ERIC Educational Resources Information Center
Hess, Mailee; Campagna, Elizabeth J.; Jensen, Kristin M.
2018-01-01
Background: Adults with intellectual or developmental disability (ID/DD) have multiple risks for low bone mineral density (BMD) without formal guidelines to guide testing. We sought to identify risk factors and patterns of BMD testing among institutionalized adults with ID/DD. Methods: We evaluated risk factors for low BMD (Z-/T-score < -1) and…
Association of unipedal standing time and bone mineral density in community-dwelling Japanese women.
Sakai, A; Toba, N; Takeda, M; Suzuki, M; Abe, Y; Aoyagi, K; Nakamura, T
2009-05-01
Bone mineral density (BMD) and physical performance of the lower extremities decrease with age. In community-dwelling Japanese women, unipedal standing time, timed up and go test, and age are associated with BMD while in women aged 70 years and over, unipedal standing time is associated with BMD. The aim of this study was to clarify whether unipedal standing time is significantly associated with BMD in community-dwelling women. The subjects were 90 community-dwelling Japanese women aged 54.7 years. BMD of the second metacarpal bone was measured by computed X-ray densitometry. We measured unipedal standing time as well as timed up and go test to assess physical performance of the lower extremities. Unipedal standing time decreased with increased age. Timed up and go test significantly correlated with age. Low BMD was significantly associated with old age, short unipedal standing time, and long timed up and go test. Stepwise regression analysis revealed that age, unipedal standing time, and timed up and go test were significant factors associated with BMD. In 21 participants aged 70 years and over, body weight and unipedal standing time, but not age, were significantly associated with BMD. BMD and physical performance of the lower extremities decrease with older age. Unipedal standing time, timed up and go test, and age are associated with BMD in community-dwelling Japanese women. In women aged 70 years and over, unipedal standing time is significantly associated with BMD.
Are breast density and bone mineral density independent risk factors for breast cancer?
Kerlikowske, Karla; Shepherd, John; Creasman, Jennifer; Tice, Jeffrey A; Ziv, Elad; Cummings, Steve R
2005-03-02
Mammographic breast density and bone mineral density (BMD) are markers of cumulative exposure to estrogen. Previous studies have suggested that women with high mammographic breast density or high BMD are at increased risk of breast cancer. We determined whether mammographic breast density and BMD of the hip and spine are correlated and independently associated with breast cancer risk. We conducted a cross-sectional study (N = 15,254) and a nested case-control study (of 208 women with breast cancer and 436 control subjects) among women aged 28 years or older who had a screening mammography examination and hip BMD measurement within 2 years. Breast density for 3105 of the women was classified using the American College of Radiology Breast Imaging Reporting and Data System (BI-RADS) categories, and percentage mammographic breast density among the case patients and control subjects was quantified with a computer-based threshold method. Spearman rank partial correlation coefficient and Pearson's correlation coefficient were used to examine correlations between BI-RADS breast density and BMD and between percentage mammographic breast density and BMD, respectively, in women without breast cancer. Logistic regression was used to examine the association of breast cancer with percentage mammographic breast density and BMD. All statistical tests were two-sided. Neither BI-RADS breast density nor percentage breast density was correlated with hip or spine BMD (correlation coefficient = -.02 and -.01 for BI-RADS, respectively, and -.06 and .01 for percentage breast density, respectively). Neither hip BMD nor spine BMD had a statistically significant relationship with breast cancer risk. Women with breast density in the highest sextile had an approximately threefold increased risk of breast cancer compared with women in the lowest sextile (odds ratio = 2.7, 95% confidence interval = 1.4 to 5.4); adjusting for hip or spine BMD did not change the association between breast density and breast cancer risk. Breast density is strongly associated with increased risk of breast cancer, even after taking into account reproductive and hormonal risk factors, whereas BMD, although a possible marker of lifetime exposure to estrogen, is not. Thus, a component of breast density that is independent of estrogen-mediated effects may contribute to breast cancer risk.
Preisser, J. S.; Hammett-Stabler, C. A.; Renner, J. B.; Rubin, J.
2011-01-01
Summary The association between follicle-stimulating hormone (FSH) and bone density was tested in 111 postmenopausal women aged 50–64 years. In the multivariable analysis, weight and race were important determinants of bone mineral density. FSH, bioavailable estradiol, and other hormonal variables did not show statistically significant associations with bone density at any site. Introduction FSH has been associated with bone density loss in animal models and longitudinal studies of women. Most of these analyses have not considered the effect of weight or race. Methods We tested the association between FSH and bone density in younger postmenopausal women, adjusting for patient-related factors. In 111 postmenopausal women aged 50–64 years, areal bone mineral density (BMD) was measured at the lumbar spine, femoral neck, total hip, and distal radius using dual-energy X-ray absorptiometry, and volumetric BMD was measured at the distal radius using peripheral quantitative computed tomography (pQCT). Height, weight, osteoporosis risk factors, and serum hormonal factors were assessed. Results FSH inversely correlated with weight, bioavailable estradiol, areal BMD at the lumbar spine and hip, and volumetric BMD at the ultradistal radius. In the multivariable analysis, no hormonal variable showed a statistically significant association with areal BMD at any site. Weight was independently associated with BMD at all central sites (p<0.001), but not with BMD or pQCT measures at the distal radius. Race was independently associated with areal BMD at all sites (p≤0.008) and with cortical area at the 33% distal radius (p=0.004). Conclusions Correlations between FSH and bioavailable estradiol and BMD did not persist after adjustment for weight and race in younger postmenopausal women. Weight and race were more important determinants of bone density and should be included in analyses of hormonal influences on bone. PMID:21125395
Analysis of LCT-13910 genotypes and bone mineral density in ancient skeletal materials.
Mnich, Barbara; Spinek, Anna Elżbieta; Chyleński, Maciej; Sommerfeld, Aleksandra; Dabert, Miroslawa; Juras, Anna; Szostek, Krzysztof
2018-01-01
The relation of LCT-13910 genotypes and bone mineral density (BMD) has been the subject of modern-day human population studies, giving inconsistent results. In the present study we analyze for the first time a relation of LCT-13910 genotypes and BMD in historical skeletal individuals. Ancient population might be a model for testing this association due to elimination of non-natural factors affecting bone density. Among 22 medieval individuals from Sanok churchyard (South-Eastern Poland; dated from XIV to XVII c. AD) we identified 4 individuals with osteoporosis (mean BMD = 0.468 g/cm2, SD = 0.090), 10 individuals with osteopenia (mean BMD = 0.531 g/cm2, SD = 0.066) and 8 individuals with normal BMD values (mean BMD = 0,642 g/cm2, SD = 0.060). Analyses of BMD and LCT-13910 genotypes revealed that mean BMD was the highest (0.583 g/cm2, SD = 0.065) in the individuals with lactose tolerance genotypes (TT and CT). We also found possible association of lower BMD at the radius and CC genotypes due to higher but not statistically significant frequency of osteoporosis in the lactose intolerant group (p = 0.60). Statistically significant correlation was found between BMD and females aged 20-35 years, with tendency to reduce BMD with age (p = 0.02).
Analysis of LCT-13910 genotypes and bone mineral density in ancient skeletal materials
Mnich, Barbara; Spinek, Anna Elżbieta; Chyleński, Maciej; Sommerfeld, Aleksandra; Dabert, Miroslawa; Szostek, Krzysztof
2018-01-01
The relation of LCT-13910 genotypes and bone mineral density (BMD) has been the subject of modern-day human population studies, giving inconsistent results. In the present study we analyze for the first time a relation of LCT-13910 genotypes and BMD in historical skeletal individuals. Ancient population might be a model for testing this association due to elimination of non-natural factors affecting bone density. Among 22 medieval individuals from Sanok churchyard (South-Eastern Poland; dated from XIV to XVII c. AD) we identified 4 individuals with osteoporosis (mean BMD = 0.468 g/cm2, SD = 0.090), 10 individuals with osteopenia (mean BMD = 0.531 g/cm2, SD = 0.066) and 8 individuals with normal BMD values (mean BMD = 0,642 g/cm2, SD = 0.060). Analyses of BMD and LCT-13910 genotypes revealed that mean BMD was the highest (0.583 g/cm2, SD = 0.065) in the individuals with lactose tolerance genotypes (TT and CT). We also found possible association of lower BMD at the radius and CC genotypes due to higher but not statistically significant frequency of osteoporosis in the lactose intolerant group (p = 0.60). Statistically significant correlation was found between BMD and females aged 20–35 years, with tendency to reduce BMD with age (p = 0.02). PMID:29708972
[Prevalence of low bone mineral density in postmenopausal breast cancer survivors].
Poloni, Priscila Ferreira; Omodei, Michelle Sako; Nahas-Neto, Jorge; Uemura, Gilberto; Véspoli, Heloisa De Luca; Nahas, Eliana Aguiar Petri
2015-01-01
To evaluate the prevalence of low bone mineral density (BMD) in postmenopausal breast cancer survivors. In this cross-sectional study, 115 breast cancer survivors, seeking healthcare at a University Hospital in Brazil, were evaluated. Eligibility criteria included women with amenorrhea ≥ 12 months and age ≥ 45 years, treated for breast cancer and metastasis-free for at least five years. BMD was measured by DEXA at the lumbar spine (L1-L4) and femoral neck. Low BMD was considered when total-spine and/or femoral-neck T-score values were <-1.0 Delphi Score (DP) (osteopenia and osteoporosis). The risk factors for low BMD were assessed by interview. Data were analyzed statistically by the χ(2) test and Fisher's exact test. The mean age of breast cancer survivors was 61.6 ± 10.1 years and time since menopause was 14.2 ± 5.6 years, with a mean follow-up of 10.1 ± 3.9 years. Considering spine and femoral neck, 60% of breast cancer survivors had low BMD. By evaluating the risk factors for low BMD, a significant difference was found in the percent distribution for age (higher % of women >50 years with low BMD), personal history of previous fracture (11.6% with low BMD versus 0% with normal BMD) and BMI. A higher frequency of obesity was observed among women with normal BMD (63%) compared to those with low BMD (26.1%) (p<0.05). Postmenopausal breast cancer survivors had a high prevalence of osteopenia and osteoporosis.
Ichikawa, Shoji; Koller, Daniel L.; Curry, Leah R.; Lai, Dongbing; Xuei, Xiaoling; Edenberg, Howard J.; Hui, Siu L.; Peacock, Munro; Foroud, Tatiana; Econs, Michael J.
2010-01-01
Phenotypic variation in bone mineral density (BMD) among healthy adults is influenced by both genetic and environmental factors. Genetic sequence variations in the adenylate cyclase 10 (ADCY10) gene, which is also called soluble adenylate cyclase, have previously been reported to be associated with low spinal BMD in hypercalciuric patients. Since ADCY10 is located in the region linked to spinal BMD in our previous linkage analysis, we tested whether polymorphisms in this gene are also associated with normal BMD variation in healthy adults. Sixteen single nucleotide polymorphisms (SNPs) distributed throughout ADCY10 were genotyped in two healthy groups of American whites: 1,692 premenopausal women and 715 men. Statistical analyses were performed in the two groups to test for association between these SNPs and femoral neck and lumbar spine areal BMD. We observed significant evidence of association (p<0.01) with one SNP each in men and women. Genotypes at these SNPs accounted for less than 1% of hip BMD variation in men, but 1.5% of spinal BMD in women. However, adjacent SNPs did not corroborate the association in either males or females. In conclusion, we found a modest association between an ADCY10 polymorphism and spinal areal BMD in premenopausal white women. PMID:19093065
Targownik, Laura E; Leslie, William D; Carr, Rachel; Clara, Ian; Miller, Norine; Rogala, Linda; Graff, Lesley A; Walker, John R; Bernstein, Charles N
2012-11-01
Persons with inflammatory bowel disease (IBD) are reported to have a high prevalence of osteoporosis and reduced bone mineral density (BMD) and to be at higher risk of fracture. The course of BMD loss over time is poorly characterized in persons with IBD. Eighty-six persons, stratified by age, were enrolled from a population-based longitudinal IBD cohort study to undergo BMD testing at baseline, with final BMD testing a mean of 4.3 years later. The proportion of subjects with significant change in BMD at the lumbar spine, total hip, and femoral neck was assessed, as were clinical, biochemical, and anthropomorphic changes. Vertebral radiographs were also obtained at baseline and at the end of follow-up in those aged 50 years and above to detect vertebral fractures. The change in BMD seen in this cohort of IBD patients was similar to the expected rate of BMD loss in the general population. Age >50 years, decreasing body mass index (BMI), and corticosteroid use were most notably correlated with BMD loss. Subjects aged <50 years did not have statistically significant declines in BMD. IBD symptom activity scores correlated poorly with BMD loss. Vertebral fractures were uncommon, with only two subjects out of 41 >50 years old developing a definite radiographic fracture over the course of follow-up. No major nonvertebral fractures were observed. Patients with IBD do not appear to have significantly accelerated BMD loss. Older age, decreasing BMI, and corticosteroid use may identify IBD patients at greater risk for BMD loss.
Kiper Unal, Hatice Demet; Comert Ozkan, Melda; Atilla, Fatos Dilan; Demirci, Zuhal; Soyer, Nur; Yildirim Simsir, Ilgin; Omur, Ozgur; Capaci, Kazim; Saydam, Guray; Sahin, Fahri
2017-01-01
Haemophilia has been associated with low bone mineral density (BMD) probably due to some predisposing factors. The aim of this study was to evaluate the relationship between BMD and potential clinical predictors in adult haemophilic patients. Fortynine patients with moderate and severe haemophilia were enrolled. BMD was measured by Dual Energy X-Ray Absorptiometry (DXA) and blood tests were performed for vitamin D, calcium, phosphore, alkaline phosphatase and parathormone levels. Functional Independence Score in Haemophilia (FISH) and Haemophilia Joint Health Score (HJHS) were used to assess musculoskeletal functions. Body mass index (BMI), Hepatitis C virus (HCV)/Human immunodeficiency virus (HIV) seropositivity and smoking status were also recorded. BMD was found lower than expected for reference age in 34.8% of patients of less than 50 years old. In patients older than 50 years, 66.6% of them had osteoporosis and 33.3% of them had normal BMD. FISH score was statistically significant correlated with BMD of total hip (TH) and femur neck (FN) but not with lumbar spine (LS). In eligible patients, there was also a statistically significant correlation between BMD of TH and HJHS. Vitamine D deficiency was common and found in 77.5% of patients, although there was no significant correlation with BMD. Also no correlation was found between BMD and blood tests, HCV/HIV status, BMI and smoking. This study confirmed that patients with haemophilia have an increased prevelance of low BMD even in younger group. Our results showed that there are significant correlations between FISH score and BMD of TH and FN and also between HJHS score and BMD of TH. Thus, using scoring systems may be beneficial as a simple predictors of BMD to reflect the severity of haemophilic arthropathy. PMID:29181264
Kiper Unal, Hatice Demet; Comert Ozkan, Melda; Atilla, Fatos Dilan; Demirci, Zuhal; Soyer, Nur; Yildirim Simsir, Ilgin; Omur, Ozgur; Capaci, Kazim; Saydam, Guray; Sahin, Fahri
2017-01-01
Haemophilia has been associated with low bone mineral density (BMD) probably due to some predisposing factors. The aim of this study was to evaluate the relationship between BMD and potential clinical predictors in adult haemophilic patients. Fortynine patients with moderate and severe haemophilia were enrolled. BMD was measured by Dual Energy X-Ray Absorptiometry (DXA) and blood tests were performed for vitamin D, calcium, phosphore, alkaline phosphatase and parathormone levels. Functional Independence Score in Haemophilia (FISH) and Haemophilia Joint Health Score (HJHS) were used to assess musculoskeletal functions. Body mass index (BMI), Hepatitis C virus (HCV)/Human immunodeficiency virus (HIV) seropositivity and smoking status were also recorded. BMD was found lower than expected for reference age in 34.8% of patients of less than 50 years old. In patients older than 50 years, 66.6% of them had osteoporosis and 33.3% of them had normal BMD. FISH score was statistically significant correlated with BMD of total hip (TH) and femur neck (FN) but not with lumbar spine (LS). In eligible patients, there was also a statistically significant correlation between BMD of TH and HJHS. Vitamine D deficiency was common and found in 77.5% of patients, although there was no significant correlation with BMD. Also no correlation was found between BMD and blood tests, HCV/HIV status, BMI and smoking. This study confirmed that patients with haemophilia have an increased prevelance of low BMD even in younger group. Our results showed that there are significant correlations between FISH score and BMD of TH and FN and also between HJHS score and BMD of TH. Thus, using scoring systems may be beneficial as a simple predictors of BMD to reflect the severity of haemophilic arthropathy.
Utilization of DXA Bone Mineral Densitometry in Ontario
2006-01-01
Executive Summary Issue Systematic reviews and analyses of administrative data were performed to determine the appropriate use of bone mineral density (BMD) assessments using dual energy x-ray absorptiometry (DXA), and the associated trends in wrist and hip fractures in Ontario. Background Dual Energy X-ray Absorptiometry Bone Mineral Density Assessment Dual energy x-ray absorptiometry bone densitometers measure bone density based on differential absorption of 2 x-ray beams by bone and soft tissues. It is the gold standard for detecting and diagnosing osteoporosis, a systemic disease characterized by low bone density and altered bone structure, resulting in low bone strength and increased risk of fractures. The test is fast (approximately 10 minutes) and accurate (exceeds 90% at the hip), with low radiation (1/3 to 1/5 of that from a chest x-ray). DXA densitometers are licensed as Class 3 medical devices in Canada. The World Health Organization has established criteria for osteoporosis and osteopenia based on DXA BMD measurements: osteoporosis is defined as a BMD that is >2.5 standard deviations below the mean BMD for normal young adults (i.e. T-score <–2.5), while osteopenia is defined as BMD that is more than 1 standard deviation but less than 2.5 standard deviation below the mean for normal young adults (i.e. T-score< –1 & ≥–2.5). DXA densitometry is presently an insured health service in Ontario. Clinical Need Burden of Disease The Canadian Multicenter Osteoporosis Study (CaMos) found that 16% of Canadian women and 6.6% of Canadian men have osteoporosis based on the WHO criteria, with prevalence increasing with age. Osteopenia was found in 49.6% of Canadian women and 39% of Canadian men. In Ontario, it is estimated that nearly 530,000 Ontarians have some degrees of osteoporosis. Osteoporosis-related fragility fractures occur most often in the wrist, femur and pelvis. These fractures, particularly those in the hip, are associated with increased mortality, and decreased functional capacity and quality of life. A Canadian study showed that at 1 year after a hip fracture, the mortality rate was 20%. Another 20% required institutional care, 40% were unable to walk independently, and there was lower health-related quality of life due to attributes such as pain, decreased mobility and decreased ability to self-care. The cost of osteoporosis and osteoporotic fractures in Canada was estimated to be $1.3 billion in 1993. Guidelines for Bone Mineral Density Testing With 2 exceptions, almost all guidelines address only women. None of the guidelines recommend blanket population-based BMD testing. Instead, all guidelines recommend BMD testing in people at risk of osteoporosis, predominantly women aged 65 years or older. For women under 65 years of age, BMD testing is recommended only if one major or two minor risk factors for osteoporosis exist. Osteoporosis Canada did not restrict its recommendations to women, and thus their guidelines apply to both sexes. Major risk factors are age greater than or equal to 65 years, a history of previous fractures, family history (especially parental history) of fracture, and medication or disease conditions that affect bone metabolism (such as long-term glucocorticoid therapy). Minor risk factors include low body mass index, low calcium intake, alcohol consumption, and smoking. Current Funding for Bone Mineral Density Testing The Ontario Health Insurance Program (OHIP) Schedule presently reimburses DXA BMD at the hip and spine. Measurements at both sites are required if feasible. Patients at low risk of accelerated bone loss are limited to one BMD test within any 24-month period, but there are no restrictions on people at high risk. The total fee including the professional and technical components for a test involving 2 or more sites is $106.00 (Cdn). Method of Review This review consisted of 2 parts. The first part was an analysis of Ontario administrative data relating to DXA BMD, wrist and hip fractures, and use of antiresorptive drugs in people aged 65 years and older. The Institute for Clinical Evaluative Sciences extracted data from the OHIP claims database, the Canadian Institute for Health Information hospital discharge abstract database, the National Ambulatory Care Reporting System, and the Ontario Drug Benefit database using OHIP and ICD-10 codes. The data was analyzed to examine the trends in DXA BMD use from 1992 to 2005, and to identify areas requiring improvement. The second part included systematic reviews and analyses of evidence relating to issues identified in the analyses of utilization data. Altogether, 8 reviews and qualitative syntheses were performed, consisting of 28 published systematic reviews and/or meta-analyses, 34 randomized controlled trials, and 63 observational studies. Findings of Utilization Analysis Analysis of administrative data showed a 10-fold increase in the number of BMD tests in Ontario between 1993 and 2005. OHIP claims for BMD tests are presently increasing at a rate of 6 to 7% per year. Approximately 500,000 tests were performed in 2005/06 with an age-adjusted rate of 8,600 tests per 100,000 population. Women accounted for 90 % of all BMD tests performed in the province. In 2005/06, there was a 2-fold variation in the rate of DXA BMD tests across local integrated health networks, but a 10-fold variation between the county with the highest rate (Toronto) and that with the lowest rate (Kenora). The analysis also showed that: With the increased use of BMD, there was a concomitant increase in the use of antiresorptive drugs (as shown in people 65 years and older) and a decrease in the rate of hip fractures in people age 50 years and older. Repeat BMD made up approximately 41% of all tests. Most of the people (>90%) who had annual BMD tests in a 2-year or 3-year period were coded as being at high risk for osteoporosis. 18% (20,865) of the people who had a repeat BMD within a 24-month period and 34% (98,058) of the people who had one BMD test in a 3-year period were under 65 years, had no fracture in the year, and coded as low-risk. Only 19% of people age greater than 65 years underwent BMD testing and 41% received osteoporosis treatment during the year following a fracture. Men accounted for 24% of all hip fractures and 21 % of all wrist fractures, but only 10% of BMD tests. The rates of BMD tests and treatment in men after a fracture were only half of those in women. In both men and women, the rate of hip and wrist fractures mainly increased after age 65 with the sharpest increase occurring after age 80 years. Findings of Systematic Review and Analysis Serial Bone Mineral Density Testing for People Not Receiving Osteoporosis Treatment A systematic review showed that the mean rate of bone loss in people not receiving osteoporosis treatment (including postmenopausal women) is generally less than 1% per year. Higher rates of bone loss were reported for people with disease conditions or on medications that affect bone metabolism. In order to be considered a genuine biological change, the change in BMD between serial measurements must exceed the least significant change (variability) of the testing, ranging from 2.77% to 8% for precisions ranging from 1% to 3% respectively. Progression in BMD was analyzed, using different rates of baseline BMD values, rates of bone loss, precision, and BMD value for initiating treatment. The analyses showed that serial BMD measurements every 24 months (as per OHIP policy for low-risk individuals) is not necessary for people with no major risk factors for osteoporosis, provided that the baseline BMD is normal (T-score ≥ –1), and the rate of bone loss is less than or equal to 1% per year. The analyses showed that for someone with a normal baseline BMD and a rate of bone loss of less than 1% per year, the change in BMD is not likely to exceed least significant change (even for a 1% precision) in less than 3 years after the baseline test, and is not likely to drop to a BMD level that requires initiation of treatment in less than 16 years after the baseline test. Serial Bone Mineral Density Testing in People Receiving Osteoporosis Therapy Seven published meta-analysis of randomized controlled trials (RCTs) and 2 recent RCTs on BMD monitoring during osteoporosis therapy showed that although higher increases in BMD were generally associated with reduced risk of fracture, the change in BMD only explained a small percentage of the fracture risk reduction. Studies showed that some people with small or no increase in BMD during treatment experienced significant fracture risk reduction, indicating that other factors such as improved bone microarchitecture might have contributed to fracture risk reduction. There is conflicting evidence relating to the role of BMD testing in improving patient compliance with osteoporosis therapy. Even though BMD may not be a perfect surrogate for reduction in fracture risk when monitoring responses to osteoporosis therapy, experts advised that it is still the only reliable test available for this purpose. A systematic review conducted by the Medical Advisory Secretariat showed that the magnitude of increases in BMD during osteoporosis drug therapy varied among medications. Although most of the studies yielded mean percentage increases in BMD from baseline that did not exceed the least significant change for a 2% precision after 1 year of treatment, there were some exceptions. Bone Mineral Density Testing and Treatment After a Fragility Fracture A review of 3 published pooled analyses of observational studies and 12 prospective population-based observational studies showed that the presence of any prevalent fracture increases the relative risk for future fractures by approximately 2-fold or more. A review of 10 systematic reviews of RCTs and 3 additional RCTs showed that therapy with antiresorptive drugs significantly reduced the risk of vertebral fractures by 40 to 50% in postmenopausal osteoporotic women and osteoporotic men, and 2 antiresorptive drugs also reduced the risk of nonvertebral fractures by 30 to 50%. Evidence from observational studies in Canada and other jurisdictions suggests that patients who had undergone BMD measurements, particularly if a diagnosis of osteoporosis is made, were more likely to be given pharmacologic bone-sparing therapy. Despite these findings, the rate of BMD investigation and osteoporosis treatment after a fracture remained low (<20%) in Ontario as well as in other jurisdictions. Bone Mineral Density Testing in Men There are presently no specific Canadian guidelines for BMD screening in men. A review of the literature suggests that risk factors for fracture and the rate of vertebral deformity are similar for men and women, but the mortality rate after a hip fracture is higher in men compared with women. Two bisphosphonates had been shown to reduce the risk of vertebral and hip fractures in men. However, BMD testing and osteoporosis treatment were proportionately low in Ontario men in general, and particularly after a fracture, even though men accounted for 25% of the hip and wrist fractures. The Ontario data also showed that the rates of wrist fracture and hip fracture in men rose sharply in the 75- to 80-year age group. Ontario-Based Economic Analysis The economic analysis focused on analyzing the economic impact of decreasing future hip fractures by increasing the rate of BMD testing in men and women age greater than or equal to 65 years following a hip or wrist fracture. A decision analysis showed the above strategy, especially when enhanced by improved reporting of BMD tests, to be cost-effective, resulting in a cost-effectiveness ratio ranging from $2,285 (Cdn) per fracture avoided (worst-case scenario) to $1,981 (Cdn) per fracture avoided (best-case scenario). A budget impact analysis estimated that shifting utilization of BMD testing from the low risk population to high risk populations within Ontario would result in a saving of $0.85 million to $1.5 million (Cdn) to the health system. The potential net saving was estimated at $1.2 million to $5 million (Cdn) when the downstream cost-avoidance due to prevention of future hip fractures was factored into the analysis. Other Factors for Consideration There is a lack of standardization for BMD testing in Ontario. Two different standards are presently being used and experts suggest that variability in results from different facilities may lead to unnecessary testing. There is also no requirement for standardized equipment, procedure or reporting format. The current reimbursement policy for BMD testing encourages serial testing in people at low risk of accelerated bone loss. This review showed that biannual testing is not necessary for all cases. The lack of a database to collect clinical data on BMD testing makes it difficult to evaluate the clinical profiles of patients tested and outcomes of the BMD tests. There are ministry initiatives in progress under the Osteoporosis Program to address the development of a mandatory standardized requisition form for BMD tests to facilitate data collection and clinical decision-making. Work is also underway for developing guidelines for BMD testing in men and in perimenopausal women. Conclusion Increased use of BMD in Ontario since 1996 appears to be associated with increased use of antiresorptive medication and a decrease in hip and wrist fractures. Data suggest that as many as 20% (98,000) of the DXA BMD tests in Ontario in 2005/06 were performed in people aged less than 65 years, with no fracture in the current year, and coded as being at low risk for accelerated bone loss; this is not consistent with current guidelines. Even though some of these people might have been incorrectly coded as low-risk, the number of tests in people truly at low risk could still be substantial. Approximately 4% (21,000) of the DXA BMD tests in 2005/06 were repeat BMDs in low-risk individuals within a 24-month period. Even though this is in compliance with current OHIP reimbursement policies, evidence showed that biannual serial BMD testing is not necessary in individuals without major risk factors for fractures, provided that the baseline BMD is normal (T-score < –1). In this population, BMD measurements may be repeated in 3 to 5 years after the baseline test to establish the rate of bone loss, and further serial BMD tests may not be necessary for another 7 to 10 years if the rate of bone loss is no more than 1% per year. Precision of the test needs to be considered when interpreting serial BMD results. Although changes in BMD may not be the perfect surrogate for reduction in fracture risk as a measure of response to osteoporosis treatment, experts advised that it is presently the only reliable test for monitoring response to treatment and to help motivate patients to continue treatment. Patients should not discontinue treatment if there is no increase in BMD after the first year of treatment. Lack of response or bone loss during treatment should prompt the physician to examine whether the patient is taking the medication appropriately. Men and women who have had a fragility fracture at the hip, spine, wrist or shoulder are at increased risk of having a future fracture, but this population is presently under investigated and under treated. Additional efforts have to be made to communicate to physicians (particularly orthopaedic surgeons and family physicians) and the public about the need for a BMD test after fracture, and for initiating treatment if low BMD is found. Men had a disproportionately low rate of BMD tests and osteoporosis treatment, especially after a fracture. Evidence and fracture data showed that the risk of hip and wrist fractures in men rises sharply at age 70 years. Some counties had BMD utilization rates that were only 10% of that of the county with the highest utilization. The reasons for low utilization need to be explored and addressed. Initiatives such as aligning reimbursement policy with current guidelines, developing specific guidelines for BMD testing in men and perimenopausal women, improving BMD reports to assist in clinical decision making, developing a registry to track BMD tests, improving access to BMD tests in remote/rural counties, establishing mechanisms to alert family physicians of fractures, and educating physicians and the public, will improve the appropriate utilization of BMD tests, and further decrease the rate of fractures in Ontario. Some of these initiatives such as developing guidelines for perimenopausal women and men, and developing a standardized requisition form for BMD testing, are currently in progress under the Ontario Osteoporosis Strategy. PMID:23074491
Jain, Silky; Jain, Sandeep; Kapoor, Gauri; Virmani, Anju; Bajpai, Ram
2017-04-01
Acute lymphoblastic leukemia (ALL) and its treatment are often implicated in adversely affecting bone health. Conflicting reports in the literature and a paucity of studies from the developing world prompted us to study bone mineral density (BMD) in childhood ALL survivors. BMD lumbar spine (LS) and whole body (WB) were evaluated, using dual energy x-ray absorptiometry in 65 pediatric ALL survivors who had been off-therapy for at least 2 years. The control group constituted of 50 age- and sex-matched healthy siblings. Kernel density plots were used to compare BMD among cases and controls. The disease-, treatment-, hormone- and lifestyle-related factors likely to modulate BMD were analyzed using the Mann-Whitney U test and Student's t-test. At a median of 4.3 years (range, 2-14.8 years) since cessation of therapy, height-adjusted (HA) mean BMD Z-scores of LS (-0.67 ± 1.11, -0.607 ± 1.05, P = 0.759) and WB (-0.842 ± 0.92, -0.513 ± 0.97, P = 0.627) were comparable among the cases and controls. Disease, treatment (chemotherapy, cranial radiotherapy) and endocrine factors did not predict low BMD. However, survivors with calcium intake <800 mg/day (WB, P = 0.018) and hypovitaminosis D (≤25 nmol/L) had lower BMD values (HA-WB, P = 0.046) than the controls. A significant proportion of survivors were overweight or obese and had higher BMD Z-scores (HA-LS, P = 0.003; HA-WB, P = 0.028). BMD Z-scores were similar among ALL survivors and controls. It was reassuring that there was no detrimental impact of the disease or its treatment on BMD. Future studies are required to determine the best possible ways to target the modifiable risk factors (diet, vitamin D) to optimize bone health. © 2016 Wiley Periodicals, Inc.
Huang, Tao; Liu, Huijuan; Zhao, Wei; Li, Ji; Wang, Youfa
2015-01-01
Scope Dietary fat correlates with bone mineral density (BMD). We tested the association between fat intake and BMD, and tested if fat intake modified the degree of genetic influence on BMD and bone speed of sound (SOS). Methods and results We included 622 twins aged 7–15 y from South China. Data on anthropometry, dietary intake, BMD, and SOS were collected. Quantitative genetic analyses of structural equation models were fit using the Mx statistical package. The within-pair intra-class correlations (ICC) for BMD in DZ twins were nearly half of that for MZ twins (ICC=0.39 vs 0.70). The heritability of BMD and SOS were 71% and 79%. Phenotypic correlation between fat intake and SOS was significant (r=−0.19, p=0.04). SOS was negatively correlated with fat intake in boys (r=−0.11, p=0.05), but not in girls. Full Cholesky decomposition models showed SOS has a strong genetic correlation with fat intake (rA =−0.88, 95% CI=−0.94, 0.01); the environmental correlation between fat intake and SOS was weak (rE =−0.04, 95% CI=−0.20, 0.13). Fat intake modified the additive genetic effects on BMD. Conclusion Genetic factors explained 71% and 79% of individual variance in BMD and SOS, respectively. Low fat intake counteracts genetic predisposition to low BMD. PMID:25546604
Munce, Sarah E P; Allin, Sonya; Carlin, Leslie; Sale, Joanna; Hawker, Gillian; Kim, Sandra; Butt, Debra A; Polidoulis, Irene; Tu, Karen; Jaglal, Susan B
2016-01-01
Introduction. Evidence of inappropriate bone mineral density (BMD) testing has been identified in terms of overtesting in low risk women and undertesting among patients at high risk. In light of these phenomena, the objective of this study was to understand the referral patterns for BMD testing among Ontario's family physicians (FPs). Methods. A qualitative descriptive approach was adopted. Twenty-two FPs took part in a semi-structured interview lasting approximately 30 minutes. An inductive thematic analysis was performed on the transcribed data in order to understand the referral patterns for BMD testing. Results. We identified a lack of clarity about screening for osteoporosis with a tendency for baseline BMD testing in healthy, postmenopausal women and a lack of clarity on the appropriate age for screening for men in particular. A lack of clarity on appropriate intervals for follow-up testing was also described. Conclusions. These findings lend support to what has been documented at the population level suggesting a tendency among FPs to refer menopausal women (at low risk). Emphasis on referral of high-risk groups as well as men and further clarification and education on the appropriate intervals for follow-up testing is warranted.
Kuipers, Allison L.; Miljkovic, Iva; Evans, Rhobert; Bunker, Clareann H.; Patrick, Alan L.; Zmuda, Joseph M.
2016-01-01
Purpose Studies of lipid and lipoprotein cholesterol associations with bone mineral density (BMD) and bone loss have been inconclusive, and longitudinal data are sparse. Therefore, the aim of this study was to test if fasting serum lipid and lipoprotein cholesterol levels are associated with areal and volumetric BMD and BMD change, Methods We determined the association of serum triglycerides, high-density lipoprotein (HDL) and low-density lipoprotein (LDL) cholesterol concentrations with cross-sectional and longitudinal (mean follow-up: 6.1 years) measures of BMD in a cohort of 1289 in African ancestry men (mean age: 56.4 years). Fasting serum triglycerides, HDL and LDL were measured at baseline concurrent with BMD assessments. Dual-energy X-ray absorptiometry was used to quantify integral hip BMD and peripheral quantitative computed tomography at the radius and tibia was used to quantify volumetric BMD. Men were categorized as optimal, borderline or high-risk for triglyceride, HDL and LDL concentrations based on adult treatment panel III guidelines. Results Lower serum triglyceride or LDL and higher HDL concentrations were associated with lower trabecular BMD at baseline (all p<0.05). Similarly, men classified as having optimal levels of LDL, HDL or triglycerides at baseline experienced the greatest integral BMD loss at the hip and trabecular BMD loss at the tibia (all p<0.05), independent of potential confounding factors. Conclusions We found that clinically optimal serum lipid and lipoprotein cholesterol concentrations were associated with accelerated bone loss among Afro-Caribbean men. Further studies are needed to better understand the mechanisms involved and potential clinical significance of these findings. PMID:26602914
Ripamonti, C; Lisi, L; Avella, M
2014-05-01
To investigate the specificity of the neck shaft angle (NSA) to predict hip fracture in males. We consecutively studied 228 males without fracture and 38 with hip fracture. A further 49 males with spine fracture were studied to evaluate the specificity of NSA for hip-fracture prediction. Femoral neck (FN) bone mineral density (FN-BMD), NSA, hip axis length and FN diameter (FND) were measured in each subject by dual X-ray absorptiometry. Between-mean differences in the studied variables were tested by the unpaired t-test. The ability of NSA to predict hip fracture was tested by logistic regression. Compared with controls, FN-BMD (p < 0.01) was significantly lower in both groups of males with fractures, whereas FND (p < 0.01) and NSA (p = 0.05) were higher only in the hip-fracture group. A significant inverse correlation (p < 0.01) was found between NSA and FN-BMD. By age-, height- and weight-corrected logistic regression, none of the tested geometric parameters, separately considered from FN-BMD, entered the best model to predict spine fracture, whereas NSA (p < 0.03) predicted hip fracture together with age (p < 0.001). When forced into the regression, FN-BMD (p < 0.001) became the only fracture predictor to enter the best model to predict both fracture types. NSA is associated with hip-fracture risk in males but is not independent of FN-BMD. The lack of ability of NSA to predict hip fracture in males independent of FN-BMD should depend on its inverse correlation with FN-BMD by capturing, as the strongest fracture predictor, some of the effects of NSA on the hip fracture. Conversely, NSA in females does not correlate with FN-BMD but independently predicts hip fractures.
Lisi, L; Avella, M
2014-01-01
Objective: To investigate the specificity of the neck shaft angle (NSA) to predict hip fracture in males. Methods: We consecutively studied 228 males without fracture and 38 with hip fracture. A further 49 males with spine fracture were studied to evaluate the specificity of NSA for hip-fracture prediction. Femoral neck (FN) bone mineral density (FN-BMD), NSA, hip axis length and FN diameter (FND) were measured in each subject by dual X-ray absorptiometry. Between-mean differences in the studied variables were tested by the unpaired t-test. The ability of NSA to predict hip fracture was tested by logistic regression. Results: Compared with controls, FN-BMD (p < 0.01) was significantly lower in both groups of males with fractures, whereas FND (p < 0.01) and NSA (p = 0.05) were higher only in the hip-fracture group. A significant inverse correlation (p < 0.01) was found between NSA and FN-BMD. By age-, height- and weight-corrected logistic regression, none of the tested geometric parameters, separately considered from FN-BMD, entered the best model to predict spine fracture, whereas NSA (p < 0.03) predicted hip fracture together with age (p < 0.001). When forced into the regression, FN-BMD (p < 0.001) became the only fracture predictor to enter the best model to predict both fracture types. Conclusion: NSA is associated with hip-fracture risk in males but is not independent of FN-BMD. Advances in knowledge: The lack of ability of NSA to predict hip fracture in males independent of FN-BMD should depend on its inverse correlation with FN-BMD by capturing, as the strongest fracture predictor, some of the effects of NSA on the hip fracture. Conversely, NSA in females does not correlate with FN-BMD but independently predicts hip fractures. PMID:24678889
... density test; Bone densitometry; DEXA scan; DXA; Dual-energy x-ray absorptiometry; p-DEXA; Osteoporosis - BMD ... most common and accurate way uses a dual-energy x-ray absorptiometry (DEXA) scan. DEXA uses low- ...
Targownik, Laura E; Leslie, William D; Davison, K Shawn; Goltzman, David; Jamal, Sophie A; Kreiger, Nancy; Josse, Robert G; Kaiser, Stephanie M; Kovacs, Christopher S; Prior, Jerilynn C; Zhou, Wei
2012-09-01
Proton pump inhibitor (PPI) use has been identified as a risk factor for hip and vertebral fractures. Evidence supporting a relationship between PPI use and osteoporosis remains scant. Demonstrating that PPIs are associated with accelerated bone mineral density (BMD) loss would provide supportive evidence for a mechanism through which PPIs could increase fracture risk. We used the Canadian Multicentre Osteoporosis Study data set, which enrolled a population-based sample of Canadians who underwent BMD testing of the femoral neck, total hip, and lumbar spine (L1-L4) at baseline, and then again at 5 and 10 years. Participants also reported drug use and exposure to risk factors for osteoporosis and fracture. Multivariate linear regression was used to determine the independent association of PPI exposure and baseline BMD, and on change in BMD at 5 and 10 years. In all, 8,340 subjects were included in the baseline analysis, with 4,512 (55%) undergoing year 10 BMD testing. After adjusting for potential confounders, PPI use was associated with significantly lower baseline BMD at the femoral neck and total hip. PPI use was not associated with a significant acceleration in covariate-adjusted BMD loss at any measurement site after 5 and 10 years of follow-up. PPI users had lower BMD at baseline than PPI non-users, but PPI use over 10 years did not appear to be associated with accelerated BMD loss. The reasons for discordant findings between PPI use at baseline and during follow-up require further study.
Replication of associations between LRP5 and ESRRA variants and bone density in premenopausal women.
Giroux, S; Elfassihi, L; Cole, D E C; Rousseau, F
2008-12-01
Replication is a critical step to validate positive genetic associations. In this study, we tested two previously reported positive associations. The low density lipoprotein receptor-related protein 5 (LRP5) Val667Met and lumbar spine bone density are replicated. This result is in line with results from large consortiums such as Genomos. However, the estrogen-related receptor alpha (ESRRA) repeat in the promoter is not replicated although the polymorphism studied was functional and could have been a causative variant. We sought to validate associations previously reported between LRP5 V667M polymorphism and lumbar spine (LS, p = 0.013) and femoral neck (FN, p = 0.0002) bone mineral density (BMD), and between ESRRA 23 base pair repeat polymorphism and LS BMD (p = 0.0036) in a sample of premenopausal Caucasian women using an independent sample. For the replication sample, we recruited 673 premenopausal women from the Toronto metropolitan area. All women were Caucasian and had BMD measured. LRP5 V667M was genotyped by allele-specific PCR and ESRRA repeats by sizing of PCR products on agarose gels. We reproduced the same association as we reported previously between LRP5 V667M and LS BMD (p = 0.015) but not with FN BMD (p = 0.254). The combined data from the two populations indicate an effect size of 0.28SD for LS BMD (p = 0.00048) and an effect size of 0.26 SD for FN BMD (p = 0.00037). In contrast, the association we reported earlier between ESRRA repeats and LS BMD was not replicated in the sample from Toronto (p = 0.645). The association between LRP5 V667M and LS BMD is confirmed but not that between ESRRA repeats and LS BMD. This result indicates that it is imperative to validate any positive association in an independent sample.
Bone density and brain atrophy in early Alzheimer's disease.
Loskutova, Natalia; Honea, Robyn A; Vidoni, Eric D; Brooks, William M; Burns, Jeffrey M
2009-01-01
Studies suggest a link between bone loss and Alzheimer's disease. To examine bone mineral density (BMD) in early Alzheimer's disease (AD) and its relationship to brain structure and cognition, we evaluated 71 patients with early stage AD (Clinical Dementia Rating (CDR) 0.5 and 1) and 69 non-demented elderly control participants (CDR 0). Measures included whole body BMD by dual energy x-ray absorptiometry (DXA) and normalized whole brain volumes computed from structural MRI scans. Cognition was assessed with a standard neuropsychological test battery. Mean BMD was lower in the early AD group (1.11 +/- 0.13) compared to the non-demented control group (1.16 +/- 0.12, p = 0.02), independent of age, gender, habitual physical activity, smoking, depression, estrogen replacement, and apolipoprotein E4 carrier status. In the early AD group, BMD was related to whole brain volume (b = 0.18, p = 0.03). BMD was also associated with cognitive performance, primarily in tests of memory (logical memory [b = 0.15, p = 0.04], delayed logical memory [b = 0.16, p = 0.02], and the selective reminding task - free recall [b = 0.18, p = 0.009]). BMD is reduced in the earliest clinical stages of AD and associated with brain atrophy and memory decline, suggesting that central mechanisms may contribute to bone loss in early AD.
Body mass index is not a good predictor of bone density: results from WHI, CHS, and EPIDOS.
Robbins, John; Schott, Anne-Marie; Azari, Rahman; Kronmal, Richard
2006-01-01
Body mass index (BMI) is often used to predict bone mineral density (BMD). This may be flawed. Large epidemiologic studies with BMI and BMD data were analyzed. Weight alone is a better predictor of BMD than BMI. Thus, when selecting individuals for dual-energy X-ray absorptiometry, weight should be used instead of BMI. Low body mass index (BMI) is frequently suggested as one of the factors that indicates the need for bone mineral density (BMD) screening for osteoporosis. The inclusion of the height-squared term in the denominator of this predictive factor is taken on faith or from other data, but it may not be reasonable in this case. We used data from three large epidemiologic studies to test the BMI, height, and weight as predictors of BMD: (1) the Women's Health Initiative (WHI) with 11,390 women; (2) the Cardiovascular Health Study (CHS) with 1,578 men and women; (3) and EPIDOS with 7,598 women. Dual-energy X-ray absorptiometry data on one or more BMD sites, the total hip, the femoral neck, and the lumbar spine from the three studies, as well as height and weight were examined. Correlation coefficients for BMI and weight with BMD were compared. Log transformed models were evaluated to compare the strengths of the models. The result of weight alone was a much better predictor of BMD for all sites in the three studies than BMI. Taller participants had larger BMDs than would have been predicted by BMI. In conclusion, BMIs should not be used to select individuals for BMD screening. A regression model using weight alone or weight and height is a better predictor of BMD in all three populations.
Weiser, Lukas; Huber, Gerd; Sellenschloh, Kay; Viezens, Lennart; Püschel, Klaus; Morlock, Michael M; Lehmann, Wolfgang
2017-11-01
Loosening of pedicle screws is one major complication of posterior spinal stabilisation, especially in the patients with osteoporosis. Augmentation of pedicle screws with cement or lengthening of the instrumentation is widely used to improve implant stability in these patients. However, it is still unclear from which value of bone mineral density (BMD) the stability of pedicle screws is insufficient and an additional stabilisation should be performed. The aim of this study was to investigate the correlation of bone mineral density and pedicle screw fatigue strength as well as to define a threshold value for BMD below which an additional stabilisation is recommended. Twenty-one human T12 vertebral bodies were collected from donors between 19 and 96 years of age and the BMD was measured using quantitative computed tomography. Each vertebral body was instrumented with one pedicle screw and mounted in a servo-hydraulic testing machine. Fatigue testing was performed by implementing a cranio-caudal sinusoidal, cyclic (0.5 Hz) load with stepwise increasing peak force. A significant correlation between BMD and cycles to failure (r = 0.862, r 2 = 0.743, p < 0.001) as well as for the linearly related fatigue load was found. Specimens with BMD below 80 mg/cm 3 only reached 45% of the cycles to failure and only 60% of the fatigue load compared to the specimens with adequate bone quality (BMD > 120 mg/cm 3 ). There is a close correlation between BMD and pedicle screw stability. If the BMD of the thoracolumbar spine is less than 80 mg/cm 3 , stability of pedicle screws might be insufficient and an additional stabilisation should be considered.
Datta, Mridul; Schwartz, Gary G.
2013-01-01
An unintended consequence of breast cancer therapies is an increased risk of osteoporosis due to accelerated bone loss. We conducted a systematic review of calcium and/or vitamin D (Ca±D) supplementation trials for maintaining bone mineral density (BMD) in women with breast cancer using the “before-after” data from the Ca±D supplemented comparison group of trials evaluating the effect of drugs such as bisphosphonates on BMD. Whether Ca±D supplements increase BMD in women undergoing breast cancer therapy has never been tested against an unsupplemented control group. However, results from 16 trials indicate that the Ca±D doses tested (500-1500 mg calcium; 200-1000 IU vitamin D) were inadequate to prevent BMD loss in these women. Cardiovascular disease is the main cause of mortality in women with breast cancer. Because calcium supplements may increase cardiovascular disease risk, future trials should evaluate the safety and efficacy of Ca±D supplementation in women undergoing breast cancer therapy. PMID:23932583
Crandall, Carolyn; Palla, Shana; Reboussin, Beth A; Ursin, Giske; Greendale, Gail A
2005-01-01
Introduction Mammographic breast density is a strong independent risk factor for breast cancer. We hypothesized that demonstration of an association between mammographic breast density and bone mineral density (BMD) would suggest a unifying underlying mechanism influencing both breast density and BMD. Methods In a cross-sectional analysis of baseline data from the Postmenopausal Estrogen/Progestin Interventions Study (PEPI), participants were aged 45 to 64 years and were at least 1 year postmenopausal. Mammographic breast density (percentage of the breast composed of dense tissue), the outcome, was assessed with a computer-assisted percentage-density method. BMD, the primary predictor, was measured with dual-energy X-ray absorptiometry. Women quitting menopausal hormone therapy to join PEPI were designated recent hormone users. Results The mean age of the 594 women was 56 years. The average time since menopause was 5.6 years. After adjustment for age, body mass index, and cigarette smoking, in women who were not recent hormone users before trial enrollment (n = 415), mammographic density was positively associated with total hip (P = 0.04) and lumbar (P = 0.08) BMD. Mammographic density of recent hormone users (n = 171) was not significantly related to either total hip (P = 0.51) or lumbar (P = 0.44) BMD. In participants who were not recent hormone users, mammographic density was 4% greater in the highest quartile of total hip BMD than in the lowest. In participants who were not recent hormone users, mammographic density was 5% greater in the highest quartile of lumbar spine BMD than in the lowest. Conclusion Mammographic density and BMD are positively associated in women who have not recently used postmenopausal hormones. A unifying biological mechanism may link mammographic density and BMD. Recent exogenous postmenopausal hormone use may obscure the association between mammographic density and BMD by having a persistent effect on breast tissue. PMID:16280044
Bahtiri, Elton; Islami, Hilmi; Hoxha, Rexhep; Bytyqi, Hasime Qorraj-; Sermaxhaj, Faton; Halimi, Enis
2014-01-01
Background and objective: There is paucity of evidence in southeastern Europe and Kosovo regarding dairy products consumption and association with bone mineral density (BMD). Therefore, the objective of present study was to assess calcium intake and dairy products consumption and to investigate relationship with total hip BMD in a Kosovo women sample. Methods: This cross-sectional study included a sample of 185 women divided into respective groups according to total hip BMD. All the study participants completed a food frequency questionnaire and underwent dual-energy X-ray absorptiometry (DEXA) to estimate BMD. Nonparametric tests were performed to compare characteristics of the groups. Results: The average dietary calcium intake was 818.41 mg/day. Only 16.75% of the subjects met calcium recommended dietary reference intakes (DRIs). There were no significant differences between low BMD group and normal BMD group regarding average dietary calcium intake, but it was significantly higher in BMDT3 subgroup than in BMDT2 and BMDT1 subgroups. Conclusions: The results of this study demonstrate significant relationship of daily dietary calcium intake with upper BMD tertile. Further initiatives are warranted from this study to highlight the importance of nutrition education. PMID:25568548
Singh, Rekha; Gupta, Sushil; Awasthi, Ashish
2015-01-01
Osteoporosis is an important health problem in postmenopausal women. Lactation duration (LD), parity, menopause duration (MD), and body mass index (BMI) are important predictors of bone mineral density (BMD) and osteoporotic fractures in them. In addition, they have site-specific effects on BMD. Osteoporosis is especially prevalent in postmenopausal women. The aim of the study was to determine the effects of age, parity, LD, MD, and BMI on BMD at different sites and hip geometry in postmenopausal women. In this cross-sectional study, 87 women (45 years and above and at least 5 years postmenopausal) were enrolled. Subjects were divided into three parity groups (group 1: ≤ 2 children, group: 3-4 children, and group 3: > 4 children) and three LD groups (group 1: < 4 years, group 2: 4-8 years, and group 3: > 8 years). BMD was measured at neck of femur (BMD-NF), trochanter (BMD-TR), inter-trochanter (BMD-IT), spine (BMD-LS), and forearm (BMD-FA). Hip geometry was analyzed based on dual energy X-ray absorptiometry. One way ANOVA was used for comparisons of groups, and Bonferroni correction was used as post-hoc test. p value < 0.05 was considered significant. A significant difference in mean BMD was found between parity groups 1 and 3 at BMD-NF, BMD-TR, and BMD-LS, and between LD groups 1 and 3 at BMD-NF, BMD-TR, BMD-IT, and BMD-LS. Mean buckling ratio (BR) at IT was significantly different between parity groups 1 and 3, and LD groups 1 and 3. In multivariate regression analysis, BMI, age, and parity were significant predictors for BMD-NF; parity, BMI, and MD for BMD-TR; BMI, MD, and LD for BMD-IT; BMI and LD for BMD-LS; and age, LD, and BMI for BMD-FA. BMI and LD were significant predictors of IT-BR, while MD and BMI of narrow neck BR. MD, LD, parity, BMI, and age are important factors influencing BMD at hip and spine in postmenopausal women, and have site-specific effects on BMD.
Baker, Joshua F; Davis, Matthew; Alexander, Ruben; Zemel, Babette S; Mostoufi-Moab, Sogol; Shults, Justine; Sulik, Michael; Schiferl, Daniel J; Leonard, Mary B
2013-03-01
The objective of this study was to identify independent associations between body composition and bone outcomes, including cortical structure and cortical and trabecular volumetric bone mineral density (vBMD) across the adult age spectrum. This cross-sectional study evaluated over 400 healthy adults (48% male, 44% black race), ages 21-78years. Multivariable linear regression models evaluated associations between whole-body DXA measures of lean body mass index (LBMI) and fat mass index (FMI) and tibia peripheral quantitative CT (pQCT) measures of cortical section modulus, cortical and trabecular vBMD and muscle density (as a measure of intramuscular fat), adjusted for age, sex, and race. All associations reported below were statistically significant (p<0.05). Older age and female sex were associated with lower LBMI and muscle strength. Black race was associated with greater LBMI but lower muscle density. Greater FMI was associated with lower muscle density. Cortical section modulus was positively associated with LBMI and muscle strength and negatively associated with FMI. Adjustment for body composition eliminated the greater section modulus observed in black participants and attenuated the lower section modulus in females. Greater LBMI was associated with lower cortical BMD and greater trabecular BMD. FMI was not associated with either BMD outcome. Greater muscle density was associated with greater trabecular and cortical BMD. Associations between body composition and bone outcomes did not vary by sex (no significant tests for interaction). These data highlight age-, sex- and race-specific differences in body composition, muscle strength and muscle density, and demonstrate discrete associations with bone density and structure. These data also show that age-, sex- and race-related patterns of bone density and strength are independent of differences in body composition. Longitudinal studies are needed to examine the temporal relations between changes in bone and body composition. Published by Elsevier Inc.
Baker, Joshua F.; Davis, Matthew; Alexander, Ruben; Zemel, Babette S.; Mostoufi-Moab, Sogol; Shults, Justine; Sulik, Michael; Schiferl, Daniel J.; Leonard, Mary B.
2012-01-01
Background/Purpose The objective of this study was identify independent associations between body composition and bone outcomes, including cortical structure and cortical and trabecular volumetric bone mineral density (vBMD) across the adult age spectrum. Methods This cross-sectional study evaluated over 400 healthy adults (48% male, 44% black race), ages 21–78 years. Multivariable linear regression models evaluated associations between whole-body DXA measures of lean body mass index (LBMI) and fat mass index (FMI) and tibia peripheral quantitative CT (pQCT) measures of cortical section modulus, cortical and trabecular vBMD and muscle density (as a measure of intramuscular fat), adjusted for age, sex, and race. All associations reported below were statistically significant (p < 0.05). Results Older age and female sex were associated with lower LBMI and muscle strength. Black race was associated with greater LBMI but lower muscle density. Greater FMI was associated with lower muscle density. Cortical section modulus was positively associated with LBMI and muscle strength and negatively associated with FMI. Adjustment for body composition eliminated the greater section modulus observed in black participants and attenuated the lower section modulus in females. Greater LBMI was associated with lower cortical BMD and greater trabecular BMD. FMI was not associated with either BMD outcome. Greater muscle density was associated with greater trabecular and cortical BMD. Associations between body composition and bone outcomes did not vary by sex (no significant tests for interaction). Conclusions These data highlight age, sex- and race-specific differences in body composition, muscle strength and muscle density, and demonstrate discrete associations with bone density and structure. These data also show that age, sex- and race- related patterns of bone density and strength are independent of differences in body composition. Longitudinal studies are needed to examine the temporal relations between changes in bone and body composition. PMID:23238122
Kim, Sun Jung; Lee, Joo Hun; Kim, Sulgi; Nakagawa, Shunichi; Bertelson, Heather; Lam, Julia; Yoo, Ji Won
2014-01-01
To examine how drug therapy patterns for osteoporosis have changed after the Medicare Physician Fee Schedule (MPFS) reimbursement reduction in 2007, in relation to follow-up bone mineral density (BMD) testing status. We used a retrospective temporal shift design to examine changes in drug therapy patterns before (Phase 1: January 1, 2005-December 31, 2006) and after (Phase 2: July 1, 2007-June 30, 2009) the MPFS reimbursement reduction in 2007, Cleveland, OH, USA. Participants were osteoporotic older women in Phase 1 (n=1,340) and Phase 2 (n=1,437). The main outcomes were a) adherence, b) adjustment, c) occurrence of an extended gap, and d) restarting drug therapy after an extended gap. Follow-up BMD testing status by study phase and location were also analyzed. BMD testing rates at physicians' offices decreased from 64.5% in Phase 1 to 58.4% in Phase 2 (P=0.02); however, testing rates in hospital outpatient settings increased (from 20.8% to 24.5%). There were also decreases in drug therapy adjustment from 15.9% in Phase 1 to 11.6% in Phase 2 (odds ratio [OR]: 0.73; P<0.01) and in restarting drug therapy after an extended gap (55.4% in Phase 1 and 43.6% in Phase 2; OR: 0.76; P<0.01). There were no changes in the overall rate of follow-up BMD testing. The rates of drug adjustments and restarting drug therapy after an extended gap did decrease. These decreases were more evident when follow-up BMD testing was not performed.
Bone mineral density and bone turnover among young women in Chiang Mai, Thailand.
Iwasaki, Eriko; Morakote, Nuntana; Chaovistsaree, Somsak; Matsuo, Hiroya
2014-03-12
The present study was carried out to investigate the influence of lifestyle on bone mineral density (BMD) and bone turnover among young women in Chiang Mai, Thailand. A total of 177 young women affiliated with Chiang Mai University hospital were enrolled. Firstly, questionnaires about their lifestyle and the Osteoporosis Knowledge Test (OKT) were examined. The measurement of BMD was assessed by Quantitative Ultrasound (QUS). Secondly, based on the measurement of BMD, the subjects were divided into 2 groups, a Low BMD group (L group: less than YAM-1.0SD) and a Normal BMD group (N group: more than YAM-1.0SD). L group (n=23) and N group (n=23) were examined using Osteocalcine (OC), type 1 collagen cross-linked N-telopeptide (NTx) and undercarboxylated osteocalcin (ucOC) as bone turnover markers, and serum Ca, 1,25-(OH)2Vitamin D, Vitamin K1 and Vitamin K2 (MK-4) as bone turnover related factors. Based on the results, the percentage of Low BMD group was 23.2%. Concerning lifestyle and BMD, the BMD of the low cheese intake group was 99.7± 17.0 and the BMD of the high cheese intake one was 110.0± 23.3 (p<0.05). The BMD of the fracture experience group was 82.5± 11.6 and the BMD of no-fracture group was 103.3± 19.6 (p<0.05). These were significant differences in ucOC and 1,25-(OH)2Vitamin D between L and N groups (p<0.05). It was suggested that BMI, food and fracture experience might affect BMD level and suppression of bone formation might have contributed to the low BMD group among young women in Chiang Mai, Thailand.
Olmez Sarikaya, Nese; Kapar Yavasi, Secil; Tan, Gulten; Satiroglu, Servet; Yildiz, Arife Hilal; Oz, Bengi; Yoleri, Ozlem; Memis, Asuman
2014-12-01
This study aimed to analyze the agreement between FRAX scores calculated with and without femoral neck (FN) bone mineral density (BMD) and to investigate the resultant treatment recommendations in women with osteopenia. A cross-sectional review of postmenopausal women who were referred for DXA evaluation was conducted. One hundred twenty-nine postmenopausal women aged 40 years and older with osteopenia [FN T-score between -1 and (-2.5)] were recruited for the study. Absolute agreement between FRAX scores calculated with and without BMD was analyzed by intraclass correlation analysis (ICC). Thresholds recommended by National Osteoporosis Foundation were used for treatment recommendations. Correlation between demographic factors and the difference in BMD+ and BMD- FRAX scores was analyzed by Spearman correlation test. Agreement levels and treatment recommendations were also analyzed in 112/129 patients without previous fracture. Agreement between BMD+ and BMD- MO and hip FRAX scores was good (ICC 0.867) and fair to good (ICC 0.641), respectively. In patients without previous fracture, agreement between MO and hip fracture probabilities was good (ICC = 0.838 and ICC = 0.778, respectively). Treatment recommendations with respect to treatment threshold of ≥3 for hip fracture probabilities were identical in 120/129 (93 %) cases. Difference between BMD+ and BMD- fracture probabilities was correlated with age and FN BMD. In most cases, FRAX without BMD provided the same treatment recommendations as FRAX with BMD in postmenopausal women with osteopenia. Exclusion of patients with previous fracture yielded better agreement levels.
Berry, Sarah D; McLean, Robert R; Hannan, Marian T; Cupples, L Adrienne; Kiel, Douglas P
2014-12-01
To determine whether the association between change in bone mass density (BMD) over 4 years and risk of hip and nonvertebral fracture differs according to an individual's history of falls. Population-based cohort study. Framingham, Massachusetts. Individuals with two measures of BMD at the femoral neck (mean age 78.8; 310 male, 492 female). Cox proportional hazards models were used to estimate hazard ratios (HRs) for the association between percentage change in BMD (per sex-specific standard deviation) and risk of incident hip and nonvertebral fracture. Models were stratified based on history of falls (≥1 falls in the past year) and recurrent falls (≥2 falls) ascertained at the time of the second BMD test. Interactions were tested by including the term "fall history * change in BMD" in the models. Mean change in BMD was -0.6%/year; 27.8% of participants reported falls, and 10.8% reported recurrent falls. Seventy-six incident hip and 175 incident nonvertebral fractures occurred over a median follow-up of 9.0 years. There was no difference in the association between change in BMD and hip fracture according to history of falls (P for interaction = .57). The HR associated with change in BMD and nonvertebral fracture was 1.31 (95% confidence interval (CI) = 1.10-1.56) in participants without a history of falls and 0.95 (95% CI 0.70-1.28) in those with a fall (interaction P = .07). Results for recurrent fallers were similar. The effect of BMD loss on risk of nonvertebral fracture may be greater in persons without a history of falls. It is possible that change in BMD contributes less to fracture risk when a strong risk factor for fracture, such as falls, is present. © 2014, Copyright the Authors Journal compilation © 2014, The American Geriatrics Society.
Sakai, Akinori; Oshige, Toshihisa; Zenke, Yukichi; Yamanaka, Yoshiaki; Nagaishi, Hitoshi; Nakamura, Toshitaka
2010-01-01
The aim of this study was to test the effect of unipedal standing exercise on bone mineral density (BMD) of the hip in postmenopausal women. Japanese postmenopausal women (n = 94) were assigned at random to an exercise or control group (no exercise). The 6-month exercise program consisted of standing on a single foot for 1 min per leg 3 times per day. BMD of the hip was measured by dual-energy X-ray absorptiometry. There was no significant difference in age and baseline hip BMD between the exercise group (n = 49) and control group (n = 45). Exercise did not improve hip BMD compared with the control group. Stepwise regression analysis identified old age as a significant determinant (p = 0.034) of increased hip total BMD at 6 months after exercise. In 31 participants aged >/=70 years, the exercise group (n = 20) showed significant increase in the values of hip BMD at the areas of total (p = 0.008), intertrochanteric (p = 0.023), and Ward's triangle (p = 0.032). The same parameters were decreased in the control group (n = 11). The percent changes in hip BMD of the exercise group were not significantly different from those of the control group either in the participants with low baseline hip total BMD (<80% of the young adult mean) or high baseline hip total BMD (> or =80% of the young adult mean). In conclusion, unipedal standing exercise for 6 months did not improve hip BMD in Japanese postmenopausal women. Effect of exercise on hip total BMD was age dependent. In participants aged > or =70 years, the exercise significantly increased hip total BMD.
Mlakar, Simona Jurkovic; Osredkar, Josko; Prezelj, Janez; Marc, Janja
2012-03-01
Oxidative stress participates in decreasing bone formation and stimulating bone resorption. Furthermore, antioxidant enzymes have been observed to have low protective activity in women with osteoporosis.The aim of the present study was to examine any association of selected gene polymorphisms of the glutathione S-reductase (GSR), superoxide dismutase (SOD1 and SOD2), and catalase (CAT) genes, alone or in combination, with the bone mineral density (BMD) values of femoral neck (fn), lumbar spine (ls), and total hip (th) in Slovenian postmenopausal women. The gene polymorphisms of CAT, GSR, SOD1, and SOD2 genes in 468 postmenopausal women were analyzed using restriction fragment length polymorphism and a fluorescent 5'-exonuclease genotyping method. BMD_fn, BMD_ls, and BMD_th were measured using dual-energy x-ray absorptiometry. Moreover, univariate statistic analysis and two-way analysis of variance for interaction testing were performed. A significant association of BMD_th values (P = 0.027) was found in genotype subgroups of 423-287G>A GSR polymorphism located in the third intron among postmenopausal women. Furthermore, women with at least one G allele showed significantly higher levels of BMD_fn (P = 0.044), BMD_th (P = 0.009), and BMD_ls (P = 0.043) than those that are AA homozygotes. Interestingly, the 423-287G>A_GSR*1154-393T>A_GSR combination was significantly associated with BMD_fn (P = 0.013) and BMD_th (P = 0.002) in postmenopausal women. The results of our study demonstrate for the first time that antioxidant enzyme GSR gene polymorphisms are significantly associated with BMD, suggesting that the A allele of 423-287G>A GSR polymorphism could contribute to decreased BMD values in postmenopausal women.
Soy protein and bone mineral density in older men and women: a randomized trial.
Newton, K M; LaCroix, A Z; Levy, L; Li, S S; Qu, P; Potter, J D; Lampe, J W
2006-10-20
Test the hypothesis that soy isoflavone supplementation preserves bone mineral density (BMD) in men and women. We conducted a controlled, parallel-arm, double-blinded trial with 145 participants, 50-80 years, with random assignment to soy beverage daily for 12 months. Active treatment (+ISO) received soy protein containing 83 mg isoflavones (45.6 mg genistein, 31.7 mg daidzein), aglycone units; the comparison group (-ISO) received soy protein containing 3mg isoflavones. We measured BMD using dual-energy X-ray absorptiometry at the total hip and posterior-anterior spine (L1-L4) at baseline in 22 women and 123 men, and at 12 months in 13 women and 98 men. We used linear mixed models to test for an isoflavone effect on percentage BMD change from baseline in spine and hip. Among all participants, mean percent change in spine BMD (+/-S.E.) was 0.16+/-0.44 in -ISO (P=0.10) at 12 months. Treatment effects on spine BMD were significantly greater in women than men (P=0.01). At 12 months, in women, mean percent change was 0.58+/-0.70 in +ISO and -1.84+/-0.86 in -ISO (P=0.05); among men it was 1.32+/-0.53 in +ISO and 0.31+/-0.48 in -ISO (P=0.16). By comparison, percent change in hip BMD was similar in the treatment groups, and was not different between men and women. Mean percent change in hip BMD from baseline to 12 months was 0.54+/-0.38 in +ISO and -0.13+/-0.36 in -ISO (P=0.20) among all participants. Soy protein containing isoflavones showed a modest benefit in preserving spine, but not hip BMD in older women.
Bone mineral density and correlation factor analysis in normal Taiwanese children.
Shu, San-Ging
2007-01-01
Our aim was to establish reference data and linear regression equations for lumbar bone mineral density (BMD) in normal Taiwanese children. Several influencing factors of lumbar BMD were investigated. Two hundred fifty-seven healthy children were recruited from schools, 136 boys and 121 girls, aged 4-18 years were enrolled on a voluntary basis with written consent. Their height, weight, blood pressure, puberty stage, bone age and lumbar BMD (L2-4) by dual energy x-ray absorptiometry (DEXA) were measured. Data were analyzed using Pearson correlation and stepwise regression tests. All measurements increased with age. Prior to age 8, there was no gender difference. Parameters such as height, weight, and bone age (BA) in girls surpassed boys between ages 8-13 without statistical significance (p> or =0.05). This was reversed subsequently after age 14 in height (p<0.05). BMD difference had the same trend but was not statistically significant either. The influencing power of puberty stage and bone age over BMD was almost equal to or higher than that of height and weight. All the other factors correlated with BMD to variable powers. Multiple linear regression equations for boys and girls were formulated. BMD reference data is provided and can be used to monitor childhood pathological conditions. However, BMD in those with abnormal bone age or pubertal development could need modifications to ensure accuracy.
Utilization of DXA Bone Mineral Densitometry in Ontario: An Evidence-Based Analysis.
2006-01-01
Systematic reviews and analyses of administrative data were performed to determine the appropriate use of bone mineral density (BMD) assessments using dual energy x-ray absorptiometry (DXA), and the associated trends in wrist and hip fractures in Ontario. DUAL ENERGY X-RAY ABSORPTIOMETRY BONE MINERAL DENSITY ASSESSMENT: Dual energy x-ray absorptiometry bone densitometers measure bone density based on differential absorption of 2 x-ray beams by bone and soft tissues. It is the gold standard for detecting and diagnosing osteoporosis, a systemic disease characterized by low bone density and altered bone structure, resulting in low bone strength and increased risk of fractures. The test is fast (approximately 10 minutes) and accurate (exceeds 90% at the hip), with low radiation (1/3 to 1/5 of that from a chest x-ray). DXA densitometers are licensed as Class 3 medical devices in Canada. The World Health Organization has established criteria for osteoporosis and osteopenia based on DXA BMD measurements: osteoporosis is defined as a BMD that is >2.5 standard deviations below the mean BMD for normal young adults (i.e. T-score <-2.5), while osteopenia is defined as BMD that is more than 1 standard deviation but less than 2.5 standard deviation below the mean for normal young adults (i.e. T-score< -1 & ≥-2.5). DXA densitometry is presently an insured health service in Ontario. BURDEN OF DISEASE: The Canadian Multicenter Osteoporosis Study (CaMos) found that 16% of Canadian women and 6.6% of Canadian men have osteoporosis based on the WHO criteria, with prevalence increasing with age. Osteopenia was found in 49.6% of Canadian women and 39% of Canadian men. In Ontario, it is estimated that nearly 530,000 Ontarians have some degrees of osteoporosis. Osteoporosis-related fragility fractures occur most often in the wrist, femur and pelvis. These fractures, particularly those in the hip, are associated with increased mortality, and decreased functional capacity and quality of life. A Canadian study showed that at 1 year after a hip fracture, the mortality rate was 20%. Another 20% required institutional care, 40% were unable to walk independently, and there was lower health-related quality of life due to attributes such as pain, decreased mobility and decreased ability to self-care. The cost of osteoporosis and osteoporotic fractures in Canada was estimated to be $1.3 billion in 1993. With 2 exceptions, almost all guidelines address only women. None of the guidelines recommend blanket population-based BMD testing. Instead, all guidelines recommend BMD testing in people at risk of osteoporosis, predominantly women aged 65 years or older. For women under 65 years of age, BMD testing is recommended only if one major or two minor risk factors for osteoporosis exist. Osteoporosis Canada did not restrict its recommendations to women, and thus their guidelines apply to both sexes. Major risk factors are age greater than or equal to 65 years, a history of previous fractures, family history (especially parental history) of fracture, and medication or disease conditions that affect bone metabolism (such as long-term glucocorticoid therapy). Minor risk factors include low body mass index, low calcium intake, alcohol consumption, and smoking. The Ontario Health Insurance Program (OHIP) Schedule presently reimburses DXA BMD at the hip and spine. Measurements at both sites are required if feasible. Patients at low risk of accelerated bone loss are limited to one BMD test within any 24-month period, but there are no restrictions on people at high risk. The total fee including the professional and technical components for a test involving 2 or more sites is $106.00 (Cdn). This review consisted of 2 parts. The first part was an analysis of Ontario administrative data relating to DXA BMD, wrist and hip fractures, and use of antiresorptive drugs in people aged 65 years and older. The Institute for Clinical Evaluative Sciences extracted data from the OHIP claims database, the Canadian Institute for Health Information hospital discharge abstract database, the National Ambulatory Care Reporting System, and the Ontario Drug Benefit database using OHIP and ICD-10 codes. The data was analyzed to examine the trends in DXA BMD use from 1992 to 2005, and to identify areas requiring improvement. The second part included systematic reviews and analyses of evidence relating to issues identified in the analyses of utilization data. Altogether, 8 reviews and qualitative syntheses were performed, consisting of 28 published systematic reviews and/or meta-analyses, 34 randomized controlled trials, and 63 observational studies. Analysis of administrative data showed a 10-fold increase in the number of BMD tests in Ontario between 1993 and 2005.OHIP claims for BMD tests are presently increasing at a rate of 6 to 7% per year. Approximately 500,000 tests were performed in 2005/06 with an age-adjusted rate of 8,600 tests per 100,000 population.Women accounted for 90 % of all BMD tests performed in the province.In 2005/06, there was a 2-fold variation in the rate of DXA BMD tests across local integrated health networks, but a 10-fold variation between the county with the highest rate (Toronto) and that with the lowest rate (Kenora). The analysis also showed that:With the increased use of BMD, there was a concomitant increase in the use of antiresorptive drugs (as shown in people 65 years and older) and a decrease in the rate of hip fractures in people age 50 years and older.Repeat BMD made up approximately 41% of all tests. Most of the people (>90%) who had annual BMD tests in a 2-year or 3-year period were coded as being at high risk for osteoporosis.18% (20,865) of the people who had a repeat BMD within a 24-month period and 34% (98,058) of the people who had one BMD test in a 3-year period were under 65 years, had no fracture in the year, and coded as low-risk.Only 19% of people age greater than 65 years underwent BMD testing and 41% received osteoporosis treatment during the year following a fracture.Men accounted for 24% of all hip fractures and 21 % of all wrist fractures, but only 10% of BMD tests. The rates of BMD tests and treatment in men after a fracture were only half of those in women.In both men and women, the rate of hip and wrist fractures mainly increased after age 65 with the sharpest increase occurring after age 80 years. SERIAL BONE MINERAL DENSITY TESTING FOR PEOPLE NOT RECEIVING OSTEOPOROSIS TREATMENT: A systematic review showed that the mean rate of bone loss in people not receiving osteoporosis treatment (including postmenopausal women) is generally less than 1% per year. Higher rates of bone loss were reported for people with disease conditions or on medications that affect bone metabolism. In order to be considered a genuine biological change, the change in BMD between serial measurements must exceed the least significant change (variability) of the testing, ranging from 2.77% to 8% for precisions ranging from 1% to 3% respectively. Progression in BMD was analyzed, using different rates of baseline BMD values, rates of bone loss, precision, and BMD value for initiating treatment. The analyses showed that serial BMD measurements every 24 months (as per OHIP policy for low-risk individuals) is not necessary for people with no major risk factors for osteoporosis, provided that the baseline BMD is normal (T-score ≥ -1), and the rate of bone loss is less than or equal to 1% per year. The analyses showed that for someone with a normal baseline BMD and a rate of bone loss of less than 1% per year, the change in BMD is not likely to exceed least significant change (even for a 1% precision) in less than 3 years after the baseline test, and is not likely to drop to a BMD level that requires initiation of treatment in less than 16 years after the baseline test. Seven published meta-analysis of randomized controlled trials (RCTs) and 2 recent RCTs on BMD monitoring during osteoporosis therapy showed that although higher increases in BMD were generally associated with reduced risk of fracture, the change in BMD only explained a small percentage of the fracture risk reduction.Studies showed that some people with small or no increase in BMD during treatment experienced significant fracture risk reduction, indicating that other factors such as improved bone microarchitecture might have contributed to fracture risk reduction.There is conflicting evidence relating to the role of BMD testing in improving patient compliance with osteoporosis therapy.Even though BMD may not be a perfect surrogate for reduction in fracture risk when monitoring responses to osteoporosis therapy, experts advised that it is still the only reliable test available for this purpose.A systematic review conducted by the Medical Advisory Secretariat showed that the magnitude of increases in BMD during osteoporosis drug therapy varied among medications. Although most of the studies yielded mean percentage increases in BMD from baseline that did not exceed the least significant change for a 2% precision after 1 year of treatment, there were some exceptions. A review of 3 published pooled analyses of observational studies and 12 prospective population-based observational studies showed that the presence of any prevalent fracture increases the relative risk for future fractures by approximately 2-fold or more. (ABSTRACT TRUNCATED)
Ichikawa, Shoji; Koller, Daniel L; Padgett, Leah R; Lai, Dongbing; Hui, Siu L; Peacock, Munro; Foroud, Tatiana; Econs, Michael J
2010-01-01
Bone mineral density (BMD) achieved during young adulthood (peak BMD) is one of the major determinants of osteoporotic fracture in later life. Genetic variants associated with BMD have been identified by three recent genome-wide association studies. The most significant single-nucleotide polymorphisms (SNPs) from these studies were genotyped to test whether they were associated with peak BMD in premenopausal American women. Femoral neck and lumbar spine BMD were determined by dual-energy X-ray absorptiometry in two groups of premenopausal women: 1524 white women and 512 black women. In premenopausal white women, two SNPs in the C6orf97/ESR1 region were significantly associated with BMD (p < 4.8 × 10−4), with suggestive evidence for CTNNBL1 and LRP5 (p < .01). Evidence of association with one of the two SNPs in the C6orf97/ESR1 region also was observed in premenopausal black women. Furthermore, SNPs in SP7 and a chromosome 4 intergenic region showed suggestive association with BMD in black women. Detailed analyses of additional SNPs in the C6orf97/ESR1 region revealed multiple genomic blocks independently associated with femoral neck and lumbar spine BMD. Findings in the three published genome-wide association studies were replicated in independent samples of premenopausal American women, suggesting that genetic variants in these genes or regions contribute to peak BMD in healthy women in various populations. © 2010 American Society for Bone and Mineral Research. PMID:20200978
Participation in High-Impact Sports Predicts Bone Mineral Density in Senior Olympic Athletes
Leigey, Daniel; Irrgang, James; Francis, Kimberly; Cohen, Peter; Wright, Vonda
2009-01-01
Background: Loss of bone mineral density (BMD) and resultant fractures increase with age in both sexes. Participation in resistance or high-impact sports is a known contributor to bone health in young athletes; however, little is known about the effect of participation in impact sports on bone density as people age. Hypothesis: To test the hypothesis that high-impact sport participation will predict BMD in senior athletes, this study evaluated 560 athletes during the 2005 National Senior Games (the Senior Olympics). Study Design: Cross-sectional methods. The athletes completed a detailed health history questionnaire and underwent calcaneal quantitative ultrasound to measure BMD. Athletes were classified as participating in high impact sports (basketball, road race [running], track and field, triathalon, and volleyball) or non-high-impact sports. Stepwise linear regression was used to determine the influence of high-impact sports on BMD. Results: On average, participants were 65.9 years old (range, 50 to 93). There were 298 women (53.2%) and 289 men (51.6%) who participated in high-impact sports. Average body mass index was 25.6 ± 3.9. The quantitative ultrasound-generated T scores, a quantitative measure of BMD, averaged 0.4 ± 1.3 and −0.1 ± 1.4 for the high-impact and non-high-impact groups, respectively. After age, sex, obesity, and use of osteoporosis medication were controlled, participation in high-impact sports was a significant predictor of BMD (R2 change 3.2%, P < .001). Conclusions: This study represents the largest sample of BMD data in senior athletes to date. Senior participation in high-impact sports positively influenced bone health, even in the oldest athletes. Clinical Relevance: These data imply that high-impact exercise is a vital tool to maintain healthy BMD with active aging. PMID:23015914
Association between fibroblast growth factor 21 and bone mineral density in adults.
Hao, Ruo-Han; Gao, Jun-Ling; Li, Meng; Huang, Wei; Zhu, Dong-Li; Thynn, Hlaing Nwe; Dong, Shan-Shan; Guo, Yan
2018-02-01
Animal-based studies have reported a decrease in bone mass resulting from high level of fibroblast growth factor 21 (FGF21). However, the correlation between plasma FGF21 levels and bone mineral density (BMD) is paradoxical in previous human-based studies, and the associations between FGF21 gene polymorphisms and BMD haven't been reported yet. Therefore, here, we evaluated plasma FGF21 levels with sufficient study samples, and performed genetic association test to reveal the physiological and genetic role of FGF21 on BMD in adults. Plasma and genetic samples containing 168 and 569 Han Chinese subjects, respectively, were employed in this study. Fasting plasma FGF21 levels were determined using enzyme-linked immunosorbent assay (ELISA). Regional BMD values were measured by dual energy X-ray absorptiometry (DXA). Five variants of FGF21 gene were successfully genotyped. Physiological association suggested that plasma FGF21 levels were inversely correlated with BMD in femoral neck (Neck-BMD: P = 0.039) and Ward's triangle (Ward's-BMD: P = 0.002) of hip region. A FGF21 gene variant, rs490942, was significantly associated with the increase of Ward's-BMD in total (P = 0.027) and female (P = 0.016) cohorts, as well as Neck-BMD in female cohort (P = 7.45 × 10 -3 ). Meanwhile, eQTL results indicated that this SNP was related to the decreased level of FGF21 gene expression. Taking together from both physiological and genetic levels, we suggest that FGF21 is inversely associated with regional BMD. And we haven't observed sex-specific effect in this study.
Stanforth, Dixie; Lu, Tao; Stults-Kolehmainen, Matthew A; Crim, Brittany N; Stanforth, Philip R
2016-10-01
Stanforth, D, Lu, T, Stults-Kolehmainen, MA, Crim, BN, and Stanforth, PR. Bone mineral content and density among female NCAA Division I athletes across the competitive season and over a multi-year time frame. J Strength Cond Res 30(10): 2828-2838, 2016-Longitudinal and cross-sectional bone mineral content (BMC) and bone mineral density (BMD) comparisons were made among impact and nonimpact sports. Female collegiate athletes, 18-23 years of age, from basketball (BB; n = 38), soccer (SOC; n = 47), swimming (SW; n = 52), track sprinters and jumpers (TR; n = 49), and volleyball (VB; n = 26) had BMC/BMD measures preseason and postseason over 3 years. Control groups of 85 college females, 18-24 years of age, who completed 2 tests 1-3 years apart and of 170 college females, 18-20 years of age, were used for the longitudinal and cross-sectional analyses, respectively. A restricted maximum likelihood linear mixed model regression analysis with a compound symmetric heterogeneous variance-covariance matrix structure was used for all analyses (p ≤ 0.05). Increases from year-1 preseason to year-3 postseason included the following: total BMC (3.3%), total BMD (1.4%), and spine BMD (4.5%) for BB; total BMC (1.5%) and leg BMD (1.2%) for SOC; arm (1.8%), leg (1.9%), and total BMD (5.7%) for SW; total BMC (2.0%), arm (1.7%), leg (2.3%), pelvis (3.4%), spine (6.0%), and total BMD (2.3%) for TR; and arm (4.1%), leg (2.0%), pelvis (2.0%), spine (2.0%), and total BMD (2.7%) for VB. Comparisons among sports determined that BB had higher BMC and BMD values than all other sports for all variables except spine and total BMD; BB, SOC, TR, and VB had higher total BMC (11-29%), leg BMD (13-20%), and total BMD (9-15%) than SW and CON, and there were few differences among SOC, TR, and VB. In conclusion, small, significant increases in many BMC and BMD measures occur during female athlete's collegiate careers. The BMC and BMD differences between impact and nonimpact sports are large compared with smaller differences within impact sports.
Osteoporosis management and fractures in the Métis of Ontario, Canada.
Jandoc, Racquel; Jembere, Nathaniel; Khan, Saba; Russell, Storm J; Allard, Yvon; Cadarette, Suzanne M
2015-01-01
Half of Métis citizens, compared to less than 10 % of the general population of Ontario, reside in northern regions, with little access to bone mineral density (BMD) testing. Métis citizens had lower sex-specific and age-standardized rates of BMD testing, yet similar rates of fracture (both sexes) and pharmacotherapy (women only). To examine osteoporosis management and common osteoporosis-related fractures among Métis citizens compared to the general population of older adults residing in Ontario. We linked healthcare (medical and pharmacy) utilization and administrative (demographic) databases with the Métis Nation of Ontario citizenship registry to estimate osteoporosis management (bone mineral density [BMD] testing, pharmacotherapy) and fractures (hip, humerus, radius/ulna) among adults aged ≥50 years, from April 1, 2006 to March 31, 2011. Pharmacotherapy data were limited to residents aged ≥65 years. Sex-specific and age-standardized rates were compared between the Métis and the general population. Multivariable logistic regression was used to compare rates of BMD testing after controlling for differences in age and region of residence between the Métis and the general population. We studied 4219 Métis citizens (55 % men), and 140 (3 %) experienced a fracture. Half of Métis citizens, compared to less than 10 % of the general population of Ontario, resided in northern regions. We identified significantly lower sex-specific and age-standardized rates of BMD testing among Métis compared to the general population, yet found little difference in fracture rates (both sexes) or pharmacotherapy (women only). Differences in BMD testing disappeared after adjusting for region of residence among women yet remained significant among men. Despite finding significantly lower rates of osteoporosis management among men, Métis men and women were found to have similar age-standardized fracture rates to the general population.
Henderson, Richard C; Berglund, Lisa M; May, Ryan; Zemel, Babette S; Grossberg, Richard I; Johnson, Julie; Plotkin, Horacio; Stevenson, Richard D; Szalay, Elizabeth; Wong, Brenda; Kecskemethy, Heidi H; Harcke, H Theodore
2010-01-01
Children with limited or no ability to ambulate frequently sustain fragility fractures. Joint contractures, scoliosis, hip dysplasia, and metallic implants often prevent reliable measures of bone mineral density (BMD) in the proximal femur and lumbar spine, where BMD is commonly measured. Further, the relevance of lumbar spine BMD to fracture risk in this population is questionable. In an effort to obtain bone density measures that are both technically feasible and clinically relevant, a technique was developed involving dual-energy X-ray absorptiometry (DXA) measures of the distal femur projected in the lateral plane. The purpose of this study is to test the hypothesis that these new measures of BMD correlate with fractures in children with limited or no ability to ambulate. The relationship between distal femur BMD Z-scores and fracture history was assessed in a cross-sectional study of 619 children aged 6 to 18 years with muscular dystrophy or moderate to severe cerebral palsy compiled from eight centers. There was a strong correlation between fracture history and BMD Z-scores in the distal femur; 35% to 42% of those with BMD Z-scores less than −5 had fractured compared with 13% to 15% of those with BMD Z-scores greater than −1. Risk ratios were 1.06 to 1.15 (95% confidence interval 1.04–1.22), meaning a 6% to 15% increased risk of fracture with each 1.0 decrease in BMD Z-score. In clinical practice, DXA measure of BMD in the distal femur is the technique of choice for the assessment of children with impaired mobility. © 2010 American Society for Bone and Mineral Research PMID:19821773
Greendale, Gail A; Tseng, Chi-Hong; Han, Weijuan; Huang, Mei-Hua; Leung, Katherine; Crawford, Sybil; Gold, Ellen B; Waetjen, L Elaine; Karlamangla, Arun S
2015-03-01
This study aims to examine cross-sectional and longitudinal relations between dietary intake of isoflavones and bone mineral density (BMD) at the lumbar spine (LS) and femoral neck (FN) in black, white, Chinese, and Japanese women during the menopausal transition. We tested whether tertiles of isoflavone intake were associated with baseline BMD when all women were premenopausal or early perimenopausal. To analyze whether isoflavone intake was associated with longitudinal BMD, we fitted piecewise linear models to repeated measurements of baseline-normalized LS or FN BMD as functions of time before or after the final menstrual period (FMP) date. Multiply adjusted mean FN BMD values of premenopausal Japanese women were monotonically positively related to isoflavone consumption (P for trend = 0.0003). Otherwise, no statistically significant baseline associations were observed. During the period of 1 year before the FMP through 5 years after the FMP, all participants lost LS and FN BMD. Loss was unrelated to isoflavone intake, except for Japanese women during the period of 1 year before the FMP to 2 years after the FMP: higher tertiles of isoflavone intake were associated with greater annual LS BMD loss rates (P for trend = 0.01) and FN loss rates (P for trend = 0.04). In Japanese women, higher isoflavone intake is associated with higher peak FN BMD but also with greater rates of LS and FN BMD loss during the menopausal transition. Results for the other racial/ethnic groups did not support a relation between dietary intake of isoflavones and either peak BMD or BMD loss during the menopausal transition.
Omentin Polymorphism and its Relations to Bone Mineral Density in Women.
Boron, Dariusz; Czerny, Boguslaw; Bartkowiak-Wieczorek, Joanna; Sieron, Dominik; Wolski, Hubert
2015-04-01
Recognition of different genetic variants underlying development of osteoporosis would make it possible to administer individual symptomatic treatment as well as early prophylactics of osteoporosis. The aim of the study was to evaluate frequency of polymorphism 326A/T of gene ITLN-1 and assessment of its relations with the clinical parameters of osseous turnover and degree of postmenopausal osteoporosis. The study included 800 women at the postmenopausal (505) and reproductive (295) age throughout Wielkopolska region in Poland. The postmenopausal group included women with osteoporosis and osteopenia and the healthy ones. Women at the reproductive age were healthy. Frequency of the tested gene polymorphism was evaluated in the group where BMD was marked and in the control group. The analysis of the polymorphism A326T of gene ITLN-1 showed that in healthy postmenopausal female with genotype AA birth weight, BMD L2-L4 YA (%) and BMD L2-L4 AM (%) were significantly higher (BMD-bone mineral density; L2-L4-- lumbar vertebrae no 2, 4; YA--peak adult bone mass; AM--age-matched bone mass). In women with osteopenia BMD L2-L4 YA (%) and BMD L2-L4 AM (%) were significantly higher in women with genotype AA, but BMD L2-L4 was significantly higher in women with genotype TT. In women with osteoporosis with genotype AA T-score was significantly higher, but BMD L2-L4 and BMD L2-L4 YA (%) were significantly lower in this group. BMD L2-L4 AM (%) was significantly higher in women with AA genotype. In women with osteoporosis and osteopenia homozygous AA genotype may predispose to lower BMD in the lumbar spine. Copyright © 2015 IMSS. Published by Elsevier Inc. All rights reserved.
Bone mineral density and nutritional status in children with quadriplegic cerebral palsy.
Alvarez Zaragoza, Citlalli; Vasquez Garibay, Edgar Manuel; García Contreras, Andrea A; Larrosa Haro, Alfredo; Romero Velarde, Enrique; Rea Rosas, Alejandro; Cabrales de Anda, José Luis; Vega Olea, Israel
2018-03-04
This study demonstrated the relationship of low bone mineral density (BMD) with the degree of motor impairment, method of feeding, anthropometric indicators, and malnutrition in children with quadriplegic cerebral palsy (CP). The control of these factors could optimize adequate bone mineralization, avoid the risk of osteoporosis, and would improve the quality of life. The purpose of the study is to explore the relationship between low BMD and nutritional status in children with quadriplegic CP. A cross-sectional analytical study included 59 participants aged 6 to 18 years with quadriplegic CP. Weight and height were obtained with alternative measurements, and weight/age, height/age, and BMI/age indexes were estimated. The BMD measurement obtained from the lumbar spine was expressed in grams per square centimeter and Z score (Z). Unpaired Student's t tests, chi-square tests, odds ratios, Pearson's correlations, and linear regressions were performed. The mean of BMD Z score was lower in adolescents than in school-aged children (p = 0.002). Patients with low BMD were at the most affected levels of the Gross Motor Function Classification System (GMFCS). Participants at level V of the GMFCS were more likely to have low BMD than levels III and IV [odds ratio (OR) = 5.8 (confidence interval [CI] 95% 1.4, 24.8), p = 0.010]. There was a higher probability of low BMD in tube-feeding patients [OR = 8.6 (CI 95% 1.0, 73.4), p = 0.023]. The probability of low BMD was higher in malnourished children with weight/age and BMI indices [OR = 11.4 (1.3, 94), p = 0.009] and [OR = 9.4 (CI 95% 1.1, 79.7), p = 0.017], respectively. There was a significant relationship between low BMD, degree of motor impairment, method of feeding, and malnutrition. Optimizing these factors could reduce the risk of osteopenia and osteoporosis and attain a significant improvement of quality of life in children with quadriplegic CP.
Kim, Kyong-Chol; Shin, Dong-Hyuk; Lee, Sei-Young; Im, Jee-Aee; Lee, Duk-Chul
2010-11-01
The traditional belief that obesity is protective against osteoporosis has been questioned. Recent epidemiologic studies show that body fat itself may be a risk factor for osteoporosis and bone fractures. Accumulating evidence suggests that metabolic syndrome and the individual components of metabolic syndrome such as hypertension, increased triglycerides, and reduced high-density lipoprotein cholesterol are also risk factors for low bone mineral density. Using a cross sectional study design, we evaluated the associations between obesity or metabolic syndrome and bone mineral density (BMD) or vertebral fracture. A total of 907 postmenopausal healthy female subjects, aged 60-79 years, were recruited from woman hospitals in Seoul, South Korea. BMD, vetebral fracture, bone markers, and body composition including body weight, body mass index (BMI), percentage body fat, and waist circumference were measured. After adjusting for age, smoking status, alcohol consumption, total calcium intake, and total energy intake, waist circumference was negatively related to BMD of all sites (lumbar BMD p = 0.037, all sites of femur BMD p < 0.001) whereas body weight was still positively related to BMD of all sites (p < 0.001). Percentage body fat and waist circumference were much higher in the fracture group than the non-fracture group (p = 0.0383, 0.082 respectively). Serum glucose levels were positively correlated to lumbar BMD (p = 0.016), femoral neck BMD (p = 0.0335), and femoral trochanter BMD (p = 0.0082). Serum high density lipoprotein cholesterol (HDLC) was positively related to femoral trochanter BMD (p = 0.0366) and was lower in the control group than the fracture group (p = 0.011). In contrast to the effect favorable body weight on bone mineral density, high percentage body fat and waist circumference are related to low BMD and a vertebral fracture. Some components of metabolic syndrome were related to BMD and a vertebral fracture.
Sakurai-Iesato, Yoriko; Kawata, Naoko; Tada, Yuji; Iesato, Ken; Matsuura, Yukiko; Yahaba, Misuzu; Suzuki, Toshio; Ikari, Jun; Yanagawa, Noriyuki; Kasahara, Yasunori; West, James; Tatsumi, Koichiro
2017-01-01
Objective Osteoporosis, which is now recognized as a major comorbidity of chronic obstructive pulmonary disease (COPD), must be diagnosed by appropriate methods. The aims of this study were to clarify the relationships between bone mineral density (BMD) and COPD-related clinical variables and to explore the association of BMD with the updated Global Initiative for Chronic Obstructive Lung Disease (GOLD) classification in men. Methods We enrolled 50 Japanese men with clinically stable COPD who underwent dual-energy X-ray absorptiometry (DEXA), pulmonary function testing, and computerized tomography (CT) and who had completed a questionnaire (COPD assessment test [CAT]). We determined the association between the T-score and other tested parameters and compared the BMD of patients in each GOLD category. Results Twenty-three of the 50 patients (46.0%) were diagnosed with osteopenia, and 7 (14.0%) were diagnosed with osteoporosis. The BMD findings were significantly correlated with the CAT score, forced expiratory volume in 1 second percentage predicted (FEV 1 % predicted), low attenuation volume percentage (LAV%), and percentage of cross-sectional area of small pulmonary vessels (%CSA) on CT images. Notably, the median T-score of the GOLD category D participants was significantly lower than that of the participants in each of the other categories (A [-0.98], B [-1.06], C [-1.05], and D [-2.19], p<0.05). Conclusion Reduced BMD was associated with airflow limitation, extent of radiographic findings, and a poor quality of life (QOL) in patients with COPD. The BMD of GOLD category D patients was the lowest of all of the patients evaluated, and category D patients may benefit from active intervention for osteoporosis.
Sakurai-Iesato, Yoriko; Kawata, Naoko; Tada, Yuji; Iesato, Ken; Matsuura, Yukiko; Yahaba, Misuzu; Suzuki, Toshio; Ikari, Jun; Yanagawa, Noriyuki; Kasahara, Yasunori; West, James; Tatsumi, Koichiro
2017-01-01
Objective Osteoporosis, which is now recognized as a major comorbidity of chronic obstructive pulmonary disease (COPD), must be diagnosed by appropriate methods. The aims of this study were to clarify the relationships between bone mineral density (BMD) and COPD-related clinical variables and to explore the association of BMD with the updated Global Initiative for Chronic Obstructive Lung Disease (GOLD) classification in men. Methods We enrolled 50 Japanese men with clinically stable COPD who underwent dual-energy X-ray absorptiometry (DEXA), pulmonary function testing, and computerized tomography (CT) and who had completed a questionnaire (COPD assessment test [CAT]). We determined the association between the T-score and other tested parameters and compared the BMD of patients in each GOLD category. Results Twenty-three of the 50 patients (46.0%) were diagnosed with osteopenia, and 7 (14.0%) were diagnosed with osteoporosis. The BMD findings were significantly correlated with the CAT score, forced expiratory volume in 1 second percentage predicted (FEV1% predicted), low attenuation volume percentage (LAV%), and percentage of cross-sectional area of small pulmonary vessels (%CSA) on CT images. Notably, the median T-score of the GOLD category D participants was significantly lower than that of the participants in each of the other categories (A [-0.98], B [-1.06], C [-1.05], and D [-2.19], p<0.05). Conclusion Reduced BMD was associated with airflow limitation, extent of radiographic findings, and a poor quality of life (QOL) in patients with COPD. The BMD of GOLD category D patients was the lowest of all of the patients evaluated, and category D patients may benefit from active intervention for osteoporosis. PMID:28717072
2010-01-01
Background A rise in gastrointestinal (GI) adverse events (AEs) and a decline in bone mineral density (BMD) was observed in patients previously tolerant to brand alendronate shortly after generic versions were introduced in July 2005 to the Canadian market. The objective of our study was to quantify changes in AE rates and BMD scores, as well as associated alendronate discontinuation among patients before and after switch from brand to generic alendronate. Methods A chart review of postmenopausal women 50 years of age and older between 2003 and 2007 was conducted in two specialized tertiary care referral centers. Patients on alendronate both before and after July 2005 were included. The change in the number of AEs, changes in BMD and associated alendronate discontinuation was compared before and after the switch from brand to generic alendronate. Results 301 women with an average age of 67.6 years (standard deviation (SD) = 9.5) had a total of 47 AEs between July 2003 and December 2007 that resulted in discontinuation of the medication. There was a significant increase in the rate of AEs per patient-months-at-risk from 0.0001 before to 0.0044 after October 2005 (p < 0.001). The most common AEs were GI in nature (stomach pain, GI upset, nausea, and reflux). In addition, 23 patients discontinued alendronate due to BMD reduction after January 2006. In these patients, BMD scores were significantly reduced from their prior BMD measures (change of -0.0534, p < 0.001 for spine BMD and change of -0.0338, p = 0.01 for femur BMD). Among patients who discontinued due to BMD reduction, BMD was stable in the period prior to January 2006 (change of -0.0066, p = 0.5 for spine BMD and change of 0.0011, p = 0.9 for femur BMD); however, testing for reduction after January 2006 in BMD measures (one-sided T-test) revealed there was a significant reduction in BMD scores for both anatomic sites (change of -0.0321, p = .005 for spine, change of -0.0205, p = 0.05 for femur). Conclusions Patients who were previously stable on doses of brand alendronate experienced an increase in AEs causing discontinuation after introduction of automatic substitution to generic alendronate. In addition, reductions in BMD were observed in some patients who had stable BMDs before January 2006. Given the substantial increase in AEs, generic alendronate may not be as well tolerated as brand alendronate. PMID:20388226
Resistance exercise training restores bone mineral density in renal transplant recipients.
Eatemadololama, Ali; Karimi, Mohammad Taghi; Rahnama, Nader; Rasolzadegan, Mohammad Hoseynen
2017-01-01
The kidneys are complex organs of human body sustain a number of vital and important functions. These organs need to be replaced in some subjects due to various diseases. Bone mineral density (BMD) of the subjects with kidney transplantation reduced as a result of poor mobility and use of especial drugs. Due to lack of information regarding the influences of weight training exercise on BMD of long bone, this research was done. 24 subjects with history of kidney transplantation were recruited in this study. They were divided into two groups who received weight training exercise and control group. The BMD of femur and lumbar spine was measured by use of dual energy X-Ray absorptiometry in both groups. The difference between BMD was evaluated by use of two sample T test. The mean values of BMD of femur were 0.679±0.09 g/cm 2 and 0.689±0.09 before and after exercise in this first group. In contrast it was 0.643±0.11 before follow-up and 0.641±0.11 g/cm 2 after follow-up in the control group. There was no difference in BMD of lumbar spine after exercise. The result of this research study showed that BMD of long bone improved follow exercise. Therefore, it was concluded that weight training exercise can be used for the subjects with kidney transplantation.
Skeletal Health among African Americans with Recent Onset Rheumatoid Arthritis
Curtis; Arora, T; Donaldson, M; Alarcon, GS; Callahan, LF; Moreland, LW; Bridges, SL; Mikuls, TR
2009-01-01
Background African Americans with rheumatoid arthritis (RA) may be at increased fracture risk. We applied the World Health Organization (WHO) fracture risk assessment tool (FRAX) and National Osteoporosis Foundation (NOF) guidelines to a cohort of African Americans with early RA to identify which patients were recommended for osteoporosis treatment. Methods Risk factors and bone mineral density (BMD) were assessed in acohort of African Americans with RA. The WHO FRAX tool estimated ten-year fracture risk. Patients were risk-stratified using FRAX without BMD to identify which individuals might be most efficiently targeted for BMD testing. Results Participants (n = 324) had a mean age of 51 years and included 81% women. There were no associations of RA disease characteristics with BMD. The proportion of patients recommended for osteoporosis treatment varied from 3% to 86%, depending on age and BMI. Ten-year fracture risk calculated with BMI only was generally the same or higher than fracture risk calculated with BMD; adding BMD data provided the most incremental value to risk assessment in patients 55–70 years of age with low/normal BMI and in those ≥ 70 years of age with BMI > 30 kg/m2. Conclusions A high proportion of African Americans with RA were recommended for treatment under 2008 NOF guidelines. FRAX without BMD identified low risk patients accurately. Systematic application of FRAX to screen high risk groups such as RA patients may be used to target individuals for BMD testing and reduce the use of unnecessary tests and treatments. PMID:19790118
Sung, Joohon; Song, Yun-Mi; Stone, Jennifer; Lee, Kayoung
2011-09-01
Mammographic density is one of the strong risk factors for breast cancer. A potential mechanism for this association is that cumulative exposure to mammographic density may reflect cumulative exposure to hormones that stimulate cell division in breast stroma and epithelium, which may have corresponding effects on breast cancer development. Bone mineral density (BMD), a marker of lifetime estrogen exposure, has been found to be associated with breast cancer. We examined the association between BMD and mammographic density in a Korean population. Study subjects were 730 Korean women selected from the Healthy Twin study. BMD (g/cm(2)) was measured with dual-energy X-ray absorptiometry. Mammographic density was measured from digital mammograms using a computer-assisted thresholding method. Linear mixed model considering familial correlations and a wide range of covariates was used for analyses. Quantitative genetic analysis was completed using SOLAR. In premenopausal women, positive associations existed between absolute dense area and BMD at ribs, pelvis, and legs, and between percent dense area and BMD at pelvis and legs. However, in postmenopausal women, there was no association between BMD at any site and mammographic density measures. An evaluation of additive genetic cross-trait correlation showed that absolute dense area had a weak-positive additive genetic cross-trait correlation with BMD at ribs and spines after full adjustment of covariates. This finding suggests that the association between mammographic density and breast cancer could, at least in part, be attributable to an estrogen-related hormonal mechanism.
Kimel-Naor, Shani; Abboud, Shimon; Arad, Marina
2016-08-01
Osteoporosis is defined as bone microstructure deterioration resulting a decrease of bone's strength. Measured bone mineral density (BMD) constitutes the main tool for Osteoporosis diagnosis, management, and defines patient's fracture risk. In the present study, parametric electrical impedance tomography (pEIT) method was examined for monitoring BMD, using a computerized simulation model and preliminary real measurements. A numerical solver was developed to simulate surface potentials measured over a 3D computerized pelvis model. Varying cortical and cancellous BMD were simulated by changing bone conductivity and permittivity. Up to 35% and 16% change was found in the real and imaginary modules of the calculated potential, respectively, while BMD changes from 100% (normal) to 60% (Osteoporosis). Negligible BMD relative error was obtained with SNR>60 [dB]. Position changes errors indicate that for long term monitoring, measurement should be taken at the same geometrical configuration with great accuracy. The numerical simulations were compared to actual measurements that were acquired from a healthy male subject using a five electrodes belt bioimpedance device. The results suggest that pEIT may provide an inexpensive easy to use tool for frequent monitoring BMD in small clinics during pharmacological treatment, as a complementary method to DEXA test. Copyright © 2016. Published by Elsevier Ltd.
Biver, E; Durosier, C; Chevalley, T; Herrmann, F R; Ferrari, S; Rizzoli, R
2015-08-01
In a cross-sectional analysis in postmenopausal women, prior ankle fractures were associated with lower areal bone mineral density (BMD) and trabecular bone alterations compared to no fracture history. Compared to women with forearm fractures, microstructure alterations were of lower magnitude. These data suggest that ankle fractures are another manifestation of bone fragility. Whether ankle fractures represent fragility fractures associated with low areal bone mineral density (aBMD) and volumetric bone mineral density (vBMD) and/or bone microstructure alterations remains unclear, in contrast to the well-recognised association between forearm fractures and osteoporosis. The objective of this study was to investigate aBMD, vBMD and bone microstructure in postmenopausal women with prior ankle fracture in adulthood, compared with women without prior fracture or with women with prior forearm fractures, considered as typically of osteoporotic origin. In a cross-sectional analysis in the Geneva Retirees Cohort study, 63 women with ankle fracture and 59 with forearm fracture were compared to 433 women without fracture (mean age, 65 ± 1 years). aBMD was measured by dual-energy X-ray absorptiometry; distal radius and tibia vBMD and bone microstructure were measured by high-resolution peripheral quantitative computed tomography. Compared with women without fracture, those with ankle fractures had lower aBMD, radius vBMD (-7.9%), trabecular density (-10.7%), number (-7.3%) and thickness (-4.6%) and higher trabecular spacing (+14.5%) (P < 0.05 for all). Tibia trabecular variables were also altered. For 1 standard deviation decrease in total hip aBMD or radius trabecular density, odds ratios for ankle fractures were 2.2 and 1.6, respectively, vs 2.2 and 2.7 for forearm fracture, respectively (P ≤ 0.001 for all). Compared to women with forearm fractures, those with ankle fractures had similar spine and hip aBMD, but microstructure alterations of lower magnitude. Women with ankle fractures have lower aBMD and vBMD and trabecular bone alterations, suggesting that ankle fractures are another manifestation of bone fragility.
Leslie, William D; Lix, Lisa M; Yogendran, Marina S; Morin, Suzanne N; Metge, Colleen J; Majumdar, Sumit R
2014-04-01
Diverging international trends in fracture rates have been observed, with most reports showing that fracture rates have stabilized or decreased in North American and many European populations. We studied two complementary population-based historical cohorts from the Province of Manitoba, Canada (1996-2006) to determine whether declining osteoporotic fracture rates in Canada are attributable to trends in obesity, osteoporosis treatment, or bone mineral density (BMD). The Population Fracture Registry included women aged 50 years and older with major osteoporotic fractures, and was used to assess impact of changes in osteoporosis treatment. The BMD Registry included all women aged 50 years and older undergoing BMD tests, and was used to assess impact of changes in obesity and BMD. Model-based estimates of temporal changes in fracture rates (Fracture Registry) were calculated. Temporal changes in obesity and BMD and their association with fracture rates (BMD Registry) were estimated. In the Fracture Registry (n=27,341), fracture rates declined 1.6% per year (95% confidence interval [CI], 1.3% to 2.0%). Although osteoporosis treatment increased from 5.6% to 17.4%, the decline in fractures was independent of osteoporosis treatment. In the BMD Registry (n=36,587), obesity increased from 12.7% to 27.4%. Femoral neck BMD increased 0.52% per year and lumbar spine BMD increased 0.32% per year after covariate adjustment (p<0.001). Major osteoporotic fracture rates decreased in models that did not include femoral neck BMD (fully adjusted annual change -1.8%; 95% CI, -2.9 to -0.5), but adjusting for femoral neck BMD accounted for the observed reduction (annual change -0.5%; 95% CI, -1.8 to +1.0). In summary, major osteoporotic fracture rates declined substantially and linearly from 1996 to 2006, and this was explained by improvements in BMD rather than greater rates of obesity or osteoporosis treatment. © 2014 American Society for Bone and Mineral Research.
Association of adiposity indices with bone density and bone turnover in the Chinese population.
Wang, J; Yan, D; Hou, X; Chen, P; Sun, Q; Bao, Y; Hu, C; Zhang, Z; Jia, W
2017-09-01
Associations of adiposity indices with bone mineral density (BMD) and bone turnover markers were evaluated in Chinese participants. Body mass index, fat mass, and lean mass are positively related to BMD in both genders. Subcutaneous fat area was proved to be negatively associated with BMD and positively correlated with osteocalcin in postmenopausal females. Obesity is highly associated with osteoporosis, but the effect of adipose tissue on bone is contradictory. Our study aimed to assess the associations of adiposity indices with bone mineral density (BMD) and bone turnover markers (BTMs) in the Chinese population. Our study recruited 5215 participants from the Shanghai area, evaluated related anthropometric and biochemical traits in all participants, tested serum BTMs, calculated fat distribution using magnetic resonance imaging (MRI) images and image analysis software, and tested BMD with dual-energy X-ray absorptiometry. When controlled for age, all adiposity indices were positively correlated with BMD of all sites for both genders. As for the stepwise regression analysis, body mass index (BMI), fat mass, and lean mass were protective for BMD in both genders. However, subcutaneous fat area (SFA) was detrimental for BMD of the L1-4 and femoral neck (β ± SE -0.0742 ± 0.0174; p = 2.11E-05; β ± SE -0.0612 ± 0.0147; p = 3.07E-05). Adiposity indices showed a negative correlation with BTMs adjusting for age, especially with osteocalcin. In the stepwise regression analysis, fat mass was negatively correlated with osteocalcin (β ± SE -8.8712 ± 1.4902; p = 4.17E-09) and lean mass showed a negative correlation with N-terminal procollagen of type I collagen (PINP) for males (β ± SE -0.3169 ± 0.0917; p = 0.0006). In females, BMI and visceral fat area (VFA) were all negatively associated with osteocalcin (β ± SE -0.4423 ± 0.0663; p = 2.85E-11; β ± SE -7.1982 ± 1.1094; p = 9.95E-11), while SFA showed a positive correlation with osteocalcin (β ± SE: 5.5993 ± 1.1753; p = 1.98E-06). BMI, fat mass, and lean mass are proved to be beneficial for BMD in both males and postmenopausal females. SFA is negatively associated with BMD and positively correlated with osteocalcin in postmenopausal females.
Register, Thomas C; Hruska, Keith A; Divers, Jasmin; Bowden, Donald W; Palmer, Nicholette D; Carr, J Jeffrey; Wagenknecht, Lynne E; Hightower, R Caresse; Xu, Jianzhao; Smith, S Carrie; Dietzen, Dennis J; Langefeld, Carl D; Freedman, Barry I
2014-01-01
Bone mineral density (BMD) and calcified atherosclerotic plaque (CP) demonstrate inverse relationships. Sclerostin, an endogenous regulator of the Wnt pathway and bone formation, has been associated with impaired osteoblast activation and may play a role in vascular calcification. Our objective was to assess the relationships between sclerostin, BMD, and CP. Generalized linear models were fitted to test for associations between sclerostin, volumetric BMD (vBMD), and CP. A targeted population of 450 unrelated African Americans (AAs) with type 2 diabetes (T2D) was 56% female with mean/SD/median age of 55.4/9.5/55.0 years and a diabetes duration of 10.3/8.2/8.0 years. Plasma sclerostin, computed tomography-derived thoracic and lumbar vertebrae trabecular vBMD, coronary artery, carotid artery, and aortoiliac CP were measured. Plasma sclerostin was 1119/401/1040 pg/mL, thoracic vBMD was 206.3/52.4/204.8 mg/cm3, lumbar vBMD was 180.7/47.0/179.0 mg/cm3, coronary artery CP score was 284/648/13, carotid artery CP score was 46/132/0, and aortoiliac CP score was 1613/2910/282. Sclerostin levels were higher in men than women (P<.0001). Before and after adjusting for age, sex, body mass index, blood pressure, smoking, hemoglobin A1c, and low-density lipoprotein-cholesterol, plasma sclerostin levels were positively associated with thoracic and lumbar vertebrae vBMD (P<.0001). Sex-stratified analyses verified significant relationships in both men and women (both P<.001). Sclerostin was not associated with CP except for an inverse relationship with carotid CP in men (fully adjusted model, P=.03). In this cross-sectional study of AA men and women with T2D, circulating sclerostin was positively associated with vBMD in the spine in both sexes and inversely associated with carotid artery CP in men. Sclerostin may play a role in skeletal mineral metabolism in AA but fails to explain inverse relationships between BMD and CP.
Hyponatremia and decreased bone density in adolescent inpatients diagnosed with anorexia nervosa.
Levy-Shraga, Yael; David, Dana; Vered, Iris; Kochavi, Brigitte; Stein, Daniel; Modan-Moses, Dalit
2016-10-01
Recent studies demonstrated an association between low serum sodium levels and reduced bone density. Patients with anorexia nervosa (AN) are at greater risk for osteoporosis as well as for hyponatremia. The aim of the present study was to assess the association between hyponatremia and bone mineral density (BMD) in a large cohort of adolescent inpatients with AN. A historic cohort study of 174 adolescent females (mean age 15.7 ± 1.8 y) hospitalized because of AN between 2003 and 2013. Demographic and clinical data, including age, psychiatric comorbidity, anthropometric measurements, laboratory tests, and BMD scores were obtained from the patients' medical charts. Mean lumbar spine BMD z-score of the patients was lower than expected in the normal population (mean -1.5 ± 1.2) and positively correlated with body mass index standard deviation score (r = 0.42, P < 0.0001). Sixty-four participants (36.8%) had at least one episode of hyponatremia during the year preceding the BMD measurement. These participants had a significantly lower lumbar spine BMD z-score (-1.8 ± 1.2 versus -1.3 ± 1.2, P = 0.01) compared with participants with no hyponatremia. Lumbar spine BMD z-score was also positively correlated with the levels of free triiodothyronine (r = 0.16, P = 0.038), 17 b-estradiol (r = 0.23, P = 0.005), and luteinizing hormone (r = 0.25, P = 0.001), and negatively correlated with cortisol levels (r = 0.33, P < 0.0001). Having at least one episode of hyponatremia, BMI z-score and cortisol levels were identified as independent predictors of BMD z-score (P < 0.001, P < 0.001, and P = 0.034, respectively). Hyponatremia may be associated with decreased bone density in adolescent females with AN. Additional studies are required to evaluate whether the correction of hyponatremia will improve BMD. Copyright © 2016 Elsevier Inc. All rights reserved.
Thompson, Wesley K.; McEvoy, Linda K.; Schork, Andrew J.; Zuber, Verena; LeBlanc, Marissa; Bettella, Francesco; Mills, Ian G.; Desikan, Rahul S.; Djurovic, Srdjan; Gautvik, Kaare M.; Dale, Anders M.; Andreassen, Ole A.
2015-01-01
Bone Mineral Density (BMD) is a highly heritable trait, but genome-wide association studies have identified few genetic risk factors. Epidemiological studies suggest associations between BMD and several traits and diseases, but the nature of the suggestive comorbidity is still unknown. We used a novel genetic pleiotropy-informed conditional False Discovery Rate (FDR) method to identify single nucleotide polymorphisms (SNPs) associated with BMD by leveraging cardiovascular disease (CVD) associated disorders and metabolic traits. By conditioning on SNPs associated with the CVD-related phenotypes, type 1 diabetes, type 2 diabetes, systolic blood pressure, diastolic blood pressure, high density lipoprotein, low density lipoprotein, triglycerides and waist hip ratio, we identified 65 novel independent BMD loci (26 with femoral neck BMD and 47 with lumbar spine BMD) at conditional FDR < 0.01. Many of the loci were confirmed in genetic expression studies. Genes validated at the mRNA levels were characteristic for the osteoblast/osteocyte lineage, Wnt signaling pathway and bone metabolism. The results provide new insight into genetic mechanisms of variability in BMD, and a better understanding of the genetic underpinnings of clinical comorbidity. PMID:26695485
Heyworth, L; Kleinman, K; Oddleifson, S; Bernstein, L; Frampton, J; Lehrer, M; Salvato, K; Weiss, T W; Simon, S R; Connelly, M
2014-05-01
Guidelines recommend screening for osteoporosis with bone mineral density (BMD) testing in menopausal women, particularly those with additional risk factors for fracture. Many eligible women remain unscreened. This randomized study demonstrates that a single outreach interactive voice response phone call improves rates of BMD screening among high-risk women age 50-64. Osteoporotic fractures are a major cause of disability and mortality. Guidelines recommend screening with BMD for menopausal women, particularly those with additional risk factors for fracture. However, many women remain unscreened. We examined whether telephonic interactive voice response (IVR) or patient mailing could increase rates of BMD testing in high risk, menopausal women. We studied 4,685 women age 50-64 years within a not-for-profit health plan in the United States. All women had risk factors for developing osteoporosis and no prior BMD testing or treatment for osteoporosis. Patients were randomly allocated to usual care, usual care plus IVR, or usual care plus mailed educational materials. To avoid contamination, patients within a single primary care physician practice were randomized to receive the same intervention. The primary endpoint was BMD testing at 12 months. Secondary outcomes included BMD testing at 6 months and medication use at 12 months. Mean age was 57 years. Baseline demographic and clinical characteristics were similar across the three study groups. In adjusted analyses, the incidence of BMD screening was 24.6% in the IVR group compared with 18.6% in the usual care group (P < 0.001). There was no difference between the patient mailing group and the usual care group (P = 0.3). In this large community-based randomized trial of high risk, menopausal women age 50-64, IVR, but not patient mailing, improved rates of BMD screening. IVR remains a viable strategy to incorporate in population screening interventions.
Medina-Gómez, Carolina; Chesi, Alessandra; Heppe, Denise H.M.; Zemel, Babette S.; Yin, Jia-Lian; Kalkwarf, Heidi J.; Hofman, Albert; Lappe, Joan M.; Kelly, Andrea; Kayser, Manfred; Oberfield, Sharon E.; Gilsanz, Vicente; Uitterlinden, André G.; Shepherd, John A.; Jaddoe, Vincent W.V.; Grant, Struan F.A.; Lao, Oscar; Rivadeneira, Fernando
2015-01-01
Bone mineral density (BMD) is a highly heritable trait used both for the diagnosis of osteoporosis in adults and to assess bone health in children. Ethnic differences in BMD have been documented, with markedly higher levels in individuals of African descent, which partially explain disparity in osteoporosis risk across populations. To date, 63 independent genetic variants have been associated with BMD in adults of Northern-European ancestry. Here, we demonstrate that at least 61 of these variants are predictive of BMD early in life by studying their compound effect within two multiethnic pediatric cohorts. Furthermore, we show that within these cohorts and across populations worldwide the frequency of those alleles associated with increased BMD is systematically elevated in individuals of Sub-Saharan African ancestry. The amount of differentiation in the BMD genetic scores among Sub-Saharan and non-Sub-Saharan populations together with neutrality tests, suggest that these allelic differences are compatible with the hypothesis of selective pressures acting on the genetic determinants of BMD. These findings constitute an explorative contribution to the role of selection on ethnic BMD differences and likely a new example of polygenic adaptation acting on a human trait. PMID:26226985
Grip strength is a predictor of bone mineral density among adolescent combat sport athletes.
Nasri, Raouf; Hassen Zrour, Saoussen; Rebai, Haithem; Fadhel Najjar, Mohamed; Neffeti, Fadoua; Bergaoui, Naceur; Mejdoub, Hafedh; Tabka, Zouhair
2013-01-01
The aim of this study was firstly to investigate the correlation between bone parameters and grip strength (GS) in hands, explosive legs power (ELP), and hormonal parameters; second, to identify the most determinant variables of bone mineral density (BMD) among adolescent combat sport athletes. Fifty combat sport athletes aged 17.1 ± 0.2 year were compared with 30 sedentary subjects matched for age, height, and pubertal stage. For all subjects, the BMD in deferent sites associated with anthropometric parameters were measured by dual-energy X-ray absorptiometry. The growth hormone (GH) and testosterone (TESTO) concentrations were tested. The GS in dominant (GSDA) and nondominant arms (GSNDA) and ELP were evaluated. All BMD measured were greater in athletes than in sedentary group (p<0.01). The GS and ELP showed higher values in athletes than in sedentary group (p<0.01). The BMD in all sites were correlated with weight, but without correlation with height. The GSNDA and ELP were significantly correlated with BMD of both spine and legs. The GH was correlated with the BMD of whole body and spine (p<0.05). The TESTO was only correlated with BMD of the arms (p<0.01). The best predictor of BMD measurements is GSNDA. This study has proved the osteogenic effect of combat sports practice, especially judo and karate kyokushinkai. Therefore, children and adolescent should be encouraged to participate in combat sport. Moreover, it suggested that the best model predicting BMD in different sites among adolescent combat sports athletes was the GSNDA. Copyright © 2013 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
Lai, Jennifer C; Shoback, Dolores M; Zipperstein, Jacob; Lizaola, Blanca; Tseng, Samuel; Terrault, Norah A
2015-06-01
Whether chronic HCV, a disease characterized by systemic inflammation, impacts bone mineral density (BMD) independent of cirrhosis is unknown. We aimed to evaluate the association between BMD, systemic inflammation, and markers of bone turnover in chronic HCV without cirrhosis. Non-cirrhotics, 40-60 years old, with chronic HCV underwent measurement of: (1) BMD by dual-energy X-ray absorptiometry scan and (2) serum markers of systemic inflammation and bone turnover. By Chi-squared or t test, we compared those with normal versus low BMD. Of the 60 non-cirrhotics, 53 % were female and 53 % Caucasian. Mean (SD) age was 53.3 years (5.7), total bilirubin 0.7 mg/dL (0.3), creatinine 0.8 mg/dL (0.2), and body mass index 28.4 kg/m(2) (6.5). Low BMD was observed in 42 %: 30 % had osteopenia, 12 % had osteoporosis. Elevated tumor necrosis factor α, interleukin-6, and C-reactive protein levels were found in 26, 32, and 5 %, respectively, but did not differ by BMD group (p > 0.05). Patients with low BMD had higher serum phosphorus (4.1 vs. 3.5 mg/dL) and pro-peptide of type 1 collagen (P1NP; 73.1 vs. 47.5 ng/mL) [p < 0.05], but similar bone-specific alkaline phosphatase, serum C-telopeptide, and parathyroid hormone levels. Low BMD is prevalent in 40- to 60-year-old non-cirrhotics with chronic HCV, but not associated with systemic inflammatory markers. Elevated P1NP levels may help to identify those at increased risk of bone complications in this population. Chronic HCV should be considered a risk factor for bone loss, prompting earlier BMD assessments in both men and women.
Bone Density in Peripubertal Boys with Autism Spectrum Disorders
ERIC Educational Resources Information Center
Neumeyer, Ann M.; Gates, Amy; Ferrone, Christine; Lee, Hang; Misra, Madhusmita
2013-01-01
We determined whether bone mineral density (BMD) is lower in boys with autism spectrum disorders (ASD) than controls, and also assessed variables that may affect BMD in ASD. BMD was measured using dual energy X-ray absorptiometry (DXA) in 18 boys with ASD and 19 controls 8-14 years old. Boys with ASD had lower BMD Z-scores at the spine, hip and…
Is BMD testing appropriate for all menopausal women?
Kleerekoper, Michael; Nelson, Dorothy A
2005-01-01
The United States Preventive Services Task Force has provided an evidence-based guideline indicating that bone mineral density (BMD) testing is appropriate for all women aged 65 or older. This does not preclude BMD testing in younger postmenopausal women but places the onus on the treating physician to justify the procedure to the patient and often the patient's insurance carrier. There are very few circumstances in which BMD testing is appropriate for healthy premenopausal women, but BMD testing in younger postmenopausal women is often appropriate: when there is a family history of osteoporosis with fracture, a personal history of fracture as an adult, and a medical, surgical or therapeutic history that might be associated with accelerated bone loss or increased risk of fracture. Medical conditions include intestinal diseases associated with malabsorption, such as non-tropical sprue, or primary hyperparathyroidism. Women who have neurologic conditions that increase the risk of falling should also be tested. There are data to suggest that patients with hemoglobinopathy are at increased risk for osteoporosis. Surgical conditions include the increasingly performed surgery for obesity and other surgery resulting in bowel resection (e.g., for inflammatory bowel disease). The major medication-related concern is corticosteroid therapy, but chronic or over-treatment with thyroxine, and chronic heparin therapy, should also be considered risk factors for osteoporosis. When performing a BMD test for the first time, it is essential to remember that 50% of women at menopause will have a negative T-score, but this does not imply that the patient has indeed lost any bone from her peak bone mass.
Low bone density risk is higher in exercising women with multiple triad risk factors.
Gibbs, Jenna C; Nattiv, Aurelia; Barrack, Michelle T; Williams, Nancy I; Rauh, Mitchell J; Nichols, Jeanne F; De Souza, Mary Jane
2014-01-01
The cumulative effect of the female athlete triad (Triad) risk factors on the likelihood of low bone mineral density (BMD) in exercising women is unclear. This study aimed to determine the risk of low BMD in exercising women with multiple Triad risk factors. We retrospectively examined cross-sectional data from 437 exercising women (mean ± SD age of 18.0 ± 3.5 yr, weighed 57.5 ± 7.1 kg with 24.5% ± 6.1% body fat) obtained at baseline from 4 prospective cohort studies examining Triad risk factors. Questionnaires were completed to obtain information on demographic characteristics, self-reported eating attitudes/behaviors, menstrual function, sport/activity participation, and medication use. Height and body weight were measured. BMD was measured using dual energy x-ray absorptiometry. Low BMD was defined as z-scores of <-1 and ≤-2. Chi-square tests were performed to determine the percentage of women with low BMD who met the criteria for individual (current oligo/amenorrhea, late menarche, low body mass index (BMI), elevated dietary restraint, lean sport/activity participation) or multiple (2, 3, 4, or 5) Triad risk factors. Late menarche and low BMI were associated with the highest percentage of low BMD (z-score < -1), 55% and 54%, respectively, and low BMD (z-score ≤-2), 14% and 16%, respectively. The percentage of participants with low BMD (z-score < -1 and ≤-2) increased from 10% to 62% and from 2% to 18%, respectively, as women met the criteria for an increasing number of Triad risk factors. A cumulative number of Triad risk factors were associated with an increased risk of low BMD, suggesting a dose-response association between the number of Triad risk factors and BMD in exercising women. Further research should be conducted to develop a user-friendly algorithm integrating these indicators of risk for low BMD in exercising women (particularly factors associated with low BMI/body weight, menstrual dysfunction, lean sport/activity participation, and elevated dietary restraint).
Zemel, Babette S; Leonard, Mary B; Kelly, Andrea; Lappe, Joan M; Gilsanz, Vicente; Oberfield, Sharon; Mahboubi, Soroosh; Shepherd, John A; Hangartner, Thomas N; Frederick, Margaret M; Winer, Karen K; Kalkwarf, Heidi J
2010-03-01
In children, bone mineral content (BMC) and bone mineral density (BMD) measurements by dual-energy x-ray absorptiometry (DXA) are affected by height status. No consensus exists on how to adjust BMC or BMD (BMC/BMD) measurements for short or tall stature. The aim of this study was to compare various methods to adjust BMC/BMD for height in healthy children. Data from the Bone Mineral Density in Childhood Study (BMDCS) were used to develop adjustment methods that were validated using an independent cross-sectional sample of healthy children from the Reference Data Project (RDP). We conducted the study in five clinical centers in the United States. We included 1546 BMDCS and 650 RDP participants (7 to 17 yr of age, 50% female). No interventions were used. We measured spine and whole body (WB) BMC and BMD Z-scores for age (BMC/BMD(age)), height age (BMC/BMD(height age)), height (BMC(height)), bone mineral apparent density (BMAD(age)), and height-for-age Z-score (HAZ) (BMC/BMD(haz)). Spine and WB BMC/BMD(age)Z and BMAD(age)Z were positively (P < 0.005; r = 0.11 to 0.64) associated with HAZ. Spine BMD(haz) and BMC(haz)Z were not associated with HAZ; WB BMC(haz)Z was modestly associated with HAZ (r = 0.14; P = 0.0003). All other adjustment methods were negatively associated with HAZ (P < 0.005; r = -0.20 to -0.34). The deviation between adjusted and BMC/BMD(age) Z-scores was associated with age for most measures (P < 0.005) except for BMC/BMD(haz). Most methods to adjust BMC/BMD Z-scores for height were biased by age and/or HAZ. Adjustments using HAZ were least biased relative to HAZ and age and can be used to evaluate the effect of short or tall stature on BMC/BMD Z-scores.
Reduced Bone Density and Vertebral Fractures in Smokers. Men and COPD Patients at Increased Risk
Jaramillo, Joshua D.; Wilson, Carla; Stinson, Douglas J.; Lynch, David A.; Bowler, Russell P.; Lutz, Sharon; Bon, Jessica M.; Arnold, Ben; McDonald, Merry-Lynn N.; Washko, George R.; Wan, Emily S.; DeMeo, Dawn L.; Foreman, Marilyn G.; Soler, Xavier; Lindsay, Sarah E.; Lane, Nancy E.; Genant, Harry K.; Silverman, Edwin K.; Hokanson, John E.; Make, Barry J.; Crapo, James D.
2015-01-01
Rationale: Former smoking history and chronic obstructive pulmonary disease (COPD) are potential risk factors for osteoporosis and fractures. Under existing guidelines for osteoporosis screening, women are included but men are not, and only current smoking is considered. Objectives: To demonstrate the impact of COPD and smoking history on the risk of osteoporosis and vertebral fracture in men and women. Methods: Characteristics of participants with low volumetric bone mineral density (vBMD) were identified and related to COPD and other risk factors. We tested associations of sex and COPD with both vBMD and fractures adjusting for age, race, body mass index (BMI), smoking, and glucocorticoid use. Measurements and Main Results: vBMD by calibrated quantitative computed tomography (QCT), visually scored vertebral fractures, and severity of lung disease were determined from chest CT scans of 3,321 current and ex-smokers in the COPDGene study. Low vBMD as a surrogate for osteoporosis was calculated from young adult normal values. Male smokers had a small but significantly greater risk of low vBMD (2.5 SD below young adult mean by calibrated QCT) and more fractures than female smokers. Low vBMD was present in 58% of all subjects, was more frequent in those with worse COPD, and rose to 84% among subjects with very severe COPD. Vertebral fractures were present in 37% of all subjects and were associated with lower vBMD at each Global Initiative for Chronic Obstructive Lung Disease stage of severity. Vertebral fractures were most common in the midthoracic region. COPD and especially emphysema were associated with both low vBMD and vertebral fractures after adjustment for steroid use, age, pack-years of smoking, current smoking, and exacerbations. Airway disease was associated with higher bone density after adjustment for other variables. Calibrated QCT identified more subjects with abnormal values than the standard dual-energy X-ray absorptiometry in a subset of subjects and correlated well with prevalent fractures. Conclusions: Male smokers, with or without COPD, have a significant risk of low vBMD and vertebral fractures. COPD was associated with low vBMD after adjusting for race, sex, BMI, smoking, steroid use, exacerbations, and age. Screening for low vBMD by using QCT in men and women who are smokers will increase opportunities to identify and treat osteoporosis in this at-risk population. PMID:25719895
Reduced Bone Density and Vertebral Fractures in Smokers. Men and COPD Patients at Increased Risk.
Jaramillo, Joshua D; Wilson, Carla; Stinson, Douglas S; Stinson, Douglas J; Lynch, David A; Bowler, Russell P; Lutz, Sharon; Bon, Jessica M; Arnold, Ben; McDonald, Merry-Lynn N; Washko, George R; Wan, Emily S; DeMeo, Dawn L; Foreman, Marilyn G; Soler, Xavier; Lindsay, Sarah E; Lane, Nancy E; Genant, Harry K; Silverman, Edwin K; Hokanson, John E; Make, Barry J; Crapo, James D; Regan, Elizabeth A
2015-05-01
Former smoking history and chronic obstructive pulmonary disease (COPD) are potential risk factors for osteoporosis and fractures. Under existing guidelines for osteoporosis screening, women are included but men are not, and only current smoking is considered. To demonstrate the impact of COPD and smoking history on the risk of osteoporosis and vertebral fracture in men and women. Characteristics of participants with low volumetric bone mineral density (vBMD) were identified and related to COPD and other risk factors. We tested associations of sex and COPD with both vBMD and fractures adjusting for age, race, body mass index (BMI), smoking, and glucocorticoid use. vBMD by calibrated quantitative computed tomography (QCT), visually scored vertebral fractures, and severity of lung disease were determined from chest CT scans of 3,321 current and ex-smokers in the COPDGene study. Low vBMD as a surrogate for osteoporosis was calculated from young adult normal values. Male smokers had a small but significantly greater risk of low vBMD (2.5 SD below young adult mean by calibrated QCT) and more fractures than female smokers. Low vBMD was present in 58% of all subjects, was more frequent in those with worse COPD, and rose to 84% among subjects with very severe COPD. Vertebral fractures were present in 37% of all subjects and were associated with lower vBMD at each Global Initiative for Chronic Obstructive Lung Disease stage of severity. Vertebral fractures were most common in the midthoracic region. COPD and especially emphysema were associated with both low vBMD and vertebral fractures after adjustment for steroid use, age, pack-years of smoking, current smoking, and exacerbations. Airway disease was associated with higher bone density after adjustment for other variables. Calibrated QCT identified more subjects with abnormal values than the standard dual-energy X-ray absorptiometry in a subset of subjects and correlated well with prevalent fractures. Male smokers, with or without COPD, have a significant risk of low vBMD and vertebral fractures. COPD was associated with low vBMD after adjusting for race, sex, BMI, smoking, steroid use, exacerbations, and age. Screening for low vBMD by using QCT in men and women who are smokers will increase opportunities to identify and treat osteoporosis in this at-risk population.
Koller, Daniel L; Zheng, Hou-Feng; Karasik, David; Yerges-Armstrong, Laura; Liu, Ching-Ti; McGuigan, Fiona; Kemp, John P; Giroux, Sylvie; Lai, Dongbing; Edenberg, Howard J; Peacock, Munro; Czerwinski, Stefan A; Choh, Audrey C; McMahon, George; St Pourcain, Beate; Timpson, Nicholas J; Lawlor, Debbie A; Evans, David M; Towne, Bradford; Blangero, John; Carless, Melanie A; Kammerer, Candace; Goltzman, David; Kovacs, Christopher S; Prior, Jerilynn C; Spector, Tim D; Rousseau, Francois; Tobias, Jon H; Akesson, Kristina; Econs, Michael J; Mitchell, Braxton D; Richards, J Brent; Kiel, Douglas P; Foroud, Tatiana
2013-03-01
Previous genome-wide association studies (GWAS) have identified common variants in genes associated with variation in bone mineral density (BMD), although most have been carried out in combined samples of older women and men. Meta-analyses of these results have identified numerous single-nucleotide polymorphisms (SNPs) of modest effect at genome-wide significance levels in genes involved in both bone formation and resorption, as well as other pathways. We performed a meta-analysis restricted to premenopausal white women from four cohorts (n = 4061 women, aged 20 to 45 years) to identify genes influencing peak bone mass at the lumbar spine and femoral neck. After imputation, age- and weight-adjusted bone-mineral density (BMD) values were tested for association with each SNP. Association of an SNP in the WNT16 gene (rs3801387; p = 1.7 × 10(-9) ) and multiple SNPs in the ESR1/C6orf97 region (rs4870044; p = 1.3 × 10(-8) ) achieved genome-wide significance levels for lumbar spine BMD. These SNPs, along with others demonstrating suggestive evidence of association, were then tested for association in seven replication cohorts that included premenopausal women of European, Hispanic-American, and African-American descent (combined n = 5597 for femoral neck; n = 4744 for lumbar spine). When the data from the discovery and replication cohorts were analyzed jointly, the evidence was more significant (WNT16 joint p = 1.3 × 10(-11) ; ESR1/C6orf97 joint p = 1.4 × 10(-10) ). Multiple independent association signals were observed with spine BMD at the ESR1 region after conditioning on the primary signal. Analyses of femoral neck BMD also supported association with SNPs in WNT16 and ESR1/C6orf97 (p < 1 × 10(-5) ). Our results confirm that several of the genes contributing to BMD variation across a broad age range in both sexes have effects of similar magnitude on BMD of the spine in premenopausal women. These data support the hypothesis that variants in these genes of known skeletal function also affect BMD during the premenopausal period. Copyright © 2013 American Society for Bone and Mineral Research.
Crandall, Carolyn J; Zheng, Yan; Karlamangla, Arun; Sternfeld, Barbara; Habel, Laurel A; Oestreicher, Nina; Johnston, Janet; Cauley, Jane A; Greendale, Gail A
2007-08-01
Bone mineral density and mammographic breast density are each associated with markers of lifetime estrogen exposure. The association between mammographic breast density and bone mineral density in early perimenopausal women is unknown. We analyzed data from a cohort (n = 501) of premenopausal (no change in menstrual regularity) and early perimenopausal (decreased menstrual regularity in past 3 months) participants of African-American, Caucasian, Chinese, and Japanese ethnicity in the Study of Women's Health Across the Nation. Using multivariable linear regression, we examined the cross-sectional association between percent mammographic density and bone mineral density (BMD). Percent mammographic density was statistically significantly inversely associated with hip BMD and lumbar spine BMD after adjustment (body mass index, ethnicity, age, study site, parity, alcohol intake, cigarette smoking, physical activity, age at first childbirth) in early perimenopausal, but not premenopausal, women. In early perimenopausal women, every 0.1g/cm(2) greater hip BMD predicted a 2% lower percent mammographic density (95% confidence interval -37.0 to -0.6%, p = 0.04). Mammographic breast density is inversely associated with BMD in the perimenopausal participants of this community-based cohort. The biological underpinnings of these findings may reflect differential responsiveness of breast and bone mineral density to the steroid milieu.
Jagielska, G; Wolańczyk, T; Komender, J; Tomaszewicz-Libudzic, C; Przedlacki, J; Ostrowski, K
2001-08-01
Total body and lumbar spine bone mineral density (BMD-TB, BMD-L) and total body bone mineral content (BMC-TB) were measured to establish the course of bone demineralization in anorexia nervosa and the clinical factors influencing BMC-TB and BMD changes during treatment. Forty-two girls with DSM III-R anorexia nervosa, age 14.7+/-2.4 years. BMC-TB, BMD-TB and BMD-L were measured in approximately 7-month intervals for 27.8+/-4.1 months using DXA. Despite nutritional improvement, there was an initial decrease of BMD-L, and no change in BMC-TB and BMD-TB. an increase in BMC-TB and BMD was observed after approx. 21 months from the beginning of the study. The improvement in BMC-TB and BMD was related to changes in nutritional status and was significantly marked in younger patients, with earlier anorexia onset and before menarche.
Cheng, Xiao-Guang; Li, Kai; Ou, Shan-Xing; Tang, Guang-Yu; Wang, Qian-Qian; Wang, Chao; Wang, Ling; Tian, Wei
This study compares spinal volumetric bone mineral density (vBMD) with spinal areal bone mineral density (aBMD) among young adults from 3 eastern provincial capital cities in Mainland China. A total of 416 young adults (age range: 20-40 yr) from 3 eastern provincial capital cities (Beijing, Shanghai, and Guangzhou) in Mainland China were recruited in this study. From each subject, the vBMD of the lumbar spine was measured by the Mindways quantitative computed tomography system. Moreover, the aBMD of the lumbar spine, measured by the dual-energy X-ray absorptiometry, was extracted from a previous multicenter large-scale study, and the 420 participants were matched by age, gender, height, weight, as well as geographic territory. The vBMD and the aBMD values were further compared and analyzed. Generally, the bone mineral density (BMD) results were significantly different among participants from the 3 cities (p <0.05). Specifically, both vBMD and aBMD values of participants from Beijing were significantly different from those from Guangzhou (p <0.05). Additionally, a statistically significant difference in aBMD values was also found between participants from Beijing and Shanghai (p <0.05). However, no significant differences were found between participants from Shanghai and Guangzhou in terms of the aBMD and vBMD values (p 1 > 0.05 and p 2 > 0.05). Interestingly, the overall mean vBMD value was 5.9% greater in women than those in men for all the 3 cities (p <0.001). This study demonstrated an overall heterogeneity in spinal BMD among young adults from 3 eastern provincial capital cities in Mainland China. Specifically, the taller and heavier young adults from the northern part of China have smaller spinal vBMD but higher spinal aBMD values than those who were shorter and lighter from the southern part of China. Copyright © 2016 International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
Gao, Mingxuan; Li, Xusheng; Zhen, Ping; Wu, Zhigang; Zhou, Shenghu; Tian, Qi; Lei, Wei
2013-08-01
To evaluate the fixation strength of expansive pedicle screw (EPS) at different bone mineral density (BMD) levels, further to provide theoretical evidence for the clinical application of the EPS in patients with osteoporosis. Fresh human cadaver spines (T12-L5 spines) were divided into 4 levels: normal BMD, osteopenia, osteoporosis, and severe osteoporosis according to the value of BMD, 12 vertebra in each level. Conventional pedicle screw (CPS) or EPS was implanted into the bilateral vertebra in CPS group and EPS group, respectively, 12 screws in each group per BMD level. Screw pullout tests were conducted. The maximum pullout strength, stiffness, and energy absorption were determined by an AG-IS material testing machine with constant rate of loading in a speed of 5 mm/min. With the decline of BMD from normal to severe osteoporosis level, the maximum pullout strength and the stiffness correspondingly declined (P < 0.05). In CPS group, the energy absorption gradually decreased (P < 0.05); in EPS group, significant difference was found between other different BMD levels (P < 0.05) except between normal BMD and osteopenia and between osteoporosis and severe osteoporosis (P > 0.05). At the same BMD level, the maximum pullout strength of EPS group was significantly larger than that of CPS group (P < 0.05); the stiffness of EPS group was significantly higher than that of CPS group (P < 0.05) except one at normal BMD level; and no significant difference was found in the energy absorption between 2 groups (P > 0.05) except one at osteopenia level. No significant difference was found in maximum pullout strength, stiffness, and energy absorption between EPS group at osteoporosis level and CPS group at osteopenia level (P > 0.05); however, the maximum pullout strength, stiffness, and energy absorption of EPS group at severe osteoporosis level were significantly lower than those of CPS group at osteopenia level (P < 0.05). Compared with CPS, the EPS can significantly improve the fixation strength, especially in patients with osteopenia or osteoporosis.
Klein, Scott A; Nyland, John; Caborn, David N M; Kocabey, Yavuz; Nawab, Akbar
2005-12-01
Adequate tibial bone mineral density (BMD) is essential to soft tissue graft fixation during anterior cruciate ligament (ACL) reconstruction. The purpose of this study was to compare volumetric bone plug density measurements at the tibial region of interest for ACL reconstruction using a standardized immersion technique and Archimedes' principle. Cancellous bone cores were harvested from the proximal, middle, and distal metaphyseal regions of the lateral tibia and from the standard tibial tunnel location used for ACL reconstruction of 18 cadaveric specimens. Proximal tibial cores displayed 32.6% greater BMD than middle tibial cores and 31.8% greater BMD than distal tibial cores, but did not differ from the BMD of the tibial tunnel cores. Correlational analysis confirmed that the cancellous BMD in the tibial tunnel related to the cancellous BMD of the proximal and distal lateral tibial metaphysis. In conjunction with its adjacent cortical bone, the cancellous BMD of the region used for standard tibial tunnel placement provides an effective foundation for ACL graft fixation. In tibia with poor BMD, bicortical fixation that incorporates cortical bone from the distal tibial tunnel region is recommended.
Varanasi, Satya S.; Tuck, Stephen P.; Mastana, Sarabjit S.; Dennison, Elaine; Cooper, Cyrus; Vila, Josephine; Francis, Roger M.; Datta, Harish K.
2011-01-01
Introduction. The association of bone morphogenetic protein 2 (BMP2) with BMD and risk of fracture was suggested by a recent linkage study, but subsequent studies have been contradictory. We report the results of a study of the relationship between BMP2 genotypes and BMD, annual change in BMD, and risk of fracture in male subjects. Materials and Methods. We tested three single-nucleotide polymorphisms (SNPs) across the BMP2 gene, including Ser37Ala SNP, in 342 Caucasian Englishmen, comprising 224 control and 118 osteoporotic subjects. Results. BMP2 SNP1 (Ser37Ala) genotypes were found to have similar low frequency in control subjects and men with osteoporosis. The major informative polymorphism, BMP2 SNP3 (Arg190Ser), showed no statistically significant association with weight, height, BMD, change in BMD at hip or lumbar spine, and risk of fracture. Conclusion. There were no genotypic or haplotypic effects of the BMP2 candidate gene on BMD, change in BMD, or fracture risk identified in this cohort. PMID:22013543
Estrada, Karol; Styrkarsdottir, Unnur; Evangelou, Evangelos; Hsu, Yi-Hsiang; Duncan, Emma L; Ntzani, Evangelia E; Oei, Ling; Albagha, Omar M E; Amin, Najaf; Kemp, John P; Koller, Daniel L; Li, Guo; Liu, Ching-Ti; Minster, Ryan L; Moayyeri, Alireza; Vandenput, Liesbeth; Willner, Dana; Xiao, Su-Mei; Yerges-Armstrong, Laura M; Zheng, Hou-Feng; Alonso, Nerea; Eriksson, Joel; Kammerer, Candace M; Kaptoge, Stephen K; Leo, Paul J; Thorleifsson, Gudmar; Wilson, Scott G; Wilson, James F; Aalto, Ville; Alen, Markku; Aragaki, Aaron K; Aspelund, Thor; Center, Jacqueline R; Dailiana, Zoe; Duggan, David J; Garcia, Melissa; Garcia-Giralt, Natàlia; Giroux, Sylvie; Hallmans, Göran; Hocking, Lynne J; Husted, Lise Bjerre; Jameson, Karen A; Khusainova, Rita; Kim, Ghi Su; Kooperberg, Charles; Koromila, Theodora; Kruk, Marcin; Laaksonen, Marika; Lacroix, Andrea Z; Lee, Seung Hun; Leung, Ping C; Lewis, Joshua R; Masi, Laura; Mencej-Bedrac, Simona; Nguyen, Tuan V; Nogues, Xavier; Patel, Millan S; Prezelj, Janez; Rose, Lynda M; Scollen, Serena; Siggeirsdottir, Kristin; Smith, Albert V; Svensson, Olle; Trompet, Stella; Trummer, Olivia; van Schoor, Natasja M; Woo, Jean; Zhu, Kun; Balcells, Susana; Brandi, Maria Luisa; Buckley, Brendan M; Cheng, Sulin; Christiansen, Claus; Cooper, Cyrus; Dedoussis, George; Ford, Ian; Frost, Morten; Goltzman, David; González-Macías, Jesús; Kähönen, Mika; Karlsson, Magnus; Khusnutdinova, Elza; Koh, Jung-Min; Kollia, Panagoula; Langdahl, Bente Lomholt; Leslie, William D; Lips, Paul; Ljunggren, Östen; Lorenc, Roman S; Marc, Janja; Mellström, Dan; Obermayer-Pietsch, Barbara; Olmos, José M; Pettersson-Kymmer, Ulrika; Reid, David M; Riancho, José A; Ridker, Paul M; Rousseau, François; Slagboom, P Eline; Tang, Nelson L S; Urreizti, Roser; Van Hul, Wim; Viikari, Jorma; Zarrabeitia, María T; Aulchenko, Yurii S; Castano-Betancourt, Martha; Grundberg, Elin; Herrera, Lizbeth; Ingvarsson, Thorvaldur; Johannsdottir, Hrefna; Kwan, Tony; Li, Rui; Luben, Robert; Medina-Gómez, Carolina; Palsson, Stefan Th; Reppe, Sjur; Rotter, Jerome I; Sigurdsson, Gunnar; van Meurs, Joyce B J; Verlaan, Dominique; Williams, Frances M K; Wood, Andrew R; Zhou, Yanhua; Gautvik, Kaare M; Pastinen, Tomi; Raychaudhuri, Soumya; Cauley, Jane A; Chasman, Daniel I; Clark, Graeme R; Cummings, Steven R; Danoy, Patrick; Dennison, Elaine M; Eastell, Richard; Eisman, John A; Gudnason, Vilmundur; Hofman, Albert; Jackson, Rebecca D; Jones, Graeme; Jukema, J Wouter; Khaw, Kay-Tee; Lehtimäki, Terho; Liu, Yongmei; Lorentzon, Mattias; McCloskey, Eugene; Mitchell, Braxton D; Nandakumar, Kannabiran; Nicholson, Geoffrey C; Oostra, Ben A; Peacock, Munro; Pols, Huibert A P; Prince, Richard L; Raitakari, Olli; Reid, Ian R; Robbins, John; Sambrook, Philip N; Sham, Pak Chung; Shuldiner, Alan R; Tylavsky, Frances A; van Duijn, Cornelia M; Wareham, Nick J; Cupples, L Adrienne; Econs, Michael J; Evans, David M; Harris, Tamara B; Kung, Annie Wai Chee; Psaty, Bruce M; Reeve, Jonathan; Spector, Timothy D; Streeten, Elizabeth A; Zillikens, M Carola; Thorsteinsdottir, Unnur; Ohlsson, Claes; Karasik, David; Richards, J Brent; Brown, Matthew A; Stefansson, Kari; Uitterlinden, André G; Ralston, Stuart H; Ioannidis, John P A; Kiel, Douglas P; Rivadeneira, Fernando
2012-04-15
Bone mineral density (BMD) is the most widely used predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and east Asian ancestry. We tested the top BMD-associated markers for replication in 50,933 independent subjects and for association with risk of low-trauma fracture in 31,016 individuals with a history of fracture (cases) and 102,444 controls. We identified 56 loci (32 new) associated with BMD at genome-wide significance (P < 5 × 10(-8)). Several of these factors cluster within the RANK-RANKL-OPG, mesenchymal stem cell differentiation, endochondral ossification and Wnt signaling pathways. However, we also discovered loci that were localized to genes not known to have a role in bone biology. Fourteen BMD-associated loci were also associated with fracture risk (P < 5 × 10(-4), Bonferroni corrected), of which six reached P < 5 × 10(-8), including at 18p11.21 (FAM210A), 7q21.3 (SLC25A13), 11q13.2 (LRP5), 4q22.1 (MEPE), 2p16.2 (SPTBN1) and 10q21.1 (DKK1). These findings shed light on the genetic architecture and pathophysiological mechanisms underlying BMD variation and fracture susceptibility.
Estrada, Karol; Styrkarsdottir, Unnur; Evangelou, Evangelos; Hsu, Yi-Hsiang; Duncan, Emma L; Ntzani, Evangelia E; Oei, Ling; Albagha, Omar M E; Amin, Najaf; Kemp, John P; Koller, Daniel L; Li, Guo; Liu, Ching-Ti; Minster, Ryan L; Moayyeri, Alireza; Vandenput, Liesbeth; Willner, Dana; Xiao, Su-Mei; Yerges-Armstrong, Laura M; Zheng, Hou-Feng; Alonso, Nerea; Eriksson, Joel; Kammerer, Candace M; Kaptoge, Stephen K; Leo, Paul J; Thorleifsson, Gudmar; Wilson, Scott G; Wilson, James F; Aalto, Ville; Alen, Markku; Aragaki, Aaron K; Aspelund, Thor; Center, Jacqueline R; Dailiana, Zoe; Duggan, David J; Garcia, Melissa; Garcia-Giralt, Natàlia; Giroux, Sylvie; Hallmans, Göran; Hocking, Lynne J; Husted, Lise Bjerre; Jameson, Karen A; Khusainova, Rita; Kim, Ghi Su; Kooperberg, Charles; Koromila, Theodora; Kruk, Marcin; Laaksonen, Marika; Lacroix, Andrea Z; Lee, Seung Hun; Leung, Ping C; Lewis, Joshua R; Masi, Laura; Mencej-Bedrac, Simona; Nguyen, Tuan V; Nogues, Xavier; Patel, Millan S; Prezelj, Janez; Rose, Lynda M; Scollen, Serena; Siggeirsdottir, Kristin; Smith, Albert V; Svensson, Olle; Trompet, Stella; Trummer, Olivia; van Schoor, Natasja M; Woo, Jean; Zhu, Kun; Balcells, Susana; Brandi, Maria Luisa; Buckley, Brendan M; Cheng, Sulin; Christiansen, Claus; Cooper, Cyrus; Dedoussis, George; Ford, Ian; Frost, Morten; Goltzman, David; González-Macías, Jesús; Kähönen, Mika; Karlsson, Magnus; Khusnutdinova, Elza; Koh, Jung-Min; Kollia, Panagoula; Langdahl, Bente Lomholt; Leslie, William D; Lips, Paul; Ljunggren, Östen; Lorenc, Roman S; Marc, Janja; Mellström, Dan; Obermayer-Pietsch, Barbara; Olmos, José M; Pettersson-Kymmer, Ulrika; Reid, David M; Riancho, José A; Ridker, Paul M; Rousseau, François; Slagboom, P Eline; Tang, Nelson LS; Urreizti, Roser; Van Hul, Wim; Viikari, Jorma; Zarrabeitia, María T; Aulchenko, Yurii S; Castano-Betancourt, Martha; Grundberg, Elin; Herrera, Lizbeth; Ingvarsson, Thorvaldur; Johannsdottir, Hrefna; Kwan, Tony; Li, Rui; Luben, Robert; Medina-Gómez, Carolina; Palsson, Stefan Th; Reppe, Sjur; Rotter, Jerome I; Sigurdsson, Gunnar; van Meurs, Joyce B J; Verlaan, Dominique; Williams, Frances MK; Wood, Andrew R; Zhou, Yanhua; Gautvik, Kaare M; Pastinen, Tomi; Raychaudhuri, Soumya; Cauley, Jane A; Chasman, Daniel I; Clark, Graeme R; Cummings, Steven R; Danoy, Patrick; Dennison, Elaine M; Eastell, Richard; Eisman, John A; Gudnason, Vilmundur; Hofman, Albert; Jackson, Rebecca D; Jones, Graeme; Jukema, J Wouter; Khaw, Kay-Tee; Lehtimäki, Terho; Liu, Yongmei; Lorentzon, Mattias; McCloskey, Eugene; Mitchell, Braxton D; Nandakumar, Kannabiran; Nicholson, Geoffrey C; Oostra, Ben A; Peacock, Munro; Pols, Huibert A P; Prince, Richard L; Raitakari, Olli; Reid, Ian R; Robbins, John; Sambrook, Philip N; Sham, Pak Chung; Shuldiner, Alan R; Tylavsky, Frances A; van Duijn, Cornelia M; Wareham, Nick J; Cupples, L Adrienne; Econs, Michael J; Evans, David M; Harris, Tamara B; Kung, Annie Wai Chee; Psaty, Bruce M; Reeve, Jonathan; Spector, Timothy D; Streeten, Elizabeth A; Zillikens, M Carola; Thorsteinsdottir, Unnur; Ohlsson, Claes; Karasik, David; Richards, J Brent; Brown, Matthew A; Stefansson, Kari; Uitterlinden, André G; Ralston, Stuart H; Ioannidis, John P A; Kiel, Douglas P; Rivadeneira, Fernando
2012-01-01
Bone mineral density (BMD) is the most important predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and East Asian ancestry. We tested the top-associated BMD markers for replication in 50,933 independent subjects and for risk of low-trauma fracture in 31,016 cases and 102,444 controls. We identified 56 loci (32 novel)associated with BMD atgenome-wide significant level (P<5×10−8). Several of these factors cluster within the RANK-RANKL-OPG, mesenchymal-stem-cell differentiation, endochondral ossification and the Wnt signalling pathways. However, we also discovered loci containing genes not known to play a role in bone biology. Fourteen BMD loci were also associated with fracture risk (P<5×10−4, Bonferroni corrected), of which six reached P<5×10−8 including: 18p11.21 (C18orf19), 7q21.3 (SLC25A13), 11q13.2 (LRP5), 4q22.1 (MEPE), 2p16.2 (SPTBN1) and 10q21.1 (DKK1). These findings shed light on the genetic architecture and pathophysiological mechanisms underlying BMD variation and fracture susceptibility. PMID:22504420
Exercise Training and Bone Mineral Density.
ERIC Educational Resources Information Center
Lohman, Timothy G.
1995-01-01
The effect of exercise on total and regional bone mineral density (BMD) in postmenopausal women is reviewed. Studies on non-estrogen-replete postmenopausal women show 1-2% changes in regional BMD with 1 year of weight-bearing exercises. Studies of exercise training in the estrogen-replete postmenopausal population suggest large BMD changes.…
NASA Astrophysics Data System (ADS)
Boehm, H. F.; Lutz, J.; Koerner, M.; Notohamiprodjo, M.; Reiser, M.
2009-02-01
With the growing number of eldery patients in industrialized nations the incidence of geriatric, i.e. osteoporotic fractures is steadily on the rise. It is of great importance to understand the characteristics of hip fractures and to provide diagnostic tests for the assessment of an individual's fracture-risk that allow to take preventive action and give therapeutic advice. At present, bone-mineral-density (BMD) obtained from DXA (dual-energy x-ray-absorptiometry) is the clinical standard of reference for diagnosis and follow-up of osteoporosis. Since availability of DXA - other than that of clinical X-ray imaging - is usually restricted to specialized medical centers it is worth trying to implement alternative methods to estimate an individual's BMD. Radiographs of the peripheral skeleton, e.g. the ankle, range among the most ordered diagnostic procedures in surgery for exclusion or confirmation of fracture. It would be highly beneficial if - as a by-product of conventional imaging - one could obtain a quantitative parameter that is closely correlated with femoral BMD in addition to the original diagnostic information, e.g. fracture status at the peripheral site. Previous studies could demonstrate a correlation between calcaneal BMD and osteoporosis. The objective of our study was to test the hypothesis that topological analysis of calcaneal bone texture depicted by a lateral x-ray projection of the ankle allows to estimate femoral BMD. Our analysis on 34 post-menopausal patients indicate that texture properties based on graylevel topology in calcaneal x-ray-films are closely correlated with BMD at the hip and may qualify as a substitute indicator of femoral fracture risk.
Shanb, Alsayed Abdelhameed; Youssef, Enas Fawzy; Muaidi, Qassim Ibrahim; Alothman, Abdullah Ahmed
2017-08-03
Osteoporosis usually develops gradually and progresses without significant signs and symptoms. It is one of the most common musculoskeletal conditions associated with aging. To evaluate the effects of whole body vibration (WBV) or magnetic therapy in addition to standard pharmacological treatment on bone mineral density (BMD) in elderly individuals being treated for osteoporosis. Eighty-five participants, 60-75 years of age, were randomly divided into three groups. All three groups received the same standard pharmacological treatment comprised of vitamin D, calcium, and alendronate sodium. In Group I, thirty participants were also exposed to WBV for 25 minutes in each session with two sessions per week for 4 months. In Group II, thirty participants were exposed to magnetic therapy for 50 minutes in each session with two sessions per week for 4 months. In Group III, twenty-five participants received only pharmacological treatment. Dual-energy X-ray absorptiometry was used to measure BMD of the lumbar spine and femoral heads before and after interventions. Venus blood sample was drawn for analysis of calcium and vitamin D. An ANOVA test detected significant (p< 0.05) differences in BMD after treatment among the three groups with no significant difference was detected between patients receiving WBV and magnetic therapy. Statistical t-tests detected significant (p< 0.05) increases in BMD after application of WBV or magnetic therapy in combination with pharmacological treatment, but no significant increase after pharmacological treatment alone. Addition of either WBV or magnetic therapy to standard pharmacological treatment for osteoporosis significantly increased BMD in elderly subjects. No significant difference in effectiveness was detected between these two alternative therapy modalities. Consequently, either WBV or magnetic therapy could be effectively applied in conjunction with pharmacological treatment to increase BMD in elderly osteoporotic patients.
Replication of Caucasian loci associated with bone mineral density in Koreans.
Kim, Y A; Choi, H J; Lee, J Y; Han, B G; Shin, C S; Cho, N H
2013-10-01
Most bone mineral density (BMD) loci were reported in Caucasian genome-wide association studies (GWAS). This study investigated the association between 59 known BMD loci (+200 suggestive SNPs) and DXA-derived BMD in East Asian population with respect to sex and site specificity. We also identified four novel BMD candidate loci from the suggestive SNPs. Most GWAS have reported BMD-related variations in Caucasian populations. This study investigates whether the BMD loci discovered in Caucasian GWAS are also associated with BMD in East Asian ethnic samples. A total of 2,729 unrelated Korean individuals from a population-based cohort were analyzed. We selected 747 single-nucleotide polymorphisms (SNPs). These markers included 547 SNPs from 59 loci with genome-wide significance (GWS, p value less than 5 × 10(-8)) levels and 200 suggestive SNPs that showed weaker BMD association with p value less than 5 × 10(-5). After quality control, 535 GWS SNPs and 182 suggestive SNPs were included in the replication analysis. Of the 535 GWS SNPs, 276 from 25 loci were replicated (p < 0.05) in the Korean population with 51.6 % replication rate. Of the 182 suggestive variants, 16 were replicated (p < 0.05, 8.8 % of replication rate), and five reached a significant combined p value (less than 7.0 × 10(-5), 0.05/717 SNPs, corrected for multiple testing). Two markers (rs11711157, rs3732477) are for the same signal near the gene CPN2 (carboxypeptidase N, polypeptide 2). The other variants, rs6436440 and rs2291296, were located in the genes AP1S3 (adaptor-related protein complex 1, sigma 3 subunit) and RARB (retinoic acid receptor, beta). Our results illustrate ethnic differences in BMD susceptibility genes and underscore the need for further genetic studies in each ethnic group. We were also able to replicate some SNPs with suggestive associations. These SNPs may be BMD-related genetic markers and should be further investigated.
Bone density and depressive disorder: a meta-analysis.
Schweiger, Julietta Ursula; Schweiger, Ulrich; Hüppe, Michael; Kahl, Kai G; Greggersen, Wiebke; Fassbinder, Eva
2016-08-01
The aim of this study was to evaluate the evidence of low bone mineral density (BMD) in depression. Low BMD is a major risk factor for osteoporotic fractures and frailty. The searched database was Pubmed, Meta-analysis included human studies in men and women fulfilling the following criteria: (1) assessment of BMD in the lumbar spine, the femur or the total hip; (2) comparison of BMD between depressed individuals and the healthy control group; (3) measurement of BMD using dual-energy X-ray absorptiometry (DEXA); and (4) data on the mean, standard deviation, or standard error of BMD. Twenty-one studies were identified, encompassing 1842 depressed and 17,401 nondepressed individuals. Significant negative composite weighted mean effect sizes were identified for the lumbar spine (d = -0.15, 95%CL -0.22 to -0.08), femur (d = -0.34, 95%CL -0.64 to -0.05), and total hip (d = -0.14, 95%CL -0.23 to -0.05) indicating low BMD in depression. Examining men and women shows low bone density in the lumbar spine and femur in women and low bone density in the hip in men. The differences between men and women with MDD and the comparison group tended to be higher when examined by expert interviewers. Low bone density was found in all age groups. Bone mineral density is reduced in patients with depressive disorders. The studies provide little evidence for potential relevant mediating factors.
Cannabis use and bone mineral density: NHANES 2007-2010.
Bourne, Donald; Plinke, Wesley; Hooker, Elizabeth R; Nielson, Carrie M
2017-12-01
Cannabis use is rising in the USA. Its relationship to cannabinoid signaling in bone cells implies its use could affect bone mineral density (BMD) in the population. In a national survey of people ages 20-59, we found no association between self-reported cannabis use and BMD of the hip or spine. Cannabis is the most widely used illegal drug in the USA, and its recreational use has recently been approved in several US states. Cannabinoids play a role in bone homeostasis. We aimed to determine the association between cannabis use and BMD in US adults. In the National Health and Nutrition Examination Survey 2007-2010, 4743 participants between 20 and 59 years old, history of cannabis use was categorized into never, former (previous use, but not in last 30 days), light (1-4 days of use in last 30 days), and heavy (≥5 days of use in last 30 days). Multivariable linear regression was used to test the association between cannabis use and DXA BMD of the proximal femur and lumbar spine with adjustment for age, sex, BMI, and race/ethnicity among other BMD determinants. Sixty percent of the population reported ever using cannabis; 47% were former users, 5% were light users, and 7% were heavy users. Heavy cannabis users were more likely to be male, have a lower BMI, increased daily alcohol intake, increased tobacco pack-years, and were more likely to have used other illegal drugs (cocaine, heroin, or methamphetamines). No association between cannabis and BMD was observed for any level of use (p ≥ 0.28). A history of cannabis use, although highly prevalent and related to other risk factors for low BMD, was not independently associated with BMD in this cross-sectional study of American men and women.
Belavý, Daniel L; Armbrecht, Gabriele; Blenk, Tilo; Bock, Oliver; Börst, Hendrikje; Kocakaya, Emine; Luhn, Franziska; Rantalainen, Timo; Rawer, Rainer; Tomasius, Frederike; Willnecker, Johannes; Felsenberg, Dieter
2016-02-01
We evaluated which aspects of neuromuscular performance are associated with bone mass, density, strength and geometry. 417 women aged 60-94years were examined. Countermovement jump, sit-to-stand test, grip strength, forearm and calf muscle cross-sectional area, areal bone mineral content and density (aBMC and aBMD) at the hip and lumbar spine via dual X-ray absorptiometry, and measures of volumetric vBMC and vBMD, bone geometry and section modulus at 4% and 66% of radius length and 4%, 38% and 66% of tibia length via peripheral quantitative computed tomography were performed. The first principal component of the neuromuscular variables was calculated to generate a summary neuromuscular variable. Percentage of total variance in bone parameters explained by the neuromuscular parameters was calculated. Step-wise regression was also performed. At all pQCT bone sites (radius, ulna, tibia, fibula), a greater percentage of total variance in measures of bone mass, cortical geometry and/or bone strength was explained by peak neuromuscular performance than for vBMD. Sit-to-stand performance did not relate strongly to bone parameters. No obvious differential in the explanatory power of neuromuscular performance was seen for DXA aBMC versus aBMD. In step-wise regression, bone mass, cortical morphology, and/or strength remained significant in relation to the first principal component of the neuromuscular variables. In no case was vBMD positively related to neuromuscular performance in the final step-wise regression models. Peak neuromuscular performance has a stronger relationship with leg and forearm bone mass and cortical geometry as well as proximal forearm section modulus than with vBMD. Copyright © 2015 Elsevier Inc. All rights reserved.
Impact of Weight Loss With Intragastric Balloon on Bone Density and Microstructure in Obese Adults.
Madeira, Eduardo; Madeira, Miguel; Guedes, Erika Paniago; Mafort, Thiago Thomaz; Moreira, Rodrigo Oliveira; de Mendonça, Laura Maria Carvalho; Lima, Inayá Correa Barbosa; Neto, Leonardo Vieira; de Pinho, Paulo Roberto Alves; Lopes, Agnaldo José; Farias, Maria Lucia Fleiuss
2018-03-21
The historical concept that obesity protects against bone fractures has been questioned. Weight loss appears to reduce bone mineral density (BMD); however, the results in young adults are inconsistent, and data on the effects of weight loss on bone microstructure are limited. This study aimed to evaluate the impact of weight loss using an intragastric balloon (IGB) on bone density and microstructure. Forty obese patients with metabolic syndrome (mean age 35.1 ± 7.3 yr) used an IGB continuously for 6 mo. Laboratory tests, areal BMD, and body composition measurements via dual-energy X-ray absorptiometry, and volumetric BMD and bone microstructure measurements via high-resolution peripheral quantitative computed tomography were conducted before IGB placement and after IGB removal. The mean weight loss was 11.5%. After 6 mo, there were significant increases in vitamin D and carboxyterminal telopeptide of type 1 collagen levels. After IGB use, areal BMD increased in the spine but decreased in the total femur and the 33% radius. Cortical BMD increased in the distal radius but tended to decrease in the distal tibia. The observed trabecular bone loss in the distal tibia contributed to the decline in the total volumetric BMD at this site. There was a negative correlation between the changes in leptin levels and the measures of trabecular quality in the tibia on high-resolution peripheral quantitative computed tomography. Weight loss may negatively impact bone microstructure in young patients, especially for weight-bearing bones, in which obesity has a more prominent effect. Copyright © 2018 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
Evaluating Bone Loss in ISS Astronauts.
Sibonga, Jean D; Spector, Elisabeth R; Johnston, Smith L; Tarver, William J
2015-12-01
The measurement of bone mineral density (BMD) by dual-energy X-ray absorptiometry (DXA) is the Medical Assessment Test used at the NASA Johnson Space Center to evaluate whether prolonged exposure to spaceflight increases the risk for premature osteoporosis in International Space Station (ISS) astronauts. The DXA scans of crewmembers' BMD during the first decade of the ISS existence showed precipitous declines in BMD for the hip and spine after the typical 6-mo missions. However, a concern exists that skeletal integrity cannot be sufficiently assessed solely by DXA measurement of BMD. Consequently, use of relatively new research technologies is being proposed to NASA for risk surveillance and to enhance long-term management of skeletal health in long-duration astronauts. Sibonga JD, Spector ER, Johnston SL, Tarver WJ. Evaluating bone loss in ISS astronauts.
Gender disparity in BMD conversion: a comparison between Lunar and Hologic densitometers.
Ganda, Kirtan; Nguyen, Tuan V; Pocock, Nicholas
2014-01-01
Female-derived inter-conversion and standardised BMD equations at the lumbar spine and hip have not been validated in men. This study of 110 male subjects scanned on Hologic and Lunar densitometers demonstrates that published equations may not applicable to men at the lumbar spine. Male inter-conversion equations have also been derived. Currently, available equations for inter-manufacturer conversion of bone mineral density (BMD) and calculation of standardised BMD (sBMD) are used in both males and females, despite being derived and validated only in women. Our aim was to test the validity of the published equations in men. One hundred ten men underwent lumbar spine (L2-4), femoral neck (FN) and total hip (TH) dual X-ray absorptiometry (DXA) using Hologic and Lunar scanners. Hologic BMD was converted to Lunar using published equations derived from women for L2-4 and FN. Actual Lunar BMD (A-Lunar) was compared to converted (Lunar equivalent) Hologic BMD values (H-Lunar). sBMD was calculated separately using Hologic (sBMD-H) and Lunar BMD (sBMD-L) at L2-4, FN and TH. Conversion equations in men for Hologic to Lunar BMD were derived using Deming regression analysis. There was a strong linear correlation between Lunar and Hologic BMD at all skeletal sites. A-Lunar BMD was however significantly higher than derived H-Lunar BMD (p < 0.001) at L2-L4 (mean difference, 0.07 g/cm(2)). There was no significant difference at the FN (mean difference, 0.01 g/cm(2)). sBMD-L at the spine was significantly higher than sBMD-H (mean difference, 0.06 g/cm(2), p < 0.001), whilst there was little difference at the FN and TH (mean difference, 0.01 g/cm(2)). Published conversion equations for Lunar BMD to Hologic BMD, and formulae for lumbar spine sBMD, derived in women may not be applicable to men.
Gregson, Celia L; Hardcastle, Sarah A; Cooper, Cyrus; Tobias, Jonathan H
2013-06-01
A finding of high BMD on routine DXA scanning is not infrequent and most commonly reflects degenerative disease. However, BMD increases may also arise secondary to a range of underlying disorders affecting the skeleton. Although low BMD increases fracture risk, the converse may not hold for high BMD, since elevated BMD may occur in conditions where fracture risk is increased, unaffected or reduced. Here we outline a classification for the causes of raised BMD, based on identification of focal or generalized BMD changes, and discuss an approach to guide appropriate investigation by clinicians after careful interpretation of DXA scan findings within the context of the clinical history. We will also review the mild skeletal dysplasia associated with the currently unexplained high bone mass phenotype and discuss recent advances in osteoporosis therapies arising from improved understanding of rare inherited high BMD disorders.
Hardcastle, Sarah A.; Cooper, Cyrus; Tobias, Jonathan H.
2013-01-01
A finding of high BMD on routine DXA scanning is not infrequent and most commonly reflects degenerative disease. However, BMD increases may also arise secondary to a range of underlying disorders affecting the skeleton. Although low BMD increases fracture risk, the converse may not hold for high BMD, since elevated BMD may occur in conditions where fracture risk is increased, unaffected or reduced. Here we outline a classification for the causes of raised BMD, based on identification of focal or generalized BMD changes, and discuss an approach to guide appropriate investigation by clinicians after careful interpretation of DXA scan findings within the context of the clinical history. We will also review the mild skeletal dysplasia associated with the currently unexplained high bone mass phenotype and discuss recent advances in osteoporosis therapies arising from improved understanding of rare inherited high BMD disorders. PMID:23445662
NASA Technical Reports Server (NTRS)
Jergas, M.; Breitenseher, M.; Gluer, C. C.; Yu, W.; Genant, H. K.
1995-01-01
To determine whether estimates of volumetric bone density from projectional scans of the lumbar spine have weaker associations with height and weight and stronger associations with prevalent vertebral fractures than standard projectional bone mineral density (BMD) and bone mineral content (BMC), we obtained posteroanterior (PA) dual X-ray absorptiometry (DXA), lateral supine DXA (Hologic QDR 2000), and quantitative computed tomography (QCT, GE 9800 scanner) in 260 postmenopausal women enrolled in two trials of treatment for osteoporosis. In 223 women, all vertebral levels, i.e., L2-L4 in the DXA scan and L1-L3 in the QCT scan, could be evaluated. Fifty-five women were diagnosed as having at least one mild fracture (age 67.9 +/- 6.5 years) and 168 women did not have any fractures (age 62.3 +/- 6.9 years). We derived three estimates of "volumetric bone density" from PA DXA (BMAD, BMAD*, and BMD*) and three from paired PA and lateral DXA (WA BMD, WA BMDHol, and eVBMD). While PA BMC and PA BMD were significantly correlated with height (r = 0.49 and r = 0.28) or weight (r = 0.38 and r = 0.37), QCT and the volumetric bone density estimates from paired PA and lateral scans were not (r = -0.083 to r = 0.050). BMAD, BMAD*, and BMD* correlated with weight but not height. The associations with vertebral fracture were stronger for QCT (odds ratio [QR] = 3.17; 95% confidence interval [CI] = 1.90-5.27), eVBMD (OR = 2.87; CI 1.80-4.57), WA BMDHol (OR = 2.86; CI 1.80-4.55) and WA-BMD (OR = 2.77; CI 1.75-4.39) than for BMAD*/BMD* (OR = 2.03; CI 1.32-3.12), BMAD (OR = 1.68; CI 1.14-2.48), lateral BMD (OR = 1.88; CI 1.28-2.77), standard PA BMD (OR = 1.47; CI 1.02-2.13) or PA BMC (OR = 1.22; CI 0.86-1.74). The areas under the receiver operating characteristic (ROC) curves for QCT and all estimates of volumetric BMD were significantly higher compared with standard PA BMD and PA BMC. We conclude that, like QCT, estimates of volumetric bone density from paired PA and lateral scans are unaffected by height and weight and are more strongly associated with vertebral fracture than standard PA BMD or BMC, or estimates of volumetric density that are solely based on PA DXA scans.
Lage, Andrea Z; Brandão, Cynthia A; Mendes, Judite R T; Huayllas, Martha K; Liberman, Bernardo; Mendonça, Berenice B; Costa, Elaine M F; Verreschi, Ieda T; Lazaretti-Castro, Marise
2005-01-01
Low bone mineral density (BMD) measured by dual-energy X-ray absorptiometry (DXA) has been described in Turner's syndrome (TS). One of the error factors of DXA is short stature, a common finding in TS patients. Aimed to evaluate the influence of a low stature on BMD, we compared the two-dimensional (2D) or conventional BMD (cBMD) with three-dimensional (3D) or volumetric BMD (vBMD) in 62 females (10 to 48 yr old) with TS diagnosis in a case control study. They were compared to 102 normal females (7 to 45 yr old) grouped by age-ranges. All patients were subjected to a lumbar spine densitometry by DXA in the PA and lateral projections, obtained the cBMD and vBMD and calculated for the apparent BMD (appBMD). In TS, the mean of Z-score for cBMD was significantly lower than that for vBMD and for appBMD (-2.31 +/- 1.42; -0.64 +/- 1.55; and -1.72 +/- 1.5; respectively). Most of the patients (83.8%) had a Z-score <-1 for cBMD, whereas the majority (58.1%) had a Z-score <-1 for vBMD. Concluding, the cBMD underestimates the bone mass of the lumbar spine in patients with TS inducing to false diagnoses of bone fragility. Volumetric BMD approached the bone mass of control patients, while appBMD just partially do that.
Angın, Ender; Erden, Zafer; Can, Filiz
2015-01-01
The aim of this study was to investigate effects of Clinical Pilates Exercises on bone mineral density (BMD), physical performance and quality of life (QOL) in postmenopausal osteoporosis. Forty-one women were recruited to the study. The subjects were divided into two groups, as the Pilates group and the control group. Subjects were evaluated for BMD at the lumbar region. Physical performance level was measured. Pain intensity level was scored with Visual Analogue Scale. QUALEFFO-41 was used for assessing QOL. BMD values increased in the Pilates group (p < 0.05), while BMD decreased in the control group (p< 0.05). Physical performance test results showed significant increases in the Pilates group (p< 0.05) whereas there was no changes in the control group (p> 0.05). Pain intensity level in the Pilates group was significantly decreased after the exercise (p< 0.05), while it was unchanged in the control group. There were significant increases in all parameters of QOL in the Pilates group. Conversely, some parameters of QOL showed decreases in the control group (p< 0.05). Pilates Exercises is effective to increase BMD; QOL and walking distance and also beneficial to relieve pain. Physiotherapist can use Pilates Exercises for the subjects with osteoporosis in the clinics.
Mechanical torque measurement for in vivo quantification of bone strength in the proximal femur.
Mueller, Marc Andreas; Hengg, Clemens; Hirschmann, Michael; Schmid, Denise; Sprecher, Christoph; Audigé, Laurent; Suhm, Norbert
2012-10-01
Bone strength determines fracture risk and fixation strength of osteosynthesis implants. In vivo, bone strength is currently measured indirectly by quantifying bone mineral density (BMD) which is however only one determinant of the bone's biomechanical competence besides the bone's macro- and micro-architecture and tissue related parameters. We have developed a measurement principle (DensiProbe™ Hip) for direct, mechanical quantification of bone strength within the proximal femur upon hip fracture fixation. Previous cadaver tests indicated a close correlation between DensiProbe™ Hip measurements, 3D micro-CT analysis and biomechanical indicators of bone strength. The goal of this study was to correlate DensiProbe™ Hip measurements with areal bone mineral density (BMD). Forty-three hip fracture patients were included in this study. Intraoperatively, DensiProbe™ Hip was inserted to the subsequent hip screw tip position within the femoral head. Peak torque to breakaway of local cancellous bone was registered. Thirty-seven patients underwent areal BMD measurements of the contralateral proximal femur. Failure of fixation was assessed radio graphically 6 and 12 weeks postoperatively. Peak torque and femoral neck BMD showed significant correlations (R=0.60, P=0.0001). In regression analysis, areal BMD explained 46% of femoral neck BMD variance in a quadratic relationship. Throughout the 12-week follow-up period, no failure of fixation was observed. DensiProbe™ Hip may capture variations of bone strength beyond areal BMD which are currently difficult to measure in vivo. A multicenter study will clarify if peak torque predicts fixation failure. Copyright © 2012 Elsevier Ltd. All rights reserved.
Weight loss and bone mineral density.
Hunter, Gary R; Plaisance, Eric P; Fisher, Gordon
2014-10-01
Despite evidence that energy deficit produces multiple physiological and metabolic benefits, clinicians are often reluctant to prescribe weight loss in older individuals or those with low bone mineral density (BMD), fearing BMD will be decreased. Confusion exists concerning the effects that weight loss has on bone health. Bone density is more closely associated with lean mass than total body mass and fat mass. Although rapid or large weight loss is often associated with loss of bone density, slower or smaller weight loss is much less apt to adversely affect BMD, especially when it is accompanied with high intensity resistance and/or impact loading training. Maintenance of calcium and vitamin D intake seems to positively affect BMD during weight loss. Although dual energy X-ray absorptiometry is normally used to evaluate bone density, it may overestimate BMD loss following massive weight loss. Volumetric quantitative computed tomography may be more accurate for tracking bone density changes following large weight loss. Moderate weight loss does not necessarily compromise bone health, especially when exercise training is involved. Training strategies that include heavy resistance training and high impact loading that occur with jump training may be especially productive in maintaining, or even increasing bone density with weight loss.
Chen, C-L; Lin, K-C; Wu, C-Y; Ke, J-Y; Wang, C-J; Chen, C-Y
2012-02-01
This work explores the relationships of muscle strength and areal bone mineral density (aBMD) in ambulatory children with cerebral palsy (CP). The knee extensor strength, but not motor function, was related to aBMD. Thus, muscle strength, especially antigravity muscle strength, was more associated with aBMD in these children than motor function. Muscle strength is related to bone density in normal children. However, no studies have examined these relationships in ambulatory children with CP. This work explores the relationships of muscle strength and aBMD in ambulatory children with CP. Forty-eight ambulatory children with spastic CP, aged 5-15 years, were classified into two groups based on Gross Motor Function Classification System levels: I (n = 28) and II (n = 20). Another 31 normal development (ND) children were recruited as the comparison group for the aBMD. Children with CP underwent assessments of growth, lumbar and distal femur aBMD, Gross Motor Function Measure-66 (GMFM-66), and muscle strength of knee extensor and flexor by isokinetic dynamometer. The distal femur aBMD, but not lumbar aBMD, was lower in children with CP than in ND children (p < 0.05). Children with level I had greater knee flexor strength and GMFM-66 scores than those with level II (p < 0.001). However, the knee extensor strength and distal femur and lumbar aBMD did not differ between two groups. Regression analysis revealed the weight and knee extensor strength, but not GMFM-66 scores, were related positively to the distal femur and lumbar aBMD (adjusted r (2) = 0.56-0.65, p < 0.001). These results suggest the muscle strength, especially antigravity muscle strength, were more associated with the bone density of ambulatory children with CP than motor function. The data may allow clinicians for early identifying the ambulatory CP children of potential low bone density.
Bone mineral density and mammographic density in Mexican women.
Moseson, Heidi; Rice, Megan S; López-Ridaura, Ruy; Bertrand, Kimberly A; Torres, Gabriela; Blanco, Margarita; Tamayo-Orozco, Juan Alfredo; Lajous, Martin; Romieu, Isabelle
2016-01-01
Bone mineral density (BMD) is a putative marker for lifetime exposure to estrogen. Studies that have explored whether BMD is a determinant of mammographic density (MD) have observed inconsistent results. Therefore,we examined this potential association in a sample of women (n = 1,516) from the clinical sub-cohort in the Mexican teachers’ cohort (n = 115,315). We used multivariable linear regression to assess the association between quartiles of BMD and percent MD, as well as total dense and non-dense area of the breast, stratified by menopausal status. We also examined the associations by body mass index (BMI) (< 30 kg/m(2), ≥ 30 kg/m(2)). Overall, there was no association between BMD and MD among premenopausal women. However, when we stratified by BMI, there was a modest inverse association between BMD and percent MD (difference between extreme quartiles = -2.8, 95 % CI -5.9, 0.27, p trend = 0.04) among women with BMI < 30 kg/m(2), but a positive association among obese women (comparable difference = 5.1, 95 % CI 0.02, 10.1, p trend = 0.03;p interaction < 0.01). Among postmenopausal women, BMD and percent MD were positively associated after adjustment for BMI (p trend < 0.01). Postmenopausal women in the highest two quartiles of BMD had 4–5 % point higher percent MD compared to women in the lowest quartile. The association did not differ by BMI in postmenopausal women (p interaction = 0.76). Among obese premenopausal women as well as postmenopausal women, BMD was positively associated with percent MD. Among leaner premenopausal women, BMD and percent MD were modestly inversely associated. These findings support the hypothesis that cumulative exposure to estrogen (as measured by BMD) may influence MD.
Bone mineral density and mammographic density in Mexican women
Moseson, Heidi; Rice, Megan S.; López-Ridaura, Ruy; Bertrand, Kimberly A.; Torres, Gabriela; Blanco, Margarita; Tamayo-Orozco, Juan Alfredo; Lajous, Martin; Romieu, Isabelle
2016-01-01
Background Bone mineral density (BMD) is a putative marker for lifetime exposure to estrogen. Studies that have explored whether BMD is a determinant of mammographic density (MD) have observed inconsistent results. Therefore, we examined this potential association in a sample of women (N=1,516) from the clinical sub-cohort in the Mexican Teachers’ Cohort (N=115,315). Methods We used multivariable linear regression to assess the association between quartiles of BMD and percent MD, as well as total dense and non-dense area of the breast, stratified by menopausal status. We also examined the associations by body mass index (BMI) (<30kg/m2,, ≥30kg/m2). Results Overall, there was no association between BMD and MD among premenopausal women. However, when we stratified by BMI, there was a modest inverse association between BMD and percent MD (difference between extreme quartiles= −2.8, 95%CI: −5.9, 0.27, p-trend=0.04) among women with BMI <30 kg/m2, but a positive association among obese women (comparable difference=5.1, 95%CI: 0.02, 10.1, p-trend=0.03; p-interaction<0.01). Among postmenopausal women, BMD and percent MD were positively associated after adjustment for BMI (p-trend<0.01). Postmenopausal women in the highest two quartiles of BMD had 4–5 percentage point higher percent MD compared to women in the lowest quartile. The association did not differ by BMI in postmenopausal women (p-interaction=0.76). Conclusion Among obese premenopausal women as well as postmenopausal women, BMD was positively associated with percent MD. Among leaner premenopausal women, BMD and percent MD were modestly inversely associated. These findings support the hypothesis that cumulative exposure to estrogen (as measured by BMD) may influence MD. PMID:26463740
Zhang, Ya-Feng; Wang, Hong; Cheng, Qiong; Qin, Ling; Tang, Nelson Ls; Leung, Ping-Chong; Kwok, Timothy Cy
2017-01-01
In this study, we set out to investigate the relationship between angiotensin-converting enzyme ( ACE) I/D polymorphism, serum ACE activity and bone mineral density (BMD) in older Chinese. A standardized, structured, face-to-face interview was performed to collect demographic information. BMD was measured using dual-energy X-ray absorptiometry (DXA). I/D genotypes of ACE were determined by polymerase chain reaction (PCR) amplification. Serum ACE activity was determined photometrically by a commercially available kinetic kit. Multiple linear regression analysis was used to examine the relationship between ACE I/D polymorphism, serum ACE activity and BMD. A total of 1567 males and 1760 females were selected for analyzing the relationship between ACE I/D polymorphism and BMD. There was no significant difference in spine BMD, total hip BMD and femur neck BMD among different ACE I/D genotypes both in males and females. A total of 1699 males and 1739 females were selected for analyzing the relationship between serum ACE activity and BMD. There was also no significant difference in spine BMD, total hip BMD and femur neck BMD among different serum ACE activity groups both in males and females. There was no relationship between ACE I/D polymorphism, serum ACE activity and BMD in older Chinese.
Koller, Daniel L.; Zheng, Hou-Feng; Karasik, David; Yerges-Armstrong, Laura; Liu, Ching-Ti; McGuigan, Fiona; Kemp, John P.; Giroux, Sylvie; Lai, Dongbing; Edenberg, Howard J.; Peacock, Munro; Czerwinski, Stefan A.; Choh, Audrey C.; McMahon, George; St Pourcain, Beate; Timpson, Nicholas J.; Lawlor, Debbie A; Evans, David M; Towne, Bradford; Blangero, John; Carless, Melanie A.; Kammerer, Candace; Goltzman, David; Kovacs, Christopher S.; Prior, Jerilynn C.; Spector, Tim D.; Rousseau, Francois; Tobias, Jon H.; Akesson, Kristina; Econs, Michael J.; Mitchell, Braxton D.; Richards, J. Brent; Kiel, Douglas P.; Foroud, Tatiana
2013-01-01
Previous genome-wide association studies (GWAS) have identified common variants in genes associated with variation in bone mineral density (BMD), although most have been carried out in combined samples of older women and men. Meta-analyses of these results have identified numerous SNPs of modest effect at genome-wide significance levels in genes involved in both bone formation and resorption, as well as other pathways. We performed a meta-analysis restricted to premenopausal white women from four cohorts (n= 4,061 women, ages 20 to 45) to identify genes influencing peak bone mass at the lumbar spine and femoral neck. Following imputation, age- and weight-adjusted BMD values were tested for association with each SNP. Association of a SNP in the WNT16 gene (rs3801387; p=1.7 × 10−9) and multiple SNPs in the ESR1/C6orf97 (rs4870044; p=1.3 × 10−8) achieved genome-wide significance levels for lumbar spine BMD. These SNPs, along with others demonstrating suggestive evidence of association, were then tested for association in seven Replication cohorts that included premenopausal women of European, Hispanic-American, and African-American descent (combined n=5,597 for femoral neck; 4,744 for lumbar spine). When the data from the Discovery and Replication cohorts were analyzed jointly, the evidence was more significant (WNT16 joint p=1.3 × 10−11; ESR1/C6orf97 joint p= 1.4 × 10−10). Multiple independent association signals were observed with spine BMD at the ESR1 region after conditioning on the primary signal. Analyses of femoral neck BMD also supported association with SNPs in WNT16 and ESR1/C6orf97 (p< 1 × 10−5). Our results confirm that several of the genes contributing to BMD variation across a broad age range in both sexes have effects of similar magnitude on BMD of the spine in premenopausal women. These data support the hypothesis that variants in these genes of known skeletal function also affect BMD during the premenopausal period. PMID:23074152
Bone Density in Adolescents and Young Adults with Autism Spectrum Disorders
ERIC Educational Resources Information Center
Ekhlaspour, Laya; Baskaran, Charumathi; Campoverde, Karen Joanie; Sokoloff, Natalia Cano; Neumeyer, Ann M.; Misra, Madhusmita
2016-01-01
Patients with autism spectrum disorder (ASD) are at increased risk for fracture, and peri-pubertal boys with ASD have lower bone mineral density (BMD) than controls. Data are lacking regarding BMD in older adolescents with ASD. We compared BMD using dual-energy X-ray absorptiometry in 9 adolescents/young adults with ASD against 9 typically…
The effect of topiramate and lamotrigine on rat bone mass, structure and metabolism.
Simko, Julius; Fekete, Sona; Gradosova, Iveta; Malakova, Jana; Zivna, Helena; Valis, Martin; Palicka, Vladimir; Zivny, Pavel
2014-05-15
There is only limited data concerning the effect of the newer antiepileptic drugs on bone. The objective of this study was to determine the effect of topiramate (TPM) and lamotrigine (LTG) monotherapy on bone mineral density (BMD), mineral content (BMC), bone markers, body composition and bone mechanical strength in the orchidectomized (ORX) rat model. 24 orchidectomized Wistar rats were divided into control and test groups, 8 rats in each group. The control rats received standard laboratory diet (SLD) while rats in the test group were fed with SLD enriched with LTG or TPM for 12 weeks. Dual energy X-ray absorptiometry was used to measure bone mineral density. The concentrations of bone metabolism markers were assayed in bone homogenate. In addition, both femurs were measured and used for biomechanical testing. Compared to the control group, both test groups had significantly lower weight, fat mass, whole body and femur BMD, BMC and reduced mechanical strength of bone. All of these changes were more pronounced in rats exposed to LTG. In conclusion, both LTG and TPM significantly reduce BMD and body weight and impair mechanical strength of bone. A question arises as to the degree of dependence of the effect on the dose. Further studies are warranted to establish whether LTG and TPM may have a clinically significant effect on BMD exclusively in the model of gonadectomized rats, or whether the effect applies also in the model of gonadally intact animals, and in the respective human models. Copyright © 2014 Elsevier B.V. All rights reserved.
Genome-wide association study of coronary and aortic calcification in lung cancer screening CT
NASA Astrophysics Data System (ADS)
de Vos, Bob D.; van Setten, Jessica; de Jong, Pim A.; Mali, Willem P.; Oudkerk, Matthijs; Viergever, Max A.; Išgum, Ivana
2016-03-01
Arterial calcification has been related to cardiovascular disease (CVD) and osteoporosis. However, little is known about the role of genetics and exact pathways leading to arterial calcification and its relation to bone density changes indicating osteoporosis. In this study, we conducted a genome-wide association study of arterial calcification burden, followed by a look-up of known single nucleotide polymorphisms (SNPs) for coronary artery disease (CAD) and myocardial infarction (MI), and bone mineral density (BMD) to test for a shared genetic basis between the traits. The study included a subcohort of the Dutch-Belgian lung cancer screening trial comprised of 2,561 participants. Participants underwent baseline CT screening in one of two hospitals participating in the trial. Low-dose chest CT images were acquired without contrast enhancement and without ECG-synchronization. In these images coronary and aortic calcifications were identified automatically. Subsequently, the detected calcifications were quantified using coronary artery calcium Agatston and volume scores. Genotype data was available for these participants. A genome-wide association study was conducted on 10,220,814 SNPs using a linear regression model. To reduce multiple testing burden, known CAD/MI and BMD SNPs were specifically tested (45 SNPs from the CARDIoGRAMplusC4D consortium and 60 SNPS from the GEFOS consortium). No novel significant SNPs were found. Significant enrichment for CAD/MI SNPs was observed in testing Agatston and coronary artery calcium volume scores. Moreover, a significant enrichment of BMD SNPs was shown in aortic calcium volume scores. This may indicate genetic relation of BMD SNPs and arterial calcification burden.
Mangano, Kelsey M; Walsh, Stephen J; Kenny, Anne M; Insogna, Karl L; Kerstetter, Jane E
2014-02-01
High dietary acid load (DAL) may be detrimental to bone mineral density (BMD). The objectives of the study were to: (1) evaluate the cross-sectional relation between DAL and BMD; and (2) determine whether calcium intake modifies this association. Men (n = 1218) and women (n = 907) aged ≥60 years were included from the National Health and Nutrition Examination Survey 2005-2008. Nutrient intake from 2, 24-hour recalls was used to calculate net endogenous acid production (NEAP) and potential renal acid load (PRAL) (mEq/d). PRAL was calculated from dietary calcium (PRALdiet ) and diet + supplemental calcium (PRALtotal ). Tests for linear trend in adjusted mean BMD of the hip and lumbar spine were performed across energy-adjusted NEAP and PRAL quartiles. Modification by calcium intake (dietary or total) above or below 800 mg/d was assessed by interaction terms. Overall, mean age was 69 ± 0.3 years. Among women, there was no association between NEAP and BMD. PRALdiet was positively associated with proximal femur BMD (p trend = 0.04). No associations were observed with PRALtotal at any BMD site (p range, 0.38-0.82). Among men, no significant associations were observed between BMD and NEAP or PRAL. However, an interaction between PRALdiet and calcium intake was observed with proximal femur BMD (p = 0.08). An inverse association between PRALdiet and proximal femur BMD was detected among men with <800 mg/d dietary calcium (p = 0.02); no associations were found among men with ≥800 mg/d (p = 0.98). A significant interaction with PRALtotal was not observed. In conclusion, when supplemental calcium is considered, there is no association between DAL and BMD among adults. Men with low dietary calcium showed an inverse relation with PRAL at the proximal femur; in women no interaction was observed. This study highlights the importance of calcium intake in counteracting the adverse effect of DAL on bone health. Further research should determine the relation between DAL and change in BMD with very low calcium intake. © 2014 American Society for Bone and Mineral Research.
Boonya-Ussadorn, Trirat; Punkaew, Boondharika; Sriassawaamorn, Narongchai
2010-11-01
To compare bone mineral density (BMD) of the lumbar spine (L1-L4), total hip (TH), and femoral neck (FN) analyzed by Dual Energy X-ray Absorptiometry (DXA) in premenopausal women with hyperthyroidism and in healthy premenopausal women. Cross-sectional study included 49 premenopausal women with hyperthyroidism and 49 healthy premenopausal women. Age, weight and body mass index (BMI) were comparable in both groups. All subjects had a BMD measurement by DXA in the region of L1-L4, TH and FN and the unpaired t-test was used to analyze. The mean BMD of premenopausal women with hyperthyroidism at L1-L4, TH and FN was 0.928, 0.838 and 0.774 g/cm2, which were lower than those of healthy premenopausal women; 0.991, 0.917 and 0.832 g/cm2 respectively (p-value is less than 0.05). Time interval that had elapsed for active hyperthyroidism was not associated with the decrease of BMD at L1-L4, TH and FN in hyperthyroid women. The BMD of L1-L4, TH and FN in premenopausal women with hyperthyroidism were significantly lower than those of healthy premenopausal women. Therefore, overt hyperthyroidism could be associated with bone loss and may be a risk factor for the development of osteoporosis. However, time interval of active hyperthyroidism was not related to the decrease of BMD in hyperthyroid women.
Lee, Ji Hyun; Hong, A Ram; Kim, Jung Hee; Kim, Kyoung Min; Koo, Bo Kyung; Shin, Chan Soo; Kim, Sang Wan
2018-01-01
Smoking induces bone loss; however, data on the relationship between smoking history and bone mineral density (BMD) are lacking. Age and pulmonary function can affect BMD. We investigated the relationships among pack-years (PYs) of smoking, pulmonary function, and BMD in middle-aged Korean men (50-64 years old). This cross-sectional study used data from the Korean National Health and Nutrition Examination Survey, 2008-2011. All participants underwent BMD measurements using dual energy X-ray absorptiometry and pulmonary function tests using standardized spirometry. In total, 388 never-smokers and 1088 ever-smokers were analyzed. The number of PYs of smoking was negatively correlated with total hip BMD (r = -0.088; P = 0.004) after adjusting for age, height, and weight. Ever-smokers were classified into 3 groups according to PYs of smoking. The highest tertile (n = 482) exhibited significantly lower total hip bone mass than the lowest tertile (n = 214) after adjusting for confounding factors (age, height, weight, forced expiratory volume in 1 s (FEV 1 ), alcohol consumption, physical activity, and vitamin D levels) that could affect bone metabolism (P = 0.003). In conclusion, smoking for >30 PYs was significantly associated with low hip BMD after adjusting for pulmonary function in middle-aged Korean men. Long-term smoking may be a risk factor for bone loss in middle-aged men independent of age, height, weight, and pulmonary function.
Gourlay, Margaret L.; Specker, Bonny L.; Li, Chenxi; Hammett-Stabler, Catherine A.; Renner, Jordan B.; Rubin, Janet E.
2011-01-01
Purpose Increased follicle-stimulating hormone (FSH) has been associated with lower bone mineral density (BMD) in animal models and longitudinal studies of women, but a direct effect has not been demonstrated. Methods We tested associations between FSH, non-bone body composition measures and BMD in 94 younger (aged 50 to 64 years) postmenopausal women without current use of hormone therapy, adjusting for sex hormone concentrations and clinical risk factors for osteoporosis. Lean mass, fat mass and areal BMD (aBMD) at the spine, femoral neck and total hip were measured using dual energy X-ray absorptiometry (DXA). Volumetric BMD (vBMD) was measured at the distal radius using peripheral quantitative computed tomography (pQCT). Results: FSH was inversely correlated with lean and fat mass, bioavailable estradiol, spine and hip aBMD, and vBMD at the ultradistal radius. In the multivariable analysis, FSH was independently associated with lean mass (β= −0.099, p=0.005) after adjustment for age, race, years since menopause, bioavailable estradiol, bioavailable testosterone, LH, PTH, SHBG and urine N-telopeptide. FSH showed no statistically significant association with aBMD at any site or pQCT measures at the distal radius in adjusted models. Race was independently associated with aBMD, and race and urine N-telopeptide were independently associated with bone area and vBMD. Conclusions After adjustment for hormonal measures and osteoporosis risk factors, higher concentrations of FSH were independently associated with lower lean mass, but not with BMD. Previously reported correlations between FSH and BMD might have been due to indirect associations via lean mass or weight. PMID:22086136
Dudley-Javoroski, S.
2010-01-01
Summary Surveillance of femur metaphysis bone mineral density (BMD) decline after spinal cord injury (SCI) may be subject to slice placement error of 2.5%. Adaptations to anti-osteoporosis measures should exceed this potential source of error. Image analysis parameters likewise affect BMD output and should be selected strategically in longitudinal studies. Introduction Understanding the longitudinal changes in bone mineral density (BMD) after spinal cord injury (SCI) is important when assessing new interventions. We determined the longitudinal effect of SCI on BMD of the femur metaphysis. To facilitate interpretation of longitudinal outcomes, we (1) determined the BMD difference associated with erroneous peripheral quantitative computed tomography (pQCT) slice placement, and (2) determined the effect of operator-selected pQCT peel algorithms on BMD. Methods pQCT images were obtained from the femur metaphysis (12% of length from distal end) of adult subjects with and without SCI. Slice placement errors were simulated at 3 mm intervals and were processed in two ways (threshold-based vs. concentric peel). Results BMD demonstrated a rapid decline over 2 years post-injury. BMD differences attributable to operator-selected peel methods were large (17.3% for subjects with SCI). Conclusions Femur metaphysis BMD declines after SCI in a manner similar to other anatomic sites. Concentric (percentage-based) peel methods may be most appropriate when special sensitivity is required to detect BMD adaptations. Threshold-based methods may be more appropriate when asymmetric adaptations are observed. PMID:19707702
Accounting for body size deviations when reporting bone mineral density variables in children.
Webber, C E; Sala, A; Barr, R D
2009-01-01
In a child, bone mineral density (BMD) may differ from an age-expected normal value, not only because of the presence of disease, but also because of deviations of height or weight from population averages. Appropriate adjustment for body size deviations simplifies interpretation of BMD measurements. For children, a bone mineral density (BMD) measurement is normally expressed as a Z score. Interpretation is complicated when weight or height distinctly differ from age-matched children. We develop a procedure to allow for the influence of body size deviations upon measured BMD. We examined the relation between body size deviation and spine, hip and whole body BMD deviation in 179 normal children (91 girls). Expressions were developed that allowed derivation of an expected BMD based on age, gender and body size deviation. The difference between measured and expected BMD was expressed as a HAW score (Height-, Age-, Weight-adjusted score). In a second independent sample of 26 normal children (14 girls), measured spine, total femur and whole body BMD all fell within the same single normal range after accounting for age, gender and body size deviations. When traditional Z scores and HAW scores were compared in 154 children, 17.5% showed differences of more than 1 unit and such differences were associated with height and weight deviations. For almost 1 in 5 children, body size deviations influence BMD to an extent that could alter clinical management.
Sugiguchi, Shigeru; Goto, Hitoshi; Inaba, Masaaki; Nishizawa, Yoshiki
2010-02-01
Bone mineral density (BMD) and factors influencing BMD in rheumatoid arthritis (RA) under good or moderate control were examined to assess management of osteoporosis in RA. BMD of the lumbar spine, femur, and distal radius was measured in 105 female patients with well-controlled RA. Laboratory and clinical variables associated with disease activity were measured in the same subjects, and correlations between these variables and BMD were evaluated. The RA patients showed a greater decrease in BMD of the femoral neck than of the lumbar spine. Age, Health Assessment Questionnaire (HAQ) score, and Larsen damage score had negative correlations with BMD of the femoral neck. In multiple regression analysis of the parameters associated with BMD of the femoral neck in simple regression analysis, an increase in HAQ score showed a negative correlation with BMD of the femoral neck. After initiation of treatment with alendronate (ALN), BMD of the femoral neck increased and correlated with improvement in HAQ score. A decrease in BMD of the femoral neck is a characteristic of RA. This suggests that muscle tonus has more effect than weight-bearing activity on BMD in patients with RA. BMD of the femoral neck is a useful index for general evaluation of RA patients.
Borba-Pinheiro, Cláudio Joaquim; de Alencar Carvalho, Mauro César Gurgel; da Silva, Nádia Souza Lima; Drigo, Alexandre Janotta; Bezerra, Jani Cléria Pereira; Dantas, Estélio Henrique Martin
2010-01-01
Background: The objective of this study was to determine the effects of different physical activity (PA) programs on bone density, balance and quality of Life of postmenopausaL women taking concomitant aLendronate. A quasi-experimental study was conducted with 35 volunteers divided into four groups: practitioners of resistance training (RTG, n = 9, 49.8±4.2 years), judo (JUG, n= 11, 52.2 ±5.3 years), water aerobics (WAG, n = 8, 57.1 ±7.4 years) and the control group (CG, n = 7, 53.8±4.4 years). Methods: The following assessment tools were used: bone mineral density (BMD) measured by dual X-ray absorptiometry of the spine and proximal femur, the ‘Osteoporosis Assessment Questionnaire’ (OPAQ) and the ‘Static Balance Test with Visual Control’. The physical activities were planned for 12 months in cycles with different intensities. A two-way analysis of variance (ANOVA) was used for analysis between groups, and a Scheffe post-hoc test was used for multiple comparisons. Results: The multiple comparisons results showed that the RTG and JUG groups were significantly more efficient in the variables studied, including: Lumbar BMD (Δ% = 6.8%, p = 0.001), balance (Δ% = 21.4%, p = 0.01), OPAQ (Δ% = 9.1%, p = 0.005) and Lumbar BMD (Δ% = 6.4%, p = 0.003), balance (Δ% = U%, p = 0.02) and OPAQ (Δ% = 16.8%, p =0.000) compared with the CG. Furthermore, the RTG (Δ% = 4.8%, p =0.02) was significantly better than the WAG for the neck of femur BMD, and the JUG (Δ% = 16.8, p = 0.0003) also demonstrated superiority to the WAG in the OPAQ. Conclusions: The physical activities studied appear to improve BMD, balance and quality of Life of postmenopausaL women taking a bisphosphonate. In this small sample, the RTG and the JUG groups were superior to the other groups. PMID:22870446
The relationship between breast density and bone mineral density in postmenopausal women.
Buist, Diana S M; Anderson, Melissa L; Taplin, Stephen H; LaCroix, Andrea Z
2004-11-01
It is not well understood whether breast density is a marker of cumulative exposure to estrogen or a marker of recent exposure to estrogen. The authors examined the relationship between bone mineral density (BMD; a marker of lifetime estrogen exposure) and breast density. The authors conducted a cross-sectional analysis among 1800 postmenopausal women > or = 54 years. BMD data were taken from two population-based studies conducted in 1992-1993 (n = 1055) and in 1998-1999 (n = 753). The authors linked BMD data with breast density information collected as part of a mammography screening program. They used linear regression to evaluate the density relationship, adjusted for age, hormone therapy use, body mass index (BMI), and reproductive covariates. There was a small but significant negative association between BMD and breast density. The negative correlation between density measures was not explained by hormone therapy or age, and BMI was the only covariate that notably influenced the relationship. Stratification by BMI only revealed the negative correlation between bone and breast densities in women with normal BMI. There was no relationship in overweight or obese women. The same relationship was seen for all women who had never used hormone therapy, but it was not significant once stratified by BMI. BMD and breast density were not positively associated although both are independently associated with estrogen exposure. It is likely that unique organ responses obscure the relationship between the two as indicators of cumulative estrogen exposure.
Different Indices of Fetal Growth Predict Bone Size and Volumetric Density at 4 Years of Age
Harvey, Nicholas C; Mahon, Pamela A; Robinson, Sian M; Nisbet, Corrine E; Javaid, M Kassim; Crozier, Sarah R; Inskip, Hazel M; Godfrey, Keith M; Arden, Nigel K; Dennison, Elaine M; Cooper, Cyrus
2011-01-01
We have demonstrated previously that higher birth weight is associated with greater peak and later-life bone mineral content and that maternal body build, diet, and lifestyle influence prenatal bone mineral accrual. To examine prenatal influences on bone health further, we related ultrasound measures of fetal growth to childhood bone size and density. We derived Z-scores for fetal femur length and abdominal circumference and conditional growth velocity from 19 to 34 weeks’ gestation from ultrasound measurements in participants in the Southampton Women’s Survey. A total of 380 of the offspring underwent dual-energy X-ray absorptiometry (DXA) at age 4 years [whole body minus head bone area (BA), bone mineral content (BMC), areal bone mineral density (aBMD), and estimated volumetric BMD (vBMD)]. Volumetric bone mineral density was estimated using BMC adjusted for BA, height, and weight. A higher velocity of 19- to 34-week fetal femur growth was strongly associated with greater childhood skeletal size (BA: r = 0.30, p < .0001) but not with volumetric density (vBMD: r = 0.03, p = .51). Conversely, a higher velocity of 19- to 34-week fetal abdominal growth was associated with greater childhood volumetric density (vBMD: r = 0.15, p = .004) but not with skeletal size (BA: r = 0.06, p = .21). Both fetal measurements were positively associated with BMC and aBMD, indices influenced by both size and density. The velocity of fetal femur length growth from 19 to 34 weeks’ gestation predicted childhood skeletal size at age 4 years, whereas the velocity of abdominal growth (a measure of liver volume and adiposity) predicted volumetric density. These results suggest a discordance between influences on skeletal size and volumetric density. PMID:20437610
Nogués, Xavier; Prieto-Alhambra, Daniel; Güerri-Fernández, Roberto; Garcia-Giralt, Natalia; Rodriguez-Morera, Jaime; Cos, Lourdes; Mellibovsky, Leonardo; Pérez, Adolfo Díez
2017-10-01
Some patients experience fractures while receiving oral bisphosphonates (BPs) treatment. Clinical risk factors, advanced bone density loss, and microarchitecture deterioration have been associated with such fractures but bone tissue properties other than bone mineral density (BMD) have not been assessed. In a cross-sectional study of postmenopausal women on bisphosphonates for at least 4years with good adherence to treatment, 21 patients with incident fractures were compared with 18 treated patients without new fractures. Demographic and clinical variables, BMD, laboratory tests, and bone material strength index (BMSi) assessed by impact microindentation at the tibial diaphysis were recorded for all participants. Clinical and laboratory results did not differ between patients taking BPs with incident fractures and those without new fractures. However, BMSi was significantly lower (mean±SD) in those who fractured (73.76±6.49) than in no-fracture patients (81.64±6.26; p=0.001). Lumbar spine (LS) BMD was also lower in fractured patients (p=0.03). Adjusted models including age, body mass index, years on BP treatment, and LS-BMD confirmed an increase in fracture risk per BMSi standard deviation decrease: adjusted OR 23.5 [95% CI 2.16 to 255.66], p=0.01. ROC analyses showed an area under the curve of 0.82 (95% CI 0.68 to 0.95) for BMSi, higher than that for BMD at any location, which ranged from 0.64 (95% CI 0.47 to 0.82) for femoral neck (FN) BMD to 0.71 (95% CI 0.55 to 0.87) for LS-BMD. Patients who fracture while receiving BPs treatment have worse BMSi scores than BP-treated patients without fractures. The potential for BMSi to provide an additional osteoporosis treatment target should be explored. Copyright © 2017 Elsevier Inc. All rights reserved.
Kim, Se-Min; Cui, Jinrui; Rhyu, Jane; Guo, Xiuqing; Chen, Yii-Der I; Hsueh, Willa A; Rotter, Jerome I; Goodarzi, Mark O
2018-06-01
Patients with type 2 diabetes mellitus have an increased risk of fracture despite normal or increased bone mineral density (BMD). Studies on the relationship of glucose homeostasis with BMD phenotypes have been inconclusive because distinguishing the roles of insulin resistance and hyperglycaemia in bone remodelling is challenging. In this study, we sought to define the relationship of site-specific BMD with glucose homeostasis traits and anthropometric traits. In a cross-sectional study, we examined 787 subjects from the Mexican-American Coronary Artery Disease (MACAD) cohort who had undergone euglycaemic-hyperinsulinaemic clamps, oral glucose tolerance testing and dual X-ray absorptiometry. Glucose homeostasis traits included insulinogenic index (IGI30), insulin sensitivity (M value), insulin clearance (MCRI), fasting insulin, fasting glucose and 2-hour glucose. Univariate and multivariate analyses were performed to assess the association of glucose homeostasis and anthropometric traits with site-specific BMD. Two-hour glucose was negatively associated with arm BMD in women, which remained significant in multivariate analysis (β = -.15, P = .0015). Positive correlations between fasting insulin and BMD at weight-bearing sites, including pelvis (β = .22, P < .0001) and legs (β = .17, P = .001) in women and pelvis (β = .33, P < .0001) in men, lost significance after multivariate adjustment. Lean mass exhibited strong independent positive associations with BMD at multiple sites in both sexes. Our findings suggest that (i) anabolic effects of insulin might work via mechanical loading from lean mass; (ii) a direct negative effect of increasing glucose might be more prominent at cortical-bone-rich sites in women; and (iii) lean mass is a strong positive predictor of bone mass. © 2018 John Wiley & Sons Ltd.
Koller, Daniel L.; Ichikawa, Shoji; Lai, Dongbing; Padgett, Leah R.; Doheny, Kimberly F.; Pugh, Elizabeth; Paschall, Justin; Hui, Siu L.; Edenberg, Howard J.; Xuei, Xiaoling; Peacock, Munro; Econs, Michael J.; Foroud, Tatiana
2010-01-01
Context: Several genome-wide association studies (GWAS) have been performed to identify genes contributing to bone mineral density (BMD), typically in samples of elderly women and men. Objective: The objective of the study was to identify genes contributing to BMD in premenopausal women. Design: GWAS using the Illumina 610Quad array in premenopausal European-American (EA) women and replication of the top 50 single-nucleotide polymorphisms (SNPs) for two BMD measures in African-American (AA) women. Subjects: Subjects included 1524 premenopausal EA women aged 20–45 yr from 762 sibships and 669 AA premenopausal women aged 20–44 yr from 383 sibships. Interventions: There were no interventions. Main Outcome Measures: BMD was measured at the lumbar spine and femoral neck by dual-energy x-ray absorptiometry. Age- and weight-adjusted BMD values were tested for association with each SNP, with P values determined by permutation. Results: SNPs in CATSPERB on chromosome 14 provided evidence of association with femoral neck BMD (rs1298989, P = 2.7 × 10−5; rs1285635, P = 3.0 × 10−5) in the EA women, and some supporting evidence was also observed with these SNPs in the AA women (rs1285635, P = 0.003). Genes identified in other BMD GWAS studies, including IBSP and ADAMTS18, were also among the most significant findings in our GWAS. Conclusions: Evidence of association to several novel loci was detected in a GWAS of premenopausal EA women, and SNPs in one of these loci also provided supporting evidence in a sample of AA women. PMID:20164292
Peacock, Munro; Koller, Daniel L.; Lai, Dongbing; Hui, Siu; Foroud, Tatiana; Econs, Michael J.
2009-01-01
Introduction A major predictor of age-related osteoporotic fracture is peak areal bone mineral density (aBMD) which is a highly heritable trait. However, few linkage and association studies have been performed in men to identify the genes contributing to normal variation in aBMD. The aim of this study was to perform a genome wide scan in healthy men to identify quantitative trait loci (QTL) that were significantly linked to aBMD and to test whether any of these might be sex-specific. Methods aBMD at the spine and hip were measured in 515 pairs of brothers, aged 18-61 (405 white pairs, 110 black pairs). Linkage analysis in the brother sample was compared with results in a previously published sample of 774 sister pairs to identify sex-specific quantitative trait loci (QTL). Results A genome wide scan identified significant QTL (LOD>3.6) for aBMD on chromosomes 4q21 (hip), 7q34 (spine), 14q32 (hip), 19p13 (hip), 21q21 (hip), and 22q13 (hip). Analysis suggested that the QTL on chromosome 7q34, 14q32, and 21q21 were male-specific whereas the others were not sex-specific. Conclusions This study demonstrates that six QTL were significantly linked with aBMD in men. One was linked to spine and five were linked to hip. When compared to published data in women from the same geographical region, the QTL on chromosomes 7, 14 and 21 were male-specific. The occurrence of sex-specific genes in humans for aBMD has important implications for the pathogenesis and treatment of osteoporosis. PMID:19427925
Augoulea, A; Tsakonas, E; Triantafyllopoulos, I; Rizos, D; Armeni, E; Tsoltos, N; Tournis, S; Deligeoroglou, E; Antoniou, A; Lambrinoudaki, I
2017-03-01
To clarify potential differences between denosumab (DNS) and bisphosphonates (BIS) in terms of bone density and bone metabolism, in a sample of postmenopausal women. A total of 113 postmenopausal women aged 53-66 years were treated with either DNS or BIS for 12 months. Bone densitometry and laboratory tests were compared between baseline and follow-up. Femoral neck BMD increased in both treatment-arms (FN-BMD, DNS: 0.69±0.07 g/cm 2 to 0.75±0.09 g/cm 2 ; BIS: 0.69±0.06 g/cm 2 to 0.71±0.07 g/cm 2 ; p≤0.001 in both cases). Lumbar spine BMD (LS-BMD) increased significantly only in the DNS-group (0.83±0.14 g/cm 2 to 0.89±0.14 g/cm 2 , p=0.0001). Only women under treatment with DNS had a significant increase in serum parathyroid hormone (PTH: 44.87±17.54 pg/mL to 53.27±15.77 pg/mL, p=0.04), independently of baseline vitamin D levels. DNS-administration resulted in higher increase from baseline in FN-BMD compared to BIS (DNS vs BIS: 8.7%±8.5 vs 3.8%±7.3, p=0.004). Finally, baseline 25OH vitamin D levels did not determine the extent of PTH-increase following administration of DNS- or BIS-treatment. Both treatments increased BMD, however, the effect of DNS on FN-BMD was superior compared to that of BIS. DNS-treatment increased serum PTH. Baseline 25OH vitamin D levels did not predict the extent of PTH increase at follow-up.
Contributions of lean mass and fat mass to bone mineral density: a study in postmenopausal women.
Ho-Pham, Lan T; Nguyen, Nguyen D; Lai, Thai Q; Nguyen, Tuan V
2010-03-26
The relative contribution of lean and fat to the determination of bone mineral density (BMD) in postmenopausal women is a contentious issue. The present study was undertaken to test the hypothesis that lean mass is a better determinant of BMD than fat mass. This cross-sectional study involved 210 postmenopausal women of Vietnamese background, aged between 50 and 85 years, who were randomly sampled from various districts in Ho Chi Minh City (Vietnam). Whole body scans, femoral neck, and lumbar spine BMD were measured by DXA (QDR 4500, Hologic Inc., Waltham, MA). Lean mass (LM) and fat mass (FM) were derived from the whole body scan. Furthermore, lean mass index (LMi) and fat mass index (FMi) were calculated as ratio of LM or FM to body height in metre squared (m2). In multiple linear regression analysis, both LM and FM were independent and significant predictors of BMD at the spine and femoral neck. Age, lean mass and fat mass collectively explained 33% variance of lumbar spine and 38% variance of femoral neck BMD. Replacing LM and FM by LMi and LMi did not alter the result. In both analyses, the influence of LM or LMi was greater than FM and FMi. Simulation analysis suggested that a study with 1000 individuals has a 78% chance of finding the significant effects of both LM and FM, and a 22% chance of finding LM alone significant, and zero chance of finding the effect of fat mass alone. These data suggest that both lean mass and fat mass are important determinants of BMD. For a given body size -- measured either by lean mass or height --women with greater fat mass have greater BMD.
Effects of obesity and diabetes on rate of bone density loss.
Leslie, W D; Morin, S N; Majumdar, S R; Lix, L M
2018-01-01
In this large registry-based study, women with diabetes had marginally greater bone mineral density (BMD) loss at the femoral neck but not at other measurement sites, whereas obesity was not associated with greater BMD loss. Our data do not support the hypothesis that rapid BMD loss explains the increased fracture risk associated with type 2 diabetes and obesity observed in prior studies. Type 2 diabetes and obesity are associated with higher bone mineral density (BMD) which may be less protective against fracture than previously assumed. Inconsistent data suggest that rapid BMD loss may be a contributing factor. We examined the rate of BMD loss in women with diabetes and/or obesity in a population-based BMD registry for Manitoba, Canada. We identified 4960 women aged ≥ 40 years undergoing baseline and follow-up BMD assessments (mean interval 4.3 years) without confounding medication use or large weight fluctuation. We calculated annualized rate of BMD change for the lumbar spine, total hip, and femoral neck in relation to diagnosed diabetes and body mass index (BMI) category. Baseline age-adjusted BMD was greater in women with diabetes and for increasing BMI category (all P < 0.001). In women with diabetes, unadjusted BMD loss was less at the lumbar spine (P = 0.017), non-significantly greater at the femoral neck (P = 0.085), and similar at the total hip (P = 0.488). When adjusted for age and BMI, diabetes was associated with slightly greater femoral neck BMD loss (- 0.0018 g/cm 2 /year, P = 0.012) but not at the lumbar spine or total hip. There was a strong linear effect of increasing BMI on attenuated BMI loss at the lumbar spine with negligible effects on hip BMD. Diabetes was associated with slightly greater BMD loss at the femoral neck but not at other measurement sites. BMD loss at the lumbar spine was reduced in overweight and obese women but BMI did not significantly affect hip BMD loss.
Chen, Hailing; Li, Jufen; Wang, Qian
2018-01-01
Abstract Insufficient evidence is available to reliably compare the roles of bone alkaline phosphatase (BAP) and bone mineral density (BMD) in diabetes. This study aimed to compare associations between BAP and BMD in adults with and without diabetes to elucidate fracture risk in diabetes. Data were extracted from the National Health and Nutrition Examination Survey (NHANES), 2001–2004, including 4197 adults aged 20 to 49 years, 143 with diabetes (DM group), and 4054 without (non-DM group). Main outcome measure was BMD and regression analyses were performed to identify serum BAP and other covariates associated with total BMD. BMD decreased significantly in DM patients when BAP was increased. In the non-DM group, all BMD results were significantly decreased when BAP was increased. Factors associated with total BMD varied with DM status. Lifestyle measures such as smoking and physical activity were also associated with BMD in the non-DM group. BAP and BMD are inversely associated in DM and non-DM patients. BAP is significantly associated with BMD after controlling for other variables, suggesting that BAP may interact with other factors altering bone metabolism in DM patients. PMID:29702995
Iwamoto, Jun; Sato, Yoshihiro; Matsumoto, Hideo
2014-01-01
Gastrectomy (GX) induces osteopenia in rats. The present study examined the skeletal effects of vitamin K2 in GX rats. Thirty male Sprague-Dawley rats (12 wk old) were randomized by the stratified weight method into the following three groups of 10 animals each: sham operation (control) group; GX group; and GX+oral vitamin K2 (menatetrenone, 30 mg/kg, 5 d/wk) group. Treatment was initiated at 1 wk after surgery. After 6 wk of treatment, the bone mineral content (BMC), bone mineral density (BMD), and mechanical strength of the femoral diaphysis and distal metaphysis were determined by peripheral quantitative computed tomography and mechanical strength tests, respectively. GX induced decreases in the BMC, BMD, and ultimate force of the femoral diaphysis and distal metaphysis. Vitamin K2 did not significantly influence the BMC or BMD of the femoral diaphysis or distal metaphysis in GX rats, but attenuated the decrease in the ultimate force and increased the stiffness of the femoral diaphysis. The present study showed that administration of vitamin K2 to GX rats improved the bone strength of the femoral diaphysis without altering the BMC or BMD, suggesting effects of vitamin K2 on the cortical bone quality.
Nava-González, Edna J; de la Garza-Casas, Yolanda E; Salazar-Montalvo, Raúl G; Gallegos-Cabriales, Esther C
2013-01-01
women with endometriosis may have a decreased bone mineral density (BMD). Several studies have shown that accumulation of adipose tissue profoundly affects BMD. It has also been documented that excess body fat is associated with risk of developing endometriosis. The aim was to analyze the relationship between BMD, fat mass, and the insulin-glucose axis in women with endometriosis. thirty women with a diagnosis of endometriosis established by surgery were enrolled to participate in an observational prospective study. Anthropometry was performed to determine body mass index, and a dual X-ray densitometry to collect data on body composition and BMD. Glucose and insulin determinations were performed. Women were divided in two groups: with normal weight (n = 18) or overweight (n = 12). For the analysis of the results, we used descriptive statistics and Pearson's test. normal weight/overweight: mean age 32.5/35.2 years; body mass index 21.5/30.2; adiposity index: 27.7 %/36.1 %; fat mass index: 35.4/45.8 %; overweight women showed a significant value with p < 0.05. overweight, high values of adiposity index and fat mass index were related to endometriosis. This could support the hypothesis about a common pathogenesis among endometriosis, osteoporosis, diabetes and obesity.
Masi, Laura; Ottanelli, Silva; Berni, Rossella; Cacudi, Ettore; Giusti, Francesca; Marcucci, Gemma; Cavalli, Loredana; Fossi, Caterina; Marini, Francesca; Ciuffi, Simone; Tanini, Annalisa; Brandi, Maria Luisa
2014-01-01
Sex steroids are important regulators of bone physiology and play an essential role in the maintenance of bone health throughout the life. Hormonal replacement therapy (HRT) is a treatment commonly used to relieve symptoms and some undesirable consequences of menopause such as osteoporosis. Osteoporosis, characterized by the loss of bone mass and deterioration of microarchitecture with a consequent higher risk of fragility fractures, is under genetic influence. A tetranucleotide (TTTA)n microsatellite repeat polymorphism, at intron 4 of the CYP19 (aromatase) gene, has been previously associated with higher lumbar spine bone mineral density (LS-BMD) and lower risk of spine fracture in postmenopausal women. Moreover, the ERα encoded by the ESR1 gene is another important candidate for the regulation of bone mass of menopause. Moreover prospective analysis from >18.000 subjects at the GENOMOS study indicated that XX homozygotes genotype had a reduced risk of fracture independently from BMD. In the present study, we investigated in postmenopausal Italian women, at baseline and after 1 year of HRT, whether ESR1 and CYP19 gene polymorphisms could affect BMD through different statistical models. This study has been performed on 100 post-menopausal Italian women, from a larger group of 250. The study group was administred HRT and LS-BMD was measured at baseline and after 1 year of therapy. Genetic analysis evaluating ESR1 and CYP19 gene polymorphisms was performed. Generalized Linear Models (GLMs) test showed that women with normal LS-BMD at the baseline had a major statistically significant BMD increase of 0.1426 gr/cm(2) (p= 0.0001) with respect to the osteoporotic patients. In addition, subjects with genotype 1 and 2 of CYP19 gene had a lower modification in LS-BMD after 1 year of HRT (0.0837 gr/cm(2) and 0,076 g/cm(2); p=0.0470 and 0,0547 respectively) when compared to genotype 3. No influences of the aromatase genotypes were observed in the variable difference using both Anova and GLMs test. Regarding the ESR1 gene polymorphism, the LS-BMD after 1 year of HRT was influenced by the diagnosis at the baseline and height and ERα genotypes were able to influence difference with statistical significant results with both test. In the present study, we have demonstrated that CYP19 gene polymorphism is able to influence the effect of 1 year HRT on LS-BMD with no influence on pre-/ and post-/HRT LS-BMD differences. Although ESR1 gene polymorphism is not able to influence the LS-BMD after 1 year HRT, it influences the observed modifications during the year of therapy. These data underlie the complexity of the genetics of the bone mass and its importance in influencing the response to HRT.
de Jonge, Ester A L; Kiefte-de Jong, Jessica C; de Groot, Lisette C P G M; Voortman, Trudy; Schoufour, Josje D; Zillikens, M Carola; Hofman, Albert; Uitterlinden, André G; Franco, Oscar H; Rivadeneira, Fernando
2015-08-18
No diet score exists that summarizes the features of a diet that is optimal for bone mineral density (BMD) in the elderly. Our aims were (a) to develop a BMD-Diet Score reflecting a diet that may be beneficial for BMD based on the existing literature, and (b) to examine the association of the BMD-Diet Score and the Healthy Diet Indicator, a score based on guidelines of the World Health Organization, with BMD in Dutch elderly participating in a prospective cohort study, the Rotterdam Study (n = 5144). Baseline dietary intake, assessed using a food frequency questionnaire, was categorized into food groups. Food groups that were consistently associated with BMD in the literature were included in the BMD-Diet Score. BMD was measured repeatedly and was assessed using dual energy X-ray absorptiometry. The BMD-Diet Score considered intake of vegetables, fruits, fish, whole grains, legumes/beans and dairy products as "high-BMD" components and meat and confectionary as "low-BMD" components. After adjustment, the BMD-Diet Score was positively associated with BMD (β (95% confidence interval) = 0.009 (0.005, 0.012) g/cm(2) per standard deviation). This effect size was approximately three times as large as has been observed for the Healthy Diet Indicator. The food groups included in our BMD-Diet Score could be considered in the development of future dietary guidelines for healthy ageing.
[Analysis of risk factors for low bone mineral density in patients with inflammatory bowel disease].
Park, Jae Jung; Jung, Sung Ae; Noh, Young Wook; Kang, Min Jung; Jung, Ji Min; Kim, Seong Eun; Jung, Hye Kyung; Shim, Ki Nam; Kim, Tae Hun; Yoo, Kwon; Moon, Il Hwan; Hong, Young Sun
2010-04-01
Several clinical risk factors for low bone mineral density (BMD) in the patients with inflammatory bowel disease (IBD) have been suggested. However, its prevalence and pathophysiology in Korean population have not been fully studied. The aim of this study was to investigate the prevalence and risk factors for low BMD in Korean IBD patient. BMD of the lumbar spine and femur was evaluated using dual-energy X-ray absorptiometry in 30 patients with IBD. Biochemical parameters of bone metabolism, such as serum calcium, phosphorus, osteocalcin, and deoxypyridinoline were measured. The associations between low BMD and clinical parameters such as disease duration, disease activity, drug history, body mass index (BMI), and others were evaluated retrospectively using medical records. Low BMD at the lumbar spine or femur was observed in 63.3% of the patients, and there was no significant difference between the patients with Crohns disease and ulcerative colitis. Clinical and biochemical parameters were irrelevant to BMD. In the patients without glucocorticoid treatment prior to BMD measurement, already 50.0% of patients had low BMD. Low BMD is a common feature in Korean IBD patients, even those who do not use glucocorticoid. The multiple factors may be involved in the pathogenesis of low BMD. Therefore, BMD should be examined in all IBD patients, irrespective of glucocorticoid treatment.
Meniscal Damage Associated with Increased Local Subchondral Bone Mineral Density: A Framingham Study
Lo, GH; Niu, J; McLennan, CE; DP, Kiel; McLean, RR; Guermazi, A; Genant, HK; McAlindon, TE; Hunter, DJ
2008-01-01
Objective Because menisci and the M:L BMD are associated with loading within the knee, we postulated there to be an association between compartment-specific meniscal damage and M:L BMD. We hypothesized that knees with higher M:L BMD, consistent with increased medial subchondral BMD, would be associated with medial meniscal damage, and lower ratios with lateral meniscal damage. Methods We conducted a cross-sectional study evaluating participants in the Framingham OA Cohort having MRIs, BMDs, and x-rays of the knee. Medial and lateral meniscal damage were defined on MRI. We performed a logistic regression with medial meniscal damage as the outcome testing M:L BMD groups as predictor variables. We adjusted for age and sex; we used GEE to adjust for correlation between knees. Identical analyses were performed evaluating lateral meniscal damage. Results When evaluating the relation of M:L BMD to medial meniscal damage, the odds ratios (ORs) of prevalent medial meniscal damage from lowest to highest quartile of M:L BMD were 1.0 (referent), 1.9, 2.4 and 8.9, p for trend <0.0001. When evaluating the relation of M:L BMD to lateral meniscal damage, the ORs of prevalent lateral meniscal damage from lowest to highest quartile of M:L BMD were 1.0 (referent), 0.3, 0.2, and 0.2, p for trend =0.001. Conclusions Meniscal damage is associated with higher regional tibial BMD in the same compartment. Our findings highlight the close relationship between meniscal integrity and regional tibial subchondral BMD. PMID:17825586
Vasilkova, Olga; Mokhort, Tatiana; Sanec, Igor; Sharshakova, Tamara; Hayashida, Naomi; Takamura, Noboru
2011-01-01
Although many reports have elucidated pathophysiological characteristics of abnormal bone metabolism in patients with type 2 diabetes mellitus (DT2), determinants of bone mineral density (BMD) in patients with DT2 are still controversial. We examined 168 Belarussian men 45-60 years of age. Plasma total cholesterol (TC), high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, very low-density lipoprotein cholesterol, triglycerides, hemoglobin A(1c) (HbA(1c)), immunoreactive insulin, and C-reactive protein concentrations were assessed. BMD was measured using dual energy X-ray densitometry of the lumbar spine (L(1)-L(4)). Total testosterone (TT) and sex hormone-binding globulin were measured, and free testosterone (FT) was calculated. Using univariate linear regression analysis, BMD of the lumbar spine was significantly correlated with FT (r=0.32, p<0.01) and TT (r=0.36, p<0.01). Using multiple linear regression analysis adjusted for confounding factors, BMD was significantly correlated with TT (β=0.23, p<0.001) and TC (β=-0.029, p=0.005). Age (β=0.005, p=0.071), body mass index (β=0.005, p=0.053), HbA(1c) (β=-0.002, p=0.72) and duration of diabetes (β=0.001, p=0.62) were not significantly correlated with BMD. Our data indicate that androgens are independent determinants of BMD in male patients with DT2.
Relationship of homocysteine levels with lumbar spine and femur neck BMD in postmenopausal women.
Bahtiri, E; Islami, H; Rexhepi, S; Qorraj-Bytyqi, H; Thaçi, K; Thaçi, S; Karakulak, C; Hoxha, R
2015-01-01
The focus of several studies in recent years has been the association between increased plasma concentrations of homocysteine (Hcy), reduced bone mineral density and increased risk of bone fractures. Nevertheless, inconsistencies persist in the literature. Thus, the objective of this study was to investigate the possible relationship between serum Hcy and vitamin B12 status, and bone mineral density, on a group of post-menopausal women. One hundred thirty-nine postmenopausal women were recruited to enter this cross-sectional study. Bone mineral density (BMD) of total hip, femoral neck and lumbar spine was measured by dual-energy X-ray absorptiometry (DXA) and serum Hcy, vitamin B12, parathyroid hormone (PTH), total calcium and magnesium levels were determined. In addition, we investigated the relationship of Hcy and vitamin B12 and BMD using a meta-analysis approach. Serum Hcy levels were significantly higher in osteoporotic women when compared to other BMD groups, and were inversely related to lumbar spine BMD and femur neck BMD. Body mass index and serum Hcy levels were shown to be significant predictors of BMD at lumbar spine, femur neck and total hip. The performed meta-analysis showed that serum Hcy levels were significantly higher in osteoporotic subjects compared to normal BMD subjects. This study shows that Hcy status, but not vitamin B12 status, is associated with BMD in this cohort of postmenopausal women. We therefore confirm that high Hcy levels are an independent risk factor for osteoporosis. BMD evaluation in women at post menopause with high Hcy levels may be helpful in advising precautionary measures.
Shedd-Wise, Kristine M; Alekel, D Lee; Hofmann, Heike; Hanson, Kathy B; Schiferl, Dan J; Hanson, Laura N; Van Loan, Marta D
2011-01-01
Soy isoflavones exert inconsistent bone density-preserving effects, but the bone strength-preserving effects in humans are unknown. Our double-blind randomized controlled trial examined 2 soy isoflavone doses (80 or 120mg/d) vs placebo tablets on volumetric bone mineral density (vBMD) and strength (by means of peripheral quantitative computed tomography) in healthy postmenopausal women (46-63yr). We measured 3-yr changes in cortical BMD (CtBMD), cortical thickness (CtThk), periosteal circumference (PC), endosteal circumference (EC), and strength-strain index (SSI) at 1/3 midshaft femur (N=171), and trabecular BMD (TbBMD), PC, and SSI at 4% distal tibia (N=162). We found no treatment effect on femur CtThk, PC, or EC, or tibia TbBMD or PC. The strongest predictors (negative) of tibia TbBMD and SSI and femur CtBMD were timepoint and bone resorption; whole-body fat mass was protective of SSI. As time since last menstrual period (TLMP) increased (p=0.012), 120-mg/d dose was protective of CtBMD. The strongest predictors of femur SSI were timepoint, bone resorption, and TLMP (protective). Isoflavone tablets were negative predictors of SSI, but 80-mg/d dose became protective as bone turnover increased (p=0.011). Soy isoflavone treatment for 3yr was modestly beneficial for midshaft femur vBMD as TLMP increased and for midshaft femur SSI as bone turnover increased. Copyright © 2011 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
Interpretation of hip fracture patterns using areal bone mineral density in the proximal femur.
Hey, Hwee Weng Dennis; Sng, Weizhong Jonathan; Lim, Joel Louis Zongwei; Tan, Chuen Seng; Gan, Alfred Tau Liang; Ng, Jun Han Charles; Kagda, Fareed H Y
2015-12-01
Bone mineral density scans are currently interpreted based on an average score of the entire proximal femur. Improvements in technology now allow us to measure bone density in specific regions of the proximal femur. The study attempts to explain the pathophysiology of neck of femur (NOF) and intertrochanteric/basi-cervical (IT) fractures by correlating areal BMD (aBMD) scores with fracture patterns, and explore possible predictors for these fracture patterns. This is a single institution retrospective study on all patients who underwent hip surgeries from June 2010 to August 2012. A total of 106 patients (44 IT/basi-cervical, 62 NOF fractures) were studied. The data retrieved include patient characteristics and aBMD scores measured at different regions of the contralateral hip within 1 month of the injury. Demographic and clinical characteristic differences between IT and NOF fractures were analyzed using Fisher's Exact test and two-sample t test. Relationship between aBMD scores and fracture patterns was assessed using multivariable regression modeling. After adjusted multivariable analysis, T-Troc and T-inter scores were significantly lower in intertrochanteric/basi-cervical fractures compared to neck of femur fractures (P = 0.022 and P = 0.026, respectively). Both intertrochanteric/basi-cervical fractures (mean T.Tot -1.99) and neck of femur fractures (mean T.Tot -1.64) were not found to be associated with a mean T.tot less than -2.5. However, the mean aBMD scores were consistently less than -2.5 for both intertrochanteric/basi-cervical fractures and neck of femur fractures. Gender and calcium intake at the time of injury were associated with specific hip fracture patterns (P = 0.002 and P = 0.011, respectively). Hip fracture patterns following low energy trauma may be influenced by the pattern of reduced bone density in different areas of the hip. Intertrochanteric/basi-cervical fractures were associated with significantly lower T-Troc and T-Inter scores compared to neck of femur fractures, suggesting that the fracture traversed through the areas with the lowest bone density in the proximal femur. In the absence of reduced T.Troc and T.Inter, neck of femur fractures occurred more commonly. T-Total scores may underestimate the severity of osteoporosis/osteopenia and measuring T-score at the neck of femur may better reflect the severity of osteoporosis and likelihood of a fragility fracture.
Effects of Amlodipine on Bone Metabolism in Orchidectomised Spontaneously Hypertensive Rats.
Zivna, Helena; Gradošová, Iveta; Zivny, Pavel; Cermakova, Eva; Palicka, Vladimir
2018-06-13
Spontaneously hypertensive rats (SHR) represent a model of essential hypertension. We studied the effect of amlodipine (AML) on bone markers, bone mineral density (BMD), and biomechanical properties of osteopenic bone induced by orchidectomy in male SHR. Rats were allocated to 3 groups and were sacrificed after 12 weeks: sham-operated control; orchidectomised control; and orchidectomised receiving a diet supplemented with AML. Indicators of bone turnover were assessed in bone homogenate, BMD was measured by dual energy X-ray absorptiometry, and the femurs were subjected to biomechanical testing. Long-term AML administration does not have a negative impact on bone metabolism and density in male SHR. © 2018 S. Karger AG, Basel.
Bone Density and Cortical Structure after Pediatric Renal Transplantation
Terpstra, Anniek M.; Kalkwarf, Heidi J.; Shults, Justine; Zemel, Babette S.; Wetzsteon, Rachel J.; Foster, Bethany J.; Strife, C. Frederic; Foerster, Debbie L.
2012-01-01
The impact of renal transplantation on trabecular and cortical bone mineral density (BMD) and cortical structure is unknown. We obtained quantitative computed tomography scans of the tibia in pediatric renal transplant recipients at transplantation and 3, 6, and 12 months; 58 recipients completed at least two visits. We used more than 700 reference participants to generate Z-scores for trabecular BMD, cortical BMD, section modulus (a summary measure of cortical dimensions and strength), and muscle and fat area. At baseline, compared with reference participants, renal transplant recipients had significantly lower mean section modulus and muscle area; trabecular BMD was significantly greater than reference participants only in transplant recipients younger than 13 years. After transplantation, trabecular BMD decreased significantly in association with greater glucocorticoid exposure. Cortical BMD increased significantly in association with greater glucocorticoid exposure and greater decreases in parathyroid hormone levels. Muscle and fat area both increased significantly, but section modulus did not improve. At 12 months, transplantation associated with significantly lower section modulus and greater fat area compared with reference participants. Muscle area and cortical BMD did not differ significantly between transplant recipients and reference participants. Trabecular BMD was no longer significantly elevated in younger recipients and was low in older recipients. Pediatric renal transplant associated with persistent deficits in section modulus, despite recovery of muscle, and low trabecular BMD in older recipients. Future studies should determine the implications of these data on fracture risk and identify strategies to improve bone density and structure. PMID:22282589
Influence of obesity on bone density in postmenopausal women.
Silva, Henyse G Valente da; Mendonça, Laura M C; Conceição, Flávia L; Zahar, Silvia E V; Farias, Maria Lucia F
2007-08-01
To evaluate the influence of obesity, age, and years since menopause on bone density. A retrospective analysis of bone mineral density (BMD) obtained from 588 women, 41 to 60 years, previously menopaused (1-10 years before). Positive influence of obesity was confirmed by the significant differences in BMD at lumbar spine, femoral neck (FN), and trochanter (TR) between the groups (p < 0.01). Age and years since menopause (YSM) were negatively correlated with BMD at all sites (p = 0.000). Comparing patients within 1 to < 6 YSM versus 6 to 10 YSM, BMD was higher in the former at LS and FN (p < 0.005), despite the higher BMI in the older group (p = 0.01). Obese patients had a lower prevalence of osteoporosis at LS and FN (p = 0.009). Regression analysis identified BMI as the strongest determinant of FN and TR BMD, while YSM was the strongest determinant of LS BMD. The protective effect of obesity is overtaken by age and estradiol deficiency. We recommend that even obese postmenopausal women should be screened for osteoporosis.
Young, Kaelin C; Kendall, Kristina L; Patterson, Kaitlyn M; Pandya, Priyanka D; Fairman, Ciaran M; Smith, Samuel W
2014-11-01
To assess changes in body composition, lumbar-spine bone mineral density (BMD), and rowing performance in college-level rowers over a competition season. Eleven Division I college rowers (mean ± SD 21.4 ± 3.7 y) completed 6 testing sessions throughout the course of their competition season. Testing included measurements of fat mass, bone-free lean mass (BFLM), body fat (%BF), lumbar-spine BMD, and 2000-m time-trial performance. After preseason testing, rowers participated in a periodized training program, with the addition of resistance training to the traditional aerobic-training program. Significant (P < .05) improvements in %BF, total mass, and BFLM were observed at midseason and postseason compared with preseason. Neither lumbar-spine BMD nor BMC significantly changed over the competitive season (P > .05). Finally, rowing performance (as measured by 2000-m time and average watts achieved) significantly improved at midseason and postseason compared with preseason. Our results highlight the efficacy of a seasonal concurrent training program serving to improve body composition and rowing performance, as measured by 2000-m times and average watts, among college-level rowers. Our findings offer practical applications for coaches and athletes looking to design a concurrent strength and aerobic training program to improve rowing performance across a season.
[BONE MINERAL DENSITY IN PATIENTS WITH SYSTEMIC LUPUS ERYTHEMATOSUS--OUR RESULTS].
Gracanin, Ana Gudelj; Marković, Ivan; Loncarević, Jelena; Golob, Majda; Morović-Vergles, Jadranka
2015-01-01
Patients with systemic lupus erythematosus (SLE) are at an increased risk of developing low bone mass (LBM) or osteoporosis, either because of the disease itself or due to its treatment. Osteoporosis and osteoporotic fractures significantly contribute to morbidity and mortality. We aimed to determine the associations of bone mineral density (BMD) changes with the duration of SLE, age, gender, and glucocorticoid treatment in SLE patients treated at our Department. BMD measurements of the lumbar spine and total hip were performed by dual-energy X-ray absorptiometry (DXA). Osteoporosis and LBM were determined according to the 1994 World Health Organization definition. In the statistical analysis, the independent Mann-Whitney U test and Tukey post-hoc testing were used. The study included 48 SLE patients (44 female and 4 male), with a mean age of 45.8 years and an average SLE duration of 9.8 years. Osteoporosis was diagnosed in 21%, and LBM in 15% of the patients. The mean ages of the subgroups with normal BMD, LBM, and osteoporosis were 41.1, 47.6, and 59.0 years, respectively. Variant analysis showed a statistically significant correlation between age and BMD (p < 0.05). The duration of SLE was significantly shorter in patients with normal BMD (7.3 years), compared to patients with LBM (16.1 years) and osteoporosis (12.9 years) (p < 0.05). Nearly all patients (47 of 48) were on long-term treatment with glucocorticoids. One third (33.3 %) of patients did not take vitamin D3, and 56.3 % did not take calcium supplements. The etiopathogenesis of decreased BMD in SLE patients is multifactorial and includes both traditional and SLE-related risk factors. In our group of SLE patients age and glucocorticoid treatment were the major risk factors for LBM. Timely prevention and treatment of LBM and osteoporosis in SLE patients, according to current knowledge, are essential for reducing morbidity and mortality.
Zhang, Yiyun; Feng, Bo
2017-02-01
The relationships of osteoporosis/osteopenia and bone mineral density (BMD) with vascular calcification (VC) remain controversial. Thus, we performed this systematic review and meta-analysis to evaluate the association between BMD, osteoporosis/osteopenia risk and VC. PubMed, Embase and Springer databases were searched from inception to March, 2015 for studies involving the association of vascular calcification with BMD and osteopenia/osteoporosis in women. A manual search of the references cited in the publications was also employed for more relevant studies. The heterogeneity was assessed using Cochran's Q statistic and I 2 test. Weighted mean difference (WMD) or odds ratio (OR) and 95% confidence interval (CI) in the VC group and control group were appropriately pooled. Four studies were enrolled in the meta-analysis. The pooled effects indicated that the spine BMD (WMD = -0.08, 95% CI: -0.11 to -0.06) and hip BMD (WMD = -0.06, 95% CI: -0.10 to -0.07) in VC group were significantly lower than those in control group, respectively. Moreover, patients with VC were prone to develop osteoporosis (OR = 4.39, 95% CI: 2.82-6.83) and osteopenia (OR = 1.72, 95% CI: 1.14-2.60). The results suggest that patients with VC have lower lumbar spine and hip BMD levels and increased risk for developing osteoporosis/osteopenia. Thus, VC patients should be evaluated for the presence of osteoporosis/osteopenia, as well as susceptibility to fractures. © 2016 Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd.
Associations between bone mineral density, grip strength, and lead body burden in older men.
Khalil, Naila; Faulkner, Kimberly A; Greenspan, Susan L; Cauley, Jane A
2014-01-01
To study the association between blood lead concentration (BPb) and bone mineral density (BMD), physical function, and cognitive function in noninstitutionalized community-dwelling older men. Cross-sectional study. University of Pittsburgh clinic, Pittsburgh, Pennsylvania. Non-Hispanic Caucasian men aged 65 and older (N = 445) recruited as a subset of a prospective cohort for the Osteoporotic Fractures in Men Study. BPb was measured in 2007/08. From 2007 to 2009, BMD (g/cm(2)) was measured using dual-energy X-ray absorptiometry. At the same time, physical performance was measured using five tests: grip strength, leg extension power, walking speed, narrow-walk pace, and chair stands. Cognitive performance was assessed using the modified Mini-Mental State Examination and the Trail-Making Test Part B. Participants were categorized into quartiles of BPb. Multivariate regression analysis was used to evaluate the independent relationship between BPb, BMD, and cognitive and physical function. Mean BPb ± standard deviation was 2.25 ± 1.20 μg/dL (median 2 μg/dL, range 1-10 μg/dL). In multivariate-adjusted models, men in higher BPb quartiles had lower BMD at femoral neck and total hip (P-trend < .001 for both). Men with higher BPb had lower age-adjusted score for grip strength (P-trend < .001), although this association was not significant in multivariate-adjusted models (P-trend < .15). BPb was not associated with lumbar spine BMD, cognition, leg extension power, walking speed, narrow-walk pace, or chair stands. Environmental lead exposure may adversely affect bone health in older men. These findings support consideration of environmental exposure in age-associated bone fragility. © 2013, Copyright the Authors Journal compilation © 2013, The American Geriatrics Society.
Association between bone mineral density and incidence of breast cancer.
Fraenkel, Merav; Novack, Victor; Liel, Yair; Koretz, Michael; Siris, Ethel; Norton, Larry; Shafat, Tali; Shany, Shraga; Geffen, David B
2013-01-01
Previous studies have suggested an inverse relationship between bone mineral density (BMD) and breast cancer incidence. The primary objective of this study was to assess whether BMD is associated with risk of subsequent breast cancer occurrence in the female population of southern Israel. The electronic medical charts of women who underwent BMD at the Soroka Medical Center (SMC) between February 2003 and March 2011 were screened for subsequent breast cancer diagnoses. Women were divided by tertiles of BMD at 3 skeletal sites: lumbar spine (LS, L1-4), total hip (TH) and femoral neck (FN). The incidence of breast cancer was calculated. Of 15268 women who underwent BMD testing, 86 were subsequently diagnosed with breast cancer. Most women in the study were older than 50 years (94.2% and 92.7%, respectively; p = 0.597). Women who subsequently developed breast cancer had a higher mean body-mass index (BMI) (30.9 ± 5.5 vs. 29.1 ± 5.7 p = 0.004) and the mean BMD Z-score was significantly higher than in those without breast cancer for all 3 skeletal sites (LS: 0.36 ± 1.58 vs. -0.12 ± 1.42, p = 0.002; TH: 0.37 ± 1.08 vs. 0.03 ± 1.02, p = 0.002; FN: 0.04 ± 0.99 vs. -0.18 ± 0.94; p = 0.026). Women in the highest Z-score tertiles at the FN and TH had a higher chance of developing breast cancer compared to the lowest tertile; odds ratio of 2.15, 2.02, respectively (P = 0.004 and 0.01 respectively). No association was found between the BMD Z-score and the stage, histology, grade or survival from breast cancer. This study provides additional support for an inverse association between BMD and the risk of breast cancer.
Sowers, M R; Finkelstein, J S; Ettinger, B; Bondarenko, I; Neer, R M; Cauley, J A; Sherman, S; Greendale, G A
2003-01-01
We evaluated bone mineral density (BMD), hormone concentrations and menstrual cycle status to test the hypothesis that greater variations in reproductive hormones and menstrual bleeding patterns in mid-aged women might engender an environment permissive for less bone. We studied 2336 women, aged 42-52 years, from the Study of Women's Health Across the Nation (SWAN) who self-identified as African-American (28.2%), Caucasian (49.9%), Japanese (10.5%) or Chinese (11.4%). Outcome measures were lumbar spine, femoral neck and total hip BMD by dual-energy X-ray densitometry (DXA). Explanatory variables were estradiol, testosterone, sex hormone binding globulin (SHBG) and follicle stimulating hormone (FSH) from serum collected in the early follicular phase of the menstrual cycle or menstrual status [premenopausal (menses in the 3 months prior to study entry without change in regularity) or early perimenopause (menstrual bleeding in the 3 months prior to study entry but some change in the regularity of cycles)]. Total testosterone and estradiol concentrations were indexed to SHBG for the Free Androgen Index (FAI) and the Free Estradiol Index (FEI). Serum logFSH concentrations were inversely correlated with BMD (r = -10 for lumbar spine [95% confidence interval (CI): -0.13, -0.06] and r = -0.08 for femoral neck (95% CI: -0.11, -0.05). Lumbar spine BMD values were approximately 0.5% lower for each successive FSH quartile. There were no significant associations of BMD with serum estradiol, total testosterone, FEI or FAI, respectively, after adjusting for covariates. BMD tended to be lower (p values = 0.009 to 0.06, depending upon the skeletal site) in women classified as perimenopausal versus premenopausal, after adjusting for covariates. Serum FSH but not serum estradiol, testosterone or SHBG were significantly associated with BMD in a multiethnic population of women classified as pre- versus perimenopausal, supporting the hypothesis that alterations in hormone environment are associated with BMD differences prior to the final menstrual period.
Association between Bone Mineral Density and Incidence of Breast Cancer
Fraenkel, Merav; Novack, Victor; Liel, Yair; Koretz, Michael; Siris, Ethel; Norton, Larry; Shafat, Tali; Shany, Shraga; Geffen, David B.
2013-01-01
Introduction Previous studies have suggested an inverse relationship between bone mineral density (BMD) and breast cancer incidence. The primary objective of this study was to assess whether BMD is associated with risk of subsequent breast cancer occurrence in the female population of southern Israel. Methods The electronic medical charts of women who underwent BMD at the Soroka Medical Center (SMC) between February 2003 and March 2011 were screened for subsequent breast cancer diagnoses. Women were divided by tertiles of BMD at 3 skeletal sites: lumbar spine (LS, L1–4), total hip (TH) and femoral neck (FN). The incidence of breast cancer was calculated. Results Of 15268 women who underwent BMD testing, 86 were subsequently diagnosed with breast cancer. Most women in the study were older than 50 years (94.2% and 92.7%, respectively; p = 0.597). Women who subsequently developed breast cancer had a higher mean body-mass index (BMI) (30.9±5.5 vs. 29.1±5.7 p = 0.004) and the mean BMD Z-score was significantly higher than in those without breast cancer for all 3 skeletal sites (LS: 0.36±1.58 vs. −0.12±1.42, p = 0.002; TH: 0.37±1.08 vs. 0.03±1.02, p = 0.002; FN: 0.04±0.99 vs. −0.18±0.94; p = 0.026). Women in the highest Z-score tertiles at the FN and TH had a higher chance of developing breast cancer compared to the lowest tertile; odds ratio of 2.15, 2.02, respectively (P = 0.004 and 0.01 respectively). No association was found between the BMD Z-score and the stage, histology, grade or survival from breast cancer. Conclusions This study provides additional support for an inverse association between BMD and the risk of breast cancer. PMID:23940680
Farr, Joshua N.; Laudermilk, Monica J.; Lee, Vinson R.; Blew, Robert M.; Stump, Craig; Houtkooper, Linda; Lohman, Timothy G.; Going, Scott B.
2015-01-01
Summary Longitudinal relationships between adiposity (total body and central) and bone development were assessed in young girls. Total body and android fat masses were positively associated with bone strength and density parameters of the femur and tibia. These results suggest adiposity may have site-specific stimulating effects on the developing bone. Introduction Childhood obesity may impair bone development, but the relationships between adiposity and bone remain unclear. Failure to account for fat pattern may explain the conflicting results. Purpose Longitudinal associations of total body fat mass (TBFM) and android fat mass (AFM) with 2-year changes in weight-bearing bone parameters were examined in 260 girls aged 8–13 years at baseline. Peripheral quantitative computed tomography was used to measure bone strength index (BSI, square milligrams per quartic millimeter), strength–strain index (SSI, cubic millimeters), and volumetric bone mineral density (vBMD, milligrams per cubic centimeter) at distal metaphyseal and diaphyseal regions of the femur and tibia. TBFM and AFM were assessed by dual-energy x-ray absorptiometry. Results Baseline TBFM and AFM were positively associated with the change in femur BSI (r =0.20, r =0.17, respectively) and femur trabecular vBMD (r =0.19, r =0.19, respectively). Similarly, positive associations were found between TBFM and change in tibia BSI and SSI (r =0.16, r =0.15, respectively), and femur total and trabecular vBMD (r =0.12, r =0.14, respectively). Analysis of covariance showed that girls in the middle thirds of AFM had significantly lower femur trabecular vBMD and significantly higher tibia cortical vBMD than girls in the highest thirds of AFM. All results were significant at p <0.05. Conclusions Whereas baseline levels of TBFM and AFM are positive predictors of bone strength and density at the femur and tibia, higher levels of AFM above a certain level may impair cortical vBMD growth at weight-bearing sites. Future studies in obese children will be needed to test this possibility. NIH/NICHD #HD-050775. PMID:24113839
Styrkarsdottir, Unnur; Thorleifsson, Gudmar; Gudjonsson, Sigurjon A; Sigurdsson, Asgeir; Center, Jacqueline R; Lee, Seung Hun; Nguyen, Tuan V; Kwok, Timothy C Y; Lee, Jenny S W; Ho, Suzanne C; Woo, Jean; Leung, Ping-C; Kim, Beom-Jun; Rafnar, Thorunn; Kiemeney, Lambertus A; Ingvarsson, Thorvaldur; Koh, Jung-Min; Tang, Nelson L S; Eisman, John A; Christiansen, Claus; Sigurdsson, Gunnar; Thorsteinsdottir, Unnur; Stefansson, Kari
2016-01-06
Bone mineral density (BMD) is a measure of osteoporosis and is useful in evaluating the risk of fracture. In a genome-wide association study of BMD among 20,100 Icelanders, with follow-up in 10,091 subjects of European and East-Asian descent, we found a new BMD locus that harbours the PTCH1 gene, represented by rs28377268 (freq. 11.4-22.6%) that associates with reduced spine BMD (P=1.0 × 10(-11), β=-0.09). We also identified a new spine BMD signal in RSPO3, rs577721086 (freq. 6.8%), that associates with increased spine BMD (P=6.6 × 10(-10), β=0.14). Importantly, both variants associate with osteoporotic fractures and affect expression of the PTCH1 and RSPO3 genes that is in line with their influence on BMD and known biological function of these genes. Additional new BMD signals were also found at the AXIN1 and SOST loci and a new lead SNP at the EN1 locus.
Styrkarsdottir, Unnur; Thorleifsson, Gudmar; Gudjonsson, Sigurjon A.; Sigurdsson, Asgeir; Center, Jacqueline R.; Lee, Seung Hun; Nguyen, Tuan V.; Kwok, Timothy C.Y.; Lee, Jenny S.W.; Ho, Suzanne C.; Woo, Jean; Leung, Ping-C.; Kim, Beom-Jun; Rafnar, Thorunn; Kiemeney, Lambertus A.; Ingvarsson, Thorvaldur; Koh, Jung-Min; Tang, Nelson L.S.; Eisman, John A.; Christiansen, Claus; Sigurdsson, Gunnar; Thorsteinsdottir, Unnur; Stefansson, Kari
2016-01-01
Bone mineral density (BMD) is a measure of osteoporosis and is useful in evaluating the risk of fracture. In a genome-wide association study of BMD among 20,100 Icelanders, with follow-up in 10,091 subjects of European and East-Asian descent, we found a new BMD locus that harbours the PTCH1 gene, represented by rs28377268 (freq. 11.4–22.6%) that associates with reduced spine BMD (P=1.0 × 10−11, β=−0.09). We also identified a new spine BMD signal in RSPO3, rs577721086 (freq. 6.8%), that associates with increased spine BMD (P=6.6 × 10−10, β=0.14). Importantly, both variants associate with osteoporotic fractures and affect expression of the PTCH1 and RSPO3 genes that is in line with their influence on BMD and known biological function of these genes. Additional new BMD signals were also found at the AXIN1 and SOST loci and a new lead SNP at the EN1 locus. PMID:26733130
Cardiorespiratory fitness and hip bone mineral density in women: a 6-year prospective study.
Tucker, Larry A; Nokes, Neil R; Bailey, Bruce W; Lecheminant, James D
2014-10-01
Cross-sectional studies and short term interventions focusing on fitness and bone mineral density (BMD) are common. However, few investigations have studied the effect of fitness on BMD over an extended period of time. The present study was conducted to determine the extent to which cardiorespiratory fitness influences risk of BMD loss at the hip over 6 yr. A prospective cohort design was used with 245 healthy, middle-aged women. Hip BMD was assessed using dual energy x-ray absorptiometry. Calcium and vitamin D were measured using the Block Food Frequency Questionnaire. Menopause status was measured by a questionnaire. Results showed that fit and unfit women experienced similar changes in hip BMD over time. Specifically, unfit women experienced a non-significant 7% increased risk of losing hip BMD compared to their counterparts (RR = 1.07, 95% CI = 0.66, 1.73). Adjusting statistically for differences in age, initial body weight, and hip BMD, weight change, menopause status, calcium and vitamin D intake, and time between assessments had little effect on the relationship. Fitness level did not influence risk of hip BMD loss over time.
Antioxidant intake and bone status in a cross-sectional study of Brazilian women with osteoporosis.
De França, Natasha A G; Camargo, Marilia B R; Lazaretti-Castro, Marise; Martini, Lígia Araújo
2013-04-01
This study aimed to investigate the association between antioxidant intake and bone mineral density (BMD) in postmenopausal women with osteoporosis. We conducted a cross-sectional study with 150 women, mean age 68.7 (SD 9.1) years. BMD and body composition were obtained using dual-energy X-ray absorptiometry (DXA). We assessed anthropometric measures and dietary intake and applied an adapted Dietary Antioxidant Quality Score (a-DAQS) to evaluate the antioxidant consumption. 65.3% of women had higher scores on the a-DAQS. We found no relationship between the a-DAQS and BMD; however, we observed an inverse correlation between vitamin A and lumbar spine (LS) BMD in g/cm(2) (r = - 0.201; p = 0.013). An analysis of variance (ANOVA) test also showed that vitamin A was negatively associated with the LS BMD (F = 6.143; p = 0.013, but without significance when a multivariate analysis was applied. The a-DAQS did not have an association with BMD; however, Vitamin A showed a negative correlation with BMD, but such an association disappeared when the other antioxidants were taken together. Our findings encourage an antioxidant-based dietary approach to osteoporosis prevention and treatment, since the negative effect of vitamin A was neutralized by the intake of such nutrients. © The Author(s) 2015.
Nybo, Mads; Jespersen, Bente; Aarup, Michael; Ejersted, Charlotte; Hermann, Anne Pernille; Brixen, Kim
2013-01-01
The aim of the study was to identify biomarkers of alteration in bone mineral density (BMD) in patients on haemodialysis (HD) and peritoneal dialysis (PD). In a cross-sectional, longitudinal study dual-energy X-ray absorptiometry scans were performed in 146 HD-patients and 28 PD-patients. Follow-up after 14 months (mean) was conducted in 73 patients. As potential biomarkers we investigated parathyroid hormone (PTH), 25-hydroxy vitamin-D, ionised calcium, albumin, phosphate, and total alkaline phosphatases (t-ALP). Both groups of dialysis patients had lower BMD in the femoral neck (BMD(neck)) (P < 0.001) and forearm (BMD(forearm)) (P < 0.001) compared to healthy controls, but comparable BMD in the lumbar spine (BMD(spine)). BMD did not differ between dialysis types, but patients ever-treated with glucocorticoids had significantly lower BMD, while patients with polycystic kidney disease had higher BMD. BMD correlated with body weight, actual age, age at initiation of dialysis, duration of dialysis and levels of PTH and t-ALP. However, t-ALP only remained associated with low BMD(spine) after adjusting for other factors (P = 0.001). In the follow-up study all patients had decreased BMD in all three locations, but only for the lumbar spine there was a significant association between BMD and the bone markers t-ALP (P = 0.009) and PTH (P = 0.013). Both HD and PD patients have low BMD, and increased concentrations of t-ALP is associated BMD(spine) after adjustment, while PTH and t-ALP is associated with decrease in BMD(spine) over time. This substantiates the use of these biomarkers in both types of dialysis patients.
Sex-specific factors for bone density in patients with schizophrenia.
Lin, Chieh-Hsin; Lin, Chun-Yuan; Huang, Tiao-Lai; Wang, Hong-Song; Chang, Yue-Cune; Lane, Hsien-Yuan
2015-03-01
Patients with schizophrenia are susceptible to low bone mineral density (BMD). Many risk factors have been suggested. However, it remains uncertain whether the risk factors differ between men and women. In addition, the study of bone density in men is neglected more often than that in women. This study aims to examine specific risk factors of low BMD in different sexes. Men (n=80) and women (n=115) with schizophrenia, similar in demographic and clinical characteristics, were enrolled in three centers. Clinical and laboratory variables (including blood levels of prolactin, sex and thyroid hormones, cortisol, calcium, and alkaline phosphatase) were collected. BMD was measured using a dual-energy X-ray absorptiometer. Men had lower BMD than women. Predictors for BMD in men included hyperprolactinemia (B=-0.821, P=0.009), body weight (B=0.024, P=0.046), and Global Assessment of Functioning score (B=0.027, P=0.043); in women, BMD was associated with menopause (B=-1.070, P<0.001), body weight (B=0.027, P=0.003), and positive symptoms (B=0.094, P<0.001). In terms of the effect of psychotic symptoms, positive symptoms were related positively to BMD in women, but not in men. The findings suggest that sex-specific risk factors should be considered for an individualized intervention of bone loss in patients with schizophrenia. Physicians should pay particular attention to bone density in men with hyperprolactinemia and postmenopausal women. Further prospective studies in other populations are warranted to confirm these findings.
Esfahanizadeh, Nasrin; Davaie, Sotoudeh; Rokn, A R; Daneshparvar, Hamid Reza; Bayat, Noushin; Khondi, Nasrin; Ajvadi, Sara; Ghandi, Mostafa
2013-07-01
The aim of the present study was to evaluate the relationship between the bone density of various regions of jaws and skeletal bones. A total of 110 patients with a mean age of 55.01 ± 10.77 years were selected for the purpose of the present descriptive study. Dual X-ray Energy Absorptiometry (DXA) was carried out to determine bone mineral density (BMD) of the femur and lumbar vertebrae. Then all the subjects underwent DXA of the jaw bones and BMD values were determined at four jaw regions. Data were analyzed by SPSS 16 statistical software, and the correlation between the various BMD values was determined by Pearson's correlation coefficient. The results showed that 42.7% of females had normal BMD values in the femur, and in vertebrae, 20% were osteopenic and 37.3% suffered from osteoporosis, with statistically significant differences in the BMD values of the jaws between the three above-mentioned groups (P < 0.001). There was an increasing tendency toward osteopenia and osteoporosis with age. There was a positive correlation between BMD values of the femur and lumbar vertebrae and those of all the jaw regions under study (P < 0.005). There was a negative correlation (P < 0.01) between age and the BMD values of the femur, lumbar vertebrae and anterior maxilla. The bone density of the maxilla and mandible and presence of osteoporosis or osteopenia in these bones might reflect the same problem in skeletal bones.
Isanejad, M; Sirola, J; Mursu, J; Kröger, H; Tuppurainen, M; Erkkilä, A T
2017-01-01
It has been hypothesized that high protein intakes are associated with lower bone mineral content (BMC). Previous studies yield conflicting results and thus far no studies have undertaken the interaction of body mass index (BMI) and physical activity with protein intakes in relation to BMC and bone mineral density (BMD). To evaluate the associations of dietary total protein (TP), animal protein (AP) and plant protein (PP) intakes with BMC and BMD and their changes. We tested also the interactions of protein intake with, obesity (BMI ≤30 vs. >30 kg/m2) and physical activity level (passive vs. active). Design/ Setting: Prospective cohort study (Osteoporosis Risk-Factor and Fracture-Prevention Study). Participants/measures: At the baseline, 554 women aged 65-72 years filled out a 3-day food record and a questionnaire covering data on lifestyle, physical activity, diseases, and medications. Intervention group received calcium 1000 mg/d and cholecalciferol 800 IU for 3 years. Control group received neither supplementation nor placebo. Bone density was measured at baseline and year 3, using dual energy x-ray absorptiometry. Multivariable regression analyses were conducted to examine the associations between protein intake and BMD and BMC. In cross-sectional analyses energy-adjusted TP (P≤0·029) and AP (P≤0·045) but not PP (g/d) were negatively associated with femoral neck (FN) BMD and BMC. Women with TP≥1·2 g/kg/body weight (BW) (Ptrend≤0·009) had lower FN, lumbar spine (LS) and total BMD and BMC. In follow-up analysis, TP (g/kg/BW) was inversely associated with LS BMD and LS BMC. The detrimental associations were stronger in women with BMI<30 kg/m2. In active women, TP (g/kg/BW) was positively associated with LS BMD and FN BMC changes. This study suggests detrimental associations between protein intake and bone health. However, these negative associations maybe counteracted by BMI>30 kg/m2 and physical activity.
Stagraczyński, Maciej; Kulczyk, Tomasz; Leszczyński, Piotr; Męczekalski, Błażej
2015-10-01
Profound hypoestrogenism causes increased risk of osteoporosis and bone fracture in menopause. This period of women life is also characterized by decrease number of teeth and deterioration of oral cavity health. The aim of the study was to assess the number of teeth, hormonal profile (Follicle-stimualting hormone (FSH), estradiol (E2), testosterone (T) and dehydroepiandrosterone sulphate (DHEA-S) and the bone mineral density (BMD) of the lumbar part of the spine in postmenopausal women with osteoporosis, osteopenia and normal BMD. The next step of the study was to determine whether there was a correlation between vertebral mineral bone density, the hormonal profile and the number of teeth. A total number of 47 women was involved in the study. Based on the results of densitometry tests (DEXA) of vertebral column the subjects were divided into 3 groups: 10 with osteoporosis, 20 with osteopenia and 17 with normal BMD. All the subjects had undergone a hormonal assessment which included blood serum estimation for FSH, E2, DHEA-S and T levels. Also the total number of teeth present was recorded. Serum estradiol and testosterone levels in postmenopausal women were found to be positively correlated with the number of teeth present. A negative correlation was found between age and the number of maxillary teeth in postmenopausal women with osteopenia. There was no influence of serum FSH, estradiol, testosterone and DHEA-S levels on vertebral BMD loss in postmenopausal women. There was no correlation between teeth number and BMD of vertebral column. Serum levels of estradiol and testosterone in postmenopausal women positively correlate with teeth numbers. Age is the main risk factor for teeth loss in postmenopausal women. © 2015 MEDPRESS.
European Bone Mineral Density Loci Are Also Associated with BMD in East-Asian Populations
Styrkarsdottir, Unnur; Halldorsson, Bjarni V.; Gudbjartsson, Daniel F.; Tang, Nelson L. S.; Koh, Jung-Min; Xiao, Su-mei; Kwok, Timothy C. Y.; Kim, Ghi Su; Chan, Juliana C. N.; Cherny, Stacey; Lee, Seung Hun; Kwok, Anthony; Ho, Suzanne; Gretarsdottir, Solveig; Pop Kostic, Jelena; Palsson, Stefan Th.; Sigurdsson, Gunnar; Sham, Pak C.; Kim, Beom-Jun; Kung, Annie W. C.; Kim, Shin-Yoon; Woo, Jean; Leung, Ping-C.; Kong, Augustine; Thorsteinsdottir, Unnur; Stefansson, Kari
2010-01-01
Most genome-wide association (GWA) studies have focused on populations of European ancestry with limited assessment of the influence of the sequence variants on populations of other ethnicities. To determine whether markers that we have recently shown to associate with Bone Mineral Density (BMD) in Europeans also associate with BMD in East-Asians we analysed 50 markers from 23 genomic loci in samples from Korea (n = 1,397) and two Chinese Hong Kong sample sets (n = 3,869 and n = 785). Through this effort we identified fourteen loci that associated with BMD in East-Asian samples using a false discovery rate (FDR) of 0.05; 1p36 (ZBTB40, P = 4.3×10−9), 1p31 (GPR177, P = 0.00012), 3p22 (CTNNB1, P = 0.00013), 4q22 (MEPE, P = 0.0026), 5q14 (MEF2C, P = 1.3×10−5), 6q25 (ESR1, P = 0.0011), 7p14 (STARD3NL, P = 0.00025), 7q21 (FLJ42280, P = 0.00017), 8q24 (TNFRSF11B, P = 3.4×10−5), 11p15 (SOX6, P = 0.00033), 11q13 (LRP5, P = 0.0033), 13q14 (TNFSF11, P = 7.5×10−5), 16q24 (FOXL1, P = 0.0010) and 17q21 (SOST, P = 0.015). Our study marks an early effort towards the challenge of cataloguing bone density variants shared by many ethnicities by testing BMD variants that have been established in Europeans, in East-Asians. PMID:20949110
Evaluation of a serological test for the diagnosis of Borrelia miyamotoi disease in Europe.
Jahfari, Setareh; Sarksyan, Denis S; Kolyasnikova, Nadezda M; Hovius, Joppe W; Sprong, Hein; Platonov, Alexander E
2017-05-01
Borrelia miyamotoi causes systemic febrile illness and is transmitted by the same tick species that transmits Borrelia burgdorferi sensu lato and tick-borne encephalitis virus. We describe a serological test using a fragment of glycerophosphodiester phosphodiesterase (GlpQ) as an antigen, and determined its performance in well-defined patient categories. Serum of patients with PCR-confirmed Borrelia miyamotoi disease (BMD), Lyme borreliosis (LB), tick-borne encephalitis (TBE), and healthy blood donors (HBD) were collected in Udmurt Republic, Russia. Sera of BMD and LB patients were collected at hospital admission, one week, one month and one year after admission. The levels of IgM and IgG anti-GlpQ antibodies, determined as optical density values in Luminex bead-based assays, were significantly higher in the BMD patient group than in LB patients, TBE patients or HBD group (all p<0.05). By using a strict cut-off value, it was possible to exclude B. miyamotoi infection in LB and TBE patients and to serologically confirm B. miyamotoi infection in 44% to 94% of the PCR-positive BMD patients (95% confidence interval). Thus, sensitive serological assays should not solely rely on rGlpQ, to support the diagnosis of acute BMD. Copyright © 2017 Elsevier B.V. All rights reserved.
Going, Scott; Lohman, Timothy; Houtkooper, Linda; Metcalfe, Lauve; Flint-Wagner, Hilary; Blew, Robert; Stanford, Vanessa; Cussler, Ellen; Martin, Jane; Teixeira, Pedro; Harris, Margaret; Milliken, Laura; Figueroa-Galvez, Arturo; Weber, Judith
2003-08-01
Osteoporosis is a major public health concern. The combination of exercise, hormone replacement therapy, and calcium supplementation may have added benefits for improving bone mineral density compared to a single intervention. To test this notion, 320 healthy, non-smoking postmenopausal women, who did or did not use hormone replacement therapy (HRT), were randomized within groups to exercise or no exercise and followed for 12 months. All women received 800 mg calcium citrate supplements daily. Women who exercised performed supervised aerobic, weight-bearing and weight-lifting exercise, three times per week in community-based exercise facilities. Regional bone mineral density (BMD) was assessed by dual energy X-ray absorptiometry. Women who used HRT, calcium, and exercised increased femoral neck, trochanteric and lumbar spine bone mineral density by approximately 1-2%. Trochanteric BMD was also significantly increased by approximately 1.0% in women who exercised and used calcium without HRT compared to a negligible change in women who used HRT and did not exercise. The results demonstrate that regional BMD can be improved with aerobic, weight-bearing activity combined with weight lifting at clinically relevant sites in postmenopausal women. The response was significant at more sites in women who used HRT, suggesting a greater benefit with hormone replacement and exercise compared to HRT alone.
Ethnic and sex differences in bone marrow adipose tissue and bone mineral density relationship
Chen, J.; Gantz, M.; Punyanitya, M.; Heymsfield, S. B.; Gallagher, D.; Albu, J.; Engelson, E.; Kotler, D.; Pi-Sunyer, X.; Shapses, S.
2012-01-01
Summary The relationship between bone marrow adipose tissue and bone mineral density is different between African Americans and Caucasians as well as between men and women. This suggests that the mechanisms that regulate the differentiation and proliferation of bone marrow stromal cells may differ in these populations. Introduction It has long been established that there are ethnic and sex differences in bone mineral density (BMD) and fracture risk. Recent studies suggest that bone marrow adipose tissue (BMAT) may play a role in the pathogenesis of osteoporosis. It is unknown whether ethnic and sex differences exist in the relationship between BMAT and BMD. Methods Pelvic BMAT was evaluated in 455 healthy African American and Caucasian men and women (age 18–88 years) using whole-body T1-weighted magnetic resonance imaging. BMD was measured using whole-body dual-energy X-ray absorptiometry. Results A negative correlation was observed between pelvic BMAT and total body BMD or pelvic BMD (r=−0.533, −0.576, respectively; P<0.001). In multiple regression analyses with BMD as the dependent variable, ethnicity significantly entered the regression models as either an individual term or an interaction with BMAT. Menopausal status significantly entered the regression model with total body BMD as the dependent variable. African Americans had higher total body BMD than Caucasians for the same amount of BMAT, and the ethnic difference for pelvic BMD was greater in those participants with a higher BMAT. Men and premeno-pausal women had higher total body BMD levels than postmenopausal women for the same amount of BMAT. Conclusions An inverse relationship exists between BMAT and BMD in African American and Caucasian men and women. The observed ethnic and sex differences between BMAT and BMD in the present study suggest the possibility that the mechanisms regulating the differentiation and proliferation of bone marrow stromal cells may differ in these populations. PMID:22173789
Ethnic and sex differences in bone marrow adipose tissue and bone mineral density relationship.
Shen, W; Chen, J; Gantz, M; Punyanitya, M; Heymsfield, S B; Gallagher, D; Albu, J; Engelson, E; Kotler, D; Pi-Sunyer, X; Shapses, S
2012-09-01
The relationship between bone marrow adipose tissue and bone mineral density is different between African Americans and Caucasians as well as between men and women. This suggests that the mechanisms that regulate the differentiation and proliferation of bone marrow stromal cells may differ in these populations. It has long been established that there are ethnic and sex differences in bone mineral density (BMD) and fracture risk. Recent studies suggest that bone marrow adipose tissue (BMAT) may play a role in the pathogenesis of osteoporosis. It is unknown whether ethnic and sex differences exist in the relationship between BMAT and BMD. Pelvic BMAT was evaluated in 455 healthy African American and Caucasian men and women (age 18-88 years) using whole-body T1-weighted magnetic resonance imaging. BMD was measured using whole-body dual-energy X-ray absorptiometry. A negative correlation was observed between pelvic BMAT and total body BMD or pelvic BMD (r = -0.533, -0.576, respectively; P < 0.001). In multiple regression analyses with BMD as the dependent variable, ethnicity significantly entered the regression models as either an individual term or an interaction with BMAT. Menopausal status significantly entered the regression model with total body BMD as the dependent variable. African Americans had higher total body BMD than Caucasians for the same amount of BMAT, and the ethnic difference for pelvic BMD was greater in those participants with a higher BMAT. Men and premenopausal women had higher total body BMD levels than postmenopausal women for the same amount of BMAT. An inverse relationship exists between BMAT and BMD in African American and Caucasian men and women. The observed ethnic and sex differences between BMAT and BMD in the present study suggest the possibility that the mechanisms regulating the differentiation and proliferation of bone marrow stromal cells may differ in these populations.
Cankaya, Deniz; Tabak, Yalcin; Ozturk, Akif Muhtar; Gunay, Muhammed Cuneyd
2015-07-01
Many factors affect implant stability and periprosthetic bone mineral density (BMD) following total joint arthroplasty. We asked whether perioperative alendronate, risedronate, calcitonin and indomethacine administration altered (1) femoral stem shear strength and periprosthetic bone mineral density BMD in ovariectomized rats and (2) whether there were differences in the effect of these drugs. Thirty overiectomized rats were divided into five groups and implanted with intramedullary mini-cortical screws in the femur. Four groups were treated with alendronate, risedronate, salmon calcitonin and indomethacin for 4 weeks preoperatively and 8 weeks postoperatively. Although alendronate and risedronate increased the periprosthetic BMD more than calcitonin, they did not alter implant fixation compared to calcitonin. Indomethacin significantly decreased the BMD around the stem and implant stability compared to all other groups. This study showed that perioperative treatment with bisphosphonates and calcitonin improved the BMD around the stems and implant stability. Although bisphosphonates increased the BMD more than calcitonin, there was no difference in implant stability. Indomethacin markedly decreased the periprosthetic BMD and implant stability. The main clinical significance of our study was the finding about the need to strictly avoid long-term use of high-dose nonsteroidal antiinflammatory drugs for patients who have major joint arthritis and a previous history of arthroplasty.
Sun, Yubo; Scannell, Brian P; Honeycutt, Patrick R; Mauerhan, David R; H, James Norton; Hanley Jr, Edward N
2015-01-01
Osteoarthritis is a joint disease involved in articular cartilage, subchondral bone, meniscus and synovial membrane. This study sought to examine cartilage degeneration, subchondral bone mineral density (BMD) and meniscal mineral density (MD) in male Hartley, female Hartley and female strain 13 guinea pigs to determine the association of cartilage degeneration with subchondral BMD and meniscal MD. Cartilage degeneration, subchondral BMD and meniscal MD in 12 months old guinea pigs were examined with histochemistry, X-ray densitometry and calcium analysis. We found that male Hartley guinea pigs had more severe cartilage degeneration, subchondral BMD and meniscal MD than female Hartley guinea pigs, but not female strain 13 guinea pigs. Female strain 13 guinea pigs had more severe cartilage degeneration and higher subchondral BMD, but not meniscal MD, than female Hartley guinea pigs. These findings indicate that higher subchondral BMD, not meniscal MD, is associated with more severe cartilage degeneration in the guinea pigs and suggest that abnormal subchondral BMD may be a therapeutic target for OA treatment. These findings also indicate that the pathogenesis of OA in the male guinea pigs and female guinea pigs are different. Female strain 13 guinea pig may be used to study female gender-specific pathogenesis of OA. PMID:26401159
Obermayer-Pietsch, Barbara M; Bonelli, Christine M; Walter, Daniela E; Kuhn, Regina J; Fahrleitner-Pammer, Astrid; Berghold, Andrea; Goessler, Walter; Stepan, Vinzenz; Dobnig, Harald; Leb, Georg; Renner, Wilfried
2004-01-01
Evidence that genetic disposition for adult lactose intolerance significantly affects calcium intake, bone density, and fractures in postmenopausal women is presented. PCR-based genotyping of lactase gene polymorphisms may complement diagnostic procedures to identify persons at risk for both lactose malabsorption and osteoporosis. Lactase deficiency is a common autosomal recessive condition resulting in decreased intestinal lactose degradation. A -13910 T/C dimorphism (LCT) near the lactase phlorizin hydrolase gene, reported to be strongly associated with adult lactase nonpersistence, may have an impact on calcium supply, bone density, and osteoporotic fractures in the elderly. We determined LCT genotypes TT, TC, and CC in 258 postmenopausal women using a polymerase chain reaction-based assay. Genotypes were related to milk intolerance, nutritional calcium intake, intestinal calcium absorption, bone mineral density (BMD), and nonvertebral fractures. Twenty-four percent of all women were found to have CC genotypes and genetic lactase deficiency. Age-adjusted BMD at the hip in CC genotypes and at the spine in CC and TC genotypes was reduced by -7% to -11% depending on the site measured (p = 0.04). LCT(T/C-13910) polymorphisms alone accounted for 2-4% of BMD in a multiple regression model. Bone fracture incidence was significantly associated with CC genotypes (p = 0.001). Milk calcium intake was significantly lower (-55%, p = 0.004) and aversion to milk consumption was significantly higher (+166%, p = 0.01) in women with the CC genotype, but there were no differences in overall dietary calcium intake or in intestinal calcium absorption test values. The LCT(T/C-13910) polymorphism is associated with subjective milk intolerance, reduced milk calcium intake, and reduced BMD at the hip and the lumbar spine and may predispose to bone fractures. Genetic testing for lactase deficiency may complement indirect methods in the detection of individuals at risk for both lactose malabsorption and osteoporosis.
Xiao, W-J; He, J-W; Zhang, H; Hu, W-W; Gu, J-M; Yue, H; Gao, G; Yu, J-B; Wang, C; Ke, Y-H; Fu, W-Z; Zhang, Z-L
2011-03-01
Arachidonate 12-lipoxygenase (ALOX12) is a member of the lipoxygenase superfamily, which catalyzes the incorporation of molecular oxygen into polyunsaturated fatty acids. The products of ALOX12 reactions serve as endogenous ligands for peroxisome proliferator-activated receptor γ (PPARG). The activation of the PPARG pathway in marrow-derived mesenchymal progenitors stimulates adipogenesis and inhibits osteoblastogenesis. Our objective was to determine whether polymorphisms in the ALOX12 gene were associated with variations in peak bone mineral density (BMD) and obesity phenotypes in young Chinese men. All six tagging single-nucleotide polymorphisms (SNPs) in the ALOX12 gene were genotyped in a total of 1215 subjects from 400 Chinese nuclear families by allele-specific polymerase chain reaction. The BMD at the lumbar spine and hip, total fat mass (TFM) and total lean mass (TLM) were measured using dual-energy X-ray absorptiometry. The pairwise linkage disequilibrium among SNPs was measured, and the haplotype blocks were inferred. Both the individual SNP markers and the haplotypes were tested for an association with the peak BMD, body mass index, TFM, TLM and percentage fat mass (PFM) using the quantitative transmission disequilibrium test (QTDT). Using the QTDT, significant within-family association was found between the rs2073438 polymorphism in the ALOX12 gene and the TFM and PFM (P=0.007 and 0.012, respectively). Haplotype analyses were combined with our individual SNP results and remained significant even after correction for multiple testing. However, we failed to find significant within-family associations between ALOX12 SNPs and the BMD at any bone site in young Chinese men. Our present results suggest that the rs2073438 polymorphism of ALOX12 contributes to the variation of obesity phenotypes in young Chinese men, although we failed to replicate the association with the peak BMD variation in this sample. Further independent studies are needed to confirm our findings.
Chao, An-Shine; Chen, Fang-Ping; Lin, Yu-Ching; Huang, Ting-Shuo; Fan, Chih-Ming; Yu, Yu-Wei
2015-12-01
To evaluate the efficacy of the World Health Organization Fracture Risk Assessment Tool, excluding bone mineral density (pre-BMD FRAX), in identifying Taiwanese postmenopausal women needing dual-energy X-ray absorptiometry (DXA) examination for further treatment. The pre-BMD FRAX score was calculated for 231 postmenopausal women who participated in public health education workshops in the local Keelung community, Taiwan. DXA scanning and vertebral fracture assessment (VFA) were arranged for women classified as intermediate or high risk for fracture using the pre-BMD FRAX fracture probability. Pre-BMD FRAX classified 26 women as intermediate risk and 37 as having high risk for fracture. Subsequent DXA scans for these 63 women showed that 36 were osteoporotic, 19 were osteopenic, and eight had normal bone density. Concurrent VFA revealed 25 spine factures in which 14 were osteoporotic, seven were osteopenic, and four had normal bone density. The efficacy of the pre-BMD FRAX score to identify those patients with low bone mass by DXA was 87.3% (55/63). When VFA was combined with BMD to identify those patients with high risk (osteopenia, osteoporosis, or spinal fracture), the efficacy of the pre-BMD score increased to 93.7% (59/63). According to the National Osteoporosis Foundation, the overall concordance between pre-BMD FRAX and BMD, expressed through the kappa index, was 0.967. Compared with the evaluation when BMD was used alone, there was a significant increase in efficacy in identifying women who need treatment using BMD plus VFA or FRAX plus BMD. Furthermore, the highest efficacy was achieved when FRAX with BMD and VFA was used. The pre-BMD FRAX score not only efficiently predicts postmenopausal patients who are potentially at risk and might require treatment but also reduces unnecessary DXA use. Concurrent VFA during DXA use increases spine fracture detection. This improvement in diagnostic efficacy allows clinicians to provide the most appropriate therapeutic recommendation. Copyright © 2015. Published by Elsevier B.V.
Du, Y; Zhao, L-J; Xu, Q; Wu, K-H; Deng, H-W
2017-05-01
Low bone mineral density (BMD) and osteoporosis have become a public health problem. We found that non-Hispanic white, black, and Asian adults with extremely low education and personal income are more likely to have lower BMD. This relationship is gender-specific. These findings are valuable to guide bone health interventions. The evidence is limited regarding the relationship between socioeconomic status (SES) and bone mineral density (BMD) for minority populations in the USA, as well as the relationship between SES and BMD for men. This study explored and examined the relationship between SES and BMD by race/ethnicity and gender. Data (n = 6568) from the Louisiana Osteoporosis Study (LOS) was examined, including data for non-Hispanic whites (n = 4153), non-Hispanic blacks (n = 1907), and non-Hispanic Asians (n = 508). General linear models were used to estimate the relationship of SES and BMD (total hip and lumbar spine) stratified by race/ethnicity and gender. Adjustments were made for physiological and behavioral factors. After adjusting for covariates, men with education levels below high school graduate experienced relatively low hip BMD than their counterparts with college or graduate education (p < 0.05). In addition, women reporting a personal annual income under $20,000 had relatively low hip and spine BMD than their counterparts with higher income level(s) (p < 0.05). Establishing a conclusive positive or negative association between BMD and SES proved to be difficult. However, individuals who are at an extreme SES disadvantage are the most vulnerable to have relatively low BMD in the study population. Efforts to promote bone health may benefit from focusing on men with low education levels and women with low individual income.
Kumar, Ashok; Devi, Salam Gyaneshwori; Mittal, Soniya; Shukla, Deepak Kumar; Sharma, Shashi
2013-01-01
Background & objectives: The osteoporotic risk for women increases soon after menopause. Bone turnover markers are known to be associated with bone loss and fracture risk. This study was aimed to assess bone turnover using bone markers and their correlation with bone mineral density (BMD) in pre- and post-menopausal women. Methods: A total of 255 healthy women (160 pre- and 95 post-menopausal) were enrolled. Serum bone alkaline phosphatase (sBAP) and serum N-terminal telopeptide of type I collagen (NTX) were measured to evaluate the bone formation and resorption, respectively. Bone mineral density was determined at lumbar spine (L2-L4) anteroposteriorly, femoral neck and Ward's triangle using Prodigy dual-energy X-ray absorptiometry (DXA) system. The comparison of years since menopause with respect to BMD and bone markers was also evaluated. Results: NTX and sBAP showed significant negative correlation with BMD of femur neck and Ward's triangle in postmenopausal women. BMD of all three sides were significant variables for NTX and BMD of femur neck and Ward's triangle for sBAP in postmenopausal women. BMD lumbar spine was a significant variable for sBAP in premenopausal women. The mean values of NTX increased significantly with increase in the duration of years since menopause. The BMD of all three sides decreased significantly with increase in the duration of years since menopause. Interpretation & conclusions: Serum NTX and sBAP were inversely correlated to BMD of femur neck and Ward's triangle in post-menopausal women. Simultaneous measurements of NTX and BMD in the north Indian women, suggest that bone resorption in women with low BMD remains high after menopause. PMID:23481051
Lang, T.; Boonen, S.; Cummings, S.; Delmas, P. D.; Cauley, J. A.; Horowitz, Z.; Kerzberg, E.; Bianchi, G.; Kendler, D.; Leung, P.; Man, Z.; Mesenbrink, P.; Eriksen, E. F.; Black, D. M.
2016-01-01
Summary Changes in bone mineral density and bone strength following treatment with zoledronic acid (ZOL) were measured by quantitative computed analysis (QCT) or dual-energy X-ray absorptiometry (DXA). ZOL treatment increased spine and hip BMD vs placebo, assessed by QCT and DXA. Changes in trabecular bone resulted in increased bone strength. Introduction To investigate bone mineral density (BMD) changes in trabecular and cortical bone, estimated by quantitative computed analysis (QCT) or dual-energy X-ray absorptiometry (DXA), and whether zoledronic acid 5 mg (ZOL) affects bone strength. Methods In 233 women from a randomized, controlled trial of once-yearly ZOL, lumbar spine, total hip, femoral neck, and trochanter were assessed by DXA and QCT (baseline, Month 36). Mean percentage changes from baseline and between-treatment differences (ZOL vs placebo, t-test) were evaluated. Results Mean between-treatment differences for lumbar spine BMD were significant by DXA (7.0%, p<0.01) and QCT (5.7%, p<0.0001). Between-treatment differences were significant for trabecular spine (p=0.0017) [non-parametric test], trabecular trochanter (10.7%, p<0.0001), total hip (10.8%, p<0.0001), and compressive strength indices at femoral neck (8.6%, p=0.0001), and trochanter (14.1%, p<0.0001). Conclusions Once-yearly ZOL increased hip and spine BMD vs placebo, assessed by QCT vs DXA. Changes in trabecular bone resulted in increased indices of compressive strength. PMID:19802508
The effect of nutritional rickets on bone mineral density.
Thacher, Tom D; Fischer, Philip R; Pettifor, John M
2014-11-01
Nutritional rickets is caused by impaired mineralization of growing bone. The effect of nutritional rickets on areal bone mineral density (aBMD) has not been established. Our objective was to determine if aBMD is lower in children with active rickets than in healthy control children. We expected that the reduction in aBMD would vary between the radial and ulnar metaphyses near the growth plates and the proximal diaphyses. Case-control study. Primary care outpatient department of a teaching hospital in Jos, Nigeria. Nigerian children with radiographically-confirmed rickets were compared with a reference group of control children without rickets from the same community. Forearm bone density measurements were performed in all children with pDXA. Age, sex, and height-adjusted bone density parameters were compared between children with rickets and control subjects. A total of 264 children with active rickets (ages 13-120 months) and 660 control children (ages 11-123 months) were included. In multivariate analyses controlling for height, age, and gender, rickets was associated with a 4% greater bone area and 7% lower aBMD of the radial and ulnar metaphyses compared with controls (P < .001). The effects of rickets on the diaphyses of the radius and ulna were more pronounced with an 11% greater bone area, 21% lower aBMD, and 24% lower bone mineral apparent density than controls (P < .001). In children with rickets, aBMD values were unrelated to dairy product intake or serum calcium, phosphorus, alkaline phosphatase, or 25-hydroxyvitamin D. Metaphyseal aBMD was positively associated with radiographic severity score, attributed to bone edge detection artifact by densitometry in active rickets. Rickets results in increased bone area and reduced aBMD, which are more pronounced in the diaphyseal than in the metaphyseal regions of the radius and ulna, consistent with secondary hyperparathyroidism, generalized osteoid expansion and impaired mineralization.
George, Jaya A; Micklesfield, L K; Norris, S A; Crowther, N J
2014-06-01
There are few data on the contribution of body composition to bone mineral density (BMD) in non-Caucasian populations. We therefore studied the contribution of body composition, and possible confounding of 25-hydroxyvitamin D and PTH, to BMD at various skeletal sites in black African (BA) and Asian Indian (AI) subjects. This was a cross-sectional study in Johannesburg, South Africa. BMD, body fat, and lean mass were measured using dual x-ray absorptiometry and abdominal fat distribution by ultrasound in 714 healthy subjects, aged 18-65 years. Whole-body (subtotal), hip, femoral neck, and lumbar spine (lumbar) BMD were significantly higher in BA than AI subjects (P < .001 for all). Whole-body lean mass positively associated with BMD at all sites in both ethnic groups (P < .001 for all) and partially explained the higher BMD in BA females compared with AI females. Whole-body fat mass correlated positively with lumbar BMD in BA (P = .001) and inversely with subtotal BMD in AI subjects (P < .0001). Visceral adiposity correlated inversely with subtotal BMD in the BA (P = .037) and with lumbar BMD in the AI group (P = .005). No association was found between serum 25-hydroxyvitamin D and BMD. PTH was inversely associated with hip BMD in the BA group (P = .01) and with subtotal (P = .002), hip (P = .001), and femoral BMD (P < .0001) in the AI group. Significant differences in whole-body and site-specific BMD between the BA and AI groups were observed, with lean mass the major contributor to BMD at all sites in both groups. The contribution of other components of body composition differed by site and ethnic group.
Rahimdel, Abolghasem; Dehghan, Ali; Moghadam, Mahboubeh Abolhassani; Ardekani, Ali Mellat
2016-01-01
Introduction Chronic antiepileptic therapy has been associated with metabolic bone diseases including osteomalacia and osteoporosis. The aim of this study was to determine frequency of changes in biochemical and bone mineral density (BMD) in adults receiving valproaic acid (VPA) & carbamazepine (CBZ). Methods In a cross sectional study evaluating adults (age 20–50 y) epileptic patients receiving valproic acid or carbamazepine for at least 2 years. This study was conducted from May 2014 to May 2015 in Shahid Sadoughi Hospital of Yazd University of Medical Science, Yazd, Iran. Bone metabolism was evaluated by measurement of serum calcium (Ca), phosphorus (P), alkaline phosphatase (ALP) and parathormone hormone (PTH), BMD at lumbar and femoral measured by dual energy X ray absorptiometry (DXA). SPSS software (version 18) was used for data analysis. The t-test was used for quantitative data, and the chi-squared test was used for the qualitative variables. Results Eighty two epileptic patients (mean age: 31.67±10.69 year) treated with either carbamazepine (n=41) or valproate sodium (n=41) were studied. Normal serum Ca and P levels were observed in 98.8% and 97.6% of patients respectively. Serum ALP and PTH were normal in 97.6% and 97.6% of patients. Means of Ca and P in CBZ group were significantly lower than VPA group (Ca: 9.02 vs. 9.1, p-value: 0.03 and P: 3.54 vs. 3.76 p-value: 0.004). BMD values at lumbar spine were not significant in either group (T. score CBZ: −0.43± 0.744 vs. T. score VPA: −0.615± 0.904 and p-value: 0.333) and were significantly higher than Iranian normal population BMD value at femoral neck in CBZ group was lower than VPA group (T. score CBZ: −0.707± 0.896 vs. T. score VPA: − 0.297± 0.850 p-value: 0.04). Dosage of CBZ and VPA did not correlate with BMD and biochemical parameters. Duration of CBZ use had correlation with increased ALP and duration of VPA use had correlation with decreased BMD in adult patients. Conclusion long term anti-epileptic drug treatment either with CBZ and VPA which has unknown effects on skeletal mineralization and induces a state of decreased bone mineral density BMD values at femoral neck were significant in CBZ group Therefore regular screening for monitoring of biochemical markers of bone turnover and BMD with DXA during the treat period is recommended. In addition, Ca supplement could be considered for all patients with epilepsy upon initiation of CBZ and VPA therapy. PMID:28070260
Meeuwes, M; Souza de Carvalho, T F; Cipolotti, R; Gurgel, R Q; Ferrão, T O; Peters, M; Agyemang, C
2013-12-01
To evaluate the occurrence of low bone mineral density (BMD) and its relationship with clinical and laboratorial characteristics in children and young adults with sickle cell anaemia living in Northeast-Brazil, and to assess the role of radiography in diagnosing low BMD. Bone mineral density of lumbar spine was measured by dual energy X-ray absorptiometry (DXA) in 27 patients with Sickle cell anaemia (SCA) aged 7-28 years. Clinical history, calcium and calorie intake, laboratory measurements, anthropometrics and pubertal development were assessed, and X-rays were obtained. Z-scores and T-scores for weight, height, Body Mass Index (BMI) and BMD were calculated using age and gender matched reference data. Mean lumbar spine BMD Z-scores and T-scores were -1.81 SD in boys and -0.80 SD in girls. BMD Z-scores were below -2 SD in 33.3% of girls and in 46.7% of boys. Low BMD (<-2 SD) occurred significantly more in patients with low height-for-age (P = 0.02), low weight-for-age (P = 0.001) and low BMI-for-age (P = 0.006). No significant relationships were found between BMD and other clinical and laboratory parameters. Radiography had a sensitivity of 75% and a specificity of 36% to detect low BMD, and was considered not useful in this context. Patients with low height and/or low weight-for-age seem to be at high risk for developing low BMD. © 2013 John Wiley & Sons Ltd.
Arikan, Deniz Cemgil; Coskun, Ayhan; Ozer, Ali; Kilinc, Metin; Atalay, Filiz; Arikan, Tugba
2011-12-01
It has been shown that the trace elements and lipids play role in the growth, development and maintenance of bones. We aimed to investigate serum selenium (Se), zinc (Zn), copper (Cu) and lipid (total cholesterol, triglyceride (TG), high density lipoprotein-cholesterol, low-density lipoprotein-cholesterol) levels in postmenopausal women with osteoporosis, osteopenia and in healthy controls, and to determine the relationship between Se, Zn, Cu and lipid parameters and bone mineral density (BMD). The study included 107 postmenopausal women; 35 healthy (group 1), 37 osteopenic (group 2) and 35 osteoporotic (group 3). The women in all three groups were carefully matched for body mass index (BMI). Serum concentrations of Se, Zn and Cu were measured by atomic absorption spectrophotometry. Plasma Se, Cu, Zn and lipid levels were similar in all groups (p > 0.05). When we combined the women in each of the three groups, and considered them as one group (n = 107) we found a positive correlation between BMI and lumbar vertebra BMD, femur neck BMD, femur total BMD; a positive correlation between TG and femur neck BMD, femur total BMD; a positive correlation between Zn and lumbar vertebra BMD (total T score) (p < 0.05). There was no correlation between Se, Cu, Zn, P and lipid parameters (p > 0.05). Although BMI has a positive effect on BMD, trace elements and lipids, except Zn and TG, did not directly and correlatively influence BMD. Further studies are needed to clarify the role and relationship of trace elements and lipid parameters in postmenopausal osteoporosis.
Prediction of bone strength at the distal tibia by HR-pQCT and DXA.
Popp, Albrecht W; Windolf, Markus; Senn, Christoph; Tami, Andrea; Richards, R Geoff; Brianza, Stefano; Schiuma, Damiano
2012-01-01
Areal bone mineral density (aBMD) at the distal tibia, measured at the epiphysis (T-EPI) and diaphysis (T-DIA), is predictive for fracture risk. Structural bone parameters evaluated at the distal tibia by high resolution peripheral quantitative computed tomography (HR-pQCT) displayed differences between healthy and fracture patients. With its simple geometry, T-DIA may allow investigating the correlation between bone structural parameter and bone strength. Anatomical tibiae were examined ex vivo by DXA (aBMD) and HR-pQCT (volumetric BMD (vBMD) and bone microstructural parameters). Cortical thickness (CTh) and polar moment of inertia (pMOI) were derived from DXA measurements. Finally, an index combining material (BMD) and mechanical property (polar moment of inertia, pMOI) was defined and analyzed for correlation with torque at failure and stiffness values obtained by biomechanical testing. Areal BMD predicted the vBMD at T-EPI and T-DIA. A high correlation was found between aBMD and microstructural parameters at T-EPIas well as between aBMD and CTh at T-DIA. Finally, at T-DIA both indexes combining BMD and pMOI were strongly and comparably correlated with torque at failure and bone stiffness. Ex vivo, at the distal tibial diaphysis, a novel index combining BMD and pMOI, which can be calculated directly from a single DXA measurement, predicted bone strength and stiffness better than either parameter alone and with an order of magnitude comparable to that of HR-pQCT. Whether this index is suitable for better prediction of fracture risk in vivo deserves further investigation. Copyright © 2011 Elsevier Inc. All rights reserved.
de Jonge, Ester A. L.; Kiefte-de Jong, Jessica C.; de Groot, Lisette C. P. G. M.; Voortman, Trudy; Schoufour, Josje D.; Zillikens, M. Carola; Hofman, Albert; Uitterlinden, André G.; Franco, Oscar H.; Rivadeneira, Fernando
2015-01-01
No diet score exists that summarizes the features of a diet that is optimal for bone mineral density (BMD) in the elderly. Our aims were (a) to develop a BMD-Diet Score reflecting a diet that may be beneficial for BMD based on the existing literature, and (b) to examine the association of the BMD-Diet Score and the Healthy Diet Indicator, a score based on guidelines of the World Health Organization, with BMD in Dutch elderly participating in a prospective cohort study, the Rotterdam Study (n = 5144). Baseline dietary intake, assessed using a food frequency questionnaire, was categorized into food groups. Food groups that were consistently associated with BMD in the literature were included in the BMD-Diet Score. BMD was measured repeatedly and was assessed using dual energy X-ray absorptiometry. The BMD-Diet Score considered intake of vegetables, fruits, fish, whole grains, legumes/beans and dairy products as “high-BMD” components and meat and confectionary as “low-BMD” components. After adjustment, the BMD-Diet Score was positively associated with BMD (β (95% confidence interval) = 0.009 (0.005, 0.012) g/cm2 per standard deviation). This effect size was approximately three times as large as has been observed for the Healthy Diet Indicator. The food groups included in our BMD-Diet Score could be considered in the development of future dietary guidelines for healthy ageing. PMID:26295256
DiVasta, A D; Feldman, H A; O'Donnell, J M; Long, J; Leonard, M B; Gordon, C M
2016-12-01
We conducted the first comparison of dual-energy X-ray absorptiometry (DXA) and peripheral quantitative computed tomography (pQCT) outcomes in adolescent girls with anorexia nervosa. We observed deficits in bone density by both tools. pQCT assessments were associated with many of the same clinical parameters as have been previously established for DXA. Adolescents with anorexia nervosa (AN) commonly exhibit bone loss, but effects on bone geometry are less clear. We compared measures obtained by DXA and pQCT in girls with AN. Seventy females (age 15.5 ± 1.9 years ) with AN and 132 normal-weighted controls underwent tibial measures by pQCT including trabecular volumetric bone mineral density (vBMD) at the 3 % site, cortical vBMD and dimensions at the 38 % site, and muscle cross-sectional area (CSA) at the 66 % site. Participants with AN also underwent standard DXA measures. Independent t tests compared the pQCT results, while Pearson coefficient assessed correlations among DXA and pQCT measures. Trabecular vBMD Z-scores were lower in AN compared to controls (AN -0.31 ± 1.42 vs +0.11 ± 1.01, p = 0.01) and cortical vBMD Z-scores were higher (AN +0.18 ± 0.92 vs -0.50 ± 0.88, p < 0.001). Trabecular vBMD and cortical CSA Z-scores positively correlated with DXA BMD Z-scores (r range 0.57-0.82, p < 0.001). Markers of nutritional status positively correlated with Z-scores for trabecular vBMD, cortical CSA, section modulus, and muscle CSA (p < 0.04 for all). This study is the first to compare DXA and pQCT measurements in adolescent girls with AN. We observed deficits in BMD by both DXA and pQCT. pQCT assessments correlated well with DXA bone and body composition measures and were associated with many of the same clinical parameters and disease severity markers as have been previously established for DXA. The differences in cortical vBMD merit further study.
DiVasta, A. D.; Feldman, H. A.; O’Donnell, J. M.; Long, J.; Leonard, M. B.; Gordon, C. M.
2018-01-01
Summary We conducted the first comparison of dual-energy X-ray absorptiometry (DXA) and peripheral quantitative computed tomography (pQCT) outcomes in adolescent girls with anorexia nervosa. We observed deficits in bone density by both tools. pQCT assessments were associated with many of the same clinical parameters as have been previously established for DXA. Introduction Adolescents with anorexia nervosa (AN) commonly exhibit bone loss, but effects on bone geometry are less clear. We compared measures obtained by DXA and pQCT in girls with AN. Methods Seventy females (age 15.5 ± 1.9 years ) with AN and 132 normal-weighted controls underwent tibial measures by pQCT including trabecular volumetric bone mineral density (vBMD) at the 3 % site, cortical vBMD and dimensions at the 38 % site, and muscle cross-sectional area (CSA) at the 66 % site. Participants with AN also underwent standard DXA measures. Independent t tests compared the pQCT results, while Pearson coefficient assessed correlations among DXA and pQCT measures. Results Trabecular vBMD Z-scores were lower in AN compared to controls (AN −0.31 ± 1.42 vs +0.11 ± 1.01, p = 0.01) and cortical vBMD Z-scores were higher (AN +0.18 ± 0.92 vs −0.50 ± 0.88, p < 0.001). Trabecular vBMD and cortical CSA Z-scores positively correlated with DXA BMD Z-scores (r range 0.57–0.82, p < 0.001). Markers of nutritional status positively correlated with Z-scores for trabecular vBMD, cortical CSA, section modulus, and muscle CSA (p < 0.04 for all). Conclusions This study is the first to compare DXA and pQCT measurements in adolescent girls with AN. We observed deficits in BMD by both DXA and pQCT. pQCT assessments correlated well with DXA bone and body composition measures and were associated with many of the same clinical parameters and disease severity markers as have been previously established for DXA. The differences in cortical vBMD merit further study. PMID:27392467
Toelly, Andrea; Bardach, Constanze; Weber, Michael; Gong, Rui; Lai, Yanbo; Wang, Pei; Guo, Yulin; Kirschke, Jan; Baum, Thomas; Gruber, Michael
2017-06-01
Aim To evaluate the differences in phantom-less bone mineral density (BMD) measurements in contrast-enhanced routine MDCT scans at different contrast phases, and to develop an algorithm for calculating a reliable BMD value. Materials and Methods 112 postmenopausal women from the age of 40 to 77 years (mean age: 57.31 years; SD 9.61) who underwent a clinically indicated MDCT scan, consisting of an unenhanced, an arterial, and a venous phase, were included. A retrospective analysis of the BMD values of the Th12 to L4 vertebrae in each phase was performed using a commercially available phantom-less measurement tool. Results The mean BMD value in the unenhanced MDCT scans was 79.76 mg/cm³ (SD 31.20), in the arterial phase it was 85.09 mg/cm³ (SD 31.61), and in the venous phase it was 86.18 mg/cm³ (SD 31.30). A significant difference (p < 0.001) was found between BMD values on unenhanced and contrast-enhanced MDCT scans. There was no significant difference between BMD values in the arterial and venous phases (p = 0.228). The following conversion formulas were calculated using linear regression: unenhanced BMD = -2.287 + 0.964 * [arterial BMD value] and -4.517 + 0.978 * [venous BMD value]. The intrarater agreement of BMD measurements was calculated with an intraclass correlation (ICC) of 0.984 and the interobserver reliability was calculated with an ICC of 0.991. Conclusion Phantom-less BMD measurements in contrast-enhanced MDCT scans result in increased mean BMD values, but, with the formulas applied in our study, a reliable BMD value can be calculated. However, the mean BMD values did not differ significantly between the arterial and venous phases. Key points · BMD can be assessed on routine CT scans using a phantom-less tool.. · i. v. contrast agent significantly elevates BMD values measured on routine CT scans.. · BMD values measured in the arterial and venous phase did not differ significantly.. · Conversion formulas were defined for the calculation of a reliable BMD.. · The phantom-less tool showed good reliability and is a promising method.. Citation Format · Toelly A, Bardach C, Weber M et al. Influence of Contrast Media on Bone Mineral Density (BMD) Measurements from Routine Contrast-Enhanced MDCT Datasets using a Phantom-less BMD Measurement Tool. Fortschr Röntgenstr 2017; 189: 537 - 543. © Georg Thieme Verlag KG Stuttgart · New York.
Michalek, Joel E; Preuss, Harry G; Croft, Harry A; Keith, Patti L; Keith, Samuel C; Dapilmoto, Monika; Perricone, Nicholas V; Leckie, Robert B; Kaats, Gilbert R
2011-04-14
The US Surgeon General's Report on Bone Health suggests America's bone-health is in jeopardy and issued a "call to action" to develop bone-health plans that: (1) improve nutrition, (2) increase health literacy and, (3) increase physical activity. This study is a response to this call to action. After signing an informed consent, 158 adults agreed to follow an open-label bone-health plan for six months after taking a DXA test of bone density, a 43-chemistry blood test panel and a quality of life inventory (AlgaeCal 1). Two weeks after the last subject completed, a second group of 58 was enrolled and followed the identical plan, but with a different bone-health supplement (AlgaeCal 2). There were no significant differences between the two groups in baseline bone mineral density (BMD) or in variables related to BMD (age, sex, weight, percent body fat, fat mass, or fat-free mass). In both groups, no significant differences in BMD or related variables were found between volunteers and non-volunteers or between those who completed per protocol and those who were lost to attrition.Both groups experienced a significant positive mean annualized percent change (MAPC) in BMD compared to expectation [AlgaeCal 1: 1.15%, p = 0.001; AlgaeCal 2: 2.79%, p = 0.001]. Both groups experienced a positive MAPC compared to baseline, but only AlgaeCal 2 experienced a significant change [AlgaeCal 1: 0.48%, p = 0.14; AlgaeCal 2: 2.18%, p < 0.001]. The MAPC in AlgaeCal 2 was significantly greater than that in AlgaeCal 1 (p = 0.005). The MAPC contrast between compliant and partially compliant subjects was significant for both plans (p = 0.001 and p = 0.003 respectively). No clinically significant changes in a 43-panel blood chemistry test were found nor were there any changes in self-reported quality of life in either group. Following The Plan for six months with either version of the bone health supplement was associated with significant increases in BMD as compared to expected and, in AlgaeCal 2, the increase from baseline was significantly greater than the increase from baseline in AlgaeCal 1. Increased compliance was associated with greater increases in BMD in both groups. No adverse effects were reported in either group. ClinicalTrials.gov NCT01114685.
Liang, Dong-Ke; Bai, Xiao-Juan; Wu, Bing; Han, Lu-Lu; Wang, Xiao-Nan; Yang, Jun; Chen, Xiang-Mei
2014-02-01
The significance of associations between bone mineral density (BMD) and atherosclerosis in the Asian population is less clear. The aim of this study was to explore the population-level associations between BMD and subclinical atherosclerosis. This was a community-based cross-sectional study conducted in Shenyang, China. A total of 385 Chinese women and men aged 37-87 years were studied. The BMD was measured at the total hip and lumbar spine using dual-energy x-ray absorptiometry. The ankle-brachial index (ABI), pulse wave velocity (PWV), and carotid intima-media thickness (CIMT) were measured to assess atherosclerosis. Multiple regression analysis was applied to study the associations. Multicolinearity was examined using the variance inflation factor, condition index, and variance proportions. Factor analysis and principal component regression were used to remove the problem of multicolinearity. The differences of ABI, PWV, and CIMT among the normal BMD, osteopenia, and osteoporosis groups were not found. Total hip BMD was correlated with ABI in women after adjustment for age (r = 0.156). Sex-specific regression models included adjustment for age, body mass index, cigarette smoking, alcohol consumption, menopausal status (women), systolic blood pressure, diastolic blood pressure, triglycerides, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, fasting blood glucose, serum uric acid, estimated glomerular filtration rate, high-sensitivity C-reactive protein, and fibrinogen. Total hip BMD was associated with ABI in women after adjustment for age (per SD decrease in ABI: -0.130 g/cm(2), P = .022), but the association was borderline significant after full adjustment (P = .045). Total hip BMD and lumbar spine BMD were not associated with ABI, PWV, and CIMT after full adjustment in participants without a fracture history. The risk of osteoporosis was not associated with ABI, PWV, and CIMT. Low BMD is not associated with subclinical atherosclerosis as assessed by ABI, PWV, and CIMT.
SHEDD-WISE, KRISTINE M.; ALEKEL, D. LEE; HOFMANN, HEIKE; HANSON, KATHY B.; SCHIFERL, DAN J.; HANSON, LAURA N.; VAN LOAN, MARTA D.
2011-01-01
Soy isoflavones exert inconsistent bone density-preserving effects, but the bone strength-preserving effects in humans are unknown. Our double-blind randomized controlled trial examined two soy isoflavone doses (80 or 120 mg/d) vs placebo tablets on volumetric bone mineral density (vBMD) and strength (via peripheral quantitative computed tomography) in healthy postmenopausal women (46–63 y). We measured 3 y change in cortical (Ct) BMD, cortical thickness (CtThk), periosteal circumference (PC), endosteal circumference (EC), and strength-strain index (SSI) at 1/3 midshaft femur (N=171) and trabecular (Tb) BMD, PC, and SSI at 4% distal tibia (N=162). We found no treatment effect on femur CtThk, PC, or EC, or tibia TbBMD or PC. Strongest predictors (negative) of tibia TbBMD and SSI and femur CtBMD were timepoint and bone resorption; whole body fat mass was protective of SSI. As time since last menstrual period (TLMP) increased (p=0.012), 120 mg/d was protective of CtBMD. Strongest predictors of femur SSI were timepoint, bone resorption, and TLMP (protective). Isoflavone tablets were negative predictors of SSI, but 80 mg/d became protective as bone turnover increased (p=0.011). Soy isoflavone treatment for 3 y was modestly beneficial for midshaft femur vBMD as TLMP increased, and for midshaft femur SSI as bone turnover increased. PMID:21295742
Aljarallah, Badr; Fernandes, Gail; Jeejeebhoy, Khursheed N; Gramlich, Leah M; Whittaker, J S; Armstrong, David; Duerksen, Don R; Allard, Johane P
2012-07-01
Vitamin K supplementation improves bone health, and its absence might be associated with low bone mineral density (BMD). The authors aim to assess vitamin K supplementation practices in Canadian home parenteral nutrition (HPN) programs and their relationship with BMD. This is a cross-sectional study of 189 patients from the Canadian HPN registry. All 189 patients studied received M.V.I.-12, which does not contain vitamin K. Of those, 41.3% were supplemented with 10 mg of intravenous vitamin K (VK+) weekly, whereas the others did not receive vitamin K except via lipid emulsion (VK-). Short bowel syndrome accounted for 69% of VK+ and 46% of VK- patients. On univariate analysis, VK+ patients had substantially lower body mass index (BMI) and received lower bisphosphonate infusion than did VK-patients. There were no statistically significant differences in HPN calcium or lipid content, liver function test results, age, sex, or reason for HPN between the 2 groups. Patients who were VK+ had higher lumbar spine T scores and hip T scores than did VK-patients. General linear modeling analysis, adjusted for BMI, age, PN magnesium, PN phosphate, PN calcium, and bisphosphonate as possible predictors of BMD, showed a trend toward better hip T scores (P = .063) for VK+ patients compared with VK- patients. In HPN patients supplemented with vitamin K, the trend toward a better hip BMD compared with no supplementation suggests a role for vitamin K in preserving BMD. This requires further study.
Yap, Natalie; Wong, Phillip; McGinn, Stella; Nery, Maria-Liza; Doyle, Jean; Wells, Lynda; Clifton-Bligh, Phillip; Clifton-Bligh, Roderick J
2017-01-01
Low bone mineral density (BMD) is a known independent predictor of mortality in the general elderly population. However, studies in patients with end-stage renal disease (ESRD) are limited. The present study evaluated mortality during long-term follow-up in a population of patients having dialysis for ESRD, in whom BMD was also measured. Fifty-eight patients with ESRD were recruited consecutively from a dialysis clinic and followed prospectively for 6 years. Baseline BMD of the lumbar spine and femoral neck (FN) were measured by X-ray absorptiometry and by peripheral quantitative CT at the radius and tibia. Serum calcium, phosphate, parathyroid hormone (PTH), and albumin were measured at baseline. During follow-up, 25 patients died. Univariate analysis showed that mortality was significantly associated with FN-BMD: hazards ratio (HR) per 0.1 g/cm2 decrease 1.50 (95% CI 1.07-2.10), p = 0.019; FN-T score: HR per 1-SD decrease 1.84 (95% CI 1.16-2.92), p = 0.009; and tibial cortical density: HR per 10 mg/cm3 decrease 1.08 (95% CI 1.02-1.14), p = 0.010. In multivariate analysis with stepwise adjustment for age, sex, transplant status, albumin, PTH, phosphate, dialysis duration, diabetes, and smoking, FN-T score remained significantly associated with mortality: HR per 1-SD decrease 1.82 (95% CI 1.02-3.24), p = 0.044, whereas the HR for FN-BMD and tibial cortical density were no longer significant. When 4 patients who had peritoneal dialysis were excluded, the HR relating FN-BMD, FN-T score, and tibial cortical density to mortality remained significant but became insignificant when albumin was included in the multivariate analysis. Reduced FN-BMD, FN-T score, and tibial cortical density were significantly associated with an increased risk of death in patients with ESRD. © 2017 S. Karger AG, Basel.
Yamagata, Z; Miyamura, T; Iijima, S; Asaka, A
1995-12-01
The effects of genetic and environmental factors on bone mineral density (BMD) were investigated in 108 healthy Japanese women. Of the 108 subjects, BMD (from the second to forth lumbar vertebrae) was measured in 1992 in 103, in 1993 in 100, and in both years in 95 by dual energy X-ray absorptiometry. Vitamin D receptor (VDR) gene polymorphism in intron 8 was used as a genetic marker. Information on menstruation, health status, lifestyle, quantities of nutrient intake and frequencies of food intake was obtained by questionnaire. The frequency of allele B (825bp), whose polymerase chain reaction (PCR) products cannot be cut with BsmI, was 0.259 and the frequency of allele b (650bp), whose PCR products can be cut with BsmI, was 0.741. The subjects in our study obeyed the Hardy-Weinberg law. While the frequency of allele B was 0.448 in European whites as reported by Morrison et al, it was 0.259 in our Japanese subjects, suggesting a racial difference. Z score values (average value 0, standard deviation 1) increased in the order BB, Bb and bb. This result indicates that allele B is associated with the lower BMD in Japanese, as in European whites. The BMD decrement rate increased in the order bb, Bb and BB, indicating that VDR gene polymorphism may be a regulatory factor for losing BMD. Most of lifestyle variables, calcium intake and vitamin D intake were not correlated with BMD, but the food frequency score (which was defined as values weighted in each of three food categories obtained by factor analysis) was significantly correlated with BMD. Multiple regression analysis showed significant influences of years after menopause, the food frequency score and VDR genotype on BMD. VDR genotype and years after menopause influenced the BMD decrement rate significantly in multiple regression analysis. Neither a relationship between BMD and calcium intake nor between BMD and vitamin D intake by VDR genotype was found. These results suggest that the VDR gene is a genetic factor in BMD and the BMD decrement rate in Japanese.
Ko, Hoon; Jeong, Kwanmoon; Lee, Chang-Hoon; Jun, Hong Young; Jeong, Changwon; Lee, Myeung Su; Nam, Yunyoung; Yoon, Kwon-Ha; Lee, Jinseok
2016-01-01
Image artifacts affect the quality of medical images and may obscure anatomic structure and pathology. Numerous methods for suppression and correction of scattered image artifacts have been suggested in the past three decades. In this paper, we assessed the feasibility of use of information on scattered artifacts for estimation of bone mineral density (BMD) without dual-energy X-ray absorptiometry (DXA) or quantitative computed tomographic imaging (QCT). To investigate the relationship between scattered image artifacts and BMD, we first used a forearm phantom and cone-beam computed tomography. In the phantom, we considered two regions of interest-bone-equivalent solid material containing 50 mg HA per cm(-3) and water-to represent low- and high-density trabecular bone, respectively. We compared the scattered image artifacts in the high-density material with those in the low-density material. The technique was then applied to osteoporosis patients and healthy subjects to assess its feasibility for BMD estimation. The high-density material produced a greater number of scattered image artifacts than the low-density material. Moreover, the radius and ulna of healthy subjects produced a greater number of scattered image artifacts than those from osteoporosis patients. Although other parameters, such as bone thickness and X-ray incidence, should be considered, our technique facilitated BMD estimation directly without DXA or QCT. We believe that BMD estimation based on assessment of scattered image artifacts may benefit the prevention, early treatment and management of osteoporosis.
te Winkel, M L; de Muinck Keizer-Schrama, S M P F; de Jonge, R; van Beek, R D; van der Sluis, I M; Hop, W C J; Pieters, R; van den Heuvel-Eibrink, M M
2011-03-01
This study aims to identify folate-metabolism-related genetic risk factors for low bone mineral density (BMD) during/after pediatric acute lymphoblastic leukemia (ALL) treatment. We investigated the influence of methylenetetrahydrofolate reductase (MTHFR 677C > T and 1298A > C) and methionine synthase reductase (MTRR 66A > G) single nucleotide polymorphisms (SNPs) on total body BMD (BMD(TB)) and lumbar spine BMD (BMD(LS)) in 83 patients. Homocysteine, folate and vitamin B12 were determined. BMD was measured repeatedly using dual-energy X-ray absorptiometry in patients ≥ 4 years (n = 68). Carriers of the MTHFR 677 T-allele showed a lower baseline BMD(TB) than non-carriers (-0.38 SDS vs. +0.55 SDS, p = 0.01) and BMD(TB) remained lower during/after treatment. MTHFR 677C>T did not influence treatment-related loss of BMD(TB) (p = 0.39). The MTRR 66 G-allele carriers showed a trend towards a lower BMD(TB) compared with non-carriers. Combining these two SNPs, patients carrying ≥ 2 risk alleles had a significantly lower BMD(TB) (-1.40 SDS) than patients with one (-0.80 SDS) or no risk alleles (-0.31 SDS). Although carriers of the MTHFR 1298A > C had higher homocysteine levels, this SNP was not related to BMD(TB). BMD(LS) of carriers was similar to non-carriers of the investigated SNPs. The MTHFR 677C>T SNP and the MTRR 66A >G SNP were identified as determinants of impaired BMD(TB) in childhood ALL patients. Crown Copyright © 2010. Published by Elsevier Inc. All rights reserved.
Barbour, Kamil E; Zmuda, Joseph M; Strotmeyer, Elsa S; Horwitz, Mara J; Boudreau, Robert; Evans, Rhobert W; Ensrud, Kristine E; Petit, Moira A; Gordon, Christopher L; Cauley, Jane A
2010-01-01
Quantitative computed tomography (QCT) can estimate volumetric bone mineral density (vBMD) and distinguish trabecular from cortical bone. Few comprehensive studies have examined correlates of vBMD in older men. This study evaluated the impact of demographic, anthropometric, lifestyle, and medical factors on vBMD in 1172 men aged 69 to 97 years and enrolled in the Osteoporotic Fractures in Men Study (MrOS). Peripheral quantitative computed tomography (pQCT) was used to measure vBMD of the radius and tibia. The multivariable linear regression models explained up to 10% of the variance in trabecular vBMD and up to 9% of the variance in cortical vBMD. Age was not correlated with radial trabecular vBMD. Correlates associated with both cortical and trabecular vBMD were age (−), caffeine intake (−), total calcium intake (+), nontrauma fracture (−), and hypertension (+). Higher body weight was related to greater trabecular vBMD and lower cortical vBMD. Height (−), education (+), diabetes with thiazolidinedione (TZD) use (+), rheumatoid arthritis (+), using arms to stand from a chair (−), and antiandrogen use (−) were associated only with trabecular vBMD. Factors associated only with cortical vBMD included clinic site (−), androgen use (+), grip strength (+), past smoker (−), and time to complete five chair stands (−). Certain correlates of trabecular and cortical vBMD differed among older men. An ascertainment of potential risk factors associated with trabecular and cortical vBMD may lead to better understanding and preventive efforts for osteoporosis in men. © 2010 American Society for Bone and Mineral Research. PMID:20200975
Ito, Igor H; Kemper, Han C G; Agostinete, Ricardo R; Lynch, Kyle R; Christofaro, Diego G D; Ronque, Enio R; Fernandes, Rômulo A
2017-11-01
To compare bone mineral density (BMD) gains in adolescents of both genders stratified according to different martial art styles in a 9-month follow-up study. The longitudinal study consisted of 29 adolescents of both genders and age between 11 and 17 years stratified into a control group (not engaged in any sport) and 50 fighters (kung fu/karate, n = 29; judo, n = 21). All 79 subjects underwent anthropometric measures (weight, height, leg length, and height set) and dual-energy X-ray absorptiometry (BMD, in g/cm 2 ) at 2 moments, baseline and 9 months later. Maturity offset (age at peak height velocity), lean soft tissue, chronological age, and resistance training were treated as covariates. Male judoists presented higher gains in BMD-spine [0.098 g/cm 2 (95% confidence interval, 0.068-0.128)] than control group [0.040 g/cm 2 (95% confidence interval, 0.011-0.069)] (post hoc test with P = .030). There was no effect of martial art on BMD gains among girls. Independently of gender, in all multivariate models, lean soft tissue constituted the most relevant covariate. Judo practice in adolescents affected the bone accrual significantly after 9-month follow-up compared with controls, mainly in boys.
Bone mineral density of vegetarian and non-vegetarian adults in Taiwan.
Wang, Yuh-Feng; Chiu, Jainn-Shiun; Chuang, Mei-Hua; Chiu, Jing-Er; Lin, Chin-Lon
2008-01-01
Diet is thought to be one of the leading causes of bone mineral loss in aging people. In this study, we explored the potential impact of a vegetarian diet on bone mineral density (BMD) in adult Taiwanese men and women. This was a cross-sectional study of the relationship between diet (vegetarian versus non-vegetarian) and BMD and the incidence of osteoporosis. Bone mineral density was determined in a cohort of 1865 adult male and female patients who underwent routine examination in a regional teaching hospital in Taiwan between February 2003 and February 2004. Subjects with definite vertebral problems, known osteopathy, or poor posture were excluded. Dual-energy X-ray absorptiometry (DEXA) was used to determine BMD, on the right hip in men and on lumbar vertebrae L2 to L4 in women. The subjects were grouped according to sex and diet, and were then stratified by age within each of the four groups. The outcome measures were the BMD value and the incidence of osteopenia or osteoporosis according to defined criteria. Bone mineral density gradually declined with increasing age in Taiwanese men, while Taiwanese women showed a precipitous decrease in BMD after the 5th decade. However, no statistical differences in BMD were observed between vegetarians and non-vegetarians of either sex. The proportion of subjects with osteopenia or osteoporosis also appeared comparable between vegetarians and non-vegetarians of either sex. BMD shows an age-related decline in Taiwanese men and women, and eating a vegetarian diet does not appear to affect this decline.
Esfahanizadeh, Nasrin; Davaie, Sotoudeh; Rokn, A. R.; Daneshparvar, Hamid Reza; Bayat, Noushin; Khondi, Nasrin; Ajvadi, Sara; Ghandi, Mostafa
2013-01-01
Background: The aim of the present study was to evaluate the relationship between the bone density of various regions of jaws and skeletal bones. Materials and Methods: A total of 110 patients with a mean age of 55.01 ± 10.77 years were selected for the purpose of the present descriptive study. Dual X-ray Energy Absorptiometry (DXA) was carried out to determine bone mineral density (BMD) of the femur and lumbar vertebrae. Then all the subjects underwent DXA of the jaw bones and BMD values were determined at four jaw regions. Data were analyzed by SPSS 16 statistical software, and the correlation between the various BMD values was determined by Pearson's correlation coefficient. Results: The results showed that 42.7% of females had normal BMD values in the femur, and in vertebrae, 20% were osteopenic and 37.3% suffered from osteoporosis, with statistically significant differences in the BMD values of the jaws between the three above-mentioned groups (P < 0.001). There was an increasing tendency toward osteopenia and osteoporosis with age. There was a positive correlation between BMD values of the femur and lumbar vertebrae and those of all the jaw regions under study (P < 0.005). There was a negative correlation (P < 0.01) between age and the BMD values of the femur, lumbar vertebrae and anterior maxilla. Conclusion: The bone density of the maxilla and mandible and presence of osteoporosis or osteopenia in these bones might reflect the same problem in skeletal bones. PMID:24130580
Jhon, Min; Yoo, Taeyoung; Lee, Ju-Yeon; Kim, Seon-Young; Kim, Jae-Min; Shin, Il-Seon; Williams, Lana; Berk, Michael; Yoon, Jin-Sang; Kim, Sung-Wan
2018-01-01
This study examined clinical and gender-specific risk factors for low bone mineral density (BMD) in adult patients with psychotic disorders. The study included 285 community-dwelling patients with psychotic disorders. Dual-energy X-ray absorptiometry was used to measure BMD. Clinical characteristics associated with low BMD were identified with logistic regression analysis in total population and each gender. Fifty-eight (20.4%) subjects had low BMD. Low BMD was more common in men and in patients with low body mass indices (BMIs), as well as in those with shorter treatment durations, those on Medicaid, and patients using serotonergic antidepressants. Logistic regression analysis revealed that low BMD was negatively associated with BMI and treatment duration and positively with gender (male) and serotonergic antidepressants use in the overall population. In men, low BMD was associated with treatment duration and BMI; in women, low BMD was associated with BMI, prolactin level, vitamin D, and serotonergic antidepressant use. Managing the risk factors associated with low BMD among patients with psychotic disorder should be done gender-specifically. Psychotropic agents should be prescribed mindful of their effects on bone, as use of these medications is a modifiable risk factor for osteoporosis in women with psychotic disorders. Copyright © 2018 John Wiley & Sons, Ltd.
Prevalence and clinical determinants of low bone mineral density in anorexia nervosa.
Hofman, Marielle; Landewé-Cleuren, Sabine; Wojciechowski, Franz; Kruseman, Arie Nieuwenhuijzen
2009-01-01
To determine the prevalence of low bone mass in anorexia nervosa (AN) and the association with clinical parameters. A cross-sectional study on 286 Caucasian women with AN. Bone mineral density (BMD) was measured with DXA. Low BMD was defined as a Z-score
Okano, Tadashi; Inui, Kentaro; Tada, Masahiro; Sugioka, Yuko; Mamoto, Kenji; Wakitani, Shigeyuki; Koike, Tatsuya; Nakamura, Hiroaki
2017-11-01
Osteoporosis is one of the complications for patients with rheumatoid arthritis (RA). Rheumatoid cachexia, the loss of lean body mass, is another. However, the relationship between decreased lean body mass and reduced bone mineral density (BMD) in patients with RA has not been well studied. This study included 413 participants, comprising 208 patients with RA and 205 age- and sex-matched healthy volunteers. Clinical data, BMD, bone metabolic markers (BMM) and body composition, such as lean body mass and percent fat, were collected. Risk factors for osteoporosis in patients with RA including the relationship BMD and body composition were analyzed. Patients with RA showed low BMD and high BMM compared with controls. Moreover, lean body mass was lower and percent fat was higher in patients with RA. Lean body mass correlated positively and percent fat negatively with BMD. Lean body mass was a positive and disease duration was a negative independent factor for BMD in multivariate statistical analysis. BMD and lean body mass were significantly lower in patients with RA compared to healthy controls. Lean body mass correlated positively with BMD and decreased lean body mass and disease duration affected low BMD in patients with RA. [UMIN Clinical Trials Registry, http://www.umin.ac.jp/ctr/ , UMIN000003876].
Canto-Cetina, Thelma; Polanco Reyes, Lucila; González Herrera, Lizbeth; Rojano-Mejía, David; Coral-Vázquez, Ramón Mauricio; Coronel, Agustín; Canto, Patricia
2013-01-01
Osteoporosis is a complex disease characterized principally by low bone mineral density (BMD), which is determined by an interaction of genetic, metabolic, and environmental factors. The aim of this study was to analyze the possible association among one polymorphism of LRP5 and three polymorphisms of TNFRSF11B as well as their haplotypes with BMD variations in Maya-Mestizo postmenopausal women. We studied 583 postmenopausal women of Maya-Mestizo ethnic origin. A structured questionnaire for risk factors was applied and BMD was measured in lumbar spine (LS), total hip (TH), and femoral neck (FN) by dual-energy X-ray absorptiometry. DNA was obtained from blood leukocytes. One single-nucleotide polymorphism of LRP5 (rs3736228, p.A1330V) and three of TNFRSF11B (rs4355801, rs2073618, and rs6993813) were studied using real-time PCR allelic discrimination for genotyping. Differences between the means of the BMDs according to the genotype were analyzed with covariance. Deviations from Hardy-Weinberg equilibrium were tested. Pairwise linkage disequilibrium between single nucleotide polymorphisms was calculated by direct correlation r(2), and haplotype analysis of TNFRSF11B was conducted. The Val genotype of the rs3736228 (p.A1330V) of LRP5 was significantly associated with BMD variations at the LS, TH, and FN. None of the three polymorphisms of TNFRSF11B was associated with BMD variations. Our results show that p.A1330V was significantly associated with BMD variations at all three skeletal sites analyzed; the Val allele and the Val/Val genotype were those most frequently found in our population. Copyright © 2013 Wiley Periodicals, Inc.
Effects of Radiation and a High Iron Load on Bone Mineral Density
NASA Technical Reports Server (NTRS)
Yuen, E.; Morgan, J. L. L.; Zwart, S. R.; Gonzales, E.; Camp, K.; Smith, S. M.; Bloomfield, S. A.
2012-01-01
Astronauts on long duration space flight missions to the moon or mars are exposed to radiation and have increase iron (Fe) stores, both of which can independently induce oxidative stress and may exacerbate bone mass loss and strength. We hypothesize a high Fe diet and a fractionated gamma radiation exposure would increase oxidative stress and lower bone mass. Three mo-old, SD rats (n=32) were randomized to receive an adequate Fe diet (45 mg Fe/kg diet) or a high Fe diet (650 mg Fe/kg diet) for 4 wks and either a cumulative 3 Gy dose (fractionated 8 x 0.375 Gy) of gamma radiation (Cs-137) or sham exposure starting on day 14. Elisa kit assessed serum catalase, clinical analyzer assessed serum Fe status and ex vivo pQCT scans measured bone parameters in the proximal/midshaft tibia and femoral neck. Mechanical strength was assessed by 3-pt bending and femoral neck test. There is a significant decrease in trabecular bone mineral density (BMD) from radiation (p less than 0.05) and a trend in diet (p=0.05) at the proximal tibia. There is a significant interaction in cortical BMD from the combined treatments at the midshaft tibia (p less than 0.05). There is a trending decrease in total BMD from diet (p=0.07) at the femoral neck. In addition, high serum Fe was correlated to low trabecular BMD (p less than 0.05) and high serum catalase was correlated to low BMD at all 3 bone sites (p less than 0.05). There was no difference in the max load of the tibia or femoral neck. Radiation and a high iron diet increases iron status and catalase in the serum and decreases BMD.
Ab-Lazid, Rosidah; Perilli, Egon; Ryan, Melissa K; Costi, John J; Reynolds, Karen J
2014-12-01
For cancellous bone screws, the respective roles of the applied insertion torque (TInsert) and of the quality of the host bone (microarchitecture, areal bone mineral density (aBMD)), in contributing to the mechanical holding strength of the bone-screw construct (FPullout), are still unclear. During orthopaedic surgery screws are tightened, typically manually, until adequate compression is attained, depending on surgeons' manual feel. This corresponds to a subjective insertion torque control, and can lead to variable levels of tightening, including screw stripping. The aim of this study, performed on cancellous screws inserted in human femoral heads, was to investigate which, among the measurements of aBMD, bone microarchitecture, and the applied TInsert, has the strongest correlation with FPullout. Forty six femoral heads were obtained, over which microarchitecture and aBMD were evaluated using micro-computed tomography and dual X-ray absorptiometry. Using an automated micro-mechanical test device, a cancellous screw was inserted in the femoral heads at TInsert set to 55% to 99% of the predicted stripping torque beyond screw head contact, after which FPullout was measured. FPullout exhibited strongest correlations with TInsert (R=0.88, p<0.001), followed by structure model index (SMI, R=-0.81, p<0.001), bone volume fraction (BV/TV, R=0.73, p<0.001) and aBMD (R=0.66, p<0.01). Combinations of TInsert with microarchitectural parameters and/or aBMD did not improve the prediction of FPullout. These results indicate that, for cancellous screws, FPullout depends most strongly on the applied TInsert, followed by microarchitecture and aBMD of the host bone. In trabecular bone, screw tightening increases the holding strength of the screw-bone construct. Copyright © 2014 Elsevier Ltd. All rights reserved.
Clinical Implications of Sarcopenia on Decreased Bone Density in Men With COPD.
Hwang, Ji An; Kim, Young Sam; Leem, Ah Young; Park, Moo Suk; Kim, Se Kyu; Chang, Joon; Jung, Ji Ye
2017-05-01
Sarcopenia and osteoporosis are systemic features of COPD. The present study investigated the association between sarcopenia and osteopenia/osteoporosis and the factors associated with low bone mineral density (BMD) in men with COPD. Data from 777 men with COPD who underwent both pulmonary function test and dual-energy x-ray absorptiometry were extracted from the Korean National Health and Nutritional Examination Survey database between 2008 and 2011. Sarcopenia was assessed with the appendicular skeletal mass index (ASMI) and osteopenia/osteoporosis with the T-score. As the severity of airflow limitation increased, the prevalence of sarcopenia increased (P trend < .001). Additionally, as the degree of sarcopenia became severe, the prevalence of osteopenia/osteoporosis increased (P trend < .001), and a significant positive correlation was noted between appendicular skeletal muscle mass and BMD (ASMI/T-score: r = 0.408; P < .001). Sarcopenia was independently associated with an increased risk of low BMD in men with COPD (OR, 2.31; 95% CI, 1.53-3.46; P < .001). Old age and low fat mass were significantly associated with low BMD in both sarcopenic and non-sarcopenic participants. High serum hemoglobin and insulin levels were associated with a reduced risk of low BMD only in the sarcopenic participants, whereas exercise and dietary intake were associated with a reduced risk only in the non-sarcopenic participants. Sarcopenia is closely correlated with osteopenia/osteoporosis in men with COPD. Moreover, different factors are associated with low BMD according to the presence/absence of sarcopenia in that population. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
Serum serotonin concentration associated with bone mineral density in Chinese postmenopausal women.
Wei, Qiu-Shi; Chen, Zhen-Qiu; Tan, Xin; Kang, Lu-Chen; Jiang, Xiao-Bing; Liang, Jiang; He, Wei; Deng, Wei-Min
2017-02-01
Recent studies have shown that circulating serotonin plays a potential role in bone metabolism. However, conflicting results have been reported for the relationship between serum serotonin concentrations and bone mineral density (BMD). We investigated whether the serum serotonin concentrations related to BMD in Chinese postmenopausal women. Serum serotonin and bone turnover concentrations of 117 premenopausal women and 262 asymptomatic postmenopausal women were analyzed by enzyme-linked immunosorbent assay. BMD at the lumbar spine and femoral neck was measured by dual energy X-ray absorptiometry. The relationship between serotonin and BMD was investigated. The postmenopausal women had lower mean serum serotonin concentrations compared to the premenopausal women. Serotonin concentrations were negatively associated with age, weight, BMI, fat mass, and β-CTX concentrations in postmenopausal women. No significant correlations were found between serotonin and these parameters in premenopausal women. In postmenopausal women, age- and BMI-adjusted serotonin concentrations were positively correlated with BMD of the lumbar spine and femoral neck. Multiple regression analyses showed serum serotonin and β-CTX were the predictors for lumbar spine BMD. Only serum serotonin was the determinant for femoral neck BMD. In conclusion, lower serum serotonin concentrations are linked to low lumbar spine and femoral neck BMD in postmenopausal women.
Amashukeli, Medea; Korinteli, Maka; Zerekidze, Tamar; Jikurauli, Nino; Shanava, Shorena; Tsagareli, Marina; Giorgadze, Elen
2013-06-01
Graves' disease is an autoimmune disorder with various clinical manifestations. Thyrotropin receptor antibodies (TRAbs), the circulating autoantibodies specific to Graves' disease, are the cause for hyperthyroidism, the most prevalent abnormality. Hyperthyroidism leads to increased bone turnover and a negative bone balance. The aims of the present study were to determine the relationship between TRAbs and bone mineral density (BMD), to assess the extent of BMD change in patients with Graves' disease, and to determine the impact of conservative and surgical therapy on BMD. Fifty female postmenopausal patients with Graves' disease were chosen for this study. Twenty women had a recent diagnosis of Graves' disease, 30 women presented with a compensated disease state after either conservative or surgical treatment, and 30 healthy postmenopausal women served as controls. Thyroid parameters were measured, and BMD values were obtained by dual energy x-ray absorptiometry scan.Femoral neck and lumbar spine BMD and T-scores were significantly lower in newly diagnosed patients compared with the control group, but a difference was not observed between the treated and control groups. Statistical analysis revealed a strong and significant negative correlation between femoral neck and lumbar spine BMD and TRAb values.Both surgical and conservative therapies are effective for restoring BMD in postmenopausal patients with Graves' disease, and the increased level of TRAb can be a useful marker of bone density impairment.
Alissa, Eman M; Alnahdi, Wafa A; Alama, Nabeel; Ferns, Gordon A
2014-01-01
Osteoporosis remains a major health problem in all developed countries and is a condition in which several dietary factors have been implicated. To assess the nutritional status and levels of adiposity of postmenopausal women in relation to bone mineral density. A cross-sectional study in which dietary intake was estimated by a food frequency questionnaire in 300 Saudi postmenopausal women aged 46-88 years. Bone profile biochemistry (serum calcium, phosphate, parathyroid hormone [PTH], vitamin D) and bone mineral density (BMD) in 3 skeletal sites were determined for all participants. Overweight and obesity were highly prevalent among the study population. No significant correlation was found between dietary calcium and vitamin D and bone mass at any site. Dietary intake of calcium and vitamin D was significantly less than the recommended levels for a large proportion of the cohort. Energy-adjusted intakes of carbohydrates, fat, protein, and unsaturated fatty acids were associated with BMD in the postmenopausal women. Age, body weight, and residency type were predictors of BMD at all sites. Serum-intact PTH was a predictor of BMD at lumbar spine and femoral neck. Waist : hip ratio (WHR) was a predictor for BMD at femoral neck. These results suggest that BMD is influenced by dietary factors other than calcium and vitamin D. However, nondietary factors such as age, WHR, PTH, and body weight may be important determinants of BMD in postmenopausal women.
Stabnov, L; Kasukawa, Y; Guo, R; Amaar, Y; Wergedal, J E; Baylink, D J; Mohan, S
2002-06-01
Insulin-like growth factor-1 (IGF-1) increases both bone formation and bone resorption processes. To test the hypothesis that treatment with an antiresorber along with IGF-1, during the pubertal growth phase, would be more effective than IGF-1 alone to increase peak bone mass, we used an IGF-1 MIDI mouse model, which exhibits a >60% reduction in circulating IGF-1 levels. We first determined an optimal IGF-1 delivery by evaluating IGF-1 administration (2 mg/kg body weight/day) by either a single daily injection, three daily injections, or by continuous delivery via a minipump during puberty. Of the three regimens, the three daily IGF-1 injections and IGF-1 through a minipump produced a significant increase in total body bone mineral density (BMD) (6.0% and 4.4%, respectively) and in femoral BMD (4.3% and 6.2%, respectively) compared with the control group. Single subcutaneous (s.c.) administration did not increase BMD. We chose IGF-1 administration three times daily for testing the combined effects of IGF-1 and alendronate (100 microg/kg per day). The treatment of IGF-1 + alendronate for a period of 2 weeks increased total body BMD at 1 week and 3 weeks after treatment (21.1% and 20.5%, respectively) and femoral BMD by 29% at 3 weeks after treatment. These increases were significantly greater than those produced by IGF-1 alone. IGF-1, but not alendronate, increased bone length. IGF-1 and/or alendronate increased both periosteal and endosteal circumference. Combined treatment caused a greater increase in the total body bone mineral content (BMC) and periosteal circumference compared with individual treatment with IGF-1 or alendronate. Our data demonstrate that: (1) inhibition of bone turnover during puberty increases net bone density; and (2) combined treatment with IGF-1 and alendronate is more effective than IGF-1 or alendronate alone in increasing peak bone mass in an IGF-1-deficient MIDI mouse model.
S219. RISK FACTORS FOR LOW BONE MINERAL DENSITY IN PATIENTS TAKING ANTIPSYCHOTICS
Jhon, Min; Hong, Ji-Eun; Park, Cheol; Lee, Ju-Yeon; Jo, Anna; Kim, Jae-Min; Shin, Il-Seon; Williams, Lana; Berk, Michael; Yoon, Jin-Sang; Kim, Sung-Wan
2018-01-01
Abstract Background The aim of this study is to explore potentially modifiable risk factors for low bone mineral density (BMD) in adults with psychotic disorders. Furthermore, we sought to identify gender-specific risk factors. Methods The study included 285 community-dwelling patients with psychotic disorders. Dual-energy x-ray absorptiometry was used to measure BMD. Laboratory examinations included vitamin D and prolactin levels. Low BMD was defined as<1 standard deviation below the mean for young adults. Clinical characteristics associated with low BMD were identified with logistic regression analysis in total population and each gender. Results Fifty-eight (20.4%) subjects had low BMD. Low BMD was more common in men and in patients with low body mass indices (BMIs), as well as in those with shorter treatment durations, those on Medicaid, and patients using serotonergic antidepressants. Logistic regression analysis revealed that low BMD was negatively associated with BMI and treatment duration and positively with gender (male) and serotonergic antidepressants use in the overall population. In men, low BMD was associated with treatment duration and BMI; in women, low BMD was associated with BMI, prolactin level, vitamin D, and serotonergic antidepressant use. Discussion Low BMI was risk factor for reduced BMD in both genders. Shorter treatment duration was associated with low BMD in men, whereas higher prolactin levels, lower vitamin D, and the use of serotonergic antidepressants were associated with low BMD in women. Psychotropic agents should be prescribed mindful of their effects on bone, as use of these medications is a modifiable risk factor for osteoporosis in women with psychotic disorders.
Dytfeld, Joanna; Ignaszak-Szczepaniak, Magdalena; Gowin, Ewelina; Michalak, Michał; Horst-Sikorska, Wanda
2011-01-01
Despite known positive association between body mass and bone mineral density (BMD), relative contribution of fat and lean tissue to BMD remains under debate. We aimed at investigating the effect of selected anthropometric parameters, including fat content and lean body mass (LBM) on BMD in postmenopausal, osteoporotic women with body mass index (BMI) > 20 kg/m(2). The study involved 92 never-treated women (mean age 69.5 ± 7.3). L1-L4 and femoral neck (FN) BMD were measured by dual energy X-ray absorptiometry (DEXA). Absolute (kg) and relative (%) fat and LBM were assessed by means of electric bioimpedance method. We showed both FN and L1-L4 BMD were positively correlated with body mass, waist circumference (WC), hip circumference (HC) and LBM (kg). Fat content correlated with FN BMD (r = 0.36, p < 0.001). Regression analysis revealed the only predictor of L1-L4 BMD was LBM (R(2) = 0.18, p < 0.05), for FN--both LBM and fat (R(2) = 0.18, p < 0.05 and p < 0.001, respectively). Of the women, 44.5% were overweight, 18.4% obese. Obese women displayed the highest BMD. Both L1-L4 and FN BMD were higher in women with WC > 80 cm. In postmenopausal osteoporotic women with BMI > 20 kg/m(2) both fat and lean tissue might contribute to BMD. Positive association between body mass and BMD does not make obesity and osteoporosis mutually exclusive. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Shen, W; Chen, J; Punyanitya, M; Shapses, S; Heshka, S; Heymsfield, S B
2007-05-01
Recent studies suggest that bone marrow adipose tissue (BMAT) might play a role in the pathogenesis of osteoporosis. Previous research using regional magnetic resonance spectroscopy methods to measure BMAT has reported inconsistent findings on the relationship between BMAT and dual-energy absorptiometry (DXA)-measured bone mineral density (BMD). In the present study, total body and pelvic BMAT were evaluated in 56 healthy women (age 18-88 yrs, mean +/- SD, 47.4 +/- 17.6 yrs; BMI, 24.3 +/- 4.2 kg/m(2)) with T1-weighted whole-body magnetic resonance imaging (MRI). BMD was measured using the whole-body DXA mode (GE Lunar DPX, software version 4.7). A strong negative correlation was observed between pelvic BMAT and BMD (total-body BMD, R = -0.743, P < 0.001; pelvic BMD, R = -0.646, P < 0.001), and between total-body BMAT and BMD (total-body BMD, R = -0.443, P < 0.001; pelvic BMD, R = -0.308, P < 0.001). The inverse association between pelvic BMAT and BMD remained strong after adjusting for age, weight, total body fat, and menopausal status (partial correlation: total-body BMD, R = -0.553, P < 0.001; pelvic BMD, R = -0.513, P < 0.001). BMAT was also highly correlated with age (pelvic BMAT, R = 0.715, P < 0.001; total-body BMAT, R = 0.519, P < 0.001). MRI-measured BMAT is thus strongly inversely correlated with DXA-measured BMD independent of other predictor variables. These observations, in the context of DXA technical concerns, support the growing evidence linking BMAT with low bone density.
Bone mineral density, muscle strength, and recreational exercise in men
NASA Technical Reports Server (NTRS)
Snow-Harter, C.; Whalen, R.; Myburgh, K.; Arnaud, S.; Marcus, R.
1992-01-01
Muscle strength has been shown to predict bone mineral density (BMD) in women. We examined this relationship in 50 healthy men who ranged in age from 28 to 51 years (average 38.3 years). BMD of the lumbar spine, proximal femur, whole body, and tibia were measured by dual-energy x-ray absorptiometry (Hologic QDR 1000W). Dynamic strength using one repetition maximum was assessed for the biceps, quadriceps, and back extensors and for the hip abductors, adductors, and flexors. Isometric grip strength was measured by dynamometry. Daily walking mileage was assessed by 9 week stepmeter records and kinematic analysis of video filming. Subjects were designated as exercisers and nonexercisers. Exercisers participated in recreational exercise at least two times each week. The results demonstrated that BMD at all sites correlated with back and biceps strength (p < 0.01 to p = 0.0001). Body weight correlated with tibia and whole-body BMD (p < 0.001); age negatively correlated with Ward's triangle BMD (p < 0.01). In stepwise multiple regressions, back strength was the only independent predictor of spine and femoral neck density (R2 = 0.27). Further, back strength was the most robust predictor of BMD at the trochanter, Ward's triangle, whole body, and tibia, although biceps strength, age, body weight, and leg strength contributed significantly to BMD at these skeletal sites, accounting for 35-52% of the variance in BMD. Exercisers and nonexercisers were similar for walking (3.97 versus 3.94 miles/day), age (37.8 versus 38.5) years, and weight (80.0 versus 77.7 kg). However, BMD and muscle strength were significantly greater in exercises than in nonexercisers.(ABSTRACT TRUNCATED AT 250 WORDS).
Physical tests for patient selection for bone mineral density measurements in postmenopausal women.
Kärkkäinen, Matti; Rikkonen, Toni; Kröger, Heikki; Sirola, Joonas; Tuppurainen, Marjo; Salovaara, Kari; Arokoski, Jari; Jurvelin, Jukka; Honkanen, Risto; Alhava, Esko
2009-04-01
There is a need for cost-effective clinical methods to select women for bone densitometry. The aim of the present study was to determine whether relatively simple and clinically applicable physical tests could be useful in prediction of bone density in postmenopausal women. A total of 606 women (age range 66-71 years) taking part in the population based OSTPRE Fracture Prevention Study were investigated. Spinal and femoral bone mineral density (BMD) was measured by Dual X-ray Absorptiometry (DXA). Physical tests included the standing-on-one-foot (SOOF), grip strength (GS), leg extension strength, ability to squat down, standing 10 s eyes closed, chair rising, regular walk for 10 m and tandem walk for 6 m. All linear regression models were adjusted for age, body mass index, years on hormone therapy, years since menopause, current smoking and use of oral glucocorticoids. The SOOF was associated with lumbar spine BMD (r2=0.16, p=0.004) and the femoral regions (r2 values from 0.17 to 0.23 and p-values all<0.001). The GS was associated with lumbar spine BMD (r2=0.16, p=0.011) and the femoral regions (r2 values from 0.16 to 0.21 and p-values from <0.001 to 0.004). The ability to squat down on the floor was associated with the femoral regions (r2 values from 0.15 to 0.21 and p-values from 0.028 to 0.040). In addition, functional capacity was decreased in women with femoral neck osteoporosis (WHO classification) compared to women with normal or osteopenic BMD: SOOF -39% (p=0.001), GS -18% (p<0.001), leg extension strength -19% (p=0.007) and ability to squat down on the floor -40% (p=0.004). For osteoporosis prediction (ROC analysis) a threshold of a 22 kg in GS would yield a true-positive rate (sensitivity) of about 58% and a true-negative rate (specificity) of 86% (AUC 0.76). We suggest that grip strength could be used in medical decision making to identify those women who would benefit from BMD measurements albeit alone it may not provide accurate enough tool for osteoporosis screening.
Relationship of bone mineral density to progression of knee osteoarthritis
USDA-ARS?s Scientific Manuscript database
Objective. To evaluate the longitudinal relationship between bone mineral density (BMD) and BMD changes and the progression of knee osteoarthritis (OA), as measured by cartilage outcomes. Methods. We used observational cohort data from the Vitamin D for Knee Osteoarthritis trial. Bilateral femoral ...
Effect of zoledronic acid on bone density and markers of bone turnover in a community clinic.
Lim, Ria; Zailskas, Susan; Goldsby, Tashauna U; Lukens, Carrie; Muravev, Rostislav; Dulipsingh, Latha
2013-01-01
This study aims to document the efficacy of zoledronic acid by comparing bone densities and markers of bone turnover, in patients with osteoporosis. Bone mineral density (BMD) and urinary N-telopeptide, a marker of bone turnover, were compared before and after treatment with intravenous zoledronic acid. 52 participants had atleast two doses of zoledronic acid over 36 months. Significant increases in BMD were found in the spine (t=4.38, P<0.01) and decrease in bone turnover marker N-telopeptide (t=3.30, P=0.002). Small but significant correlations were determined between prior steroid use and change in BMD in the spine (r=0.35, P<0.05), and family history of osteoporosis and change in BMD in the right femur (r=0.38, P<0.05). Annual infusions of zoledronic acid for at least two years, revealed a significant increase in bone density at the spine and a decrease in urinary N-telopeptide in patients treated at our center.
Schmidt, Susanne; Mellström, Dan; Norjavaara, Ensio; Sundh, S Valter; Saalman, Robert
2009-12-01
Low bone mineral density (BMD) has been recognized as a potential problem in children with inflammatory bowel disease (IBD). The aim of the study was to investigate BMD in Swedish children and adolescents with IBD and to evaluate possible factors affecting BMD. To evaluate BMD, all patients (n = 144) underwent a dual-energy X-ray absorptiometry (DXA) of the whole body and the spine. BMD values were expressed as Z-scores using normative pediatric data from Lunar (GE Medical Systems). In this population-based study, the lowest BMD values were found in the lumbar spine. The entire IBD group showed significantly lower BMD Z-scores of the lumbar spine (L2-L4) in comparison to healthy references (-0.8 standard deviation [SD], range -5.9 to 3.7 SD, P < 0.001). Decreased BMD with a Z-score < -1 SD occurred in 46.7% of the individuals with Crohn's disease (CD) and in 47.0% of those with ulcerative colitis (UC). Low BMD with a Z-score ≤ -2 SD was present in 26.7% of the patients with CD and in 24.1% of the UC patients. In a multiple regression model with BMD lumbar spine as the depending variable, possible factors associated with lower BMD were male gender, low body mass index (BMI), and treatment with azathioprine. Low BMD is prevalent in Swedish pediatric patients with IBD. Possible risk factors for lower BMD are male gender, low BMI, and treatment with azathioprine, as a probable marker of disease course severity. Copyright © 2009 Crohn's & Colitis Foundation of America, Inc.
Clinical review: Ethnic differences in bone mass--clinical implications.
Leslie, William D
2012-12-01
Differences in bone mineral density (BMD) as assessed with dual-energy x-ray absorptiometry are observed between geographic and ethnic groups, with important implications in clinical practice. PubMed was employed to identify relevant studies. A review of the literature was conducted, and data were summarized and integrated. The available data highlight the complex ethnic variations in BMD, which only partially account for observed variations in fracture rates. Factors contributing to ethnic differences include genetics, skeletal size, body size and composition, lifestyle, and social determinants. Despite BMD differences, the gradient of risk for fracture from BMD and other clinical risk factors appears to be similar across ethnic groups. Furthermore, BMD variation is greater within an ethnic population than between ethnic populations. New imaging technologies have identified ethnic differences in bone geometry, volumetric density, microarchitecture, and estimated bone strength that may contribute to a better understanding of ethnic differences in fracture risk. Factors associated with ethnicity affect BMD and fracture risk through direct and indirect mechanisms.
NASA Astrophysics Data System (ADS)
Dana Carpenter, R.; LeBlanc, Adrian D.; Evans, Harlan; Sibonga, Jean D.; Lang, Thomas F.
2010-07-01
To determine the long-term effects of long-duration spaceflight, we measured bone mineral density and bone geometry of International Space Station (ISS) crewmembers using quantitative computed tomography (QCT) before launch, immediately upon their return, one year after return, and 2-4.5 years after return from the ISS. Eight crew members (7 male, 1 female, mean age 45±4 years at start of mission) who spent an average of 181 days (range 161-196 days) aboard the ISS took part in the study. Integral bone mineral density (iBMD), trabecular BMD (tBMD), bone mineral content (BMC), and vertebral cross-sectional area (CSA) were measured in the lumbar spine, and iBMD, tBMD, cortical BMD (cBMD), BMC, CSA, volume, and femoral neck section modulus were measured in the hip. Spine iBMD was 95% of the average preflight value upon return from the ISS and reached its preflight value over the next 2-4.5 years. Spine tBMD was 97% of the average preflight value upon return from the ISS and tended to decrease throughout the course of the study. Vertebral CSA remained essentially unchanged throughout the study. Hip iBMD was 91% of the preflight value upon return from the ISS and was 95% of the preflight value after 2-4.5 years of recovery. Hip tBMD was 88% of the preflight value upon return and recovered to only 93% of the preflight value after 1 year. At the 2- to 4.5-year time point, average tBMD was 88% of the preflight value. During the recovery period the total volume and cortical bone volume in the hip reached values of 114% and 110% of their preflight values, respectively. The combination of age-related bone loss, long-duration spaceflight, and re-adaptation to the 1-g terrestrial environment presumably produced these changes. These long-term data suggest that skeletal changes that occur during long-duration spaceflight persist even after multiple years of recovery. These changes have important implications for the skeletal health of crew members, especially those who make repeat trips to space.
Cvijetic, Selma; Baric, Irena Colic; Satalic, Zvonimir; Keser, Irena; Bobic, Jasminka
2014-01-01
The precise contributions of hereditary and environmental factors to bone density are not known. We compared lifestyle predictors of bone density among adopted and biological children. The study comprised 18 adopted children (mean [SD] age, 14.0 [4.1] years) with their non-biological parents and 17 children with their biological parents. Bone mineral density (BMD; g/cm(2)) was measured at the lumbar spine, total femur, and distal radius. Nutritional intake was assessed by food frequency questionnaire. Information on smoking and physical activity was obtained by questionnaire. Intakes of all nutrients, corrected for energy intake, and all lifestyle characteristics except sleep duration were similar in biological children and their parents. As compared with their parents, adopted children had significantly different energy, protein, and calcium intakes and physical activity levels. In a regression model, BMD z scores of adopted children and their parents were significantly inversely associated at the spine and total femur, whereas BMD z scores of biological children and their parents were significantly positively associated at all measurement sites. The greatest proportion of total variance in BMD was accounted for by calcium intake among adopted children and by parental BMD among biological children. For some lifestyle characteristics and nutrient intakes, the differences between parents and children were more obvious among adoptive families than among biological families. The most important lifestyle predictor of bone density was calcium intake.
Assessment and clinical management of bone disease in adults with eating disorders: a review.
Drabkin, Anne; Rothman, Micol S; Wassenaar, Elizabeth; Mascolo, Margherita; Mehler, Philip S
2017-01-01
To review current medical literature regarding the causes and clinical management options for low bone mineral density (BMD) in adult patients with eating disorders. Low bone mineral density is a common complication of eating disorders with potentially lifelong debilitating consequences. Definitive, rigorous guidelines for screening, prevention and management are lacking. This article intends to provide a review of the literature to date and current options for prevention and treatment. Current, peer-reviewed literature was reviewed, interpreted and summarized. Any patient with lower than average BMD should weight restore and in premenopausal females, spontaneous menses should resume. Adequate vitamin D and calcium supplementation is important. Weight-bearing exercise should be avoided unless cautiously monitored by a treatment team in the setting of weight restoration. If a patient has a Z-score less than expected for age with a high fracture risk or likelihood of ongoing BMD loss, physiologic transdermal estrogen plus oral progesterone, bisphosphonates (alendronate or risedronate) or teriparatide could be considered. Other agents, such as denosumab and testosterone in men, have not been tested in eating-disordered populations and should only be trialed on an empiric basis if there is a high clinical concern for fractures or worsening bone mineral density. A rigorous peer-based approach to establish guidelines for evaluation and management of low bone mineral density is needed in this neglected subspecialty of eating disorders.
Dong, Shan-Shan; Liu, Xiao-Gang; Chen, Yuan; Guo, Yan; Wang, Liang; Zhao, Jian; Xiong, Dong-Hai; Xu, Xiang-Hong; Recker, Robert R.
2010-01-01
Femoral neck compression strength index (fCSI), a novel phenotypic parameter that integrates bone density, bone size, and body size, has significant potential to improve hip fracture risk assessment. The genetic factors underlying variations in fCSI, however, remain largely unknown. Given the important roles of the receptor activator of the nuclear factor-κB ligand/receptor activator of the nuclear factor-κB/osteoprotegerin (RANKL/RANK/OPG) pathway in the regulation of bone remodeling, we tested the associations between RANKL/RANK/OPG polymorphisms and variations in fCSI as well as its components (femoral neck bone mineral density [fBMD], femoral neck width [FNW], and weight). This was accomplished with a sample comprising 1873 subjects from 405 Caucasian nuclear families. Of the 37 total SNPs studied in these three genes, 3 SNPs, namely, rs12585014, rs7988338, and rs2148073, of RANKL were significantly associated with fCSI (P = 0.0007, 0.0007, and 0.0005, respectively) after conservative Bonferroni correction. Moreover, the three SNPs were approximately in complete linkage disequilibrium. Haplotype-based association tests corroborated the single-SNP results since haplotype 1 of block 1 of the RANKL gene achieved an even more significant association with fCSI (P = 0.0003) than any of the individual SNPs. However, we did not detect any significant associations of these genes with fBMD, FNW, or weight. In summary, our findings suggest that the RANKL gene may play an important role in variation in fCSI, independent of fBMD and non-fBMD components. PMID:19458885
Dong, Shan-Shan; Liu, Xiao-Gang; Chen, Yuan; Guo, Yan; Wang, Liang; Zhao, Jian; Xiong, Dong-Hai; Xu, Xiang-Hong; Recker, Robert R; Deng, Hong-Wen
2009-08-01
Femoral neck compression strength index (fCSI), a novel phenotypic parameter that integrates bone density, bone size, and body size, has significant potential to improve hip fracture risk assessment. The genetic factors underlying variations in fCSI, however, remain largely unknown. Given the important roles of the receptor activator of the nuclear factor-kappaB ligand/receptor activator of the nuclear factor-kappaB/osteoprotegerin (RANKL/RANK/OPG) pathway in the regulation of bone remodeling, we tested the associations between RANKL/RANK/OPG polymorphisms and variations in fCSI as well as its components (femoral neck bone mineral density [fBMD], femoral neck width [FNW], and weight). This was accomplished with a sample comprising 1873 subjects from 405 Caucasian nuclear families. Of the 37 total SNPs studied in these three genes, 3 SNPs, namely, rs12585014, rs7988338, and rs2148073, of RANKL were significantly associated with fCSI (P = 0.0007, 0.0007, and 0.0005, respectively) after conservative Bonferroni correction. Moreover, the three SNPs were approximately in complete linkage disequilibrium. Haplotype-based association tests corroborated the single-SNP results since haplotype 1 of block 1 of the RANKL gene achieved an even more significant association with fCSI (P = 0.0003) than any of the individual SNPs. However, we did not detect any significant associations of these genes with fBMD, FNW, or weight. In summary, our findings suggest that the RANKL gene may play an important role in variation in fCSI, independent of fBMD and non-fBMD components.
Prevalence of low bone mineral density in female dancers.
Amorim, Tânia; Wyon, Matthew; Maia, José; Machado, José Carlos; Marques, Franklim; Metsios, George S; Flouris, Andreas D; Koutedakis, Yiannis
2015-02-01
While some authors report that dancers have reduced bone mineral density (BMD) and increased risk of osteoporosis, others have stressed the positive effects of dance training on developing healthy BMD. Given the existing controversy, the aim of this systematic review was to examine the best evidence-based information available in relation to female dancers. Four databases (Web of Science, PubMed, EBSCO, Scopus) and two dance science journals (Journal of Dance Medicine and Science and Medical Problems of Performing Artists) were searched for relevant material using the keywords "dance", "ballet", "BMD", "bone density", "osteoporosis" and "female athlete triad syndrome". A total of 257 abstracts were screened using selected inclusion (studies involving bone measurements in dancers) and exclusion (editorials, opinion papers, chapters in books, narrative reviews and non-English language papers) criteria according to PRISMA guidelines. Following the above screening, a total of 108 abstracts were identified as potentially relevant. After the exclusion of conference proceedings, review papers, studies focusing only in male dancers and studies in which dancers' information were combined with other athletes, the eligible papers were subsequently assessed using the GRADE system and grouped according to: (1) prevalence of low BMD and associated factors, (2) incidence of low BMD and risk factors, (3) prevention/treatment of low BMD in dancers, and (4) other studies. Of the 257 abstracts that were initially screened, only 35 studies were finally considered. Only one of these 35 was of high quality, while the remaining 34 were of relatively low quality. Seven studies reported prevalence of low BMD and associated factors, 10 reported associated factors with no prevalence data, while one reported prevalence with no associated factors data. One study cited risk factors, while another one elaborated on the treatment of low BMD in dancers. The remaining 15 studies were classified as "other studies". It remains unclear whether low BMD is prevalent in female dancers. The present review highlights the need for high-quality BMD research in this area.
Cromer, Barbara A.; Bonny, Andrea E.; Stager, Margaret; Lazebnik, Rina; Rome, Ellen; Ziegler, Julie; Camlin-Shingler, Kelly; Secic, Michelle
2008-01-01
Study Objective To determine whether bone mineral density (BMD) is lower in hormonal contraceptive users than that in an untreated, comparison group. Design Observational, prospective cohort; duration: 24 months. Setting Adolescent clinics in a midwestern, metropolitan setting. Patients 433 postmenarcheal girls, aged 12–18 years, on depot medroxyprogesterone acetate (DMPA) [n=58], oral contraceptives (OC) [n=187], or untreated (n=188). Intervention DMPA and OC containing 100 mcg levonorgestrel and 20 mcg ethinyl estradiol. Main Outcome Measure BMD measurements at spine and femoral neck were obtained with dual x-ray absorptiometry (DXA) at baseline and 6-month intervals. Results Over 24 months, mean percent change in spine BMD was: DMPA −1.5%, OC +4.2%, and untreated +6.3%. Mean percent change in femoral neck BMD was: DMPA −5.2%, OC +3.0%, untreated +3.8%. Statistical significance was found between the DMPA group and other two groups (p<.001). In the DMPA group, mean percent change in spine BMD over the first 12 months was −1.4%; the rate of change slowed to −0.1% over the second 12 months. No bone density loss reached the level of osteopenia. Conclusions Adolescent girls receiving DMPA had significant loss in BMD compared with bone gain in the OC and untreated group. However, its clinical significance is mitigated by slowed loss after the first year of DMPA use and general maintenance of bone density values within the normal range. PMID:18222431
Gan, Wei; Clarke, Robert J; Mahajan, Anubha; Kulohoma, Benard; Kitajima, Hidetoshi; Robertson, Neil R; Rayner, N William; Walters, Robin G; Holmes, Michael V; Chen, Zhengming; McCarthy, Mark I
2017-01-01
Background: Observational studies have demonstrated that increased bone mineral density is associated with a higher risk of type 2 diabetes (T2D), but the relationship with risk of coronary heart disease (CHD) is less clear. Moreover, substantial uncertainty remains about the causal relevance of increased bone mineral density for T2D and CHD, which can be assessed by Mendelian randomisation studies. Methods: We identified 235 independent single nucleotide polymorphisms (SNPs) associated at p <5×10 -8 with estimated heel bone mineral density (eBMD) in 116,501 individuals from the UK Biobank study, accounting for 13.9% of eBMD variance. For each eBMD-associated SNP, we extracted effect estimates from the largest available GWAS studies for T2D (DIAGRAM: n=26,676 T2D cases and 132,532 controls) and CHD (CARDIoGRAMplusC4D: n=60,801 CHD cases and 123,504 controls). A two-sample design using several Mendelian randomization approaches was used to investigate the causal relevance of eBMD for risk of T2D and CHD. In addition, we explored the relationship of eBMD, instrumented by the 235 SNPs, on 12 cardiovascular and metabolic risk factors. Finally, we conducted Mendelian randomization analysis in the reverse direction to investigate reverse causality. Results: Each one standard deviation increase in genetically instrumented eBMD (equivalent to 0.14 g/cm 2 ) was associated with an 8% higher risk of T2D (odds ratio [OR] 1.08; 95% confidence interval [CI]: 1.02 to 1.14; p =0.012) and 5% higher risk of CHD (OR 1.05; 95%CI: 1.00 to 1.10; p =0.034). Consistent results were obtained in sensitivity analyses using several different Mendelian randomization approaches. Equivalent increases in eBMD were also associated with lower plasma levels of HDL-cholesterol and increased insulin resistance. Mendelian randomization in the reverse direction using 94 T2D SNPs or 52 CHD SNPs showed no evidence of reverse causality with eBMD. Conclusions: These findings suggest a causal relationship between elevated bone mineral density with risks of both T2D and CHD.
Lewis, Ryan C; Johns, Lauren E; Meeker, John D
2016-12-01
Human exposure to molybdenum (Mo) may play a role in reducing bone mineral density (BMD) by interfering with steroid sex hormone levels. To begin to address gaps in the literature on this topic, the potential relationship between urinary Mo (U-Mo) and BMD at the femoral neck (FN-BMD) and lumbar spine (LS-BMD) was explored in a sample of 1496 adults participating in the 2007-2010 cycles of the National Health and Nutrition Examination Survey. Associations were assessed using multiple linear regression models stratified on sex and age. In adjusted models for 50-80+ year-old women, there was a statistically significant inverse relationship between natural log-U-Mo and LS-BMD (p-value: 0.002), and a statistically significant dose-dependent decrease in LS-BMD with increasing U-Mo quartiles (trend p-value: 0.002). A suggestive (trend p-value: 0.08), dose-dependent decrease in FN-BMD with increasing U-Mo quartiles was noted in this group of women as well. All other adjusted models revealed no statistically significant or suggestive relationships between U-Mo and FN-BMD or LS-BMD. Bone health is important for overall human health and well-being and, given the exploratory nature of this work, additional studies are needed to confirm the results in other populations, and clarify the potential underlying mechanisms of Mo on BMD. Copyright © 2016 Elsevier Ltd. All rights reserved.
Low bone mineral density in achondroplasia and hypochondroplasia.
Matsushita, Masaki; Kitoh, Hiroshi; Mishima, Kenichi; Kadono, Izumi; Sugiura, Hiroshi; Hasegawa, Sachi; Nishida, Yoshihiro; Ishiguro, Naoki
2016-08-01
Achondroplasia (ACH) and hypochondroplasia (HCH) are the most common form of short-limb skeletal dysplasias caused by activated fibroblast growth factor receptor 3 (FGFR3) signaling. Although decreased bone mass was reported in gain-of-function mutation in Fgfr3 mice, both disorders have never been described as osteoporotic. In the present study, we evaluated bone mineral density (BMD) in ACH and HCH patients. We measured spinal BMD (L1-L4) in 18 ACH and four HCH patients with an average age of 19.8 ± 7.5 years (range, 10-33 years). BMD Z-score in each individual was calculated for normalizing age and gender. Correlation between body mass index (BMI) and BMD was analyzed. Moreover, BMD and Z-score were compared between ACH patients and HCH patients. The average BMD of ACH/HCH patients was 0.805 ± 0.141 g/cm(2) (range, 0.554-1.056 g/cm(2) ), resulting in an average Z-score of -1.1 ± 0.8 (range, -2.4 to 0.6) of the standard value. A slightly positive correlation was observed between BMI and BMD (r = 0.45; P = 0.13). There was no significant difference in BMD and Z-score between ACH and HCH patients. Spinal BMD was reduced in ACH/HCH patients, and was mildly correlated with individual BMI. We should carefully monitor BMD and examine osteoporosis-related symptoms in adolescent and adult ACH/HCH patients. © 2016 Japan Pediatric Society. © 2015 Japan Pediatric Society.
Maple-Brown, L J; Hughes, J; Piers, L S; Ward, L C; Meerkin, J; Eisman, J A; Center, J R; Pocock, N A; Jerums, G; O'Dea, K
2012-07-01
Bone mineral density (BMD) has been reported to be both higher and lower in Indigenous women from different populations. Body composition data have been reported for Indigenous Australians, but there are few published BMD data in this population. We assessed BMD in 161 Indigenous Australians, identified as Aboriginal (n=70), Torres Strait Islander (n=68) or both (n=23). BMD measurements were made on Norland-XR46 (n=107) and Hologic (n=90) dual-energy X-ray absorptiometry (DXA) machines. Norland BMD and body composition measurements in these individuals, and also in 36 Caucasian Australians, were converted to equivalent Hologic BMD (BMD(H)) and body composition measurements for comparison. Femoral neck (FN) and lumbar spine Z-scores were high in Indigenous participants (mean FN Z-score: Indigenous men +0.98, p<0.0001 vs. mean zero; Indigenous women +0.82, p<0.0001 vs. mean zero). FN BMD(H) was higher in Aboriginal and/or Torres Strait Islander than Caucasian participants, after adjusting for age, gender, diabetes and height and remained higher in men after addition of lean mass to the model. We conclude that FN BMD is higher in Aboriginal and/or Torres Strait Islander Australians than Caucasian Australian reference ranges and these differences still remained significant in men after adjustment for lean mass. It remains to be seen whether these BMD differences translate to differences in fracture rates. Copyright © 2012 Elsevier Inc. All rights reserved.
Park, Young Joo; Lee, Sook Ja; Shin, Nah Mee; Shin, Hyunjeong; Kim, Yoo Kyung; Cho, Yunjung; Jeon, Songi; Cho, Inhae
2014-10-01
This study was done to assess the bone mineral density (BMD), biochemical bone turnover markers (BTMs), and factors associated with bone health in young Korean women. Participants were 1,298 women, ages 18-29, recruited in Korea. Measurements were BMD by calcaneus quantitative ultrasound, BTMs for Calcium, Phosphorus, Osteocalcin, and C-telopeptide cross-links (CTX), body composition by physical measurements, nutrients by food frequency questionnaire and psychosocial factors associated with bone health by self-report. The mean BMD (Z-score) was -0.94. 8.7% women had lower BMD (Z-score≤-2) and 14.3% women had higher BMD (Z-score≥0) than women of same age. BTMs were not significantly different between high-BMD (Z-score≥0) and low-BMD (Z-score<0) women. However, Osteocalcin and CTX were higher in women preferring caffeine intake, sedentary lifestyle and alcoholic drinks. Body composition and Calcium intake were significantly higher in high-BMD. Low-BMD women reported significantly higher susceptibility and barriers to exercise in health beliefs, lower bone health self-efficacy and promoting behaviors. Results of this study indicate that bone health of young Korean women is not good. Development of diverse strategies to intervene in factors such as exercise, nutrients, self-efficacy, health beliefs and behaviors, shown to be important, are needed to improve bone health.
The effect of pregnancy and lactation on bone mineral density in fluoride-exposed rats.
Yildiz, Mustafa; Oral, Baha
2006-06-01
Fluoride increases metabolic turnover of the bone in favour of bone formation. Excessive intake of fluoride may lead to pathological changes in teeth and bones: dental and skeletal fluorosis. In this study, we investigated the effect of pregnancy and lactation on bone mineral density (BMD) in fluoride-exposed rats. Female Wistar rats were given commercially available spring water with 100 ppm fluoride (N = 8), or without addition (N = 8) for 18 weeks. At 16 weeks of age, four female rats and one male rat were kept in a cage for 5 days; all females were successfully impregnated. BMD was measured at 16 weeks of age, on the first day postpartum, and at the end of lactation. Spinal BMD was significantly higher in fluoride-exposed rats than control (P < 0.05), but there were no differences in femoral BMD (P = 0.670). During pregnancy, spinal BMD and femoral BMD were not significantly changed in fluoride-exposed rats, whereas BMD of the spine was significantly decreased in the control rats (P = 0.013), but not in the femur. During lactation, BMD was significantly decreased at the two regions compared to initial values (P < 0.05) in both groups. This study shows that pregnancy has no effect on bone, but lactation has a decreasing effect on BMD in fluoride-exposed rats.
Olsson, A; Oturai, D B; Sørensen, P S; Oturai, P S; Oturai, A B
2015-10-01
Patients with multiple sclerosis (MS) are at increased risk of reduced bone mineral density (BMD). A contributing factor might be treatment with high-dose glucocorticoids (GCs). The objective of this paper is to assess bone mass in patients with MS and evaluate the importance of short-term, high-dose GC treatment and other risk factors that affect BMD in patients with MS. A total of 260 patients with MS received short-term high-dose GC treatment and had their BMD measured by dual x-ray absorptiometry. BMD was compared to a healthy age-matched reference population (Z-scores). Data regarding GCs, age, body mass index (BMI), serum 25(OH)D, disease duration and severity were collected retrospectively and analysed in a multiple linear regression analysis to evaluate the association between each risk factor and BMD. Osteopenia was present in 38% and osteoporosis in 7% of the study population. Mean Z-score was significantly below zero, indicating a decreased BMD in our MS patients. Multiple linear regression analysis showed no significant association between GCs and BMD. In contrast, age, BMI and disease severity were independently associated with both lumbar and femoral BMD. Reduced BMD was prevalent in patients with MS. GC treatment appears not to be the primary underlying cause of secondary osteoporosis in MS patients. © The Author(s), 2015.
Bone mineral density in relation to body mass index among young women: a prospective cohort study.
Elgán, Carina; Fridlund, Bengt
2006-08-01
To identify important predictors among lifestyle behaviours and physiological factors of bone mineral density (BMD) in relation to body mass index (BMI) among young women over a 2-year period. DESIGN, SAMPLE AND MEASUREMENTS: Data were collected in 1999 and 2001. Healthy young women (n=152) completed a questionnaire. BMD measurements were performed by DEXA in the calcaneus. The women were subdivided into three categories according to baseline BMI. Baseline bodyweight explained 25% of the variability in BMD at follow-up in the BMI<19 category, and high physical activity seemed to hinder BMD development. In the BMI>24 category, a difference in time spent outdoors during winter between baseline and follow-up was the single most important factor for BMD levels. Overweight women with periods of amenorrhoea had lower BMD than overweight women without such periods. Predictors and lifestyle behaviours associated with BMD are likely to be based on women of normal weight. BMI should be considered when advising on physical activity, since high physical activity seems to impair BMD development among underweight young women, possibly due to energy imbalance. Among overweight women, sleep satisfaction is the greatest predictor associated with BMD change and may indicate better bone formation conditions. Energy balance and sleep quality may be prerequisites of bone health and should be considered in prevention.
Kemp, John P; Medina-Gomez, Carolina; Estrada, Karol; St Pourcain, Beate; Heppe, Denise H M; Warrington, Nicole M; Oei, Ling; Ring, Susan M; Kruithof, Claudia J; Timpson, Nicholas J; Wolber, Lisa E; Reppe, Sjur; Gautvik, Kaare; Grundberg, Elin; Ge, Bing; van der Eerden, Bram; van de Peppel, Jeroen; Hibbs, Matthew A; Ackert-Bicknell, Cheryl L; Choi, Kwangbom; Koller, Daniel L; Econs, Michael J; Williams, Frances M K; Foroud, Tatiana; Zillikens, M Carola; Ohlsson, Claes; Hofman, Albert; Uitterlinden, André G; Davey Smith, George; Jaddoe, Vincent W V; Tobias, Jonathan H; Rivadeneira, Fernando; Evans, David M
2014-06-01
Heritability of bone mineral density (BMD) varies across skeletal sites, reflecting different relative contributions of genetic and environmental influences. To quantify the degree to which common genetic variants tag and environmental factors influence BMD, at different sites, we estimated the genetic (rg) and residual (re) correlations between BMD measured at the upper limbs (UL-BMD), lower limbs (LL-BMD) and skull (SK-BMD), using total-body DXA scans of ∼ 4,890 participants recruited by the Avon Longitudinal Study of Parents and their Children (ALSPAC). Point estimates of rg indicated that appendicular sites have a greater proportion of shared genetic architecture (LL-/UL-BMD rg = 0.78) between them, than with the skull (UL-/SK-BMD rg = 0.58 and LL-/SK-BMD rg = 0.43). Likewise, the residual correlation between BMD at appendicular sites (r(e) = 0.55) was higher than the residual correlation between SK-BMD and BMD at appendicular sites (r(e) = 0.20-0.24). To explore the basis for the observed differences in rg and re, genome-wide association meta-analyses were performed (n ∼ 9,395), combining data from ALSPAC and the Generation R Study identifying 15 independent signals from 13 loci associated at genome-wide significant level across different skeletal regions. Results suggested that previously identified BMD-associated variants may exert site-specific effects (i.e. differ in the strength of their association and magnitude of effect across different skeletal sites). In particular, variants at CPED1 exerted a larger influence on SK-BMD and UL-BMD when compared to LL-BMD (P = 2.01 × 10(-37)), whilst variants at WNT16 influenced UL-BMD to a greater degree when compared to SK- and LL-BMD (P = 2.31 × 10(-14)). In addition, we report a novel association between RIN3 (previously associated with Paget's disease) and LL-BMD (rs754388: β = 0.13, SE = 0.02, P = 1.4 × 10(-10)). Our results suggest that BMD at different skeletal sites is under a mixture of shared and specific genetic and environmental influences. Allowing for these differences by performing genome-wide association at different skeletal sites may help uncover new genetic influences on BMD.
Estrada, Karol; St Pourcain, Beate; Heppe, Denise H. M.; Warrington, Nicole M.; Oei, Ling; Ring, Susan M.; Kruithof, Claudia J.; Timpson, Nicholas J.; Wolber, Lisa E.; Reppe, Sjur; Gautvik, Kaare; Grundberg, Elin; Ge, Bing; van der Eerden, Bram; van de Peppel, Jeroen; Hibbs, Matthew A.; Ackert-Bicknell, Cheryl L.; Choi, Kwangbom; Koller, Daniel L.; Econs, Michael J.; Williams, Frances M. K.; Foroud, Tatiana; Carola Zillikens, M.; Ohlsson, Claes; Hofman, Albert; Uitterlinden, André G.; Davey Smith, George; Jaddoe, Vincent W. V.; Tobias, Jonathan H.; Rivadeneira, Fernando; Evans, David M.
2014-01-01
Heritability of bone mineral density (BMD) varies across skeletal sites, reflecting different relative contributions of genetic and environmental influences. To quantify the degree to which common genetic variants tag and environmental factors influence BMD, at different sites, we estimated the genetic (rg) and residual (re) correlations between BMD measured at the upper limbs (UL-BMD), lower limbs (LL-BMD) and skull (SK-BMD), using total-body DXA scans of ∼4,890 participants recruited by the Avon Longitudinal Study of Parents and their Children (ALSPAC). Point estimates of rg indicated that appendicular sites have a greater proportion of shared genetic architecture (LL-/UL-BMD rg = 0.78) between them, than with the skull (UL-/SK-BMD rg = 0.58 and LL-/SK-BMD rg = 0.43). Likewise, the residual correlation between BMD at appendicular sites (re = 0.55) was higher than the residual correlation between SK-BMD and BMD at appendicular sites (re = 0.20–0.24). To explore the basis for the observed differences in rg and re, genome-wide association meta-analyses were performed (n∼9,395), combining data from ALSPAC and the Generation R Study identifying 15 independent signals from 13 loci associated at genome-wide significant level across different skeletal regions. Results suggested that previously identified BMD-associated variants may exert site-specific effects (i.e. differ in the strength of their association and magnitude of effect across different skeletal sites). In particular, variants at CPED1 exerted a larger influence on SK-BMD and UL-BMD when compared to LL-BMD (P = 2.01×10−37), whilst variants at WNT16 influenced UL-BMD to a greater degree when compared to SK- and LL-BMD (P = 2.31×10−14). In addition, we report a novel association between RIN3 (previously associated with Paget's disease) and LL-BMD (rs754388: β = 0.13, SE = 0.02, P = 1.4×10−10). Our results suggest that BMD at different skeletal sites is under a mixture of shared and specific genetic and environmental influences. Allowing for these differences by performing genome-wide association at different skeletal sites may help uncover new genetic influences on BMD. PMID:24945404
Zhang, Z-Q; He, L-P; Liu, Y-H; Liu, J; Su, Y-X; Chen, Y-M
2014-10-01
This large cross-sectional study examined the associations of dietary intakes of total flavonoids and their subtypes with bone density in women and men. We found that greater flavonoid intake was associated with higher bone density in women but not in men. Studies in vitro and in animal models suggest a potential effect of flavonoids on bone health. Few studies have examined the association between the habitual intake of flavonoids and bone mineral density (BMD) in humans. The cross-sectional study recruited 2,239 women and 1,078 men. A semiquantitative food frequency questionnaire was administered in face-to-face interviews to assess habitual dietary flavonoid intake using food composition databases. BMD was measured over the whole body (WB) and in the femoral neck (FN) and lumbar spine (LS) by dual-energy X-ray absorptiometry (DXA). After adjusting for covariates, women who consumed higher total flavonoids, and the subtypes of flavonols, flavan-3-ols, flavones, and proanthocyanidins tended to have greater BMD at the WB, LS, and FN (all P-trend < 0.05). Women in the highest (vs. the lowest) quartile of total flavonoids intake had 0.020 (1.91 %), 0.021 (2.51 %), and 0.013 (1.99 %) g/cm(2) greater BMD at the whole body, LS, and FN, respectively. For the subtypes of flavonoids, the corresponding differences in BMD (in g/cm(2)) were 0.012-0.021 (flavan-3-ols), 0.013-0.020 (flavonols), 0.016-0.019 (flavones), and 0.014-0.016 (proanthocyanidins), respectively. A higher intake of flavonones was associated with a greater BMD at the whole body (P-trend 0.041) and the FN (P-trend 0.022). In men, there were no significant positive associations between the consumption of total flavonoids and the subclasses and BMD at any sites. Dietary flavonoids intake was positively associated with BMD in women. Further large studies are needed to clarify this issue in men.
Bone mineral density across a range of physical activity volumes: NHANES 2007-2010.
Whitfield, Geoffrey P; Kohrt, Wendy M; Pettee Gabriel, Kelley K; Rahbar, Mohammad H; Kohl, Harold W
2015-02-01
The association between aerobic physical activity volume and bone mineral density (BMD) is not completely understood. The purpose of this study was to clarify the association between BMD and aerobic activity across a broad range of activity volumes, particularly volumes between those recommended in the 2008 Physical Activity Guidelines for Americans and those of trained endurance athletes. Data from the 2007-2010 National Health and Nutrition Examination Survey were used to quantify the association between reported physical activity and BMD at the lumbar spine and proximal femur across the entire range of activity volumes reported by US adults. Participants were categorized into multiples of the minimum guideline-recommended volume based on reported moderate- and vigorous-intensity leisure activity. Lumbar and proximal femur BMD were assessed with dual-energy x-ray absorptiometry. Among women, multivariable-adjusted linear regression analyses revealed no significant differences in lumbar BMD across activity categories, whereas proximal femur BMD was significantly higher among those who exceeded the guidelines by 2-4 times than those who reported no activity. Among men, multivariable-adjusted BMD at both sites neared its highest values among those who exceeded the guidelines by at least 4 times and was not progressively higher with additional activity. Logistic regression estimating the odds of low BMD generally echoed the linear regression results. The association between physical activity volume and BMD is complex. Among women, exceeding guidelines by 2-4 times may be important for maximizing BMD at the proximal femur, whereas among men, exceeding guidelines by ≥4 times may be beneficial for lumbar and proximal femur BMD.
Skeletal Adaptations to Different Levels of Eccentric Resistance Following Eight Weeks of Training
NASA Technical Reports Server (NTRS)
English, Kirk L.; Loehr, James A.; Lee, Stuart M. C.; Maddocks, Mary J.; Laughlin, Mitzi S.; Hagan, R. Donald
2007-01-01
Coupled concentric-eccentric resistive exercise maintains bone mineral density (BMD) during bed rest and aging. PURPOSE: We hypothesized that 8 wks of lower body resistive exercise training with higher ratios of eccentric to concentric loading would enhance hip and lumbar BMD. METHODS: Forty untrained male volunteers (34.9+/-7.0 yrs, 80.9+/-9.8 kg, 178.2+/-7.1 cm; mean+/-SD) were matched for leg press (LP) 1-Repetition Maximum (1-RM) strength and randomly assigned to one of 5 training groups. Concentric load (% 1-RM) was constant across groups, but each group trained with different levels of eccentric load (0, 33, 66, 100, or 138% of concentric) for all training sessions. Subjects performed a periodized supine LP and heel raise (HR) training program 3 d wk-1 for 8 wks using a modified Agaton Fitness System (Agaton Fitness AB, Boden, Sweden). Hip and lumbar BMD (g/sq cm) was measured in triplicate pre- and post-training using DXA (Hologic Discovery ). Pre- and post-training means were compared using the appropriate ANOVA and Tukey's post hoc tests. Within group pre- to post-training BMD was compared using paired t-tests with a Bonferroni adjustment. RESULTS: There was a main effect of training on L1, L2, L3, L4, total lumbar, and greater trochanter BMD, but there were no differences between groups. CONCLUSION: Eights wks of lower body resistive exercise increased greater trochanter and lumbar BMD. Inability to detect group differences may have been influenced by a potentially osteogenic vibration associated with device operation in the 0, 33, and 66% groups.
Kronhed, A C; Möller, M
1998-10-01
Vadstena is a small community in the county of Ostergötland, Sweden, where a project began in 1989 to prevent osteoporosis and to lower the expected incidence of osteoporotic fractures. Persons aged 40-70 years who had a low bone mineral density (BMD) value at screening of the distal radius by single-photon absorptiometry (SPA) were invited to participate in a training study during one year. The definition of low BMD was a densitometry value below -1 SD (standard deviation) from a sex- and age-specific reference value (z-score). Fifteen persons wanted to exercise in a group and 15 persons wanted to become a control group. All participants answered a questionnaire about lifestyle, occupation, diseases, medication and heredity. Clinical tests were made regarding mobility of the joints and muscles, balance and physical fitness. BMD for the hip and the lumbar spine were assessed by dual-energy X-ray absorptiometry (DXA) before and after the investigation period. The training programme was carried out for 60 min twice a week during one year and had the intention to improve bone mass, muscle strength and flexibility, balance skill and aerobic capacity. After the training period there was a significant increase in BMD at the greater trochanter (P < 0.01), in balance skill (standing on one leg with closed eyes and "ski step"-test) (P < 0.05) and in oxygen uptake capacity (P < 0.05) in the exercise group. In the control group, there was a significant increase in BMD at the lumbar spine (P < 0.05). However, these results should be judged with caution because several participants were over the age of 60, and at that age degenerative changes in the lumbar spine may increase to a greater or lesser extent. Regular weight-bearing exercises during one year seem to influence BMD at the greater trochanter in a training group comprising both women and men. However, our study was small in number and further training studies are needed to assess the effect of weight-bearing training on bone mass in different sex- and age-specific groups.
Bone mineral density and growth in children with coeliac disease on a gluten free-diet.
Tuna Kırsaçlıoğlu, Ceyda; Kuloğlu, Zarife; Tanca, Aydan; Küçük, Nuriye Özlem; Aycan, Zehra; Öcal, Gönül; Ensari, Arzu; Kalaycı, Ayhan Gazi; Girgin, Nurten
2016-12-20
To evaluate changes in growth and bone metabolism during consumption of a gluten-free diet (GFD) in children with coeliac disease (CD). Thirty-seven children with CD (mean age of 8.8 ± 4.6 years, 21 girls) were enrolled. Anthropometric measurements, bone mineral density (BMD) in lumbar 2-4 vertebrae, and serum alkaline phosphatase, calcium, and phosphorus levels at diagnosis and at follow-up were recorded. The mean follow-up period was 3.5 ± 2.3 years. The BMD of patients was significantly lower than that of control subjects at the time of diagnosis but not after 1 year of the GFD. Incidence of low BMD with respect to z-scores for chronological age (CA) was significantly higher than z-scores for height age (HA) (P = 0.006). At the first year of GFD, BMD, BMD z-score, height-for-age z-scores, and weight-for-age z-scores were significantly increased compared with the baseline, but not after 1 year of the GFD. In CD, the first year of GFD is important in weight gain, linear growth, and improvement of BMD. A considerable relation of low BMD in children with CD, with respect to z-scores for CA, may be a result of misinterpretation of low BMD due to short stature.
Sowińska-Przepiera, Elżbieta; Chełstowski, Kornel; Friebe, Zbigniew; Syrenicz, Anhelli
2011-11-01
The aim of this study was to evaluate the effects of 4-year estroprogestagen therapy (EP) on the bone mineral density (BMD) of 16- to 17-year-old girls with functional hypothalamic amenorrhea (FHA, n = 78). Baseline values of hormonal parameters, bone fraction of alkaline phosphatase (BALP), and cross-linked n-telopeptide of type I collagen (Ntx) were taken along with BMD measurements. Follow-up measurements of laboratory parameters were performed after 6 months of EP treatment. BMD was measured on a yearly basis. Six-month treatment resulted in a marked increase in estradiol levels and a significant decrease in BALP and Ntx. The relative increase in BMD was highest after the second year of treatment. Based on the dynamics of BMD changes during the first year of treatment, we identified a subgroup with no or insignificant reactions to the treatment. It was characterized by significantly higher baseline BMD and markedly lower baseline Ntx compared to the patients who responded to 1-year therapy well or extremely well. Further follow-up proved, however, that this subgroup did not differ significantly in terms of the long-term prognosis for BMD normalization. In conclusion, this study showed that EP therapy is effective in the treatment of BMD disorders associated with FHA.
Bone mineral density and insulin-like growth factor-1 in children with spastic cerebral palsy.
Nazif, H; Shatla, R; Elsayed, R; Tawfik, E; Osman, N; Korra, S; Ibrahim, A
2017-04-01
Children with cerebral palsy (CP) have significant decrease linear growth rate and low bone mineral density (BMD). This study is to evaluate BMD in children with CP and its relation to the levels of insulin-like growth factor-1 (IGF-1). This cross-sectional study was carried out on 58 children suffering from spastic CP with the age range 4-12 years compared to 19 controls. All assessed by dual energy x-ray absorptiometry (DXA) to measure BMD, serum level of IGF-1, and serum vitamin D. The patients were classified according to their GMFCS. Fractures were reported in seven (12.1%) of cases. Our study demonstrated that, IGF-1 level and BMD decrease in correlation with the severity of CP. IGF-1correlates positively with serum vitamin D, BMI, and BMD. CP children with severe GMFCS level or who use anticonvulsive drugs are at a high risk for low BMD and low levels of IGF-1. Both BMD and IGF-1 were significantly in low children with spastic CP; IGF-1 negatively correlates with the severity of osteopenia in children with spastic. Children with CP who are not independently ambulant or with severe GMFCS level or who use anticonvulsive drugs are at a high risk for developing low BMD.
Trabecular bone deficits among Vietnamese immigrants.
Melton, L J; Marquez, M A; McCready, L K; Achenbach, S J; Riggs, B L; Amin, S; Khosla, S
2011-05-01
Compared to white women, lower areal bone mineral density (aBMD) in middle-aged Vietnamese immigrants is due to reduced trabecular volumetric bone mineral density (vBMD), which in turn is associated with greater trabecular separation along with lower estrogen levels. The epidemiology of osteoporosis in Asian populations is still poorly known, but we previously found a deficit in lumbar spine aBMD among postmenopausal Southeast Asian women, compared to white women, that persisted after correction for bone size. This issue was revisited using more sophisticated imaging techniques. Twenty Vietnamese immigrants (age, 44-79 years) were compared to 162 same-aged white women with respect to aBMD at the hip, spine and wrist, vBMD at the hip and spine by quantitative computed tomography and vBMD and bone microstructure at the ultradistal radius by high-resolution pQCT. Bone turnover and sex steroid levels were assessed in a subset (20 Vietnamese and 40 white women). The aBMD was lower at all sites among the Vietnamese women, but femoral neck vBMD did not differ from middle-aged white women. Significant differences in lumbar spine and ultradistal radius vBMD in the Vietnamese immigrants were due to lower trabecular vBMD, which was associated with increased trabecular separation. Bone resorption was elevated and bone formation depressed among the Vietnamese immigrants, although trends were not statistically significant. Serum estradiol was positively associated with trabecular vBMD in the Vietnamese women, but their estrogen levels were dramatically lower compared to white women. Although reported discrepancies in aBMD among Asian women are mainly an artifact of smaller bone size, we identified a specific deficit in the trabecular bone among a sample of Vietnamese immigrants that may be related to low estrogen levels and which needs further study.
Trabecular bone deficits among Vietnamese immigrants
Marquez, M. A.; McCready, L. K.; Achenbach, S. J.; Riggs, B. L.; Amin, S.; Khosla, S.
2011-01-01
Summary Compared to white women, lower areal bone mineral density (aBMD) in middle-aged Vietnamese immigrants is due to reduced trabecular volumetric bone mineral density (vBMD), which in turn is associated with greater trabecular separation along with lower estrogen levels. Introduction The epidemiology of osteoporosis in Asian populations is still poorly known, but we previously found a deficit in lumbar spine aBMD among postmenopausal Southeast Asian women, compared to white women, that persisted after correction for bone size. This issue was revisited using more sophisticated imaging techniques. Methods Twenty Vietnamese immigrants (age, 44–79 years) were compared to 162 same-aged white women with respect to aBMD at the hip, spine and wrist, vBMD at the hip and spine by quantitative computed tomography and vBMD and bone microstructure at the ultradistal radius by high-resolution pQCT. Bone turnover and sex steroid levels were assessed in a subset (20 Vietnamese and 40 white women). Results The aBMD was lower at all sites among the Vietnamese women, but femoral neck vBMD did not differ from middle-aged white women. Significant differences in lumbar spine and ultradistal radius vBMD in the Vietnamese immigrants were due to lower trabecular vBMD, which was associated with increased trabecular separation. Bone resorption was elevated and bone formation depressed among the Vietnamese immigrants, although trends were not statistically significant. Serum estradiol was positively associated with trabecular vBMD in the Vietnamese women, but their estrogen levels were dramatically lower compared to white women. Conclusions Although reported discrepancies in aBMD among Asian women are mainly an artifact of smaller bone size, we identified a specific deficit in the trabecular bone among a sample of Vietnamese immigrants that may be related to low estrogen levels and which needs further study. PMID:20658128
Mendoza-Pinto, Claudia; Rojas-Villarraga, Adriana; Molano-González, Nicolás; Jiménez-Herrera, Erick A; León-Vázquez, María de la Luz; Montiel-Jarquín, Álvaro; García-Carrasco, Mario; Cervera, Ricard
2018-01-01
Observational studies have indicated a high but heterogeneous prevalence of low bone mineral density (BMD) and vertebral fractures (VF) in patients with systemic lupus erythematosus (SLE). Therefore, the objectives of this systematic review and meta-regression were: 1) to compare BMD between SLE patients and healthy controls and 2) to evaluate the relationship between BMD and glucocorticoid therapy and VF in SLE patients. Articles were identified from electronic databases (PubMed, Embase, VHL, SciELO and the Cochrane Library). Prospective longitudinal and cross-sectional studies were considered for review. We evaluated the quality of the evidence included using the Oxford Centre for evidence-based medicine (EBM) Levels of Evidence. In total, 38 articles were identified and analyzed (3442 SLE cases and 6198 controls) in the analysis of BMD (9232 women and 408 men). There were significant differences in mean BMD between SLE patients and controls. BMD mean difference in cases/controls: -0.0566 95% CI (-0.071, -0.0439; p = < 0.0001). When only SLE patients were analyzed, the BMD did not significantly differ between patients who had or had not received glucocorticoid (GCT) therapy. 694 SLE patients were included in the analysis of VF (189 with VF vs. 505 without VF). Patients with VF had lower BMD than patients without VF (BMD mean difference without VF/with VF: 0.033 (95%CI: 0.006-0.060); p-value: 0.0156). Patients with SLE had lower BMD than healthy controls. Moreover, SLE patients with VF had lower BMD than patients without VF. However, our data did not show that GCT therapy had an impact on BMD.
Chen, J.; Punyanitya, M.; Shapses, S.; Heshka, S.; Heymsfield, S. B.
2007-01-01
Introduction Recent studies suggest that bone marrow adipose tissue (BMAT) might play a role in the pathogenesis of osteoporosis. Previous research using regional magnetic resonance spectroscopy methods to measure BMAT has reported inconsistent findings on the relationship between BMAT and dual-energy absorptiometry (DXA)-measured bone mineral density (BMD). Methods In the present study, total body and pelvic BMAT were evaluated in 56 healthy women (age 18–88 yrs, mean±SD, 47.4±17.6 yrs; BMI, 24.3±4.2 kg/m2) with T1-weighted whole-body magnetic resonance imaging (MRI). BMD was measured using the whole-body DXA mode (GE Lunar DPX, software version 4.7). Results A strong negative correlation was observed between pelvic BMAT and BMD (total-body BMD, R=− 0.743, P<0.001; pelvic BMD, R=− 0.646, P<0.001), and between total-body BMAT and BMD (total-body BMD, R=− 0.443, P<0.001; pelvic BMD, R=− 0.308, P < 0.001). The inverse association between pelvic BMAT and BMD remained strong after adjusting for age, weight, total body fat, and menopausal status (partial correlation: total-body BMD, R=− 0.553, P< 0.001; pelvic BMD, R=− 0.513, P<0.001). BMAT was also highly correlated with age (pelvic BMAT, R=0.715, P< 0.001; total-body BMAT, R=0.519, P<0.001). Conclusion MRI-measured BMAT is thus strongly inversely correlated with DXA-measured BMD independent of other predictor variables. These observations, in the context of DXA technical concerns, support the growing evidence linking BMAT with low bone density. PMID:17139464
Yilmaz, Mehmet; Isaoglu, Unal; Uslu, Turan; Yildirim, Kadir; Seven, Bedri; Akcay, Fatih; Hacimuftuoglu, Ahmet
2013-01-01
Objectives: In this study, effect of methylprednisolone on bone mineral density (BMD) was investigated in rats with overiectomy induced bone lose and suppressed endogenous adrenalin levels, and compared to alendronate. Materials and Methods: Severity of bone loss in the examined material (femur bones) was evaluated by BMD measurement. Results: The group with the highest BMD value was metyrosinemetyrosine + methylprednisolone combination (0.151 g/cm2), while that with the lowest BMD was methylprednisolone (0.123 g/cm2). Alendronate was effective only when used alone in ovariectomized rats (0.144 g/cm2), but not when used in combination with methylprednisolone (0.124 g/cm2). In the ovariectomized rat group which received only metyrosine, BMD value was statistically indifferent from ovariectomized control group. Conclusions: Methylprednisolone protected bone loss in rats with suppressed adrenaline levels because of metyrosinemetyrosine. PMID:24014908
Frost, Morten; Petersen, Inge; Andersen, Thomas L; Langdahl, Bente L; Buhl, Thora; Christiansen, Lene; Brixen, Kim; Christensen, Kaare
2013-12-01
Low birth weight (BW) has been associated with poor bone health in adulthood. The aim of this study was to investigate the association between BW and bone mass and metabolism in adult BW-discordant monozygotic (MZ) twins. A total of 153 BW-extremely discordant MZ twin pairs were recruited from the Danish Twin Registry. Serum vitamin D (25-hydroxyvitamin D [25OHD]) and bone turnover markers (BTMs) amino-terminal propeptide of type I procollagen (P1NP), pyridinoline cross-linked carboxyterminal telopeptide of type I collagen (1CTP), and cross-linked C-telopeptide (CTX) were quantified. Femoral neck (FN), total hip (TH), lumbar spine (LS), and whole-body (WB) bone mineral density (BMD) (ie, FN-BMD, TH-BMD, LS-BMD, and WB-BMD, respectively) were measured using dual-energy X-ray absorptiometry (DXA). Twins were studied as single individuals using regression analyses with or without adjustment for height, weight, age, sex, and intrapair correlation. Within-pair differences were assessed using Student's t test and fixed-regression models. BW was not associated with BTMs, LS-BMD, TH-BMD, FN-BMD, or WB-BMD, but BW was associated with WB-BMC, and WB-Area after adjustments. Compared to the co-twin, twins with the highest BW were heavier and taller in adulthood (mean differences ± SD): 3.0 ± 10.5 kg; 1.6 ± 2.6 cm; both p < 0.001). Within-pair analyses showed that LS-BMD, TH-BMD, and FN-BMD tended to be higher in twins with highest BW (for all: mean difference 0.01 ± 0.1 g/cm(2) ; p = 0.08, 0.05, and 0.10, respectively). No difference was observed after adjustment for adult body size. Intrapair differences in BW were not associated with differences in any of the biochemical parameters or BMD. Small differences between twins in BMD were explained by dissimilarities in body size. These results suggest that BW and adult bone metabolism are unrelated. © 2013 American Society for Bone and Mineral Research.
Factors affecting bone mineral density in postmenopausal women.
Heidari, Behzad; Hosseini, Reza; Javadian, Yahya; Bijani, Ali; Sateri, Mohammad Hassan; Nouroddini, Haj Ghorban
2015-01-01
This study aimed to determine the relationship between bone mineral density (BMD) and demographic, biochemical, and clinical features according to BMD measurement sites. The results indicated that BMD correlates negatively with menopause duration, parity, and history of fractures but positively correlates with obesity, physical activity, education, and serum ferritin. Osteoporosis (OP) is an important cause of morbidity and mortality in the elderly people. The impacts of various factors on bone mineral density (BMD) differ across diverse population. We hypothesized that the influences of factors which affect BMD vary according to BMD measurement sites. The aim of this study was to determine the relationship between BMD in the femoral neck (FN) and lumbar spine (LS) with some common clinical, demographic, and biochemical parameters in postmenopausal women. In this cross-sectional case-control study, all postmenopausal women of the Amirkola Health and Ageing Project (AHAP) who performed bone densitometry were included. BMD at FN and LS was measured by DXA method. Data regarding clinical, demographic, and biochemical characteristics were provided. OP was diagnosed by the International Society for Clinical Densitometry criteria. Pearson correlation and multivariate regression analyses with simultaneous adjustment were performed to determine relationship. Five hundred thirty-seven women with mean age of 67.9 ± 6.7 years and mean menopause duration (MD) of 15.8 ± 5.1 years were studied. MD correlated negatively with FN-BMD and LS-BMD g/cm(2) (r = -0.405, p = 0.001 and r = -0.217, p = 0.001). Body mass index (BMI) correlated positively with FN and LS-BMD g/cm(2) (r = 0.397, p = 0.001 and r = 0.311, p = 0.001). The association of MD with risk of FN-OP was stronger than LS-OP. Obesity and metabolic syndrome (MS) and higher serum ferritin reduced the risk of OP at both LS and FN similarly, whereas the impacts of parity, prior fracture, high level of education, and physical activity were significantly different across BMD measurement sites. The results of this study indicated a significant association between OP and MD, obesity, parity, MS, history of fracture, serum ferritin, level of education, and physical activity. However, the direction and the strength of association varied across BMD measurement sites.
Association between alcohol consumption and bone mineral density in elderly Korean men and women.
Cho, Yoosun; Choi, Seulggie; Kim, Kyuwoong; Lee, Gyeongsil; Park, Sang Min
2018-04-25
In this cross-sectional study based on Korean elderly men and women, heavy alcohol intake for men was related to low whole-body BMD and light alcohol intake for women was associated with high whole-body, lumbar, and total femur BMD. Alcohol is a risk factor of osteoporosis but previous studies on its effect on bone health has been controversial. The aim of this study was to evaluate the association between alcohol intake and bone mineral density in Korean elderly men and women. Based on the Fourth and Fifth Korean National Health and Nutrition Examination Surveys (KNHANES), 2657 men and 2080 women 50 to 79 years of age were included. Bone mineral density (BMD) was measured using dual energy X-ray absorptiometry (DXA). Alcohol consumption was determined by self-administered questionnaires and classified into four groups according to sex: non-drinkers (0 g/day), light drinking (1-19 g/day men, 1-9 g/day women), moderate drinking (20-39 g/day men, 10-29 g/day women), and heavy drinking (≥ 40 g/day men, ≥ 20 g/day women). The adjusted mean values calculated by linear regression analysis for BMD were determined according to the amount of alcohol consumed. Light drinkers had the highest whole-body BMD for both men (mean 1.164, SD 0.047-1.281) and women (mean 1.046, SD 0.912-1.180). Among men, mean whole-body BMD for heavy drinkers was significantly lower than that among light drinkers (P = 0.031). Among women, BMD for light drinkers was significantly higher in the whole body, lumbar, and total femur than that for non-drinkers (P < 0.001, P = 0.026, P = 0.040, respectively). Heavy alcohol intake may be associated with lower BMD in men while light alcohol intake may associate with higher BMD among women. Future longitudinal studies investigating the effect of alcohol consumption on bone mineral density are needed to validate the findings of this study.
Oliveira, L C; Oliveira, R G; Pires-Oliveira, D A A
2016-10-01
This systematic review and meta-analysis of randomized controlled trials (RCTs) identified significant effects of whole body vibration (WBV) on bone mineral density (BMD) of the lumbar spine (in the sensitivity analysis and seven subgroup analyses), femoral neck (in one subgroup analysis), and trochanter (four subgroup analyses) in postmenopausal women, but not other measurements of BMD. Interventions using WBV training have been conducted in postmenopausal women, aimed at increasing BMD; however, the results are contradictory. Our objective is to conduct a systematic review and meta-analysis of RCTs examining WBV effect on BMD. RCTs were considered eligible, with follow-up ≥6 months, which verified the effects of WBV on the BMD of postmenopausal women. The calculations of the meta-analysis were performed through the weighted mean difference between the WBV and control groups, or the WBV and combined training, through the absolute change between pre- and post-intervention in the areal bone mineral density (aBMD) or trabecular volumetric bone mineral density (vBMDt). Fifteen RCTs were included in the meta-analysis. No differences were observed in the primary analysis. WBV was found to improve aBMD compared with the control group, after exclusion of studies with low quality methodological (lumbar spine), when excluding the studies which combined WBV with medication or combined training (lumbar spine), with the use of low frequency and high magnitude (lumbar spine and trochanter), high frequency and low magnitude (lumbar spine), high cumulative dose and low magnitude (lumbar spine), low cumulative dose and high magnitude (lumbar spine and trochanter), with semi-flexed knee (lumbar spine, femoral neck, and trochanter), and side-alternating type of vibration (lumbar spine and trochanter). Despite WBV presenting potential to act as a coadjuvant in the prevention or treatment of osteoporosis, especially for aBMD of the lumbar spine, the ideal intervention is not yet clear. Our subgroup analyses helped to demonstrate the various factors which appear to influence the effects of WBV on BMD, contributing to clinical practice and the definition of protocols for future interventions.
Diet, physical activity, and bone density in soldiers before and after deployment.
Carlson, Ashley R; Smith, Martha A; McCarthy, Mary S
2013-01-01
To investigate diet, physical activity, and bone mineral density (BMD) in combat service support Soldiers before and after deployment, and to determine if any components of diet or physical activity impacted BMD. Fifty-three Soldiers participated in the study. The BMD of the femoral neck and lumbar spine were measured using dual-energy x-ray absorptiometry. Diet was assessed using the Block Food Frequency Questionnaire. Physical activity was assessed using the Baecke Habitual Physical Activity Questionnaire. The BMD of the spine (0.79%; P=.03) increased significantly during deployment. Reported physical activity at work (-10.76%; P=.01) decreased and vitamin K intake increased (37.21%; P=.01). Soldiers did not meet the dietary reference intake for vitamin D and exceeded the dietary reference intakes for all other nutrients. No significant relationships were observed between change in diet or physical activity and change in BMD. Due to the small sample size, we could not determine if deployment impacted BMD, diet, or physical activity in combat service support Soldiers. Future research should focus on investigating the association between lower levels of physical activity, inadequate diet, and decreased BMD in larger military populations.
Bone mineral density in elite junior Olympic weightlifters.
Conroy, B P; Kraemer, W J; Maresh, C M; Fleck, S J; Stone, M H; Fry, A C; Miller, P D; Dalsky, G P
1993-10-01
The purpose of this study was to examine the relationship of bone mineral density (BMD) to muscular strength in highly trained young male athletes in order to gain insights concerning the influence of heavy resistance training on BMD. Twenty-five elite junior weightlifters (age, 17.4 +/- 1.4 yr) and 11 age-matched controls (16.9 +/- 1.1 yr) volunteered for this investigation. Measurements of BMD (g.cm-2) utilizing dual energy x-ray absorptiometry were obtained for the lumbar spine (L2-4) and the proximal femur (neck; trochanter, Ward's triangle). The BMD values for the junior lifters were found to be significantly greater at all sites for the junior weightlifters compared with their age-matched control group. The BMD values of the spine and femoral neck of the junior weightlifters when compared with adult reference data (i.e., 20-39 yr old men) were found to be significantly greater. Both simple and multiple regression analyses demonstrated significant relationships of BMD with strength accounting for 30-65% of the variance. These data suggest that in elite junior weightlifters, muscle strength, highly specific to the sport of weightlifting, has a major influence on BMD due to the influence of the chronic overloads experienced in training.
Barcenilla-Wong, A L; Chen, J S; March, L M
2013-01-01
The purpose of this study is to identify factors associated with concern and perception of risks of osteoporosis and osteoporotic fractures and determine whether bone mineral density (BMD) testing influenced concern and risk perception. Study subjects (n = 1,082, age 55-94 years) were female Australian participants of the Global Longitudinal Study of Osteoporosis in Women (GLOW). Self-administered questionnaires were sent annually from 2007 to 2010. Study outcomes included 'concern about osteoporosis', 'perception of getting osteoporosis' and 'perception of fracture risk' compared to similar aged women. The closest post-BMD testing or baseline questionnaires were used for women with and without BMD testing, respectively. Multinomial logistic regression was used for the analysis. BMD testing, prior fracture after age 45, younger age and lower self-reported general health were significantly associated with being 'very' or 'somewhat concerned' about osteoporosis and having a 'much higher' or 'little higher' risk perception of osteoporosis and fractures. A poorer BMD result was associated with higher concern and higher risk perceptions. The presence of comorbidities, having ≥2 falls in the preceding year and maternal osteoporosis were associated with higher concern. Maternal osteoporosis, presence of comorbidities, weight loss of ≥5 kg in the preceding year and low body mass index were associated with higher perceptions of osteoporosis risk. Women's concern and risk perception of osteoporosis and osteoporotic fractures were reasonably well founded. However, increasing age, height loss, smoking and drinking were not associated with concern and perception despite being known osteoporosis risk factors. These factors should be considered in planning for education and awareness raising programmes.
Influences of physical fitness on bone mass in women with fibromyalgia.
Gómez-Cabello, Alba; Vicente-Rodríguez, Germán; Navarro-Vera, Isabel; Martinez-Redondo, Diana; Díez-Sánchez, Carmen; Casajús, José Antonio
2015-04-01
The aim of this study was to provide information about the relationship of bone mineral content (BMC) and density (BMD) with some physical-fitness-related variables in a sample of women with fibromyalgia (FM) and age-matched women without FM. Twenty-eight women clinically diagnosed with FM (age 51.1 ± 8.4 yr, M ± SD) and 22 age-matched controls participated in the study. Whole-body BMC and BMD, lean mass, handgrip strength, quadriceps strength, and cardiovascular fitness were measured in all participants. The association between physical-fitness variables and bone-related variables was tested by linear regression controlling for body weight as a possible confounder. There were no differences in BMC or BMD between groups. Women with FM had lower values of handgrip strength, quadriceps strength, and VO2peak than the control group. Handgrip strength and aerobic capacity were associated with BMC and BMD and quadriceps strength was associated with BMD in women with FM; however, only VO2peak was associated with BMC in the group of women without FM. Bone mass of women with FM may be more susceptible to changes in physical fitness than that of the women without fibromyalgia.
Bachmann, Katherine N.; Schorr, Melanie; Bruno, Alexander G.; Bredella, Miriam A.; Lawson, Elizabeth A.; Gill, Corey M.; Singhal, Vibha; Meenaghan, Erinne; Gerweck, Anu V.; Slattery, Meghan; Eddy, Kamryn T.; Ebrahimi, Seda; Koman, Stuart L.; Greenblatt, James M.; Keane, Robert J.; Weigel, Thomas; Misra, Madhusmita; Bouxsein, Mary L.; Klibanski, Anne
2017-01-01
Context: Areal bone mineral density (BMD) is lower, particularly at the spine, in low-weight women with anorexia nervosa (AN). However, little is known about vertebral integral volumetric BMD (Int.vBMD) or vertebral strength across the AN weight spectrum, including “atypical” AN [body mass index (BMI) ≥18.5 kg/m2]. Objective: To investigate Int.vBMD and vertebral strength, and their determinants, across the AN weight spectrum Design: Cross-sectional observational study Setting: Clinical research center Participants: 153 women (age 18 to 45): 64 with low-weight AN (BMI <18.5 kg/m2; 58% amenorrheic), 44 with atypical AN (18.5≤BMI<23 kg/m2; 30% amenorrheic), 45 eumenorrheic controls (19.2≤BMI<25 kg/m2). Measures: Int.vBMD and cross-sectional area (CSA) by quantitative computed tomography of L4; estimated vertebral strength (derived from Int.vBMD and CSA) Results: Int.vBMD and estimated vertebral strength were lowest in low-weight AN, intermediate in atypical AN, and highest in controls. CSA did not differ between groups; thus, vertebral strength (calculated using Int.vBMD and CSA) was driven by Int.vBMD. In AN, Int.vBMD and vertebral strength were associated positively with current BMI and nadir lifetime BMI (independent of current BMI). Int.vBMD and vertebral strength were lower in AN with current amenorrhea and longer lifetime amenorrhea duration. Among amenorrheic AN, Int.vBMD and vertebral strength were associated positively with testosterone. Conclusions: Int.vBMD and estimated vertebral strength (driven by Int.vBMD) are impaired across the AN weight spectrum and are associated with low BMI and endocrine dysfunction, both current and previous. Women with atypical AN experience diminished vertebral strength, partially due to prior low-weight and/or amenorrhea. Lack of current low-weight or amenorrhea in atypical AN does not preclude compromise of vertebral strength. PMID:27732336
Combat sports practice favors bone mineral density among adolescent male athletes.
Nasri, Raouf; Hassen Zrour, Saoussen; Rebai, Haithem; Neffeti, Fadoua; Najjar, Mohamed Fadhel; Bergaoui, Naceur; Mejdoub, Hafedh; Tabka, Zouhair
2015-01-01
The aim of this study was to determine the impact of combat sports practice on bone mineral density (BMD) and to analyze the relationship between bone parameters and anthropometric measurements, bone markers, and activity index (AI). In other words, to detect the most important determinant of BMD in the adolescent period among combat sports athletes. Fifty athletes engaged in combat sports, mean age 17.1±0.2 yr, were compared with 30 sedentary subjects who were matched for age, height, and pubertal stage. For all subjects, the whole-body BMD, lumbar spine BMD (L2-L4), and BMD in the pelvis, arms, and legs was measured by dual-energy X-ray absorptiometry, and anthropometric measurements were evaluated. Daily calcium intake, bone resorption, and formation markers were measured. BMD measurements were greater in the combat sports athletes than in the sedentary group (p<0.01). Weight, body mass index, and lean body mass were significantly correlated with BMD in different sites. Daily calcium consumption lower than daily calcium intake recommended in both athletes and sedentary group. AI was strongly correlated with all BMD measurements particularly with the whole body, legs, and arms. Negative correlations were observed between bone markers and BMD in different sites. The common major predictor of BMD measurements was AI (p<0.0001). AI associated to lean body mass determined whole-body BMD until 74%. AI explained both BMD in arms and L2-L4 at 25%. AI associated to height can account for 63% of the variance in BMD legs. These observations suggested that the best model predicting BMD in different sites among adolescent combat sports athletes was the AI. Children and adolescents should be encouraged to participate in combat sports to maximize their bone accrual. Copyright © 2015 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
Erez, Hany Burstein; Weller, Aron; Vaisman, Nachum; Kreitler, Shulamith
2012-01-01
The goal of the present study was to examine the relationships of depression, anxiety and stress with bone mineral density (BMD). We hypothesized negative relations between those mood variables and BMD in three assessed areas. The study showed association between depression and decreased BMD. The hypothesis regarding anxiety and stress was partially confirmed. In the last decade, the relationship of osteoporosis to psychological variables has been increasingly studied. The accumulating evidence from these studies supports the conclusion that depression is related to decreased BMD. Nevertheless, several studies found no support for this relationship. Moreover, only a small number of studies examined the association between anxiety or stress and decreased BMD. The goal of the present study was to examine the relationships of depression, anxiety and stress with BMD by means of adequate measuring instruments, while controlling for background factors known to be related to BMD decrease (e.g., body mass index, family history). The study included 135 post-menopausal female participants, who arrived for BMD screening, between the years 2006 and 2009. Several days prior to the examination, participants completed a series of questionnaires assessing depression and anxiety. BMD was measured using DXA, in spine, right and left hip. The study showed negative associations between depression and BMD variables in the three assessed areas. There were negative correlations between anxiety, stress and spine BMD, as well as a tendency towards negative relations in the right and left hip BMD. Concurrent hierarchical regressions showed that the addition of the three psychological variables increased the explained variance by 6–8 %. In addition, depression was found to have a unique significant contribution to the explained variance in right and left hip BMD. The findings provide supporting evidence for the existence of associations between mood variables and decreased BMD. Further research is required for gaining deeper insight into these relationships.
Bachmann, Katherine N; Schorr, Melanie; Bruno, Alexander G; Bredella, Miriam A; Lawson, Elizabeth A; Gill, Corey M; Singhal, Vibha; Meenaghan, Erinne; Gerweck, Anu V; Slattery, Meghan; Eddy, Kamryn T; Ebrahimi, Seda; Koman, Stuart L; Greenblatt, James M; Keane, Robert J; Weigel, Thomas; Misra, Madhusmita; Bouxsein, Mary L; Klibanski, Anne; Miller, Karen K
2017-01-01
Areal bone mineral density (BMD) is lower, particularly at the spine, in low-weight women with anorexia nervosa (AN). However, little is known about vertebral integral volumetric BMD (Int.vBMD) or vertebral strength across the AN weight spectrum, including "atypical" AN [body mass index (BMI) ≥18.5 kg/m2]. To investigate Int.vBMD and vertebral strength, and their determinants, across the AN weight spectrum. Cross-sectional observational study. Clinical research center. 153 women (age 18 to 45): 64 with low-weight AN (BMI <18.5 kg/m2; 58% amenorrheic), 44 with atypical AN (18.5≤BMI<23 kg/m2; 30% amenorrheic), 45 eumenorrheic controls (19.2≤BMI<25 kg/m2). Int.vBMD and cross-sectional area (CSA) by quantitative computed tomography of L4; estimated vertebral strength (derived from Int.vBMD and CSA). Int.vBMD and estimated vertebral strength were lowest in low-weight AN, intermediate in atypical AN, and highest in controls. CSA did not differ between groups; thus, vertebral strength (calculated using Int.vBMD and CSA) was driven by Int.vBMD. In AN, Int.vBMD and vertebral strength were associated positively with current BMI and nadir lifetime BMI (independent of current BMI). Int.vBMD and vertebral strength were lower in AN with current amenorrhea and longer lifetime amenorrhea duration. Among amenorrheic AN, Int.vBMD and vertebral strength were associated positively with testosterone. Int.vBMD and estimated vertebral strength (driven by Int.vBMD) are impaired across the AN weight spectrum and are associated with low BMI and endocrine dysfunction, both current and previous. Women with atypical AN experience diminished vertebral strength, partially due to prior low-weight and/or amenorrhea. Lack of current low-weight or amenorrhea in atypical AN does not preclude compromise of vertebral strength. Copyright © 2017 by the Endocrine Society
Genetics of Bone Mass in Childhood and Adolescence: Effects of Sex and Maturation Interactions.
Mitchell, Jonathan A; Chesi, Alessandra; Elci, Okan; McCormack, Shana E; Kalkwarf, Heidi J; Lappe, Joan M; Gilsanz, Vicente; Oberfield, Sharon E; Shepherd, John A; Kelly, Andrea; Zemel, Babette S; Grant, Struan F A
2015-09-01
We aimed to determine if adult bone mineral density (BMD) susceptibility loci were associated with pediatric bone mass and density, and if sex and pubertal stage influenced any association. We analyzed prospective areal BMD (aBMD) and bone mineral content (BMC) data from the Bone Mineral Density in Childhood Study (n = 603, European ancestry, 54% female). Linear mixed models were used to assess if 77 single-nucleotide polymorphisms (SNPs) near known adult BMD susceptibility loci interacted with sex and pubertal stage to influence the aBMD/BMC; adjusting for age, BMI, physical activity, and dietary calcium. The strongest main association was observed between an SNP near C7orf58 and distal radius aBMD. However, this association had a significant sex • SNP interaction, revealing a significant association only in females (b = -0.32, p = 1.8 × 10(-6)). Furthermore, the C12orf23 locus had significant interactions with both sex and pubertal stage, revealing associations in females during Tanner stage I for total hip aBMD (b = 0.24, p = 0.001) and femoral neck aBMD (b = 0.27, p = 3.0 × 10(-5)). In contrast, the sex • SNP interactions for loci near LRP5 and WNT16 uncovered associations that were only in males for total body less head BMC (b = 0.22, p = 4.4 × 10(-4)) and distal radius aBMD (b = 0.27, p = 0.001), respectively. Furthermore, the LRP5 locus interacted with both sex and pubertal stage, demonstrating associations that were exclusively in males during Tanner V for total hip aBMD (b = 0.29, p = 0.003). In total, significant sex • SNP interactions were found at 15 loci; pubertal stage • SNP interactions at 23 loci and 19 loci interacted with both sex and pubertal stage. In conclusion, variants originally associated with adult BMD influence bone mass in children of European ancestry, highlighting the fact that many of these loci operate early in life. However, the direction and magnitude of associations for a large number of SNPs only became evident when accounting for sex and maturation. © 2015 American Society for Bone and Mineral Research.
Pedrera-Canal, Maria; Aliaga, Ignacio; Leal-Hernandez, Olga; Rico-Martin, Sergio; Canal-Macias, Maria L.
2018-01-01
The regular consumption of long-chain omega-3 polyunsaturated fatty acids (LCO3-PUFAs) results in general health benefits. The intake of LCO3-PUFAs has been reported to contribute to bone metabolism. We aimed to investigate the relationships between dietary intakes of LCO3-PUFAs and bone mineral density (BMD) in Spanish women aged 20–79 years old. A total of 1865 female subjects (20–79 years old) were enrolled, and lumbar (L2, L3, L3 and total spine), hip (femoral neck (FN), femoral trochanter (FT) and Ward’s triangle (WT)) bone mineral density (BMD) were measured by dual energy X-ray absorptiometry (DXA). Dietary intakes of total energy, calcium, vitamin D, alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and n-6 fatty acids (linoleic acid (LA) and arachidonic acid (AA)) were assessed by a self-administered food frequency questionnaire (FFQ). Spearman’s rank correlations between LCO3-PUFAs and BMD were estimated. Partial correlations controlling for age, weight, height, dietary calcium, vitamin D, menopausal status and energy were calculated. A multiple regression analysis was computed to assess significant associations with BMD in this population. After adjustment for potential confounding factors, there were positive correlations between ALA, EPA and DHA intake and BMD. According to the WHO diagnosis criteria for osteoporosis, in this population of normal and osteopenic women, the dietary intake of ALA was also significantly associated with BMD at the hip. In normal women, the dietary intake of DHA was also significantly associated with BMD at the lumbar spine. No significant associations between LCO3-PUFAs and BMD were detected in the lumbar spine of osteopenic or osteoporotic women. The dietary intake of LCO3-PUFAs was positively associated with BMD in Spanish women at both the hips and the lumbar spine. We highlight that the intake of LCO3-PUFAs is not significantly associated with BMD in osteoporotic women; however, the intake of LCO3-PUFAs seems to be positively associated with BMD at both the hips and the lumbar spine in normal and osteopenic women. PMID:29304057
Waltman, N L; Twiss, J J; Ott, C D; Gross, G J; Lindsey, A M; Moore, T E; Berg, K; Kupzyk, K
2010-08-01
This study examined whether 24 months of weight training exercises enhanced the effectiveness of risedronate, calcium, and vitamin D in maintaining or improving bone mineral density (BMD) in 223 postmenopausal breast cancer survivors. Subjects who were > or =50% adherent to exercise had no improvement in BMD but were less likely to lose BMD. This study examined whether (1) postmenopausal breast cancer survivors (BCS) with bone loss taking 24 months of risedronate, calcium, and vitamin D had increased bone mineral density (BMD) at the total hip, femoral neck, L1-L4 spine, total radius and 33% radius, and decreased bone turnover; (2) subjects who also participated in strength/weight training (ST) exercises had greater increases in BMD and greater decreases in bone turnover; and (3) subjects who also exercised were more likely to preserve (at least maintain) BMD. Postmenopausal BCS (223) were randomly assigned to exercise plus medication or medication only groups. Both groups received 24 months of 1,200 mg of calcium and 400 IU of vitamin D daily and 35 mg of risedronate weekly, and the exercise group additionally had ST exercises twice weekly. After 24 months, women who took medications without exercising had significant improvements in BMD at the total hip (+1.81%) and spine (+2.85%) and significant decreases in Alkphase B (-8.7%) and serum NTx (-16.7%). Women who also exercised had additional increases in BMD at the femoral neck (+0.29%), total hip (+0.34%), spine (+0.23%), total radius (+0.30%), and additional decreases in Alkphase B (-2.4%) and Serum NTx (-6.5%). Additional changes in BMD and bone turnover with exercise were not significant. Subjects who were > or =50% adherent to exercise were less likely to lose BMD at the total hip (chi-square [1] = 4.66, p = 0.03) and femoral neck (chi-square [1] = 4.63, p = 0.03). Strength/weight training exercises may prevent loss of BMD in postmenopausal BCS at risk for bone loss.
Breastfeeding as the sole source of milk for 6 months and adolescent bone mineral density.
Blanco, E; Burrows, R; Reyes, M; Lozoff, B; Gahagan, S; Albala, C
2017-10-01
Little is known regarding the relationship between early life factors and bone mineral density (BMD). We found a positive association between breastfeeding for at least 6 months, without formula supplementation, and whole body adolescent BMD z-score. The aim of the study is to assess the role of breastfeeding BF on adolescent bone mineral density (BMD) in a cohort prospectively followed since infancy. We studied 679 participants from an infancy iron deficiency anemia preventive trial in Santiago, Chile, followed to adolescence. Breast and bottle feeding were ascertained weekly from 4 to 12 months. At 16 years, whole body BMD was assessed by DEXA. Using linear regression, we evaluated associations between BF duration and BF as the sole source of milk and adolescent BMD z-score, adjusting for possible infancy, adolescent, and background confounders. Mean birth weight and length were 3.5 (0.3) kg and 50.7 (1.6) cm. For at least 6 months, BF was the sole source of milk for 26.3% and with supplementation for 36.7%. For 37%, BF was provided for less than 6 months. Mean 16-year BMD z-score was 0.25 (1.0). Covariates included male sex, birth length, and gestational age. BF as the sole source of milk ≥6 months, compared to BF < 6 months, was associated with higher adolescent BMD z-score adjusting for covariates (β = 0.29, p < 0.05). Mixed BF was not significantly related to adolescent BMD z-score (β = 0.06, p = 0.47). For every 30 days of BF as the sole source of milk, adolescent BMD z-score increased by 0.03 (p = 0.01). BF without formula supplementation for at least 6 months was associated with higher adolescent BMD z-score and a suggestive trend in the same direction for BMD suggests that exclusivity and duration of BF may play a role in adolescent bone health.
Kalkwarf, Heidi J; Zemel, Babette S; Yolton, Kimberly; Heubi, James E
2013-01-01
Little is known about factors that affect bone mass and density of infants and toddlers and the means to assess their bone health owing to challenges in studying this population. The objectives of this study were to describe age, sex, race, growth, and human milk feeding effects on bone mineral content (BMC) and areal density (aBMD) of the lumbar spine, and determine precision of BMC and aBMD measurements. We conducted a cross-sectional study of 307 healthy participants (63 black), ages 1 to 36 months. BMC and aBMD of the lumbar spine were measured by dual-energy X-ray absorptiometry. Duplicate scans were obtained on 76 participants for precision determination. Age-specific Z-scores for aBMD, weight, and length (BMDZ, WAZ, LAZ) were calculated. Information on human milk feeding duration was ascertained by questionnaire. Between ages 1 and 36 months, lumbar spine BMC increased about fivefold and aBMD increased twofold (p < 0.0001). BMC was greater (5.8%) in males than in females (p = 0.001), but there was no difference in aBMD (p = 0.37). There was no difference in BMC or aBMD between whites and blacks (p ≥ 0.16). WAZ and LAZ were positively associated with BMDZ (r = 0.34 and 0.24, p < 0.001). Duration of human milk feeding was negatively associated with BMDZ in infants <12 months of age (r = -0.42, p < 0.001). Precision of BMC and aBMD measurements was good, 2.20% and 1.84%, respectively. Dramatic increases in BMC and aBMD of the lumbar spine occur in the first 36 months of life. We provide age-specific values for aBMD of healthy infants and toddlers that can be used to evaluate bone deficits. Future studies are needed to identify the age when sex and race differences in aBMD occur, and how best to account for delayed or accelerated growth in the context of bone health assessment of infants and toddlers. Copyright © 2013 American Society for Bone and Mineral Research.
Pressman, Alice R; Lo, Joan C; Chandra, Malini; Ettinger, Bruce
2011-01-01
Area under the receiver operating characteristics (AUROC) curve is often used to evaluate risk models. However, reclassification tests provide an alternative assessment of model performance. We performed both evaluations on results from FRAX (World Health Organization Collaborating Centre for Metabolic Bone Diseases, University of Sheffield, UK), a fracture risk tool, using Kaiser Permanente Northern California women older than 50yr with bone mineral density (BMD) measured during 1997-2003. We compared FRAX performance with and without BMD in the model. Among 94,489 women with mean follow-up of 6.6yr, 1579 (1.7%) sustained a hip fracture. Overall, AUROCs were 0.83 and 0.84 for FRAX without and with BMD, suggesting that BMD did not contribute to model performance. AUROC decreased with increasing age, and BMD contributed significantly to higher AUROC among those aged 70yr and older. Using an 81% sensitivity threshold (optimum level from receiver operating characteristic curve, corresponding to 1.2% cutoff), 35% of those categorized above were reassigned below when BMD was added. In contrast, only 10% of those categorized below were reassigned to the higher risk category when BMD was added. The net reclassification improvement was 5.5% (p<0.01). Two versions of this risk tool have similar AUROCs, but alternative assessments indicate that addition of BMD improves performance. Multiple methods should be used to evaluate risk tool performance with less reliance on AUROC alone. Copyright © 2011 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
Chávez, Bertha; Vilchis, Felipe; Rojano-Mejía, David; Coral Vázquez, Ramón Mauricio; Aguirre-García, María Del Carmen; Canto, Patricia
2017-08-01
Herein, we investigated potential associations between polymorphisms of genes related to estrogen metabolism and bone mineral density (BMD) in postmenopausal women. This was a cross-sectional study, in which two hundred and ninety postmenopausal Mexican-Mestizo women were studied. The BMD of the lumbar spine (LS), total hip (TH), and femoral neck (FN) was measured. The distribution of the genetic polymorphisms, including rs1799814 and rs1048943 at CYP1A1 as well as rs1056836 at CYP1B1, were analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), single-stranded conformational polymorphism (SSCP), and DNA sequencing. Deviations from Hardy-Weinberg equilibrium (HWE) were tested, and linkage disequilibrium (LD) was calculated by direct correlation (r 2 ). Moreover, haplotype analysis was performed. All polymorphisms were in HWE. The genotype and allele distributions of the three single nucleotide polymorphisms (SNPs) studied showed no significant differences. However, statistical significance was reached when constructing haplotypes. The CG haplotype in CYP1A1 was associated with variations in LS and FN BMD after adjustment for covariates (p = 0.021 and 0.045, respectively), but the association with TH BMD was not significant. These results suggested that the CG haplotype in CYP1A1 may play an important role in the mechanism of osteoporosis and may be useful as a genetic marker.
Bone density of the radius, spine, and proximal femur in osteoporosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazess, R.B.; Barden, H.; Ettinger, M.
1988-02-01
Bone mineral density (BMD) was measured in 140 normal young women (aged 20 to 39 years) and in 423 consecutive women over age 40 referred for evaluation of osteoporosis. Lumbar spine and proximal femur BMD was measured using dual-photon absorptiometry (/sup 153/Gd), whereas the radius shaft measurement used single-photon absorptiometry (/sup 125/I). There were 324 older women with no fractures, of which 278 aged 60 to 80 years served as age-matched controls. There were 99 women with fractures including 32 with vertebral and 22 with hip fractures. Subsequently, another 25 women with hip fractures had BMD measured in another laboratory;more » their mean BMD was within 2% of that of the original series. The mean age in both the nonfracture and fracture groups was 70 +/- 5 years. The BMD in the age-matched controls was 20% to 25% below that of normal young women for the radius, spine, and femur, but the Ward's triangle region of the femur showed even greater loss (35%). The mean BMD at all sites in the crush fracture cases was about 10% to 15% below that of age-matched controls. Spinal abnormality was best discriminated by spine and femoral measurements (Z score about 0.9). In women with hip fractures, the BMD was 10% below that of age-matched controls for the radius and the spine, and the BMD for the femoral sites was about 25% to 30% below that of age-matched control (Z score about 1.6). Femoral densities gave the best discrimination of hip fracture cases and even reflected spinal osteopenia. In contrast, neither the spine nor the radius reflected the full extent of femoral osteopenia in hip fracture.« less
Increased Leg Bone Mineral Density and Content During the Initial Years of College Sport.
Scerpella, John J; Buehring, Bjoern; Hetzel, Scott J; Heiderscheit, Bryan C
2018-04-01
Scerpella, JJ, Buehring, B, Hetzel, SJ, and Heiderscheit, BC. Increased leg bone mineral density and content during the initial years of college sport. J Strength Cond Res 32(4): 1123-1130, 2018-Bone mineral density (BMD) and bone mineral content (BMC) data are useful parameters for evaluating how training practices promote bone health. We used dual-energy X-ray absorptiometry (DXA) to longitudinally assess sport-specific growth in leg and total body BMD/BMC over the initial 2 years of collegiate training. Eighty-five Division 1 collegiate basketball, hockey, and soccer athletes (50 males and 35 females; age 19.0 [0.8] years) underwent annual DXA scans. Leg and total body BMD/BMC were compared within and across two 1-year intervals (periods 1 and 2) using repeated-measures analysis of variance, adjusting for age, sex, race, and sport. Leg BMD, leg BMC, and total body BMC all increased over period 1 (0.05 g·cm [p = 0.001], 0.07 kg [p = 0.002], and 0.19 kg [p < 0.001] respectively). Changes in period 2 compared with period 1 were smaller for leg BMD (p = 0.001), leg BMC (p < 0.001), leg fat mass (p = 0.028), and total BMC (p = 0.005). Leg lean mass increased more during period 2 than period 1 (p = 0.018). Sports participation was the only significant predictor of change in leg BMD. Significant increases in both leg BMD and BMC were demonstrated over both 2-year periods, with greater gains during period 1. These gains highlight the importance of attentive training procedures, capitalizing on attendant physical benefits of increased BMD/BMC. Additional research in young adults, evaluating bone mass acquisition, will optimize performance and decrease risk of bone stress injury among collegiate athletes.
Joo, Nam-Seok; Yang, Sung-Won; Song, Byeng Chun; Yeum, Kyung-Jin
2015-03-10
The association of high vitamin A intake and low bone mineral density (BMD) is still controversial. To determine the association of dietary vitamin A intake and serum 25-hydroxyvitamin D (25(OH)D) concentration with BMD, a total of 6481 subjects (2907 men and 3574 women) aged ≥50 years from the Korean National Health and Nutrition Examination Survey (2008-2011) were divided into groups according to dietary vitamin A intake (tertiles) and serum 25(OH)D (<50, 50-75, >75 nmol/L), and evaluated for BMD after adjusting for relevant variables. Mean dietary vitamin A intakes were 737 and 600 μg RE (Retinol Equivalents) in men and women, respectively. Total hip and femoral neck BMD in men and lumbar spine BMD in women were both positively correlated with dietary vitamin A intake in subjects with serum 25(OH)D >75 nmol/L. Among men with serum 25(OH)D <50 nmol/L, both the top (mean 1353 μg RE) and bottom (mean 218 μg RE) tertiles of dietary vitamin A intake had lower BMD than the middle group (mean 577 μg RE). In this population, BMD was the highest among men and women with serum 25(OH)D = 50-75 nmol/L and that there were no differences in BMD by vitamin A intake in these vitamin D adequate groups. This cross-sectional study indicates that vitamin A intake does not affect bone mineral density as long as the serum 25(OH)D concentration is maintained in the moderate level of 50-75 nmol/L.
DeGuire, Jason R; Mak, Ivy L; Lavery, Paula; Agellon, Sherry; Wykes, Linda J; Weiler, Hope A
2015-04-01
Age-related osteoporosis and sarcopenia are ascribed in part to reductions in anabolic hormones. Dietary conjugated linoleic acid (CLA) improves lean and bone mass, but its impact during androgen deficiency is not known. This study tested if CLA would attenuate the effects of orchidectomy (ORX)-induced losses of bone and lean tissue. Male guinea pigs (n=40; 70-72 weeks), were randomized into four groups: (1) SHAM+Control diet, (2) SHAM+CLA diet, (3) ORX+Control diet, (4) ORX+CLA diet. Baseline blood sampling and dual-energy X-ray absorptiometry (DXA) scans were conducted, followed by surgery 4 days later with the test diets started 7 days after baseline sampling. Serial blood sampling and DXA scans were repeated 2, 4, 8 and 16 weeks on the test diets. Body composition and areal BMD (aBMD) of whole body, lumbar spine, femur and tibia were measured using DXA. At week 16, muscle protein fractional synthesis rate (FSR), volumetric BMD (vBMD), microarchitecture and bone strength were assessed. Body weight declined after SHAM and ORX surgery, with slower recovery in the ORX group. Dietary CLA did not affect weight or lean mass, but attenuated gains in fat mass. Lean mass was stable in SHAM and reduced in ORX by 2 weeks with whole body and femur bone mineral content (BMC) reduced by 4 weeks; CLA did not alter BMC. By week 16 ORX groups had lower free testosterone and myofibrillar FSR, yet higher cortisol, osteocalcin and ionized calcium with no alterations due to CLA. ORX+Control had higher prostaglandin E2 (PGE2) and total alkaline phosphatase compared to SHAM+Control whereas ORX+CLA were not different from SHAM groups. Femur metaphyseal vBMD was reduced in ORX+CTRL with the reduction attenuated by CLA. Femur cortical thickness (Ct.Th.) and biomechanical strength were reduced and cortical porosity (Ct.Po.) elevated by ORX and attenuated by CLA. This androgen deficient model with a sarcopenic-osteoporotic phenotype similar to aging men responded to dietary CLA with significant benefits to femur density and strength. Copyright © 2014 Elsevier Inc. All rights reserved.
Roshandel, Delnaz; Thomson, Wendy; Pye, Stephen R.; Boonen, Steven; Borghs, Herman; Vanderschueren, Dirk; Huhtaniemi, Ilpo T.; Adams, Judith E.; Ward, Kate A.; Bartfai, Gyorgy; Casanueva, Felipe F.; Finn, Joseph D.; Forti, Gianni; Giwercman, Aleksander; Han, Thang S.; Kula, Krzysztof; Lean, Michael E.; Pendleton, Neil; Punab, Margus; Wu, Frederick C.
2011-01-01
Introduction In this study, we aimed to investigate the association between single nucleotide polymorphisms (SNPs) within two genes involved in the NF-κB cascade (GPR177 and MAP3K14) and bone mineral density (BMD) assessed at different skeletal sites, radial geometric parameters and bone turnover. Methods Ten GPR177 SNPs previously associated with BMD with genome-wide significance and twelve tag SNPs (r2≥0.8) within MAP3K14 (±10 kb) were genotyped in 2359 men aged 40–79 years recruited from 8 centres for participation in the European Male Aging Study (EMAS). Measurement of bone turnover markers (PINP and CTX-I) in the serum and quantitative ultrasound (QUS) at the calcaneus were performed in all centres. Dual energy X-ray absorptiometry (DXA), at the lumbar spine and hip, and peripheral quantitative computed tomography (pQCT), at the distal and midshaft radius, were performed in a subsample (2 centres). Linear regression was used to test for association between the SNPs and bone measures under an additive genetic model adjusting for study centre. Results We validated the associations between SNPs in GPR177 and BMDa previously reported and also observed evidence of pleiotrophic effects on density and geometry. Rs2772300 in GPR177 was associated with increased total hip and LS BMDa, increased total and cortical vBMD at the radius and increased cortical area, thickness and stress strain index. We also found evidence of association with BMDa, vBMD, geometric parameters and CTX-I for SNPs in MAP3K14. None of the GPR177 and MAP3K14 SNPs were associated with calcaneal estimated BMD measured by QUS. Conclusion Our findings suggest that SNPs in GPR177 and MAP3K14 involved in the NF-κB signalling pathway influence bone mineral density, geometry and turnover in a population-based cohort of middle aged and elderly men. This adds to the understanding of the role of genetic variation in this pathway in determining bone health. PMID:22132199
Opposite Effects of GSTM1 – and GSTT1 – Gene Deletion Variants on Bone Mineral Density
Mlakar, Simona Jurkovic; Osredkar, Josko; Prezelj, Janez; Marc, Janja
2011-01-01
Oxidative stress is associated with osteoporosis. The glutathione S-transferases form the major detoxifying group of enzymes responsible for eliminating products of oxidative stress. We have therefore proposed GSTM1 and GSTT1 genes as candidates for studying the genetics of osteoporosis. The aim of the present study was to examine possible association of GSTM1 and GSTT1 gene deletion polymorphisms, alone or in combination, with bone mineral density at femoral neck (BMD_fn), lumbar spine (BMD_ls) and total hip (BMD_th) in Slovenian elderly women and men. GSTM1 and GSTT1 gene deletion polymorphisms in 712 elderly people were analyzed using the triplex PCR method for the presence of GSTM1 and GSTT1 gene segments. BMD_fn, BMD_ls and BMD_th were measured by the dual-energy X-ray absorptiometry (DEXA) method. Results were analyzed using univariate statistic model adjusted for sex, body mass index (BMI) and age. Our results showed the significant differences in BMD_th, BMD_ls and BMD_fn values (p = 0.031, 0.017 and 0.023, respectively) in subgroups of GSTT1 gene deletion polymorphism. For GSTM1 gene deletion polymorphism borderline significant association was found with BMD_ls (p = 0.100). Furthermore, subjects with homozygous deletion of GSTT1 gene showed higher BMD values on all measured skeletal sites and, in contrast, subjects with homozygous deletion of GSTM1 gene showed lower BMD values. Moreover, a gene-gene interaction study showed significant association of GSTM1-null and GSTT1-null polymorphisms with BMD_ls values (p = 0.044). Carriers with a combination of the presence of GSTT1 gene and the homozygous absence of GSTM1 gene fragment were associated with the lower BMD values at all skeletal sites. The significant association of combination of GSTT1 gene presence and homozygous absence of GSTM1 gene with BMD was demonstrated, suggesting that it could be used, if validated in other studies, as genetic marker for low BMD. PMID:22048269
Opposite effects of GSTM1--and GSTT1: gene deletion variants on bone mineral density.
Mlakar, Simona Jurkovic; Osredkar, Josko; Prezelj, Janez; Marc, Janja
2011-01-01
Oxidative stress is associated with osteoporosis. The glutathione S-transferases form the major detoxifying group of enzymes responsible for eliminating products of oxidative stress. We have therefore proposed GSTM1 and GSTT1 genes as candidates for studying the genetics of osteoporosis. The aim of the present study was to examine possible association of GSTM1 and GSTT1 gene deletion polymorphisms, alone or in combination, with bone mineral density at femoral neck (BMD_fn), lumbar spine (BMD_ls) and total hip (BMD_th) in Slovenian elderly women and men.GSTM1 and GSTT1 gene deletion polymorphisms in 712 elderly people were analyzed using the triplex PCR method for the presence of GSTM1 and GSTT1 gene segments. BMD_fn, BMD_ls and BMD_th were measured by the dual-energy X-ray absorptiometry (DEXA) method. Results were analyzed using univariate statistic model adjusted for sex, body mass index (BMI) and age. Our results showed the significant differences in BMD_th, BMD_ls and BMD_fn values (p=0.031, 0.017 and 0.023, respectively) in subgroups of GSTT1 gene deletion polymorphism. For GSTM1 gene deletion polymorphism borderline significant association was found with BMD_ls (p=0.100). Furthermore, subjects with homozygous deletion of GSTT1 gene showed higher BMD values on all measured skeletal sites and, in contrast, subjects with homozygous deletion of GSTM1 gene showed lower BMD values. Moreover, a gene-gene interaction study showed significant association of GSTM1-null and GSTT1-null polymorphisms with BMD_ls values (p=0.044). Carriers with a combination of the presence of GSTT1 gene and the homozygous absence of GSTM1 gene fragment were associated with the lower BMD values at all skeletal sites. The significant association of combination of GSTT1 gene presence and homozygous absence of GSTM1 gene with BMD was demonstrated, suggesting that it could be used, if validated in other studies, as genetic marker for low BMD.
Cao, Haihui; Nazarian, Ara; Ackerman, Jerome L; Snyder, Brian D; Rosenberg, Andrew E; Nazarian, Rosalynn M; Hrovat, Mirko I; Dai, Guangping; Mintzopoulos, Dionyssios; Wu, Yaotang
2010-06-01
In this study, bone mineral density (BMD) of normal (CON), ovariectomized (OVX), and partially nephrectomized (NFR) rats was measured by (31)P NMR spectroscopy; bone matrix density was measured by (1)H water- and fat-suppressed projection imaging (WASPI); and the extent of bone mineralization (EBM) was obtained by the ratio of BMD/bone matrix density. The capability of these MR methods to distinguish the bone composition of the CON, OVX, and NFR groups was evaluated against chemical analysis (gravimetry). For cortical bone specimens, BMD of the CON and OVX groups was not significantly different; BMD of the NFR group was 22.1% (by (31)P NMR) and 17.5% (by gravimetry) lower than CON. For trabecular bone specimens, BMD of the OVX group was 40.5% (by (31)P NMR) and 24.6% (by gravimetry) lower than CON; BMD of the NFR group was 26.8% (by (31)P NMR) and 21.5% (by gravimetry) lower than CON. No significant change of cortical bone matrix density between CON and OVX was observed by WASPI or gravimetry; NFR cortical bone matrix density was 10.3% (by WASPI) and 13.9% (by gravimetry) lower than CON. OVX trabecular bone matrix density was 38.0% (by WASPI) and 30.8% (by gravimetry) lower than CON, while no significant change in NFR trabecular bone matrix density was observed by either method. The EBMs of OVX cortical and trabecular specimens were slightly higher than CON but not significantly different from CON. Importantly, EBMs of NFR cortical and trabecular specimens were 12.4% and 26.3% lower than CON by (31)P NMR/WASPI, respectively, and 4.0% and 11.9% lower by gravimetry. Histopathology showed evidence of osteoporosis in the OVX group and severe secondary hyperparathyroidism (renal osteodystrophy) in the NFR group. These results demonstrate that the combined (31)P NMR/WASPI method is capable of discerning the difference in EBM between animals with osteoporosis and those with impaired bone mineralization. Copyright 2010 Elsevier Inc. All rights reserved.
Racial/ethnic differences in bone mineral density among older women
Nam, Hae-Sung; Kweon, Sun-Seog; Choi, Jin-Su; Zmuda, Joseph M.; Leung, P. C.; Lui, Li-Yung; Hill, Deanna D.; Patrick, Alan L.
2014-01-01
The epidemiologic information regarding international differences in bone mineral density (BMD) in women is currently insufficient. We compared BMD in older women across five racial/ethnic groups in four countries. The femoral neck, total hip, and lumbar spine BMD were measured in women (aged 65–74 years) from the Study of Osteoporotic Fractures (SOF) (5,035 Caucasian women and 256 African American women in the US), the Tobago Women’s Health Study (116 Afro-Caribbean women), the Ms Os Hong Kong Study (794 Hong Kong Chinese women) and the Namwon Study (1,377 South Korean women). BMD was corrected according to the cross-site calibration results for all scanners. When compared with US Caucasian women, the age adjusted mean BMD measurements at the hip sites were 21–31 % higher among Tobago Afro-Caribbean women and 13–23 % higher among African American women. The total hip and spine BMD values were 4–5 % lower among Hong Kong Chinese women and 4–7 % lower among South Korean women compared to US Caucasians. The femoral neck BMD was similar in Hong Kong Chinese women, but higher among South Korean women compared to US Caucasians. Current/past estrogen use was a significant contributing factor to the difference in BMD between US versus non-US women. Differences in body weight partially explained the difference in BMD between Asian versus non-Asian women. These findings show substantial racial/ethnic differences in BMD even within African or Asian origin individuals, and highlight the contributing role of body weight and estrogen use to the geographic and racial/ethnic variation in BMD. PMID:23143509
Võsoberg, Kristel; Tillmann, Vallo; Tamm, Anna-Liisa; Jürimäe, Toivo; Maasalu, Katre; Jürimäe, Jaak
2016-04-01
To investigate changes in bone mineral density (BMD) in rhythmic gymnasts (RG) entering puberty and their age-matched untrained controls (UC) over the 36-month period, and associations with leptin, adiponectin and ghrelin over this period. Whole body (WB), lumbar spine (LS) and femoral neck (FN) BMD, WB bone mineral content (BMC), and leptin, adiponectin and ghrelin were measured in 35 RG and 33 UC girls at baseline and at 12-month intervals over the next 3 years. The change over the 36 months was calculated (∆ score). The pubertal development over the next 36 months was slower in RG compard to UC, while there was no difference in bone age development between the groups. BMD at all sites was higher in RG in comparison with UC at every measurement point. ∆LS BMD and ∆FN BMD, but not ∆WB BMD and ∆WB BMC, were higher in RG compared with UC. None of the measured hormones at baseline or their ∆ scores correlated with ∆BMD and ∆BMC in RG. Baseline fat free mass correlated with ∆WB BMD and ∆WB BMC in RG, while baseline leptin was related to ∆WB BMC, ∆WB BMD and ∆LS BMD in UC. Measured baseline hormones and their ∆ scores did not correlate with increases in bone mineral values in RG entering puberty. Although the pubertal development in RG was slower than in UC, high-intensity training appeared to increase BMD growth and counterbalance negative effects of slow pubertal develpment, lower fat mass and leptin in RG.
Ragab, Seham M.; Badr, Eman A.; Ibrahim, Ahmed S.
2016-01-01
Background Osteoporosis is a major complication of beta thalassemia major (TM). Increased oxidative stress and its controlling genes were linked to osteoporosis. Ile105 Val variant is a functional polymorphism of Glutathione S-transferase P1 (GSTP1), with reduced anti-oxidative property. No data are available about this variant or its association with osteoporosis among thalassemia patients yet. Objectives To investigate Ile105Val polymorphism and its possible association with bone mineral density (BMD) values in a group of TM children. Methods Thirty five TM children and 30 age and sex matched healthy controls were included. Liver and renal functions, serum ferritin, calcium, phosphorous, alkaline phosphatase and osteocalcin were assayed. BMD was determined by DXA with calculation of Z-scores at lumbar spine (LS) and femoral neck (FN). Height for age Z- score (HAZ) adjusted BMD Z-scores were calculated. GSTP1 Ile105Val polymorphism was studied by polymerase chain reaction-restriction fragment length polymorphism. Results The relative frequency of 105 Val allele was significantly higher in TM patients than the controls (p<0.0001). Significant association between genotype subgroups and BMD parameters was detected. Compared to wild homozygotes, polymorphic homozygotes had lower LS-BMD (p =0.029), LS-BMD Z –score (p=0.008 ), LS- BMD haz - Z-score (p=0.011), FN- BMD (p= 0.001), FN- BMD Z –score (p=0.02) and FN-BMD haz - Z-score (p=0.001). They exhibited higher osteocalcin levels compared to heterozygotes and wild homozygotes (p=0.012, p=0.013, respectively). Conclusion Ile105Val polymorphism was frequent among TM patients and could increase their susceptibility to reduced BMD. Large sample studies are required to confirm these findings. PMID:26740865
Outcome of bone mineral density in anorexia nervosa patients 11.7 years after first admission.
Herzog, W; Minne, H; Deter, C; Leidig, G; Schellberg, D; Wüster, C; Gronwald, R; Sarembe, E; Kröger, F; Bergmann, G
1993-05-01
Osteopenia is a typical finding in patients suffering from anorexia nervosa. Unfortunately, available longitudinal studies are limited by a relatively short follow-up period. Therefore cross-sectional long-term followup studies may help to determine both the outcome of this bone lesion and variables that influence its subsequent development. Of an initial 66 consecutive patients with anorexia nervosa, 51 (77.3%) could be further evaluated. After an average of 11.7 years following first admission, cross-sectional measurements of lumbar and proximal radial bone mineral density (BMD) were performed. The ability to predict BMD using variables obtained from anamnestic and clinical data was then determined by multiple-regression analysis. The BMD of both radial and lumbar bone in anorexic patients with poor disease outcome (as defined by the Morgan-Russell general outcome categories) deviated by -2.18 and -1.73 SD (Z score), respectively. In patients with a good disease outcome lumbar BMD was significantly less reduced compared with radial BMD (-0.26 versus -0.68 SD). Variables reflecting estrogen deficiency and nutritional status in the course of the disease, that is, relative estrogen exposure (for lumbar BMD) and years of anorexia nervosa (for radial BMD), allowed the best prediction of BMD. A marked reduction in cortical and trabecular BMD in anorexic patients with poor disease outcome suggests a higher risk of fractures in these patients. Furthermore, the finding of a persistently reduced cortical and a slightly reduced trabecular BMD, even in patients with good disease outcome, suggests that a recovery of trabecular BMD might be possible, at least in part. Recovery of cortical bone, if possible at all, seems to proceed more slowly.
Kaste, S C; Qi, A; Smith, K; Surprise, H; Lovorn, E; Boyett, J; Ferry, R J; Relling, M V; Shurtleff, S A; Pui, C H; Carbone, L; Hudson, M M; Ness, K K
2014-05-01
We sought to improve lumbar spine bone mineral density (LS-BMD) in long-term survivors of childhood acute lymphoblastic leukemia (ALL) using calcium and cholecalciferol supplementation. This double-blind, placebo-controlled trial randomized 275 participants (median age, 17 [9-36.1] years) with age- and gender-specific LS-BMD Z-scores <0 to receive nutritional counseling with supplementation of 1,000 mg/day calcium and 800 International Unit cholecalciferol or placebo for 2 years. The primary outcome was change in LS-BMD assessed by quantitative computerized tomography (QCT) at 24 months. Linear regression models were employed to identify the baseline risk factors for low LS-BMD and to compare LS-BMD outcomes. Pre-randomization LS-BMD below the mean was associated with male gender (P = 0.0024), White race (P = 0.0003), lower body mass index (P < 0.0001), and cumulative glucocorticoid doses of ≥ 5,000 mg (P = 0.0012). One hundred eighty-eight (68%) participants completed the study; 77% adhered to the intervention. Mean LS-BMD change did not differ between survivors randomized to supplements (0.33 ± 0.57) or placebo (0.28 ± 0.56). Participants aged 9-13 years and those 22-35 years had the greatest mean increases in LS-BMD (0.50 ± 0.66 and 0.37 ± 0.23, respectively). Vitamin D insufficiency (serum 25[OH]D <30 ng/ml) found in 296 (75%), was not associated with LS-BMD outcomes (P = 0.78). Cholecalciferol and calcium supplementation provides no added benefit to nutritional counseling for improving LS-BMD among adolescent and young adult survivors of ALL (93% of whom had LS-BMD Z-scores above the mean at study entry). © 2014 Wiley Periodicals, Inc.
Bakker, Sjoerd F; Dik, Vincent K; Witte, Birgit I; Lips, Paul; Roos, Jan C; Van Bodegraven, Adriaan A
2013-06-01
Decreased bone mineral density (BMD) is common in Crohn's disease (CD) patients. This paper reports on the prevalence of decreased BMD in a referral cohort study of CD-patients next to the change of BMD over time in relation with CD-associated clinical characteristics. 205 CD patients of a referral hospital were enrolled between January1998-January 2010 when measurement of BMD by dual X-ray absorptiometry (DXA) was available. Follow-up DXA scan was performed in subjects with known risk factors besides Crohn indicative for low BMD. Treatment of CD patients was according to a protocol which is comparable to the current (inter)national guidelines. In osteopenic patients, supplemental vitamin D (800 IU) and Calcium (500-1000 mg) were prescribed. Mean BMD at baseline was 0.97 ± 0.16 gram/cm(2) in lumbar spine and 0.87 ± 0.12 gram/cm(2) in the total hip. At baseline, higher age and low Body Mass Index (BMI), were negatively correlated with BMD. Eighty-four patients underwent a second BMD assessment with a median interval period of 4 years (IQR 3-6). A mean annual increase of +0.76% (95%CI: -2.63%; +3.87%) in lumbar spine and +0.43% (95%CI: -2.65% ; +1.11%) in total hip was observed. Higher age, male sex, low BMI, and a higher age at diagnosis of CD were associated with low BMD. Follow-up of BMD in CD patients showed a contraintuitive small increase of BMD at lumbar spine and total hip in CD patients only using supplemental vitamin D and calcium next to strict treatment of CD. Copyright © 2012 European Crohn's and Colitis Organisation. Published by Elsevier B.V. All rights reserved.
Bone Mineral Density across a Range of Physical Activity Volumes: NHANES 2007–2010
Whitfield, Geoffrey P.; Kohrt, Wendy M.; Pettee Gabriel, Kelley K.; Rahbar, Mohammad H.; Kohl, Harold W.
2014-01-01
Introduction The association between aerobic physical activity volume and bone mineral density (BMD) is not completely understood. The purpose of this study was to clarify the association between BMD and aerobic activity across a broad range of activity volumes, in particular volumes between those recommended in the 2008 Physical Activity Guidelines for Americans and those of trained endurance athletes. Methods Data from the 2007–2010 National Health and Nutrition Examination Survey were used to quantify the association between reported physical activity and BMD at the lumbar spine and proximal femur across the entire range of activity volumes reported by US adults. Participants were categorized into multiples of the minimum guideline-recommended volume based on reported moderate and vigorous intensity leisure activity. Lumbar and proximal femur BMD was assessed with dual-energy x-ray absorptiometry. Results Among women, multivariable-adjusted linear regression analyses revealed no significant differences in lumbar BMD across activity categories, while proximal femur BMD was significantly higher among those who exceeded guidelines by 2–4 times than those who reported no activity. Among men, multivariable-adjusted BMD at both sites neared its highest values among those who exceeded guidelines by at least 4 times and was not progressively higher with additional activity. Logistic regression estimating the odds of low BMD generally echoed the linear regression results. Conclusion The association between physical activity volume and BMD is complex. Among women, exceeding guidelines by 2–4 times may be important for maximizing BMD at the proximal femur, while among men, exceeding guidelines by 4+ times may be beneficial for lumbar and proximal femur BMD. PMID:24870584
Zheng, Jenny; van Schaick, Erno; Wu, Liviawati Sutjandra; Jacqmin, Philippe; Perez Ruixo, Juan Jose
2015-08-01
Osteoporosis is a chronic skeletal disease characterized by low bone strength resulting in increased fracture risk. New treatments for osteoporosis are still an unmet medical need because current available treatments have various limitations. Bone mineral density (BMD) is an important endpoint for evaluating new osteoporosis treatments; however, the BMD response is often slower and less profound than that of bone turnover markers (BTMs). If the relationship between BTMs and BMD can be quantified, the BMD response can be predicted by the changes in BTM after a single dose; therefore, a decision based on BMD changes can be informed early. We have applied a bone cycle model to a phase 2 denosumab dose-ranging study in osteopenic women to quantitatively link serum denosumab pharmacokinetics, BTMs, and lumbar spine (LS) BMD. The data from two phase 3 denosumab studies in patients with low bone mass, FREEDOM and DEFEND, were used for external validation. Both internal and external visual predictive checks demonstrated that the model was capable of predicting LS BMD at the denosumab regimen of 60 mg every 6 months. It has been demonstrated that the model, in combination with the changes in BTMs observed from a single-dose study in men, is capable of predicting long-term BMD outcomes (e.g., LS BMD response in men after 1 year of treatment) in different populations. We propose that this model can be used to inform drug development decisions for osteoporosis treatment early via evaluating LS BMD response when BTM data become available in early trials.
Sarcopenia is related to increased risk for low bone mineral density.
Wu, Chia-Hung; Yang, Kun-Cheh; Chang, Hao-Hsiang; Yen, Jo-Fang; Tsai, Ko-Sung; Huang, Kuo-Chin
2013-01-01
Lean body mass is positively correlated with bone mineral density (BMD). The association between sarcopenia and BMD is less studied. The aim of the study is to investigate the association between sarcopenia and abnormal BMD. A total of 600 community residents aged 40-85 years (mean=63.63 ± 10.12) from Taipei, Taiwan were included. Abnormal and normal BMD groups were categorized by T-score of femoral neck and lumbar spine (L2-L4) measured by dual-energy X-ray absorptiometry. Skeletal muscle mass (SM) index (SMI) was obtained from SM divided by height squared using bioelectrical impedance analysis (BIA) method. Sarcopenia was defined as SMI less than 8.87 kg/m² in men and 6.42 kg/m² in women according to previous Taiwanese sarcopenia study. The association between BMD groups and sarcopenia was examined using binary logistic regression analyses after controlling potential confounders. Subjects with sarcopenia were at higher risk for low BMD (odds ratio (OR) = 1.59, 95% confidence interval (CI)=1.06-2.39 for femoral neck BMD and OR=1.72, 95% CI=1.09-2.72 for lumbar BMD) compared with the nonsarcopenia group. Even in different gender groups with age categorized, sarcopenia was still an important independent factor in female group. The least square (LS) means of BMD of femoral neck and lumbar spine were significantly lower in sarcopenia group. The risk of low BMD increased significantly with sarcopenia. Copyright © 2013 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
Retreatment with teriparatide: our experience in three patients with severe secondary osteoporosis.
Mana, D L; Zanchetta, M B; Zanchetta, J R
2017-04-01
Teriparatide is a drug for the treatment of osteoporosis which is licensed for use for up to 24 months. There is little experience with retreatment. The aim of this study was to evaluate, in three patients with severe secondary osteoporosis, the response to a second cycle of teriparatide regarding bone mineral density (BMD) and osteocalcin. Case 1 : A 62-year-old woman with multiple vertebral fractures has received corticoids for a long time. After starting teriparatide, her BMD and osteocalcin increased. She then received ibandronate for 3 years but her BMD declined. After a second treatment with teriparatide, her BMD increased again (18%). Case 2 : A 60-year-old woman with severe osteoporosis in lumbar spine (LS) (T-score - 4.5) had received corticoids for a long time and had celiac disease. After starting teriparatide, her BMD improved by 11.7%. She then received zoledronic acid for 15 months, but bone density decreased, so she was retreated with teriparatide. BMD had a slightly higher increase than after the first cycle (12.6%). Case 3 : A 60-year-old woman consulted for osteoporosis (LS T-score - 5.3), several fractures, and hyperthyroidism. She started teriparatide with improvement in BMD (39%). After 24 months, she received ibandronate for 1 year, but as her BMD declined, she was retreated with teriparatide. BMD showed an increase of 15%. The indication of a second cycle of treatment with teriparatide in three patients was effective in increasing BMD. Additional studies are needed to further identify the benefits and safety of retreatment with teriparatide.
Determinants of low bone mineral density in children with epilepsy.
Fong, Choong Yi; Kong, Ann Nie; Noordin, Mazidah; Poh, Bee Koon; Ong, Lai Choo; Ng, Ching Ching
2018-01-01
Children with epilepsy on long-term antiepileptic drugs (AEDs) are at risk of low bone mineral density (BMD). The aims of our study were to evaluate the prevalence and determinants of low BMD among Malaysian children with epilepsy. Cross-sectional study of ambulant children with epilepsy on long-term AEDs for >1 year seen in a tertiary hospital in Malaysia from 2014 to 2015. Detailed assessment of anthropometric measurements; environmental lifestyle risk factors; serum vitamin D, calcium and parathyroid hormone levels; genotyping of single nucleotide polymorphisms of genes in vitamin D and calcium metabolism; and lumbar spine BMD were obtained. Low BMD was defined as BMD Z-score ≤ -2.0 SD. Eighty-seven children with mean age of 11.9 years (56 males) participated in the study. The prevalence of low lumbar BMD was 21.8% (19 patients). Multivariate logistic regression analysis identified polytherapy >2 AEDs (OR: 7.86; 95% CI 1.03-59.96), small frame size with wrist breadth of <15th centile (OR 14.73; 95% CI 2.21-98.40), and body mass index Z-score < -2.0 (OR 8.73, 95% CI 1.17-65.19) as significant risk factors for low BMD. One-fifth of Malaysian children with epilepsy on long-term AEDs had low BMD. Targeted BMD should be performed for those who are on >2 AEDs, underweight or with small frame size as they are at higher risk of having low BMD. Copyright © 2017 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.
Age, gender, and race/ethnic differences in total body and subregional bone density.
Looker, A C; Melton, L J; Harris, T; Borrud, L; Shepherd, J; McGowan, J
2009-07-01
Total body bone density of adults from National Health and Nutrition Examination Survey (NHANES) 1999-2004 differed as expected for some groups (men>women and blacks>whites) but not others (whites>Mexican Americans). Cross-sectional age patterns in bone mineral density (BMD) of older adults differed at skeletal sites that varied by degree of weight-bearing. Total body dual-energy X-ray absorptiometry (DXA) data offer the opportunity to compare bone density of demographic groups across the entire skeleton. The present study uses total body DXA data (Hologic QDR 4500A, Hologic, Bedford MA, USA) from the NHANES 1999-2004 to examine BMD of the total body and selected skeletal subregions in a wide age range of adult men and women from three race/ethnic groups. Total body, lumbar spine, pelvis, right leg, and left arm BMD and lean mass from 13,091 adults aged 20 years and older were used. The subregions were chosen to represent sites with different degrees of weight-bearing. Mean BMD varied in expected ways for some demographic characteristics (men>women and non-Hispanic blacks>non-Hispanic whites) but not others (non-Hispanic whites>Mexican Americans). Differences in age patterns in BMD also emerged for some characteristics (sex) but not others (race/ethnicity). Differences in cross-sectional age patterns in BMD and lean mass by degree of weight-bearing in older adults were observed for the pelvis, leg, and arm. This information may be useful for generating hypotheses about age, race, and sex differences in fracture risk in the population.
Cossio-Bolaños, Marco; Lee-Andruske, Cynthia; de Arruda, Miguel; Luarte-Rocha, Cristian; Almonacid-Fierro, Alejandro; Gómez-Campos, Rossana
2018-03-02
Maintaining and building healthy bones during the lifetime requires a complicated interaction between a number of physiological and lifestyle factors. Our goal of this study was to analyze the association between hand grip strength and the maximum peak expiratory flow with bone mineral density and content in adolescent students. The research team studied 1427 adolescent students of both sexes (750 males and 677 females) between the ages of 11.0 and 18.9 years in the Maule Region of Talca (Chile). Weight, standing height, sitting height, hand grip strength (HGS), and maximum peak expiratory flow (PEF) were measured. Furthermore, bone mineral density (BMD) and total body bone mineral content (BMC) were determined by using the Dual-Energy X-Ray Absorptiometry (DXA). Hand grip strength and PEF were categorized in tertiles (lowest, middle, and highest). Linear regression was performed in steps to analyze the relationship between the variables. Differences between categories were determined through ANOVA. In males, the hand grip strength explained 18-19% of the BMD and 20-23% of the BMC. For the females, the percentage of variation occurred between 12 and 13% of the BMD and 17-18% of the BMC. The variation of PEF for the males was observed as 33% of the BMD and 36% of the BMC. For the females, both the BMD and BMC showed a variation of 19%. The HGS and PEF were divided into three categories (lowest, middle, and highest). In both cases, significant differences occurred in bone density health between the three categories. In conclusion, the HGS and the PEF related positively to the bone density health of both sexes of adolescent students. The adolescents with poor values for hand grip strength and expiratory flow showed reduced values of BMD and BMC for the total body. Furthermore, the PEF had a greater influence on bone density health with respect to the HGS of the adolescents of both sexes.
HDL cholesterol and bone mineral density: Is there a genetic link?
Ackert-Bicknell, Cheryl L.
2011-01-01
Overwhelming evidence has linked cardiovascular disease and osteoporosis, but the shared root cause of these two diseases of the elderly remains unknown. Low levels of high-density lipoprotein cholesterol (HDL) and bone mineral density (BMD) are risk factors for cardiovascular disease and osteoporosis respectively. A number of correlation studies have attempted to determine if there is a relationship between serum HDL and BMD but these studies are confounded by a number of variables including age, diet, genetic background, gender and hormonal status. Collectively, these data suggest that there is a relationship between these two phenotypes, but that the nature of this relationship is context specific. Studies in mice plainly demonstrate that genetic loci for BMD and HDL co-map and transgenic mouse models have been used to show that a single gene can affect both serum HDL and BMD. Work completed to date has demonstrated that HDL can interact directly with both osteoblasts and osteoclasts, but no direct evidence links bone back to the regulation of HDL levels. Understanding the genetic relationship between BMD and HDL has huge implications for understanding the clinical relationship between CVD and osteoporosis and for the development of safe treatment options for both diseases. PMID:21810493
Depression, antidepressants, and bone mineral density in a population-based cohort.
Mezuk, Briana; Eaton, William W; Golden, Sherita Hill; Wand, Gary; Lee, Hochang Benjamin
2008-12-01
It is uncertain whether depression and antidepressant use are associated with decreased bone mineral density (BMD) and whether these relationships differ for men and women. The study used a case-cohort design within the Baltimore Epidemiologic Catchment Area Study, a population-based sample of adults that recently completed its 23-year follow-up. Depression was measured at four time points during the follow-up period by the Diagnostic Interview Schedule. Lower spine BMD was measured at the fourth wave by dual-energy x-ray absorptiometry. The association of BMD with lifetime history of depression and antidepressant medication use was studied using linear regression with bootstrap standard errors. A history of depression was associated with lower spine BMD after controlling for age, sex, race, calcium intake, alcohol use, smoking status, level of physical activity, percent body fat, and antidepressant medication use (-0.140 g/cm(2); p <.002). After controlling for depression, antidepressant medication use was associated with decreased BMD in women but not in men (-0.218 g/cm(2); p <.016). A history of depression predicted decreased lumbar spine BMD in men and women, and antidepressant use predicted decreased BMD in women even after controlling for depression. The magnitude of the effect of depression on BMD was approximately equivalent to 1 standard deviation in BMD and was therefore clinically significant. Providers should be aware of the physiologic consequences of depression as well as the possible risks to bone strength associated with antidepressant use in older patients.
Tungjai, Montree; Kaewjaeng, Siriprapa; Jumpee, Chayanit; Sriburee, Sompong; Hongsriti, Pongsiri; Tapanya, Monruedee; Maghanemi, Utumma; Ratanasthien, Kwanchai; Kothan, Suchart
2017-09-01
To study the prevalence of bone mineral density (BMD) and osteoporosis in the distal forearm among Thai men over 40 years of age in Mae Chaem District, Chiang Mai Province, Thailand. The subjects in this study were 194 Thai men, aged between 40 and 87 years who resided in Mae Chaem District, Chiang Mai Province, Thailand. Self-administered questionnaires were used for receiving the demographic characteristics information. BMD was measured by peripheral dual energy X-ray absorptiometry at the nondominant distal forearm in all men. The BMD was highest in the age-group 40-49 years and lowest in the age-group 70-87 years. The average T-score at the distal forearm was also highest in the age-group 40-49 years and lowest in the age-group 70-87 years. The BMD decreased as a function of age-group (p < .05). In contrast, the BMD increased as a function of weight (p < .05). Height had weak impact on the BMD in the distal forearm (p > .05). The percentage of osteopenia and osteoporosis are increased as a function of age-group in, while decreased in that of normal bone density. We found the prevalence of osteoporosis in men who resided in Mae Chaem District, Chiang Mai Province, Thailand.
Nieves, Jeri W; Ruffing, Jamie A; Zion, Marsha; Tendy, Susan; Yavorek, Trudy; Lindsay, Robert; Cosman, Felicia
2016-03-01
There are limited longitudinal studies that have evaluated bone mineral density (BMD) changes in college-aged women. Our objective was to simultaneously evaluate factors influencing 4-year BMD change. This was a longitudinal cohort study of healthy, physically active women in the US Military Academy (n=91; average age=18.4years). Assessments over four years included: height, weight, calcium intake, physical fitness, menstrual function (annual number cycles), oral contraceptives (OCs) or depot-medroxyprogesterone acetate (DMPA) use, and eating disorder behavior (Eating Disorder Inventory; (EDI)). BMD was measured annually at the lumbar spine and total hip by dual X-ray absorptiometry and calcaneal BMD by PIXI. Slope of 4year BMD change at each skeletal site (spine total hip and calcaneus) was calculated for each woman. BMD gains occurred at the spine in 50% and the hip in 36% of women. In unadjusted analyses, spine bone gain was positively related to menstrual cycle frequency (p=0.04). Spine and hip BMD loss occurred in those using DMPA (p<0.01) and those with the highest EDI quartile scores (p<0.05). BMD change was unrelated to OC use. Hip and calcaneus BMD decreased with weight loss (average 4.8+2.2lb/year) as compared to those with stable weight/weight gain (p<0.05). In multivariable analysis, spine BMD increase was significantly related to African American (AA) race, normal EDI score and normal menses. Hip BMD increase was related to AA race, weight increase and normal menses. DMPA use was associated with spine, hip, and calcaneus bone loss. On average, BMD may modestly increase in college-aged women, in the absence of risk factors. However, risk factors including subclinical eating disorders, weight loss, menstrual dysfunction and DMPA use can have significant detrimental effects on BMD in young healthy physically active women. Copyright © 2015 Elsevier Inc. All rights reserved.
Benchimol, Eric I; Ward, Leanne M; Gallagher, J C; Rauch, Frank; Barrowman, Nick; Warren, Jaime; Beedle, Susan; Mack, David R
2007-11-01
The purpose of this study was to evaluate the effect of calcium and vitamin D2 supplementation on bone mineral density (BMD) in children with inflammatory bowel disease (IBD). This was an open-label, prospective study conducted over a 12-month period. Seventy-two patients were divided into 2 groups based on lumbar spine areal BMD (L2-4 aBMD). Patients with an L2-4 aBMD z score of -1 or higher were assigned to the control group (n = 33; mean age, 11.0 +/- 3.5 years; 20 boys). Patients with an L2-4 aBMD of less than -1 (n = 39; mean age 11.8 +/- 2.5 years; 25 boys) were allocated to the intervention group and received 1000 mg of supplemental elemental calcium daily for 12 months (n = 19) or supplemental calcium for 12 months and 50,000 IU of vitamin D2 monthly for 6 months (n = 20). The 2 groups differed in L2-4 aBMD z scores (intervention, -1.9 +/- 0.6; control, -0.2 +/- 0.6; P < 0.001) and volumetric L2-4 BMD (vBMD; intervention, 0.29 +/- 0.04; control, 0.33 +/- 0.06; P < 0.001). After 1 year of therapy, the control and intervention groups had similar changes in height z scores, L2-4 aBMD, L2-4 vBMD (z score change, L2-4 aBMD: control 0.2 +/- 0.6 [n = 21], intervention 0.4 +/- 0.6; P = 0.4 [n = 26]; z score change, L2-4 vBMD: control 0.1 +/- 0.4, intervention 0.2 +/- 0.6; P = 0.74). The changes in these parameters were similar between patients who had received calcium only or calcium plus vitamin D. These results suggest that, in children with IBD, supplementation of calcium and vitamin D does not accelerate accrual in L2-4 BMD.
Measurement of hard tissue density based on image density of intraoral radiograph
NASA Astrophysics Data System (ADS)
Katsumata, Akitoshi; Fukui, Tatsumasa; Shimoda, Shinji; Kobayashi, Kaoru; Hayashi, Tatsuro
2018-02-01
We developed a DentalSCOPE computer program to measure the bone mineral density (BMD) of the alveolar bone. Mineral density measurement of alveolar bone may be useful to predict possible patients who will occur medication-related osteonecrosis of the jaw (MRONJ). Because these osteoporosis medicines affect the mineral density of alveolar bone significantly. The BMD of alveolar bone was compared between dual-energy X-ray absorptiometry (DEXA) and the DentalSCOPE program. A high correlation coefficient was revealed between the DentalSCOPE measurement and the DEXA measurement.
Larussa, Tiziana; Suraci, Evelina; Imeneo, Maria; Marasco, Raffaella; Luzza, Francesco
2017-01-31
Impairment of bone mineral density (BMD) is frequent in celiac disease (CD) patients on a gluten-free diet (GFD). The normalization of intestinal mucosa is still difficult to predict. We aim to investigate the relationship between BMD and duodenal mucosa healing (DMH) in CD patients on a GFD. Sixty-four consecutive CD patients on a GFD were recruited. After a median period of a 6-year GFD (range 2-33 years), patients underwent repeat duodenal biopsy and dual-energy X-ray absorptiometry (DXA) scan. Twenty-four patients (38%) displayed normal and 40 (62%) low BMD, 47 (73%) DMH, and 17 (27%) duodenal mucosa lesions. All patients but one with normal BMD (23 of 24, 96%) showed DMH, while, among those with low BMD, 24 (60%) did and 16 (40%) did not. At multivariate analysis, being older (odds ratio (OR) 1.1, 95% confidence interval (CI) 1.03-1.18) and having diagnosis at an older age (OR 1.09, 95% CI 1.03-1.16) were associated with low BMD; in turn, having normal BMD was the only variable independently associated with DMH (OR 17.5, 95% CI 1.6-192). In older CD patients and with late onset disease, BMD recovery is not guaranteed, despite a GFD. A normal DXA scan identified CD patients with DMH; thus, it is a potential tool in planning endoscopic resampling.
Zhou, Wei; Langsetmo, Lisa; Berger, Claudie; Adachi, Jonathan D.; Papaioannou, Alexandra; Ioannidis, George; Webber, Colin; Atkinson, Stephanie A.; Olszynski, Wojciech P.; Brown, Jacques P.; Hanley, David A.; Josse, Robert; Kreiger, Nancy; Prior, Jerilynn; Kaiser, Stephanie; Kirkland, Susan; Goltzman, David; Davison, Kenneth Shawn
2016-01-01
The objectives of the study were to develop bone mineral density (BMD) reference norms and BMD Z-scores at various skeletal sites, to determine whether prior fracture and/or asthma were related to BMD, and to assess possible geographic variation of BMD among Canadian youth aged 16–24 yr. Z-Scores were defined as the number of standard deviations from the mean BMD of a healthy population of the same age, race, and sex. Z-Scores were calculated using the reference sample defined as Canadian Caucasian participants without asthma or prior fracture. Reference standards were created for lumbar spine (L1–L4), femoral neck, total hip, and greater trochanter, by each year of age (16–24 yr), and by sex. The Z-score norms were developed for groups noted earlier. Mean Z-scores between the asthma or fracture subgroups compared with the mean Z-scores in the reference sample were not different. There were minor differences in mean BMD across different Canadian geographic regions. This study provides age, sex, and skeletal site-specific Caucasian reference norms and formulae for the calculation of BMD Z-scores for Canadian youth aged 16–24 yr. This information will be valuable to help to identify individuals with clinically meaningful low BMD. PMID:20554232
Lim, Lionel S; Hoeksema, Laura J; Sherin, Kevin
2009-04-01
Osteoporosis is a common and costly disease that is associated with high morbidity and mortality. There is a lack of direct evidence supporting the benefits of bone mineral density (BMD) screening on osteoporosis outcomes. However, there is indirect evidence to support screening for osteoporosis given the availability of medications with good antifracture efficacy. This paper addresses the position of the American College of Preventive Medicine (ACPM) on osteoporosis screening. The medical literature was reviewed for studies examining the benefits and harms of osteoporosis screening. An overview is also provided of available modalities for osteoporosis screening, risk-assessment tools, cost effectiveness, benefits and harms of screening, rationale for the study, and recommendations from leading health organizations and ACPM. A review was done of English language articles published prior to September 2008 that were retrieved via search on PubMed, from references from pertinent review or landmark articles, and from websites of leading health organizations. There were no randomized controlled trials (RCTs) of osteoporosis screening on fracture outcomes. However, there was one observational study that demonstrated reduced fracture incidence among recipients of BMD testing. Dual energy x-ray absorptiometry is currently one of the most widely accepted and utilized methods for assessing BMD. Other potential tests for detecting osteoporosis include quantitative ultrasound, quantitative computer tomography, and biochemical markers of bone turnover. Testing via BMD is a cost-effective method for detecting osteoporosis in both men and women. Osteoporosis risk-assessment tools such as the WHO fracture-risk algorithm are useful supplements to BMD assessments as they provide estimates of absolute fracture risks. They can also be used with or without BMD testing to assist healthcare providers and patients in making decisions regarding osteoporosis treatments. All adult patients aged >or=50 years should be evaluated for risk factors for osteoporosis. Screening with BMD testing for osteoporosis is recommended in women aged >or=65 years and in men aged >or=70 years. Younger postmenopausal women and men aged 50-69 years should undergo screening if they have at least one major or two minor risk factors for osteoporosis. It is also recommended that clinicians consider using an osteoporosis risk-assessment tool to evaluate absolute fracture risk to determine appropriate osteoporosis therapies.
Nakavachara, Pairunyar; Pooliam, Julaporn; Weerakulwattana, Linda; Kiattisakthavee, Pornpimol; Chaichanwattanakul, Katharee; Manorompatarasarn, Racahnee; Chokephaibulkit, Kulkanya; Viprakasit, Vip
2014-01-01
Ethnic-specific normative data of bone mineral density (BMD) is essential for the accurate interpretation of BMD measurement. There have been previous reports of normative BMD data for Caucasian and Asian children including Japanese, Chinese, Korean and Indian. However, the normative BMD data for Southeast Asian including Thai children and adolescents are not currently available. The goals of our study were 1) to establish normative data of BMD, bone mineral content (BMC), bone area (BA) and lean body mass (LBM) for healthy Thai children and adolescents; aged 5–18 years measured by dual energy X-ray absorptiometry (DXA, Lunar Prodigy) and 2) to evaluate the relationships between BMD vs. age, sex, puberty, weight, height, calcium intake and the age of menarche in our population. Gender and age-specific BMD (L2-4; LS and total body; TB), BMADLS (apparent BMD of the lumbar spine), BMC (L2-4 and total body), BA (L2-4 and total body) and LBM were evaluated in 367 children (174 boys and 193 girls). All parameters increased progressively with age. A rapid increase in BMD, BMC and BMADLS was observed at earlier ages in girls. Gender and Tanner stage-specific BMD normative data were also generated. The dynamic changes of BMD values from childhood to early and late puberty of Thai children appeared to be consistent with those of Caucasian and Asian populations. Using a multiple-regression, weight and Tanner stage significantly affected BMDLS, BMDTB and BMADLS in both genders. Only in girls, height was found to have significant influence on BMDTB and BMADLS. The positive correlation between BMD and several demographic parameters, except the calcium intake, was observed. In summary, we established a normal BMD reference for Thai children and adolescents and this will be of useful for clinicians and researchers to appropriately assess BMD in Thais and other Southeast Asian children. PMID:24847716
Areal and volumetric bone mineral density and risk of multiple types of fracture in older men.
Chalhoub, Didier; Orwoll, Eric S; Cawthon, Peggy M; Ensrud, Kristine E; Boudreau, Robert; Greenspan, Susan; Newman, Anne B; Zmuda, Joseph; Bauer, Douglas; Cummings, Steven; Cauley, Jane A
2016-11-01
Although many studies have examined the association between low bone mineral density (BMD) and fracture risk in older men, none have simultaneously studied the relationship between multiple BMD sites and risk of different types of fractures. Using data from the Osteoporotic Fractures in Men study, we evaluated the association between areal BMD (aBMD) by dual-energy X-ray absorptiometry (DXA) and volumetric BMD (vBMD) by quantitative computed tomography (QCT) measurements, and different types of fractures during an average of 9.7years of follow-up. Men answered questionnaires about fractures every 4months (>97% completions). Fractures were confirmed by centralized review of radiographic reports; pathological fractures were excluded. Risk of fractures was assessed at the hip, spine, wrist, shoulder, rib/chest/sternum, ankle/foot/toe, arm, hand/finger, leg, pelvis/coccyx, skull/face and any non-spine fracture. Age and race adjusted Cox proportional-hazards modeling was used to assess the risk of fracture in 3301 older men with both aBMD (at the femoral neck (FN) and lumbar spine) and vBMD (at the trabecular spine and FN, and cortical FN) measurements, with hazard ratios (HRs) expressed per standard deviation (SD) decrease. Lower FN and spine aBMD were associated with an increased risk of fracture at the hip, spine, wrist, shoulder, rib/chest/sternum, arm, and any non-spine fracture (statistically significant HRs per SD decrease ranged from 1.24-3.57). Lower trabecular spine and FN vBMD were associated with increased risk of most fractures with statistically significant HRs ranging between 1.27 and 3.69. There was a statistically significant association between FN cortical vBMD and fracture risk at the hip (HR=1.55) and spine sites (HR=1.26), but no association at other fracture sites. In summary, both lower aBMD and vBMD were associated with increased fracture risk. The stronger associations observed for trabecular vBMD than cortical vBMD may reflect the greater metabolic activity of the trabecular compartment. Copyright © 2016 Elsevier Inc. All rights reserved.
Areal and volumetric Bone Mineral Density and risk of multiple types of fracture in older men
Chalhoub, Didier; Orwoll, Eric S.; Cawthon, Peggy M.; Ensrud, Kristine E.; Boudreau, Robert; Greenspan, Susan; Newman, Anne B.; Zmuda, Joseph; Bauer, Douglas; Cummings, Steven; Cauley, Jane A.
2016-01-01
Although many studies have examined the association between low bone mineral density (BMD) and fracture risk in older men, none have simultaneously studied the relationship between multiple BMD sites and risk of different types of fractures. Using data from the Osteoporotic Fractures in Men study, we evaluated the association between areal BMD (aBMD) by dual-energy X-ray absorptiometry (DXA) and volumetric BMD (vBMD) by quantitative computed tomography (QCT) measurements, and different types of fractures during an average of 9.7 years of follow up. Men answered questionnaires about fractures every 4 months (>97% completions). Fractures were confirmed by centralized review of radiographic reports; pathological fractures were excluded. Risk of fractures was assessed at the hip, spine, wrist, shoulder, rib/chest/sternum, ankle/foot/toe, arm, hand/finger, leg, pelvis/coccyx, skull/face and any non-spine fracture. Age and race adjusted Cox proportional-hazards modeling was used to assess the risk of fracture in 3301 older men with both aBMD (at the femoral neck (FN) and lumbar spine) and vBMD (at the trabecular spine and FN, and cortical FN) measurements, with hazard ratios (HRs) expressed per standard deviation (SD) decrease. Lower FN and spine aBMD were associated with an increased risk of fracture at the hip, spine, wrist, shoulder, rib/chest/sternum, arm, and any non-spine fracture (statistically significant HRs per SD decrease ranged from 1.24 - 3.57). Lower trabecular spine and FN vBMD were associated with increased risk of most fractures with statistically significant HRs ranging between 1.27 and 3.69. There was a statistically significant association between FN cortical vBMD and fracture risk at the hip (HR=1.55) and spine sites (HR=1.26), but no association at other fracture sites. In summary, both lower aBMD and vBMD were associated with increased fracture risk. The stronger associations observed for trabecular vBMD than cortical vBMD may reflect the greater metabolic activity of the trabecular compartment. PMID:27554426
Difference in Bone Mineral Density between Young versus Midlife Women
ERIC Educational Resources Information Center
Sanderson, Sonya; Anderson, Pamela S.; Benton, Melissa J.
2016-01-01
Background: Older age is a risk factor for low bone mineral density (BMD). Older women have been found to have lower BMD than younger women. Recent trends for decreased calcium consumption and physical activity may place younger women at greater risk than previously anticipated. Purpose: The purpose of this study was to evaluate the effect of age…
Assessing bone status in patients awaiting liver transplantation.
Wibaux, Cécile; Legroux-Gerot, Isabelle; Dharancy, Sébastien; Boleslawski, Emmanuel; Declerck, Nicole; Canva, Valérie; Mathurin, Philippe; Pruvot, François-René; Cortet, Bernard
2011-07-01
Osteoporosis is common in liver transplant recipients as a result of both iatrogenic factors and preexisting hepatic osteodystrophy. To assess the prevalences of osteoporosis and fractures and to identify risk factors for these two abnormalities in patients awaiting liver transplantation for end-stage liver disease. Between January 2006 and December 2007, patients on a liver transplant waiting list underwent a routine evaluation comprising the identification of risk factors for osteoporosis, radiographs of the spine, bone mineral density measurements (BMD), and laboratory tests (phosphate and calcium levels, hormone assays, liver function tests, and bone turnover markers). We studied 99 patients (70 males and 20 females; mean age, 55 ± 8 years) including 75% with alcohol-induced cirrhosis with or without hepatocarcinoma. Among them, 36% had radiographic vertebral fractures, 38% had osteoporosis, 35% had osteopenia, and 88% had vitamin D insufficiency or deficiency (25(OH)vitamin D3<20 ng/mL). Lower BMD values were associated with vertebral fractures; the odds ratios and 95% confidence intervals for each BMD decrease of 1 SD were as follows: spine, 1.45 (95%CI, 1.1-1.9); total hip, 2.1 (95%CI, 1.3-3.2); and femoral neck, 2 (95%CI, 1.3-3.1) (P<0.05). Levels of bone resorption markers correlated negatively with BMD at the spine and hip. The Model for End-Stage Liver Disease score correlated negatively with hip BMD. Our findings suggest high prevalences of low BMD values and vertebral fractures among patients awaiting liver transplantation. Bone status should be evaluated routinely in candidates to liver transplantation. Copyright © 2011 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.
Developing a bone mineral density test result letter to send to patients: a mixed-methods study
Edmonds, Stephanie W; Solimeo, Samantha L; Lu, Xin; Roblin, Douglas W; Saag, Kenneth G; Cram, Peter
2014-01-01
Purpose To use a mixed-methods approach to develop a letter that can be used to notify patients of their bone mineral density (BMD) results by mail that may activate patients in their bone-related health care. Patients and methods A multidisciplinary team developed three versions of a letter for reporting BMD results to patients. Trained interviewers presented these letters in a random order to a convenience sample of adults, aged 50 years and older, at two different health care systems. We conducted structured interviews to examine the respondents’ preferences and comprehension among the various letters. Results A total of 142 participants completed the interview. A majority of the participants were female (64.1%) and white (76.1%). A plurality of the participants identified a specific version of the three letters as both their preferred version (45.2%; P<0.001) and as the easiest to understand (44.6%; P<0.01). A majority of participants preferred that the letters include specific next steps for improving their bone health. Conclusion Using a mixed-methods approach, we were able to develop and optimize a printed letter for communicating a complex test result (BMD) to patients. Our results may offer guidance to clinicians, administrators, and researchers who are looking for guidance on how to communicate complex health information to patients in writing. PMID:24940049
Weycker, D; Lamerato, L; Schooley, S; Macarios, D; Siu Woodworth, T; Yurgin, N; Oster, G
2013-04-01
In clinical practice, adherence with bisphosphonate therapy varies greatly among women with osteoporosis or osteopenia. Our study suggests that better adherence with bisphosphonates confers tangible benefits in terms of graded increases in bone mineral density. Interventions to improve drug adherence should be an important component of disease management. In clinical trials, bisphosphonates have been found to increase bone mineral density (BMD) in women with osteoporosis or osteopenia. In clinical practice, where drug adherence is more variable, change in BMD with bisphosphonate therapy-overall and by level of adherence-is largely unknown. A retrospective cohort study was conducted at Henry Ford Health System (Detroit, MI, USA). Study subjects were women who had low BMD at the left total hip (T-score<-1.0), began oral bisphosphonate therapy, and had ≥1 BMD measurements at the left total hip≥6 months following treatment initiation. Change in BMD was calculated between the most recent pretreatment scan and the first follow-up scan. Adherence (i.e., medication possession ratio (MPR)) was measured from therapy initiation to the first follow-up scan. Among 644 subjects, mean age was 66 years, pretreatment BMD was 0.73 g/cm2, and pretreatment T-score was -1.8. Over a mean follow-up of 27.1 months, mean MPR was 0.57 (95% CI, 0.54 and 0.59), and mean percentage change in BMD was 1.5% (1.1 and 1.9%). Within the MPR strata (five consecutive equi-intervals, from low (0-0.19) to high (0.80-1.0)), mean change in BMD was -0.8% (-1.6 and 0.1%), 0.7% (-0.3 and 1.7%), 2.1% (1.1 and 3.0%), 2.1% (1.4 and 2.9%), and 2.9% (2.3 and 3.5%), respectively. In adjusted analyses, percentage change in BMD was higher (by 1.4-3.4%, p<0.05 for all) in the highest four MPR intervals, respectively, versus MPR 0-0.19. Among women with osteoporosis or osteopenia in clinical practice, better adherence with bisphosphonates appears to confer tangible benefits in terms of increases in BMD.
Associations of Polyunsaturated Fatty Acid Intake with Bone Mineral Density in Postmenopausal Women
Harris, Margaret; Farrell, Vanessa; Houtkooper, Linda; Going, Scott; Lohman, Timothy
2015-01-01
A secondary analysis of cross-sectional data was analyzed from 6 cohorts (Fall 1995–Fall 1997) of postmenopausal women (n = 266; 56.6 ± 4.7 years) participating in the Bone Estrogen Strength Training (BEST) study (a 12-month, block-randomized, clinical trial). Bone mineral density (BMD) was measured at femur neck and trochanter, lumbar spine (L2–L4), and total body BMD using dual-energy X-ray absorptiometry (DXA). Mean dietary polyunsaturated fatty acids (PUFAs) intakes were assessed using 8 days of diet records. Multiple linear regression was used to examine associations between dietary PUFAs and BMD. Covariates included in the models were total energy intake, body weight at year 1, years after menopause, exercise, use of hormone therapy (HT), total calcium, and total iron intakes. In the total sample, lumbar spine and total body BMD had significant negative associations with dietary PUFA intake at P < 0.05. In the non-HT group, no significant associations between dietary PUFA intake and BMD were seen. In the HT group, significant inverse associations with dietary PUFA intake were seen in the spine, total body, and Ward's triangle BMD, suggesting that HT may influence PUFA associations with BMD. This study is registered with clinicaltrials.gov, identifier: NCT00000399. PMID:25785226
Chan, Grace M F; Riandini, Tessa; Ng, Sheryl Hui Xian; Goh, Su Yen; Tan, Chuen Seng; Tai, E Shyong; Duque, Gustavo; Ng, Alvin Choon-Meng; Venkataraman, Kavita
2018-01-01
Osteoporosis is an important health issue for older adults, and has been relatively understudied in older men. This study aimed to examine ethnic differences in bone mineral density (BMD), and elucidate the role of bone turnover markers (BTMs), fat and fat biomarkers on these ethnic differences. BMD at the lumbar spine and femoral neck, marrow fat at femoral neck, visceral adipose tissue (VAT) and subcutaneous adipose tissue, bone and fat biomarkers were evaluated in 120 healthy men aged ≥ 60 years. Indians had higher BMD values compared to Chinese at the lumbar spine (β = 20.336, SE = 4.749, p < 0.001) and the femoral neck (e β = 1.105, SE = 0.032, p < 0.001), after adjusting for BTMs, fat composition and lifestyle choices. Marrow fat, VAT and adiponectin were independent predictors of BMD. However, these factors did not explain the lower BMD observed in older Chinese men. Our findings suggest that older Chinese men are at significant risk of osteoporotic fractures due to lower BMD. Fat appears to be a key factor associated with lower BMD, and warrants further longitudinal studies to elucidate the complex interactions between adipose tissue and bone strength.
Choi, Seong-Min; Kim, Byeong C; Jung, Hyun-Jung; Yoon, Geum-Jin; Kang, Kyung Wook; Choi, Kang-Ho; Lee, Seung-Han; Park, Man-Seok; Kim, Myeong-Kyu; Cho, Ki-Hyun
2017-01-01
Pain and osteoporosis are common in Parkinson's disease (PD), and lower bone mineral density (BMD) or osteoporosis may be associated with an increased risk of reporting to have pain in the general population. The aim of this study was to determine whether there is an association between the pain subtypes and the BMD in patients with PD. We included 162 PD patients. Pain was assessed using the patients' descriptions, a structured interview, a detailed neurologic examination, and the Visual Analogue Scale. BMD was measured using dual energy X-ray absorptiometry scans. Of the 162 PD patients, 120 had chronic pain, while 42 reported no pain. The most prevalent type of pain was musculoskeletal, followed by radicular/neuropathic, dystonic, and central. PD patients with musculoskeletal pain had a lower BMD than PD patients without pain. Multivariate regression analysis showed that the low BMD of the lumbar spine, hip, and femoral neck were related to old age, female gender, low MBI, and the presence of musculoskeletal pain. PD patients with musculoskeletal pain have low BMD and are at risk for developing osteoporosis. If a PD patient has musculoskeletal pain and other risk factors related to low BMD, clinicians should consider screening for osteoporosis. © 2017 S. Karger AG, Basel.
VDR polymorphisms are associated with bone mineral density in post-menopausal Mayan-Mestizo women.
Canto-Cetina, Thelma; Cetina Manzanilla, José Antonio; González Herrera, Lizbeth; Rojano-Mejía, David; Coral-Vázquez, Ramón Mauricio; Coronel, Agustín; Canto, Patricia
2015-01-01
Osteoporosis is characterized by low bone mineral density (BMD), which is determined by an interaction of genetic, metabolic and environmental factors. To analyse the association between two polymorphisms of VDR as well as their haplotypes with BMD in post-menopausal Maya-Mestizo women. This study comprised 600 post-menopausal Maya-Mestizo women. A structured questionnaire for risk factors was applied and BMD was assessed at the lumbar spine (LS) and total hip (TH) by dual-energy X-ray absorptiometry. DNA was extracted from blood leukocytes. Two single-nucleotide polymorphisms of VDR (rs731236 and rs2228570) were studied using real-time PCR allelic discrimination for genotyping. Differences between the means of the BMDs according to the genotype were analysed with covariance. Haplotype analysis was conducted. TT genotype of rs731236 of VDR had higher BMD at total hip and femoral neck (FN), and one haplotype formed by the two polymorphisms was associated with only TH-BMD variations. This difference was statistically significant after adjustment for confounders. The genotype of rs2228570 of VDR analysis showed no significant differences with BMD variations. The results showed that the TT genotype of rs731236 of VDR and one haplotype formed by rs731236 and rs2228570 polymorphisms were associated with higher BMD at TH and FN.
Manousaki, D; Rauch, F; Chabot, G; Dubois, J; Fiscaletti, M; Alos, N
2016-09-07
Knowledge of physiological variations of bone mineral density (BMD) in newborns and infants is necessary to evaluate pathological changes associated with fractures. Limited reference data for children under 5 years old are available. This study provides normative data of lumbar BMD for the Lunar Prodigy in young children under 5 years old. We assessed cross-sectionally 155 healthy children (77 boys, 80% Caucasian), ranging in age from newborn to the age of 5 years. Lumbar bone mineral content (BMC) and areal BMD were measured by dual-energy X-ray absorptiometry using a Lunar Prodigy absorptiometer. Volumetric BMD was calculated using the Kroeger and Carter methods. BMC and areal BMD increased from birth to 5 years (p<0.001). Volumetric BMD did not change with age. BMD and BMC correlated with age, weight and height (R(2)≥0.85 for all), with a maximum gain between the ages of 1 and 4 years, which did not follow the same pattern as height velocity. We did not find significant sex difference for any of the three measured parameters. This study provides normative data for lumbar spine densitometry of infants and young children using the Lunar Prodigy DXA system.
A systematic quality assurance study in bone densitometry devices
NASA Astrophysics Data System (ADS)
Tuncman, Duygu; Kovan, Hatice; Kovan, Bilal; Demir, Bayram; Turkmen, Cuneyt
2015-07-01
Osteoporosis is the most common metabolic bone disease and can result in devastating physical, psychosocial, and economic consequences. It occurs in women after menopause and affects most elderly. Dual-energy x-ray absorptiometry (DXA) is currently the most widely used method for the measurement of areal Bone Mineral Density (BMD) (g/cm2) .DXA is based on the variable absorption of X-ray by the different body components and uses high and low energy X-ray photons. There are two important values in the assessment of the DXA. These values are T-score and Z-score. The T-score is calculated by taking the difference between a patient's measured BMD with the mean BMD of the young normal population, matched for gender and ethnicity, and then by dividing the difference with the standard deviation (SD) of the BMD of the young normal population. T-score and also Z-score are directly depends on the Bone Mineral Density (BMD). BMD measurements should be made periodically in a patient life. But mostly, it is not possible with the same device. Therefore, in this study, for the quality assurance of bone densitometry devices, we evaluated the BMD results measured in the different Bone Densitometry (DXA) devices using a spine phantom.
Transdermal Nitroglycerin Therapy May Not Prevent Early Postmenopausal Bone Loss
Wimalawansa, Sunil J.; Grimes, Julia P.; Wilson, Alan C.; Hoover, Donald R.
2009-01-01
Context: Osteoporosis is common among postmenopausal women; animal studies and human pilot studies support the concept of nitric oxide (NO) donors reducing bone mineral density loss. Objective: The objective of the study was to evaluate whether NO donor, nitroglycerin, prevents postmenopausal bone loss. Design: This was a 3-yr randomized, double blinded, single-center, placebo-controlled clinical trial. Setting: The single-center study was conducted at the University of Medicine and Dentistry-Robert Wood Johnson Medical School (New Brunswick, NJ). Participants: Participants included 186 postmenopausal women aged 40–65 yr, with lumbar bone mineral density (BMD) T-scores of 0 to −2.5. Intervention: Women, stratified by lumbar T-score (<−1.50 and ≥−1.50) and years since menopause (≤5 and >5 yr), were randomized to receive nitroglycerin ointment (22.5 mg as Nitro-Bid) or placebo ointment received daily for 3 yr. Both groups took 630 mg daily calcium plus 400 IU vitamin D supplements. Measurements: BMD was measured at 6 months and annually by dual-energy x-ray absorptiometry. Percent change in lumbar vertebrae BMD was the primary outcome. Hip BMD, total body bone mineral content, and height were secondary outcomes. Results: After 36 months of therapy, changes of −2.1% in the active group (n = 88) and −2.5% in the placebo group (n = 82) in lumbar spine BMD were seen (P = 0.59; 95% confidence interval −1.001, 1.975). Secondary outcomes also did not differ by intervention arm. The active group reported more headaches compared with the placebo group (57 vs. 14%, P < 0.001). Other adverse and serious adverse events were not different. Conclusions: BMD changes did not substantially differ between postmenopausal women who received the dose of nitroglycerin tested, in comparison with a placebo. Once-daily dosing with 22.5 mg of transdermal-administered nitroglycerin was not effective (compliance adjusted dose was only ∼16 mg/d); a sub-therapeutic dose. PMID:19549739
Foot-ankle complex injury risk curves using calcaneus bone mineral density data.
Yoganandan, Narayan; Chirvi, Sajal; Voo, Liming; DeVogel, Nicholas; Pintar, Frank A; Banerjee, Anjishnu
2017-08-01
Biomechanical data from post mortem human subject (PMHS) experiments are used to derive human injury probability curves and develop injury criteria. This process has been used in previous and current automotive crashworthiness studies, Federal safety standards, and dummy design and development. Human bone strength decreases as the individuals reach their elderly age. Injury risk curves using the primary predictor variable (e.g., force) should therefore account for such strength reduction when the test data are collected from PMHS specimens of different ages (age at the time of death). This demographic variable is meant to be a surrogate for fracture, often representing bone strength as other parameters have not been routinely gathered in previous experiments. However, bone mineral densities (BMD) can be gathered from tested specimens (presented in this manuscript). The objective of this study is to investigate different approaches of accounting for BMD in the development of human injury risk curves. Using simulated underbody blast (UBB) loading experiments conducted with the PMHS lower leg-foot-ankle complexes, a comparison is made between the two methods: treating BMD as a covariate and pre-scaling test data based on BMD. Twelve PMHS lower leg-foot-ankle specimens were subjected to UBB loads. Calcaneus BMD was obtained from quantitative computed tomography (QCT) images. Fracture forces were recorded using a load cell. They were treated as uncensored data in the survival analysis model which used the Weibull distribution in both methods. The width of the normalized confidence interval (NCIS) was obtained using the mean and ± 95% confidence limit curves. The mean peak forces of 3.9kN and 8.6kN were associated with the 5% and 50% probability of injury for the covariate method of deriving the risk curve for the reference age of 45 years. The mean forces of 5.4 kN and 9.2kN were associated with the 5% and 50% probability of injury for the pre-scaled method. The NCIS magnitudes were greater in the covariate-based risk curves (0.52-1.00) than in the risk curves based on the pre-scaled method (0.24-0.66). The pre-scaling method resulted in a generally greater injury force and a tighter injury risk curve confidence interval. Although not directly applicable to the foot-ankle fractures, when compared with the use of spine BMD from QCT scans to pre-scale the force, the calcaneus BMD scaled data produced greater force at the same risk level in general. Pre-scaling the force data using BMD is an alternate, and likely a more accurate, method instead of using covariate to account for the age-related bone strength change in deriving risk curves from biomechanical experiments using PMHS. Because of the proximity of the calcaneus bone to the impacting load, it is suggested to use and determine the BMD of the foot-ankle bone in future UBB and other loading conditions to derive human injury probability curves for the foot-ankle complex. Copyright © 2017. Published by Elsevier Ltd.
Pritchard, Janet M; Giangregorio, Lora M; Atkinson, Stephanie A; Beattie, Karen A; Inglis, Dean; Ioannidis, George; Punthakee, Zubin; Adachi, J D; Papaioannou, Alexandra
2012-01-01
Adults with type 2 diabetes mellitus (DM) have an elevated fracture risk despite normal areal bone mineral density (aBMD). The study objective was to compare trabecular bone microarchitecture of postmenopausal women with type 2 DM and women without type 2 DM. An extremity 1T magnetic resonance imaging system was used to acquire axial images (195 × 195 × 1,000 μm(3) voxel size) of the distal radius of women recruited from outpatient clinics or by community advertisement. Image segmentation yielded geometric, topologic, and stereologic outcomes, i.e., number and size of trabecular bone network holes (marrow spaces), endosteal area, trabecular bone volume fraction, nodal and branch density, and apparent trabecular thickness, separation, and number. Lumbar spine (LS) and proximal femur BMD were measured with dual x-ray absorptiometry. Microarchitectural differences were assessed using linear regression and adjusted for percent body fat, ethnicity, timed up-and-go test, Charlson Index, and calcium and vitamin D intake; aBMD differences were adjusted for body mass index (BMI). Women with type 2 DM (n = 30, mean ± SD age 71.0 ± 4.8 years) had larger holes (+13.3%; P = 0.001) within the trabecular bone network than women without type 2 DM (n = 30, mean ± SD age 70.7 ± 4.9 years). LS aBMD was greater in women with type 2 DM; however, after adjustment for BMI, LS aBMD did not differ between groups. In women with type 2 DM, the average hole size within the trabecular bone network at the distal radius is greater compared to controls. This may explain the elevated fracture risk in this population. Copyright © 2012 by the American College of Rheumatology.
Bolton, James M; Targownik, Laura E; Leung, Stella; Sareen, Jitender; Leslie, William D
2011-02-01
Independent reports suggest that various psychotropic medications and psychiatric disorders are associated with changes in bone mineral density (BMD). The objective of this study was to clarify the independent effects of a range of mental illnesses and psychotropic medications on BMD among postmenopausal women. Women 50 years or older with baseline BMD measured by dual-energy x-ray absorptiometry were identified in a database containing all clinical dual-energy x-ray absorptiometry test results for the Province of Manitoba, Canada. Records were linked with population-based administrative health databases to provide detailed information on sociodemographic factors, mental and physical health diagnoses, and prescription medication usage. Osteoporotic cases (n = 6820) were matched on age, sex, and ethnicity to 3 control subjects with normal BMD (n = 20,247). Multivariable conditional logistic regression compared cases and control subjects on diagnosed mental illnesses and use of psychotropic medications. Selective serotonin reuptake inhibitors (adjusted odds ratios, 1.46; 95% confidence interval [CI], 1.25-1.69), atypical antipsychotics (AOR, 1.55; 95% CI, 1.06-2.28), and benzodiazepines (AOR, 1.17; 95% CI, 1.06-1.29) were associated with higher risk of osteoporosis. Tricyclic antidepressants were associated with lower odds of osteoporosis (AOR, 0.57; 95% CI, 0.49-0.65). These drug effects were independent of mental illness diagnoses including depression (AOR, 0.86; 95% CI, 0.75-0.98) and schizophrenia (AOR, 1.98; 95% CI, 1.04-3.77). Some psychotropic medications are associated with an increased risk of osteoporotic BMD, whereas tricyclic antidepressants may be protective against osteoporosis, and these effects are independent of mental illness diagnoses. Clinicians should consider these effects when prescribing psychotropic medications in postmenopausal women.
Hyder, Joseph A; Allison, Matthew A; Barrett-Connor, Elizabeth; Detrano, Robert; Wong, Nathan D; Sirlin, Claude; Gapstur, Susan M; Ouyang, Pamela; Carr, J Jeffrey; Criqui, Michael H
2009-01-01
Context Molecular and cell biology studies have demonstrated an association between bone and arterial wall disease, but the significance of a population-level association is less clear and potentially confounded by inability to account for shared risk factors. Objective To test population-level associations between atherosclerosis types and bone integrity. Main Outcome Measures Volumetric trabecular lumbar bone mineral density (vBMD), ankle-brachial index (ABI), intima-media thickness of the common carotid (CCA-IMT) and internal carotid (ICA-IMT) arteries, and carotid plaque echogenicity. Design, Setting and Participants A random subset of participants from the Multi-Ethnic Study of Atherosclerosis (MESA) assessed between 2002 and 2005. Results 904 post-menopausal female (62.4 years; 62% non-white; 12% ABI<1; 17% CCA-IMT>1mm; 33% ICA-IMT>1mm) and 929 male (61.4 years; 58% non-white; 6% ABI<1; 25% CCA-IMT>1mm; 40% ICA-IMT>1mm) were included. In serial, sex-specific regression models adjusting for age, ethnicity, body mass index, dyslipidemia, hypertension, smoking, alcohol consumption, diabetes, homocysteine, interleukin-6, sex hormones, and renal function, lower vBMD was associated with lower ABI in men (p for trend <0.01) and greater ICA-IMT in men (p for trend <0.02). CCA-IMT was not associated with vBMD in men or women. Carotid plaque echogenicity was independently associated with lower vBMD in both men (trend p=0.01) and women (trend p<0.04). In all models, adjustment did not materially affect results. Conclusions Lower vBMD is independently associated with structural and functional measures of atherosclerosis in men and with more advanced and calcified carotid atherosclerotic plaques in both sexes. PMID:19819456
Use of cone beam computed tomography in identifying postmenopausal women with osteoporosis.
Brasileiro, C B; Chalub, L L F H; Abreu, M H N G; Barreiros, I D; Amaral, T M P; Kakehasi, A M; Mesquita, R A
2017-12-01
The aim of this study is to correlate radiometric indices from cone beam computed tomography (CBCT) images and bone mineral density (BMD) in postmenopausal women. Quantitative CBCT indices can be used to screen for women with low BMD. Osteoporosis is a disease characterized by the deterioration of bone tissue and the consequent decrease in BMD and increase in bone fragility. Several studies have been performed to assess radiometric indices in panoramic images as low-BMD predictors. The aim of this study is to correlate radiometric indices from CBCT images and BMD in postmenopausal women. Sixty postmenopausal women with indications for dental implants and CBCT evaluation were selected. Dual-energy X-ray absorptiometry (DXA) was performed, and the patients were divided into normal, osteopenia, and osteoporosis groups, according to the World Health Organization (WHO) criteria. Cross-sectional images were used to evaluate the computed tomography mandibular index (CTMI), the computed tomography index (inferior) (CTI (I)) and computed tomography index (superior) (CTI (S)). Student's t test was used to compare the differences between the indices of the groups' intraclass correlation coefficient (ICC). Statistical analysis showed a high degree of interobserver and intraobserver agreement for all measurements (ICC > 0.80). The mean values of CTMI, CTI (S), and CTI (I) were lower in the osteoporosis group than in osteopenia and normal patients (p < 0.05). In comparing normal patients and women with osteopenia, there was no statistically significant difference in the mean value of CTI (I) (p = 0.075). Quantitative CBCT indices may help dentists to screen for women with low spinal and femoral bone mineral density so that they can refer postmenopausal women for bone densitometry.
Formosa, Melissa M; Xuereb-Anastasi, Angela
2016-01-01
Osteoporosis and fractures are complex conditions influenced by an interplay of genetic and environmental factors. The aim of the study was to investigate three biochemical parameters including total serum calcium, total serum alkaline phosphatase (sALP) and albumin in relation to bone mineral density (BMD) at the lumbar spine and femoral neck (FN), and with all-type of low-trauma fractures in Maltese postmenopausal women. Levels were also correlated with age and physical activity. A case-control study of 1045 women was performed. Women who suffered a fracture were classified as cases whereas women without a fracture history were included as controls subdivided into normal, osteopenic, or osteoporotic according to their BMD measurements. Blood specimens were collected following good standard practice and testing was performed by spectrophotometry. Calcium and sALP levels were weakly correlated with FN BMD levels (calcium: r = -0.111, p = 0.002; sALP: r = 0.089, p = 0.013). Fracture cases had the lowest serum levels of calcium, sALP and albumin relative to all other control groups, which decreased with increasing age, possibly increasing fracture risk. Biochemical levels were lowest in women who sustained a hip fracture and more than one fracture. Biochemical parameters decreased with reduced physical activity; however, this was most evident for fracture cases. Reduced physical activity was associated with lower BMD levels at the hip, and to a lower extent at the spine. In conclusion, results suggest that levels of serum calcium and albumin could be indicative of fracture risk, whereas calcium levels and to lower extent sALP levels could be indicators of hip BMD.
Kinai, Ei; Gatanaga, Hiroyuki; Mizushima, Daisuke; Nishijima, Takeshi; Aoki, Takahiro; Genka, Ikumi; Teruya, Katsuji; Tsukada, Kunihisa; Kikuchi, Yoshimi; Oka, Shinichi
2017-05-01
Clinical and experiments evidence indicate that protease inhibitors (PI) can cause bone mineral density (BMD) loss. However, the mechanism of such loss remains obscure. This single-center, cross-sectional study included 184 HIV-infected patients treated with PI who underwent dual-energy X-ray absorptiometry scan. Serum phosphorus, percentage of tubular reabsorption of phosphate (%TRP), thyroid and parathyroid function (iPTH), vitamin D, osteocalcin (OC), urinary deoxypyridinoline (DPD), and urinary cross-linked N-telopeptide of type I collagen (u-NTx) were measured. The rate of hypothyroidism in PI-users [32/117 (27%)] was double that in non-PI users [8/67 (12%), p = 0.016] and was significantly associated with PI use in multivariate analysis [odds ratio (OR) 11.37, 95% confidence interval (CI) 1.358-95.17, p = 0.025]. Spine BMD was significantly lower in hypothyroid patients than euthyroid, for both total population (-1.37 vs. -1.00, p = 0.041) and PI users (-1.56 vs. -1.13, p = 0.029). Multivariate regression analysis identified inverse correlation between hypothyroidism and spine BMD [estimate -0.437, 95% CI -0.858 to -0.024, p = 0.042]. OC, DPD and u-NTx were significantly higher in PI users than in non-PI users (p = 0.01, 0.05, and 0.01, respectively). PI use is associated with hypothyroidism as well as bone turnover acceleration, which worsens PI-associated BMD loss. In PI-treated patients, thyroid function tests are warranted to prevent further progression of PI-associated BMD loss. Copyright © 2016 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smietana, Michael J.; Arruda, Ellen M.; Mechanical Engineering, University of Michigan, 2250 GG Brown, 2350 Hayward, Ann Arbor, MI 48109
Research highlights: {yields} Reactive oxygen species (ROS) are considered to be a factor in the onset of a number of age-associated conditions, including loss of BMD. {yields} Cu,Zn-superoxide dismutase (Sod1) deficient mice have increased ROS, reduced bone mineral density, decreased bending stiffness, and decreased strength compared to WT controls. {yields} Increased ROS caused by the deficiency of Sod1, may be responsible for the changes in BMD and bone mechanics and therefore represent an appropriate model for studying mechanisms of age-associated bone loss. -- Abstract: Reactive oxygen species (ROS) play a role in a number of degenerative conditions including osteoporosis. Micemore » deficient in Cu,Zn-superoxide dismutase (Sod1) (Sod1{sup -/-} mice) have elevated oxidative stress and decreased muscle mass and strength compared to wild-type mice (WT) and appear to have an accelerated muscular aging phenotype. Thus, Sod1{sup -/-} mice may be a good model for evaluating the effects of free radical generation on diseases associated with aging. In this experiment, we tested the hypothesis that the structural integrity of bone as measured by bending stiffness (EI; N/mm{sup 2}) and strength (MPa) is diminished in Sod1{sup -/-} compared to WT mice. Femurs were obtained from male and female WT and Sod1{sup -/-} mice at 8 months of age and three-point bending tests were used to determine bending stiffness and strength. Bones were also analyzed for bone mineral density (BMD; mg/cc) using micro-computed tomography. Femurs were approximately equal in length across all groups, and there were no significant differences in BMD or EI with respect to gender in either genotype. Although male and female mice demonstrated similar properties within each genotype, Sod1{sup -/-} mice exhibited lower BMD and EI of femurs from both males and females compared with gender matched WT mice. Strength of femurs was also lower in Sod1{sup -/-} mice compared to WT as well as between genders. These data indicate that increased oxidative stress, due to the deficiency of Sod1 is associated with decreased bone stiffness and strength and Sod1{sup -/-} mice may represent an appropriate model for studying disease processes in aging bone.« less
Resistance exercise as a countermeasure to disuse-induced bone loss.
Shackelford, L C; LeBlanc, A D; Driscoll, T B; Evans, H J; Rianon, N J; Smith, S M; Spector, E; Feeback, D L; Lai, D
2004-07-01
During spaceflight, skeletal unloading results in loss of bone mineral density (BMD). This occurs primarily in the spine and lower body regions. This loss of skeletal mass could prove hazardous to astronauts on flights of long duration. In this study, intense resistance exercise was used to test whether a training regimen would prevent the loss of BMD that accompanies disuse. Nine subjects (5 men, 4 women) participated in a supine maximal resistance exercise training program during 17 wk of horizontal bed rest. These subjects were compared with 18 control subjects (13 men, 5 women) who followed the same bed rest protocol without exercise. Determination of treatment effect was based on measures of BMD, bone metabolism markers, and calcium balance obtained before, during, and after bed rest. Exercisers and controls had significantly (P < 0.05) different means, represented by the respective following percent changes: lumbar spine BMD, +3% vs. -1%; total hip BMD, +1% vs. -3%; calcaneus BMD, +1% vs. -9%; pelvis BMD, -0.5% vs. -3%; total body BMD, 0% vs. -1%; bone-specific alkaline phosphatase, +64% vs. 0%; alkaline phosphatase, +31% vs. +5%; osteocalcin, +43% vs. +10%; 1,25 dihydroxyvitamin D, +12% vs. -15%; parathyroid hormone intact molecule, +18% vs. -25%; and serum and ionized calcium, -1% vs. +1%. The difference in net calcium balance was also significant (+21 mg/day vs. -199 mg/day, exercise vs. control). The gastrocnemius and soleus muscle volumes decreased significantly in the exercise group, but the loss was significantly less than observed in the control group. The results indicate that resistance exercise had a positive treatment effect and thus might be useful as a countermeasure to prevent the deleterious skeletal changes associated with long-duration spaceflight.
Resistance exercise as a countermeasure to disuse-induced bone loss
NASA Technical Reports Server (NTRS)
Shackelford, L. C.; LeBlanc, A. D.; Driscoll, T. B.; Evans, H. J.; Rianon, N. J.; Smith, S. M.; Spector, E.; Feeback, D. L.; Lai, D.
2004-01-01
During spaceflight, skeletal unloading results in loss of bone mineral density (BMD). This occurs primarily in the spine and lower body regions. This loss of skeletal mass could prove hazardous to astronauts on flights of long duration. In this study, intense resistance exercise was used to test whether a training regimen would prevent the loss of BMD that accompanies disuse. Nine subjects (5 men, 4 women) participated in a supine maximal resistance exercise training program during 17 wk of horizontal bed rest. These subjects were compared with 18 control subjects (13 men, 5 women) who followed the same bed rest protocol without exercise. Determination of treatment effect was based on measures of BMD, bone metabolism markers, and calcium balance obtained before, during, and after bed rest. Exercisers and controls had significantly (P < 0.05) different means, represented by the respective following percent changes: lumbar spine BMD, +3% vs. -1%; total hip BMD, +1% vs. -3%; calcaneus BMD, +1% vs. -9%; pelvis BMD, -0.5% vs. -3%; total body BMD, 0% vs. -1%; bone-specific alkaline phosphatase, +64% vs. 0%; alkaline phosphatase, +31% vs. +5%; osteocalcin, +43% vs. +10%; 1,25 dihydroxyvitamin D, +12% vs. -15%; parathyroid hormone intact molecule, +18% vs. -25%; and serum and ionized calcium, -1% vs. +1%. The difference in net calcium balance was also significant (+21 mg/day vs. -199 mg/day, exercise vs. control). The gastrocnemius and soleus muscle volumes decreased significantly in the exercise group, but the loss was significantly less than observed in the control group. The results indicate that resistance exercise had a positive treatment effect and thus might be useful as a countermeasure to prevent the deleterious skeletal changes associated with long-duration spaceflight.
High sodium chloride intake is associated with low bone density in calcium stone-forming patients.
Martini, L A; Cuppari, L; Colugnati, F A; Sigulem, D M; Szejnfeld, V L; Schor, N; Heilberg, I P
2000-08-01
Although renal stone disease has been associated with reduced bone mass, the impact of nutrient intake on bone loss is unknown. The present study was undertaken to investigate the influence of nutrient intake on bone density of 85 calcium stone-forming (CSF) patients (47 male and 38 premenopausal females) aged 41+/-11 years (X+/-SD). Bone mineral density (BMD) was measured using dual energy X-ray absorptiometry at the lumbar spine (L2-L4) and femoral neck sites, and low BMD was defined as a T score < -1 (WHO criteria). A 4-day dietary record and a 24-hour urine sample were obtained from each patient for the assessment of nutrient intake and urinary calcium (U(Ca)), sodium (U(Na)), phosphate and creatinine excretion. Forty-eight patients (56%) presented normal BMD and 37 (44%) low BMD. There were no statistical differences regarding age, weight, height, body mass index, protein, calcium and phosphorus intakes between both groups. The mean U(Ca), phosphorus and nitrogen appearance also did not differ between groups. However, there was a higher percentage of hypercalciuria among low vs normal BMD patients (62 vs 33%, p < 0.05). Low BMD patients presented a higher mean sodium chloride (NaCl) intake and excretion (UNa) than normal BMD (14+/-5 vs 12+/-4 g/day and 246+/-85 vs 204+/-68 mEq/day, respectively p < 0.05). The percentage of patients presenting NaCl intake > or = 16 g/day was also higher among low vs normal BMD patients (35 vs 12%, p < 0.05). After adjustment for calcium and protein intakes, age, weight, body mass index, urinary calcium, citrate and uric acid excretion, and duration of stone disease, multiple-regression analysis showed that a high NaCl intake (> or = 16 g/day) was the single variable that was predictive of risk of low bone density in CSF patients (odds ratio = 3.8). These data suggest that reducing salt intake should be recommended for CSF patients presenting hypercalciuria and osteopenia.
Prevalence and related risk factors of osteoporosis in peri- and postmenopausal Indian women.
Aggarwal, Neelam; Raveendran, Ainharan; Khandelwal, Niranjan; Sen, Ramesh Kumar; Thakur, J S; Dhaliwal, Lakhbir Kaur; Singla, Veenu; Manoharan, Sakthivel Rajan Rajaram
2011-07-01
We undertook this study involving 200 peri- and postmenopausal women to determine the prevalence of osteoporosis, and in turn increase the awareness, education, prevention, and treatment of osteoporosis. Postgraduate Institute of Medical Education and Research, UT Chandigarh, India, and a clinical study. A detailed medical, obstetrical, menstrual, and drug history was recorded in a proforma designated for the study. Height and weight was measured, weight-bearing exercise was assessed, and sunlight exposure per day for each woman was recorded. Food intake was estimated by using the 24-hour dietary recall method, and calcium and vitamin D consumption pattern was assessed. Bone mineral density (BMD) at postero-anterior lumbar spine and dual femurs was assessed by densitometer. Women were classified according to the WHO criteria. Student's t-test, multiple logistic regression analysis. The prevalence of low BMD was found in more than half of this population (53%). The mean age in group I (normal BMD) was found to be 50.56 ± 5.74 years as compared to 52.50 ± 5.94 in group II with low BMD (P=0.02). The two groups were similar with respect to parity, education, socioeconomic status, family history of osteoporosis, hormone replacement therapy, and thyroid disorders. 46.8% of the women in group I and 33% of the women in group II had low physical activity and there was no statistically significant difference in sunlight exposure between the groups. Parity or the number of children and type of menopause was not seen to have much association with low BMD in our study. Lack of exercise and low calcium diet were significantly associated with low BMD. Multiple logistic regression analysis showed that age, exercise, menopause, and low calcium diet acted as significant predictors of low bone density. The findings from the study suggest the need for large community-based studies so that high-risk population can be picked up and early interventions and other life style changes can be instituted if there is delay in implementing national or international health strategies to tackle this increasing global health problem. Strategies to identify and manage low BMD in the primary care setting need to be established and implemented.
Bone mineral density of the skull in premenopausal women.
Turner, A S; Maillet, J M; Mallinckrodt, C; Cordain, L
1997-08-01
Dual-energy X-ray absorptiometry (DXA) of the head has received little attention. We used DXA to measure bone mineral density (BMD) of the entire skull including the mandible (BMDHead) and BMD of the cranial vault (BMDVault) in 91 normal young women. We also measured BMD of the total body (BMDTotal body), proximal femur ("total femur"), and lumbar vertebrae (L1-L4). BMD (g/cm2; mean +/- SE) was 1.032 +/- 0.011 for L1-L4, 0.995 +/- 0.011 for total femur, and 2.283 +/- 0.028 for BMDVault (cranial vault) and the mean body weight of all subjects was 59.8 kg. Correlation between BMD Vault and BMDHead was -0.004 g/cm2 suggesting that these two measurements of bone mass of the skull were similar. To determine the correlation between the different variables after accounting for external sources of variation, partial correlation derived from multiple regression was determined. Correlations between BMD at the various locations and with BMDTotal body were moderate to strong. Although small in magnitude, the partial correlations of body weight with BMDTotal body, total femur, and L1-L4 were of equal value in predicting BMDTotal body and further, BMDVault was not influenced by body weight. Including body weight in multiple regression in addition to total femur or L1-L4 removed the extraneous variation due to body weight, and predictions of MBDTotal body were as reliable as when BMDVault was based on goodness of fit tests (P = 0.314). The techniques used to measure BMD of the cranial vault is a relatively new variation of DXA technology. The precision was as good as other measurements of bone mass of the entire skull (including the mandible). Because the cranial vault is less sensitive to mechanical influences, it may be a region where response to therapy could be evaluated. The cranial vault may be a useful area to study certain heritable diseases that affect the skeleton, skeletal artifact, or evaluation of oral bone loss.
Home-based resistance training improves femoral bone mineral density in women on hormone therapy.
Judge, James Oat; Kleppinger, Alison; Kenny, Anne; Smith, Jo-Anne; Biskup, Brad; Marcella, Glenn
2005-09-01
This study tested whether moderate resistance training would improve femoral bone mineral density (BMD) in long-term users of hormone therapy with low BMD. The study was a 2-year randomized, controlled, trial (RCT) of moderate resistance training of either the lower extremity or the upper extremity. Eighty-five women participated in a 6-month observation period. The setting was center-based and home-based training. The participants were 189 women aged 59-78 years, with total femur T-scores from -0.8 to -2.8 and on hormone therapy (HT) for a minimum of 2 years (mean 11.8 years); 153 completed the trial. Lower extremity training used weight belts (mean 7.8 kg) in step-ups and chair rises; upper extremity training used elastic bands and dumbbells. Measurements were BMD and body composition [dual-energy X-ray absorptiometry (DXA)], bone turnover markers. Total femoral BMD showed a downward trend during the observation period: 0.35%+/-0.18% (P=0.14). The response to training was similar in the upper and lower groups in the primary outcomes. At 2 years, total femoral BMD increased 1.5% (95% CI 0.8%-2.2%) in the lower group and 1.8% (95% CI 1.1%-2.5%) in the upper group. Trochanter BMD increased 2.4% (95% CI 1.3%-3.5%) in the lower group and 2.5% (95% CI 1.4%-3.6%) in the upper group (for both analyses time effect P<0.001). At 1 year, a bone resorption marker (C-telopeptide) decreased 9% (P=0.04). Bone formation markers, bone-specific alkaline phosphatase, decreased 5% (P<0.001), and N-terminal type I procollagen peptide decreased 7% (P=0.01). Body composition (percent lean and percent body fat) was maintained in both groups. We concluded that long-term moderate resistance training reversed bone loss, decreased bone turnover, increased femur BMD, and maintained body composition. The similarity of response in upper and lower groups supports a systemic response rather than a site-specific response to moderate resistance training.
Sex differences in parameters of bone strength in new recruits: beyond bone density.
Evans, Rachel K; Negus, Charles; Antczak, Amanda J; Yanovich, Ran; Israeli, Eran; Moran, Daniel S
2008-11-01
Stress fracture (SF) injuries in new recruits have long been attributed to low bone mineral density (BMD). Low areal BMD assessed using two-dimensional dual-energy x-ray absorptiometry imaging, however, reflects structural density and is affected by smaller measures of bone geometry. Recent studies support a relationship between bone size and SF and indicate that slender bones are more susceptible to damage under identical loading conditions. Peripheral quantitative computed tomography (pQCT) is a three-dimensional imaging tool that provides measures of tissue density and geometry parameters of the tibia, a common site of SF. To evaluate sex differences in parameters of volumetric BMD (vBMD), geometry, and strength of the tibia in new recruits using a novel pQCT image analysis procedure. pQCT images were obtained from 128 healthy men and women (20 male, 108 female, aged 18-21 yr) entering a 4-month gender-integrated combat training program in the Israeli Defense Forces. Tibial scans taken at sites 4% (trabecular bone), 38%, and 66% (cortical bone) from the distal end plate were analyzed using MATLAB to assess whole-bone and regional parameters. Measures included vBMD, geometry (diameter, area, cortical thickness, and canal radius), and strength (moments of inertia and bone strength and slenderness indices). With the exception of normalized canal radius, which did not differ between sexes, all measures of bone geometry (P < 0.0001) and strength (P < 0.0001 to P = 0.07) were greater in men. Women exhibited 2.7% to 3.0% greater cortical vBMD than men, whereas trabecular vBMD was 8.4% lower in women (P < 0.001). These differences remained significant after adjusting for body size. Sex differences in bone geometry and mineralization of the tibia may contribute to a decreased ability to withstand the demands imposed by novel, repetitive exercise in untrained individuals entering recruit training.
Associations of components of sarcopenic obesity with bone health and balance in older adults.
Scott, David; Shore-Lorenti, Catherine; McMillan, Lachlan; Mesinovic, Jakub; Clark, Ross A; Hayes, Alan; Sanders, Kerrie M; Duque, Gustavo; Ebeling, Peter R
To determine characteristics of sarcopenic obesity that are independently associated with bone health and balance in older adults. Cross-sectional study of 168 community-dwelling older adults (mean age 67.7 ± 8.4 years; 55% women). Appendicular lean mass (ALM), whole-body areal BMD (aBMD) and body fat percentage were assessed by dual-energy X-ray absorptiometry. Peripheral quantitative computed tomography assessed muscle density and cortical volumetric BMD (vBMD), area, thickness, and strength-strain index (SSI) at 66% tibial length. Hand grip strength (dynamometry) and balance path length (computerised posturography) were assessed. Obesity was defined as high body fat percentage. Greater lower-leg muscle density was associated with lower balance path length in men (r = -0.36; P < .01) and women (r = -0.40; P = < .01). Obese participants by body fat percentage did not differ to non-obese on bone indices, although a trend towards lower cortical vBMD was observed in obese compared with non-obese men (1041.4 ± 39.8 vs 1058.8 ± 36.1 mg/cm 3 ; P = .051). In multivariable models, ALM was positively associated with all bone parameters in obese women, and with whole-body aBMD, proximal tibial cortical area and SSI in non-obese women, and both non-obese and obese men (all P < .05). Lower-leg muscle density was also positively associated with cortical vBMD (B = 2.91; 95% CI 0.02, 5.80) and area (2.70; 0.06, 5.33) in obese women. Amongst components of sarcopenic obesity, higher ALM is a consistent independent predictor of better bone health. Low muscle density may also compromise bone health and balance. Interventions which improve muscle mass and composition may lower fracture risk in sarcopenic obesity. Copyright © 2017 Elsevier B.V. All rights reserved.
Race/ethnic differences in bone mineral densities in older men
Nam, H.-S.; Shin, M.-H.; Zmuda, J. M.; Leung, P. C.; Barrett-Connor, E.; Orwoll, E. S.
2010-01-01
Summary BMD was compared across race/ethnic groups. There were substantial race/ethnic differences in BMD even within African or Asian origin. Additional adjustment for body size greatly attenuated or reversed the differences between US Caucasian men vs Asian men. It illustrates the role of body size on the difference between these groups. Introduction There is insufficient epidemiologic information about men’s bone mineral density (BMD) levels across race/ethnic groups and geographic locations. Methods In a cross-sectional design, we compared BMD in older men across seven race/ethnic groups in four countries. Femoral neck, total hip, and lumbar spine BMD were measured in men (age 65 to 78 years) from the Osteoporotic Fractures in Men (MrOS) Study (4,074 Caucasian, 208 African-American, 157 Asian, and 116 Hispanic men in USA), Tobago Bone Health Study (422 Afro-Caribbean men), MrOS Hong Kong Study (1,747 Hong Kong Chinese men), and the Namwon Study (1,079 South Korean men). BMD was corrected according to the cross-site calibration results for all scanners. Results When compared with US Caucasian men, Afro-Caribbean and African-American men had, respectively, 8–20% and 6–11% higher age-adjusted mean BMD at all three bone sites. Hip BMD was similar in US Caucasian and Hispanic men, US Asian, Hong Kong Chinese, and Korean men had 3–14% lower BMD at all bone sites except femoral neck in Korean men. Additional adjustment for weight and height greatly attenuated or reversed the differences between US Caucasian men vs Asian men including US Asian, Hong Kong Chinese, and South Korean men. Among Asian groups, Korean men had higher femoral neck BMD and lower total hip BMD. Conclusion These findings show substantial race/ethnic differences in BMD even within African or Asian origin and illustrate the important role of body size on the difference between Asian men and others. PMID:20204598
Choi, Hyung Jin; Park, Hyojung; Zhang, Lei; Kim, Jung Hee; Kim, Ye An; Yang, Jae-Yeon; Pei, Yu-Fang; Tian, Qing; Shen, Hui; Hwang, Joo-Yeon; Deng, Hong-Wen; Cho, Nam H; Shin, Chan Soo
2016-10-01
To identify genetic variants that influence bone mineral density (BMD) in East Asians, we performed a quantitative trait analysis of lumbar spine, total hip and femoral neck BMD in a Korean population-based cohort (N=2729) and follow-up replication analysis in a Chinese Han population and two Caucasian populations (N=1547, 2250 and 987, respectively). From the meta-analysis of the stage 1 discovery analysis and stage 2 replication analysis, we identified four BMD loci that reached near-genome-wide significance level (P<5×10(-7)). One locus on 1q23 (UHMK1, rs16863247, P=4.1×10(-7) for femoral neck BMD and P=3.2×10(-6) for total hip BMD) was a novel BMD signal. Interestingly, rs16863247 was very rare in Caucasians (minor allele frequency<0.01), indicating that this association could be specific to East Asians. In gender specific analysis, rs1160574 on 1q32 (KCNH1) was associated with femoral neck BMD (P=2.1×10(-7)) in female subjects. rs9371538 in the known BMD region on 6q25 ESR1 was associated with lumbar spine BMD (P=5.6×10(-9)). rs7776725 in the known BMD region on 7q31 WTN16 was associated with total hip BMD (P=8.6×10(-9)). In osteoblasts, endogenous UHMK1 expression was increased during differentiation and UHMK1 knockdown decreased its differentiation, while UHMK1 overexpression increased its differentiation. In osteoclasts, endogenous UHMK1 expression was decreased during differentiation and UHMK1 knockdown increased its differentiation, while UHMK1 overexpression decreased its differentiation. In conclusion, our genome-wide association study identified the UHMK1 gene as a novel BMD locus specific to East Asians. Functional studies suggest a role of UHMK1 on regulation of osteoblasts and osteoclasts. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Suprijanto; Azhari; Juliastuti, E.; Septyvergy, A.; Setyagar, N. P. P.
2016-03-01
Osteoporosis is a degenerative disease characterized by low Bone Mineral Density (BMD). Currently, a BMD level is determined by Dual Energy X-ray Absorptiometry (DXA) at the lumbar vertebrae and femur. Previous studies reported that dental panoramic radiography image has potential information for early osteoporosis detection. This work reported alternative scheme, that consists of the determination of the Region of Interest (ROI) the condyle mandibular in the image as biomarker and feature extraction from ROI and classification of bone conditions. The minimum value of intensity in the cavity area is used to compensate an offset on the ROI. For feature extraction, the fraction of intensity values in the ROI that represent high bone density and the ROI total area is perfomed. The classification will be evaluated from the ability of each feature and its combinations for the BMD detection in 2 classes (normal and abnormal), with the artificial neural network method. The evaluation system used 105 panoramic image data from menopause women which consist of 36 training data and 69 test data that were divided into 2 classes. The 2 classes of classification obtained 88.0% accuracy rate and 88.0% sensitivity rate.
Bone mineral density is decreased in fibromyalgia syndrome: a systematic review and meta-analysis.
Upala, Sikarin; Yong, Wai Chung; Sanguankeo, Anawin
2017-04-01
Previous studies have shown that fibromyalgia syndrome (FMS) is associated with low level of physical activity and exercise, which may lead to an increased risk of osteoporosis. However, studies of bone mineral density (BMD) in fibromyalgia have shown conflicting results. Thus, we conducted a systematic review and meta-analysis to better characterize the association between FMS and BMD. A comprehensive search of the databases MEDLINE and EMBASE was performed from inception through May 2016. The inclusion criterion was the observational studies' assessment of the association between fibromyalgia and bone mineral density in adult subjects. Fibromyalgia was diagnosed in accordance with the American College of Rheumatology criteria for the diagnosis of fibromyalgia syndrome. BMD was measured at the lumbar spine and femoral neck by dual-energy X-ray absorptiometry. Pooled mean difference (MD) of BMD at each site and 95% confidence interval (CI) were calculated using a random-effect, generic inverse variance method. The between-study heterogeneity of effect size was quantified using the Q statistic and I 2 . Data were extracted from four observational studies involving 680 subjects. At lumbar spine (L2-L4), BMD is significantly decreased in patients with FMS compared with controls with pooled MD of -0.02 (95% CI -0.03 to -0.01, P value = 0.003, I 2 = 0%) (Fig. 1). At femoral neck, BMD is not significantly decreased in patients with FMS compared with controls with pooled MD of 0.01 (95% CI -0.02 to 0.01, P value = 0.23, I 2 = 0%) (Fig. 2). In this meta-analysis, we observe that BMD at lumbar spine is decreased in FMS compared with normal individuals. Patients with FMS should be assessed for risk of osteoporosis. Fig. 1 Forest plot of bone mineral density at the lumbar spine, for patients with and without fibromyalgia syndrome. CI-confidence interval Fig. 2 Forest plot of bone mineral density at the femoral neck, for patients with and without fibromyalgia syndrome. CI-confidence interval.
Spinal Bone Texture Assessed by Trabecular Bone Score in Adolescent Girls With Anorexia Nervosa
Donaldson, Abigail A.; Feldman, Henry A.; O'Donnell, Jennifer M.; Gopalakrishnan, Geetha
2015-01-01
Context: Trabecular bone score (TBS) is a bone assessment tool that offers information beyond that afforded by dual-energy x-ray absorptiometry (DXA) bone mineral density (BMD) measurements. Adolescents with anorexia nervosa (AN) are known to exhibit compromised bone density and skeletal strength. Objectives: This study aimed to determine TBS among adolescents with AN and evaluate the correlation with anthropometric, clinical and densitometric variables. Design: Areal BMD spinal measures were analyzed for TBS. Findings were compared with clinical (height, weight, body mass index [BMI], age, pubertal development, 25-hydroxyvitamin D) and self-reported data (illness duration, amenorrhea, exercise, fracture, family history of osteoporosis, and antidepressant use), and BMD measures by DXA and peripheral quantitative computed tomography (pQCT). Setting and Participants: This was an urban adolescent program consisting of 57 females with AN, age 11–18 y. Interventions: Interventions included DXA (absolute BMD and Z-score), pQCT (volumetric BMD [vBMD] and stress-strain index [SSI]), laboratory evaluation, and questionnaire administration. Main Outcome Measures: Main outcome measures included TBS, areal and vBMD, SSI, fracture history, disease duration. Results: The TBS of six participants (11%) showed degraded and 19 (33%) partially degraded microarchitecture. Spinal TBS was correlated (P < .05) with age, height, weight, BMI, pubertal stage, BMD, and body composition by DXA, and BMD and SSI by pQCT. TBS was not correlated with disease duration, fracture, vitamin D status, race, or ethnicity, and self-reported health data. Conclusions: TBS showed evidence of degraded microarchitecture in over 40% of this study sample, and strongly correlated with anthropometric data and measures of BMD and skeletal strength. TBS is a novel tool that captures another dimension of bone health in adolescents with AN. PMID:26108094
Sharma, Anjali; Tian, Fang; Yin, Michael T; Keller, Marla J; Cohen, Mardge; Tien, Phyllis C
2012-12-01
To understand how regional body composition affects bone mineral density (BMD) in HIV-infected and HIV-uninfected women. Dual energy x-ray absorptiometry was used to measure regional lean and fat mass and BMD at lumbar spine (LS), total hip (TH), and femoral neck (FN) in 318 HIV-infected and 122 HIV-uninfected Women's Interagency HIV Study participants at baseline and 2 and 5 years later. Total lean and fat mass were measured using bioimpedance analysis. Multivariate marginal linear regression models assessed the association of HIV status and body composition on BMD change. Compared with HIV-uninfected women, HIV-infected women were older (44 vs. 37 years), more likely to be Hepatitis C virus-infected (32% vs. 14%), and postmenopausal (26% vs. 3%) and had lower baseline total fat mass, trunk fat, and leg fat. In multivariate models, increased total lean mass was independently associated with increased BMD at LS, TH, and FN, and total fat mass was associated with increased BMD at TH and FN (all P < 0.05). When total fat was replaced in multivariate models with trunk fat and leg fat, increased trunk fat (and not leg fat) was associated with increased TH and FN BMD (P < 0.001). Total fat and lean mass are strong independent predictors of TH and FN BMD, and lean mass was associated with greater LS BMD. Regardless of HIV status, greater trunk fat (and not leg fat) was associated with increased TH and FN BMD, suggesting that weight-bearing fat may be a more important predictor of BMD in the hip.
Defects in cortical microarchitecture among African-American women with type 2 diabetes
Yu, Elaine W.; Putman, Melissa S.; Derrico, Nicolas; Abrishamanian-Garcia, Gabriela; Finkelstein, Joel S.; Bouxsein, Mary L.
2015-01-01
Introduction/Purpose Fracture risk is increased in patients with type 2 diabetes mellitus (DM2) despite normal areal bone mineral density (aBMD). DM2 is more common in African-Americans than in Caucasians. It is not known whether African-American women with DM2 have deficits in bone microstructure. Methods We measured aBMD at the spine and hip by DXA, and volumetric BMD (vBMD) and microarchitecture at the distal radius and tibia by HR-pQCT in 22 DM2 and 78 non-diabetic African-American women participating in the Study of Women Across the Nation (SWAN). We also measured fasting glucose and HOMA-IR. Results Age, weight, and aBMD at all sites were similar in both groups. At the radius, cortical porosity was 26% greater, while cortical vBMD and tissue mineral density were lower in women with DM2 than in controls. There were no differences in radius total vBMD or trabecular vBMD between groups. Despite inferior cortical bone properties at the radius, FEA-estimated failure load was similar between groups. Tibia vBMD and microarchitecture were also similar between groups. There were no significant associations between cortical parameters and duration of DM2 or HOMA-IR. However, among women with DM2, higher fasting glucose levels were associated with lower cortical vBMD (r=−0.54, p=0.018). Conclusions DM2 and higher fasting glucose are associated with unfavorable cortical bone microarchitecture at the distal radius in African-American women. These structural deficits may contribute to the increased fracture risk among women with DM2. Further our results suggest that hyperglycemia may be involved in mechanisms of skeletal fragility associated with DM2. PMID:25398431
Moseley, Kendall F; Dobrosielski, Devon A; Stewart, Kerry J; De Beur, Suzanne M Jan; Sellmeyer, Deborah E
2011-05-01
Despite high bone mineral density (BMD), persons with type 2 diabetes are at greater risk of fracture. The relationship between body composition and BMD in noninsulin-requiring diabetes is unclear. The aim was to examine how fat and lean mass independently affect the skeleton in this population. Subjects for this cross-sectional analysis were men (n = 78) and women (n = 56) aged 40-65 years (56 ± 6 years) with uncomplicated, noninsulin-requiring type 2 diabetes. Total body fat and lean mass, total body, hip and lumbar spine BMD were measured with dual energy X-ray absorptiometry. Magnetic resonance imaging measured total abdominal, visceral and subcutaneous (SQ) fat. Subjects had normal all-site BMD and were obese to overweight (body mass index 29-41 kg/m(2)) with controlled diabetes (HbA1c women 6·6 ± 1·2%, men 6·7 ± 1·6%). Lean mass was positively associated with total body, hip, femoral neck and hip BMD in both sexes. Fat mass, abdominal total and SQ fat were associated with total body and hip BMD in women. In multivariate analyses adjusted for sex, lean mass significantly predicted total, hip and femoral neck BMD in men and women. In unadjusted models, lean mass continued to predict BMD at these sites in men; fat mass also predicted total body, femoral and hip BMD in women. In men and women with uncomplicated, noninsulin-requiring diabetes, lean mass significantly predicted BMD at the total body, hip and femoral neck. Further research is needed to determine whether acquisition or maintenance of lean mass in T2DM can prevent hip fracture in this at-risk population. © 2011 Blackwell Publishing Ltd.
Tsvetov, Gloria; Levy, Sigal; Benbassat, Carlos; Shraga-Slutzky, Ilana; Hirsch, Dania
2014-03-01
Pregnancy and lactation have been associated with decline in bone mineral density (BMD). It is not clear if there is a full recovery of BMD to baseline. This study sought to determine if pregnancy or breast-feeding or both have a cumulative effect on BMD in premenopausal and early postmenopausal women. We performed single-center cohort analysis. Five hundred women aged 35-55 years underwent routine BMD screening from February to July 2011 at a tertiary medical center. Patients were questioned about number of total full-term deliveries and duration of breast-feeding and completed a background questionnaire on menarche and menopause, smoking, dairy product consumption, and weekly physical exercise. Weight and height were measured. Dual-energy X-ray absorptiometry was used to measure spinal, dual femoral neck, and total hip BMD. Associations between background characteristics and BMD values were analyzed. Sixty percent of the women were premenopausal. Mean number of deliveries was 2.5 and mean duration of breast-feeding was 9.12 months. On univariate analysis, BMD values were negatively correlated with patient age (p=0.006) and number of births (p=0.013), and positively correlated with body mass index (p<0.001). On multiple (adjusted) logistic regression analysis, prolonged breast-feeding duration, but not number of deliveries, was significantly correlated to a low BMD (p=0.008). An effect was noted only in postmenopausal women. The spine was the most common site of BMD decrease. Prolonged breast-feeding may have a deleterious long-term effect on BMD and may contribute to increased risk of osteoporosis later in life. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Pan, Jianjiang; Lu, Xuan; Yang, Ge; Han, Yongmei; Tong, Xiang; Wang, Yue
2017-12-01
A sample of 512 Chinese was studied and we observed that greater disc degeneration on MRI was associated with greater spine DXA BMD. Yet, this association may be confounded by facet joint osteoarthritis. BMD may not be a risk factor for lumbar disc degeneration in Chinese. Evidence suggested that lumbar vertebral bone and intervertebral disc interact with each other in multiple ways. The current paper aims to determine the association between bone mineral density (BMD) and lumbar disc degeneration using a sample of Chinese. We studied 165 patients with back disorders and 347 general subjects from China. All subjects had lumbar spine magnetic resonance (MR) imaging and dual- energy X-ray absorptiometry (DXA) spine BMD studies, and a subset of general subjects had additional hip BMD measurements. On T2-weighted MR images, Pfirrmann score was used to evaluate the degree of lumbar disc degeneration and facet joint osteoarthritis was assessed as none, slight-moderate, and severe. Regression analyses were used to examine the associations between lumbar and hip BMD and disc degeneration, adjusting for age, gender, body mass index (BMI), lumbar region, and facet joint osteoarthritis. Greater facet joint osteoarthritis was associated with greater spine BMD (P < 0.01) in both patients and general subjects. For general subjects, greater spine BMD was associated with severe disc degeneration, controlling for age, gender, BMI, and lumbar region. When facet joint osteoarthritis entered the regression model, however, greater spine BMD was associated with greater facet joint osteoarthritis (P < 0.01) but not greater disc degeneration (P > 0.05). No statistical association was observed between spine BMD and lumbar disc degeneration in patients with back disorders (P > 0.05), and between hip BMD and disc degeneration in general subjects (P > 0.05). BMD may not be a risk factor for lumbar disc degeneration in Chinese. Facet joint osteoarthritis inflates DXA spine BMD measurements and therefore, may confound the association between spine BMD and disc degeneration.
Delay in estrogen commencement is associated with lower bone mineral density in Turner syndrome.
Nguyen, H H; Wong, P; Strauss, B J; Jones, G; Ebeling, P R; Milat, F; Vincent, A
2017-10-01
Turner syndrome (TS) is associated with hypogonadism, osteoporosis and fractures. We investigated the prevalence and risk factors for low bone density and fractures in a TS cohort. We included 76 TS patients (median age 28.5 years) attending a tertiary hospital between 1998 and 2015 who underwent dual-energy X-ray absorptiometry. Spine and femoral neck (FN) areal bone mineral density (aBMD) were compared with those of a control group. To adjust for smaller bone size, bone mineral apparent density (BMAD) was calculated. Primary amenorrhea was common (83%) in the TS cohort; the median age of pubertal induction was 15 years (range 11-30 years), and non-continuous estrogen therapy (ET) recorded in 40%. Almost one-third of TS patients reported fractures. TS patients had lower median spinal aBMD (1.026 g/cm 2 vs. 1.221 g/cm 2 ) and BMAD (0.156 g/cm 3 vs. 0.161 g/cm 3 ) than controls, and lower median FN aBMD (0.850 g/cm 2 vs. 1.026 g/cm 2 ) (all p < 0.01). More women with TS had spinal Z-score < -2.0 compared to controls (26.0% vs. 3.6%, p = 0.001). Spine and FN aBMD, BMAD and Z-scores were inversely associated with age commencing ET or years of estrogen deficiency. Delay in ET commencement was an independent risk factor for the lower bone density observed in women with TS. Early pubertal induction and ET compliance are important targets to optimize aBMD.
Tatara, Marcin R; Krupski, Witold; Majer-Dziedzic, Barbara
2017-10-01
Currently available approaches to osteoporosis treatment include application of antiresorptive and anabolic agents influencing bone tissue metabolism. The aim of the study was to present bone mineral density (BMD) changes of lumbar spine in osteoporotic patient treated with bisphosphonates such as ibandronic acid and pamidronic acid, and beta-hydroxy-beta-methylbutyrate (HMB). BMD and volumetric BMD (vBMD) of lumbar spine were measured during the 6 year observation period with the use of dual-energy X-ray absorptiometry (DEXA) and quantitative computed tomography (QCT). The described case report of osteoporotic patient with family history of severe osteoporosis has shown site-dependent response of bone tissue to antiosteoporotic treatment with bisphosphonates. Twenty-five-month treatment with ibandronic acid improved proximal femur BMD with relatively poor effects on lumbar spine BMD. Over 15-month therapy with pamidronic acid was effective to improve lumbar spine BMD, while in the proximal femur the treatment was not effective. A total of 61-week long oral administration with calcium salt of HMB improved vBMD of lumbar spine in the trabecular and cortical bone compartments when monitored by QCT. Positive effects of nearly 2.5 year HMB treatment on BMD of lumbar spine and femur in the patient were also confirmed using DEXA method. The results obtained indicate that HMB may be applied for the effective treatment of osteoporosis in humans. Further studies on wider human population are recommended to evaluate mechanisms influencing bone tissue metabolism by HMB.
Nutrition status, bone mass density, and selective serotonin reuptake inhibitors.
Kindilien, Shannon; Goldberg, Elle M; Roberts, Melissa H; Gonzales-Pacheco, Diana
2018-05-07
The association between selective serotonin reuptake inhibitor (SSRI) use and bone mass density (BMD) has been debated. Inadequate diet, which may occur in depressed individuals prescribed SSRIs is also associated with decreased BMD. This study seeks to determine if SSRI use in adults is associated with lower than average BMD while controlling for nutrition related variables. Further, it investigates whether there are potential interactions between micronutrients and SSRI use on BMD. Adults, 655 with an SSRI prescription ≥180 days and 12,372 non-users, were identified in the 2005-2014 National Health and Nutrition Examination Survey (NHANES) data. Survey respondents were propensity score matched on propensity to have an SSRI prescription and compared on femoral neck BMD t-scores. A sub-analysis within SSRI users was conducted to calculate the odds ratio (OR) of having a low (osteopenia or osteoporosis) BMD t-score given SSRI exposure and inadequate daily micronutrient intake. Inadequate daily micronutrient intake was common; over half of SSRI users and non-users had inadequate calcium, vitamin d, and potassium. SSRI use was associated with an absolute reduction of 0.11 in BMD t-score. Inadequate daily vitamin D intake was associated with lower BMD t-scores in both SSRI users and non-users. The interaction of SSRI use and inadequate daily intake of zinc was also associated with low BMD (OR: 1.11, 95% CI: 1.01-1.23). Patient health may be improved by nutritional education, referral to a dietician, or by micronutrient monitoring by the prescribing physician. Copyright © 2017. Published by Elsevier Inc.
Bone mineral density in midlife women: the Study of Women's Health in Qatar.
Gerber, L M; Bener, A; Al-Ali, H M; Hammoudeh, M; Liu, L Q; Verjee, M
2015-04-01
The aim of this study is to investigate bone mineral density (BMD) for a large cross-section of midlife Arab women living in Qatar and to evaluate the association of body mass index (BMI), menopause status, and nationality, on BMD of the spine and femur. A cross-sectional study was conducted among women aged 40-60 years recruited from nine primary-care health centers in Qatar. BMD (g/m(2)) was assessed at the lumbar spine and the femur. The combined prevalence of osteopenia and osteoporosis was 4% at the femur and 16.2% at the spine. BMI and menstrual status were both independently associated with BMD at the spine and at the femur (all p values < 0.001). As BMI increased, BMD increased at both the spine and femur. Women who menstruated in the past 12 months had 0.82 g/cm(2) and 0.61 g/cm(2) greater BMD at the spine and femur, respectively, compared with women who had not menstruated in 12 months. Nationality was not associated with mean BMD of the spine or the femur. No significant differences were observed between Qatari and non-Qatari women in terms of mean BMD values at the spine and the femur except for the femur in the age group 55-60, where values were lower among non-Qataris (p = 0.04). Multivariable analyses showed that BMI and menstrual status were found to be strongly associated with BMD levels at the spine and femur. The high prevalence of obesity observed in this sample may explain the low levels of osteopenia and osteoporosis observed.
A Candidate Gene Association Study of Bone Mineral Density in an Iranian Population.
Dastgheib, Seyed Alireza; Gartland, Alison; Tabei, Seyed Mohammad Bagher; Omrani, Gholamhossein Ranjbar; Teare, Marion Dawn
2016-01-01
The genetic epidemiology of variation in bone mineral density (BMD) and osteoporosis is not well studied in Iranian populations and needs more research. We report a candidate gene association study of BMD variation in a healthy cross-sectional study of 501 males and females sampled from the Iranian Multi-Centre Osteoporosis Study, Shiraz, Iran. We selected to study the association with 21 single nucleotide polymorphisms (SNPs) located in the 7 candidate genes LRP5, RANK, RANKL, OPG, P2RX7, VDR , and ESR1 . BMD was measured at the three sites L2-L4, neck of femur, and total hip. Association between BMD and each SNP was assessed using multiple linear regression assuming an allele dose (additive effect) on BMD (adjusted for age and sex). Statistically significant (at the unadjusted 5% level) associations were seen with seven SNPs in five of the candidate genes. Two SNPs showed statistically significant association with more than one BMD site. Significant association was seen between BMD at all the three sites with the VDR SNP rs731246 (L2-L4 p = 0.038; neck of femur p = 0.001; and total hip p < 0.001). The T allele was consistently associated with lower BMD than the C allele. Significant association was also seen for the P2RX7 SNP rs3751143, where the G allele was consistently associated with lower BMD than the T allele (L2-L4 p = 0.069; neck of femur p = 0.024; and total hip p = 0.045).
Bone Mineral Density in Adolescent Girls with Hypogonadotropic and Hypergonadotropic Hypogonadism.
Özbek, Mehmet Nuri; Demirbilek, Hüseyin; Baran, Rıza Taner; Baran, Ahmet
2016-06-05
Deficiency of sex steroids has a negative impact on bone mineral content. In studies conducted on postmenopausal women and animal studies, elevated follicle-stimulating hormone (FSH) levels were found to be correlated with a decrease in bone mineralization and osteoporosis. The aim of the present study was to evaluate bone mineral density (BMD) in adolescent girls with hypogonadotropic and hypergonadotropic hypogonadism and also to investigate the correlation between FSH level and BMD. The study group included 33 adolescent girls with hypogonadism (14 with hypogonadotropic hypogonadism and 19 with hypergonadotropic hypogonadism). FSH, luteinizing hormone, estradiol levels, and BMD (using dual energy x-ray absorptiometry) were measured. There were no statistically significant differences between the chronological age and bone age of the two patient groups, namely, with hypogonadotropic and hypergonadotropic hypogonadism. There was also no significant difference between BMD z-score values obtained from measurements from the spine and the femur neck of patients in the two groups (p-values were 0.841 and 0.281, respectively). In the hypergonadotropic group, a moderately negative correlation was detected between FSH level and BMD z-score measured from the femur neck (ρ=-0.69, p=0.001), whilst no correlation was observed between FSH levels and height adjusted BMD-z scores measured from the spine (ρ=0.17, p=0.493). FSH level was not found to be an independent variable affecting BMD z-score. BMD z-scores were detected to be similar in adolescent girls with hypogonadotropic and hypergonadotropic hypogonadism, and FSH levels were not found to have a clinically relevant impact on BMD.
Bone Mineral Density in Adolescent Girls with Hypogonadotropic and Hypergonadotropic Hypogonadism
Özbek, Mehmet Nuri; Demirbilek, Hüseyin; Baran, Rıza Taner; Baran, Ahmet
2016-01-01
Objective: Deficiency of sex steroids has a negative impact on bone mineral content. In studies conducted on postmenopausal women and animal studies, elevated follicle-stimulating hormone (FSH) levels were found to be correlated with a decrease in bone mineralization and osteoporosis. The aim of the present study was to evaluate bone mineral density (BMD) in adolescent girls with hypogonadotropic and hypergonadotropic hypogonadism and also to investigate the correlation between FSH level and BMD. Methods: The study group included 33 adolescent girls with hypogonadism (14 with hypogonadotropic hypogonadism and 19 with hypergonadotropic hypogonadism). FSH, luteinizing hormone, estradiol levels, and BMD (using dual energy x-ray absorptiometry) were measured. Results: There were no statistically significant differences between the chronological age and bone age of the two patient groups, namely, with hypogonadotropic and hypergonadotropic hypogonadism. There was also no significant difference between BMD z-score values obtained from measurements from the spine and the femur neck of patients in the two groups (p-values were 0.841 and 0.281, respectively). In the hypergonadotropic group, a moderately negative correlation was detected between FSH level and BMD z-score measured from the femur neck (ρ=-0.69, p=0.001), whilst no correlation was observed between FSH levels and height adjusted BMD-z scores measured from the spine (ρ=0.17, p=0.493). FSH level was not found to be an independent variable affecting BMD z-score. Conclusion: BMD z-scores were detected to be similar in adolescent girls with hypogonadotropic and hypergonadotropic hypogonadism, and FSH levels were not found to have a clinically relevant impact on BMD. PMID:27087454
Comparison of instruments for dual-energy X-ray bone mineral densitometry.
Vainio, P; Ahonen, E; Leinonen, K; Sievänen, H; Koski, E
1992-04-01
While bone mineral densitometry has become a common laboratory test, it is important to pay attention to the compatibility of the results from different instruments. In this study results from three commercially available bone densitometers are compared using both patient and phantom studies. Overall correlation between instruments was good but there were systematic discrepancies in the results. The three instruments provided bone mineral density (BMD) values that differed by as much as 13.5% due to differences as large as 6% in bone mineral content and as large as 7% in bone area. Thus, the BMD values obtained from different manufacturers' instruments are not directly comparable.
Das, Satyajit; Bopitya, Shyamalie; Taha, Huda; David, Loay
2014-01-01
Vitamin D deficiency and abnormal bone mineral density (BMD) have been reported in HIV patients. We aimed to find out the effects of antiretroviral therapy (ART) on serum vitamin D, parathyroid hormone (PTH) levels, BMD changes and fragility fracture rates in HIV patients. We collected information about baseline demography, risk factors for fracture, viral load (VL), CD4 count, serum 25-OH vitamin D (n=357), PTH (n=277), phosphate, ionised calcium, creatinine and BMD of spine and hip by DEXA scan (hologic, n=142). Statistical analysis used one-way ANOVA followed by Dunn's multiple comparison tests. Results Table 1: Total 357 patients, mean age 41.1 (+/- 11.9) years, 249 (66%) black African, 197(52%) females, baseline CD4 count 451 (+/- 184) cells/dl, VL 1.4 log (+/- 1.2) copies/ml, duration of ART 52 (+/- 35) months were included in the analysis. Serum vitamin D was 15.3 (+/- 11.0) ng/ml, PTH (intact) 5.5 (+/- 3.9) pmol/l, corrected calcium 2.13 (+/- 0.9), phosphate 1.0 (+/- 0.2) and creatinine was 73.4 (+/- 21.1) mmol/l. Ninety four (66%) patients had abnormal BMD (T-score of spine or hip or both ≤ 1.0). Vitamin D levels were deficient (< 30 ng/ml) in 297 (78.7%) and PTH was high (>4.1 pmol/l) in 177 (64.8%) patients. Of 91 (30.9%) patients who had vitamin D levels below 10.0 ng/mL, PTH was high in 70 (n=91, 76.9%) and abnormal BMD in 50 (n=61, 75.4%) patients. Thirteen patients (3.2%) had possible fragility fractures. Tenofovir (TDF) users had higher PTH (P=0.002) and lower BMD of spine (0.01) and hip (0.002) and efavirenz (EFV) users had lower vitamin D (0.01) levels. On multivariate analysis including all significant variables, female sex (OR 1.5 CI 1.3-5.9), age over 40 years (OR 1.2 CI 0.9-5.1) and TDF use (OR 1.9 CI 1.6-6.9) were associated with abnormal BMD of hip but not spine. Female patients over 40 years old on tenofovir containing regimens may have increased risk of BMD loss from hip. Whether Vitamin D replacement will prevent further bone loss needs further work.
Bone Mineral Density in Adults With Down Syndrome, Intellectual Disability, and Nondisabled Adults
ERIC Educational Resources Information Center
Geijer, Justin R.; Stanish, Heidi I.; Draheim, Christopher C.; Dengel, Donald R.
2014-01-01
Individuals with intellectual disability (ID) or Down syndrome (DS) may be at greater risk of osteoporosis. The purpose of this study was to compare bone mineral density (BMD) of DS, ID, and non-intellectually disabled (NID) populations. In each group, 33 participants between the ages of 28 and 60 years were compared. BMD was measured with…
ERIC Educational Resources Information Center
Hemayattalab, Rasool
2010-01-01
The purpose of this study was to investigate the effects of physical training and calcium intake on bone mineral density (BMD) of students with mental retardation. Forty mentally retarded boys (age 7-10 years old) were randomly assigned to four groups (no differences in age, BMD, calcium intake and physical activity): training groups with or…
Babu, Abraham Samuel; Ikbal, Faizal M; Noone, Manjula Sukumari; Joseph, Anupama Naomi; Danda, Debashish
2015-11-01
The presence of more than one musculoskeletal disease has been found to impair quality of life (QoL). The influence of low bone mineral density (BMD) on symptoms and function in those with fibromyalgia syndrome (FMS) is unknown. A cross sectional study was carried out on 158 patients attending camps in rural South India. BMD was determined using quantitative ultrasound of the distal radius. Symptoms and function were assessed using a visual analogue scale (VAS) and the Fibromyalgia Impact Questionnaire (FIQ). Low BMD was seen in 81.6% (129/158) of the persons screened. FMS was seen in 37/158 persons, of which 31/37 (83.7%) had low BMD. FMS with low bone density leads to higher levels of pain and a poorer QoL compared to those without FMS. Coexisting musculoskeletal problems could also contribute to this. Therefore, medical practitioners and rehabilitation specialists should consider screening for bone density among those with FMS and should use this information to decide appropriate therapies to reduce pain and improve QoL. © 2015 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.
The relationship between low bone mass and metabolic syndrome in Korean women.
Hwang, D-K; Choi, H-J
2010-03-01
We examined the relationship between low bond mass and metabolic syndrome in 2,475 Korean women. After adjustment for all covariates, mean vertebral BMD was significantly lower in women with metabolic syndrome. Moreover, age and weight adjusted vertebral BMD was significantly decreased with additional components of the metabolic syndrome. Obesity-induced chronic inflammation is a key component in the pathogenesis of insulin resistance and metabolic syndrome. It has been suggested that proinflammatory cytokines and low-grade systemic inflammation activate bone resorption and may lead to reduced bone mineral density (BMD). The objective of this study was to determine the relationship between low bone mass and metabolic syndrome in Korean women. This is a cross-sectional study of 2,548 women aged 18 years and over who had visited the Health Promotion Center. Physical examination and laboratory tests were performed. Vertebral BMD was measured using dual-energy X-ray absorptiometry. Metabolic syndrome was defined by National Cholesterol Education Program-Adult Treatment Panel III criteria. Among 2,475 women, 511 (21.0%) women had metabolic syndrome. Women with abdominal obesity or hypertriglyceridemia had significantly lower vertebral BMD than women without respective components after adjustment for age, weight, and height. After adjustment for all covariates, mean vertebral BMD was significantly lower in women with metabolic syndrome (p = 0.031). Moreover, age- and weight-adjusted vertebral BMD were significantly decreased with additional components of the metabolic syndrome (p = 0.004). These findings suggest that metabolic syndrome might be another risk factor for osteoporosis and related fractures.
Min, Yong-Ki; Lee, Dong-Yun; Choi, Suk-Joo; Kim, Joo Han; Choi, DooSeok; Yoon, Byung-Koo
2013-07-01
This study was conducted to evaluate the effects of adding the bisphosphonate alendronate (ALEN) to ongoing hormone therapy (HT) on bone mineral density (BMD) in postmenopausal Korean women. This randomized, double-blind, placebo-controlled clinical trial at a university hospital included a total of 139 postmenopausal women who had low BMD after HT lasting at least 1 year. Women received either ALEN (10 mg/d) or placebo in combination with HT for 1 year. Changes in BMD and biochemical markers of bone turnover were evaluated. Lumbar spine and total hip BMDs increased significantly in both treatment groups after 1 year. The addition of ALEN, when compared with HT alone, did not produce a significant change in BMD at the lumbar spine (3.7% vs 4.3%) and total hip (2.2% vs 3.2%) after adjusting for controllable variables. Serum osteocalcin showed a similar change, but urinary deoxypyridinoline response differed between treatment groups. Compared with HT alone, the addition of ALEN to ongoing HT for 1 year does not make a difference in BMD among postmenopausal Korean women with low BMD.
Association between duration of playing video games and bone mineral density in Chinese adolescents.
Shao, Haiyu; Xu, Shaonan; Zhang, Jun; Zheng, Jiayin; Chen, Jinping; Huang, Yazeng; Ru, Bin; Jin, Yongming; Zhang, Qi; Ying, Qifeng
2015-01-01
The aim of the study was to investigate the association between duration of playing video games and bone mineral density (BMD) in Chinese adolescents. Three hundred eighty-four Chinese adolescents aged 14-18 yr (148 males and 236 females) were analyzed. Anthropometric measurements were obtained using standard procedures. Total body and regional BMD were measured using dual-energy X-ray absorptiometry. Duration of playing video games, defined as hours per day, was measured by a self-report questionnaire. We examined the association between duration of playing video games and BMD using multiple linear regression analysis. After adjustment for age, sex, pubertal stage, parental education, body mass index, adolescents with longer video game duration were more likely to have lower legs, trunk, pelvic, spine, and total BMD (p < 0.05). We concluded that duration of video game was negatively associated with BMD in Chinese adolescents. These findings provide support for reducing duration of playing video games as a possible means to increase BMD in adolescents. Future research is needed to elucidate the underlined mechanisms linking playing video games and osteoporosis. Copyright © 2015 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
Pakvis, Dean F M; Heesterbeek, Petra J C; Severens, Marianne; Spruit, Maarten
2016-12-01
Background and purpose - The acetabular component has remained the weakest link in hip arthroplasty for achievement of long-term survival. One of the possible explanatory factors for acetabular failure has been acetabular stress shielding. For this, we investigated the effects of a cementless elastic socket on acetabular bone mineral density (BMD). Patients and methods - During 2008-2009, we performed a single-center prospective cohort trial on 25 patients (mean age 64 (SD 4), 18 females) in whom we implanted a cementless elastic press-fit socket. Using quantitative BMD measurements on CT, we determined the change in BMD surrounding the acetabular component over a 2-year follow-up period. Results - We found a statistically significant decrease in cancellous BMD (-14% to -35%) and a stable level of cortical BMD (5% to -5%) surrounding the elastic press-fit cup during the follow-up period. The main decrease was seen during the first 6 months after implantation. During the second year, cancellous BMD showed a further decrease in the medial and lower acetabular regions. Interpretation - We found no evidence that an elastic press-fit socket would prevent acetabular stress shielding during a 2-year follow-up.
Gomez-Bruton, Alejandro; Montero-Marín, Jesús; González-Agüero, Alejandro; García-Campayo, Javier; Moreno, Luis A; Casajús, Jose A; Vicente-Rodríguez, Germán
2016-03-01
The effects of swimming on bone mineral density (BMD) have been studied by several researchers, with inconsistent results. This meta-analysis aims to determine whether systematic swimming training may influence BMD during childhood and adolescence. A systematic search was performed in PubMed, SPORTDiscus and ClinicalTrials.gov from the earliest possible year to March 2015, with data extraction and quality assessment performed independently by two researchers following the PRISMA methodology. Swimmers were compared to sedentary controls and to athletes performing highly osteogenic sports. Therefore, a total of two meta-analyses were developed. Fourteen studies met the inclusion criteria and were included in the meta-analyses. Swimmers presented similar BMD values to sedentary controls and lower than other high-impact athletes. Femoral neck and lumbar spine BMD differences between swimmers and sedentary controls and between swimmers and athletes practicing osteogenic sports appeared to increase with age and favored the non-swimming groups. There were no differences by sex. While swimming is associated with several health benefits, it does not appear to be an effective sport for improving BMD. Swimmers might be in need of additional osteogenic exercises for increasing BMD values.
Depressive symptoms and bone mineral density among police officers in a northeastern US City.
Charles, Luenda E; Fekedulegn, Desta; Miller, Diane B; Wactawski-Wende, Jean; Violanti, John M; Andrew, Michael E; Burchfiel, Cecil M
2012-04-28
The purpose of this study was to examine the association between depressive symptoms and bone mineral density (BMD). Depressive symptoms were measured using the Center for Epidemiologic Studies Depression (CES-D) scale. BMD of total hip, femoral neck, anterio-posterior (AP) spine, wrist, and total body were measured by DXA using standardized procedures. Mean levels of BMD across gender-specific tertiles of CES-D score were obtained using ANOVA and ANCOVA. Participants included 97 police officers (41 women; 29-64 years). Depressive symptoms were not associated with BMD at any site among men. However among women, mean BMD values decreased across increasing (worsening) tertiles of CES-D for the AP spine (low CES-D=1.22 ± 0.04; medium CES-D=1.05±0.04; high CES-D=1.03±0.04 g/cm2; p=0.035) and for the whole body (low=1.26±0.03; medium=1.20±0.03; high=1.11±0.03 g/cm2; p=0.018) after adjustment. Higher depressive symptoms were associated with lower BMD among female but not male officers.
Diaz Curiel, M; Carrasco de la Peña, J L; Honorato Perez, J; Perez Cano, R; Rapado, A; Ruiz Martinez, I
1997-01-01
The aim of this study was to generate standard curves for bone mineral density (BMD) in a Spanish population using dual-energy X-ray absorptiometry (DXA), at both lumbar spine and femoral neck sites. The total sample size was 2442 subjects of both sexes aged 20-80 years, stratified according to survival rates, demographic distribution by local regions and sex ratio in the Spanish population. Subjects with suspected conditions affecting bone metabolism or receiving any treatment affecting bone mineralization were excluded. The study was carried out in 14 hospitals and bone density measurements were performed, using a QDR/ 1000 Hologic device. In the female population, the highest value for lumbar spine BMD was found within the 30-39 years age group, being significantly lower after the age of 49 years. In the male population, the highest values for lumbar spine BMD are found one decade earlier than in the female population and become significantly lower after the age of 69 years. The highest values for femoral neck BMD in men and women was found in the 20-29 year age group. Values for femoral neck BMD in the female population become statistically lower after the age of 49 years, while in the male population this effect was seen after the age of 69 years. Values for femoral neck BMD were higher in men than women at all ages.
Epistasis between QTLs for bone density variation in Copenhagen × dark agouti F2 rats
Liu, Lixiang; Alam, Imranul; Sun, Qiwei; Econs, Michael J.; Foroud, Tatiana; Turner, Charles H.
2010-01-01
The variation in several of the risk factors for osteoporotic fracture, including bone mineral density (BMD), has been shown to be strongly influenced by genetic differences. However, the genetic architecture of BMD is complex in both humans and in model organisms. We previously reported quantitative trait locus (QTL) results for BMD from a genome screen of 828 F2 progeny of Copenhagen and dark agouti rats. These progeny also provide an excellent opportunity to search for epistatic effects, or interaction between genetic loci, that contribute to fracture risk. Microsatellite marker data from a 20-cM genome screen was analyzed along with weight-adjusted bone density (DXA and pQCT) phenotypic data using the R/qtl software package. Genotype and phenotype data were permuted to determine genome-wide significance thresholds for the full model and epistasis (interaction) LOD scores corresponding to an alpha level of 0.01. A novel locus on chromosome 15 and a previously reported chromosome 14 QTL demonstrated a strong epistatic effect on BMD at the femur by DXA (LOD = 5.4). Two novel QTLs on chromosomes 2 and 12 were found to interact to affect total BMD at the femur midshaft by pQCT (LOD = 5.0). These results provide new information regarding the mode of action of previously identified QTL in the rat, as well as identifying novel loci that act in combination with known QTL or with other novel loci to contribute to BMD variation. PMID:19153792
Epistasis between QTLs for bone density variation in Copenhagen x dark agouti F2 rats.
Koller, Daniel L; Liu, Lixiang; Alam, Imranul; Sun, Qiwei; Econs, Michael J; Foroud, Tatiana; Turner, Charles H
2009-03-01
The variation in several of the risk factors for osteoporotic fracture, including bone mineral density (BMD), has been shown to be strongly influenced by genetic differences. However, the genetic architecture of BMD is complex in both humans and in model organisms. We previously reported quantitative trait locus (QTL) results for BMD from a genome screen of 828 F2 progeny of Copenhagen and dark agouti rats. These progeny also provide an excellent opportunity to search for epistatic effects, or interaction between genetic loci, that contribute to fracture risk. Microsatellite marker data from a 20-cM genome screen was analyzed along with weight-adjusted bone density (DXA and pQCT) phenotypic data using the R/qtl software package. Genotype and phenotype data were permuted to determine genome-wide significance thresholds for the full model and epistasis (interaction) LOD scores corresponding to an alpha level of 0.01. A novel locus on chromosome 15 and a previously reported chromosome 14 QTL demonstrated a strong epistatic effect on BMD at the femur by DXA (LOD = 5.4). Two novel QTLs on chromosomes 2 and 12 were found to interact to affect total BMD at the femur midshaft by pQCT (LOD = 5.0). These results provide new information regarding the mode of action of previously identified QTL in the rat, as well as identifying novel loci that act in combination with known QTL or with other novel loci to contribute to BMD variation.
Murphy, E; FitzGerald, O; Saxne, T; Bresnihan, B
2002-01-01
Background: Chondromalacia patellae is a potentially disabling disorder characterised by features of patellar cartilage degradation. Objective: To evaluate markers of cartilage and bone turnover in patients with chondromalacia patellae. Methods: 18 patients with chondromalacia patellae were studied. Serum cartilage oligomeric matrix protein (s-COMP) and bone sialoprotein (s-BSP) levels were measured by enzyme linked immunosorbent assay (ELISA) and compared with those of age and sex matched healthy control subjects. Periarticular bone mineral density (BMD) of both knee joints was assessed by dual energy x ray absorptiometry (DXA). Results: s-COMP levels were significantly raised in all patients with chondromalacia patellae compared with healthy control subjects (p=0.0001). s-BSP levels did not differ significantly between the groups (p=0.41). BMD of the patella was significantly reduced in patients with chondromalacia patellae compared with the control subjects (p=0.016). In patients with bilateral chondromalacia patellae, BMD of the patella was lower in the more symptomatic knee joint (p=0.005). Changes in periarticular BMD were localised to the patella and were not present in femoral regions. Neither s-COMP (p=0.18) nor s-BSP (p=0.40) levels correlated with patellar BMD. Conclusions: Increased s-COMP levels, reflecting cartilage degradation, and reduced BMD localised to the patella may represent clinically useful markers in the diagnosis and monitoring of patients with chondromalacia patellae. Measures of cartilage degradation did not correlate with loss of patellar bone density, suggesting dissociated pathophysiological mechanisms. PMID:12379520
Murphy, E; FitzGerald, O; Saxne, T; Bresnihan, B
2002-11-01
Chondromalacia patellae is a potentially disabling disorder characterised by features of patellar cartilage degradation. To evaluate markers of cartilage and bone turnover in patients with chondromalacia patellae. 18 patients with chondromalacia patellae were studied. Serum cartilage oligomeric matrix protein (s-COMP) and bone sialoprotein (s-BSP) levels were measured by enzyme linked immunosorbent assay (ELISA) and compared with those of age and sex matched healthy control subjects. Periarticular bone mineral density (BMD) of both knee joints was assessed by dual energy x ray absorptiometry (DXA). s-COMP levels were significantly raised in all patients with chondromalacia patellae compared with healthy control subjects (p=0.0001). s-BSP levels did not differ significantly between the groups (p=0.41). BMD of the patella was significantly reduced in patients with chondromalacia patellae compared with the control subjects (p=0.016). In patients with bilateral chondromalacia patellae, BMD of the patella was lower in the more symptomatic knee joint (p=0.005). Changes in periarticular BMD were localised to the patella and were not present in femoral regions. Neither s-COMP (p=0.18) nor s-BSP (p=0.40) levels correlated with patellar BMD. Increased s-COMP levels, reflecting cartilage degradation, and reduced BMD localised to the patella may represent clinically useful markers in the diagnosis and monitoring of patients with chondromalacia patellae. Measures of cartilage degradation did not correlate with loss of patellar bone density, suggesting dissociated pathophysiological mechanisms.
Aguirre, Lina E; Colleluori, Georgia; Dorin, Richard; Robbins, David; Chen, Rui; Jiang, Bryan; Qualls, Clifford; Villareal, Dennis T; Armamento-Villareal, Reina
2017-12-01
Although hypogonadism is a risk factor for bone loss and fractures, the different etiopathophysiology and hormonal profile of classical and obesity-induced hypogonadism may lead to differences in musculoskeletal profile. This is a cross-sectional study of hypogonadal men between 40 and 74 years old. Our outcomes include: areal bone mineral density (aBMD) and body composition by dual-energy X-ray absorptiometry; volumetric BMD (vBMD) and soft tissue composition of the tibia by peripheral quantitative computed tomography. Fracture risk assessment tool (FRAX) scores were evaluated. Testosterone, estradiol, luteinizing hormone, follicle stimulating hormone, sex hormone-binding globulin, C-telopeptide, osteocalcin, and sclerostin were measured. We divided the population into subgroups of BMI: group 1: BMI < 30; group 2: BMI ≥30 to <35 and group 3: BMI ≥ 35 kg/m 2 . One-hundred five men were enrolled. Spine and hip aBMD, and total and trabecular vBMD at the 4% tibia significantly increased with increasing BMI. Cortical thickness (330.7 ± 53.2, 343.3 ± 35.4, and 358.7 ± 38.2 mm, p = 0.04; groups 1, 2 and 3, respectively) and cortical area (5.3 ± 0.7, 5.5 ± 0.6, and 5.7 ± 0.6 mm, p = 0.01; groups 1, 2 and 3, respectively) at 38% tibia increased with increasing BMI. While absolute lean mass increased with increasing BMI, % lean mass and muscle density (70.2 ± 5.0, 71.3 ± 6.4, and 67.1 ± 5.1 mg/cm 3 ; groups 1, 2 and 3, respectively) were lowest in group 3. Although severely obese hypogondal men have better BMD and bone quality, they have reduced muscle density, the significance of which remains to be determined.
Martyn-St James, Marrissa; Carroll, Sean
2010-05-01
Our objective was to assess the effects of differing modes of impact exercise on bone density at the hip and spine in premenopausal women through systematic review and meta-analysis. Electronic databases, key journals and reference lists were searched for controlled trials investigating the effects of impact exercise interventions on lumbar spine (LS), femoral neck (FN) and total hip (TH) bone mineral density (BMD) in premenopausal women. Exercise protocols were categorised according to impact loading characteristics. Weighted mean difference (WMD) meta-analyses were undertaken. Heterogeneity amongst trials was assessed. Fixed and random effects models were applied. Inspection of funnel plot symmetry was performed. Trial quality assessment was also undertaken. Combined protocols integrating odd- or high-impact exercise with high-magnitude loading (resistance exercises), were effective in increasing BMD at both LS and FN [WMD (fixed effect) 0.009 g cm(-2) 95% CI (0.002-0.015) and 0.007 g cm(-2) 95% CI (0.001-0.013); P = 0.011 and 0.017, respectively]. High-impact only protocols were effective on femoral neck BMD [WMD (fixed effect) 0.024 g cm(-2) 95% CI (0.002-0.027); P < 0.00001]. Funnel plots showed some asymmetry for positive BMD outcomes. Insufficient numbers of protocols assessing TH BMD were available for assessment. Exercise programmes that combine odd- or high-impact activity with high-magnitude resistance training appear effective in augmenting BMD in premenopausal women at the hip and spine. High-impact-alone protocols are effective only on hip BMD in this group. However, diverse methodological and reporting discrepancies are evident in published trials.
de Lind van Wijngaarden, Roderick F A; Festen, Dederieke A M; Otten, Barto J; van Mil, Edgar G A H; Rotteveel, Joost; Odink, Roelof J; van Leeuwen, Mariëtte; Haring, Danny A J P; Bocca, Gianni; Mieke Houdijk, E C A; Hokken-Koelega, Anita C S
2009-10-01
Bone mineral density (BMD) is unknown in children with Prader-Willi syndrome (PWS), but is decreased in adults with PWS. In patients with GH deficiency, BMD increases during GH treatment. The aim of the study was to evaluate BMD in children with PWS and to study the effects of GH treatment. We conducted a randomized controlled GH trial. Forty-six prepubertal children were randomized into either a GH-treated group (1.0 mg/m(2) . d) or a control group for 2 yr. At start, 6, 12, and 24 months of study, total body and lumbar spine BMD were measured by dual-energy x-ray absorptiometry, and lumbar spine bone mineral apparent density (BMAD) was calculated. Baseline total body and lumbar spine BMD sd score (SDS) were normal [mean (sd), -0.2 SDS (1.1) and -0.4 SDS (1.2), respectively]. BMADSDS, which corrects for short stature, was also normal [mean (sd), 0.40 SDS (1.1)]. Total body BMDSDS decreased during the first 6 months of GH (P < 0.0001), but increased during the second year of treatment. After 24 months of study, total body and lumbar spine BMDSDS, and the BMADSDS did not significantly differ between GH-treated children and randomized controls (P = 0.30, P = 0.44, and P = 0.47, respectively). Results were similar when corrected for body mass index SDS. Repeated measurements analysis showed a significant positive association between IGF-I SDS and total body and lumbar spine BMDSDS, but not with BMADSDS. Our results show that prepubertal children with PWS have a normal BMD. GH treatment had no effect on BMD, except for a temporary decrease of total body BMDSDS in the first 6 months.
Premature greying of the hair is not associated with low bone mineral density.
Beardsworth, S A; Kearney, C E; Steel, S A; Newman, J; Purdie, D W
1999-01-01
In two recent case-control studies premature greying of the hair was associated with a lowering of bone mineral density (BMD) and osteopenia, suggesting that this might be a clinically useful risk marker for osteoporosis. We report a further re-examination of this proposal in 52 prematurely grey-haired women from East Yorkshire who responded to an advertisement inviting them for bone densitometry. Thirty-five had no clinical or drug history that could influence bone density. All were Caucasian with a mean age of 52.8 years. In the group as a whole the mean BMD values at the lumbar spine and femoral neck were no different from those of a young adult, but there was a trend toward a greater than average BMD than that of the local age-matched population (p = 0.097 and 0.218, respectively). Twenty women were premenopausal, with an average age of 45.3 years. Mean BMD values at the lumbar spine and femoral neck in this group were no different from those of young adults. There was, however, a trend toward a BMD greater than that of the local age-matched population at the femoral neck (p = 0.117). Fifteen women were postmenopausal with an average age of 62.9 years and an average age at menopause of 51.1 years. Mean BMD values at both the lumbar spine and femoral neck in this group were lower than those of young adults, but no different from those of the local age-matched population. In conclusion, our group of prematurely grey-haired women had average BMD for their age, and we are therefore unable to support the proposed clinical usefulness of premature greying as a risk marker for osteoporosis.
Association of physical performance measures with bone mineral density in postmenopausal women.
Lindsey, Carleen; Brownbill, Rhonda A; Bohannon, Richard A; Ilich, Jasminka Z
2005-06-01
To investigate the association between physical performance measures and bone mineral density (BMD) in older women. Cross-sectional analysis. University research laboratory. Healthy postmenopausal women (N=116; mean age +/- standard deviation, 68.3+/-6.8y) in self-reported good health who were not taking medications known to affect bone, including hormone replacement therapy. Not applicable. Anthropometrics and BMD of the hip, spine, whole body, and forearm. Physical performance measures included normal and brisk 8-m gait speed, normal step length (NSL), brisk step length (BSL), timed 1-leg stance (OLS), timed sit-to-stand (STS), and grip strength. NSL, BSL, normal gait speed, brisk gait speed, OLS, and grip strength correlated significantly with several skeletal sites ( r range, .19-.38; P <.05). In multiple regression models containing body mass index, hours of total activity, total calcium intake, and age of menarche, NSL, BSL, normal and brisk gait speeds, OLS, and grip strength were all significantly associated with BMD of various skeletal sites (adjusted R 2 range, .11-.24; P <.05). Analysis of covariance showed that subjects with longer step lengths and faster normal and brisk gait speeds had higher BMD at the whole body, hip, and spine (brisk speed only). Those with a longer OLS had greater femoral neck BMD, and those with a stronger grip strength had greater BMD in the whole body and forearm ( P <.05). STS was not related to any skeletal site. Normal and brisk gait speed, NSL, BSL, OLS, and grip strength are all associated with BMD at the whole body, hip, spine, and forearm. Physical performance evaluation may help with osteoporosis prevention and treatment programs for postmenopausal women when bone density scores have not been obtained or are unavailable.
Sherk, Vanessa D; Bemben, Michael G; Bemben, Debra A
2010-09-01
The nature of muscular contractions and episodes of impact loading during technical rock climbing are often varied and complex, and the resulting effects on bone health are unclear. The purpose of this study was to compare total body, lumbar spine, proximal femur, and forearm areal bone mineral density (aBMD) and tibia and forearm bone quality in male rock climbers (RC) (n = 15), resistance trained men (RT) (n = 16), and untrained male controls (CTR) (n = 16). Total body, anteroposterior (AP) lumbar spine, proximal femur, and forearm aBMD and body composition were measured using dual-energy X-ray absorptiometry (DXA) (Lunar Prodigy, v. 10.50.086; GE Healthcare, Waukesha, Wisconsin, U.S.A.). Volumetric BMD (vBMD), bone content, bone area, and muscle cross-sectional area (MCSA) of the tibia and forearm were measured using pQCT (peripheral quantitative computed tomography; Stratec XCT 3000, Pforzheim, Germany). No significant group differences were seen in bone-free lean body mass. CTR had significantly (p < 0.05) greater body fat % than RC and RT and significantly (p < 0.05) greater fat mass than RC. Lumbar spine and femoral neck aBMD were significantly (p < 0.05) greater in RT compared to both RC and CTR. RC had significantly (p < 0.05) lower aBMD at the 33% radius site than CTR. Forearm MCSA was significantly (p < 0.05) lower in CTR than in the other groups. No significant differences were seen between groups for vBMD or bone area of the tibia and forearm. In conclusion, resistance-trained men had higher bone density at the central skeletal sites than rock climbers; however, bone quality variables of the peripheral limbs were similar in rock climber and resistance-trained groups.
You, Ying-Shu; Lin, Ching-Yu; Liang, Hao-Jan; Lee, Shen-Hung; Tsai, Keh-Sung; Chiou, Jeng-Min; Chen, Yen-Ching; Tsao, Chwen-Keng; Chen, Jen-Hau
2014-01-01
Osteoporosis is related to the alteration of specific circulating metabolites. However, previous studies on only a few metabolites inadequately explain the pathogenesis of this complex syndrome. To date, no study has related the metabolome to bone mineral density (BMD), which would provide an overview of metabolism status and may be useful in clinical practice. This cross-sectional study involved 601 healthy Taiwanese women aged 40 to 55 years recruited from MJ Health Management Institution between 2009 and 2010. Participants were classified according to high (2nd tertile plus 3rd tertile) and low (1st tertile) BMD groups. The plasma metabolome was evaluated by proton nuclear magnetic resonance spectroscopy ((1) H NMR). Principal components analysis (PCA), partial least-squares discriminant analysis (PLS-DA), and logistic regression analysis were used to assess the association between the metabolome and BMD. The high and low BMD groups could be differentiated by PLS-DA but not PCA in postmenopausal women (Q(2) = 0.05, ppermutation = 0.04). Among postmenopausal women, elevated glutamine was significantly associated with low BMD (adjusted odds ratio [AOR] = 5.10); meanwhile, elevated lactate (AOR = 0.55), acetone (AOR = 0.51), lipids (AOR = 0.04), and very low-density lipoprotein (AOR = 0.49) protected against low BMD. To the best of our knowledge, this study is the first to identify a group of metabolites for characterizing low BMD in postmenopausal women using a (1) H NMR-based metabolomic approach. The metabolic profile may be useful for predicting the risk of osteoporosis in postmenopausal women at an early age. © 2014 American Society for Bone and Mineral Research.
Genetic influences on bone loss in the San Antonio Family Osteoporosis Study
Shaffer, John R.; Kammerer, Candace M.; Bruder, Jan M.; Cole, Shelley A.; Dyer, Thomas D.; Almasy, Laura; MacCluer, Jean W.; Blangero, John; Bauer, Richard L.; Mitchell, Braxton D.
2009-01-01
Summary The genetic contribution to age-related bone loss is not well understood. We estimated that genes accounted for 25–45% of variation in 5-year change in bone mineral density in men and women. An autosome-wide linkage scan yielded no significant evidence for chromosal regions implicated in bone loss. Introduction The contribution of genetics to acquisition of peak bone mass is well documented, but little is know about the influence of genes on subsequent bone loss with age. We therefore measured 5-year change in bone mineral density (BMD) in 300 Mexican Americans (>45 years of age) from the San Antonio Family Osteoporosis Study to identify genetic factors influencing bone loss. Methods Annualized change in BMD was calculated from measurements taken 5.5 years apart. Heritability (h2) of BMD change was estimated using variance components methods and autosome-wide linkage analysis was carried out using 460 microsatellite markers at a mean 7.6 cM interval density. Results Rate of BMD change was heritable at the forearm (h2=0.31, p=0.021), hip (h2 =0.44, p=0.017), spine (h2=0.42, p=0.005), but not whole body (h2=0.18, p=0.123). Covariates associated with rapid bone loss (advanced age, baseline BMD, female sex, low baseline weight, postmenopausal status, and interim weight loss) accounted for 10% to 28% of trait variation. No significant evidence of linkage was observed at any skeletal site. Conclusions This is one of the first studies to report significant heritability of BMD change for weight-bearing and non-weight-bearing bones in an unselected population and the first linkage scan for change in BMD. PMID:18414963
Negredo, Eugènia; Domingo, Pere; Pérez-Álvarez, Núria; Gutiérrez, Mar; Mateo, Gracia; Puig, Jordi; Escrig, Roser; Echeverría, Patricia; Bonjoch, Anna; Clotet, Bonaventura
2014-12-01
Tenofovir has been associated with a decrease in bone mineral density (BMD). However, data on changes in BMD after discontinuing tenofovir are lacking. We performed a two-centre randomized pilot study in virologically suppressed HIV-infected patients receiving tenofovir with osteopenia/osteoporosis (OsteoTDF study, ClinicalTrials.gov number NCT 01153217). Fifty-four patients were randomly assigned to switch from tenofovir to abacavir (n = 26) or to continue with tenofovir (n = 28). Changes in lumbar and total hip BMD were evaluated at Week 48 from baseline. Five patients discontinued the study (three from the tenofovir group and two from the abacavir group). No significant differences were detected between the groups at Week 48 (P = 0.229 for total hip and P = 0.312 for lumbar spine). However, hip BMD improved by 2.1% (95% CI -0.6 to 4.7) (P = 0.043) in the abacavir group and 0.7% (95% CI -0.9 to 2.4) (P = 0.372) in the tenofovir group. Lumbar spine BMD varied by -0.7% (95% CI -3.8 to 3.3) (P ≤ 0.001) in the abacavir group and -1.2% (95% CI -3.8 to 0.4) (P < 0.001) in the tenofovir group. Switching from tenofovir to abacavir led to a slight improvement in femoral BMD although no differences were detected between groups. Larger studies are necessary before firm recommendations can be made on the discontinuation of tenofovir in patients with a low BMD. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Mei, Kai; Kopp, Felix K; Bippus, Rolf; Köhler, Thomas; Schwaiger, Benedikt J; Gersing, Alexandra S; Fehringer, Andreas; Sauter, Andreas; Münzel, Daniela; Pfeiffer, Franz; Rummeny, Ernst J; Kirschke, Jan S; Noël, Peter B; Baum, Thomas
2017-12-01
Osteoporosis diagnosis using multidetector CT (MDCT) is limited to relatively high radiation exposure. We investigated the effect of simulated ultra-low-dose protocols on in-vivo bone mineral density (BMD) and quantitative trabecular bone assessment. Institutional review board approval was obtained. Twelve subjects with osteoporotic vertebral fractures and 12 age- and gender-matched controls undergoing routine thoracic and abdominal MDCT were included (average effective dose: 10 mSv). Ultra-low radiation examinations were achieved by simulating lower tube currents and sparse samplings at 50%, 25% and 10% of the original dose. BMD and trabecular bone parameters were extracted in T10-L5. Except for BMD measurements in sparse sampling data, absolute values of all parameters derived from ultra-low-dose data were significantly different from those derived from original dose images (p<0.05). BMD, apparent bone fraction and trabecular thickness were still consistently lower in subjects with than in those without fractures (p<0.05). In ultra-low-dose scans, BMD and microstructure parameters were able to differentiate subjects with and without vertebral fractures, suggesting osteoporosis diagnosis is feasible. However, absolute values differed from original values. BMD from sparse sampling appeared to be more robust. This dose-dependency of parameters should be considered for future clinical use. • BMD and quantitative bone parameters are assessable in ultra-low-dose in vivo MDCT scans. • Bone mineral density does not change significantly when sparse sampling is applied. • Quantitative trabecular bone microstructure measurements are sensitive to dose reduction. • Osteoporosis subjects could be differentiated even at 10% of original dose. • Radiation exposure should be considered when comparing quantitative bone parameters.
Mainra, Rahul; Elder, Grahame J
2010-01-01
Most patients who undergo kidney or kidney-pancreas transplantation have renal osteodystrophy, and immediately after transplantation bone mineral density (BMD) commonly falls. Together, these abnormalities predispose to an increased fracture incidence. Bisphosphonate or calcitriol therapy can preserve BMD after transplantation, but although bisphosphonates may be more effective, they pose potential risks for adynamic bone. A total of 153 kidney (61%) and kidney-pancreas (39%) transplant recipients were allocated to bisphosphonate (62%) or calcitriol (38%) therapy using an algorithm that incorporated BMD, prevalent vertebral fracture, biomarkers of bone turnover, and risk factor assessment. Patients received cholecalciferol and calcium as appropriate and were followed for 12 mo. Patients who were treated with bisphosphonates had lower BMD at the lumbar spine and femoral neck and longer time on dialysis. Age and gender were similar between the groups. At 12 mo, bisphosphonate-treated patients had significant BMD increases at the lumber spine and femoral neck and a negative trend at the wrist. Patients who were allocated to calcitriol, who were assessed to have lower baseline fracture risk, had no significant change in BMD at any site. At 1 yr, mean levels of bone turnover marker and intact parathyroid hormone normalized in both groups. Incident fracture rates did not differ significantly. With targeted treatment, BMD levels were stable or improved and bone turnover markers normalized. This algorithm provides a guide to targeting therapy after transplantation that avoids BMD loss and may reduce suppression of bone turnover.
Prevalence of Low Bone Mineral Density and Associated Risk Factors in Korean Puerperal Women.
Jang, Dong Gyu; Kwon, Ji Young; Choi, Sae Kyung; Ko, Hyun Sun; Shin, Jong Chul; Park, In Yang
2016-11-01
Although pregnancy is a medical condition that contributes to bone loss, little information is available regarding bone mineral density (BMD) in puerperal women. This cross sectional study aimed to evaluate the prevalence of low BMD in puerperal women and to identify associated risk factors. We surveyed all puerperal women who had BMD measurements taken 4-6 weeks after delivery in a tertiary university hospital, and did not have any bone loss-related comorbidities. Among the 1,561 Korean puerperal women, 566 (36.3%) had low BMD at the lumbar spine, total hip, femoral neck, and/or trochanter. Multivariate analysis revealed that underweight women had a significantly higher risk of low BMD compared with obese women at pre-pregnancy (adjusted odds ratio [aOR], 3.21; 95% confidence interval [CI], 1.83-5.63). Also, women with inadequate gestational weight gain (GWG) were 1.4 times more likely to have low BMD than women with excessive GWG (aOR, 1.42; 95% CI, 1.04-1.94). One-way ANOVA showed that BMDs at the lumbar spine and total hip were significantly different between the 4 BMI groups (both P < 0.001) and also between the 3 GWG groups (both P < 0.001). In conclusion, this study identifies a high prevalence of low BMD in puerperal women and thus suggests the need for further evaluation about the change of BMD in pregnancy and postpartum period.
Duncan, Emma L; Danoy, Patrick; Kemp, John P; Leo, Paul J; McCloskey, Eugene; Nicholson, Geoffrey C; Eastell, Richard; Prince, Richard L; Eisman, John A; Jones, Graeme; Sambrook, Philip N; Reid, Ian R; Dennison, Elaine M; Wark, John; Richards, J Brent; Uitterlinden, Andre G; Spector, Tim D; Esapa, Chris; Cox, Roger D; Brown, Steve D M; Thakker, Rajesh V; Addison, Kathryn A; Bradbury, Linda A; Center, Jacqueline R; Cooper, Cyrus; Cremin, Catherine; Estrada, Karol; Felsenberg, Dieter; Glüer, Claus-C; Hadler, Johanna; Henry, Margaret J; Hofman, Albert; Kotowicz, Mark A; Makovey, Joanna; Nguyen, Sing C; Nguyen, Tuan V; Pasco, Julie A; Pryce, Karena; Reid, David M; Rivadeneira, Fernando; Roux, Christian; Stefansson, Kari; Styrkarsdottir, Unnur; Thorleifsson, Gudmar; Tichawangana, Rumbidzai; Evans, David M; Brown, Matthew A
2011-04-01
Osteoporotic fracture is a major cause of morbidity and mortality worldwide. Low bone mineral density (BMD) is a major predisposing factor to fracture and is known to be highly heritable. Site-, gender-, and age-specific genetic effects on BMD are thought to be significant, but have largely not been considered in the design of genome-wide association studies (GWAS) of BMD to date. We report here a GWAS using a novel study design focusing on women of a specific age (postmenopausal women, age 55-85 years), with either extreme high or low hip BMD (age- and gender-adjusted BMD z-scores of +1.5 to +4.0, n = 1055, or -4.0 to -1.5, n = 900), with replication in cohorts of women drawn from the general population (n = 20,898). The study replicates 21 of 26 known BMD-associated genes. Additionally, we report suggestive association of a further six new genetic associations in or around the genes CLCN7, GALNT3, IBSP, LTBP3, RSPO3, and SOX4, with replication in two independent datasets. A novel mouse model with a loss-of-function mutation in GALNT3 is also reported, which has high bone mass, supporting the involvement of this gene in BMD determination. In addition to identifying further genes associated with BMD, this study confirms the efficiency of extreme-truncate selection designs for quantitative trait association studies.
Park, Jin-Sung; Lee, Jaewon; Park, Ye-Soo
2016-01-01
The study aimed to investigate the effectiveness of the clinical use of the Fracture Risk Assessment Tool (FRAX(®)) developed by the World Health Organization identifying patients at risk of osteoporotic fracture and to evaluate changes in osteoporotic fracture risk prediction according to bone mineral density (BMD) values. We identified the occurrence of osteoporotic fracture among patients whose BMD was measured in our hospital between April 2003 and March 2013. We then analyzed FRAX(®) scores obtained with or without BMD on the day before the occurrence of an osteoporotic fracture in actual osteoporotic fracture patients. According to the National Osteoporosis Foundation high-risk criteria, we identified the percentage of high-risk patients before the actual fracture. Among 445 osteoporotic fracture patients, when FRAX(®)-BMD was used, 281 patients (63%) were identified as high-risk before an actual osteoporotic fracture, and when FRAX(®) without BMD was used, 258 patients (58%) were identified (p = 0.115). In the 84 osteopenia patients, 39 patients (46.4%) were identified as high-risk when FRAX(®) without BMD was used, and 19 patients (22.6%) were identified when FRAX(®)-BMD was used (p = 0.001). The use of BMD in FRAX(®) does not seem to increase the clinical effectiveness of predicting osteoporotic fracture in osteopenia patients. Copyright © 2016 International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
Chawla, Himika; Saha, Soma; Kandasamy, Devasenathipathy; Sharma, Raju; Sreenivas, Vishnubhatla; Goswami, Ravinder
2017-01-01
Bone mineral density (BMD) is increased in idiopathic hypoparathyroidism (IH). Parathyroid hormone (PTH) deficiency, hypocalcemic seizures, and anticonvulsants could compromise skeletal health in IH. We assessed vertebral fractures (VFs) and related factors in IH and change in BMD during follow-up. VFs were assessed by morphometry. BMD was assessed by dual-energy X-ray absorptiometery at the lumbar spine, hip, and forearm. Change in BMD was assessed in a subset after a 10-year follow-up. The endocrine clinic of All India Institute of Medical Sciences, New Delhi, India. Included were 104 patients with IH and 64 healthy controls. Hypocalcemia, hyperphosphatemia, normal kidney function, and low serum PTH levels were used to diagnose IH. VFs were seen in 18.3% of patients with IH and 4.7% of controls (odds ratio, 4.54; 95% confidence interval, 1.28 to 16.04). Use of anticonvulsants and menopause were significantly associated (P < 0.05) with VF. Mean BMD at lumbar spine and hip were higher by 21.4% and 8.6%, respectively, in IH than in controls (P < 0.001), respectively. BMD significantly increased during follow-up at all sites. Change in BMD correlated with maintenance of the serum calcium/phosphorus ratio during follow-up. Despite increased BMD, prevalence of vertebral-fractures is greater in patients with IH, especially in postmenopausal women and those on anticonvulsant therapy. Copyright © 2017 by the Endocrine Society
Is bone mineral density measurement using dual-energy X-ray absorptiometry affected by gamma rays?
Xie, Liang-Jun; Li, Jian-Fang; Zeng, Feng-Wei; Jiang, Hang; Cheng, Mu-Hua; Chen, Yi
2013-01-01
The objective of this study was to determine whether the gamma rays emitted from the radionuclide effect bone mineral density (BMD) measurement. Nine subjects (mean age: 56 ± 17.96 yr) scheduled for bone scanning underwent BMD measurement using dual-energy X-ray absorptiometry (DXA) (Hologic/Discovery A) before and 1, 2, and 4 h after injection of technetium-99m-methylene diphosphonate (99mTc-MDP). Ten subjects (mean age: 41 ± 15.47 yr) scheduled for therapy of differentiated thyroid carcinoma with iodine-131 underwent BMD measurement before and 2 h after therapeutic radionuclide administration. All patients were given whole body BMD measurement, including head, arm, ribs, lumbar spine, pelvis, and leg sites. Besides, patients who referred to radioiodine therapy were given total hip and femoral neck BMD measurement as well. No statistically significant changes in BMD values were detected after 99mTc-MDP and iodine-131 administration for all measurement sites (p > 0.05), and individual difference of BMD before and after radionuclide imaging or therapy was less than the least significant change in lumbar spine, total hip, and femoral neck. In conclusion, BMD measurements are not influenced by the gamma rays emitted from technetium-99m and iodine-131. DXA bone densitometry may be performed simultaneously with bone scanning and radioiodine therapy. Copyright © 2013 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
Shen, Wei; Velasquez, Gilbert; Chen, Jun; Jin, Ye; Heymsfield, Steven B; Gallagher, Dympna; Pi-Sunyer, F Xavier
2014-01-01
Several large-scale studies have reported the presence of an inverse relationship between bone mineral density (BMD) and bone marrow adipose tissue (BMAT) in adults. We aim to determine if there is an inverse relationship between pelvic volumetric BMD (vBMD) and pelvic BMAT in children and to compare this relationship in children and adults. Pelvic BMAT and bone volume (BV) was evaluated in 181 healthy children (5-17yr) and 495 healthy adults (≥18yr) with whole-body magnetic resonance imaging (MRI). Pelvic vBMD was calculated using whole-body dual-energy X-ray absorptiometry to measure pelvic bone mineral content and MRI-measured BV. An inverse correlation was found between pelvic BMAT and pelvic vBMD in both children (r=-0.374, p<0.001) and adults (r=-0.650, p<0.001). In regression analysis with pelvic vBMD as the dependent variable and BMAT as the independent variable, being a child or adult neither significantly contribute to the pelvic BMD (p=0.995) nor did its interaction with pelvic BMAT (p=0.415). The inverse relationship observed between pelvic vBMD and pelvic BMAT in children extends previous findings that found the inverse relationship to exist in adults and provides further support for a reciprocal relationship between adipocytes and osteoblasts. Copyright © 2014 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
Age, gender, and race/ethnic differences in total body and subregional bone density1
Looker, Anne C; Melton, L. Joseph; Harris, Tamara; Borrud, Lori; Shepherd, John; McGowan, Joan
2011-01-01
Introduction Total body dual-energy x-ray absorptiometry (DXA) data offer the opportunity to compare bone density of demographic groups across the entire skeleton. Methods The present study uses total body DXA data (Hologic QDR 4500A, Hologic Inc, Bedford MA) from the National Health and Nutrition Examination Survey (NHANES) 1999–2004 to examine bone mineral density (BMD) of the total body and selected skeletal subregions in a wide age range of adult men and women from three race/ethnic groups. Total body, lumbar spine, pelvis, right leg, and left arm BMD and lean mass from 13,091 adults age 20 years and older were used. The subregions were chosen to represent sites with different degrees of weight bearing. Results Mean BMD varied in expected ways for some demographic characteristics (men>women and non-Hispanic blacks>non-Hispanic whites) but not others (non-Hispanic whites>Mexican Americans). Differences in age patterns in BMD also emerged for some characteristics (sex) but not others (race/ethnicity). Differences in cross-sectional age patterns in BMD and lean mass by degree of weight-bearing in older adults were observed for the pelvis, leg and arm. Conclusion This information may be useful for generating hypotheses about age, race, and sex differences in fracture risk in the population. PMID:19048179
Vaccaro, Calogero; Busetto, Roberto; Bernardini, Daniele; Anselmi, Carlo; Zotti, Alessandro
2012-03-01
To evaluate the precision and accuracy of assessing bone mineral density (BMD) by use of mean gray value (MGV) on digitalized and digital images of conventional and digital radiographs, respectively, of ex vivo bovine and equine bone specimens in relation to the gold-standard technique of dual-energy x-ray absorptiometry (DEXA). Left and right metatarsal bones from 11 beef cattle and right femurs from 2 horses. Bovine specimens were imaged by use of conventional radiography, whereas equine specimens were imaged by use of computed radiography (digital radiography). Each specimen was subsequently scanned by use of the same DEXA equipment. The BMD values resulting from each DEXA scan were paired with the MGVs obtained by use of software on the corresponding digitalized or digital radiographic image. The MGV analysis of digitalized and digital x-ray images was a precise (coefficient of variation, 0.1 and 0.09, respectively) and highly accurate method for assessing BMD, compared with DEXA (correlation coefficient, 0.910 and 0.937 for conventional and digital radiography, respectively). The high correlation between MGV and BMD indicated that MGV analysis may be a reliable alternative to DEXA in assessing radiographic bone density. This may provide a new, inexpensive, and readily available estimate of BMD.
NASA Astrophysics Data System (ADS)
Makbul, Ika Aida Aprilini; Daud, Norlida Mat; Aziz, Nurul Azrianti Abdul; Yahya, Noor Fairuzi Suhana
2016-11-01
Sufficient intake of calcium during childhood is very important to ensure an optimal growth and strong bones development. However, lactose intolerance (LI) may limit the intake of milk and dairy products due to the inability of the body to digest lactose to its constituents, glucose and galactose. Children in rural area were a major concern as they are commonly associated with an inadequate intake of nutrients. Hence, the objectives of this study are to determine the prevalence of LI among Malay and Orang Asli female children in rural Selangor and its association with bone mineral density (BMD). A total of 65 (39 Malay, 26 Orang Asli) female primary school students with a mean age of 10.4 ± 0.6 years old underwent hydrogen breath test and lactose tolerance test (LTT) during fasting and after ingestion of 25g lactose solution. A Wong Baker Face Pain Rating Scale (WBFPRS) was used to assess the presence of gastrointestinal (GI) symptoms during the study. LI symptoms are defined when breath H2 levels exceed 20 ppm above baseline values, an increase of postprandial blood glucose (PBG) levels of less than 1.1 mmol/L and GI symptom score is more or equal than score 2. BMD was measured in the calcaneus using QUS-2 Ultrasonometer. The result showed that 35 subjects (15 Malay, 20 Orang Asli) had a positive breath test (>20ppm). A total of 74.4% Malay and 88.5% Orang Asli children had an increase of PBG of less than 1.1 mmol/L. Both groups have low percentage (35.9 % Malay, 34.6 % Orang Asli) of GI symptoms. A total of 20.0% children (n=13, Malay=4, Orang Asli=9) was found to experience LI. Orang Asli children showed a significantly higher (p<0.001) BMD (95.7 ± 11.0 dB/MHz) compared to Malay children (71.7 ± 8.6 dB/MHz). The result shown there is an association between LI with BMD (p=0.031). Hence, LI does affect in decreasing an individual BMD. In conclusion, the prevalence of LI among female children in rural Selangor is low. However, the relationship between LI and BMD shown in this study need to be addressed carefully starting from an early age as insufficient intake of calcium can affect bone health development needed throughout their entire life.
Eriksson, Joel; Paternoster, Lavinia; Yerges-Armstrong, Laura M.; Lehtimäki, Terho; Bergström, Ulrica; Kähönen, Mika; Leo, Paul J.; Raitakari, Olli; Laaksonen, Marika; Nicholson, Geoffrey C.; Viikari, Jorma; Ladouceur, Martin; Lyytikäinen, Leo-Pekka; Medina-Gomez, Carolina; Rivadeneira, Fernando; Prince, Richard L.; Sievanen, Harri; Leslie, William D.; Mellström, Dan; Eisman, John A.; Movérare-Skrtic, Sofia; Goltzman, David; Hanley, David A.; Jones, Graeme; St. Pourcain, Beate; Xiao, Yongjun; Timpson, Nicholas J.; Smith, George Davey; Reid, Ian R.; Ring, Susan M.; Sambrook, Philip N.; Karlsson, Magnus; Dennison, Elaine M.; Kemp, John P.; Danoy, Patrick; Sayers, Adrian; Wilson, Scott G.; Nethander, Maria; McCloskey, Eugene; Vandenput, Liesbeth; Eastell, Richard; Liu, Jeff; Spector, Tim; Mitchell, Braxton D.; Streeten, Elizabeth A.; Brommage, Robert; Pettersson-Kymmer, Ulrika; Brown, Matthew A.; Ohlsson, Claes; Richards, J. Brent; Lorentzon, Mattias
2012-01-01
We aimed to identify genetic variants associated with cortical bone thickness (CBT) and bone mineral density (BMD) by performing two separate genome-wide association study (GWAS) meta-analyses for CBT in 3 cohorts comprising 5,878 European subjects and for BMD in 5 cohorts comprising 5,672 individuals. We then assessed selected single-nucleotide polymorphisms (SNPs) for osteoporotic fracture in 2,023 cases and 3,740 controls. Association with CBT and forearm BMD was tested for ∼2.5 million SNPs in each cohort separately, and results were meta-analyzed using fixed effect meta-analysis. We identified a missense SNP (Thr>Ile; rs2707466) located in the WNT16 gene (7q31), associated with CBT (effect size of −0.11 standard deviations [SD] per C allele, P = 6.2×10−9). This SNP, as well as another nonsynonymous SNP rs2908004 (Gly>Arg), also had genome-wide significant association with forearm BMD (−0.14 SD per C allele, P = 2.3×10−12, and −0.16 SD per G allele, P = 1.2×10−15, respectively). Four genome-wide significant SNPs arising from BMD meta-analysis were tested for association with forearm fracture. SNP rs7776725 in FAM3C, a gene adjacent to WNT16, was associated with a genome-wide significant increased risk of forearm fracture (OR = 1.33, P = 7.3×10−9), with genome-wide suggestive signals from the two missense variants in WNT16 (rs2908004: OR = 1.22, P = 4.9×10−6 and rs2707466: OR = 1.22, P = 7.2×10−6). We next generated a homozygous mouse with targeted disruption of Wnt16. Female Wnt16−/− mice had 27% (P<0.001) thinner cortical bones at the femur midshaft, and bone strength measures were reduced between 43%–61% (6.5×10−13
Schwaiger, Benedikt J; Kopperdahl, David L; Nardo, Lorenzo; Facchetti, Luca; Gersing, Alexandra S; Neumann, Jan; Lee, Kwang J; Keaveny, Tony M; Link, Thomas M
2017-08-01
Bone fracture risk assessed ancillary to positron emission tomography with computed tomography co-registration (PET/CT) could provide substantial clinical value to oncology patients with elevated fracture risk without introducing additional radiation dose. The purpose of our study was to investigate the feasibility of obtaining valid measurements of bone mineral density (BMD) and finite element analysis-derived bone strength of the hip and spine using PET/CT examinations of prostate cancer patients by comparing against values obtained using routine multidetector-row computed tomography (MDCT) scans-as validated in previous studies-as a reference standard. Men with prostate cancer (n=82, 71.6±8.3 years) underwent Fluorine-18 NaF PET/CT and routine MDCT within three months. Femoral neck and total hip areal BMD, vertebral trabecular BMD and femur and vertebral strength based on finite element analysis were assessed in 63 paired PET/CT and MDCT examinations using phantomless calibration and Biomechanical-CT analysis. Men with osteoporosis or fragile bone strength identified at either the hip or spine (vertebral trabecular BMD ≤80mg/cm 3 , femoral neck or total hip T-score ≤-2.5, vertebral strength ≤6500N and femoral strength ≤3500N, respectively) were considered to be at high risk of fracture. PET/CT- versus MDCT-based BMD and strength measurements were compared using paired t-tests, linear regression and by generating Bland-Altman plots. Agreement in fracture-risk classification was assessed in a contingency table. All measurements from PET/CT versus MDCT were strongly correlated (R 2 =0.93-0.97; P<0.0001 for all). Mean differences for total hip areal BMD (0.001g/cm 2 , 1.1%), femoral strength (-60N, 1.3%), vertebral trabecular BMD (2mg/cm 3 , 2.6%) and vertebral strength (150N; 1.7%) measurements were not statistically significant (P>0.05 for all), whereas the mean difference in femoral neck areal BMD measurements was small but significant (-0.018g/cm 2 ; -2.5%; P=0.007). The agreement between PET/CT and MDCT for fracture-risk classification was 97% (0.89 kappa for repeatability). Ancillary analyses of BMD, bone strength, and fracture risk agreed well between PET/CT and MDCT, suggesting that PET/CT can be used opportunistically to comprehensively assess bone integrity. In subjects with high fracture risk such as cancer patients this may serve as an additional clinical tool to guide therapy planning and prevention of fractures. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhou, C; Fang, L; Chen, Y; Zhong, J; Wang, H; Xie, P
2018-02-12
Our work is the first systematic meta-analysis to investigate the effect of selective serotonin reuptake inhibitor (SSRI) medication on bone mineral density. Through meta-analyzed 11 studies, our findings suggested that compared with nonusers, use of SSRIs was significantly associated with lumbar spine BMD reduction, particularly for old people. The use of selective serotonin reuptake inhibitors (SSRIs) has already been associated with bone mass loss. Their effects on bone mineral density (BMD) for the different bone sections have, however, thus been inconsistent. Here, we aim to assess the effects of SSRIs on BMD using a meta-analysis. We searched PubMed, Scopus, ISI Web of Knowledge, the Cochrane Library, and PsycINFO for all English-written studies investigating the effects of SSRIs on BMD and published before November 2017. BMD was compared between non-SSRI users and SSRI users using a random-effect model with standardized mean differences (SMD) and 95% confidence intervals (CIs). Furthermore, subgroup analyses were performed based on study design, age, and sex in order to find the origins of high heterogeneity. Eleven studies met the inclusion criteria and were used for the meta-analysis. Our study demonstrated that the use of SSRIs was significantly associated with lower BMD values (SMD - 0.40; 95% CI - 0.79 to 0.00; p = 0.05) and BMD Z-scores (SMD - 0.28; 95% CI - 0.50 to - 0.05; p = 0.02) of the lumbar spine, but not of the total hip and femoral neck. In addition, SSRI use was associated with a greater bone loss in older people. SSRI use is a risk factor of lower BMD of the lumbar spine, especially for older people. Future studies into the relationship between SSRI use and bone metabolism and bone mass need to be conducted with larger sample sizes for both men and women at different bone sites.
Shen, Wei; Scherzer, Rebecca; Gantz, Madeleine; Chen, Jun; Punyanitya, Mark; Lewis, Cora E; Grunfeld, Carl
2012-04-01
An increasing number of studies suggest that bone marrow adipose tissue (BMAT) might play a role in the pathogenesis of osteoporosis. Our previous study of Caucasian women demonstrated that there is an inverse relationship between BMAT and whole-body bone mineral density (BMD). It is unknown whether visceral adipose tissue (VAT), sc adipose tissue (SAT), and skeletal muscle had an effect on the relationship between BMAT and BMD. In the present study we investigated the relationship between pelvic, hip, and lumbar spine BMAT with hip and lumbar spine BMD in the population-based Coronary Artery Risk Development in Young Adults (CARDIA) sample with adjustment for whole-body magnetic resonance imaging (MRI)-measured VAT, SAT, and skeletal muscle. T1-weighted MRI was acquired for 210 healthy African-American and Caucasian men and women (age 38-52 yr). Hip and lumbar spine BMD were measured by dual-energy x-ray absorptiometry. Pelvic, hip, and lumbar spine BMAT had negative correlations with hip and lumbar spine BMD (r = -0.399 to -0.550, P < 0.001). The inverse associations between BMAT and BMD remained strong after adjusting for demographics, weight, skeletal muscle, SAT, VAT, total adipose tissue (TAT), menopausal status, lifestyle factors, and inflammatory markers (standardized regression coefficients = -0. 296 to -0.549, P < 0.001). Among body composition measures, skeletal muscle was the strongest correlate of BMD after adjusting for BMAT (standardized regression coefficients = 0.268-0.614, P < 0.05), with little additional contribution from weight, SAT, VAT, or total adipose tissue. In this middle-aged population, a negative relationship existed between MRI-measured BMAT and hip and lumbar spine BMD independent of demographics and body composition. These observations support the growing evidence linking BMAT with low bone density.
Scherzer, Rebecca; Gantz, Madeleine; Chen, Jun; Punyanitya, Mark; Lewis, Cora E.; Grunfeld, Carl
2012-01-01
Context: An increasing number of studies suggest that bone marrow adipose tissue (BMAT) might play a role in the pathogenesis of osteoporosis. Our previous study of Caucasian women demonstrated that there is an inverse relationship between BMAT and whole-body bone mineral density (BMD). It is unknown whether visceral adipose tissue (VAT), sc adipose tissue (SAT), and skeletal muscle had an effect on the relationship between BMAT and BMD. Objective: In the present study we investigated the relationship between pelvic, hip, and lumbar spine BMAT with hip and lumbar spine BMD in the population-based Coronary Artery Risk Development in Young Adults (CARDIA) sample with adjustment for whole-body magnetic resonance imaging (MRI)-measured VAT, SAT, and skeletal muscle. Design: T1-weighted MRI was acquired for 210 healthy African-American and Caucasian men and women (age 38–52 yr). Hip and lumbar spine BMD were measured by dual-energy x-ray absorptiometry. Results: Pelvic, hip, and lumbar spine BMAT had negative correlations with hip and lumbar spine BMD (r = −0.399 to −0.550, P < 0.001). The inverse associations between BMAT and BMD remained strong after adjusting for demographics, weight, skeletal muscle, SAT, VAT, total adipose tissue (TAT), menopausal status, lifestyle factors, and inflammatory markers (standardized regression coefficients = −0. 296 to −0.549, P < 0.001). Among body composition measures, skeletal muscle was the strongest correlate of BMD after adjusting for BMAT (standardized regression coefficients = 0.268–0.614, P < 0.05), with little additional contribution from weight, SAT, VAT, or total adipose tissue. Conclusion: In this middle-aged population, a negative relationship existed between MRI-measured BMAT and hip and lumbar spine BMD independent of demographics and body composition. These observations support the growing evidence linking BMAT with low bone density. PMID:22319043
Association between a variation in the phosphodiesterase 4D gene and bone mineral density.
Reneland, Richard H; Mah, Steven; Kammerer, Stefan; Hoyal, Carolyn R; Marnellos, George; Wilson, Scott G; Sambrook, Philip N; Spector, Tim D; Nelson, Matthew R; Braun, Andreas
2005-03-07
Fragility fractures caused by osteoporosis are a major cause of morbidity and mortality in aging populations. Bone mineral density (BMD) is a useful surrogate marker for risk of fracture and is a highly heritable trait. The genetic variants underlying this genetic contribution are largely unknown. We performed a large-scale association study investigating more than 25,000 single nucleotide polymorphisms (SNPs) located within 16,000 genes. Allele frequencies were estimated in contrasting DNA pools from white females selected for low (<0.87 g/cm2, n = 319) and high (> 1.11 g/cm2, n = 321) BMD at the lumbar spine. Significant findings were verified in two additional sample collections. Based on allele frequency differences between DNA pools and subsequent individual genotyping, one of the candidate loci indicated was the phosphodiesterase 4D (PDE4D) gene region on chromosome 5q12. We subsequently tested the marker SNP, rs1498608, in a second sample of 138 white females with low (<0.91 g/cm2) and 138 females with high (>1.04 g/cm2) lumbar spine BMD. Odds ratios were 1.5 (P = 0.035) in the original sample and 2.1 (P = 0.018) in the replication sample. Association fine mapping with 80 SNPs located within 50 kilobases of the marker SNP identified a 20 kilobase region of association containing exon 6 of PDE4D. In a second, family-based replication sample with a preponderance of females with low BMD, rs1498608 showed an opposite relationship with BMD at different sites (p = 0.00044-0.09). We also replicated the previously reported association of the Ser37Ala polymorphism in BMP2, known to interact biologically with PDE4D, with BMD. This study indicates that variants in the gene encoding PDE4D account for some of the genetic contribution to bone mineral density variation in humans. The contrasting results from different samples indicate that the effect may be context-dependent. PDE4 inhibitors have been shown to increase bone mass in normal and osteopenic mice, but up until now there have been no reports implicating any member of the PDE4 gene family in human osteoporosis.
Sahni, Shivani; Tucker, Katherine L; Kiel, Douglas P; Quach, Lien; Casey, Virginia A; Hannan, Marian T
2013-01-01
Dairy foods are a complex source of essential nutrients. In this study, fluid dairy intake, specifically milk, and yogurt intakes were associated with hip but not spine bone mineral density (BMD), while cream may adversely influence BMD, suggesting that not all dairy products are equally beneficial for the skeleton. This study seeks to examine associations of milk, yogurt, cheese, cream, most dairy (total dairy without cream), and fluid dairy (milk + yogurt) with BMD at femoral neck (FN), trochanter (TR), and spine, and with incident hip fracture over 12-year follow-up in the Framingham Offspring Study. Three thousand two hundred twelve participants completed a food frequency questionnaire (1991–1995 or 1995–1998) and were followed for hip fracture until 2007 [corrected]. Two thousand five hundred and six participants had DXA BMD (1996-2001). Linear regression was used to estimate adjusted mean BMD while Cox-proportional hazards regression was used to estimate adjusted hazard ratios (HR) for hip fracture risk. Final models simultaneously included dairy foods adjusting for each other. Mean baseline age was 55 (±1.6) years, range 26-85. Most dairy intake was positively associated with hip and spine BMD. Intake of fluid dairy and milk was related with hip but not spine BMD. Yogurt intake was associated with TR-BMD alone. Cheese and cream intakes were not associated with BMD. In final models, yogurt intake remained positively associated with TR-BMD, while cream tended to be negatively associated with FN-BMD. Yogurt intake showed a weak protective trend for hip fracture [HR(95%CI), ≤4 serv/week, 0.46 (0.21-1.03) vs. >4 serv/week, 0.43 (0.06-3.27)]. No other dairy groups showed a significant association (HRs range, 0.53-1.47) with limited power (n, fractures = 43). Milk and yogurt intakes were associated with hip but not spine BMD, while cream may adversely influence BMD. Thus, not all dairy products are equally beneficial for the skeleton. Suggestive fracture results for milk and yogurt intakes need further confirmation.
Tenforde, Adam S; Parziale, Allyson L; Popp, Kristin L; Ackerman, Kathryn E
2018-01-01
While sports participation is often associated with health benefits, a subset of athletes may develop impaired bone health. Bone stress injuries (BSIs) are a common overuse injury in athletes; site of injury has been shown to relate to underlying bone health in female athletes. Hypothesis/Purpose: This case series characterizes the association of type of sports participation and anatomic site of BSIs with low bone mineral density (BMD), defined as BMD Z-score <-1.0. Similar to female athletes, it was hypothesized that male athletes who participate in running and sustain BSIs in sites of higher trabecular bone content would be more likely to have low BMD. Cohort study; Level of evidence, 3. Chart review identified 28 male athletes aged 14 to 36 years with history of ≥1 lower-extremity BSI who were referred for evaluation of overall bone health, including assessment of lumbar spine, hip, and/or total body less head BMD per dual-energy x-ray absorptiometry. BMD Z-scores were determined via age, sex, and ethnicity normative values. Prior BSIs were classified by anatomic site of injury into trabecular-rich locations (pelvis, femoral neck, and calcaneus) and cortical-rich locations (tibia, fibula, femur, metatarsal and tarsal navicular). Sport type and laboratory values were also assessed in relationship to BMD. The association of low BMD to anatomic site of BSI and sport were evaluated with P value <.05 as threshold of significance. Of 28 athletes, 12 (43%) met criteria for low BMD. Athletes with a history of trabecular-rich BSIs had a 4.6-fold increased risk for low BMD as compared with those with only cortical-rich BSIs (9 of 11 vs 3 of 17, P = .002). Within sport type, runners had a 6.1-fold increased risk for low BMD versus nonrunners (11 of 18 vs 1 of 10, P = .016). Laboratory values, including 25-hydroxy vitamin D, were not associated with BMD or BSI location. Low BMD was identified in 43% of male athletes in this series. Athletes participating in sports of running and with a history of trabecular-rich BSI were at increased risk for low BMD.
Callréus, M; McGuigan, F; Ringsberg, K; Akesson, K
2012-10-01
Recreational physical activity in 25-year-old women in Sweden increases bone mineral density (BMD) in the trochanter by 5.5% when combining regularity and impact. Jogging and spinning were especially beneficial for hip BMD (6.4-8.5%). Women who enjoyed physical education in school maintained their higher activity level at age 25. The aims of this study were to evaluate the effects of recreational exercise on BMD and describe how exercise patterns change with time in a normal population of young adult women. In a population-based study of 1,061 women, age 25 (±0.2), BMD was measured at total body (TB-BMD), femoral neck (FN-BMD), trochanter (TR-BMD), and spine (LS-BMD). Self-reported physical activity status was assessed by questionnaire. Regularity of exercise was expressed as recreational activity level (RAL) and impact load as peak strain score (PSS). A permutation (COMB-RP) was used to evaluate combined endurance and impacts on bone mass. More than half of the women reported exercising on a regular basis and the most common activities were running, strength training, aerobics, and spinning. Seventy percent participated in at least one activity during the year. Women with high RAL or PSS had higher BMD in the hip (2.6-3.5%) and spine (1.5-2.1%), with the greatest differences resulting from PSS (p < 0.001-0.02). Combined regularity and impact (high-COMB-RP) conferred the greatest gains in BMD (FN 4.7%, TR 5.5%, LS 3.1%; p < 0.001) despite concomitant lower body weight. Jogging and spinning were particularly beneficial for hip BMD (+6.4-8.5%). Women with high-COMB-RP scores enjoyed physical education in school more and maintained higher activity levels throughout compared to those with low scores. Self-reported recreational levels of physical activity positively influence BMD in young adult women but to maximize BMD gains, regular, high-impact exercise is required. Enjoyment of exercise contributes to regularity of exercising which has short- and long-term implications for bone health.
High bone mineral density in sickle cell disease: Prevalence and characteristics.
De Luna, Gonzalo; Ranque, Brigitte; Courbebaisse, Marie; Ribeil, Jean-Antoine; Khimoud, Djamal; Dupeux, Sidonie; Silvera, Jonathan; Offredo, Lucile; Pouchot, Jacques; Arlet, Jean-Benoît
2018-05-01
Osteosclerosis (OSC) is a rarely studied complication of sickle cell disease (SCD). The objective of our study was to determine the prevalence and characteristics of high bone mineral density (BMD) and its radiological features in adult SCD patients. This prospective observational study was conducted from May 2007 to May 2016 in consecutive patients with steady-state SCD at two university hospitals. The BMD of the lumbar spine (L1-L4) and right femoral neck was determined by dual energy X-ray absorptiometry. Clinical, laboratory and radiographic data were recorded. High BMD was defined as a BMD Z-score of at least +2.5 standard deviations at the lumbar spine or hip. The characteristics of the patients with high BMD were compared to those of individuals with low or middle BMD, using multivariate ordinal logistic regression. 135 patients (86 women and 49 men) with a median age of 27 (IQR 23-33) years were included. High BMD was diagnosed in 20 (15%) patients with a median age of 33.5 (IQR 28-45) years. The SCD genotypes of these patients were SS in 11, SC in 5, S/beta+ in 3, and S/beta0 in 1. High BMD patients more frequently harbored the S/beta SCD genotype (21% vs 5% in non-high BMD patients; p=0.047) and were older (p=0.0007). Compared to patients with low or middle BMD, after adjustment for age and SCD genotype, high BMD patients had a higher prevalence of avascular necrosis history (p=0.009), higher BMI (p=0.007), and lower serum resorption marker CTX (p=0.04), bilirubin (p=0.02) and parathyroid hormone levels (p=0.02). There were no differences between groups regarding fracture history, H-shaped vertebrae or other biological variables. High-BMD values is a common manifestation in SCD patients, especially in those with the S/beta-thalassemia genotypes. The prevalence of high-BMD in SCD is associated with older age, suggesting that it will be more common in the future because the life span of patients with SCD is increasing thanks to significant progress in SCD treatment. Copyright © 2018 Elsevier Inc. All rights reserved.
Roussy, Jean-Pascal; Bessette, Louis; Bernatsky, Sasha; Rahme, Elham; Lachaine, Jean
2014-07-01
In 2002, guidelines for the management of osteoporosis were published by Osteoporosis Canada and widely disseminated. We aimed to assess if those guidelines had any impact on clinical practice and ultimately on fracture rates in rheumatoid arthritis (RA). This was an observational study using the Quebec healthcare databases. To quantify the use of osteoporosis drugs, hormone replacement therapy (HRT), bone mineral density (BMD) testing, and fracture rates, quarterly age-standardized rates between 1998 and 2008 were calculated. A time series approach was used to predict fracture rates from 2003 onward, based on the earlier data. The provision of postfracture osteoporosis care, as defined by the initiation of osteoporosis drugs, HRT, or BMD testing, was examined; and logistic regressions identified factors associated with care. The study population in each quarter was mainly composed of older women. The use of osteoporosis drugs and BMD testing increased over the study period. The actual fracture rates from 2003 onward fell within the projected rates and their 95 % CI indicating no reduction. A total of 1,279 subjects were included in the postfracture care analysis. Over time, the likelihood of receiving osteoporosis care increased by 64 % (OR = 1.64, 95 % CI 1.27-2.11), and the two strongest predictors of care were female gender and corticosteroid use. Over our study period, fracture rates remained stable in this RA population. However, the use of osteoporosis drugs, BMD testing, and provision of postfracture osteoporosis care improved, which may result from gradual adoption of guidelines.
Closa-Monasterolo, Ricardo; Zaragoza-Jordana, Marta; Ferré, Natàlia; Luque, Veronica; Grote, Veit; Koletzko, Berthold; Verduci, Elvira; Vecchi, Fiammetta; Escribano, Joaquin
2018-06-01
Bone mineralization can be influenced by genetic factors, hormonal status, nutrition, physical activity and body composition. The association of higher calcium (Ca) intake or Ca supplementation with better bone mineral density (BMD) remains controversial. Furthermore, it has been speculated that maintaining long-term adequate Ca intake rather than having a brief supplementation period is more effective. The aim of the study was to prospectively analyse the influence of adequate Ca intake on BMD at 7 years of age in European children. Data from the Childhood Obesity Project were analysed in a prospective longitudinal cohort trial. Dietary intake was recorded using 3-day food records at 4, 5 and 6 years of age. The probability of adequate intake (PA) of Ca was calculated following the American Institute of Medicine guidelines for individual assessments, with FAO, WHO and United Nations University joint expert consultation dietary recommendations. Children were categorised as having high Ca PA (PA >95%) or not (PA <95%). At 7 years, whole body (WB) and lumbar spine (LS) BMD were measured in the Spanish subsample by dual-energy x-ray absorptiometry. Internal BMD z-scores were calculated; BMD below -1 z-score were considered to indicate osteopenia, and BMD z-scores below -2, "low bone mineral density for age". BMD was measured in 179 children. Ca intake at 6 years was positively correlated with LS BMD at 7 years (R = 0.205, p = 0.030). A Ca increase of 100 mg/day explained 19.4% (p = 0.011) of the LS BMD z-score variation, modifying it by 0.089 (0.021, 0.157) units. Children with Ca PA >95% at 5 and 6 or from 4 to 6 years of age showed higher BMD z-scores at the LS and WB levels than children with Ca PA <95% (p < 0.001 and p < 0.05 for LS and WB BMD, respectively). Ca PA >95% maintained over 2 years explained 26.3% of the LS BMD z-score variation (p < 0.001), increasing it by 0.669 (0.202, 1.137). PA >95% maintained over 3 years explained 24.9% of the LS BMD z-score variation, increasing it by 0.773 (0.282, 1.264). The effects of Ca adequacy on WB BMD were similar. Children with PA >95% over 2 years had an Odds ratio of 13.84 and 12 for osteopenia at the LS and WB levels, respectively (p = 0.001). Long periods of adequate Ca intake in childhood increase BMD and reduce osteopenia risk. The Childhood Obesity Project clinical trial (CHOP) was registered at clinicaltrials.gov as NCT00338689. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Omoumi, P; Babel, H; Jolles, B M; Favre, J
2017-11-01
This study aimed to compare subchondral bone mineral density (sBMD) between non-radiographic osteoarthritic (OA) and medial femorotibial OA knees, using computed tomography (CT). CT exams from 16 non-radiographic OA (KL grade < 2) and 16 severe medial OA (KL grade ≥ 3) knees (average age of 61.7 ± 3 and 62.2 ± 5 years old respectively, 50% male in each group), were retrospectively analyzed. CT exams were segmented and 3D maps of sBMD based on the CT number in the most superficial 3 mm of femoral and tibial subchondral bone were computed. Average sBMD and medial-to-lateral sBMD ratios were calculated for total load-bearing regions and for sub-regions of interest in the femur and tibia. The analysis of total load-bearing regions did not reveal any significant difference between groups, except for the lateral tibia, where OA knees had lower sBMD. Sub-regional analysis unveiled differences with some sub-regions of the femur and tibia presenting significantly lower (in the lateral compartment) or higher (in the medial compartment) sBMD in OA knees compared to non-OA knees. The M/L sBMD ratios were significantly higher for OA knees compared to non-OA knees for all regions and sub-regions, except for the internal sub-regions. sBMD locally differs between non-OA and OA knees, in agreement with prior knowledge on biomechanics. CT proved to be a valuable tool for 3D analysis of femoral and tibial sBMD, which can be used in future studies to describe the chronology of sBMD alterations and improve our understanding of the role of subchondral bone in knee OA. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Wang, Man-Ying; Salem, George J
2004-06-01
The relations among the reaction forces engendered during an upper-extremity dynamic impact-loading exercise (DILE) program and bone mineral density adaptations (DeltaBMD) in the radius were investigated in 24 healthy premenopausal women (mean age = 29 +/- 6 years). Subjects performed DILE 36 cycles/day, 3 days/week for 24 weeks. The exercised arm was allocated randomly to either the dominant or the nondominant limb. In addition, subjects were assigned randomly into either damped or nondamped treatment arms to examine the effects of both higher- and lower-magnitude loading prescriptions. Measurements including anthropometrics, self-reported physical activity levels, hand-grip strength, radial BMD (DEXA, Hologic QDR1500, MA) at the ultradistal radius (UD), distal 1/3 radius (DR), and total distal radius (TOTAL), and exercise-related loading characteristics (impact load, loading rate, and impulse) were recorded at baseline and at 6 months. Simple linear regression models were used to fit the regional BMD changes to the reaction force, changes in hand-grip strength (DeltaGRIP), and changes in body weight (DeltaBW). Findings demonstrated that the damping condition utilized during DILE influenced the relations between loading events and BMD changes. Specifically, none of the reaction-force characteristics significantly predicted changes in BMD in participants performing DILE using the damped condition, whereas, in the nondamped condition, impact load accounted for 58% of the variance in BMD change at DR and 66% of the variance in BMD change at TOTAL. Thresholds of 345 and 285 N of impact force to promote BMD increases at DR and TOTAL, respectively, were obtained from the regression models in the nondamped group. Impulse was also an independent predictor of BMD changes at TOTAL, accounting for 56% of the variance. Neither DeltaGRIP nor DeltaBW significantly predicted DeltaBMD at any radial site. These findings, in young adult women, parallel previous reports identifying significant, regionally specific relations among external loading events and BMD changes in both animal and human models.
Sahni, Shivani; Tucker, Katherine L.; Kiel, Douglas P.; Quach, Lien; Casey, Virginia A.; Hannan, Marian T.
2013-01-01
Purpose To examine associations of milk, yogurt, cheese, cream, most dairy (total dairy without cream) and fluid dairy (milk+yogurt) with bone density (BMD) at femoral neck (FN), trochanter (TR) and spine, and with incident hip fracture over 12-y follow-up in the Framingham Offspring Study. Methods 3,212 participants completed a food frequency questionnaire (1991–1995 or 1995–1998) and were followed for hip fracture until 2007. 2,506 participants had DXA BMD (1996–2001). Linear regression was used to estimate adjusted mean BMD while Cox-proportional hazards regression was used to estimate adjusted hazard ratios (HR) for hip fracture risk. Final models simultaneously included dairy foods adjusting for each other. Results Mean baseline age was 55 (±1.6)y, range: 26–85). Most dairy intake was positively associated with hip and spine BMD. Intake of fluid dairy and milk were related with hip but not spine BMD. Yogurt intake was associated with TR-BMD alone. Cheese and cream intakes were not associated with BMD. In final models, yogurt intake remained positively associated with TR-BMD, while cream tended to be negatively associated with FN-BMD. Yogurt intake showed a weak protective trend for hip fracture [HR(95%CI): ≤4 serv/wk: 0.46 (0.21–1.03) vs. >4 serv/wk: 0.43 (0.06–3.27)]. No other dairy groups showed a significant association (HRs range: 0.53–1.47) with limited power (n, fractures=43). Conclusion Milk and yogurt intakes were associated with hip but not spine BMD, while cream may adversely influence BMD. Thus, not all dairy products are equally beneficial for the skeleton. Suggestive fracture results for milk and yogurt intakes need further confirmation. PMID:23371478
Ho-Pham, Lan T; Nguyen, Sing C; Tran, Bich; Nguyen, Tuan V
2015-07-01
Bone mineral density (BMD) is under strong genetic regulation, but it is not clear which genes are involved in the regulation, particularly in Asian populations. This study sought to determine the association between 29 genes discovered by Caucasian-based genome-wide association studies and BMD in a Vietnamese population. The study involved 564 Vietnamese men and women aged 18 years and over (average age: 47 years) who were randomly sampled from the Ho Chi Minh City. BMD at the femoral neck, lumbar spine, total hip and whole body was measured by DXA (Hologic QDR4500, Bedford, MA, USA). Thirty-two single nucleotide polymorphisms (SNPs) in 29 genes were genotyped using Sequenom MassARRAY technology. The magnitude of association between SNPs and BMD was analyzed by the linear regression model. The Bayesian model average method was used to identify SNPs that are independently associated with BMD. The distribution of genotypes of all, but two, SNPs was consistent with the Hardy-Weinberg equilibrium law. After adjusting for age, gender and weight, 3 SNPs were associated with BMD: rs2016266 (SP7 gene), rs7543680 (ZBTB40 gene), and rs1373004 (MBL2/DKK1 gene). Among the three genetic variants, the SNP rs2016266 had the strongest association, with each minor allele being associated with ~0.02 g/cm(2) increase in BMD at the femoral neck and whole body. Each of these genetic variant explained about 0.2 to 1.1% variance of BMD. All other SNPs were not significantly associated with BMD. These results suggest that genetic variants in the SP7, ZBTB40 and MBL2/DKK1 genes are associated with BMD in the Vietnamese population, and that the effect of these genes on BMD is likely to be modest. Copyright © 2015 Elsevier Inc. All rights reserved.
Organization and results of student pharmacist bone mineral density screenings in women.
Harris, Adam C; Doucette, William R; Reist, Jeffery C; Nelson, Kathryn E
2011-01-01
To describe the organization and results of student pharmacist-run screenings of bone mineral density (BMD) among women living in the community. Iowa City from March 2008 to April 2009. Student pharmacists operated a BMD screening service at several community-based screening events, including university-sponsored health fairs and community pharmacy events. Interested individuals were invited to have their BMD screened; however, only women aged 21 years or older were asked to participate in the data collection. A risk factor form was completed by consenting participants before BMD screening using a quantitative ultrasound densitometer. Upon screening completion, T- and Z-scores were recorded and participants were counseled on their results. Student pharmacists worked to increase public awareness of bone health through the organization of BMD screenings. Working with faculty, a training process and screening-flow outline were developed to allow students to conduct the BMD screenings independently while adding to their education and increasing public health awareness in a community setting. T- and Z-scores from BMD screenings. Eight student pharmacist-organized BMD screenings were conducted during the course of 14 months. A total of 322 women participated in the screenings and data collection. The mean (±SD) T- and Z-scores for these participants were 0.03 ± 1.30 and 0.52 ± 1.13, respectively. A total of 62 (19.4%) women screened had an increased risk of fracture based on a T-score of -1 or less, whereas approximately two-thirds of all women had better-than-average BMD. Student pharmacists provided the community with free screenings that brought BMD scores to the attention of hundreds of women. Counseling sessions that accompanied the screenings contributed to the women learning more about their risks for osteoporosis. Based on these student pharmacist-run BMD screenings, we encourage other student pharmacist organizations to conduct similar screenings.
Bone mineral density and mortality in elderly men and women: the Rotterdam Study.
Van Der Klift, M; Pols, H A P; Geleijnse, J M; Van Der Kuip, D A M; Hofman, A; De Laet, C E D H
2002-04-01
Recent studies have shown that a low bone mineral density (BMD) is associated with a higher risk of mortality. Most studies have investigated this relationship in women only and presented their risk estimates per standard deviation change in BMD. However, when using this approach, a BMD threshold might be missed when relative risks are presented in the traditional manner. Therefore, in this study our aim was to model the relation between BMD and all-cause mortality. In the Rotterdam Study, follow-up was complete for 5819 men and women aged > or =55 years for whom BMD data were available. During an average follow-up of 5.4 years, 399 men and 317 women died. We calculated BMD Z scores using measurements performed at the femoral neck. Cox proportional hazards regression was used to fit the model. An average BMD, reflected by a Z score = 0, was used as the reference. For women, no significant relationship between BMD and overall mortality was observed. For men, however, a cubic model best fitted the relationship under study, also after adjusting for age and body mass index (BMI). The risk of mortality increased when BMD was below average. Similar results were found when separate curves were made for diabetics and nondiabetics, smokers (ever or never), and tertiles of BMI. Excluding subjects who had suffered hip fractures, or adjusting for the number of drugs used and for lower limb disability, essentially did not change results. This suggests that low BMD is not mainly due to morbidity and impaired mobility in our cohort, which makes this a less likely explanation for the observed relation with mortality. The results of our study suggest that, in men, a nonlinear relationship between BMD and mortality exists, which is independent of comorbidity, whereas, in women, no significant relationship was observed.
Greenway, Kathleen G; Walkley, Jeff W; Rich, Peter A
2015-01-01
Osteoporosis is common, and physical activity is important in its prevention and treatment. Of the categories of historical physical activity (PA) examined, we found that weight-bearing and very hard physical activity had the strongest relationships with areal bone mineral density (aBMD) throughout growth and into adulthood, while for measures of strength, only grip strength proved to be an independent predictor of aBMD. To examine relationships between aBMD (total body, lumbar spine, proximal femur, tibial shaft, distal radius) and estimates of historical PA, current strength, and cardiovascular fitness in adult premenopausal women. One hundred fifty-two adult premenopausal women (40 ± 9.6 years) undertook aBMD (dual-energy X-ray absorptiometry (DXA)) and completed surveys to estimate historical physical activity representative of three decades (Kriska et al. [1]), while subsets underwent functional tests of isokinetic strength (hamstrings and quadriceps), grip strength (hand dynamometer), and maximum oxygen uptake (MaxV02; cycle ergometer). Historical PA was characterized by demand (metabolic equivalents, PA > 3 METS; PA > 7 METS) and type (weight-bearing; high impact). Significant positive independent predictors varied by decade and site, with weight-bearing exercise and PA > 3 METS significant for the tibial shaft (10-19 decade) and only PA > 7 METS significant for the final two decades (20-29 and 30-39 years; total body and total hip). A significant negative correlation between high impact activity and tibial shaft aBMD appeared for the final decade. For strength measures, only grip strength was an independent predictor (total body, total hip), while MaxV02 provided a significant independent prediction for the tibial shaft. Past PA > 7 METS was positively associated with aBMD, and such activity should probably constitute a relatively high proportion of all weekly PA to positively affect aBMD. The findings warrant more detailed investigations in a prospective study, specifically also investigating the potentially negative effects of high impact PA on tibial aBMD.
Rauma, P H; Pasco, J A; Berk, M; Stuart, A L; Koivumaa-Honkanen, H; Honkanen, R J; Hodge, J M; Williams, L J
2015-06-01
Both depression and use of antidepressants have been negatively associated with bone mineral density (BMD) but mainly in studies among postmenopausal women. Therefore, the aim of this study was to investigate these relationships in men. Between 2006 and 2011, 928 men (aged 24-98 years) from the Geelong Osteoporosis Study completed a comprehensive questionnaire, clinical measurements and had BMD assessments at the forearm, spine, total hip and total body. Major depressive disorder (MDD) was identified using a structured clinical interview (SCID-I/NP). The cross-sectional associations between BMD and both MDD and antidepressant use were analyzed using multivariable linear regression. Of the study population, 84 (9.1%) men had a single MDD episode, 50 (5.4%) had recurrent episodes and 65 (7.0%) were using antidepressants at the time of assessment. Following adjustments, recurrent MDD was associated with lower BMD at the forearm and total body (-6.5%, P=0.033 and -2.5%, P=0.033, respectively compared to men with no history of MDD), while single MDD episodes were associated with higher BMD at the total hip (+3.4%, P=0.030). Antidepressant use was associated with lower BMD only in lower-weight men (<75-110 kg depending on bone site). Both depression and use of antidepressants should be taken into account as possible risk factors for osteoporosis in men.
USDA-ARS?s Scientific Manuscript database
Background: Tenofovir disoproxil fumarate (TDF) decreases bone mineral density (BMD). We hypothesized vitamin D3 (VITD3) would increase BMD in adolescents/young adults receiving TDF. Methods: Randomized double-blind placebo-controlled trial of directly observed VITD3 50,000 IU vs. placebo every 4 ...
ERIC Educational Resources Information Center
Goodarzi, Mahmood; Hemayattalab, Rasool
2012-01-01
The purpose of this study was to investigate the effects of weight bearing exercise and calcium intake on bone mineral density (BMD) of students with autism spectrum disorders. For this reason 60 boy students with autism disorder (age 8-10 years old) were assigned to four groups with no differences in age, BMD, calcium intake, and physical…
USDA-ARS?s Scientific Manuscript database
Polyunsaturated fatty acids (PUFA) may influence bone health. Our objective was to examine associations between plasma phosphatidylcholine (PC) PUFA concentrations and hip measures: 1) femoral neck bone mineral density (FN-BMD) (n=765); 2) 4-y change in FN-BMD (n=556); and 3) hip fracture risk (n=76...
Kim, Yang-Hyun; Cho, Kyung-Hwan; Choi, Youn Seon; Kim, Seon-Mee; Nam, Ga-Eun; Lee, Seung-Hwan; Ko, Byung-Joon; Park, Yong-Gyu; Han, Kyung Do; Lee, Kyung-Shik; Kim, Do-Hoon
2013-01-01
We examined the relationships between bone mineral density (BMD) and metabolic syndrome in 6,659 men and 7,826 women from South Korean. After adjusting for age, body mass index (BMI), tobacco and alcohol use, and regular exercise, low BMD is especially associated with metabolic syndrome in South Korean men. This study examined the relationships between BMD and metabolic syndrome (MS) in South Korean adults. A total of 14,485 adults (6,659 men and 7,826 women) in the Korea National Health and Nutrition Examination Survey conducted from 2008 to 2010 were analyzed. We used multivariable regression models to examine the relationship between low BMD and MS. We calculated homeostasis model assessment and insulin resistance (HOMA-IR). MS was defined according to AHA/NHLBI criteria for Asians. BMD was measured at the lumbar spine (LS), femur neck (FN), total hip (TH), trochanter, and intertrochanter. After adjustment for age, BMI, tobacco and alcohol use, and regular exercise, the TH and FN BMD were significantly lower in men with MS than in men without MS (p < 0.05). However, there were no differences in premenopausal and postmenopausal women. In men, BMD was positively correlated with BMI, and high density lipoprotein cholesterol, but was negatively correlated with insulin, HOMA-IR, and triglyceride at all three sites (p < 0.05). Along with an increase of BMD (0.1 g/cm²), the odds ratios (ORs) for obesity and abdominal obesity were all greater than 1 at all sites in both genders. The ORs for hypertension and MS were 0.937 (0.879-0.998) and 0.899 (0.840-0.962), respectively at FN, and the OR for diabetes mellitus was 1.103 (1.017-1.196) at LS in men. In postmenopausal women, the OR for hypertension was 1.133 (1.029-1.246) at LS. Low BMD was especially associated with MS in South Korean men.
Penile density and globally used chemicals in Canadian and Greenland polar bears.
Sonne, Christian; Dyck, Markus; Rigét, Frank F; Beck Jensen, Jens-Erik; Hyldstrup, Lars; Letcher, Robert J; Gustavson, Kim; Gilbert, M Thomas P; Dietz, Rune
2015-02-01
Industrially produced chemicals have been a major environmental concern across our entire Globe since the onset of rapid industrial development around the early 1900. Many of the substances being used are known to be endocrine disrupting chemicals (EDCs) and are also known to be long-range dispersed and to biomagnify to very high concentrations in the tissues of Arctic apex predators such as polar bears (Ursus maritimus). A major concern relating to EDCs is their effects on vital organ-tissues such as bone and it is possible that EDCs represent a more serious challenge to the species' survival than the more conventionally proposed prey reductions linked to climate change. We therefore analyzed penile bone mineral density (BMD) as a key phenotype for reproductive success in 279 polar bear samples born 1990-2000 representing eight polar bear subpopulations. Since EDC concentrations were not available from the same specimens, we compared BMD with published literature information on EDC concentrations. Latitudinal and longitudinal BMD and EDC gradients were clearly observed, with Western Hudson bears having the highest BMD and lowest EDCs, and North East Greenland polar bears carrying the lowest BMD and highest EDCs. A BMD vs. polychlorinated biphenyls (PCB) regression analysis showed that BMD decreased as a function of the eight subpopulations' PCB concentrations and this relationship was close to being significant (p=0.10, R(2)=0.39). Risk quotient (RQ) estimation demonstrated that PCBs could be in a range that may lead to disruption of normal reproduction and development. It is therefore likely that EDCs directly affect development and bone density in polar bears. Canadian bears had in general the best health and the North East Greenland subpopulation being at the highest risk of having negative health effects. While reductions in BMD is in general unhealthy, reductions in penile BMD could lead to increased risk of species extinction because of mating and subsequent fertilization failure as a result of weak penile bones and risk of fractures. Based on this, future studies should assess how polar bear subpopulations respond upon EDC exposure since information and understanding about their circumpolar reproductive health is vital for future conservation. Copyright © 2014 Elsevier Inc. All rights reserved.
Wang, W; Huang, S; Hou, W; Liu, Y; Fan, Q; He, A; Wen, Y; Hao, J; Guo, X; Zhang, F
2017-10-01
Several genome-wide association studies (GWAS) of bone mineral density (BMD) have successfully identified multiple susceptibility genes, yet isolated susceptibility genes are often difficult to interpret biologically. The aim of this study was to unravel the genetic background of BMD at pathway level, by integrating BMD GWAS data with genome-wide expression quantitative trait loci (eQTLs) and methylation quantitative trait loci (meQTLs) data METHOD: We employed the GWAS datasets of BMD from the Genetic Factors for Osteoporosis Consortium (GEFOS), analysing patients' BMD. The areas studied included 32 735 femoral necks, 28 498 lumbar spines, and 8143 forearms. Genome-wide eQTLs (containing 923 021 eQTLs) and meQTLs (containing 683 152 unique methylation sites with local meQTLs) data sets were collected from recently published studies. Gene scores were first calculated by summary data-based Mendelian randomisation (SMR) software and meQTL-aligned GWAS results. Gene set enrichment analysis (GSEA) was then applied to identify BMD-associated gene sets with a predefined significance level of 0.05. We identified multiple gene sets associated with BMD in one or more regions, including relevant known biological gene sets such as the Reactome Circadian Clock (GSEA p-value = 1.0 × 10 -4 for LS and 2.7 × 10 -2 for femoral necks BMD in eQTLs-based GSEA) and insulin-like growth factor receptor binding (GSEA p-value = 5.0 × 10 -4 for femoral necks and 2.6 × 10 -2 for lumbar spines BMD in meQTLs-based GSEA). Our results provided novel clues for subsequent functional analysis of bone metabolism, and illustrated the benefit of integrating eQTLs and meQTLs data into pathway association analysis for genetic studies of complex human diseases. Cite this article : W. Wang, S. Huang, W. Hou, Y. Liu, Q. Fan, A. He, Y. Wen, J. Hao, X. Guo, F. Zhang. Integrative analysis of GWAS, eQTLs and meQTLs data suggests that multiple gene sets are associated with bone mineral density. Bone Joint Res 2017;6:572-576. © 2017 Wang et al.
Pilot study of bone mineral density in breast cancer patients treated with adjuvant chemotherapy
NASA Technical Reports Server (NTRS)
Headley, J. A.; Theriault, R. L.; LeBlanc, A. D.; Vassilopoulou-Sellin, R.; Hortobagyi, G. N.
1998-01-01
The objective of this cross-sectional study was to determine lumbar spine bone mineral density (BMD) in breast cancer patients previously treated with adjuvant chemotherapy. Sixteen of 27 patients who received adjuvant chemotherapy became permanently amenorrheic as a result of chemotherapy. BMD was measured at the lumbar spine using dual energy X-ray absorptiometry (DEXA). Chemotherapy drugs and dosages along with a history of risk factors for reduced bone density including activity level, tobacco and/or alcohol use, metabolic bone disease, family history, and hormone exposure were identified. Results showed that women who became permanently amenorrheic as a result of chemotherapy had BMD 14% lower than women who maintained menses after chemotherapy. Chemotherapy-treated women who maintained ovarian function had normal BMD. This study suggests that women who have premature menopause as a result of chemotherapy for breast cancer are at increased risk of bone loss and may be at risk for early development of osteoporosis. Women who maintain menses do not appear to be at risk for accelerated trabecular bone loss.
Finnilä, Sami; Moritz, Niko; SvedströM, Erkki; Alm, Jessica J; Aro, Hannu T
2016-02-01
Low bone mineral density (BMD) may jeopardize the initial component stability and delay osseointegration of uncemented acetabular cups in total hip arthroplasty (THA). We measured the migration of uncemented cups in women with low or normal BMD. We used radiostereometric analysis (RSA) to measure the migration of hydroxyapatite-coated titanium alloy cups with alumina-on-alumina bearings in THA of 34 female patients with a median age of 64 (41-78) years. 10 patients had normal BMD and 24 patients had low systemic BMD (T-score ≤ -1) based on dual-energy X-ray absorptiometry (DXA). Cup migration was followed with RSA for 2 years. Radiographic follow-up was done at a median of 8 (2-10) years. Patients with normal BMD did not show a statistically significant cup migration after the settling period of 3 months, while patients with low BMD had a continuous proximal migration between 3 and 12 months (p = 0.03). These differences in cup migration persisted at 24 months. Based on the perceived risk of cup revision, 14 of the 24 cases were "at risk" (proximal translation of 0.2 to 1.0 mm) in the low-BMD group and 2 of the 10 cases were "at risk" in the normal-BMD group (odds ratio (OR) = 8.0, 95% CI: 1.3-48). The radiographic follow-up showed no radiolucent lines or osteolysis. 2 cups have been revised for fractures of the ceramic bearings, but none for loosening. Low BMD contributed to cup migration beyond the settling period of 3 months, but the migrating cups appeared to osseointegrate eventually.
Low bone mineral density and associated risk factors in HIV-infected patients
Chiţu-Tișu, Cristina-Emilia; Barbu, Ecaterina-Constanţa; Lazăr, Mihai; Ion, Daniela Adriana; Bădărău, Ioana Anca
2016-01-01
Background Aging of persons with human immunodeficiency virus (HIV) resulted in high rates of osteopenia and osteoporosis. Multiple cohort studies have reported an increased prevalence of bone demineralization among HIV-infected individuals. The aim of this study was to evaluate bone mineral density (BMD) and risk factors for osteopenia/osteoporosis among HIV-positive patients attending the National Institute for Infectious Diseases “Prof.Dr. Matei Balș”, Bucharest, Romania. Methods We performed a cross-sectional study that enrolled 60 patients with HIV. The association between BMD and lifestyle habits (smoking), body mass index (BMI), nadir cluster of differentiation 4 (CD4) cell count, current CD4 cell count, HIV viral load and history of combination antiretroviral therapy (cART) were investigated. The BMD was measured at the lumbar spine, hips and total body using dual-energy X-ray absorptiometry (DEXA). Results In the present study, DEXA evaluation showed an overall prevalence of osteoporosis of 16.66% (ten patients) and a prevalence of osteopenia of 48.33% (29 patients). In men, low BMI and cigarette smoking showed significant association with the diagnosis of lumbar spine demineralization (p=0.034 and p=0.041, respectively). Duration of exposure to cART classes in relation to BMD was also evaluated. The use of non-nucleoside reverse-transcriptase inhibitors (NNRTIs) was associated with low lumbar spine BMD in all patients (p=0.015). Reduced BMD was significantly associated with protease inhibitors (PIs)-containing treatment (p=0.043) in women. Conclusion At lumbar spine DEXA, male gender was statistically associated with reduced BMD. At the left hip Ward’s area, decreased BMD T scores were significantly associated with aging. The reduced BMD was higher in patients receiving PI- or NNRTI-containing regimens. PMID:27482514
Brozgol, Marina; Arbiv, Mira; Mirelman, Anat; Herman, Talia; Hausdorff, Jeffrey M; Vaisman, Nachum
2017-05-01
Osteoporosis is a systemic skeletal disease that is characterized by reduced bone mass, deterioration of bone tissue and skeletal fragility. The purpose of the current study was to determine whether asymmetrical femur bone mineral density (BMD) is associated with asymmetrical gait and standing. We compared measures of gait and standing asymmetry in subjects with (n=38) and without (n=11) significant left-right differences in BMD. Participants walked for 72m at their comfortable speed and stood quietly for 60s while outfitted with pressure-sensitive insoles. Based on the pressure measurements, indices of standing and gait asymmetry were determined. Gait Asymmetry (GA) indices of maximum ground reaction force (GRF) and stance time were significantly higher in the asymmetrical BMD group, compared to the symmetrical group (p<0.03). During quiet standing, maximal GRF was twice as high in those with BMD asymmetry, compared to those without, although this difference was not statistically significant (p=0.10). These preliminary findings indicate that femur BMD asymmetry and gait asymmetry are interrelated in otherwise healthy adults. Nutrition, metabolism and lifestyle are known contributors to BMD; typically, they affect bone health symmetrically. We suggest, therefore, that the BMD asymmetry may be due to previous changes in the loading pattern during walking that might have led to asymmetric bone deterioration. Future larger scale and prospective studies are needed to identify the mechanisms underlying the relationship between standing, gait and BMD and to explore whether gait training and exercises that target gait symmetry might help to reduce BMD asymmetry. Copyright © 2017 Elsevier B.V. All rights reserved.
Lee, Chin; Almagor, Orit; Dunlop, Dorothy D; Chadha, Anurekha B; Manzi, Susan; Spies, Stewart; Ramsey-Goldman, Rosalind
2007-05-15
To determine the association between race/ethnicity and bone mineral density (BMD) in women with systemic lupus erythematosus (SLE). Women with SLE (n = 298), including 77 African Americans and 221 whites, completed this cross-sectional study conducted from 1996 to 2002. Hip and lumbar spine BMD were measured by dual-energy x-ray absorptiometry. Study participants completed a self-administered questionnaire and a physician completed the Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index (SDI). BMD results were expressed as Z scores. Analyses were performed to identify factors, including race/ethnicity, associated with low BMD defined as a Z score -1.0 or less at the hip or lumbar spine. African Americans compared with whites were younger at study visit (mean +/- SD 39.7 +/- 8.4 years versus 42.9 +/- 11.6 years) and had higher SDI (mean +/- SD 1.8 +/- 2.0 versus 1.0 +/- 1.6), but similar proportions of women were postmenopausal (31.2% versus 38.0%). African Americans had significantly lower mean BMD Z scores at the hip (-0.49 versus -0.07; group difference -0.41; 95% confidence interval [95% CI] -0.70, -0.13) and at the lumbar spine (-1.03 versus 0.10; group difference -1.13; 95% CI -1.48, -0.78) compared with whites. African American race/ethnicity was strongly associated with low BMD at the lumbar spine (adjusted odds ratio 4.42; 95% CI 2.19, 8.91) but not at the hip, adjusting for factors associated with low BMD. African American women compared with white women with SLE had lower BMD at the hip and lumbar spine. African American race/ethnicity was associated with low BMD at the lumbar spine controlling for relevant clinical covariates.
Abraham, Bincy P; Prasad, Preethi; Malaty, Hoda M
2014-08-01
As several factors can contribute to low bone mineral density (BMD), we investigated the role of vitamin D in low BMD while controlling for other risk factors in inflammatory bowel diseases (IBD) patients. We conducted a prospective cross-sectional study between 2008 and 2012 in adult IBD patients. Demographic data including age, gender, ethnicity, BMI, along with disease type and location, vitamin D levels, prior corticosteroid use, and anti-TNF use were recorded and evaluated with DEXA results. A total of 166 patients [105 Crohn's disease (CD), 61 ulcerative colitis (UC)] qualified for the study. Low BMD was found in 40%, twice as frequently in CD than in UC (p = 0.048). Higher prevalence of low BMD was associated with those of male gender (p = 0.05), Asian ethnicity (p = 0.02), and history of corticosteroid use (p = 0.001). Age, body mass index, or disease location did not increase the risk of low BMD. The overall prevalence of low vitamin D was 60%, with insufficiency (25-hydroxy levels between 20 and 30 ng/mL) found in 37% and deficiency (levels <20 ng/mL) found in 23% of the patients. Vitamin D insufficient and deficient patients were two times (p = 0.049) and almost 3 times (p = 0.02) as likely to have low BMD, respectively. Low vitamin D, male gender, Asian ethnicity, CD, and corticosteroid use significantly increased the risk of having low BMD, while age and disease location did not affect BMD in our IBD population. It remains important to evaluate for vitamin D nutritional deficiency and limit corticosteroid use to help prevent low BMD in IBD patients.
Parsons, Claire A; Mroczkowski, H Joel; McGuigan, Fiona E A; Albagha, Omar M E; Manolagas, Stavros; Reid, David M; Ralston, Stuart H; Shmookler Reis, Robert J
2005-11-01
Bone mineral density (BMD) is a complex trait with a strong genetic component and an important predictor of osteoporotic fracture risk. Here we report the use of a cross-species strategy to identify genes that regulate BMD, proceeding from quantitative trait mapping in mice to association mapping of the syntenic region in the human genome. We identified a quantitative trait locus (QTL) on the mouse X-chromosome for post-maturity change in spine BMD in a cross of SAMP6 and AKR/J mice and conducted association mapping of the syntenic region on human chromosome Xp22. We studied 76 single nucleotide polymorphisms (SNP) from the human region in two sets of DNA pools prepared from individuals with lumbar spine-BMD (LS-BMD) values falling into the top and bottom 13th percentiles of a population-based study of 3100 post-menopausal women. This procedure identified a region of significant association for two adjacent SNP (rs234494 and rs234495) within the Xp22 locus (P<0.001). Individual genotyping for rs234494 in the BMD pools confirmed the presence of an association for alleles (P=0.018) and genotypes (P=0.008). Analysis of rs234494 and rs234495 in 1053 women derived from the same population who were not selected for BMD values showed an association with LS-BMD for rs234495 (P=0.01) and for haplotypes defined by both SNP (P=0.002). Our study illustrates that interspecies synteny can be used to identify and refine QTL for complex traits and represents the first example where a human QTL for BMD regulation has been mapped using this approach.
Xu, Haiqing; Zhao, Zhiwei; Wang, Hong; Ding, Ming; Zhou, Aiqin; Wang, Xiaoyan; Zhang, Ping; Duggan, Christopher; Hu, Frank B.
2013-01-01
Background Bone mineral density (BMD) increases progressively during childhood and adolescence and is affected by various genetic and environmental factors. The aim of this study was to establish reference values for lumbar BMD in healthy Chinese infants and young children and investigate its influencing factors. Methods and Findings Healthy children aged 0 to 3 years who underwent regular physical examinations at the Child Health Care Clinic of Hubei Maternal and Child Health Hospital (N = 11,898) were recruited for this study. We also chose 379 preterm infants aged 0 to 1 years to preliminarily explore the development of BMD in this special population. BMD (g/cm2) measurements of the lumbar spine (L2–L4) were carried out with dual-energy X-ray absorptiometry and a questionnaire was administered to full-term children's parents to gather information on various nutritional and lifestyle factors as well as mothers' nutritional supplement use during pregnancy. Lumbar BMD significantly increased with age among both boys and girls (p<0.05), with fastest growth observed during the first postnatal year. There was no significant difference in lumbar BMD between boys and girls of similar age (p>0.05), either among healthy reference children or preterm infants. However, BMD values in preterm infants were significantly lower than those in term infants 3 to 8 months old (p<0.05) after adjustment for gestational age. Multivariable linear regression analysis indicated significant positive associations between lumbar BMD of healthy children and the child's age and current weight, mother's weight gain during pregnancy, birth weight, children's outdoor activity duration and children's physical activity duration. Conclusion Our study provides reference values of lumbar BMD for healthy Chinese children aged 0 to 3 years and identifies several influencing factors. PMID:24324752
BONE MINERAL DENSITY IN MIDLIFE WOMEN: THE STUDY OF WOMEN’S HEALTH IN QATAR
Gerber, Linda M.; Bener, Abdulbari; Al-Ali, Hala M.; Hammoudeh, Mohammed; Liu, Lyn Q.; Verjee, Mohamud
2015-01-01
Objectives The aim of this study is to investigate bone mineral density (BMD) for a large cross-section of midlife Arab women living in Qatar and to evaluate the association of body mass index, menopause status, and nationality, on BMD of the spine and femur. Study design A cross-sectional study was conducted among women aged 40–60 recruited from nine primary care health centers in Qatar. BMD (g/m2) was assessed at the lumbar spine and the femur. Results The combined prevalence of osteopenia and osteoporosis was 4% at the femur and 16.2% at the spine. BMI and menstrual status were both independently associated with BMD at the spine and at the femur (all p values <0.001). As BMI increased, BMD increased at both the spine and femur. Women who menstruated in the past 12 months had 0.82 g/cm2 and 0.61 g/cm2 greater BMD at the spine and femur, respectively, compared with women who had not menstruated in 12 months. Nationality was not associated with mean BMD of the spine or the femur. Conclusions No significant differences were observed between Qatari and non-Qatari women in terms of mean BMD values at the spine and the femur except for femur in the age group 55–60, where values were lower among non-Qataris (p=0.04). Multivariate analysis showed that BMI and menstrual status were found to be strongly associated with BMD levels at the spine and femur. The high prevalence of obesity observed in this sample may explain the low levels of osteopenia and osteoporosis observed. PMID:25032729
The Influence of Exogenous Fat and Water on Lumbar Spine Bone Mineral Density in Healthy Volunteers
Kim, Kyu-Nam; Kim, Bom-Taeck; Kim, Kwang-Min; Park, Sat-Byul; Joo, Nam-Seok; Je, Sang Hyeon; Kim, Young-Sang
2012-01-01
Purpose Changes in human body composition can affect the accuracy of spine bone mineral density (BMD) measurements. The purpose of this study was to evaluate whether fat and water in the soft tissue of the abdomen influence lumbar spine BMD measurements obtained using dual energy X-ray absorptiometry (DXA). Materials and Methods Duplicate BMD measurements were carried out on healthy volunteers (10 men and 10 women) and the Hologic anthropomorphic spine phantom had on the same day before and after placement of following 3 materials in the abdominal area: lard 900 g, 1.5 cm thick; oil 1.4 liters in a vinyl bag; and water 1.2 liters in a vinyl bag. Results In the case of human participants, following the placement of exogenous water to mimic extracellular fluid (ECF), there was a significant decrease in lumbar spine BMD (-0.012 g/cm2, p=0.006), whereas the placement of exogenous lard and oil to mimic abdominal fat produced a slight increase in lumbar spine BMD (0.006 g/cm2, p=0.301; 0.008 g/cm2, p=0.250, respectively). The average percentage of lumbar spine BMD change with and without exogenous lard, oil, and water showed increase of 0.51%, and 0.67%, and decrease of 1.02%, respectively. Using the phantom, BMD decreased with the placement of both lard (-0.002 g/cm2, p=0.699) and water (-0.006 g/cm2, p=0.153); however, there was no difference in BMD after oil placement. Conclusion These results suggest that in cases where changes in fat and ECF volume are similar, ECF exerts a greater influence than fat on DXA lumbar BMD measurements. PMID:22318815
Bosy-Westphal, Anja; Later, Wiebke; Schautz, Britta; Lagerpusch, Merit; Goele, Kristin; Heller, Martin; Glüer, Claus-C; Müller, Manfred J
2011-07-01
Recent studies report a significant gain in bone mineral density (BMD) after diet-induced weight loss. This might be explained by a measurement artefact. We therefore investigated the impact of intra- and extra-osseous soft tissue composition on bone measurements by dual X-ray absorptiometry (DXA) in a longitudinal study of diet-induced weight loss and regain in 55 women and 17 men (19-46 years, BMI 28.2-46.8 kg/m(2)). Total and regional BMD were measured before and after 12.7 ± 2.2 week diet-induced weight loss and 6 months after significant weight regain (≥30%). Hydration of fat free mass (FFM) was assessed by a 3-compartment model. Skeletal muscle (SM) mass, extra-osseous adipose tissue, and bone marrow were measured by whole body magnetic resonance imaging (MRI). Mean weight loss was -9.2 ± 4.4 kg (P < 0.001) and was followed by weight regain in a subgroup of 24 subjects (+6.3 ± 2.9 kg; P < 0.001). With weight loss, bone marrow and extra-osseous adipose tissue decreased whereas BMD increased at the total body, lumbar spine, and the legs (women only) but decreased at the pelvis (men only, all P < 0.05). The decrease in BMD(pelvis) correlated with the loss in visceral adipose tissue (VAT) (P < 0.05). Increases in BMD(legs) were reversed after weight regain and inversely correlated with BMD(legs) decreases. No other associations between changes in BMD and intra- or extra-osseous soft tissue composition were found. In conclusion, changes in extra-osseous soft tissue composition had a minor contribution to changes in BMD with weight loss and decreases in bone marrow adipose tissue (BMAT) were not related to changes in BMD.
Living near a Freeway is Associated with Lower Bone Mineral Density among Mexican Americans
Chen, Zhanghua; Salam, Muhammad T.; Karim, Roksana; Toledo-Corral, Claudia M.; Watanabe, Richard M.; Xiang, Anny H.; Buchanan, Thomas A.; Habre, Rima; Bastain, Theresa M.; Lurmann, Fred; Taher, Maryam; Wilson, John P.; Trigo, Enrique; Gilliland, Frank D.
2015-01-01
Purpose Adults residing in rural areas have been linked with higher bone mineral density (BMD). We aimed to determine if this difference is due in part to air pollution by examining the relationships between traffic metrics and ambient air pollution with total body and pelvic BMD. Methods Mexican-American adults (n=1,175; mean 34 years; 72% female) who had participated in the BetaGene study of air pollution, obesity and insulin resistance were included in this analysis. Total body and pelvic BMD were estimated using dual-energy X-ray absorptiometry. Traffic and ambient air pollutant exposures were estimated at residences using location and ambient monitoring data. Variance component models were used to analyze the associations between residential distance to the nearest freeway and ambient air pollutants with BMD. Results Residential proximity to a freeway was associated with lower total body BMD (p-trend=0.01) and pelvic BMD (p-trend=0.03) after adjustment for age, sex, weight and height. The adjusted mean total body and pelvic BMD in participants living within 500m of a freeway were 0.02 g/cm2 and 0.03 g/cm2 lower than participants living greater than 1,500m from a freeway. These associations did not differ significantly by age, sex or obesity status. Results were similar after further adjustment for body fat and weekly physical activity minutes. Ambient air pollutants (NO2, O3 and PM2.5) were not significantly associated with BMD. Conclusions Traffic-related exposures in overweight and obese Mexican-Americans may adversely affect BMD. Our findings indicate that long-term exposures to traffic may contribute to the occurrence of osteoporosis and its consequences. PMID:25677718
Bonten, T N; de Mutsert, R; Rosendaal, F R; Jukema, J W; van der Bom, J G; de Jongh, R T; den Heijer, M
2017-10-01
Low-dose aspirin is the cornerstone of secondary prevention of cardiovascular disease. Previous studies suggested that the use of aspirin is associated with an increased fracture risk. However, there is uncertainty whether this is due to an effect of aspirin on bone mineral density (BMD). Between 2008 and 2012, information on medication use and dual X-ray absorptiometry measured vertebral and femoral BMD of 916 participants was collected in the Netherland Epidemiology of Obesity study. The cross-sectional association between chronic low-dose aspirin use and BMD was estimated using linear regression, controlling for demography, body composition, comorbidity and other medication use which could affect BMD. A subgroup analysis in postmenopausal women (n=329) was conducted. After full adjustment, there was no difference between aspirin users and non-users for vertebral BMD (adjusted mean difference: 0.036 (95% CI -0.027 to 0.100) g/cm 2 ) and femoral BMD (adjusted mean difference: 0.001 (-0.067 to 0.069) g/cm 2 ). Also in the subgroup of postmenopausal women, aspirin use was not associated with lower vertebral (adjusted mean difference: 0.069 (-0.046 to 0.184) g/cm 2 ) or femoral BMD (adjusted mean difference: -0.055 (-0.139;0.029) g/cm 2 ). Chronic use of low-dose aspirin is not associated with lower BMD in the general population. The increased risk of fractures observed in aspirin users in previous studies is therefore more likely to be the result of common causes of aspirin use and fractures, but not of direct effects of aspirin on BMD. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
BMD T-Score Values Expeditions 1-23 (n=30)
NASA Technical Reports Server (NTRS)
Sibonga, Jean
2010-01-01
This chart shows the T-Values for the Bone Mass Density (BMD) of three areas of the body (i.e., lumbar spine, femoral neck and trochanter) for both pre-spaceflight and post-spaceflight for 30 subjects.
Bone Research at NASA: Career Pathway to the Space Program
NASA Technical Reports Server (NTRS)
Sibonga, Jean D.
2007-01-01
This viewgraph document is comprised of two presentations about Bone Research at NASA. The first document has slides that show the percent of bone loss from specific bones as demonstrated from research of the Mir cosmonauts, and the required preflight and postflight BMD measurements for long duration flights. The second presentation entitled "Recovery of Spaceflight-induced Bone Loss: Bone Mineral Density after Long-duration Missions as Fitted with an Exponential Function" reviews the recovery of Bone Mineral Density (BMD) after long duration missions. Between 1990 and 2004, 56 missions were flown with 45 crewmembers for an average of 181 days +/- 47 days. For each of these flights the change in BMD was calculated after the flight. The BMD changes were plotted against the number of days for bone recovery after the landing. The plots for the bones that were measured are shown.
Brzóska, M M; Majewska, K; Moniuszko-Jakoniuk, J
2005-10-01
The influence of exposure to cadmium (Cd) during skeletal development on the risk of bone fractures at the stage of skeletal maturity was investigated on a female rat model of human exposure. The tibias of rats treated with 1, 5 or 50 mg Cd/l in drinking water for 3, 6, 9 and 12 months (since weaning) were used. The exposure to Cd dose- and time-dependently influenced the tibia bone mineral density (BMD) and chemical composition. In skeletally matured animals, at each level of the exposure to Cd, the BMD at the whole tibia and its diaphysis as well as the percentage of minerals content in the bone, including the content of zinc, copper and iron, were decreased compared to control. Moreover, in the 50 mg Cd/l group, the percentage of organic components content increased. The Cd-induced changes, at all levels of exposure, resulted in weakening in the yield strength and fracture strength of the tibia (a three-point bending test of the diaphysis and compression test with vertical loading) of the skeletally matured females. A very important and clinically useful finding of this study is that a decrease (even by several percent) in the tibia BMD results in weakness in the bone biomechanical properties and that the BMD may predict the risk of its fracture at the exposure to Cd. Moreover, the results together with our previous findings seem to suggest that tibia, due to higher vulnerability of its diaphysis, compared to the femoral diaphysis, to damage by Cd may be more useful than femur to investigate the effect of Cd on the cortical bone. The present study revealed that a low exposure to Cd (1 mg Cd/l), corresponding to low human environmental exposure, during the skeletal development affects the tibia mineral status leading to weakening in its mechanical properties at the skeletal maturity. The findings allow for the conclusion that environmental exposure to Cd during childhood and adolescence may enhance the risk of low BMD and fractures at adulthood.
Park, Sung Bae; Lee, Yoon Jin; Chung, Chun Kee
2010-10-01
This study describes a method for inducing osteopenia using bilateral ovariectomy (OVX), which causes significant changes in bone mineral density (BMD) in rats. Twenty-five 10-week-old female Sprague Dawley rats were used. Five rats were euthanized after two weeks, and BMD was measured in their femora. The other 20 rats were assigned to one of two groups : a sham group (n = 10), which underwent a sham operation, and an OVX group (n = 10), which underwent bilateral OVX at 12 weeks of age. After six weeks, five rats from each group were euthanized, and BMD was measured in their femora. The same procedures were performed in the remaining rats form each group eight weeks later. The femur BMD was significantly lower in the six-week OVX group than in the six-week sham group, and in the eight-week OVX group than in the eight-week sham group. Bilateral OVX is a safe method for creating an osteopenic rat model. The significant decrease in BMD appears six weeks after bilateral OVX.
Hubert, Grace; Chung, Theresa Tam; Prosser, Connie; Lien, Dale; Weinkauf, Justin; Brown, Neil; Goodvin, Marianne; Jackson, Kathy; Tabak, Joan; Salgado, Josette; Alzaben, Abeer Salman; Mager, Diana R
2016-12-01
Patients with cystic fibrosis (CF) often experience low bone mineral density (BMD) pre- and post-lung transplantation (LTX). The study purpose was to describe BMD and micronutrient status in adults with CF pre- and post-LTX. Twelve patients with CF (29 ± 8 years) were recruited from the CF clinic at the University of Alberta Lung Transplant Program. BMD and vitamins A, D, E, K status, and parathyroid hormone were measured pre- and post-LTX. No significant differences pre- and post-LTX were observed at the different bone sites measured (lumber-spine, femoral-neck (FN), hip, and femoral-trochlea) (P > 0.05). BMD T-scores (<-2) was present in lumbar-spine, FN, hip, and femoral-trochlea in 33%, 17%, 17%, and 25% of individuals pre-LTX and 58%, 33%, 58%, and 33% of individuals post-LTX, respectively. More than 50% of patients had suboptimal vitamin K levels (PIVKA-II values >3 ng/mL) pre- and post-LTX. Adults with CF pre- and post-LTX had reduced BMD and suboptimal vitamin K status.
Xiong, Dong-Hai; Shen, Hui; Zhao, Lan-Juan; Xiao, Peng; Yang, Tie-Lin; Guo, Yan; Wang, Wei; Guo, Yan-Fang; Liu, Yong-Jun; Recker, Robert R; Deng, Hong-Wen
2007-01-01
Many “novel” osteoporosis candidate genes have been proposed in recent years. To advance our knowledge of their roles in osteoporosis, we screened 20 such genes using a set of high-density SNPs in a large family-based study. Our efforts led to the prioritization of those osteoporosis genes and the detection of gene–gene interactions. Introduction We performed large-scale family-based association analyses of 20 novel osteoporosis candidate genes using 277 single nucleotide polymorphisms (SNPs) for the quantitative trait BMD variation and the qualitative trait osteoporosis (OP) at three clinically important skeletal sites: spine, hip, and ultradistal radius (UD). Materials and Methods One thousand eight hundred seventy-three subjects from 405 white nuclear families were genotyped and analyzed with an average density of one SNP per 4 kb across the 20 genes. We conducted association analyses by SNP- and haplotype-based family-based association test (FBAT) and performed gene–gene interaction analyses using multianalytic approaches such as multifactor-dimensionality reduction (MDR) and conditional logistic regression. Results and Conclusions We detected four genes (DBP, LRP5, CYP17, and RANK) that showed highly suggestive associations (10,000-permutation derived empirical global p ≤ 0.01) with spine BMD/OP; four genes (CYP19, RANK, RANKL, and CYP17) highly suggestive for hip BMD/OP; and four genes (CYP19, BMP2, RANK, and TNFR2) highly suggestive for UD BMD/OP. The associations between BMP2 with UD BMD and those between RANK with OP at the spine, hip, and UD also met the experiment-wide stringent criterion (empirical global p ≤ 0.0007). Sex-stratified analyses further showed that some of the significant associations in the total sample were driven by either male or female subjects. In addition, we identified and validated a two-locus gene–gene interaction model involving GCR and ESR2, for which prior biological evidence exists. Our results suggested the prioritization of osteoporosis candidate genes from among the many proposed in recent years and revealed the significant gene–gene interaction effects influencing osteoporosis risk. PMID:17002564
Birtane, Murat; Ekuklu, Galip; Cermik, Fikret; Tuna, Filiz; Kokino, Siranus
2008-01-01
Purpose Efforts for the early detection of bone loss and subsequent fracture risk by quantitative ultrasound (QUS), which is a non-invasive, radiation free, and cheaper method, seem rational to reduce the management costs. We aimed in this study to assess the probable correlation of speed of sound (SOS) values obtained by QUS with bone mineral density (BMD) as measured by the gold standard method, dual energy X-ray absorptiometry (DEXA), and to investigate the diagnostic value of QUS to define low BMD. Materials and Methods One hundred twenty-two postmenopausal women having prior standard DEXA measurements were included in the study. Spine and proximal femur (neck, trochanter and Ward's triangle) BMD were assessed in a standard protocol by DEXA. The middle point of the right tibia was chosen for SOS measurement by tibial QUS. Results The SOS values were observed to be significantly higher in the normal BMD (t score > - 1) group at all measurement sites except for the lumbar region, when compared with the low BMD group (t score < - 1). SOS was negatively correlated with age (r = - 0.66) and month since menopause (r = - 0.57). The sensitivity, specificity, and positive and negative predictive values for QUS t score to diagnose low BMD did not seem to be satisfactory at either of the measurement sites. Conclusion Tibial SOS was correlated weakly with BMD values of femur and lumbar spine as measured by DEXA and its diagnostic value did not seem to be high for discriminating between normal and low BMD, at these sites. PMID:18581594
Van Schaik, Fiona D M; Verhagen, Marc A M T; Siersema, Peter D; Oldenburg, Bas
2008-09-01
Osteopenia and osteoporosis are frequently encountered in patients with Inflammatory Bowel Disease (IBD). Our aims were to evaluate the actual practice of screening for low bone mineral density (BMD) by dual energy X-ray absorptiometry (DEXA), to determine the prevalence of low BMD and to investigate the risk factors associated with a low BMD in the IBD population of a regional Dutch hospital. A retrospective chart review was performed in 474 patients (259 with ulcerative colitis, 210 with Crohn's disease and 5 with indeterminate colitis). DEXA results and potential predictive factors of low BMD were documented. Predictive factors of low BMD were assessed by logistic regression. DEXA was performed in 168 IBD patients (35.4%). A low BMD (T-score<-1) was present in 64.3%. Osteoporosis (T-score<-2.5) was found in 23.8%. Low BMI, older age at the moment of diagnosis and male gender were found to be predictive factors of low BMD. For patients with osteoporosis, disease duration was an additional predictive factor. After subgroup analysis predictive factors were found to be the same in patients with Crohn's disease. The prevalence of osteopenia and osteoporosis in IBD patients in a regional centre is as high as the prevalence rates reported from tertiary referral centres. A low BMI, an older age at the moment of diagnosis and male gender were predictive factors of low BMD. Prediction of osteoporosis and osteopenia using risk factors identified in this and previous studies is presently not feasible.
Hirata, Harumi; Kitamura, Kaori; Saito, Toshiko; Kobayashi, Ryosaku; Iwasaki, Masanori; Yoshihara, Akihiro; Watanabe, Yumi; Oshiki, Rieko; Nishiwaki, Tomoko; Nakamura, Kazutoshi
2016-06-01
Diet and food intake play an important role in the development of osteoporosis. However, apart from calcium and vitamin D, how nutrients affect bone status is not fully understood. The purpose of this study was to determine cross-sectional and longitudinal associations between dietary intake and bone mineral density (BMD) in Japanese postmenopausal women. This 5-year cohort study included 600 community-dwelling women aged 55-74 years at baseline in 2005. Information on demographics, nutrition, and lifestyle was obtained through interviews, and nutritional and dietary intake was assessed using a validated food frequency questionnaire. BMD measurements were performed by dual energy X-ray absorptiometry. In 2010, 498 women underwent follow-up BMD examinations. Multiple linear regression analysis was performed to determine associations of predictor variables with BMD, adjusting for confounders. In cross-sectional analyses, coffee or black tea consumption was positively associated with lumbar spine (P = 0.004) and total hip (P = 0.003) BMD, and alcohol intake was positively associated with femoral neck (P = 0.005) and total hip (P = 0.001) BMD. In longitudinal analyses, vitamin K (P = 0.028) and natto (fermented soybeans) (P = 0.023) were positively associated with lumbar spine BMD, and meat or meat product consumption was inversely associated with total hip (P = 0.047) BMD. In conclusion, dietary factors other than calcium and vitamin D intake are predictors of bone mass and bone loss in Japanese postmenopausal women. In particular, natto intake is recommended for preventing postmenopausal bone loss on the basis of current evidence.
Viljakainen, Heli T; Ben-Shlomo, Yoav; Kinra, Sanjay; Ebrahim, Shah; Kuper, Hannah; Radhakrishna, K V; Kulkarni, Bharati; Tobias, Jon H
2015-01-01
Fracture risk is rising in countries undergoing rapid rural to urban migration, but whether this reflects an adverse effect of urbanization on intrinsic bone strength, as reflected by bone mineral density (BMD), is currently unknown. Lumbar spine (LS) and total hip (TH) BMD, and total body fat and lean mass, were obtained from DXA scans performed in the Hyderabad arm of the Indian Migration Study (54% male, mean age 49 years). Sib-pair comparisons were performed between rural-urban migrants (RUM) and rural non-migrated (RNM) siblings (N = 185 sib-pairs). In analyses adjusted for height, gender, age and occupation, rural to urban migration was associated with higher lumbar and hip BMD and greater predicted hip strength; ΔLS BMD 0.030 (0.005, 0.055) g/cm2, ΔTH BMD 0.044 (0.024; 0.064) g/cm2, Δcross-sectional moment of inertia 0.162 (0.036, 0.289) cm4. These differences were largely attenuated after adjusting for body composition, insulin levels and current lifestyle factors ie. years of smoking, alcohol consumption and moderate to vigorous physical activity. Further analyses suggested that differences in lean mass, and to a lesser extent fat mass, largely explained the BMD differences which we observed. Rural to urban migration as an adult is associated with higher BMD and greater predicted hip strength, reflecting associated alterations in body composition. It remains to be seen how differences in BMD between migration groups will translate into fracture risk in becoming years.
Kin, K; Lee, J H; Kushida, K; Sartoris, D J; Ohmura, A; Clopton, P L; Inoue, T
1993-07-01
Bone mineral density (BMD) of total body, spine, and proximal femur and the percentage of body fat in 151 U.S.-born Japanese-American women and 137 Japan-born immigrant Japanese-American women living in San Diego, California were measured using dual-energy x-ray absorptiometry. These data were compared with unpublished data from Japanese women obtained in previous studies in Hamamatsu, Japan. The age-adjusted BMD for the spinal level, femoral neck, Ward's triangle, trochanter, and total body, respectively, of U.S.-born Japanese-American women were 10.2, 9.8, 9.9, 9.2, and 2.7% higher than those of native Japanese women. The U.S.-born Japanese-American women had significantly higher body fat than immigrant Japanese-American women. Furthermore, the immigrant women had higher BMD and higher body fat than their native Japanese counterparts; however, no significant total-body BMD differences were found among the three groups after age, height, and weight were adjusted. The U.S.-born Japanese-American women had BMD values equivalent to those of white normals at the spine and femur. Significant life-style differences between U.S.-born and immigrant Japanese-American women were noted. Weight, exercise, early menarche, and years of lifetime estrogen exposure correlated positively with BMD. The significant negative correlates of BMD were age, smoking, and percentage of body fat. Our study presents data suggesting that immigration to the United States has produced a higher BMD in Japanese-American women that is attributable to changes in life-style and diet.
Muscle strength and areal bone mineral density at the hip in women: a cross-sectional study.
Pasco, Julie A; Holloway, Kara L; Brennan-Olsen, Sharon L; Moloney, David J; Kotowicz, Mark A
2015-05-24
Muscle strengthening exercises are promoted for building and maintaining a healthy skeleton. We aimed to investigate the relationship between muscle strength and areal bone mineral density (BMD) at the hip in women aged 26-97 years. This cross-sectional study utilises data from 863 women assessed for the Geelong Osteoporosis Study. Measures of hip flexor and abductor strength were made using a hand-held dynamometer (Nicholas Manual Muscle Tester). The maximal measure from three trials on each leg was used for analyses. BMD was measured at the hip using dual energy x-ray absorptiometry (DXA; Lunar DPX-L). Total lean mass, body fat mass and appendicular lean mass were determined from whole body DXA scans. Linear regression techniques were used with muscle strength as the independent variable and BMD as the dependent variable. Models were adjusted for age and indices of body composition. Measures of age-adjusted hip flexor strength and hip abductor strength were positively associated with total hip BMD. For each standard deviation (SD) increase in hip flexor strength, the increase in mean total hip BMD (SD) was 10.4 % (p = 0.009). A similar pattern was observed for hip abductor strength, with an increase in mean total hip BMD of 22.8 % (p = 0.025). All associations between hip muscle strength and total hip BMD were independent of height, but were nullified after adjusting for appendicular lean mass or total lean mass. There was a positive association observed between muscle strength and BMD at the hip. However, this association was explained by measures of lean mass.
Reproductive factors affecting the bone mineral density in postmenopausal women.
Ozdemir, Ferda; Demirbag, Derya; Rodoplu, Meliha
2005-03-01
Osteoporosis has been defined as a metabolic bone disease characterized by a loss of bone mineral density (BMD) greater than 2.5 standard deviations below young adult peak bone mass or the presence of fracture. By considering that some factors related to female reproductive system might influence the ultimate risk of osteoporosis, we aimed to investigate if a relationship exists between the present BMD of postmenopausal women with their past and present reproductive characteristics. The present study focused on how BMD could be affected by the following factors in postmenopausal women, such as age at menarche, age at first pregnancy, the number of pregnancies and total breast-feeding time. We reviewed detailed demographic history of 303 postmenopausal women. According to the results of the present study, a negative correlation was found between the number of parities and BMD. The BMD values decreased as the number of pregnancies increased. When the BMD values for lumbar vertebrae 2 and Ward's triangle were investigated, it was observed that a significant difference exists between the women with no child birth and those with more than five parities. There was a significant relationship between age at first pregnancy and BMD values at the lumbar vertebrae 2 and Ward's triangle. Women who had five or more abortions were found to have significantly lower spine BMD values compared to women who had no abortions or women who had one or two abortions. These findings indicate that the increased risk of osteoporosis is associated with the increased number of pregnancies and abortions and higher age at first pregnancy.
Møller, U K; Við Streym, S; Mosekilde, L; Rejnmark, L
2012-04-01
In a controlled cohort study, bone mineral density (BMD) was measured in 153 women pre-pregnancy; during pregnancy; and 0.5, 4, 9, and 19 months postpartum. Seventy-five age-matched controls, without pregnancy plans, were followed in parallel. Pregnancy and breastfeeding cause a reversible bone loss, which, initially, is most pronounced at trabecular sites but also involves cortical sites during prolonged breastfeeding. Conflicting results have been reported on effects of pregnancy and breastfeeding on BMD and body composition (BC). In a controlled cohort study, we elucidate changes in BMD and BC during and following a pregnancy. We measured BMD and BC in 153 women planning pregnancy (n = 92 conceived), once in each trimester during pregnancy and 15, 129, and 280 days postpartum. Moreover, BMD was measured 19 months postpartum (n = 31). Seventy-five age-matched controls, without pregnancy plans, were followed in parallel. Compared with controls, BMD decreased significantly during pregnancy by 1.8 ± 0.5% at the lumbar spine, 3.2 ± 0.5% at the total hip, 2.4 ± 0.3% at the whole body, and 4.2 ± 0.7% at the ultra distal forearm. Postpartum, BMD decreased further with an effect of breastfeeding. At 9 months postpartum, women who had breastfed for <9 months had a BMD similar to that of the controls, whereas BMD at the lumbar spine and hip was decreased in women who were still breastfeeding. During prolonged breastfeeding, BMD at sites which consist of mostly trabecular bone started to be regained, whereas BMD at sites rich in cortical bone decreased further. At 19 months postpartum, BMD did not differ from baseline at any site. During pregnancy, fat- and lean-tissue mass increased by 19 ± 22% and 5 ± 6% (p < 0.001), respectively. Postpartum, changes in fat mass differed according to breastfeeding status with a slower decline in women who continued breastfeeding. Calcium and vitamin D intake was not associated with BMD changes. Pregnancy and breastfeeding cause a reversible bone loss. At 19 months postpartum, BMD has returned to pre-pregnancy level independently of breastfeeding length. Reversal of changes in fat mass depends on breastfeeding status.
Pompe, E; Bartstra, J; Verhaar, H J; de Koning, H J; van der Aalst, C M; Oudkerk, M; Vliegenthart, R; Lammers, J-W J; de Jong, P A; Mohamed Hoesein, F A A
2017-04-01
Cigarette smoking negatively affects bone quality and increases fracture risk. Little is known on the effect of smoking cessation and computed tomography (CT)-derived bone mineral density (BMD) decline in the spine. We evaluated the association of current and former smoking with BMD decline after 3-year follow-up. Male current and former smokers participating in a lung cancer screening trial who underwent baseline and 3-year follow-up CT were included. BMD was measured by manual placement of a region of interest in the first lumbar vertebra and expressed in Hounsfield Unit (HU). Multiple linear regression analysis was used to evaluate the association between pack years smoked and smoking status with BMD decline. 408 participants were included with median (25th-75th percentile) age of 59.4 (55.9-63.5) years. At the start of the study, 197 (48.3%) participants were current smokers and 211 (51.7%) were former smokers and had a similar amount of pack years. Current smokers had quit smoking for 6 (4-8) years prior to inclusion. There was no difference in BMD between current and former smokers at baseline (109±34 HU vs. 108±32 HU, p=0.96). At 3-year follow-up, current smokers had a mean BMD decline of -3±13 HU (p=0.001), while BMD in former smokers did not change as compared to baseline (1±13 HU, p=0.34). After adjustment for BMD at baseline and body mass index, current smoking was independently associated with BMD decline (-3.8 HU, p=0.003). Age, pack years, and the presence of a fracture at baseline did not associate with BMD decline. Current smokers showed a more rapid BMD decline over a 3-year period compared to former smokers. This information might be important to identify subjects at risk for osteoporosis and emphasizes the importance of smoking cessation in light of BMD decline. Copyright © 2017 Elsevier B.V. All rights reserved.
Castro, Jonathan P; Joseph, Linda A; Shin, John J; Arora, Surender K; Nicasio, John; Shatzkes, Joshua; Raklyar, Irina; Erlikh, Irina; Pantone, Vincent; Bahtiyar, Gul; Chandler, Leon; Pabon, Lina; Choudhry, Sara; Ghadiri, Nilofar; Gosukonda, Pramodini; Muniyappa, Rangnath; von-Gicyzki, Hans; McFarlane, Samy I
2005-01-01
Osteoporosis is a major public health problem with low bone mass affecting nearly half the women aged 50 years or older. Evidence from various studies has shown that higher body mass index (BMI) is a protective factor for bone mineral density (BMD). Most of the evidence, however, is from studies with Caucasian women and it is unclear to what extent ethnicity plays a role in modifying the effect of BMI on BMD. A cross sectional study was performed in which records of postmenopausal women who presented for screening for osteoporosis at 2 urban medical centres were reviewed. Using logistic regression, we examined the interaction of race and BMI after adjusting for age, family history of osteoporosis, maternal fracture, smoking, and sedentary lifestyle on BMD. Low BMD was defined as T-score at the lumbar spine < -1. Among 3,206 patients identified, the mean age of the study population was 58.3 ± 0.24 (Years ± SEM) and the BMI was 30.6 kg/m2. 2,417 (75.4%) were African Americans (AA), 441(13.6%) were Whites and 348 (10.9%) were Hispanics. The AA women had lower odds of having low BMD compared to Whites [Odds ratio (OR) = 0.079 (0.03–0.24) (95% CI), p < 0.01]. The odds ratio of low BMD was not statistically significant between White and Hispanic women. We examined the interaction between race and BMD. For White women; as the BMI increases by unity, the odds of low BMD decreases [OR = 0.9 (0.87–0.94), p < 0.01; for every unit increase in BMI]. AA women had slightly but significantly higher odds of low BMD compared to Whites [OR 1.015 (1.007–1.14), p <0.01 for every unit increase in BMI]. This effect was not observed when Hispanic women were compared to Whites. There is thus a race-dependent effect of BMI on BMD. With each unit increase in BMI, BMD increases for White women, while a slight but significant decrease in BMD occurs in African American women. PMID:15817133
Castro, Jonathan P; Joseph, Linda A; Shin, John J; Arora, Surender K; Nicasio, John; Shatzkes, Joshua; Raklyar, Irina; Erlikh, Irina; Pantone, Vincent; Bahtiyar, Gul; Chandler, Leon; Pabon, Lina; Choudhry, Sara; Ghadiri, Nilofar; Gosukonda, Pramodini; Muniyappa, Rangnath; von-Gicyzki, Hans; McFarlane, Samy I
2005-04-07
Osteoporosis is a major public health problem with low bone mass affecting nearly half the women aged 50 years or older. Evidence from various studies has shown that higher body mass index (BMI) is a protective factor for bone mineral density (BMD). Most of the evidence, however, is from studies with Caucasian women and it is unclear to what extent ethnicity plays a role in modifying the effect of BMI on BMD.A cross sectional study was performed in which records of postmenopausal women who presented for screening for osteoporosis at 2 urban medical centres were reviewed. Using logistic regression, we examined the interaction of race and BMI after adjusting for age, family history of osteoporosis, maternal fracture, smoking, and sedentary lifestyle on BMD. Low BMD was defined as T-score at the lumbar spine < -1.Among 3,206 patients identified, the mean age of the study population was 58.3 +/- 0.24 (Years +/- SEM) and the BMI was 30.6 kg/m2. 2,417 (75.4%) were African Americans (AA), 441(13.6%) were Whites and 348 (10.9%) were Hispanics. The AA women had lower odds of having low BMD compared to Whites [Odds ratio (OR) = 0.079 (0.03-0.24) (95% CI), p < 0.01]. The odds ratio of low BMD was not statistically significant between White and Hispanic women. We examined the interaction between race and BMD. For White women; as the BMI increases by unity, the odds of low BMD decreases [OR = 0.9 (0.87-0.94), p < 0.01; for every unit increase in BMI]. AA women had slightly but significantly higher odds of low BMD compared to Whites [OR 1.015 (1.007-1.14), p <0.01 for every unit increase in BMI]. This effect was not observed when Hispanic women were compared to Whites.There is thus a race-dependent effect of BMI on BMD. With each unit increase in BMI, BMD increases for White women, while a slight but significant decrease in BMD occurs in African American women.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Minah; Paek, Domyung; Yoon, Chungsik, E-mail: csyoon@snu.ac.kr
Background: An association between cadmium exposure and bone mineral density (BMD) has been demonstrated in elderly women, but has not been well studied in youths and men. Some studies report either no or a weak association between cadmium exposure and bone damage. Objectives: This study was designed to investigate the relationship between the urinary cadmium (U-Cd) levels and BMD of females and males of all ages. Methods: A total of 804 residents near an industrial complex were surveyed in 2007. U-Cd and BMD on the heel (non-dominant calcaneus) were analyzed with AAS-GTA and Dual-Energy X-ray absorptiometry, respectively. Demographic characteristics weremore » collected by structured questionnaires. Osteoporosis and osteopenia were defined by BMD cut-off values and T-scores set by the WHO; T score>-1, normal; -2.5=}1.0 {mu}g/g creatinine) in females (OR=2.92; 95% CI, 1.51-5.64) and in males (OR=3.37; 95% CI, 1.09-10.38). With the multiple linear regression model, the BMD of the adult group was negatively associated with U-Cd (<0.05), gender (female, p<0.001) and age (p<0.001). The BMD of participants who were {<=}19 years of age was negatively associated with gender (female, p<0.01), whereas it was positively associated with age and BMI (p<0.001). BMD was not associated with exercise, smoking habits, alcohol consumption, job or parental education. Conclusion: Results suggested that U-Cd might be associated with osteopenia as well as osteoporosis in both male and female adults. Age and female gender were negatively associated with BMD in the adult group, whereas age was positively associated with BMD in the youth group. Cadmium exposure may be a potential risk factor for lower-BMD and osteopenia symptoms as well as for osteoporosis symptoms. - Research Highlights: {yields} The relationship between the urinary cadmium levels and BMD was investigated. {yields} U-Cd was associated with osteopenia and osteoporosis in adults. {yields} Cadmium exposure may be a potential risk factor for lower-BMD and osteopenia.« less
Pappa, Helen M.; Saslowsky, Tracee M.; Filip-Dhima, Rajna; DiFabio, Diane; Hassani Lahsinoui, Hajar; Akkad, Apurva; Grand, Richard J.; Gordon, Catherine M.
2011-01-01
Background & Aims There are very few published studies of agents having the potential to improve bone health in children with inflammatory bowel disease (IBD). Our aim was to establish the efficacy and safety of intranasal calcitonin in improving bone mineral density (BMD) in young patients with IBD and to define additional factors that impact bone mineral accrual. Methods We conducted a randomized, placebo-controlled, double-blind clinical trial in sixty-three participants, ages 8 to 21 yrs, with a spinal BMD Z-score ≤ −1.0 SD measured by dual energy X-Ray absorptiometry (DXA). Subjects were randomized to 200 IU intranasal calcitonin (n=31) or placebo (n=32) daily. All received age-appropriate calcium and vitamin D supplementation. Subsequent BMD measurements were obtained at 9 and 18 months. Results Intranasal calcitonin was well-tolerated. Adverse event frequency was similar in both treatment groups, and such events were primarily minor, reversible, and limited to the upper respiratory tract. The BMD Z-score change documented at screening and 9 months and screening and 18 months did not differ between the two therapeutic arms. In participants with Crohn’s disease (CD) the spinal BMD Z-score improved between screening and 9 months [ΔZSBMD(9-0)] in the calcitonin group (ΔZSBMD(9-0)calcitonin = 0.21 (0.37), ΔZSBMD(9-0)placebo = −0.15 (0.5), p = 0.02), however this was only a secondary subgroup analysis. Bone mineral accrual rates during the trial did not lead to normalization of BMD Z-scores in this cohort. Factors favoring higher bone mineral accrual rate were: lower baseline BMD and higher baseline body mass index (BMI) Z-score, improvement in height Z-score, higher serum albumin, hematocrit and iron concentration, and more hours of weekly weight-bearing activity. Factors associated with lower bone mineral accrual rate were: more severe disease – as indicated by elevated inflammatory markers, need for surgery, hospitalization and the use of immunomodulators - and higher amount of caffeine intake. Conclusions Intranasal calcitonin is well-tolerated but does not offer a long-term advantage in youth with IBD and decreased BMD. Bone mineral accrual rates remain compromised in youth with IBD and low bone mineral density raising concerns for long-term bone health outcomes. Improvement in nutritional status, catch-up linear growth, control of inflammation, increase in weight-bearing activity, and lower caffeine intake may be helpful in restoring bone density, especially in children with IBD and low baseline BMD. PMID:21519359
Anderson, Dennis E; Madigan, Michael L
2013-10-01
Maintenance of healthy bone mineral density (BMD) is important for preventing fractures in older adults. Strains experienced by bone in vivo stimulate remodeling processes, which can increase or decrease BMD. However, there has been little study of age differences in bone strains. This study examined the relative contributions of age-related differences in femoral loading and BMD to age-related differences in femoral strains during walking using gait analysis, static optimization, and finite element modeling. Strains in older adult models were similar or larger than in young adult models. Reduced BMD increased strains in a fairly uniform manner, whereas older adult loading increased strains in early stance but decreased strains in late stance. Peak ground reaction forces, hip joint contact forces, and hip flexor forces were lower in older adults in late stance phase, and this helped older adults maintain strains similar to those of young adults despite lower BMD. Because walking likely represents a "baseline" level of stimulus for bone remodeling processes, increased strains during walking in older adults might indicate the extent of age-related impairment in bone remodeling processes. Such a measure might be clinically useful if it could be accurately determined with age-appropriate patient-specific loading, geometry, and BMD.
Effect of Clothing on Measurement of Bone Mineral Density.
McNamara, Elizabeth A; Feldman, Anna Z; Malabanan, Alan O; Abate, Ejigayehu G; Whittaker, LaTarsha G; Yano-Litwin, Amanda; Dorazio, Jolene; Rosen, Harold N
2016-01-01
It is unknown whether allowing patients to have BMD (bone mineral density) studies acquired while wearing radiolucent clothing adlib contributes appreciably to the measurement error seen. To examine this question, a spine phantom was scanned 30 times without any clothing, while draped with a gown, and while draped with heavy winter clothing. The effect on mean BMD and on SD (standard deviation) was assessed. The effect of clothing on mean or SD of the area was not significant. The effect of clothing on mean and SD for BMD was small but significant and was around 1.6% for the mean. However, the effect on BMD precision was much more clinically important. Without clothing the spine phantom had an least significant change of 0.0077 gm/cm(2), while when introducing variability of clothing the least significant change rose as high as 0.0305 gm/cm(2). We conclude that, adding clothing to the spine phantom had a small but statistically significant effect on the mean BMD and on variance of the measurement. It is unlikely that the effect on mean BMD has any clinical significance, but the effect on the reproducibility (precision) of the result is likely clinically significant. Copyright © 2016 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
Skeletal Maturation and Mineralisation of Children with Moderate to Severe Spastic Quadriplegia.
Sharawat, Indar Kumar; Sitaraman, Sadasivan
2016-06-01
Diminished bone mineral density and delayed skeletal maturation are common in children with spastic quadriplegia. The purpose of our study was to evaluate the Bone Mineral Density (BMD) of children with moderate to severe spastic quadriplegia and its relationship with other variables like nutrition and growth. This was a hospital based, cross- sectional, case-control study. Forty-two (28 males, 14 females) children with spastic quadriplegia and 42 (24 males, 18 females) healthy children were included in the study. BMD of cases and control were measured by Dual Energy X-ray Absorptiometry (DEXA). Radiographs of left hand and wrist of cases and controls were taken and bone age was determined. BMD values of upper extremity, lower extremity, thoraco-lumbar spine and pelvis in cases were lower than those of controls (p <0.0001). In children with non severe malnutrition, 75% of the cases had lower bone age than chronological age, whereas all cases with severe malnutrition had lower bone age than chronological age. Step wise regression analysis showed that nutritional status independently contributed to lower BMD values but the BMD values did not correlate significantly with the use of anticonvulsant drugs and presence of physical therapy. Decreased BMD and delayed bone age is prevalent in children with spastic quadriplegia and nutritional status is an important contributing factor.
Agostinete, Ricardo R; Lynch, Kyle R; Gobbo, Luís A; Lima, Manoel Carlos Spiguel; Ito, Igor H; Luiz-de-Marco, Rafael; Rodrigues-Junior, Mario A; Fernandes, Romulo A
2016-01-01
The objective of this study was to analyze the effect of different sports on bone mineral density (BMD) accrual among male adolescents during a 9-mo follow-up. The sample was composed of 82 boys (control [n = 13], basketball [n = 14], karate [n = 9], soccer [n = 18], judo [n = 12], and swimming [n = 16]) who were followed up for 9 mo (from October 2013 to August 2014). BMD (gram per square centimeter) was assessed at baseline and follow-up using a dual-energy X-ray absorptiometry scanner, whereas somatic maturation was estimated through the use of the peak height velocity. Vitamin D consumption was assessed by questionnaire. After 9 mo of follow-up, all groups (including the control group) presented significant BMD accrual (overall sample: 4.5% in the whole body). On the other hand, the basketball group presented higher BMD accrual in the upper limbs (17.6%) than the control group (7.2%). A similar difference was observed in whole-body BMD (control group: 4.1% vs basketball group: 7.1%). The basketball group had significantly higher BMD gains than the control group and other sports groups. Copyright © 2016 International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
Reduced bone mineral density in adult women diagnosed with menstrual disorders during adolescence.
Wiksten-Almströmer, Marianne; Hirschberg, Angelica Lindën; Hagenfeldt, Kerstin
2009-01-01
To evaluate the long-term effects on bone mineral density (BMD) in women diagnosed with menstrual disorders in their adolescence. Prospective follow-up study six years after the initial investigation. A youth clinic that is part of the school health system in Stockholm. Eighty-seven women diagnosed with secondary amenorrhea or oligomenorrhea in adolescence. Subjects underwent gynecological examination, evaluation of eating behavior and physical activity. Whole body Dual Energy X-ray Absorptiometry was used for measurement of BMD. BMD. The overall frequency of osteopenia/osteoporosis was 52%, and three girls had osteoporosis. Women with previous secondary amenorrhea had significantly lower BMD in the pelvis and lumbar spine than those with previous oligomenorrhea. The strongest predictor of low BMD was a restrictive eating disorder in adolescence and the most important counteraction was high physical activity at follow-up and a body mass index (BMI) > or = 22. Persistent menstrual dysfunction at follow-up was associated with polycystic ovary syndrome and lower frequency of osteopenia. This clinical follow-up study has demonstrated a high frequency of osteopenia in women diagnosed with menstrual disorders in adolescence. Previous anorectic behavior was the strongest negative predictor of BMD. It is important to pay attention to an underlying eating disorder in young women with menstrual dysfunction in order to promote bone health.
Nahas, Abdul Rahman Fata; Sulaiman, Syed Azhar Syed
2017-01-01
Background: Depression imposes numerous changes on depressive men, promoting for low bone mineral density (BMD) and erectile dysfunction (ED), yet no published data on exploring the possible association between these two disorders among depressive men. We therefore investigated whether low BMD is associated with ED among depressive men and highlighted the possible mutual underlying factors that might give rise to these two disorders in this specific group of patients. Materials and Methods: In this cross-sectional study, 119 depressive men were recruited and their sociodemographic and clinical characteristics were obtained. Erectile function was evaluated using the 5-item International Index of Erectile Function. All patients received a calcaneal BMD scanning. Chi-square test was conducted to determine if a significant association exists between ED and low BMD. Results: Of the study participants, ninety patients reported ED, while 29 patients reported no ED. Within the ED group, there was a significantly higher proportion of patients with low BMD compared to the non-ED group (85.6% vs. 62.1%, P = 0.006). In addition, among younger participants (i.e., aged < 50 years old), the difference in T-score between ED patients (Md = −2.2, n = 41) and non-ED patients (Md = −1.3, n = 20) was significant (P = 0.001); but held no significance among older participants. Conclusions: While our findings are considered prefatory, we reported that low BMD was significantly associated with ED in depressive men and that only among young depressive patients, BMD was significantly lower in ED patients compared to non-ED patients. More research investigating these findings and the possible underlying mechanisms for such association are warranted. PMID:28979072
Nahas, Abdul Rahman Fata; Sulaiman, Syed Azhar Syed
2017-01-01
Depression imposes numerous changes on depressive men, promoting for low bone mineral density (BMD) and erectile dysfunction (ED), yet no published data on exploring the possible association between these two disorders among depressive men. We therefore investigated whether low BMD is associated with ED among depressive men and highlighted the possible mutual underlying factors that might give rise to these two disorders in this specific group of patients. In this cross-sectional study, 119 depressive men were recruited and their sociodemographic and clinical characteristics were obtained. Erectile function was evaluated using the 5-item International Index of Erectile Function. All patients received a calcaneal BMD scanning. Chi-square test was conducted to determine if a significant association exists between ED and low BMD. Of the study participants, ninety patients reported ED, while 29 patients reported no ED. Within the ED group, there was a significantly higher proportion of patients with low BMD compared to the non-ED group (85.6% vs. 62.1%, P = 0.006). In addition, among younger participants (i.e., aged < 50 years old), the difference in T-score between ED patients ( Md = -2.2, n = 41) and non-ED patients ( Md = -1.3, n = 20) was significant ( P = 0.001); but held no significance among older participants. While our findings are considered prefatory, we reported that low BMD was significantly associated with ED in depressive men and that only among young depressive patients, BMD was significantly lower in ED patients compared to non-ED patients. More research investigating these findings and the possible underlying mechanisms for such association are warranted.
ERIC Educational Resources Information Center
Arab ameri, Elahe; Dehkhoda, Mohammad Reza; Hemayattalab, Rasool
2012-01-01
In this study we investigate the effects of weight bearing exercise and calcium intake on bone mineral density (BMD) of students with attention deficit and hyper activity (ADHD) disorder. For this reason 54 male students with ADHD (age 8-12 years old) were assigned to four groups with no differences in age, BMD, calcium intake, and physical…
Bone Density Following Three Years of Recovery from Long-Duration Space Flight
NASA Technical Reports Server (NTRS)
Amin, Shreyasee; Achenbach, Sara J.; Atkinson, Elizabeth J.; Sibonga, Jean
2011-01-01
It is well recognized that bone mineral density [BMD] at load-bearing sites of the hip and spine sustain significant loss during space flight, estimated at approximately 0.5-1.0% per month. However, the long-term effects on bone health following return from long-duration space flight remain unclear. It is unknown whether BMD for men recovers beyond 1 year following return from space to what would be predicted or if deficits persist. Using our previously created prediction models, we compared the observed BMD of male US crew following 3 years since returning from longduration space flight with what would be predicted if they had not been exposed to microgravity.
Measurement of radial bone mineral density in patients after heart transplantation.
Garlicki, A M; Orchowski, F; Myrdko, T; Wójcik, S; Czerwiński, E; Kukiełka, R; Kapelak, B; Dziatkowiak, A
1996-01-01
Limited physical activity, steroidotherapy and immunosuppression are known risk factors for the development of osteoporosis. The purpose of our current work was to investigate whether patients after heart transplantation (Htx) have an increased incidence of osteoporosis. We compared bone mineral density (BMD) in 32 post-transplant patients with a reference group of 1548 healthy age-matched males. Measurement of BMD was carried out with a Dtx 100 Osteometer on the distal and ultradistal segment of the non-dominant radius. Our results revealed a decreased BMD in HTx patients ranging from 6.9 to 10% in the ultradistal (p = 0.0446) and from 0.4 to 3.5% in the distal segment (p = 0.0593).
Hanusch, B C; Tuck, S P; McNally, R J Q; Wu, J J; Prediger, M; Walker, J; Tang, J; Piec, I; Fraser, W D; Datta, H K; Francis, R M
2017-10-01
The pathogenesis of low trauma wrist fractures in men is not fully understood. This study found that these men have lower bone mineral density at the forearm itself, as well as the hip and spine, and has shown that forearm bone mineral density is the best predictor of wrist fracture. Men with distal forearm fractures have reduced bone density at the lumbar spine and hip sites, an increased risk of osteoporosis and a higher incidence of further fractures. The aim of this case-control study was to investigate whether or not there is a regional loss of bone mineral density (BMD) at the forearm between men with and without distal forearm fractures. Sixty-one men with low trauma distal forearm fracture and 59 age-matched bone healthy control subjects were recruited. All subjects underwent a DXA scan of forearm, hip and spine, biochemical investigations, health questionnaires, SF-36v2 and Fracture Risk Assessment Tool (FRAX). The non-fractured arm was investigated in subjects with fracture and both forearms in control subjects. BMD was significantly lower at the ultradistal forearm in men with fracture compared to control subjects, in both the dominant (mean (SD) 0.386 g/cm 2 (0.049) versus 0.436 g/cm 2 (0.054), p < 0.001) and non-dominant arm (mean (SD) 0.387 g/cm 2 (0.060) versus 0.432 g/cm 2 (0.061), p = 0.001). Fracture subjects also had a significantly lower BMD at hip and spine sites compared with control subjects. Logistic regression analysis showed that the best predictor of forearm fracture was ultradistal forearm BMD (OR = 0.871 (0.805-0.943), p = 0.001), with the likelihood of fracture decreasing by 12.9% for every 0.01 g/cm 2 increase in ultradistal forearm BMD. Men with low trauma distal forearm fracture have significantly lower regional BMD at the ultradistal forearm, which contributes to an increased forearm fracture risk. They also have generalised reduction in BMD, so that low trauma forearm fractures in men should be considered as indicator fractures for osteoporosis.
Lee, Seung Hyun; Lee, Young Han; Suh, Jin-Suck
2017-10-01
The objective of our study was to compare subtrochanteric femur bone mineral density (BMD) and bone quality of long-term bisphosphonate (BP) users who sustained an atypical femoral fracture (AFF) with BP users who did not sustain a femoral fracture and BP-naïve patients with no history of femoral fracture using quantitative CT (QCT). Fourteen female BP users with an AFF (mean age, 72.6 years; mean duration of BP use, 6.2 years; mean body mass index, 21.9) who had undergone QCT before fracture events were sex-, age-, BP use duration-, and body mass index-matched to 14 BP users who did not sustain a fracture and 14 BP-naïve patients. The lateral cortical thickness index (CTI) and the mean BMD (BMD mean ) and SD of the BMD (BMD SD ) within the lateral cortex and within the entire cross-sectional area of the subtrochanteric femur were measured on axial QCT. Femoral neck-shaft angles were measured on the QCT scout image. Parameters were analyzed using the Kruskal-Wallis test. Lateral CTIs were greater in the BP users with an AFF (median, 0.28) than in the BP users without a femoral fracture (median, 0.21) (p = 0.038) and the BP-naïve group (median, 0.21) (p = 0.009). The lateral cortex BMD SD was significantly higher in the BP users with an AFF (median, 59.59 mg/cm 3 ) than the BP users without a femoral fracture (median, 39.27 mg/cm 3 ; p = 0.049) and the BP-naïve group (median, 31.02 mg/cm 3 ; p = 0.037). There was no significant difference among groups in lateral cortex BMD mean , BMD mean and BMD SD of the entire cross-sectional area, and femoral neck-shaft angle. Long-term BP users with a subsequent AFF had a thicker lateral cortex and higher lateral cortex BMD SD at the subtrochanteric area before the fracture on QCT than BP users who did not sustain a femoral fracture and BP-naïve patients.
The role of bone shape in determining gender differences in vertebral bone mass.
Barlow, Tricia; Carlino, Will; Blades, Heather Z; Crook, Jon; Harrison, Rachel; Arundel, Paul; Bishop, Nick J
2011-01-01
Dual-energy X-ray absorptiometry (DXA) measures of bone mineral density (BMD) in children fail to account for growth because bone depth is unmeasured. While multiple adjustment methods have been proposed using body or bone size, the effect of vertebral shape is relatively unknown. Our study aimed to determine gender differences in vertebral shape and their impact on areal BMD (aBMD). We recruited 189 children, including 107 boys, aged 4-17 years, who attended the emergency department due to trauma. None had fractured. Height, weight, Tanner stage, and DXA measurements of the lumbar spine (LS) and total body were obtained. Cylindrical models were used to predict relationships between vertebral width (VW) and areal density for a given vertebral area assuming uniform volumetric density. The actual relationships between VW, bone area, and aBMD for the LS in the children were then determined. The theoretical models predicted a positive relationship between width and areal density for a constant vertebral area. Actual vertebral measurements demonstrated that boys had greater VW for a given vertebral area but lower aBMD for a given VW than girls at any age. The most likely explanation for the apparent paradox was that vertebral cortical thickness relative to width was greater in girls. This difference remained after adjusting for lean mass, suggesting that bone's response to mechanical stimulation may vary between the sexes during growth with consequent evolutionary advantage for girls approaching reproductive age. Copyright © 2011 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
Singh, Niraj Kumar; Jha, Raghav Hira; Gargeshwari, Aditi; Kumar, Prawin
2018-01-01
Alteration in the process of bone remodelling is associated with falls and fractures due to increased bone fragility and altered calcium functioning. The auditory system consists of skeletal structures and is, therefore, prone to getting affected by altered bone remodelling. In addition, the vestibule consists of huge volumes of calcium (CaCO3) in the form of otoconia crystals and alteration in functioning calcium levels could, therefore, result in vestibular symptoms. Thus, the present study aimed at compiling information from various studies on assessment of auditory or vestibular systems in individuals with reduced bone mineral density (BMD). A total of 1977 articles were searched using various databases and 19 full-length articles which reported auditory and vestibular outcomes in persons with low BMD were reviewed. An intricate relationship between altered BMD and audio-vestibular function was evident from the studies; nonetheless, how one aspect of hearing or balance affects the other is not clear. Significant effect of reduced bone mineral density could probably be due to the metabolic changes at the level of cochlea, secondary to alterations in BMD. One could also conclude that sympathetic remodelling is associated with vestibular problems in individual; however, whether vestibular problems lead to altered BMD cannot be ascertained with confidence. The studies reviewed in the article provide an evidence of possible involvement of hearing and vestibular system abnormalities in individuals with reduced bone mineral density. Hence, the assessment protocol for these individuals must include hearing and balance evaluation as mandatory for planning appropriate management.
Zhu, Tracy Y; Griffith, James F; Qin, Ling; Hung, Vivian W; Fong, Tsz-Ning; Au, Sze-Ki; Li, Martin; Lam, Yvonne Yi-On; Wong, Chun-Kwok; Kwok, Anthony W; Leung, Ping-Chung; Li, Edmund K; Tam, Lai-Shan
2014-09-01
In this cross-sectional study, we investigated volumetric bone mineral density (vBMD), bone microstructure, and biomechanical competence of the distal radius in male patients with rheumatoid arthritis (RA). The study cohort comprised 50 male RA patients of average age of 61.1 years and 50 age-matched healthy males. Areal BMD (aBMD) of the hip, lumbar spine, and distal radius was measured by dual-energy X-ray absorptiometry. High-resolution peripheral quantitative computed tomography (HR-pQCT) of the distal radius provided measures of cortical and trabecular vBMD, microstructure, and biomechanical indices. aBMD of the hip but not the lumbar spine or ultradistal radius was significantly lower in RA patients than controls after adjustment for body weight. Total, cortical, and trabecular vBMD at the distal radius were, on average, -3.9% to -23.2% significantly lower in RA patients, and these differences were not affected by adjustment for body weight, testosterone level, or aBMD at the ultradistal radius. Trabecular microstructure indices were, on average, -8.1% (trabecular number) to 28.7% (trabecular network inhomogeneity) significantly inferior, whereas cortical pore volume and cortical porosity index were, on average, 80.3% and 63.9%, respectively, significantly higher in RA patients. RA patients also had significantly lower whole-bone stiffness, modulus, and failure load, with lower and more unevenly distributed cortical and trabecular stress. Density and microstructure indices significantly correlated with disease activity, severity, and levels of pro-inflammatory cytokines (interleukin [IL] 12p70, tumor necrosis factor, IL-6 and IL-1β). Ten RA patients had focal periosteal bone apposition most prominent at the ulnovolar aspect of the distal radius. These patients had shorter disease duration and significantly higher cortical porosity. In conclusion, HR-pQCT reveals significant alterations of bone density, microstructure, and strength of the distal radius in male RA patients and provides new insight into the microstructural basis of bone fragility accompanying chronic inflammation. © 2014 American Society for Bone and Mineral Research.
The Role of Monocyte Percentage in Osteoporosis in Male Rheumatic Diseases.
Su, Yu-Jih; Chen, Chao Tung; Tsai, Nai-Wen; Huang, Chih-Cheng; Wang, Hung-Chen; Kung, Chia-Te; Lin, Wei-Che; Cheng, Ben-Chung; Su, Chih-Min; Hsiao, Sheng-Yuan; Lu, Cheng-Hsien
2017-11-01
Osteoporosis is easily overlooked in male patients, especially in the field of rheumatic diseases mostly prevalent with female patients, and its link to pathogenesis is still lacking. Attenuated monocyte apoptosis from a transcriptome-wide expression study illustrates the role of monocytes in osteoporosis. This study tested the hypothesis that the monocyte percentage among leukocytes could be a biomarker of osteoporosis in rheumatic diseases. Eighty-seven males with rheumatic diseases were evaluated in rheumatology outpatient clinics for bone mineral density (BMD) and surrogate markers, such as routine peripheral blood parameters and autoantibodies. From the total number of 87 patients included in this study, only 15 met the criteria for diagnosis of osteoporosis. Both age and monocyte percentage remained independently associated with the presence of osteoporosis. Steroid dose (equivalent prednisolone dose) was negatively associated with BMD of the hip area and platelet counts were negatively associated with BMD and T score of the spine area. Besides age, monocyte percentage meets the major requirements for osteoporosis in male rheumatic diseases. A higher monocyte percentage in male rheumatic disease patients, aged over 50 years in this study, and BMD study should be considered in order to reduce the risk of osteoporosis-related fractures.
Dietary patterns and longitudinal change in hip bone mineral density among older men.
Rogers, T S; Harrison, S; Judd, S; Orwoll, E S; Marshall, L M; Shannon, J; Langsetmo, L; Lane, N E; Shikany, J M
2018-05-01
Studying dietary patterns is often more informative than individual nutrients or foods. We found that a Prudent dietary pattern (rich in vegetables and fish) was associated with reduced loss of total hip BMD in older men. A Prudent dietary pattern may be a potential lifestyle strategy for minimizing bone loss. This study aimed to identify baseline dietary patterns using factor analysis in a cohort of older men and to evaluate whether the dietary patterns were associated with bone mineral density change (%ΔBMD) at the total hip and femoral neck over time. Participants (n = 4379; mean age 72.9 ± 5.5 years) were from the Osteoporotic Fractures in Men (MrOS) prospective cohort study and had dietary data collected at baseline (March 2000-April 2002) and BMD measured at baseline and Visit 2 (March 2005-May 2006). Dietary intake was assessed with a brief Block food frequency questionnaire (FFQ); factor analysis was used to derive dietary patterns. BMD was measured by dual-energy x-ray absorptiometry (DXA); %ΔBMD was calculated from baseline to Visit 2. We used generalized linear regression to estimate least square (LS) means of %ΔBMD in quartiles of the dietary pattern scores adjusted for potential confounding factors. Two major dietary patterns were derived: Prudent (abundant in vegetables, salad, and non-fried fish) and Western (rich in hamburger, fries, processed meats, cheese, and sweets/desserts). There was an inverse association between adherence to the Prudent pattern and total hip %ΔBMD (p-trend = 0.028 after adjusting for age and clinical site; p-trend = 0.033 after further adjustment for smoking, calcium supplement use, diabetes, hypertension, and total energy intake). No other consistent associations between dietary patterns and %ΔBMD were observed. Greater adherence to a Prudent dietary pattern may attenuate total hip BMD loss (%ΔBMD) in older men.
Solomon, Daniel H; Diem, Susan J; Ruppert, Kristine; Juan Lian, Yin; Liu, Chih-Chin; Wohlfart, Alyssa; Greendale, Gail A; Finkelstein, Joel S
2015-01-01
Proton pump inhibitors (PPIs) have been associated with diminished bone mineral density (BMD) and an increased risk of fracture; however, prior studies have not yielded consistent results, and many have suboptimal ascertainment of both PPI use and BMD. We used data from the Study of Women’s Health Across the Nation (SWAN), a multicenter, multi-ethnic, community-based longitudinal cohort study of women across the menopause transition to examine the association between annualized BMD changes and new use of PPIs. We compared changes in BMD in new PPI users with changes in BMD in new users of histamine 2 receptor antagonists (H2RAs) and with changes in BMD in subjects who did not use either class of medications. Mixed linear regression models included recognized risk factors for osteoporosis, including demographics, menopausal transition stage, body mass index (BMI), lifestyle factors, as well as comorbidities and concomitant medications. To provide further evidence for the validity of our analytic approach, we also examined the effects of hormone-replacement therapy (HT), a class of medications that should reduce bone loss, on changes in BMD as an internal positive control group. We identified 207 new users of PPIs, 185 new users of H2RAs, and 1,676 non-users. Study subjects had a mean age of 50 years and were followed for a median of 9.9 years. Adjusted models found no difference in the annualized BMD change at the lumbar spine, femoral neck, or total hip in PPI users compared with H2RA users or non-users. These results were robust to sensitivity analyses. BMD increased as expected in HT users, supporting the validity of our study design. These longitudinal analyses plus similar prior studies argue against an association between PPI use and BMD loss. PMID:25156141
Wei, Wei; Shary, Judith R; Garrett-Mayer, Elizabeth; Anderson, Betsy; Forestieri, Nina E; Hollis, Bruce W; Wagner, Carol L
2017-12-01
Background: Little is known about bone mineral density (BMD) during pregnancy. Advances in technology with lower radiation emissions by dual-energy X-ray absorptiometry instruments now permit the safe measurement of BMD during pregnancy. Objective: We evaluated maternal BMD during pregnancy as a function of vitamin D status in women of diverse racial/ethnic backgrounds. Design: A total of 301 women who underwent BMD measurements at 12-20 wk of gestation and again at 0-14 wk postpartum were included in this analysis. Women were a subset of subjects who were recruited for a randomized, controlled, double-blind trial of vitamin D supplementation in pregnancy (400, 2000, or 4000 IU/d). Results: Treatment had no significant effect on changes in BMD that occurred between 12-20 wk of gestation and 0-14 wk postpartum. Similarly, changes in spine and femoral neck bone mineral contents (BMCs) were not significantly different in the treatment groups. In addition, vitamin D inadequacy (serum 25-hydroxyvitamin D concentration, averaged across pregnancy, <50 nmol/L) was not associated with changes in BMD or BMC. There were significant racial/ethnic differences in spine BMD. African Americans lost more spine BMD than did Caucasians (-0.04 ± 0.04 compared with -0.02 ± 0.04 g/cm 2 ; P = 0.033). In addition, baseline obesity was associated with a greater loss of femoral neck BMD. The means ± SDs of femoral neck BMD loss were -0.02 ± 0.05 and 0.0 ± 0.03 g/cm 2 for groups with baseline body mass index (BMI; in kg/m 2 ) ≥30 and <30, respectively. Conclusion: These findings do not support a dose effect of vitamin D supplementation on bone health and suggest that race/ethnicity and BMI play an important role in pregnancy bone health. This trial was registered at clinicaltrials.gov as NCT00292591. © 2017 American Society for Nutrition.
Wölfl, Christoph; Schweppenhäuser, Daniela; Gühring, Thorsten; Takur, Caner; Höner, Bernd; Kneser, Ulrich; Grützner, Paul Alfred; Kolios, Leila
2014-01-01
The incidence of osteoporotic fractures increases as our population ages. Until now, the exact biochemical processes that occur during the healing of metaphyseal fractures remain unclear. Diagnostic instruments that allow a dynamic insight into the fracture healing process are as yet unavailable. In the present matched pair analysis, we study the time course of the osteoanabolic markers bone specific alkaline phosphatase (BAP) and transforming growth factor β1 (TGFβ1), as well as the osteocatabolic markers crosslinked C-telopeptide of type-I-collagen (β-CTX) and serum band 5 tartrate-resistant acid phosphatase (TRAP5b), during the healing of fractures that have a low level of bone mineral density (BMD) compared with fractures that have a normal BMD. Between March 2007 and February 2009, 30 patients aged older than 50 years who suffered a metaphyseal fracture were included in our study. BMDs were verified by dual energy Xray absorptiometry (DXEA) scans. The levels of BTMs were examined over an 8-week period. Osteoanabolic BAP levels in those with low levels of BMD were significantly different from the BAP levels in those with normal BMD. BAP levels in the former group increased constantly, whereas the latter group showed an initial strong decrease in BAP followed by slowly rising values. Osteocatabolic β-CTX increased in the bone of the normal BMD group constantly, whereas these levels decreased significantly in the bone of the group with low BMD from the first week. TRAP5b was significantly reduced in the low level BMD group. With this work, we conduct first insights into the molecular biology of the fracture healing process in patients with low levels of BMD that explains the mechanism of its fracture healing. The results may be one reason for the reduced healing qualities in bones with low BMD.
Ponnapakkam, Tulasi; Katikaneni, Ranjitha; Suda, Hirofumi; Miyata, Shigeru; Matsushita, Osamu; Sakon, Joshua; Gensure, Robert C
2012-09-01
Parathyroid hormone (PTH) is the most effective osteoporosis treatment, but it is only effective if administered by daily injections. We fused PTH(1-33) to a collagen binding domain (PTH-CBD) to extend its activity, and have shown an anabolic bone effect with monthly dosing. We tested the duration of action of this compound with different routes of administration. Normal young C57BL/6J mice received a single intraperitoneal injection of PTH-CBD (320 μg/kg). PTH-CBD treated mice showed a 22.2 % increase in bone mineral density (BMD) at 6 months and 12.8 % increase at 12 months. When administered by subcutaneous injection, PTH-CBD again caused increases in BMD, 15.2 % at 6 months and 14.3 % at 12 months. Radiolabeled PTH-CBD was concentrated in bone and skin after either route of administration. We further investigated skin effects of PTH-CBD, and histological analysis revealed an apparent increase in anagen VI hair follicles. A single dose of PTH-CBD caused sustained increases in BMD by >10 % for 1 year in normal mice, regardless of the route of administration, thus showing promise as a potential osteoporosis therapy.
Unilateral vs bilateral hip bone mineral density measurement for the diagnosis of osteoporosis.
Ikegami, Shota; Kamimura, Mikio; Uchiyama, Shigeharu; Mukaiyama, Keijiro; Kato, Hiroyuki
2014-01-01
It has not been established whether unilateral or bilateral hip dual-energy X-ray absorptiometry (DXA) is preferable for the diagnosis of osteoporosis. We investigated the discordance in DXA measurements in bilateral hips to determine whether unilateral DXA is valid for osteoporosis diagnosis. The subjects were 2964 Japanese patients without a previous diagnosis of primary osteoporosis. We measured bilateral femoral bone mineral density (BMD) and calculated indices, related to the unilateral results, for predicting contralateral hip osteoporosis. A likelihood ratio (LR) of a negative test (LR [-]) of less than 0.2 was considered to exclude the diagnosis. In the normal spinal BMD group, the sensitivity of unilateral DXA for women was 27-73% and LR (-) was 0.28-0.73; the sensitivity for men was 0-50% and LR (-) was 0.51-1.00; the diagnosis of contralateral osteoporosis was not excluded. Sensitivity increased and LR (-) increased with worsening spinal BMD status; however, LR (-) did not meet the cutoff for exclusion. We could exclude unilateral hip osteoporosis, in women only, by performing contralateral femoral DXA; this necessitated lowering the T-score cutoff from -2.5 to -2.0. Unilateral femoral DXA is not useful for excluding the diagnosis of contralateral hip osteoporosis. Copyright © 2014 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
Yu, Jin-bo; Ke, Yao-hua; He, Jin-wei; Zhang, Hao; Hu, Wei-wei; Hu, Yun-qiu; Li, Miao; Liu, Yu-juan; Gu, Jie-mei; Fu, Wen-zhen; Gao, Gao; Yue, Hua; Xiao, Wen-jin; Zhang, Zhen-lin
2010-11-01
To investigate the effect of low-density lipoprotein receptor-related protein 5 (LRP5) gene polymorphisms on bone and obesity phenotypes in young Chinese men. A total of 1244 subjects from 411 Chinese nuclear families were genotyped by using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique at the Q89R, N740N, and A1330V sites in the LRP5 gene. Bone mineral density (BMD) in the lumbar spine and the hip, total fat mass and total lean mass were measured using dual-energy X-ray absorptiometry. The association between LRP5 gene polymorphisms and peak BMD, body mass index (BMI), total fat mass, total lean mass and percentage of fat mass was assessed using a quantitative transmission disequilibrium test (QTDT). No significant within-family associations were found between genotypes or haplotypes of the LRP5 gene and peak BMD, BMI, total fat mass, total lean mass and percentage of fat mass. The 1000 permutations that were subsequently simulated were in agreement with these within-family association results. Our results suggest that common polymorphic variations of the LRP5 gene do not influence peak bone mass acquisition and obesity phenotypes in young Chinese men.
Hobusch, Gerhard M; Tiefenboeck, Thomas M; Patsch, Janina; Krall, Christoph; Holzer, Gerold
2016-06-01
In long-term survivors of osteosarcoma and Ewing sarcoma treated with the addition of radio- and chemotherapy, low bone mineral density (BMD) and fractures have been observed, presumably resulting from these adjuvants. Because patients with chondrosarcoma usually are not treated with conventional adjuvant treatment, observation of low BMD in patients with chondrosarcoma presumably would be the result of other mechanisms. However, BMD in patients with a history of chondrosarcoma has not been well characterized. The aim of our study was to address the following questions: (1) Do long-term survivors of chondrosarcoma have normal BMD and, if not, which factors contribute to low BMD? (2) Is there a greater risk of fracture and does the Fracture Risk Assessment Tool (FRAX(®)) score reflect fracture likelihood? All known patients with a history of chondrosarcoma treated at our institution before 2006 were identified. Of 127 patients believed to be alive at the time of this study, 30 agreed to participate in this study (11 females, 19 males; mean age at surgery, 39 ± 12 years; mean followup, 12 ± 5 years). With the data available, the 30 participants were not different from the 97 nonparticipants in terms of age, sex, BMI, tumor grade, tumor location (axial versus appendicular, lower extremity versus elsewhere), and use of any treatment known to influence osteopenia (chemotherapy, lower extremity surgery). BMD was measured and history of fractures was assessed using a questionnaire. The patients´ BMD measurements in this study were sex- and age-matched with a normative sex- and age-categorized reference population reported by Kudlacek et al. Associations were tested by univariate regressions and ANOVAs of all measures of BMD and eligible oncologic and demographic factors. Eighteen of 30 (60%) patients had a pathologic BMD according to the WHO dual-energy x-ray absorptiometry definition, 15 (50%) had osteopenia, and three (10%) had osteoporosis. T-scores in the study cohort were lower than reference values for the femur neck (mean difference, 0.64; 95% CI, 0.27-1.01; p < 0.0015), but not for the spine (mean difference, 0.39; 95% CI, -0.06 to 0.84; p = 0.09). Thirteen patients (45%) reported a history of fractures not distinguishing between low and high impact. The incidence of fractures was 2.8 greater than expected from a comparison with a published microcensus survey of the Austrian population. No effect of the FRAX(®) score on fracture risk could be identified (p = 0.057). Long-term survivors of chondrosarcoma appear to be at greater risk for having low BMD develop than the healthy population. Although these results are preliminary and based on a very small sampling of patients, if they can be confirmed in larger studies, BMD assessment by dual-energy x-ray absorptiometry might be considered as these patients are followed posttreatment by sarcoma care units. The reasons for low BMD still must be elucidated. Level IV, prognostic study.
Kim, Yoon Jeong; Henkin, Jeffrey
2015-04-01
Micro-computed tomography (micro-CT) is a valuable means to evaluate and secure information related to bone density and quality in human necropsy samples and small live animals. The aim of this study was to assess the bone density of the alveolar jaw bones in human cadaver, using micro-CT. The correlation between bone density and three-dimensional micro architecture of trabecular bone was evaluated. Thirty-four human cadaver jaw bone specimens were harvested. Each specimen was scanned with micro-CT at resolution of 10.5 μm. The bone volume fraction (BV/TV) and the bone mineral density (BMD) value within a volume of interest were measured. The three-dimensional micro architecture of trabecular bone was assessed. All the parameters in the maxilla and the mandible were subject to comparison. The variables for the bone density and the three-dimensional micro architecture were analyzed for nonparametric correlation using Spearman's rho at the significance level of p < .05. A wide range of bone density was observed. There was a significant difference between the maxilla and mandible. All micro architecture parameters were consistently higher in the mandible, up to 3.3 times greater than those in the maxilla. The most linear correlation was observed between BV/TV and BMD, with Spearman's rho = 0.99 (p = .01). Both BV/TV and BMD were highly correlated with all micro architecture parameters with Spearman's rho above 0.74 (p = .01). Two aspects of bone density using micro-CT, the BV/TV and BMD, are highly correlated with three-dimensional micro architecture parameters, which represent the quality of trabecular bone. This noninvasive method may adequately enhance evaluation of the alveolar bone. © 2013 Wiley Periodicals, Inc.
Duncan, Emma L.; Danoy, Patrick; Kemp, John P.; Leo, Paul J.; McCloskey, Eugene; Nicholson, Geoffrey C.; Eastell, Richard; Prince, Richard L.; Eisman, John A.; Jones, Graeme; Sambrook, Philip N.; Reid, Ian R.; Dennison, Elaine M.; Wark, John; Richards, J. Brent; Uitterlinden, Andre G.; Spector, Tim D.; Esapa, Chris; Cox, Roger D.; Brown, Steve D. M.; Thakker, Rajesh V.; Addison, Kathryn A.; Bradbury, Linda A.; Center, Jacqueline R.; Cooper, Cyrus; Cremin, Catherine; Estrada, Karol; Felsenberg, Dieter; Glüer, Claus-C.; Hadler, Johanna; Henry, Margaret J.; Hofman, Albert; Kotowicz, Mark A.; Makovey, Joanna; Nguyen, Sing C.; Nguyen, Tuan V.; Pasco, Julie A.; Pryce, Karena; Reid, David M.; Rivadeneira, Fernando; Roux, Christian; Stefansson, Kari; Styrkarsdottir, Unnur; Thorleifsson, Gudmar; Tichawangana, Rumbidzai; Evans, David M.; Brown, Matthew A.
2011-01-01
Osteoporotic fracture is a major cause of morbidity and mortality worldwide. Low bone mineral density (BMD) is a major predisposing factor to fracture and is known to be highly heritable. Site-, gender-, and age-specific genetic effects on BMD are thought to be significant, but have largely not been considered in the design of genome-wide association studies (GWAS) of BMD to date. We report here a GWAS using a novel study design focusing on women of a specific age (postmenopausal women, age 55–85 years), with either extreme high or low hip BMD (age- and gender-adjusted BMD z-scores of +1.5 to +4.0, n = 1055, or −4.0 to −1.5, n = 900), with replication in cohorts of women drawn from the general population (n = 20,898). The study replicates 21 of 26 known BMD–associated genes. Additionally, we report suggestive association of a further six new genetic associations in or around the genes CLCN7, GALNT3, IBSP, LTBP3, RSPO3, and SOX4, with replication in two independent datasets. A novel mouse model with a loss-of-function mutation in GALNT3 is also reported, which has high bone mass, supporting the involvement of this gene in BMD determination. In addition to identifying further genes associated with BMD, this study confirms the efficiency of extreme-truncate selection designs for quantitative trait association studies. PMID:21533022
Lee, J H; Lee, J-H; Park, J W; Shin, Y H
2012-01-01
In patients with osteoporosis there is always a strong possibility that pedicle screws will loosen. This makes it difficult to select the appropriate osteoporotic patient for a spinal fusion. The purpose of this study was to determine the correlation between bone mineral density (BMD) and the magnitude of torque required to insert a pedicle screw. To accomplish this, 181 patients with degenerative disease of the lumbar spine were studied prospectively. Each underwent dual-energy x-ray absorptiometry (DEXA) and intra-operative measurement of the torque required to insert each pedicle screw. The levels of torque generated in patients with osteoporosis and osteopenia were significantly lower than those achieved in normal patients. Positive correlations were observed between BMD and T-value at the instrumented lumbar vertebrae, mean BMD and mean T-value of the lumbar vertebrae, and mean BMD and mean T-value of the proximal femur. The predictive torque (Nm) generated during pedicle screw insertion was [-0.127 + 1.62 × (BMD at the corresponding lumbar vertebrae)], as measured by linear regression analysis. The positive correlation between BMD and the maximum torque required to insert a pedicle screw suggests that pre-operative assessment of BMD may be useful in determining the ultimate strength of fixation of a device, as well as the number of levels that need to be fixed with pedicle screws in patients who are suspected of having osteoporosis.
Concern and Risk Perception: Effects on Osteoprotective Behaviour
Barcenilla-Wong, A. L.; Chen, J. S.; March, L. M.
2014-01-01
This study aimed to determine the effect that level of concern for osteoporosis, as well as self-perceived risk of osteoporosis and fracture, has on supplementation use, seeking medical advice, bone mineral density (BMD) testing, and antiosteoporosis medication (AOM) use. Study subjects were 1,095 female Australian participants of the Global Longitudinal study of Osteoporosis in Women (GLOW) untreated for osteoporosis at baseline. Study outcomes from self-administered questionnaires included calcium and vitamin D supplementation, self-reported seeking of medical advice regarding osteoporosis, BMD testing, and AOM use in the last 12 months at the late assessment. Logistic regression was used in the analysis. Concern significantly increased the likelihood of seeking medical advice and, however, had no significant impact on screening or treatment. Heightened self-perceived risks of osteoporosis and fracture both significantly increased the likelihood of seeking medical advice and BMD testing while elevated self-perceived risk of fracture increased AOM use. Supplementation use was not significantly associated with concern levels and risk perception. Concern and risk perceptions to osteoporosis and fracture were significantly associated with certain bone-protective behaviours. However, the disconnect between perceived osteoporosis risk and AOM use illustrates the need to emphasize the connection between osteoporosis and fracture in future education programs. PMID:25276471
Wähnert, Dirk; Hofmann-Fliri, Ladina; Richards, R. Geoff; Gueorguiev, Boyko; Raschke, Michael J.; Windolf, Markus
2014-01-01
Abstract The increasing problems in the field of osteoporotic fracture fixation results in specialized implants as well as new operation methods, for example, implant augmentation with bone cement. The aim of this study was to determine the biomechanical impact of augmentation in the treatment of osteoporotic distal femur fractures. Seven pairs of osteoporotic fresh frozen distal femora were randomly assigned to either an augmented or nonaugmented group. In both groups, an Orthopaedic Trauma Association 33 A3 fractures was fixed using the locking compression plate distal femur and cannulated and perforated screws. In the augmented group, additionally, 1 mL of polymethylmethacrylate cement was injected through the screw. Prior to mechanical testing, bone mineral density (BMD) and local bone strength were determined. Mechanical testing was performed by cyclic axial loading (100 N to 750 N + 0.05N/cycle) using a servo-hydraulic testing machine. As a result, the BMD as well as the axial stiffness did not significantly differ between the groups. The number of cycles to failure was significantly higher in the augmented group with the BMD as a significant covariate. In conclusion, cement augmentation can significantly improve implant anchorage in plating of osteoporotic distal femur fractures. PMID:25415673
Dimitriou, Lygeri; Weiler, Richard; Lloyd-Smith, Rebecca; Turner, Antony; Heath, Luke; James, Nic; Reid, Anna
2014-01-01
Objective To determine bone mineral density (BMD) and the associations among BMD, menstrual history, disordered eating (DE), training history, intentional weight loss (IWL) and rib pain for the first time in female lightweight rowers. Setting 9 lightweight rowing clubs, UK. Participants 29 Caucasian female lightweight rowers volunteered. 21 (12 active, 9 retired) completed the study. Inclusion criteria: female lightweight rowers aged over 18 years. Exclusion criteria: participants with a history of bone disease, used medications known to influence BMD or if they were pregnant, lactating or postmenopausal. Main outcome measures Dual-energy X-ray absorptiometry measured total body (TB) composition and BMD at the spine, femoral neck (FN), radius and TB. DE, oligomenorrhoea/amenorrhoea years; rib pain and training history. Results DE was reported in six of the rowers. The active with DE started rowing younger (p<0.05) than those without, and their amount of IWL was associated with Eating Attitudes Test-26 score (p<0.05). Some participants reported a history of oligomenorrhoea/amenorrhoea 17 (76%) and/or rib pain 7 (32%) with those with rib pain having lower spine and TB Z-scores (p<0.05) than those without. Those with oligomenorrhoea/amenorrhoea had lower spine Z-scores (p<0.01) than those without. Twelve participants had low BMD; three at spine; one at FN; and eight at radius. Thirteen per cent of mean total training hours (18.6±9.1 h/week) were spent strength training (2.4±2.2 h/week). Conclusions Upper body exercises incorporating multidimensional high peak bone strain were not reported and may need to be considered in their strength training to improve radial BMD. Results suggest IWL and high-level training at a young age increases the likelihood of DE and there may be a lack of quality nutritional support for these athletes. Thus, multidisciplinary sport science support should be offered at a young age and perhaps also to consider changing the weight rules to prevent the development of the Triad. PMID:24523427
Hui, Susanta K; Arentsen, Luke; Sueblinvong, Thanasak; Brown, Keenan; Bolan, Pat; Ghebre, Rahel G; Downs, Levi; Shanley, Ryan; Hansen, Karen E.; Minenko, Anne G.; Takhashi, Yutaka; Yagi, Masashi; Zhang, Yan; Geller, Melissa; Reynolds, Margaret; Lee, Chung K; Blaes, Anne H.; Allen, Sharon; Zobel, Bruno Beomonte; Le, Chap; Froelich, Jerry; Rosen, Clifford; Yee, Douglas
2014-01-01
Purpose Cancer survivors are at an increased risk for fractures, but lack of effective and economical biomarkers limits quantitative assessments of marrow fat (MF), bone mineral density (BMD) and their relation in response to cytotoxic cancer treatment. We report dual energy CT (DECT) imaging, commonly used for cancer diagnosis, treatment and surveillance, as a novel biomarker of MF and BMD. Methods We validated DECT in pre-clinical and Phase I clinical trials and verified with water-fat MRI (WF-MRI), quantitative CT (QCT) and dual-energy X-ray absorptiometry (DXA). Basis material composition framework was validated using water and small-chain alcohols simulating different components of bone marrow. Histologic validation was achieved by measuring percent adipocyte in cadaver vertebrae and compared with DECT and WF-MRI. For a Phase I trial, sixteen patients with gynecologic malignancies (treated with oophorectomy, radiotherapy or chemotherapy) underwent DECT, QCT, WF-MRI and DXA before and 12 months after treatment. BMD and MF percent and distribution were quantified in lumbar vertebrae and the right femoral neck. Results Measured precision (3 mg/cm3) was sufficient to distinguish test solutions. Adiposity in cadaver bone histology was highly correlated with MF measured using DECT and WF-MRI (r = 0.80 and 0.77, respectively). In the clinical trial, DECT showed high overall correlation (r = 0.77, 95% CI: 0.69, 0.83) with WF-MRI. MF increased significantly after treatment (p<0.002). Chemotherapy and radiation caused greater increases in MF than oophorectomy (p<0.032). L4 BMD decreased 14% by DECT, 20% by QCT, but only by 5% by DXA (p<0.002 for all). At baseline, we observed a statistically significant inverse association between MF and BMD which was dramatically attenuated after treatment. Conclusion Our study demonstrated that DECT, similar to WF-MRI, can accurately measure marrow adiposity. Both imaging modalities show rapid increase in MF following cancer treatment. Our results suggest that MF and BMD cannot be used interchangeably to monitor skeletal health following cancer therapy. PMID:25536285
Hui, Susanta K; Arentsen, Luke; Sueblinvong, Thanasak; Brown, Keenan; Bolan, Pat; Ghebre, Rahel G; Downs, Levi; Shanley, Ryan; Hansen, Karen E; Minenko, Anne G; Takhashi, Yutaka; Yagi, Masashi; Zhang, Yan; Geller, Melissa; Reynolds, Margaret; Lee, Chung K; Blaes, Anne H; Allen, Sharon; Zobel, Bruno Beomonte; Le, Chap; Froelich, Jerry; Rosen, Clifford; Yee, Douglas
2015-04-01
Cancer survivors are at an increased risk for fractures, but lack of effective and economical biomarkers limits quantitative assessments of marrow fat (MF), bone mineral density (BMD) and their relation in response to cytotoxic cancer treatment. We report dual energy CT (DECT) imaging, commonly used for cancer diagnosis, treatment and surveillance, as a novel biomarker of MF and BMD. We validated DECT in pre-clinical and phase I clinical trials and verified with water-fat MRI (WF-MRI), quantitative CT (QCT) and dual-energy X-ray absorptiometry (DXA). Basis material composition framework was validated using water and small-chain alcohols simulating different components of bone marrow. Histologic validation was achieved by measuring percent adipocyte in the cadaver vertebrae and compared with DECT and WF-MRI. For a phase I trial, sixteen patients with gynecologic malignancies (treated with oophorectomy, radiotherapy or chemotherapy) underwent DECT, QCT, WF-MRI and DXA before and 12months after treatment. BMD and MF percent and distribution were quantified in the lumbar vertebrae and the right femoral neck. Measured precision (3mg/cm(3)) was sufficient to distinguish test solutions. Adiposity in cadaver bone histology was highly correlated with MF measured using DECT and WF-MRI (r=0.80 and 0.77, respectively). In the clinical trial, DECT showed high overall correlation (r=0.77, 95% CI: 0.69, 0.83) with WF-MRI. MF increased significantly after treatment (p<0.002). Chemotherapy and radiation caused greater increases in MF than oophorectomy (p<0.032). L4 BMD decreased 14% by DECT, 20% by QCT, but only 5% by DXA (p<0.002 for all). At baseline, we observed a statistically significant inverse association between MF and BMD which was dramatically attenuated after treatment. Our study demonstrated that DECT, similar to WF-MRI, can accurately measure marrow adiposity. Both imaging modalities show rapid increase in MF following cancer treatment. Our results suggest that MF and BMD cannot be used interchangeably to monitor skeletal health following cancer therapy. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choo, Richard; Lukka, Himu; Cheung, Patrick
Purpose: Androgen deprivation therapy (ADT) has been used as an adjuvant treatment to radiation therapy (RT) for the management of locally advanced prostate carcinoma. Long-term ADT decreases bone mineral density (BMD) and increases the risk of osteoporosis. The objective of this clinical trial was to evaluate the efficacy of risedronate for the prevention of BMD loss in nonmetastatic prostate cancer patients undergoing RT plus 2 to 3 years of ADT. Methods and Materials: A double-blinded, placebo-controlled, randomized trial was conducted for nonmetastatic prostate cancer patients receiving RT plus 2 to 3 years of ADT. All had T scores > −2.5more » on dual energy x-ray absorptiometry at baseline. Patients were randomized 1:1 between risedronate and placebo for 2 years. The primary endpoints were the percent changes in the BMD of the lumbar spine at 1 and 2 years from baseline, measured by dual energy x-ray absorptiometry. Analyses of the changes in BMD and bone turnover biomarkers were carried out by comparing mean values of the intrapatient changes between the 2 arms, using standard t tests. Results: One hundred four patients were accrued between 2004 and 2007, with 52 in each arm. Mean age was 66.8 and 67.5 years for the placebo and risedronate, respectively. At 1 and 2 years, mean (±SE) BMD of the lumbar spine decreased by 5.77% ± 4.66% and 13.55% ± 6.33%, respectively, in the placebo, compared with 0.12% ± 1.29% at 1 year (P=.2485) and 0.85% ± 1.56% (P=.0583) at 2 years in the risedronate. The placebo had a significant increase in serum bone turnover biomarkers compared with the risedronate. Conclusions: Weekly oral risedronate prevented BMD loss at 2 years and resulted in significant suppression of bone turnover biomarkers for 24 months for patients receiving RT plus 2 to 3 years of ADT.« less
Sustained skeletal benefit from childhood mechanical loading
Scerpella, T. A.; Dowthwaite, J. N.; Rosenbaum, P. F.
2011-01-01
Summary Preliminary prospective, longitudinal results suggest that pre-menarcheal exposure to artistic gymnastics is associated with greater radius BMC, aBMD, and projected area throughout growth and into early adulthood, more than 4 years after activity cessation. Any loss of benefit associated with de-training appears to be temporary. Introduction Mechanical loading may enhance bone accrual during growth, but prospective evidence of benefit retention is limited. This prospective, longitudinal cohort study tests whether gymnastics is linked to distal radius advantages during growth and four or more years post-training cessation. Methods Semi-annually, female ex/gymnasts and non-gymnasts underwent height and weight measurements; questionnaires assessed calcium intake, physical activity, and maturation. Annual dual energy X-ray absorptiometry scans (Hologic QDR 4500W) measured total body fat-free mass, skull areal density (aBMD), and bone mineral content (BMC); forearm scans measured ultradistal and 1/3 radius area, BMC, and aBMD. Analysis inclusion criteria were: (1) achievement of gynecological age >4 years and (2) for gymnasts, >2 years of pre-menarcheal training (>6 h/week), ceasing between 0.5 year pre-menarche and 1 year post-menarche. Hierarchical linear modeling (HLM v6.0) evaluated outcomes for ex/gymnasts versus non-gymnasts; a slope/intercept discontinuity evaluated de-training effects. Results Data from 14 non-gymnasts and six ex/gymnasts represented outcomes from 4 years pre-menarche to 9 years post-menarche. All adjusted distal radius parameters were higher in ex/gymnasts than non-gymnasts (p<0.02). Ultradistal BMC, ultradistal aBMD, and 1/3 aBMD temporarily decreased with gymnastic cessation (p<0.04); ultradistal area, 1/3 area, and 1/3 BMC did not change significantly. Skull outcomes did not differ between groups or change with activity cessation. Conclusion Gymnastic exposure during childhood and early puberty is associated with greater radius bone mass, size, and aBMD. Despite brief de-training losses in density and mass, significant skeletal benefits are manifested throughout growth and at least 4 years beyond activity cessation into early adulthood. PMID:20838772
Silverberg, Jonathan I
2015-02-01
Children with atopic dermatitis (AD) have multiple risk factors for low bone mineral density (BMD). We analyzed data from 3049 children and adolescents aged 8-19 yrs from the 2005-2006 National Health and Nutrition Examination Survey, including a cross-sectional questionnaire, dual energy X-ray absorptiometry, and blood samples. In multivariate models that controlled for age, sex, race/ethnicity, level of education and household income, body mass index (BMI), and smoking in the household, AD was associated with lower BMD z-score for the total femur (survey linear regression; adjusted β [95% CI]: -0.42 [0.68, -0.16]), including trochanter (-0.29 [-0.54, -0.05]) and femoral neck (-0.29 [-0.53, -0.05]) and total lumbar spine (-0.31 [-0.52, -0.11]). Children with AD had higher median levels of serum IgE (110.0 vs. 53.0 kU/l), peripheral lymphocyte (2.9 vs. 2.5 × 10(3) cells/μl), and eosinophil counts (0.3 vs. 0.2 × 10(3) cells/μl) (Mann-Whitney U-test, p ≤ 0.003 for all), but not CRP levels (0.03 vs. 0.04 mg/dl) and higher odds of 25-OH vitamin D deficiency (survey logistic regression; odds ratio [OR] [95% CI]: 4.81 [1.21, 20.81]), low calcium (2.56 [1.24, 5.28]), low alkaline phosphatase (2.56 [1.20, 5.44]), and higher tertiles of LDH (tertile 2: 6.36 [1.75, 23.18]; tertile-3: 4.57 [1.32, 15.85]), but not parathyroid hormone (PTH) or albumin. Finally, children with AD had higher rates of low BMD, that is, BMD z-score <-2, of the femur (23.4% vs. 18.4%) and spine (35.3% vs. 24.5%). In multivariate logistic regression models of low BMD of femur and/or spine using stepwise selection of the 30 sociodemographic and clinical factors, laboratory values, and medications used, AD remained a significant covariate (1.33 [1.32-1.34]). The covariates with the largest effects on low BMD were low PTH and albumin, higher basophil count, Hispanic ethnicity, and BMI <5th percentile. Among children with AD, 56.2% of those with Hispanic origin, 52.8% with BMI <5th percentile, 75.0% with low albumin, and 54.0% with low PTH had low BMD. Children with AD have lower BMD, particularly those with malnutrition and Hispanic ethnicity. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Kapteijns-van Kordelaar, Simone; Noordam, Kees; Otten, Barto; van den Bergh, Joop
2003-11-01
To evaluate the effect of gonadotrophin-releasing hormone (GnRH) agonist treatment on bone quality at final height, we studied girls with central precocious puberty (CPP) and with idiopathic short stature (ISS). A total of 25 Caucasian girls were included: group A (n=14) with idiopathic CPP (mean age at start 7.4 years) and group B (n=11) with ISS (mean age at start 11.7 years). Treatment duration was 3.8 and 1.7 years respectively. The quantitative ultrasound parameters (QUS) broadband ultrasound attenuation (BUA) and speed of sound (SOS) were measured at the calcaneus (UBIS 3000 device). Lumbar spine bone mineral density (BMD; L2-L4) was measured by dual energy X-ray absorptiometry (DXA) (Hologic QDR1000). Measurements were performed at final height and expressed as Z-scores corrected for bone age. Mean Z-scores of QUS parameters, areal BMD and volumetric BMD (BMDvol) were above -1 in both groups (group A: BUA Z-score -0.21, SOS Z-score -0.29, BMD Z-score 0.02, BMDvol Z-score 0.05, group B: BUA Z-score -0.93, SOS Z-score -0.40, BMD Z-score -0.86, BMDvol Z-score -0.68), although mean Z-scores of BUA and areal BMD in group B were significantly different from zero (P=0.03 and P=0.02 respectively). Mean Z-score BMDvol was not significantly different from zero (P=0.05), we found no significant difference between the groups for BMDvol (P=0.13). Although quantitative ultrasound parameters parameters and bone mineral density were normal in girls with central precocious puberty at final height after gonadotrophin-releasing hormone agonist treatment, mean Z-score for broadband ultrasound attenuation and areal bone mineral density were significantly different from zero and mean Z-score for volumetric bone mineral density was (just) not significantly different from zero in idiopathic short stature girls with normal puberty treated with gonadotrophin-releasing hormone agonists. Therefore we cannot say that this treatment is safe in these girls with regard to bone health.
Bahtiri, Elton; Islami, Hilmi; Hoxha, Rexhep; Qorraj-Bytyqi, Hasime; Rexhepi, Sylejman; Hoti, Kreshnik; Thaçi, Kujtim; Thaçi, Shpetim; Karakulak, Çağla
2016-09-01
Because of the efficacy of proton pump inhibitors (PPIs), their the use is increasing dramatically. The risk of adverse effects of short-term PPI therapy is low, but there are important safety concerns for potential adverse effects of prolonged PPI therapy. Findings from studies assessing the association between PPI use and bone mineral density (BMD) and/or fracture risk are contradictory. The aim of this study was to prospectively assess potential association of PPI treatment with the 12-month change in BMD of the lumbar spine, femur neck, and total hip. The study was performed in 200 PPI users and 50 PPI nonusers. Lumbar spine (L1-L4), femur neck, and total hip BMD were measured by dual-energy X-ray absorptiometry at the baseline and at 12 months. A total of 209 subjects completed the entire 12 months of the study and were included in the final analysis. A Wilcoxon signed-rank test showed that at 12 months PPI use was associated with statistically significant reductions in femur neck and total hip T scores (Z = -2.764, p = 0.005 and Z = -3.281, p = 0.001, respectively). A multiple linear regression analysis showed that only esomeprazole added significantly to the prediction of total lumbar spine and femur neck T scores (p = 0.048 and p = 0.037, respectively). Compared with the baseline, 12 months of PPI treatment resulted in lower femur neck and total hip BMD T scores. Among the four PPIs studied, esomeprazole was independently associated with significant reduction of BMD, whereas omeprazole had no effects on BMD. Considering the widespread use of PPIs, BMD screening should be considered in the case of prolonged PPI use.
Yano, Tetsuo; Yamada, Mei; Inoue, Daisuke
2017-07-01
Teriparatide (TPTD), a recombinant human parathyroid hormone N-terminal fragment (1-34), is a widely used bone anabolic drug for osteoporosis. Sequential treatment with antiresorptives such as bisphosphonates after TPTD discontinuation is generally recommended. However, relative effects of bisphosphonates have not been determined. In the present study, we directly compared effects of risedronate (RIS) and alendronate (ALN) on bone mineral density (BMD), bone turnover, structural property and strength in ovariectomized (OVX) rats, when administered after TPTD. Female Sprague Dawley rats were divided into one sham-operated and eight ovariectomized groups. TPTD, RIS, and ALN were given subcutaneously twice per week for 4 or 8 weeks after 4 week treatment with TPTD. TPTD significantly increased BMD (+9.6%) in OVX rats after 4 weeks of treatment. 8 weeks after TPTD withdrawal, vehicle-treated group showed a blunted BMD increase of +8.4% from the baseline. In contrast, 8 weeks of treatment with RIS and ALN significantly increased BMD to 17.4 and 21.8%, respectively. While ALN caused a consistently larger increase in BMD, sequential treatment with RIS resulted in lower Tb.Sp compared to ALN in the fourth lumbar vertebra as well as in greater stiffness in compression test. In conclusion, the present study demonstrated that sequential therapy with ALN and RIS after TPTD both improved bone mass and structure. Our results further suggest that RIS may have a greater effect on improving bone quality and stiffness than ALN despite less prominent effect on BMD. Further studies are necessary to determine clinical relevance of these findings to fracture rate.
Serum phosphate is associated with fracture risk: The Rotterdam Study and MrOS
Campos-Obando, N; Koek, W.N.H.; Hooker, E.R.; van der Eerden, B.C.J.; Pols, H.A.; Hofman, A.; van Leeuwen, J.P.T.M.; Uitterlinden, A.G.; Nielson, C.M.; Zillikens, MC
2017-01-01
Extreme phosphate levels (P) have been associated with mineralization defects and increased fracture risk. Whether P within normal range is related to bone health in the general population is not well understood. To investigate the association of P with bone mineral density (BMD) and fracture risk, we assessed two population-based cohorts: the Dutch Rotterdam Study (RS-I, RS-II, RS-III; n=6791) and the US Osteoporotic Fractures in Men (MrOS; n=5425) study. The relationship of P with lumbar spine (LS) and femoral neck (FN) BMD was tested in all cohorts via linear models; fracture risk was tested in RS-I, RS-II and MrOS through Cox models, after follow-up of 8.6, 6.6 and 10.9 years, respectively. Adjustments were made for age, body mass index, smoking, serum levels of calcium, potassium, 25-hydroxyvitamin D, and estimated glomerular filtration rate (eGFR), FN-BMD, prevalent diabetes and cardiovascular disease. Additional adjustments were made for phosphate intake, parathyroid hormone, and fibroblast growth factor 23 levels in MrOS. We further stratified by eGFR. Results were pooled through study-level meta-analyses. Hazard ratios (HR) and betas (β) (from meta-analyses) are expressed per 1 mg/dL P increase. P was positively associated with fracture risk in men and women from RS and findings were replicated in MrOS (pooled HR all (95% CI): 1.47 (1.31–1.65)). P was associated with fracture risk in subjects without chronic kidney disease (CKD): all (1.44 (1.26–1.63)) and in men with CKD (1.93 (1.42–2.62)). P was inversely related to LS-BMD in men (β: −0.06 (−0.11 to −0.02)) and not to FN-BMD in either sex. In summary, serum P was positively related to fracture risk independently from BMD and phosphate intake after adjustments for potential confounders. P and LS-BMD were negatively related in men. Our findings suggest that increased P levels even within normal range might be deleterious for bone health in the normal population. PMID:28177140
Fractures in Relation to Menstrual Status and Bone Parameters in Young Athletes.
Ackerman, Kathryn E; Cano Sokoloff, Natalia; DE Nardo Maffazioli, Giovana; Clarke, Hannah M; Lee, Hang; Misra, Madhusmita
2015-08-01
This study was aimed to compare fracture prevalence in oligoamenorrheic athletes (AA), eumenorrheic athletes (EA), and nonathletes (NA) and determine relationships with bone density, structure, and strength estimates. One hundred seventy-five females (100 AA, 35 EA, and 40 NA) 14-25 yr old were studied. Lifetime fracture history was obtained through participant interviews. Areal bone mineral density (BMD) was assessed by DXA at the spine, hip, and whole body (WB). Bone structure was assessed by HRpQCT at the radius and tibia, and strength by finite element analysis. AA, EA, and NA did not differ in age, sexual maturity, or height. AA had lower BMI, and older menarchal age than EA and NA (P ≤ 0.001). Bone mineral density Z-scores were lower in AA versus EA at the total hip, femoral neck, spine, and whole body (P ≤ 0.001). Lifetime fracture risk was higher in AA than EA and NA (47%, 25.7%, 12.5%; P ≤ 0.001), largely driven by stress fractures in AA versus EA and NA (32% vs 5.9% vs 0%). In AA, those who fractured had lower lumbar and WB BMD Z-scores, volumetric BMD (vBMD) of outer trabecular region in radius and tibia, and trabecular thickness of the radius (P ≤ 0.05). In AA, those who had two or more stress fractures had lower lumbar and WB BMD Z-scores, total cross-sectional area, trabecular vBMD, stiffness, and failure load at radius; and lower stiffness and failure load at tibia versus those with fewer than two stress fractures (P ≤ 0.05). Weight-bearing athletic activity increases BMD but may increase stress fracture risk in those with menstrual dysfunction. Bone microarchitecture and strength differences are more pronounced in AA with multiple stress fractures. This is the first study to examine fractures in relation to bone structure in adolescent female athletes.
Amstrup, Anne Kristine; Sikjaer, Tanja; Heickendorff, Lene; Mosekilde, Leif; Rejnmark, Lars
2015-09-01
Melatonin is known for its regulation of circadian rhythm. Recently, studies have shown that melatonin may have a positive effect on the skeleton. By increasing age, the melatonin levels decrease, which may lead to a further imbalanced bone remodeling. We aimed to investigate whether treatment with melatonin could improve bone mass and integrity in humans. In a double-blind RCT, we randomized 81 postmenopausal osteopenic women to 1-yr nightly treatment with melatonin 1 mg (N = 20), 3 mg (N = 20), or placebo (N = 41). At baseline and after 1-yr treatment, we measured bone mineral density (BMD) by dual X-ray absorptiometry, quantitative computed tomography (QCT), and high-resolution peripheral QCT (HR-pQCT) and determined calciotropic hormones and bone markers. Mean age of the study subjects was 63 (range 56-73) yr. Compared to placebo, femoral neck BMD increased by 1.4% in response to melatonin (P < 0.05) in a dose-dependent manner (P < 0.01), as BMD increased by 0.5% in the 1 mg/day group (P = 0.55) and by 2.3% (P < 0.01) in the 3 mg/day group. In the melatonin group, trabecular thickness in tibia increased by 2.2% (P = 0.04), and volumetric bone mineral density (vBMD) in the spine, by 3.6% (P = 0.04) in the 3 mg/day. Treatment did not significantly affect BMD at other sites or levels of bone turnover markers; however, 24-hr urinary calcium was decreased in response to melatonin by 12.2% (P = 0.02). In conclusion, 1-yr treatment with melatonin increased BMD at femoral neck in a dose-dependent manner, while high-dose melatonin increased vBMD in the spine. Further studies are needed to assess the mechanisms of action and whether the positive effect of nighttime melatonin will protect against fractures. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Kemmler, W; Shojaa, M; Kohl, M; von Stengel, S
2018-04-05
This systematic review detected only limited positive effects of exercise on bone mineral density in older men. Further, based on the present literature, we were unable to suggest dedicated exercise prescriptions for this male cohort that might differ from recommendations based on studies with postmenopausal women. The primary aim of this systematic review was to determine the effect of exercise on bone mineral density (BMD) in healthy older men. A systematic review of the literature according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement included only randomized or non-randomized controlled trials of exercise training ≥ 6 months with study groups of ≥ eight healthy men aged 50 years or older, not using bone-relevant pharmacological therapy, that determined BMD by dual-energy X-ray absorptiometry. We searched PubMed, Scopus, Web of Science, Cochrane, Science Direct, and Eric up to November 2016. Risk of bias was assessed using the PEDro scale. We identified eight trials with 789 participants (PEDro-score, mean value 6 of 10) which satisfied our eligibility criteria. Studies vary considerably with respect to type and composition of exercise. Study interventions of six trials were considered to be appropriate for successfully addressing BMD in this cohort. Between-group differences were not or not consistently reported by three studies. Three studies reported significant exercise effects on BMD for proximal femur; one of them determined significant differences between the exercise groups. None of the exercise trials determined significant BMD effects at the lumbar spine. Based on the present studies, there is only limited evidence for a favorable effect of exercise on BMD in men. More well-designed and sophisticated studies on BMD in healthy older men have to address this topic. Further, there is a need to define intervention quality standards and implement a universal scoring system that allows this pivotal determinant to be addressed much more intensively.
NASA Astrophysics Data System (ADS)
Yahya, Noor Fairuzi Suhana; Daud, Norlida Mat; Makbul, Ika Aida Aprilini; Aziz, Qurratul Aini Salma Abdul
2016-11-01
Lactose intolerance (LI), a risk factor for low bone mineral density (BMD), is the most common type of carbohydrate intolerance, which predominantly affects Southeast Asian populations. However, data on the prevalence of LI and its association with BMD among Malaysian adults are still lacking as not much research has been done on this matter. Thus, the aims of this study are to determine the prevalence of LI and to evaluate its association with BMD among students of Universiti Kebangsaan Malaysia. A total of 100 Malay students (50 males and 50 females) with mean age of 23.9 ± 4.7 years old and body mass index of 24.5 ± 5.8 kg/m2 were selected to involve in this preliminary study. After an overnight fast, subjects were asked to perform hydrogen breath test (HBT) and lactose tolerance test (LTT) after an intake of 300 ml lactose drink (50g lactose). HBT measurements were recorded at every 30 minutes intervals while LTT results were recorded at fasting and 30 minutes after lactose consumption. Visual analogue scales were used to measure gastrointestinal symptoms. BMD was measured at calcaneus bone using quantitative ultrasound and expressed as T-score. A consistent rise by >20 ppm for HBT and failure of blood sugar to rise by >1.10 mmol/L above basal level were considered as abnormal HBT and LTT. Lactose malabsorption (LM) is defined by abnormal HBT and LTT whilst LI is characterized by having abnormal HBT, LTT and gastrointestinal symptoms. The result showed that 86% male and 90% female subjects exhaled breath hydrogen >20 ppm but there was no significant difference (p>0.05) between them. LTT results showed that 86% male subjects failed to rise their blood sugar level >1.10 mmol/L compared to 60% in female subjects. Both male and female subjects had high percentage occurrence of gastrointestinal symptom (82 % and 80% respectively) although no significant difference (p>0.05) was demonstrated. The prevalence of LI and LM among all subjects was 77% and 18% respectively but no significant difference (p>0.05) between genders. In contrast, only 5% of the subjects were lactose tolerance. Male subjects were found to have significantly higher (p<0.05) T-score (1.32 ± 1.52) compared to female subjects (0.75 ± 1.22). However, no significant (p=0.264) association between LI and BMD was shown in this study. To conclude, LI does not directly influence BMD. However, reduce calcium intake from milk and milk products due to avoidance of LI could lead to reduce BMD and osteoporosis in the long term. Therefore, corrective measures should be taken to encourage Malaysian population to increase the intake of milk and milk products.
Bone Loss During Spaceflight: Available Models and Counter-Measures
NASA Technical Reports Server (NTRS)
Morris, Jonathan; Bach, David; Geller, David
2015-01-01
There is ongoing concern for human health during spaceflights. Of particular interest is the uncoupling of bone remodeling and its resultant effect on calcium metabolism and bone loss. The calculated average loss of bone mineral density (BMD) is approximately 1-1.5% per month of spaceflight. The effect of decreased BMD on associated fractures in astronauts is not known. Currently on the International Space Station (ISS), bone loss is managed through dietary supplements and modifications and resistance exercise regimen. As the duration of space flights increases, a review of the current methods available for the prevention of bone loss is warranted. The goal of this project is to review and summarize recent studies that have focused on maintaining BMD during exposure to microgravity. Interventions were divided into physical (Table 1), nutritional (Table 2), or pharmacologic (Table 3) categories. Physical modalities included resistance exercise, low level vibration, and low intensity pulsed ultrasound. Nutritional interventions included altering protein, salt, and fat intake; and vitamin D supplementation. Pharmacologic interventions included the use of bisphosphonates and beta blockers. Studies reported outcomes based on bone density determined by DXA bone scan, micro-architecture of histology and microCT, and serum and urine markers of bone turnover. The ground analog models utilized to approximate osseous physiology in microgravity included human patients previously paralyzed or subjects confined to bedrest. Ground analog animal models include paralysis, immobilization and ovariectomies. As a result of the extensive research performed there is a multi-modality approach available for the management of BMD during spaceflight that includes resistance training, nutrition and dietary supplements. However, there is a paucity of literature describing a formalized tiered protocol to guide investigators through the progression from animal models to human patient ground analogs to experiments on the ISS. With regards to testing, further evaluation to determine the association between non-invasive tests and fracture during and after spaceflight needs to be performed.
Prevalence of Poor Bone Quality in Women Undergoing Spinal Fusion Using Biomechanical-CT Analysis.
Burch, Shane; Feldstein, Michael; Hoffmann, Paul F; Keaveny, Tony M
2016-02-01
Retrospective, cross-sectional analysis of vertebral bone quality in spine-fusion patients at a single medical center. To characterize the prevalence of osteoporosis and fragile bone strength in a spine-fusion population of women with an age range of 50 years to 70 years. Fragile bone strength is defined as the level of vertebral strength below which a patient is at as high a risk of future vertebral fracture as a patient having bone density-defined osteoporosis. Poor bone quality--defined here as the presence of either osteoporosis or fragile bone strength--is a risk factor for spine-fusion patients that often goes undetected but can now be assessed preoperatively by additional postprocessing of computed tomography (CT) scans originally ordered for perioperative clinical assessment. Utilizing such perioperative CT scans for a cohort of 98 women (age range: 51-70 yr) about to undergo spine fusion, we retrospectively used a phantomless calibration technique and biomechanical-CT postprocessing analysis to measure vertebral trabecular bone mineral density (BMD) (in mg/cm³) and by nonlinear finite element analysis, vertebral compressive strength (in Newtons, N) in the L1 or L2 vertebra. Preestablished validated threshold values were used to define the presence of osteoporosis (trabecular BMD of 80 mg/cm³ or lower) and fragile bone strength (vertebral strength of 4500 N or lower). Fourteen percent of the women tested positive for osteoporosis, 27% tested positive for fragile bone strength, and 29% were classified as having poor bone quality (either osteoporosis or fragile bone strength). Over this narrow age range, neither BMD nor vertebral strength were significantly correlated with age, weight, height, or body mass index (P values 0.14-0.97 for BMD; 0.13-0.51 for strength). Poor bone quality appears to be common in women between ages 50 years and 70 years undergoing spinal fusion surgery. 3.
Yamada, Yoshiji; Ando, Fujiko; Shimokata, Hiroshi
2008-01-01
Although bone mineral density (BMD) is a complex trait that is influenced by both genetic and environmental factors, heritability studies in twins and families have shown that genetic factors account for 60-85% of its variance. We examined the relation of the variable number of tandem repeats (VNTR) polymorphism of the monoamine oxidase A gene (MAOA) and the A↷G (Thr484Ala) polymorphism of the SH2B adaptor protein 1 gene (SH2B1) to BMD in community-dwelling Japanese women and men. The 2235 subjects (1107 women, 1128 men) were aged 40-79 years and were randomly recruited for a population-based prospective cohort study of aging and age-related diseases in Japan. BMD at the distal and proximal radius was measured by peripheral quantitative computed tomography, and the BMD of the total body, lumbar spine (L2-L4), right femoral neck and right trochanter was measured by dual-energy X-ray absorptiometry. The genotypes of the VNTR polymorphism of MAOA were determined by DNA fragment analysis, and those of the A↷G (Thr484Ala) polymorphism of SH2B1 by melting curve analysis. The VNTR polymorphism of MAOA was associated with the BMD of the distal radius, total body, lumbar spine and trochanter in all women, and with the BMD of the total body and trochanter in postmenopausal ones, with the L (four repeats) and S (two or three repeats) alleles reflecting increased and decreased BMD, respectively. The A↷G (Thr484Ala) polymorphism of SH2B1 was associated with the BMD of the lumbar spine in all women, with the BMD of the proximal radius in premenopausal women and with the BMD of the lumbar spine, femoral neck and trochanter in postmenopausal women, with the variant G allele being related to increased BMD. These results suggest that MAOA and SH2B1 are determinative loci for bone mass in Japanese women, especially in postmenopausal ones.
Touvier, J; Winzenrieth, R; Johansson, H; Roux, J P; Chaintreuil, J; Toumi, H; Jennane, R; Hans, D; Lespessailles, E
2015-04-01
The use of bone mineral density (BMD) for fracture discrimination may be improved by considering bone microarchitecture. Texture parameters such as trabecular bone score (TBS) or mean Hurst parameter (H) could help to find women who are at high risk of fracture in the non-osteoporotic group. The purpose of this study was to combine BMD and microarchitectural texture parameters (spine TBS and calcaneus H) for the detection of osteoporotic fractures. Two hundred and fifty five women had a lumbar spine (LS), total hip (TH), and femoral neck (FN) DXA. Additionally, texture analyses were performed with TBS on spine DXA and with H on calcaneus radiographs. Seventy-nine women had prevalent fragility fractures. The association with fracture was evaluated by multivariate logistic regressions. The diagnostic value of each parameter alone and together was evaluated by odds ratios (OR). The area under curve (AUC) of the receiver operating characteristics (ROC) were assessed in models including BMD, H, and TBS. Women were also classified above and under the lowest tertile of H or TBS according to their BMD status. Women with prevalent fracture were older and had lower TBS, H, LS-BMD, and TH-BMD than women without fracture. Age-adjusted ORs were 1.66, 1.70, and 1.93 for LS, FN, and TH-BMD, respectively. Both TBS and H remained significantly associated with fracture after adjustment for age and TH-BMD: OR 2.07 [1.43; 3.05] and 1.47 [1.04; 2.11], respectively. The addition of texture parameters in the multivariate models didn't show a significant improvement of the ROC-AUC. However, women with normal or osteopenic BMD in the lowest range of TBS or H had significantly more fractures than women above the TBS or the H threshold. We have shown the potential interest of texture parameters such as TBS and H in addition to BMD to discriminate patients with or without osteoporotic fractures. However, their clinical added values should be evaluated relative to other risk factors.
A calibration methodology of QCT BMD for human vertebral body with registered micro-CT images.
Dall'Ara, E; Varga, P; Pahr, D; Zysset, P
2011-05-01
The accuracy of QCT-based homogenized finite element (FE) models is strongly related to the accuracy of the prediction of bone volume fraction (BV/TV) from bone mineral density (BMD). The goal of this study was to establish a calibration methodology to relate the BMD computed with QCT with the BV/TV computed with micro-CT (microCT) over a wide range of bone mineral densities and to investigate the effect of region size in which BMD and BV/TV are computed. Six human vertebral bodies were dissected from the spine of six donors and scanned submerged in water with QCT (voxel size: 0.391 x 0.391 x 0.450 mm3) and microCT (isotropic voxel size: 0.018(3) mm3). The microCT images were segmented with a single level threshold. Afterward, QCT-grayscale, microCT-grayscale, and microCT-segmented images were registered. Two isotropic grids of 1.230 mm (small) and 4.920 mm (large) were superimposed on every image, and QCT(BMD) was compared both with microCT(BMD) and microCT(BV/TV) for each grid cell. The ranges of QCT(BMD) for large and small regions were 9-559 mg/cm3 and -90 to 1006 mg/cm3, respectively. QCT(BMD) was found to overestimate microCT(BMD). No significant differences were found between the QCT(BMD)-microCT(BV/TV) regression parameters of the two grid sizes. However, the R2 was higher, and the standard error of the estimate (SEE) was lower for large regions when compared to small regions. For the pooled data, an extrapolated QCTBMD value equal to 1062 mg/ cm3 was found to correspond to 100% microCT(BV/TV). A calibration method was defined to evaluate BV/TV from QCTBMD values for cortical and trabecular bone in vitro. The QCT(BMD-microCT(BV/TV) calibration was found to be dependent on the scanned vertebral section but not on the size of the regions. However, the higher SEE computed for small regions suggests that the deleterious effect of QCT image noise on FE modelling increases with decreasing voxel size.
Jammy, Guru Rajesh; Boudreau, Robert M; Singh, Tushar; Sharma, Pawan Kumar; Ensrud, Kristine; Zmuda, Joseph M; Reddy, P S; Newman, Anne B; Cauley, Jane A
2018-05-22
Peripheral quantitative computed tomography (pQCT) provides biomechanical estimates of bone strength. Rural South Indian men have reduced biomechanical indices of bone strength compared to US Caucasian and Afro-Caribbean men. This suggests an underlying higher risk of osteoporotic fractures and greater future fracture burden among the rural South Indian men. Geographical and racial comparisons of bone mineral density (BMD) have largely focused on DXA measures of areal BMD. In contrast, peripheral quantitative computed tomography (pQCT) measures volumetric BMD (vBMD), bone structural geometry and provides estimates of biomechanical strength. To further understand potential geographical and racial differences in skeletal health, we compared pQCT measures among US Caucasian, Afro-Caribbean, and rural South Indian men. We studied men aged ≥ 60 years enrolled in the Mobility and Independent Living among Elders Study (MILES) in rural south India (N = 245), Osteoporotic Fractures in Men Study (MrOS) in the US (N = 1148), and the Tobago Bone Health Study (N = 828). The BMI (kg/m 2 ) of rural South Indian men (21.6) was significantly lower compared to the US Caucasians (28) and Afro-Caribbean men (26.9). Adjusting for age, height, body weight, and grip strength; rural South Indian men compared to US Caucasians had significantly lower trabecular vBMD [- 1.3 to - 1.5 standard deviation (SD)], cortical thickness [- 0.8 to - 1.2 SD]; significantly higher endosteal circumference [0.5 to 0.8 SD]; but similar cortical vBMD. Afro-Caribbean men compared to US Caucasians had similar trabecular vBMD but significantly higher cortical vBMD [0.9 to 1.2 SD], SSIp [0.2 to 1.4 SD], and tibial endosteal circumference [1 SD], CONCLUSIONS: In comparison to US Caucasians, rural South Indian men have reduced bone strength (lower trabecular vBMD) and Afro-Caribbean men have greater bone strength (higher cortical vBMD). These results suggest an underlying higher risk of osteoporotic fractures and greater future fracture burden among rural South Indian men.
Kammerer, Candace M; Schneider, Jennifer L; Cole, Shelley A; Hixson, James E; Samollow, Paul B; O'Connell, Jeffrey R; Perez, Reina; Dyer, Thomas D; Almasy, Laura; Blangero, John; Bauer, Richard L; Mitchell, Braxton D
2003-12-01
We performed a genome scan using BMD data of the forearm and hip on 664 individuals in 29 Mexican-American families. We obtained evidence for QTL on chromosome 4p, affecting forearm BMD overall, and on chromosomes 2p and 13q, affecting hip BMD in men. The San Antonio Family Osteoporosis Study (SAFOS) was designed to identify genes and environmental factors that influence bone mineral density (BMD) using data from large Mexican-American families. We performed a genome-wide linkage analysis using 416 highly polymorphic microsatellite markers spaced approximately 9.5 cM apart to locate and identify quantitative trait loci (QTL) that affect BMD of the forearm and hip. Multipoint variance components linkage analyses were done using data on all 664 subjects, as well as two subgroups of 259 men and 261 premenopausal women, from 29 families for which genotypic and phenotypic data were available. We obtained significant evidence for a QTL affecting forearm (radius midpoint) BMD in men and women combined on chromosome 4p near D4S2639 (maximum LOD = 4.33, genomic p = 0.006) and suggestive evidence for a QTL on chromosome 12q near locus D12S2070 (maximum conditional LOD = 2.35). We found suggestive evidence for a QTL influencing trochanter BMD on chromosome 6 (maximum LOD = 2.27), but no evidence for QTL affecting the femoral neck in men and women combined. In men, we obtained evidence for QTL affecting neck and trochanter BMD on chromosomes 2p near D2S1780 (maximum LOD = 3.98, genomic p = 0.013) and 13q near D13S788 (maximum LOD = 3.46, genomic p = 0.039), respectively. We found no evidence for QTL affecting forearm or hip BMD in premenopausal women. These results provide strong evidence that a QTL on chromosome 4p affects radius BMD in Mexican-American men and women, as well as evidence that QTL on chromosomes 2p and 13q affect hip BMD in men. Our results are consistent with some reports in humans and mice. J Bone Miner Res 2003;18:2245-2252
Osteoporosis and Low Bone Mineral Density in Men with Testosterone Deficiency Syndrome.
Gaffney, Christopher D; Pagano, Matthew J; Kuker, Adriana P; Stember, Doron S; Stahl, Peter J
2015-10-01
Testosterone deficiency syndrome (TDS) is a risk factor for low bone mineral density (BMD) and osteoporosis. Knowledge of the relationship between TDS and bone health, as well as the practical aspects of how to diagnose and treat low BMD, is therefore of practical importance to sexual medicine practitioners. The aim of this study was to review the physiologic basis and clinical evidence of the relationship between TDS and bone health; and to provide a practical, evidence-based algorithm for the diagnosis and management of low BMD in men with TDS. Method used was a review of relevant publications in PubMed. Pathophysiology of low BMD in TDS, morbidity, and mortality of osteoporosis in men, association between TDS and osteoporosis, indications for dual X-ray absorptiometry (DXA) scanning in TDS, evidence for testosterone replacement therapy (TRT) in men with osteoporosis, treatment for osteoporosis in the setting of TDS. Sex hormones play a pleomorphic role in maintenance of BMD. TDS is associated with increased risk of osteoporosis and osteopenia, both of which contribute to morbidity and mortality in men. DXA scanning is indicated in men older than 50 years with TDS, and in younger men with longstanding TDS. Men with TDS and osteoporosis should be treated with anti-osteoporotic agents and TRT should be highly considered. Men with osteopenia should be stratified by fracture risk. Those at high risk should be treated with anti-osteoporotic agents with strong consideration of TRT; while those at low risk should be strongly considered for TRT, which has a beneficial effect on BMD. Low BMD is a prevalent and treatable cause of morbidity and mortality in men with TDS. Utilization of a practical, evidence-based approach to diagnosis and treatment of low BMD in men with TDS enables sexual medicine practitioners to make a meaningful impact on patient quality of life and longevity. Gaffney CD, Pagano MJ, Kuker AP, Stember DS, and Stahl PJ. Osteoporosis and low bone mineral density in men with testosterone deficiency syndrome. Copyright © 2015 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
Identification of the risk factors for osteoporosis among postmenopausal women.
Demir, B; Haberal, A; Geyik, P; Baskan, B; Ozturkoglu, E; Karacay, O; Deveci, S
2008-01-01
The aim of this study was to determine the effect of different durations of menopause at the time of bone mineral density (BMD) measurement and of different age at menopause intervals on the prevalence of osteopenia and osteoporosis among untreated postmenopausal women. We also assessed related factors leading to low BMD. A total of 2769 postmenopausal women who had not taken any anti-osteoporosis treatment and/or hormone replacement therapy were divided into three groups according to duration of menopause at the time of BMD measurement. The women were also evaluated in four different age groups according to their age at menopause onset. Multinomial logistic regression analysis was used to determine related factors leading to low BMD. Investigated parameters include demographic characteristics, plasma glucose, lipids, and lipoproteins. According to World Health Organization (WHO) criteria, among 2769 patients, 449 (16.2%) were identified as having osteoporosis, 1085 (39.2%) as having osteopenia, and 1235 (44.6%) as having normal BMD. Osteoporosis was determined in 10.6% and 16.2% of women with menopause duration of 0-3 years and 4-7 years, respectively, whereas this rate was 31.9% in women with menopause duration of over 7 years (p = 0.001). The percentages for osteopenia remained constant among the three different menopause durations (0-3 years: 37.2%, 4-7 years: 42.1%, and >7 years: 40.9%). Thirty percent of women with age at onset of <40 years were osteoporotic. However, the percentages of women with osteoporosis among the other age groups were similar (40-46 years: 18.3%, 47-52 years: 14.1%, and >52 years: 15.4%). The percentages for osteopenia remained relatively constant among the four age groups (36.7, 40, 39.1 and 39%). According to the multinomial logistic regression analysis, duration of menopause at the time of BMD test and parity were positively correlated with both osteoporosis and osteopenia, while glucose level was negatively correlated with both osteoporosis and osteopenia. Age at menopause was negatively correlated only for osteoporosis. Low-density lipoprotein cholesterol (LDL-c) level may be accepted as a clinically significant factor for osteopenia (OR: 1.01; CI(95%): 1.00-1.02). No differences were determined in the prevalence of osteopenia and osteoporosis in women with menopause duration of >7 years when evaluated according to the four menopause age groups as described before (p = 0.74). Contribution to the regression model was 0.8% by age at menopause, 5.6% by menopause duration at time of BMD measurement, 5.8% by both factors. According to our results, osteoporosis is related more to the duration of menopause at the time of BMD measurement rather than the age at menopause among untreated postmenopausal women. High parity was determined as another risk factor for low BMD.
Kitamura, Kaori; Nakamura, Kazutoshi; Kobayashi, Ryosaku; Oshiki, Rieko; Saito, Toshiko; Oyama, Mari; Takahashi, Shunsuke; Nishiwaki, Tomoko; Iwasaki, Masanori; Yoshihara, Akihiro
2011-09-01
The effect of physical activity on musculoskeletal health in older adults is not completely understood. The aim of this study was to determine the relationship between physical activity and 5-year changes in physical performance tests and bone mineral density (BMD) in postmenopausal women. The design was a 5-year cohort study. Subjects were 507 women (55-74 years old) living in a rural community in Japan. Physical activity assessed included housework, farm work, and moderate leisure-time physical activity within the previous week. Measurements at baseline included handgrip strength, walking time (timed "Up & Go" test) and BMD of the femoral neck and vertebrae. Five-year changes in these measures (outcome variables) were compared among groups with different levels of physical activity by analysis of covariance. Women who did not do housework performed worse in changes in handgrip strength (difference=2.22 kg, P=0.0201) and worse in changes in the walking time (difference=0.54 s, P=0.0072) than those who did housework alone. Women who spent at least 9h per week (median=24) doing farm work performed better in changes in handgrip strength (difference=0.28 kg, P=0.0334), but worse in changes in the walking time (difference=0.66 s, P<0.0001) than those who did not do farm work. However, leisure-time activity was not associated with changes in any outcome variable, and none of the physical activities predicted BMD changes. Engaging in housework and farm work are determinants of physical function in postmenopausal women, which may help them maintain independence in daily living. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
BONE MINERAL DENSITY IN PATIENTS WITH ADDISON DISEASE ON REPLACEMENT THERAPY WITH PREDNISOLONE.
Chandy, David D; Bhatia, Eesh
2016-04-01
In primary adrenal insufficiency (PAI), replacement with prednisolone may result in lower bone mineral density (BMD) compared with hydrocortisone therapy. However, the number of patients studied on prednisolone is small and the results are conflicting. We conducted a cross-sectional study to determine BMD and its relation with therapy in patients on physiologic doses of prednisolone replacement. Forty-one consecutive patients (31 males, age [mean ± SD] 50.9 ± 13.0 years), receiving prednisolone (hydrocortisone equivalent [HCE] 13.0 ± 3.0 mg/m(2)) for 104 ± 95 months were studied. BMD was evaluated by dual-energy X-ray absorptiometry and compared with an age- and sex-matched reference group of healthy Indian subjects (n = 677). Among males, BMD Z-scores (mean [95% confidence interval {CI}]) at lumbar spine (-0.42 [-0.80, -0.04]), femoral neck (-0.50 [-0.95, -0.06]) and total hip (-0.58 [-0.90, -0.26]) were significantly lower than the reference population. Z-scores in female patients did not differ from controls. Among postmenopausal females and males >50 years, 43% had osteoporosis (T-score ≤-2.5), as compared with 25% in the reference group (P = .04). There was no correlation between BMD Z-scores and HCE dose or duration of therapy. On multivariate regression analysis, body mass index was the only significant predictor of BMD. A high proportion of males (45%) had low serum testosterone (<300 ng/dL), but there was no correlation between testosterone and BMD. Male patients with PAI receiving physiologic prednisolone replacement had a small but significant diminution in BMD at all sites.
Holmer, Helene; Popovic, Vera; Ekman, Bertil; Follin, Cecilia; Siversson, Ann Britt; Erfurth, Eva Marie
2011-07-01
Data on bone mineral density (BMD) are lacking in adults with childhood onset (CO)-craniopharyngioma (CP) with hypothalamic damage from the tumor. In patients with CO GH deficiency, BMD increases during GH treatment. The aims were to evaluate BMD in adults with CO-CPs on complete hormone replacement, including long-term GH and to evaluate the impact of hypothalamic damage on these measures. BMD (dual-energy X-ray absorptiometry), markers of bone turn over, physical activity and calcium intake were assessed in 39 CO-CP adults (20 women), with a median age of 28 (17-57) years, in comparison with matched population controls. Late puberty induction was recorded in both genders, but reduced androgen levels in females only. Only CP women had lower BMD (P=0.03) at L2-L4, and reduced Z-scores at femoral neck (P=0.004) and L2-L4 (P=0.004). Both genders had increased serum leptin levels (P=0.001), which significantly correlated negatively with BMD at L2-L4 (P=0.003; r=-0.5) and 45% of CP women had Z-score levels ≤-2.0 s.d. Furthermore, 75% of those with a Z-score ≤-2.0 s.d. had hypothalamic involvement by the tumor. Calcium intake (P=0.008) and physical activity (P=0.007) levels were reduced in CP men only. Levels of ostecalcin and crossLaps were increased in CP men only. Despite continuous GH therapy, low BMD was recorded in CO-CP females. Insufficient estrogen and androgen supplementation during adolescence was the main cause, but hypothalamic involvement with consequent leptin resistance was also strongly associated with low BMD in both genders.
Solomon, Daniel H.; Ruppert, Kristine; Zhao, Zhenping; Lian, YinJuan; Kuo, I-Hsin; Greendale, Gail A.; Finkelstein, Joel S.
2016-01-01
Purpose Several blood pressure lowering drugs may affect bone mineral density (BMD), leading to altered fracture risk. We examined the effect of blood pressure lowering drugs on BMD using data from the Study of Women’s Health Across the Nation. Methods We conducted a propensity score matched cohort study. Women were initiators of ACE inhibitors (ACEi), beta-blockers (BB), or thiazide diuretics (THZD). Their annualized BMD changes during the 14-years of observation were compared with non-users. Results Among the 2312 eligible women, we found 69 ACEi, 71 BB, and 74 THZD users who were matched by a propensity score with the same number of non-users. THZD users had a slower annual percent decline in BMD compared to nonusers at the femoral neck (FN) (−0.28% vs −0.88%; p = 0.008) and the spine (−0.74% vs −1.0%; p = 0.34), albeit not statistically significant. Annual percent changes in BMD among ACEi and BB users were similar to rates in non-users. In comparison with BB, THZD use was associated with a trend toward less annualized BMD loss at the spine (−0.35% vs −0.60%; p = 0.08) and a similar trend at the FN (−0.39% vs −0.64%; p = 0.08); in comparisons with ACEi, THZD was also associated with less loss at the FN (−0.48% vs −0.82%; p = 0.02), but not at the spine (−0.40% vs −0.56%; p = 0.23). Conclusions Neither ACEi nor BB were associated with improvements in BMD. THZD use was associated with less annualized loss of BMD compared with non-users, as well as compared with ACEi and BB. PMID:26449354
Bilić-Ćurčić, Ines; Makarović, Sandra; Mihaljević, Ivan; Franceschi, Maja; Jukić, Tomislav
2017-03-01
Diabetes mellitus type 2 is associated with greater bone mineral density (BMD) due to obesity, although rapid bone loss observed over time could be explained by elevated chronic inflammation. The objective of this study was to investigate the relationship between central adiposity and hyperinsulinemia, as well as inflammation markers with vertebral and femoral BMD and bone turnover markers in postmenopausal women with type 2 diabetes. Femoral and vertebral BMD, osteocalcin, pyrilinks D, beta-CrossLaps (B-CTx), insulin, C-reactive protein (CRP), fibrinogen and plasminogen activator inhibitor-1 (PAI-1) were measured in 114 postmenopausal female patients with diabetes type 2. The patients of similar age, HbA1c levels and diabetes duration were divided into 2 groups based on their body mass index (BMI) values: lower or equal to 27 kg/m(2) (31 patients) and higher than 27 kg/m(2) (83 patients). Lower levels of osteocalcin (p=0.001), B-CTx (p=0.000007) and pyrilinks D (p=0.0365), and higher femoral BMD (p=0.00006), insulin level (p=0.0002), PAI-1 (p=0.00000) and CRP (p=0.002) were found in the overweight group. There were no signifi cant differences in vertebral BMD and fibrinogen. Osteocalcin and B-CTx showed inverse correlation, and femoral BMD positive correlation with waist circumference, insulin level and PAI-1. This suggests that abdominal obesity and hyperinsulinemia as components of the metabolic syndrome could increase femoral BMD by lowering bone rate. In addition, the only inflammation marker linked with femoral BMD was PAI-1, which is associated with increased mineralization of cortical bone in mouse.
Moran, Lisa J; Thomson, R L; Buckley, J D; Noakes, M; Clifton, P M; Norman, R J; Brinkworth, G D
2015-12-01
Polycystic ovary syndrome (PCOS) is a common condition affecting reproductive-aged women with features including hyperandrogenism and menstrual irregularity frequently treated with hormonal steroidal contraceptives. Women with PCOS appear to have lower bone mineral density (BMD). While steroidal contraceptives may positively affect bone health, their effect on BMD in PCOS is not known. The aim of this study was to assess BMD in women with PCOS according to recent contraceptive use. A cross-sectional analysis of 95 pre-menopausal overweight or obese sedentary women with PCOS [age 29.4 ± 6.4 years, body mass index (BMI) 36.1 ± 5.3 kg/m(2)] who either recently took steroidal contraceptives (ceased 3 months prior) or were not taking steroidal contraceptives was conducted. Clinical outcomes included BMD, anthropometry, insulin, glucose, reproductive hormones, dietary intake and vitamin use. BMD was significantly lower for women who used contraceptives compared to those who did not (mean difference 0.06 g/cm(2) 95 % confidence interval -0.11, -0.02, p = 0.005). In regression models, lower BMD was independently associated with contraceptive use (β = -0.05, 95 % CI -0.094, -0.002, p = 0.042), higher testosterone (β = -0.03, 95 % CI -0.05, -0.0008, p = 0.043) and lower BMI (β = 0.006, 95 % CI 0.002, 0.01, p = 0.007) (r (2) = 0.22, p = 0.001 for entire model). We report for the first time that overweight and obese women with PCOS with recent steroidal contraceptive use had lower BMD in comparison to non-users independent of factors known to contribute to BMD. Whether this observation is directly related to steroidal contraceptive use or other factors requires further investigation.
Aguilera-Barreiro, María de Los Angeles; Rivera-Márquez, José Alberto; Trujillo-Arriaga, Héctor Miguel; Tamayo Y Orozco, Juan Alfredo; Barreira-Mercado, Eduardo; Rodríguez-García, Mario E
2013-01-01
The intake of dehydrated nopal (DN) at a high stage of maturity along with high calcium content could improve bone mineral density (BMD) and calciuria and thus prevent osteoporosis. To evaluate the effect of calcium intake from a vegetable source (DN) on BMD and calciuria covering a 2-year period in menopausal and non-menopausal women with low bone mass (LBM). The study was quasi-experimental, blinded, and randomized, and included 131 Mexican women aged 35-55. Urinary calcium/creatinine index (CCI) was determined; BMD was analyzed on lumbar spine and total hip regions. Four groups were studied: Control group (CG), women with normocalciuria and a minimum dose of DN; experimental group 1 (EG1), women with hypercalciuria and a minimum dose of DN; experimental group 2 (EG2), women with hypercalciuria, and a maximum dose of DN; and normal group (NG) for reference in BMD. After the first semester of treatment, calciuria levels in women from both experimental groups returned to normal, remaining constant for the rest of the treatment. The percentage difference in BMD increased in the total hip region in the CG (pre 4.5% and post 2.1%) and EG2 (pre 1.8% and post 2.5%) groups significantly in comparison to NG and EG1, which exhibited a significant decrease in their BMD. BMD increased only for the lumbar region in the EG2 group (premenopausal). The use of a vegetable calcium source such as nopal improves BMD in women with LBM in the total hip and lumbar spine regions principally in the premenopausal women, maintaining constant and normal calciuria levels.
Vandewalle, S; Taes, Y; Fiers, T; Toye, K; Van Caenegem, E; Kaufman, J-M; De Schepper, J
2014-12-01
Little is known about the effects of adrenal steroids on skeletal maturation and bone mass acquisition in healthy prepubertal boys. To study whether adrenal-derived steroids within the physiological range are associated with skeletal maturation, areal and volumetric bone mineral density (aBMD and vBMD) and bone geometry in healthy prepubertal and early pubertal boys. 98 healthy prepubertal and early pubertal boys (aged 6-14 y) were studied cross-sectionally. Androstenedione (A) and estrone (E1) were determined by liquid chromatography tandem mass spectrometry and DHEAS was determined by immunoassay. Whole body and lumbar spine aBMD and bone area were determined by dual-energy X-ray absorptiometry. Trabecular (distal site) and cortical (proximal site) vBMD and bone geometry were assessed at the non-dominant forearm and leg using peripheral QCT. Skeletal age was determined by X-ray of the left hand. Adrenal-derived steroids (DHEAS, A and E1) are positively associated with bone age in prepubertal and early pubertal children, independently of age. There are no associations between the adrenal-derived steroids and the studied parameters of bone size (lumbar spine and whole body bone area, trabecular or cortical area at the radius or tibia, periosteal circumference and cortical thickness at the radius or tibia) or BMD (aBMD or vBMD). In healthy prepubertal and early pubertal boys, serum adrenal-derived steroid levels, are associated with skeletal maturation, independently of age, but not with bone size or (v)BMD. Our data suggest that adrenal derived steroids are not implicated in the accretion of bone mass before puberty in boys. Copyright © 2014 Elsevier Inc. All rights reserved.
Aguilera-Barreiro, María de los Angeles; Rivera-Márquez, José Alberto; Trujillo-Arriaga, Héctor Miguel; Tamayo y Orozco, Juan Alfredo; Barreira-Mercado, Eduardo; Rodríguez-García, Mario E
2013-01-01
Background The intake of dehydrated nopal (DN) at a high stage of maturity along with high calcium content could improve bone mineral density (BMD) and calciuria and thus prevent osteoporosis. Objective To evaluate the effect of calcium intake from a vegetable source (DN) on BMD and calciuria covering a 2-year period in menopausal and non-menopausal women with low bone mass (LBM). Methods The study was quasi-experimental, blinded, and randomized, and included 131 Mexican women aged 35–55. Urinary calcium/creatinine index (CCI) was determined; BMD was analyzed on lumbar spine and total hip regions. Four groups were studied: Control group (CG), women with normocalciuria and a minimum dose of DN; experimental group 1 (EG1), women with hypercalciuria and a minimum dose of DN; experimental group 2 (EG2), women with hypercalciuria, and a maximum dose of DN; and normal group (NG) for reference in BMD. Results After the first semester of treatment, calciuria levels in women from both experimental groups returned to normal, remaining constant for the rest of the treatment. The percentage difference in BMD increased in the total hip region in the CG (pre 4.5% and post 2.1%) and EG2 (pre 1.8% and post 2.5%) groups significantly in comparison to NG and EG1, which exhibited a significant decrease in their BMD. BMD increased only for the lumbar region in the EG2 group (premenopausal). Conclusion The use of a vegetable calcium source such as nopal improves BMD in women with LBM in the total hip and lumbar spine regions principally in the premenopausal women, maintaining constant and normal calciuria levels. PMID:23704856
Liu, Junting; Wang, Liang; Sun, Jinghui; Liu, Gongshu; Yan, Weili; Xi, Bo; Xiong, Feng; Ding, Wenqing; Huang, Guimin; Heymsfield, Steven; Mi, Jie
2017-05-29
No nationwide paediatric reference standards for bone mineral density (BMD) are available in China. We aimed to provide sex-specific BMD reference values for Chinese children and adolescents (3-18 years). Data (10 818 participants aged 3-18 years) were obtained from cross-sectional surveys of the China Child and Adolescent Cardiovascular Health in 2015, which included four municipality cities and three provinces. BMD was measured using Hologic Discovery Dual Energy X-ray Absorptiometry (DXA) scanner. The DXA measures were modelled against age, with height as an independent variable. The LMS statistical method using a curve fitting procedure was used to construct reference smooth cross-sectional centile curves for dependent versus independent variables. Children residing in Northeast China had the highest total body less head (TBLH) BMD while children residing in Shandong Province had the lowest values. Among children, TBLH BMD was higher for boys as compared with girls; but, it increased with age and height in both sexes. Furthermore, TBLH BMD was higher among US children as compared with Chinese children. There was a large difference in BMD for height among children from these two countries. US children had a much higher BMD at each percentile (P) than Chinese children; the largest observed difference was at P50 and P3 and the smallest difference was at P97. This is the first study to present a sex-specific reference dataset for Chinese children aged 3-18 years. The data can help clinicians improve interpretation, assessment and monitoring of densitometry results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Blain, H; Carrière, I; Favier, F; Jeandel, C; Papoz, L
2004-07-01
Few studies have evaluated risk factors for bone loss in elderly women. We examined risk factors associated with a 5-year longitudinal change in bone mineral density (BMD) at the hip in healthy women aged 75 years and older. The BMD of 276 women from the French EPIDOS (Epidémiologie des Osteoporoses) study was assessed in Montpellier from 1992 to 1993 and again from 1997 to 1998. BMD was measured at the femoral neck, trochanter, and Ward's area using the same Lunar densitometer. We examined the relationship between clinical and behavioral factors at baseline and their variations during follow-up, with percentage BMD change adjusted for baseline BMD. Depending on the femur subregion studied, a significant decrease in BMD (exceeding the least significant difference, i.e., > 2.8 CV) was observed in 36.2% to 51.1% of women. Multivariate analysis showed that both postmenopausal weight change before baseline and baseline percentage of fat mass were positively correlated with BMD change at the Ward's triangle and the trochanter. Yearly absolute and relative weight changes over the follow-up period were significantly associated with change of trochanter and femoral neck BMD. Our results show that maintenance of body weight throughout the postmenopause period and body fat mass play protective roles against bone loss at the proximal femur in women aged 75 years and older and suggest the value in including assessment of weight change throughout postmenopause and percentage body fat mass in screening programs for elderly women who are at higher risk of accelerated bone loss.
Bone mineral density in anorexia nervosa: Only weight and menses recovery?
Jáuregui-Lobera, Ignacio; Bolaños-Ríos, Patricia; Sabaté, Juan
2016-11-01
The study objectives were to analyze the presence of reduced bone mass in a sample of patients with anorexia nervosa (AN) and amenorrhea, to assess Bone Mineral Density (BMD) recovery after having a normal weight is reached and regular menses are resumed, and to predict BMD after a treatment period considering different variables (baseline BMD, baseline and final body mass index (BMI), treatment duration). 35 patients with AN (mean age 20.57±5.77) were studied at treatment start (T 0 ) and after they had recovered their normal weight and regular menses (T 1 ) in order to measure their BMD using quantitative computed tomography (QCT) of the lumbar spine (L2-L4). At T 0 , 2.86% of patients had normal BMD, while a reduced bone mass consistent with osteopenia or with osteoporosis was found in 22.86% and 74.28% of patients respectively. At T 1 , the percentages were 20%, 20%, and 60% respectively. No significant differences were seen in L2-L3 and mean BMD (L2-L4). A significant difference was however found for L4 (p<0.05). A positive relationship was seen between final body mass index (BMI) and final BMD in patients with T 0 -T 1 >11 months, but not when the time period was ≤11 months. This follow-up study of changes not only in BMD but also in BMI and recovery of menses has clinical relevance from the viewpoint of the day-by-day treatment process. Use of QCT makes the study more relevant because this is a more advanced technique that allows for differentiating trabecular and cortical bone. Copyright © 2016 SEEN. Publicado por Elsevier España, S.L.U. All rights reserved.
Physiologic Estrogen Replacement Increases Bone Density in Adolescent Girls with Anorexia Nervosa
Misra, Madhusmita; Katzman, Debra; Miller, Karen K.; Mendes, Nara; Snelgrove, Deirdre; Russell, Melissa; Goldstein, Mark; Ebrahimi, Seda; Clauss, Laura; Weigel, Thomas; Mickley, Diane; Schoenfeld, David; Herzog, David B.; Klibanski, Anne
2011-01-01
Background Anorexia nervosa (AN) is prevalent in adolescents and is associated with decreased bone mineral accrual at a time critical for optimizing bone mass. Low bone mineral density (BMD) in AN is a consequence of nutritional and hormonal alterations, including hypogonadism and low estradiol levels. Effective therapeutic strategies to improve BMD in adolescents with AN have not been identified. Specifically, high estrogen doses given as an oral contraceptive do not improve BMD. The impact of physiological estrogen doses that mimic puberty on BMD has not been examined. Subjects and Methods We enrolled 110 girls with AN and 40 normal-weight controls (C) 12–18y of similar maturity. Subjects were studied for 18 months. Mature AN [bone age (BA) ≥15 y; n=96] were randomized to transdermal 100mcg 17β-estradiol (with cyclic progesterone) or placebo for 18m. Immature AN (BA <15y; n=14) were randomized to incremental low dose oral ethinyl-estradiol (3.75mcg daily from 0–6m, 7.5mcg from 6–12m, 11.25mcg from 12–18m) to mimic pubertal estrogen increases, or placebo for the 18m duration. Results All BMD measures assessed by dual energy x-ray absorptiometry (DXA) were lower in AN than C. At baseline, AN randomized to estrogen (AN E+) did not differ from those randomized to placebo (AN E−) for age, maturity, height, BMI, amenorrhea duration and BMD parameters. Spine and hip BMD Z-scores increased over time in the AN E+ compared with AN E− group, even after controlling for baseline age and weight. Conclusion Physiological estradiol replacement increases spine and hip BMD in girls with AN. PMID:21698665
Effect of Positioning of the ROI on BMD of the Forearm and Its Subregions.
Rosen, Elizabeth O; McNamara, Elizabeth A; Whittaker, LaTarsha G; Malabanan, Alan O; Rosen, Harold N
2018-03-21
Inconsistent positioning of patients and region of interest (ROI) is known to influence the precision of bone mineral density (BMD) measurements in the spine and hip. However, it is unknown whether minor shifts in the positioning of the ROI along the shaft of the radius affect the measurement of forearm BMD and its subregions. The ultradistal (UD-), mid-, one-third, and total radius BMDs of 50 consecutive clinical densitometry patients were acquired. At baseline the distal end of the ROI was placed at the tip of the ulnar styloid as usual, and then the forearm was reanalyzed 10 more times, each time shifting the ROI 1 mm proximally. No corrections for multiple comparisons were necessary since the differences that were significant were significant at p < 0.001. The UD-radius BMD increased as the ROI was shifted proximally; the increase was significant when shifted even 1 mm proximally (p < 0.001). These same findings held true for the mid- and total radius bone density, though the percent increase with moving proximally was significantly greater for the UD radius than for the other subregions. However, there was no significant change in the one-third radius BMD when shifted proximally 1-10 mm. Minor proximal shifts of the forearm ROI substantially affect the BMD of the UD-, mid- and total radius, while having no effect on the one-third radius BMD. Since the one-third radius is the only forearm region usually reported, minor proximal shifts of the ROI should not influence forearm BMD results significantly. Copyright © 2018 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
Thalassaemic osteopathy: a cross-sectional preliminary study from Sri Lanka.
Dissanayake, Ruwangi; de Silva, Shamya; Lekamwasam, Sarath; Abeysekara, Gayan; Dissanayake, Vajira H W
2014-03-01
The objectives of this study were to demonstrate the presence of low bone mineral density (BMD) and to examine the association of known risk factors for low BMD in patients with beta thalassaemia major in Sri Lanka. Thirty-eight patients were studied. Their examination and laboratory investigation findings were recorded (haematology, biochemistry, hormonal profile, COL1A1 rs1800012G>T genotype, dual energy X-ray absorptiometry (DXA) scanning). Mean age was 10.95 years (range 5-21.4). 20 (52.6%) were male. BMD was low (z score ≤-2.0) in 12 (31.5%). Regression analysis of BMD on known risk factors (age, sex, pubertal stage, ferritin level, average pre-transfusion haemoglobin, serum calcium level and COL1A1 rs1800012G>T genotype) controlling for confounding factors on each comparison, showed that only age was significantly associated with low BMD (p=0.005). Approximately one-third of patients had a low BMD. Only age was significantly associated with a low BMD.
Kurt, Ozlem; Yilmaz-Aydogan, Hulya; Uyar, Mehmet; Isbir, Turgay; Seyhan, Mehmet Fatih; Can, Ayse
2012-06-01
It has been suggested that the estrogen receptor alpha (ERα) and vitamin D receptor (VDR) genes as possibly implicated in reduced bone mineral density (BMD) in osteoporosis. The present study investigated the relation of ERα PvuII/XbaI polymorphisms and VDR FokI/TaqI polymorphisms with BMD in Turkish postmenopausal women. Eighty-one osteoporotic and 122 osteopenic postmenopausal women were recruited. For detection of the polymorphisms, polymerase chain reaction-restriction fragment lenght polymorphism techniques have been used. BMD was measured at the lumbar spine and hip by dual-energy X-ray absorptiometry. Distributions of ERα (PvuII dbSNP: rs2234693, XbaI dbSNP: rs9340799) and VDR genotypes (FokI dbSNP rs10735810, TaqI dbSNP: rs731236) were similar in study population. Although overall prevalence of osteoporosis had no association with these genotypes, the prevalence of decreased femoral neck BMD values were higher in the subjects with ERα PvuII "PP" and ERα XbaI "XX" genotypes than in those with "Pp/pp" genotypes and "xx" genotype, respectively (P < 0.05). Furthermore, subjects with VDR FokI "FF" genotype had lower BMD values of femoral neck and total hip compared to those with "Ff" genotype (P < 0.05). In the logistic regression analysis, we confirmed the presence of relationships between the VDR FokI "FF" genotypes, BMI ≤ 27.5, age ≥ 55 and the increased risk of femoral neck BMD below 0.8 value in postmenopausal women. The present data suggests that the ERα PvuII/XbaI and VDR FokI polymorphisms may contribute to the determination of bone mineral density in Turkish postmenopausal women.
de Oliveira, Laís Campos; de Oliveira, Raphael Gonçalves; de Almeida Pires-Oliveira, Deise Aparecida
2018-02-12
Decreased bone mineral density (BMD) is a common condition in postmenopausal women that can be managed with impact activities. Among the activities studied are the whole-body vibration (WBV) and muscle-strengthening exercises. The purpose of this study was to compare the effects of WBV versus Pilates exercise on BMD in postmenopausal women. In this study, 51 postmenopausal women were randomized into 3 groups: vibration (n = 17), Pilates (n = 17), and control (n = 17). Outcomes were the areal bone mineral density (aBMD) (lumbar spine, femoral neck, total hip, trochanter, intertrochanter, and ward's area) assessed by dual-energy x-ray absorptiometry at baseline and follow-up. The interventions were performed 3 times a week for 6 months, totaling 78 sessions. The analysis was performed with intention-to-treat and covariance analyses adjusted for baseline outcomes. After 6 months, 96.1% of the participants completed the follow-up. The analyses demonstrated significant mean between-group differences in favor of the interventions: vibration versus control, for the aBMD of the lumbar spine (0.014 g/cm; 95% confidence interval [CI], 0.006-0.022; P= .018, d = 1.21) and trochanter (0.018 g/cm; 95% CI, 0.006-0.030; P = .012, d = 1.03); and Pilates versus control, for the aBMD of the lumbar spine (0.016 g/cm; 95% CI, 0.007-0.025; P = .008, d = 1.15) and trochanter (0.020 g/cm; 95% CI, 0.010-0.031; P = .005, d = 1.28). In postmenopausal women, 3 weekly sessions of WBV or Pilates administered for 6 months provided an equal effect on BMD.
Fracture Risk and Areal Bone Mineral Density in Adolescent Females with Anorexia Nervosa
Faje, Alexander T.; Fazeli, Pouneh K.; Miller, Karen K.; Katzman, Debra K.; Ebrahimi, Seda; Lee, Hang; Mendes, Nara; Snelgrove, Deirdre; Meenaghan, Erinne; Misra, Madhusmita; Klibanski, Anne
2014-01-01
Objective To (i) compare fracture prevalence in adolescent females with anorexia nervosa (AN) vs. normal-weight controls and (ii) examine whether reductions in areal bone mineral density (aBMD) predict fracture risk in females with AN. Methods 418 females (310 with active AN and 108 normal-weight controls) 12–22 years old were studied cross-sectionally. Lifetime fracture history was recorded by a physician during participant interviews. Body composition and aBMD measurements of the whole body, whole body less head, lumbar spine, and hip were assessed by dual-energy x-ray absorptiometry (DXA), and bone mineral apparent density (BMAD) was calculated for the lumbar spine. Results Participants with AN and normal-weight controls did not differ for chronological age, sexual maturity, or height. The lifetime prevalence of prior fracture was 59.8% higher in those with AN compared to controls (31.0 % versus 19.4 %, p = 0.02), and the fracture incidence rate peaked in our cohort after the diagnosis of AN. Lower aBMD and lumbar BMAD were not associated with a higher prevalence of fracture in the AN or control group on univariate or multivariate analyses. Compared to controls, fracture prevalence was significantly higher in the subgroup of girls with AN who had normal aBMD or only modest reductions of aBMD (Z-scores > −1 or −1.5). Discussion This is the first study to show that the risk of fracture during childhood and adolescence is significantly higher in patients with AN than in normal-weight controls. Fracture prevalence is increased in this cohort of subjects with AN even without significant reductions in aBMD. PMID:24430890
Fracture risk and areal bone mineral density in adolescent females with anorexia nervosa.
Faje, Alexander T; Fazeli, Pouneh K; Miller, Karen K; Katzman, Debra K; Ebrahimi, Seda; Lee, Hang; Mendes, Nara; Snelgrove, Deirdre; Meenaghan, Erinne; Misra, Madhusmita; Klibanski, Anne
2014-07-01
To (i) compare fracture prevalence in adolescent females with anorexia nervosa (AN) versus normal-weight controls and (ii) examine whether reductions in areal bone mineral density (aBMD) predict fracture risk in females with AN. Four-hundred eighteen females (310 with active AN and 108 normal-weight controls) 12- to 22-years-old were studied cross-sectionally. Lifetime fracture history was recorded by a physician during participant interviews. Body composition and aBMD measurements of the whole body, whole body less head, lumbar spine, and hip were assessed by dual-energy X-ray absorptiometry, and bone mineral apparent density (BMAD) was calculated for the lumbar spine. Participants with AN and normal-weight controls did not differ for chronological age, sexual maturity, or height. The lifetime prevalence of prior fracture was 59.8% higher in those with AN as compared to controls (31.0% vs. 19.4%, p = 0.02), and the fracture incidence rate peaked in our cohort after the diagnosis of AN. Lower aBMD and lumbar BMAD were not associated with a higher prevalence of fracture in the AN or control group on univariate or multivariate analyses. Compared to controls, fracture prevalence was significantly higher in the subgroup of girls with AN who had normal aBMD or only modest reductions of aBMD (Z-scores > -1 or -1.5). This is the first study to show that the risk of fracture during childhood and adolescence is significantly higher in patients with AN than in normal-weight controls. Fracture prevalence is increased in this cohort of participants with AN even without significant reductions in aBMD. © 2014 Wiley Periodicals, Inc.
TBS and BMD at the end of AI-therapy: A prospective study of the B-ABLE cohort.
María, Rodríguez-Sanz; Marta, Pineda-Moncusí; Sonia, Servitja; Natalia, Garcia-Giralt; Tamara, Martos; Ignasi, Tusquets; Maria, Martínez-García; Jaime, Rodriguez-Morera; Adolfo, Diez-Perez; Joan, Albanell; Xavier, Nogués
2016-11-01
Patients with breast cancer under aromatase inhibitor (AI) treatment often develop osteoporosis and their average bone loss rate is twice that of natural reduction during menopause, increasing fracture risk. As the current diagnostic technique based on bone mineral density (BMD) provides no information on bone quality, the Trabecular Bone Score (TBS) has been proposed to reflect bone microarchitecture status. The present study was designed to assess prospective changes in TBS and lumbar spine (LS) BMD in postmenopausal women with breast cancer at completion of AI treatment. B-ABLE is a prospective cohort of 735 women with breast cancer treated with AIs according to American Society of Clinical Oncology recommendations: 5years of AI starting within 6weeks post-surgery or 1month after the last cycle of chemotherapy (5y-AI group), or switching to an AI to complete 5-year therapy after 2-3years of tamoxifen (pTMX-AI group). Patients with osteoporosis were treated with oral bisphosphonates (BP). TBS and LS-BMD changes at completion of AI therapy were evaluated by Student t-test for paired samples. Pearson correlation coefficients were computed for correlations between LS-BMD and TBS. AI treatment was completed by 277 women. Of these, 70 (25.3%) were allocated to BP therapy. The non-BP-treated patients (74.7%) showed significant decreases in TBS (-2.94% in pTMX-AI and -2.93% in 5y-AI groups) and in LS-BMD (-4.14% in pTMX-AI and -2.28% in 5y-AI groups) at the end of AI treatment. In BP-treated patients, TBS remained stable at the end of AI treatment, whereas LS-BMD showed significant increases (+2.30% in pTMX-AI and +5.33% in 5y-AI groups). Moderate associations between TBS and LS-BMD values at baseline and at the end of AI treatment (r=0.4; P<0.001) were observed. At the end of treatment, changes in spine BMD and TBS were weakly correlated (r=0.1, P<0.01). AI therapy induces significant decreases in TBS, comparable to BMD loss. BP-treated patients maintained TBS values, whereas BMD increased. AI treatment leads to deterioration of bone microarchitecture, which seems to be attenuated by BP therapy. Copyright © 2016 Elsevier Inc. All rights reserved.