Science & Technology

    1984-09-01

    are operated. A more detailed descrip- tion of the electromagnetic spectrum can be found in Tipler (1976). Task force commanders will be able to gain...Refractive Gradient of Successive Dielectric Layers with Increasing Indices of Refraction F the angle of refraction 0 c equal to 90 degrees ( Tipler 1976...to the drawing in figure 3 ( Tipler 1976). n SIN 01 = n2 SIN 02 (2.4) Equation (2.12) can be solved for 02 yieldi-S SIN 02 = nl/n2 SIN 0I (2.5) If n2 is

  7. An examination of the southern California field test for the systematic accumulation of the optical refraction error in geodetic leveling.

    USGS Publications Warehouse

    Castle, R.O.; Brown, B.W.; Gilmore, T.D.; Mark, R.K.; Wilson, R.C.

    1983-01-01

    Appraisals of the two levelings that formed the southern California field test for the accumulation of the atmospheric refraction error indicate that random error and systematic error unrelated to refraction competed with the systematic refraction error and severely complicate any analysis of the test results. If the fewer than one-third of the sections that met less than second-order, class I standards are dropped, the divergence virtually disappears between the presumably more refraction contaminated long-sight-length survey and the less contaminated short-sight-length survey. -Authors

  8. Failure Analysis of Sapphire Refractive Secondary Concentrators

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Quinn, George D.

    2009-01-01

    Failure analysis was performed on two sapphire, refractive secondary concentrators (RSC) that failed during elevated temperature testing. Both concentrators failed from machining/handling damage on the lens face. The first concentrator, which failed during testing to 1300 C, exhibited a large r-plane twin extending from the lens through much of the cone. The second concentrator, which was an attempt to reduce temperature gradients and failed during testing to 649 C, exhibited a few small twins on the lens face. The twins were not located at the origin, but represent another mode of failure that needs to be considered in the design of sapphire components. In order to estimate the fracture stress from fractographic evidence, branching constants were measured on sapphire strength specimens. The fractographic analysis indicated radial tensile stresses of 44 to 65 MPa on the lens faces near the origins. Finite element analysis indicated similar stresses for the first RSC, but lower stresses for the second RSC. Better machining and handling might have prevented the fractures, however, temperature gradients and resultant thermal stresses need to be reduced to prevent twinning.

  9. [Calculations of mean refraction and variation of refraction using a dioptric space].

    PubMed

    Touzeau, O; Costantini, E; Gaujoux, T; Borderie, V; Laroche, L

    2010-11-01

    Polar notations (sphere, cylinder, and axis) of refraction perfectly characterize a single refraction but are not suitable for statistical analysis or graphic representation. While the spherical component of refraction can be easily analyzed by the spherical equivalent, statistical analysis of astigmatism requires non-polar expressions of refraction. Indeed, the cylinder and axis of astigmatism are not independent data. In addition, axis is a directional data including a non-trigonometric cycle. Refraction can be written in a non-polar notation by three rectangular coordinates (x, y, z), which can also represent the spherocylinder by one point in a dioptric space. These three coordinates constitute three independent (orthogonal) variables that correspond to a sphere-equivalent component and a pair of Jackson cross-cylinder components, oriented at 0°/90° (WTR/ATR astigmatism) and 45°/135° (oblique astigmatism). Statistical analysis and graphical representation become less complicated when using rectangular coordinates of refraction. Rectangular coordinates of the mean refraction are obtained by average rectangular coordinates. Similarly, rectangular coordinates of refraction change are obtained by a single subtraction of rectangular coordinates between the final and initial refractions. After statistical analysis, the rectangular coordinates obtained can be converted into a polar form for a more easily understood result. Finally, non-polar notations including rectangular coordinates are useful for statistical and graphical analysis, which would be difficult with only conventional polar notations of refraction.

  10. Formation of bulk refractive index structures

    DOEpatents

    Potter, Jr., Barrett George; Potter, Kelly Simmons; Wheeler, David R.; Jamison, Gregory M.

    2003-07-15

    A method of making a stacked three-dimensional refractive index structure in photosensitive materials using photo-patterning where first determined is the wavelength at which a photosensitive material film exhibits a change in refractive index upon exposure to optical radiation, a portion of the surfaces of the photosensitive material film is optically irradiated, the film is marked to produce a registry mark. Multiple films are produced and aligned using the registry marks to form a stacked three-dimensional refractive index structure.

  11. Atmospheric refraction errors in laser ranging systems

    NASA Technical Reports Server (NTRS)

    Gardner, C. S.; Rowlett, J. R.

    1976-01-01

    The effects of horizontal refractivity gradients on the accuracy of laser ranging systems were investigated by ray tracing through three dimensional refractivity profiles. The profiles were generated by performing a multiple regression on measurements from seven or eight radiosondes, using a refractivity model which provided for both linear and quadratic variations in the horizontal direction. The range correction due to horizontal gradients was found to be an approximately sinusoidal function of azimuth having a minimum near 0 deg azimuth and a maximum near 180 deg azimuth. The peak to peak variation was approximately 5 centimeters at 10 deg elevation and decreased to less than 1 millimeter at 80 deg elevation.

  12. Negative refraction in Möbius molecules

    NASA Astrophysics Data System (ADS)

    Fang, Y. N.; Shen, Yao; Ai, Qing; Sun, C. P.

    2016-10-01

    We theoretically show the negative refraction existing in Möbius molecules. The negative refractive index is induced by the nontrivial topology of the molecules. With the Möbius boundary condition, the effective electromagnetic fields felt by the electron in a Möbius ring is spatially inhomogeneous. In this regard, the DN symmetry is broken in Möbius molecules and thus the magnetic response is induced through the effective magnetic field. Our findings provide an alternative architecture for negative refractive index materials based on the nontrivial topology of Möbius molecules.

  13. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Photoinduced anisotropy of the refractive index of an azopolymer with liquid-crystal properties

    NASA Astrophysics Data System (ADS)

    Andreeva, M. S.; Shmalgauzen, V. I.

    2004-01-01

    The formation of a photoinduced refractive-index grating in a photosensitive azopolymer with liquid-crystal (LC) properties is theoretically studied. Equations for photoinduced additions to the refractive index of the LC and amorphous polymers are obtained from balance equations for the distribution densities of trans- and cis-isomers of azodyes. The frequency characteristics of the response of the refractive index to a harmonic perturbation are calculated for different values of the LC order parameter.

  14. Measurement of optical penetration depth and refractive index of human tissue

    NASA Astrophysics Data System (ADS)

    Xie, Shusen; Li, Hui; Li, Buhong

    2003-01-01

    Experimental techniques for measurement of optical penetration depth and refractive index of human tissue are presented, respectively. Optical penetration depth can be obtained from the measurement of the relative fluence-depth distribution inside the target tissue. The depth of normal and carcinomatous human lung tissues irradiated with the wavelengths of 406.7, 632.8 and 674.4 nm in vitro are respectively determined. In addition, a novel simple method based on total internal reflection for measuring the refractive index of biotissue in vivo is developed, and the refractive indices of skin from people of different age, sex and skin color are measured. Their refractive indices are almost same and the average is 1.533.

  15. Complex Refractive Index of Ammonium Nitrate in the 2-20 micron Spectral Range

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Norman, Mark L.; Fuller, Kirk A.; Srivastava, Vandana; Cutten, Dean R.

    2002-01-01

    Using high resolution Fourier Transform Infrared Spectroscopy (FTIR) absorbance/transmittance spectral data for ammonium sulfate (AMS), calcium carbonate (CAC) and ammonium nitrate (AMN), comparisons were made with previously published complex refractive indices data for AMS and CAC to infer experimental parameters to determine the imaginary refractive index for AMN in the infrared wavelength range from 2 to 20 microns. Kramers-Kronig mathematical relations were applied to calculate the real refractive index for the three compositions. Excellent agreement for AMS and CAC with the published values was found, validating the complex refractive indices obtained for AMN. Backscatter calculations using a lognormal size distribution for AMS, AMN, and CAC aerosols were performed to show differences in their backscattered spectra.

  16. Optical Properties of a Bio-Inspired Gradient Refractive Index Polymer Lens

    DTIC Science & Technology

    2008-07-21

    crystalline lens. GRIN lenses found in nature typically consist of approximately 22,000 nonplanar layers of proteins with different refractive...indices [5]. Systematic variation in protein and water concentration in different layers provides the index gradient [6]. The refractive index range (Δn...typically composed of tens of thousands of protein layers. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) can confirm

  17. Photonic band structure of one-dimensional aperiodic superlattices composed of negative refraction metamaterials

    NASA Astrophysics Data System (ADS)

    Tyc, Michał H.; Salejda, Włodzimierz; Klauzer-Kruszyna, Agnieszka; Tarnowski, Karol

    2007-05-01

    The dispersion relation for polarized light transmitting through a one-dimensional superlattice composed of aperiodically arranged layers made of ordinary dielectric and negative refraction metamaterials is calculated with finite element method. Generalized Fibonacci, generalized Thue-Morse, double-periodic and Rudin-Shapiro superlattices are investigated, using their periodic approximants. Strong dispersion of metamaterials is taken into account. Group velocities and effective refraction indices in the structures are calculated. The self-similar structure of the transmission spectra is observed.

  18. Determination of Diameter and Index of Refraction of Textile Fibers by Laser Backscattering

    SciTech Connect

    H. Okuda; B. Stratton; L. Meixler; P. Efthimion; D.Mansfield

    2003-07-24

    A new method was developed to determine both diameters and indices of refraction and hence the birefringence of cylindrical textile and industrial fibers and bundles by measuring intensity patterns of the scattered light over an interval of scattering angles. The measured intensity patterns are compared with theoretical predictions (Mie theory) to determine fiber diameter and index of refraction. It is shown that the method is simple and accurate and may be useful as an on-line, noncontact diagnostic tool in real time.

  19. Understanding refraction contrast using a comparison of absorption and refraction computed tomographic techniques

    NASA Astrophysics Data System (ADS)

    Wiebe, S.; Rhoades, G.; Wei, Z.; Rosenberg, A.; Belev, G.; Chapman, D.

    2013-05-01

    Refraction x-ray contrast is an imaging modality used primarily in a research setting at synchrotron facilities, which have a biomedical imaging research program. The most common method for exploiting refraction contrast is by using a technique called Diffraction Enhanced Imaging (DEI). The DEI apparatus allows the detection of refraction between two materials and produces a unique ''edge enhanced'' contrast appearance, very different from the traditional absorption x-ray imaging used in clinical radiology. In this paper we aim to explain the features of x-ray refraction contrast as a typical clinical radiologist would understand. Then a discussion regarding what needs to be considered in the interpretation of the refraction image takes place. Finally we present a discussion about the limitations of planar refraction imaging and the potential of DEI Computed Tomography. This is an original work that has not been submitted to any other source for publication. The authors have no commercial interests or conflicts of interest to disclose.

  20. A fully automated remote refraction system.

    PubMed

    Dyer, A M; Kirk, A H

    2000-01-01

    Traditional methods of performing refractions depend on a trained refractionist being present with the subject and conducting an interactive form of subjective testing. A fully automated refraction system was installed in 13 optical dispensaries and after 15 months the patient and statistical information was gathered. The data from all operators were consistent and suggested a lack of operator effect on the refraction results. The mean of the SD of subjective sphere measurements was 0.2, or slightly less than a quarter dioptre, which would be an acceptable level of accuracy for ordering corrective lenses. The present study suggests an absence of operator influence on the results of the refractions and a degree of consistency and accuracy compatible with the prescription of lenses.

  1. Negative index of refraction in optical metamaterials.

    PubMed

    Shalaev, Vladimir M; Cai, Wenshan; Chettiar, Uday K; Yuan, Hsiao-Kuan; Sarychev, Andrey K; Drachev, Vladimir P; Kildishev, Alexander V

    2005-12-15

    A double-periodic array of pairs of parallel gold nanorods is shown to have a negative refractive index in the optical range. Such behavior results from the plasmon resonance in the pairs of nanorods for both the electric and the magnetic components of light. The refractive index is retrieved from direct phase and amplitude measurements for transmission and reflection, which are all in excellent agreement with simulations. Both experiments and simulations demonstrate that a negative refractive index n' approximately -0.3 is achieved at the optical communication wavelength of 1.5 microm using the array of nanorods. The retrieved refractive index critically depends on the phase of the transmitted wave, which emphasizes the importance of phase measurements in finding n'.

  2. REFractions: The Representing Equivalent Fractions Game

    ERIC Educational Resources Information Center

    Tucker, Stephen I.

    2014-01-01

    Stephen Tucker presents a fractions game that addresses a range of fraction concepts including equivalence and computation. The REFractions game also improves students' fluency with representing, comparing and adding fractions.

  3. Imaging based refractometer for hyperspectral refractive index detection

    DOEpatents

    Baba, Justin S.; Boudreaux, Philip R.

    2015-11-24

    Refractometers for simultaneously measuring refractive index of a sample over a range of wavelengths of light include dispersive and focusing optical systems. An optical beam including the range of wavelengths is spectrally spread along a first axis and focused along a second axis so as to be incident to an interface between the sample and a prism at a range of angles of incidence including a critical angle for at least one wavelength. An imaging detector is situated to receive the spectrally spread and focused light from the interface and form an image corresponding to angle of incidence as a function of wavelength. One or more critical angles are identified and corresponding refractive indices are determined.

  4. Age-Related Shifts in the Density and Distribution of Genetic Marker Water Quality Indicators in Cow and Calf Feces (Journal)

    EPA Science Inventory

    Calves (≤ 226 kg body mass) make up about 16% of the current bovine population in the United States and can excrete high levels of human pathogens. We describe the density and distribution of genetic markers from 11 PCR- and real-time quantitative PCR-based assays including CF...

  5. Controlling plasmon hybridization for negative refraction metamaterials

    NASA Astrophysics Data System (ADS)

    Kanté, B.; Burokur, S. N.; Sellier, A.; de Lustrac, A.; Lourtioz, J.-M.

    2009-02-01

    The hybridization scheme of plasmon modes in cut-wire-based left-handed metamaterials is shown to critically depend on the coupling between paired cut wires. We show that an inverted hybridization scheme obtained with an asymmetric alignment of paired cut wires is the most appropriate to negative refraction. This is validated (numerically and experimentally) by the first demonstration of negative refraction in the microwave domain using only periodic ensembles of cut wires.

  6. [Polar and non polar notations of refraction].

    PubMed

    Touzeau, O; Gaujoux, T; Costantini, E; Borderie, V; Laroche, L

    2010-01-01

    Refraction can be expressed by four polar notations which correspond to four different combinations of spherical or cylindrical lenses. Conventional expressions of refraction (plus and minus cylinder notation) are described by sphere, cylinder, and axis. In the plus cylinder notation, the axis visualizes the most powerful meridian. The axis usually corresponds to the bow tie axis in curvature maps. Plus cylinder notation is also valuable for all relaxing procedures (i.e., selective suture ablation, arcuate keratotomy, etc.). In the cross-cylinder notation, two orthogonal cylinders can describe (without the sphere component) the actual refraction of both the principal meridians. This notation must be made before performing the vertex calculation. Using an association of a Jackson cross-cylinder and a spherical equivalent, refraction can be broken down into two pure components: astigmatism and sphere. All polar notations of refraction may perfectly characterize a single refraction but are not suitable for statistical analysis, which requires nonpolar expression. After doubling the axis, a rectangular projection breaks down the Jackson cross-cylinder, which has a polar axis, into two Jackson cross-cylinders on the 0 degrees /90 degrees and 45 degrees /135 degrees axis. This procedure results in the loss of the directional nature of the data. Refraction can be written in a nonpolar notation by three rectangular coordinates (x,y,z), which can also represent the spherocylinder by one point in a dioptric space. These three independent (orthogonal) variables have a concrete optical significance: a spherical component, a direct/inverse (WTR/ATR) component, and an oblique component of the astigmatism. Finally, nonpolar notations are useful for statistical analysis and graphical representation of refraction.

  7. X-UV Index of Refraction of Dense and Hot Plasmas.

    PubMed

    Benattar, R; Galos, C; Ney, P

    1995-01-01

    In a dense and hot plasma the refractive index in the X-UV range takes into account not only the effect of free electrons, but also the effect of electrons bound by atoms. The refractive index is calculated by the Kramer-Kronig relations using the total opacity of the medium including bound-bound, free-bound, and free-free atomic transitions. A simple method of calculation of the emission and absorption coefficients is presented. These parameters are of great interest when one wants to study radiative transfer in a dense and hot material. The computer program used allows one to obtain either in LTE or in NLTE the values of these coefficients for every material and for a wide range of mass density and temperature, using a screened hydrogenic model. Applications are presented first to generate opacity tables and second to generate the index of refraction of aluminum for a wide range of mass density and temperature.

  8. [The arctic sea ice refractive index retrieval based on satellite AMSR-E observations].

    PubMed

    Chen, Han-Yue; Bi, Hai-Bo; Niu, Zheng

    2012-11-01

    The refractive index of sea ice in the polar region is an important geophysical parameter. It is needed as a vital input for some numerical climate models and is helpful to classifying sea ice types. In the present study, according to Hong Approximation (HA), we retrieved the arctic sea ice refractive index at 6.9, 10.7, 23, 37, and 89 GHz in different arctic climatological conditions. The refractive indices of wintertime first year (FY) sea ice and summertime ice were derived with average values of 1.78 - 1.75 and 1.724 - 1.70 at different frequencies respectively, which are consistent with previous studies. However, for multiyear (MY) ice, the results indicated relatively large bias between modeled results since 10.7 GHz. At a higher frequency, there is larger MY ice refractive index difference. This bias is mainly attributed to the volume scattering effect on MY microwave radiation due to emergence of massive small empty cavities after the brine water in MY ice is discharged into sea. In addition, the retrieved sea ice refractive indices can be utilized to classify ice types (for example, the winter derivation at 89 GHz), to identify coastal polynyas (winter retrieval at 6.9 GHz), and to outline the areal extent of significantly melting marginal sea ice zone (MIZ) (summer result at 6.9 GHz). The investigation of this study suggests an effective tool of passive microwave remote sensing in monitoring sea ice refractive index variability.

  9. Heritability of refractive value and ocular biometrics.

    PubMed

    Paget, Sandrine; Vitezica, Zulma G; Malecaze, François; Calvas, Patrick

    2008-02-01

    The aim of this work was to analyse genetic influences on ocular refractive value and axial length using the hypothesis of a polygenic control. The genealogical records of 55 families were used in the analyses. The cohort included 723 individuals and clinical data were collected for 445 individuals with a mean age of 37.86 years. Ocular refraction was determined by standard autorefractometry. Axial length was evaluated by scan ultrasonography. Gender, age and ethnic origin were included as covariates in the statistical analyses. Using variance component analysis via a Markov Chain Monte Carlo (MCMC) method, we estimated the heritability of refractive value and axial length in the pedigree. We then performed a segregation analysis, using Loki, a (MCMC) linkage analysis program for multilocus inheritance models, examining different inheritance models with polygenic components. Polygenic control was modelled under an additive infinitesimal model (which assumes infinite loci with small effects, with additive actions) and under a finite locus model (i.e. several causal loci). The estimates of heritability were 0.20 (95% confidence interval (CI) 0.04-0.36) for refractive value and 0.20 (95% CI 0.03-0.43) for axial length. Segregation analyses suggested that ocular refraction and axial length are under a polygenic control. A finite number of genes were identified with or without a polygenic, infinitesimal component. Ocular refraction is mildly-moderately heritable in the studied population.

  10. Development of High Refractive Index Conjugated Materials

    NASA Astrophysics Data System (ADS)

    Graham, Matthew; Jin, Shi; Cheng, Stephen Z. D.

    2007-03-01

    The goal of this project is to fabricate a polymeric material with a complete 3-D PBG, to bring the tailorable physical, electrical, and optical properties of polymeric materials to 3-D PBG materials. Because of its conjugated nature and the presence of a heavy sulfur atom in its repeat unit, poly(thiophene) (PT) is predicted to have one of the highest polymeric refractive indices, but the reported n values for PT are 1.4 at 633 nm. This discrepancy is because the potential needed to electrosynthesize PT, the only method available to synthesize thick and high quality PT films, is higher than its degradation potential. It was found that by polymerizing thiophene with an optimized monomer concentration, proton trap concentration, and reaction temperature in a strong aprotic Lewis acid solvent, the polymerization potential could be reduced below the degradation potential of PT. The resultant PT film had a significantly elevated n Photonic templates were then constructed using a combination of Colvin's method^ with monodisperse spheres and mechanical annealing. High n PT was used to infiltrate the templates, and the templates were removed leaving a polymeric inverse opal with the possibility of a complete 3-D PBG.

  11. Multimeridional refraction: dependence of the measurement accuracy on the number of meridians refracted.

    PubMed

    Oechsner, U; Kusel, R

    1997-06-01

    A Monte Carlo simulation of multimeridional refraction measurements was used to investigate the dependence of the accuracy of the measurement on the number of meridians refracted, N, and on the standard deviation of a measurement in a single meridian, sigma. For the description of the measurement errors, the residual refraction values were used, i.e., the parameters of the refraction remaining after application of the measured correction. The distributions of the residual refraction values were found to be independent of the "true" refraction values; in addition, by means of a factor square root of N/sigma, reduced residual refraction values could be defined which also were independent of N and sigma. A vector space proposed by Lakshminarayanan and Varadharajan (based on Long's power matrix) was used to represent the joint distribution of the residual refraction values in three-dimensional space. It was found to be a three-variate Gaussian distribution with zero mean and diagonal covariance matrix. It could further be shown that the vector space proposed by Harris is identical to the one used, up to a linear transformation. Several criteria, based on the one- and three-dimensional distributions and corresponding to different levels of accuracy, are discussed resulting in a wide range of answers about the number of meridians to be refracted.

  12. Origin of crystallization-induced refractive index changes in photo-thermo-refractive glass

    NASA Astrophysics Data System (ADS)

    Lumeau, Julien; Glebova, Larissa; Golubkov, Valerii; Zanotto, Edgar D.; Glebov, Leonid B.

    2009-11-01

    Photo-thermo-refractive (PTR) glass is a multi-component silicate that undergoes localized refractive index decrease after UV-exposure and thermal treatment for partial crystallization. Based on this refractive index change, high efficiency volume Bragg gratings have been developed in PTR glass and have been successfully used for laser beam control. However, despite the fact that this type of glass has been widely studied and used over the last 20 years, the origin of the refractive index change upon crystallization is poorly understood. In this paper, we introduce three possible mechanisms (the precipitation of nano-sized NaF crystals and the associated local chemical changes of the glass matrix, the volumetric changes due to relaxation, and the local residual stresses) for the refractive index decrement in PTR glass and estimate the partial refractive index change due to each mechanism. Refractive index measurements are compared with high temperature XRD experiments and a general approach for the simulation of the refractive index change in PTR glass is proposed. We show that among the studied variables the residual stresses surrounding the crystals are the main responsible for the local refractive index decrement in this glass.

  13. Evaluation of patient visual comfort and repeatability of refractive values in non-presbyopic healthy eyes

    PubMed Central

    Segura, Francisco; Sanchez-Cano, Ana; Lopez de la Fuente, Carmen; Fuentes-Broto, Lorena; Pinilla, Isabel

    2015-01-01

    AIM To evaluate the intra-operator repeatability in healthy subjects using the WAM-5500 auto-kerato/refractometer and the iTrace aberrometer, to compare the refractive values and the subjective refraction obtained with both devices and to determine which of these three spherocylindrical corrections allows the subject to achieve the best visual comfort. METHODS Forty-two non-presbyopic healthy eyes of 42 subjects were enrolled in this prospective study. Refractive values were compared, evaluating the repeatability, the relationship between the methods and the best visual comfort obtained. RESULTS Sphere, cylinder and axis results showed good intraclass correlation coefficients (ICC); the highest ICC was obtained using the spherical refraction with the autorefractometer and the aberrometer, achieving levels of 0.999 and 0.998, respectively. The power vector (PV) was calculated for each refraction method, and the results indicated that there were no statistically significant differences between them (P>0.05). Direct comparison of PV measurements using the three methods showed that aberrometer refraction gave the highest values, followed by the subjective values; the autorefractometer gave the lowest values. The subjective method correction was most frequently chosen as the first selection. Equal values were found for the autorefractometer and the aberrometer as the second selection. CONCLUSION The iTrace aberrometer and the WAM-5500 auto-kerato/refractometer showed high levels of repeatability in healthy eyes. Refractive corrections with the aberrometer, the autorefractometer and subjective methods presented similar results, but spherocylindrical subjective correction was the most frequently selected option. These technologies can be used as complements in refractive evaluation, but they should not replace subjective refraction. PMID:26558222

  14. Linear and nonlinear refractive index of As-Se-Ge and Bi doped As-Se-Ge thin films

    NASA Astrophysics Data System (ADS)

    Sharma, Pankaj; Katyal, S. C.

    2010-06-01

    The present work reports the linear and nonlinear refractive index for (As2Se3)90Ge10 and [(As2Se3)90Ge10]95Bi5 thin films. The formulation proposed by Fournier and Snitzer has been used to predict the nonlinear behavior of refractive index. The linear refractive index and Wemple-DiDomenico parameters were used for the determination of nonlinear refractive index in the wavelength region 0.4 to 1.5 μm. Linear refractive index has been determined using the well known Swanepoel method. This is observed that nonlinear refractive index increases linearly with increasing linear refractive index. With Bi addition this has been found that nonlinear refractive index increases by 2.4 times, while on comparing with pure and doped silica glasses results are 2-3 orders higher. Density and molar volume has also been calculated. The obtained results may lead to yield more sensitive optical limiting devices and these glasses may be used as an optical material for high speed communication fibers.

  15. Prediction of Child Health by Household Density and Asset-Based Indices in Impoverished Indigenous Villages in Rural Panamá

    PubMed Central

    Halpenny, Carli M.; Koski, Kristine G.; Valdés, Victoria E.; Scott, Marilyn E.

    2012-01-01

    Chronic infection over a 16-month period and stunting of preschool children were compared between more spatially dense versus dispersed households in rural Panamá. Chronic protozoan infection was associated with higher household density, lower household wealth index, poor household water quality, yard defecation, and the practice of not washing hands with soap before eating. Models for chronic diarrhea confirmed the importance of household wealth, water quality, sanitation, and hygiene practices. Furthermore, chronic protozoan infection was an important predictor for low height-for-age, along with low household wealth index scores, but not household density. Thus, despite better access to health related infrastructure in the more densely populated households, chronic protozoan infection was more common, and was associated with higher rates of child stunting, compared with more dispersed households. PMID:22302864

  16. Electromagnetic waves: Negative refraction by photonic crystals

    NASA Astrophysics Data System (ADS)

    Ozbay, Ekmel

    2004-03-01

    Recently left-handed materials (LHM) attracted great attention since these materials exhibit negative effective index, which is due to simultaneously negative permeability and permittivity. Pendry proposed that negative effective index in left-handed materials can be used for constructing a perfect lens, which is not limited by diffraction(J. B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett. vol. 85, 3966 (2000)). Negative refraction is also achievable in a dielectric photonic crystal (PC) that has a periodically modulated positive permittivity and a permeability of unity. Luo et al. has studied negative refraction and subwavelength imaging in photonic crystals(C. Luo, S. G. Johnson, J. D. Joannopoulos, J. B. Pendry, Subwavelength Imaging in Photonic Crystals Phys. Rev. B 68, 045115 (2003)). In this presentation, we report our experimental and theoretical investigation of negative refraction and subwavelength focusing of electromagnetic waves in a 2D PC. Our structure consists of a square array of dielectric rods in air. Transmission measurements are performed for experimentally verifying the predicted negative refraction behavior in our structure. Negative index of refraction determined from the experiment is -1.94 which is very close to the theoretical value of -2.06. Negative refraction is observed for the incidence angles of > 20°(Ertugrul Cubukcu, Koray Aydin, Ekmel Ozbay, S. Foteinopolou, and Costas Soukoulis, Negative Refraction by Photonic Crystals, Nature, vol. 423, 604 (2003)). Since we know the optimum frequency for a broad angle negative refraction, we can use our crystal to test the superlensing effect that was predicted for negative refractive materials. Scanning transmission measurement technique is used to measure the spatial power distribution of the focused electromagnetic waves that radiate from a point source. Full width at half maximum of the focused beam is measured to be 0.21λ, which is in good agreement with the finite

  17. Methods for Prediction of Refractive Index in Glasses for the Infrared

    SciTech Connect

    McCloy, John S.

    2011-06-14

    It is often useful to obtain custom glasses that meet particular requirements of refractive index and dispersion for high-end optical design and applications. In the case of infrared glasses, limited experimental data are available due to difficulties in processing of these glasses and also measuring refractive indices accurately. This paper proposes methods to estimate refractive index and dispersion as a function of composition for selected infrared-transmitting glasses. Methods for refractive index determination are reviewed and evaluated, including Gladstone-Dale, Wemple-DiDomenico single oscillator, Optical basicity, and Lorentz-Lorenz total polarizability. Various estimates for a set of PbO-Bi2O3-Ga2O3 (heavy metal oxide) and As-S (chalcogenide) glasses will be compared with measured values of index and dispersion.

  18. Refraction-Enhanced X-ray Radiography for Inertial Confinement Fusion and Laser-Produced Plasma Applications

    SciTech Connect

    Koch, J A; Landen, O L; Kozioziemski, B J; Izumi, N; Dewald, E L; Salmonson, J D; Hammel, B A

    2008-08-26

    We explore various laser-produced plasma and inertial-confinement fusion (ICF) applications of phase-contrast x-ray radiography, and we show how the main features of these enhancements can be considered from a geometrical optics perspective as refraction enhancements. This perspective simplifies the analysis, and often permits simple analytical formulae to be derived that predict the enhancements. We explore a raytrace approach to various material interface applications, and we explore a more general example of refractive bending of x-rays by an implosion plasma. We find that refraction-enhanced x-ray radiography of implosions may provide a means to quantify density differences across shock fronts as well as density variations caused by local heating due to high-Z dopants. We also point out that refractive bending by implosions plasmas can blur fine radiograph features, and can also provide misleading contrast information in area-backlit pinhole imaging experiments unless its effects are taken into consideration.

  19. Design of acid-lead battery stage-of-charge detection system based on refractive index detection technology

    NASA Astrophysics Data System (ADS)

    Chen, Junyao; Yang, Kecheng; Xia, Min; Li, Lei; Zeng, Xianjiang

    2015-10-01

    Based on optical total reflection critical Angle method, we have designed a refractive index measurement system. It adopted a divergent light source and a CCD camera as the occurrence and receiver of the signal. The divergent light source sent out a bunch of tapered beam, exposure to the interface of optical medium and sulfuric acid solution. Light intensity reflected from the interface could be detected by the CCD camera and then sent to the embedded system. In the DSP embedded system, we could obtain the critical edge position through the light intensity distribution curve and converted it to critical angle. Through experiment, we concluded the relation between liquid refractive index and the critical angle edge position. In this system, the detecting precision of the refractive index of sulfuric acid solution reached 10-4. Finally, through the conversion of the refractive index and density, we achieved high accuracy online measurement of electrolyte density in lead-acid battery.

  20. Refractive index of r-cut sapphire under shock pressure range 5 to 65 GPa

    SciTech Connect

    Cao, Xiuxia; Li, Jiabo; Li, Jun; Li, Xuhai; Xu, Liang; Wang, Yuan; Zhu, Wenjun; Meng, Chuanmin; Zhou, Xianming

    2014-09-07

    High-pressure refractive index of optical window materials not only can provide information on electronic polarizability and band-gap structure, but also is important for velocity correction in particle-velocity measurement with laser interferometers. In this work, the refractive index of r-cut sapphire window at 1550 nm wavelength was measured under shock pressures of 5–65 GPa. The refractive index (n) decreases linearly with increasing shock density (ρ) for shock stress above the Hugoniot elastic limit (HEL): n = 2.0485 (± 0.0197) − 0.0729 (± 0.0043)ρ, while n remains nearly a constant for elastic shocks. This behavior is attributed to the transition from elastic (below HEL) to heterogeneous plastic deformation (above HEL). Based on the obtained refractive index-density relationship, polarizability of the shocked sapphire was also obtained.

  1. Refractivity and polarizability of mixtures of L-histidine-metformin hydrochloride-water at 30°C

    NASA Astrophysics Data System (ADS)

    Deosarkar, S. D.; Pawde, S. S.; Kalyankar, T. M.

    2016-12-01

    The molar refractivity and polarizability of mixtures of L-histidine (0.01-0.11 mol L-1)-metformin hydrochloride (0.03, 0.05, 0.07 mol L-1)-water were calculated from density and refractive index data at 30°C. Enhancement in the polarizability has been observed with increase in L-histidine concentration as well as metformin hydrochloride content in the solution. The molar refractivity and polarizability of solutions increased appreciably after 0.09 mol L-1 L-histidine in each aqueous solution.

  2. Refraction Correction in 3D Transcranial Ultrasound Imaging

    PubMed Central

    Lindsey, Brooks D.; Smith, Stephen W.

    2014-01-01

    We present the first correction of refraction in three-dimensional (3D) ultrasound imaging using an iterative approach that traces propagation paths through a two-layer planar tissue model, applying Snell’s law in 3D. This approach is applied to real-time 3D transcranial ultrasound imaging by precomputing delays offline for several skull thicknesses, allowing the user to switch between three sets of delays for phased array imaging at the push of a button. Simulations indicate that refraction correction may be expected to increase sensitivity, reduce beam steering errors, and partially restore lost spatial resolution, with the greatest improvements occurring at the largest steering angles. Distorted images of cylindrical lesions were created by imaging through an acrylic plate in a tissue-mimicking phantom. As a result of correcting for refraction, lesions were restored to 93.6% of their original diameter in the lateral direction and 98.1% of their original shape along the long axis of the cylinders. In imaging two healthy volunteers, the mean brightness increased by 8.3% and showed no spatial dependency. PMID:24275538

  3. Refraction data survey: 2nd generation correlation of myopia.

    PubMed

    Greene, Peter R; Medina, Antonio

    2016-10-01

    The objective herein is to provide refraction data, myopia progression rate, prevalence, and 1st and 2nd generation correlations, relevant to whether myopia is random or inherited. First- and second-generation ocular refraction data are assembled from N = 34 families, average of 2.8 children per family. From this group, data are available from N = 165 subjects. Inter-generation regressions are performed on all the data sets, including correlation coefficient r, and myopia prevalence [%]. Prevalence of myopia is [M] = 38.5 %. Prevalence of high myopes with |R| >6 D is [M-] = 20.5 %. Average refraction is  = -1.84 D ± 3.22 (N = 165). For the high myopes, |R| >6 D, prevalence for the parents is [M-] = 25 %, for the 2nd generation [M-] = 16.5 %. Average myopia level for the high myopes, both generations, is  = -7.52 D ± 1.31 D (N = 33). Regression parameters are calculated for all the data sets, yielding correlation coefficients in the range r = 0.48-0.72 for some groups of myopes and high myopes, fathers to daughters, and mothers to sons. Also of interest, some categories show essentially no correlation, -0.20 < r < 0.20, indicating that the refractive errors occur randomly. Time series results show myopia diopter rates = -0.50 D/year.

  4. Aging alterations in whole-brain networks during adulthood mapped with the minimum spanning tree indices: the interplay of density, connectivity cost and life-time trajectory.

    PubMed

    Otte, Willem M; van Diessen, Eric; Paul, Subhadip; Ramaswamy, Rajiv; Subramanyam Rallabandi, V P; Stam, Cornelis J; Roy, Prasun K

    2015-04-01

    The organizational network changes in the human brain across the lifespan have been mapped using functional and structural connectivity data. Brain network changes provide valuable insights into the processes underlying senescence. Nonetheless, the altered network density in the elderly severely compromises the usefulness of network analysis to study the aging brain. We successfully circumvented this problem by focusing on the critical structural network backbone, using a robust tree representation. Whole-brain networks' minimum spanning trees were determined in a dataset of diffusion-weighted images from 382 healthy subjects, ranging in age from 20.2 to 86.2 years. Tree-based metrics were compared with classical network metrics. In contrast to the tree-based metrics, classical metrics were highly influenced by age-related changes in network density. Tree-based metrics showed linear and non-linear correlation across adulthood and are in close accordance with results from previous histopathological characterizations of the changes in white matter integrity in the aging brain.

  5. [Retinal detachment in various myopic refractions].

    PubMed

    Alimanović-Halilović, Emina

    2009-01-01

    The basic aim of this study was to find the group of "critical" myopic refraction with the highest occurrence of retinal detachment. In the study, 180 myopic eyes were analyzed. Upon the targeted ophthalmological anamnesis, definition of the objective refraction, and indirect binocular ophthalmoscopy, we analyzed the distribution of retinal detachment and the area affected in relation to refraction. All the eyes were divided into groups according to the refraction height. Average age of our patients ranged from 48.43 to 51.60 years with SD from 13.88 to 18.45. We did not find a statistically significant difference for a certain age. The study covered 102 (56.6%) male and 78 (43.3%) female patients. The highest occurrence of retinal detachment was found in Refraction Group from 3.5 to 7.49 dsph, total 21 (11.6%). The retinal detachments usually affected 2/4 or 3/4 of the eye fundus surface respectively.

  6. Refractive Secondary Concentrators for Solar Thermal Applications

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Macosko, Robert P.

    1999-01-01

    The NASA Glenn Research Center is developing technologies that utilize solar energy for various space applications including electrical power conversion, thermal propulsion, and furnaces. Common to all of these applications is the need for highly efficient, solar concentration systems. An effort is underway to develop the innovative single crystal refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. The refractive secondary offers very high throughput efficiencies (greater than 90%), and when used in combination with advanced primary concentrators, enables very high concentration ratios (10,0(X) to 1) and very high temperatures (greater than 2000 K). Presented is an overview of the refractive secondary concentrator development effort at the NASA Glenn Research Center, including optical design and analysis techniques, thermal modeling capabilities, crystal materials characterization testing, optical coatings evaluation, and component testing. Also presented is a discussion of potential future activity and technical issues yet to be resolved. Much of the work performed to date has been in support of the NASA Marshall Space Flight Center's Solar Thermal Propulsion Program. The many benefits of a refractive secondary concentrator that enable efficient, high temperature thermal propulsion system designs, apply equally well to other solar applications including furnaces and power generation systems such as solar dynamics, concentrated thermal photovoltaics, and thermionics.

  7. Calculated Refraction and Cotton-Mouton Effect for a Millimeter-wave Interferometer/Polarimeter on the Compact Toroidal Hybrid (CTH) Experiment

    NASA Astrophysics Data System (ADS)

    Shields, J.; Knowlton, S.; Stevenson, B. A.; Hanson, J.; Hartwell, G.

    2007-11-01

    A combined mm-wave interferometer/polarimeter based on the method of Dodel and Kunz^1 is being developed to measure the density and current profiles of current-driven discharges in the CTH torsatron (R = 0.75 m, a ˜ 0.2 m, B <= 0.7 T, ne<= 10^19 m-3). Measurement of the internal magnetic field by Faraday rotation wavelengths is less costly than FIR approaches, but is more susceptible to refraction effects and the Cotton-Mouton (C-M) broadening of the polarization. Computational modeling of Faraday rotation, beam refraction, and C-M effects for wavelengths between 1.0 and 4.0 mm have been performed in 3-D geometry using plasma parameter values relevant to CTH plasmas in order to minimize the undesired refraction and C-M broadening while maintaining an adequate magnitude of Faraday rotation. Study results indicate that a 1 mm system is optimal for the CTH. 1. G. Dodel and W. Kunz, Infrared Phys. 18, 773 (1978)

  8. Determination of the refractive index of microparticles by utilizing light dispersion properties of the particle and an immersion liquid.

    PubMed

    Niskanen, I; Räty, J; Peiponen, K E

    2013-10-15

    The knowledge of the refractive index of a particle is important in sensing and imaging applications, e.g., in biology, medicine and process industry. The refractive index of tiny solid particles such as microsize particles can be determined by the so-called liquid immersion technique. This study deals with three different types of interrogation methods to get the refractive index of a particle in a liquid matrix. These methods utilize thermo-optical properties and wavelength-dependent refractive index of the particle and the immersion liquids, as well as, the classical method using a set of in advance prepared set of immersion liquids with different refractive indices. The emphasis is on a method to get especially the wavelength-dependent refractive index of microparticles and exploiting different wavelength-dependences of immersion liquid and a solid particle because identification of a particle is more reliable if the refractive index of the particle is known at several wavelengths. In this study glycerol-water mixtures served as immersion liquids to obtain the refractive index of CaF2 at several discrete wavelengths in the spectral range 200-500 nm. The idea is to find the maximum value of light transmission of suspension by scanning the wavelength of a commercial spectrophotometer. The light dispersion-based method is suggested as a relatively easy, economic and fast method to determine the refractive index of a particle by a spectrophotometer at several wavelengths of light. The accuracy of the detection of the refractive index is suggested to be better than ± 0.005 refractive index units.

  9. Seismic refraction analysis: the path forward

    USGS Publications Warehouse

    Haines, Seth S.; Zelt, Colin; Doll, William

    2012-01-01

    Seismic Refraction Methods: Unleashing the Potential and Understanding the Limitations; Tucson, Arizona, 29 March 2012 A workshop focused on seismic refraction methods took place on 29 May 2012, associated with the 2012 Symposium on the Application of Geophysics to Engineering and Environmental Problems. This workshop was convened to assess the current state of the science and discuss paths forward, with a primary focus on near-surface problems but with an eye on all applications. The agenda included talks on these topics from a number of experts interspersed with discussion and a dedicated discussion period to finish the day. Discussion proved lively at times, and workshop participants delved into many topics central to seismic refraction work.

  10. Interferometric atmospheric refractive-index environmental monitor.

    PubMed

    Ludman, J E; Ludman, J J; Callahan, H; Caulfield, H J; Watt, D; Sampson, J L; Robinson, J; Davis, S; Hunt, A

    1995-06-20

    Long, open-path, outdoor interferometric measurement of the index of refraction as a function of wavelength (spectral refractivity) requires a number of innovations. These include active compensation for vibration and turbulence. The use of electronic compensation produces an electronic signal that is ideal for extracting data. This allows the appropriate interpretation of those data and the systematic and fast scanning of the spectrum by the use of bandwidths that are intermediate between lasers (narrow bandwidth) and white light (broad bandwidth). An Environmental Interferometer that incorporates these features should be extremely valuable in both pollutant detection and pollutant identification. Spectral refractivity measurements complement the information available from spectral absorption instruments (e.g., a Fourier-transform infrared spectrometer). The Environmental Interferometer currently uses an electronic compensating device with a 1-kHz response time, and therefore rapid spectral scans are feasibe so that it is possible to monitor the time evolution of pollutant events.

  11. Refraction of microwave signals by water vapor

    NASA Technical Reports Server (NTRS)

    Goldfinger, A. D.

    1980-01-01

    Tropospheric water vapor causes a refractive path length effect which is typically 5-10% of the 'dry' tropospheric effect and as large as several meters at elevation angles below 5 deg. The vertical water vapor profile is quite variable, and measurements of intensive atmospheric parameters such as temperature and humidity limited to the surface do not adequately predict the refractive effect. It is suggested that a water vapor refraction model that is a function of the amount of precipitable water alone can be successful at low elevation angles. From an extensive study of numerical ray tracings through radiosonde balloon data, such a model has been constructed. The model predicts the effect at all latitudes and elevation angles between 2 and 10 deg to an accuracy of better than 4% (11 cm at 3 deg elevation angle).

  12. Refraction by a spherical nematic bubble

    NASA Astrophysics Data System (ADS)

    Sherman, Richard David

    1989-08-01

    A formalism is developed to study refraction by a spherical nematic bubble. It is applicable to bubbles that are larger than light wavelengths, but smaller than the dimensions for excitation of director-fluctuation-induced scattering. The technique yields a nonlinear differential equation and an associated integral which govern the trajectory of a ray inside a nematic region for an arbitrary director configuration. Explicit solutions are provided for five simple interior arrangements-isotropic, onion skin, radial star, horizontal (bottle brush), and vertical. It is then demonstrated that for extraordinary-ordinary refractive-index difference small compared to either, interfacial refraction at the bubble surface is the dominant contribution; deviations from a rectilinear path are small. When ranked in terms of decreasing scattering effectiveness, the sequence is horizontal, onion, isotropic, radial, and vertical if the light is linearly polarized and coupling optimally to the extraordinary index component; for unpolarized incoherent light the order becomes isotropic, horizontal, onion, radial, and vertical.

  13. Fiber optic liquid refractive index sensor

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Vanita; Gangwar, Rahul Kumar; Singh, Vinod Kumar

    2015-08-01

    In this present work we report fabrication of fiber optic liquid refractive index (RI) measurement sensor based on Michelson Interferometer method. This sensor was assembled by using graded index multimode (MM) fiber with core diameter 50 µm and the cladding of fiber was removed by simple chemical method. To perform this experiment a 2×2 3dB coupler is used. The fiber ends are then immersed in solvent and solution to provide reference and refractive index measurements, respectively. This method was successfully used to measure refractive index of Sodium Chloride (NaCl)-Water solution at different concentrations. The fringe contrast sensitivity of device is 92.90 dB/RIU measured in the RI range from 1.34 to 1.42 which is better than Mach-Zehnder Interferometer sensor [1] and Fabry perot based sensor [2]. The fabrication of sensor is simple, low cost and highly sensitive.

  14. Meta-atom cluster acoustic metamaterial with broadband negative effective mass density

    SciTech Connect

    Chen, Huaijun; Zhai, Shilong; Ding, Changlin; Liu, Song; Luo, Chunrong; Zhao, Xiaopeng

    2014-02-07

    We design a resonant meta-atom cluster, via which a two-dimensional (2D) acoustic metamaterial (AM) with broadband negative effective mass density from 1560 Hz to 5580 Hz is fabricated. Experimental results confirm that there is only weak interaction among the meta-atoms in the cluster. And then the meta-atoms in the cluster independently resonate, resulting in the cluster becoming equivalent to a broadband resonance unit. Extracted effective refractive indices from reflection and transmission measurements of the 2D AM appear to be negative from 1500 Hz to 5480 Hz. The broadband negative refraction has also been demonstrated by our further experiments. We expect that this meta-atom cluster AM will significantly contribute to the design of broadband negative effective mass density AM.

  15. Refractive index and phase transformation of sapphire under shock pressures up to 210 GPa

    NASA Astrophysics Data System (ADS)

    Cao, Xiuxia; Wang, Yuan; Li, Xuhai; Xu, Liang; Liu, Lixin; Yu, Yin; Qin, Rui; Zhu, Wenjun; Tang, Shihui; He, Lin; Meng, Chuanmin; Zhang, Botao; Peng, Xusheng

    2017-03-01

    Under shock pressures up to 210 GPa, we measured the refractive index of sapphire at a wavelength of 1550 nm by performing plate impact experiments in order to investigate its refractive-index change behaviors and phase transitions along the Hugoniot state. There were two discontinuities in the refractive index at ˜65 to 92 GPa and ˜144 to 163 GPa, respectively. Moreover, above the Hugoniot elastic limit, the pressure dependence of the refractive index was divided into three segments, and there were large differences in their pressure-change trends: the refractive index decreased evidently with pressure in the first segment (˜20 to 65 GPa), remained nearly constant from ˜92 to ˜144 GPa in the second segment, and obviously increased with pressure in the last segment (˜163 to 210 GPa). Our first-principles calculations suggest that the observed discontinuities were closely related to the corundum-Rh2O3(II) and Rh2O3(II)-CaIrO3 structural transitions, and the shock-induced vacancy point defects could be one factor causing these great discrepancies in pressure-change trends. This work provides sapphire refractive-index information in a megabar-pressure range and clear evidence of its shock structural transitions. This not only has a great significance for the velocity correction of laser interferometer experiments and the analysis of sapphire high-pressure properties but also indicates a possible approach to explore the shock transitions of transparent materials.

  16. On-chip temperature compensation in an integrated slot-waveguide ring resonator refractive index sensor array.

    PubMed

    Gylfason, Kristinn B; Carlborg, Carl Fredrik; Kaźmierczak, Andrzej; Dortu, Fabian; Sohlström, Hans; Vivien, Laurent; Barrios, Carlos A; van der Wijngaart, Wouter; Stemme, Göran

    2010-02-15

    We present an experimental study of an integrated slot-waveguide refractive index sensor array fabricated in silicon nitride on silica. We study the temperature dependence of the slot-waveguide ring resonator sensors and find that they show a low temperature dependence of -16.6 pm/K, while at the same time a large refractive index sensitivity of 240 nm per refractive index unit. Furthermore, by using on-chip temperature referencing, a differential temperature sensitivity of only 0.3 pm/K is obtained, without individual sensor calibration. This low value indicates good sensor-to-sensor repeatability, thus enabling use in highly parallel chemical assays. We demonstrate refractive index measurements during temperature drift and show a detection limit of 8.8 x 10-6 refractive index units in a 7 K temperature operating window, without external temperature control. Finally, we suggest the possibility of athermal slot-waveguide sensor design.

  17. Analysis of the use of tapered graded-index polymer optical fibers for refractive-index Sensors.

    PubMed

    Arrue, J; Jiménez, F; Aldabaldetreku, G; Durana, G; Zubia, J; Lomer, M; Mateo, J

    2008-10-13

    The behavior of tapered graded-index polymer optical fibers is analyzed computationally for different refractive indices of the surrounding medium. This serves to clarify the main parameters affecting their possible performance as refractive-index sensors and extends an existing study of similar structures in glass fibers. The ray-tracing method is employed, its specific implementation is explained, and its results are compared with experimental ones, both from our laboratory and from the literature. The results show that the current commercial graded-index polymer optical fibers can be used to measure a large range of refractive indices with several advantages over glass fibers.

  18. A Liquid Prism for Refractive Index Studies

    NASA Astrophysics Data System (ADS)

    Edmiston, Michael D.

    2001-11-01

    A hollow glass prism filled with liquid becomes a "liquid prism". A simple method for constructing hollow glass prisms is presented. A method is given for a demonstration that uses the liquid prism with a laser or laser pointer so the audience can observe differences in refractive index for various liquids. The demonstration provides a quick and easy determination of the sugar content of soft drinks and juices. The prism makes it easy to determine a numerical value for the refractive index of a liquid.

  19. Refractive acoustic devices for airborne sound.

    PubMed

    Cervera, F; Sanchis, L; Sánchez-Pérez, J V; Martínez-Sala, R; Rubio, C; Meseguer, F; López, C; Caballero, D; Sánchez-Dehesa, J

    2002-01-14

    We show that a sonic crystal made of periodic distributions of rigid cylinders in air acts as a new material which allows the construction of refractive acoustic devices for airborne sound. It is demonstrated that, in the long-wave regime, the crystal has low impedance and the sound is transmitted at subsonic velocities. Here, the fabrication and characterization of a convergent lens are presented. Also, an example of a Fabry-Perot interferometer based on this crystal is analyzed. It is concluded that refractive devices based on sonic crystals behave in a manner similar to that of optical systems.

  20. Plasmonic crystal enhanced refractive index sensing

    SciTech Connect

    Stein, Benedikt; Devaux, Eloïse; Genet, Cyriaque Ebbesen, Thomas W.

    2014-06-23

    We demonstrate experimentally how the local anisotropy of the dispersion relation of surface plasmon modes propagating over periodic metal gratings can lead to an enhancement of the figure of merit of refractive index sensors. Exploiting the possibility to acquire defocused images of the Fourier space of a highly stable leakage radiation microscope, we report a twofold increase in sensing sensitivity close to the band gap of a one-dimensional plasmonic crystal where the anisotropy of the band structure is the most important. A practical sensing resolution of O(10{sup −6}) refractive index units is demonstrated.

  1. Ray Curvature and Refraction of Wave Packets.

    DTIC Science & Technology

    1978-09-01

    1!~~~~~ _ ‘ AD AOM 302 FLORIDA STATE UNIV TALLAHASSEE DEPT OF OCEANOGRAPHY FIG B/3 RAY CURVATURE AND REFRACTION OF WAVE PACKETS. (U) SEP 78 .J E...BREEDING N00014—77—C—0329 UNCLASSIFIED TR JE6 3 NL _ _ _ rwii__ _ ~iU ir!I I -~~ RAYOJR\\1L~[UREAND REFRACI ION OF WAVE F1~\\CKET~S ~y J. Ernest Breeding...01 29 014 -~ Technical Report No. JEB-3 Department of Oceanography • Florida State University RAY CURVATURE AND REFRACTION OF WAVE PACKETS b O G • J

  2. Constraining Subsurface Structure and Composition Using Seismic Refraction Surveys of Proglacial Valleys in the Cordillera Blanca, Peru

    NASA Astrophysics Data System (ADS)

    Glas, R. L.; Lautz, L.; McKenzie, J. M.; Mark, B. G.; Baker, E. A.; Aubry-Wake, C.; Somers, L. D.; Wigmore, O.

    2015-12-01

    As tropical glaciers rapidly recede in response to climate change, the storage and discharge of groundwater will play an increasing role in regulating river baseflow, particularly during the dry season, when stream flow is currently sustained predominantly by glacial melt. Little is understood regarding the hydrogeologic processes controlling base flow characteristics of low-gradient proglacial valleys of the Cordillera Blanca in Northwestern Peru, which has the world's highest density of tropical glaciers. To better understand the processes of groundwater storage and discharge in proglacial meadows, we completed seismic refraction surveys in three representative valleys of the Cordillera Blanca range: the Quilcayhuanca, Yanamarey, and Pachacoto valleys. The locations of survey transects were chosen based on locations of previous sediment core sampling, GPR lines, and quantification of groundwater-surface water interaction derived from dye and temperature tracing experiments. The seismic surveys consisted of 48 vertical component geophones with 2.5 m spacing. Across the three representative valleys a total of 15 surveys were conducted, covering a distance of 1800 m in cross, down, and oblique-valley directions. Preliminary interpretation of the seismic refraction data indicates a maximum imaging depth of 16 m below land surface, and a transition from glacio-lacustrine sediments to buried saturated talus at a depth of 6 m in the Quilcayhuanca valley. The organic-rich glacio-lacustrine sediments in the Yanamarey valley have seismic velocities ranging from 300 to 800 m/s and are >16 m in thickness at mid- valley. Weathered metasedimentary bedrock in the Pachacoto valley was imaged at ~5 m below the valley surface, exhibiting a p-wave velocity of 3400 m/s. The knowledge of hydrogeologic structure derived from seismic refraction surveys will provide crucial boundary conditions for future groundwater models of the valleys of the Cordillera Blanca.

  3. Modeling of mouse eye and errors in ocular parameters affecting refractive state

    NASA Astrophysics Data System (ADS)

    Bawa, Gurinder

    Rodents eye are particularly used to study refractive error state of an eye and development of refractive eye. Genetic organization of rodents is similar to that of humans, which makes them interesting candidates to be researched upon. From rodents family mice models are encouraged over rats because of availability of genetically engineered models. Despite of extensive work that has been performed on mice and rat models, still no one is able to quantify an optical model, due to variability in the reported ocular parameters. In this Dissertation, we have extracted ocular parameters and generated schematics of eye from the raw data from School of Medicine, Detroit. In order to see how the rays would travel through an eye and the defects associated with an eye; ray tracing has been performed using ocular parameters. Finally we have systematically evaluated the contribution of various ocular parameters, such as radii of curvature of ocular surfaces, thicknesses of ocular components, and refractive indices of ocular refractive media, using variational analysis and a computational model of the rodent eye. Variational analysis revealed that variation in all the ocular parameters does affect the refractive status of the eye, but depending upon the magnitude of the impact those parameters are listed as critical or non critical. Variation in the depth of the vitreous chamber, thickness of the lens, radius of the anterior surface of the cornea, radius of the anterior surface of the lens, as well as refractive indices for the lens and vitreous, appears to have the largest impact on the refractive error and thus are categorized as critical ocular parameters. The radii of the posterior surfaces of the cornea and lens have much smaller contributions to the refractive state, while the radii of the anterior and posterior surfaces of the retina have no effect on the refractive error. These data provide the framework for further refinement of the optical models of the rat and mouse

  4. Refractive index of air: 3. The roles of CO2, H2O, and refractivity virials.

    PubMed

    Ciddor, Philip E

    2002-04-20

    The author's recent studies of the refractive index of air are extended, and several assumptions made therein are further examined. It is shown that the alternative dispersion equations for CO2, which are due to Edlen [Metrologia 2, 71 (1966)] and Old et al. [J. Opt. Soc. Am. 61, 89 (1971)] result in differences of less than 2 x 10(-9) in the phase refractive index and less than 3 x 10(-9) in the group refractive index for current and predicted concentrations of CO2. However, because the dispersion equation given by Old et al. is consistent with experimental data in the near infrared, it is preferable to the equation used by Edlen, which is valid only in the ultraviolet and the visible. The classical measurement by Barrell and Sears [Philos. Trans. R. Soc. London Ser. A 238, 1 (1939)] on the refractivity of moist air is shown to have some procedural errors in addition to the one discussed by Birch and Downs [Metrologia 30, 155 (1993)]. It is shown that for normal atmospheric conditions the higher refractivity virial coefficients related to the Lorentz-Lorenz relation are adequately incorporated into the empirically determined first refractivity virial. As a guide to users the practical limits to the calculation of the refractive index of the atmosphere that result from the uncertainties in the measurement of the various atmospheric parameters are summarized.

  5. Compositional dependence of optical band gap and refractive index in lead and bismuth borate glasses

    SciTech Connect

    Mallur, Saisudha B.; Czarnecki, Tyler; Adhikari, Ashish; Babu, Panakkattu K.

    2015-08-15

    Highlights: • Refractive indices increase with increasing PbO/Bi{sub 2}O{sub 3} content. • Optical band gap arises due to direct forbidden transition. • Optical band gaps decrease with increasing PbO/Bi{sub 2}O{sub 3} content. • New empirical relation between the optical band gap and the refractive index. - Abstract: We prepared a series of lead and bismuth borate glasses by varying PbO/Bi{sub 2}O{sub 3} content and studied refractive index and optical band gap as a function of glass composition. Refractive indices were measured very accurately using a Brewster’s angle set up while the optical band gaps were determined by analyzing the optical absorption edge using the Mott–Davis model. Using the Lorentz–Lorentz method and the effective medium theory, we calculated the refractive indices and then compared them with the measured values. Bismuth borate glasses show better agreement between the calculated values of the refractive index and experimental values. We used a differential method based on Mott–Davis model to obtain the type of transition and optical band gap (E{sub opt}) which in turn was compared with the value of E{sub opt} obtained using the extinction coefficient. Our analysis shows that in both lead and bismuth borate glasses, the optical band gap arises due to direct forbidden transition. With increasing PbO/Bi{sub 2}O{sub 3} content, the absorption edge shifts toward longer wavelengths and the optical band gap decreases. This behavior can be explained in terms of changes to the Pb−O/Bi−O chemical bonds with glass composition. We obtained a new empirical relation between the optical band gap and the refractive index which can be used to accurately determine the electronic oxide polarizability in lead and bismuth oxide glasses.

  6. Effects of Long-Wavelength Lighting on Refractive Development in Infant Rhesus Monkeys

    PubMed Central

    Smith, Earl L.; Hung, Li-Fang; Arumugam, Baskar; Holden, Brien A.; Neitz, Maureen; Neitz, Jay

    2015-01-01

    Purpose Differences in the spectral composition of lighting between indoor and outdoor scenes may contribute to the higher prevalence of myopia in children who spend low amounts of time outdoors. Our goal was to determine whether environments dominated by long-wavelength light promote the development of myopia. Methods Beginning at 25 ± 2 days of age, infant monkeys were reared with long-wavelength-pass (red) filters in front of one (MRL, n = 6) or both eyes (BRL, n = 7). The filters were worn continuously until 146 ± 7 days of age. Refractive development, corneal power, and vitreous chamber depth were assessed by retinoscopy, keratometry, and ultrasonography, respectively. Control data were obtained from 6 monkeys reared with binocular neutral density (ND) filters and 33 normal monkeys reared with unrestricted vision under typical indoor lighting. Results At the end of the filter-rearing period, the median refractive error for the BRL monkeys (+4.25 diopters [D]) was significantly more hyperopic than that for the ND (+2.22 D; P = 0.003) and normal monkeys (+2.38 D; P = 0.0001). Similarly, the MRL monkeys exhibited hyperopic anisometropias that were larger than those in normal monkeys (+1.70 ± 1.55 vs. −0.013 ± 0.33 D, P < 0.0001). The relative hyperopia in the treated eyes was associated with shorter vitreous chambers. Following filter removal, the filter-reared monkeys recovered from the induced hyperopic errors. Conclusions The observed hyperopic shifts indicate that emmetropization does not necessarily target the focal plane that maximizes luminance contrast and that reducing potential chromatic cues can interfere with emmetropization. There was no evidence that environments dominated by long wavelengths necessarily promote myopia development. PMID:26447984

  7. Wave propagation in pulsar magnetospheres - Refraction of rays in the open flux zone

    NASA Technical Reports Server (NTRS)

    Barnard, J. J.; Arons, J.

    1986-01-01

    The propagation of waves through a relativistically outflowing electron-positron plasma in a very strong dipolar magnetic field, conditions expected in pulsar magnetospheres, is investigated. Halmilton's equations is derived for the propagation of rays through a plasma which is inhomogeneous in density, magnetic field directions, and Lorentz factor. These equations are solved for rays propagating through the plasmas outflowing along the 'open' dipolar field lines in which the density decreases inversely as the radius cubed and in the case where gradients transverse to the radial direction exist. In the radial case, the effects of refraction on pulse profiles, spectrum, and polarization are examined, and the effects of a transverse gradient are indicated. Attention is given to models in which the observed broad bandwidth in the radio emission has its origin in a radius to frequency map. Models with broad-band emission at a single radius are also studied. These are compared to observations of pulse width and pulse component separation as a function of frequency. The origin of 'orthogonal modes' is discussed.

  8. Characterization of the Refractive Index of Strained GaInNAs Layers by Spectroscopic Ellipsometry

    NASA Astrophysics Data System (ADS)

    Kitatani, Takeshi; Kondow, Masahiko; Shinoda, Kazunori; Yazawa, Yoshiaki; Okai, Makoto

    1998-03-01

    We have characterized the refractive index of strained GaInNAs layers. Using spectroscopic ellipsometry (SE), the variation in optical constants of GaInNAs layers, about 6 nm thick with a nitrogen content lower than 1%, can be clearly observed. Analysis of the SE data, including the strain effect in the layer, clarified that the refractive index of GaInNAs increases in proportion to the nitrogen content. While the trend for increase in refractive index with a decrease in the bandgap energy is the same as that observed in conventional III V alloy semiconductors, the rate of increase is found to be much larger than that in GaInAs. This result suggests a large density of states in the conduction band characteristics of this type of material system that includes nitrogen atoms.

  9. Calculations of atmospheric refraction for spacecraft remote-sensing applications

    NASA Technical Reports Server (NTRS)

    Chu, W. P.

    1983-01-01

    Analytical solutions to the refraction integrals appropriate for ray trajectories along slant paths through the atmosphere are derived in this paper. This type of geometry is commonly encountered in remote-sensing applications utilizing an occultation technique. The solutions are obtained by evaluating higher-order terms from expansion of the refraction integral and are dependent on the vertical temperature distributions. Refraction parameters such as total refraction angles, air masses, and path lengths can be accurately computed. It is also shown that the method can be used for computing refraction parameters in astronomical refraction geometry for large zenith angles.

  10. Refractive effects in 9Be scattering and nuclear rainbow ghosts

    NASA Astrophysics Data System (ADS)

    Satchler, G. R.; Fulmer, C. B.; Auble, R. L.; Ball, J. B.; Bertrand, F. E.; Erb, K. A.; Gross, E. E.; Hensley, D. C.

    1983-08-01

    Data for the elastic scattering of 9Be on 12C and 16O at 158 MeV provide evidence of refractive effects that allow the optical potentials to be determined with little ambiguity. The real potentials are deep. Large angle data indicate dominance of negative-angle scattering from the far side of the target nucleus. The analysis also implies a residual rainbow phenomenon, contrary to what has been seen previously in heavy-ion scattering. We suggest this be called a rainbow ghost. Operated by Union Carbide Corporation under contract W-7405-eng-26 with the US Department of Energy.

  11. Joint analysis of refractions with surface waves: An inverse solution to the refraction-traveltime problem

    USGS Publications Warehouse

    Ivanov, J.; Miller, R.D.; Xia, J.; Steeples, D.; Park, C.B.

    2006-01-01

    We describe a possible solution to the inverse refraction-traveltime problem (IRTP) that reduces the range of possible solutions (nonuniqueness). This approach uses a reference model, derived from surface-wave shear-wave velocity estimates, as a constraint. The application of the joint analysis of refractions with surface waves (JARS) method provided a more realistic solution than the conventional refraction/tomography methods, which did not benefit from a reference model derived from real data. This confirmed our conclusion that the proposed method is an advancement in the IRTP analysis. The unique basic principles of the JARS method might be applicable to other inverse geophysical problems. ?? 2006 Society of Exploration Geophysicists.

  12. Tropospheric Refractivity Profiles Inferred from RF Measurements-Passive Refractive Index by Satellite Monitoring (PRISM).

    DTIC Science & Technology

    1980-10-24

    238, Integrated Refractive Effects Prediction System (IREPS), Interim User’s Manual , by HV Hitney and RA Paulus, March 1979. 7 Two methods are used by...refractivity, N, as (n-I) X 10’, which has values in the range 0 to 500. For radio frequencies, the refractivity is related to atmospheric tempera - ture...acquisition band, the first local oscillators are manually ad3usted to drive the IF to its nominal 5 kHz. Both first local oscillators (Hewlett Packard

  13. Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel

    NASA Astrophysics Data System (ADS)

    Sung, Yongjin; Lue, Niyom; Hamza, Bashar; Martel, Joseph; Irimia, Daniel; Dasari, Ramachandra R.; Choi, Wonshik; Yaqoob, Zahid; So, Peter

    2014-02-01

    The refractive index of biological specimens is a source of intrinsic contrast that can be explored without any concerns of photobleaching or harmful effects caused by extra contrast agents. In addition, the refractive index contains rich information related to the metabolism of cells at the cellular and subcellular levels. Here, we report a no-moving-parts approach that provides three-dimensional refractive-index maps of biological samples continuously flowing in a microfluidic channel. Specifically, we use line illumination and off-axis digital holography to record the angular spectra of light scattered from flowing samples at high speed. Applying the scalar diffraction theory, we obtain accurate refractive-index maps of the samples from the measured spectra. Using this method, we demonstrate label-free three-dimensional imaging of live RKO human colon cancer cells and RPMI8226 multiple myeloma cells, and obtain the volume, dry mass, and density of these cells from the measured three-dimensional refractive-index maps. Our results show that the reported method, alone or in combination with the existing flow cytometry techniques, shows promise as a quantitative tool for stain-free characterization of a large number of cells.

  14. Refractive Surgery in Systemic and Autoimmune Disease

    PubMed Central

    AlKharashi, Majed; Bower, Kraig S.; Stark, Walter J.; Daoud, Yassine J.

    2014-01-01

    Patients with underlying systemic disease represent challenging treatment dilemma to the refractive surgeon. The refractive error in this patient population is accompanied by a systemic disease that may have an ocular or even a corneal component. The literature is rather sparse about the use of laser refractive surgery (LRS) and such procedure is not approved by the United States Food and Drug Administration (FDA) in this patient population. Patients with collagen vascular disease, diabetes mellitus (DM), allergic and atopic disease, or human immunodeficiency virus (HIV) are never ideal for LRS. Patients with uncontrolled systemic disease or ocular involvement of the disease should not undergo LRS. However, a patient with well-controlled and mild disease, no ocular involvement, and not on multidrug regimen may be a suitable candidate if they meet stringent criteria. There is a need for a large, multicenter, controlled trial to address the safety and efficacy of LRS in patients with systemic disease before such technology can be widely adopted by the refractive surgery community. PMID:24669141

  15. A Mechanical Analogue of the Refracting Telescope

    ERIC Educational Resources Information Center

    Vannoni, Maurizio; Molesini, Giuseppe; Sordini, Andrea; Straulino, Samuele

    2011-01-01

    The recent celebration of the discoveries made by Galileo four centuries ago has attracted new attention to the refracting telescope and to its use as an instrument for the observation of the night sky. This has offered the opportunity for addressing in the classroom the basic principles explaining the operation of the telescope. When doing so, a…

  16. Subjective refraction: the mechanism underlying the routine.

    PubMed

    Harris, W F

    2007-11-01

    The routine of subjective refraction is usually understood, explained and taught in terms of the relative positions of line or point foci and the retina. This paper argues that such an approach makes unnecessary and sometimes invalid assumptions about what is actually happening inside the eye. The only assumption necessary in fact is that the subject is able to guide the refractionist to (or close to) the optimum power for refractive compensation. The routine works even in eyes in which the interval of Sturm does not behave as supposed; it would work, in fact, regardless of the structure of the eye. The idealized subjective refraction routine consists of two steps: the first finds the best sphere (the stigmatic component) and the second finds the remaining Jackson cross-cylinder (the antistigmatic component). The model makes use of the concept of symmetric dioptric power space. The second part of the refraction routine can be performed with Jackson cross-cylinders alone. However, it is usually taught and practiced using spheres, cylinders and Jackson cross-cylinders in a procedure that is not easy to understand and learn. Recognizing that this part of the routine is equivalent to one involving Jackson cross-cylinders only allows one to teach and understand the procedure more naturally and easily.

  17. Refraction of light by light in vacuum

    NASA Astrophysics Data System (ADS)

    Sarazin, Xavier; Couchot, François; Djannati-Ataï, Arache; Guilbaud, Olivier; Kazamias, Sophie; Pittman, Moana; Urban, Marcel

    2016-01-01

    In very intense electromagnetic fields, the vacuum refractive index is expected to be modified due to nonlinear quantum electrodynamics (QED) properties. Several experimental tests using high intensity lasers have been proposed to observe electromagnetic nonlinearities in vacuum, such as the diffraction or the reflection of intense laser pulses. We propose a new approach which consists in observing the refraction, i.e. the rotation of the waveplanes of a probe laser pulse crossing a transverse vacuum index gradient. The latter is produced by the interaction of two very intense and ultra short laser pulses, used as pump pulses. At the maximum of the index gradient, the refraction angle of the probe pulse is estimated to be 0.2 × (w0/10 μm)-3 × I/1J prad, where I is the total energy of the two pump pulses and w0 is the minimum waist (fwhm) at the interaction area. Assuming the most intense laser pulses attainable by the LASERIX facility (I = 25 J, 30 fs fwhm duration, 800 nm central wavelength) and assuming a minimum waist of w = 10 μm (fwhm) (corresponding to an intensity of the order of 1021 W/cm2), the expected maximum refraction angle is about 5 prad. An experimental setup, using a Sagnac interferometer, is proposed to perform this measurement.

  18. Validation of Ray Tracing Code Refraction Effects

    NASA Technical Reports Server (NTRS)

    Heath, Stephanie L.; McAninch, Gerry L.; Smith, Charles D.; Conner, David A.

    2008-01-01

    NASA's current predictive capabilities using the ray tracing program (RTP) are validated using helicopter noise data taken at Eglin Air Force Base in 2007. By including refractive propagation effects due to wind and temperature, the ray tracing code is able to explain large variations in the data observed during the flight test.

  19. Blending History with Physics: Acoustic Refraction.

    ERIC Educational Resources Information Center

    Ross, Charles D.

    2000-01-01

    Argues that the study of refraction of sound waves, although usually neglected, is an excellent ancillary to the normal optical approach in physics courses. Discusses the historical context of interest in the science behind outdoor sound propagation, particularly during the Civil War in the United States. (WRM)

  20. Reflection, refraction, and the Legendre transform.

    PubMed

    Gutiérrez, Cristian E

    2011-02-01

    We construct in dimension two a mirror that reflects collimated rays into a set of directions that amplify the image and an optical lens so that collimated rays are refracted into a set of directions with a prescribed magnification factor. The profiles of these optical surfaces are given by explicit formulas involving the Legendre transformation.

  1. Compound refractive X-ray lens

    DOEpatents

    Nygren, David R.; Cahn, Robert; Cederstrom, Bjorn; Danielsson, Mats; Vestlund, Jonas

    2000-01-01

    An apparatus and method for focusing X-rays. In one embodiment, his invention is a commercial-grade compound refractive X-ray lens. The commercial-grade compound refractive X-ray lens includes a volume of low-Z material. The volume of low-Z material has a first surface which is adapted to receive X-rays of commercially-applicable power emitted from a commercial-grade X-ray source. The volume of low-Z material also has a second surface from which emerge the X-rays of commercially-applicable power which were received at the first surface. Additionally, the commercial-grade compound refractive X-ray lens includes a plurality of openings which are disposed between the first surface and the second surface. The plurality of openings are oriented such that the X-rays of commercially-applicable power which are received at the first surface, pass through the volume of low-Z material and through the plurality openings. In so doing, the X-rays which emerge from the second surface are refracted to a focal point.

  2. Ultrafast refractive index control of a terahertz graphene metamaterial.

    PubMed

    Lee, Seung Hoon; Choi, Jeongmook; Kim, Hyeon-Don; Choi, Hyunyong; Min, Bumki

    2013-01-01

    Modulation of the refractive index of materials is elementary, yet it is crucial for the manipulation of electromagnetic waves. Relying on the inherent properties of natural materials, it has been a long-standing challenge in device engineering to increase the index-modulation contrast. Here, we demonstrate a significant amount of ultrafast index modulation by optically exciting non-equilibrium Dirac fermions in the graphene layer integrated onto a high-index metamaterial. Furthermore, an extremely-large electrical modulation of refractive index up to Δn ~ -3.4 (at 0.69 THz) is achieved by electrical tuning of the density of the equilibrium Dirac fermion in the graphene metamaterial. This manifestation, otherwise remaining elusive in conventional semiconductor devices, fully exploits the characteristic ultrafast charge relaxation in graphene as well as the strong capacitive response of the metamaterial, both of which enable us to drastically increase the light-matter interaction of graphene and the corresponding index contrast in the graphene metamaterials.

  3. Refractive Turbulence, Transient Propagation Disturbances, and Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Cote, O.; Wroblewski, D.; Hacker, J.

    This paper examines the proposition that mission limiting space situational awareness (SSA) has important and fundamental turbulence and propagation physics issues to be investigated. We propose to call these aspects, propagation situational awareness (PSA). Transient disturbances can be present in communication to and from ground stations and satellites and in the performance of ground based and space based optical and infra-red imaging and tracking systems. Propagation frequency is important in characterizing whether the source of the disturbance lay in the electron density fluctuations of ionosphere or the refractive turbulence of the neutral atmosphere. Over the past ten years high altitude airborne measurements of clear air and refractive turbulence were made in Australia to support design and performance evaluations of the Airborne Laser. More recently in collaboration with the Australian Defence Science & Technology Organization (DSTO) smaller aircraft were used to investigate the effect of ducting layers on the signal strength of an airborne emitter as a low cost simulation of potential for loss of track in the coverage pattern of an airborne radar. From 2002 onward we were also tasked to do fundamental investigations of clear air turbulence for flight safety evaluations of both manned and unmanned high altitude surveillance aircraft. These investigations covered a wide spread in frequency, from infra-red to microwave. Most of these investigations were confined to measurement days and altitudes where strong turbulence was expected. The decision to measure was based on predictions of the location of jet streams relative to the measurement area as well as bulk gradient Richardson (Ri) vertical profiles derived from radio sound measurements from stations surround the potential measurement location. We will show how all these analyses and decision aids, including the Ri profiles, can be used to estimate potential for propagation disturbances to SSA. Current DOD

  4. Specific features of measuring the optical power of artificial refractive and diffractive-refractive eye lenses

    NASA Astrophysics Data System (ADS)

    Lenkova, G. A.

    2016-08-01

    Methods for monitoring the optical power of artificial refractive eye lenses (intraocular lenses) based on measuring focal lengths in air and in medium are analyzed. The methods for determining the refraction of diffractive-refractive lenses (in particular, of MIOL-Akkord type), with allowance for the specific features of the diffractive structure, are considered. A computer simulation of the measurement of the focal length of MIOL-Akkord lenses is performed. The effective optical power of the diffractive component of these lenses is shown to depend on the diaphragm diameter. The optimal diaphragm diameter, at which spherical aberrations do not affect the position of foci, is found to be 3 mm. Possible errors in measuring the focal lengths are analyzed, and the necessary corrections that must be introduced into measurement results and calculations of refractions are determined.

  5. Effects of myopic spectacle correction and radial refractive gradient spectacles on peripheral refraction.

    PubMed

    Tabernero, Juan; Vazquez, Daniel; Seidemann, Anne; Uttenweiler, Dietmar; Schaeffel, Frank

    2009-08-01

    The recent observation that central refractive development might be controlled by the refractive errors in the periphery, also in primates, revived the interest in the peripheral optics of the eye. We optimized an eccentric photorefractor to measure the peripheral refractive error in the vertical pupil meridian over the horizontal visual field (from -45 degrees to 45 degrees ), with and without myopic spectacle correction. Furthermore, a newly designed radial refractive gradient lens (RRG lens) that induces increasing myopia in all radial directions from the center was tested. We found that for the geometry of our measurement setup conventional spectacles induced significant relative hyperopia in the periphery, although its magnitude varied greatly among different spectacle designs and subjects. In contrast, the newly designed RRG lens induced relative peripheral myopia. These results are of interest to analyze the effect that different optical corrections might have on the emmetropization process.

  6. Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial.

    PubMed

    Zhu, R; Liu, X N; Hu, G K; Sun, C T; Huang, G L

    2014-11-24

    Negative refraction of elastic waves has been studied and experimentally demonstrated in three- and two-dimensional phononic crystals, but Bragg scattering is impractical for low-frequency wave control because of the need to scale the structures to manageable sizes. Here we present an elastic metamaterial with chiral microstructure made of a single-phase solid material that aims to achieve subwavelength negative refraction of elastic waves. Both negative effective mass density and modulus are observed owing to simultaneous translational and rotational resonances. We experimentally demonstrate negative refraction of the longitudinal elastic wave at the deep-subwavelength scale in the metamaterial fabricated in a stainless steel plate. The experimental measurements are in good agreement with numerical simulations. Moreover, wave mode conversion related with negative refraction is revealed and discussed. The proposed elastic metamaterial may thus be used as a flat lens for elastic wave focusing.

  7. Electrodynamics of moving media inducing positive and negative refraction

    SciTech Connect

    Grzegorczyk, Tomasz M.; Kong, Jin Au

    2006-07-15

    Negative refraction is a phenomenon that has been recently reported with left-handed media (either isotropic or not), photonic crystals, and rotated uniaxial media. In this Brief Report, we identify another origin of negative refraction, due to the motion of the transmitted medium parallel to the interface at which refraction occurs. Previous works in this domain have concentrated on media velocities that are above the Cerenkov limit, while we show here that negative refraction is in fact achievable at any velocities of the transmitted medium. A possible experimental implementation is proposed to verify this effect. Next, we consider an isotropic frequency-dispersive medium for which the index of refraction can take negative values, and we study the wave refraction phenomenon as a function of frequency and medium velocity. It is found that the motion of the medium induces a rotation of refraction, which can either enhance or attenuate the natural negative refraction of the medium.

  8. Automatic Refraction: How It Is Done: Some Clinical Results

    ERIC Educational Resources Information Center

    Safir, Aran; And Others

    1973-01-01

    Compaired are methods of determining visual refraction needs of young children or other unreliable observers by means of retinosocopy or the Opthalmetron, an automatic instrument which can be operated by a technician with no knowledge of refraction. (DB)

  9. Design of Amphoteric Refraction Models Using WAVICA and RAYICA

    NASA Technical Reports Server (NTRS)

    Su, Richard

    2004-01-01

    The phenomenon of refraction of light is due to refractive index mismatches in two different media. However, to achieve this effect, a finite reflection loss is inevitable. A recent finding presented a unique type of interface, ferroelastic materials, that enables refraction without any reflection for either an electron or a light beam. This property is called total refraction. The same type of interface that yields total refraction can also yield amphoteric refraction, where the index of refraction can be either positive or negative depending on the incident angle. This interface could potentially be used to steer light without reflections which could have major applications in high power optics. My goal this summer is to first familiarize myself with the Mathematica software, especially the Wavica and Rayica packages. I will then model the amphoteric refraction by either modifying the Wavica and Rayica packages or using the built-in functions in these packages.

  10. Goos-Hänchen shift in negatively refractive media.

    PubMed

    Berman, P R

    2002-12-01

    The Goos-Hänchen shift is calculated when total internal reflection occurs at an interface between "normal" and negatively refractive media. The shift is negative, consistent with the direction of energy flow in the negatively refractive medium.

  11. Negative light refraction in a gradient medium with ultrasound-modulated refractive index

    NASA Astrophysics Data System (ADS)

    Naimi, E. K.; Vekilov, Yu. Kh.

    2015-01-01

    The conditions of the formation of a spatially ordered optical structure with an ultrasound-modulated refractive index in a gradient medium have been considered. It has been shown that the excitation of a standing ultrasonic wave in the medium creates a structure consisting of trajectories of separate light beams, which is a superlattice of the "dynamic 4D photonic crystal." Regions corresponding to negative light refraction have been revealed in beam trajectories. Possible fields of application of such structures have been discussed.

  12. [Results of refractive surgery in hyperopic and combined astigmatism].

    PubMed

    Vlaicu, Valeria

    2013-01-01

    The refractive surgery includes a lot of procedures for changing the refraction of the eye to obtain a better visual acuity with no glasses or contact lenses. LASIK is the most commonly performed laser refractive surgery today. The goal is to present the postoperative evolution of the refraction and visual acuity after LASIK for Mixed and Hyperopic Astigmatism. The results show that LASIK is safe and predictible if we have well performed interventions and well-selected patients.

  13. Ultrahigh refractive index chalcogenide based copolymers for infrared optics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Anderson, Laura E.; Namnabat, Soha; Char, Kookheon; Glass, Richard; Norwood, Robert A.; Pyun, Jeffrey

    2016-09-01

    Current trends in technology development demand increased miniaturization and higher level integration of electronic and photonic components. Such needs arise in emerging imaging systems, optoelectronic devices, optical interconnects and photonic integrated circuits. Compact, integrated photonics requires high refractive index materials, which primarily comprise crystalline and amorphous semiconductors, as well as chalcogenide glasses, which can possess refractive indices higher than 4 and good infrared transparency. There is currently no high refractive index (n 2 or above) that has the low cost production and ease of processing available in optical polymers. Such polymers would potentially cover applications that are not convenient or possible with crystalline and vitreous semiconductors. Examples of such applications include micro lens arrays for image sensors, optical adhesives for bonding and antireflection coatings, and high contrast optical waveguides. While much of the focus has been in the telecommunications transparency regions, significant new opportunities exist for a polymer which is capable of transmitting efficiently in the MWIR region. While there are polymers that have been synthesized with refractive indices as high as 1.75, these polymers are generally conjugated and incorporate heteroatoms such as sulfur or metals, and generally have complex and expensive syntheses. Here we report on new chalcogenide based copolymers with very high refractive index (n 2) that also have good optical transmission properties in the near-, short- and mid-wave infrared up to 5µm. These polymers are rich in sulfur, have low hydrogen content and were made using inverse vulcanization.

  14. Scaling property of the diffusion equation for light in a turbid medium with varying refractive index.

    PubMed

    Shendeleva, Margarita L; Molloy, John A

    2007-09-01

    A spatially varying refractive index leads to the bending of photon paths in a medium, which complicates the Monte Carlo modeling of a photon random walk. We show that the process of photon diffusion in a turbid medium with varying refractive index and curved photon paths can be mapped to the diffusion process in a medium with straight photon paths and modified optical properties. Specifically, the diffusion coefficient, the absorption, and the refractive index of the second medium should differ from the corresponding properties of the first medium by the factor of the squared refractive index of the first medium. The specific intensity of light in the second medium will then be equal to the specific intensity in the first medium divided by the same factor, which also means that the photon density distributions in the two media will be identical. In a Monte Carlo simulation the scaling property suggests that two different algorithms can be used to obtain the photon density distribution, namely, the algorithm with curved photon paths and given optical properties and the algorithm with straight photon paths and modified optical properties.

  15. Refractive Changes Induced by Strabismus Corrective Surgery in Adults

    PubMed Central

    Leshno, Ari; Ziv-Baran, Tomer; Stolovitch, Chaim

    2017-01-01

    Purpose. To investigate refractive changes after strabismus correction procedures among adults. Methods. Retrospective chart review of adult patients who had horizontal recti muscles surgery with preoperative and postoperative cycloplegic refraction measurements. The preoperative refraction was mathematically subtracted from the postoperative refraction, and the induced refractive changes were statistically analyzed. Vector analysis was used to examine the magnitude of the toric change. The proportion of clinically significant refractive change was evaluated as well. Results. Thirty-one eyes from 22 subjects met the criteria and were included in the final analysis. A significant postoperative refractive change of the spherical equivalent towards myopia and a change of the astigmatism in the with-the-rule direction were observed. In a subset of 9 cases a third cycloplegic refraction measurement demonstrated stable refraction compared to the 1-month postoperative measurement. In 10 cases of single eye surgery, significant refractive changes were observed only in the operated side when compared to the sound eye. The induced surgical refractive change was of clinical significance (≥0.5 D) in 11 eyes of 9 patients (40.9% of patients). Conclusions. Refractive changes are a significant side effect of horizontal strabismus corrective surgery among adults. Therefore, patients should be informed about it prior to surgery and should be rerefracted in the postoperative period. PMID:28191347

  16. Postoperative refraction in the second eye having cataract surgery.

    PubMed

    Leffler, Christopher T; Wilkes, Martin; Reeves, Juliana; Mahmood, Muneera A

    2011-01-01

    Introduction. Previous cataract surgery studies assumed that first-eye predicted and observed postoperative refractions are equally important for predicting second-eye postoperative refraction. Methods. In a retrospective analysis of 173 patients having bilateral sequential phacoemulsification, multivariable linear regression was used to predict the second-eye postoperative refraction based on refractions predicted by the SRK-T formula for both eyes, the first-eye postoperative refraction, and the difference in IOL selected between eyes. Results. The first-eye observed postoperative refraction was an independent predictor of the second eye postoperative refraction (P < 0.001) and was weighted more heavily than the first-eye predicted refraction. Compared with the SRK-T formula, this model reduced the root-mean-squared (RMS) error of the predicted refraction by 11.3%. Conclusions. The first-eye postoperative refraction is an independent predictor of the second-eye postoperative refraction. The first-eye predicted refraction is less important. These findings may be due to interocular symmetry.

  17. Shuttle program: Computing atmospheric scale height for refraction corrections

    NASA Technical Reports Server (NTRS)

    Lear, W. M.

    1980-01-01

    Methods for computing the atmospheric scale height to determine radio wave refraction were investigated for different atmospheres, and different angles of elevation. Tables of refractivity versus altitude are included. The equations used to compute the refraction corrections are given. It is concluded that very accurate corrections are determined with the assumption of an exponential atmosphere.

  18. Geometric phases in neutrino oscillations with nonlinear refraction

    NASA Astrophysics Data System (ADS)

    Johns, Lucas; Fuller, George M.

    2017-02-01

    Neutrinos propagating in dense astrophysical environments sustain nonlinear refractive effects due to neutrino-neutrino forward scattering. We study geometric phases in neutrino oscillations that arise out of cyclic evolution of the potential generated by these forward-scattering processes. We perform several calculations, exact and perturbative, that illustrate the robustness of such phases, and of geometric effects more broadly, in the flavor evolution of neutrinos. The scenarios we consider are highly idealized in order to make them analytically tractable, but they suggest the possible presence of complicated geometric effects in realistic astrophysical settings. We also point out that in the limit of extremely high neutrino densities, the nonlinear potential in three flavors naturally gives rise to non-Abelian geometric phases. This paper is intended to be accessible to neutrino experts and nonspecialists alike.

  19. A new target reconstruction method considering atmospheric refraction

    NASA Astrophysics Data System (ADS)

    Zuo, Zhengrong; Yu, Lijuan

    2015-12-01

    In this paper, a new target reconstruction method considering the atmospheric refraction is presented to improve 3D reconstruction accuracy in long rang surveillance system. The basic idea of the method is that the atmosphere between the camera and the target is partitioned into several thin layers radially in which the density is regarded as uniform; Then the reverse tracking of the light propagation path from sensor to target was carried by applying Snell's law at the interface between layers; and finally the average of the tracked target's positions from different cameras is regarded as the reconstructed position. The reconstruction experiments were carried, and the experiment results showed that the new method have much better reconstruction accuracy than the traditional stereoscopic reconstruction method.

  20. The effect of image radiometric correction on the accuracy of vegetation canopy density estimate using several Landsat-8 OLI’s vegetation indices: A case study of Wonosari area, Indonesia

    NASA Astrophysics Data System (ADS)

    Dewa, R. P.; Danoedoro, P.

    2017-01-01

    Recent studies on the use of spectral indices have involved radiometric correction as a prerequisite. However, study on the effect of radiometric correction level on the accuracy of biophysical parameters’ estimate is still rare in Indonesia. This study tried to investigate the influence of various radiometric correction levels and the number of vegetation strata on the accuracy of vegetation density estimates using NDVI, MSAVI2 and GEMI of Landsat 8 OLI. In this study, the dataset covering vegetated area in Wonosari, Gunung Kidul Regency, Indonesia was processed radiometrically using eight different methods, i.e. spectral radiance, at sensor reflectance, sun elevation correction, histogram adjustments using original DN, spectal radiance, at sensor reflectance, and sun position correction respectively, as well as dark object subtraction (DOS). Every image with specific correction level was then transformed using the aforementioned indices, in order correlate with the field-measured canopy density. The analysis were carried out by considering the number of canopy layers. This found that different radiometric correction methods resulted canopy density estimates with different accuracies. The number of canopy strata also played an important role. Every vegetation index transformation performed its best accuracy by using different radiometric correction method and different number of canopy layers.

  1. Refractive index measurement of the mouse crystalline lens using optical coherence tomography

    PubMed Central

    Chakraborty, Ranjay; Lacy, Kip D.; Tan, Christopher C.; Park, Han na; Pardue, Machelle T.

    2014-01-01

    In recent years, there has been a growing interest for using mouse models in refractive development and myopia research. The crystalline lens is a critical optical component of the mouse eye that occupies greater than 50% of the ocular space, and significant increases in thickness with age. However, changes in refractive index of the mouse crystalline lens are less known. In this study, we examined the changes in thickness and refractive index of the mouse crystalline lens for two different strains, wild-type (WT) and a nyx mutant (nob) over the course of normal visual development or after form deprivation. Refractive index and lens thickness measurements were made on ex vivo lens using spectral domain optical coherence tomography (SD-OCT). Comparison of refractive index measurements on 5 standard ball lenses using the SD-OCT and their known refractive indices (manufacturer provided) indicated good precision (intra-class correlation coefficient, 0.998 and Bland-Altman coefficient of repeatability, 0.116) of the SD-OCT to calculate mouse lens refractive index ex vivo. During normal visual development, lens thickness increased significantly with age for three different cohorts of mice, aged 4 (average thickness from both eyes; WT: 1.78 ± 0.03, nob: 1.79 ± 0.08 mm), 10 (WT: 2.02 ± 0.05, nob: 2.01 ± 0.04 mm) and 16 weeks (WT: 2.12 ± 0.06, nob: 2.09 ± 0.06 mm, p<0.001). Lens thickness was not significantly different between the two strains at any age (p=0.557). For mice with normal vision, refractive index for isolated crystalline lenses in nob mice was significantly greater than WT mice (mean for all ages; WT: 1.42 ± 0.01, nob: 1.44 ± 0.001, p<0.001). After 4 weeks of form deprivation to the right eye using a skull-mounted goggling apparatus, a thinning of the crystalline lens was observed in both right and left eyes of goggled animals compared to their naïve controls (average from both the right and the left eye) for both strains (p=0.052). In form deprived

  2. Analytical properties of the effective refractive index

    NASA Astrophysics Data System (ADS)

    Puzko, R. S.; Merzlikin, A. M.

    2017-01-01

    The propagation of a plane wave through a periodic layered system is considered in terms of the effective parameters. The problem of introduction of effective parameters is discussed. It was demonstrated that although the effective admittance cannot be introduced, it is possible to introduce the effective refractive index, which tends toward the Rytov value when the system size increases. It was shown that the effective wave vector derivative is an analytical function of frequency. In particular, the Kramers-Kronig-like relations for real and imaginary parts of the effective wave vector derivative were obtained. The Kramers-Kronig-like relations for the effective refractive index were also considered. The results obtained numerically were proved by exact solution of Maxwell's equations in the specific case of an "equi-impedance" system.

  3. Uncladded sensing fiber for refractive index measurement

    NASA Astrophysics Data System (ADS)

    Bhardwaj, V.; Gangwar, R. K.; Pathak, A. K.; Singh, V. K.

    2016-05-01

    The formation of chemically etched optical fiber for use in refractive index sensor is addressed. This presented design of a refractive index (RI) sensor is based on recording the power loss exhibited by radiation propagating through an etched multimode fiber (MMF) immersed in the liquid under study. The decreasing diameters of fibers are found to be strongly dependent on the temperature and etchant composition. This experiment was performed for different unclad etched fibers for same sensing length and the RI changes from 1.33 RIU to 1.38 RIU. When the multimode fiber (MMF) is etched for 12 hours the sensitivity of the sensor is approximately 204.25dBm/RIU, which is larger than without etched fiber having sensitivity 127.2dBm/RIU.

  4. Nonlinear refraction and reflection travel time tomography

    USGS Publications Warehouse

    Zhang, Jiahua; ten Brink, U.S.; Toksoz, M.N.

    1998-01-01

    We develop a rapid nonlinear travel time tomography method that simultaneously inverts refraction and reflection travel times on a regular velocity grid. For travel time and ray path calculations, we apply a wave front method employing graph theory. The first-arrival refraction travel times are calculated on the basis of cell velocities, and the later refraction and reflection travel times are computed using both cell velocities and given interfaces. We solve a regularized nonlinear inverse problem. A Laplacian operator is applied to regularize the model parameters (cell slownesses and reflector geometry) so that the inverse problem is valid for a continuum. The travel times are also regularized such that we invert travel time curves rather than travel time points. A conjugate gradient method is applied to minimize the nonlinear objective function. After obtaining a solution, we perform nonlinear Monte Carlo inversions for uncertainty analysis and compute the posterior model covariance. In numerical experiments, we demonstrate that combining the first arrival refraction travel times with later reflection travel times can better reconstruct the velocity field as well as the reflector geometry. This combination is particularly important for modeling crustal structures where large velocity variations occur in the upper crust. We apply this approach to model the crustal structure of the California Borderland using ocean bottom seismometer and land data collected during the Los Angeles Region Seismic Experiment along two marine survey lines. Details of our image include a high-velocity zone under the Catalina Ridge, but a smooth gradient zone between. Catalina Ridge and San Clemente Ridge. The Moho depth is about 22 km with lateral variations. Copyright 1998 by the American Geophysical Union.

  5. The ionospheric refraction at 38 MHz.

    NASA Astrophysics Data System (ADS)

    Milogradov-Turin, J.

    The investigation of the observed shift of the North Polar Spur (NPS) at the 38 MHz survey of Milogradov-Turin and Smith (1973) in respect to the position of the NPS on the survey at 408 MHz convolved to the same resolution (Haslam and Salter 1977) has shown that there is no dependence of the NPS position on frequency and that the ionospheric refraction should be larger than believed.

  6. Matched Index of Refraction Flow Facility

    ScienceCinema

    Mcllroy, Hugh

    2016-07-12

    What's 27 feet long, 10 feet tall and full of mineral oil (3000 gallons' worth)? If you said INL's Matched Index of Refraction facility, give yourself a gold star. Scientists use computers to model the inner workings of nuclear reactors, and MIR helps validate those models. INL's Hugh McIlroy explains in this video. You can learn more about INL energy research at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

  7. Matched Index of Refraction Flow Facility

    SciTech Connect

    Mcllroy, Hugh

    2010-01-01

    What's 27 feet long, 10 feet tall and full of mineral oil (3000 gallons' worth)? If you said INL's Matched Index of Refraction facility, give yourself a gold star. Scientists use computers to model the inner workings of nuclear reactors, and MIR helps validate those models. INL's Hugh McIlroy explains in this video. You can learn more about INL energy research at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

  8. Autonomous satellite navigation by stellar refraction

    NASA Technical Reports Server (NTRS)

    Gounley, R.; White, R.; Gai, E.

    1983-01-01

    This paper describes an error analysis of an autonomous navigator using refraction measurements of starlight passing through the upper atmosphere. The analysis is based on a discrete linear Kalman filter. The filter generated steady-state values of navigator performance for a variety of test cases. Results of these simulations show that in low-earth orbit position-error standard deviations of less than 0.100 km may be obtained using only 40 star sightings per orbit.

  9. Emerging Technology in Refractive Cataract Surgery

    PubMed Central

    Saraiva, João; Neatrour, Kristin; Waring IV, George O.

    2016-01-01

    Technology in cataract surgery is constantly evolving to meet the goals of both surgeons and patients. Recent major advances in refractive cataract surgery include innovations in preoperative and intraoperative diagnostics, femtosecond laser-assisted cataract surgery (FLACS), and a new generation of intraocular lenses (IOLs). This paper presents the latest technologies in each of these major categories and discusses how these contributions serve to improve cataract surgery outcomes in a safe, effective, and predictable manner. PMID:27433353

  10. Refraction effects of atmosphere on geodetic measurements to celestial bodies

    NASA Technical Reports Server (NTRS)

    Joshi, C. S.

    1973-01-01

    The problem is considered of obtaining accurate values of refraction corrections for geodetic measurements of celestial bodies. The basic principles of optics governing the phenomenon of refraction are defined, and differential equations are derived for the refraction corrections. The corrections fall into two main categories: (1) refraction effects due to change in the direction of propagation, and (2) refraction effects mainly due to change in the velocity of propagation. The various assumptions made by earlier investigators are reviewed along with the basic principles of improved models designed by investigators of the twentieth century. The accuracy problem for various quantities is discussed, and the conclusions and recommendations are summarized.

  11. Compound Refractive Lenses for Thermal Neutron Applications

    SciTech Connect

    Gary, Charles K.

    2013-11-12

    This project designed and built compound refractive lenses (CRLs) that are able to focus, collimate and image using thermal neutrons. Neutrons are difficult to manipulate compared to visible light or even x rays; however, CRLs can provide a powerful tool for focusing, collimating and imaging neutrons. Previous neutron CRLs were limited to long focal lengths, small fields of view and poor resolution due to the materials available and manufacturing techniques. By demonstrating a fabrication method that can produce accurate, small features, we have already dramatically improved the focal length of thermal neutron CRLs, and the manufacture of Fresnel lens CRLs that greatly increases the collection area, and thus efficiency, of neutron CRLs. Unlike a single lens, a compound lens is a row of N lenslets that combine to produce an N-fold increase in the refraction of neutrons. While CRLs can be made from a variety of materials, we have chosen to mold Teflon lenses. Teflon has excellent neutron refraction, yet can be molded into nearly arbitrary shapes. We designed, fabricated and tested Teflon CRLs for neutrons. We demonstrated imaging at wavelengths as short as 1.26 ? with large fields of view and achieved resolution finer than 250 μm which is better than has been previously shown. We have also determined designs for Fresnel CRLs that will greatly improve performance.

  12. Adjustable hybrid diffractive/refractive achromatic lens

    PubMed Central

    Valley, Pouria; Savidis, Nickolaos; Schwiegerling, Jim; Dodge, Mohammad Reza; Peyman, Gholam; Peyghambarian, N.

    2011-01-01

    We demonstrate a variable focal length achromatic lens that consists of a flat liquid crystal diffractive lens and a pressure-controlled fluidic refractive lens. The diffractive lens is composed of a flat binary Fresnel zone structure and a thin liquid crystal layer, producing high efficiency and millisecond switching times while applying a low ac voltage input. The focusing power of the diffractive lens is adjusted by electrically modifying the sub-zones and re-establishing phase wrapping points. The refractive lens includes a fluid chamber with a flat glass surface and an opposing elastic polydimethylsiloxane (PDMS) membrane surface. Inserting fluid volume through a pump system into the clear aperture region alters the membrane curvature and adjusts the refractive lens’ focal position. Primary chromatic aberration is remarkably reduced through the coupling of the fluidic and diffractive lenses at selected focal lengths. Potential applications include miniature color imaging systems, medical and ophthalmic devices, or any design that utilizes variable focal length achromats. PMID:21503055

  13. Correction of subtle refractive error in aviators.

    PubMed

    Rabin, J

    1996-02-01

    Optimal visual acuity is a requirement for piloting aircraft in military and civilian settings. While acuity can be corrected with glasses, spectacle wear can limit or even prohibit use of certain devices such as night vision goggles, helmet mounted displays, and/or chemical protective masks. Although current Army policy is directed toward selection of pilots who do not require spectacle correction for acceptable vision, refractive error can become manifest over time, making optical correction necessary. In such cases, contact lenses have been used quite successfully. Another approach is to neglect small amounts of refractive error, provided that vision is at least 20/20 without correction. This report describes visual findings in an aviator who was fitted with a contact lens to correct moderate astigmatism in one eye, while the other eye, with lesser refractive error, was left uncorrected. Advanced methods of testing visual resolution, including high and low contrast visual acuity and small letter contrast sensitivity, were used to compare vision achieved with full spectacle correction to that attained with the habitual, contact lens correction. Although the patient was pleased with his habitual correction, vision was significantly better with full spectacle correction, particularly on the small letter contrast test. Implications of these findings are considered.

  14. Imaging techniques with refractive beam shaping optics

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Laskin, Vadim

    2012-10-01

    Applying of the refractive beam shapers in real research optical setups as well as in industrial installations requires very often manipulation of a final laser spot size. In many cases this task can be easily solved by using various imaging optical layouts presuming creating an image of a beam shaper output aperture. Due to the unique features of the refractive beam shapers of field mapping type, like flat wave front and low divergence of the collimated resulting beam with flattop or another intensity profile, there is a freedom in building of various imaging systems with using ordinary optical components, including off-the-shelf ones. There will be considered optical layouts providing high, up to 1/200×, de-magnifying factors, combining of refractive beam shapers like πShaper with scanning systems, building of relay imaging systems with extended depth of field. These optical layouts are widely used in such laser technologies like drilling holes in PCB, welding, various micromachining techniques with galvo-mirror scanning, interferometry and holography, various SLM-based applications. Examples of real implementations and experimental results will be presented as well.

  15. Excess of autorefraction over subjective refraction: dependence on age.

    PubMed

    Joubert, L; Harris, W F

    1997-06-01

    The purpose of this study was to examine the difference between subjective refraction and autorefraction for different age groups. We call the difference (autorefraction minus subjective refraction) the excess of autorefraction over subjective refraction or the autorefractive excess. Five age groups of 50 subjects each were used. Subjects in group 1 were aged between 1 and 10 years, group 2 between 11 and 20 years, group 3 between 21 and 30 years, group 4 between 31 and 40 years, and group 5 consisted of subjects over 41 years of age. Automatic refraction was performed with an Allergan Humphrey model 580 autorefractor. The data were analyzed using recently developed statistical methods for the analyzing of dioptric power. These methods include the use of the coordinate vector h as a representation of dioptric power. The results indicate that there is a statistically significant mean autorefractive excess and that the mean is different for different age groups. The behavior of the left and right eyes appears to be essentially the same. In terms of vector h the mean autorefractive excess for both the left and the right eyes of group 1 (1 to 10 years of age) is approximately (-0.25 0.00-0.43)'. It increases by roughly delta h = (0.10 0.00 0.10)' per decade. In more conventional terms the nearest equivalent sphere of the mean excess for group 1 is approximately -0.34 D for the right and for the left eyes. The mean autorefractive excess for group 1 is approximately -0.25 -0.18 x 180. The astigmatic component appears to be the same for all age groups, whereas the spherical component increases by approximately 0.1 D per decade. The standard deviations of the autorefractive excesses are relatively large for components h1, and h3 of h: they were between approximately 0.4 and 0.7 D, possibly decreasing slightly with age. The standard deviation of h2 remains at 0.2 D or less for all age groups. The greatest variation of autorefractive excess appears to be approximately in the

  16. Tissue Refractive Index Fluctuations Report on Cancer Development

    NASA Astrophysics Data System (ADS)

    Popescu, Gabriel

    2012-02-01

    The gold standard in histopathology relies on manual investigation of stained tissue biopsies. A sensitive and quantitative method for in situ tissue specimen inspection is highly desirable, as it will allow early disease diagnosis and automatic screening. Here we demonstrate that quantitative phase imaging of entire unstained biopsies has the potential to fulfill this requirement. Our data indicates that the refractive index distribution of histopathology slides, which contains information about the molecular scale organization of tissue, reveals prostate tumors. These optical maps report on subtle, nanoscale morphological properties of tissues and cells that cannot be recovered by common stains, including hematoxylin and eosin (H&E). We found that cancer progression significantly alters the tissue organization, as exhibited in our refractive index maps. Furthermore, using the quantitative phase information, we obtained the spatially resolved scattering mean free path and anisotropy factor g for entire biopsies and demonstrated their direct correlation with tumor presence. We found that these scattering parameters are able to distinguish between two adjacent grades, which is a difficult task and relevant for determining patient treatment. In essence, our results show that the tissue refractive index reports on the nanoscale tissue architecture and, in principle, can be used as an intrinsic marker for cancer diagnosis. [4pt] [1] Z. Wang, K. Tangella, A. Balla and G. Popescu, Tissue refractive index as marker of disease, Journal of Biomedical Optics, in press).[0pt] [2] Z. Wang, L. J. Millet, M. Mir, H. Ding, S. Unarunotai, J. A. Rogers, M. U. Gillette and G. Popescu, Spatial light interference microscopy (SLIM), Optics Express, 19, 1016 (2011).[0pt] [3] Z. Wang, D. L. Marks, P. S. Carney, L. J. Millet, M. U. Gillette, A. Mihi, P. V. Braun, Z. Shen, S. G. Prasanth and G. Popescu, Spatial light interference tomography (SLIT), Optics Express, 19, 19907-19918 (2011

  17. ABCD matrix for reflection and refraction of Gaussian beams at the surface of a parabola of revolution.

    PubMed

    Liu, Hongzhan; Liu, Liren; Xu, Rongwei; Luan, Zhu

    2005-08-10

    We report the formulation of an ABCD matrix for reflection and refraction of Gaussian light beams at the surface of a parabola of revolution that separate media of different refractive indices based on optical phase matching. The equations for the spot sizes and wave-front radii of the beams are also obtained by using theABCD matrix. With these matrices, we can more conveniently design and evaluate some special optical systems, including these kinds of elements.

  18. Impact of density information on Rayleigh surface wave inversion results

    NASA Astrophysics Data System (ADS)

    Ivanov, Julian; Tsoflias, Georgios; Miller, Richard D.; Peterie, Shelby; Morton, Sarah; Xia, Jianghai

    2016-12-01

    We assessed the impact of density on the estimation of inverted shear-wave velocity (Vs) using the multi-channel analysis of surface waves (MASW) method. We considered the forward modeling theory, evaluated model sensitivity, and tested the effect of density information on the inversion of seismic data acquired in the Arctic. Theoretical review, numerical modeling and inversion of modeled and real data indicated that the density ratios between layers, not the actual density values, impact the determination of surface-wave phase velocities. Application on real data compared surface-wave inversion results using: a) constant density, the most common approach in practice, b) indirect density estimates derived from refraction compressional-wave velocity observations, and c) from direct density measurements in a borehole. The use of indirect density estimates reduced the final shear-wave velocity (Vs) results typically by 6-7% and the use of densities from a borehole reduced the final Vs estimates by 10-11% compared to those from assumed constant density. In addition to the improved absolute Vs accuracy, the resulting overall Vs changes were unevenly distributed laterally when viewed on a 2-D section leading to an overall Vs model structure that was more representative of the subsurface environment. It was observed that the use of constant density instead of increasing density with depth not only can lead to Vs overestimation but it can also create inaccurate model structures, such as a low-velocity layer. Thus, optimal Vs estimations can be best achieved using field estimates of subsurface density ratios.

  19. Reflection and refraction of an Airy beam at a dielectric interface.

    PubMed

    Chremmos, Ioannis D; Efremidis, Nikolaos K

    2012-06-01

    Reflection and refraction of a finite-power Airy beam at the interface between two dielectric media are investigated analytically and numerically. The formulation takes into account the paraxial nature of the optical beams to derive convenient field evolution equations in coordinate frames moving along Snell's refraction and reflection axes. Through numerical simulations, the self-accelerating dynamics of the Airy-like refracted and reflected beams are observed. Of special interest are the cases of critical incidence at Brewster and total-internal-reflection (TIR) angles. In the former case, we find that the reflected beam achieves self-healing, despite the severe suppression of a part of its spectrum, while, in the latter case, the beam remains nearly unaffected except for the Goos-Hänchen shift. The self-accelerating quality persists even if the beam is trapped by multiple TIRs inside a dielectric film. The grazing incidence of an Airy beam at the interface between two media with close refractive indices is also investigated, revealing that the interface can act as a filter depending on the beam scale and tilt. We finally consider reverse refraction and perfect imaging of an Airy beam into a left-handed medium.

  20. Estimation of volcanic ash refractive index from satellite infrared sounder data

    NASA Astrophysics Data System (ADS)

    Ishimoto, H.; Masuda, K.

    2014-12-01

    The properties of volcanic ash clouds (cloud height, optical depth, and effective radius of the particles) are planned to estimate from the data of the next Japanese geostationary meteorological satellite, Himawari 8/9. The volcanic ash algorithms, such as those proposed by NOAA/NESDIS and by EUMETSAT, are based on the infrared absorption properties of the ash particles, and the refractive index of a typical volcanic rock (i.e. andesite) has been used in the forward radiative transfer calculations. Because of a variety of the absorption properties for real volcanic ash particles at infrared wavelengths (9-13 micron), a large retrieval error may occur if the refractive index of the observed ash particles was different from that assumed in the retrieval algorithm. Satellite infrared sounder provides spectral information for the volcanic ash clouds. If we can estimate the refractive index of the ash particles from the infrared sounder data, a dataset of the optical properties for similar rock type of the volcanic ash can be prepared for the ash retrieval algorithms of geostationary/polar-orbiting satellites in advance. Furthermore, the estimated refractive index can be used for a diagnostic and a correction of the ash particle model in the retrieval algorithm within a period of the volcanic activities. In this work, optimal estimation of the volcanic ash parameters was conducted through the radiative transfer calculations for the window channels of the atmospheric infrared sounder (AIRS). The estimated refractive indices are proposed for the volcanic ash particles of some eruption events.

  1. Surgical options for correction of refractive error following cataract surgery.

    PubMed

    Abdelghany, Ahmed A; Alio, Jorge L

    2014-01-01

    Refractive errors are frequently found following cataract surgery and refractive lens exchange. Accurate biometric analysis, selection and calculation of the adequate intraocular lens (IOL) and modern techniques for cataract surgery all contribute to achieving the goal of cataract surgery as a refractive procedure with no refractive error. However, in spite of all these advances, residual refractive error still occasionally occurs after cataract surgery and laser in situ keratomileusis (LASIK) can be considered the most accurate method for its correction. Lens-based procedures, such as IOL exchange or piggyback lens implantation are also possible alternatives especially in cases with extreme ametropia, corneal abnormalities, or in situations where excimer laser is unavailable. In our review, we have found that piggyback IOL is safer and more accurate than IOL exchange. Our aim is to provide a review of the recent literature regarding target refraction and residual refractive error in cataract surgery.

  2. High-refractive-index measurement with an elastomeric grating coupler

    NASA Astrophysics Data System (ADS)

    Kocabas, Askin; Ay, Feridun; Dâna, Aykutlu; Kiyat, Isa; Aydinli, Atilla

    2005-12-01

    An elastomeric grating coupler fabricated by the replica molding technique is used to measure the modal indices of a silicon-on-insulator (SOI) planar waveguide structure. Because of the van der Waals interaction between the grating mold and the waveguide, the elastomeric stamp makes conformal contact with the waveguide surface, inducing a periodic index perturbation at the contact region. The phase of the incident light is changed to match the guided modes of the waveguide. The modal and bulk indices are obtained by measuring the coupling angles. This technique serves to measure the high refractive index with a precision better than 10-3 and allows the elastomeric stamp to be removed without damaging the surface of the waveguide.

  3. SPR optimization using metamaterials in a D-type PCF refractive index sensor

    NASA Astrophysics Data System (ADS)

    Santos, D. F.; Guerreiro, A.; Baptista, J. M.

    2017-01-01

    Using the finite element method (FEM), this paper presents a numerical investigation of the performance analysis of a D-type photonic crystal fiber (D-type PCF) for refractive index sensing, based on surface plasmon resonance (SPR) with a planar structure made out of a metamaterial. COMSOL Multiphysics was used to evaluate the design of the referred refractive index optical fiber sensor, with higher accuracy and considerable economy of time and resources. A study of different metamaterials concentrations conformed by aluminum oxide (Al2O3) and silver (Ag) is carried out. Another structural parameters, which influences the refractive index sensor performance, the thickness of the metamaterial, is also investigated. The results indicate that the use of metamaterials provides a way of improving the performance of SPR sensors on optical fibers and allows to tailor the working parameters of the sensor.

  4. The effects of atmospheric refraction on the accuracy of laser ranging systems

    NASA Technical Reports Server (NTRS)

    Zanter, D. L.; Gardner, C. S.; Rao, N. N.

    1976-01-01

    Correction formulas derived by Saastamoinen and Marini, and the ray traces through the refractivity profiles all assume a spherically symmetric refractivity profile. The errors introduced by this assumption were investigated by ray tracing through three-dimensional profiles. The results of this investigation indicate that the difference between ray traces through the spherically symmetric and three-dimensional profiles is approximately three centimeters at 10 deg and decreases to less than one half of a centimeter at 80 deg. If the accuracy desired in future laser ranging systems is less than a few centimeters, Saastamoinen and Marini's formulas must be altered to account for the fact that the refractivity profile is not spherically symmetric.

  5. Fiber inline Michelson interferometer fabricated by CO2 laser irradiation for refractive index sensing

    NASA Astrophysics Data System (ADS)

    Wu, Hongbin; Yuan, Lei; Zhao, Longjiang; Cao, Zhitao; Wang, Peng

    2014-03-01

    A compact Michelson interferometer (MI) in a single-mode fiber (SMF) is successfully formed by CO2 laser irradiation to measure refractive index (RI) values. The fiber inline MI mainly consists of two parts: one is the waist region in fiber formed by CO2 laser irradiation and the other one is the fiber tip end facet with pure gold sputter coating. Based on the MI theory, the interference signal is generate between the core mode and the cladding mode excited by the core mode at the waist region. Reflective spectra at two different interference lengths of 5mm and 15mm are given and the calculated lengths based on theory are well verified. After the measurements of matching liquids with seven different refractive indices, the RI sensitivity of the MI sample is tested of -197.3+/-19.1nm/RIU (refractive index unit), which suggests well potential application in RI sensing.

  6. Ambience-sensitive optical refraction in ferroelectric nanofilms of NaNbO3.

    PubMed

    Tyunina, Marina; Chvostova, Dagmar; Pacherova, Oliva; Kocourek, Tomas; Jelinek, Miroslav; Jastrabik, Lubomir; Dejneka, Alexander

    2014-08-01

    Optical index of refraction n is studied by spectroscopic ellipsometry in epitaxial nanofilms of NaNbO3 with thickness ∼10 nm grown on different single-crystal substrates. The index n in the transparency spectral range (n ≈ 2.1 - 2.2) exhibits a strong sensitivity to atmospheric-pressure gas ambience. The index n in air exceeds that in an oxygen ambience by δn ≈ 0.05 - 0.2. The thermo-optical behaviour n(T) indicates ferroelectric state in the nanofilms. The ambience-sensitive optical refraction is discussed in terms of fundamental connection between refraction and ferroelectric polarization in perovskites, screening of depolarizing field on surfaces of the nanofilms, and thermodynamically stable surface reconstructions of NaNbO3.

  7. Exact wavefront surface refracted by a smooth arbitrary surface considering a plane wavefront incident

    NASA Astrophysics Data System (ADS)

    Avendaño-Alejo, Maximino M.

    2015-08-01

    We study the formation of wavefronts produced by smooth arbitrary surfaces with symmetry of revolution considering a plane wavefront propagating parallel to the optical axis and impinging on the refracting surface. The wavefronts are obtained by using the Malus-Dupin theorem and they represent the monochromatic aberrations which can be called image errors, furthermore their shapes could be modified by changing the parameters of the lens in such a way that if a caustic surface is vanished the optical system produces a perfect image, on the other hand for a caustic possessing a large area it could be applied to design non-imaging optical systems. The shape of the wavefront depends only on the indices of refraction and geometrical properties of the refracting surface such as the first derivative and their parameters associated. This analytic formula has potential applications in the microscopy field, illumination or corrector plates.

  8. Refractive index of erbium doped GaN thin films

    SciTech Connect

    Alajlouni, S.; Sun, Z. Y.; Li, J.; Lin, J. Y.; Jiang, H. X.; Zavada, J. M.

    2014-08-25

    GaN is an excellent host for erbium (Er) to provide optical emission in the technologically important as well as eye-safe 1540 nm wavelength window. Er doped GaN (GaN:Er) epilayers were synthesized on c-plane sapphire substrates using metal organic chemical vapor deposition. By employing a pulsed growth scheme, the crystalline quality of GaN:Er epilayers was significantly improved over those obtained by conventional growth method of continuous flow of reaction precursors. X-ray diffraction rocking curve linewidths of less than 300 arc sec were achieved for the GaN (0002) diffraction peak, which is comparable to the typical results of undoped high quality GaN epilayers and represents a major improvement over previously reported results for GaN:Er. Spectroscopic ellipsometry was used to determine the refractive index of the GaN:Er epilayers in the 1540 nm wavelength window and a linear dependence on Er concentration was found. The observed refractive index increase with Er incorporation and the improved crystalline quality of the GaN:Er epilayers indicate that low loss GaN:Er optical waveguiding structures are feasible.

  9. The role of macromolecular crowding in the evolution of lens crystallins with high molecular refractive index

    NASA Astrophysics Data System (ADS)

    Zhao, Huaying; Magone, M. Teresa; Schuck, Peter

    2011-08-01

    Crystallins are present in the lens at extremely high concentrations in order to provide transparency and generate a high refractive power of the lens. The crystallin families prevalent in the highest density lens tissues are γ-crystallins in vertebrates and S-crystallins in cephalopods. As shown elsewhere, in parallel evolution, both have evolved molecular refractive index increments 5-10% above those of most proteins. Although this is a small increase, it is statistically very significant and can be achieved only by very unusual amino acid compositions. In contrast, such a molecular adaptation to aid in the refractive function of the lens did not occur in crystallins that are preferentially located in lower density lens tissues, such as vertebrate α-crystallin and taxon-specific crystallins. In the current work, we apply a model of non-interacting hard spheres to examine the thermodynamic contributions of volume exclusion at lenticular protein concentrations. We show that the small concentration decrease afforded by the higher molecular refractive index increment of crystallins can amplify nonlinearly to produce order of magnitude differences in chemical activities, and lead to reduced osmotic pressure and the reduced propensity for protein aggregation. Quantitatively, this amplification sets in only at protein concentrations as high as those found in hard lenses or the nucleus of soft lenses, in good correspondence to the observed crystallin properties in different tissues and different species. This suggests that volume exclusion effects provide the evolutionary driving force for the unusual refractive properties and the unusual amino acid compositions of γ-crystallins and S-crystallins.

  10. Modification of Ag containing photo-thermo-refractive glasses induced by electron-beam irradiation

    NASA Astrophysics Data System (ADS)

    Podsvirov, O. A.; Ignatiev, A. I.; Nashchekin, A. V.; Nikonorov, N. V.; Sidorov, A. I.; Tsekhomsky, V. A.; Usov, O. A.; Vostokov, A. V.

    2010-10-01

    We present the experimental investigation of formation and growth of Ag nanocrystals in silica photo-thermo-refractive glasses under the electron-beam irradiation and subsequent thermal treatment. The influence of electron irradiation fluence, current density and thermal treatment conditions on nanocrystal growth dynamic has been investigated. Theoretical models and computer simulation of main processes which take place during electron-beam irradiation are presented.

  11. Deviations of Lambert-Beer's law affect corneal refractive parameters after refractive surgery

    NASA Astrophysics Data System (ADS)

    Jiménez, José R.; Rodríguez-Marín, Francisco; Anera, Rosario G.; Jiménez Del Barco, Luis

    2006-06-01

    We calculate whether deviations of Lambert-Beer’s law, which regulates depth ablation during corneal ablation, significantly influence corneal refractive parameters after refractive surgery and whether they influence visual performance. For this, we compute a point-to-point correction on the cornea while assuming a non-linear (including a quadratic term) fit for depth ablation. Post-surgical equations for refractive parameters using a non-linear fit show significant differences with respect to parameters obtained from a linear fit (Lambert-Beer’s law). Differences were also significant for corneal aberrations. These results show that corneal-ablation algorithms should include analytical information on deviations from Lambert-Beer’s law for achieving an accurate eye correction.

  12. Tailoring the index of refraction of nanocrystalline hafnium oxide thin films

    SciTech Connect

    Vargas, Mirella; Murphy, N. R.; Ramana, C. V.

    2014-03-10

    Hafnium oxide (HfO{sub 2}) films were grown by sputter-deposition by varying the growth temperature (T{sub s} = 25–700 °C). HfO{sub 2} films grown at T{sub s} < 200 °C were amorphous, while those grown at T{sub s} ≥ 200 °C were monoclinic, nanocrystalline with (1{sup ¯}11) texturing. X-ray reflectivity (XRR) analyses indicate that the film-density (ρ) increases with increasing T{sub s}. The index of refraction (n) profiles derived from spectroscopic ellipsometry analyses follow the Cauchy dispersion relation. Lorentz-Lorenz analysis (n{sub (λ)} = 550 nm) and optical-model adopted agree well with the XRR data/analyses. A direct T{sub s}-ρ-n relationship suggests that tailoring the optical quality is possible by tuning T{sub s} and the microstructure of HfO{sub 2} films.

  13. Two-dimensional refractive index profiling of optical fibers by modified refractive near-field technique

    NASA Astrophysics Data System (ADS)

    El Sayed, A.; Pilz, Soenke; Ryser, Manuel; Romano, Valerio

    2016-02-01

    The refractive index distribution in the core-cladding region of an optical fiber plays an important role in determining the transmission and dispersion properties of the waveguide. The refracted near-field technique (RNF) is among the most widespread techniques used for measuring the refractive index profile of optical fibers and is based on illuminating the end-facet of a fiber with a focused beam whose vertex angle greatly exceeds the acceptance angle of the fiber, which is immersed in an index matching liquid. What one observes are then the refracted unguided rays rather than the guided rays. Nevertheless, the standard refracted near-field technique cannot be applied to a wide range of optical fibers e.g. if their shapes are not axially symmetric. In this work we demonstrate a modified method which allows 2-D imaging of the refractive index profile and thereby overcoming the axial symmetric limitation of the standard RNF. The new system is operating at 630 nm and based on the same principle of the RNF, but the optical path is reversed so that the light at the fiber end-facet is collected by an objective lens and detected by a CCD camera. The method does not require scanning over the fiber end-facet. Thus the system is faster and less sensitive to vibrations and external conditions compared to the standard RNF, furthermore it allows averaging to improve the signal to noise ratio. The spatial resolution of the system is determined by the numerical aperture of the objective and by the resolution of the CCD camera. To calibrate the setup, a reference multi-step index fiber provided by National Physical Laboratory was used.

  14. Two-dimensional refractive index profiling of optical fibers by modified refractive near-field technique

    NASA Astrophysics Data System (ADS)

    El Sayed, A.; Pilz, Soenke; Ryser, Manuel; Romano, Valerio

    2016-04-01

    The refractive index distribution in the core-cladding region of an optical fiber plays an important role in determining the transmission and dispersion properties of the waveguide. The refracted near-field technique (RNF) is among the most widespread techniques used for measuring the refractive index profile of optical fibers and is based on illuminating the end-facet of a fiber with a focused beam whose vertex angle greatly exceeds the acceptance angle of the fiber, which is immersed in an index matching liquid. What one observes are then the refracted unguided rays rather than the guided rays. Nevertheless, the standard refracted near-field technique cannot be applied to a wide range of optical fibers e.g. if their shapes are not axially symmetric. In this work we demonstrate a modified method which allows 2-D imaging of the refractive index profile and thereby overcoming the axial symmetric limitation of the standard RNF. The new system is operating at 630 nm and based on the same principle of the RNF, but the optical path is reversed so that the light at the fiber end-facet is collected by an objective lens and detected by a CCD camera. The method does not require scanning over the fiber end-facet. Thus the system is faster and less sensitive to vibrations and external conditions compared to the standard RNF, furthermore it allows averaging to improve the signal to noise ratio. The spatial resolution of the system is determined by the numerical aperture of the objective and by the resolution of the CCD camera. To calibrate the setup, a reference multi-step index fiber provided by National Physical Laboratory was used.

  15. An extension of the Lighthill theory of jet noise to encompass refraction and shielding

    NASA Technical Reports Server (NTRS)

    Ribner, Herbert S.

    1995-01-01

    A formalism for jet noise prediction is derived that includes the refractive 'cone of silence' and other effects; outside the cone it approximates the simple Lighthill format. A key step is deferral of the simplifying assumption of uniform density in the dominant 'source' term. The result is conversion to a convected wave equation retaining the basic Lighthill source term. The main effect is to amend the Lighthill solution to allow for refraction by mean flow gradients, achieved via a frequency-dependent directional factor. A general formula for power spectral density emitted from unit volume is developed as the Lighthill-based value multiplied by a squared 'normalized' Green's function (the directional factor), referred to a stationary point source. The convective motion of the sources, with its powerful amplifying effect, also directional, is already accounted for in the Lighthill format: wave convection and source convection are decoupled. The normalized Green's function appears to be near unity outside the refraction dominated 'cone of silence', this validates our long term practice of using Lighthill-based approaches outside the cone, with extension inside via the Green's function. The function is obtained either experimentally (injected 'point' source) or numerically (computational aeroacoustics). Approximation by unity seems adequate except near the cone and except when there are shrouding jets: in that case the difference from unity quantifies the shielding effect. Further extension yields dipole and monopole source terms (cf. Morfey, Mani, and others) when the mean flow possesses density gradients (e.g., hot jets).

  16. Measurement of refractive index distribution of biotissues by scanning focused refractive index microscopy

    NASA Astrophysics Data System (ADS)

    Sun, Tengqian; Ye, Qing; Wang, Xiao-Wan; Wang, Jin; Deng, Zhi-Chao; Mei, Jian-Chun; Zhou, Wen-Yuan; Zhang, Chun-Ping; Tian, Jian-Guo

    2014-11-01

    We adapt the improved scanning focused refractive-index microscopy (SFRIM) technique to the quantitative study of biological tissues. Delicate refractive index (RI) imaging of a porcine muscle tissue is obtained in a reflection mode. Some modifications are made to the SFRIM for better two dimension (2-D) observation of the tissues. The RI accuracy is 0.002. The central spatial resolution of SFRIM achieves 1μm, smaller than the size of the focal spot. Our method is free from signal distortion. The experimental result demonstrates that SFRIM is a potential technique in a wide field of biomedical research.

  17. Refraction of nonlinear beams by localized refractive index changes in nematic liquid crystals

    SciTech Connect

    Assanto, Gaetano; Minzoni, Antonmaria A.; Smyth, Noel F.; Worthy, Annette L.

    2010-11-15

    The propagation of solitary waves in nematic liquid crystals in the presence of localized nonuniformities is studied. These nonuniformities can be caused by external electric fields, other light beams, or any other mechanism which results in a modified director orientation in a localized region of the liquid-crystal cell. The net effect is that the solitary wave undergoes refraction and trajectory bending. A general modulation theory for this refraction is developed, and particular cases of circular, elliptical, and rectangular perturbations are considered. The results are found to be in excellent agreement with numerical solutions.

  18. Retrieval of aerosol refractive index from extinction spectra with a damped harmonic-oscillator band model.

    PubMed

    Thomas, Gareth E; Bass, Stephen F; Grainger, Roy G; Lambert, Alyn

    2005-03-01

    A new method for the retrieval of the spectral refractive indices of micrometer-sized particles from infrared aerosol extinction spectra has been developed. With this method we use a classical damped harmonic-oscillator model of molecular absorption in conjunction with Mie scattering to model extinction spectra, which we then fit to the measurements using a numerical optimal estimation algorithm. The main advantage of this method over the more traditional Kramers-Kronig approach is that it allows the full complex refractive-index spectra, along with the parameters of the particle size distribution, to be retrieved from a single extinction spectrum. The retrieval scheme has been extensively characterized and has been found to provide refractive indices with a maximum uncertainty of approximately 10% (with a minimum of approximately 0.1%). Comparison of refractive indices calculated from measurements of a ternary solution of HNO3, H2SO4, and H2O with those published in J. Phys. Chem. A 104, 783 (2000) show similar differences as found by other authors.

  19. Refractive index, sound velocity and thickness of thin transparent films from multiple angles picosecond ultrasonics

    SciTech Connect

    Cote, R.; Devos, A.

    2005-05-15

    We present a method for refractive indices and longitudinal sound velocity measurements from picosecond ultrasonic experiments made at different probe incidence angles. For transparent or semitransparent materials such as dielectrics or semiconductors, picosecond ultrasonic experiments can lead to oscillations in the reflectivity curves whose frequency depends on the refractive indices, the sound velocity and the experiments angle. From these data we establish a simple method for the calculation of the refractive indices and verify it on a GaAs sample. We show on fluorinated silica glass and aluminum nitride practical applications of this method on thin films. From two experiments we measure the refraction index and the sound velocity of these materials, with no assumption on the materials properties or on the sample layers' thicknesses. Here the materials are buried under a thin aluminum film. It illustrates the fact that the method can be applied to multilayers. From the same experiments we then derive the thickness of the layers. It shows that this method can render picosecond ultrasonic experiments independent from other characterization means.

  20. Multifrequency radiation diffusion equations for homogeneous, refractive, lossy media and their interface conditions

    SciTech Connect

    Shestakov, Aleksei I.

    2013-06-15

    We derive time-dependent multifrequency diffusion equations for homogeneous, refractive lossy media. The equations are applicable for a domain composed of several materials with distinct refractive indexes. In such applications, the fundamental radiation variable, the intensity I, is discontinuous across material interfaces. The diffusion equations evolve a variable ξ, the integral of I over all directions divided by the square of the refractive index. Attention is focused on boundary and internal interface conditions for ξ. For numerical solutions using finite elements, it is shown that at material interfaces, the usual diffusion coefficient 1/3κ of the multifrequency equation, where κ is the opacity, is modified by a tensor diffusion term consisting of integrals of the reflectivity. Numerical results are presented. For a single material simulation, the ξ equations yield the same result as diffusion equations that evolve the spectral radiation energy density. A second simulation solves a test problem that models radiation transport in a domain comprised of materials with different refractive indexes. Results qualitatively agree with those previously published.

  1. Ketamine-xylazine anesthesia causes hyperopic refractive shift in mice

    PubMed Central

    Tkatchenko, Tatiana V.; Tkatchenko, Andrei V.

    2010-01-01

    Mice have increasingly been used as a model for studies of myopia. The key to successful use of mice for myopia research is the ability to obtain accurate measurements of refractive status of their eyes. In order to obtain accurate measurements of refractive errors in mice, the refraction needs to be performed along the optical axis of the eye. This represents a particular challenge, because mice are very difficult to immobilize. Recently, ketamine-xylazine anesthesia has been used to immobilize mice before measuring refractive errors, in combination with tropicamide ophthalmic solution to induce mydriasis. Although these drugs have increasingly been used while refracting mice, their effects on the refractive state of the mouse eye have not yet been investigated. Therefore, we have analyzed the effects of tropicamide eye drops and ketamine-xylazine anesthesia on refraction in P40 C57BL/6J mice. We have also explored two alternative methods to immobilize mice, i.e. the use of a restraining platform and pentobarbital anesthesia. We found that tropicamide caused a very small, but statistically significant, hyperopic shift in refraction. Pentobarbital did not have any substantial effect on refractive status, whereas ketamine-xylazine caused a large and highly significant hyperopic shift in refraction. We also found that the use of a restraining platform represents good alternative for immobilization of mice prior to refraction. Thus, our data suggest that ketamine-xylazine anesthesia should be avoided in studies of refractive development in mice and underscore the importance of providing appropriate experimental conditions when measuring refractive errors in mice. PMID:20813132

  2. An Approximate Analytic Expression for the Flux Density of Scintillation Light at the Photocathode

    SciTech Connect

    Braverman, Joshua B; Harrison, Mark J; Ziock, Klaus-Peter

    2012-01-01

    The flux density of light exiting scintillator crystals is an important factor affecting the performance of radiation detectors, and is of particular importance for position sensitive instruments. Recent work by T. Woldemichael developed an analytic expression for the shape of the light spot at the bottom of a single crystal [1]. However, the results are of limited utility because there is generally a light pipe and photomultiplier entrance window between the bottom of the crystal and the photocathode. In this study, we expand Woldemichael s theory to include materials each with different indices of refraction and compare the adjusted light spot shape theory to GEANT 4 simulations [2]. Additionally, light reflection losses from index of refraction changes were also taken into account. We found that the simulations closely agree with the adjusted theory.

  3. Particle image velocimetry in a variable density flow: application to a dynamically evolving microburst

    NASA Astrophysics Data System (ADS)

    Alahyari, A.; Longmire, E. K.

    1994-10-01

    A fondamental difficulty in the experimental study of gravity-driven flows using particle image velocimetry (PIV) and other optical diagnostic techniques is the problem associated with variations in thé refractive index within the fluid. This paper discusses a method by which the refractive indices of two fluids are matched while maintaining density differences of up to 4%. Aqueous solutions of glycerol and potassium phosphate are used to achieve precise index matching in the presence of mixed and unmixed constituents. The effectiveness of the method is verified in a PIV study of a laboratory-scale model of an atmospheric microburst where planes of two-dimensional velocity vectors are obtained in thé evolving flow field.

  4. Planar scanning method for detecting refraction characteristics of two-dimensional photonic quasi-crystal wedge-shaped prisms.

    PubMed

    Liu, Jianjun; Tan, Wei; Liu, Exian; Hu, Haili; Fan, Zhigang; Zhang, Tianhua; Zhang, Xiong

    2016-05-01

    In this study, a planar scanning method is proposed. This novel method adapts two monitors moving along double planar tracks that can be used to detect refraction characteristics of two-dimensional (2D) photonic quasi-crystal (PQC) wedge-shaped prisms. Refraction of a decagonal Penrose-type PQC prism is analyzed for a given incident beam and two polarization modes at different incident positions in the prism using this method. Refraction from the prism is irregular, indicating that nonuniformity in the arrangement of scatterers in the prism causes Bragg-like scattering irregularities. Numerical results show that this method can be used for guiding the design of a 2D PQC prism and for the analysis of its refraction characteristics.

  5. A separation of the refractive index and topography in photon-scanning tunneling microscopy: simulations and experiments.

    PubMed

    Wang, Xiaoqiu; Zhang, Jian; Li, Yinli; Jian, Guoshu; Suen, Wei; Pan, Shi; Wu, Shifs

    2005-08-01

    In order to separate the purely optical and topographic information from images in constant-gap mode simultaneously, we proposed the atomic force/photon-scanning tunneling microscopy (AF/PSTM). In this paper, we focus on the principle of separation of the refractive index image from the images of photon-scanning tunneling microscopy. We prove the formula of refractive index imaging by using a three-dimensional finite-difference time-domain method. The formula indicates that the refractive index of a sample is approximately proportional to photon tunneling information (DeltaI/I )2. From the viewpoint of practical use, we simulated the refractive index images for the realistic experiments. We present line scans along two orthogonal directions and the transmitted intensity as a function of the tip position under the constant-gap mode. The experimental results are presented and are in good agreement with the numerical results.

  6. The Alvarez and Lohmann refractive lenses revisited.

    PubMed

    Barbero, Sergio

    2009-05-25

    Alvarez and Lohmann lenses are variable focus optical devices based on lateral shifts of two lenses with cubic-type surfaces. I analyzed the optical performance of these types of lenses computing the first order optical properties (applying wavefront refraction and propagation) without the restriction of the thin lens approximation, and the spot diagram using a ray tracing algorithm. I proposed an analytic and numerical method to select the most optimum coefficients and the specific configuration of these lenses. The results show that Lohmann composite lens is slightly superior to Alvarez one because the overall thickness and optical aberrations are smaller.

  7. Near-zero refractive index photonics

    NASA Astrophysics Data System (ADS)

    Liberal, Iñigo; Engheta, Nader

    2017-03-01

    Structures with near-zero parameters (for example, media with near-zero relative permittivity and/or relative permeability, and thus a near-zero refractive index) exhibit a number of unique features, such as the decoupling of spatial and temporal field variations, which enable the exploration of qualitatively different wave dynamics. This Review summarizes the underlying principles and salient features, physical realizations and technological potential of these structures. In doing so, we revisit their distinctive impact on multiple optical processes, including scattering, guiding, trapping and emission of light. Their role in emphasizing secondary responses of matter such as nonlinear, non-reciprocal and non-local effects is also discussed.

  8. Non-interferometric phase retrieval using refractive index manipulation

    PubMed Central

    Chen, Chyong-Hua; Hsu, Hsin-Feng; Chen, Hou-Ren; Hsieh, Wen-Feng

    2017-01-01

    We present a novel, inexpensive and non-interferometric technique to retrieve phase images by using a liquid crystal phase shifter without including any physically moving parts. First, we derive a new equation of the intensity-phase relation with respect to the change of refractive index, which is similar to the transport of the intensity equation. The equation indicates that this technique is unneeded to consider the variation of magnifications between optical images. For proof of the concept, we use a liquid crystal mixture MLC 2144 to manufacture a phase shifter and to capture the optical images in a rapid succession by electrically tuning the applied voltage of the phase shifter. Experimental results demonstrate that this technique is capable of reconstructing high-resolution phase images and to realize the thickness profile of a microlens array quantitatively. PMID:28387382

  9. Radio jet refraction in galactic atmospheres with static pressure gradients

    NASA Technical Reports Server (NTRS)

    Henriksen, R. N.; Vallee, J. P.; Bridle, A. H.

    1981-01-01

    A theory of double radio sources which have a 'Z' or 'S' morphology is proposed, based on the refraction of radio jets in the extended atmosphere of an elliptical galaxy. The model describes a collimated jet of supersonic material bending self-consistently under the influence of external static pressure gradients. Gravity and magnetic fields are neglected in the simplest case except insofar as they determine the static pressure distribution. The calculation is a straightforward extension of a method used to calculate a ram-pressure model for twin radio trails ('C' morphology). It may also be described as a continuous-jet version of a buoyancy model proposed in 1973. The model has the added virtue of invoking a galactic atmosphere similar to those already indicated by X-ray measurements of some other radio galaxies and by models for the collimation of other radio jets.

  10. Using rays better. IV. Theory for refraction and reflection.

    PubMed

    Forbes, G W

    2001-10-01

    A new ray-based method is extended to include the modeling of optical interfaces. The essential idea is that the wave field and its derivatives are always expressed as a superposition of ray contributions of flexible width. Interfaces can be analyzed in this way by introducing a family of surfaces that smoothly connects them. Even though the ray-to-wave link may appear to be obscured at caustics, the standard Fresnel coefficients (for plane waves at flat interfaces between homogeneous media) are shown to be universally applicable on a ray-by-ray basis. Thus, in the interaction at the interface, the surface's curvature and any gradients in the refractive indices influence only the higher asymptotic corrections. Further, this method finally gives access to such corrections.

  11. Negative-Refraction Metamaterials: Fundamental Principles and Applications

    NASA Astrophysics Data System (ADS)

    Eleftheriades, G. V.; Balmain, K. G.

    2005-06-01

    Learn about the revolutionary new technology of negative-refraction metamaterials Negative-Refraction Metamaterials: Fundamental Principles and Applications introduces artificial materials that support the unusual electromagnetic property of negative refraction. Readers will discover several classes of negative-refraction materials along with their exciting, groundbreaking applications, such as lenses and antennas, imaging with super-resolution, microwave devices, dispersion-compensating interconnects, radar, and defense. The book begins with a chapter describing the fundamentals of isotropic metamaterials in which a negative index of refraction is defined. In the following chapters, the text builds on the fundamentals by describing a range of useful microwave devices and antennas. Next, a broad spectrum of exciting new research and emerging applications is examined, including: Theory and experiments behind a super-resolving, negative-refractive-index transmission-line lens 3-D transmission-line metamaterials with a negative refractive index Numerical simulation studies of negative refraction of Gaussian beams and associated focusing phenomena Unique advantages and theory of shaped lenses made of negative-refractive-index metamaterials A new type of transmission-line metamaterial that is anisotropic and supports the formation of sharp steerable beams (resonance cones) Implementations of negative-refraction metamaterials at optical frequencies Unusual propagation phenomena in metallic waveguides partially filled with negative-refractive-index metamaterials Metamaterials in which the refractive index and the underlying group velocity are both negative This work brings together the best minds in this cutting-edge field. It is fascinating reading for scientists, engineers, and graduate-level students in physics, chemistry, materials science, photonics, and electrical engineering.

  12. Calculation of electron wave functions and refractive index of Ne

    NASA Astrophysics Data System (ADS)

    Zhu, Min; Liu, Wei; Zhang, Tao

    2008-10-01

    The radial wave functions of inner electron shell and outer electron shell of a Ne atom were obtained by the approximate analytical method and tested by calculating the ground state energy of the Ne atom. The equivalent volume of electron cloud and the refractive index of Ne were calculated. The calculated refractive index agrees well with the experimental result. Relationship between the refractive index and the wave function of Ne was discovered.

  13. Determination of refractive index by Moiré deflectometry

    NASA Astrophysics Data System (ADS)

    Ahmadi, Mohammad; Madanipour, Khosro; Javadianvarjovi, Soheila

    2015-06-01

    Determination of refractive index is an important characteristic of material which is crucial parameter for physicists and engineers. Moiré deflectometry technique is convenient, easy-aligning, nondestructive, non-contact and fairly accurate method for refractive index measurement of gas, liquid, solid. In this paper we investigate the theory of the technique and simulate some relations then finally measure refractive index of a glassy lamella, n=1.536.

  14. Fiber in-line Michelson Interferometer for refractive index sensing

    NASA Astrophysics Data System (ADS)

    Liao, C. R.; Wang, D. N.; Wang, Min; Yang, Minghong; Wang, Yiping

    2013-09-01

    A fiber in-line Michelson interferometer based on open micro-cavity is demonstrated, which is fabricated by femtosecond laser micromachining and thin film coating technique. In refractive index sensing, this interferometer operates in a reflection mode of detection, exhibits compact sensor head, good mechanical reliability, wide operation range and high sensitivity of 975nm/RIU (refractive index unit) at the refractive index value of 1.484.

  15. Refractive index fiber sensor based on Brillouin fast light

    NASA Astrophysics Data System (ADS)

    Chen, Jiali; Gan, Jiulin; Zhang, Zhishen; Yang, Tong; Deng, Huaqiu; Yang, Zhongmin

    2014-01-01

    A new type of refractive index fiber sensor was invented by combining the evanescent-field scattering sensing mechanism with the Brillouin fast light scheme. Superluminal light was realized using Brillouin lasing oscillation in a fiber ring cavity. The refractive index of the solution around the microfiber within the cavity is related to the group velocity of the fast light. This fast light refractive index sensor offers an alternative for high-accuracy sensing applications.

  16. Retinal evaluation and treatment after refractive corneal surgery.

    PubMed

    Swinger, C A; Kraushar, M F

    1985-08-01

    Refractive corneal surgery (a collective term used to describe a variety of surgical procedures that alter the refractive status of the eye through the surgical modification of corneal curvature) shows promise for use in situations where current methods of optical correction do not meet the patient's needs. This article reviews our experiences with the retinal evaluation of patients who have undergone corneal refractive surgery and offers recommendations for the treatment of retinal pathology after such surgery.

  17. Fiber-optic refractive index sensor based on surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Hlubina, Petr; Ciprian, Dalibor; Kadulova, Miroslava

    2015-01-01

    A fiber-optic refractive index sensor based on surface plasmon resonance (SPR) in a thin metal film deposited on an unclad core of a multimode fiber is presented. The sensing element of the SPR fiber-optic sensor is a bare core of a step-index optical fiber made of fused silica with a deposited gold film. First, a model of the SPR fiber-optic sensor based on the theory of attenuated total internal reflection is presented. The analysis is carried out in the frame of optics of multilayered media. The sensing scheme uses a wavelength interrogation method and the calculations are performed over a broad spectral range. Second, in a practical realization of the sensor with a double-sided sputtered gold film, a reflection-based sensing scheme to measure the refractive indices of liquids is considered. The refractive index of a liquid is sensed by measuring the position of the dip in the reflected spectral intensity distribution. As an example, the aqueous solutions of ethanol with refractive indices in a range from 1.333 to 1.364 are measured.

  18. A multi-D-shaped optical fiber for refractive index sensing.

    PubMed

    Chen, Chien-Hsing; Tsao, Tzu-Chein; Tang, Jaw-Luen; Wu, Wei-Te

    2010-01-01

    A novel class of multi-D-shaped optical fiber suited for refractive index measurements is presented. The multi-D-shaped optical fiber was constructed by forming several D-sections in a multimode optical fiber at localized regions with femtosecond laser pulses. The total number of D-shaped zones fabricated could range from three to seven. Each D-shaped zone covered a sensor volume of 100 μm depth, 250 μm width, and 1 mm length. The mean roughness of the core surface obtained by the AFM images was 231.7 nm, which is relatively smooth. Results of the tensile test indicated that the fibers have sufficient mechanical strength to resist damage from further processing. The multi-D-shaped optical fiber as a high sensitive refractive-index sensor to detect changes in the surrounding refractive index was studied. The results for different concentrations of sucrose solution show that a resolution of 1.27 × 10(-3)-3.13 × 10(-4) RIU is achieved for refractive indices in the range of 1.333 to 1.403, suggesting that the multi-D-shaped fibers are attractive for chemical, biological, and biochemical sensing with aqueous solutions.

  19. Demonstration of optical interference filters utilizing tunable refractive index layers.

    PubMed

    Poxson, David J; Mont, Frank W; Schubert, Martin F; Kim, Jong Kyu; Cho, Jaehee; Schubert, E Fred

    2010-11-08

    Optical interference filters utilizing tunable refractive index layers are shown to have higher spectral fidelity as compared to conventional filters consisting of non-tunable refractive index layers. To demonstrate this increase in spectral fidelity, we design and compare a variety of optical interference filters employing both tunable and non-tunable refractive index layers. Additionally, a five-layer optical interference filter utilizing tunable refractive index layers is designed and fabricated for use with a Xenon lamp to replicate the Air Mass 0 solar irradiance spectrum and is shown to have excellent spectral fidelity.

  20. Two different looks at Kepler’s refraction experiment

    NASA Astrophysics Data System (ADS)

    Grusche, Sascha; Wagner, Steffen

    2016-11-01

    Most refraction experiments are theory-laden and far from everyday experience. Accordingly, many students fail to apply the law of refraction to phenomena. To guide students from phenomena to theory, teachers can use a refraction experiment proposed by Kepler, where measurements are based on shadow images. For a different look at Kepler’s experiment, one can use the principle of reversibility to get equivalent results, but based on apparent depth. For this reversal, rays of light are reinterpreted as lines of sight, and vice versa. The principle allows students to relate refracted rays to shifted images, and applies to other optical phenomena.

  1. Refractivity estimation from sea clutter: An invited review

    NASA Astrophysics Data System (ADS)

    Karimian, Ali; Yardim, Caglar; Gerstoft, Peter; Hodgkiss, William S.; Barrios, Amalia E.

    2011-12-01

    Non-standard radio wave propagation in the atmosphere is caused by anomalous changes of the atmospheric refractivity index. In recent years, refractivity from clutter (RFC) has been an active field of research to complement traditional ways of measuring the refractivity profile in maritime environments which rely on direct sensing of the environmental parameters. Higher temporal and spatial resolution of the refractivity profile, together with a lower cost and convenience of operations have been the promising factors that brought RFC under consideration. Presented is an overview of the basic concepts, research and achievements in the field of RFC. Topics that require more attention in future studies also are discussed.

  2. Negative Plasma Densities Raise Questions

    SciTech Connect

    Hazi, A

    2006-01-26

    Nearly all the matter encountered on Earth is either a solid, liquid, or gas. Yet plasma-the fourth state of matter-comprises more than 99 percent of the visible universe. Understanding the physical characteristics of plasmas is important to many areas of scientific research, such as the development of fusion as a clean, renewable energy source. Lawrence Livermore scientists study the physics of plasmas in their pursuit to create fusion energy, because plasmas are an integral part of that process. When deuterium and tritium are heated to the extreme temperatures needed to achieve and sustain a fusion reaction (about 100 million degrees), the electrons in these light atoms become separated from the nuclei. This process of separation is called ionization, and the resulting collection of negatively charged free electrons and positively charged nuclei is known as a plasma. Although plasmas and gases have many similar properties, plasmas differ from gases in that they are good conductors of electricity and can generate magnetic fields. For the past decade, x-ray laser interferometry has been used in the laboratory for measuring a plasma's index of refraction to determine plasma density. (The index of refraction for a given material is defined as the wavelength of light in a vacuum divided by the wavelength of light traveling through the material.) Until now, plasma physicists expected to find an index of refraction less than one. Researchers from Livermore and Colorado State University recently conducted experiments on aluminum plasmas at the Laboratory's COMET laser facility and observed results in which the index of refraction was greater than one. This surprising result implied a negative electron density. Livermore physicist Joseph Nilsen and his colleagues from Livermore and the University of Notre Dame have performed sophisticated calculations to explain this phenomenon. Previously, researchers believed that only free electrons contributed to the index of

  3. Atmospheric Refraction Predictions Based on Actual Atmospheric Pressure and Temperature Data

    NASA Astrophysics Data System (ADS)

    Nauenberg, Michael

    2017-04-01

    Calculations of atmospheric refraction are generally based on a simplified model of atmospheric density in the troposphere that assumes the temperature decreases at a constant lapse rate L from sea level up to a height {h}t≈ 11 {km}, and that afterward it remains constant. In this model, the ratio T o /L, where T o is the temperature at the observer’s location, determines the length scale in the calculations for altitudes h≤slant {h}t. But daily balloon measurements across the USA show that in some cases there is an inversion so that the air temperature actually increases from sea level up to a height {h}p≈ 1 {km}, and only after reaching a plateau with temperature {T}o\\prime at this height, it decreases at an approximately constant lapse rate. Hence, in such cases the relevant length scale for atmospheric refraction calculations in the range {h}p≤slant h< {h}t is {T}o\\prime /L, and the contribution for h≤slant {h}p has to be calculated from actual measurements of air density in this range. Moreover, in three examples considered here, the temperature does not remain constant for {h}t≤slant h, but continues to decreases to a minimum at {h}m≈ 16 {km}, and then increases at higher altitudes at a lower rate. Calculations of atmospheric refraction based on this actual atmospheric data are compared with the results of current simplified models.

  4. Thickness-dependent dispersion parameters, energy gap and nonlinear refractive index of ZnSe thin films

    SciTech Connect

    Prakash, Deo; Shaaban, E.R.; Shapaan, M.; Mohamed, S.H.; Othman, A.A.; Verma, K.D.

    2016-08-15

    Highlights: • Combined experimental and theoretical researches on ZnSe Thin Films. • The film thickness and refractive index were determined using envelope method. • The absorption coefficient and the energy gap were calculated. • Dispersion parameters were determined using Wemple-DiDomenico relation. • The third order susceptibility and nonlinear refractive index were calculated. - Abstract: Zinc selenide (ZnSe) thin films with different thicknesses were evaporated onto glass substrates using the thermal evaporation technique. X-ray diffraction analysis confirmed that both the film and powder have cubic zinc-blende structure. The fundamental optical parameters like absorption coefficient, extinction coefficient and band gap were evaluated in transparent region of transmittance and reflectance spectrum. The optical transition of the films was found to be allowed, where the energy gap increased from 2.576 to 2.702 eV with increasing film thickness. Also, the refractive index value increase with increasing film thickness. The refractive indices evaluated through envelope method were extrapolated by Cauchy dispersion relationship over the whole spectra range. Additionally, the dispersion of refractive index was determined in terms of Wemple-DiDomenico single oscillator model. Third order susceptibility and nonlinear refractive index were determined for different thickness of ZnSe thin films.

  5. The role of two-particle effects in the behavior of refraction of single-component liquids and two-component solutions

    NASA Astrophysics Data System (ADS)

    Gotsul'skii, V. Ya.; Malomuzh, N. P.; Chechko, V. E.

    2016-04-01

    The role of irreducible two-particle contributions to the refraction properties of liquids and solutions has been studied. Two-particle contributions to the polarization vector of the system are calculated by electrostatics methods, which can be explained by weak deformations and overlaps of the electron shells of atoms and molecules. It is shown that, when the two-particle effects are taken into account, the constant of molecular refraction for binary solutions becomes a weakly nonadditive function of the constant of refraction of the components. It is shown by the example of aqueous solutions of ethanol and methanol that our values of the refractive indices and constants of refraction of the solutions are in good agreement with the experimental data.

  6. Baseline peripheral refractive error and changes in axial refraction during one year in a young adult population

    PubMed Central

    Hartwig, Andreas; Charman, William Neil; Radhakrishnan, Hema

    2015-01-01

    Purpose To determine whether the initial characteristics of individual patterns of peripheral refraction relate to subsequent changes in refraction over a one-year period. Methods 54 myopic and emmetropic subjects (mean age: 24.9 ± 5.1 years; median 24 years) with normal vision were recruited and underwent conventional non-cycloplegic subjective refraction. Peripheral refraction was also measured at 5° intervals over the central 60° of horizontal visual field, together with axial length. After one year, measurements of subjective refraction and axial length were repeated on the 43 subjects who were still available for examination. Results In agreement with earlier studies, higher myopes tended to show greater relative peripheral hyperopia. There was, however, considerable inter-subject variation in the pattern of relative peripheral refractive error (RPRE) at any level of axial refraction. Across the group, mean one-year changes in axial refraction and axial length did not differ significantly from zero. There was no correlation between changes in these parameters for individual subjects and any characteristic of their RPRE. Conclusion No evidence was found to support the hypothesis that the pattern of RPRE is predictive of subsequent refractive change in this age group. PMID:26188389

  7. Potential-Field and Seismic Reflection/Refraction Studies of the Eagle Rock and Raymond Faults in Arroyo Seco, Los Angeles County, California

    NASA Astrophysics Data System (ADS)

    Scheirer, D. S.; Rymer, M. J.; Catchings, R. D.; Goldman, M.; Fuis, G. S.

    2010-12-01

    In August 2007, we acquired high-resolution gravity and seismic reflection and refraction data across the Eagle Rock and Raymond faults in the Arroyo Seco, located in Pasadena and South Pasadena, California. The studies were conducted to aid in understanding the seismic hazards of these faults in this urban setting, specifically to detect and determine the location of all faults passing through the area and to characterize their dip and possible structural connections. Gravity data were collected along a single ~3-km-long profile, with stations spaced every 25-m close to the fault traces and at greater intervals away from the fault traces. Gravity station elevations from Real-Time Kinematic GPS solutions, along with careful accounting for the gravity effects of the adjacent concrete drainage channel and of the walls of the arroyo, allow for the calculation of gravity anomalies that reflect sub-surface density contrasts across the Eagle Rock and Raymond faults. Seismic reflection and refraction data, including both P-wave and S-wave records, were collected along two profiles, a northern one crossing the Eagle Rock fault with a length of 1200 m, and a southern one crossing the Raymond fault with a length of 450 m. The seismic profiles coincided with the longer gravity profile along the floor of the Arroyo Seco. Seismic sources included Betsy-Seisgun shots, accelerated weight drops, and repeated sledge hammer impacts, and receivers were geophones spaced at a 5-m interval. S-waves were generated and recorded at a subset of sites on each of the seismic lines. Seismic reflection and refraction images indicate that both the Eagle Rock and Raymond faults are comprised of multiple, steeply-dipping fault strands. P- and S-wave seismic tomography of the uppermost 50-100 m show velocity variations that can be converted to likely density variations, which can in turn be subtracted from the density variation needed by the gravity anomaly analysis. This process of stripping off

  8. Measurements of the complex refractive index of volcanic ash at 450, 546.7, and 650 nm

    NASA Astrophysics Data System (ADS)

    Ball, J. G. C.; Reed, B. E.; Grainger, R. G.; Peters, D. M.; Mather, T. A.; Pyle, D. M.

    2015-08-01

    The detection and quantification of volcanic ash is extremely important to the aviation industry, civil defense organizations, and those in peril from volcanic ashfall. To exploit the remote sensing techniques that are used to monitor a volcanic cloud and return information on its properties, the effective complex refractive index of the volcanic ash is required. This paper presents the complex refractive index determined in the laboratory at 450.0 nm, 546.7 nm, and 650.0 nm for volcanic ash samples from eruptions of Aso (Japan), Grímsvötn (Iceland), Chaitén (Chile), Etna (Italy), Eyjafjallajökull (Iceland), Tongariro (New Zealand), Askja (Iceland), Nisyros (Greece), Okmok (Alaska), Augustine (Alaska), and Spurr (Alaska). The Becke line method was used to measure the real part of the refractive index with an accuracy of 0.01. The values measured differed between eruptions and were in the range 1.51-1.63 at 450.0 nm, 1.50-1.61 at 546.7 nm, and 1.50-1.59 at 650.0 nm. A novel method is introduced to derive the imaginary part of the refractive index from the attenuation of light by ash. The method has a precision in the range 10-3-10-4. The values for the ash imaginary refractive index ranged 0.22-1.70 × 10-3 at 450.0 nm, 0.16-1.93 × 10-3 at 546.7 nm, and 0.15-2.08 × 10-3 at 650.0 nm. The accuracy of Becke and attenuation methods was assessed by measuring the complex refractive index of Hoya neutral density glass and found to have an accuracy of <0.01 and <2 × 10-5 for the real and imaginary parts of the refractive index, respectively.

  9. Can ionospheric refraction and oblique reflection explain the Canadian 50 MHz IGY radio aurora observations?

    NASA Astrophysics Data System (ADS)

    McDiarmid, D. R.; Watermann, J.; McNamara, A. G.

    1990-10-01

    This paper examines the hypothesis of Uspensky and Williams (1988) that the Canadian International Geophysical Year (IGY) radio aurora measurements of low (1-2 dB/deg) magnetic aspect sensitivity of 48 MHz scatter seen during the IGY in the Canadian sector can be explained by inadequate correction. The ionospheric conditions necessary to enable refraction/reflection to explain the Canadian IGY observations were investigated and were compared with those expected in the E-region ionosphere. It is shown that the refraction/oblique reflection is insufficient to explain the low value of aspect sensitivity deduced from the Canadian IGY auroral radar observations assuming ionospheric parameters typical of extended ionospheric layers; neither can these observations be explained by plasma density structures typical of some visual auroral forms. An alternative explanation is discussed.

  10. Evidence for a dynamically refracted primary bow in weakly bound 9Be rainbow scattering from 16O

    NASA Astrophysics Data System (ADS)

    Ohkubo, S.; Hirabayashi, Y.

    2016-09-01

    We present for the first time evidence for the existence of a dynamically refracted primary bow for 9Be+16O scattering. This is demonstrated through the use of coupled channel calculations with an extended double folding potential derived from the density-dependent effective two-body force and precise microscopic cluster wave functions for 9Be. The calculations reproduce the experimental Airy structure in 9Be+16O scattering well. It is found that coupling of a weakly bound 9Be nucleus to excited states plays the role of a booster lens, dynamically enhancing the refraction over the static refraction due to the Luneburg lens mean field potential between the ground states of 9Be and 16O.

  11. Refractive beam shapers for focused laser beams

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Laskin, Vadim; Ostrun, Aleksei

    2016-09-01

    Focusing of laser radiation is most often used approach in various industrial micromachining applications like scribing, PCB drilling, and is important in scientific researches like laser heating in geophysics experiments with diamond anvil cells (DAC). Control of intensity distribution in focal spot is important task since optimum intensity profiles are rather flat-top, doughnut or "inverse-Gauss" than typical for lasers Gaussian profile. Because of high intensity of modern CW and pulsed lasers it is advisable to use refractive beam shaping optics with smooth optical surfaces providing high radiation resistance. Workable optical solutions can be built on the base of diffraction theory conclusion that flat-top intensity profile in focal plane of a lens is created when input beam has Airy-disk intensity distribution. It is suggested to apply refractive beam shapers converting, with minimum wavefront deformation, Gaussian profile of TEM00 beam to a beam with Airy disk intensity distribution, thereby optimizing conditions of interference near the focal plane of a lens after the beam shaper and providing flat-top, doughnut, "inverse-Gauss" profiles. This approach allows operation with CW and ultra-short pulse lasers, using F-theta lenses and objectives, mirror scanners, provides extended depth of field similar to Rayleigh length of comparable TEM00 beam, easy integration in industrial equipment, simple adjustment procedure and switching between profiles, telescope and collimator implementations. There will be considered design basics of beam shapers, analysis of profile behaviour near focal plane, examples of implementations in micromachining systems and experimental DAC setups, results of profile measurements and material processing.

  12. Two-dimensional refractive index and stresses profiles of a homogenous bent optical fiber.

    PubMed

    Ramadan, W A; Wahba, H H; Shams El-Din, M A

    2014-11-01

    We present a significant contribution to the theory of determining the refractive index profile of a bent homogenous optical fiber. In this theory we consider two different processes controlling the index profile variations. The first is the linear index variation due to stress along the bent radius, and the second is the release of this stress on the fiber surface. This release process is considered to have radial dependence on the fiber radius. These considerations enable us to construct the index profile in two dimensions normal to the optical axis, considering the refraction of light rays traversing the fiber. This theory is applied to optical homogenous bent fiber with two bending radii when they are located orthogonal to the light path of the object arm in the holographic setup (like the Mach-Zehnder interferometer). Digital holographic phase shifting interferometry is employed in this study. The recorded phase shifted holograms have been combined, reconstructed, and processed to extract the phase map of the bent optical fiber. A comparison between the extracted optical phase differences and the calculated one indicates that the refractive index profile variation should include the above mentioned two processes, which are considered as a response for stress distribution across the fiber's cross section. The experimentally obtained refractive index profiles provide the stress induced birefringence profile. Thus we are able to present a realistic induced stress profile due to bending.

  13. Refractive index sensing of green fluorescent proteins in living cells using fluorescence lifetime imaging microscopy.

    PubMed

    van Manen, Henk-Jan; Verkuijlen, Paul; Wittendorp, Paul; Subramaniam, Vinod; van den Berg, Timo K; Roos, Dirk; Otto, Cees

    2008-04-15

    We show that fluorescence lifetime imaging microscopy (FLIM) of green fluorescent protein (GFP) molecules in cells can be used to report on the local refractive index of intracellular GFP. We expressed GFP fusion constructs of Rac2 and gp91(phox), which are both subunits of the phagocyte NADPH oxidase enzyme, in human myeloid PLB-985 cells and showed by high-resolution confocal fluorescence microscopy that GFP-Rac2 and GFP-gp91(phox) are targeted to the cytosol and to membranes, respectively. Frequency-domain FLIM experiments on these PLB-985 cells resulted in average fluorescence lifetimes of 2.70 ns for cytosolic GFP-Rac2 and 2.31 ns for membrane-bound GFP-gp91(phox). By comparing these lifetimes with a calibration curve obtained by measuring GFP lifetimes in PBS/glycerol mixtures of known refractive index, we found that the local refractive indices of cytosolic GFP-Rac2 and membrane-targeted GFP-gp91(phox) are approximately 1.38 and approximately 1.46, respectively, which is in good correspondence with reported values for the cytosol and plasma membrane measured by other techniques. The ability to measure the local refractive index of proteins in living cells by FLIM may be important in revealing intracellular spatial heterogeneities within organelles such as the plasma and phagosomal membrane.

  14. Refractive Index Sensing with D-Shaped Plastic Optical Fibers for Chemical and Biochemical Applications

    PubMed Central

    Sequeira, Filipa; Duarte, Daniel; Bilro, Lúcia; Rudnitskaya, Alisa; Pesavento, Maria; Zeni, Luigi; Cennamo, Nunzio

    2016-01-01

    We report the optimization of the length of a D-shaped plastic optical fiber (POF) sensor for refractive index (RI) sensing from a numerical and experimental point of view. The sensing principle is based on total internal reflection (TIR). POFs with 1 mm in diameter were embedded in grooves, realized in planar supports with different lengths, and polished to remove the cladding and part of the core. All D-shaped POF sensors were tested using aqueous medium with different refractive indices (from 1.332 to 1.471) through intensity-based configuration. Results showed two different responses. Considering the refractive index (RI) range (1.33–1.39), the sensitivity and the resolution of the sensor were strongly dependent on the sensing region length. The highest sensitivity (resolution of 6.48 × 10−3 refractive index units, RIU) was obtained with 6 cm sensing length. In the RI range (1.41–1.47), the length of the sensing region was not a critical aspect to obtain the best resolution. These results enable the application of this optical platform for chemical and biochemical evanescent field sensing. The sensor production procedure is very simple, fast, and low-cost. PMID:27983608

  15. Hyperopic refractive errors as a prognostic factor in intermittent exotropia surgery

    PubMed Central

    Kim, M K; Kim, U S; Cho, M-J; Baek, S-H

    2015-01-01

    Purpose To evaluate and compare surgical outcomes with respect to refractive errors in strabismus surgery for the treatment of intermittent exotropia (IXT). Methods The medical records of patients with IXT who were treated by one surgeon from January 2005 and June 2011 were reviewed. Three hundred and thirty-three IXT patients were included and divided into three groups according to preoperative refractive error: IXT with hyperopia (group I), IXT with emmetropia (group II), and IXT with myopia (group III). The surgical outcomes with respect to sensory and motor criteria were compared among the three groups. Results The surgical success rates according to motor criteria and sensory and motor criteria combined were higher in groups I (29 patients) and III (124 patients) than in group II (180 patients) at postoperative 3 and 6 months and at the last follow-up. Stereopsis was significantly better in groups II and III than in group I preoperatively (P=0.002 by one-way analysis of variance test); however, the difference was not significant postoperatively. Twenty patients in group I (69.0%) were prescribed undercorrected hyperopic spectacles postoperatively, while only 22 patients in group III (17.7%) were prescribed spectacles with more myopic power than their refractive errors. Conclusion In the surgical treatment of IXT, hyperopia was not an indicator of poor prognosis. Taking into consideration the age effect, follow-up period after IXT surgery, and stereopsis improvement, hyperopic refractive error is rather a good prognostic factor. PMID:26293140

  16. Design, Fabrication and Test of a High Efficiency Refractive Secondary Concentrator for Solar Applications

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Geng, Steven M.; Castle, Charles H.; Macosko, Robert P.

    2000-01-01

    Common to many of the space applications that utilize solar thermal energy such as electric power conversion, thermal propulsion, and furnaces, is a need for highly efficient, solar concentration systems. An effort is underway to develop the refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. When used in combination with advanced primary concentrators, the refractive secondary concentrator enables very high system concentration ratios (10,000 to 1) and very high temperatures (greater than 2000 K). Presented is an overview of the effort at the NASA Glenn Research Center to evaluate the performance of a prototype single crystal sapphire refractive secondary concentrator and to compare the performance with analytical models. The effort involves the design and fabrication of a secondary concentrator, design and fabrication of a calorimeter and its support hardware, calibration of the calorimeter, testing of the secondary concentrator in NASA Glenn's Tank 6 solar thermal vacuum facility, and comparing the test results with predictions. Test results indicate an average throughput efficiency of 87%. It is anticipated that reduction of a known reflection loss with an anti-reflective coating would result in a secondary concentrator throughput efficiency of approximately 93%.

  17. Correlation among auto-refractor, wavefront aberration, and subjective manual refraction

    NASA Astrophysics Data System (ADS)

    Li, Qi; Ren, Qiushi

    2005-01-01

    Three optometry methods which include auto-refractor, wavefront aberrometer and subjective manual refraction were studied and compared in measuring low order aberrations of 60 people"s 117 normal eyes. Paired t-test and linear regression were used to study these three methods" relationship when measuring myopia with astigmatism. In order to make the analysis more clear, we divided the 117 normal eyes into different groups according to their subjective manual refraction and redid the statistical analysis. Correlations among three methods show significant in sphere, cylinder and axis in all groups, with sphere"s correlation coefficients largest(R>0.98, P<0.01) and cylinder"s smallest (0.900.01). Auto-refractor had significant change from the other two methods when measuring cylinder (P<0.01). The results after grouping differed a little from the analysis among total people. Although three methods showed significant change from each other in certain parameters, the amplitude of these differences were not large, which indicated that the coherence of auto-refractor, wavefront aberrometer and subjective refraction is good. However, we suggested that wavefront aberration measurement could be a good starting point of optometry, subjective refraction is still necessary for refinement.

  18. Cylindrical radiant energy direction device with refractive medium

    DOEpatents

    Winston, Roland

    1978-01-01

    A device is provided for directing radiant energy and includes a refractive element and a reflective boundary. The reflective boundary is so contoured that incident energy directed thereto by the refractive element is directed to the exit surface thereof or onto the surface of an energy absorber positioned at the exit surface.

  19. Surface refractivity measurements at NASA spacecraft tracking sites

    NASA Technical Reports Server (NTRS)

    Schmid, P. E.

    1972-01-01

    High-accuracy spacecraft tracking requires tropospheric modeling which is generally scaled by either estimated or measured values of surface refractivity. This report summarizes the results of a worldwide surface-refractivity test conducted in 1968 in support of the Apollo program. The results are directly applicable to all NASA radio-tracking systems.

  20. Comparison Between Radar and Automatic Weather Station Refractivity Variability

    NASA Astrophysics Data System (ADS)

    Hallali, Ruben; Dalaudier, Francis; Parent du Chatelet, Jacques

    2016-08-01

    Weather radars measure changes in the refractive index of air in the atmospheric boundary layer. The technique uses the phase of signals from ground targets located around the radar to provide information on atmospheric refractivity related to meteorological quantities such as temperature, pressure and humidity. The approach has been successfully implemented during several field campaigns using operational S-band radars in Canada, UK, USA and France. In order to better characterize the origins of errors, a recent study has simulated temporal variations of refractivity based on Automatic Weather Station (AWS) measurements. This reveals a stronger variability of the refractivity during the summer and in the afternoon when the refractivity is the most sensitive to humidity, probably because of turbulence close to the ground. This raises the possibility of retrieving information on the turbulent state of the atmosphere from the variability in radar refractivity. An analysis based on a 1-year dataset from the operational C-band radar at Trappes (near Paris, France) and AWS refractivity variability measurements was used to measure those temporal and spatial variabilities. Particularly during summer, a negative bias increasing with range is observed between radar and AWS estimations, and is well explained by a model based on Taylor's hypotheses. The results demonstrate the possibility of establishing, depending on season, a quantitative and qualitative link between radar and AWS refractivity variability that reflects low-level coherent turbulent structures.

  1. Anterior segment surgery IOLs, lasers, and refractive keratoplasty

    SciTech Connect

    Stark, W.J.; Terry, A.C.; Maumenee, A.E.

    1987-01-01

    The contributors to this text combine their expertise to make this book available on intraocular lenses, refractive corneal surgery, and the use of the YAG laser. Included is information on; IOL power calculations; the use of the YAG laser; retinal damage by short wavelength light; reviews of corneal refractive surgery; possibilities for the medical prevention of cataracts; and more.

  2. Modification of the DSN radio frequency angular tropospheric refraction model

    NASA Technical Reports Server (NTRS)

    Berman, A. L.

    1977-01-01

    The previously derived DSN Radio Frequency Angular Tropospheric Refraction Model contained an assumption which was subsequently seen to be at a variance with the theoretical basis of angular refraction. The modification necessary to correct the model is minor in that the value of a constant is changed.

  3. Refraction in Terms of the Deviation of the Light.

    ERIC Educational Resources Information Center

    Goldberg, Fred M.

    1985-01-01

    Discusses refraction in terms of the deviation of light. Points out that in physics courses where very little mathematics is used, it might be more suitable to describe refraction entirely in terms of the deviation, rather than by introducing Snell's law. (DH)

  4. Determining the Thickness and Refractive Index of a Mirror

    ERIC Educational Resources Information Center

    Uysal, Ahmet

    2010-01-01

    When a laser beam reflects from a back surface glass mirror and falls on a screen, a pattern of discrete bright spots is created by partial reflection and refraction of the light at the air-glass interface and reflection at the mirror surface (Fig. 1). This paper explains how this phenomenon can be used to determine the refractive index and the…

  5. Negative Refraction in a Uniaxial Absorbent Dielectric Material

    ERIC Educational Resources Information Center

    Jen, Yi-Jun; Lakhtakia, Akhlesh; Yu, Ching-Wei; Lin, Chin-Te

    2009-01-01

    Refraction of light from an isotropic dielectric medium to an anisotropic dielectric material is a complicated phenomenon that can have several different characteristics not usually discussed in electromagnetics textbooks for undergraduate students. With a simple problem wherein the refracting material is uniaxial with its optic axis normal to the…

  6. Unbiased Estimation of Refractive State of Aberrated Eyes

    PubMed Central

    Martin, Jesson; Vasudevan, Balamurali; Himebaugh, Nikole; Bradley, Arthur; Thibos, Larry

    2011-01-01

    To identify unbiased methods for estimating the target vergence required to maximize visual acuity based on wavefront aberration measurements. Experiments were designed to minimize the impact of confounding factors that have hampered previous research. Objective wavefront refractions and subjective acuity refractions were obtained for the same monochromatic wavelength. Accommodation and pupil fluctuations were eliminated by cycloplegia. Unbiased subjective refractions that maximize visual acuity for high contrast letters were performed with a computer controlled forced choice staircase procedure, using 0.125 diopter steps of defocus. All experiments were performed for two pupil diameters (3mm and 6mm). As reported in the literature, subjective refractive error does not change appreciably when the pupil dilates. For 3 mm pupils most metrics yielded objective refractions that were about 0.1D more hyperopic than subjective acuity refractions. When pupil diameter increased to 6 mm, this bias changed in the myopic direction and the variability between metrics also increased. These inaccuracies were small compared to the precision of the measurements, which implies that most metrics provided unbiased estimates of refractive state for medium and large pupils. A variety of image quality metrics may be used to determine ocular refractive state for monochromatic (635nm) light, thereby achieving accurate results without the need for empirical correction factors. PMID:21777601

  7. Diffractive-refractive correction units for plastic compact zoom lenses.

    PubMed

    Greisukh, Grigoriy I; Ezhov, Evgeniy G; Kalashnikov, Alexander V; Stepanov, Sergei A

    2012-07-10

    A method of designing a plastic zoom lens with a diffractive-refractive hybrid corrector, comprising one diffractive lens and one refractive lens, is described. The efficiency of this method is demonstrated by designing a compact zoom lens for a mobile phone. This zoom design, incorporating lenses made only of two commercial optical plastics (polymethylmethacrylate and polycarbonate), provides high optical performance.

  8. Measurement of Refractive Index Using a Michelson Interferometer.

    ERIC Educational Resources Information Center

    Fendley, J. J.

    1982-01-01

    Describes a novel and simple method of measuring the refractive index of transparent plates using a Michelson interferometer. Since it is necessary to use a computer program when determining the refractive index, undergraduates could be given the opportunity of writing their own programs. (Author/JN)

  9. Helping Secondary School Students Develop a Conceptual Understanding of Refraction

    ERIC Educational Resources Information Center

    Ashmann, Scott; Anderson, Charles W.; Boeckman, Heather

    2016-01-01

    Using real-world examples, ray diagrams, and a cognitive apprenticeship cycle, this paper focuses on developing students' conceptual (not mathematical) understanding of refraction. Refraction can be a difficult concept for students to comprehend if they do not have well-designed opportunities to practice explaining situations where reflection and…

  10. The significance of ultra-refracted surface gravity waves on sheltered coasts, with application to San Francisco Bay

    USGS Publications Warehouse

    Hanes, D.M.; Erikson, L.H.

    2013-01-01

    Ocean surface gravity waves propagating over shallow bathymetry undergo spatial modification of propagation direction and energy density, commonly due to refraction and shoaling. If the bathymetric variations are significant the waves can undergo changes in their direction of propagation (relative to deepwater) greater than 90° over relatively short spatial scales. We refer to this phenomenon as ultra-refraction. Ultra-refracted swell waves can have a powerful influence on coastal areas that otherwise appear to be sheltered from ocean waves. Through a numerical modeling investigation it is shown that San Francisco Bay, one of the earth's largest and most protected natural harbors, is vulnerable to ultra-refracted ocean waves, particularly southwest incident swell. The flux of wave energy into San Francisco Bay results from wave transformation due to the bathymetry and orientation of the large ebb tidal delta, and deep, narrow channel through the Golden Gate. For example, ultra-refracted swell waves play a critical role in the intermittent closure of the entrance to Crissy Field Marsh, a small restored tidal wetland located on the sheltered north-facing coast approximately 1.5 km east of the Golden Gate Bridge.

  11. Phakic Intraocular Lenses and their Special Indications

    PubMed Central

    Pineda, Roberto; Chauhan, Tulika

    2016-01-01

    Phakic intraocular lenses revolutionize refractive surgery and continue to serve as an excellent option for vision correction in patients who are not ideal candidates for laser vision correction. This article will review special indications of phakic intraocular lenses in the clinical practice. PMID:27994811

  12. Software for teaching refraction of light with the semicircle

    NASA Astrophysics Data System (ADS)

    Mihas, Pavlos

    2016-11-01

    Software is presented for teaching elementary optics using a transparent semicircle. We demonstrate the use of the semicircle to investigate Snell’s lawand students can are presented with the difficulties involved in experiments. An Excel spreadsheet can show to students that small errors in positioning of the semicircle can result in a non-constant index of refraction. Students can study the effect of changing some of the parameters of placement of a semicircle on the accuracy of the experimental results. They can see from the analysis of data that much better results are obtained by doing regression analysis rather than by just taking the average value of the index of refraction. Measuring the critical angle also gives a method of calculating the index of refraction. Another way to measure the index of refraction is the use of the semicircle as a lens and from its focal length we can deduce the index of refraction.

  13. Refractive index and solubility control of para-cymene solutions for index-matched fluid-structure interaction studies

    NASA Astrophysics Data System (ADS)

    Fort, Charles; Fu, Christopher D.; Weichselbaum, Noah A.; Bardet, Philippe M.

    2015-12-01

    To deploy optical diagnostics such as particle image velocimetry or planar laser-induced fluorescence (PLIF) in complex geometries, it is beneficial to use index-matched facilities. A binary mixture of para-cymene and cinnamaldehyde provides a viable option for matching the refractive index of acrylic, a common material for scaled models and test sections. This fluid is particularly appropriate for large-scale facilities and when a low-density and low-viscosity fluid is sought, such as in fluid-structure interaction studies. This binary solution has relatively low kinematic viscosity and density; its use enables the experimentalist to select operating temperature and to increase fluorescence signal in PLIF experiments. Measurements of spectral and temperature dependence of refractive index, density, and kinematic viscosity are reported. The effect of the binary mixture on solubility control of Rhodamine 6G is also characterized.

  14. Measurement of the complex refractive-index spectrum for birefringent and absorptive liquids.

    PubMed

    Saito, M; Matsumoto, N; Nishimura, J

    1998-08-01

    The optical constants of birefringent and/or opaque liquids, e.g., liquid crystals and magnetic fluids, are difficult to measure at wavelengths at which a strong light source such as a laser or an arc lamp is not accessible. The refractive index n and the extinction coefficient kappa of these liquids can be simultaneously evaluated from the reflectance curves that are measured in the large incident angle range. A semicylindrical sample cell allows the spectral reflectance measurement with a weak light source even at large incident angles. By using this method, we evaluated the ordinary and the extraordinary indices of a nematic liquid crystal in the continuous wavelength range of 0.55-1.60 mum. The complex refractive indices of magnetic fluids were also evaluated, and the affect of the magnetic field was demonstrated.

  15. Electron cyclotron emission as a density fluctuation diagnostic

    SciTech Connect

    Lynn, A.G.; Phillips, P.E.; Hubbard, A.

    2004-10-01

    A new technique for measuring density fluctuations using a high-resolution heterodyne electron cyclotron emission (ECE) radiometer has been developed. Although ECE radiometry is typically used for electron temperature measurements, the unique viewing geometry of this system's quasioptical antenna has been found to make the detected emission extremely sensitive to refractive effects under certain conditions. This sensitivity gives the diagnostic the ability to measure very low levels of density fluctuations in the core of Alcator C-Mod tokamak. The refractive effects have been modeled using ray-tracing methods, allowing estimates of the density fluctuation magnitude and spatial localization.

  16. Comparison of techniques for approximating ocean bottom topography in a wave-refraction computer model

    NASA Technical Reports Server (NTRS)

    Poole, L. R.

    1975-01-01

    A study of the effects of using different methods for approximating bottom topography in a wave-refraction computer model was conducted. Approximation techniques involving quadratic least squares, cubic least squares, and constrained bicubic polynomial interpolation were compared for computed wave patterns and parameters in the region of Saco Bay, Maine. Although substantial local differences can be attributed to use of the different approximation techniques, results indicated that overall computed wave patterns and parameter distributions were quite similar.

  17. Impact of atmospheric refraction: how deeply can we probe exo-earth's atmospheres during primary eclipse observations?

    SciTech Connect

    Bétrémieux, Yan; Kaltenegger, Lisa

    2014-08-10

    Most models used to predict or fit exoplanet transmission spectra do not include all the effects of atmospheric refraction. Namely, the angular size of the star with respect to the planet can limit the lowest altitude, or highest density and pressure, probed during primary eclipses as no rays passing below this critical altitude can reach the observer. We discuss this geometrical effect of refraction for all exoplanets and tabulate the critical altitude, density, and pressure for an exoplanet identical to Earth with a 1 bar N{sub 2}/O{sub 2} atmosphere as a function of both the incident stellar flux (Venus, Earth, and Mars-like) at the top of the atmosphere and the spectral type (O5-M9) of the host star. We show that such a habitable exo-Earth can be probed to a surface pressure of 1 bar only around the coolest stars. We present 0.4-5.0 μm model transmission spectra of Earth's atmosphere viewed as a transiting exoplanet, and show how atmospheric refraction modifies the transmission spectrum depending on the spectral type of the host star. We demonstrate that refraction is another phenomenon that can potentially explain flat transmission spectra over some spectral regions.

  18. The Northern Walker Lane Seismic Refraction Experiment

    NASA Astrophysics Data System (ADS)

    Louie, J. N.; Smith, S. B.; Thelen, W.; Scott, J. B.; Clark, M.

    2002-12-01

    We are developing a three-dimensional reference seismic velocity model for the western Great Basin region of Nevada and eastern California. The northern Walker Lane had not been characterized well by previous work. In May 2002 we collected a new crustal refraction profile from Battle Mountain, Nev. across western Nevada, the Reno area, Lake Tahoe, and the northern Sierra to Auburn, Calif. Mine blasts and earthquakes were recorded by 199 Texan instruments (loaned by the PASSCAL Instrument Center) extending across this more than 450-km-long transect. The seismic sources at the eastern end were mining blasts at Barrick's GoldStrike pit. We recorded additional blasts at the Florida Canyon and other mines between Lovelock and Battle Mountain, Nevada. The GoldStrike mine produced several ripple-fired blasts using 10,000-40,000 kg of ANFO each. First arrivals from the larger blasts are obvious to distances exceeding 250 km in the raw records. A M2.4 earthquake near Bridgeport, Calif. also produced pickable P-wave arrivals across at least half the transect, providing fan-shot data. We recorded only during working hours, and so missed an M4 earthquake that occurred at night. Events of M2 occurred during our recording to the west on the San Andreas fault near Pinnacles, Calif.; M3 events occurred near Portola and Mammoth Lakes, Calif. Arrivals from M5 events in the Mariana and Kuril Islands also appear in the records. Time-picks from these earthquakes may be possible after more work on synthetic-time modeling, data filtering, and display. We plan to record blasts at quarries in the western Sierra in future experiments, for a direct refraction reversal. We will compare our time picks against times generated from regional velocity models, to identify potential crustal and upper-mantle velocity anomalies. Such anomalies may be associated with the Battle Mountain heat-flow high, the northern Walker Lane belt, or the northern Sierran block.

  19. Cycloplegic refraction is the gold standard for epidemiological studies.

    PubMed

    Morgan, Ian G; Iribarren, Rafael; Fotouhi, Akbar; Grzybowski, Andrzej

    2015-09-01

    Many studies on children have shown that lack of cycloplegia is associated with slight overestimation of myopia and marked errors in estimates of the prevalence of emmetropia and hyperopia. Non-cycloplegic refraction is particularly problematic for studies of associations with risk factors. The consensus around the importance of cycloplegia in children left undefined at what age, if any, cycloplegia became unnecessary. It was often implicitly assumed that cycloplegia is not necessary beyond childhood or early adulthood, and thus, the protocol for the classical studies of refraction in older adults did not include cycloplegia. Now that population studies of refractive error are beginning to fill the gap between schoolchildren and older adults, whether cycloplegia is required for measuring refractive error in this age range, needs to be defined. Data from the Tehran Eye Study show that, without cycloplegia, there are errors in the estimation of myopia, emmetropia and hyperopia in the age range 20-50, just as in children. Similar results have been reported in an analysis of data from the Beaver Dam Offspring Eye Study. If the only important outcome measure of a particular study is the prevalence of myopia, then cycloplegia may not be crucial in some cases. But, without cycloplegia, measurements of other refractive categories as well as spherical equivalent are unreliable. In summary, the current evidence suggests that cycloplegic refraction should be considered as the gold standard for epidemiological studies of refraction, not only in children, but in adults up to the age of 50.

  20. Refractive Errors Affect the Vividness of Visual Mental Images

    PubMed Central

    Palermo, Liana; Nori, Raffaella; Piccardi, Laura; Zeri, Fabrizio; Babino, Antonio; Giusberti, Fiorella; Guariglia, Cecilia

    2013-01-01

    The hypothesis that visual perception and mental imagery are equivalent has never been explored in individuals with vision defects not preventing the visual perception of the world, such as refractive errors. Refractive error (i.e., myopia, hyperopia or astigmatism) is a condition where the refracting system of the eye fails to focus objects sharply on the retina. As a consequence refractive errors cause blurred vision. We subdivided 84 individuals according to their spherical equivalent refraction into Emmetropes (control individuals without refractive errors) and Ametropes (individuals with refractive errors). Participants performed a vividness task and completed a questionnaire that explored their cognitive style of thinking before their vision was checked by an ophthalmologist. Although results showed that Ametropes had less vivid mental images than Emmetropes this did not affect the development of their cognitive style of thinking; in fact, Ametropes were able to use both verbal and visual strategies to acquire and retrieve information. Present data are consistent with the hypothesis of equivalence between imagery and perception. PMID:23755186

  1. Recursive Bayesian electromagnetic refractivity estimation from radar sea clutter

    NASA Astrophysics Data System (ADS)

    Vasudevan, Sathyanarayanan; Anderson, Richard H.; Kraut, Shawn; Gerstoft, Peter; Rogers, L. Ted; Krolik, Jeffrey L.

    2007-04-01

    Estimation of the range- and height-dependent index of refraction over the sea surface facilitates prediction of ducted microwave propagation loss. In this paper, refractivity estimation from radar clutter returns is performed using a Markov state space model for microwave propagation. Specifically, the parabolic approximation for numerical solution of the wave equation is used to formulate the refractivity from clutter (RFC) problem within a nonlinear recursive Bayesian state estimation framework. RFC under this nonlinear state space formulation is more efficient than global fitting of refractivity parameters when the total number of range-varying parameters exceeds the number of basis functions required to represent the height-dependent field at a given range. Moreover, the range-recursive nature of the estimator can be easily adapted to situations where the refractivity modeling changes at discrete ranges, such as at a shoreline. A fast range-recursive solution for obtaining range-varying refractivity is achieved by using sequential importance sampling extensions to state estimation techniques, namely, the forward and Viterbi algorithms. Simulation and real data results from radar clutter collected off Wallops Island, Virginia, are presented which demonstrate the ability of this method to produce propagation loss estimates that compare favorably with ground truth refractivity measurements.

  2. Ballistic range experiments on superbooms generated by refraction

    NASA Technical Reports Server (NTRS)

    Sanai, M.; Toong, T.-Y.; Pierce, A. D.

    1976-01-01

    The enhanced sonic boom or supersonic boom generated as a result of atmospheric refraction in threshold Mach number flights was recreated in a ballistic range by firing projectiles at low supersonic speeds into a stratified medium obtained by slowly injecting carbon dioxide into air. The range was equipped with a fast-response dynamic pressure transducer and schlieren photographic equipment, and the sound speed variation with height was controlled by regulating the flow rate of the CO2. The schlieren observations of the resulting flow field indicate that the generated shocks are reflected near the sonic cutoff altitude where local sound speed equals body speed, provided such an altitude exists. Maximum shock strength occurs very nearly at the point where the incident and reflected shocks join, indicating that the presence of the reflected shock may have an appreciable effect on the magnitude of the focus factor. The largest focus factor detected was 1.7 and leads to an estimate that the constant in the Guiraud-Thery scaling law should have a value of 1.30.

  3. Evaluation of Refractivity Profiles from CHAMP and SAC-C GPS Radio Occultation

    NASA Technical Reports Server (NTRS)

    Poli, Paul; Joiner, Joanna; delaTorreJuarez, Manuel; Hoff, Raymond M.; Atlas, Robert (Technical Monitor)

    2002-01-01

    The CHAMP and SAC-C missions are the first missions to carry a second-generation 'Blackjack' GPS receiver. One of the new features of this receiver is its ability to sense the lower troposphere closer to the surface than the proof-of-concept GPS/MET 1995 experiment. Since their launch, CHAMP and SAC-C have collected thousands of GPS radio occultations, representing a wealth of measurements available for data assimilation in Numerical Weather Prediction (NWP) models. In order to evaluate the refractivity data derived by JPL from raw radio occultation measurements, we use Data Assimilation Office (DAO) 6-hour forecasts as an independent state of the atmosphere. We compare CHAMP and SAC-C refractivity (processed by JPL) with refractivity calculated from the DAO global fields of temperature, water vapor content and humidity. We will show statistics of the differences as well as Probability Density Functions (PDFs) of the differences. Depending upon availability of AIRS data, we plan to show individual profile comparisons between GPS radio occultation and AIRS retrievals.

  4. Evaluation of Refractivity Profiles From Champ and SAC-C GPS Radio Occultation

    NASA Technical Reports Server (NTRS)

    Poli, Paul; Joiner, Joanna; delaTorreJuarez, Manuel; Hoff, Raymond M.; Atlas, Robert (Technical Monitor)

    2002-01-01

    The CHAMP and SAC-C missions are the first missions to carry a second-generation 'Blackjack' GPS receiver. One of the new features of this receiver is its ability to sense the lower troposphere closer to the surface than the proof-of-concept GPS/MET 1995 experiment. Since their launch, CHAMP and SAC-C have collected thousands of GPS radio occultations, representing a wealth of measurements available for data assimilation in Numerical Weather Prediction (NWP) models. In order to evaluate the refractivity data derived by JPL from raw radio occultation measurements, we use Data Assimilation Office (DAO) shout forecasts as an independent state of the atmosphere. We compare CHAMP and SAC-C refractivity (processed by JPL) with refractivity calculated from the DAO global fields of temperature, water vapor content and humidity. We will show statistics of the differences as well as Probability Density Functions (PDFs) of the differences. Depending upon availability of AIRS data, we plan to show individual profile comparisons between GPS radio occultation and AIRS retrievals.

  5. Prediction of an extremely large nonlinear refractive index for crystals at terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Dolgaleva, Ksenia; Materikina, Daria V.; Boyd, Robert W.; Kozlov, Sergei A.

    2015-08-01

    We develop a simple analytical model for calculating the vibrational contribution to the nonlinear refractive index n2 (Kerr coefficient) of a crystal in terms of known crystalline parameters such as the linear refractive index, the coefficient of thermal expansion, the atomic density, and the reduced mass and the natural oscillation frequency of the vibrational modes of the crystal lattice. We show that the value of this contribution in the terahertz spectral region can exceed the value of the nonlinear refractive index n2 in the visible and near-IR spectral ranges (which is largely electronic in origin) by several orders of magnitude. For example, for crystal quartz the value of the Kerr coefficient in the low-frequency limit is n2=2.2 ×10-9 esu or, equivalently, 4.4 ×10-16m2 /W, which is very much larger than its value of 3 ×10-20m2 /W in the visible range. Furthermore, we present an analysis of the dispersion of n2 in the terahertz spectral range and show that even larger values of n2 occur at frequencies close to the vibrational resonances.

  6. Landslide characterization using P- and S-wave seismic refraction tomography - The importance of elastic moduli

    NASA Astrophysics Data System (ADS)

    Uhlemann, S.; Hagedorn, S.; Dashwood, B.; Maurer, H.; Gunn, D.; Dijkstra, T.; Chambers, J.

    2016-11-01

    In the broad spectrum of natural hazards, landslides in particular are capable of changing the landscape and causing significant human and economic losses. Detailed site investigations form an important component in the landslide risk mitigation and disaster risk reduction process. These investigations usually rely on surface observations, discrete sampling of the subsurface, and laboratory testing to examine properties that are deemed representative of entire slopes. Often this requires extensive interpolations and results in large uncertainties. To compliment and extend these approaches, we present a study from an active landslide in a Lias Group clay slope, North Yorkshire, UK, examining combined P- and S-wave seismic refraction tomography (SRT) as a means of providing subsurface volumetric imaging of geotechnical proxies. The distributions of seismic wave velocities determined from SRT at the study site indicated zones with higher porosity and fissure density that are interpreted to represent the extent and depth of mass movements and weathered bedrock zones. Distinguishing the lithological units was facilitated by deriving the Poisson's ratio from the SRT data as saturated clay and partially saturated sandy silts showed distinctively different Poisson's ratios. Shear and Young's moduli derived from the SRT data revealed the weak nature of the materials in active parts of the landslide (i.e. 25 kPa and 100 kPa respectively). The SRT results are consistent with intrusive (i.e. cone penetration tests), laboratory, and additional geoelectrical data from this site. This study shows that SRT forms a cost-effective method that can significantly reduce uncertainties in the conceptual ground model of geotechnical and hydrological conditions that govern landslide dynamics.

  7. Analysis of critically refracted longitudinal waves

    NASA Astrophysics Data System (ADS)

    Pei, Ning; Bond, Leonard J.

    2015-03-01

    Fabrication processes, such as, welding, forging, and rolling can induce residual stresses in metals that will impact product performance and phenomena such as cracking and corrosion. To better manage residual stress tools are needed to map their distribution. The critically refracted ultrasonic longitudinal (LCR) wave is one such approach that has been used for residual stress characterization. It has been shown to be sensitive to stress and less sensitive to the effects of the texture of the material. Although the LCR wave is increasingly widely applied, the factors that influence the formation of the LCR beam are seldom discussed. This paper reports a numerical model used to investigate the transducers' parameters that can contribute to the directionality of the LCR wave and hence enable performance optimization when used for industrial applications. An orthogonal test method is used to study the transducer parameters which influence the LCR wave beams. This method provides a design tool that can be used to study and optimize multiple parameter experiments and it can identify which parameter or parameters are of most significance. The simulation of the sound field in a 2-D "water-steel" model is obtained using a Spatial Fourier Analysis method. The effects of incident angle, standoff, the aperture and the center frequency of the transducer were studied. Results show that the aperture of the transducer, the center frequency and the incident angle are the most important factors in controlling the directivity of the resulting LCR wave fields.

  8. Analysis of critically refracted longitudinal waves

    SciTech Connect

    Pei, Ning Bond, Leonard J.

    2015-03-31

    Fabrication processes, such as, welding, forging, and rolling can induce residual stresses in metals that will impact product performance and phenomena such as cracking and corrosion. To better manage residual stress tools are needed to map their distribution. The critically refracted ultrasonic longitudinal (LCR) wave is one such approach that has been used for residual stress characterization. It has been shown to be sensitive to stress and less sensitive to the effects of the texture of the material. Although the LCR wave is increasingly widely applied, the factors that influence the formation of the LCR beam are seldom discussed. This paper reports a numerical model used to investigate the transducers' parameters that can contribute to the directionality of the LCR wave and hence enable performance optimization when used for industrial applications. An orthogonal test method is used to study the transducer parameters which influence the LCR wave beams. This method provides a design tool that can be used to study and optimize multiple parameter experiments and it can identify which parameter or parameters are of most significance. The simulation of the sound field in a 2-D 'water-steel' model is obtained using a Spatial Fourier Analysis method. The effects of incident angle, standoff, the aperture and the center frequency of the transducer were studied. Results show that the aperture of the transducer, the center frequency and the incident angle are the most important factors in controlling the directivity of the resulting LCR wave fields.

  9. Variable thickness double-refracting plate

    DOEpatents

    Hadeishi, Tetsuo

    1976-01-01

    This invention provides an A.C., cyclic, current-controlled, phase retardation plate that uses a magnetic clamp to produce stress birefringence. It was developed for an Isotope-Zeeman Atomic Absorption Spectrometer that uses polarization modulation to effect automatic background correction in atomic absorption trace-element measurements. To this end, the phase retardation plate of the invention is a variable thickness, photoelastic, double-refracting plate that is alternately stressed and released by the magnetic clamp selectively to modulate specific components selected from the group consisting of circularly and plane polarized Zeeman components that are produced in a dc magnetic field so that they correspond respectively to Zeeman reference and transmission-probe absorption components. The polarization modulation changes the phase of these polarized Zeeman components, designated as .sigma. reference and .pi. absorption components, so that every half cycle the components change from a transmission mode to a mode in which the .pi. component is blocked and the .sigma. components are transmitted. Thus, the Zeeman absorption component, which corresponds in amplitude to the amount of the trace element to be measured in a sample, is alternately transmitted and blocked by a linear polarizer, while the circularly polarized reference components are continuously transmitted thereby. The result is a sinusoidally varying output light amplitude whose average corresponds to the amount of the trace element present in the sample.

  10. Refractive microlenses for ultraflat photolithographic projection systems

    NASA Astrophysics Data System (ADS)

    Voelkel, Reinhard; Eisner, Martin; Ossmann, Christian; Weible, Kenneth J.

    2000-08-01

    We report on the fabrication of high quality microlens arrays on 4', 6' and 8'-fused silica wafers. Refractive, plano-convex microlenses are fabricated by using photolithography; a reflow or melting resist technique and reactive ion etching. A diffraction-limited optical performance (p-v wave aberrations of < (lambda) /8, Strehl ratio GTR 0.97) is achieved. Aspherical lens profiles are obtained by varying the etch parameters during the reactive ion etching transfer. The microlens arrays are used for Microlens Projection Lithography (MPL) and within UV-light illumination systems. Microlens Projection Lithography is an innovative technique using KARL SUSS Mask Aligners equipped with an ultra-flat microlens-based projection system. The projection system consists of 500.000 identical micro-objectives side- by-side. Each micro-objective consists of 3 to 4 microlenses. A fully symmetrical optical design eliminates coma, distortion and lateral color. The lens system is frontal- and backside telecentric to provide a unit magnification (+1) over the whole depth of focus. Each micro- objective images a small part of the photomask pattern onto the wafer. The partial images from different channels overlap consistently and form a complete aerial image of the photomask. Microlens Projection Lithography provides an increased depth of focus (GTR 50 microns) at a larger working distance ($GTR 1 mm)than standard proximity printing. Microlens Projection Lithography allows photolithography on curved on non-planar substrates, in V-grooves, holes, etc. using a KARL SUSS Mask Aligner.

  11. Detection system for ocular refractive error measurement.

    PubMed

    Ventura, L; de Faria e Sousa, S J; de Castro, J C

    1998-05-01

    An automatic and objective system for measuring ocular refractive errors (myopia, hyperopia and astigmatism) was developed. The system consists of projecting a light target (a ring), using a diode laser (lambda = 850 nm), at the fundus of the patient's eye. The light beams scattered from the retina are submitted to an optical system and are analysed with regard to their vergence by a CCD detector (matrix). This system uses the same basic principle for the projection of beams into the tested eye as some commercial refractors, but it is innovative regarding the ring-shaped measuring target for the projection system and the detection system where a matrix detector provides a wider range of measurement and a less complex system for the optical alignment. Also a dedicated electronic circuit was not necessary for treating the electronic signals from the detector (as the usual refractors do); instead a commercial frame grabber was used and software based on the heuristic search technique was developed. All the guiding equations that describe the system as well as the image processing procedure are presented in detail. Measurements in model eyes and in human eyes are in good agreement with retinoscopic measurements and they are also as precise as these kinds of measurements require (0.125D and 5 degrees).

  12. Climate Absolute Radiance and Refractivity Observatory (CLARREO)

    NASA Technical Reports Server (NTRS)

    Leckey, John P.

    2015-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a mission, led and developed by NASA, that will measure a variety of climate variables with an unprecedented accuracy to quantify and attribute climate change. CLARREO consists of three separate instruments: an infrared (IR) spectrometer, a reflected solar (RS) spectrometer, and a radio occultation (RO) instrument. The mission will contain orbiting radiometers with sufficient accuracy, including on orbit verification, to calibrate other space-based instrumentation, increasing their respective accuracy by as much as an order of magnitude. The IR spectrometer is a Fourier Transform spectrometer (FTS) working in the 5 to 50 microns wavelength region with a goal of 0.1 K (k = 3) accuracy. The FTS will achieve this accuracy using phase change cells to verify thermistor accuracy and heated halos to verify blackbody emissivity, both on orbit. The RS spectrometer will measure the reflectance of the atmosphere in the 0.32 to 2.3 microns wavelength region with an accuracy of 0.3% (k = 2). The status of the instrumentation packages and potential mission options will be presented.

  13. Refractive index and temperature nanosensor with plasmonic waveguide system

    NASA Astrophysics Data System (ADS)

    Kong, Yan; Qiu, Peng; Wei, Qi; Quan, Wei; Wang, Shouyu; Qian, Weiying

    2016-07-01

    A surface plasmon polariton sensor consisting of two metal-insulator-metal waveguides and a transverse rectangular resonator is proposed. Both refractive index and temperature sensing characteristics are analyzed by investigating the transmission spectra which demonstrates that the transmission peak wavelength shifting satisfies linear relation with environmental refractive index and temperature, respectively. The proposed design provides high refractive index and temperature sensitivity as 3.38×106%/RIU and 82%/K estimated by integrated response of the sensor, and owns the potentials for high-throughput array sensing. It is believed that the nanoscale sensor can be applied in spot detection for high speed multi-parameter sensing and accurate measurements.

  14. Studies of atmospheric refraction effects on laser data

    NASA Technical Reports Server (NTRS)

    Dunn, P. J.; Pearce, W. A.; Johnson, T. S.

    1982-01-01

    The refraction effect from three perspectives was considered. An analysis of the axioms on which the accepted correction algorithms were based was the first priority. The integrity of the meteorological measurements on which the correction model is based was also considered and a large quantity of laser observations was processed in an effort to detect any serious anomalies in them. The effect of refraction errors on geodetic parameters estimated from laser data using the most recent analysis procedures was the focus of the third element of study. The results concentrate on refraction errors which were found to be critical in the eventual use of the data for measurements of crustal dynamics.

  15. Refractive phenomena in the shock wave dispersion with variable gradients

    SciTech Connect

    Markhotok, A.; Popovic, S.

    2010-06-15

    In this article the refraction effects in the weak shock wave (SW) dispersion on an interface with a temperature variation between two mediums are described. In the case of a finite-gradient boundary, the effect of the SW dispersion is remarkably stronger than in the case of a step change in parameters. In the former case the vertical component of velocity for the transmitted SW (the refraction effect) must be taken into account. Results of comparative calculations based on the two-dimensional model corrected for the refraction effect show significant differences in the shapes of the dispersed SW fronts.

  16. Black and gray Helmholtz-Kerr soliton refraction

    SciTech Connect

    Sanchez-Curto, Julio; Chamorro-Posada, Pedro; McDonald, Graham S.

    2011-01-15

    Refraction of black and gray solitons at boundaries separating different defocusing Kerr media is analyzed within a Helmholtz framework. A universal nonlinear Snell's law is derived that describes gray soliton refraction, in addition to capturing the behavior of bright and black Kerr solitons at interfaces. Key regimes, defined by beam and interface characteristics, are identified, and predictions are verified by full numerical simulations. The existence of a unique total nonrefraction angle for gray solitons is reported; both internal and external refraction at a single interface is shown possible (dependent only on incidence angle). This, in turn, leads to the proposal of positive or negative lensing operations on soliton arrays at planar boundaries.

  17. Determination of the refractive index of paper with clearing agents

    NASA Astrophysics Data System (ADS)

    Fabritius, Tapio; Saarela, Juha; Myllyla, Risto

    2006-01-01

    The refractive index of paper was determined by measuring the propagation delay of photons in optically cleared paper boards. The determination was based on the assumption that photon propagation delay achieves minimum value as the paper is optimally cleared. The measured paper sheets was made from elemental chlorine-free market pulp, i.e. fully bleached, unbeaten, softwood kraft pulp. Nine different clearing agents with a refraction index between 1.329 and 1.741 were eLuperimented with. According to the streakmem measurements, the refractive index of the test paper was 1.557.

  18. Analyzing refractive index changes and differential bending in microcantilever arrays

    NASA Astrophysics Data System (ADS)

    Huber, François; Lang, Hans Peter; Hegner, Martin; Despont, Michel; Drechsler, Ute; Gerber, Christoph

    2008-08-01

    A new microcantilever array design is investigated comprising eight flexible microcantilevers introducing two solid bars, enabling to subtract contributions from differences in refractive index in an optical laser read out system. Changes in the refractive index do not contribute undesirably to bending signals at picomolar to micromolar DNA or protein concentrations. However, measurements of samples with high salt concentrations or serum are affected, requiring corrections for refractive index artifacts. Moreover, to obtain a deeper understanding of molecular stress formation, the differential curvature of cantilevers is analyzed by positioning the laser spots along the surface of the levers during pH experiments.

  19. Analytical models of optical refraction in the troposphere.

    PubMed

    Nener, Brett D; Fowkes, Neville; Borredon, Laurent

    2003-05-01

    An extremely accurate but simple asymptotic description (with known error) is obtained for the path of a ray propagating over a curved Earth with radial variations in refractive index. The result is sufficiently simple that analytic solutions for the path can be obtained for linear and quadratic index profiles. As well as rendering the inverse problem trivial for these profiles, this formulation shows that images are uniformly magnified in the vertical direction when viewed through a quadratic refractive-index profile. Nonuniform vertical distortions occur for higher-order refractive-index profiles.

  20. Magnetic Location Indicator

    NASA Technical Reports Server (NTRS)

    Stegman, Thomas W.

    1992-01-01

    Ferrofluidic device indicates point of highest magnetic-flux density in workspace. Consists of bubble of ferrofluid in immiscible liquid carrier in clear plastic case. Used in flat block or tube. Axes of centering circle on flat-block version used to mark location of maximum flux density when bubble in circle. Device used to find point on wall corresponding to known point on opposite side of wall.