Effect of zoledronic acid on bone density and markers of bone turnover in a community clinic.
Lim, Ria; Zailskas, Susan; Goldsby, Tashauna U; Lukens, Carrie; Muravev, Rostislav; Dulipsingh, Latha
2013-01-01
This study aims to document the efficacy of zoledronic acid by comparing bone densities and markers of bone turnover, in patients with osteoporosis. Bone mineral density (BMD) and urinary N-telopeptide, a marker of bone turnover, were compared before and after treatment with intravenous zoledronic acid. 52 participants had atleast two doses of zoledronic acid over 36 months. Significant increases in BMD were found in the spine (t=4.38, P<0.01) and decrease in bone turnover marker N-telopeptide (t=3.30, P=0.002). Small but significant correlations were determined between prior steroid use and change in BMD in the spine (r=0.35, P<0.05), and family history of osteoporosis and change in BMD in the right femur (r=0.38, P<0.05). Annual infusions of zoledronic acid for at least two years, revealed a significant increase in bone density at the spine and a decrease in urinary N-telopeptide in patients treated at our center.
The influence of vegan diet on bone mineral density and biochemical bone turnover markers.
Ambroszkiewicz, Jadwiga; Klemarczyk, Witold; Gajewska, Joanna; Chełchowska, Magdalena; Franek, Edward; Laskowska-Klita, Teresa
2010-01-01
Vegetarian diets can be healthy when they are well balanced and if a variety of foods is consumed. However, elimination of animal products from the diet (vegan diets) decreases the intake of some essential nutrients and may influence the bone metabolism. This is especially important in childhood and adolescence, when growth and bone turnover are most intensive. The aim of the study was to assess the effect of vegan diet on bone density (BMD) density and serum concentrations of bone metabolism markers. We examined a family on vegan diet which consisted of parents and two children. Dietary constituents were analysed using a nutritional program. Total and regional BMD were measured by dual-energy X-ray absorptiometry. Concentrations of calcium and phosphate in serum obtained from fasting patients were determined by colorimetric methods, 25-hydroxyvitamin D by the chemiluminescence method and bone turnover markers by specific enzyme immunoassays. In studied vegans, the dietary intake of phosphate was adequate while calcium and vitamin D were below the recommended range. Concentrations of calcium, phosphate and bone turnover markers in the serum of all subjects were within the physiological range, but 25-hydroxyvitamin D level was low. Age-matched Z-score total BMD was between -0.6 and 0.3 in adults, however in children it was lower (-0.9 and -1.0). Z-score BMD lumbar spine (L2-L4) was between -0.9 to -1.9 in parents and -1.5 to -1.7 in children. Our results suggest that an inadequate dietary intake of calcium and vitamin D may impair the bone turnover rate and cause a decrease in bone mineral density in vegans. The parameters of bone density and bone metabolism should be monitored in vegans, especially children, in order to prevent bone abnormalities.
Tollin, S R; Rosen, H N; Zurowski, K; Saltzman, B; Zeind, A J; Berg, S; Greenspan, S L
1996-03-01
Benign prostatic hyperplasia is often treated with finasteride, which inhibits the conversion of testosterone to dihydrotestosterone (DHT). Aside from the prostate, other androgen-dependent tissues seem to be unaffected by selective DHT deficiency, but the effect on bone density in humans has not yet been defined. To study this question, we compared indices of bone turnover and bone mineral density in 35 men treated with finasteride with controls. Bone resorption was assessed by measuring urinary excretion of N-telopeptide cross-links of type I collagen and hydroxyproline, and bone formation was assessed by measuring serum osteoncalcin and bone-specific alkaline phosphatase. Bone density of the spine and hip were assessed by dual energy x-ray absorptiometry. We found that finasteride-treated patients had mean DHT levels 81% lower than controls (P < 0.0001). There were no significant differences between the two groups in any of the markers of bone turnover or measures of bone density. These results suggest that testosterone can maintain bone density in men even in the absence of DHT. Although long term studies are needed, our results suggest that men who take finasteride are not at increased risk for bone loss.
Greenspan, Susan L.; Nelson, Joel B.; Trump, Donald L.; Wagner, Julie M.; Miller, Megan E.; Perera, Subashan; Resnick, Neil M.
2008-01-01
Purpose Androgen-deprivation therapy (ADT) for prostate cancer is associated with bone loss and osteoporotic fractures. Our objective was to examine changes in bone density and turnover with sustained, discontinued, or delayed oral bisphosphonate therapy in men receiving ADT. Patients and Methods A total of 112 men with nonmetastatic prostate cancer receiving ADT were randomly assigned to alendronate 70 mg once weekly or placebo in a double-blind, partial-crossover trial with a second random assignment at year 2 for those who initially received active therapy. Outcomes included bone mineral density and bone turnover markers. Results Men initially randomly assigned to alendronate and randomly reassigned at year 2 to continue had additional bone density gains at the spine (mean, 2.3% ± 0.7) and hip (mean, 1.3% ± 0.5%; both P < .01); those randomly assigned to placebo in year 2 maintained density at the spine and hip but lost (mean, −1.9% ± 0.6%; P < .01) at the forearm. Patients randomly assigned to begin alendronate in year 2 experienced improvements in bone mass at the spine and hip, but experienced less of an increase compared with those who initiated alendronate at baseline. Men receiving alendronate for 2 years experienced a mean 6.7% (± 1.2%) increase at the spine and a 3.2% (± 1.5%) at the hip (both P < .05). Bone turnover remained suppressed. Conclusion Among men with nonmetastatic prostate cancer receiving ADT, once-weekly alendronate improves bone density and decreases turnover. A second year of alendronate provides additional skeletal benefit, whereas discontinuation results in bone loss and increased bone turnover. Delay in bisphosphonate therapy appears detrimental to bone health. PMID:18802155
Sato, Y; Iki, M; Fujita, Y; Tamaki, J; Kouda, K; Yura, A; Moon, J-S; Winzenrieth, R; Iwaki, H; Ishizuka, R; Amano, N; Tomioka, K; Okamoto, N; Kurumatani, N
2015-05-01
The effects of milk intake on bone health are not clear in elderly Asian men with low dietary calcium intake. This study showed that greater milk intake is associated with lower bone turnover, higher bone density, and higher bone microarchitecture index in community-dwelling elderly Japanese men. The consumption of milk or dairy products is widely recommended for maintaining bone health regardless of gender or age. However, little evidence exists on the beneficial effects of milk intake on bone health in elderly Japanese men characterized with relatively low dietary calcium intake. Here we examined whether or not greater milk intake was associated with lower bone turnover, higher bone density, and stronger bone microarchitecture in community-dwelling elderly Japanese men. Interviews were conducted to obtain information on medical history and lifestyle, including the amount of habitual milk intake, nutrient intake calculations based on a 1-week food diary, and measurements of areal bone mineral density (aBMD) at the lumbar spine (LS), total hip (TH), and femoral neck (FN) by dual-energy x-ray absorptiometry (DXA), trabecular bone score (TBS) using DXA images at LS, and biochemical markers of bone turnover in sera. Participants with a history of diseases or medications that affect bone metabolism, or with missing data, were excluded from the analysis. The median intake of milk in the 1479 participants (mean age, 73.0 ± 5.1 years) was one glass of milk per day. Bone turnover markers showed a decreasing trend (p < 0.05) and aBMD at TH (p = 0.0019) and FN (p = 0.0057) and TBS (p = 0.0017) showed increasing trends with greater milk intake after adjusting for demographic and behavioral confounding factors. This association was attenuated after further adjusting for nutrient intake, in particular, calcium intake. Greater milk intake was associated with lower bone turnover, higher aBMD, and higher TBS in community-dwelling elderly Japanese men.
Eldecalcitol normalizes bone turnover markers regardless of their pre-treatment levels.
Shiraki, Masataka; Saito, Hitoshi; Matsumoto, Toshio
2012-09-01
Three-year treatment with eldecalcitol has been shown to improve lumbar and total hip bone mineral density (BMD), decrease bone turnover markers, and lower the incidences of vertebral and wrist fractures in patients with osteoporosis more than with treatment with alfacalcidol under vitamin D repletion. The purpose of this study was to determine whether there was a risk of eldecalcitol causing severely suppressed bone turnover in osteoporosis patients with low pre-treatment levels of bone turnover markers. Post-hoc analysis was conducted on the data from a 3-year, randomized, double-blind, active-comparator, clinical trial of eldecalcitol versus alfacalcidol under vitamin D repletion conducted in Japan. Enrolled patients with baseline measurements of bone turnover markers were stratified into tertiles according to their pre-treatment levels of serum bone-specific alkaline phosphatase, serum procollagen type I N-terminal propeptide, or urinary collagen-N-telopeptide. Eldecalcitol treatment rapidly reduced bone turnover markers, and kept them within the normal range. However, in the patients whose baseline values for bone turnover were low, eldecalcitol treatment did not further reduce bone turnover markers during the 3-year treatment period. Further long-term observation may be required to reach the conclusion. CLINICALTRIALS.GOV NUMBER: NCT00144456. Eldecalcitol normalizes, but does not overly suppress, bone turnover regardless of baseline levels of bone turnover markers. Thus, it is unlikely that eldecalcitol treatment will increase the risk of severely suppressed bone turnover and therefore deterioration of bone quality, at least for a treatment duration of 3 years.
Bone health in cerebral palsy and introduction of a novel therapy
Scheinberg, Morton Aaron; Golmia, Ricardo Prado; Sallum, Adriana Maluf Elias; Pippa, Maria Guadalupe Barbosa; Cortada, Aline Pinheiros dos Santos; da Silva, Telma Gomes
2015-01-01
ABSTRACT Objective To assess the bone health status of children with cerebral palsy and the therapeutic effect of denosumab in a subgroup of children with cerebral palsy and decreased bone mass. Methods Children with cerebral palsy were evaluated according to their motor disability score (classification system gross motor functions III to V), bone density and bone turnover markers. Dual X-ray energy absorption was used to measure the lumbar spine, and total body, except the head. Thereafter a group of children with cerebral palsy and osteoporosis was treated with denosumab, a fully human monoclonal antibody. Bone turnover markers were measured before and three months after treatment. Results Reduction in bone mineral density was observed, particularly in children with greater impairment evaluated by the motor score. Decreased bone turnover markers were found in a selected group of children three months after exposure to denosumab. Conclusion Bone loss was present in children with significant impairment of motor function, as well as decreased serum levels of bone resorption markers with new forms. PMID:26761553
Maïmoun, L; Mariano-Goulart, D; Couret, I; Manetta, J; Peruchon, E; Micallef, J P; Verdier, R; Rossi, M; Leroux, J L
2004-09-01
Sports characterized by little or moderate weight bearing or impact have a low osteogenic effect. However, the action of such sports on bone turnover remains unclear. The objective of this study was to determine the effect on bone remodelling of physical activities that induce moderate external loading on the skeleton. Thirty-eight male athletes aged 18-39 years (cyclists, n = 11; swimmers, n = 13; triathletes, n = 14) and 10 age-matched sedentary controls aged 22-35 years participated in the study. The study combined measurement of bone mineral density by dual-energy X-ray absorptiometry and bone turnover assessment from specific biochemical markers: serum bone-specific alkaline phosphatase, osteocalcin, urinary type I collagen C-telopeptide and calcium. Compared with the controls and swimmers, adjusted bone mineral density was higher (P < 0.05) in triathletes at the total proximal femur and lower limbs. No differences in bone mineral density were found between cyclists, swimmers and controls. Compared with controls, osteocalcin was higher (P < 0.05) in triathletes and swimmers and urinary type I collagen C-telopeptide was higher in swimmers only. Serum bone-specific alkaline phosphatase was lower (P < 0.05) in cyclists than in all other groups. In conclusion, an osteogenic effect was found only in triathletes, mainly at bone sites under high mechanical stress. Bone turnover differed in athletes compared with controls, suggesting that bone turnover may be sport-practice dependent. Despite some encouraging observations, it was not possible to show that changes in the bone remodelling process were sport-discipline dependent.
Altered bone turnover during spaceflight
NASA Technical Reports Server (NTRS)
Turner, R. T.; Morey, E. R.; Liu, C.; Baylink, D. J.
1982-01-01
Modifications in calcium metabolism during spaceflight were studied, using parameters that reflect bone turnover. Bone formation rate, medullary area, bone length, bone density, pore size distribution, and differential bone cell number were evaluated in growing rate both immediately after and 25 days after orbital spaceflights aboard the Soviet biological satellites Cosmos 782 and 936. The primary effect of space flight on bone turnover was a reversible inhibition of bone formation at the periosteal surface. A simultaneous increase in the length of the periosteal arrest line suggests that bone formation ceased along corresponding portions of that surface. Possible reasons include increased secretion of glucocorticoids and mechanical unloading of the skeleton due to near-weightlessness, while starvation and immobilization are excluded as causes.
Nebigh, Ammar; Abed, Mohamed Elfethi; Borji, Rihab; Sahli, Sonia; Sellami, Slaheddine; Tabka, Zouhair; Rebai, Haithem
2017-11-01
The aim of this study was to examine the relationship between bone mass and bone turnover markers with lean mass (LM) in pubescent soccer players. Two groups participated in this study, which included 65 elite young soccer players who trained for 6-8 hours per week and 60 controls. Bone mineral density; bone mineral content in the whole body, lower limbs, lumbar spine, and femoral neck; biochemical markers of osteocalcin; bone-specific alkaline phosphatase; C-telopeptide type I collagen; and total LM were assessed. Young soccer players showed higher bone mineral density and bone mineral content in the whole body and weight-bearing sites (P < .001). Indeed, the total LM correlated with whole-body bone mineral density and bone mineral content (P < .001). There were significant differences within the bone formation markers and osteocalcin (formation)/C-telopeptide type I collagen (resorption) ratio between young soccer players compared with the control group, but no significant difference in C-telopeptide type I collagen was observed between the 2 groups. This study showed a significant positive correlation among bone-specific alkaline phosphatase, osteocalcin, and total LM (r = .29; r = .31; P < .05) only for the young soccer players. Findings of this study highlight the importance of soccer practice for bone mineral parameters and bone turnover markers during the puberty stage.
[Clinical usefulness of bone turnover markers in the management of osteoporosis].
Yano, Shozo
2013-09-01
Osteoporosis is a state of elevated risk for bone fracture due to depressed bone strength, which is considered to be the sum of bone mineral density and bone quality. Since a measure of bone quality has not been established, bone mineral density and bone turnover markers are the only way to evaluate bone strength. Bone turnover markers are classified into bone formation marker and resorption marker, which are correlated with the bone formation rate and resorption rate, respectively, and bone matrix-related marker. Bone is always metabolized; old tissue is resorbed by acids and proteases derived from osteoclasts, whereas new bone is produced by osteoblasts. Bone formation and resorption rates should be balanced (also called coupled). When the bone resorption rate exceeds the formation rate(uncoupled state), bone volume will be reduced. Thus, we can comprehend bone metabolism by measuring both formation and resorption markers at the same time. Increased fracture risk is recognized by elevated bone resorption markers and undercarboxylated osteocalcin, which reflects vitamin K insufficiency and bone turnover. These values and the time course give us helpful information to choose medicine suitable for the patients and to judge the responsiveness. If the value is extraordinarily high without renal failure, metabolic bone disorder or bone metastatic tumor should be considered. Bone quality may be assessed by measuring bone matrix-related markers such as homocystein and pentosidine. Since recent studies indicate that the bone is a hormone-producing organ, it is possible that glucose metabolism or an unknown mechanism could be assessed in the future.
Low bone mineral density and fragility fractures in permanent vegetative state patients.
Oppl, Bastian; Michitsch, Gabriele; Misof, Barbara; Kudlacek, Stefan; Donis, Johann; Klaushofer, Klaus; Zwerina, Jochen; Zwettler, Elisabeth
2014-01-01
Disuse of the musculoskeletal system causes bone loss. Whether patients in vegetative state, a dramatic example of immobilization after severe brain injury, suffer from bone loss and fractures is currently unknown. Serum markers of bone turnover, bone mineral density (BMD) measurements, and clinical data were cross-sectionally analyzed in 30 consecutive vegetative state patients of a dedicated apallic care unit between 2003 and 2007 and compared with age- and sex-matched healthy individuals. Vegetative state patients showed low calcium levels and vitamin D deficiency compared with healthy controls. Serum bone turnover markers revealed high turnover as evidenced by markedly elevated carboxy-terminal telopeptide of type I collagen (β-crosslaps) and increased levels of alkaline phosphatase. BMD measured by dual-energy X-ray absorptiometry (DXA) scanning showed strongly decreased T- and Z-scores for hip and spine. Over a period of 5 years, 8 fragility fractures occurred at peripheral sites in 6 of 30 patients (n = 3 femur, n = 2 tibia, n = 2 fibula, n = 1 humerus). In conclusion, high bone turnover and low BMD is highly prevalent in vegetative state patients, translating into a clinically relevant problem as shown by fragility fractures in 20% of patients over a time period of 5 years. . © 2014 American Society for Bone and Mineral Research.
Longitudinal study of bone loss in chronic spinal cord injury patients
Karapolat, Inanc; Karapolat, Hale Uzumcugil; Kirazli, Yesim; Capaci, Kazim; Akkoc, Yesim; Kumanlioglu, Kamil
2015-01-01
[Purpose] This prospective longitudinal study evaluated the changes in bone metabolism markers and bone mineral density of spinal cord injury patients over 3 years. We also assessed the relationships among the bone mineral density, bone metabolism, and clinical data of spinal cord injury patients. [Subjects and Methods] We assessed the clinical data (i.e., immobilization due to surgery, neurological status, neurological level, and extent of lesion) in 20 spinal cord injury patients. Bone mineral density, and hormonal and biochemical markers of the patients were measured at 0, 6, 12, and 36 months. [Results] Femoral neck T score decreased significantly at 36 months (p < 0.05). Among the hormonal markers, parathyroid hormone and vitamin D were significantly elevated, while bone turnover markers (i.e., deoxypyridinoline and osteocalcin) were significantly decreased at 12 and 36 months (p < 0.05). [Conclusion] Bone mineral density of the femoral neck decreases significantly during the long-term follow-up of patients with spinal cord injury due to osteoporosis. This could be due to changes in hormonal and bone turnover markers. PMID:26157234
Assessment of bone turnover markers and bone mineral density in normal short boys.
Gayretli Aydin, Zeynep Gökçe; Bideci, Aysun; Emeksiz, Hamdi C; Çelik, Nurullah; Döğer, Esra; Bukan, Neslihan; Yildiz, Ummügülsüm; Camurdan, Orhun M; Cinaz, Peyami
2015-11-01
To investigate whether there is a change in bone turnover-related biochemical markers and bone mineral density of children with constitutional delay of growth and puberty (CDGP) in the prepubertal period. We measured serum calcium, phosphorus, alkaline phosphatase, parathormone, 25-OH vitamin D, osteocalcin, osteoprotogerin and urinary deoxypyridinoline levels (D-pyd), and bone mineral density (BMD) in 31 prepubertal boys with CDGP. These children were compared with 22 prepubertal boys with familial short stature (FSS) and 27 normal prepubertal boys. Urinary D-pyd was significantly high in CDGP group as compared to control group (p=0.010). Volumetric BMD did not significantly differ between CDGP, FSS, and control groups (p=0.450). Volumetric BMD and urinary D-pyd levels of FSS and control groups were similar. Mean or median levels of calcium, phosphorus, alkaline phosphatase, parathormone, and osteoprotegerin did not significantly differ between CDGP, FSS, and control groups. Our data suggest that prepubertal boys with CDPG have normal bone turnover. However, their significantly higher urinary D-pyd levels relative to those of FSS and control groups might be an indicator of later development of osteoporosis. Therefore, long-term follow-up studies monitoring bone mineral status of prepubertal boys with CDPG from prepuberty to adulthood are needed to better understand bone metabolism of these patients.
Shaarawy, Mohamed; Abassi, Asmaa Farid; Hassan, Hany; Salem, Mahmoud E
2003-04-01
To determine whether leptin is involved in bone remodeling in patients with postmenopausal osteoporosis. Cross-sectional study. Department of Obstetrics and Gynecology, Faculty of Medicine, Cairo University. Ninety postmenopausal osteoporotic women (37 obese and 53 nonobese) and 30 healthy premenopausal women from the same clinic served as controls. Lumbar spine bone mineral density (LS-BMD) of osteoporotic patients was more than 2.5 SD below the normal mean of healthy premenopausal women. Serum levels of leptin, osteocalcin (OC), bone alkaline phosphatase (B-ALP), urinary deoxypyridinoline (DPyr), and N-telopeptide of type 1 collagen (NTX) as well as LS-BMD using dual energy X-ray absorptiometry (DEXA). The serum leptin level in obese postmenopausal osteoporotic patients was significantly increased compared with nonobese osteoporotic patients. There were no significant differences of bone formation markers (B-ALP, OC), bone resorption markers (DPyr, NTX), or LS-BMD between the obese and nonobese groups. There were no significant correlations between serum leptin and any biomarkers of bone turnover and BMD. In postmenopausal osteoporotic patients with increased bone turnover, serum leptin concentration is not correlated with BMD or with the biomarkers of bone formation or bone resorption.
Petropoulou, Anna D; Porcher, Raphael; Herr, Andrée-Laure; Devergie, Agnès; Brentano, Thomas Funck; Ribaud, Patricia; Pinto, Fernando O; Rocha, Vanderson; Peffault de Latour, Régis; Orcel, Philippe; Socié, Gérard; Robin, Marie
2010-06-15
Bone complications after hematopoietic stem-cell transplantation (HSCT) are relatively frequent. Evaluation of biomarkers of bone turnover and dual energy x-ray absorptiometry (DEXA) are not known in this context. We prospectively evaluated bone mineral density, biomarkers of bone turnover, and the cumulative incidence of bone complications after allogeneic HSCT. One hundred forty-six patients were included. Bone mineral density was measured by DEXA 2-month and 1-year post-HSCT. The markers of bone turnover were serum C-telopeptide (C-TP), 5 tartrate-resistant acid phosphatase (bone resorption), and osteocalcin (bone formation) determined pre-HSCT and 2 months and 1 year thereafter. Potential association between osteoporosis at 2 months, osteoporotic fracture or avascular necrosis and, individual patient's characteristics and biologic markers were tested. C-TP was high before and 2 months after transplant. At 2 months, DEXA detected osteoporosis in more than half the patients tested. Male sex, median age less than or equal to 15 years, and abnormal C-TP before HSCT were risk factors significantly associated with osteoporosis. Three-year cumulative incidences of fractures and avascular necrosis were 8% and 11%, respectively. Children were at higher risk of fracture, whereas corticosteroid treatment duration was a significant risk factor for developing a clinical bone complication post-HSCT. Bone complications and osteoporosis are frequent after HSCT. Bone biologic markers and DEXA showed that subclinical bone abnormalities appeared early post-HSCT. The risk factors, age, gender, and C-TP easily available at the time of transplantation were identified. Biphosphonates should probably be given to patients with those risk factors.
2012-01-01
Background Epimedii herba is one of the most frequently used herbs in formulas that are prescribed for the treatment of osteoporosis in China and its main constituent is Epimedium pubescen flavonoid (EPF). However, it is unclear whether EPF during chronic exposure to cigarette smoke may have a protective influence on the skeleton. The present study investigated the effect of EPF on bone mineral status and bone turnover in a rat model of human relatively high exposure to cigarette smoke. Methods Fifty male Wistar rats were randomized into five groups: controls, passive smoking groups and passive smoking rats administered EPF at three dosage levels (75, 150 or 300 mg/kg/day) in drinking water for 4 months. A rat model of passive smoking was prepared by breeding male rats in a cigarette-smoking box. Bone mineral content (BMC), bone mineral density (BMD), bone turnover markers, bone histomorphometric parameters and biomechanical properties were examined. Results Smoke exposure decreased BMC and BMD, increased bone turnover (inhibited bone formation and stimulated its resorption), affected bone histomorphometry (increased trabecular separation and osteoclast surface per bone surface; decreased trabecular bone volume, trabecular thickness, trabecular number, cortical thickness, bone formation rate and osteoblast surface per bone surface), and reduced mechanical properties. EPF supplementation during cigarette smoke exposure prevented smoke-induced changes in bone mineral status and bone turnover. Conclusion The results suggest that EPF can prevent the adverse effects of smoke exposure on bone by stimulating bone formation and inhibiting bone turnover and bone resorption. PMID:22713117
Gao, Shu-guang; Cheng, Ling; Li, Kang-hua; Liu, Wen-He; Xu, Mai; Jiang, Wei; Wei, Li-Cheng; Zhang, Fang-jie; Xiao, Wen-feng; Xiong, Yi-lin; Tian, Jian; Zeng, Chao; Sun, Jin-peng; Xie, Qiang; Lei, Guang-hua
2012-06-19
Epimedii herba is one of the most frequently used herbs in formulas that are prescribed for the treatment of osteoporosis in China and its main constituent is Epimedium pubescen flavonoid (EPF). However, it is unclear whether EPF during chronic exposure to cigarette smoke may have a protective influence on the skeleton. The present study investigated the effect of EPF on bone mineral status and bone turnover in a rat model of human relatively high exposure to cigarette smoke. Fifty male Wistar rats were randomized into five groups: controls, passive smoking groups and passive smoking rats administered EPF at three dosage levels (75, 150 or 300 mg/kg/day) in drinking water for 4 months. A rat model of passive smoking was prepared by breeding male rats in a cigarette-smoking box. Bone mineral content (BMC), bone mineral density (BMD), bone turnover markers, bone histomorphometric parameters and biomechanical properties were examined. Smoke exposure decreased BMC and BMD, increased bone turnover (inhibited bone formation and stimulated its resorption), affected bone histomorphometry (increased trabecular separation and osteoclast surface per bone surface; decreased trabecular bone volume, trabecular thickness, trabecular number, cortical thickness, bone formation rate and osteoblast surface per bone surface), and reduced mechanical properties. EPF supplementation during cigarette smoke exposure prevented smoke-induced changes in bone mineral status and bone turnover. The results suggest that EPF can prevent the adverse effects of smoke exposure on bone by stimulating bone formation and inhibiting bone turnover and bone resorption.
Jiang, Jun; Boyle, Leryn J; Mikus, Catherine R; Oberlin, Douglas J; Fletcher, Justin A; Thyfault, John P; Hinton, Pamela S
2014-11-01
Emerging evidence supports an association between metabolic risk factors and bone turnover. Statins and exercise independently improve metabolic risk factors; however whether improvements in metabolic risk factor affects bone turnover is unknown. The purpose of the present study was to: 1) evaluate the relationship between metabolic risk factors and bone turnover; and 2) determine if improvements in metabolic risk factors after 12 weeks of statin treatment, exercise or the combination affect bone turnover. Fifty participants with ≥2 metabolic syndrome defining characteristics were randomly assigned to one of three groups: statin (STAT: simvastatin, 40 mg/day), exercise (EX: brisk walking and/or slow jogging, 45 minutes/day, 5 days/week), or the combination (STAT+EX). Body composition and whole body bone mineral density were measured with dual energy X-ray absorptiometry. Serum markers of bone formation (bone specific alkaline phosphatase, BAP; osteocalcin, OC), resorption (C-terminal peptide of type I collagen, CTX) and metabolic risk factors were determined. Two-factor (time, group) repeated-measures ANCOVA was used to examine changes of metabolic risk factors and bone turnover. General linear models were used to determine the effect of pre-treatment metabolic risk factors on post-treatment bone turnover marker outcomes. Participants with ≥4 metabolic syndrome defining characteristics had lower pre-treatment OC than those with 3 or fewer. OC was negatively correlated with glucose, and CTX was positively correlated with cholesterol. STAT or STAT+EX lowered total and LDL cholesterol. The OC to CTX ratio decreased in all groups with no other significant changes in bone turnover. Higher pre-treatment insulin or body fat predicted a greater CTX reduction and a greater BAP/CTX increase. Metabolic risk factors were negatively associated with bone turnover markers. Short-term statin treatment with or without exercise lowered cholesterol and all treatments had a small effect on bone turnover. Copyright © 2014 Elsevier Inc. All rights reserved.
Diabetes, Biochemical Markers of Bone Turnover, Diabetes Control, and Bone
Starup-Linde, Jakob
2012-01-01
Diabetes mellitus is known to have late complications including micro vascular and macro vascular disease. This review focuses on another possible area of complication regarding diabetes; bone. Diabetes may affect bone via bone structure, bone density, and biochemical markers of bone turnover. The aim of the present review is to examine in vivo from humans on biochemical markers of bone turnover in diabetics compared to non-diabetics. Furthermore, the effect of glycemic control on bone markers and the similarities and differences of type 1- and type 2-diabetics regarding bone markers will be evaluated. A systematic literature search was conducted using PubMed, Embase, Cinahl, and SveMed+ with the search terms: “Diabetes mellitus,” “Diabetes mellitus type 1,” “Insulin dependent diabetes mellitus,” “Diabetes mellitus type 2,” “Non-insulin dependent diabetes mellitus,” “Bone,” “Bone and Bones,” “Bone diseases,” “Bone turnover,” “Hemoglobin A Glycosylated,” and “HbA1C.” After removing duplicates from this search 1,188 records were screened by title and abstract and 75 records were assessed by full text for inclusion in the review. In the end 43 records were chosen. Bone formation and resorption markers are investigated as well as bone regulating systems. T1D is found to have lower osteocalcin and CTX, while osteocalcin and tartrate-resistant acid are found to be lower in T2D, and sclerostin is increased and collagen turnover markers altered. Other bone turnover markers do not seem to be altered in T1D or T2D. A major problem is the lack of histomorphometric studies in humans linking changes in turnover markers to actual changes in bone turnover and further research is needed to strengthen this link. PMID:23482417
Increases in bone density during treatment of men with idiopathic hypogonadotropic hypogonadism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finkelstein, J.S.; Klibanski, A.; Neer, R.M.
To assess the effects of gonadal steroid replacement on bone density in men with osteoporosis due to severe hypogonadism, we measured cortical bone density in the distal radius by 125I photon absorptiometry and trabecular bone density in the lumbar spine by quantitative computed tomography in 21 men with isolated GnRH deficiency while serum testosterone levels were maintained in the normal adult male range for 12-31 months (mean +/- SE, 23.7 +/- 1.1). In men who initially had fused epiphyses (n = 15), cortical bone density increased from 0.71 +/- 0.02 to 0.74 +/- 0.01 g/cm2 (P less than 0.01), whilemore » trabecular bone density did not change (116 +/- 9 compared with 119 +/- 7 mg/cm3). In men who initially had open epiphyses (n = 6), cortical bone density increased from 0.62 +/- 0.01 to 0.70 +/- 0.03 g/cm2 (P less than 0.01), while trabecular bone density increased from 96 +/- 13 to 109 +/- 12 mg/cm3 (P less than 0.01). Cortical bone density increased 0.03 +/- 0.01 g/cm2 in men with fused epiphyses and 0.08 +/- 0.02 g/cm2 in men with open epiphyses (P less than 0.05). Despite these increases, neither cortical nor trabecular bone density returned to normal levels. Histomorphometric analyses of iliac crest bone biopsies demonstrated that most of the men had low turnover osteoporosis, although some men had normal to high turnover osteoporosis. We conclude that bone density increases during gonadal steroid replacement of GnRH-deficient men, particularly in men who are skeletally immature.« less
Laurent, M R; Cook, M J; Gielen, E; Ward, K A; Antonio, L; Adams, J E; Decallonne, B; Bartfai, G; Casanueva, F F; Forti, G; Giwercman, A; Huhtaniemi, I T; Kula, K; Lean, M E J; Lee, D M; Pendleton, N; Punab, M; Claessens, F; Wu, F C W; Vanderschueren, D; Pye, S R; O'Neill, T W
2016-11-01
We examined cross-sectional associations of metabolic syndrome and its components with male bone turnover, density and structure. Greater bone mass in men with metabolic syndrome was related to their greater body mass, whereas hyperglycaemia, hypertriglyceridaemia or impaired insulin sensitivity were associated with lower bone turnover and relative bone mass deficits. Metabolic syndrome (MetS) has been associated with lower bone turnover and relative bone mass or strength deficits (i.e. not proportionate to body mass index, BMI), but the relative contributions of MetS components related to insulin sensitivity or obesity to male bone health remain unclear. We determined cross-sectional associations of MetS, its components and insulin sensitivity (by homeostatic model assessment-insulin sensitivity (HOMA-S)) using linear regression models adjusted for age, centre, smoking, alcohol, and BMI. Bone turnover markers and heel broadband ultrasound attenuation (BUA) were measured in 3129 men aged 40-79. Two centres measured total hip, femoral neck, and lumbar spine areal bone mineral density ( a BMD, n = 527) and performed radius peripheral quantitative computed tomography (pQCT, n = 595). MetS was present in 975 men (31.2 %). Men with MetS had lower β C-terminal cross-linked telopeptide (β-CTX), N-terminal propeptide of type I procollagen (PINP) and osteocalcin (P < 0.0001) and higher total hip, femoral neck, and lumbar spine a BMD (P ≤ 0.03). Among MetS components, only hypertriglyceridaemia and hyperglycaemia were independently associated with PINP and β-CTX. Hyperglycaemia was negatively associated with BUA, hypertriglyceridaemia with hip a BMD and radius cross-sectional area (CSA) and stress-strain index. HOMA-S was similarly associated with PINP and β-CTX, BUA, and radius CSA in BMI-adjusted models. Men with MetS have higher a BMD in association with their greater body mass, while their lower bone turnover and relative deficits in heel BUA and radius CSA are mainly related to correlates of insulin sensitivity. Our findings support the hypothesis that underlying metabolic complications may be involved in the bone's failure to adapt to increasing bodily loads in men with MetS.
Park, S M; Joung, J Y; Cho, Y Y; Sohn, S Y; Hur, K Y; Kim, J H; Kim, S W; Chung, J H; Lee, M K; Min, Y-K
2015-03-01
High salt intake is a well-recognized risk factor of osteoporosis for its modulating effect on calcium metabolism. To understand the effect of dietary sodium on bone turnover, we evaluated the association between urinary sodium excretion and bone turnover markers in Korean postmenopausal women with low bone mass. A retrospective review of medical records at a single institution identified 537 postmenopausal women who were first diagnosed with osteopenia or osteoporosis between 2008 and 2013. Subjects were stratified by low (<2 g/day, n=77), moderate (2-4.4 g/day, n=354) and high (⩾4.4 g/day, n=106) sodium excretion. A 24-h urine was collected to estimate sodium, calcium and creatinine. Bone turnover markers and calciotropic hormones were measured in serum. Bone mineral density (BMD) was assessed using dual-energy X-ray absorptiometry. Sodium intake was positively associated with urinary sodium excretion (P=0.006, r=0.29). Bone turnover markers were significantly higher in the moderate-to-high urinary sodium excretion group (⩾2 g/day) than in the low urinary sodium excretion group (<2 g/day); CTX-I (C-telopeptides of type I collagen) was 21.3% higher (P=0.001) and osteocalcin (OC) was 15.7% higher (P=0.004). Calciotropic hormones and BMD were not significantly different across the sodium excretion groups. High urinary sodium excretion (⩾2 g/day) increased bone turnover markers in Korean postmenopausal women, suggesting that excessive sodium intake might accelerate bone turnover.
Evans, Ellen M.; Racette, Susan B.; Van Pelt, Rachael E.; Peterson, Linda R.; Villareal, Dennis T.
2008-01-01
Objective The aim of this study was to assess the independent and additive effects of soy protein isolate (SPI) and moderate-intensity exercise (EX) on bone turnover and bone mineral density (BMD). Design This study used a placebo-controlled, double-blind (soy), randomized 2 (SPI vs milk protein isolate [MPI]) × 2 (EX vs no EX) design. Sixty-one postmenopausal women were randomized, and 43 (62 ± 5 y) completed the 9-month intervention (SPI, n = 10; MPI, n = 12; SPI + EX, n = 11; MPI + EX, n = 10). Serum C-terminal cross-linked telopeptides of type I collagen and serum bone-specific alkaline phosphatase were measured as markers of bone resorption and formation, respectively. BMD was measured by dual-energy x-ray absorptiometry. Results At 9 months, SPI reduced serum C-terminal cross-linked telopeptides (−13.3% ± 15.3% vs −1.5% ± 21.0%; P = 0.02) and serum bone-specific alkaline phosphatase (−4.7% ± 14.7% vs 6.5% ± 17.7%; P = 0.02) compared to milk protein isolate. EX attenuated the reduction in serum C-terminal cross-linked telopeptides (−1.9% ± 21.6% vs −12.4% ± 15.3%; P = 0.04); however, no EX effects were apparent in serum bone-specific alkaline phosphatase at 9 months (2.8% ± 16.1% vs −1.0% ± 18.3%; P = 0.28). Neither SPI nor EX affected BMD at any site; however, change in BMD was related to change in fat mass (r = 0.40, P < 0.05). Conclusions In postmenopausal women (1) SPI reduces bone turnover with no impact on BMD over 9 months; (2) moderate-intensity endurance exercise training did not favorably alter bone turnover and had no impact on BMD; and (3) there were no additive effects of soy and exercise on bone turnover or BMD. PMID:17213752
Mainra, Rahul; Elder, Grahame J
2010-01-01
Most patients who undergo kidney or kidney-pancreas transplantation have renal osteodystrophy, and immediately after transplantation bone mineral density (BMD) commonly falls. Together, these abnormalities predispose to an increased fracture incidence. Bisphosphonate or calcitriol therapy can preserve BMD after transplantation, but although bisphosphonates may be more effective, they pose potential risks for adynamic bone. A total of 153 kidney (61%) and kidney-pancreas (39%) transplant recipients were allocated to bisphosphonate (62%) or calcitriol (38%) therapy using an algorithm that incorporated BMD, prevalent vertebral fracture, biomarkers of bone turnover, and risk factor assessment. Patients received cholecalciferol and calcium as appropriate and were followed for 12 mo. Patients who were treated with bisphosphonates had lower BMD at the lumbar spine and femoral neck and longer time on dialysis. Age and gender were similar between the groups. At 12 mo, bisphosphonate-treated patients had significant BMD increases at the lumber spine and femoral neck and a negative trend at the wrist. Patients who were allocated to calcitriol, who were assessed to have lower baseline fracture risk, had no significant change in BMD at any site. At 1 yr, mean levels of bone turnover marker and intact parathyroid hormone normalized in both groups. Incident fracture rates did not differ significantly. With targeted treatment, BMD levels were stable or improved and bone turnover markers normalized. This algorithm provides a guide to targeting therapy after transplantation that avoids BMD loss and may reduce suppression of bone turnover.
Kumar, Ashok; Devi, Salam Gyaneshwori; Mittal, Soniya; Shukla, Deepak Kumar; Sharma, Shashi
2013-01-01
Background & objectives: The osteoporotic risk for women increases soon after menopause. Bone turnover markers are known to be associated with bone loss and fracture risk. This study was aimed to assess bone turnover using bone markers and their correlation with bone mineral density (BMD) in pre- and post-menopausal women. Methods: A total of 255 healthy women (160 pre- and 95 post-menopausal) were enrolled. Serum bone alkaline phosphatase (sBAP) and serum N-terminal telopeptide of type I collagen (NTX) were measured to evaluate the bone formation and resorption, respectively. Bone mineral density was determined at lumbar spine (L2-L4) anteroposteriorly, femoral neck and Ward's triangle using Prodigy dual-energy X-ray absorptiometry (DXA) system. The comparison of years since menopause with respect to BMD and bone markers was also evaluated. Results: NTX and sBAP showed significant negative correlation with BMD of femur neck and Ward's triangle in postmenopausal women. BMD of all three sides were significant variables for NTX and BMD of femur neck and Ward's triangle for sBAP in postmenopausal women. BMD lumbar spine was a significant variable for sBAP in premenopausal women. The mean values of NTX increased significantly with increase in the duration of years since menopause. The BMD of all three sides decreased significantly with increase in the duration of years since menopause. Interpretation & conclusions: Serum NTX and sBAP were inversely correlated to BMD of femur neck and Ward's triangle in post-menopausal women. Simultaneous measurements of NTX and BMD in the north Indian women, suggest that bone resorption in women with low BMD remains high after menopause. PMID:23481051
Atkinson, Charlotte; Compston, Juliet E; Day, Nicholas E; Dowsett, Mitch; Bingham, Sheila A
2004-02-01
Isoflavone phytoestrogen therapy has been proposed as a natural alternative to hormone replacement therapy (HRT). HRT has a beneficial effect on bone, but few trials in humans have investigated the effects of isoflavones on bone. The objective of the study was to determine the effect on bone density of a red clover-derived isoflavone supplement that provided a daily dose of 26 mg biochanin A, 16 mg formononetin, 1 mg genistein, and 0.5 mg daidzein for 1 y. Effects on biochemical markers of bone turnover and body composition were also studied. Women aged 49-65 y (n = 205) were enrolled in a double-blind, randomized, placebo-controlled trial; 177 completed the trial. Bone density, body composition, bone turnover markers, and diet were measured at baseline and after 12 mo. Loss of lumbar spine bone mineral content and bone mineral density was significantly (P = 0.04 and P = 0.03, respectively) lower in the women taking the isoflavone supplement than in those taking the placebo. There were no significant treatment effects on hip bone mineral content or bone mineral density, markers of bone resorption, or body composition, but bone formation markers were significantly increased (P = 0.04 and P = 0.01 for bone-specific alkaline phosphatase and N-propeptide of collagen type I, respectively) in the intervention group compared with placebo in postmenopausal women. Interactions between treatment group and menopausal status with respect to changes in other outcomes were not significant. These data suggest that, through attenuation of bone loss, isoflavones have a potentially protective effect on the lumbar spine in women.
Decreased Bone Mineral Density in Prader-Willi Syndrome: Comparison With Obese Subjects
Butler, Merlin G.; Haber, Lawrence; Mernaugh, Ray; Carlson, Michael G.; Price, Ron; Feurer, Irene D.
2016-01-01
Bone density, anthropometric data, and markers of bone turnover were collected on 21 subjects diagnosed with Prader-Willi syndrome (PWS) and compared with 9 subjects with obesity of unknown cause. In addition, urinary N-telopeptide levels were obtained in all subjects. N-telopeptides are the peptide fragments of type I collagen, the major bone matrix material. During periods of active bone degradation or high bone turnover, high levels of N-telopeptides are excreted in the urine. However, no significant difference was detected in the urinary N-telopeptide levels when corrected for creatinine excretion (raw or transformed data) between our subjects with obesity or PWS and the observed effect size of the between-group difference was small. Although N-telopeptide levels were higher but not significantly different in the subjects with PWS compared with obese controls, the subjects with PWS had significantly decreased total bone and spine mineral density and total bone mineral content (all P < 0.001). No differences in N- telopeptide levels or bone mineral density were observed between subjects with PWS and chromosome 15q deletion or maternal disomy. Thus, decreased bone mineral density in subjects with PWS may relate to the lack of depositing bone mineral during growth when bones are becoming more dense (e.g., during adolescence), possibly because of decreased production of sex or growth hormones and/or long-standing hypotonia. It may not be caused by loss, or active degradation, of bone matrix measurable by the methods described in this study further supporting the possible need for hormone therapy during adolescence. PMID:11745993
Bone turnover in postmenopausal osteoporosis. Effect of calcitonin treatment.
Civitelli, R; Gonnelli, S; Zacchei, F; Bigazzi, S; Vattimo, A; Avioli, L V; Gennari, C
1988-10-01
To investigate the effectiveness of calcitonin treatment of postmenopausal osteoporosis in relation to bone turnover, we examined 53 postmenopausal osteoporotic women before and after one year of therapy with salmon calcitonin (sCT), at the dose of 50 IU every other day. Baseline evaluation revealed that 17 (32%) patients had high turnover (HTOP), and 36 (68%) normal turnover osteoporosis (NTOP) as assessed by measurement of whole body retention (WBR) of 99mTc-methylene diphosphonate. The two groups did not differ in terms of bone mineral content (BMC) measured by dual photon absorptiometry at both lumbar spine and femoral diaphysis. However, HTOP patients had higher levels of serum osteocalcin (OC) and urinary hydroxyproline excretion (HOP/Cr). Multivariate regression analysis showed no correlation between parameters of bone turnover (WBR, OC, HOP/Cr) and both femoral and vertebral bone density; the latter being negatively correlated only with the years elapsed since menopause (R2 = 0.406). Treatment with sCT resulted in a significant increase of vertebral BMC in the 53 patients taken as a whole group (+/- 7%, P less than 0.001). When the results obtained in HTOP and NTOP were analyzed separately, only those with HTOP showed a marked increment of spinal BMC (+22%, P less than 0.001), NTOP subjects neither gained nor lost bone mineral during the study. Femoral BMC decreased in the whole group after sCT therapy (-3%, P less than 0.003). However, HTOP patients maintained initial BMC values, whereas those with NTOP lost a significant amount of bone during the study period (-5%, P less than 0.001). The increase of vertebral bone mass was associated with a marked depression of bone turnover detectable in both subsets of patients and in the whole group. (a) assessment of bone turnover cannot help predict the severity of bone loss in postmenopausal osteoporosis; (b) calcitonin therapy appears to be particularly indicated for patients with high-turnover osteoporosis, resulting in a net gain of bone mineral in the axial skeleton and a slowing of bone loss in the appendicular bones.
Bone turnover in postmenopausal osteoporosis. Effect of calcitonin treatment.
Civitelli, R; Gonnelli, S; Zacchei, F; Bigazzi, S; Vattimo, A; Avioli, L V; Gennari, C
1988-01-01
To investigate the effectiveness of calcitonin treatment of postmenopausal osteoporosis in relation to bone turnover, we examined 53 postmenopausal osteoporotic women before and after one year of therapy with salmon calcitonin (sCT), at the dose of 50 IU every other day. Baseline evaluation revealed that 17 (32%) patients had high turnover (HTOP), and 36 (68%) normal turnover osteoporosis (NTOP) as assessed by measurement of whole body retention (WBR) of 99mTc-methylene diphosphonate. The two groups did not differ in terms of bone mineral content (BMC) measured by dual photon absorptiometry at both lumbar spine and femoral diaphysis. However, HTOP patients had higher levels of serum osteocalcin (OC) and urinary hydroxyproline excretion (HOP/Cr). Multivariate regression analysis showed no correlation between parameters of bone turnover (WBR, OC, HOP/Cr) and both femoral and vertebral bone density; the latter being negatively correlated only with the years elapsed since menopause (R2 = 0.406). Treatment with sCT resulted in a significant increase of vertebral BMC in the 53 patients taken as a whole group (+/- 7%, P less than 0.001). When the results obtained in HTOP and NTOP were analyzed separately, only those with HTOP showed a marked increment of spinal BMC (+22%, P less than 0.001), NTOP subjects neither gained nor lost bone mineral during the study. Femoral BMC decreased in the whole group after sCT therapy (-3%, P less than 0.003). However, HTOP patients maintained initial BMC values, whereas those with NTOP lost a significant amount of bone during the study period (-5%, P less than 0.001). The increase of vertebral bone mass was associated with a marked depression of bone turnover detectable in both subsets of patients and in the whole group. In conclusion: (a) assessment of bone turnover cannot help predict the severity of bone loss in postmenopausal osteoporosis; (b) calcitonin therapy appears to be particularly indicated for patients with high-turnover osteoporosis, resulting in a net gain of bone mineral in the axial skeleton and a slowing of bone loss in the appendicular bones. PMID:3262626
High-Dose α-Tocopherol Supplementation Does Not Induce Bone Loss in Normal Rats
Kasai, Shunji; Ito, Akemi; Shindo, Kaori; Toyoshi, Tohru; Bando, Masahiro
2015-01-01
Oxidative stress affects bone turnover. Preventative effects of antioxidants such as vitamin E on reduced bone mineral density and fractures associated with aging, osteoporosis, and smoking have been examined in animals and humans. The effects of vitamin E (α-tocopherol; αT) on bone health have yielded conflicting and inconclusive results from animal studies. In this study, to determine the bone effects of αT, we investigated the in vivo effects of αT on the bone mineral density, bone mass, bone microstructure, bone resorption, and osteogenesis through peripheral quantitative computed tomography (pQCT) measurements, micro-computed tomography (micro-CT) analyses, and bone histomorphometry of lumbar vertebrae and femurs in normal female Wistar rats fed diets containing αT in different quantities (0, 30, 120, or 600 mg/kg diet) for 8 weeks. To validate our hypotheses regarding bone changes, we examined ovariectomized rats as an osteoporosis model and control sham-operated rats in parallel. As expected, ovariectomized rats had reduced bone mineral density in lumbar vertebrae and the distal metaphyses of their femurs, reduced bone mass and deteriorated microstructure of cancellous bones in the vertebral body and distal femur metaphyses, and reduced bone mass due to resorption-dominant enhanced bone turnover in secondary cancellous bones in these sites. In comparison, αT administered to normal rats, even at the highest dose, did not induce reduced bone mineral density of lumbar vertebrae and femurs or a reduced bone mass or fragile microstructure of cancellous bones of the vertebral body and distal femur metaphyses. Instead, αT-fed rats showed a tendency for an osteogenesis-dominant bone mass increase in secondary cancellous bones in the vertebral body, in which active bone remodeling occurs. Thus, αT consumption may have beneficial effects on bone health. PMID:26147575
Oesterreich, Steffi; Henry, N Lynn; Kidwell, Kelley M; Van Poznak, Catherine H; Skaar, Todd C; Dantzer, Jessica; Li, Lang; Hangartner, Thomas N; Peacock, Munro; Nguyen, Anne T; Rae, James M; Desta, Zeruesenay; Philips, Santosh; Storniolo, Anna M; Stearns, Vered; Hayes, Daniel F; Flockhart, David A
2015-11-01
Adjuvant therapy for hormone receptor (HR) positive postmenopausal breast cancer patients includes aromatase inhibitors (AI). While both the non-steroidal AI letrozole and the steroidal AI exemestane decrease serum estrogen concentrations, there is evidence that exemestane may be less detrimental to bone. We hypothesized that single nucleotide polymorphisms (SNP) predict effects of AIs on bone turnover. Early stage HR-positive breast cancer patients were enrolled in a randomized trial of exemestane versus letrozole. Effects of AI on bone mineral density (BMD) and bone turnover markers (BTM), and associations between SNPs in 24 candidate genes and changes in BMD or BTM were determined. Of the 503 enrolled patients, paired BMD data were available for 123 and 101 patients treated with letrozole and exemestane, respectively, and paired BTM data were available for 175 and 173 patients, respectively. The mean change in lumbar spine BMD was significantly greater for letrozole-treated (-3.2 %) compared to exemestane-treated patients (-1.0 %) (p = 0.0016). Urine N-telopeptide was significantly increased in patients treated with exemestane (p = 0.001) but not letrozole. Two SNPs (rs4870061 and rs9322335) in ESR1 and one SNP (rs10140457) in ESR2 were associated with decreased BMD in letrozole-treated patients. In the exemestane-treated patients, SNPs in ESR1 (Rs2813543) and CYP19A1 (Rs6493497) were associated with decreased bone density. Exemestane had a less negative impact on bone density compared to letrozole, and the effects of AI therapy on bone may be impacted by genetic variants in the ER pathway.
Waltman, N L; Twiss, J J; Ott, C D; Gross, G J; Lindsey, A M; Moore, T E; Berg, K; Kupzyk, K
2010-08-01
This study examined whether 24 months of weight training exercises enhanced the effectiveness of risedronate, calcium, and vitamin D in maintaining or improving bone mineral density (BMD) in 223 postmenopausal breast cancer survivors. Subjects who were > or =50% adherent to exercise had no improvement in BMD but were less likely to lose BMD. This study examined whether (1) postmenopausal breast cancer survivors (BCS) with bone loss taking 24 months of risedronate, calcium, and vitamin D had increased bone mineral density (BMD) at the total hip, femoral neck, L1-L4 spine, total radius and 33% radius, and decreased bone turnover; (2) subjects who also participated in strength/weight training (ST) exercises had greater increases in BMD and greater decreases in bone turnover; and (3) subjects who also exercised were more likely to preserve (at least maintain) BMD. Postmenopausal BCS (223) were randomly assigned to exercise plus medication or medication only groups. Both groups received 24 months of 1,200 mg of calcium and 400 IU of vitamin D daily and 35 mg of risedronate weekly, and the exercise group additionally had ST exercises twice weekly. After 24 months, women who took medications without exercising had significant improvements in BMD at the total hip (+1.81%) and spine (+2.85%) and significant decreases in Alkphase B (-8.7%) and serum NTx (-16.7%). Women who also exercised had additional increases in BMD at the femoral neck (+0.29%), total hip (+0.34%), spine (+0.23%), total radius (+0.30%), and additional decreases in Alkphase B (-2.4%) and Serum NTx (-6.5%). Additional changes in BMD and bone turnover with exercise were not significant. Subjects who were > or =50% adherent to exercise were less likely to lose BMD at the total hip (chi-square [1] = 4.66, p = 0.03) and femoral neck (chi-square [1] = 4.63, p = 0.03). Strength/weight training exercises may prevent loss of BMD in postmenopausal BCS at risk for bone loss.
Xu, Xiao-juan; Shen, Lin; Yang, Yan-ping; Lu, Fu-rong; Zhu, Rui; Shuai, Bo; Li, Cheng-gang; Wu, Man-xiang
2013-07-01
Sclerostin, expressed exclusively by osteocytes, is a negative regulator of bone formation. To gain insights into the action of sclerostin in postmenopausal osteoporosis, we evaluated serum sclerostin levels in postmenopausal women and investigated its possible associations with bone turnover markers in patients with postmenopausal osteoporosis. We detected serum sclerostin, and measured lumbar spine bone mineral density in 650 Chinese postmenopausal women. We also assessed serum levels of β-isomerized C-terminal crosslinking of type I collagen, intact N-terminal propeptide of type I collagen, N-mid fragment of osteocalcin, 25-hydroxyvitamin D, and estradiol. Serum sclerostin levels were lower in postmenopausal osteoporotic women compared with non-osteoporotic postmenopausal women ((38.79 ± 7.43) vs. (52.86 ± 6.69) pmol/L, P < 0.001). Serum sclerostin was positively correlated with lumbar spine bone mineral density (r = 0.391, P < 0.001) and weakly negatively correlated with β-isomerized C-terminal crosslinking of type I collagen, intact N-terminal propeptide of type I collagen, N-mid fragment of osteocalcin (r = -0.225, P < 0.001; r = -0.091, P = 0.046; r = -0.108, P = 0.018; respectively) in postmenopausal osteoporosis. There was no significant association of serum sclerostin with age, body mass index, 25-hydroxyvitamin D, and estradiol (r = -0.004, P = 0.926; r = 0.067, P = 0.143; r = 0.063, P = 0.165; r = -0.045, P = 0.324; respectively). Sclerostin may be involved in the pathogenesis of postmenopausal osteoporosis and may play a role in bone turnover.
Roshandel, Delnaz; Thomson, Wendy; Pye, Stephen R.; Boonen, Steven; Borghs, Herman; Vanderschueren, Dirk; Huhtaniemi, Ilpo T.; Adams, Judith E.; Ward, Kate A.; Bartfai, Gyorgy; Casanueva, Felipe F.; Finn, Joseph D.; Forti, Gianni; Giwercman, Aleksander; Han, Thang S.; Kula, Krzysztof; Lean, Michael E.; Pendleton, Neil; Punab, Margus; Wu, Frederick C.
2011-01-01
Introduction In this study, we aimed to investigate the association between single nucleotide polymorphisms (SNPs) within two genes involved in the NF-κB cascade (GPR177 and MAP3K14) and bone mineral density (BMD) assessed at different skeletal sites, radial geometric parameters and bone turnover. Methods Ten GPR177 SNPs previously associated with BMD with genome-wide significance and twelve tag SNPs (r2≥0.8) within MAP3K14 (±10 kb) were genotyped in 2359 men aged 40–79 years recruited from 8 centres for participation in the European Male Aging Study (EMAS). Measurement of bone turnover markers (PINP and CTX-I) in the serum and quantitative ultrasound (QUS) at the calcaneus were performed in all centres. Dual energy X-ray absorptiometry (DXA), at the lumbar spine and hip, and peripheral quantitative computed tomography (pQCT), at the distal and midshaft radius, were performed in a subsample (2 centres). Linear regression was used to test for association between the SNPs and bone measures under an additive genetic model adjusting for study centre. Results We validated the associations between SNPs in GPR177 and BMDa previously reported and also observed evidence of pleiotrophic effects on density and geometry. Rs2772300 in GPR177 was associated with increased total hip and LS BMDa, increased total and cortical vBMD at the radius and increased cortical area, thickness and stress strain index. We also found evidence of association with BMDa, vBMD, geometric parameters and CTX-I for SNPs in MAP3K14. None of the GPR177 and MAP3K14 SNPs were associated with calcaneal estimated BMD measured by QUS. Conclusion Our findings suggest that SNPs in GPR177 and MAP3K14 involved in the NF-κB signalling pathway influence bone mineral density, geometry and turnover in a population-based cohort of middle aged and elderly men. This adds to the understanding of the role of genetic variation in this pathway in determining bone health. PMID:22132199
Biochemical Bone Turnover Markers and Osteoporosis in Older Men: Where Are We?
Szulc, Pawel
2011-01-01
In men aged less than 60, the association of serum and urinary levels of biochemical bone turnover markers (BTMs) and bone mineral density (BMD) is weak or not significant. After this age, higher BTM levels are correlated weakly, but significantly, with lower BMD and faster bone loss. Limited data from the cohort studies suggest that BTM measurement does not improve the prediction of fragility fractures in older men in comparison with age, BMD, history of falls and fragility fractures. Testosterone replacement therapy (TRT) decreases bone resorption. During TRT, bone formation markers slightly increase (direct effect on osteoblasts), then decrease (slowdown of bone turnover). Bisphosphonates (alendronate, risedronate, ibandronate, zoledronate) induce a rapid decrease in bone resorption followed by a milder decrease in bone formation. In men receiving antiresorptive therapy for prostate cancer, zoledronate, denosumab and toremifene decrease significantly levels of bone resorption and bone formation markers. Teriparatide induced a rapid increase in serum concentrations of bone formation markers followed by an increase in bone resorption. We need more studies on the utility of BTM measurement for the improvement of the persistence and adherence to the anti-osteoporotic treatment in men. PMID:22220284
A potential mechanism for allometric trabecular bone scaling in terrestrial mammals.
Christen, Patrik; Ito, Keita; van Rietbergen, Bert
2015-03-01
Trabecular bone microstructural parameters, including trabecular thickness, spacing, and number, have been reported to scale with animal size with negative allometry, whereas bone volume fraction is animal size-invariant in terrestrial mammals. As for the majority of scaling patterns described in animals, its underlying mechanism is unknown. However, it has also been found that osteocyte density is inversely related to animal size, possibly adapted to metabolic rate, which shows a negative relationship as well. In addition, the signalling reach of osteocytes is limited by the extent of the lacuno-canalicular network, depending on trabecular dimensions and thus also on animal size. Here we propose animal size-dependent variations in osteocyte density and their signalling influence distance as a potential mechanism for negative allometric trabecular bone scaling in terrestrial mammals. Using an established and tested computational model of bone modelling and remodelling, we run simulations with different osteocyte densities and influence distances mimicking six terrestrial mammals covering a large range of body masses. Simulated trabecular structures revealed negative allometric scaling for trabecular thickness, spacing, and number, constant bone volume fraction, and bone turnover rates inversely related to animal size. These results are in agreement with previous observations supporting our proposal of osteocyte density and influence distance variation as a potential mechanism for negative allometric trabecular bone scaling in terrestrial mammals. The inverse relationship between bone turnover rates and animal size further indicates that trabecular bone scaling may be linked to metabolic rather than mechanical adaptations. © 2015 Anatomical Society.
Hussein, H; Dulin, J; Smanik, L; Drost, W T; Russell, D; Wellman, M; Bertone, A
2017-08-01
Our investigations evaluated the effect of VEL-0230, a highly specific irreversible inhibitor of cathepsin K (CatK). The objectives of our study were to determine whether repeated dosing of a CatK inhibitor (CatKI) produced a desired inhibition of the bone resorption biomarker (CTX-1), and document the effect of repeated dosing on bone homeostasis, structure, and dynamics of bone resorption and formation in horses. Twelve young exercising horses were randomized in a prospective, controlled clinical trial and received 4 weekly doses of a CatKI or vehicle. Baseline and poststudy nuclear scintigraphy, blood sampling and analysis of plasma bone biomarkers (CTX-1 and osteocalcin), poststudy bone fluorescent labeling, and bone biopsy were performed. Bone specimens were further processed for microcomputed tomography and bone histomorphometry. Each dose of this CatKI transiently inhibited plasma CTX-1 (reflecting inhibition of bone collagen resorption) and increased bone plasma osteocalcin concentrations, with no detectable adverse effect on normal bone turnover in the face of exercise. Bone morphology, density, and formation rate were not different between control and treated group. Further investigation of CatK inhibition in abnormal bone turnover is required in animals with bone diseases. © 2016 John Wiley & Sons Ltd.
Bone mineral density and bone turnover among young women in Chiang Mai, Thailand.
Iwasaki, Eriko; Morakote, Nuntana; Chaovistsaree, Somsak; Matsuo, Hiroya
2014-03-12
The present study was carried out to investigate the influence of lifestyle on bone mineral density (BMD) and bone turnover among young women in Chiang Mai, Thailand. A total of 177 young women affiliated with Chiang Mai University hospital were enrolled. Firstly, questionnaires about their lifestyle and the Osteoporosis Knowledge Test (OKT) were examined. The measurement of BMD was assessed by Quantitative Ultrasound (QUS). Secondly, based on the measurement of BMD, the subjects were divided into 2 groups, a Low BMD group (L group: less than YAM-1.0SD) and a Normal BMD group (N group: more than YAM-1.0SD). L group (n=23) and N group (n=23) were examined using Osteocalcine (OC), type 1 collagen cross-linked N-telopeptide (NTx) and undercarboxylated osteocalcin (ucOC) as bone turnover markers, and serum Ca, 1,25-(OH)2Vitamin D, Vitamin K1 and Vitamin K2 (MK-4) as bone turnover related factors. Based on the results, the percentage of Low BMD group was 23.2%. Concerning lifestyle and BMD, the BMD of the low cheese intake group was 99.7± 17.0 and the BMD of the high cheese intake one was 110.0± 23.3 (p<0.05). The BMD of the fracture experience group was 82.5± 11.6 and the BMD of no-fracture group was 103.3± 19.6 (p<0.05). These were significant differences in ucOC and 1,25-(OH)2Vitamin D between L and N groups (p<0.05). It was suggested that BMI, food and fracture experience might affect BMD level and suppression of bone formation might have contributed to the low BMD group among young women in Chiang Mai, Thailand.
Assessment of bone metabolism in premenopausal females with hyperthyroidism and hypothyroidism.
Tuchendler, Dominika; Bolanowski, Marek
2013-01-01
Osteoporosis is one of the commonest metabolic diseases of bone. Its possible causes may include thyroid hormonal dysfunction. The objective of this study was to evaluate the effects of hyperthyroidism and hypothyroidism on osseous tissue metabolism in premenopausal women. 38 women with hyperthyroidism, 40 with hypothyroidism and 41 healthy women participated in this study. Initially after 6 and 12 months, each patient underwent selected hormonal, immunological and biochemical tests, measurement of concentrations of bone turnover markers and densitometry were also performed. On initial evaluation, lower cortical bone density was found in patients with hyperthyroidism (femoral neck). After 12 months, an increase in BMD was seen, but it was still lower than in the control group. Statistically significantly higher concentrations of bone turnover markers, decreasing from the sixth month of treatment, were noted only in the group with hyperthyroidism. Statistically significant differences were not noted in the femoral neck nor in the lumbar spine BMD in patients with hypothyroidism. Hyperthyroidism poses a negative effect on bone metabolism. Hypothyroidism in premenopausal females does not have any influence on bone density.
Christo, Karla; Prabhakaran, Rajani; Lamparello, Brooke; Cord, Jennalee; Miller, Karen K.; Goldstein, Mark A.; Gupta, Nupur; Herzog, David B.; Klibanski, Anne; Misra, Madhusmita
2011-01-01
OBJECTIVE We hypothesized that, despite increased activity, bone density would be low in athletes with amenorrhea, compared with athletes with eumenorrhea and control subjects, because of associated hypogonadism and would be associated with a decrease in bone formation and increases in bone-resorption markers. METHODS In a cross-sectional study, we examined bone-density measures (spine, hip, and whole body) and body composition by using dual-energy radiograph absorptiometry and assessed fasting levels of insulin-like growth factor I and bone-turnover markers (N-terminal propeptied of type 1 procollagen and N-telopeptide) in 21 athletes with amenorrhea, 18 athletes with eumenorrhea, and 18 control subjects. Subjects were 12 to 18 years of age and of comparable chronologic and bone age. RESULTS Athletes with amenorrhea had lower bone-density z scores at the spine and whole body, compared with athletes with eumenorrhea and control subjects, and lower hip z scores, compared with athletes with eumenorrhea. Lean mass did not differ between groups. However, athletes with amenorrhea had lower BMI z scores than did athletes with eumenorrhea and lower insulin-like growth factor I levels than did control subjects. Levels of both markers of bone turnover were lower in athletes with amenorrhea than in control subjects. BMI z scores, lean mass, insulin-like growth factor I levels, and diagnostic category were important independent predictors of bone mineral density z scores. CONCLUSIONS Although they showed no significant differences in lean mass, compared with athletes with eumenorrhea and control subjects, athletes with amenorrhea had lower bone density at the spine and whole body. Insulin-like growth factor I levels, body-composition parameters, and menstrual status were important predictors of bone density. Follow-up studies are necessary to determine whether amenorrhea in athletes adversely affects the rate of bone mass accrual and therefore peak bone mass. PMID:18519482
Tsourdi, Elena; Rijntjes, Eddy; Köhrle, Josef; Hofbauer, Lorenz C; Rauner, Martina
2015-10-01
Thyroid hormones are key regulators of bone homeostasis, and Wnt signaling has been implicated in thyroid hormone-associated bone loss. Here we tested whether hyperthyroidism and hypothyroidism interfere with dickkopf-1 (DKK1) and sclerostin, two inhibitors of Wnt signaling. Twelve-week-old male C57BL/6 mice were rendered either hyperthyroid or hypothyroid. Hyperthyroid mice displayed decreased trabecular (-54%, P < .001) and cortical bone density (-5%, P < .05) and reduced cortical thickness (-15%, P < .001), whereas hypothyroid mice showed a higher trabecular bone density (+26%, P < .001) with unchanged cortical bone parameters. Histomorphometry and biochemical markers of bone remodeling indicated high bone turnover in hyperthyroid mice and low bone turnover in hypothyroid mice. In vivo, serum DKK1 concentrations were decreased in hyperthyroid mice (-24%, P < .001) and increased in hypothyroid mice (+18%, P < .01). The increase of the number of DKK1-positive cells in hypothyroid mice was confirmed at the tissue level. Interestingly, sclerostin was increased in both disease models, although to a higher extent in hyperthyroid mice (+50%, P < .001, and +24%, P < .05). Serum sclerostin concentrations adjusted for bone mass were increased by 3.3-fold in hyperthyroid (P < .001) but not in hypothyroid mice. Consistently, sclerostin mRNA expression and the number of sclerostin-positive cells were increased in hyperthyroid but not in hypothyroid mice. Our data show that thyroid hormone-induced changes in bone remodeling are associated with a divergent regulation of DKK1 and sclerostin. Thus, the modulation of Wnt signaling by thyroid hormones may contribute to thyroid hormone-associated bone disease and altered expression of Wnt inhibitors may emerge as potential therapeutic targets.
Faje, Alexander T.; Fazeli, Pouneh K.; Katzman, Debra K.; Miller, Karen K.; Breggia, Anne; Rosen, Clifford J.; Mendes, Nara; Klibanski, Anne; Misra, Madhusmita
2012-01-01
Sclerostin, product of the SOST gene, is an important determinant of bone formation and resorption. Adolescents with anorexia nervosa (AN) have low bone density and decreased levels of bone turnover markers. However, sclerostin has not been examined in AN as a potential mediator of impaired bone metabolism. Our study objectives were to (i) assess associations of sclerostin with surrogate bone turnover markers in girls with AN and controls and (ii) examine effects of transdermal estradiol on sclerostin in AN. 69 girls (44 with AN and 25 normal-weight controls) 13–18 years old were studied at baseline. 22 AN girls were randomized to transdermal estradiol (plus cyclic medroxyprogesterone) or placebo in a double-blind study for 12 months. Sclerostin correlated positively with P1NP and CTX in controls (r = 0. 67 and 0. 53, p = 0. 0002 and 0. 005, respectively) but not in AN despite comparable levels at baseline. Changes in sclerostin over twelve months did not differ in girls randomized to estradiol or placebo. The relationship between sclerostin and bone turnover markers is disrupted in adolescent girls with AN. Despite an increase in BMD with estradiol administration in AN, estrogen does not impact sclerostin levels in this group. PMID:22728230
Hadji, Peyman; Asmar, Lina; van Nes, Johanna G H; Menschik, Thomas; Hasenburg, Annette; Kuck, Joachim; Nortier, Johan W R; van de Velde, Cornelis J H; Jones, Stephen E; Ziller, May
2011-06-01
We performed a meta-analysis of three sub-studies of the randomized Tamoxifen Exemestane Adjuvant Multinational (TEAM) trial to determine the effects of exemestane and tamoxifen on bone health. Patients received exemestane or tamoxifen as adjuvant therapy for hormone receptor-positive breast cancer. Bone mineral density (BMD) was assessed at baseline and after 12 and 24 months of treatment. Bone turnover markers were also measured. Patients receiving tamoxifen showed a mean increase from baseline in lumbar spine BMD of 1.2% at month 12 and 0.2% at month 24. Patients receiving exemestane showed a mean decrease from baseline of 2.6% after 12 months and 3.5% after 24 months. There were significant differences in the changes in lumbar spine BMD between treatment groups (P < 0.0001 at both time points). Changes in BMD from baseline at the total hip were also significantly different between exemestane and tamoxifen (P < 0.05 at both time points). Bone turnover markers decreased from baseline with tamoxifen and increased with exemestane. Exemestane resulted in decreases in BMD and increases in bone turnover markers. BMD increased and bone turnover markers decreased with tamoxifen.
Saito, Mitsuru; Grynpas, Marc D; Burr, David B; Allen, Matthew R; Smith, Susan Y; Doyle, Nancy; Amizuka, Norio; Hasegawa, Tomoka; Kida, Yoshikuni; Marumo, Keishi; Saito, Hitoshi
2015-04-01
Eldecalcitol (ELD), an active form of vitamin D analog approved for the treatment of osteoporosis in Japan, increases lumbar spine bone mineral density (BMD), suppresses bone turnover markers, and reduces fracture risk in patients with osteoporosis. We have previously reported that treatment with ELD for 6 months improved the mechanical properties of the lumbar spine in ovariectomized (OVX) cynomolgus monkeys. ELD treatment increased lumbar BMD, suppressed bone turnover markers, and reduced histomorphometric parameters of both bone formation and resorption in vertebral trabecular bone. In this study, we elucidated the effects of ELD on bone quality (namely, mineralization, microarchitecture, microdamage, and bone collagen crosslinks) in OVX cynomolgus monkeys in comparison with OVX-vehicle control monkeys. Density fractionation of bone powder prepared from lumbar vertebrae revealed that ELD treatment shifted the distribution profile of bone mineralization to a higher density, and backscattered electron microscopic imaging showed improved trabecular bone connectivity in the ELD-treated groups. Higher doses of ELD more significantly reduced the amount of microdamage compared to OVX-vehicle controls. The fractionated bone powder samples were divided according to their density, and analyzed for collagen crosslinks. Enzymatic crosslinks were higher in both the high-density (≥2.0 mg/mL) and low-density (<2.0 mg/mL) fractions from the ELD-treated groups than in the corresponding fractions in the OVX-vehicle control groups. On the other hand, non-enzymatic crosslinks were lower in both the high- and low-density fractions. These observations indicated that ELD treatment stimulated the enzymatic reaction of collagen crosslinks and bone mineralization, but prevented non-enzymatic reaction of collagen crosslinks and accumulation of bone microdamage. Bone anti-resorptive agents such as bisphosphonates slow down bone remodeling so that bone mineralization, bone microdamage, and non-enzymatic collagen crosslinks all increase. Bone anabolic agents such as parathyroid hormone decrease bone mineralization and bone microdamage by stimulating bone remodeling. ELD did not fit into either category. Histological analysis indicated that the ELD treatment strongly suppressed bone resorption by reducing the number of osteoclasts, while also stimulating focal bone formation without prior bone resorption (bone minimodeling). These bidirectional activities of ELD may account for its unique effects on bone quality. Copyright © 2014. Published by Elsevier Inc.
Ishii, H; Wada, M; Furuya, Y; Nagano, N; Nemeth, E F; Fox, J
2000-02-01
The calcium receptor agonist (calcimimetic) compound NPS R-568 causes rapid decreases in circulating levels of parathyroid hormone (PTH) in rats and humans. We hypothesized that daily intermittent decreases in serum PTH levels may have different effects on bone than do chronically sustained decreases. To test this hypothesis, we compared two NPS R-568 dosing regimens in rats with chronic renal insufficiency induced by two intravenous injections of adriamycin. Fourteen weeks after the second adriamycin injection, creatinine clearance was reduced by 52%, PTH levels were elevated approximately 2.5-fold, and serum 25(OH)D3 and 1,25(OH)2D3 levels were reduced substantially. Treatment by daily per os gavage, which decreased PTH levels intermittently, or continuous subcutaneous infusion, which resulted in a sustained suppression of serum PTH levels, then began for 8 weeks. Despite the hyperparathyroidism, the adriamycin-injected rats developed a low-turnover bone lesion with osteomalacia (fourfold increase in osteoid volume in the proximal tibial metaphysis) and osteopenia (67% decrease in cancellous bone volume and an 18% reduction in bone mineral density at the distal femur). Daily administered (but not infused) NPS R-568 significantly increased cancellous bone volume solely by normalizing trabecular thickness, and increased femoral bone mineral density by 14%. These results indicate that daily intermittent, but not sustained, decreases in PTH levels have an "anabolic-like" effect on bones with a low-turnover lesion in this animal model of chronic renal insufficiency.
Serum leptin is correlated to high turnover in osteoporosis.
Hipmair, Gunter; Böhler, Nikolaus; Maschek, Wilma; Soriguer, Federico; Rojo-Martínez, Gemma; Schimetta, Wolfgang; Pichler, Robert
2010-01-01
Clinical data have suggested that obesity protects against osteoporosis. Leptin, mainly secreted by white adipose tissue, might be involved by mediating an effect on bone metabolism. This study was conducted to investigate a possible relationship of leptin and bone turn-over in postmenopausal women with osteoporosis. We measured bone mineral density (BMD), serum leptin levels and markers of bone metabolism, including osteocalcin and cross-laps in 44 patients with osteoporosis. The main group consisted of 32 postmenopausal women. Mean serum leptin was 13.1 microg/L and showed no statistically significant difference to the levels measured in a collective of normal persons adjusted for age and BMI. When related to serum cross-laps as markers of bone resorption, a positive correlation (p<0.05) was observed, whereas no correlation with osteocalcin could be seen. A dual control of bone formation by leptin is assumed: This involves local mechanisms acting on osteoblasts and a central inhibitory effect on bone metabolism via a hypothalamic relay. Our data indicate that the net effect of circulating leptin may cause bone loss and is significantly related to high-turnover serum bone markers, at least in postmenopausal women with osteoporosis.
Rector, R Scott; Loethen, Joanne; Ruebel, Meghan; Thomas, Tom R; Hinton, Pamela S
2009-10-01
Weight loss improves metabolic fitness and reduces morbidity and mortality; however, weight reduction also reduces bone mineral density (BMD) and increases bone turnover. Weight-bearing aerobic exercise may preserve bone mass and maintain normal bone turnover during weight reduction. We investigated the impact of weight-bearing and nonweight-bearing exercise on serum markers of bone formation and breakdown during short-term, modest weight loss in overweight premenopausal women. Subjects (n = 36) were assigned to 1 of 3 weight-loss interventions designed to produce a 5% reduction in body weight over 6 weeks: (i) energy restriction only (n = 11; DIET); (ii) energy restriction plus nonweight-bearing exercise (n = 12, CYCLE); or (iii) energy restriction plus weight-bearing exercise (n = 13, RUN). Bone turnover markers were measured in serum collected at baseline and after weight loss. All groups achieved a ~5% reduction in body weight (DIET = 5.2%; CYCLE = 5.0%; RUN = 4.7%). Osteocalcin (OC) and C-terminal telopeptide of type I collagen (CTX) increased with weight loss in all 3 groups (p < 0.05), whereas bone alkaline phosphatase was unaltered by the weight-loss interventions. At baseline, OC and CTX were positively correlated (r = 0.36, p = 0.03), but the strength of this association was diminished (r = 0.30, p = 0.06) after weight loss. Modest weight loss, regardless of method, resulted in a significant increase in both OC and CTX. Low-impact, weight-bearing exercise had no effect on serum markers of bone formation or resorption in premenopausal women during weight loss. Future studies that examine the effects of high-impact, weight-bearing activity on bone turnover and BMD during weight loss are warranted.
Frank, Laura L; McCarthy, Mary S
2016-05-01
To examine the difference in bone health and body composition via blood biomarkers, bone mineral density, anthropometrics and dietary intake following deployment to Afghanistan among soldiers randomized to receive telehealth coaching promoting nutrition and exercise. This was a prospective, longitudinal, cluster-randomized, controlled trial with repeated measures in 234 soldiers. Measures included heel bone scan for bone mineral density, blood biomarkers for bone formation, resorption, and turnover, body composition via Futrex, resting metabolic rate via MedGem, physical activity using the Baecke Habitual Physical Activity Questionnaire, and dietary intake obtained from the Block Food Frequency Questionnaire. There were significant increases in body fat (p = 0.00035), osteocalcin (0.0152), and sports index (p = 0.0152) for the telehealth group. No other statistically significant differences were observed between groups. Vitamin D intake among soldiers was ≤ 35% of the suggested Dietary Reference Intakes for age. A 9-month deployment to Afghanistan increased body fat, bone turnover, and physical activity among soldiers randomized to receive telehealth strategies to build bone with nutrition and exercise. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.
Mitchell, Adam; Fall, Tove; Melhus, Håkan; Wolk, Alicja; Michaëlsson, Karl; Byberg, Liisa
2018-06-26
Men and women with type 2 diabetes mellitus (T2DM) have higher risk of hip fracture, but the mechanisms are not fully understood. We aimed to investigate how T2DM, glucose, and insulin were associated with femoral bone mineral density (BMD), bone mineral area (BMA), and bone turnover markers. We used two cross-sectional cohorts: the Uppsala Longitudinal Study of Adult Men (ULSAM, n = 452, mean age 82 years) and the Swedish Mammography Cohort Clinical (SMCC, n = 4713, mean age 68 years). We identified men and women with normal fasting glucose (NFG), impaired fasting plasma glucose (IFG), and T2DM. BMD and BMA at the total hip and femoral shaft were measured using dual energy X-ray absorptiometry (DXA). Bone turnover markers; CrossLaps and osteocalcin were measured in women. Linear regression models were applied. Men and women showed a progressively higher BMD following the clinical cutoffs of fasting glucose from NFG to IFG to T2DM. In contrast, there was a progressively lower BMA. Men and women with T2DM, compared to those with NFG, had lower BMA at the total hip (- 1.7%; 95% CI - 3.2, - 0.2 and - 1.0%; 95% CI - 1.6, - 0.4) and the femoral shaft (- 2.0%; 95% CI - 3.5, - 0.4 and - 0.6%; 95% CI - 1.2, - 0.01), respectively. T2DM was associated with lower concentrations of CrossLaps (- 8.1%; 95% CI - 12.7, - 3.6) and osteocalcin (- 15.2%; 95% CI - 19.0, - 11.2). These cross-sectional results indicate that those with T2DM have smaller bone area and lower bone turnover, which could increase the risk of hip fracture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilmour, Peter S., E-mail: Peter.Gilmour@astrazeneca.com; O'Shea, Patrick J.; Fagura, Malbinder
Wnt activation by inhibiting glycogen synthase kinase 3 (GSK-3) causes bone anabolism in rodents making GSK-3 a potential therapeutic target for osteoporotic and osteolytic metastatic bone disease. To understand the wnt pathway related to human disease translation, the ability of 3 potent inhibitors of GSK-3 (AZD2858, AR79, AZ13282107) to 1) drive osteoblast differentiation and mineralisation using human adipose-derived stem cells (hADSC) in vitro; and 2) stimulate rat bone formation in vivo was investigated. Bone anabolism/resorption was determined using clinically relevant serum biomarkers as indicators of bone turnover and bone formation assessed in femurs by histopathology and pQCT/μCT imaging. GSK-3 inhibitorsmore » caused β-catenin stabilisation in human and rat mesenchymal stem cells, stimulated hADSC commitment towards osteoblasts and osteogenic mineralisation in vitro. AZD2858 produced time-dependent changes in serum bone turnover biomarkers and increased bone mass over 28 days exposure in rats. After 7 days, AZD2858, AR79 or AZ13282107 exposure increased the bone formation biomarker P1NP, and reduced the resorption biomarker TRAcP-5b, indicating increased bone anabolism and reduced resorption in rats. This biomarker profile was differentiated from anabolic agent PTH{sub 1–34} or the anti-resorptive Alendronate-induced changes. Increased bone formation in cortical and cancellous bone as assessed by femur histopathology supported biomarker changes. 14 day AR79 treatment increased bone mineral density and trabecular thickness, and decreased trabecular number and connectivity assessed by pQCT/μCT. GSK-3 inhibition caused hADSC osteoblastogenesis and mineralisation in vitro. Increased femur bone mass associated with changes in bone turnover biomarkers confirmed in vivo bone formation and indicated uncoupling of bone formation and resorption. - Highlights: • Wnt modulation with 3 novel GSK-3 inhibitors alters bone growth. • Human stem cell osteoblastogenesis and mineralisation produced by GSK-3 inhibition. • In rats, 3 GSK-3 inhibitors produced a unique serum bone turnover biomarker profile. • Enhanced bone formation was seen within 7 to 14 days of compound treatment in rats.« less
Tung, Yu-Tang; Kao, Chao-Chih; Hu, Fu-Chang; Chen, Chuan-Mu
2015-01-01
Milk products are good sources of calcium that may reduce bone resorption and help prevent bone loss as well as promote bone remodeling and increase bone formation. Kefir is a product made by kefir grains that degrade milk proteins into various peptides with health-promoting effects, including antithrombotic, antimicrobial and calcium-absorption enhancing bioactivities. In a controlled, parallel, double-blind intervention study over 6 months, we investigated the effects of kefir-fermented milk (1,600 mg) supplemented with calcium bicarbonate (CaCO3, 1,500 mg) and bone metabolism in 40 osteoporosis patients, and compared them with CaCO3 alone without kefir supplements. Bone turnover markers were measured in fasting blood samples collected before therapy and at 1, 3, and 6 months. Bone mineral density (BMD) values at the spine, total hip, and hip femoral neck were assessed by dual-energy x-ray absorptiometry (DXA) at baseline and at 6 months. Among patients treated with kefir-fermented milk, the relationships between baseline turnover and 6 months changes in DXA-determined BMD were significantly improved. The serum β C-terminal telopeptide of type I collagen (β-CTX) in those with T-scores > -1 patients significantly decreased after three months treatment. The formation marker serum osteocalcin (OC) turned from negative to positive after 6 months, representing the effect of kefir treatment. Serum parathyroid hormone (PTH) increased significantly after treatment with kefir, but decreased significantly in the control group. PTH may promote bone remodeling after treatment with kefir for 6 months. In this pilot study, we concluded that kefir-fermented milk therapy was associated with short-term changes in turnover and greater 6-month increases in hip BMD among osteoporotic patients. Trial Registration: ClinicalTrials.gov NCT02361372 PMID:26655888
Tu, Min-Yu; Chen, Hsiao-Ling; Tung, Yu-Tang; Kao, Chao-Chih; Hu, Fu-Chang; Chen, Chuan-Mu
2015-01-01
Milk products are good sources of calcium that may reduce bone resorption and help prevent bone loss as well as promote bone remodeling and increase bone formation. Kefir is a product made by kefir grains that degrade milk proteins into various peptides with health-promoting effects, including antithrombotic, antimicrobial and calcium-absorption enhancing bioactivities. In a controlled, parallel, double-blind intervention study over 6 months, we investigated the effects of kefir-fermented milk (1,600 mg) supplemented with calcium bicarbonate (CaCO3, 1,500 mg) and bone metabolism in 40 osteoporosis patients, and compared them with CaCO3 alone without kefir supplements. Bone turnover markers were measured in fasting blood samples collected before therapy and at 1, 3, and 6 months. Bone mineral density (BMD) values at the spine, total hip, and hip femoral neck were assessed by dual-energy x-ray absorptiometry (DXA) at baseline and at 6 months. Among patients treated with kefir-fermented milk, the relationships between baseline turnover and 6 months changes in DXA-determined BMD were significantly improved. The serum β C-terminal telopeptide of type I collagen (β-CTX) in those with T-scores > -1 patients significantly decreased after three months treatment. The formation marker serum osteocalcin (OC) turned from negative to positive after 6 months, representing the effect of kefir treatment. Serum parathyroid hormone (PTH) increased significantly after treatment with kefir, but decreased significantly in the control group. PTH may promote bone remodeling after treatment with kefir for 6 months. In this pilot study, we concluded that kefir-fermented milk therapy was associated with short-term changes in turnover and greater 6-month increases in hip BMD among osteoporotic patients. ClinicalTrials.gov NCT02361372.
Differences in Bone Quality between High versus Low Turnover Renal Osteodystrophy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter, Daniel S.; Pienkowski, David; Faugere, Marie-Claude
2012-01-01
Abnormal bone turnover is common in chronic kidney disease (CKD), but its effects on bone quality remain unclear. This study sought to quantify the relationship between abnormal bone turnover and bone quality. Iliac crest bone biopsies were obtained from CKD-5 patients on dialysis with low (n=18) or high (n=17) turnover, and from volunteers (n=12) with normal turnover and normal kidney function. Histomorphometric methods were used to quantify the microstructural parameters; Fourier transform infrared spectroscopy and nanoindentation were used to quantify the material and mechanical properties in bone. Reduced mineral-to-matrix ratio, mineral crystal size, stiffness and hardness were observed in bonemore » with high turnover compared to bone with normal or low turnover. Decreased cancellous bone volume and trabecular thickness were seen in bone with low turnover compared to bone with normal or high turnover. Bone quality, as defined by its microstructural, material, and mechanical properties, is related to bone turnover. These data suggest that turnover related alterations in bone quality may contribute to the known diminished mechanical competence of bone in CKD patients, albeit from different mechanisms for bone with high (material abnormality) vs. low (microstructural alteration) turnover. The present findings suggest that improved treatments for renal osteodystrophy should seek to avoid low or high bone turnover and aim for turnover rates as close to normal as possible.« less
Impact of Dietary Intake on Bone Turnover in Patients with Phenylalanine Hydroxylase Deficiency.
Coakley, Kathryn E; Felner, Eric I; Tangpricha, Vin; Wilson, Peter W F; Singh, Rani H
2017-01-01
Phenylalanine hydroxylase (PAH) deficiency is a genetic disorder characterized by deficiency of the PAH enzyme. Patients follow a phenylalanine-restricted diet low in intact protein, and must consume synthetic medical food (MF) to supply phenylalanine-free protein. We assessed relationships between dietary intake and nutrient source (food or MF) on bone mineral density (BMD) and bone turnover markers (BTM) in PAH deficiency. Blood from 44 fasted females 11-52 years of age was analyzed for plasma phenylalanine, serum BTM [CTx (resorption), P1NP (formation)], vitamin D, and parathyroid hormone (PTH). BTM ratios were calculated to assess resorption relative to formation (CTx/P1NP). Dual energy X-ray absorptiometry measured total BMD and age-matched Z-scores. Three-day food records were analyzed for total nutrient intake, nutrients by source (food, MF), and compliance with MF prescription. Spearman's partial coefficients (adjusted for age, BMI, energy intake, blood phenylalanine) assessed correlations. All had normal BMD for age (Z-score >-2). Sixty-four percent had high resorption and normal formation indicating uncoupled bone turnover. CTx/P1NP was positively associated with food phenylalanine (r 2 = 0.39; p-value = 0.017), energy (r 2 = 0.41; p-value = 0.011) and zinc (r 2 = 0.41; p-value = 0.014). CTx/P1NP was negatively associated with MF fat (r 2 = -0.44; p-value = 0.008), MF compliance (r 2 = -0.34; p-value = 0.056), and positively with food sodium (r 2 = 0.43; p-value = 0.014). CTx/P1NP decreased significantly with age (p-value = 0.002) and higher PTH (p-value = 0.0002). Phenylalanine was not correlated with any bone indicator. Females with PAH deficiency had normal BMD but elevated BTM, particularly resorption. More favorable ratios were associated with nutrients from MF and compliance. Younger females had less favorable BTM ratios. Promoting micronutrient intake through compliance with MF may impact bone metabolism in patients with PAH deficiency. Bone mineral density was normal in 44 females with PAH deficiency; however, bone turnover markers suggested uncoupling of bone resorption and formation, particularly in younger patients. Adequate nutrient intake from medical food and overall medical food compliance may positively impact bone turnover.
Tournis, S; Michopoulou, E; Fatouros, I G; Paspati, I; Michalopoulou, M; Raptou, P; Leontsini, D; Avloniti, A; Krekoukia, M; Zouvelou, V; Galanos, A; Aggelousis, N; Kambas, A; Douroudos, I; Lyritis, G P; Taxildaris, K; Pappaioannou, N
2010-06-01
Weight-bearing exercise during growth exerts positive effects on the skeleton. Our objective was to test the hypothesis that long-term elite rhythmic gymnastics exerts positive effects on volumetric bone mineral density and geometry and to determine whether exercise-induced bone adaptation is associated with increased periosteal bone formation or medullary contraction using tibial peripheral quantitative computed tomography and bone turnover markers. We conducted a cross-sectional study at a tertiary center. We studied 26 elite premenarcheal female rhythmic gymnasts (RG) and 23 female controls, aged 9-13 yr. We measured bone age, volumetric bone mineral density, bone mineral content (BMC), cortical thickness, cortical and trabecular area, and polar stress strength index (SSIp) by peripheral quantitative computed tomography of the left tibia proximal to the distal metaphysis (trabecular) at 14, 38 (cortical), and 66% (muscle mass) from the distal end and bone turnover markers. The two groups were comparable according to height and chronological and bone age. After weight adjustment, cortical BMC, area, and thickness at 38% were significantly higher in RG (P < 0.005-0.001). Periosteal circumference, SSIp, and muscle area were higher in RG (P < 0.01-0.001). Muscle area was significantly associated with cortical BMC, area, and SSIp, whereas years of training showed positive association with cortical BMC, area, and thickness independent of chronological age. RG in premenarcheal girls may induce positive adaptations on the skeleton, especially in cortical bone. Increased duration of exercise is associated with a positive response of bone geometry.
Zhang, Hengwei; Recker, Robert; Lee, Wai-Nang Paul; Xiao, Gary Guishan
2010-01-01
Osteoporosis is prevalent among the elderly and is a major cause of bone fracture in this population. Bone integrity is maintained by the dynamic processes of bone resorption and bone formation (bone remodeling). Osteoporosis results when there is an imbalance of the two counteracting processes. Bone mineral density, measured by dual-energy x-ray absorptiometry has been the primary method to assess fracture risk for decades. Recent studies demonstrated that measurement of bone turnover markers allows for a dynamic assessment of bone remodeling, while imaging techniques, such as dual-energy x-ray absorptiometry, do not. The application of proteomics has permitted discoveries of new, sensitive, bone turnover markers, which provide unique information for clinical diagnosis and treatment of patients with bone diseases. This review summarizes the recent findings of proteomic studies on bone diseases, properties of mesenchymal stem cells with high expansion rates and osteoblast and osteoclast differentiation, with emphasis on the role of quantitative proteomics in the study of signaling dynamics, biomarkers and discovery of therapeutic targets. PMID:20121480
2005-12-01
the BMD of female-to-male transsexuals treated with ‘male’ levels of testosterone increased to normal male levels at cortical sites [35]. Finally, men...Testosterone increases bone mineral density in female-to- male transsexuals : a case series of 15 subjects.Clin Endocrinol (Oxf) 2004, 61:560-566. 35...Ruetsche A, Kneubuehl R, Birkhaeuser M, Lippuner K: Cortical and trabecular bone mineral density in transsexuals after long-term cross-sex hormonal treatment
Łukaszkiewicz, Jacek; Karczmarewicz, Elzbieta; Płudowski, Paweł; Jaworski, Maciej; Czerwiński, Edward; Lewiński, Andrzej; Marcinowska-Suchowierska, Ewa; Milewicz, Andrzej; Spaczyński, Marek; Lorenc, Roman S
2008-12-01
One of the most important risk factors for osteoporotic fractures in postmenopausal women is elevated bone turnover (EBT), occurring in 25-30% of this population. This study's aim was to find a correlation between bone resorption and bone formation markers to assess bone turnover rate and qualify an individual postmenopausal woman as a possible EBT subject. Three hundred twenty postmenopausal women (> or = one year after the last menstruation, < or = 70 years old) were enrolled at seven clinical sites in this cross-sectional observational study conducted within the EPOLOS. The group was a random sample of the population. The study was performed in a referral center involved in the diagnosis and treatment of osteoporosis. The exclusion criteria included pregnancy, cancer, fracture in the last year, and overweight (> 100 kg). Bone mineral density (BMD) measurements of the lumbar spine, total hip, trochanter, and femoral neck regions were performed. Bone resorption and formation rates were evaluated by serum levels of C-terminal telopeptide of type I collagen (CTX) and osteocalcin (OC), respectively. Using logistic regression to correlate the concentrations of CTX and OC it was possible not only to distinguish the EBT subgroup, but also to construct a simple nomogram for easy classification of individual patients as possible EBT subjects. EBT patients showed generally decreased BMD values and increased bone formation and resorption rates. Evaluation of both CTX and OC levels enables a more proper indication for EBT. The proposed nomogram may assist in evaluating outcome from the two markers of bone turnover.
Muntean, Laura; Rojas-Vargas, Marena; Font, Pilar; Simon, Siao-Pin; Rednic, Simona; Schiotis, Ruxandra; Stefan, Simona; Tamas, Maria M; Bolosiu, Horatiu D; Collantes-Estévez, Eduardo
2011-05-01
The purpose of this study is to evaluate bone mineral density (BMD) and bone turnover markers in men with ankylosing spondylitis (AS) and to determine their relationship with clinical features and disease activity. Serum carboxi terminal cross-linked telopeptide of type I collagen (CTX), osteocalcin (OC) levels, and BMD of lumbar spine and proximal femur were evaluated in 44 males with AS, 18-60 years of age, and compared with those of 39 age-matched healthy men. Men with AS had a significantly lower BMD at the femoral neck and total hip as compared to age-matched controls (all p < 0.01). Osteopaenia or osteoporosis was found in 59.5% AS patients at the lumbar spine and in 47.7% at the femoral neck. Mean serum levels of OC and CTX were similar in AS patients and controls. There were no significant differences in BMD and bone turnover markers when comparing subgroups stratified according to disease duration or presence of peripheral arthritis. No correlations were found between disease activity markers and BMD or OC and CTX. In a cohort of relatively young males with AS, we found a high incidence of osteopaenia and osteoporosis. Disease activity and duration did not show any significant influence on BMD or serum levels of OC and CTX.
Skeletal effects of plant products other than soy
USDA-ARS?s Scientific Manuscript database
In addition to the extensive literature on the effects of soy feeding on skeletal parameters and bone turnover, there are a significant number of epidemiological studies suggesting a positive link between bone mineral density (BMD) and overall fruit and vegetable consumption. There is also evidence ...
Hamed, Sherifa A
2016-01-01
Data from cross-sectional and prospective studies revealed that patients with epilepsy and on long-term treatment with antiepileptic drugs (AEDs) are at increased risk for metabolic bone diseases. Bone diseases were reported in about 50% of patients on AEDs. Low bone mineral density, osteopenia/osteoporosis, osteomalacia, rickets, altered concentration of bone turnover markers and fractures were reported with phenobarbital, phenytoin, carbamazepine, valproate, oxcarbazepine and lamotrigine. The mechanisms for AEDs-induced bone diseases are heterogeneous and include hypovitaminosis D, hypocalcemia and direct acceleration of bone loss and/or reduction of bone formation. This article reviews the evidence, predictors and mechanisms of AEDs-induced bone abnormalities and its clinical implications. For patients on AEDs, regular monitoring of bone health is recommended. Prophylactic administration of calcium and vitamin D is recommended for all patients. Treatment doses of calcium and vitamin D and even anti-resorptive drug therapy are reserved for patients at high risk of pathological fracture.
SHEDD-WISE, KRISTINE M.; ALEKEL, D. LEE; HOFMANN, HEIKE; HANSON, KATHY B.; SCHIFERL, DAN J.; HANSON, LAURA N.; VAN LOAN, MARTA D.
2011-01-01
Soy isoflavones exert inconsistent bone density-preserving effects, but the bone strength-preserving effects in humans are unknown. Our double-blind randomized controlled trial examined two soy isoflavone doses (80 or 120 mg/d) vs placebo tablets on volumetric bone mineral density (vBMD) and strength (via peripheral quantitative computed tomography) in healthy postmenopausal women (46–63 y). We measured 3 y change in cortical (Ct) BMD, cortical thickness (CtThk), periosteal circumference (PC), endosteal circumference (EC), and strength-strain index (SSI) at 1/3 midshaft femur (N=171) and trabecular (Tb) BMD, PC, and SSI at 4% distal tibia (N=162). We found no treatment effect on femur CtThk, PC, or EC, or tibia TbBMD or PC. Strongest predictors (negative) of tibia TbBMD and SSI and femur CtBMD were timepoint and bone resorption; whole body fat mass was protective of SSI. As time since last menstrual period (TLMP) increased (p=0.012), 120 mg/d was protective of CtBMD. Strongest predictors of femur SSI were timepoint, bone resorption, and TLMP (protective). Isoflavone tablets were negative predictors of SSI, but 80 mg/d became protective as bone turnover increased (p=0.011). Soy isoflavone treatment for 3 y was modestly beneficial for midshaft femur vBMD as TLMP increased, and for midshaft femur SSI as bone turnover increased. PMID:21295742
Olives and Bone: A Green Osteoporosis Prevention Option
Chin, Kok-Yong; Ima-Nirwana, Soelaiman
2016-01-01
Skeletal degeneration due to aging, also known as osteoporosis, is a major health problem worldwide. Certain dietary components confer protection to our skeletal system against osteoporosis. Consumption of olives, olive oil and olive polyphenols has been shown to improve bone health. This review aims to summarize the current evidence from cellular, animal and human studies on the skeletal protective effects of olives, olive oil and olive polyphenols. Animal studies showed that supplementation of olives, olive oil or olive polyphenols could improve skeletal health assessed via bone mineral density, bone biomechanical strength and bone turnover markers in ovariectomized rats, especially those with inflammation. The beneficial effects of olive oil and olive polyphenols could be attributed to their ability to reduce oxidative stress and inflammation. However, variations in the bone protective, antioxidant and anti-inflammatory effects between studies were noted. Cellular studies demonstrated that olive polyphenols enhanced proliferation of pre-osteoblasts, differentiation of osteoblasts and decreased the formation of osteoclast-like cells. However, the exact molecular pathways for its bone health promoting effects are yet to be clearly elucidated. Human studies revealed that daily consumption of olive oil could prevent the decline in bone mineral density and improve bone turnover markers. As a conclusion, olives, olive oil and its polyphenols are potential dietary interventions to prevent osteoporosis among the elderly. PMID:27472350
Effects of Amlodipine on Bone Metabolism in Orchidectomised Spontaneously Hypertensive Rats.
Zivna, Helena; Gradošová, Iveta; Zivny, Pavel; Cermakova, Eva; Palicka, Vladimir
2018-06-13
Spontaneously hypertensive rats (SHR) represent a model of essential hypertension. We studied the effect of amlodipine (AML) on bone markers, bone mineral density (BMD), and biomechanical properties of osteopenic bone induced by orchidectomy in male SHR. Rats were allocated to 3 groups and were sacrificed after 12 weeks: sham-operated control; orchidectomised control; and orchidectomised receiving a diet supplemented with AML. Indicators of bone turnover were assessed in bone homogenate, BMD was measured by dual energy X-ray absorptiometry, and the femurs were subjected to biomechanical testing. Long-term AML administration does not have a negative impact on bone metabolism and density in male SHR. © 2018 S. Karger AG, Basel.
Goertz, B; Fassbender, W J; Williams, J C; Marzeion, A M; Bretzel, R G; Stracke, H; Berliner, M N
2003-01-01
Vitamin D is known to exert immunomodulatory effects. An overrepresentation of the b allele of the vitamin D receptor (VDR) has been detected in autoimmune diseases as type-1-diabetes and multiple sclerosis. VDR polymorphisms have been shown to influence bone metabolism and bone density. The aim of the present study was to examine the distribution of VDR alleles in German rheumatoid arthritis (RA) patients and their relation to bone turnover parameters. 62 German RA patients were included and compared to 40 controls. Three VDR alleles were examined (Bsm I, Taq I and Fok I). In addition, serum intact osteocalcin (OC), parathyroid hormone, bone specific alkaline phosphatase (B-ALP), the carboxyterminal extension peptide of type I procollagen, 25-OH-vitamin D and urinary deoxypyridinoline (DPD) excretion were measured. Furthermore, C-reactive protein, erythrocyte sedimentation rate and rheumatoid factor were measured. We found a slightly higher frequency of the bB and tT-genotype in RA patients compared to controls, which was not statistically significant. OC and B-ALP were found to be significantly higher in RA patients with positive correlations between bone formation and resorption parameters indicating higher bone turnover in RA patients with maintained coupling. CRP in RA patients correlated with DPD and inversely with PTH. VDR genotype showed no association with bone turnover, family history or the presence of rheumatoid factor. Our results suggest that VDR polymorphisms do not play a major role in RA predisposition in Germans.
WNT1-induced Secreted Protein-1 (WISP1), a Novel Regulator of Bone Turnover and Wnt Signaling*
Maeda, Azusa; Ono, Mitsuaki; Holmbeck, Kenn; Li, Li; Kilts, Tina M.; Kram, Vardit; Noonan, Megan L.; Yoshioka, Yuya; McNerny, Erin M. B.; Tantillo, Margaret A.; Kohn, David H.; Lyons, Karen M.; Robey, Pamela G.; Young, Marian F.
2015-01-01
WISP1/CCN4 (hereafter referred to as WISP1), a member of the CCN family, is found in mineralized tissues and is produced by osteoblasts and their precursors. In this study, Wisp1-deficient (Wisp1−/−) mice were generated. Using dual-energy x-ray absorptiometry, we showed that by 3 months, the total bone mineral density of Wisp1−/− mice was significantly lower than that of WT mice. Further investigation by micro-computed tomography showed that female Wisp1−/− mice had decreased trabecular bone volume/total volume and that both male and female Wisp1−/− mice had decreased cortical bone thickness accompanied by diminished biomechanical strength. The molecular basis for decreased bone mass in Wisp1−/− mice arises from reduced bone formation likely caused by osteogenic progenitors that differentiate poorly compared with WT cells. Osteoclast precursors from Wisp1−/− mice developed more tartrate-resistant acid phosphatase-positive cells in vitro and in transplants, suggesting that WISP1 is also a negative regulator of osteoclast differentiation. When bone turnover (formation and resorption) was induced by ovariectomy, Wisp1−/− mice had lower bone mineral density compared WT mice, confirming the potential for multiple roles for WISP1 in controlling bone homeostasis. Wisp1−/− bone marrow stromal cells had reduced expression of β-catenin and its target genes, potentially caused by WISP1 inhibition of SOST binding to LRP6. Taken together, our data suggest that the decreased bone mass found in Wisp1−/− mice could potentially be caused by an insufficiency in the osteodifferentiation capacity of bone marrow stromal cells arising from diminished Wnt signaling, ultimately leading to altered bone turnover and weaker biomechanically compromised bones. PMID:25864198
Is Bone Tissue Really Affected by Swimming? A Systematic Review
Gómez-Bruton, Alejandro; Gónzalez-Agüero, Alejandro; Gómez-Cabello, Alba; Casajús, José A.; Vicente-Rodríguez, Germán
2013-01-01
Background Swimming, a sport practiced in hypogravity, has sometimes been associated with decreased bone mass. Aim This systematic review aims to summarize and update present knowledge about the effects of swimming on bone mass, structure and metabolism in order to ascertain the effects of this sport on bone tissue. Methods A literature search was conducted up to April 2013. A total of 64 studies focusing on swimmers bone mass, structure and metabolism met the inclusion criteria and were included in the review. Results It has been generally observed that swimmers present lower bone mineral density than athletes who practise high impact sports and similar values when compared to sedentary controls. However, swimmers have a higher bone turnover than controls resulting in a different structure which in turn results in higher resistance to fracture indexes. Nevertheless, swimming may become highly beneficial regarding bone mass in later stages of life. Conclusion Swimming does not seem to negatively affect bone mass, although it may not be one of the best sports to be practised in order to increase this parameter, due to the hypogravity and lack of impact characteristic of this sport. Most of the studies included in this review showed similar bone mineral density values in swimmers and sedentary controls. However, swimmers present a higher bone turnover than sedentary controls that may result in a stronger structure and consequently in a stronger bone. PMID:23950908
Nutritional Determination of Bone Health: A Survey of Australian Defence Force (ADF) Trainees
2005-07-01
aims to determine the prevalence of key risk factors, including diet, exercise, bone turn-over, bone mineral density and anthropometry , and to relate...incorporated in bone matrix during bone formation. The ratio of undercarboxylated osteocalcin (a protein with low biological activity) to total...serves returned to DSTO- Scottsdale. 2.3 Data Manipulation A ratio of energy intake (EI) to Basal Metabolic Rate (BMR) of 0.9 represents the
Nutritional Determinants of Bone Health: A Survey of Australian Defence Force (ADF) Trainees
2005-07-01
aims to determine the prevalence of key risk factors, including diet, exercise, bone turn-over, bone mineral density and anthropometry , and to relate...incorporated in bone matrix during bone formation. The ratio of undercarboxylated osteocalcin (a protein with low biological activity) to total...serves returned to DSTO- Scottsdale. 2.3 Data Manipulation A ratio of energy intake (EI) to Basal Metabolic Rate (BMR) of 0.9 represents the
Gunn, Caroline Ann; Weber, Janet Louise; McGill, Anne-Thea; Kruger, Marlena Cathorina
2015-01-01
Increased consumption of vegetables/herbs/fruit may reduce bone turnover and urinary calcium loss in post-menopausal women because of increased intake of polyphenols and potassium, but comparative human studies are lacking. The main aim was to compare bone turnover markers and urinary calcium excretion in two randomised groups (n = 50) of healthy post-menopausal women consuming ≥9 servings of different vegetables/herbs/fruit combinations (three months). Group A emphasised a generic range of vegetables/herbs/fruit, whereas Group B emphasised specific vegetables/herbs/fruit with bone resorption-inhibiting properties (Scarborough Fair Diet), with both diets controlled for potential renal acid load (PRAL). Group C consumed their usual diet. Plasma bone markers, urinary electrolytes (24 h) and estimated dietary PRAL were assessed at baseline and 12 weeks. Procollagen type I N propeptide (PINP) decreased (−3.2 μg/L, p < 0.01) in the B group only, as did C-terminal telopeptide of type I collagen (CTX) (−0.065 μg/L, p < 0.01) in women with osteopenia compared to those with normal bone mineral density (BMD) within this group. Intervention Groups A and B had decreased PRAL, increased urine pH and significantly decreased urinary calcium loss. Urinary potassium increased in all groups, reflecting a dietary change. In conclusion, Group B demonstrated positive changes in both turnover markers and calcium conservation. PMID:25856221
[Impact of thyroid diseases on bone].
Tsourdi, E; Lademann, F; Siggelkow, H
2018-05-09
Thyroid hormones are key regulators of skeletal development in childhood and bone homeostasis in adulthood, and thyroid diseases have been associated with increased osteoporotic fractures. Hypothyroidism in children leads to an impaired skeletal maturation and mineralization, but an adequate and timely substitution with thyroid hormones stimulates bone growth. Conversely, hyperthyroidism at a young age accelerates skeletal development, but may also cause short stature because of a premature fusion of the growth plates. Hypothyroidism in adults causes an increase in the duration of the remodeling cycle and, thus, leads to low bone turnover and enhanced mineralization, but an association with a higher fracture risk is less well established. In adults, a surplus of thyroid hormones enhances bone turnover, mostly due to an increased bone resorption driven by osteoclasts. Thus, hyperthyroidism is a well-recognized cause of high-bone turnover secondary osteoporosis, resulting in an increased susceptibility to fragility fractures. Subclinical hyperthyroidism, especially resulting from endogenous disease, also has an adverse effect on bone mineral density and is associated with fractures. In most patients with overt or subclinical hyperthyroidism restoration of the euthyroid status reverses bone loss. In postmenopausal women who receive thyroid-stimulating hormone suppression therapy because of thyroid cancer, antiresorptive treatments may be indicated. Overall, extensive data support the importance of a euthyroid status for bone mineral accrual and growth in childhood as well as maintenance of bone health in adulthood.
Lai, Jennifer C; Shoback, Dolores M; Zipperstein, Jacob; Lizaola, Blanca; Tseng, Samuel; Terrault, Norah A
2015-06-01
Whether chronic HCV, a disease characterized by systemic inflammation, impacts bone mineral density (BMD) independent of cirrhosis is unknown. We aimed to evaluate the association between BMD, systemic inflammation, and markers of bone turnover in chronic HCV without cirrhosis. Non-cirrhotics, 40-60 years old, with chronic HCV underwent measurement of: (1) BMD by dual-energy X-ray absorptiometry scan and (2) serum markers of systemic inflammation and bone turnover. By Chi-squared or t test, we compared those with normal versus low BMD. Of the 60 non-cirrhotics, 53 % were female and 53 % Caucasian. Mean (SD) age was 53.3 years (5.7), total bilirubin 0.7 mg/dL (0.3), creatinine 0.8 mg/dL (0.2), and body mass index 28.4 kg/m(2) (6.5). Low BMD was observed in 42 %: 30 % had osteopenia, 12 % had osteoporosis. Elevated tumor necrosis factor α, interleukin-6, and C-reactive protein levels were found in 26, 32, and 5 %, respectively, but did not differ by BMD group (p > 0.05). Patients with low BMD had higher serum phosphorus (4.1 vs. 3.5 mg/dL) and pro-peptide of type 1 collagen (P1NP; 73.1 vs. 47.5 ng/mL) [p < 0.05], but similar bone-specific alkaline phosphatase, serum C-telopeptide, and parathyroid hormone levels. Low BMD is prevalent in 40- to 60-year-old non-cirrhotics with chronic HCV, but not associated with systemic inflammatory markers. Elevated P1NP levels may help to identify those at increased risk of bone complications in this population. Chronic HCV should be considered a risk factor for bone loss, prompting earlier BMD assessments in both men and women.
Hoy, Jennifer; Grund, Birgit; Roediger, Mollie; Ensrud, Kristine E.; Brar, Indira; Colebunders, Robert; De Castro, Nathalie; Johnson, Margaret; Sharma, Anjali; Carr, Andrew
2013-01-01
Bone mineral density (BMD) declines significantly in HIV patients on antiretroviral therapy (ART). We compared the effects of intermittent versus continuous ART on markers of bone turnover in the Body Composition substudy of the Strategies for Management of AntiRetroviral Therapy (SMART) trial and determined whether early changes in markers predicted subsequent change in BMD. For 202 participants (median age 44 years, 17% female, 74% on ART) randomised to continuous or intermittent ART, plasma markers of inflammation and bone turnover were evaluated at baseline, months 4 and 12; BMD at the spine (dual X-ray absorptiometry [DXA] and computed tomography) and hip (DXA) was evaluated annually. Compared to the continuous ART group, mean bone-specific alkaline phosphatase (bALP), osteocalcin, procollagen type 1 N-terminal propeptide (P1NP), N-terminal cross-linking telopeptide of type 1 collagen (NTX), and C-terminal cross-linking telopeptide of type 1 collagen (βCTX) decreased significantly in the intermittent ART group, whereas RANKL and the RANKL:osteoprotegerin (OPG) ratio increased (all p≤0.002 at month 4 and month 12). Increases in bALP, osteocalcin, P1NP, NTX, and βCTX at month 4 predicted decrease in hip BMD at month 12, while increases in RANKL and the RANKL:OPG ratio at month 4 predicted increase in hip and spine BMD at month 12. This study has shown that compared with continuous ART, interruption of ART results in a reduction in markers of bone turnover and increase in BMD at hip and spine, and that early changes in markers of bone turnover predict BMD changes at 12 months. PMID:23299909
Park, Young Joo; Lee, Sook Ja; Shin, Nah Mee; Shin, Hyunjeong; Kim, Yoo Kyung; Cho, Yunjung; Jeon, Songi; Cho, Inhae
2014-10-01
This study was done to assess the bone mineral density (BMD), biochemical bone turnover markers (BTMs), and factors associated with bone health in young Korean women. Participants were 1,298 women, ages 18-29, recruited in Korea. Measurements were BMD by calcaneus quantitative ultrasound, BTMs for Calcium, Phosphorus, Osteocalcin, and C-telopeptide cross-links (CTX), body composition by physical measurements, nutrients by food frequency questionnaire and psychosocial factors associated with bone health by self-report. The mean BMD (Z-score) was -0.94. 8.7% women had lower BMD (Z-score≤-2) and 14.3% women had higher BMD (Z-score≥0) than women of same age. BTMs were not significantly different between high-BMD (Z-score≥0) and low-BMD (Z-score<0) women. However, Osteocalcin and CTX were higher in women preferring caffeine intake, sedentary lifestyle and alcoholic drinks. Body composition and Calcium intake were significantly higher in high-BMD. Low-BMD women reported significantly higher susceptibility and barriers to exercise in health beliefs, lower bone health self-efficacy and promoting behaviors. Results of this study indicate that bone health of young Korean women is not good. Development of diverse strategies to intervene in factors such as exercise, nutrients, self-efficacy, health beliefs and behaviors, shown to be important, are needed to improve bone health.
Shedd-Wise, Kristine M; Alekel, D Lee; Hofmann, Heike; Hanson, Kathy B; Schiferl, Dan J; Hanson, Laura N; Van Loan, Marta D
2011-01-01
Soy isoflavones exert inconsistent bone density-preserving effects, but the bone strength-preserving effects in humans are unknown. Our double-blind randomized controlled trial examined 2 soy isoflavone doses (80 or 120mg/d) vs placebo tablets on volumetric bone mineral density (vBMD) and strength (by means of peripheral quantitative computed tomography) in healthy postmenopausal women (46-63yr). We measured 3-yr changes in cortical BMD (CtBMD), cortical thickness (CtThk), periosteal circumference (PC), endosteal circumference (EC), and strength-strain index (SSI) at 1/3 midshaft femur (N=171), and trabecular BMD (TbBMD), PC, and SSI at 4% distal tibia (N=162). We found no treatment effect on femur CtThk, PC, or EC, or tibia TbBMD or PC. The strongest predictors (negative) of tibia TbBMD and SSI and femur CtBMD were timepoint and bone resorption; whole-body fat mass was protective of SSI. As time since last menstrual period (TLMP) increased (p=0.012), 120-mg/d dose was protective of CtBMD. The strongest predictors of femur SSI were timepoint, bone resorption, and TLMP (protective). Isoflavone tablets were negative predictors of SSI, but 80-mg/d dose became protective as bone turnover increased (p=0.011). Soy isoflavone treatment for 3yr was modestly beneficial for midshaft femur vBMD as TLMP increased and for midshaft femur SSI as bone turnover increased. Copyright © 2011 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
Zadrozna-Sliwka, Beata; Bolanowski, Marek; Jawiarczyk, Aleksandra; Kaluzny, Marcin; Syrycka, Joanna
2008-02-01
Hyperprolactinemia could be one of possible causes of bone loss. The reason is thought to be connected with hypogonadism due to PRL excess and the role of other hormones like PTH and PTH-rP. There is no data on the influence of PTH fractions (CAP and CIP) on bone turnover and density in hyperprolactinemia. The aim of the study was to assess the influence of PTH and its fractions on bone metabolism in hyperprolactinemia of various origin. The study was carried out in 75 women. Group I consisted of 32 women with prolactinoma, group II consisted of 43 women with functional hyperprolactinemia. Both groups were subdivided in patients with hypogonadism and normal gonadal function. The control group consisted of 29 healthy women. In all subjects PRL, PTH and its fractions (CAP, CIP), and bone turnover markers (BAP, ICTP) were studied. BMD measurement was carried out using DXA. In patients with functional hyperprolactinemia i-PTH and CAP levels were lower than in controls. CIP concentrations were lower in patients than in controls. CAP/CIP ratio was higher in patients with prolactinoma than in patients with functional hyperprolactinemia and controls. Higher values of bone turnover markers (BAP, ICTP) in patients groups and subgroups were shown as compared to controls. Some correlations between PTH and its fractions, and BMD and bone turnover were observed. There is no direct benefit from the assessment of parathormone fractions and CAP/CIP ratio in the prognosis of bone metabolism changes in hyperprolactinemia of various origin.
Prostaglandin E2 Prevents Ovariectomy-Induced Cancellous Bone Loss in Rats
NASA Technical Reports Server (NTRS)
Ke, Hua Zhu; Li, Mei; Jee, Webster S. S.
1992-01-01
The object of this study was to determine whether prostaglandin E2, (PGE2) can prevent ovariectomy induced cancellous bone loss. Thirty-five 3-month-old female Sprague-Dawley rats were divided into two groups. The rats in the first group were ovariectomized (OVX) while the others received sham operation (sham-OVX). The OVX group was further divided into three treatment groups. The daily doses for the three groups were 0,1 and 6 mg PGE2/kg for 90 days. Bone histomorphometric analyses were performed on double-fluorescent-labeled undecalcified proximal tibial metaphysis (PTM). We confirmed that OVX induces massive cancellous bone loss (-80%) and a higher bone turnover (+143%). The new findings from the present study demonstrate that bone loss due to ovarian hormone deficiency can be prevented by a low-dose (1 mg) daily administration of PGE2. Furthermore, a higher-dose (6 mg) daily administration of PGE2 not only prevents bone loss but also adds extra bone to the proximal tibial metaphyses. PGE, at the 1-mg dose level significantly increased trabecular bone area, trabecular width, trabecular node density, density of node to node, ratio of node to free end, and thus significantly decreased trabecular separation from OVX controls. At this dose level, these same parameters did not differ significantly from sham-OVX controls. However, at the 6-mg dose level PGE2, there were significant increases in trabecular bone area, trabecular width, trabecular node density, density of node to node, and ratio of node to free end, while there was significant decrease in trabecular separation from both OVX and sham-operated controls. The changes in indices of trabecular bone microanatomical structure indicated that PGE2 prevented bone loss as well as the disconnection of existing trabeculae. In summary, PGE2, administration to OVX rats decreased bone turnover and increased bone formation parameters resulting in a positive bone balance that prevented bone loss (in both lower and higher doses) and added extra bone to metaphyses of OVX rats (in higher dose). These findings support the strategy of the use of bone stimulation agents in the prevention of estrogen depletion bone loss (postmenopausal osteoporosis).
Aihara, T; Suemasu, K; Takei, H; Hozumi, Y; Takehara, M; Saito, T; Ohsumi, S; Masuda, N; Ohashi, Y
2010-01-01
Use of aromatase inhibitors in women with postmenopausal breast cancer accompanies risks of bone loss. We evaluated changes in bone mineral density (BMD) and bone turnover markers in patients treated with exemestane, anastrozole or tamoxifen for hormone-sensitive postmenopausal early breast cancer. Sixty-eight patients enrolled in the Tamoxifen Exemestane Adjuvant Multinational Japan bone substudy were randomly assigned to receive tamoxifen, exemestane or anastrozole. During a 2-year study period, lumbar spine BMD was measured using dual-energy X-ray absorptiometry, and urinary type I collagen cross-linked N-telopeptide (NTX) and serum bone-specific alkaline phosphatase (BAP) were also measured. BMD at 2 years of treatment was higher in tamoxifen patients compared with exemestane and anastrozole patients; however, the intergroup difference was not significant (p = 0.2521 and p = 0.0753, respectively). BMD was higher in exemestane patients compared with anastrozole patients; however, the intergroup difference was not significant (p = 0.7059 and p = 0.8134, respectively). NTX and BAP were significantly lower in tamoxifen patients compared with exemestane and anastrozole patients at 1 and 2 years of treatment (p < 0.05). Tamoxifen may provide better bone protection compared with exemestane or anastrozole. The effect of exemestane and anastrozole on bone loss may be comparable in Japanese postmenopausal women. Copyright © 2011 S. Karger AG, Basel.
Conley, Melissa N; Roberts, Cooper; Sharpton, Thomas J; Iwaniec, Urszula T; Hord, Norman G
2017-05-01
Studies suggest diets rich in fruit and vegetables reduce bone loss, although the specific compounds responsible are unknown. Substrates for endogenous nitric oxide (NO) production, including organic nitrates and dietary nitrate, may support NO production in age-related conditions, including osteoporosis. We investigated the capability of dietary nitrate to improve NO bioavailability, reduce bone turnover and loss. Six-month-old Sprague Dawley rats [30 ovariectomized (OVX) and 10 sham-operated (sham)] were randomized into three groups: (i) vehicle (water) control, (ii) low-dose nitrate (LDN, 0.1 mmol nitrate/kg bw/day), or (iii) high-dose nitrate (HDN, 1.0 mmol nitrate/kg bw/day) for three weeks. The sham received vehicle. Serum bone turnover markers; bone mass, mineral density, and quality; histomorphometric parameters; and fecal microbiome were examined. Three weeks of LDN or HDN improved NO bioavailability in a dose-dependent manner. OVX resulted in cancellous bone loss, increased bone turnover, and fecal microbiome changes. OVX increased relative abundances of Firmicutes and decreased Bacteroideceae and Alcaligenaceae. Nitrate did not affect the skeleton or fecal microbiome. These data indicate that OVX affects the fecal microbiome and that the gut microbiome is associated with bone mass. Three weeks of nitrate supplementation does not slow bone loss or alter the fecal microbiome in OVX. © 2017 The Authors. Molecular Nutrition & Food Research published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Conley, Melissa N.; Roberts, Cooper; Sharpton, Thomas J.; Iwaniec, Urszula T.
2017-01-01
Scope Studies suggest diets rich in fruit and vegetables reduce bone loss, although the specific compounds responsible are unknown. Substrates for endogenous nitric oxide (NO) production, including organic nitrates and dietary nitrate, may support NO production in age‐related conditions, including osteoporosis. We investigated the capability of dietary nitrate to improve NO bioavailability, reduce bone turnover and loss. Methods and results Six‐month‐old Sprague Dawley rats [30 ovariectomized (OVX) and 10 sham‐operated (sham)] were randomized into three groups: (i) vehicle (water) control, (ii) low‐dose nitrate (LDN, 0.1 mmol nitrate/kg bw/day), or (iii) high‐dose nitrate (HDN, 1.0 mmol nitrate/kg bw/day) for three weeks. The sham received vehicle. Serum bone turnover markers; bone mass, mineral density, and quality; histomorphometric parameters; and fecal microbiome were examined. Three weeks of LDN or HDN improved NO bioavailability in a dose‐dependent manner. OVX resulted in cancellous bone loss, increased bone turnover, and fecal microbiome changes. OVX increased relative abundances of Firmicutes and decreased Bacteroideceae and Alcaligenaceae. Nitrate did not affect the skeleton or fecal microbiome. Conclusion These data indicate that OVX affects the fecal microbiome and that the gut microbiome is associated with bone mass. Three weeks of nitrate supplementation does not slow bone loss or alter the fecal microbiome in OVX. PMID:28087899
Kahl, Kai G; Rudolf, Sebastian; Dibbelt, Leif; Stoeckelhuber, Beate M; Gehl, Hans-Björn; Hohagen, Fritz; Schweiger, Ulrich
2005-04-01
Low bone mineral density (BMD) is a frequent, often persistent complication in patients with major depressive disorder (MDD) and anorexia nervosa (AN) that increases the risk of pathologic fractures. The pathogenetic process underlying osteopenia in MDD and AN is still unclear, although several factors, including a dysbalance of cytokines, are associated with loss of bone mass. Alterations in the serum levels of cytokines have been observed in patients with MDD, AN, and other psychiatric disorders. Therefore, we examined serum levels of cytokines, markers of bone turnover, and BMD in 13 patients with MDD and a lifetime history of AN. Bone turnover markers (osteocalcin and C-terminal degradation products of type I collagen) and tumor necrosis factor alpha (TNF-alpha) in patients were significantly increased compared with those of the control group. Osteoprotegerin (OPG) in patients was significantly decreased. Eight of 13 patients (62%) displayed osteopenia at the lumbar spine. TNF-alpha correlated significantly with C-terminal degradation products of type I collagen, an osteoclastic marker, but significantly negatively with OPG. Our data suggest that TNF-alpha and OPG may play a role in the pathogenetic process underlying osteopenia in these patients.
Acute Exposure to High Dose γ-Radiation Results in Transient Activation of Bone Lining Cells
Turner, Russell T.; Iwaniec, Urszula T.; Wong, Carmen P.; Lindenmaier, Laurence B.; Wagner, Lindsay A.; Branscum, Adam J.; Menn, Scott A.; Taylor, James; Zhang, Ye; Wu, Honglu; Sibonga, Jean D.
2014-01-01
The present studies investigated the cellular mechanisms for the detrimental effects of high dose whole body γ-irradiation on bone. In addition, radioadaptation and bone marrow transplantation were assessed as interventions to mitigate the skeletal complications of irradiation. Increased trabecular thickness and separation and reduced fractional cancellous bone volume, connectivity density, and trabecular number were detected in proximal tibia and lumbar vertebra 14 days following γ-irradiation with 6 Gy. To establish the cellular mechanism for the architectural changes, vertebrae were analyzed by histomorphometry 1, 3, and 14 days following irradiation. Marrow cell density decreased within 1 day (67% reduction, p<0.0001), reached a minimum value after 3 days (86% reduction, p<0.0001), and partially rebounded by 14 days (30% reduction, p=0.0025) following irradiation. In contrast, osteoblast-lined bone perimeter was increased by 290% (1 day, p=0.04), 1230% (3 days, p<0.0001), and 530% (14 days, p=0.003), respectively. There was a strong association between radiation-induced marrow cell death and activation of bone lining cells to express the osteoblast phenotype (Pearson correlation −0.85, p<0.0001). An increase (p=0.004) in osteoclast-lined bone perimeter was also detected with irradiation. A priming dose of γ-radiation (0.5 mGy), previously shown to reduce mortality, had minimal effect on the cellular responses to radiation and did not prevent detrimental changes in bone architecture. Bone marrow transplantation normalized marrow cell density, bone turnover, and most indices of bone architecture following irradiation. In summary, radiation-induced death of marrow cells is associated with 1) a transient increase in bone formation due, at least in part, to activation of bone lining cells, and 2) an increase in bone resorption due to increased osteoclast perimeter. Bone marrow transplantation is effective in mitigating the detrimental effects of acute exposure to high dose whole body γ-radiation on bone turnover. PMID:23954507
Vitamin K, bone turnover, and bone mass in girls.
Kalkwarf, Heidi J; Khoury, Jane C; Bean, Judy; Elliot, James G
2004-10-01
Vitamin K has been suggested to have a role in bone metabolism, and low vitamin K intake has been related to low bone density and increased risk of osteoporotic fracture. The objective of this study was to determine whether phylloquinone (vitamin K(1)) intake and biochemical indicators of vitamin K status are related to bone mineral content (BMC) and markers of bone formation and bone resorption in girls. Vitamin K status [plasma phylloquinone concentration and percentage of undercarboxylated osteocalcin (%ucOC)] was measured at baseline in a study of 245 healthy girls aged 3-16 y. Cross-linked N-telopeptide of type 1 collagen (NTx) breakdown, osteocalcin, and bone-specific alkaline phosphatase were measured to reflect bone resorption and formation. BMC of the total body, lumbar spine, and hip and dietary phylloquinone intake were measured annually for 4 y. Phylloquinone intake (median: 45 microg/d) was not consistently associated with bone turnover markers or BMC. Better vitamin K status (high plasma phylloquinone and low %ucOC) was associated with lower bone resorption and formation. Plasma phylloquinone was inversely associated with NTx and osteocalcin concentrations (P < 0.05), and %ucOC was positively associated with NTx and bone-specific alkaline phosphatase concentrations (P < 0.05). Indicators of vitamin K status were not consistently associated with current BMC or gain in BMC over the 4-y study period. Better vitamin K status was associated with decreased bone turnover in healthy girls consuming a typical US diet. Randomized phylloquinone supplementation trials are needed to further understand the potential benefits of phylloquinone on bone acquisition in growing children.
Naylor, K E; Jacques, R M; Paggiosi, M; Gossiel, F; Peel, N F A; McCloskey, E V; Walsh, J S; Eastell, R
2016-01-01
We used bone turnover markers to identify women who responded to bisphosphonate treatment for osteoporosis. Response was more likely with alendronate and ibandronate than risedronate. There was a greater decrease in bone markers if baseline bone turnover markers were higher and if the patient took more than 80 % of her medication. Biochemical response to bisphosphonate therapy can be assessed using either a decrease in bone turnover marker beyond the least significant change (LSC) or a reduction to within a reference interval (RI). We compared the performance of these target responses and determined whether response was related to the type of bisphosphonate, compliance and baseline bone turnover markers. Biochemical responses to three oral bisphosphonates were assessed in an open, controlled trial comprising 172 postmenopausal osteoporotic women (age 53-84 years), randomised to alendronate, ibandronate or risedronate, plus calcium and vitamin D supplementation for 2 years. The LSC for each marker was derived within the study population, whereas RIs were obtained from a control group of healthy premenopausal women (age 35-40 years). Over 70 % of women achieved a target response for serum CTX and PINP, irrespective of the approach used. The percentage decrease at 12 weeks was greater for women with baseline PINP above the RI -63 % (difference 13 %, 95 % CI 0 to 27.1, P = 0.049) and good compliance -67 % (difference 15.9 %, 95 % CI 6.3 to 25.5, P = 0.001). Responders had a greater increase in spine bone density compared to nonresponders; for example 6.2 vs. 2.3 % (difference 3.9 %, 95 % CI 1.6 to 6.3, P = 0.0011) for PINP LSC. The magnitude of change in bone markers was greater with ibandronate and alendronate than risedronate. Both approaches to response identified similar proportions of women as responders. Nonresponders had smaller increases in BMD, and we suggest that biochemical assessment of response is a useful tool for the management of women with postmenopausal osteoporosis.
Ambroszkiewicz, Jadwiga; Chełchowska, Magdalena; Szamotulska, Katarzyna; Rowicka, Grażyna; Klemarczyk, Witold; Strucińska, Małgorzata
2018-01-01
Vegetarian diets contain many beneficial properties as well as carry a risk of inadequate intakes of several nutrients important to bone health. The aim of the study was to evaluate serum levels of bone metabolism markers and to analyze the relationships between biochemical bone markers and anthropometric parameters in children on vegetarian and omnivorous diets. The study included 70 prepubertal children on a lacto-ovo-vegetarian diet and 60 omnivorous children. Body composition, bone mineral content (BMC), and bone mineral density (BMD) were assessed by dual-energy X-ray absorptiometry. Biochemical markers—bone alkaline phosphatase (BALP), C-terminal telopeptide of type I collagen (CTX-I), osteoprotegerin (OPG), nuclear factor κB ligand (RANKL), sclerostin, and Dickkopf-related protein 1 (Dkk-1)—were measured using immunoenzymatic assays. In vegetarians, we observed a significantly higher level of BALP (p = 0.002) and CTX-I (p = 0.027), and slightly lower spine BMC (p = 0.067) and BMD (p = 0.060) than in omnivores. Concentrations of OPG, RANKL, sclerostin, and Dkk-1 were comparable in both groups of children. We found that CTX-I was positively correlated with BMC, total BMD, and lumbar spine BMD in vegetarians, but not in omnivores. A well-planned vegetarian diet with proper dairy and egg intake does not lead to significantly lower bone mass; however, children following a lacto-ovo-vegetarian diet had a higher rate of bone turnover and subtle changes in bone regulatory markers. CTX-I might be an important marker for the protection of vegetarians from bone abnormalities. PMID:29414859
Ambroszkiewicz, Jadwiga; Chełchowska, Magdalena; Szamotulska, Katarzyna; Rowicka, Grażyna; Klemarczyk, Witold; Strucińska, Małgorzata; Gajewska, Joanna
2018-02-07
Vegetarian diets contain many beneficial properties as well as carry a risk of inadequate intakes of several nutrients important to bone health. The aim of the study was to evaluate serum levels of bone metabolism markers and to analyze the relationships between biochemical bone markers and anthropometric parameters in children on vegetarian and omnivorous diets. The study included 70 prepubertal children on a lacto-ovo-vegetarian diet and 60 omnivorous children. Body composition, bone mineral content (BMC), and bone mineral density (BMD) were assessed by dual-energy X-ray absorptiometry. Biochemical markers-bone alkaline phosphatase (BALP), C-terminal telopeptide of type I collagen (CTX-I), osteoprotegerin (OPG), nuclear factor κB ligand (RANKL), sclerostin, and Dickkopf-related protein 1 (Dkk-1)-were measured using immunoenzymatic assays. In vegetarians, we observed a significantly higher level of BALP ( p = 0.002) and CTX-I ( p = 0.027), and slightly lower spine BMC ( p = 0.067) and BMD ( p = 0.060) than in omnivores. Concentrations of OPG, RANKL, sclerostin, and Dkk-1 were comparable in both groups of children. We found that CTX-I was positively correlated with BMC, total BMD, and lumbar spine BMD in vegetarians, but not in omnivores. A well-planned vegetarian diet with proper dairy and egg intake does not lead to significantly lower bone mass; however, children following a lacto-ovo-vegetarian diet had a higher rate of bone turnover and subtle changes in bone regulatory markers. CTX-I might be an important marker for the protection of vegetarians from bone abnormalities.
Biochemical bone turnover markers in diabetes mellitus - A systematic review.
Starup-Linde, Jakob; Vestergaard, Peter
2016-01-01
Diabetes mellitus is associated with an increased risk of fractures, which is not explained by bone mineral density. Other markers as bone turnover markers (BTMs) may be useful. To assess the relationship between BTMs, diabetes, and fractures. A systematic literature search was conducted in August 2014. The databases searched were Medline at Pubmed and Embase. Medline at Pubmed was searched by "Diabetes Mellitus" (MESH) and "bone turnover markers" and Embase was searched using the Emtree by "Diabetes Mellitus" and "bone turnover", resulting in 611 studies. The eligibility criteria for the studies were to assess BTM in either type 1 diabetes (T1D) or type 2 diabetes (T2D) patients. Of the 611 eligible studies, removal of duplicates and screening by title and abstract lead to 114 potential studies for full-text review. All these studies were full-text screened for eligibility and 45 studies were included. Two additional studies were added from other sources. Among the 47 studies included there were 1 meta-analysis, 29 cross-sectional studies, 13 randomized controlled trials, and 4 longitudinal studies. Both T1D and T2D were studied. Most studies reported fasting BTM and excluded renal disease. Markers of bone resorption and formation seem to be lower in diabetes patients. Bone specific alkaline phosphatase is normal or increased, which suggests that the matrix becomes hypermineralized in diabetes patients. The BTMs: C-terminal cross-link of collagen, insulin-like growth factor-1, and sclerostin may potentially predict fractures, but longitudinal trials are needed. This article is part of a Special Issue entitled Bone and diabetes. Copyright © 2015 Elsevier Inc. All rights reserved.
Kenny, Anne M; Mangano, Kelsey M; Abourizk, Robin H; Bruno, Richard S; Anamani, Denise E; Kleppinger, Alison; Walsh, Stephen J; Prestwood, Karen M; Kerstetter, Jane E
2009-07-01
Soy foods contain several components (isoflavones and amino acids) that potentially affect bone. Few long-term, large clinical trials of soy as a means of improving bone mineral density (BMD) in late postmenopausal women have been conducted. Our goal was to evaluate the long-term effect of dietary soy protein and/or soy isoflavone consumption on skeletal health in late postmenopausal women. We conducted a randomized, double-blind, placebo-controlled clinical trial in 131 healthy ambulatory women aged >60 y. Ninety-seven women completed the trial. After a 1-mo baseline period, subjects were randomly assigned into 1 of 4 intervention groups: soy protein (18 g) + isoflavone tablets (105 mg isoflavone aglycone equivalents), soy protein + placebo tablets, control protein + isoflavone tablets, and control protein + placebo tablets. Consumption of protein powder and isoflavone pills did not differ between groups, and compliance with the study powder and pills was 80-90%. No significant differences in BMD were observed between groups from baseline to 1 y after the intervention or in BMD change between equol and non-equol producers. However, there were significant negative correlations between total dietary protein (per kg) and markers of bone turnover (P < 0.05). Because soy protein and isoflavones (either alone or together) did not affect BMD, they should not be considered as effective interventions for preserving skeletal health in older women. The negative correlation between dietary protein and bone turnover suggests that increasing protein intakes may suppress skeletal turnover. This trial was registered at ClinicalTrials.gov as NCT00668447.
Rauner, Martina; Thiele, Sylvia; Fert, Ingrid; Araujo, Luiza M; Layh-Schmitt, Gerlinde; Colbert, Robert A; Hofbauer, Christine; Bernhardt, Ricardo; Bürki, Alexander; Schwiedrzik, Jakob; Zysset, Philippe K; Pietschmann, Peter; Taurog, Joel D; Breban, Maxime; Hofbauer, Lorenz C
2015-06-01
Although osteopenia is frequent in spondyloarthritis (SpA), the underlying cellular mechanisms and association with other symptoms are poorly understood. This study aimed to characterize bone loss during disease progression, determine cellular alterations, and assess the contribution of inflammatory bowel disease (IBD) to bone loss in HLA-B27 transgenic rats. Bones of 2-, 6-, and 12-month-old non-transgenic, disease-free HLA-B7 and disease-associated HLA-B27 transgenic rats were examined using peripheral quantitative computed tomography, μCT, and nanoindentation. Cellular characteristics were determined by histomorphometry and ex vivo cultures. The impact of IBD was determined using [21-3 x 283-2]F1 rats, which develop arthritis and spondylitis, but not IBD. HLA-B27 transgenic rats continuously lost bone mass with increasing age and had impaired bone material properties, leading to a 3-fold decrease in bone strength at 12 months of age. Bone turnover was increased in HLA-B27 transgenic rats, as evidenced by a 3-fold increase in bone formation and a 6-fold increase in bone resorption parameters. Enhanced osteoclastic markers were associated with a larger number of precursors in the bone marrow and a stronger osteoclastogenic response to RANKL or TNFα. Further, IBD-free [21-3 x 283-2]F1 rats also displayed decreased total and trabecular bone density. HLA-B27 transgenic rats lose an increasing amount of bone density and strength with progressing age, which is primarily mediated via increased bone remodeling in favor of bone resorption. Moreover, IBD and bone loss seem to be independent features of SpA in HLA-B27 transgenic rats. Copyright © 2015 Elsevier Inc. All rights reserved.
Starke, Astrid; Corsenca, Alf; Kohler, Thomas; Knubben, Johannes; Kraenzlin, Marius; Uebelhart, Daniel; Wüthrich, Rudolf P; von Rechenberg, Brigitte; Müller, Ralph; Ambühl, Patrice M
2012-09-01
Acidosis and transplantation are associated with increased risk of bone disturbances. This study aimed to assess bone morphology and metabolism in acidotic patients with a renal graft, and to ameliorate bone characteristics by restoration of acid/base homeostasis with potassium citrate. This was a 12-month controlled, randomized, interventional trial that included 30 renal transplant patients with metabolic acidosis (S-[HCO(3)(-)] <24 mmol/L) undergoing treatment with either potassium citrate to maintain S-[HCO(3)(-)] >24 mmol/L, or potassium chloride (control group). Iliac crest bone biopsies and dual-energy X-ray absorptiometry were performed at baseline and after 12 months of treatment. Bone biopsies were analyzed by in vitro micro-computed tomography and histomorphometry, including tetracycline double labeling. Serum biomarkers of bone turnover were measured at baseline and study end. Twenty-three healthy participants with normal kidney function comprised the reference group. Administration of potassium citrate resulted in persisting normalization of S-[HCO(3)(-)] versus potassium chloride. At 12 months, bone surface, connectivity density, cortical thickness, and cortical porosity were better preserved with potassium citrate than with potassium chloride, respectively. Serological biomarkers and bone tetracycline labeling indicate higher bone turnover with potassium citrate versus potassium chloride. In contrast, no relevant changes in bone mineral density were detected by dual-energy X-ray absorptiometry. Treatment with potassium citrate in renal transplant patients is efficient and well tolerated for correction of metabolic acidosis and may be associated with improvement in bone quality. This study is limited by the heterogeneity of the investigated population with regard to age, sex, and transplant vintage.
Serum bone alkaline phosphatase and calcaneus bone density predict fractures: a prospective study.
Ross, P D; Kress, B C; Parson, R E; Wasnich, R D; Armour, K A; Mizrahi, I A
2000-01-01
The aim of this study was to assess the ability of serum bone-specific alkaline phosphatase (bone ALP), creatinine-corrected urinary collagen crosslinks (CTx) and calcaneus bone mineral density (BMD) to identify postmenopausal women who have an increased risk of osteoporotic fractures. Calcaneus BMD and biochemical markers of bone turnover (serum bone ALP and urinary CTx) were measured in 512 community-dwelling postmenopausal women (mean age at baseline 69 years) participating in the Hawaii Osteoporosis Study. New spine and nonspine fractures subsequent to the BMD and biochemical bone markers measurements were recorded over an average of 2.7 years. Lateral spinal radiographs were used to identify spine fractures. Nonspine fractures were identified by self-report at the time of each examination. During the 2.7-year follow-up, at least one osteoporotic fracture occurred in 55 (10.7%) of the 512 women. Mean baseline serum bone ALP and urinary CTx were significantly higher among women who experienced an osteoporotic fracture compared with those women who did not fracture. In separate age-adjusted logistic regression models, serum bone ALP, urinary CTx and calcaneus BMD were each significantly associated with new fractures (odds ratios of 1.53, 1.54 and 1.61 per SD, respectively). Multiple variable logistic regression analysis identified BMD and serum bone ALP as significant predictors of fracture (p = 0.002 and 0.017, respectively). The results from this investigation indicate that increased bone turnover is significantly associated with an increased risk of osteoporotic fracture in postmenopausal women. This association is similar in magnitude and independent of that observed for BMD.
Association of Glycemic Status with Bone Turnover Markers in Type 2 Diabetes Mellitus.
Kulkarni, Sweta Vilas; Meenatchi, Suruthi; Reeta, R; Ramesh, Ramasamy; Srinivasan, A R; Lenin, C
2017-01-01
Type 2 diabetes mellitus has profound implications on the skeleton. Even though bone mineral density is increased in type 2 diabetes mellitus patients, they are more prone for fractures. The weakening of bone tissue in type 2 diabetes mellitus can be due to uncontrolled blood sugar levels leading to high levels of bone turnover markers in blood. The aim of this study is to find the association between glycemic status and bone turnover markers in type 2 diabetes mellitus. This case-control study was carried out in a tertiary health care hospital. Fifty clinically diagnosed type 2 diabetes mellitus patients in the age group between 30 and 50 years were included as cases. Fifty age- and gender-matched healthy nondiabetics were included as controls. Patients with complications and chronic illness were excluded from the study. Depending on glycated hemoglobin (HbA1c) levels, patients were grouped into uncontrolled (HbA1c >7%, n = 36) and controlled (HbA1c <7%, n = 14) diabetics. Based on duration of diabetes, patients were grouped into newly diagnosed, 1-2 years, 3-5 years, and >5 years. Serum osteocalcin (OC), bone alkaline phosphatase (BAP), acid phosphatase (ACP), and HbA1c levels were estimated. OC/BAP and OC/ACP ratio was calculated. Student's t -test, analysis of variance, and Chi-square tests were used for analysis. Receiver operating characteristic (ROC) curve analysis was done for OC/BAP and OC/ACP ratios. Serum OC, HbA1c, and OC/BAP ratio were increased in cases when compared to controls and were statistically significant ( P < 0.001). OC/ACP ratio was decreased in type 2 diabetes mellitus and was statistically significant ( P = 0.01). In patients with >5-year duration of diabetes, HbA1c level was high and was statistically significant ( P < 0.042). BAP levels were high in uncontrolled diabetics but statistically not significant. ROC curve showed OC/BAP ratio better marker than OC/ACP ratio. Uncontrolled type 2 diabetes mellitus affects bone tissue resulting in variations in bone turnover markers. Bone turnover markers are better in predicting recent changes in bone morphology and are cost effective.
Tennant, Katherine G; Leonard, Scott W; Wong, Carmen P; Iwaniec, Urszula T; Turner, Russell T; Traber, Maret G
2017-07-01
High levels of alpha-tocopherol, the usual vitamin E supplement, are reported to decrease bone mass in rodents; however, the effects of other vitamin E forms on the skeleton are unknown. To test the hypothesis that high intakes of various vitamin E forms or the vitamin E metabolite, carboxyethyl hydroxy chromanol, were detrimental to bone status, Sprague-Dawley rats (n = 6 per group, 11-week males) for 18 weeks consumed semipurified diets that contained adequate alpha-tocopherol, high alpha-tocopherol (500 mg/kg diet), or 50% Tocomin (250 mg mixed tocopherols and tocotrienols/kg diet). Vitamin E status was evaluated by measuring plasma, liver, and bone marrow vitamin E concentrations. Bone density, microarchitecture (cross-sectional volume, cortical volume, marrow volume, cortical thickness, and cancellous bone volume fraction, trabecular number, thickness, and spacing), and cancellous bone formation were assessed in the tibia using dual-energy X-ray absorptiometry, microcomputed tomography, and histomorphometry, respectively. In addition, serum osteocalcin was assessed as a global marker of bone turnover; gene expression in response to treatment was evaluated in the femur using targeted (osteogenesis related) gene profiling. No significant differences were detected between treatment groups for any of the bone endpoints measured. Vitamin E supplementation, either as alpha-tocopherol or mixed tocotrienols, while increasing vitamin E concentrations both in plasma and tissues, had no effect on the skeleton in rats.
Women with previous stress fractures show reduced bone material strength
Duarte Sosa, Daysi; Fink Eriksen, Erik
2016-01-01
Background and purpose — Bone fragility is determined by bone mass, bone architecture, and the material properties of bone. Microindentation has been introduced as a measurement method that reflects bone material properties. The pathogenesis of underlying stress fractures, in particular the role of impaired bone material properties, is still poorly understood. Based on the hypothesis that impaired bone material strength might play a role in the development of stress fractures, we used microindentation in patients with stress fractures and in controls. Patients and methods — We measured bone material strength index (BMSi) by microindentation in 30 women with previous stress fractures and in 30 normal controls. Bone mineral density by DXA and levels of the bone markers C-terminal cross-linking telopeptide of type-1 collagen (CTX) and N-terminal propeptide of type-1 procollagen (P1NP) were also determined. Results — Mean BMSi in stress fracture patients was significantly lower than in the controls (SD 72 (8.7) vs. 77 (7.2); p = 0.02). The fracture subjects also had a significantly lower mean bone mineral density (BMD) than the controls (0.9 (0.02) vs. 1.0 (0.06); p = 0.03). Bone turnover—as reflected in serum levels of the bone marker CTX—was similar in both groups, while P1NP levels were significantly higher in the women with stress fractures (55 μg/L vs. 42 μg/L; p = 0.03). There was no correlation between BMSi and BMD or bone turnover. Interpretation — BMSi was inferior in patients with previous stress fracture, but was unrelated to BMD and bone turnover. The lower values of BMSi in patients with previous stress fracture combined with a lower BMD may contribute to the increased propensity to develop stress fractures in these patients. PMID:27321443
Kasap, Murat; Yeğenağa, Itır; Akpinar, Gurler; Tuncay, Mehmet; Aksoy, Ayça; Karaoz, Erdal
2015-01-01
The relationship between the stem cells and the bone turnover in uremic bone disease due to chronic renal failure (CRF) is not described. The aim of this study was to investigate the effect of bone turnover status on stem cell properties. To search for the presence of such link and shed some light on stem-cell relevant mechanisms of bone turnover, we carried out a study with mesenchymal stem cells. Tissue biopsies were taken from the abdominal subcutaneous adipose tissue of a CRF patient with secondary hyperparathyroidism with the high turnover bone disease. This patient underwent parathyroidectomy operation (PTX) and another sample was taken from this patient after PTX. A CRF patient with adynamic bone disease with low turnover and a healthy control were also included. Mesenchymal stem cells isolated from the subjects were analyzed using proteomic and molecular approaches. Except ALP activity, the bone turnover status did not affect common stem cell properties. However, detailed proteome analysis revealed the presence of regulated protein spots. A total of 32 protein spots were identified following 2D gel electrophoresis and MALDI-TOF/TOF analyzes. The identified proteins were classified into seven distinct groups and their potential relationship to bone turnover were discussed. Distinct protein expression patterns emerged in relation to the bone turnover status indicate a possible link between the stem cells and bone turnover in uremic bone disease due to CRF.
Thomson, Wendy; Boonen, Steven; Borghs, Herman; Vanderschueren, Dirk; Gielen, Evelien; Huhtaniemi, Ilpo T.; Adams, Judith E.; Ward, Kate A.; Bartfai, Gyorgy; Casanueva, Felipe; Finn, Joseph D.; Forti, Gianni; Giwercman, Aleksander; Han, Thang S.; Kula, Krzysztof; Labrie, Fernand; Lean, Michael E. J.; Pendleton, Neil; Punab, Margus; Wu, Frederick C. W.; O'Neill, Terence W.
2011-01-01
Purpose Genome-wide association studies (GWAS) have identified 6q25, which incorporates the oestrogen receptor α gene (ESR1), as a quantitative trait locus for areal bone mineral density (BMDa) of the hip and lumbar spine. The aim of this study was to determine the influence of this locus on other bone health outcomes; calcaneal ultrasound (QUS) parameters, radial peripheral quantitative computed tomography (pQCT) parameters and markers of bone turnover in a population sample of European men. Methods Eight single nucleotide polymorphisms (SNP) in the 6q25 locus were genotyped in men aged 40–79 years from 7 European countries, participating in the European Male Ageing Study (EMAS). The associations between SNPs and measured bone parameters were tested under an additive genetic model adjusting for centre using linear regression. Results 2468 men, mean (SD) aged 59.9 (11.1) years had QUS measurements performed and bone turnover marker levels measured. A subset of 628 men had DXA and pQCT measurements. Multiple independent SNPs showed significant associations with BMD using all three measurement techniques. Most notably, rs1999805 was associated with a 0.10 SD (95%CI 0.05, 0.16; p = 0.0001) lower estimated BMD at the calcaneus, a 0.14 SD (95%CI 0.05, 0.24; p = 0.004) lower total hip BMDa, a 0.12 SD (95%CI 0.02, 0.23; p = 0.026) lower lumbar spine BMDa and a 0.18 SD (95%CI 0.06, 0.29; p = 0.003) lower trabecular BMD at the distal radius for each copy of the minor allele. There was no association with serum levels of bone turnover markers and a single SNP which was associated with cortical density was also associated with cortical BMC and thickness. Conclusions Our data replicate previous associations found between SNPs in the 6q25 locus and BMDa at the hip and extend these data to include associations with calcaneal ultrasound parameters and radial volumetric BMD. PMID:21760950
2012-01-01
Background Hydroxyapatite (HA) coatings composed with bisphosphonates (BPs) which have high mineral-binding affinities have been confirmed to successfully enhance implant stability. However, few previous studies focused on HA coatings composed with low-affinity BPs or on systemic effects of locally released BPs. Methods In this long-term study, we developed two kinds of BP-HA composite coatings using either high-affinity BP (alendronate, ALN) or low-affinity BP (risedronate, RIS). Thirty-six rabbits were divided into three groups according to different coating applications (group I: HA, group II: ALN-HA, and group III: RIS-HA). Implants were inserted into the proximal region of the medullary cavity of the left tibiay. At insertion, 2 × 108 wear particles were injected around implants to induce a peri-implant high bone turnover environment. Both local (left tibias) and systemic (right tibias and lumbar vertebrae) inhibitory effect on bone resorption were compared, including bone-implant integration, bone architecture, bone mineral density (BMD), implant stability, and serum levels of bone turnover markers. Results The results indicated that ALN-HA composite coating, which could induce higher bone-implant contact (BIC) ratio, bone mass augmentation, BMD, and implant stability in the peri-implant region, was more potent on peri-implant bone, while RIS-HA composite coating, which had significant systemic effect, was more potent on non-peri-implant bone, especially lumbar vertebrae. Conclusions It is instructive and meaningful to further clinical studies that we could choose different BP-HA composite coatings according to the patient’s condition. PMID:22686414
Hypoparathyroidism: clinical features, skeletal microstructure and parathyroid hormone replacement
Rubin, Mishaela R.; Bilezikian, John P.
2013-01-01
Objective Hypoparathyroidism is a disorder in which parathyroid hormone is deficient in the circulation due most often to immunological destruction of the parathyroids or to their surgical removal. The objective of this work was to define the abnormalities in skeletal microstructure as well as to establish the potential efficacy of PTH(1-84) replacement in this disorder. Subjects and methods Standard histomorphometric and μCT analyses were performed on iliac crest bone biopsies obtained from patients with hypoparathyroidism. Participants were treated with PTH(1-84) for two years. Results Bone density was increased and skeletal features reflected the low turnover state with greater BV/TV, Tb. Wi and Ct. Wi as well as suppressed MS and BFR/BS as compared to controls. With PTH(1-84), bone turnover and bone mineral density increased in the lumbar spine. Requirements for calcium and vitamin D fell while serum and urinary calcium concentrations did not change. Conclusion Abnormal microstructure of the skeleton in hypoparathyroidism reflects the absence of PTH. Replacement therapy with PTH has the potential to correct these abnormalities as well as to reduce the requirements for calcium and vitamin D. PMID:20485912
Bauer, D; Krege, J; Lane, N; Leary, E; Libanati, C; Miller, P; Myers, G; Silverman, S; Vesper, H W; Lee, D; Payette, M; Randall, S
2012-10-01
This position paper reviews how the National Bone Health Alliance (NBHA) will execute a project to help assure health professionals of the clinical utility of bone turnover markers; the current clinical approaches concerning osteoporosis and the status and use of bone turnover markers in the USA; the rationale for focusing this effort around two specific bone turnover markers; the need to standardize bone marker sample collection procedures, reference ranges, and bone turnover marker assays in clinical laboratories; and the importance of harmonization for future research of bone turnover markers. Osteoporosis is a major global health problem, with the prevalence and incidence of osteoporosis for at-risk populations estimated to be 44 million Americans. The potential of bone markers as an additional tool for health care professionals to improve patient outcomes and impact morbidity and mortality is crucial in providing better health care and addressing rising health care costs. This need to advance the field of bone turnover markers has been recognized by a number of organizations, including the International Osteoporosis Foundation (IOF), National Osteoporosis Foundation, International Federation of Clinical Chemistry, and Laboratory Medicine (IFCC), and the NBHA. This position paper elucidates how this project will standardize bone turnover marker sample collection procedures in the USA, establish a USA reference range for one bone formation (serum procollagen type I N propeptide, s-PINP) and one bone resorption (serum C-terminal telopeptide of type I collagen, s-CTX) marker, and standardize bone turnover marker assays used in clinical laboratories. This effort will allow clinicians from the USA to have confidence in their use of bone turnover markers to help monitor osteoporosis treatment and assess future fracture risk. This project builds on the recommendations of the IOF/IFCC Bone Marker Standards Working Group by developing USA reference standards for s-PINP and s-CTX, the markers identified as most promising for use as reference markers. The goals of this project will be realized through the NBHA and will include its governmental, academic, for-profit, and non-profit sector stakeholders as well as major academic and commercial laboratories. Upon completion, a parallel effort will be pursued to make bone turnover marker measurements reliable and accepted by all health care professionals for facilitating treatment decisions and ultimately be reimbursed by all health insurance payers. Successful completion of this project will help assure health professionals from the USA of the clinical utility of bone turnover markers and ties in with the parallel effort of the IOF/IFCC to develop worldwide bone turnover reference ranges.
Shen, D; Zhang, X; Li, Z; Bai, H; Chen, L
2017-12-01
There is conflicting evidence regarding the effects of omega-3 fatty acids on bone turnover markers in postmenopausal women. Thus, we systematically reviewed the efficacy of omega-3 fatty acids by conducting a meta-analysis of available randomized controlled trials. PubMed, Embase, Cochrane Library and Scopus were searched in December 2016. The standardized mean difference (SMD) or weighted mean difference (WMD) and the corresponding 95% confidence intervals (CIs) were calculated using a fixed-effects model. Eight trials were included in the present meta-analysis. The pooled findings did not identify significant decreases in bone-specific alkaline phosphatase (SMD -0.08, 95% CI -0.29 to 0.12, p = 0.429) and collagen type I cross-linked C-telopeptide (WMD 0 ng/ml, 95% CI -0.04 to 0.04, p = 0.899). There was a significant decrease in osteocalcin (WMD -0.86 ng/ml, 95% CI -1.68 to -0.04, p = 0.040) as compared with control. Omega-3 fatty acids reduced postmenopausal women's serum osteocalcin. Further well-designed studies are needed to verify the effects of omega-3 fatty acids on bone mass density and other bone turnover markers in postmenopausal women. CRD42016053219 ( https://www.crd.york.ac.uk/PROSPERO/ ).
Elmaataoui, A; Elmachtani Idrissi, S; Dami, A; Bouhsain, S; Chabraoui, L; Ouzzif, Z
2014-02-01
The aim of the study is to find the correlation between bone turnover markers and bone mineral density in a cohort of Moroccan postmenopausal women. A cross-sectional study, conducted over a period of 12 months from October 2008 to November 2009. Five hundred Moroccan postmenopausal women volunteers participated in this study and we included only 185. In this cohort of 185 women, average age 60 years, the percentage of osteoporotic women was 35.7%, they were older 62.09 (9.13) years and they had an average of the body mass index (BMI), the lowest 29.58 (4.45). The values of the bone mineral density (BMD) measured at the lumbar spine correlated positively and significantly with BMI (P<0.001), serum calcium (P=0.026), negatively with age (P<0.001) and osteocalcin (OC) (P=0.0033). As for the results of BMD measured at the femoral neck, they show a negative and highly significant correlation with age (P<0.001) and osteocalcin. Looking for an association between the biochemical markers of bone remodeling, a weak positive correlation was found between the calcium (Ca) and alkaline phosphatase (PAL) on the one hand and Ca and intact parathyroid hormone (PTHi) in the other hand. And a significant positive correlation was found between PTHi and PAL, and between PTHi and OC. Finally, a significant positive correlation was found between the cross-laps (β-CTX) and Ca and between PAL and OC. Our results are in agree to some international studies and disagree to others. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Weinstein, R S; Jilka, R L; Parfitt, A M; Manolagas, S C
1998-01-01
Glucocorticoid-induced bone disease is characterized by decreased bone formation and in situ death of isolated segments of bone (osteonecrosis) suggesting that glucocorticoid excess, the third most common cause of osteoporosis, may affect the birth or death rate of bone cells, thus reducing their numbers. To test this hypothesis, we administered prednisolone to 7-mo-old mice for 27 d and found decreased bone density, serum osteocalcin, and cancellous bone area along with trabecular narrowing. These changes were accompanied by diminished bone formation and turnover, as determined by histomorphometric analysis of tetracycline-labeled vertebrae, and impaired osteoblastogenesis and osteoclastogenesis, as determined by ex vivo bone marrow cell cultures. In addition, the mice exhibited a threefold increase in osteoblast apoptosis in vertebrae and showed apoptosis in 28% of the osteocytes in metaphyseal cortical bone. As in mice, an increase in osteoblast and osteocyte apoptosis was documented in patients with glucocorticoid-induced osteoporosis. Decreased production of osteoclasts explains the reduction in bone turnover, whereas decreased production and apoptosis of osteoblasts would account for the decline in bone formation and trabecular width. Furthermore, accumulation of apoptotic osteocytes may contribute to osteonecrosis. These findings provide evidence that glucocorticoid-induced bone disease arises from changes in the numbers of bone cells. PMID:9664068
Van Caenegem, E; Wierckx, K; Taes, Y; Schreiner, T; Vandewalle, S; Toye, K; Kaufman, J-M; T'Sjoen, G
2015-01-01
Although trans women before the start of hormonal therapy have a less bone and muscle mass compared with control men, their bone mass and geometry are preserved during the first 2 years of hormonal therapy, despite of substantial muscle loss, illustrating the major role of estrogen in the male skeleton. The aim of this study is to examine the evolution of areal and volumetric bone density, geometry, and turnover in trans women undergoing sex steroid changes, during the first 2 years of hormonal therapy. In a prospective observational study, we examined 49 trans women (male-to-female) before and after 1 and 2 years of cross-sex hormonal therapy (CSH) in comparison with 49 age-matched control men measuring grip strength (hand dynamometer), areal bone mineral density (aBMD), and total body fat and lean mass using dual X-ray absorptiometry (DXA), bone geometry and volumetric bone mineral density, regional fat, and muscle area at the forearm and calf using peripheral quantitative computed tomography. Standardized treatment regimens were used with oral estradiol valerate, 4 mg daily (or transdermal 17-β estradiol 100 μg/24 h for patients >45 years old), both combined with oral cyproterone acetate 50 mg daily. Prior to CSH, trans women had lower aBMD at all measured sites (all p < 0.001), smaller cortical bone size (all p < 0.05), and lower muscle mass and strength and lean body mass (all p < 0.05) compared with control men. During CSH, muscle mass and strength decreased and all measures of fat mass increased (all p < 0.001). The aBMD increased at the femoral neck, radius, lumbar spine, and total body; cortical and trabecular bone remained stable and bone turnover markers decreased (all p < 0.05). Although trans women, before CSH, have a lower aBMD and cortical bone size compared with control men, their skeletal status is well preserved during CSH treatment, despite of substantial muscle loss.
The consequences of modern military deployment on calcium status and bone health.
McCarthy, Mary S; Loan, Lori A; Azuero, Andres; Hobbs, Curtis
2010-06-01
This article highlights the potential negative effect of the current combat environment on bone health of young military men and women who may be at risk for stress fractures and future bone disease because of alterations primarily in diet and physical activity level during deployment. A combination of physiologic biomarkers, including bone turnover and bone mineral density, and nutrition and exercise surveys can provide meaningful data on potential health risks related to deployment. Soldiers participating in an investigation into bone health before and after deployment did not have decreased bone density but the study did raise awareness about an issue that might otherwise go unnoticed because preventive care is typically focused on older adults. Several risk factors may be modifiable and nurses have the necessary skills for counseling and monitoring behaviors that can minimize disabling musculoskeletal injuries that affect quality of life for the individual and unit readiness for the commander. Published by Elsevier Inc.
van Bodegraven, Ad A; Bravenboer, Nathalie; Witte, Birgit I; Dijkstra, Gerard; van der Woude, C Janneke; Stokkers, Pieter C M; Russel, Maurice G; Oldenburg, Bas; Pierik, Marieke; Roos, Jan C; van Hogezand, Ruud A; Dik, Vincent K; Oostlander, Angela E; Netelenbos, J Coen; van de Langerijt, Lex; Hommes, Daniel W; Lips, Paul
2014-09-01
Osteoporosis and fractures are frequently encountered in patients with Crohn's disease. In order to prevent fractures, treatment with bone protecting drugs appears warranted early in the course of bone disease when bone loss is not yet prominent. We therefore aimed to demonstrate a beneficial effect on bone density of the bisphosphonate risedronate in osteopenic Crohn's disease patients. This double-blind, placebo-controlled randomised trial of risedronate with calcium and vitamin D supplementation was performed in osteopenic Crohn's disease patients. Patients were treated for 2 years with follow-up after 3 and after every 6 months. Disease characteristics and activity and bone turnover markers were assessed at all visits; dual x-ray absorptiometry was performed at baseline, 12 and 24 months; radiographs of the spine at baseline and 24 months. Of 132 consenting patients, 131 were randomised (67 placebo and 64 risedronate). Patient characteristics were similar in both groups, although the risedronate group was slightly heavier (body mass index 24.3 vs 23.0 kg/m(2)). Bone mineral density at lumbar spine increased 0.04 g/cm(2) on average in the risedronate group versus 0.01 g/cm(2) in the placebo group (p=0.007). The mean increase in total hip bone mineral density was 0.03 versus 0.01 g/cm(2), respectively (p=0.071). Fracture prevalence and incidence were similar. Change of T-scores and concentrations of bone turnover markers were consistent with a beneficial effect of risedronate when compared with placebo. The effect of risedronate was primarily demonstrated in the first 12 months of treatment. No serious unexpected suspected adverse events were observed. A 24-month treatment course with risedronate 35 mg once weekly, concomitant with calcium and vitamin D supplementation, in osteopenic Crohn's disease patients improved bone density at lumbar spine. NTR 163 Dutch Trial Register. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
NASA Technical Reports Server (NTRS)
Westerlind, K. C.; Wronski, T. J.; Ritman, E. L.; Luo, Z. P.; An, K. N.; Bell, N. H.; Turner, R. T.
1997-01-01
Estrogen deficiency induced bone loss is associated with increased bone turnover in rats and humans. The respective roles of increased bone turnover and altered balance between bone formation and bone resorption in mediating estrogen deficiency-induced cancellous bone loss was investigated in ovariectomized rats. Ovariectomy resulted in increased bone turnover in the distal femur. However, cancellous bone was preferentially lost in the metaphysis, a site that normally experiences low strain energy. No bone loss was observed in the epiphysis, a site experiencing higher strain energy. The role of mechanical strain in maintaining bone balance was investigated by altering the strain history. Mechanical strain was increased and decreased in long bones of ovariectomized rats by treadmill exercise and functional unloading, respectively. Functional unloading was achieved during orbital spaceflight and following unilateral sciatic neurotomy. Increasing mechanical loading reduced bone loss in the metaphysis. In contrast, decreasing loading accentuated bone loss in the metaphysis and resulted in bone loss in the epiphysis. Finally, administration of estrogen to ovariectomized rats reduced bone loss in the unloaded and prevented loss in the loaded limb following unilateral sciatic neurotomy in part by reducing indices of bone turnover. These results suggest that estrogen regulates the rate of bone turnover, but the overall balance between bone formation and bone resorption is influenced by prevailing levels of mechanical strain.
Influence of high-altitude grazing on bone metabolism of growing sheep.
Liesegang, A; Hüttenmoser, D; Risteli, J; Leiber, F; Kreuzer, M; Wanner, M
2013-02-01
The objective of this study was to identify the effect of high alpine grazing, associated with varying pasture grass qualities and more pronounced exercise on typically steep slopes, on bone metabolism by improving bone density and enhancing bone turnover in growing sheep. Twenty-four 5-month-old sheep were randomly assigned to two groups. One group was kept at high altitude (HA; 2000-2200 m a.s.l.) for 3 months, and the other group (C; control) remained in the lowlands (400 m a.s.l.). Both groups were kept in grazing pastures with access to good-quality swards. Before the start of the experiment, blood samples were taken, the sheep were weighed, and the left metatarsus of each animal was analysed by quantitative computer tomography. After 1 month, blood samples were taken and body weight was measured, followed by biweekly sampling. Finally, the animals were slaughtered, and the bones were collected for analysis of various bone parameters. Body weight development did not differ between the groups. Concentrations of 25-OH-Vitamin D, carboxy-terminal telopeptide of type I collagen and activities of bone-specific alkaline phosphatase were always higher in the HA group than in the C group, except on the last two sampling dates. Bone mineral content and density increased in both groups during the experiment, but more intensively in the HA group. In addition, the cortical thickness of the HA group increased. The present study demonstrates an increase in bone turnover and mineral content of the bones of the growing sheep grazing in high alpine pastures. The factors associated with HA grazing, therefore, clearly seem to improve bone composition. © 2011 Blackwell Verlag GmbH.
Age-related changes in bone turnover in men.
Fatayerji, D; Eastell, R
1999-07-01
Biochemical markers of bone turnover can be used to study the pathophysiology of osteoporosis. So far there have been few such studies in men. The aims of this study were to determine the effect of aging on bone turnover and to identify which hormones might regulate bone turnover in men. We studied 178 healthy Caucasian men, ages 20-79 years (30 per decade). The data for the effect of age on bone turnover was best fit by a quadratic function (nadirs at age 56, 57, 53, 39, and 58 years for intact propeptide of type I procollagen, osteocalcin, bone alkaline phosphatase, free deoxypyridinoline, and cross-linked N-telopeptides of type I collagen, respectively). For most markers, bone turnover tended to be highest in the third decade, lowest in the fifth and sixth decade, with a small increase in some markers in the eighth decade. Insulin-like growth factor-I (IGF-I), insulin-like growth factor binding protein-3, dehydroepiandrosterone sulfate, testosterone, estradiol, and free androgen index all decreased significantly with age (54, 17, 76, 26, 33, and 57%, respectively), while sex hormone binding globulin and parathyroid hormone increased significantly with age (62% and 43%). IGF-I and sex hormones were positively correlated with bone turnover, and this association was stronger in young men than older men. In conclusion, increased IGF-I and sex hormones may be associated with increased bone turnover in young men, with less influence on bone turnover in older men.
[Bone turnover in children and adolescents with diabetes mellitus type 1].
Pater, Agnieszka; Odrowąż-Sypniewska, Grażyna
2013-01-01
Biochemical bone turnover markers are fragments of protein structural elements of the bone created during the synthesis or degradation and enzymes specific for bone cells, released into the circulation during the metabolic activity of osteoblasts and osteoclasts. Bone turnover markers are used as indicators to evaluate the activity of modeling and remodeling processes. They are the result of the activity of all remodeling processes taking place at the moment in the whole skeleton. The assay allows quick assessment of the rate of bone formation and resorption processes. Among many complications in children with type 1 diabetes increased bone turnover leading to a reduction in bone mass may increase the risk of osteopenia or osteoporosis in adulthood. The aim of this manuscript is to review recent papers about bone turnover in children and adolescents with diabetes mellitus type 1.
[Subchondral bone in osteoarthritis: a review].
Pang, Jian; Cao, Yue-long; Shi, Yin-yu
2011-08-01
Osteoarthritis (OA) is the most prevalent of joint diseases,and its pathology is characterized by the degeneration of cartilage, sclerosis of subchondral bone, and osteophyte formation. Localization of the early lesions of OA has not been clarified, but many researchers have focused on cartilage and have considered that changes in subchondral bone occur subsequently to the degeneration of cartilage. However, a low bone mineral density, particularly in the knee joint with OA, high bone turnover, and efficacy of bone resorption inhibitors for OA have recently been reported, suggesting that subchondral bone plays an important role in the pathogenesis of OA. This review aims to make a conclusion about advancement in research of subchondral bone in osteoarthritis.
The short-term effects of cisplatin chemotherapy on bone turnover.
Young, D R; Virolainen, P; Inoue, N; Frassica, F J; Chao, E Y
1997-11-01
Cisplatin is an effective agent in the treatment of osteosarcoma of bone but little is known of its effects on normal bone turnover. Twenty-four dogs divided into three study groups were used to study the effect of cisplatin on normal bone turnover at the distant site of surgery. Group 1 served as the control group, group 2 received four cycles of cisplatin every 3 weeks before the surgery, and group 3 received four cycles postoperatively. The bone turnover rate was evaluated by measuring levels of systemic bone markers, osteocalcin, alkaline phospohatase, urine pyridinoline cross-links, and by determination histomorphometric indices. Histomorphological analysis showed poor correlation on bone formation with systemic bone markers at distant sites of surgery. Histomorphometrically normal bone turnover was affected by administration of cisplatin, but the effect was temporary, late, and less significant than what occurred at the surgical site. Our data showed that significant effects of cisplatin are observed at the site of active cellular induction and proliferation, such as implant-host interface, and less effects are seen at the sites of normal bone turnover.
Heemstra, Karen A; van der Deure, Wendy M; Peeters, Robin P; Hamdy, Neveen A; Stokkel, Marcel P; Corssmit, Eleonora P; Romijn, Johannes A; Visser, Theo J; Smit, Johannes W
2008-07-01
It has been proposed that TSH has thyroid hormone-independent effects on bone mineral density (BMD) and bone metabolism. This concept is still controversial and has not been studied in human subjects in detail. We addressed this question by studying relationships between serum TSH concentration and indicators of bone turnover, after controlling for triiodothyronine (T(3)), free thyroxine (FT(4)), and non-thyroid factors relevant to BMD and bone metabolism. We also studied the contribution of the TSH receptor (TSHR)-Asp727Glu polymorphism to these relationships. We performed a cross-sectional study with 148 patients, who had been thyroidectomized for differentiated thyroid carcinoma. We measured BMD of the femoral neck and lumbar spine. FT(4), T(3), TSH, bone-specific alkaline phosphatase, procollagen type 1 aminoterminal propeptide levels, C-cross-linking terminal telopeptide of type I collagen, and urinary N-telopeptide of collagen cross-links were measured. Genotypes of the TSHR-Asp727Glu polymorphism were determined by Taqman assay. We found a significant, inverse correlation between serum TSH levels and indicators of bone turnover, which was independent of serum FT(4) and T(3) levels as well as other parameters influencing bone metabolism. We found that carriers of the TSHR-Asp727Glu polymorphism had an 8.1% higher femoral neck BMD, which was, however, no longer significant after adjusting for body mass index. We conclude that in this group of patients, serum TSH was related to indicators of bone remodeling independently of thyroid hormone levels. This may point to a functional role of the TSHR in bone in humans. Further research into this mechanism needs to be performed.
NADPH oxidase 4 limits bone mass by promoting osteoclastogenesis
Goettsch, Claudia; Babelova, Andrea; Trummer, Olivia; Erben, Reinhold G.; Rauner, Martina; Rammelt, Stefan; Weissmann, Norbert; Weinberger, Valeska; Benkhoff, Sebastian; Kampschulte, Marian; Obermayer-Pietsch, Barbara; Hofbauer, Lorenz C.; Brandes, Ralf P.; Schröder, Katrin
2013-01-01
ROS are implicated in bone diseases. NADPH oxidase 4 (NOX4), a constitutively active enzymatic source of ROS, may contribute to the development of such disorders. Therefore, we studied the role of NOX4 in bone homeostasis. Nox4–/– mice displayed higher bone density and reduced numbers and markers of osteoclasts. Ex vivo, differentiation of monocytes into osteoclasts with RANKL and M-CSF induced Nox4 expression. Loss of NOX4 activity attenuated osteoclastogenesis, which was accompanied by impaired activation of RANKL-induced NFATc1 and c-JUN. In an in vivo model of murine ovariectomy–induced osteoporosis, pharmacological inhibition or acute genetic knockdown of Nox4 mitigated loss of trabecular bone. Human bone obtained from patients with increased osteoclast activity exhibited increased NOX4 expression. Moreover, a SNP of NOX4 was associated with elevated circulating markers of bone turnover and reduced bone density in women. Thus, NOX4 is involved in bone loss and represents a potential therapeutic target for the treatment of osteoporosis. PMID:24216508
ANABOLIC BONE WINDOW WITH WEEKLY TERIPARATIDE THERAPY IN POSTMENOPAUSAL OSTEOPOROSIS: A PILOT STUDY.
Gopalaswamy, Vinaya; Dhibar, Deba Prasad; Gupta, Vipin; Arya, Ashutosh Kumar; Khandelwal, Niranjan; Bhansali, Anil; Garg, Sudhir Kumar; Agarwal, Neelam; Rao, Sudhaker D; Bhadada, Sanjay Kumar
2017-06-01
Osteoporosis is a major public health problem that reduces bone strength and increases fracture risk. Teriparatide is an established and the only currently available anabolic therapy for the treatment of postmenopausal osteoporosis (PMO) with a recommended daily dose of 20 μg given subcutaneously. However, there are limited data regarding the long-term effect of once-weekly teriparatide therapy on bone mineral density (BMD), bone turnover markers (BTMs), and anabolic bone window. In this prospective observational study, 26 patients with PMO were treated with weekly teriparatide therapy (60 μg) for 2 years. BMD was measured at baseline, 12 months, and 24 months. The bone formation marker type 1 collagen C-terminal propeptide (P1NP) and the bone resorption marker C-terminal telopeptide of type 1 collagen (CTx) were measured at baseline; 6 weeks; and 6, 12, 18, and 24 months. BMDs at the lumbar spine increased by 3.1% and 10.8% after 1 and 2 years of weekly teriparatide therapy, respectively. The T-score increased significantly at the lumbar spine compared to baseline after 2 years of therapy (P = .015). Serum P1NP levels increased significantly at 6 months (P = .024), peaked at 1 year, and remained above the baseline even after 2 years. Serum CTx levels decreased significantly at 6 months (P = .025) and remained below baseline after 2 years of teriparatide therapy. Weekly teriparatide therapy (60 μg) appears to be as effective as daily teriparatide for the treatment of PMO by extending the anabolic bone window. AE = adverse event; BMD = bone mineral density; BTM = bone turnover marker; CTx = C-terminal telopeptide of type 1 collagen; DXA = dual-energy X-ray absorptiometry; iPTH = intact parathyroid hormone; P1NP = type 1 collagen C-terminal propeptide; PMO = postmenopausal osteoporosis.
Growth hormone and bone health.
Bex, Marie; Bouillon, Roger
2003-01-01
Growth hormone (GH) and insulin-like growth factor-I have major effects on growth plate chondrocytes and all bone cells. Untreated childhood-onset GH deficiency (GHD) markedly impairs linear growth as well as three-dimensional bone size. Adult peak bone mass is therefore about 50% that of adults with normal height. This is mainly an effect on bone volume, whereas true bone mineral density (BMD; g/cm(3)) is virtually normal, as demonstrated in a large cohort of untreated Russian adults with childhood-onset GHD. The prevalence of fractures in these untreated childhood-onset GHD adults was, however, markedly and significantly increased in comparison with normal Russian adults. This clearly indicates that bone mass and bone size matter more than true bone density. Adequate treatment with GH can largely correct bone size and in several studies also bone mass, but it usually requires more than 5 years of continuous treatment. Adult-onset GHD decreases bone turnover and results in a mild deficit, generally between -0.5 and -1.0 z-score, in bone mineral content and BMD of the lumbar spine, radius and femoral neck. Cross-sectional surveys and the KIMS data suggest an increased incidence of fractures. GH replacement therapy increases bone turnover. The three controlled studies with follow-up periods of 18 and 24 months demonstrated a modest increase in BMD of the lumbar spine and femoral neck in male adults with adult-onset GHD, whereas no significant changes in BMD were observed in women. GHD, whether childhood- or adult-onset, impairs bone mass and strength. Appropriate substitution therapy can largely correct these deficiencies if given over a prolonged period. GH therapy for other bone disorders not associated with primary GHD needs further study but may well be beneficial because of its positive effects on the bone remodelling cycle. Copyright 2003 S. Karger AG, Basel
Pi, Yin-Zhen; Wu, Xian-Ping; Liu, Shi-Ping; Luo, Xiang-Hang; Cao, Xing-Zhi; Xie, Hui; Liao, Er-Yuan
2006-01-01
Measurements of bone biochemical markers are increasingly being used to evaluate the state of bone turnover in the management of bone metabolic diseases, especially osteoporosis. However, changes in the bone turnover rate vary with age. The aim of this study was to establish the laboratory reference range of serum bone-specific alkaline phosphatase (sBAP), serum type I collagen cross-linked C-terminal telopeptide (sCTx), and urine CTx (uCTx), based on values from 665 healthy Chinese women aged 20-80 years. We measured the levels of sBAP, sCTx, serum alkaline phosphatase (sALP), and uCTx and evaluated the age-related changes and their relationship with bone mineral density (BMD) in the anteroposterior (AP) lumbar spine, hip, and left forearm. We found significant correlations between biochemical markers and age, with coefficients of determination (R (2)) of 0.358 for sBAP, 0.126 for sCTx, 0.125 for uCTx, and 0.336 for sALP. The net changes in different biochemical markers were inversely correlated with the rates of BMD loss in the AP lumbar spine. After correction for age, body weight, and height, the levels of the markers had significant negative correlations with the BMD of the AP lumbar spine, femoral neck, and ultradistal forearm. All four biochemical markers had the highest negative correlation with BMD of the AP lumbar spine (partial correlation coefficients of -0.366, -0.296, -0.290, and -0.258 for sBAP, sCTx, uCTx, and sALP, respectively). The mean and SD values of these markers in premenopausal and postmenopausal women with normal BMD values were used as the normal reference ranges. The reference ranges of sBAP, sCTx, and uCTx for pre- vs postmenopausal women were 17.3 +/- 6.23 vs 18.9 +/- 7.52 U/l, 3.18 +/- 1.49 vs 3.23 +/- 1.57 nmol/l, and 15.5 +/- 11.4 vs 16.2 +/- 12.4 nM bone collagen equivalents/mM urinary creatinine, respectively. Levels of the bone formation marker (sBAP) and bone resorption markers (sCTx, uCTx) increased rapidly in women with osteopenia or osteoporosis, indicating that they may be sensitive markers to determine the bone turnover rate in healthy Chinese women.
Luo, Xiaotian; Zhang, Jifeng; Zhang, Chi; He, Chengqi; Wang, Pu
2017-11-01
To review the research literature on the effectiveness of whole-body vibration (WBV) therapy in women with postmenopausal osteoporosis. A systematic review was conducted by two independent reviewers. Mean differences (MDs), standardized mean differences (SMDs), and 95% confidence intervals (CIs) were calculated, and heterogeneity was assessed with the I 2 test. The Cochrane risk of bias tool was used to assess the methodological quality of the selected studies. Nine randomized controlled trials involving 625 patients met the inclusion criteria. No significant improvement was found in bone mineral density (BMD) (SMD = -0.06, 95%CI= -0.22-0.11, p = 0.50); bone turnover markers (MD = -0.25, 95%CI= -0.54-0.03, p = 0.08); anthropometric parameters, including muscle mass, fat mass, body mass index (BMI), and weight (SMD = 0.02, 95%CI= -0.16-0.21, p = 0.81); or maximal isotonic knee extensor strength (SMD = 0.16, 95%CI= -0.63-0.95, p = 0.69). However, maximal isometric knee extensor strength improved (SMD = 0.71, 95%CI = 0.34-1.08, p = 0.0002). WBV is beneficial for enhancing maximal isometric knee extensor strength, but it has no overall treatment effect on BMD, bone turnover markers, anthropometric parameters, or maximal isotonic knee extensor strength in women with postmenopausal osteoporosis. Implication of rehabilitation Osteoporosis is the leading underlying cause of fractures in postmenopausal women, whole body vibration (WBV) has received much attention as a potential intervention for the management of osteoporosis in recent years. Whole body vibration is beneficial for enhancing maximal isometric knee extensor strength in women with postmenopausal osteoporosis. Whole body vibration has no overall treatment effect on bone mineral density, bone turnover markers, anthropometric parameters and maximal isotonic knee extensor strength in women with postmenopausal osteoporosis.
Wilhelm, Birgit; Kann, Peter Herbert
2004-10-15
Subnormal bone mineral density (BMD) and increased fracture risk are described in patients with growth hormone deficiency (GHD). Growth hormone (GH) has been reported to have beneficial effects on bone in GHD. The aim of this study was to investigate the long-term effects of GH replacement therapy on bone metabolism, BMD, and bone quality in patients with GHD. 20 adult patients with GHD (eleven male, nine female, mean age 42.5 years) were included in the study and randomized to either GH or placebo in a dose of 0.25 U/kg body weight/week. After 6 months all patients received GH. After a 1-year double-blind, placebo-controlled study the patients were followed for another 72 months in an open study. The patients were compared to 20 age- und sex-matched healthy controls. Bone turnover was determined by ICTP (type I collagen carboxyterminal cross-linked telopeptide) as parameter of bone resorption and PICP (carboxyterminal propeptide of type I procollagen) as marker of bone formation. BMD was measured at the lumbar spine by dual-photon absorptiometry (DPA) and at the forearm by single-photon absorptiometry (SPA). Apparent phalangeal ultrasound transmission velocity (APU) was assessed as parameter of bone quality independent of BMD. At the beginning of the study BMD at both measuring sites was lower in patients with GHD than in healthy controls. During the 1st year of GH replacement therapy BMD decreased, followed by a continuous increase in BMD (about 12%) up to 60 months which remained unchanged thereafter, building up a plateau. After 72 months no significant difference between the patients and the healthy controls could be detected. Concerning parameters of bone turnover, first ICTP as marker of bone resorption showed a significant increase, later on the marker of bone formation increased as well. APU decreased during the first 6 months of treatment, but had returned to its baseline value after 24 months and remained unchanged throughout the rest of the study. BMD is subnormal in adults with GHD. GH replacement therapy stimulates bone turnover in patients with GHD and in the long term such stimulation results in an increased BMD. Thereby, GH shows a triphasic action on BMD: an initial decrease in BMD during the 1st year, followed by a continuous increase in BMD with buildup of a stable plateau after 60 months. The newly formed bone seems to have normal bone elasticity.
Tanriover, Mine Durusu; Oz, S Gul; Sozen, Tumay; Kilicarslan, Alpaslan; Guven, Gulay Sain
2009-04-01
Pregnancy- and lactation-associated osteoporosis is an uncommon condition that may be a consequence of preexisting low bone density, loss of bone mineral content during pregnancy, and increased bone turnover. To present a case of severe osteoporosis associated with pregnancy and lactation and its treatment protocol. A tertiary care hospital. A young female after twin pregnancy presenting with severe osteoporosis. The diagnosis was done on the basis of bone mineral density (BMD) measurement. The patient was treated with first alendronate and then strontium ranelate. She was considered as a candidate for kyphoplasty. A dramatic increase in the BMD and palliation of back pain were observed. Strontium ranelate may be a new alternative in the treatment of pregnancy- and lactation-associated osteoporosis.
Bucur, Roxana C; Reid, Lauren S; Hamilton, Celeste J; Cummings, Steven R; Jamal, Sophie A
2013-09-08
Organic nitrates uncouple bone turnover, improve bone mineral density, and improve trabecular and cortical components of bone. These changes in turnover, strength and geometry may translate into an important reduction in fractures. However, before proceeding with a large fracture trial, there is a need to identify the nitrate formulation that has both the greatest efficacy (with regards to bone turnover markers) and gives the fewest headaches. Ascertaining which nitrate formulation this may be is the purpose of the current study. This will be an open-label randomized, controlled trial conducted at Women's College Hospital comparing five formulations of nitrates for their effects on bone turnover markers and headache. We will recruit postmenopausal women age 50 years or older with no contraindications to nitroglycerin. Our trial will consist of a run-in phase and a treatment phase. We will enroll 420 women in the run-in phase, each to receive all of the 5 potential treatments in random order for 2 days, each with a 2-day washout period between treatments. Those who tolerate all formulations will enter the 12-week treatment phase and be randomly assigned to one of five groups: 0.3 mg sublingual nitroglycerin tablet, 0.6 mg of the sublingual tablet, a 20 mg tablet of isosorbide mononitrate, a 160 mg nitroglycerin transdermal patch (used for 8 h), and 15 mg of nitroglycerin ointment as used in a previous trial by our group. We will continue enrolment until we have randomized 210 women or 35 women per group. Concentrations of bone formation (bone-specific alkaline phosphatase and procollagen type I N-terminal propeptide) and bone resorption (C-telopeptides of collagen crosslinks and N-terminal crosslinks of collagen) agents will be measured in samples taken at study entry (the start of the run in phase) and 12 weeks. Subjects will record the frequency and severity of headaches daily during the run-in phase and then monthly after that. We will use the 'multiple comparisons with the best' approach for data analyses, as this strategy allows practical considerations of ease of use and tolerability to guide selection of the preparation for future studies. Data from this protocol will be used to develop a randomized, controlled trial of nitrates to prevent osteoporotic fractures. ClinicalTrials.gov Identifier: NCT01387672. Controlled-Trials.com: ISRCTN08860742.
Govindarajan, Parameswari; Böcker, Wolfgang; El Khassawna, Thaqif; Kampschulte, Marian; Schlewitz, Gudrun; Huerter, Britta; Sommer, Ursula; Dürselen, Lutz; Ignatius, Anita; Bauer, Natali; Szalay, Gabor; Wenisch, Sabine; Lips, Katrin S; Schnettler, Reinhard; Langheinrich, Alexander; Heiss, Christian
2014-03-01
In estrogen-deficient, postmenopausal women, vitamin D and calcium deficiency increase osteoporotic fracture risk. Therefore, a new rat model of combined ovariectomy and multiple-deficient diet was established to mimic human postmenopausal osteoporotic conditions under nutrient deficiency. Sprague-Dawley rats were untreated (control), laparatomized (sham), or ovariectomized and received a deficient diet (OVX-Diet). Multiple analyses involving structure (micro-computed tomography and biomechanics), cellularity (osteoblasts and osteoclasts), bone matrix (mRNA expression and IHC), and mineralization were investigated for a detailed characterization of osteoporosis. The study involved long-term observation up to 14 months (M14) after laparotomy or after OVX-Diet, with intermediate time points at M3 and M12. OVX-Diet rats showed enhanced osteoblastogenesis and osteoclastogenesis. Bone matrix markers (biglycan, COL1A1, tenascin C, and fibronectin) and low-density lipoprotein-5 (bone mass marker) were down-regulated at M12 in OVX-Diet rats. However, up-regulation of matrix markers and existence of unmineralized osteoid were seen at M3 and M14. Osteoclast markers (matrix metallopeptidase 9 and cathepsin K) were up-regulated at M14. Micro-computed tomography and biomechanics confirmed bone fragility of OVX-Diet rats, and quantitative RT-PCR revealed a higher turnover rate in the humerus than in lumbar vertebrae, suggesting enhanced bone formation and resorption in OVX-Diet rats. Such bone remodeling caused disturbed bone mineralization and severe bone loss, as reported in patients with high-turnover, postmenopausal osteoporosis. Therefore, this rat model may serve as a suitable tool to evaluate osteoporotic drugs and new biomaterials or fracture implants. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Effects of Artemisia Princeps Supplementation on Bone Metabolism in Ovariectomized Rats.
Cho, H-J; Kim, J-W; Ju, S-Y; Park, Y-K
2016-01-01
The aim of this study was to investigate the effects of Artemisia princeps (AP) extract on bone metabolism and its potential role in the prevention of osteoporosis in ovariectomized rats. Twenty-six female Sprague-Dawley rats were divided into five groups and treated as follows: sham-operated control group (SHAM); ovariectomized control group (OVX), ovariectomized group treated by gavage with 10 mg/kg/day alendronate (ALEN); ovariectomized group treated by gavage with 100 mg/kg/day Artemisia princeps (AP100); ovariectomized group treated by gavage with 300 mg/kg/day Artemisia princeps (AP300). Treatment of ovariectomized rats with AP extracts for 15 weeks prevented the reduction in bone thickness and trabecular bone mineral density caused by urinary Ca and Cr excretion, and also prevented the increase in bone turnover by maintaining the serum Ca/P ratio. As a result, the microarchitecture of the trabecular bone and cortical bone after ovariectomy was markedly improved by administration of AP extracts. In conclusion, AP prevented bone loss and osteoclast activity associated with high bone turnover in ovariectomized rats by controlling the serum Ca/P ratio and through anti-inflammatory and anti-oxidant properties. Our data implicate AP as a promising therapeutic option for the improvement of postmenopausal osteoporosis.
Poudyal, Hemant; Brown, Lindsay
2013-12-01
Osteoporosis is a high-prevalence disease, particularly in developed countries, and results in high costs both to the individual and to society through associated fragility fractures. There is an urgent need for identification of novel drug targets and development of new anti-osteoporotic agents. Between 30 and 80% of osteoporotic fractures cannot be prevented despite current treatments achieving relative fracture risk reduction of up to 20%, 50%, and 70% for non-vertebral, hip and spine fractures, respectively. Traditionally, the decline in gonadal hormones has been studied as the sole hormonal determinant for the loss of bone mineral density in osteoporosis. However, recent studies have identified receptors for numerous non-gonadal hormones such as PTH, angiotensin II, leptin, adiponectin, insulin and insulin-like growth factor-1 on the osteoblast lineage cells that directly regulate bone turnover. These hormones are also involved in the pathogenesis of metabolic syndrome risk factors, particularly hypertension, type-II diabetes and obesity. By activating their respective receptors on osteoblastic lineage cells, these hormones appear to act through a common mechanism by down-regulating receptors for activation of nuclear factor kappa B ligand (RANKL) and up-regulating osteoprotegerin (OPG) with inverse responses for adiponectin. Receptors for amylin, gastric inhibitory polypeptide and ghrelin and have also been identified on the osteoblast lineage cells although the roles of these receptors in bone turnover are controversial or poorly studied. Moreover, bone turnover may be independently regulated by modulation of osteoclast-osteoblast function and bone marrow adiposity. Leptin appears to be the only hormone that is a known regulator of both bone mineralisation and bone adiposity.
Denosumab in Postmenopausal Osteoporosis: What the Clinician Needs to Know
Lewiecki, E. Michael
2009-01-01
Denosumab is a subcutaneously (SC) administered investigational fully human monoclonal antibody to receptor activator of nuclear factor-kB ligand (RANKL), a cytokine member of the tumor necrosis factor family that is the principal mediator of osteoclastic bone resorption. RANKL stimulates the formation, activity, and survival of osteoclasts, and is implicated in the pathogenesis of postmenopausal osteoporosis and other skeletal disorders associated with increased bone remodeling. Denosumab binds RANKL, preventing it from binding to RANK, thereby reducing the formation, activity, and survival of osteoclasts and slowing the rate of bone resorption. Postmenopausal women with low bone mineral density (BMD) treated with denosumab have a reduction of bone turnover markers and an increase in BMD that is rapid, sustained, and reversible. In postmenopausal women with osteoporosis, denosumab reduces the risk of vertebral, hip, and nonvertebral fractures. In postmenopausal women with low BMD randomized to receive denosumab or alendronate, denosumab is associated with a significantly greater increase in BMD and further reduction in bone turnover markers compared with alendronate. In postmenopausal women with low BMD who were previously treated with alendronate, those who switched to denosumab have a significantly greater BMD increase and further reduction in bone turnover markers compared with those continuing alendronate. Denosumab is well tolerated with a favorable safety profile. It is a promising emerging drug for the prevention and treatment of osteoporosis, offering a long dosing interval of every 6 months and convenient SC dosing, with the potential of improving long-term adherence to therapy compared with current oral treatments. PMID:22870424
Uremic toxin and bone metabolism.
Iwasaki, Yoshiko; Yamato, Hideyuki; Nii-Kono, Tomoko; Fujieda, Ayako; Uchida, Motoyuki; Hosokawa, Atsuko; Motojima, Masaru; Fukagawa, Masafumi
2006-01-01
Patients with end-stage renal disease (ESRD) develop various kinds of abnormalities in bone and mineral metabolism, widely known as renal osteodystrophy (ROD). Although the pathogenesis of ESRD may be similar in many patients, the response of the bone varies widely, ranging from high to low turnover. ROD is classified into several types, depending on the status of bone turnover, by histomorphometric analysis using bone biopsy samples [1,2]. In the mild type, bone metabolism is closest to that of persons with normal renal function. In osteitis fibrosa, bone turnover is abnormally activated. This is a condition of high-turnover bone. A portion of the calcified bone loses its lamellar structure and appears as woven bone. In the cortical bone also, bone resorption by osteoclasts is active, and a general picture of bone marrow tissue infiltration and the formation of cancellous bone can be observed. In osteomalacia, the bone surface is covered with uncalcified osteoid. This condition is induced by aluminum accumulation or vitamin D deficiency. The mixed type possesses characteristics of both osteitis fibrosa and osteomalacia. The bone turnover is so markedly accelerated that calcification of the osteoid cannot keep pace. In the adynamic bone type, bone resorption and bone formation are both lowered. While bone turnover is decreased, there is little osteoid. The existence of these various types probably accounts for the diversity in degree of renal impairment, serum parathyroid hormone (PTH) level, and serum vitamin D level in patients with ROD. However, all patients share a common factor, i.e., the presence of a uremic condition.
Klaus, J; Reinshagen, M; Adler, G; Boehm, Bo; von Tirpitz, C
2008-10-23
Reduced bone mineral density (BMD) and osteoporosis are frequent in Crohn's disease (CD), but the underlying mechanisms are still not fully understood. Deficiency of sex steroids, especially estradiol (E2), is an established risk factor in postmenopausal osteoporosis. To assess if hormonal deficiencies in male CD patients are frequent we investigated both, sex steroids, bone density and bone metabolism markers. 111 male CD patients underwent osteodensitometry (DXA) of the spine (L1-L4). Disease related data were recorded. Disease activity was estimated using Crohn's disease activity index (CDAI). Testosterone (T), dihydrotestosterone (DHT), estradiol (E2), sex hormone binding globulin (SHBG), Osteocalcin and carboxyterminal cross-linked telopeptids (ICTP) were measured in 111 patients and 99 age-matched controls. Patients had lower T, E2 and SHBG serum levels (p < 0.001) compared to age-matched controls. E2 deficiency was seen in 30 (27.0%) and T deficiency in 3 (2.7%) patients but only in 5 (5.1%) and 1 (1%) controls. Patients with E2 deficiency had significantly decreased T and DHT serum levels. Use of corticosteroids for 3 of 12 months was associated with lower E2 levels (p < 0.05). Patients with life-time steroids >10 g had lower BMD. 32 (28.8%) patients showed osteoporosis, 55 (49.5%) osteopenia and 24 (21.6%) had normal BMD. Patients with normal or decreased BMD showed no significant difference in their hormonal status. No correlation between markers of bone turnover and sex steroids could be found. ICTP was increased in CD patients (p < 0.001), and patients with osteoporosis had higher ICTP levels than those with normal BMD. We found an altered hormonal status--i.e. E2 and, to a lesser extent T deficiency--in male CD patients but failed to show an association to bone density or markers of bone turnover. The role of E2 in the negative skeletal balance in males with CD, analogous to E2 deficiency in postmenopausal females, deserves further attention.
Bone and mineral metabolism in adult celiac disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caraceni, M.P.; Molteni, N.; Bardella, M.T.
1988-03-01
Bone mineral density (/sup 125/I photon absorptiometry) was lower in 20 untreated adult celiac patients than in sex- and age-matched controls (p less than 0.001), and plasma alkaline phosphatase, parathyroid hormone, urinary hydroxyproline/creatinine levels were higher than normal (p less than 0.05, less than 0.001, less than 0.05, respectively). Gluten-free diet was started, and the patients were divided randomly into two treatment groups, one which received oral 25-hydroxyvitamin D 50 micrograms/day and one which did not. After 12 months' treatment, bone turnover markers showed a decrease, which did not reach statistical significance, and bone mineral density did not show significantmore » modifications compared with base line in either group. It was found that a gluten-free diet followed for 1 yr can prevent further bone loss, but no significant differences were detected between the two groups.« less
A Case of Teriparatide on Pregnancy-Induced Osteoporosis
Lee, Seok Hong; Hong, Moon-Ki; Park, Seung Won; Park, Hyoung-Moo; Kim, Jaetaek
2013-01-01
Pregnancy-induced osteoporosis is a rare disorder characterized by fragility fracture and low bone mineral density (BMD) during or shortly after pregnancy, and its etiology is still unclear. We experienced a case of a 39-year-old woman who suffered from lumbago 3 months after delivery. Biochemical evidence of increased bone resorption is observed without secondary causes of osteoporosis. Radiologic examination showed multiple compression fractures on her lumbar vertebrae. We report a case of patient with pregnancy-induced osteoporosis improved her clinical symptom, BMD and bone turnover marker after teriparatide therapy. PMID:24524067
Changes in biomarkers of bone turnover in an aripiprazole add-on or switching study.
Lodhi, Rohit J; Masand, Salaj; Malik, Amna; Shivakumar, Kuppuswami; McAllister, Victoria D M; O'Keane, Veronica; Young, Leah C; Heald, Adrian H; Sherwood, Roy A; Aitchison, Katherine J
2016-02-01
The association between mental illness and osteoporosis and fractures is particularly pronounced in psychotic disorders. Antipsychotic use has previously been described to affect bone density. A 52-week follow-up of patients switched to aripiprazole or with aripiprazole added on, conducting a specific analysis of markers of bone turnover: urinary NTX (a biomarker of bone resorption) and serum BSAP (a biomarker of bone formation). Baseline and serial measurements of bone markers NTX, BSAP and of hormones prolactin, oestrogen and testosterone were done at weeks 0 and 1, 2, 6, 12, 26 and 52, respectively. NTX concentration reduced over time but this did not reach significance in the whole group (log-NTX: β=-0.0012, p=0.142). For BSAP the addition of or replacement with aripiprazole produced a significant reduction (log-BSAP: β=-0.00039, p=0.002). Analysis with prolactin similarly showed a significant reduction (log-prolactin: β=-0.0024, p<0.001); other hormones did not change significantly. Sensitivity analysis to compare the switchers to aripiprazole versus the "add-on" showed that the former group had a significant reduction in NTX. We found that switching to aripiprazole was associated with changes in molecular biomarkers of bone resorption, indicating a more favourable profile for bone health. Copyright © 2015 Elsevier B.V. All rights reserved.
Liel, Yair; Plakht, Ygal; Tailakh, Muhammad Abu
2017-07-01
Little data exist to support concerns over bone turnover suppression during prolonged oral bisphosphonate treatment and on consequences of the recommended "drug holiday." This study was performed to assess bone resorption rates in postmenopausal osteoporotic women on prolonged oral bisphosphonate treatment and in response to switching to "drug holiday" intravenous bisphosphonate, or continuation of oral bisphosphonates. The frequency distribution of the bone resorption marker urinary deoxypyridinoline crosslinks (uDPD), was obtained retrospectively from 211 osteoporotic women attended at an academic hospital endocrine clinic, treated for >2 years with oral bisphosphonates. In some patients, uDPD was re-assessed following modification or continuation of treatment. The mean duration of oral bisphosphonates treatment was 7.2 ± 3.1 years. uDPD was within reference range for premenopausal women in 61.6% of the patients, below in 7.6% of the patients, and above upper limit in 30.8%. uDPD decreased significantly following intravenous zoledronic acid, increased significantly during "drug holiday," and slightly decreased in those continued on oral bisphosphonate treatment. In this real-world study, the majority of women on prolonged oral bisphosphonates maintained bone resorption rates within the normal reference range for premenopausal women. The likelihood for inadequate suppression was considerably greater than that of over-suppression. Implementing a "drug holiday" resulted in a marked increase in bone resorption rates. Additional studies should explore the potential role of bone turnover markers in the evaluation of patients on prolonged oral bisphosphonates and during "drug holiday" in different settings and using additional markers. BMD = bone mineral density; IQR = interquartile range; uDPD = urinary deoxypyridinoline crosslinks.
Khan, Aysha Habib; Naureen, Ghazala; Iqbal, Romaina; Dar, Farhan Javed
2013-01-01
Bone health assessed in three towns of Karachi, Pakistan in females showed poor calcium intake, vitamin D deficiency, secondary hyperparathyroidism, and high bone turnover. Correlates of high bone turnover included females residing in Saddar Town, underweight females less than 30 years of age from low socio-economic status, and secondary hyperparathyroidism. To assess bone health and association of dietary calcium and 25 hydroxy vitamin D with bone turnover in the community-dwelling females of Karachi. Bone health was assessed in three randomly selected towns of Karachi, Pakistan. One premenopausal female fulfilling the inclusion criteria from each household was included in the study. Dietary calcium was assessed through a food frequency questionnaire and biochemical markers including calcium, phosphates, albumin, magnesium, creatinine, and SGPT, intact parathyroid hormone, 25 hydroxy vitamin D, and N-telopeptide of type I collagen were measured to assess the bone health. Three hundred and five females were included from three towns. Overall, 90.5% of females had vitamin D deficiency with 42.6 and 23.3% having secondary hyperparathyroidism and high bone turn over respectively. Prevalence of vitamin D deficiency, secondary hyperparathyroidism, and high bone turnover was significantly different among towns. Mean vitamin D levels were significantly low and iPTH levels significantly high in females with high bone turnover. Calcium intake was not significantly different among females with normal, high, and low bone turnover. Correlates of high bone turnover included females residing in Saddar Town, underweight females less than 30 years of age belonging to low socio-economic status, and secondary hyperparathyroidism. Compromised bone health is seen in community-dwelling females of Karachi. There is a need to perform large-scale community-based studies in all age groups to understand the interplay of markers in our population to understand the impact of these variables translating into the risk of osteoporosis.
Kharroubi, Akram; Saba, Elias; Smoom, Riham; Bader, Khaldoun; Darwish, Hisham
2017-12-01
This study evaluated the association of vitamin D and bone markers with the development osteoporosis in Palestinian postmenopausal women. Even though vitamin D deficiency was very high for the recruited subjects, it was not associated with osteoporosis except for bones of the hip. Age and obesity were the strongest determining factors of the disease. The purpose of this study was to investigate the association of bone mineral density (BMD) with serum vitamin D levels, parathyroid hormone (PTH), calcium, obesity, and bone turnover markers in Palestinian postmenopausal women. Three hundred eighty-two postmenopausal women (≥45 years) were recruited from various women clinics for BMD assessment (131 women had osteoporosis and 251 were normal and served as controls). Blood samples were obtained for serum calcium, PTH, 25(OH)D, bone formation (N-terminal propeptide (PINP)), and bone resorption (serum C-terminal telopeptide of type I collagen (CTX1)) markers. Women with osteoporosis had statistically significant lower mean weight, height, body mass index (BMI), and serum calcium (p < 0.05) compared to controls. No significant differences were detected between the mean values of bone turnover markers (CTX and PINP), 25(OH)D, and PTH of the two groups. Women with vitamin D deficiency (severe and insufficiency) represented 85.9% of the study subjects. Multiple and logistic regression showed that age and BMI significantly affected BMD and vitamin D had a significant association with BMD only at the lumbar spine. BMI was positively correlated with BMD and PTH but negatively correlated with vitamin D. Logistic regression showed that the odds ratio (OR) for having osteoporosis decreased with increasing BMI (overweight OR = 0.11, p = 0.053; obese OR = 0.05, p = 0.007). There was no direct correlation between BMD and PTH, bone turnover markers, and vitamin D except at the lumbar spine. A negative correlation between BMD and age and a positive correlation with BMI were observed. The protective effect of obesity on osteoporosis was complicated by the effect of obesity on vitamin D and PTH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komemushi, Atsushi, E-mail: kome64@yo.rim.or.jp; Tanigawa, Noboru; Kariya, Shuji
Purpose. To evaluate relationships between biochemical markers of bone turnover, bone mineral density, and new compression fractures following vertebroplasty. Methods. Initially, we enrolled 30 consecutive patients with vertebral compression fractures caused by osteoporosis. Twenty-three of the 30 patients visited our hospital for follow-up examinations for more than 4 weeks after vertebroplasty. The patients were divided into two groups: patients with new fractures (group F) and patients with no new fractures (group N). We analyzed differences in the following parameters between these two groups: serum bone alkaline phosphatase, urinary crosslinked N-telopeptide of type I collagen, urinary deoxypyridinoline, and bone mineral density.more » Next, the patients were divided into another two groups: patients with higher risk (group H: urinary crosslinked N-telopeptide of type I collagen >54.3 nmol BCE/mmol Cr or urinary deoxypyridinoline >7.6 nmol/mmol Cr, and serum bone alkaline phosphatase <29.0 U/l) and patients with lower risk (group L). We analyzed the difference in the rate of new fractures between these two groups. Results. We identified 9 new fractures in 7 patients. There were no significant differences between groups F and N. We identified 5 new fractures in 3 of the 4 patients in group H, and 4 new fractures in 4 of the 19 patients in group L. There was a significant difference in the rate of new fractures between groups H and L. Conclusions. A combination of high levels of bone resorption markers and normal levels of bone formation markers may be associated with increased risk of new recurrent fractures after percutaneous vertebroplasty.« less
Does methamphetamine affect bone metabolism?
Tomita, Masafumi; Katsuyama, Hironobu; Watanabe, Yoko; Okuyama, Toshiko; Fushimi, Shigeko; Ishikawa, Takaki; Nata, Masayuki; Miyamoto, Osamu
2014-05-07
There is a close relationship between the central nervous system activity and bone metabolism. Therefore, methamphetamine (METH), which stimulates the central nervous system, is expected to affect bone turnover. The aim of this study was to investigate the role of METH in bone metabolism. Mice were divided into 3 groups, the control group receiving saline injections, and the 5 and 10mg/kg METH groups (n=6 in each group). All groups received an injection of saline or METH every other day for 8 weeks. Bone mineral density (BMD) was assessed by X-ray computed tomography. We examined biochemical markers and histomorphometric changes in the second cancellous bone of the left femoral distal end. The animals that were administered 5mg/kg METH showed an increased locomotor activity, whereas those receiving 10mg/kg displayed an abnormal and stereotyped behavior. Serum calcium and phosphorus concentrations were normal compared to the controls, whereas the serum protein concentration was lower in the METH groups. BMD was unchanged in all groups. Bone formation markers such as alkaline phosphatase and osteocalcin significantly increased in the 5mg/kg METH group, but not in the 10mg/kg METH group. In contrast, bone resorption markers such as C-terminal telopeptides of type I collagen and tartrate-resistant acid phosphatase 5b did not change in any of the METH groups. Histomorphometric analyses were consistent with the biochemical markers data. A significant increase in osteoblasts, especially in type III osteoblasts, was observed in the 5mg/kg METH group, whereas other parameters of bone resorption and mineralization remained unchanged. These results indicate that bone remodeling in this group was unbalanced. In contrast, in the 10mg/kg METH group, some parameters of bone formation were significantly or slightly decreased, suggesting a low turnover metabolism. Taken together, our results suggest that METH had distinct dose-dependent effects on bone turnover and that METH might induce adverse effects, leading to osteoporosis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Bone biosensors: knowing the present and predicting the future
NASA Astrophysics Data System (ADS)
Khashayar, Patricia; Amoabediny, Ghassem; Larijani, Bagher; Vanfleteren, Jan
2016-02-01
Bone is an active organ with the capacity of continuous remodeling throughout adult life. In view of the fact that the current gold standard to assess bone remodeling, bone mineral density, suffers from certain limitations, newer techniques are being developed. Currently enzyme-linked immunosorbent assay is commonly used to assess bone turnover markers; the technique, however, is expensive, time consuming and needs trained personnel. Thus, there is a growing demand to fabricate different types of biosensors to provide low cost miniaturized platforms to assess the bone remodeling process more accurately. This review focuses on the latest advancements in the field of bone biosensing technologies. Its results might help provide possible solutions for translation of this technology for point-of-care diagnostic applications.
Biochemical markers of bone turnover in children with clinical bone fragility.
Bowden, Sasigarn A; Akusoba, Chiazor I; Hayes, John R; Mahan, John D
2016-06-01
The role of biochemical bone turnover markers (BTMs) in assessing low bone mass and monitoring bisphosphonate treatment in pediatric patients with clinical bone fragility is not well established. The aim of the study was to examine the correlations of BTMs and the bone mineral density (BMD), and evaluate the effects of bisphosphonates therapy on BTMs in children with clinical bone fragility. Clinical data of 115 patients with clinical bone fragility (mean age 9.7±5.8 years), 102 of whom received bisphosphonates, were studied. Serum alkaline phosphatase (ALP), osteocalcin (OC), urine pyridinoline (PD) and deoxypyridinoline (DPD), BMD at baseline and subsequent years were analyzed. There was a significant negative correlation between urine PD and lumbar BMD (slope=-0.29, p<0.001). There were no correlations between BTMs and lumbar BMD Z-score. There was a significant positive correlation between serum OC and serum ALP, urine PD and DPD (p<0.001). Serum OC, urine PD and DPD index, as expressed as measured value/upper limit of normal value for age, decreased during the first 3 years of bisphosphonate therapy. In children with clinical bone fragility, BTMs correlated with each other, but not with lumbar BMD Z-score. While they were not reliable predictors of degree of low BMD, the bone markers showed suppression during bisphosphonate therapy and may be helpful in monitoring the response to therapy.
Smuthkochorn, Sorapan; Palomo, J Martin; Hans, Mark G; Jones, Corey S; Palomo, Leena
2017-07-01
Bone turnover associated with orthodontic tooth movement is evidenced by increased bone turnover markers in gingival crevicular fluid (GCF). Postmenopausal women have an increased concentration of serum bone turnover markers. The filtrate of this serum makes up GCF, but little is known of the bone turnover around teeth in this cohort. The objective of this investigation was to compare the GCF bone turnover markers in premenopausal vs postmenopausal women receiving orthodontic treatment at baseline and at orthodontic activation. Twenty-eight women were enrolled in the study and separated into 2 groups: premenopausal (16) and postmenopausal (12). Bone turnover was evaluated by GCF at baseline and 24 hours after orthodontic appliance activation. GCF concentrations of RANKL and OPN were measured using ELISA. Baseline and change in concentrations were compared between groups. Baseline RANKL and OPN were significantly different between the premenopausal and postmenopausal groups (P <0.05). Both markers increased significantly from baseline to 24 hours after orthodontic appliance activation in both groups (P <0.05). However, the response to orthodontic activation was not significantly different between groups. Although postmenopausal women have a different bone turnover profile at baseline than do their premenopausal counterparts, there is no difference in their response to orthodontic activation. This confers a level of security associated with orthodontic activation. Future studies are warranted to construct biomarker curves throughout orthodontic therapy. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Olive Oil and Vitamin D Synergistically Prevent Bone Loss in Mice
Tagliaferri, Camille; Davicco, Marie-Jeanne; Lebecque, Patrice; Georgé, Stéphane; Amiot, Marie-Jo; Mercier, Sylvie; Dhaussy, Amélie; Huertas, Alain; Walrand, Stéphane; Wittrant, Yohann; Coxam, Véronique
2014-01-01
As the Mediterranean diet (and particularly olive oil) has been associated with bone health, we investigated the impact of extra virgin oil as a source of polyphenols on bone metabolism. In that purpose sham-operated (SH) or ovariectomized (OVX) mice were subjected to refined or virgin olive oil. Two supplementary OVX groups were given either refined or virgin olive oil fortified with vitamin D3, to assess the possible synergistic effects with another liposoluble nutrient. After 30 days of exposure, bone mineral density and gene expression were evaluated. Consistent with previous data, ovariectomy was associated with increased bone turnover and led to impaired bone mass and micro-architecture. The expression of oxidative stress markers were enhanced as well. Virgin olive oil fortified with vitamin D3 prevented such changes in terms of both bone remodeling and bone mineral density. The expression of inflammation and oxidative stress mRNA was also lower in this group. Overall, our data suggest a protective impact of virgin olive oil as a source of polyphenols in addition to vitamin D3 on bone metabolism through improvement of oxidative stress and inflammation. PMID:25551374
Effect of modified alkaline supplementation on bone metabolic turnover in rats.
Chui, D H; Marotta, F; Liu, T; Minelli, E; Yadav, H; Signorelli, P; Lorenzetti, A; Jain, S
2008-01-01
This study aims to determine the effects of a high protein diet and alkaline supplementation on bone metabolic turnover in rats. Eight-week-old male Sprague-Dawley rats were investigated by bone status, including bone mineral density (BMD) and biomechanical markers from blood and urine. Thirty rats were randomly divided into three groups and treated for 8 weeks as follows: baseline control group (n. 10, C), high-protein supplemented diet group (n. 10, chronic acidosis, CA group) and supplemented chronic acidosis (n.10, SCA). Diet-treated rats were fed an acidic high-protein diet and the supplementation consisted in a modified alkaline formula (Basenpulver, NaMed, Italy). At the end of the experimental period, the rats were sacrificed, blood samples were drawn and femur and tibia were removed for analysis of bone mineral density (BMD) by dual energy X-ray absorptiometry (DEXA). In the CA group, 24-hour urinary calcium (Ca) and phosphorus (P) excretion were increased 2.1-fold (p<0.05 vs normal diet controls) as well as kidney weight. However, serum Ca and P concentration, as well as urinary Dpd excretion were not significantly changed. Femural and tibial BMD was significantly decreased in the CA group (p<0.05), but alkaline supplementation prevented such phenomenon (p<0.05 vs CA). These results suggest that blood Ca and P concentrations in chronic acidosis condition during the 12-week supplementation might be maintained by hypercalciuria and hyperphosphaturia at the expenses of bone structure. However, modified alkaline supplementation is able to prevent such derangements.
Wang, Yanmao; Zhu, Yu; Lu, Shengdi; Hu, Chengfang; Zhong, Wanrun; Chai, Yimin
2018-04-15
Osteoporosis is linked to reduced bone mineral density (BMD) as a major risk factor for fragility fractures. Recent studies indicated an association between BMD and abnormally elevated lipid levels in blood as common indicators for hyperlipidemia. In this study, we assessed the protective effect of paeoniflorin, a phytochemical compound with multiple pharmacological activities, against hyperlipidemia-induced osteoporosis in rats fed a high-carbohydrate, high-fat diet (HCHF). The special diet-fed rats were subjected to an 8-week treatment with either paeoniflorin (20 mg/kg, daily) or vehicle. The control group received a normal diet during the entire study. At study conclusion, serum markers of lipid metabolism and bone turnover were measured. Bone strength was assessed by biomechanical testing, and femurs were scanned using micro-computed tomography to analyze trabecular and cortical bone structure. Interestingly, paeoniflorin controlled the serum lipid profile by significantly decreasing HCHF-induced high levels of total cholesterol, triglyceride, and low-density lipoprotein cholesterol. Paeoniflorin significantly improved trabecular and cortical parameters as well as femur length and width that were negatively affected by HCHF diet. Biomechanical strength testing showed that femurs of HCHF diet-fed rats endured significantly lower force but higher displacement and strain than those of control rats, whereas paeoniflorin reversed the negative effects. Moreover, paeoniflorin rescued osteoblast differentiation and cell spreading activities along with bone turnover markers. In conclusion, HCHF-induced hyperlipidemia caused adverse effects on the bone that were rescued by paeoniflorin treatment. Copyright © 2018 Elsevier Inc. All rights reserved.
Huebner, Janet L; Bay-Jensen, Anne C; Huffman, Kim M; He, Yi; Leeming, Diana J; McDaniel, Gary E; Karsdal, Morten A; Kraus, Virginia B
2014-01-01
Objective To evaluate joint tissue remodeling, with urinary collagen biomarkers, uALPHA CTX and uCTXII, and their association with osteoarthritis (OA) severity, progression, and localized knee bone turnover. Methods Participants (N=149) with symptomatic and radiographic knee OA underwent fixed flexion knee radiography at baseline and 3 years, and late-phase bone scintigraphy of both knees at baseline, scored semi-quantitatively for osteophyte (OST) and joint space narrowing (JSN) severity and uptake intensity with scores summed across knees. Urinary concentrations of ALPHA CTX and CTXII were determined by ELISA. Immunohistochemistry of human OA knees was performed to localize the joint tissue origin of the biomarker epitopes. Results uALPHA CTX correlated strongly with intensity of bone scintigraphic uptake, and JSN and OST progression (risk ratio=13.2 and 3, respectively). uCTXII was strongly associated with intensity of bone scintigraphic uptake, with JSN and OST severity, and OA progression based on OST. uALPHA CTX localized primarily to high bone turnover areas in subchondral bone; CTXII localized to the bone-cartilage interface, the tidemark, and damaged articular cartilage. Conclusion Baseline uALPHA CTX, localized to high turnover areas of subchondral bone, was associated with dynamic bone turnover of knees signified by scintigraphy, and progression of both OST and JSN. uCTXII correlated with JSN and OST severity, and progression of OST. To our knowledge, this represents the first report of serological markers reflecting subchondral bone turnover. These collagen markers may be useful for non-invasive detection and quantification of active subchondral bone turnover and joint remodeling in knee OA. PMID:24909851
Feng, Xin; Lyu, Ying; Wu, Zhenghao; Fang, Yuehui; Xu, Hao; Zhao, Pengling; Xu, Yajun; Feng, Haotian
2014-04-01
Optimizing peak bone mass in early life is one of key preventive strategies against osteoporosis. Fructus ligustri lucidi (FLL), the fruit of Ligustrum lucidum Ait., is a commonly prescribed herb in many kidney-tonifying traditional Chinese medicinal formulas to alleviate osteoporosis. Previously, FLL extracts have been shown to have osteoprotective effect in aged or ovariectomized rats. In the present study, we investigated the effects of FLL ethanol extract on bone mineral density (BMD) and mechanical properties in growing male rats and explored the underlying mechanisms. Male weaning Sprague-Dawley rats were randomized into four groups and orally administrated for 4 months an AIN-93G formula-based diet supplementing with different doses of FLL ethanol extract (0.40, 0.65, and 0.90 %) or vehicle control, respectively. Then calcium balance, serum level of Ca, P, 25(OH)2D3, 1,25(OH)2D3, osteocalcin (OCN), C-terminal telopeptide of type I collagen (CTX-I), and parathyroid hormone, bone microarchitecture, and calcium absorption-related genes expression in duodenum and kidney were analyzed. The results demonstrated that FLL ethanol extract increased BMD of growing rats and improved their bone microarchitecture and mechanical properties. FLL ethanol extract altered bone turnover, as evidenced by increasing a bone formation maker, OCN, and decreasing a bone resorption maker, CTX-I. Intriguingly, both Ca absorption and Ca retention rate were elevated by FLL ethanol extract treatment, possibly through the mechanisms of up-regulating the transcriptions of calcitropic genes in kidney (1α-hydroxylase) and duodenum (vitamin D receptor, calcium transporter calbindin-D9k, and transient receptor potential vanilloid 6). In conclusion, FLL ethanol extract increased bone mass gain and improved bone properties via modulating bone turnover and up-regulating calcium absorption-related gene expression in kidney and duodenum, which could then activate 1,25(OH)2D3-dependent calcium transport in male growing rats.
Gregory, Naina Sinha; Kumar, Rekha; Stein, Emily M; Alexander, Ellen; Christos, Paul; Bockman, Richard S; Rodman, John S
2015-12-01
Diets rich in animal protein, such as the typical American diet, are thought to create a high acid load. An association between acid load and bone loss has led to the idea that providing positive alkaline salt therapy could have beneficial effects on bone metabolism. The objective of this study was to investigate the effects of potassium citrate (K-citrate), 40 mEq daily, over 1 year on bone resorption and formation. A randomized, double-blind, placebo-controlled trial of 83 women with postmenopausal osteopenia. Levels of bone turnover markers, specifically urinary N-telopeptide of collagen type 1 (u-NTX), amino-terminal propeptide of type 1 procollagen (P1NP), bone-specific alkaline phosphatase (BSAP), and osteocalcin (OC) were compared. Changes in bone mineral density (BMD) were also examined. K-citrate decreased both u-NTX (P = .005) and serum P1NP (P<.001) starting at month 1 and continuing through month 12. No significant change was seen in BSAP or OC. No significant change was seen in lumbar or hip BMD between the 2 groups. In women with postmenopausal osteopenia, treatment with K-citrate for 1 year resulted in a significant decrease in markers of turnover. The effect on markers of bone formation was not consistent. K-citrate may serve as a potential treatment for bone loss that is well tolerated and without any significant known long-term consequences.
Hatefi, Masoud; Ahmadi, Mohammad Reza Hafezi; Rahmani, Asghar; Dastjerdi, Masoud Moghadas; Asadollahi, Khairollah
2018-06-01
Osteoporosis is one of the most common problems of patients with spinal cord injuries (SCIs). The current study aimed to evaluate the antiosteoporotic effects of curcumin on densitometry parameters and biomarkers of bone turnovers among patients with SCI. The current controlled clinical trial was conducted among 100 patients with SCI referred to an outpatient clinic of rehabilitation in Ilam City, Iran, in 2013-2015. The intervention group received 110/mg/kg/day curcumin for 6 months and the control group received placebo. Bone mineral density (BMD) was measured in all patients. The level of procollagen type I N-terminal propeptide, serum carboxy-terminal telopeptide of type I collagen, osteocalcin, and bone-specific alkaline phosphates were compared before and after study. BMD indicators of lumbar, femoral neck, and total hip in the control group significantly decreased compared with the beginning of study. However, in the curcumin group, a significant increase was observed in BMD indicators of lumbar, femoral neck, and hip at the end of study compared with the beginning. There was also a significant difference between interventional and control groups for the mean BMD of femoral neck and hip at the end of study (0.718 ± 0.002 g/cm 2 vs. 0.712 ± 0.003 g/cm 2 and 0.742 ± 0.031 g/cm 2 vs. 0.692 ± 0.016 g/cm 2 , respectively). Curcumin, via modulation of densitometry indices and bone resorption markers, showed inhibitory effects on the process of osteoporosis. Treatment with curcumin was significantly associated with a decrease in the osteoporosis progression and bone turnover markers of patients with SCI after 6 months. Copyright © 2018 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Background: Inflammation is associated with increased bone resorption; the role of inflammation in postprandial bone turnover has not been explored. Consumption of milk fat globule membrane (MFGM) reduces inflammation in animal models. This study aimed to measure postprandial changes in bone turnov...
Improvement of adynamic bone disease after renal transplantation.
Abdallah, K A; Jorgetti, V; Pereira, R C; Reis, L M dos; Pereira, L M; Corrêa, P H S; Borelli, A; Ianhez, L E; Moysés, R M A; David-Neto, E
2006-01-01
Low bone remodeling and relatively low serum parathyroid hormone (PTH) levels characterize adynamic bone disease (ABD). The impact of renal transplantation (RT) on the course of ABD is unknown. We studied prospectively 13 patients with biopsy-proven ABD after RT. Bone histomorphometry and bone mineral density (BMD) measurements were performed in the 1st and 12th months after RT. Serum PTH, 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D, and osteocalcin were measured regularly throughout the study. Serum PTH levels were slightly elevated at transplantation, normalized at the end of the third month and remained stable thereafter. Bone biopsies performed in the first month after RT revealed low bone turnover in all patients, with positive bone aluminum staining in 5. In the 12th month, second biopsies were performed on 12 patients. Bone histomorphometric dynamic parameters improved in 9 and were completely normalized in 6, whereas no bone mineralization was detected in 3 of these 12 patients. At 12 months post-RT, no bone aluminum was detected in any patient. We also found a decrease in lumbar BMD and an increase in femoral BMD. Patients suffering from ABD, even those with a reduction in PTH levels, may present partial or complete recovery of bone turnover after successful renal transplantation. However, it is not possible to positively identify the mechanisms responsible for the improvement. Identifying these mechanisms should lead to a better understanding of the physiopathology of ABD and to the development of more effective treatments.
Lv, Fang; Liu, Yi; Xu, Xiaojie; Wang, Jianyi; Ma, Doudou; Jiang, Yan; Wang, Ou; Xia, Weibo; Xing, Xiaoping; Yu, Wei; Li, Mei
2016-12-01
Osteogenesis imperfecta (OI) is a group of inherited diseases characterized by reduced bone mass, recurrent bone fractures, and progressive bone deformities. Here, we evaluate the efficacy and safety of long-term treatment with alendronate in a large sample of Chinese children and adolescents with OI. In this prospective study, a total of 91 children and adolescents with OI were included. The patients received 3 years' treatment with 70 mg alendronate weekly and 500 mg calcium daily. During the treatment, fracture incidence, bone mineral density (BMD), and serum levels of the bone turnover biomarkers (alkaline phosphatase [ALP] and cross-linked C-telopeptide of type I collagen [β-CTX]) were evaluated. Linear growth speed and parameters of safety were also measured. After 3 years of treatment, the mean annual fracture incidence decreased from 1.2 ± 0.8 to 0.2 ± 0.3 (P<.01). BMD at the lumbar spine and femoral neck significantly increased by 74.6% and 39.5%, with their BMD Z-score increasing from -3.0 to 0.1 and from -4.2 to -1.3, respectively (both P<.01 vs. baseline). In addition, serum ALP and β-CTX levels decreased by 35.6% and 44.3%, respectively (both P<.05 vs. baseline). Height significantly increased, but without an obvious increase in its Z-score. Patient tolerance of alendronate was good. Three years' treatment with alendronate was demonstrated for the first time to significantly reduce fracture incidence, increase lumbar spine and femoral neck BMD, and decrease bone turnover biomarkers in Chinese children and adolescents with OI. ALP = alkaline phosphatase β-CTX = cross-linked C-telopeptide of type I collagen BMD = bone mineral density BP = bisphosphonate DXA = dual-energy X-ray absorptiometry 25OHD = 25-hydroxyvitamin D OI = osteogenesis imperfecta PTH = parathyroid hormone.
Bone turnover marker reference intervals in young females.
Callegari, Emma T; Gorelik, Alexandra; Garland, Suzanne M; Chiang, Cherie Y; Wark, John D
2017-07-01
Background The use of bone turnover markers in clinical practice and research in younger people is limited by the lack of normative data and understanding of common causes of variation in bone turnover marker values in this demographic. To appropriately interpret bone turnover markers, robust reference intervals specific to age, development and sex are necessary. This study aimed to determine reference intervals of bone turnover markers in females aged 16-25 years participating in the Safe-D study. Methods Participants were recruited through social networking site Facebook and were asked to complete an extensive, online questionnaire and attend a site visit. Participants were tested for serum carboxy-terminal cross-linking telopeptide of type 1 collagen and total procollagen type 1 N-propeptide using the Roche Elecsys automated analyser. Reference intervals were determined using the 2.5th to 97.5th percentiles of normalized bone turnover marker values. Results Of 406 participants, 149 were excluded due to medical conditions or medication use (except hormonal contraception) which may affect bone metabolism. In the remaining 257 participants, the reference interval was 230-1000 ng/L for serum carboxy-terminal cross-linking telopeptide of type 1 collagen and 27-131 µg/L for procollagen type 1 N-propeptide. Both marker concentrations were inversely correlated with age and oral contraceptive pill use. Therefore, intervals specific to these variables were calculated. Conclusions We defined robust reference intervals for cross-linking telopeptide of type 1 collagen and procollagen type 1 N-propeptide in young females grouped by age and contraceptive pill use. We examined bone turnover markers' relationship with several lifestyle, clinical and demographic factors. Our normative intervals should aid interpretation of bone turnover markers in young females particularly in those aged 16 to 19 years where reference intervals are currently provisional.
2013-01-01
Background Organic nitrates uncouple bone turnover, improve bone mineral density, and improve trabecular and cortical components of bone. These changes in turnover, strength and geometry may translate into an important reduction in fractures. However, before proceeding with a large fracture trial, there is a need to identify the nitrate formulation that has both the greatest efficacy (with regards to bone turnover markers) and gives the fewest headaches. Ascertaining which nitrate formulation this may be is the purpose of the current study. Methods and design This will be an open-label randomized, controlled trial conducted at Women’s College Hospital comparing five formulations of nitrates for their effects on bone turnover markers and headache. We will recruit postmenopausal women age 50 years or older with no contraindications to nitroglycerin. Our trial will consist of a run-in phase and a treatment phase. We will enroll 420 women in the run-in phase, each to receive all of the 5 potential treatments in random order for 2 days, each with a 2-day washout period between treatments. Those who tolerate all formulations will enter the 12-week treatment phase and be randomly assigned to one of five groups: 0.3 mg sublingual nitroglycerin tablet, 0.6 mg of the sublingual tablet, a 20 mg tablet of isosorbide mononitrate, a 160 mg nitroglycerin transdermal patch (used for 8 h), and 15 mg of nitroglycerin ointment as used in a previous trial by our group. We will continue enrolment until we have randomized 210 women or 35 women per group. Concentrations of bone formation (bone-specific alkaline phosphatase and procollagen type I N-terminal propeptide) and bone resorption (C-telopeptides of collagen crosslinks and N-terminal crosslinks of collagen) agents will be measured in samples taken at study entry (the start of the run in phase) and 12 weeks. Subjects will record the frequency and severity of headaches daily during the run-in phase and then monthly after that. We will use the ‘multiple comparisons with the best’ approach for data analyses, as this strategy allows practical considerations of ease of use and tolerability to guide selection of the preparation for future studies. Discussion Data from this protocol will be used to develop a randomized, controlled trial of nitrates to prevent osteoporotic fractures. Trial registration ClinicalTrials.gov Identifier: NCT01387672. Controlled-Trials.com: ISRCTN08860742. PMID:24010992
Motil, Kathleen J; Barrish, Judy O; Neul, Jeffrey L; Glaze, Daniel G
2014-09-01
The aim of the present study was to characterize biomarkers of bone turnover and their relation with bone mineral mass in a cross-sectional cohort of girls with Rett syndrome (RTT) and to examine the role of dietary, biochemical, hormonal, and inflammatory factors on bone mineral mass and bone biomarkers in this disorder. Total body bone mineral content (BMC) and bone mineral density (BMD) were determined by dual-energy x-ray absorptiometry. Dietary nutrient intakes were determined from 3-day food records. Biomarkers of bone turnover, bone metabolites, vitamin D metabolites, hormones, and inflammatory markers were measured by standard clinical laboratory methods. Serum osteocalcin, bone alkaline phosphatase, and C-telopeptide showed significant inverse relations with age in the RTT cohort. Mean osteocalcin concentrations were significantly lower and mean bone alkaline phosphatase concentrations were significantly higher for individual age groups in the RTT cohort than mean values for their respective age ranges in the reference population. Significant inverse associations were identified between urinary calcium losses, expressed as calcium:creatinine ratios, and total body BMC and BMD z scores. Dietary protein, calcium, and phosphorus intakes, expressed as a proportion of Dietary Reference Intakes for age and sex, showed significant positive associations with total body BMD z scores. The present study suggests decreased bone formation instead of increased bone resorption may explain in part the deficits in bone mineral mass in RTT and that attention to the adequacy of dietary protein, calcium, and phosphorus intakes may offer an opportunity to improve bone health in RTT.
Zidan, Jamal; Keidar, Zohar; Basher, Walid; Israel, Ora
2004-01-01
At the present time, tamoxifen is the most widely used anti-estrogen for adjuvant therapy and metastatic disease in postmenopausal women with breast cancer, a population at high risk for osteoporosis. This prospective study was designed to evaluate the effect of adjuvant tamoxifen on bone mineral density and all biochemical markers concomitantly in women with early-stage breast cancer in one study. Using dual-energy X-ray absorptiometry, prior to and 12 mo after tamoxifen treatment, bone mineral density in lumbar spine and femoral neck was measured in 44 women with T1-T2N0M0 estrogen-receptor-positive breast cancer receiving adjuvant treatment with tamoxifen 20 mg/d. Biomarkers that can affect bone mineral metabolism were measured before and after 3 and 12 mo of tamoxifen treatment. Bone mineral density was minimally increased in lumbar spine and femoral neck after 12 mo treatment with tamoxifen (p = 0.79 and 0.55, respectively). No differences were found in serum levels of calcium, phosphate, creatinine, ALAT, albumin, LDH, calcitonin, or estradiol. A significant decrease in osteocalcin levels was found after 3 and 12 mo (p < or = 0.01). TSH and PTH levels were increased (p < or = 0.05) after 3 mo, returning to baseline after 12 mo. In conclusion, tamoxifen has an estrogen-like effect on bone metabolism in postmenopausal women and is associated with preservation of bone mineral density in lumbar spine and femoral neck. Changes in serum concentration of biochemical markers may reflect decreased bone turnover or bone remodeling and add to the understanding of tamoxifen's effect on bone mineral density.
Karsdal, Morten A; Qvist, Per; Christiansen, Claus; Tankó, László B
2006-01-01
Accelerated bone turnover with bone resorption exceeding bone formation is a major mechanism underlying postmenopausal bone loss and hence the development of osteoporosis. Accordingly, inhibition of bone resorption is a rational approach for the prevention of osteoporosis. In this context, the most logical option, hormone replacement therapy, reverses the rate of bone turnover to premenopausal levels, whereas the magnitude of inhibition by amino-bisphosphonates and the recently introduced anti-receptor activator of NFkappaB ligand (RANKL) antibody often exceeds this. As bone turnover has crucial implications for the continuous renewal of bone tissue, the over-suppression of bone turnover has potential consequences for bone quality and strength. Long-term treatment with potent bisphosphonates has recently been associated with osteonecrosis of the jaw and dose-dependent increases in micro-crack accumulation in animals. Although these observations are the subject of ongoing discussions, it is timely to discuss whether the over-suppression of bone turnover below premenopausal levels is really our ultimate goal when defining the success criteria for antiresorptive agents. In this review, the implications of high and excessively low bone turnover of endogenous origin for bone quality, fracture risk and integrity of the jaw are discussed. In addition, animal and clinical research revealing initial findings regarding the potential adverse effects of drug-induced suppression of bone remodeling are summarised. The inhibition of bone resorption, which is either transient between doses (e.g. with calcitonin) or does not exceed premenopausal levels (with hormone replacement therapy or selective estrogen receptor modulators), is preferable because it not only provides similar antifracture efficacy but can also assist in the maintenance of the dynamic repair of micro-cracks/micro-fractures.
Association of adiposity indices with bone density and bone turnover in the Chinese population.
Wang, J; Yan, D; Hou, X; Chen, P; Sun, Q; Bao, Y; Hu, C; Zhang, Z; Jia, W
2017-09-01
Associations of adiposity indices with bone mineral density (BMD) and bone turnover markers were evaluated in Chinese participants. Body mass index, fat mass, and lean mass are positively related to BMD in both genders. Subcutaneous fat area was proved to be negatively associated with BMD and positively correlated with osteocalcin in postmenopausal females. Obesity is highly associated with osteoporosis, but the effect of adipose tissue on bone is contradictory. Our study aimed to assess the associations of adiposity indices with bone mineral density (BMD) and bone turnover markers (BTMs) in the Chinese population. Our study recruited 5215 participants from the Shanghai area, evaluated related anthropometric and biochemical traits in all participants, tested serum BTMs, calculated fat distribution using magnetic resonance imaging (MRI) images and image analysis software, and tested BMD with dual-energy X-ray absorptiometry. When controlled for age, all adiposity indices were positively correlated with BMD of all sites for both genders. As for the stepwise regression analysis, body mass index (BMI), fat mass, and lean mass were protective for BMD in both genders. However, subcutaneous fat area (SFA) was detrimental for BMD of the L1-4 and femoral neck (β ± SE -0.0742 ± 0.0174; p = 2.11E-05; β ± SE -0.0612 ± 0.0147; p = 3.07E-05). Adiposity indices showed a negative correlation with BTMs adjusting for age, especially with osteocalcin. In the stepwise regression analysis, fat mass was negatively correlated with osteocalcin (β ± SE -8.8712 ± 1.4902; p = 4.17E-09) and lean mass showed a negative correlation with N-terminal procollagen of type I collagen (PINP) for males (β ± SE -0.3169 ± 0.0917; p = 0.0006). In females, BMI and visceral fat area (VFA) were all negatively associated with osteocalcin (β ± SE -0.4423 ± 0.0663; p = 2.85E-11; β ± SE -7.1982 ± 1.1094; p = 9.95E-11), while SFA showed a positive correlation with osteocalcin (β ± SE: 5.5993 ± 1.1753; p = 1.98E-06). BMI, fat mass, and lean mass are proved to be beneficial for BMD in both males and postmenopausal females. SFA is negatively associated with BMD and positively correlated with osteocalcin in postmenopausal females.
Motil, Kathleen J.; Barrish, Judy O.; Neul, Jeffrey L.; Glaze, Daniel G.
2014-01-01
Objective To characterize biomarkers of bone turnover and their relation with bone mineral mass in a cross-sectional cohort of females with Rett syndrome (RTT) and to examine the role of dietary, biochemical, hormonal, and inflammatory factors on bone mineral mass and bone biomarkers in this disorder. Methods Total body bone mineral content (BMC) and density (BMD) were determined by dual-energy x-ray absorptiometry. Dietary nutrient intakes were determined from 3-day food records. Biomarkers of bone turnover, bone metabolites, vitamin D metabolites, hormones, and inflammatory markers were measured by standard clinical laboratory methods. Results Serum osteocalcin, bone alkaline phosphatase, and C-telopeptide showed significant inverse relations with age in the RTT cohort. Mean osteocalcin concentrations were significantly lower and mean bone alkaline phosphatase concentrations were significantly higher for individual age groups in the RTT cohort than mean values for their respective age ranges in the reference population. Significant inverse associations were identified between urinary calcium losses, expressed as calcium:creatinine ratios, and total body BMC and BMD z-scores. Dietary protein, calcium, and phosphorus intakes, expressed as a proportion of Dietary Reference Intakes for age and gender, showed significant positive associations with total body BMD z-scores. Conclusion This study suggests decreased bone formation rather than increased bone resorption may explain in part the deficits in bone mineral mass in RTT and that attention to the adequacy of dietary protein, calcium and phosphorus intakes may offer an opportunity to improve bone health in RTT. PMID:25144778
Kouda, Katsuyasu; Ohara, Kumiko; Nakamura, Harunobu; Fujita, Yuki; Iki, Masayuki
2017-03-01
Although most adult bone mass is acquired before adolescence, only a few studies have assessed bone turnover markers in children. Thus, the utility of bone markers to evaluate and predict bone mineral accrual in children is unclear. The present study assessed the association between serum bone markers at 11 years of age and subsequent changes in bone gain. Information on bone minerals and bone markers at baseline and at the 3-year follow-up were obtained from 121 children who registered as fifth-grade students in 2010, in Hamamatsu, Japan. Whole-body bone mineral content (WBBMC) and whole-body bone mineral density (WBBMD) were measured using dual-energy X-ray absorptiometry. Boys showed significant (P < 0.05) positive relationships between intact osteocalcin at baseline and WBBMC at follow-up (β = 0.24), between tartrate-resistant acid phosphatase isoenzyme 5b (TRAP5b) and WBBMC (β = 0.34), and between TRAP5b and WBBMD (β = 0.34), after adjusting for potential confounding factors. In girls, adjusted means of 3-year gain in both WBBMC and WBBMD significantly increased from the lowest to highest quartiles of type 1 collagen cross-linked C-terminal telopeptide. In boys, adjusted means of 3-year gain in both WBBMC and WBBMD significantly increased from the lowest to highest quartiles of TRAP5b. Children with a high concentration of bone turnover markers tended to exhibit substantial accrual of bone minerals. These results suggest that serum levels of circulating biomarkers at age 11 predict subsequent bone mineral accrual.
Kuipers, Allison L; Kammerer, Candace M; Pratt, J Howard; Bunker, Clareann H; Wheeler, Victor W; Patrick, Alan L; Zmuda, Joseph M
2016-05-01
Hypertension is associated with accelerated bone loss, and the renin-angiotensin-aldosterone system is a key regulator of blood pressure. Although components of this system are expressed in human bone cells, studies in humans are sparse. Thus, we studied the association of circulating renin and aldosterone with osteocalcin and bone mineral density. We recruited 373 African ancestry family members without regard to health status from 6 probands (mean family size: 62 and relative pairs: 1687). Participants underwent a clinical examination, dual-energy x-ray absorptiometry, and quantitative computed tomographic scans. Renin activity, aldosterone concentration, and osteocalcin were measured in fasting blood samples. Aldosterone/renin ratio was calculated as aldosterone concentration/renin activity. All models were analyzed using pedigree-based variance components methods. Full models included adjustment for age, sex, body composition, comorbidities, lifestyle factors, blood pressure, and antihypertensive medication. Higher renin activity was significantly associated with lower total osteocalcin and with higher trabecular bone mineral density (both P<0.01). There were also significant genetic correlations between renin activity and whole-body bone mineral density. There were no associations with aldosterone concentration in any model and results for aldosterone/renin ratio were similar to those for renin activity. This is the first study to report a significant association between renin activity and a marker of bone turnover and bone mineral density in generally healthy individuals. Also, there is evidence for significant genetic pleiotropy and, thus, there may be a shared biological mechanism underlying both the renin-angiotensin-aldosterone system and bone metabolism that is independent of hypertension. © 2016 American Heart Association, Inc.
Kuipers, Allison L; Kammerer, Candace M; Howard Pratt, J; Bunker, Clareann H; Wheeler, Victor W; Patrick, Alan L; Zmuda, Joseph M
2016-01-01
Hypertension is associated with accelerated bone loss and the renin-angiotensin-aldosterone system is a key regulator of blood pressure. Although components of this system are expressed in human bone cells, studies in humans are sparse. Thus, we studied the association of circulating renin and aldosterone with osteocalcin and bone mineral density. We recruited 373 African ancestry family members without regard to health status from 6 probands (mean family size: 62; relative pairs: 1687). Participants underwent a clinical exam, dual energy x-ray absorptiometry, and quantitative computed tomography scans. Renin activity, aldosterone concentration, and osteocalcin were measured in fasting blood samples. Aldosterone to renin ratio was calculated as aldosterone concentration/renin activity. All models were analyzed using pedigree-based variance components methods. Full models included adjustment for age, sex, body composition, co-morbidities, lifestyle factors, blood pressure, and antihypertensive medication. Higher renin activity was significantly associated with lower total osteocalcin and with higher trabecular bone mineral density (both p<0.01). There were also significant genetic correlations between renin activity and whole body bone mineral density. There were no associations with aldosterone concentration in any model and results for aldosterone to renin ratio were similar to those for renin activity. This is the first study to report a significant association between renin activity and a marker of bone turnover and bone mineral density in generally healthy individuals. Also, there is evidence for significant genetic pleiotropy and, thus, there may be a shared biologic mechanism underlying both the renin-angiotensin-aldosterone system and bone metabolism that is independent of hypertension. PMID:26975710
Biochemical markers of bone turnover in diagnosis of myeloma bone disease.
Dizdar, Omer; Barista, Ibrahim; Kalyoncu, Umut; Karadag, Omer; Hascelik, Gulsen; Cila, Aysenur; Pinar, Asli; Celik, Ismail; Kars, Ayse; Tekuzman, Gulten
2007-03-01
This study was designed to explore the value of markers of bone turnover, macrophage inflammatory protein-1alpha (MIP-1alpha), and osteopontin (OPN) in the diagnosis of myeloma bone disease. Twenty-five patients with newly diagnosed and untreated multiple myeloma (MM), and 22 age-, sex-, and bone mineral density-matched control subjects were enrolled. Levels of MIP-1alpha, OPN, carboxy-terminal telopeptide of Type-1 collagen (C-telopeptide or Ctx), deoxypyridinoline (DPD), Type-1 collagen propeptide (T1Pro), and bone-specific alkaline phosphatase (BALP) were assessed in both groups. Twenty-two of the patients had bone involvement documented by skeletal surveys and lumbar spinal magnetic resonance imaging. Levels of serum Ctx, OPN, MIP-1alpha, and urine DPD were significantly higher in MM patients with bone disease than in controls (P<0.01). Serum Ctx levels were elevated in 90.9% of patients with MM and 40.9% of controls (P<0.001). Urine DPD levels were elevated in 90.4% of the patients and 31.8% of the controls (P<0.001). The serum OPN and MIP-1alpha levels of the patients were significantly correlated with beta2-microglobulin and lactate dehydrogenase levels (P<0.05). Our study indicates that Ctx and DPD are sensitive markers of bone disease in MM, and higher than normal values suggest presence of bone disease rather than benign osteoporosis in MM. The utility of OPN and MIP-1alpha needs to be further investigated. Copyright (c) 2006 Wiley-Liss, Inc.
Niu, Yinbo; Li, Chenrui; Pan, Yalei; Li, Yuhua; Kong, Xianghe; Wang, Shuo; Zhai, YuanKun; Wu, Xianglong; Fan, Wutu; Mei, Qibing
2015-01-01
Radix Dipsaci is a kidney tonifying herbal medicine with a long history of safe use for treatment of bone fractures and joint diseases in China. Previous studies have shown that Radix Dipsaci extract (RDE) could prevent bone loss in ovariectomized rats. This study investigates the effect of RDE against bone loss induced by simulated microgravity. A hindlimb unloading rat model was established to determine the effect of RDE on bone mineral density and bone microarchitecture. Twenty-four male Sprague-Dawley rats were divided into four groups (n = 6 per group): control (CON), hindlimb unloading with vehicle (HLU), hindlimb unloading treated with alendronate (HLU-ALN, 2.0 mg/kg/d), and hindlimb unloading treated with RDE (HLU-RDE, 500 mg/kg/d). RDE or ALN was administrated orally for 4 weeks. Treatment with RDE had a positive effect on mechanical strength, BMD, BMC, bone turnover markers, and the changes in urinary calcium and phosphorus excretion. MicroCT analysis showed that RDE significantly prevented the reduction of the bone volume fraction, connectivity density, trabecular number, thickness, tissue mineral density, and tissue mineral content as well as improved the trabecular separation and structure model index. RDE was demonstrated to prevent the loss of bone mass induced by HLU treatment, which suggests the potential application of RDE in the treatment of microgravity-induced bone loss.
Ochi, Yasuo; Yamada, Hiroyuki; Mori, Hiroshi; Nakanishi, Yasutomo; Nishikawa, Satoshi; Kayasuga, Ryoji; Kawada, Naoki; Kunishige, Akiko; Hashimoto, Yasuaki; Tanaka, Makoto; Sugitani, Masafumi; Kawabata, Kazuhito
2014-08-01
This study examined the effect of ONO-5334, a cathepsin K inhibitor, on bone turnover, mineral density (BMD), mechanical strength and microstructure in ovariectomized (OVX) cynomolgus monkeys. Vehicle, ONO-5334 (3, 10 or 30 mg/kg) or alendronate (0.5 mg/kg) was orally administered for eight months to sham- and OVX-operated monkeys. ONO-5334 dose-dependently suppressed OVX-induced increase in bone turnover markers (urinary C-terminal cross-linking telopeptide of type I collagen (CTX) and serum osteocalcin). At the dose of 30 mg/kg, ONO-5334 maintained urinary CTX at nearly zero level and kept serum osteocalcin around the level of the sham animals. Marker levels in the alendronate-treated animals were similar to those in the sham animals throughout the study. ONO-5334 dose-dependently reversed the effect of OVX on vertebral BMD as measured by dual-energy X-ray absorptiometry (DXA) with improvement of bone mechanical strength. Both ONO-5334 and alendronate suppressed OVX-induced changes in vertebral microstructure and turnover state. In the femoral neck, peripheral quantitative computed tomography (pQCT) analysis showed that ONO-5334 increased total and cortical BMD. In particular, ONO-5334 significantly increased cortical BMD with improvement of bone mechanical strength. In microstructural analysis, alendronate suppressed OVX-induced increase in femoral mid-shaft osteonal bone formation rate (BFR) to a level below that recorded in the sham group, whereas ONO-5334 at 30 mg/kg did not suppress periosteal, osteonal and endocortical BFR. This finding supports the significant effect of ONO-5334 on cortical BMD and mechanical strength in the femoral neck. The results of this study suggest that ONO-5334 has good therapeutic potential for the treatment of osteoporosis. Copyright © 2014 Elsevier Inc. All rights reserved.
Fujiwara, Saeko; Hamaya, Etsuro; Sato, Masayo; Graham-Clarke, Peita; Flynn, Jennifer A; Burge, Russel
2014-01-01
Purpose To systematically review the literature describing the efficacy, effectiveness, and safety of raloxifene for postmenopausal Japanese women with osteoporosis or low bone mass (osteopenia). Materials and methods Medline via PubMed and Embase was systematically searched using prespecified terms. Retrieved publications were screened and included if they described randomized controlled trials or observational studies of postmenopausal Japanese women with osteoporosis or osteopenia treated with raloxifene and reported one or more outcome measures (change in bone mineral density [BMD]; fracture incidence; change in bone-turnover markers, hip structural geometry, or blood–lipid profile; occurrence of adverse events; and change in quality of life or pain). Excluded publications were case studies, editorials, letters to the editor, narrative reviews, or publications from non-peer-reviewed journals; multidrug, multicountry, or multidisease studies with no drug-, country-, or disease-level analysis; or studies of participants on dialysis. Results Of the 292 publications retrieved, 15 publications (seven randomized controlled trials, eight observational studies) were included for review. Overall findings were statistically significant increases in BMD of the lumbar spine (nine publications), but not the hip region (eight publications), a low incidence of vertebral fracture (three publications), decreases in markers of bone turnover (eleven publications), improved hip structural geometry (two publications), improved blood–lipid profiles (five publications), a low incidence of hot flushes, leg cramps, venous thromboembolism, and stroke (12 publications), and improved quality of life and pain relief (one publication). Conclusion Findings support raloxifene for reducing vertebral fracture risk by improving BMD and reducing bone turnover in postmenopausal Japanese women with osteoporosis or osteopenia. Careful consideration of fracture risk and the risk–benefit profile of antiosteoporosis medications is required when managing patients with osteoporosis. PMID:25395843
Fujiwara, Saeko; Hamaya, Etsuro; Sato, Masayo; Graham-Clarke, Peita; Flynn, Jennifer A; Burge, Russel
2014-01-01
To systematically review the literature describing the efficacy, effectiveness, and safety of raloxifene for postmenopausal Japanese women with osteoporosis or low bone mass (osteopenia). Medline via PubMed and Embase was systematically searched using prespecified terms. Retrieved publications were screened and included if they described randomized controlled trials or observational studies of postmenopausal Japanese women with osteoporosis or osteopenia treated with raloxifene and reported one or more outcome measures (change in bone mineral density [BMD]; fracture incidence; change in bone-turnover markers, hip structural geometry, or blood-lipid profile; occurrence of adverse events; and change in quality of life or pain). Excluded publications were case studies, editorials, letters to the editor, narrative reviews, or publications from non-peer-reviewed journals; multidrug, multicountry, or multidisease studies with no drug-, country-, or disease-level analysis; or studies of participants on dialysis. Of the 292 publications retrieved, 15 publications (seven randomized controlled trials, eight observational studies) were included for review. Overall findings were statistically significant increases in BMD of the lumbar spine (nine publications), but not the hip region (eight publications), a low incidence of vertebral fracture (three publications), decreases in markers of bone turnover (eleven publications), improved hip structural geometry (two publications), improved blood-lipid profiles (five publications), a low incidence of hot flushes, leg cramps, venous thromboembolism, and stroke (12 publications), and improved quality of life and pain relief (one publication). Findings support raloxifene for reducing vertebral fracture risk by improving BMD and reducing bone turnover in postmenopausal Japanese women with osteoporosis or osteopenia. Careful consideration of fracture risk and the risk-benefit profile of antiosteoporosis medications is required when managing patients with osteoporosis.
Huebner, Janet L; Bay-Jensen, Anne C; Huffman, Kim M; He, Yi; Leeming, Diana J; McDaniel, Gary E; Karsdal, Morten A; Kraus, Virginia B
2014-09-01
To evaluate joint tissue remodeling using the urinary collagen biomarkers urinary α-C-telopeptide of type I collagen (α-CTX) and urinary C-telopeptide of type II collagen (CTX-II) and to determine the association of these biomarkers with osteoarthritis (OA) severity, progression, and localized knee bone turnover. Participants (n = 149) with symptomatic and radiographic knee OA underwent fixed-flexion knee radiography at baseline and 3 years, and late-phase bone scintigraphy of both knees at baseline, which were scored semiquantitatively for osteophyte and joint space narrowing (JSN) severity and uptake intensity, with scores summed across knees. Urinary concentrations of α-CTX and CTX-II were determined by enzyme-linked immunosorbent assay. Immunohistochemical analysis of human OA knees was performed to localize the joint tissue origin of the biomarker epitopes. Urinary α-CTX concentrations correlated strongly with the intensity of bone scintigraphic uptake and with JSN progression (risk ratio 13.2) and osteophyte progression (risk ratio 3). Urinary CTX-II concentrations were strongly associated with intensity of bone scintigraphic uptake, with JSN and osteophyte severity, and with OA progression based on osteophyte score. Urinary α-CTX localized primarily to high bone turnover areas in subchondral bone. CTX-II localized to the bone-cartilage interface, the tidemark, and damaged articular cartilage. Baseline urinary α-CTX, which was localized to high turnover areas of subchondral bone, was associated with dynamic bone turnover of knees, as signified by scintigraphy, and progression of both osteophytes and JSN. Urinary CTX-II correlated with JSN and osteophyte severity and progression of osteophytes. To our knowledge, this represents the first report of serologic markers reflecting subchondral bone turnover. These collagen markers may be useful for noninvasive detection and quantification of active subchondral bone turnover and joint remodeling in knee OA. Copyright © 2014 by the American College of Rheumatology.
Role of TGF-β in a mouse model of high turnover renal osteodystrophy.
Liu, Shiguang; Song, Wenping; Boulanger, Joseph H; Tang, Wen; Sabbagh, Yves; Kelley, Brian; Gotschall, Russell; Ryan, Susan; Phillips, Lucy; Malley, Katie; Cao, Xiaohong; Xia, Tai-He; Zhen, Gehua; Cao, Xu; Ling, Hong; Dechow, Paul C; Bellido, Teresita M; Ledbetter, Steven R; Schiavi, Susan C
2014-01-01
Altered bone turnover is a key pathologic feature of chronic kidney disease-mineral and bone disorder (CKD-MBD). Expression of TGF-β1, a known regulator of bone turnover, is increased in bone biopsies from individuals with CKD. Similarly, TGF-β1 mRNA and downstream signaling is increased in bones from jck mice, a model of high-turnover renal osteodystrophy. A neutralizing anti-TGF-β antibody (1D11) was used to explore TGF-β's role in renal osteodystrophy. 1D11 administration to jck significantly attenuated elevated serum osteocalcin and type I collagen C-telopeptides. Histomorphometric analysis indicated that 1D11 administration increased bone volume and suppressed the elevated bone turnover in a dose-dependent manner. These effects were associated with reductions in osteoblast and osteoclast surface areas. Micro-computed tomography (µCT) confirmed the observed increase in trabecular bone volume and demonstrated improvements in trabecular architecture and increased cortical thickness. 1D11 administration was associated with significant reductions in expression of osteoblast marker genes (Runx2, alkaline phosphatase, osteocalcin) and the osteoclast marker gene, Trap5. Importantly, in this model, 1D11 did not improve kidney function or reduce serum parathyroid hormone (PTH) levels, indicating that 1D11 effects on bone are independent of changes in renal or parathyroid function. 1D11 also significantly attenuated high-turnover bone disease in the adenine-induced uremic rat model. Antibody administration was associated with a reduction in pSMAD2/SMAD2 in bone but not bone marrow as assessed by quantitative immunoblot analysis. Immunostaining revealed pSMAD staining in osteoblasts and osteocytes but not osteoclasts, suggesting 1D11 effects on osteoclasts may be indirect. Immunoblot and whole genome mRNA expression analysis confirmed our previous observation that repression of Wnt/β-catenin expression in bone is correlated with increased osteoclast activity in jck mice and bone biopsies from CKD patients. Furthermore, our data suggest that elevated TGF-β may contribute to the pathogenesis of high-turnover disease partially through inhibition of β-catenin signaling. © 2014 American Society for Bone and Mineral Research.
Rosen, J; Negro-Vilar, A
2002-03-01
A novel approach to the treatment of osteoporosis in men, and possibly women, is the development of selective androgen receptor modulators (SARMs) that can stimulate formation of new bone with substantially diminished proliferative activity in the prostate, as well as reduced virilizing activity in women. Over the last several years, we have developed a program to discover and develop novel, non-steroidal, orally-active selective androgen receptor modulators (SARMs) that provide improved therapeutic benefits and reduce risk and side effects. In recent studies, we have used a skeletally mature orchiectomized (ORX) male rat as an animal model of male hypogonadism for assessing the efficacy of LGD2226, a nonsteroidal, non-aromatizable, and non-5alpha-reducible SARM. We assessed the activity of LGD2226 on bone turnover, bone mass and bone strength, and also evaluated the effects exerted on classic androgen-dependent targets, such as prostate, seminal vesicles and muscle. A substantial loss of bone density was observed in ORX animals, and this loss was prevented by SARMs, as well as standard androgens. Biochemical markers of bone turnover revealed an early increase of bone resorption in androgen-deficient rats that was repressed in ORX animals treated with the oral SARM, LGD2226, during a 4-month treatment period. Differences in architectural properties and bone strength were detected by histomorphometric and mechanical analyses, demonstrating beneficial effects of LGD2226 on bone quality in androgen-deficient rats. Histomorphometric analysis of cortical bone revealed distinct anabolic activity of LGD2226 in periosteal bone. LGD2226 was able to prevent bone loss and maintain bone quality in ORX rats by stimulating bone formation, while also inhibiting bone turnover. LGD2226 also exerted anabolic activity on the levator ani muscle. Taken together, these results suggest that orally-active, non-steroidal SARMs may be useful therapeutics for both muscle and bone in elderly hypogonadal men through their anabolic activities. Since SARMs both prevent bone loss, and also stimulate formation of new bone, they may have significant advantages relative to currently used anti-resorptive therapies. Coupled with their activity in muscle and their ability to maintain or restore libido, they offer new therapeutic approaches for male and female hormone replacement.
Mechanical signaling in the development of postmenopausal osteoporosis
NASA Technical Reports Server (NTRS)
Turner, R. T.
1999-01-01
Estrogen deficiency results in increased bone turnover and net bone loss in rats as well as humans. The respective roles of bone turnover and mechanical strain in mediating estrogen deficiency-induced cancellous bone loss were investigated in ovariectomized rats. Ovariectomy resulted in increased bone turnover in long bones. However, cancellous bone was preferentially lost in the metaphysis, a site that experiences low strain energy during normal physical activity. No bone loss was observed in the epiphysis, a site experiencing higher strain energy, despite a similar increase in bone turnover. The role of mechanical strain in maintaining bone balance was investigated by altering the strain history. Mechanical strain was increased or decreased in long bones of ovariectomized rats by treadmill exercise or functional unloading, respectively. Increasing mechanical loading reduced bone loss in the metaphysis. In contrast, decreasing weight bearing accentuated bone loss in the metaphysis and resulted in bone loss in the epiphysis. Finally, administration of estrogen to ovariectomized rats reduced bone loss in unloaded limbs and prevented bone loss in the loaded limbs. These results suggest that estrogen alters the mechanosensory (mechanostat) set point for skeletal adaptation, effectively reducing the minimum strain energy levels at which bone is added. Additionally, these studies suggest that physical activity as well as endocrine status play an important role in maintenance of the female skeleton during aging.
Breastfeeding and postmenopausal osteoporosis.
Grimes, Julia P; Wimalawansa, Sunil J
2003-06-01
Bone loss associated with osteoporosis occurs with high frequency among the elderly and often results in debilitating fractures. A combination of lifestyle behaviors, genetic predisposition, and disease processes contributes to bone metabolism. Therefore, any discussion regarding bone health must address these factors. The impact of menopause on bone turnover has been generally well studied and characterized. Breastfeeding places significant stress on calcium metabolism and, as a consequence, directly influences bone metabolism. The most significant factors affecting bone mineral density (BMD) and bone metabolism are the duration and frequency of lactation, the return of menses, and pre-pregnancy weight. Although transient, lactation is associated with bone loss. As clinical guidelines and public health policies are being formulated, there is a compelling need for further investigation into the relationship of lactation, BMD, and subsequent risk of osteoporosis. Better understanding of this relationship will provide new opportunities for early intervention and ultimately help in the prevention of bone loss in postmenopausal women.
In Situ Sensor Advancements for Osteoporosis Prevention, Diagnosis, and Treatment.
Liu, Luting; Webster, Thomas J
2016-12-01
Osteoporosis is still a serious issue in healthcare, and will continue to increase due to the aging and growth of the population. Early diagnosis is the key to successfully treating many diseases. The earlier the osteoporosis is diagnosed, the more quickly people can take action to stop bone deterioration. Motivated by this, researchers and companies have begun developing smart in situ bone sensors in order to dramatically help people to monitor their bone mass density (BMD), bone strain or bone turnover markers (BTMs); promptly track early signs of osteoporosis; and even monitor the healing process following surgery or antiresorptive therapy. This paper focuses on the latest advancements in the field of bone biosensing materials and sensor technologies and how they can help now and in the future to detect disease and monitor bone health.
Huang, Wen-Hung; Lee, Shen-Yang; Weng, Cheng-Hao; Lai, Ping-Chin
2012-01-01
Background Renal transplant patients often have severe bone and mineral deficiencies. While the clinical effects of immunosuppressive agents like calcineurin inhibitors (CIs) and sirolimus on bone turnover are unclear, bisphosphonates are effective in bone recovery in these patients. Gender is significantly associated with osteoporosis and affects bone turnover, which is different in women and men. The effective gender-related site of action of bisphosphonates is unknown. Methods Initially, we enrolled 84 kidney recipients who had received their transplants at least 5 months ago; of these, 8 were excluded and 76 were finally included in the study. First bone mineral density (BMD) at the lumbar spine, hip, and femoral neck was determined using dual-energy X-ray absorptiometry (DXA) between September 2008 and March 2009. These 76 patients underwent a repeat procedure after a mean period 14 months. Immunosuppressive agents, bisphosphonates, patients' characteristics, and biochemical factors were analyzed on the basis of the BMD determined using DXA. Results After the 14-month period, the BMD of lumbar spine increased significantly (from 0.9 g/cm2 to 0.92 g/cm2, p<0.001), whereas that of the hip and femoral neck did not. Ordinal logistic regression analysis was used to show that Fosamax improved bone condition, as defined by WHO (p = 0.007). The use of immunosuppressive agents did not affect bone turnover (p>0.05). Moreover, in subgroup analysis, Fosamax increased the BMD at the lumbar spine and the hipbone in males (p = 0.028 and 0.03, respectively) but only at the lumbar spine in females (p = 0.022). Conclusion After a long periods after renal transplantation, the detrimental effects of steroid and immunosuppressive agents on bone condition diminished. Short-term Fosamax administration effectively improves BMD in these patients. The efficacy of Fosamax differed between male and female renal transplant patients. PMID:23185261
Role of TGF-β in a Mouse Model of High Turnover Renal Osteodystrophy†
Liu, Shiguang; Song, Wenping; Boulanger, Joseph H; Tang, Wen; Sabbagh, Yves; Kelley, Brian; Gotschall, Russell; Ryan, Susan; Phillips, Lucy; Malley, Katie; Cao, Xiaohong; Xia, Tai-He; Zhen, Gehua; Cao, Xu; Ling, Hong; Dechow, Paul C; Bellido, Teresita M; Ledbetter, Steven R; Schiavi, Susan C
2014-01-01
Altered bone turnover is a key pathologic feature of chronic kidney disease-mineral and bone disorder (CKD-MBD). Expression of TGF-β1, a known regulator of bone turnover, is increased in bone biopsies from individuals with CKD. Similarly, TGF-β1 mRNA and downstream signaling is increased in bones from jck mice, a model of high-turnover renal osteodystropy. A neutralizing anti-TGF-β antibody (1D11) was used to explore TGF-βs role in renal osteodystrophy. 1D11 administration to jck significantly attenuated elevated serum osteocalcin and type I collagen C-telopeptides. Histomorphometric analysis indicated that 1D11 administration increased bone volume and suppressed the elevated bone turnover in a dose-dependent manner. These effects were associated with reductions in osteoblast and osteoclast surface areas. μCT confirmed the observed increase in trabecular bone volume and demonstrated improvements in trabecular architecture and increased cortical thickness. 1D11 administration was associated with significant reductions in expression of osteoblast marker genes (Runx2, alkaline phosphatase, osteocalcin) and the osteoclast marker gene, Trap5. Importantly, in this model, 1D11 did not improve kidney function or reduce serum PTH levels indicating that 1D11 effects on bone are independent of changes in renal or parathyroid function. 1D11 also significantly attenuated high turnover bone disease in the adenine-induced uremic rat model. Antibody administration was associated with a reduction in pSMAD2/SMAD2 in bone but not bone marrow as assessed by quantitative immunoblot analysis. Immunostaining revealed pSMAD staining in osteoblasts and osteocytes but not osteoclasts, suggesting 1D11 effects on osteoclasts may be indirect. Immunoblot and whole genome mRNA expression analysis confirmed our previous observation that repression of Wnt/β catenin expression in bone is correlated with increased osteoclast activity in jck mice and bone biopsies from CKD patients. Furthermore, our data suggests that elevated TGF-β may contribute to the pathogenesis of high turnover disease partially through inhibition of β-catenin signaling. PMID:24166835
Glendenning, Paul; Chubb, S A Paul; Vasikaran, Samuel
2018-06-01
Bone turnover marker (BTMs) concentrations in blood and urine reflect bone-remodelling activity, and may be useful adjuncts in the diagnosis and management of metabolic bone diseases. Newer biomarkers, mainly bone regulatory proteins, are currently being investigated to elucidate their role in bone metabolism and disease and may in future be useful in clinical diagnosis and management of metabolic bone disease. BTM concentrations increase around menopause in women, and at a population level the degree of increase in BTMs reflect bone loss. However, lack of adequate data precludes their use in individual patients for fracture risk assessment in clinical practice. The rapid and large changes in BTMs following anti-resorptive and anabolic therapies for osteoporosis treatment indicate they may be useful for monitoring therapy in clinical practice. The offset of drug effect on BTMs could be helpful for adjudicating the duration of bisphosphonate drug holidays. BTMs may offer useful additional data in skeletal diseases that are typically characterised by increased bone remodelling: chronic kidney disease (CKD), primary hyperparathyroidism (PHPT) and Paget's disease. In CKD, bone specific alkaline phosphatase (bAP) is currently endorsed for use for the assessment of mineral bone disease. The role of BTMsin predicting the bone mineral density response to successful parathyroidectomy in PHPT shows some utility but the data are not consistent and studies are limited in size and/or duration. In Paget's disease of bone, BTMs are used to confirm diagnosis, evaluate extent of disease or degree of activity and for monitoring the response to bisphosphonate treatment. Whilst BTMs are currently used in specific clinical practice instances when investigating or managing metabolic bone disease, further data are needed to consolidate their clinical use where evidence of utility is limited. Copyright © 2018 Elsevier B.V. All rights reserved.
Lind, Thomas; Lind, P Monica; Hu, Lijuan; Melhus, Håkan
2018-04-26
The most prominent features of hypervitaminosis A in rats are spontaneous fractures and anorexia. Since caloric restriction induces alterations in bone, some effects could be secondary to loss of appetite. To clarify the mechanisms behind vitamin A-induced bone fragility it is necessary to distinguish between direct and indirect effects. In this study we compared rats fed high doses of vitamin A both with pair-fed controls, which were fed the same amount of chow as that consumed by the vitamin A group to keep food intake the same, and to controls with free access to food. In contrast to the pair-fed animals, rats in the free access group fed high doses of vitamin A for 7 days had 13% lower food intake, 15% lower body weight, and 2.7% shorter femurs compared with controls. In addition, serum biomarkers of bone turnover were reduced. Peripheral quantitative computed tomography of the femurs showed that the bone mineral content, cross sectional area, and periosteal circumference were similarly reduced in the pair-fed and free access groups. However, bone mineral density (BMD) and cortical parameters were only significantly decreased in the free access group. Our data indicate that the major direct short-term effect of high doses of vitamin A on rat bone is a reduced bone diameter, whereas the effects on bone length, serum biomarkers of bone turnover, BMD, and bone cortex appear to be mainly indirect, caused by a systemic toxicity with loss of appetite, reduced food intake, and general effects on growth.
Are bone turnover markers capable of predicting callus consolidation during bone healing?
Klein, P; Bail, H J; Schell, H; Michel, R; Amthauer, H; Bragulla, H; Duda, G N
2004-07-01
The aim of this study was to determine the ability of the following bone turnover markers to monitor the course of callus consolidation during bone healing: Carboxy-terminal propeptide of procollagen type I (PICP), skeletal alkaline phosphatase (sALP), and amino-terminal propeptide of type III procollagen (PIlINP). Since interfragmentary movements have been proven to possess the ability to document the progression of bone healing in experimental studies, correlations between bone turnover markers and interfragmentary movements in vivo were investigated. Therefore, two different types of osteosyntheses representing different mechanical situations at the fracture site were compared in an ovine osteotomy model. Blood samples were taken preoperatively and postoperatively in weekly intervals over a nine-week healing period. At the same intervals, interfragmentary movements were measured in all sheep. After nine weeks, animals were sacrificed and the tibiae were evaluated both mechanically and histologically. Wide interindividual ranges were observed for all bone turnover markers. The systemic PICP level did not increase with callus consolidation. The bone-healing model seemed to influence the systemic level of PIIINP and sALP but no general correlation between bone turnover markers and interfragmentary movements could be detected. No differences between the different types of osteosyntheses and thus the different mechanical situations were observed. All analyzed markers failed as general predictors for the course of callus consolidation during bone healing.
Low-dose estrogen therapy for prevention of osteoporosis: working our way back to monotherapy.
Richman, Susan; Edusa, Valentine; Fadiel, Ahmed; Naftolin, Frederick
2006-01-01
The risks of low bone mineral density, osteoporosis and fractures, are major concerns in postmenopausal women. Although postmenopausal hormone therapy is effective for reducing these risks, safety issues have been raised by the results of studies such as the Women's Health Initiative. Although there are scientifically valid reasons to be wary of the general applicability of the Women's Health Initiative findings, the study has underscored the continuing need for research into new forms of menopausal hormone therapy. Low-dose transdermal estrogen monotherapy can preserve bone density while relieving vasomotor symptoms. Transdermal administration may offer advantages, including lack of first-pass liver metabolism, which permits the use of lower doses and avoids a negative impact on the lipid profile. Moreover, a recently published 2-year study of ultra-low-dose transdermal estrogen monotherapy in an older population similar to that of the WHI reported significant increases in bone mineral density, accompanied by significant reductions in markers of bone turnover, with no increased risk of endometrial hyperplasia or other side effects. Additional studies are warranted to shed further light on the possible benefits of low-dose estrogen monotherapy for the prevention of bone loss in postmenopausal women.
Tejero, Sergio; Cejudo, Pilar; Quintana-Gallego, E; Sañudo, Borja; Oliva-Pascual-Vaca, A
2016-03-18
Nutritional status and daily physical activity (PA) may be an excellent tool for the maintenance of bone health in patients with cystic fibrosis (CF). To evaluate the relationship between nutritional status, daily physical activity and bone turnover in cystic fibrosis patients. A cross-sectional study of adolescent and adult patients diagnosed with clinically stable cystic fibrosis was conducted. Total body, femoral neck, and lumbar spine bone mineral density (BMD) were determined by dual energy X-ray absorptiometry and bone metabolism markers ALP, P1NP, PICP, and ß-CrossLaps. PA monitoring was assessed for 5 consecutive days using a portable device. Exercise capacity was also determined. Serum 25-hydroxyvitamin D and vitamin K were also determined in all participants. Fifty patients (median age: 24.4 years; range: 16-46) were included. BMI had positive correlation with all BMD parameters, with Spearman's coefficients ranging from 0.31 to 0.47. Total hip bone mineral density and femoral neck BMD had positive correlation with the daily time spent on moderate PA (>4.8 metabolic equivalent-minutes/day; r=0.74, p<0.001 and r=0.72 p<0.001 respectively), daily time spent on vigorous PA (>7.2 metabolic equivalent-minutes/day; r=0.45 p<0.001), body mass index (r=0.44, p=0.001), and muscle mass in limbs (r=0.41, p=0.004). Levels of carboxy-terminal propeptide of type 1 collagen were positively associated with the daily time spent on moderate (r=0.33 p=0.023) and vigorous PA (r=0.53, p<0.001). BMI and the daily time spent on moderate PA were found to be correlated with femoral neck BMD in CF patients. The association between daily PA and biochemical markers of bone formation suggests that the level of daily PA may be linked to bone health in this patient group. Further research is needed to confirm these findings.
Tangpricha, Vin; Luo, Menghua; Fernández-Estívariz, Concepción; Gu, Li H; Bazargan, Niloofar; Klapproth, Jan-Michael; Sitaraman, Shanthi V; Galloway, John R; Leader, Lorraine M; Ziegler, Thomas R
2006-01-01
Patients with short bowel syndrome (SBS) have a high prevalence of metabolic bone disease due to nutrient malabsorption and potential effects of parenteral nutrition (PN). Human growth hormone (hGH) has been shown in some studies to have anabolic effects on bone, but hGH effects on bone in patients with SBS are unknown. Adults with PN-dependent SBS underwent a 7-day period of baseline studies while receiving usual oral diet and PN and then began receiving modified diets designed to improve nutrient absorption and daily oral calcium/vitamin D supplements (1500 mg elemental calcium and 600 IU vitamin D, respectively). Subjects were randomized to receive in a double-blind manner either subcutaneous (sc) saline placebo as the control or hGH (0.1 mg/kg/d for 3 weeks, then 0.1 mg/kg 3 days a week for 8 subsequent weeks). Open-label hGH was given from week 13 to week 24 in subjects who required PN after completion of the 12-week double-blind phase. Markers of bone turnover (serum osteocalcin and urinary N-telopeptide [NTX]), vitamin D nutriture (serum calcium, 25-hydroxyvitamin D [25-OH D] and parathyroid hormone [PTH] concentrations), and intestinal calcium absorption were measured at baseline and at weeks 4 and 12. Dual x-ray absorptiometry (DXA) of the hip and spine was performed to determine bone mineral density (BMD) at baseline and weeks 12 and 24. The majority of subjects in each group exhibited evidence of vitamin D deficiency at baseline (25-OH D levels<30 ng/mL; 78% and 79% of control and hGH-treated subjects, respectively). Subjects treated with hGH demonstrated a significant increase from baseline in serum osteocalcin levels at 12 weeks (+62%; p<.05). The levels of NTX were increased over time in the hGH-treated group; however, this did not reach statistical significance. Both NTX and osteocalcin remained unchanged in control subjects. BMD of the spine and total hip was unchanged in subjects treated with placebo or hGH at 24 weeks. However, femoral neck BMD was slightly but significantly decreased in the placebo group at this time point but remained unchanged from baseline in the hGH-treated subjects. hGH therapy significantly increased markers of bone turnover during the initial 3 months of therapy and stabilized femoral neck bone mass over a 6-month period in patients with severe SBS undergoing intestinal rehabilitation.
Oheim, Ralf; Simon, Maciej J K; Steiner, Malte; Vettorazzi, Eik; Barvencik, Florian; Ignatius, Anita; Amling, Michael; Clarke, Iain J; Pogoda, Pia; Beil, F Timo
2017-04-01
Hypothalamic-pituitary disconnection (HPD) leads to low bone turnover followed by bone loss and reduced biomechanical properties in sheep. To investigate the role of peripheral hormones in this centrally induced systemic bone loss model, we planned a hormone replacement experiment. Therefore, estrogen (OHE), thyroxin (OHT) or a combination of both (OHTE) was substituted in ovariectomized HPD sheep, as both hormones are decreased in HPD sheep and are known to have a significant but yet not fully understood impact on bone metabolism. Bone turnover and structural parameters were analyzed in comparison to different control groups - untreated sheep (C), ovariectomized (O) and ovariectomized+HPD sheep (OH). We performed histomorphometric and HR-pQCT analyses nine months after the HPD procedure, as well as biomechanical testing of all ewes studied. In HPD sheep (OH) the low bone turnover led to a significant bone loss. Treatment with thyroxin alone (OHT) mainly increased bone resorption, leading to a further reduction in bone volume. In contrast, the treatment with estrogen alone (OHE) and the combined treatment with estrogen and thyroxin (OHTE) prevented HPD-induced bone loss completely. In conclusion, peripheral hormone substitution was able to prevent HPD-induced low-turnover osteoporosis in sheep. But only the treatment with estrogen alone or in combination with thyroxin was able to completely preserve bone mass and structure. These findings demonstrate the importance of peripheral hormones for a balanced bone remodeling and a physiological bone turnover. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jamieson, Jennifer A; Ryz, Natasha R; Taylor, Carla G; Weiler, Hope A
2008-08-01
New strategies to improve Ca absorption and bone health are needed to address the current state of osteoporosis prevention and management. Inulin-type fructans have shown great promise as a dietary intervention strategy, but have not yet been tested in a young female model. Our objective was to investigate the effect of long chain (LC) inulin on bone mineralization and density in growing, female rats, as well as the quality of growth. Weanling Sprague-Dawley rats were assigned to inulin or cellulose treatments for either 4 or 8 weeks. Growth was measured weekly and quality of growth assessed using fat pad weights and dual-energy X-ray absorptiometry (DXA). Whole body (WB) and selected regions were analysed for bone mineral density (BMD) and body composition by DXA. Serum markers of bone turnover were assessed by enzyme-linked immunosorbent assays. Ca and P concentrations were determined in excised femurs by inductively coupled plasma spectrometry. Feeding inulin resulted in 4 % higher femoral weight (adjusted for body weight) and 6 % less feed intake. Inulin did not affect WB or regional BMD, but was associated with a 28 % lower parametrial fat pad mass, 21 % less WB fat mass and 5 % less WB mass. In summary, LC-inulin lowered body fat mass, without consequence to bone density in growing female rats.
Schaefers, Matthias; Muysers, Christoph; Alexandersen, Peter; Christiansen, Claus
2009-01-01
Declining estrogen levels after menopause result in bone loss and increased fracture risk. This study investigated whether transdermal microdose 17beta-estradiol (E2) has efficacy and safety comparable to those of raloxifene, a selective estrogen-receptor modulator approved for the prevention and treatment of postmenopausal osteoporosis. This study involved a multicenter, randomized, double-blind, active-controlled, noninferiority trial in 500 osteopenic postmenopausal women comparing transdermal microdose E2 (0.014 mg/d) versus oral raloxifene (60 mg/d), administered for 2 years. Percent change from baseline in bone mineral density at the lumbar spine was measured after 2 years of treatment. Secondary endpoints included proportion of women with no loss of bone mineral density in lumbar spine, change in bone mineral density at hip, biochemical markers of bone turnover, and safety parameters. In the per protocol set, lumbar spine bone mineral density increased by 2.4% (95% CI, 1.9-2.9) with microdose E2 versus 3.0% (95% CI, 2.5-3.5) with raloxifene after 2 years; 77.3% of E2 recipients and 80.5% of those taking raloxifene had no bone loss in the lumbar spine. Both treatments were well tolerated. Most women (99% in the E2 group and 100% in the raloxifene group) showed no histological evidence of endometrial stimulation after 2 years. Mean dense area in breast mammograms was 19.8% in the E2 group versus 19.0% in the raloxifene group after 2 years. Transdermal microdose E2 was similarly effective as raloxifene in preventing bone loss at the lumbar spine. Both treatments were well tolerated, with no clinically significant effect on endometrium or breast density.
A link between central kynurenine metabolism and bone strength in rats with chronic kidney disease
Pawlak, Krystyna; Oksztulska-Kolanek, Ewa; Domaniewski, Tomasz; Znorko, Beata; Karbowska, Malgorzata; Citkowska, Aleksandra; Rogalska, Joanna; Roszczenko, Alicja; Brzoska, Malgorzata M.; Pawlak, Dariusz
2017-01-01
Background Disturbances in mineral and bone metabolism represent one of the most complex complications of chronic kidney disease (CKD). Serotonin, a monoamine synthesized from tryptophan, may play a potential role in bone metabolism. Brain-derived serotonin exerts a positive effect on the bone structure by limiting bone resorption and enhancing bone formation. Tryptophan is the precursor not only to the serotonin but also and primarily to kynurenine metabolites. The ultimate aim of the present study was to determine the association between central kynurenine metabolism and biomechanical as well as geometrical properties of bone in the experimental model of the early stage of CKD. Methods Thirty-three Wistar rats were randomly divided into two groups (sham-operated and subtotal nephrectomized animals). Three months after surgery, serum samples were obtained for the determination of biochemical parameters, bone turnover biomarkers, and kynurenine pathway metabolites; tibias were collected for bone biomechanical, bone geometrical, and bone mass density analysis; brains were removed and divided into five regions for the determination of kynurenine pathway metabolites. Results Subtotal nephrectomized rats presented higher serum concentrations of creatinine, urea nitrogen, and parathyroid hormone, and developed hypocalcemia. Several biomechanical and geometrical parameters were significantly elevated in rats with experimentally induced CKD. Subtotal nephrectomized rats presented significantly higher kynurenine concentrations and kynurenine/tryptophan ratio and significantly lower tryptophan levels in all studied parts of the brain. Kynurenine in the frontal cortex and tryptophan in the hypothalamus and striatum correlated positively with the main parameters of bone biomechanics and bone geometry. Discussion In addition to the complex mineral, hormone, and metabolite changes, intensified central kynurenine turnover may play an important role in the development of bone changes in the course of CKD. PMID:28439468
Huang, Tsan-Wen; Wang, Chao-Jan; Shih, Hsin-Nung; Chang, Yuhan; Huang, Kuo-Chin; Peng, Kuo-Ti; Lee, Mel S
2017-05-22
Although the loss of bone mineral density (BMD) after total hip arthroplasty (THA) is a known problem, it remains unresolved. This study prospectively examined the effect of zoledronic acid (ZA) on bone turnover and BMD after cementless THA. Between January 2010 and August 2011, 60 patients who underwent cementless THA were randomly assigned to receive either ZA infusion or placebo (0.9% normal saline only) postoperatively. ZA was administered at 2 day and 1 year postoperatively. Periprosthetic BMD in seven Gruen zones was assessed preoperatively and at given time points for 2 years. Serum markers of bone turnover, functional scales, and adverse events were recorded. Each group contained 27 patients for the final analysis. The loss of BMD across all Gruen zones (significantly in zones 1 and 7) up to 2 years postoperatively was noted in the placebo group. BMD was significantly higher in the ZA group than in the placebo group in Gruen zones 1, 2, 6, and 7 at 1 year and in Gruen zones 1, 6, and 7 at 2 years (p < 0.05). Compared with baseline measures of BMD, the ZA group had increased BMD in zones 1, 2, 4, 5, 6, and 7 at 1 year and in zones 1, 4, 6, and 7 at 2 years (p < 0.05). Serum bone-specific alkaline phosphatase and N-telopeptide of procollagen I levels were significantly increased at 6 weeks in the placebo group and decreased after 3 months in the ZA group. A transient decrease in osteocalcin level was found at 6 months in the ZA group. Functional scales and adverse events were not different between the two groups. The loss of periprosthetic BMD, especially in the proximal femur (zones 1 and 7), after cementless THA could be effectively reverted using ZA. In addition, bone turnover markers were suppressed until 2 years postoperatively following ZA administration. Chang Gung Memorial Hospital Protocol Record 98-1150A3, Prevention of Periprosthetic Bone Loss After Total Hip Replacement by Annual Bisphosphonate Therapy, has been reviewed and will be made public on ClinicalTrials.gov. NCT02838121 . Registered on 19 July, 2016.
Silverman, S L; Chines, A A; Kendler, D L; Kung, A W C; Teglbjærg, C S; Felsenberg, D; Mairon, N; Constantine, G D; Adachi, J D
2012-01-01
In this 2-year extension of a 3-year study, bazedoxifene showed sustained efficacy in preventing new vertebral fractures in postmenopausal women with osteoporosis and in preventing non-vertebral fractures in higher-risk women. Bazedoxifene significantly increased bone mineral density and reduced bone turnover versus placebo and was generally safe and well tolerated. This study evaluated the efficacy and safety of bazedoxifene for the treatment of postmenopausal osteoporosis over 5 years. A total of 4,216 postmenopausal women with osteoporosis were enrolled in this 2-year extension of a 3-year, randomized, double-blind, placebo-controlled, phase 3 trial. In the core study (N = 7,492), subjects received bazedoxifene 20 or 40 mg/day, raloxifene 60 mg/day, or placebo. The raloxifene arm was discontinued after 3 years; subjects receiving bazedoxifene 40 mg were transitioned to bazedoxifene 20 mg after 4 years. Five-year findings are reported for bazedoxifene 20 and 40/20 mg and placebo. Endpoints included incidence of new vertebral fractures (primary) and non-vertebral fractures, and changes in bone mineral density (BMD) and bone turnover markers. At 5 years, the incidence of new vertebral fractures in the intent-to-treat population was significantly lower with bazedoxifene 20 mg (4.5%) and 40/20 mg (3.9%) versus placebo (6.8%; P < 0.05), with relative risk reductions of 35% and 40%, respectively. Non-vertebral fracture incidence was similar among groups. In a subgroup of higher-risk women (n = 1,324; femoral neck T-score ≤-3.0 and/or ≥ 1 moderate or severe or ≥ 2 mild vertebral fracture[s]), bazedoxifene 20 mg reduced non-vertebral fracture risk versus placebo (37%; P = 0.06); combined data for bazedoxifene 20 and 40/20 mg reached statistical significance (34% reduction; P < 0.05). Bazedoxifene significantly increased BMD and reduced bone turnover versus placebo (P < 0.05) and was generally safe and well tolerated. The findings support a sustained anti-fracture effect of bazedoxifene on new vertebral fractures in postmenopausal osteoporotic women and on non-vertebral fractures in the higher-risk subgroup of women.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choo, Richard; Lukka, Himu; Cheung, Patrick
Purpose: Androgen deprivation therapy (ADT) has been used as an adjuvant treatment to radiation therapy (RT) for the management of locally advanced prostate carcinoma. Long-term ADT decreases bone mineral density (BMD) and increases the risk of osteoporosis. The objective of this clinical trial was to evaluate the efficacy of risedronate for the prevention of BMD loss in nonmetastatic prostate cancer patients undergoing RT plus 2 to 3 years of ADT. Methods and Materials: A double-blinded, placebo-controlled, randomized trial was conducted for nonmetastatic prostate cancer patients receiving RT plus 2 to 3 years of ADT. All had T scores > −2.5more » on dual energy x-ray absorptiometry at baseline. Patients were randomized 1:1 between risedronate and placebo for 2 years. The primary endpoints were the percent changes in the BMD of the lumbar spine at 1 and 2 years from baseline, measured by dual energy x-ray absorptiometry. Analyses of the changes in BMD and bone turnover biomarkers were carried out by comparing mean values of the intrapatient changes between the 2 arms, using standard t tests. Results: One hundred four patients were accrued between 2004 and 2007, with 52 in each arm. Mean age was 66.8 and 67.5 years for the placebo and risedronate, respectively. At 1 and 2 years, mean (±SE) BMD of the lumbar spine decreased by 5.77% ± 4.66% and 13.55% ± 6.33%, respectively, in the placebo, compared with 0.12% ± 1.29% at 1 year (P=.2485) and 0.85% ± 1.56% (P=.0583) at 2 years in the risedronate. The placebo had a significant increase in serum bone turnover biomarkers compared with the risedronate. Conclusions: Weekly oral risedronate prevented BMD loss at 2 years and resulted in significant suppression of bone turnover biomarkers for 24 months for patients receiving RT plus 2 to 3 years of ADT.« less
Bone Turnover Does Not Reflect Skeletal Aging in Older Hispanic Men with Type 2 Diabetes
NASA Technical Reports Server (NTRS)
Rianon, N.; McCormick, J.; Ambrose, C.; Smith, S. M.; Fisher-Hoch, S.
2016-01-01
The paradox of fragility fracture in the presence of non-osteoporotic bone mineral density in older patients with type 2 diabetes mellitus (DM2) makes it difficult to clinically predict fracture in this vulnerable group. Serum osteocalcin (OC), a marker of bone turnover, increases with normal skeletal aging indicating risk of fracture. However, OC has been reported to be lower in patients with DM2. An inverse association between higher glycated hemoglobin levels (HbA1c) and lower serum OC in older DM2 patients triggered discussions encouraging further investigation. A key question to be answered is whether changes in glucose metabolism is responsible for bone metabolic changes, ultimately leading to increased risk of fragility fractures in DM2 patients. While these studies were conducted among Caucasian and Asian populations, this has not been studied in Hispanic populations who suffer from a higher prevalence of DM2. The Cameron County Hispanic Cohort (CCHC) in Texas is a homogeneous Hispanic cohort known to have high prevalence of DM2 (30%). Our preliminary data from this cohort reported OC levels lower than the suggested threshold for fragility fracture in post-menopausal women. We further investigated whether bone turnover in older CCHC adults with DM2 show a normal pattern of skeletal aging. Samples and data were obtained from a nested cohort of 68 (21 men and 47 women) Hispanic older adults (=50 years) who had a diagnosis of DM2. Given high prevalence of uncontrolled DM2 in this cohort, we divided population into two groups: i) poor DM2 control with HbA1c level =8 (48% men and 38% women) and ii) good DM2 control with HbA1c level <8). A crosssectional analysis documented associations between serum OC and age adjusted HbA1c levels. There was no direct association between age and OC concentrations in our study. Higher HbA1c was associated with lower serum OC in men (odds ratio -6.5, 95% confidence interval -12.7 to - 0.3, p < 0.04). No significant associations were identified in women. Bone turnover in older Hispanic men with DM2 in our study does not reflect normal pattern of skeletal aging. It is unclear why similar results were not identified in women. We will continue to follow this cohort to investigate longitudinal trend of changes of bone turnover and its relationship with HbA1c in both men and women of this cohort.
Noninvasive markers of bone metabolism in the rhesus monkey: normal effects of age and gender
NASA Technical Reports Server (NTRS)
Cahoon, S.; Boden, S. D.; Gould, K. G.; Vailas, A. C.
1996-01-01
Measurement of bone turnover in conditions such as osteoporosis has been limited by the need for invasive iliac bone biopsy to reliably determine parameters of bone metabolism. Recent advances in the area of serum and urinary markers of bone metabolism have raised the possibility for noninvasive measurements; however, little nonhuman primate data exist for these parameters. The purpose of this experiment was to define the normal range and variability of several of the newer noninvasive bone markers which are currently under investigation in humans. The primary intent was to determine age and gender variability, as well as provide some normative data for future experiments in nonhuman primates. Twenty-four rhesus macaques were divided into equal groups of male and female according to the following age groupings: 3 years, 5-10 years, 15-20 years, and > 25 years. Urine was collected three times daily for a four-day period and measured for several markers of bone turnoverm including pyridinoline (PYD), deoxypyrodinoline (DPD), hydroxyproline, and creatinine. Bone mineral density measurements of the lumbar spine were performed at the beginning and end of the study period. Serum was also obtained at the time of bone densitometry for measurement of osteocalcin levels by radioimmunoassay. There were no significant differences in bone mineral density, urine PYD, or urine DPD based on gender. Bone density was lowest in the youngest animals, peaked in the 15-20-year group, but again decreased in the oldest animals. The osteocalcin, PYD, and DPD levels followed an inversely related pattern to bone density. The most important result was the relative age insensitivity of the ratio of PYD:DPD in monkeys up to age 20 years. Since bone density changes take months or years to become measurable and iliac biopsies are invasive, the PYD/DPD marker ratio may have important implications for rapid noninvasive measurement of the effects of potential treatments for osteoporosis in the non-human primate model.
The biological effects of tocotrienol on bone: a review on evidence from rodent models.
Chin, Kok-Yong; Ima-Nirwana, Soelaiman
2015-01-01
Osteoporosis causes significant health care and economic burden to society, leading to a relentless search for effective preventive agents. Tocotrienol, a member of the vitamin E family, has demonstrated promising potential as an osteoporosis-preventing agent. This review summarizes evidence on the effects of tocotrienol on bone in animal models. Techniques used to examine the effects of tocotrienol on bone in animals included bone histomorphometry, X-ray microtomography, dual-energy X-ray absorptiometry, bone turnover markers, bone calcium content, and biomechanical strength. Tocotrienol was shown to improve osteoblast number, bone formation, mineral deposition, and bone microarchitecture in osteopenic rats. It also decreased osteoclast number and bone erosion in the rats. Tocotrienol supplementation resulted in an improvement in bone mineral density, although biomechanical strength was not significantly altered in the rats. The beneficial effects of tocotrienol on bone can be attributed to its role as an antioxidant, anti-inflammatory agent, suppressor of the mevalonate pathway, and modulator of genes favorable to bone formation.
The biological effects of tocotrienol on bone: a review on evidence from rodent models
Chin, Kok-Yong; Ima-Nirwana, Soelaiman
2015-01-01
Osteoporosis causes significant health care and economic burden to society, leading to a relentless search for effective preventive agents. Tocotrienol, a member of the vitamin E family, has demonstrated promising potential as an osteoporosis-preventing agent. This review summarizes evidence on the effects of tocotrienol on bone in animal models. Techniques used to examine the effects of tocotrienol on bone in animals included bone histomorphometry, X-ray microtomography, dual-energy X-ray absorptiometry, bone turnover markers, bone calcium content, and biomechanical strength. Tocotrienol was shown to improve osteoblast number, bone formation, mineral deposition, and bone microarchitecture in osteopenic rats. It also decreased osteoclast number and bone erosion in the rats. Tocotrienol supplementation resulted in an improvement in bone mineral density, although biomechanical strength was not significantly altered in the rats. The beneficial effects of tocotrienol on bone can be attributed to its role as an antioxidant, anti-inflammatory agent, suppressor of the mevalonate pathway, and modulator of genes favorable to bone formation. PMID:25897211
Changes in bone turnover markers with HIV seroconversion and ART initiation
Slama, Laurence; Reddy, Susheel; Phair, John; Palella, Frank J.; Brown, Todd T.
2017-01-01
Background: Osteoporosis is common among HIV-infected persons and contributes to risk of fragility fracture. While ART initiation is associated with decreases in bone mineral density and increases in bone turnover, the impact of HIV on bone metabolism is unclear. Methods: We identified men at the Chicago site of the Multicenter AIDS Cohort Study who HIV seroconverted while under observation. Concentrations of 25-OH vitamin D, bone turnover markers [procollagen type 1 N terminal propeptide (P1NP), osteocalcin (OC), C-telopeptide (CTX)] and sclerostin were measured from stored serum obtained at pre-HIV infection, pre-ART and post-ART initiation timepoints. Mixed models, with each biomarker as an outcome, were fitted. Timepoint, age, CD4 count (cells/mm3), HIV-viral suppression, season and an age by timepoint interaction term were considered as fixed effects. Results: Data from 52 participants revealed that median duration between HIV seroconversion and ART initiation was 8.7 years (IQR 3.7–11.6). Median CD4 and plasma HIV-RNA concentrations were 445 (IQR 298.5–689) and 20 184 copies/mL (IQR 6237–64 340), respectively, at the pre-ART timepoint. Multivariate analyses demonstrated pre-HIV infection levels of OC that were higher than pre-ART levels (6.8 versus 5.7 ng/mL, P = 0.04); and pre-ART levels of sclerostin that were higher than post-ART levels (0.033 versus 0.02 ng/mL, P <0.001). No changes in P1NP, CTX and 25-OH vitamin D levels were detected. Conclusions: HIV seroconversion was associated with decreased OC levels while ART initiation was associated with decreases in sclerostin, a negative regulator of bone formation. Our results suggest that both HIV infection and ART have an impact on bone metabolism in white men. PMID:28175307
Changes in bone turnover markers with HIV seroconversion and ART initiation.
Slama, Laurence; Reddy, Susheel; Phair, John; Palella, Frank J; Brown, Todd T
2017-05-01
Osteoporosis is common among HIV-infected persons and contributes to risk of fragility fracture. While ART initiation is associated with decreases in bone mineral density and increases in bone turnover, the impact of HIV on bone metabolism is unclear. We identified men at the Chicago site of the Multicenter AIDS Cohort Study who HIV seroconverted while under observation. Concentrations of 25-OH vitamin D, bone turnover markers [procollagen type 1 N terminal propeptide (P1NP), osteocalcin (OC), C-telopeptide (CTX)] and sclerostin were measured from stored serum obtained at pre-HIV infection, pre-ART and post-ART initiation timepoints. Mixed models, with each biomarker as an outcome, were fitted. Timepoint, age, CD4 count (cells/mm 3 ), HIV-viral suppression, season and an age by timepoint interaction term were considered as fixed effects. Data from 52 participants revealed that median duration between HIV seroconversion and ART initiation was 8.7 years (IQR 3.7-11.6). Median CD4 and plasma HIV-RNA concentrations were 445 (IQR 298.5-689) and 20 184 copies/mL (IQR 6237-64 340), respectively, at the pre-ART timepoint. Multivariate analyses demonstrated pre-HIV infection levels of OC that were higher than pre-ART levels (6.8 versus 5.7 ng/mL, P = 0.04); and pre-ART levels of sclerostin that were higher than post-ART levels (0.033 versus 0.02 ng/mL, P <0.001). No changes in P1NP, CTX and 25-OH vitamin D levels were detected. HIV seroconversion was associated with decreased OC levels while ART initiation was associated with decreases in sclerostin, a negative regulator of bone formation. Our results suggest that both HIV infection and ART have an impact on bone metabolism in white men. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Arya, Nlin; Moonarmart, Walasinee; Cheewamongkolnimit, Nareerat; Keratikul, Nutcha; Poon-Iam, Sawinee; Routh, Andrew; Bumpenpol, Pitikarn; Angkawanish, Taweepoke
2015-11-01
Bone turnover markers could offer a potential alternative means for the early diagnosis of metabolic bone disease in young growing elephants although the baseline of bone turnover markers in elephant is not well established. The aim of this study was to determine any relationship between the age of captive Asian elephants (Elephas maximus) and markers of bone formation. Serum samples from 24 female Asian elephants were collected to evaluate levels of two bone formation markers, namely, osteocalcin (OC) and bone-specific alkaline phosphatase (BAP). Both intact and N-terminal midfragment OC and BAP were negatively correlated with age. The findings demonstrate that younger elephants have a higher rate of bone turnover than older elephants. Use of these and additional bone markers could lead to the establishment of validated protocols for the monitoring of bone disease in elephants. Copyright © 2015 Elsevier Ltd. All rights reserved.
Maria, Sifat; Swanson, Mark H.; Enderby, Larry T.; D'Amico, Frank; Enderby, Brianna; Samsonraj, Rebekah M.; Dudakovic, Amel; van Wijnen, Andre J.; Witt-Enderby, Paula A.
2017-01-01
This one-year double blind randomized control trial assessed the effects of nightly melatonin, strontium (citrate), vitamin D3 and vitamin K2 (MK7; MSDK) on bone mineral density (BMD) and quality of life (QOL) in postmenopausal osteopenic women (ages 49-75). Compared to placebo, MSDK treatment increased BMD in lumbar spine (4.3%) and left femoral neck (2.2%), with an upward trend for total left hip (p=0.069). MSDK increased serum P1NP levels and reduced bone turnover (CTx:P1NP). Psychometric analyses indicated that mood and sleep quality improved for the MSDK group. MSDK-exposed human mesenchymal stem cells (hMSCs) and human peripheral blood monocytes (hPBMCs) plated in transwells or layered demonstrated increases in osteoblastogenesis, decreases in osteoclastogenesis, increases in OPG (TNFRSF11B) and decreases in RANKL (TNFSF11) levels. In transwell osteoblasts, MSDK increased pERK1/2 (MAPK1/MAPK3) and RUNX2 levels; decreased ERK5 (MAPK7); and did not affect the expression of NFκB (NFKB1) and β1integrin (ITGB1). In layered osteoblasts, MSDK also decreased expression of the metabolic proteins PPARγ (PPARG) and GLUT4 (SLC2A4). In adipose-derived human MSCs, MSDK induced osteoblastogenesis. These findings provide both clinical and mechanistic support for the use of MSDK for the prevention or treatment of osteopenia, osteoporosis or other bone-related diseases. PMID:28130552
Maria, Sifat; Swanson, Mark H; Enderby, Larry T; D'Amico, Frank; Enderby, Brianna; Samsonraj, Rebekah M; Dudakovic, Amel; van Wijnen, Andre J; Witt-Enderby, Paula A
2017-01-26
This one-year double blind randomized control trial assessed the effects of nightly melatonin, strontium (citrate), vitamin D3 and vitamin K2 (MK7; MSDK) on bone mineral density (BMD) and quality of life (QOL) in postmenopausal osteopenic women (ages 49-75). Compared to placebo, MSDK treatment increased BMD in lumbar spine (4.3%) and left femoral neck (2.2%), with an upward trend for total left hip (p=0.069). MSDK increased serum P1NP levels and reduced bone turnover (CTx:P1NP). Psychometric analyses indicated that mood and sleep quality improved for the MSDK group. MSDK-exposed human mesenchymal stem cells (hMSCs) and human peripheral blood monocytes (hPBMCs) plated in transwells or layered demonstrated increases in osteoblastogenesis, decreases in osteoclastogenesis, increases in OPG (TNFRSF11B) and decreases in RANKL (TNFSF11) levels. In transwell osteoblasts, MSDK increased pERK1/2 (MAPK1/MAPK3) and RUNX2 levels; decreased ERK5 (MAPK7); and did not affect the expression of NFκB (NFKB1) and β1integrin (ITGB1). In layered osteoblasts, MSDK also decreased expression of the metabolic proteins PPARγ (PPARG) and GLUT4 (SLC2A4). In adipose-derived human MSCs, MSDK induced osteoblastogenesis. These findings provide both clinical and mechanistic support for the use of MSDK for the prevention or treatment of osteopenia, osteoporosis or other bone-related diseases.
Hough, F S; Pierroz, D D; Cooper, C; Ferrari, S L
2016-04-01
Subjects with type 1 diabetes mellitus (T1DM) have decreased bone mineral density and an up to sixfold increase in fracture risk. Yet bone fragility is not commonly regarded as another unique complication of diabetes. Both animals with experimentally induced insulin deficiency syndromes and patients with T1DM have impaired osteoblastic bone formation, with or without increased bone resorption. Insulin/IGF1 deficiency appears to be a major pathogenetic mechanism involved, along with glucose toxicity, marrow adiposity, inflammation, adipokine and other metabolic alterations that may all play a role on altering bone turnover. In turn, increasing physical activity in children with diabetes as well as good glycaemic control appears to provide some improvement of bone parameters, although robust clinical studies are still lacking. In this context, the role of osteoporosis drugs remains unknown. © 2016 European Society of Endocrinology.
Cianferotti, Luisella; Bertoldo, Francesco; Carini, Marco; Kanis, John A.; Lapini, Alberto; Longo, Nicola; Martorana, Giuseppe; Mirone, Vincenzo; Reginster, Jean-Yves; Rizzoli, Rene; Brandi, Maria Luisa
2017-01-01
Androgen deprivation therapy is commonly employed for the treatment of non-metastatic prostate cancer as primary or adjuvant treatment. The skeleton is greatly compromised in men with prostate cancer during androgen deprivation therapy because of the lack of androgens and estrogens, which are trophic factors for bone. Men receiving androgen deprivation therapy sustain variable degrees of bone loss with an increased risk of fragility fractures. Several bone antiresorptive agents have been tested in randomized controlled trials in these patients. Oral bisphosphonates, such as alendronate and risedronate, and intravenous bisphosphonates, such as pamidronate and zoledronic acid, have been shown to increase bone density and decrease the risk of fractures in men receiving androgen deprivation therapy. Denosumab, a fully monoclonal antibody that inhibits osteoclastic-mediated bone resorption, is also effective in increasing bone mineral density and reducing fracture rates in these patients. The assessment of fracture risk, T-score and/or the evaluation of prevalent fragility fractures are mandatory for the selection of patients who will benefit from antiresorptive therapy. In the future, new agents modulating bone turnover and skeletal muscle metabolism will be available for testing in these subjects. PMID:29088899
Cianferotti, Luisella; Bertoldo, Francesco; Carini, Marco; Kanis, John A; Lapini, Alberto; Longo, Nicola; Martorana, Giuseppe; Mirone, Vincenzo; Reginster, Jean-Yves; Rizzoli, Rene; Brandi, Maria Luisa
2017-09-26
Androgen deprivation therapy is commonly employed for the treatment of non-metastatic prostate cancer as primary or adjuvant treatment. The skeleton is greatly compromised in men with prostate cancer during androgen deprivation therapy because of the lack of androgens and estrogens, which are trophic factors for bone. Men receiving androgen deprivation therapy sustain variable degrees of bone loss with an increased risk of fragility fractures. Several bone antiresorptive agents have been tested in randomized controlled trials in these patients. Oral bisphosphonates, such as alendronate and risedronate, and intravenous bisphosphonates, such as pamidronate and zoledronic acid, have been shown to increase bone density and decrease the risk of fractures in men receiving androgen deprivation therapy. Denosumab, a fully monoclonal antibody that inhibits osteoclastic-mediated bone resorption, is also effective in increasing bone mineral density and reducing fracture rates in these patients. The assessment of fracture risk, T-score and/or the evaluation of prevalent fragility fractures are mandatory for the selection of patients who will benefit from antiresorptive therapy. In the future, new agents modulating bone turnover and skeletal muscle metabolism will be available for testing in these subjects.
Mendonça, Maira L.; Batista, Sérgio L.; Nogueira-Barbosa, Marcello H.; Salmon, Carlos E.G.; de Paula, Francisco J.A.
2016-01-01
OBJECTIVES: Bone marrow adipose tissue has been associated with low bone mineral density. However, no data exist regarding marrow adipose tissue in primary hyperparathyroidism, a disorder associated with bone loss in conditions of high bone turnover. The objective of the present study was to investigate the relationship between marrow adipose tissue, bone mass and parathyroid hormone. The influence of osteocalcin on the homeostasis model assessment of insulin resistance was also evaluated. METHODS: This was a cross-sectional study conducted at a university hospital, involving 18 patients with primary hyperparathyroidism (PHPT) and 21 controls (CG). Bone mass was assessed by dual-energy x-ray absorptiometry and marrow adipose tissue was assessed by 1H magnetic resonance spectroscopy. The biochemical evaluation included the determination of parathyroid hormone, osteocalcin, glucose and insulin levels. RESULTS: A negative association was found between the bone mass at the 1/3 radius and parathyroid hormone levels (r = -0.69; p<0.01). Marrow adipose tissue was not significantly increased in patients (CG = 32.8±11.2% vs PHPT = 38.6±12%). The serum levels of osteocalcin were higher in patients (CG = 8.6±3.6 ng/mL vs PHPT = 36.5±38.4 ng/mL; p<0.005), but no associations were observed between osteocalcin and insulin or between insulin and both marrow adipose tissue and bone mass. CONCLUSION: These results suggest that the increment of adipogenesis in the bone marrow microenvironment under conditions of high bone turnover due to primary hyperparathyroidism is limited. Despite the increased serum levels of osteocalcin due to primary hyperparathyroidism, these patients tend to have impaired insulin sensitivity. PMID:27626477
Development, validation and characterization of a novel mouse model of Adynamic Bone Disease (ABD).
Ng, Adeline H; Willett, Thomas L; Alman, Benjamin A; Grynpas, Marc D
2014-11-01
The etiology of Adynamic Bone Disease (ABD) is poorly understood but the hallmark of ABD is a lack of bone turnover. ABD occurs in renal osteodystrophy (ROD) and is suspected to occur in elderly patients on long-term anti-resorptive therapy. A major clinical concern of ABD is diminished bone quality and an increased fracture risk. To our knowledge, experimental animal models for ABD other than ROD-ABD have not been developed or studied. The objectives of this study were to develop a mouse model of ABD without the complications of renal ablation, and to characterize changes in bone quality in ABD relative to controls. To re-create the adynamic bone condition, 4-month old female Col2.3Δtk mice were treated with ganciclovir to specifically ablate osteoblasts, and pamidronate was used to inhibit osteoclastic resorption. Four groups of animals were used to characterize bone quality in ABD: Normal bone controls, No Formation controls, No Resorption controls, and an Adynamic group. After a 6-week treatment period, the animals were sacrificed and the bones were harvested for analyses. Bone quality assessments were conducted using established techniques including bone histology, quantitative backscattered electron imaging (qBEI), dual energy X-ray absorptiometry (DXA), microcomputed tomography (microCT), and biomechanical testing. Histomorphometry confirmed osteoblast-related hallmarks of ABD in our mouse model. Bone formation was near complete suppression in the No Formation and Adynamic specimens. Inhibition of bone resorption in the Adynamic group was confirmed by tartrate-resistant acid phosphatase (TRAP) stain. Normal bone mineral density and architecture were maintained in the Adynamic group, whereas the No Formation group showed a reduction in bone mineral content and trabecular thickness relative to the Adynamic group. As expected, the No Formation group had a more hypomineralized profile and the Adynamic group had a higher mean mineralization profile that is similar to suppressed bone turnover in human. This data confirms successful replication of the adynamic bone condition in a mouse without the complication of renal ablation. Our approach is the first model of ABD that uses pharmacological manipulation in a transgenic mouse to mimic the bone cellular dynamics observed in the human ABD condition. We plan to use our mouse model to investigate the adynamic bone condition in aging and to study changes to bone quality and fracture risk as a consequence of over-suppressed bone turnover. Copyright © 2014 Elsevier Inc. All rights reserved.
Tsourdi, E; Wallaschofski, H; Rauner, M; Nauck, M; Pietzner, M; Rettig, R; Ittermann, T; Völzke, H; Völker, U; Hofbauer, L C; Hannemann, A
2016-02-01
In two large German population-based cohorts, we showed positive associations between serum thyrotropin (TSH) concentrations and the Fracture Risk Assessment score (FRAX) in men and positive associations between TSH concentrations and bone turnover markers in women. The role of thyroid hormones on bone stiffness and turnover is poorly defined. Existing studies are confounded by differences in design and small sample size. We assessed the association between TSH serum concentrations and bone stiffness and turnover in the SHIP cohorts, which are two population-based cohorts from a region in Northern Germany comprising 2654 men and women and 3261 men and women, respectively. We calculated the bone stiffness index using quantitative ultrasound (QUS) at the calcaneus, employed FRAX score for assessment of major osteoporotic fractures, and measured bone turnover markers, N-terminal propeptide of type I procollagen (P1NP), bone-specific alkaline phosphatase (BAP), osteocalcin, and type I collagen cross-linked C-telopeptide (CTX) in all subjects and sclerostin in a representative subgroup. There was no association between TSH concentrations and the stiffness index in both genders. In men, TSH correlated positively with the FRAX score both over the whole TSH range (p < 0.01) and within the reference TSH range (p < 0.01). There were positive associations between TSH concentrations and P1NP, BAP, osteocalcin, and CTX (p < 0.01) in women but not in men. There was no significant association between TSH and sclerostin levels. TSH serum concentrations are associated with gender-specific changes in bone turnover and stiffness.
Saetung, Sunee; Chailurkit, La-or; Ongphiphadhanakul, Boonsong
2010-07-01
Mechanical loadings by active exercise or passive low amplitude vibration have been demonstrated to enhance bone mass or delay bone loss. Traditional Thai massage can be anabolic to bone due to the application of physical loading on the body in a rhythmic fashion. To explore the skeletal effect of Thai traditional massage by examining the changes in biochemical markers of bone turnover immediately after the massage. Subjects consisted of 30 healthy females aged 20-40 years. Each subject received Thai traditional massage for 2 hours by a single masseuse. Bone mineral density (BMD) at baseline was measured by dual-energy X-ray absorptiometry (DEXA). C-terminal telopeptide of type 1 collagen (CTx-I) and total procollagen type 1 amino-terminal propeptide (P1NP) were determined by electrochemiluminescence immunoassay. There was a 4.8% increase in serum P1NP concentrations after massage (median 43.4 ng/ml vs. 41.3 ng/ml, p < 0.05). Serum CTx-I also decreased after massage (median 2-hour vs. baseline 0.29 ng/ml vs. 0.31 ng/ml, p < 0.05). There was a nearly significant negative correlation between the percentage change in serum P1NP and BMD at the total femur (r = -0.37, p = 0.056) whereas the statistically significant correlation disappeared between percentage change in bone turnover and the other sites of BMD. Thai traditional massage induces acute changes in bone formation and resorption markers. Study on the more prolonged effects of Thai traditional massage is warranted to explore its implication in the enhancement of bone health.
Negredo, Eugènia; Diez-Pérez, Adolfo; Bonjoch, Anna; Domingo, Pere; Pérez-Álvarez, Núria; Gutierrez, Mar; Mateo, Gracia; Puig, Jordi; Echeverría, Patricia; Escrig, Roser; Clotet, Bonaventura
2015-07-01
Tenofovir is involved in accelerated bone mineral density (BMD) loss. We recently published a hip BMD improvement at week 48 [+2.1% (95% CI: -0.6, 4.7) (P = 0.043)] in HIV-infected patients with osteopenia/osteoporosis randomized to switch from tenofovir to abacavir (n = 26), although without reaching statistical significance compared with those who maintained tenofovir (n = 28). Here, we present changes at week 48 in bone markers [C-terminal telopeptide of collagen type 1 (CTX), osteocalcin and procollagen type 1 N propeptide (P1NP)] as well as in circulating levels of three proteins involved in bone regulation [osteoprotegerin, receptor activator for NF-κB ligand (RANKL) and sclerostin, a selective regulator of bone formation through the Wnt pathway] in 44 of these patients. χ(2) or Fisher and Student t-tests were performed according to the distribution of the variables. Bone markers decreased only in the abacavir group [mean (SD) CTX changed from 0.543 (0.495) to 0.301 (0.306) ng/mL; mean (SD) osteocalcin changed from 23.72 (22.20) to 13.95 (12.40) ng/mL; and mean (SD) P1NP changed from 54.68 (54.52) to 28.65 (27.48) ng/mL (P < 0.001 in all cases)], reaching statistical significance between the groups at week 48. Osteoprotegerin did not vary, but sclerostin significantly increased in the abacavir group [from 29.53 (27.91) to 35.56 (34.59) pmol/L, P = 0.002]. No significant differences in osteoprotegerin and sclerostin were detected between the groups at week 48. RANKL values were below the limit of detection in all samples. The switch from tenofovir to abacavir seems to induce a positive effect on bone tissue, since bone turnover markers decreased. In addition, circulating sclerostin levels increased, a change associated with improved bone properties. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Kraemer, Bernhard; Schneider, Silke; Rothmund, Ralf; Fehm, Tanja; Wallwiener, Diethelm; Solomayer, Erich-Franz
2012-04-01
There are conflicting opinions in the literature about whether pregnancy influences maternal bone density or osteoporosis development. The study aim was to investigate whether there is a significant alteration in maternal bone density during normal pregnancy. Bone mass of 200 pregnant women aged 22-42 years was measured twice with quantitative ultrasonometry (QUS) of the heel (Os calcaneum). The first measurement was performed between the 10th and 22nd week of pregnancy, follow-up of 149 women took place 0-9 days postpartum. A questionnaire focusing on data affecting bone metabolism and bone turnover was handed out at the first visit. Median reduction in speed of sound (SOS) was 11 m/s at follow-up indicating a decline of the stiffness during pregnancy. No significant correlation was found between lactation period and the obtained values for stiffness, SOS, T score and Z score. For broadband ultrasonographic attenuation, there was a statistically significant difference (p < 0.05) between women who had and had not breastfed. Parameters from patients with a family history of osteoporosis (n = 30) compared to patients without did not reveal statistical significance during pregnancy. Glucocorticoid therapy, nicotine consumption, physical exercise and nutrition was not statistically significant (p > 0.05). SOS value of women with a twin pregnancy was different over the study period (p < 0.05). A reduction in bone mass is possible during pregnancy. Routine evaluation of the bone density in all pregnant women does not seem to be justified; however, it is reasonable in women who present with risk factors. These women could be screened with QUS.
Genetic effects on bone mass and turnover-relevance to black/white differences.
Parfitt, A M
1997-08-01
The mass of a bone is given by its volume and its apparent density--mass per unit external volume. Most measurements of so-called density are of mass incompletely normalized by some index of bone size. Genes control about 60% to 75% of the variance of peak bone mass/density and a much smaller proportion of the variance in rate of loss. Genetic influence on bone mass/density are mediated in large part by body size, bone size, and muscle mass. Most of the fifty-fold increase in bone mass from birth to maturity is due to bone growth, which is linked to muscle growth and bodily growth. Three-D apparent bone density in the vertebrae increases about 15% during the pubertal growth spurt. The genetic potential for bone accumulation can be frustrated by insufficient calcium intake, disruption of the calendar of puberty and inadequate physical activity. The growing skeleton is much more responsive than the mature skeleton to the osteotrophic effect of exercise, which is mediated by the detection of deviations from a target value for strain, and orchestration of cellular responses that restore the target value, processes collectively termed the mechanostat. Production of metaphyseal cancellous bone and growth in length are both linked to endochondral ossification, which is driven by growth plate cartilage cell proliferation. Production of diaphyseal cortical bone and growth in width are both linked to periosteal apposition, which is driven by osteoblast precursor proliferation. During adolescence trabeculae and cortices become thicker by net endosteal apposition, which increases apparent density. Two lines of evidence support a genetic basis for black/white differences in bone mass. First, the magnitude (10% to 40%) is incommensurate with known nongenetic factors. Second, the difference is already evident in the fetus and increases progressively during growth, especially in adolescence; the difference in peak bone mass persists throughout life. The genetic determination of bone mass is mediated by two classes of gene. The first regulates growth of the body, including muscles and bones, under the control of a master gene or set of genes whose products function as the sizostat. The second regulates the increase in apparent bone density in response to load bearing, under the control of a master gene or set of genes whose products function as the mechanostat.
Osteoporosis and Osteopathy Markers in Patients with Mastocytosis
Alpay Kanıtez, Nilüfer; Erer, Burak; Doğan, Öner; Büyükbabani, Nesimi; Baykal, Can; Sindel, Dilşad; Tanakol, Refik; Yavuz, Akif Selim
2015-01-01
Objective: Osteoporosis, osteosclerosis, and lytic bone lesions have been observed in patients with systemic mastocytosis (SM). We examined bone mineral density (BMD) biochemical turnover markers and serum tryptase levels in SM, which is considered a rare disease. Materials and Methods: Seventeen adult patients (5 females, 12 males; median age: 33 years, range: 20-64) with mastocytosis were included in this study. We investigated the value of quantitative ultrasound (QUS) of the calcaneus in the assessment of BMD in SM patients, as well as BMD of the lumbar spine (L1-L4), femoral neck, and distal radius using dual energy x-ray absorptiometry (DXA) and plasma tryptase levels, biochemical markers of bone turnover. Results: At lumbar spine L1-L4, the femoral neck, and the distal radius or as calcaneus stiffness, 12 of 17 patients had T-scores of less than -1 at least at 1 site, reflecting osteopenia. Three of 17 patients had T-scores showing osteoporosis (T-score <-2.5). There was no relationship between DXA and bone lesion severity. We also found a significant positive correlation between tryptase levels and disease severity, as well as between disease severity and pyridinoline (p<0.01 by Spearman’s test). Conclusion: DXA and calcaneal QUS may not be appropriate techniques to assess bone involvement in SM patients because of the effects of osteosclerosis. This study further shows that the osteoclastic marker pyridinoline is helpful in patients with severe disease activity and sclerotic bone lesions to show bone demineralization. PMID:25805674
Cavalier, E; Bergmann, P; Bruyère, O; Delanaye, P; Durnez, A; Devogelaer, J-P; Ferrari, S L; Gielen, E; Goemaere, S; Kaufman, J-M; Toukap, A Nzeusseu; Reginster, J-Y; Rousseau, A-F; Rozenberg, S; Scheen, A J; Body, J-J
2016-07-01
The exact role of biochemical markers of bone turnover in the management of metabolic bone diseases remains a topic of controversy. In this consensus paper, the Belgian Bone Club aimed to provide a state of the art on the use of these biomarkers in different clinical or physiological situations like in postmenopausal women, osteoporosis in men, in elderly patients, in patients suffering from bone metastasis, in patients with chronic renal failure, in pregnant or lactating women, in intensive care patients, and in diabetics. We also gave our considerations on the analytical issues linked to the use of these biomarkers, on potential new emerging biomarkers, and on the use of bone turnover biomarkers in the follow-up of patients treated with new drugs for osteoporosis.
Capozzi, Anna; Lello, Stefano; Pontecorvi, Alfredo
2014-06-01
There is great interest in new treatments of osteoporosis owing to general ageing of population and increased risk for fragility fractures in the elderly. Current therapies show a good efficacy in improving bone quality and bone density, but, in spite of a certain reduction in fracture rate, according to each treatment, the problem of osteoporotic fractures is yet far from to be solved. Moreover, some treatments may produce different side effects. Denosumab (Dmab), a receptor activator of nuclear factor kappa-B ligand (RANKL)-inhibitor, is an agent recently introduced in clinical practice for treatment of osteoporosis of postmenopausal women. Dmab has improved bone mineral density and prevented new vertebral and non-vertebral fractures with a similar efficacy in comparison with alendronate. Many clinical studies showed Dmab produces also significant improvement versus placebo in bone quality as indicated by decreasing markers of bone turnover. Patients using Dmab reported less risk of AFF (Atypical Femoral Fractures) and ONJ (Osteonecrosis of the Jaw) with an increased number of cellulitis. Here, we review articles using Dmab for female post-menopausal osteoporosis.
Emerging treatments for postmenopausal osteoporosis – focus on denosumab
Geusens, Piet
2009-01-01
The pathway of the receptor activator of the nuclear factor κB ligand (RANKL), RANK and osteoprotegerin (OPG) plays a central role in coupling bone formation and resorption during normal bone turnover and in a wide spectrum of diseases characterized by disturbed bone remodeling, increased bone resorption and bone destruction (osteoporosis, Paget’s disease of bone, rheumatoid arthritis [RA], metastatic bone disease). Clinical trials indicate that denosumab, a RANKL-specific recombinant humanized monoclonal antibody, is effective in suppressing bone resorption, resulting in increase in bone mineral density (BMD) in post-menopausal women with low BMD, and has the potential to prevent progression of erosions in RA and of skeletal-related events in metastatic bone disease. The effects on fracture reduction in postmenopausal osteoporosis are awaited from the recently finished FREEDOM study. In clinical trials with denosumab, overall adverse events were similar to placebo or comparators, indicating a favorable safety profile in these diseases, which until now have been available up to 4 years, but data on long-term safety will be needed. PMID:19554095
McGee, Meghan E; Maki, Aaron J; Johnson, Steven E; Nelson, O Lynne; Robbins, Charles T; Donahue, Seth W
2008-02-01
Disuse uncouples bone formation from resorption, leading to increased porosity, decreased bone geometrical properties, and decreased bone mineral content which compromises bone mechanical properties and increases fracture risk. However, black bear bone properties are not adversely affected by aging despite annual periods of disuse (i.e., hibernation), which suggests that bears either prevent bone loss during disuse or lose bone and subsequently recover it at a faster rate than other animals. Here we show decreased cortical bone turnover during hibernation with balanced formation and resorption in grizzly bear femurs. Hibernating grizzly bear femurs were less porous and more mineralized, and did not demonstrate any changes in cortical bone geometry or whole bone mechanical properties compared to active grizzly bear femurs. The activation frequency of intracortical remodeling was 75% lower during hibernation than during periods of physical activity, but the normalized mineral apposition rate was unchanged. These data indicate that bone turnover decreases during hibernation, but osteons continue to refill at normal rates. There were no changes in regional variation of porosity, geometry, or remodeling indices in femurs from hibernating bears, indicating that hibernation did not preferentially affect one region of the cortex. Thus, grizzly bears prevent bone loss during disuse by decreasing bone turnover and maintaining balanced formation and resorption, which preserves bone structure and strength. These results support the idea that bears possess a biological mechanism to prevent disuse osteoporosis.
Bone metabolism and arterial stiffness after renal transplantation.
Cseprekál, Orsolya; Kis, Eva; Dégi, Arianna A; Kerti, Andrea; Szabó, Attila J; Reusz, György S
2014-01-01
To assess the relationship between bone and vascular disease and its changes over time after renal transplantation. Metabolic bone disease (MBD) is common in chronic kidney disease (CKD) and is associated with cardiovascular (CV) disease. Following transplantation (Tx), improvement in CV disease has been reported; however, data regarding changes in bone disease remain controversial. Bone turnover and arterial stiffness (pulse wave velocity (PWV)) were assessed in 47 Tx patients (38 (3-191) months after Tx). Bone alkaline phosphatase (BALP), osteocalcin (OC) and beta-crosslaps were significantly higher in Tx patients, and decreased significantly after one year. There was a negative correlation between BALP, OC and steroid administered (r = -0.35; r = -0.36 respectively). PWV increased in the Tx group (1.15 SD). In patients with a follow up of <24 months, PWV was correlated with BALP and beta-crosslaps (r=0.53; r = 0.69 respectively) while in the ≥24 months group, PWV was correlated with cholesterol (r=0.38). Increased bone turnover and arterial stiffness are present following kidney transplantation. While bone turnover decreases with time, arterial stiffness correlates initially with bone turnover, after which the influence of cholesterol becomes significant. Non-invasive estimation of bone metabolism and arterial stiffness may help to assess CKD-MBD following renal transplantation.
Is cortical bone hip? What determines cortical bone properties?
Epstein, Sol
2007-07-01
Increased bone turnover may produce a disturbance in bone structure which may result in fracture. In cortical bone, both reduction in turnover and increase in hip bone mineral density (BMD) may be necessary to decrease hip fracture risk and may require relatively greater proportionate changes than for trabecular bone. It should also be noted that increased porosity produces disproportionate reduction in bone strength, and studies have shown that increased cortical porosity and decreased cortical thickness are associated with hip fracture. Continued studies for determining the causes of bone strength and deterioration show distinct promise. Osteocyte viability has been observed to be an indicator of bone strength, with viability as the result of maintaining physiological levels of loading and osteocyte apoptosis as the result of a decrease in loading. Osteocyte apoptosis and decrease are major factors in the bone loss and fracture associated with aging. Both the osteocyte and periosteal cell layer are assuming greater importance in the process of maintaining skeletal integrity as our knowledge of these cells expand, as well being a target for pharmacological agents to reduce fracture especially in cortical bone. The bisphosphonate alendronate has been seen to have a positive effect on cortical bone by allowing customary periosteal growth, while reducing the rate of endocortical bone remodeling and slowing bone loss from the endocortical surface. Risedronate treatment effects were attributed to decrease in bone resorption and thus a decrease in fracture risk. Ibandronate has been seen to increase BMD as the spine and femur as well as a reduced incidence of new vertebral fractures and non vertebral on subset post hoc analysis. And treatment with the anabolic agent PTH(1-34) documented modeling and remodelling of quiescent and active bone surfaces. Receptor activator of nuclear factor kappa B ligand (RANKL) plays a key role in bone destruction, and the human monoclonal antibody denosumab binds to RANKL, inhibiting its action and thus improving BMD significantly.
The skeletal consequences of thyrotoxicosis.
Nicholls, Jonathan J; Brassill, Mary Jane; Williams, Graham R; Bassett, J H Duncan
2012-06-01
Euthyroid status is essential for normal skeletal development and the maintenance of adult bone structure and strength. Established thyrotoxicosis has long been recognised as a cause of high bone turnover osteoporosis and fracture but more recent studies have suggested that subclinical hyperthyroidism and long-term suppressive doses of thyroxine (T4) may also result in decreased bone mineral density (BMD) and an increased risk of fragility fracture, particularly in postmenopausal women. Furthermore, large population studies of euthyroid individuals have demonstrated that a hypothalamic-pituitary-thyroid axis set point at the upper end of the normal reference range is associated with reduced BMD and increased fracture susceptibility. Despite these findings, the cellular and molecular mechanisms of thyroid hormone action in bone remain controversial and incompletely understood. In this review, we discuss the role of thyroid hormones in bone and the skeletal consequences of hyperthyroidism.
Denosumab: an investigational drug for the management of postmenopausal osteoporosis
Lewiecki, E Michael
2008-01-01
Denosumab (AMG 162) is an investigational fully human monoclonal antibody with a high affinity and specificity for receptor activator of nuclear factor-κB ligand (RANKL), a cytokine member of the tumor necrosis factor family. RANKL, the principal mediator of osteoclastic bone resorption, plays a major role in the pathogenesis of postmenopausal osteoporosis and other skeletal disorders associated with bone loss. Denosumab inhibits the action of RANKL, thereby reducing the differentiation, activity, and survival of osteoclasts, and lowering the rate of bone resorption. Clinical trials have shown that denosumab increases bone mineral density (BMD) and reduces bone turnover in postmenopausal women with low BMD. Studies to evaluate the fracture risk benefit and long-term safety of denosumab in women with postmenopausal osteoporosis (PMO) are ongoing. Denosumab is a potential treatment for PMO and other skeletal disorders. PMID:19707445
Sato, Reiichiro; Onda, Ken; Kato, Hajime; Ochiai, Hideharu; Kawai, Kazuhiro; Iriki, Tsunenori; Kaneko, Kazuyuki; Yamazaki, Yukio; Wada, Yasunori
2013-08-01
Various biochemical markers help to evaluate the state of bone turnover in humans and could be used during the peri-parturient period in dairy cows when calcium (Ca) metabolism changes dramatically. To investigate this, the peri-partum characteristics of serum bone-specific alkaline phosphatase (BAP) and urinary deoxypyridinoline (DPD) were investigated. Both serum BAP activity and urinary DPD concentrations were increased and demonstrated wide variability in younger animals, and these findings were consistent with other bone turnover markers. Around the time of parturition, serum Ca concentration and serum BAP activity in multiparous cows were significantly lower than in primiparous cows, but urinary DPD concentration was unchanged. The use of BAP as a bone formation marker appears to be valuable for evaluating bone remodelling status in cows, but the specificity of the test needs to be confirmed. The DPD/BAP ratio around parturition demonstrated a clear difference in bone turnover status between the two parity groups with multiparous cows demonstrating increased signs of bone resorption compared with primiparous cows, corresponding to the Ca requirement for milk production. In future studies, the applicability of the ratio of bone resorption marker to bone formation marker should be evaluated for bone turnover assessment. Copyright © 2013 Elsevier Ltd. All rights reserved.
Dalle Carbonare, L; Bertoldo, F; Lo Cascio, V
2009-01-01
Bisphosphonates are the most commonly prescribed medications for the treatment of osteoporosis. Despite evidence supporting the anti-fracture efficacy of aminobisphosphonates approximately 50% of patients do not follow their prescribed treatment regimen and/or discontinue treatment within the first year. Poor compliance is associated with negative outcomes, including increased fracture risk. Tolerability and safety are among the causes of poor compliance. Intravenous bisphosphonates avoids the gastrointestial intolerance and the complex dosing instruction of the oral route ensuring full compliance which may provide improved efficacy. However, there are some concerns regarding potent intravenous bisphosphonates as zoledronic acid with respect to tolerability, mainly the acute phase response and to safety, mainly a theoretical risk of over suppression of bone turnover, renal toxicity and osteonecrosis of the jaw. In the HORIZON study, 152 patients on active treatment (82) or placebo (70) underwent to a bone biopsy after double tetracycline labeling. Bone biopsies (iliac crest) were obtained at the final visit at month 36, 1 year after the last infusion. The biopsies were analyzed by histomorphometry on bone sections and by micro-CT (microCT) analysis. One hundred forthy-three biopsies (76 zoledronic acid, 67 placebo) had at least one microCT parameter measured and 111 were available for quantitative histomorphometry (59 zoledronic acid, 52 placebo). Micro-CT analysis of bone structure revealed higher trabecular bone volume (BV/TV), decreased trabecular separation (Tb.Sp), and a strong trend towards improvement in connectivity density in biopsies obtained from patients treated with zoledronic acid, indicating preservation of trabecular bone structure with respect to placebo. Histomorphometric analysis obtained from patients treated with zoledronic acid exhibited reduction of bone turnover, as suggested by decreased activation frequency (Ac.F) by 63%, mineralizing surface (MS/BS), bone formation rate (BFR/BV). In addition, mineral appositional rate (MAR), reflecting the bone-forming capacity of osteoblastic teams at the bone multicellular unit (BMU) level, was significantly higher in patients on active treatment. No sign of excessive suppression of bone turnover or mineralization impairment was detected, confirming the safety of the treatment with intravenous zoledronic acid once a year. These interesting findings are discussed in the article, particularly in terms of new histomorphometric results and clinical findings supporting the tolerability and safety of zoledronic acid.
USDA-ARS?s Scientific Manuscript database
Bariatric surgery is associated with increased bone turnover. The mechanisms involved are unclear but may involve nutrition, mechanical unloading, altered secretion of gastrointestinal and adipose hormones and changes in inflammatory status leading to weight loss induced bone loss. We assessed marke...
2009-01-01
Alterations of bone metabolism have been observed in numerous studies of HIV-infected patients. Sex steroids are known to profoundly influence bone mass and bone turnover. Hypogonadism is common in HIV-infection. Therefore, we performed a cross sectional study of 80 male HIV-infected patients without wasting syndrome, and 20 healthy male controls, in whom we analyzed urine and serum samples for both calciotropic hormones and markers of bone metabolism and of endocrine testicular function. Bone mineral density (BMD) was assessed by dual-energy X-ray absorptiometry both in the lumbar spine and Ward's triangle of the left hip. None of the patients received highly-active-antiretroviral-therapy (HAART). Compared to eugonadal HIV-infected patients, subjects with hypogonadism (n = 32; 40%) showed statistically significant decrease of serum osteocalcin (p < 0.05) and elevated urinary excretion of crosslinks (p < 0.05). However, we found 13 and 15, respectively, patients with osteopenia (t-score -1.0 to -2.5 SD below normal) of the lumbar spine. The dissociation between bone formation and resorption and the reduction of of BMD (p < 0.05) is stronger expressed in patients with hypogonadism. Habitual hypogonadism appears to be of additional relevance for bone metabolism of male HIV-positive patients prior to HAART. PMID:19258214
Osteopenia in anorexia nervosa: specific mechanisms of bone loss.
Lennkh, C; de Zwaan, M; Bailer, U; Strnad, A; Nagy, C; el-Giamal, N; Wiesnagrotzki, S; Vytiska, E; Huber, J; Kasper, S
1999-01-01
Osteopenia is a well recognized medical complication of anorexia nervosa (AN). The mechanism of bone loss is not fully understood and there is uncertainty about its management. New markers of bone turnover have been developed. C-terminal type 1 propeptide (PICP) is a measure of bone formation and urinary pyridinolines such as deoxypyridinoline (DPYRX) and serum carboxyterminal crosslinked telopeptide (ICTP) are markers of bone resorption. The aim of this study was to examine these bone markers in patients with AN. Twenty female patients with AN and 12 healthy controls were included in the study. Bone mineral density (BMD) of AN patients was measured by dual energy X-ray absorptiometry (DEXA). Lumbar bone density was significantly reduced in the AN group compared to standardised values of thirty year old adults (t-score 83.2%, S.D. 12.1). Femoral neck bone density showed an even greater reduction (t-score 79.4%, S.D. 13.5). We found a significant negative correlation between femoral BMD and the duration of the illness. Femoral BMD correlated significantly with minimal body weight (r(16) = 0.504, p = 0.033). The markers of bone resorption were significantly higher in the patients with AN compared to the values of the control group (ICTP t(30) = -2.15, p = 0.04, DPYRX t(25) = -2.26, p = 0.033), whereas the markers of bone formation did not differ significantly between the groups. AN appears to be a low turn over state associated with increased bone resorption without concomitant bone formation. This pattern differs from osteopenia in menopausal women and should, therefore, lead to the development of specific therapeutic strategies in AN associated osteopenia. Hormone replacement therapy as well as calcium and vitamine D-supplementation are so far discussed controversially. Long-term treatment studies are warranted.
Selective Serotonin Reuptake Inhibitors (SSRIs) and Markers of Bone Turnover in Men.
Williams, Lana J; Berk, Michael; Hodge, Jason M; Kotowicz, Mark A; Stuart, Amanda L; Chandrasekaran, Vinoomika; Cleminson, Jasmine; Pasco, Julie A
2018-02-13
Selective serotonin reuptake inhibitors (SSRIs) have been shown to have a clinically significant impact on bone metabolism. To explore this further, we aimed to determine whether these agents are associated with serum markers of bone turnover utilising a population-based sample of men (n = 1138; 20-96 year) participating in the Geelong Osteoporosis Study. Blood samples were obtained and the bone resorption marker, C-telopeptide (CTx) and formation marker, type 1 procollagen amino-terminal-propeptide (PINP) were measured. Anthropometry and socio-economic status (SES) were determined and information on medication use and lifestyle was obtained via questionnaire. Lifetime mood disorders were assessed using semi-structured clinical interviews. Thirty-seven (3.3%) men reported using SSRIs. Age was an effect modifier in the association between SSRIs and markers of bone turnover. Among younger men (20-60 year; n = 557), adjusted mean CTx and PINP values were 12.4% [16.7 (95% CI 14.6-18.8) vs 19.1 (95% CI 18.7-19.4) pg/ml, p = 0.03] and 13.6% [5.6 (95% CI 4.9-6.3) vs 6.4 (95% CI 6.3-6.6) pg/ml, p = 0.02] lower among SSRI users compared to non-users, respectively. No differences in SSRI use and markers of bone turnover were detected among older men (61-94 year; all p > 0.05). These patterns persisted after further adjustment for activity, alcohol, smoking, SES, depression, bone active medications and other antidepressants. Our data suggest that SSRI use is associated with alterations in bone turnover markers among younger men. The observed decreases in both CTx and PINP are likely to contribute to a low bone turnover state and increased skeletal fragility with this potential imbalance between formation and resorption resulting in subsequent bone loss.
Simonavice, Emily; Liu, Pei-Yang; Ilich, Jasminka Z; Kim, Jeong-Su; Arjmandi, Bahram; Panton, Lynn B
2014-06-01
The purpose of this study was to examine the effects of resistance training (RT) and dried plum (DP) consumption on strength, body composition, blood markers of bone, and inflammation in breast cancer survivors (BCS). Twenty-three BCS (RT, n = 12; RT+DP, n = 11), aged 64 ± 7 years, were evaluated at baseline and after 6 months of intervention on the following: muscular strength (chest press and leg extension) via 1-repetition maximums (1RMs); body composition, specifically bone mineral density (BMD) by dual energy X-ray absorptiometry; biochemical markers of bone turnover (bone-specific alkaline phosphatase (BAP), tartrate resistant acid phosphatase (TRAP-5b)); and inflammation (C-reactive protein (CRP)). Target RT prescription was 2 days/week of 10 exercises, including 2 sets of 8-12 repetitions at ∼60%-80% of 1RM. RT+DP also consumed 90 g of DP daily. There were no baseline differences between groups or any group-by-time interactions for any of the variables. BCS increased upper (p < 0.05) (RT: 64 ± 14 to 80 ± 17 kg; RT+DP: 72 ± 23 to 91 ± 20 kg) and lower (p < 0.05) (RT: 69 ± 20 to 87 ± 28 kg; RT+DP: 78 ± 19 to 100 ± 21 kg) body strength. Body composition and BMD improvements were not observed. TRAP-5b decreased in the RT group (p < 0.05) (4.55 ± 1.57 to 4.04 ± 1.63 U/L) and the RT+DP group (p = 0.07) (5.10 ± 2.75 to 4.27 ± 2.03 U/L). Changes in BAP and CRP were not observed. RT was effective for improving biochemical markers of bone turnover and muscular strength in BCS. A longer and higher intensity intervention may be needed to reveal the true effects of RT and DP on body composition and biochemical markers of inflammation.
Weaver, Connie M; Legette, Leecole L
2010-07-01
Equol, a product of intestinal metabolism of daidzein, is chemically similar to estrogen (without the lipophilic moiety) and has higher estrogen receptor-beta binding affinity than its parent precursor. In 2004, a long-term, randomized controlled trial that characterized postmenopausal women by their equol-producing status showed stronger advantages to lumbar spine bone mineral density (BMD) in equol- compared with nonequol-producers. Subsequent studies have related equol status of participants to change in bone turnover markers or BMD in response to soy isoflavone interventions. To our knowledge, we are the first to prescreen women for equol-producing status prior to initiating an intervention. In menopausal Western women, equol status did not affect the modest, but significant, reduction in bone resorption achieved with a soy isoflavone intervention.
Glycemic Control and Bone Turnover in Older Mexican Americans with Type 2 Diabetes
Smith, Scott M.; Lee, MinJae; Pervin, Hannah; Musgrave, Paul; Watt, Gordon P.; Nader, Shahla; Khosla, Sundeep; Ambrose, Catherine G.; McCormick, Joseph B.; Fisher-Hoch, Susan P.
2018-01-01
Altered bone quality, caused by underlying metabolic changes of type 2 diabetes (T2D), has been hypothesized to cause altered bone strength and turnover leading to increased fracture risk in T2D patients. Current understanding about changes in bone turnover markers in T2D patients is mainly based on studies focused on Caucasian men and women. However, Hispanic populations have the highest prevalence of both T2D and osteoporosis in the US. We investigated associations of glycemic control (in terms of glycated hemoglobin [HbA1c]) and bone turnover rate in 69 older (≥50 years) Mexican American Cameron County Hispanic Cohort (CCHC) participants with T2D. Multivariable analyses were conducted to assess the associations between HbA1c (%), serum osteocalcin (OC), and serum sclerostin. In agreement with published reports from other racial/ethnic populations, our study found that lower bone turnover (indicated by lower serum OC) occurred in Mexican American men with T2D who had poorer glycemic control. For the women in our study, we found no significant association between glycemic control and OC. In contrast, HbA1c was positively associated with sclerostin for women, with near significance (p = 0.07), while no association was found in men. We recommend screening Mexican American individuals with T2D, specifically those with poor glycemic control, for bone loss and fracture risk. PMID:29862008
Zuo, H L; Deng, Y; Wang, Y F; Gao, L L; Xue, W; Zhu, S Y; Ma, X; Sun, A J
2018-04-25
Objective: To explore the effect of low-dose or standard-dose conjugated equine estrogen (CEE) combined with natural progesterone or dydrogesterone on bone density in menopause syndrome women. Methods: Totally 123 patients with menopause syndrome were recruited and randomly assigned to 3 treatment groups: group A (low-dose CEE+progesterone) , group B (standard-dose CEE+progesterone) , group C (standard-dose CEE+dydrogesterone) . Using continuous sequential regimen, the duration of intervention was 12 cycles. The bone mineral density of lumbar 2-4 and neck of femur, the bone metabolic markers, the level of FSH and estradiol were examined just before the drug administration and 12 months after the beginning of experiment. Results: There were 107 cases completed the one year trial. (1) Bone density: after 12 cycles of treatment, there was no significant change in bone density in group A ( P> 0.05) ; lumbar vertebrae of group B and C increased significantly, at 3.0% and 2.1%respectively (all P< 0.05) . The bone density of left femoral neck of group C significantly increased by 2.9% ( P= 0.029) . There was no significant difference among the treatment groups at the beginning of experiment ( P> 0.05) . (2) Bone metabolic markers: after 12 cycles of treatment, the levels of calcium, phosphorus, alkaline phosphatase, Ca/Cr decreased significantly, the difference were statistically significant (all P< 0.05) . There was no significant difference among the treatment groups at the beginning of experiment ( P> 0.05) . (3) Levels of FSH and estradiol: after 12 cycles of treatment, the levels of FSH in three groups were decreased significantly (all P< 0.01) . The levels of estradiol in three groups were increased significantly (all P< 0.01) . There was no significant difference among the treatment groups at the beginning of experiment ( P> 0.05) . Conclusions: Both low-dose and standard-dose menopause hormone therapy (MHT) could elevate the level of estradiol, reduce bone turnover, prevent bone loss of postmenopausal women effectively. The standard dose of MHT could also increase the density of vertebrae and femoral neck, and generate more clinical benefits.
Efficacy and safety of minodronic acid hydrate in patients with steroid-induced osteoporosis.
Kitamura, Noboru; Shiraiwa, Hidetaka; Inomata, Hirotake; Nozaki, Takamasa; Ikumi, Natsumi; Sugiyama, Kaita; Nagasawa, Yousuke; Karasawa, Hiromi; Iwata, Mitsuhiro; Matsukawa, Yoshihiro; Takei, Masami
2018-04-01
Minodronic acid hydrate, an oral bisphosphonate, has a greater inhibitory effect on bone resorption than do other approved drugs; however, this has been studied only in patients with primary osteoporosis. Here, we administered minodronic acid hydrate to patients with steroid-induced osteoporosis who have been treated with steroids for rheumatoid arthritis or other collagen diseases, and the efficacy and safety of minodronic acid hydrate were prospectively investigated. Twenty-five patients treated in our rheumatology clinic received minodronic acid hydrate 1 mg/day. The changes in bone mineral density (BMD) and bone turnover markers were investigated at 3 and 6 months, and adverse events, including the presence or absence of an incident osteoporotic fracture, were examined over a period of 6 months. Percent changes in BMD of the lumbar spine and femur significantly increased. The values of bone turnover markers significantly decreased. There were no patients with a radiographically apparent incident fracture. Adverse events included toothache for which the patient discontinued the treatment and three cases of gastrointestinal disorder that did not lead to discontinuation, and thus minodronic acid hydrate was well tolerated. Here, we show that minodronic acid hydrate is effectively and safely used for treatment of steroid-induced osteoporosis. © 2016 Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd.
Parsons, T J; van Dusseldorp, M; Seibel, M J; van Staveren, W A
2001-01-01
Dutch adolescents who consumed a macrobiotic (vegan-type) diet in early life, demonstrate a lower relative bone mass than their omnivorous counterparts. We investigated whether subjects from the macrobiotic group showed signs of catching up with controls in terms of relative bone mass, reflected by higher levels of serum osteocalcin and alkaline phosphatase and lower levels of urinary cross-links. Group differences in calciotropic hormones and mineral excretion were also investigated. Bone measurements, blood, and urine samples were obtained from 69 macrobiotic (34 girls, 35 boys) and 99 control (57 girls, 42 boys) subjects, aged 9-15. Bone turnover markers and 1,25(OH)2D reached maximal levels at pubertal stages 3-4, and decreased thereafter. After adjusting for puberty, age, and lean body mass, no group differences were found in markers of bone turnover, 1,25(OH)2D, PTH, or calcium excretion, but phosphate excretion was 23% lower in macrobiotic girls. After adjustment for puberty, 1,25(OH)2D was positively related to osteocalcin. In summary, we found no evidence for group differences in bone turnover, or catch up in relative bone mass, which might be due to the fact that 60% of subjects were still in early stages of puberty.
Ruan, Jianwei; Gong, Xiaokang; Kong, Jinsong; Wang, Haibao; Zheng, Xin; Chen, Tao
2015-01-01
Background B vitamins (including folate, B6, and B12) supplementation can effectively and easily modify high plasma homocysteine (Hcy). However, the role of Hcy in the pathogenesis of osteoporotic fracture and bone turnover is still controversial. This meta-analysis aimed to assess the impact of B vitamin supplementation on occurrence of any osteoporotic fracture and bone turnover by pooling the results of previous studies. Material/Methods Relevant randomized controlled trials (RCTs) were searched in databases. Data integration and analysis were done by using Review Manager 5.3 (the Cochrane Collaboration). The risk ratio (RR) and corresponding 95% confidence intervals (CI) of fracture (intervention vs. control) were estimated. Changes in bone turnover indicators (continuous data), weighted mean difference (WMD), and corresponding 95% (CI) were pooled for estimation. Results Based on the results of 4 RCTs, this meta-analysis failed to identify a risk-reducing effect of daily supplementation of B vitamins on osteoporotic fracture in patients with vascular disease and with relatively normal plasma Hcy. In addition, we also did not find any positive effects of B vitamin supplementation on bone turnover. Conclusions B vitamin supplementation might not be effective in preventing fracture and improving bone turnover. However, the possible benefits in selective populations, such as populations with very high plasma Hcy and from regions without B vitamin fortification should be explored in the future. PMID:25805360
Retrospective Study of Serum Sclerostin Measurements in Bed Rest Subjects
NASA Technical Reports Server (NTRS)
Spatz, J. M.; Fields, E. E.; Yu, E. W.; Divieti, Pajevic P.; Bouxsein, M. L.; Sibonga, M. L.; Zwart, S. R.; Smith, S. M.
2011-01-01
Animal models and human studies suggest that osteocytes regulate the skeleton s response to mechanical unloading at the cellular level in part by an increase in sclerostin, an inhibitor of the anabolic Wnt pathway. However, few studies have reported changes in serum sclerostin in humans exposed to reduced mechanical loading. Thus, we determined changes in serum sclerostin and bone turnover markers in healthy adult men who participated in a controlled bed rest study. Seven healthy adult men (31 +/- 3 yrs old) underwent 90-day six-degree head down tilt bed rest at the University of Texas Medical Branch in Galveston's Institute for Translational Sciences - Clinical Research Center (ITS-CRC). Serum sclerostin, PTH, serum markers of bone turnover (bone specific alkaline phosphatase, RANKL/OPG, and osteocalcin), urinary calcium and phosphorus excretion, and 24 hour pooled urinary markers of bone resorption (NTX, DPD, PYD) were evaluated pre-bed rest (BL), bed rest day 28 (BR-28), bed rest day 60 (BR-60), and bed rest day 90 (BR-90). In addition, bone mineral density (BMD) was assessed by dual-energy X-ray absorptiometry (DXA) at BL, BR-60, and post bed rest day 5 (BR+5). Data are reported as mean +/- standard deviation. We used repeated measures ANOVA to compare baseline values to BR-28, BR-60, and BR-90. RESULTS Consistent with prior reports, BMD declined significantly (1-2% per month) at weight-bearing skeletal sites (spine, hip, femur neck, and calcaneus). Serum sclerostin levels were elevated above BL at BR-28 (+29% +/- 20%, p = 0.003), BR-60 (+42% +/- 31%, p < 0.001), and BR-90 (22% +/- 21%, p = 0.07). Serum PTH levels were reduced at BR-28 (-17% +/- 16%, p = 0.02), BR-60 (-24% +/- 14%, p = 0.03), and returned to baseline at BR-90 (-21% +/- 21%, p = 0.14). Serum bone turnover markers did not change, however urinary bone resorption markers and calcium were significantly elevated following bed rest (p < 0.01). CONCLUSION We observed an increase of serum sclerostin associated with decreased serum PTH and elevated bone resorption markers in otherwise healthy men subjected to long-term immobilization.
Smerud, K T; Dolgos, S; Olsen, I C; Åsberg, A; Sagedal, S; Reisæter, A V; Midtvedt, K; Pfeffer, P; Ueland, T; Godang, K; Bollerslev, J; Hartmann, A
2012-12-01
The clinical profile of ibandronate as add-on to calcitriol and calcium was studied in this double-blind, placebo-controlled trial of 129 renal transplant recipients with early stable renal function (≤ 28 days posttransplantation, GFR ≥ 30 mL/min). Patients were randomized to receive i.v. ibandronate 3 mg or i.v. placebo every 3 months for 12 months on top of oral calcitriol 0.25 mcg/day and calcium 500 mg b.i.d. At baseline, 10 weeks and 12 months bone mineral density (BMD) and biochemical markers of bone turnover were measured. The primary endpoint, relative change in BMD for the lumbar spine from baseline to 12 months was not different, +1.5% for ibandronate versus +0.5% for placebo (p = 0.28). Ibandronate demonstrated a significant improvement of BMD in total femur, +1.3% versus -0.5% (p = 0.01) and in the ultradistal radius, +0.6% versus -1.9% (p = 0.039). Bone formation markers were reduced by ibandronate, whereas the bone resorption marker, NTX, was reduced in both groups. Calcium and calcitriol supplementation alone showed an excellent efficacy and safety profile, virtually maintaining BMD without any loss over 12 months after renal transplantation, whereas adding ibandronate significantly improved BMD in total femur and ultradistal radius, and also suppressed biomarkers of bone turnover. Ibandronate was also well tolerated. © Copyright 2012 The American Society of Transplantation and the American Society of Transplant Surgeons.
Hygum, Katrine; Starup-Linde, Jakob; Harsløf, Torben; Vestergaard, Peter; Langdahl, Bente L
2017-03-01
To investigate the differences in bone turnover between diabetic patients and controls. A systematic review and meta-analysis. A literature search was conducted using the databases Medline at PubMed and EMBASE. The free text search terms 'diabetes mellitus' and 'bone turnover', 'sclerostin', 'RANKL', 'osteoprotegerin', 'tartrate-resistant acid' and 'TRAP' were used. Studies were eligible if they investigated bone turnover markers in patients with diabetes compared with controls. Data were extracted by two reviewers. A total of 2881 papers were identified of which 66 studies were included. Serum levels of the bone resorption marker C-terminal cross-linked telopeptide (-0.10 ng/mL (-0.12, -0.08)) and the bone formation markers osteocalcin (-2.51 ng/mL (-3.01, -2.01)) and procollagen type 1 amino terminal propeptide (-10.80 ng/mL (-12.83, -8.77)) were all lower in patients with diabetes compared with controls. Furthermore, s-tartrate-resistant acid phosphatase was decreased in patients with type 2 diabetes (-0.31 U/L (-0.56, -0.05)) compared with controls. S-sclerostin was significantly higher in patients with type 2 diabetes (14.92 pmol/L (3.12, 26.72)) and patients with type 1 diabetes (3.24 pmol/L (1.52, 4.96)) compared with controls. Also, s-osteoprotegerin was increased among patients with diabetes compared with controls (2.67 pmol/L (0.21, 5.14)). Markers of both bone formation and bone resorption are decreased in patients with diabetes. This suggests that diabetes mellitus is a state of low bone turnover, which in turn may lead to more fragile bone. Altered levels of sclerostin and osteoprotegerin may be responsible for this. © 2017 European Society of Endocrinology.
Comparative effects of dried plum and dried apple on bone in postmenopausal women.
Hooshmand, Shirin; Chai, Sheau C; Saadat, Raz L; Payton, Mark E; Brummel-Smith, Kenneth; Arjmandi, Bahram H
2011-09-01
Aside from existing drug therapies, certain lifestyle and nutritional factors are known to reduce the risk of osteoporosis. Among the nutritional factors, dried plum or prunes (Prunus domestica L.) is the most effective fruit in both preventing and reversing bone loss. The objective of the present study was to examine the extent to which dried plum reverses bone loss in osteopenic postmenopausal women. We recruited 236 women, 1-10 years postmenopausal, not on hormone replacement therapy or any other prescribed medication known to influence bone metabolism. Qualified participants (n 160) were randomly assigned to one of the two treatment groups: dried plum (100 g/d) or dried apple (comparative control). Participants received 500 mg Ca plus 400 IU (10 μg) vitamin D daily. Bone mineral density (BMD) of lumbar spine, forearm, hip and whole body was assessed at baseline and at the end of the study using dual-energy X-ray absorptiometry. Blood samples were collected at baseline, 3, 6 and 12 months to assess bone biomarkers. Physical activity recall and 1-week FFQ were obtained at baseline, 3, 6 and 12 months to examine physical activity and dietary confounders as potential covariates. Dried plum significantly increased BMD of ulna and spine in comparison with dried apple. In comparison with corresponding baseline values, only dried plum significantly decreased serum levels of bone turnover markers including bone-specific alkaline phosphatase and tartrate-resistant acid phosphatase-5b. The findings of the present study confirmed the ability of dried plum in improving BMD in postmenopausal women in part due to suppressing the rate of bone turnover.
Álvarez-Sánchez, Nuria; Álvarez-Ríos, Ana Isabel; Guerrero, Juan Miguel; García-García, Francisco José; Rodríguez-Mañas, Leocadio; Cruz-Chamorro, Ivan; Lardone, Patricia Judith; Carrillo-Vico, Antonio
2018-04-26
Homocysteine (Hcy) high levels are associated with fractures, bone resorption and an early onset of osteoporosis in elderly persons; a relationship between Hcy and bone formation has also been suggested but is still controversial. Frailty, an independent predictor of fractures and decreased bone mineral density is associated with altered bone metabolism in women. However, no previous works have studied the relationship among frailty, Hcy levels and bone turnover. We studied the association among Hcy, osteoporosis and N-terminal propeptide of type I procollagen (PINP), C-terminal telopeptide of type I collagen (β-CTX), parathyroid hormone (PTH), calcium and 25-hydroxyvitamin D (25(OH)D) in 631 Spanish women between the ages of 65-78 from the Toledo Study for Healthy Aging (TSHA) cohort, who were classified as highly functional (robust subjects) or non-robust (pre-frail or frail subjects) according to Fried's criteria. Hcy was independently associated with β-CTX in the entire population (B = 0.22; 95% CI, 0.09-0.34; p = 0.001) and in the non-robust group (B = 0.24; 95% CI, 0.09-0.39; p = 0.002). Hcy was also associated with PINP in the entire and non-robust populations, but the association was lost after including the levels of β-CTX, but not the other bone biomarkers, in the multivariate analysis. This suggests that the controversial relationship between Hcy and bone formation might be explained, at least to a certain extent, by the confounding effects of β-CTX. This work highlights the important implication of frailty status in the association between Hcy and increased bone turnover in older women. Copyright © 2018 Elsevier Inc. All rights reserved.
Madsen, Daniel H.; Jürgensen, Henrik J.; Ingvarsen, Signe; Melander, Maria C.; Albrechtsen, Reidar; Hald, Andreas; Holmbeck, Kenn; Bugge, Thomas H.; Behrendt, Niels; Engelholm, Lars H.
2013-01-01
A well-coordinated remodeling of uncalcified collagen matrices is a pre-requisite for bone development and homeostasis. Collagen turnover proceeds through different pathways, either involving extracellular reactions exclusively, or being dependent on endocytic processes. Extracellular collagen degradation requires the action of secreted or membrane attached collagenolytic proteases, whereas the alternative collagen degradation pathway proceeds intracellularly after receptor-mediated uptake and delivery to the lysosomes. In this study we have examined the functional interplay between the extracellular collagenase, MMP-2, and the endocytic collagen receptor, uPARAP, by generating mice with combined deficiency of both components. In both uPARAP-deficient and MMP-2-deficient adult mice the length of the tibia and femur was decreased, along with a reduced bone mineral density and trabecular bone quality. An additional decrease in bone length was observed when combining the two deficiencies, pointing to both components being important for the remodeling processes in long bone growth. In agreement with results found by others, a different effect of MMP-2 deficiency was observed in the distinct bone structures of the calvaria. These membranous bones were found to be thickened in MMP-2-deficient mice, an effect likely to be related to an accompanying defect in the canalicular system. Surprisingly, both of the latter defects in MMP-2-deficient mice were counteracted by concurrent uPARAP deficiency, demonstrating that the collagen receptor does not support the same matrix remodeling processes as the MMP in the growth of the skull. We conclude that both uPARAP and MMP-2 take part in matrix turnover processes important for bone growth. However, in some physiological situations, these two components do not support the same step in the growth process. PMID:23940733
Increased bone density in mice lacking the proton receptor, OGR1
Krieger, Nancy S.; Yao, Zhenqiang; Kyker-Snowman, Kelly; Kim, Min Ho; Boyce, Brendan F.; Bushinsky, David A.
2016-01-01
Chronic metabolic acidosis stimulates cell-mediated calcium efflux from bone through osteoblastic prostaglandin E2-induced stimulation of RANKL leading to increased osteoclastic bone resorption. Osteoblasts express the proton-sensing G-protein coupled receptor, OGR1, which activates IP3-mediated intracellular calcium. Proton-induced osteoblastic intracellular calcium signaling requires OGR1, suggesting OGR1 is the sensor activated during acidosis to cause bone resorption. Growing mice produce large amounts of metabolic acids which must be buffered, primarily by bone, prior to excretion by the kidney. Here we tested whether lack of OGR1 inhibits proton-induced bone resorption by measuring bone mineral density by μCT and histomorphometry in 8 week old male OGR1−/− and C57/Bl6 wild type mice. OGR1−/− mice have normal skeletal development with no atypical gross phenotype. Trabecular and cortical bone volume was increased in tibiae and vertebrae from OGR1−/−. There were increased osteoblast numbers on the cortical and trabecular surfaces of tibiae from OGR1−/− mice, increased endocortical and trabecular bone formation rates, and osteoblastic gene expression. Osteoclast numbers and surface were increased in tibiae of OGR1−/− mice. Thus, in rapidly growing mice, lack of OGR1 leads to increased bone mass with increased bone turnover and a greater increase in bone formation than resorption. This supports the important role of the proton receptor, OGR1, in the response of bone to protons. PMID:26880453
The use of Na-22 as a tracer for long-term bone mineral turnover studies.
NASA Technical Reports Server (NTRS)
Palmer, H. E.; Rieksts, G. A.; Palmer, R. F.; Gillis, M. F.
1979-01-01
Sodium-22 has been studied as a tracer for bone mineral metabolism in rats and dogs. When incorporated into bone during growth from birth to adulthood, the bone becomes uniformly tagged with Na-22, which is released through the metabolic turnover of the bone. The Na-22 not incorporated in the bone matrix is rapidly excreted within a few days when animals are fed high, but nontoxic levels of NaCl. The Na-22 tracer can be used to measure bone mineral loss in animals during space flight and in research on bone disease.
Factors associated with bone turnover and speed of sound in early and late-pubertal females.
Klentrou, Panagiota; Ludwa, Izabella A; Falk, Bareket
2011-10-01
This cross-sectional study examines whether maturity, body composition, physical activity, dietary intake, and hormonal concentrations are related to markers of bone turnover and tibial speed of sound (tSOS) in premenarcheal (n = 20, 10.1 ± 1.1 years) and postmenarcheal girls (n = 28, aged 15.0 ± 1.4 years). Somatic maturity was evaluated using years from age of peak height velocity (aPHV). Daily dietary intake was assessed with a 24-h recall interview, and moderate to very vigorous physical activity (MVPA) was measured using accelerometry. Plasma levels of 25-OH vitamin D, serum levels of insulin-like growth-factor 1 (IGF-1) and leptin, and serum levels of bone turnover markers including osteocalcin (OC), bone-specific alkaline phosphatase (BAP) and cross-linked N-teleopeptide of type I collagen (NTX) were measured using ELISA. OC, BAP, and NTX were significantly higher while IGF-1 and tSOS were lower in the premenarcheal group. The premenarcheal girls were more active and had higher daily energy intake relative to their body mass but there were no group differences in body mass index percentile. Maturity predicted 40%-57% of the variance in bone turnover markers. Additionally, daily energy intake was a significant predictor of OC, especially in the postmenarcheal group. IGF-1 and MVPA were significant predictors of BAP in the group as a whole. However, examined separately, IGF-1 was a predictor of BAP in the premenarcheal group while MVPA was a predictor in the postmenarcheal group. Adiposity and leptin were both negative predictors of tSOS, with leptin being specifically predictive in the postmenarcheal group. In conclusion, while maturity was the strongest predictor of bone markers and tSOS, dietary intake, physical activity, body composition, and hormonal factors further contribute to the variance in bone turnover and bone SOS in young Caucasian females. Further, the predicting factors of bone turnover and tSOS were different within each maturity group.
Vianna, Andre Gustavo Daher; de Lacerda, Claudio Silva; Pechmann, Luciana Muniz; Polesel, Michelle Garcia; Marino, Emerson Cestari; Borba, Victoria Zeghbi Cochenski; Barreto, Fellype de Carvalho
2017-01-01
Several antidiabetic therapies affect bone metabolism. Sulfonylureas have the lowest impact on bone among oral antidiabetics. The objective of this study is to compare the effects of vildagliptin and gliclazide modified release (MR) on bone turnover markers (BTMs) and bone mineral density (BMD) in postmenopausal women with uncontrolled type 2 diabetes (T2D). Forty-two postmenopausal women with uncontrolled T2D were randomly allocated into vildagliptin or gliclazide MR (control) groups. The primary endpoint was the change in the BTMs in months 6 and 12 compared with the baseline. The secondary endpoint was the variation in the BMD, which was assessed via dual-energy X-ray absorptiometry at the lumbar spine, femoral neck and total hip at baseline and month 12. After a 12-month treatment, the BTM serum carboxy-terminal telopeptide of type 1 collagen increased 0.001 ± 0.153 ng/mL in the vildagliptin group versus 0.008 ± 0.060 ng/mL in the gliclazide MR group ( p = 0.858). The serum osteocalcin, serum amino-terminal propeptide of procollagen type I and urinary amino-terminal telopeptide of type 1 collagen remained stable in both groups, and there was no statistically significant difference between the effect of vildagliptin and gliclazide MR on these variables. The lumbar spine BMD did not change in the vildagliptin or gliclazide MR groups after a 12-month treatment (0.000 ± 0.025 g/cm 2 versus -0.008 ± 0.036, respectively, p = 0.434). Furthermore, there was a similar lack of change in the femoral neck and total hip BMD values in both treatments. Bone turnover markers and BMD remained unchanged after a 12-month treatment in both groups, which suggests that vildagliptin has the same safety profile as gliclazide MR on bone metabolism. Trial Registration ClinicalTrials.gov number NCT01679899.
Home-based resistance training improves femoral bone mineral density in women on hormone therapy.
Judge, James Oat; Kleppinger, Alison; Kenny, Anne; Smith, Jo-Anne; Biskup, Brad; Marcella, Glenn
2005-09-01
This study tested whether moderate resistance training would improve femoral bone mineral density (BMD) in long-term users of hormone therapy with low BMD. The study was a 2-year randomized, controlled, trial (RCT) of moderate resistance training of either the lower extremity or the upper extremity. Eighty-five women participated in a 6-month observation period. The setting was center-based and home-based training. The participants were 189 women aged 59-78 years, with total femur T-scores from -0.8 to -2.8 and on hormone therapy (HT) for a minimum of 2 years (mean 11.8 years); 153 completed the trial. Lower extremity training used weight belts (mean 7.8 kg) in step-ups and chair rises; upper extremity training used elastic bands and dumbbells. Measurements were BMD and body composition [dual-energy X-ray absorptiometry (DXA)], bone turnover markers. Total femoral BMD showed a downward trend during the observation period: 0.35%+/-0.18% (P=0.14). The response to training was similar in the upper and lower groups in the primary outcomes. At 2 years, total femoral BMD increased 1.5% (95% CI 0.8%-2.2%) in the lower group and 1.8% (95% CI 1.1%-2.5%) in the upper group. Trochanter BMD increased 2.4% (95% CI 1.3%-3.5%) in the lower group and 2.5% (95% CI 1.4%-3.6%) in the upper group (for both analyses time effect P<0.001). At 1 year, a bone resorption marker (C-telopeptide) decreased 9% (P=0.04). Bone formation markers, bone-specific alkaline phosphatase, decreased 5% (P<0.001), and N-terminal type I procollagen peptide decreased 7% (P=0.01). Body composition (percent lean and percent body fat) was maintained in both groups. We concluded that long-term moderate resistance training reversed bone loss, decreased bone turnover, increased femur BMD, and maintained body composition. The similarity of response in upper and lower groups supports a systemic response rather than a site-specific response to moderate resistance training.
Suda, Hiromi Kimura
2015-10-01
Bone quality, which was defined as "the sum total of characteristics of the bone that influence the bone's resistance to fracture" at the National Institute of Health (NIH) conference in 2001, contributes to bone strength in combination with bone mass. Bone mass is often measured as bone mineral density (BMD) and, consequently, can be quantified easily. On the other hand, bone quality is composed of several factors such as bone structure, bone matrix, calcification degree, microdamage, and bone turnover, and it is not easy to obtain data for the various factors. Therefore, it is difficult to quantify bone quality. We are eager to develop new measurement methods for bone quality that make it possible to determine several factors associated with bone quality at the same time. Analytic methods based on Raman and FTIR spectroscopy have attracted a good deal of attention as they can provide a good deal of chemical information about hydroxyapatite and collagen, which are the main components of bone. A lot of studies on bone quality using Raman and FTIR imaging have been reported following the development of the two imaging systems. Thus, both Raman and FTIR imaging appear to be promising new bone morphometric techniques.
Greek-origin royal jelly improves the lipid profile of postmenopausal women.
Lambrinoudaki, Irene; Augoulea, Areti; Rizos, Demetrios; Politi, Marianna; Tsoltos, Nikolaos; Moros, Michail; Chinou, Ioanna; Graikou, Konstantia; Kouskouni, Evangelia; Kambani, Susana; Panoulis, Konstantinos; Moutsatsou, Paraskevi
2016-10-01
Menopause transition is associated with chronic conditions such as osteoporosis and cardiovascular disease. Concerns about the long-term safety of menopausal hormone therapy make alternative natural methods an appealing approach to management. The aim of this study was to examine the effect of royal jelly (RJ) on cardiovascular and bone turnover markers in clinically healthy postmenopausal women. A total of 36 postmenopausal healthy women were studied in a prospective follow-up study. Participants received 150 mg of RJ daily for three months. Circulating cardiovascular risk markers [lipid profile, antithrombin-III (ATIII), Protein C, Protein S, Plasminogen Activator Inhibitor-1 (PAI-1)] and bone turnover parameters [Total calcium, phosphate (P), parathormone (PTH), total type-1 Procollagen N-terminal (P1NP), Osteocalcin and serum collagen type 1 cross-linked C-telopeptide (CTX)] were compared between the baseline and the three-month visit. The RJ used in this study was particularly rich in medium chain fatty acids, compounds with hypolipidemic properties, which comprised 63% of the dry weight fatty content. RJ treatment resulted in a significant increase in high density lipoprotein - cholesterol (HDL-C 60.2 mg/dL ± 12.3 versus 64.7 mg/dL ± 13.9, 7.7% increase, p = 0.0003), as well as in a significant decrease in low density lipoprotein - cholesterol (LDL-C, 143.9 ± 37.5 versus 136.2 ± 32, 4.1% decrease, p = 0.011) and in total cholesterol (224.4 ± 38.6 to 216.1 ± 36.5, 3.09% decrease, p = 0.018). No statistical significant changes were found in the remaining cardiovascular or the bone turnover parameters. The intake of RJ 150 mg for three months is associated with significant improvements of the lipid profile of postmenopausal women. RJ supplementation may offer an alternative method of controlling the menopause - associated dyslipidemia.
Effects of Teriparatide Retreatment in Osteoporotic Men and Women
Finkelstein, Joel S.; Wyland, Jason J.; Leder, Benjamin Z.; Burnett-Bowie, Sherri-Ann M.; Lee, Hang; Jüppner, Harald; Neer, Robert M.
2009-01-01
Context: The stimulatory effect of teriparatide on bone mineral density (BMD) and bone turnover is initially exuberant, but then diminishes. Objective: Our objective was to determine whether retreating with teriparatide after a drug-free period can restore the initial exuberant response to teriparatide. Design and Setting: This was a planned extension of a randomized controlled trial conducted in a single university hospital. Patients and Intervention: Subjects previously participated in a 30-month randomized trial comparing the effects of alendronate (group 1), teriparatide (group 2), or both (group 3) on BMD and bone turnover in men and women with low BMD (phase 1). Subjects who completed phase 1 on their assigned therapy entered phase 2 (months 30–42), during which teriparatide was stopped in groups 2 and 3. Teriparatide was administered to all subjects during months 42 to 54 (phase 3). Main Outcome Measures: We compared changes in BMD and markers of bone turnover (serum osteocalcin, N-terminal propeptide of type 1 collagen, and N-telopeptide) between phase 1 and 3 in subjects receiving teriparatide alone. Results: Posterior-anterior and lateral spine BMD increased 12.5 ± 1.5 and 16.9 ± 1.7%, respectively, during the first 12 months of teriparatide administration and 5.2 ± 0.8 and 6.2 ± 1.8%, respectively, during teriparatide retreatment (P < 0.001 and P = 0.001). Increases in osteocalcin (P < 0.001), N-terminal propeptide of type 1 collagen (P < 0.001), and N-telopeptide (P < 0.001) were greater during the first period of teriparatide administration. Conclusion: The response to teriparatide is attenuated when readministered after a 12-month hiatus. PMID:19401368
Optimizing Bone Health in Duchenne Muscular Dystrophy.
Buckner, Jason L; Bowden, Sasigarn A; Mahan, John D
2015-01-01
Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterized by progressive muscle weakness, with eventual loss of ambulation and premature death. The approved therapy with corticosteroids improves muscle strength, prolongs ambulation, and maintains pulmonary function. However, the osteoporotic impact of chronic corticosteroid use further impairs the underlying reduced bone mass seen in DMD, leading to increased fragility fractures of long bones and vertebrae. These serious sequelae adversely affect quality of life and can impact survival. The current clinical issues relating to bone health and bone health screening methods in DMD are presented in this review. Diagnostic studies, including biochemical markers of bone turnover and bone mineral density by dual energy X-ray absorptiometry (DXA), as well as spinal imaging using densitometric lateral spinal imaging, and treatment to optimize bone health in patients with DMD are discussed. Treatment with bisphosphonates offers a method to increase bone mass in these children; oral and intravenous bisphosphonates have been used successfully although treatment is typically reserved for children with fractures and/or bone pain with low bone mass by DXA.
3H-tetracycline as a proxy for 41Ca for measuring dietary perturbations of bone resorption
NASA Astrophysics Data System (ADS)
Weaver, Connie; Cheong, Jennifer; Jackson, George; Elmore, David; McCabe, George; Martin, Berdine
2007-06-01
Our group is interested in evaluating early effects of dietary interventions on bone loss. Postmenopausal women lose bone following reduction in estrogen which leads to increased risk of fracture. Traditional means of monitoring bone loss and effectiveness of treatments include changes in bone density, which takes 6 months to years to observe effects, and changes in biochemical markers of bone turnover, which are highly variable and lack specificity. Prelabeling bone with 41Ca and measuring urinary 41Ca excretion with accelerator mass spectrometry provides a sensitive, specific, and rapid approach to evaluating effectiveness of treatment. To better understand 41Ca technology as a tool for measuring effective treatments on reducing bone resorption, we perturbed bone resorption by manipulating dietary calcium in rats. We used 3H-tetracycline (3H-TC) as a proxy for 41Ca and found that a single dose is feasible to study bone resorption. Suppression of bone resorption, as measured by urinary 3H-TC, by dietary calcium was observed in rats stabilized after ovariectomy, but not in recently ovariectomized rats.
Bone and heart abnormalities of subclinical hyperthyroidism in women below the age of 65 years.
Rosario, Pedro Weslley
2008-12-01
The objective of the present study was to evaluate bone and cardiac abnormalities and symptoms and signs of thyroid hormone excess in women with subclinical hyperthyroidism (SCH) aged < 65 years. Forty-eight women with SCH were evaluated. The control group consisted of 48 euthyroid volunteers. The mean symptom rating scale score was significantly higher in patients. Cardiac involvement, both morphological and affecting systolic and diastolic functions, was also observed in patients. Women with SCH showed a significant increase in serum markers of bone formation and resorption. In addition, bone mineral density (BMD) was lower in the femoral neck but not in the lumbar spine in patients before menopause, whereas a lower BMD was observed at both sites in postmenopausal patients. SCH is not completely asymptomatic in women aged < 65 years, and is associated with heart abnormalities and with increased bone turnover and reduced BMD even before menopause.
Kinai, Ei; Gatanaga, Hiroyuki; Mizushima, Daisuke; Nishijima, Takeshi; Aoki, Takahiro; Genka, Ikumi; Teruya, Katsuji; Tsukada, Kunihisa; Kikuchi, Yoshimi; Oka, Shinichi
2017-05-01
Clinical and experiments evidence indicate that protease inhibitors (PI) can cause bone mineral density (BMD) loss. However, the mechanism of such loss remains obscure. This single-center, cross-sectional study included 184 HIV-infected patients treated with PI who underwent dual-energy X-ray absorptiometry scan. Serum phosphorus, percentage of tubular reabsorption of phosphate (%TRP), thyroid and parathyroid function (iPTH), vitamin D, osteocalcin (OC), urinary deoxypyridinoline (DPD), and urinary cross-linked N-telopeptide of type I collagen (u-NTx) were measured. The rate of hypothyroidism in PI-users [32/117 (27%)] was double that in non-PI users [8/67 (12%), p = 0.016] and was significantly associated with PI use in multivariate analysis [odds ratio (OR) 11.37, 95% confidence interval (CI) 1.358-95.17, p = 0.025]. Spine BMD was significantly lower in hypothyroid patients than euthyroid, for both total population (-1.37 vs. -1.00, p = 0.041) and PI users (-1.56 vs. -1.13, p = 0.029). Multivariate regression analysis identified inverse correlation between hypothyroidism and spine BMD [estimate -0.437, 95% CI -0.858 to -0.024, p = 0.042]. OC, DPD and u-NTx were significantly higher in PI users than in non-PI users (p = 0.01, 0.05, and 0.01, respectively). PI use is associated with hypothyroidism as well as bone turnover acceleration, which worsens PI-associated BMD loss. In PI-treated patients, thyroid function tests are warranted to prevent further progression of PI-associated BMD loss. Copyright © 2016 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Kalam, Abul; Talegaonkar, Sushama; Vohora, Divya
2017-01-15
The deleterious effects of letrozole, an aromatase inhibitor, used in the adjuvant treatment of breast cancer in postmenopausal women, on bone are well-documented and represent a major drawback to its clinical use. Raloxifene, a selective estrogen receptor modulator and a clinically approved anti-osteoporotic drug, has been recently demonstrated to be efficacious in women with breast cancer. The present study evaluated the effects of preventive and curative treatment with raloxifene on letrozole-induced alterations of bone microarchitecture and turnover markers in a chemically-induced menopause model in mice. Swiss strain albino female mice were made menopausal by inducing ovotoxicity using vinyl cyclohexene di epoxide (VCD, 160 mg/kg for 15 days followed by 30 days drug-free period) confirmed by ovarian histology and serum estradiol levels. Effects on femoral and lumbar bones were evaluated by micro CT determination of bone volume, trabecular number, separation, thickness, connective density and trabecular pattern factor and bone turnover markers including ALP, TRAP5b, hydroxyproline and RANKL. In addition to these, markers of Wnt signaling (sclerostin and dickkopf-1) were also evaluated. To rule out the involvement of pharmacokinetic interaction, plasma levels of letrozole and raloxifene were measured following drugs alone and in combination. Though bone loss was observed in VCD treated mice (as indicated by micro CT measurements), it was further enhanced with letrozole administration (1 mg/kg) for one month particularly in epiphysis of femoral bones. Raloxifene (15 mg/kg), whether administered concurrently or post-letrozole was able to revert the structural alterations and changes in turnover markers caused by letrozole to varying degrees (p < 0.01 or p < 0.001). Further, estrogen deficiency following letrozole treatment in ovotoxic mice was associated with significant increase in sclerostin and dickkopf-1 in both lumbar and femur bones (p < 0.001) which was attenuated with preventive and curative treatment with raloxifene (p < 0.05). The plasma levels of letrozole remained unaffected by raloxifene administration and vice versa. Our study indicates the potential of raloxifene in preventing and attenuating letrozole-induced bone loss. Further, these effects were found to be independent of a pharmacokinetic interaction between the two drugs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Palmer, H. E.
1978-01-01
Sodium-22 was studied as a tracer for bone mineral metabolism in rats and dogs. When incorporated into bone during growth from birth to adulthood, the bone becomes uniformly tagged with (22)Na which is released through the metabolic turnover of the bone. The (22)Na which is not incorporated in the bone matrix is rapidly excreted within a few days when animals are fed high but nontoxic levels of NaCl. The (22)Na tracer can be used to measure bone mineral loss in animals during space flight and in research on bone disease.
Estrogen Inhibits Dlk1/FA1 Production: A Potential Mechanism for Estrogen Effects on Bone Turnover
Abdallah, B. M.; Bay-Jensen, A.; Srinivasan, B.; Tabassi, N. C.; Garnero, P.; Delaissé, J.; Khosla, S.; Kassem, M.
2011-01-01
We have recently identified Dlk1/FA1 (Delta-like 1/FA1) as a novel regulator of bone mass that functions to mediate bone loss, under estrogen deficiency, in mice. In this report, we investigated the effects of estrogen (E)-deficiency and E replacement on serum (s) levels of Dlk1/FA1 (s-Dlk1FA1) and its correlation with bone turnover markers. s-Dlk1/FA1 and bone turnover markers (s-CTx and s-osteocalcin), were measured in two cohorts: a group of pre- and postmenopausal women (n=100) and a group of postmenopausal women, where half had received estrogen replacement therapy (ERT) (n=166). s-Dlk1/FA1, and s-CTX were elevated in postmenopausal E-deficient compared to premenopausal E-replete women (both; P<0.001). s-Dlk1/FA1 was correlated with s-CTX (r=0.30, P<0.01). ERT, in postmenopausal women, decreased s-Dlk1/FA1, as well as s-CTX and s-osteoclacin (all; P<0.0001). Changes in s-Dlk1 were significantly correlated with those observed in s-CTx (r=0.18, P<0.05) and s-osteocalcin (r=0.28, P<0.001). In conclusion, s-Dlk1/FA1 is influenced by E-deficiency and is correlated with bone turnover. Increased levels of s-Dlk1/FA1 in post-menopausal women may be a mechanism mediating the effects estrogen deficiency on bone turnover. PMID:21681814
Sowińska-Przepiera, Elżbieta; Andrysiak-Mamos, Elżbieta; Syrenicz, Justyna; Jarząbek-Bielecka, Grażyna; Friebe, Zbigniew; Syrenicz, Anhelli
2011-01-01
We investigated whether the vitamin D3 receptor gene (VDR) polymorphism can modulate therapeutic response of functional hypothalamic amenorrhea (FHA) patients to the oestroprogestagen (EP) treatment. The study included 84 FHA girls and 50 controls. FHA patients underwent a four-year sequential EP therapy with 17-β oestradiol (2 mg from the 2(nd) to 25(th) day of the menstrual cycle) and didrogesterone (10 mg from the 16(th) to the 25(th) day). Their hormonal parameters were monitored along with bone turnover marker levels and bone mineral density (BMD). Additionally, the VDR gene BsmI polymorphism was determined. Hormonal therapy was reflected by a substantial improvement of BMD. However, the values of BMD observed after four years of treatment in FHA patients were still significantly lower than baseline bone mineral density determined in the control group (1.007 ± 0.100 vs. 1.141 ± 0.093 g/cm(2), respectively; p < 0.001). No significant effects of the VDR genotype were observed on the dynamics of BMD during consecutive years of hormonal treatment and mean bone mineral density determined after completing the therapy (1.006 ± 0.101 vs. 1.013 ± 0.114 vs. 1.006 ± 0.094 g/cm(2) for BB, bb and Bb genotypes, respectively; p = 0.973). This study did not confirm that VDR polymorphism can modulate therapeutic outcome of FHA girls subjected to the hormonal treatment. Nonetheless, this study confirmed the effectiveness of EP therapy in the simultaneous treatment of menstrual disorders and the normalisation of bone mineral density in FHA patients.
Kam, Winnie Wai-Ying; Meikle, Steven R.; Dunstan, Colin R.; Banati, Richard B.
2012-01-01
The presence of the translocator protein (TSPO), previously named as the mitochondrial or peripheral benzodiazepine receptor, in bone cells was studied in vitro and in situ using RT-qPCR, and receptor autoradiography using the selective TSPO ligand PK11195. In vitro, the TSPO is highly expressed in osteoblastic and osteoclastic cells. In situ, constitutive expression of TSPO is found in bone marrow and trabecular bone, e.g., spongiosa. Mice with a reduction of bone turnover induced by a 4-day treatment of osteoprotegerin reduces [3H]PK11195 binding in the spongiosa (320±128 Bq.mg−1, 499±106 Bq.mg−1 in saline-treated controls). In contrast, mice with an increase in bone turnover caused by a 4-day low calcium diet increases [3H]PK11195 binding in the spongiosa (615±90 Bq.mg−1). Further, our study includes technical feasibility data on [18F]fluoride microPET imaging of rodent bone with altered turnover. Despite [18F]fluoride having high uptake, the in vivo signal differences were small. Using a phantom model, we describe the spillover effect and partial volume loss that affect the quantitative microPET imaging of the small bone structures in experimental mouse models. In summary, we demonstrate the expression of TSPO in small rodent bone tissues, including osteoblasts and osteoclasts. A trend increase in TSPO expression was observed in the spongiosa from low to high bone turnover conditions. However, despite the potential utility of TSPO expression as an in vivo biomarker of bone turnover in experimental rodent models, our small animal PET imaging data using [18F]fluoride show that even under the condition of a good biological signal-to-noise ratio and high tracer uptake, the currently achievable instrument sensitivity and spatial resolution is unlikely to be sufficient to detect subtle differences in small structures, such as mouse bone. PMID:22295097
Ishikawa, Koji; Nagai, Takashi; Sakamoto, Keizo; Ohara, Kenji; Eguro, Takeshi; Ito, Hiroshi; Toyoshima, Yoichi; Kokaze, Akatsuki; Toyone, Tomoaki; Inagaki, Katsunori
2016-01-01
Hypocalcemia is the most common major adverse event in patients with osteoporosis receiving the bone resorption inhibitor denosumab; however, limited information is available regarding risk factors of hypocalcemia. Therefore, this study aimed to identify the risk factors of hypocalcemia induced by denosumab treatment for osteoporosis. We retrospectively reviewed the records of patients who had received initial denosumab supplemented with activated vitamin D for osteoporosis. Serum levels of the following bone turnover markers (BTMs) were measured at baseline: bone-specific alkaline phosphatase (BAP), total N-terminal propeptide of type 1 procollagen (P1NP), tartrate-resistant acid phosphatase 5b (TRACP-5b), and urinary cross-linked N-telopeptide of type 1 collagen (NTX). Of the 85 denosumab-treated patients with osteoporosis studied, 22 (25.9%) developed hypocalcemia. Baseline serum total P1NP, TRACP-5b, and urinary NTX were significantly higher in patients with hypocalcemia than in those with normocalcemia following denosumab administration (all P<0.01). Multivariate logistic regression analysis revealed that patients with total P1NP >76.5 μg/L, TRACP-5b >474 mU/dL, or urinary NTX >49.5 nmol bone collagen equivalent/mmol creatinine had a higher risk of hypocalcemia (P<0.01). Our study suggests that denosumab may have a greater impact on serum calcium levels in patients with postmenopausal osteoporosis with higher baseline bone turnover than in patients with postmenopausal osteoporosis with normal baseline bone turnover, because maintenance of normal serum calcium in this subgroup is more dependent on bone resorption. Close monitoring of serum calcium levels is strongly recommended for denosumab-treated patients with high bone turnover, despite supplementation with activated vitamin D and oral calcium. PMID:27980413
Silverman, S L; Nasser, K; Nattrass, S; Drinkwater, B
2012-03-01
We examined how the use of bone turnover markers and educational information affects persistence of bisphosphonate use in osteoporotic patients. We found that reporting bone turnover results and/or educational information did not affect persistence. Long-term adherence and persistence to osteoporosis medication are poor. We examined whether reporting of bone turnover marker results, education about osteoporosis, or a combination of both would increase persistence to oral bisphosphonates. Two hundred and forty women who were 5 years postmenopausal with BMD at least 2.0 standard deviations below normal were recruited for the study. All women were given a new prescription for alendronate and randomly assigned to one of four groups: (1) bone marker results at baseline, 3 and 12 months; (2) educational materials every month and a membership in the National Osteoporosis Foundation; (3) bone marker and educational information; and (4) control, no information other than usual care. Persistence among randomization groups was tested using survival analysis adjusting for the delay between intervention methods. Of those filling their initial prescription, 95.5% refilled their prescription at the end of the first month, 87% at 3 months, 82% at 6 months, and 78% at 10 months. Overall persistence through 12 months was 54%. There was no difference found among the four groups for persistence time using (p > 0.58). Providing bone turnover marker results is not an effective way to enhance early compliance and persistence with drug therapy. While the women in our study felt that bone marker results and educational information were helpful to them, there was no difference in persistence between those who received either bone marker information and/or educational information and those who did not. Because of the unexpected rate of primary nonadherence, this study may be underpowered.
Whole-body vibration therapy in children with severe motor disabilities.
Kilebrant, Sophie; Braathen, Gunnar; Emilsson, Roger; Glansén, Ulla; Söderpalm, Ann-Charlott; Zetterlund, Bo; Westerberg, Barbro; Magnusson, Per; Swolin-Eide, Diana
2015-03-01
To study the effect of whole-body vibration therapy on bone mass, bone turnover and body composition in severely disabled children. Nineteen non-ambulatory children aged 5.1-16.3 years (6 males, 13 females) with severe motor disabilities participated in an intervention programme with standing exercise on a self-controlled dynamic platform, which included whole-body vibration therapy (vibration, jump and rotation movements). Whole-body vibration therapy was performed at 40-42 Hz, with an oscillation amplitude of 0.2 mm, 5-15 min/treatment, twice/week for 6 months. Bone mass parameters and bone markers were measured at the study start, and after 6 and 12 months. Whole-body vibration therapy was appreciated by the children. Total-body bone mineral density increased during the study period (p < 0.05). Z-scores for total-body bone mineral density ranged from -5.10 to -0.60 at study start and remained unchanged throughout. Approximately 50% of the subjects had increased levels of carboxy-terminal telopeptides of type I collagen and decreased levels of osteocalcin at the start. Body mass index did not change during the intervention period, but had increased by the 12-month follow-up (p < 0.05). Whole-body vibration therapy appeared to be well tolerated by children with severe motor disabilities. Total-body bone mineral density increased after 6 months of whole-body vibration therapy. Higher carboxy-terminal telopeptides of type I collagen and lower osteocalcin values indicated that severely disabled children have a reduced capacity for bone acquisition.
Wang, C; Eyre, D R; Clark, R; Kleinberg, D; Newman, C; Iranmanesh, A; Veldhuis, J; Dudley, R E; Berman, N; Davidson, T; Barstow, T J; Sinow, R; Alexander, G; Swerdloff, R S
1996-10-01
To study the effects of androgen replacement therapy on muscle mass and strength and bone turnover markers in hypogonadal men, we administered sublingual testosterone (T) cyclodextrin (SLT; 5 mg, three times daily) to 67 hypogonadal men (baseline serum T, < 8.4 nmol/L) recruited from 4 centers in the U.S.: Torrance (n = 34), Durham (n = 12), New York (n = 9), and Salem (n = 12). Subjects who had received prior T therapy were withdrawn from injections for at least 6 weeks and from oral therapy for 4 weeks. Body composition, muscle strength, and serum and urinary bone turnover markers were measured before and after 6 months of SLT. We have shown previously that this regimen for 60 days will maintain adequate serum T levels and restore sexual function. Total body (P = 0.0104) and lean body mass (P = 0.007) increased with SLT treatment in the 34 subjects in whom body composition was assessed. There was no significant change in total body fat or percent fat. The increase in lean body mass was mainly in the legs; the right leg lean mass increased from 8.9 +/- 0.3 kg at 0 months to 9.2 +/- 0.3 kg at 6 months (P = 0.0008). This increase in leg lean mass was associated with increased leg muscle strength, assessed by leg press (0 months, 139.0 +/- 4.0 kg; 6 months, 147.7 +/- 4.2 kg; P = 0.0038). SLT replacement in hypogonadal men led to small, but significant, decreases in serum Ca (P = 0.0029) and the urinary calcium/creatinine ratio (P = 0.0066), which were associated with increases in serum PTH (P = 0.0001). At baseline, the urinary type I collagen-cross linked N-telopeptides/creatinine ratio [75.6 +/- 7.9 nmol bone collagen equivalents (BCE/mmol] was twice the normal adult male mean (41.0 +/- 3.6 nmol BCE/mmol) and was significantly decreased in response to SLT treatment at 6 months (68.2 +/- 7.7 nmol BCE/mmol; P = 0.0304) without significant changes in urinary creatinine. Serum skeletal alkaline phosphatase did not change. In addition, SLT replacement caused significant increases in serum osteocalcin (P = 0.0001) and type I procollagen (P = 0.0012). Bone mineral density did not change during the 6 months of SLT treatment. We conclude that SLT replacement therapy resulted in increases in lean muscle mass and muscle strength. Like estrogen replacement in hypogonadal postmenopausal females, androgen replacement therapy led to decreased bone resorption and urinary calcium excretion. Moreover, androgen replacement therapy may have the additional benefit of increasing bone formation. A longer term study for several years duration would be necessary to demonstrate whether these changes in bone turnover marker levels will result in increased bone mineral density decreased fracture risks, and reduced frailty in hypogonadal men.
Gaál, János; Bender, Tamás; Varga, József; Horváth, Irén; Kiss, Judit; Somogyi, Péter; Surányi, Péter
2009-11-01
This study intended to determine whether the replacement of vitamin D3 with alfacalcidol results in any bone mineral density (BMD) increase in 76 patients unresponsive to the combination of alendronate and conventional vitamin D3 treatment. In these patients the conventional vitamin D3 had been replaced with alfacalcidol (0.5 μg/day), and then the patients were followed up for a year. After treatment for 1 year, Wilcoxon test revealed a small but statistically significant (P < 0.001) increase in the BMD values of the forearm and lumbar vertebrae, in the serum calcium and urinary calcium/creatinine ratio in first-voided morning urine. However, the serum alkaline phosphatase activity, phosphorus, parathormone, osteocalcin levels and the urinary d-pyr/creatinine ratio decreased significantly (P < 0.001). As suggested by our results, combination therapy with alendronate and alfacalcidol increases bone density and improves the biochemical markers of bone turnover, without any substantial increase in the incidence of adverse effects.
Denosumab for the Treatment of Osteoporosis
Zaheer, Sarah; LeBoff, Meryl; Lewiecki, E. Michael
2015-01-01
Introduction Low trauma fractures due to osteoporosis are a major health concern worldwide. Despite the availability of many therapeutic compounds to reduce fracture risk, osteoporosis remains undertreated and the burden of osteoporotic fractures remains high. Denosumab is a novel agent that acts to reduce bone turnover, improve bone mineral density, and reduce fracture risk, offering a favorable efficacy and safety profile. Areas covered This review covers the pharmacology and major clinical trials with extension/post-marketing follow-up, including trials for all FDA-approved indications of denosumab to date. Expert Opinion Denosumab is an efficacious and safe osteoporosis treatment option, with current data up to 8 years of continued use showing continued improvement in bone density with sustained fracture risk reduction. Safety profiles overall are similar to placebo, with no new safety concerns in extension trials, though a theoretical increased risk of infection exists with RANKL inhibition. Future considerations include safety of prolonged treatment beyond 8 years, and efficacy/fracture risk after discontinuation or with non-adherence, given the characteristic pharmacodynamic profile of denosumab. PMID:25614274
Rogers, Tara S; Demmer, Elieke; Rivera, Nancy; Gertz, Erik R; German, J Bruce; Smilowitz, Jennifer T; Zivkovic, Angela M; Van Loan, Marta D
2017-01-01
Inflammation is associated with increased bone resorption; the role of inflammation in postprandial bone turnover has not been explored. Consumption of milk fat globule membrane (MFGM) reduces inflammation in animal models. This study aimed to measure postprandial changes in bone turnover after intake of high saturated fat test meals, with- and without the anti-inflammatory ingredient MFGM. Subjects ( n = 36 adults) were obese (BMI 30-39.9 kg/m 2 ) or overweight (BMI 25-29.9 kg/m 2 ) with two traits of Metabolic Syndrome. Subjects consumed a different test meal on four occasions at random; blood draws were taken at baseline and 1, 3, and 6 h postprandial. Test meals included whipping cream (WC), WC + MFGM, palm oil (PO) and PO + MFGM. Biomarkers of bone turnover and inflammation were analyzed from all four time points. Test meal (treatment) by time interactions were significant for bone resorption marker C-telopeptide of type 1 collagen (CTX) ( p < 0.0001) and inflammatory marker interleukin 10 (IL-10) ( p = 0.012). Significant differences in overall postprandial response among test meals were found for CTX and soluble intercellular adhesion molecule (sICAM), with the greatest overall postprandial suppression of CTX occurring in meals containing MFGM. However, test meal by MFGM interactions were non- significant for bone and inflammatory markers. Correlations between CTX and inflammatory markers were non-significant. This exploratory analysis advances the study of postprandial suppression of bone turnover by demonstrating differing effects of high SFA meals that contained MFGM; however MFGM alone did not directly moderate the difference in postprandial CTX response among test meals in this analysis. These observations may be useful for identifying foods and ingredients which maximize the suppression of bone resorption, and for generating hypotheses to test in future studies examining the role of inflammation in postprandial bone turnover. Clinicaltrials.gov NCT01811329. Registered 11 March 2013.
Aoki, Motokuni; Kawahata, Hirohisa; Sotobayashi, Daisuke; Yu, Hisahiro; Moriguchi, Atsushi; Nakagami, Hironori; Ogihara, Toshio; Morishita, Ryuichi
2015-08-01
Although recent studies suggest that several antihypertensive drugs could reduce the risk of bone fracture, it is still unclear how these drugs act on bone remodeling, especially in elderly women with severe osteoporosis with disuse syndrome. In the present study, we investigated the effects of a calcium channel blocker (CCB) and an angiotensin II receptor blocker (ARB) on bone metabolism in elderly bedridden women with hypertension and disuse syndrome. Elderly bedridden women (aged >75 years) receiving antihypertensive therapy treated with CCB were recruited in the present study. The participants were divided into two groups--CCB group and ARB group--and followed up to 12 months. Markers of bone resorption were markedly increased, suggesting accelerated bone resorption in the participants of the present study. In the follow-up period, the patients treated with a CCB showed a significant decrease in bone mineral density in a time-dependent manner, accompanied by a significant increase in bone resorption markers, whereas treatment with olmesartan inhibited bone loss, associated with attenuation of increased bone resorption markers. Bone mineral density of femoral neck in the CCB group was significantly lower than that in the ARB group at 6 months. The present study showed inhibitory effects of an ARB on bone resorption in hypertensive patients with accelerated bone resorption, such as elderly bedridden women, and indicated an important role of the renin-angiotensin system in bone metabolism. In elderly hypertensive patients, ARB might be expected to have additional beneficial potential to maintain bone health in bedridden patients. © 2014 Japan Geriatrics Society.
Liu, Yanzhi; Cui, Yang; Chen, Yan; Gao, Xiang; Su, Yanjie; Cui, Liao
2015-01-01
To investigate the long-term effects of three antiarthritics, namely dexamethasone, celecoxib, and methotrexate on the histology and metabolism of intact bone tissue in rats. Thirty-two 12-week-old healthy female Sprague Dawley rats were randomly allocated into four groups: 1) control (saline, daily); 2) dexamethasone (2 mg/kg, twice weekly); 3) celecoxib (50 mg/kg, daily); and 4) methotrexate (0.5 mg/kg, twice weekly). The drugs were administered to the rats for 12 weeks and the animals were weighed on a weekly basis. The femurs and lumbar vertebrae were harvested for bone mineral density and bone mechanical properties analyses. The proximal tibiae were processed for bone histomorphometry and micro-computed tomography analyses. The following results were obtained: 1) dexamethasone strongly inhibited bone formation rate accompanied with a decrease in bone mineral density and bone biomechanical properties; 2) celecoxib stimulated bone resorption, leading to a decrease of bone mass and femur biomechanic properties; and 3) methotrexate caused bone loss and bone quality deterioration to a lesser extent due to the increase of the bone turnover rate on the proximal tibial metaphysis of the rats. This study provides a comparative profile of the long-term effects of clinical doses of celecoxib, methotrexate, and dexamethasone on intact skeletons of the rats. The results indicate that the three antiarthritics have varying degrees of side effects on bone metabolism, and these findings will help physicians to learn more about the potential effects of antiarthritics on bone metabolism.
Bone status and adipokine levels in children on vegetarian and omnivorous diets.
Ambroszkiewicz, Jadwiga; Chełchowska, Magdalena; Szamotulska, Katarzyna; Rowicka, Grażyna; Klemarczyk, Witold; Strucińska, Małgorzata; Gajewska, Joanna
2018-03-23
Measurements of bone mineral density (BMD) reflect bone status but not the dynamics of bone turnover. Biochemical markers, which show global skeletal activity, were validated for the assessment of bone formation and resorption processes. Adipokines also play a significant role in the regulation of bone metabolism. To assess body composition, bone mineral density, bone turnover markers and adipokine levels in relation to vegetarian and omnivorous diets. The study included 53 vegetarian and 53 omnivorous prepubertal healthy children matched for age and sex (median age 7.0 years). Body composition and BMD were assessed by dual-energy X-ray absorptiometry. 25-hydroxyvitamin D and parathormone levels were measured by chemiluminescence method. Serum carboxy-terminal propeptide of type I collagen (CICP), total osteocalcin (OC) and its forms carboxylated (c-OC) and undercarboxylated (uc-OC), C-terminal cross-linking telopeptide of collagen type I (CTX), leptin and adiponectin levels were determined using immunoenzymatic assays. Both groups of children were comparable in terms of body composition, except for the percentage of fat mass, which was lower (19.24 vs. 21.77%, p = 0.018) in vegetarians. Mean values of total BMD z-score and lumbar spine BMD z-score were lower (-0.583 vs. -0.194, p = 0.009 and -0.877 vs. -0.496, p = 0.019, respectively) in vegetarians compared with omnivores. Serum leptin level was about 2-fold lower (1.39 vs. 2.94 ng/mL, p < 0.001) in vegetarians, however, adiponectin concentration was similar in both groups. Vegetarians had similar concentration of 25-hydroxyvitamin D, but higher parathormone (40.8 vs. 32.1 pg/mL, p = 0.015) and CTX (1.94 vs. 1.76 ng/mL, p = 0.077) levels than omnivores. Total osteocalcin and CICP concentrations were comparable in both groups, however, c-OC/uc-OC ratio was higher (1.43 vs. 1.04 ng/mL, p < 0.05) in vegetarians. We found positive correlation between c-OC and nutritional parameters adjusted for total energy intake (plant protein, phosphorus, magnesium and fiber intakes) in vegetarian children. Prepubertal children on a vegetarian diet had significantly lower total and lumbar spine BMD z-scores, but absolute values of bone mineral density did not differ. BMD z-scores did not correlate with bone metabolism markers and nutritional variables, but were positively associated with anthropometric parameters. Lower leptin levels in vegetarian children reflect lower body fat. Longitudinal studies are necessary to evaluate the impact of the observed association on bone health at adulthood. Copyright © 2018 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Bone metabolism of male rats chronically exposed to cadmium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brzoska, Malgorzata M.; Moniuszko-Jakoniuk, Janina
2005-09-15
Recently, based on a female rat model of human exposure, we have reported that low-level chronic exposure to cadmium (Cd) has an injurious effect on the skeleton. The purpose of the current study was to investigate whether the exposure may also affect bone metabolism in a male rat model and to estimate the gender-related differences in the bone effect of Cd. Young male Wistar rats received drinking water containing 0, 1, 5, or 50 mg Cd/l for 12 months. The bone effect of Cd was evaluated using bone densitometry and biochemical markers of bone turnover. Renal handling of calcium (Ca)more » and phosphate, and serum concentrations of vitamin D metabolites, calcitonin, and parathormone were estimated as well. At treatment with 1 mg Cd/l, corresponding to the low environmental exposure in non-Cd-polluted areas, the bone mineral content (BMC) and density (BMD) at the femur and lumbar spine (L1-L5) and the total skeleton BMD did not differ compared to control. However, from the 6th month of the exposure, the Z score BMD indicated osteopenia in some animals and after 12 months the bone resorption very clearly tended to an increase. The rats' exposure corresponding to human moderate (5 mg Cd/l) and especially relatively high (50 mg Cd/l) exposure dose- and duration-dependently disturbed the processes of bone turnover and bone mass accumulation leading to formation of less dense than normal bone tissue. The effects were accompanied by changes in the serum concentration of calciotropic hormones and disorders in Ca and phosphate metabolism. It can be concluded that low environmental exposure to Cd may be only a subtle risk factor for skeletal demineralization in men. The results together with our previous findings based on an analogous model using female rats give clear evidence that males are less vulnerable to the bone effects of Cd compared to females.« less
USDA-ARS?s Scientific Manuscript database
Data from controlled intervention trials are lacking that support a positive association between the intake of fruits and vegetables and bone health. The objective of this study was to test the hypothesis that elevated fruit and vegetable intake improves serum markers of bone turnover. Twenty-nine s...
Amashukeli, Medea; Korinteli, Maka; Zerekidze, Tamar; Jikurauli, Nino; Shanava, Shorena; Tsagareli, Marina; Giorgadze, Elen
2013-06-01
Graves' disease is an autoimmune disorder with various clinical manifestations. Thyrotropin receptor antibodies (TRAbs), the circulating autoantibodies specific to Graves' disease, are the cause for hyperthyroidism, the most prevalent abnormality. Hyperthyroidism leads to increased bone turnover and a negative bone balance. The aims of the present study were to determine the relationship between TRAbs and bone mineral density (BMD), to assess the extent of BMD change in patients with Graves' disease, and to determine the impact of conservative and surgical therapy on BMD. Fifty female postmenopausal patients with Graves' disease were chosen for this study. Twenty women had a recent diagnosis of Graves' disease, 30 women presented with a compensated disease state after either conservative or surgical treatment, and 30 healthy postmenopausal women served as controls. Thyroid parameters were measured, and BMD values were obtained by dual energy x-ray absorptiometry scan.Femoral neck and lumbar spine BMD and T-scores were significantly lower in newly diagnosed patients compared with the control group, but a difference was not observed between the treated and control groups. Statistical analysis revealed a strong and significant negative correlation between femoral neck and lumbar spine BMD and TRAb values.Both surgical and conservative therapies are effective for restoring BMD in postmenopausal patients with Graves' disease, and the increased level of TRAb can be a useful marker of bone density impairment.
Mlakar, Simona Jurkovic; Osredkar, Josko; Prezelj, Janez; Marc, Janja
2010-01-01
Recently, oxidative stress has been suggested as participating in the development of osteoporosis. Glutathione peroxidase 1 (GPX1) is one of antioxidant enzymes responsible for the defence of cells against oxidative damage and thus for protection against age related diseases such as osteoporosis. The aim of present study was to associate genetic variances of GPX1 enzyme with bone mineral density (BMD) and biochemical bone turnover markers and to show the influence of antioxidative defence system in genetics of osteoporosis. We evaluated 682 Slovenian subjects: 571 elderly women and 111 elderly men. All subjects were genotyped for the presence of GPX1 gene polymorphisms Pro198Leu and polyAla region. BMD and biochemical markers were also measured. General linear model analysis, adjusted to height, and (one-way) analysis of variance were used to assess differences between the genotype.and haplotype subgroups, respectively. The significant or borderline significant associations were found between the polyAla or the Pro198Leu polymorphisms and total hip BMD (0.018; 0.023, respectively), femoral neck BMD (0.117; 0.026, respectively) and lumbar spine BMD (0.032; 0.086, respectively), and with biochemical bone turnover markers such as plasma osteocalcin (0.027; 0.025, respectively) and serum C-terminal telopeptide of type I collagen concentrations (0.114; 0.012, respectively) in whole group. Haplotype analysis revealed that the 6-T haplotype is associated significantly with low BMD values (p > 0.025) at all measured locations of the skeleton, and with high plasma osteocalcin concentrations (p = 0.008). This study shows for the first time that the polymorphisms polyAla and Pro198Leu of the GPX1 gene, individually and in combination, are associated with BMD and therefore may be useful as genetic markers for bone disease. Moreover, it implies the important contribution of the oxidative stress to pathogenesis of osteoporosis. PMID:21045266
Mlakar, Simona Jurkovic; Osredkar, Josko; Prezelj, Janez; Marc, Janja
2010-01-01
Recently, oxidative stress has been suggested as participating in the development of osteoporosis. Glutathione peroxidase 1 (GPX1) is one of antioxidant enzymes responsible for the defence of cells against oxidative damage and thus for protection against age related diseases such as osteoporosis. The aim of present study was to associate genetic variances of GPX1 enzyme with bone mineral density (BMD) and biochemical bone turnover markers and to show the influence of antioxidative defence system in genetics of osteoporosis. We evaluated 682 Slovenian subjects: 571 elderly women and 111 elderly men. All subjects were genotyped for the presence of GPX1 gene polymorphisms Pro198Leu and polyAla region. BMD and biochemical markers were also measured. General linear model analysis, adjusted to height, and (one-way) analysis of variance were used to assess differences between the genotype.and haplotype subgroups, respectively. The significant or borderline significant associations were found between the polyAla or the Pro198Leu polymorphisms and total hip BMD (0.018; 0.023, respectively), femoral neck BMD (0.117; 0.026, respectively) and lumbar spine BMD (0.032; 0.086, respectively), and with biochemical bone turnover markers such as plasma osteocalcin (0.027; 0.025, respectively) and serum C-terminal telopeptide of type I collagen concentrations (0.114; 0.012, respectively) in whole group. Haplotype analysis revealed that the 6-T haplotype is associated significantly with low BMD values (p< 0.025) at all measured locations of the skeleton, and with high plasma osteocalcin concentrations (p=0.008). This study shows for the first time that the polymorphisms polyAla and Pro198Leu of the GPX1 gene, individually and in combination, are associated with BMD and therefore may be useful as genetic markers for bone disease. Moreover, it implies the important contribution of the oxidative stress to pathogenesis of osteoporosis.
2013-01-01
Background Thyrotoxicosis is a cause of secondary osteoporosis. High concentrations of triiodotironine (T3) in Graves’ disease stimulate bone turnover, but it is unclear if euthyroidism will always normalize bone metabolism. Thyrotropin (TSH) is known to affect directly the bone metabolism through the TSH receptor and TSH receptor antibodies (TRAb) may have an important role in bone turn-over. The aim of our study was to determine, in pre and postmenopausal euthyroidism patients with previous overt hyperthyroidism due to Graves’ disease the bone mineral density (BMD) as well as factors that could affect BMD in each group, including TRAb. Methods Cross-sectional, non-interventional study. Fifty-seven patients with previous hyperthyroidism due to Graves’ disease (premenopausal: 30, postmenopausal: 27) that remained euthyroid for at least 6 months prior to study were included and compared with fifty- two matched respective controls. Thyrotoxine (T4), TSH, TRAb and BMD were measured. Results Only euthyroid postmenopausal patients with a history of hyperthyroidism due to Graves’ disease showed lower whole body BMD than matched controls. The BMD expressed as Z-score was less in whole body and lumbar spine in postmenopausal in relation to premenopausal women with previous overt hyperthyroidism due to Graves’ disease. In the postmenopausal patients, the Z-score of lumbar spine BMD correlated negatively with TRAb (r = −0,53, p < 0.008), positively with the time of evolution of the disease (r = +0.42, p < 0.032) and positively with the time of euthyroidism (r = + 0.50, p < 0.008), but neither with serum T4 nor TSH. In a multiple regression analysis TRAb was the only significant independent variable in relation to lumbar spine BMD (F = 3. 90, p < 0.01). Conclusions In euthyroid women with a history of Graves’ hyperthyroidism, BMD was only affected in the postmenopausal group. The negative correlation of Z-score of lumbar spine BMD with TRAb suggests that this antibody may affect the bone metabolism. PMID:24020400
Hypogonadal men with type 2 diabetes mellitus have smaller bone size and lower bone turnover.
Colleluori, Georgia; Aguirre, Lina; Dorin, Richard; Robbins, David; Blevins, Dean; Barnouin, Yoann; Chen, Rui; Qualls, Clifford; Villareal, Dennis T; Armamento-Villareal, Reina
2017-06-01
Both hypogonadism and type 2 diabetes mellitus (T2D) are associated with increased fracture risk. Emerging data support the negative effect of low testosterone on glucose metabolism, however, there is little information on the bone health of hypogonadal men with diabetes. We evaluated the bone mineral density (BMD), bone geometry and bone turnover of hypogonadal men with T2D compared to hypogonadal men without diabetes. Cross-sectional study, men 40-74years old, with average morning testosterone (done twice) of<300ng/dl. Areal BMD (aBMD) was measured by DXA; volumetric BMD (vBMD) and bone geometry by peripheral-quantitative-computed-tomography; serum C-telopeptide (CTX), osteocalcin, sclerostin and sex hormone-binding globulin (SHBG) by ELISA, testosterone and 25-hydroxyvitamin D (25OHD) by automated immunoassay and estradiol by liquid-chromatography/mass-spectrometry. Groups were compared by ANOVA adjusted for covariates. One-hundred five men, 49 with and 56 without diabetes were enrolled. Adjusted vBMD at 38% tibia was higher in diabetic than non-diabetic men (857.3±69.0mg/cm 3 vs. 828.7±96.7mg/cm 3 , p=0.02). Endosteal (43.9±5.8mm vs. 47.1±7.8mm, p=0.04) and periosteal (78.4±5.0mm vs. 81.3±6.5mm, p=0.02) circumferences and total area (491.0±61.0mm 2 vs. 527.7±87.2mm 2 , p=0.02) at 38% tibia, were lower in diabetic men even after adjustments for covariates. CTX (0.25±0.14ng/ml vs. 0.40±0.19ng/ml, p<0.001) and osteocalcin (4.8±2.8ng/ml vs. 6.8±3.5ng/ml, p=0.006) were lower in diabetic men; there were no differences in sclerostin and 25OHD. Circulating gonadal hormones were comparable between the groups. Among hypogonadal men, those with T2D have higher BMD, poorer bone geometry and relatively suppressed bone turnover. Studies with larger sample size are needed to verify our findings and possible even greater risk for fractures among hypogonadal diabetic men. Published by Elsevier Inc.
DiVasta, Amy D.; Feldman, Henry A.; Giancaterino, Courtney; Rosen, Clifford J.; LeBoff, Meryl S.; Gordon, Catherine M.
2012-01-01
Anorexia nervosa (AN) is characterized by subnormal estrogen and dehydroepiandrosterone (DHEA) levels. We sought to determine whether the combination of DHEA + estrogen/progestin is superior to placebo in preserving skeletal health over 18 months in AN. Females with AN, aged 13 to 27 years, were recruited for participation in this double-blind, placebo-controlled, randomized trial. Ninety-four subjects were randomized, of whom 80 completed baseline assessments and received either study drug (oral micronized DHEA 50 mg + 20 µg ethinyl estradiol/0.1 mg levonorgestrel combined oral contraceptive pill [COC] daily; n = 43) or placebo (n = 37). Serial measurements of areal bone mineral density (aBMD), bone turnover markers, and serum hormone concentrations were obtained. Sixty subjects completed the 18-month trial. Spinal and whole-body aBMD z scores were preserved in the DHEA + COC group, but decreased in the placebo group (comparing trends, P = .008 and P = .001, respectively). Bone turnover markers initially declined in subjects receiving DHEA + COC and then returned to baseline. No differences in body composition, adverse effects of therapy, or alterations in biochemical safety parameters were observed. Combined therapy with DHEA + COC appears to be safe and effective for preventing bone loss in young women with AN, whereas placebo led to decreases in aBMD. Dehydroepiandrosterone + COC may be safely used to preserve bone mass as efforts to reverse the nutritional, psychological, and other hormonal components of AN are implemented. PMID:22257645
Chan, Grace M F; Riandini, Tessa; Ng, Sheryl Hui Xian; Goh, Su Yen; Tan, Chuen Seng; Tai, E Shyong; Duque, Gustavo; Ng, Alvin Choon-Meng; Venkataraman, Kavita
2018-01-01
Osteoporosis is an important health issue for older adults, and has been relatively understudied in older men. This study aimed to examine ethnic differences in bone mineral density (BMD), and elucidate the role of bone turnover markers (BTMs), fat and fat biomarkers on these ethnic differences. BMD at the lumbar spine and femoral neck, marrow fat at femoral neck, visceral adipose tissue (VAT) and subcutaneous adipose tissue, bone and fat biomarkers were evaluated in 120 healthy men aged ≥ 60 years. Indians had higher BMD values compared to Chinese at the lumbar spine (β = 20.336, SE = 4.749, p < 0.001) and the femoral neck (e β = 1.105, SE = 0.032, p < 0.001), after adjusting for BTMs, fat composition and lifestyle choices. Marrow fat, VAT and adiponectin were independent predictors of BMD. However, these factors did not explain the lower BMD observed in older Chinese men. Our findings suggest that older Chinese men are at significant risk of osteoporotic fractures due to lower BMD. Fat appears to be a key factor associated with lower BMD, and warrants further longitudinal studies to elucidate the complex interactions between adipose tissue and bone strength.
Ahn, Ki Hoon; Lee, Seung Hyeun; Park, Hyun Tae; Kim, Tak; Hur, Jun Young; Kim, Young Tae; Kim, Sun Haeng
2010-04-01
The relationship between adiponectin and sex hormones with bone mineral density (BMD) and bone formation markers was investigated in postmenopausal women with subclinical hyperthyroidism (SCH). Seventy-five postmenopausal women were selected among the patients who participated in a health screening program in 2007. Thirty-seven control women with normal thyroid function were matched to 38 women with SCH by age, body mass index (BMI), and years since menopause (YSM). The associations between adiponectin and sex hormones with lumbar spine BMD and bone turnover markers were investigated. Adiponectin, testosterone (T; total and free forms), and thyroid-stimulating hormone were significantly different between the women with SCH and euthyroid. After adjusting for age, BMI, and YSM, free T (r = 0.351; P = 0.029) and estradiol (E2; r = -0.368; P = 0.024) had significant associations with bone alkaline phosphatase (B-ALP). Total T (r = 0.388; P = 0.021) and E2 (r = -0.376; P = 0.026) had significant associations with osteocalcin. However, there were no significant associations between adiponectin and sex hormones with the BMD levels in the SCH subjects. There were correlations between sex hormones with B-ALP and osteocalcin, but no associations between adiponectin and sex hormones with the lumbar spine BMD in postmenopausal SCH patients.
Bone, Henry G; Lindsay, Robert; McClung, Michael R; Perez, Alfonso T; Raanan, Marsha G; Spanheimer, Robert G
2013-12-01
Meta-analyses of clinical studies have suggested an increased incidence of peripheral fractures in postmenopausal women with type 2 diabetes mellitus taking pioglitazone. The mechanism behind this apparent increase is unknown. The objective of the study was to examine the effects of pioglitazone on bone mineral density (BMD) and turnover. Twenty-five sites (in the United States) enrolled participants in this randomized, double-blind, placebo-controlled study. Postmenopausal women (n = 156) with impaired fasting glucose or impaired glucose tolerance participated in the study. The intervention consisted of pioglitazone 30 mg/d (n = 78) or placebo (n = 78), increased to 45 mg/d after 1 month, for 12 months of treatment total, followed by 6 months of washout/follow-up. Percentage changes from baseline to month 12 and from month 12 to month18 in BMD in total proximal femur (primary end point), total body, femoral neck, lumbar spine, and radius were measured. Least squares mean changes from baseline to month 12 in total proximal femur BMD were -0.69% for pioglitazone and -0.14% for placebo (P = .170). No statistically significant between-group differences were observed for any BMD or bone remodeling marker end point. We observed improved glycemic control and insulin sensitivity with pioglitazone treatment. In addition, pioglitazone appeared to increase body fat, which may affect bone density measurements, especially in the lumbar spine. One pioglitazone-treated and three placebo-treated women experienced confirmed fractures. Over 18 months, one pioglitazone-treated (1.3%) and eight placebo-treated women (10.3%) developed overt type 2 diabetes mellitus. The pattern and incidence of adverse events with pioglitazone were consistent with clinical experience with thiazolidinediones. Maximal-dose pioglitazone had no effects on BMD or bone turnover, while improving glycemic control as expected, in postmenopausal women with impaired fasting glucose or impaired glucose tolerance.
Bone Turnover Status: Classification Model and Clinical Implications
Fisher, Alexander; Fisher, Leon; Srikusalanukul, Wichat; Smith, Paul N
2018-01-01
Aim: To develop a practical model for classification bone turnover status and evaluate its clinical usefulness. Methods: Our classification of bone turnover status is based on internationally recommended biomarkers of both bone formation (N-terminal propeptide of type1 procollagen, P1NP) and bone resorption (beta C-terminal cross-linked telopeptide of type I collagen, bCTX), using the cutoffs proposed as therapeutic targets. The relationships between turnover subtypes and clinical characteristic were assessed in1223 hospitalised orthogeriatric patients (846 women, 377 men; mean age 78.1±9.50 years): 451(36.9%) subjects with hip fracture (HF), 396(32.4%) with other non-vertebral (non-HF) fractures (HF) and 376 (30.7%) patients without fractures. Resalts: Six subtypes of bone turnover status were identified: 1 - normal turnover (P1NP>32 μg/L, bCTX≤0.250 μg/L and P1NP/bCTX>100.0[(median value]); 2- low bone formation (P1NP ≤32 μg/L), normal bone resorption (bCTX≤0.250 μg/L) and P1NP/bCTX>100.0 (subtype2A) or P1NP/bCTX<100.0 (subtype 2B); 3- low bone formation, high bone resorption (bCTX>0.250 μg/L) and P1NP/bCTX<100.0; 4- high bone turnover (both markers elevated ) and P1NP/bCTX>100.0 (subtype 4A) or P1NP/bCTX<100.0 (subtype 4B). Compared to subtypes 1 and 2A, subtype 2B was strongly associated with nonvertebral fractures (odds ratio [OR] 2.0), especially HF (OR 3.2), age>75 years and hyperparathyroidism. Hypoalbuminaemia and not using osteoporotic therapy were two independent indicators common for subtypes 3, 4A and 4B; these three subtypes were associated with in-hospital mortality. Subtype 3 was associated with fractures (OR 1.7, for HF OR 2.4), age>75 years, chronic heart failure (CHF), anaemia, and history of malignancy, and predicted post-operative myocardial injury, high inflammatory response and length of hospital stay (LOS) above10 days. Subtype 4A was associated with chronic kidney disease (CKD), anaemia, history of malignancy and walking aids use and predicted LOS>20 days, but was not discriminative for fractures. Subtype 4B was associated with fractures (OR 2.1, for HF OR 2.5), age>75 years, CKD and indicated risks of myocardial injury, high inflammatory response and LOS>10 days. Conclusions: We proposed a classification model of bone turnover status and demonstrated that in orthogeriatric patients altered subtypes are closely related to presence of nonvertebral fractures, comorbidities and poorer in-hospital outcomes. However, further research is needed to establish optimal cut points of various biomarkers and improve the classification model. PMID:29511368
Bianchi, Maria Luisa; Colombo, Carla; Assael, Baroukh M; Dubini, Antonella; Lombardo, Mariangela; Quattrucci, Serena; Bella, Sergio; Collura, Mirella; Messore, Barbara; Raia, Valeria; Poli, Furio; Bini, Rita; Albanese, Carlina V; De Rose, Virginia; Costantini, Diana; Romano, Giovanna; Pustorino, Elena; Magazzù, Giuseppe; Bertasi, Serenella; Lucidi, Vincenzina; Traverso, Gabriella; Coruzzo, Anna; Grzejdziak, Amelia D
2013-07-01
Long-term complications of cystic fibrosis include osteoporosis and fragility fractures, but few data are available about effective treatment strategies, especially in young patients. We investigated treatment of low bone mineral density in children, adolescents, and young adults with cystic fibrosis. We did a multicentre trial in two phases. We enrolled patients aged 5-30 years with cystic fibrosis and low bone mineral density, from ten cystic fibrosis regional centres in Italy. The first phase was an open-label, 12-month observational study of the effect of adequate calcium intake plus calcifediol. The second phase was a 12-month, double-blind, randomised, placebo-controlled, parallel group study of the efficacy and safety of oral alendronate in patients whose bone mineral apparent density had not increased by 5% or more by the end of the observational phase. Patients were randomly assigned to either alendronate or placebo. Both patients and investigators were masked to treatment assignment. We used dual x-ray absorptiometry at baseline and every 6 months thereafter, corrected for body size, to assess lumbar spine bone mineral apparent density. We assessed bone turnover markers and other laboratory parameters every 3-6 months. The primary endpoint was mean increase of lumbar spine bone mineral apparent density, assessed in the intention-to-treat population. This study is registered with ClinicalTrials.gov, number NCT01812551. We screened 540 patients and enrolled 171 (mean age 13·8 years, SD 5·9, range 5-30). In the observational phase, treatment with calcium and calcifediol increased bone mineral apparent density by 5% or more in 43 patients (25%). 128 patients entered the randomised phase. Bone mineral apparent density increased by 16·3% in the alendronate group (n=65) versus 3·1% in the placebo group (n=63; p=0·0010). 19 of 57 young people (33·3%) receiving alendronate attained a normal-for-age bone mineral apparent density Z score. In the observational phase, five patients had moderate episodes of hypercalciuria, which resolved after short interruption of calcifediol treatment. During the randomised phase, one patient taking alendronate had mild fever versus none in the placebo group; treatment groups did not differ significantly for other adverse events. Correct calcium intake plus calcifediol can improve bone mineral density in some young patients with cystic fibrosis. In those who do not respond to calcium and calcifediol alone, alendronate can safely and effectively increase bone mineral density. Telethon Foundation (Italy). Copyright © 2013 Elsevier Ltd. All rights reserved.
Cizza, Giovanni
2011-01-01
Major depressive disorder (MDD) is one of the most common psychiatric illnesses in the adult population. It is often associated with an increased risk of cardiovascular disease. Osteoporosis is also a major public health threat. Multiple studies have reported an association between depression and low bone mineral density, but a causal link between these two conditions is disputed. Here the most important findings of the POWER (Premenopausal, Osteoporosis Women, Alendronate, Depression) Study, a large prospective study of bone turnover in premenopausal women with major depression, are summarized. The endocrine and immune alterations secondary to depression that might affect bone mass, and the possible role of poor lifestyle in the etiology of osteoporosis in subjects with depression, are also reviewed, as is the potential effect of antidepressants on bone loss. It is proposed that depression induces bone loss and osteoporotic fractures, primarily via specific immune and endocrine mechanisms, with poor lifestyle habits as potential contributory factors. PMID:21485748
Tsentidis, C; Gourgiotis, D; Kossiva, L; Doulgeraki, A; Marmarinos, A; Galli-Tsinopoulou, A; Karavanaki, K
2016-04-01
Simultaneous lower bone mineral density, metabolic bone markers, parathyroid hormone (PTH), magnesium, insulin-like growth factor 1 (IGF1), and higher levels of total soluble receptor activator of nuclear factor-kappa B ligand (s-RANKL), osteoprotegerin (OPG), and alkaline phosphatase (ALP) are indicative of lower osteoblast and increased osteoclast signaling in children and adolescents with type 1 diabetes mellitus, predisposing to adult osteopenia and osteoporosis. Type 1 diabetes mellitus (T1DM) is a risk factor for reduced bone mass, disrupting several bone metabolic pathways. We aimed at identifying association patterns between bone metabolic markers, particularly OPG, s-RANKL, and bone mineral density (BMD) in T1DM children and adolescents, in order to study possible underlying pathophysiologic mechanisms of bone loss. We evaluated 40 children and adolescents with T1DM (mean ± SD age 13.04 ± 3.53 years, T1DM duration 5.15 ± 3.33 years) and 40 healthy age- and gender-matched controls (aged12.99 ± 3.3 years). OPG, s-RANKL, osteocalcin, C-telopeptide cross-links (CTX), IGF1, electrolytes, PTH, and total 25(OH)D were measured, and total body along with lumbar spine BMD were evaluated with dual energy X-ray absorptiometry (DXA). Multivariate regression and factor analysis were performed after classic inference. Patients had significantly lower BMD, with lower bone turnover markers, PTH, magnesium, and IGF1 than controls, indicating lower osteoblast signaling. Higher levels of total s-RANKL, OPG, and total ALP were observed in patients, with log(s-RANKL) and OPG correlation found only in controls, possibly indicating increased osteoclast signaling in patients. Coupling of bone resorption and formation was observed in both groups. Multivariate regression confirmed simultaneous lower bone turnover, IGF1, magnesium, and higher total s-RANKL, OPG, and ALP in patients, while factor analysis indicated possible activation of RANK/RANKL/OPG system in patients and its association with magnesium and IGF1. Patients with longer disease duration or worse metabolic control had lower BMD. T1DM children and adolescents have impaired bone metabolism which seems to be multifactorial. Reduced osteoblast and increased osteoclast signaling, resulting from multiple simultaneous disturbances, could lead to reduced peak bone accrual in early adulthood, predisposing to adult osteopenia and osteoporosis.
Seto, Wai-Kay; Asahina, Yasuhiro; Brown, Todd T; Peng, Cheng-Yuan; Stanciu, Carol; Abdurakhmanov, Dzhamal; Tabak, Fehmi; Nguyen, Tuan T; Chuang, Wan-Long; Inokuma, Tetsuro; Ikeda, Fusao; Santantonio, Teresa Antonia; Habersetzer, François; Ramji, Alnoor; Lau, Audrey H; Suri, Vithika; Flaherty, John F; Wang, Hongyuan; Gaggar, Anuj; Subramanian, G Mani; Mukewar, Shrikant; Brunetto, Maurizia R; Fung, Scott; Chan, Henry Lik-Yuen
2018-06-19
Long-term use of tenofovir disoproxil fumarate (TDF) reduces bone mineral density (BMD). Tenofovir alafenamide (TAF), a new prodrug of tenofovir, has shown non-inferior efficacy to TDF in patients with chronic hepatitis B virus (HBV) infection, with improved bone effects at 48 weeks. We performed a randomized trial to evaluate the bone safety of TAF compared with TDF over 2 years, assessing baseline risk factors for bone loss, were evaluated after 2 years of treatment. In a double-blind study, hepatitis B e antigen (HBeAg)-positive patients (n=873) and HBeAg-negative patients (n=425) were randomly assigned (2:1) to groups given TAF (25 mg, n=866) or TDF (300 mg, n=432) once daily. We assessed bone safety, including hip and spine BMD, using dual-energy X-ray absorptiometry and measured changes in serum markers of bone turnover over 96 weeks. At baseline, treatment groups were well matched. At week 96, patients receiving TAF had significantly smaller decreases in hip BMD (mean reduction of 0.33%) than patients receiving TDF (mean reduction of 2.51%) (P<.001) and spine BMD (reduction of 0.75% in patients receiving patients receiving TAF vs reduction of 2.57% in patients receiving TDF) (P<.001). For hip BMD, the magnitude of difference in bone loss between the TAF and TDF groups increased at week 96 compared to week 48 (P<.001). The TAF group had minimal changes in markers of bone turnover by 12 weeks of treatment, but the TDF group had significant changes, compared to baseline. Risk factors for bone loss had fewer effects in patients receiving TAF than TDF at week 96. In double-blind randomized trials, we found that after 2 years of treatment, patients receiving TAF had continued improvements in bone safety compared with patients receiving TDF. Clinicaltrial.gov no: NCT01940471 and NCT01940341. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.
A paradigm shift for bone quality in dentistry: A literature review.
Kuroshima, Shinichiro; Kaku, Masaru; Ishimoto, Takuya; Sasaki, Muneteru; Nakano, Takayoshi; Sawase, Takashi
2017-10-01
The aim of this study was to present the current concept of bone quality based on the proposal by the National Institutes of Health (NIH) and some of the cellular and molecular factors that affect bone quality. This is a literature review which focuses on collagen, biological apatite (BAp), and bone cells such as osteoblasts and osteocytes. In dentistry, the term "bone quality" has long been considered to be synonymous with bone mineral density (BMD) based on radiographic and sensible evaluations. In 2000, the NIH proposed the concept of bone quality as "the sum of all characteristics of bone that influence the bone's resistance to fracture," which is completely independent of BMD. The NIH defines bone quality as comprising bone architecture, bone turnover, bone mineralization, and micro-damage accumulation. Moreover, our investigations have demonstrated that BAp, collagen, and bone cells such as osteoblasts and osteocytes play essential roles in controlling the current concept of bone quality in bone around hip and dental implants. The current concept of bone quality is crucial for understanding bone mechanical functions. BAp, collagen and osteocytes are the main factors affecting bone quality. Moreover, mechanical loading dynamically adapts bone quality. Understanding the current concept of bone quality is required in dentistry. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Data from controlled intervention trials are lacking to support observational evidence suggesting a positive association between intake of fruit and vegetable (FV) and bone health. The objective of this study was to assess serum markers of bone turnover change in response to FV depletion and repleti...
Mazzanti, Laura; Battino, Maurizio; Nanetti, Laura; Raffaelli, Francesca; Alidori, Alessandro; Sforza, Giulia; Carle, Flavia; Quagliarini, Veronica; Cester, Nelvio; Vignini, Arianna
2015-11-01
Osteoporosis represents a serious health problem worldwide associated with an increased risk of fractures and mortality. Nutrition should form part of bone disease prevention strategies, especially in the light of the population ageing and the diet effect on bone health. Thus the study aimed at verifying whether 1 year of oral supplementation with either extra virgin olive oil (VOO) enriched with vitamins D3, K1 and B6 (VitVOO) or VOO used as placebo (PlaVOO) is able to modify some bone turnover and oxidative stress markers. Bone mineral density (BMD) was assessed in 60 healthy post-menopausal women together with the bone vitamin K status by measuring undercarboxylated osteocalcine (ucOC) plasma levels, the ratio between ucOC and carboxylated osteocalcine (UCR) and the relations with oxidative stress markers. After 1 year (T 1), subjects taking VitVOO showed lower ucOC levels than those taking PlaVOO; the same trend was found for UCR. As far as BMD is concerned, a significant increase in T-score at T 1 in VitVOO subjects compared to PlaVOO was found. All oxidative stress markers as thiobarbituric acid reactive substances, lipid hydroperoxides and conjugated dienes showed a significant reduction after VitVOO supplementation, whilst plasma total antioxidant capacity values was significantly increased in VitVOO group compared to PlaVOO group at T 1. It might be suggested that the use of VitVOO in the diet of post-menopausal women could represent a proper tool for bone protection and a useful strategy against oxidative stress and related diseases, thus confirming the antioxidant role played by the added vitamins.
Nuclear chromatin-concentrated osteoblasts in renal bone diseases.
Kazama, Junichiro James; Yamamoto, Suguru; Narita, Ichiei; Kurihara, Satoshi
2011-06-01
The morphological appearance of an osteoblast largely alters with its differentiation and maturation, along with the change of cell function. We quantitatively observed the osteoblast morphology and compared it with bone metabolism. Biopsied iliac bone samples obtained from 77 dialysis patients (14 mild change, 37 osteitis fibrosa, 2 osteomalacia, 8 mixed, and 16 adynamic bone) were included in the study. Osteoblast appearances were classified into three groups: (i) type II and III osteoblasts, namely, active osteoblasts characterized by cuboidal or columnar shapes with or without a nuclear clear zone; (ii) type IV osteoblasts, lining osteoblasts characterized by extremely thin cytoplasm; and (iii) type V osteoblasts, apoptotic osteoblasts characterized by nuclear chromatin concentration. The results were quantitatively expressed as the length of bone surface covered by each type of osteoblasts. The type II and III osteoblasts were predominant in osteitis fibrosa, mixed, and mild change. The type IV osteoblasts were overwhelmingly predominant in adynamic bone. The type V osteoblasts appeared most frequently in osteitis fibrosa, followed by mixed and mild change. Both absolute and relative lengths of bone surface covered by the type V osteoblasts were significantly higher in the high-turnover bone group (osteitis fibrosa and mixed) than the low-turnover bone group (adynamic bone and osteomalacia). The type V osteoblasts were slightly correlated with serum intact parathyroid hormone levels. In conclusion, a high bone-turnover condition seems to be associated with the promotion of osteoblastic apoptosis in dialysis patients. This finding may explain the fact that osteopenia develops faster in CKD patients with high turnover of bone. © 2011 The Authors. Therapeutic Apheresis and Dialysis © 2011 International Society for Apheresis.
Turnover of bone marrow-derived cells in the irradiated mouse cornea
Chinnery, Holly R; Humphries, Timothy; Clare, Adam; Dixon, Ariane E; Howes, Kristen; Moran, Caitlin B; Scott, Danielle; Zakrzewski, Marianna; Pearlman, Eric; McMenamin, Paul G
2008-01-01
In light of an increasing awareness of the presence of bone marrow (BM)-derived macrophages in the normal cornea and their uncertain role in corneal diseases, it is important that the turnover rate of these resident immune cells be established. The baseline density and distribution of macrophages in the corneal stroma was investigated in Cx3cr1gfp transgenic mice in which all monocyte-derived cells express enhanced green fluorescent protein (eGFP). To quantify turnover, BM-derived cells from transgenic eGFP mice were transplanted into whole-body irradiated wild-type recipients. Additionally, wild-type BM-derived cells were injected into irradiated Cx3cr1+/gfp recipients, creating reverse chimeras. At 2, 4 and 8 weeks post-reconstitution, the number of eGFP+ cells in each corneal whole mount was calculated using epifluorescence microscopy, immunofluorescence staining and confocal microscopy. The total density of myeloid-derived cells in the normal Cx3cr1+/gfp cornea was 366 cells/mm2. In BM chimeras 2 weeks post-reconstitution, 24% of the myeloid-derived cells had been replenished and were predominantly located in the anterior stroma. By 8 weeks post-reconstitution 75% of the myeloid-derived cells had been replaced and these cells were distributed uniformly throughout the stroma. All donor eGFP+ cells expressed low to moderate levels of CD45 and CD11b, with approximately 25% coexpressing major histocompatibility complex class II, a phenotype characteristic of previous descriptions of corneal stromal macrophages. In conclusion, 75% of the myeloid-derived cells in the mouse corneal stroma are replenished after 8 weeks. These data provide a strong basis for functional investigations of the role of resident stromal macrophages versus non-haematopoietic cells using BM chimeric mice in models of corneal inflammation. PMID:18540963
Bone Turnover with Venlafaxine Treatment in Older Adults with Depression.
Rawson, Kerri S; Dixon, David; Civitelli, Roberto; Peterson, Tim R; Mulsant, Benoit H; Reynolds, Charles F; Lenze, Eric J
2017-09-01
Epidemiologic data suggest older adults receiving serotonergic antidepressants may have accelerated bone loss. We examined bone turnover marker changes and patient-level variables associated with these changes in older adults receiving protocolized antidepressant treatment. Open-label, protocolized treatment study. Medical centers in Pittsburgh, St Louis, and Toronto. Older adults with major depression (N = 168). Serum levels of the bone resorption marker C-terminal cross-linking telopeptide of type 1 collagen (CTX) and the bone formation marker procollagen type 1 N propeptide (P1NP) were assayed before and after 12 weeks of treatment with venlafaxine. Whether CTX and P1NP changes were associated with depression remission and duration of depression and genetic polymorphisms in the serotonin transporter (5HTTLPR) and 1B receptor (HTR1B) were also examined. CTX increased and P1NP decreased during venlafaxine treatment, a profile consistent with accelerated bone loss. Two individual-level clinical variables were correlated with bone turnover; participants whose depression did not go into remission had higher CTX levels, and those with chronic depression had lower P1NP levels. HTR1B genotype predicted P1NP change, whereas 5HTTLPR genotype was unrelated to either biomarker. Bone turnover markers change with antidepressant treatment in a pattern that suggests accelerated bone loss, although the clinical significance of these changes is unclear. These data are preliminary and argue for a larger, controlled study to confirm whether antidepressants are harmful to bone metabolism and whether certain individuals might be at increased risk. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.
Garnero, Patrick
2008-01-01
Osteoporosis is a systemic disease characterized by low bone mass and microarchitectural deterioration of bone tissue, resulting in an increased risk of fracture. While the level of bone mass can be estimated by measuring bone mineral density (BMD) using dual X-ray absorptiometry (DXA), its measurement does not capture all the risk factors for fracture. Quantitative changes in skeletal turnover can be assessed easily and non-invasively by the measurement of serum and urinary biochemical markers; the most sensitive markers include serum osteocalcin, bone specific alkaline phosphatase, the N-terminal propeptide of type I collagen for bone formation, and the crosslinked C- (CTX) and N- (NTX) telopeptides of type I collagen for bone resorption. Advances in our knowledge of bone matrix biochemistry, most notably of post-translational modifications in type I collagen, are likely to lead to the development of new biochemical markers that reflect changes in the material property of bone, an important determinant of bone strength. Among those, the measurement of the urinary ratio of native (alpha) to isomerized (beta) CTX - an index of bone matrix maturation - has been shown to be predictive of fracture risk independently of BMD and bone turnover. In postmenopausal osteoporosis, levels of bone resorption markers above the upper limit of the premenopausal range are associated with an increased risk of hip, vertebral, and nonvertebral fracture, independent of BMD. Therefore, the combined use of BMD measurement and biochemical markers is helpful in risk assessment, especially in those women who are not identified as at risk by BMD measurement alone. Levels of bone markers decrease rapidly with antiresorptive therapies, and the levels reached after 3-6 months of therapy have been shown to be more strongly associated with fracture outcome than changes in BMD. Preliminary studies indicate that monitoring changes of bone formation markers could also be useful to monitor anabolic therapies, including intermittent parathyroid hormone administration and, possibly, to improve adherence to treatment. Thus, repeated measurements of bone markers during therapy may help improve the management of osteoporosis in patients.
Management of osteoporosis in the aging male: Focus on zoledronic acid
Piper, Paul K; Gruntmanis, Ugis
2009-01-01
Osteoporosis in the aging male remains an important yet under-recognized and undertreated disease. Current US estimates indicate that over 14 million men have osteoporosis or low bone mass, and men suffer approximately 500,000 osteoporotic fractures each year. Men experience fewer osteoporotic fractures than women but have higher mortality after fracture. Bisphosphonates are potent antiresorptive agents that inhibit osteoclast activity, suppress in vivo markers of bone turnover, increase bone mineral density, decrease fractures, and improve survival in men with osteoporosis. Intravenous zoledronic acid may be a preferable alternative to oral bisphosphonate therapy in patients with cognitive dysfunction, the inability to sit upright, or significant gastrointestinal pathology. Zoledronic acid (Reclast) is approved in the US as an annual 5 mg intravenous infusion to treat osteoporosis in men. The zoledronic acid (Zometa) 4 mg intravenous dose has been studied in the prevention of bone loss associated with androgen deprivation therapy. PMID:19750231
Management of osteoporosis in the aging male: focus on zoledronic acid.
Piper, Paul K; Gruntmanis, Ugis
2009-01-01
Osteoporosis in the aging male remains an important yet under-recognized and undertreated disease. Current US estimates indicate that over 14 million men have osteoporosis or low bone mass, and men suffer approximately 500,000 osteoporotic fractures each year. Men experience fewer osteoporotic fractures than women but have higher mortality after fracture. Bisphosphonates are potent antiresorptive agents that inhibit osteoclast activity, suppress in vivo markers of bone turnover, increase bone mineral density, decrease fractures, and improve survival in men with osteoporosis. Intravenous zoledronic acid may be a preferable alternative to oral bisphosphonate therapy in patients with cognitive dysfunction, the inability to sit upright, or significant gastrointestinal pathology. Zoledronic acid (Reclast) is approved in the US as an annual 5 mg intravenous infusion to treat osteoporosis in men. The zoledronic acid (Zometa) 4 mg intravenous dose has been studied in the prevention of bone loss associated with androgen deprivation therapy.
Pathogenesis of osteoporotic hip fractures.
McClung, Michael R
2003-01-01
Osteoporosis is characterized late in the course of the disease by an increased risk of fracture, particularly in the elderly. It occurs in both sexes, affecting approximately 8 million women and 2 million men aged > or = 50 years (1). While low bone density is a predictor of fractures, it is not the only determinant of fracture risk. Other factors include advanced age, altered bone quality, a personal or family history of falls, frailty, poor eyesight, debilitating diseases, and high bone turnover. A diet with sufficient calcium and vitamin D is important to minimize bone loss and, along with regular exercise, to maintain muscle strength. Bisphosphonates have been shown to reduce the risk of hip fracture. For elderly patients, the use of hip protectors may be used as a treatment of last resort. Regardless of the age of the patient, individual patient risk factors must be considered to target appropriate treatment and prevent fracture.
Epstein, Solomon
2006-03-01
Ibandronate is a potent nitrogen-containing bisphosphonate available as a once-monthly oral formulation for the treatment and prevention of osteoporosis. Preclinical experiments with estrogen-depleted rats, dogs, and monkeys demonstrated the efficacy of daily and intermittent ibandronate dosing. Initial clinical trials explored the optimal dosing regimens for oral administration in humans. The Oral Ibandronate Osteoporosis Vertebral Fracture Trial in North America and Europe (BONE) and Monthly Oral Ibandronate in Ladies (MOBILE) trials demonstrated that long-term daily and intermittent administration of ibandronate was efficacious for increasing bone mineral density, reducing markers of bone turnover, and preventing fractures, while maintaining bone quality. These preclinical and clinical ibandronate trials provided progressive evidence that a simple, long interval dosing regimen could offer efficacy and safety comparable with currently available bisphosphonates. It is anticipated that once-monthly ibandronate may have a positive impact on patient adherence, and ultimately, on fracture protection in osteoporotic women.
Biochemical markers in the assessment of bone disease
NASA Technical Reports Server (NTRS)
Bikle, D. D.
1997-01-01
As the mean age of our population increases, increasing attention has been paid to the diseases associated with aging, including diseases of the skeleton such as osteoporosis. Effective means of treating and possibly preventing such skeletal disorders are emerging, making their early recognition an important goal for the primary care physician. Although bone density measurements and skeletal imaging studies remain of primary diagnostic importance in this regard, a large number of assays for biochemical markers of bone formation and resorption are being developed that promise to complement the densitometry measurements and imaging studies, providing an assessment of the rates of bone turnover and an earlier evaluation of the effects of therapy. In this review, emphasizing the recent literature, the major biochemical markers currently in use or under active investigation are described, and their application in a number of diseases of the skeleton including osteoporosis is evaluated.
Simko, Julius; Karesova, Iva; Kremlacek, Jan; Fekete, Sona; Zimcikova, Eva; Malakova, Jana; Zivna, Helena; Valis, Martin; Palicka, Vladimir
2016-12-01
Some data suggest that exposure to lamotrigine (LTG) might be associated with impaired bone health in an orchidectomized rat model. The aim of this study was to determine if LTG poses any significant risk for bone in a gonadally intact animals and to compare the effect of LTG with that of phenytoin (PHT). Twenty-four rats were divided into control and test groups, (n=8 per group). Control rats received a standard laboratory diet (SDL), while rats in the test groups were fed a SLD enriched with LTG or PHT for 12 weeks. Dual energy X-ray absorptiometry was used to measure bone mineral density (BMD). The concentrations of bone turnover markers (BTM) were assayed in bone homogenates. The femurs were measured and biomechanically tested. Treatment with either LTG or PHT had no significant effect on BMD or on the biomechanical strength of the bones. In contrast to the effect of LTG, we did find significant changes in BTM in the PHT group: a highly significant decrease in the osteoprotegerin/receptor activator of nuclear factor kappa B ratio (p<0.01) and highly significant increases in bone alkaline phosphatase and amino-terminal propeptide of procollagen type I (p<0.001, p˂0.01, respectively). In the LTG group, the only significant change was a decrease in sclerostin (p˂0.05). The PHT level was 19.0 (15.6-19.5) μmol/l, which represents the lower end of the therapeutic range used in humans. The level of LTG was 60.7 (58.5-61.8) μmol/l. LTG has no effect on the BMD, BTM or mechanical strength in gonadally intact animals. Although a low dose of PHT was associated with enhanced BTM, it did not affect BMD or the biomechanical properties of the bones, similar to the results observed for LTG. Copyright © 2016 Elsevier B.V. All rights reserved.
Lester, Mark E; Urso, Maria L; Evans, Rachel K; Pierce, Joseph R; Spiering, Barry A; Maresh, Carl M; Hatfield, Disa L; Kraemer, William J; Nindl, Bradley C
2009-10-01
Prescribing exercise based on intensity, frequency, and duration of loading may maximize osteogenic responses in bone, but a model of the osteogenic potential of exercise has not been established in humans. In rodents, an osteogenic index (OI) has been used to predict the osteogenic potential of exercise. The current study sought to determine whether aerobic, resistance, or combined aerobic and resistance exercise programs conducted over eight weeks and compared to a control group could produce changes in biochemical markers of bone turnover indicative of bone formation. We further sought to determine whether an OI could be calculated for each of these programs that would reflect observed biochemical changes. We collected serum biomarkers [bone-specific alkaline phosphatase (BAP), osteocalcin, tartrate-resistant acid phosphatase (TRAP), C-terminal telopeptide fragment of type I collagen (CTx), deoxypyridinoline (DPD), 25-hydroxy vitamin D (25(OH)D), and parathyroid hormone (PTH)] in 56 women (20.3+/-1.8 years) before, during and after eight weeks of training. We also measured bone mineral density (BMD) at regional areas of interest using DXA and pQCT. Biomarkers of bone formation (BAP and osteocalcin) increased in the Resistance and Combined groups (p<0.05), while biomarkers of bone resorption (TRAP and DPD) decreased and increased, respectively, after training (p<0.05) in all groups. Small changes in volumetric and areal BMD (p<0.05) were observed in the distal tibia in the Aerobic and Combined groups, respectively. Mean weekly OIs were 16.0+/-1.9, 20.6+/-2.2, and 36.9+/-5.2 for the Resistance, Aerobic, and Combined groups, respectively. The calculated osteogenic potential of our programs did not correlate with the observed changes in biomarkers of bone turnover. The results of the present study demonstrate that participation in an eight week physical training program that incorporates a resistance component by previously inactive young women results in alterations in biomarkers of bone remodeling indicative of increased formation without substantial alterations in markers of resorption.
Underbjerg, Line; Malmstroem, Sofie; Sikjaer, Tanja; Rejnmark, Lars
2018-03-01
Nonsurgical hypoparathyroidism (Ns-HypoPT) and pseudohypoparathyroidism (PHP) are both rare diseases, characterized by hypocalcemia. In Ns-HypoPT, PTH levels are low, whereas patients with PHP often have very high levels due to receptor-insensitivity to PTH (PTH-resistance). Accordingly, we hypothesized that indices of bone turnover and bone mineralization/architecture are similar in Ns-HypoPT and PHP despite marked differences in PTH levels. We studied 62 patients with Ns-HypoPT and 31 with PHP as well as a group of age- and sex-matched healthy controls. We found a significantly higher areal BMD (aBMD) by DXA among patients with Ns-HypoPT, both compared with PHP and the background population. Compared with Ns-HypoPT, PHP patients had significantly lower total and trabecular volumetric BMD (vBMD) assessed by quantitative computed tomography (QCT) scans at the spine and hip. High-resolution peripheral quantitative computed tomography (HRpQCT) scans showed a lower trabecular area and vBMD as well as a lower trabecular number at the tibia in PHP compared to Ns-HypoPT and matched controls. In PHP, PTH levels correlated with levels of markers of bone formation (osteocalcin, bone-specific alkaline phosphatase, P1NP), and bone resorption (CTx). In adult males, levels of bone markers were significantly higher in PHP compared with Ns-HypoPT. Levels of procalcitonin and calcitonin were significantly higher in PHP compared with Ns-HypoPT. In conclusion, indices of bone turnover, density, and microarchitecture differ between patients with Ns-HypoPT and PHP. Our data suggest that patients with PHP do not have a complete skeletal resistance to PTH and that the effects of chronically high PTH levels in PHP are mostly confined to the trabecular tissue. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.
Armour, K E; Armour, K J; Gallagher, M E; Gödecke, A; Helfrich, M H; Reid, D M; Ralston, S H
2001-02-01
Nitric oxide (NO) is a pleiotropic signaling molecule that is produced by bone cells constitutively and in response to diverse stimuli such as proinflammatory cytokines, mechanical strain, and sex hormones. Endothelial nitric oxide synthase (eNOS) is the predominant NOS isoform expressed in bone, but its physiological role in regulating bone metabolism remains unclear. Here we studied various aspects of bone metabolism in female mice with targeted disruption of the eNOS gene. Mice with eNOS deficiency (eNOS KO) had reduced bone mineral density, and cortical thinning when compared with WT controls and histomorphometric analysis of bone revealed profound abnormalities of bone formation, with reduced osteoblast numbers, surfaces and mineral apposition rate. Studies in vitro showed that osteoblasts derived from eNOS KO mice had reduced rates of growth when compared with WT and were less well differentiated as reflected by lower levels of alkaline phosphatase activity. Mice with eNOS deficiency lost bone normally following ovariectomy but exhibited a significantly blunted anabolic response to high dose exogenous estrogen. We conclude that the eNOS pathway plays an essential role in regulating bone mass and bone turnover by modulating osteoblast function.
Bock, Oliver; Börst, Hendrikje; Beller, Gisela; Armbrecht, Gabriele; Degner, Corina; Martus, Peter; Roth, Heinz-Jürgen; Felsenberg, Dieter
2012-01-01
The effect of ibandronate 150 mg/once monthly in the treatment of post-menopausal osteopenia and osteoporosis on bone micro-structure at the distal tibia and radius has not been considered to date. Seventy post-menopausal women with osteoporosis or osteopenia were recruited. All subjects received calcium and vitamin D supplementation and were randomized to either a group which took 150 mg ibandronate oral monthly or a placebo group over a 12-month period. μCT measures of the distal tibia and radius were conducted every three months, with DXA lumbar spine and hip measurements conducted only pre and post and serum markers of bone formation and resorption measured every 6 months. After 12-months no significant impact of ibandronate on the primary outcome measures bone-volume to tissue-volume and trabecular separation at the distal tibia (p≥0.15) was found. Further multiple regression analyses of the primary end-points indicated a significant effect favoring the ibandronate intervention (p=0.045). Analysis of secondary end-points showed greater increases in distal tibia cortical thickness, cortical density and total density (p≤0.043) with ibandronate and no significant effects at the distal radius, but greater increases of hip DXA-BMD and lumbar spine DXA-BMD (p≤0.017). Ibandronate use resulted in a marked reduction in bone turnover (p<0.001). While ibandronate resulted in greater mineralization of bone, this effect differed from one body region to another. There was some impact of ibandronate on bone structure (cortical thickness) at the distal tibia, but not on bone-volume to tissue-volume or trabecular separation. Copyright © 2011 Elsevier Inc. All rights reserved.
Mantoku, Akiko; Chatani, Masahiro; Aono, Kazushi; Inohaya, Keiji; Kudo, Akira
2016-01-15
Tooth replacement in polyphyodont is a well-organized system for maintenance of homeostasis of teeth, containing the dynamic structural change in skeletal tissues such as the attachment bone, which is the supporting element of teeth. Histological analyses have revealed the character of tooth replacement, however, the cellular mechanism of how skeletal tissues are modified during tooth replacement is largely unknown. Here, we showed the important role of osteoblasts for controlling osteoclasts to modify the attachment bone during tooth replacement in medaka pharyngeal teeth, coupled with an osterix-DsRed/TRAP-GFP transgenic line to visualize osteoblasts and osteoclasts. In the turnover of the row of attachment bones, these bones were resorbed at the posterior side where most developed functional teeth were located, and generated at the anterior side where teeth were newly erupted, which caused continuous tooth replacement. In the cellular analysis, osteoclasts and osteoblasts were located at attachment bones separately, since mature osteoclasts were localized at the resorbing side and osteoblasts gathered at the generating side. To demonstrate the role of osteoclasts in tooth replacement, we established medaka made deficient in c-fms-a by TALEN. c-fms-a deficient medaka showed hyperplasia of attachment bones along with reduced bone resorption accompanied by a low number of TRAP-positive osteoclasts, indicating an important role of osteoclasts in the turnover of attachment bones. Furthermore, nitroreductase-mediated osteoblast-specific ablation induced disappearance of osteoclasts, indicating that osteoblasts were essential for maintenance of osteoclasts for the proper turnover. Taken together, our results suggested that the medaka attachment bone provides the model to understand the cellular mechanism for tooth replacement, and that osteoblasts act in the coordination of bone morphology by supporting osteoclasts. Copyright © 2015 Elsevier Inc. All rights reserved.
Silva, Carla C; Goldberg, Tamara B L; Nga, Hong S; Kurokawa, Cilmery S; Capela, Renata C; Teixeira, Altamir S; Dalmas, José C
2011-01-01
To evaluate the behavior of biomarkers of bone formation and resorption in healthy male Brazilian adolescents according to their biological maturation. Eighty-seven volunteers were divided into age groups according to bone age (BA): 10-12 years (n = 25), 13-15 years (n = 36), and 16-18 years (n = 26). Weight (kg), height (m), body mass index (kg/m(2)), calcium intake from 3 days assessed by 24-h food recall (mg/day), pubertal event evaluation by Tanner criteria, and serum biomarker levels (osteocalcin [OC] [ng/mL], bone alkaline phosphatase [BAP] [U/L], and serum carboxyterminal telopeptide [S-CTx] [ng/mL]) were recorded and correlated to bone mineral density (BMD) (g/cm(2)) measured by dual energy X-ray absorptiometry of the lumbar spine, proximal femur, and whole body. Biomarkers showed similar behaviors, presenting higher median values in the 13-15 year group (BAP = 154.71 U/L, OC = 43.0 ng/mL, S-CTx = 2.09 ng/mL; p < 0.01) and when adolescents were in the pubertal stage G4. Median biomarker values decreased with advancing BA and sexual maturation. Biomarker values showed parallelism with peak height velocity, and, interestingly, bone formation biomarkers indicated significant negative correlation with BMD in the different evaluated locations, i.e., higher BMD values correlated with lower bone biomarker values. This is the first study of healthy Brazilian adolescents with rigid and careful inclusion and exclusion criteria to assess the correlation of bone markers and BMD with biological maturation indicators. Our results can help understand bone turnover and monitor bone metabolism.
Starup-Linde, J; Eriksen, S A; Lykkeboe, S; Handberg, A; Vestergaard, P
2014-06-01
This study examined whether markers of bone turnover differ between individuals with and without diabetes. Bone markers showed heterogeneity between studies and were discrepant for markers of bone creation and markers of bone degradation. Bone markers may be of lesser value in diabetes due to heterogeneity. The aim of this meta-analysis was to compare existing literature regarding changes in bone markers among diabetics compared to healthy controls. To exclude that blood glucose levels among diabetes patients could influence the assays used for determining bone turnover markers, a methodological study was performed. Medline at Pubmed Embase, Cinahl, Svemed+, Cochrane library, and Bibliotek.dk was searched in August 2012. The studies should examine biochemical bone turnover among diabetes patients in comparison to controls in an observational design. In the methodological study, fasting blood samples were drawn from two individuals. Glucose was added to the blood samples in different concentrations and OC, CTX, and procollagen type 1 amino terminal propeptide were measured after 0, 1, 2, and 3 h. Twenty-two papers fulfilled the criteria for the meta-analysis. From the pooled data in the meta-analysis, the bone markers osteocalcin (OC) (-1.15 ng/ml [-1.78,-0.52]) and C-terminal cross-linked telopeptide (CTX) (-0.14 ng/ml [-0.22, -0.05]) were significantly lower among diabetes patients than non-diabetes patients, however other markers did not differ. All markers displayed very high heterogeneity by I2 statistics. In the methodological study, the addition of glucose did not significantly change the bone markers neither by level of glucose nor with increasing incubation time. The dissociative pattern of biochemical bone markers of bone formation and bone resorption present in diabetes patients is thus not caused by glucose per se but may be modulated by unknown factors associated with diabetes mellitus.
Zhong, Zhendong A; Sun, Weihua; Chen, Haiyan; Zhang, Hongliang; Lay, Yu-An E; Lane, Nancy E; Yao, Wei
2015-12-01
For tamoxifen-dependent Cre recombinase, also known as CreER recombinase, tamoxifen (TAM) is used to activate the Cre to generate time- and tissue-specific mouse mutants. TAM is a potent CreER system inducer; however, TAM is also an active selective estrogen receptor modulator (SERM) that can influence bone homeostasis. The purpose of this study was to optimize the TAM dose for Cre recombinase activation while minimizing the effects of TAM on bone turnover in young growing mice. To evaluate the effects of TAM on bone turnover and bone mass, 1-month-old wild-type male and female mice were intraperitoneally injected with TAM at 0, 1, 10 or 100mg/kg/day for four consecutive days, or 100, 300 mg/kg/day for one day. The distal femurs were analyzed one month after the last TAM injection by microCT, mechanical test, and surface-based bone histomorphometry. Similar doses of TAM were used in Col1 (2.3 kb)-CreERT2; mT/mG reporter male mice to evaluate the dose-dependent efficacy of Cre-ER activation in bone tissue. A TAM dose of 100 mg/kg × 4 days significantly increased trabecular bone volume/total volume (BV/TV) of the distal femur, femur length, bone strength, and serum bone turnover markers compared to the 0mg control group. In contrast, TAM doses ≤ 10 mg/kg did not significantly change any of these parameters compared to the 0mg group, although a higher bone strength was observed in the 10mg group. Surface-based histomorphometry revealed that the 100mg/kg dose of TAM dose significantly increased trabecular bone formation and decreased periosteal bone formation at 1-week post-TAM treatment. Using the reporter mouse model Col1-CreERT2; mT/mG, we found that 10mg/kg TAM induced Col1-CreERT2 activity in bone at a comparable level to the 100mg/kg dose. TAM treatment at 100mg/kg/day × 4 days significantly affects bone homeostasis, resulting in an anabolic bone effect on trabecular bone in 1-month-old male mice. However, a lower dose of TAM at 10 mg/kg/day × 4 days can yield similar Col1-CreERT2 induction efficacy with minimum effects on bone turnover in young male mice. Copyright © 2015 Elsevier Inc. All rights reserved.
Osima, Marit; Kral, Rita; Borgen, Tove T; Høgestøl, Ingvild K; Joakimsen, Ragnar M; Eriksen, Erik F; Bjørnerem, Åshild
2017-04-01
Increased cortical porosity has been suggested as a possible factor increasing fracture propensity in patients with type 2 diabetes mellitus (T2DM). This is a paradox because cortical porosity is generally associated with high bone turnover, while bone turnover is reduced in patients with T2DM. We therefore wanted to test the hypothesis that women with T2DM have lower bone turnover markers (BTM) and lower cortical porosity than those without diabetes, and that higher serum glucose and body mass index (BMI) are associated with lower BTM, and with lower cortical porosity. This cross-sectional study is based on a prior nested case-control study including 443 postmenopausal women aged 54-94years from the Tromsø Study, 211 with non-vertebral fracture and 232 fracture-free controls. Of those 443 participants, 22 women exhibited T2DM and 421 women did not have diabetes. All had fasting blood samples assayed for procollagen type I N-terminal propeptide (PINP), C-terminal cross-linking telopeptide of type I collagen (CTX) and glucose, and femoral subtrochanteric architecture was quantified using low-resolution clinical CT and StrAx1.0 software. Women with T2DM had higher serum glucose (7.2 vs. 5.3mmol/L), BMI (29.0 vs. 26.4kg/m 2 ), and higher femoral subtrochanteric total volumetric bone mineral density (vBMD) (783 vs. 715mgHA/cm 3 ), but lower cortical porosity (40.9 vs. 42.8%) than nondiabetic women (all p<0.05). Each standard deviation (SD) increment in glucose was associated with 0.10-0.12 SD lower PINP and CTX, and 0.13 SD lower cortical porosity (all p<0.05). Each SD increment in BMI was associated with 0.10-0.18 SD lower serum PINP and CTX, and 0.19 SD thicker cortices (all p<0.05). Increasing glucose and BMI were associated with lower bone turnover suggesting that reduced intracortical and endocortical remodeling leads to reduced porosity and thicker cortices. Using low-resolution clinical CT, cortical porosity was lower in women with T2DM compared to women without diabetes. This indicates that other changes in bone qualities, not increased cortical porosity, are likely to explain the increased fracture propensity in patients with T2DM. Copyright © 2017 Elsevier Inc. All rights reserved.
Kimoto, Aishi; Tanaka, Makoto; Nozaki, Kazutoshi; Mori, Masamichi; Fukushima, Shinji; Mori, Hiroshi; Shiroya, Tsutomu; Nakamura, Toshitaka
2013-07-01
This study examined and compared the effects of four-week intermittent and daily administrations of minodronic acid, a highly potent nitrogen-containing bisphosphonate, on bone mineral density (BMD), bone strength, bone turnover, and histomorphometry on established osteopenia in ovariectomized (OVX) rats. Fourteen-week-old female F344 rats were OVX or sham-operated. At 12 weeks post surgery, minodronic acid was orally administered once every 4 weeks at 0.2, 1, and 5 mg/kg and once daily at 0.006, 0.03, and 0.15 mg/kg for 12 months. The total dosing amount was comparable between the two dosing regimens. The levels of urinary deoxypyridinoline and serum osteocalcin were measured to assess bone turnover. BMD as assessed via dual-energy X-ray absorptiometry, bone structure and dynamical changes in vertebral trabecula and biomechanical properties were measured ex vivo at 12 months to assess bone content and material properties. Minodronic acid dose-dependently ameliorated the decrease in BMD of lumbar vertebrae and the femur in both treatment regimens similarly. Minodronic acid suppressed elevated urinary levels of deoxypyridinoline, a bone resorption marker, and reduced the serum levels of osteocalcin, a bone formation marker. In the mechanical test at 12 months of treatment, minodronic acid dose-dependently ameliorated the reduction in bone strength in femur and vertebral body. There is no significant difference in parameters between the two regimens except maximal load of lower doses in lumbar vertebral body and absorption energy of middle doses in femur. With these parameters with significant differences, values of the intermittent regimen were significantly lower than that of daily repeated regimen. Bone histomorphometric analysis of the lumbar vertebral body showed that minodronic acid significantly ameliorated the decrease in bone mass, trabecular thickness and number, and the increase in trabecular separation, bone resorption indices (Oc.S/BS and N.Oc/BS), and bone formation indices (BFR/BS, MAR and OV/BV) in both regimens. Minodronic acid suppressed OVX-induced increases in bone turnover at the tissue level and ameliorated all structural indices, thereby improving the deterioration of bone quality under osteoporotic disease conditions regardless of the regimen. In conclusion, a four-week intermittent treatment of minodronic acid suppressed increased bone resorption as daily treatment when considering the total administered dose in OVX rats with established osteopenia. The improvement of microarchitectural destruction in low dose of intermittent treatment was weaker than that observed in a daily repeated regimen; however the effects of high and middle doses of intermittent treatment were equivalent to that observed in daily repeated regimen accompanied by sufficient bone resorption inhibition in rats. These findings suggest that minodronic acid at an appropriate dose in an intermittent regimen may be as clinically useful in osteoporosis therapy as in daily treatment. Copyright © 2013 Elsevier Inc. All rights reserved.
Shikano, Kotaro; Kaneko, Kaichi; Kawazoe, Mai; Kaburaki, Makoto; Hasunuma, Tomoko; Kawai, Shinichi
2016-01-01
Objective Vitamin K2 (menatetrenone) is an effective treatment for patients with postmenopausal osteoporosis. We herein performed a subanalysis of patients with systemic autoimmune diseases undergoing glucocorticoid therapy in our previous prospective study. Methods Sixty patients were categorized into a group with vitamin K2 treatment (n=20, Group A) and a group without vitamin K2 treatment (n=40, Group B). All patients were treated with bisphosphonates. Results Serum levels of osteocalcin and undercarboxylated osteocalcin decreased significantly after the start of glucocorticoid therapy in both groups, while the serum osteocalcin level was significantly higher in Group A than Group B during the third (p=0.0250) and fourth weeks (p=0.0155). The serum level of the N-terminal peptide of type I procollagen, a bone formation marker, decreased during glucocorticoid therapy, but was significantly higher in Group A than Group B during the fourth week (p=0.0400). The bone mineral density and fracture rate showed no significant differences between the two groups. Conclusion Although vitamin K2 improves bone turnover markers in patients with osteoporosis on glucocorticoid therapy, it has no significant effect on the bone mineral density and fracture rate after 1.5 years of treatment.
Serum serotonin concentration associated with bone mineral density in Chinese postmenopausal women.
Wei, Qiu-Shi; Chen, Zhen-Qiu; Tan, Xin; Kang, Lu-Chen; Jiang, Xiao-Bing; Liang, Jiang; He, Wei; Deng, Wei-Min
2017-02-01
Recent studies have shown that circulating serotonin plays a potential role in bone metabolism. However, conflicting results have been reported for the relationship between serum serotonin concentrations and bone mineral density (BMD). We investigated whether the serum serotonin concentrations related to BMD in Chinese postmenopausal women. Serum serotonin and bone turnover concentrations of 117 premenopausal women and 262 asymptomatic postmenopausal women were analyzed by enzyme-linked immunosorbent assay. BMD at the lumbar spine and femoral neck was measured by dual energy X-ray absorptiometry. The relationship between serotonin and BMD was investigated. The postmenopausal women had lower mean serum serotonin concentrations compared to the premenopausal women. Serotonin concentrations were negatively associated with age, weight, BMI, fat mass, and β-CTX concentrations in postmenopausal women. No significant correlations were found between serotonin and these parameters in premenopausal women. In postmenopausal women, age- and BMI-adjusted serotonin concentrations were positively correlated with BMD of the lumbar spine and femoral neck. Multiple regression analyses showed serum serotonin and β-CTX were the predictors for lumbar spine BMD. Only serum serotonin was the determinant for femoral neck BMD. In conclusion, lower serum serotonin concentrations are linked to low lumbar spine and femoral neck BMD in postmenopausal women.
Effects of Gymnastics Activities on Bone Accrual during Growth: A Systematic Review.
Jürimäe, Jaak; Gruodyte-Raciene, Rita; Baxter-Jones, Adam D G
2018-06-01
The amount of bone gained during childhood and adolescence impacts greatly on lifetime skeletal health. The purpose of this review is to summarize current evidence of the effects of gymnastics activities on bone mineral accrual during growth and to describe possible factors that influence bone mineral gains. The PubMed and SportDiscus databases were searched, and a total of 24 articles met the selection criteria and were included in this review. Artistic and rhythmic gymnasts presented higher bone mineral density and content values compared to untrained controls, despite possible negative effects associated with hormonal levels, dietary restrictions and body fat. The results suggest that gymnasts had similar bone turnover values compared to untrained controls. High-intensity mechanical loading of gymnastics activity appears to increase bone development and counterbalance negative effects, such as later pubertal development, lower body fat mass and lower hormone levels. In conclusion, gymnasts present higher bone mineral values in comparison with untrained controls. The osteogenic effect of gymnastics athletic activity has a positive influence on bone mineral accrual and overcomes the possible negative influence of high athletic activity that may cause negative energy balance and low body fat mass which are associated with lower bone accrual.
Bone metabolism in renal transplant patients treated with cyclosporine or sirolimus.
Campistol, Josep M; Holt, David W; Epstein, Solomon; Gioud-Paquet, Martine; Rutault, Karine; Burke, James T
2005-09-01
Sirolimus is a new immunosuppressive agent used as treatment to prevent acute renal allograft rejection. One of the complications of renal transplantation and subsequent long-term immunosuppression is bone loss associated with osteoporosis and consequent fracture. Two open-label, randomized, phase 2 studies comparing sirolimus versus cyclosporine (CsA) included indices of bone metabolism as secondary end-points. Markers of bone turnover, serum osteocalcin and urinary N-telopeptides, were measured over a 1-year period in 115 patients receiving either CsA or sirolimus as a primary therapy in combination with azathioprine and glucocorticoids (study A) or mycophenolate mofetil (MMF) and glucocorticoids (study B). Urinary excretion of N-telopeptides and the concentrations of serum osteocalcin were consistently higher in the CsA-treated patients and significantly different at week 24 for N-telopeptides and at weeks 12, 24, and 52 for osteocalcin. In conclusion, future trials are warranted to test whether a sirolimus-based regimen conserves bone mineral density compared with a CsA-based regimen.
Long, Hua; Zheng, Liheng; Gomes, Fernando Cardoso; Zhang, Jinhui; Mou, Xiang; Yuan, Hua
2013-09-01
To clarify the effects of low sound pressure level (LSPL) infrasound on local bone turnover and explore its underlying mechanisms, femoral defected rats were stabilized with a single-side external fixator. After exposure to LSPL infrasound for 30min twice everyday for 6 weeks, the pertinent features of bone healing were assessed by radiography, peripheral quantitative computerized tomography (pQCT), histology and immunofluorescence assay. Infrasound group showed a more consecutive and smoother process of fracture healing and modeling in radiographs and histomorphology. It also showed significantly higher average bone mineral content (BMC) and bone mineral density (BMD). Immunofluorescence showed increased expression of calcitonin gene related peptide (CGRP) and decreased Neuropeptide Y (NPY) innervation in microenvironment. The results suggested the osteogenesis promotion effects of LSPL infrasound in vivo. Neuro-osteogenic network in local microenvironment was probably one target mediating infrasonic osteogenesis, which might provide new strategy to accelerate bone healing and remodeling. Copyright © 2013 Elsevier B.V. All rights reserved.
Fewtrell, Mary S; Williams, Jane E; Singhal, Atul; Murgatroyd, Peter R; Fuller, Nigel; Lucas, Alan
2009-07-01
Preterm infants are at risk of metabolic bone disease due to inadequate mineral intake with unknown consequences for later bone health. To test the hypotheses that (1) early diet programs peak bone mass and bone turnover; (2) human milk has a beneficial effect on these outcomes; (3) preterm subjects have reduced peak bone mass compared to population reference data. 20 year follow-up of 202 subjects (43% male; 24% of survivors) who were born preterm and randomized to: (i) preterm formula versus banked breast milk or (ii) preterm versus term formula; as sole diet or supplement to maternal milk. Outcome measures were (i) anthropometry; (ii) hip, lumbar spine (LS) and whole body (WB) bone mineral content (BMC) and bone area (BA) measured using DXA; (iii) bone turnover markers. Infant dietary randomization group did not influence peak bone mass or turnover. The proportion of human milk in the diet was significantly positively associated with WBBA and BMC. Subjects receiving >90% human milk had significantly higher WBBA (by 3.5%, p=0.01) and BMC (by 4.8%, p=0.03) than those receiving <10%. Compared to population data, subjects had significantly lower height SDS (-0.41 (SD 1.05)), higher BMI SDS (0.31 (1.33)) and lower LSBMD SDS (-0.29 (1.16)); height and bone mass deficits were greatest in those born SGA with birthweight <1250 g (height SDS -0.81 (0.95), LSBMD SDS -0.61 (1.3)). Infant dietary randomization group did not affect peak bone mass or turnover suggesting the observed reduced final height and LS bone mass, most marked in growth restricted subjects with the lowest birthweight, may not be related to sub-optimal early nutrition. The higher WB bone mass associated with human milk intake, despite its low nutrient content, may reflect non-nutritive factors in breast milk. These findings may have implications for later osteoporosis risk and require further investigation.
Murphy, E; FitzGerald, O; Saxne, T; Bresnihan, B
2002-01-01
Background: Chondromalacia patellae is a potentially disabling disorder characterised by features of patellar cartilage degradation. Objective: To evaluate markers of cartilage and bone turnover in patients with chondromalacia patellae. Methods: 18 patients with chondromalacia patellae were studied. Serum cartilage oligomeric matrix protein (s-COMP) and bone sialoprotein (s-BSP) levels were measured by enzyme linked immunosorbent assay (ELISA) and compared with those of age and sex matched healthy control subjects. Periarticular bone mineral density (BMD) of both knee joints was assessed by dual energy x ray absorptiometry (DXA). Results: s-COMP levels were significantly raised in all patients with chondromalacia patellae compared with healthy control subjects (p=0.0001). s-BSP levels did not differ significantly between the groups (p=0.41). BMD of the patella was significantly reduced in patients with chondromalacia patellae compared with the control subjects (p=0.016). In patients with bilateral chondromalacia patellae, BMD of the patella was lower in the more symptomatic knee joint (p=0.005). Changes in periarticular BMD were localised to the patella and were not present in femoral regions. Neither s-COMP (p=0.18) nor s-BSP (p=0.40) levels correlated with patellar BMD. Conclusions: Increased s-COMP levels, reflecting cartilage degradation, and reduced BMD localised to the patella may represent clinically useful markers in the diagnosis and monitoring of patients with chondromalacia patellae. Measures of cartilage degradation did not correlate with loss of patellar bone density, suggesting dissociated pathophysiological mechanisms. PMID:12379520
Murphy, E; FitzGerald, O; Saxne, T; Bresnihan, B
2002-11-01
Chondromalacia patellae is a potentially disabling disorder characterised by features of patellar cartilage degradation. To evaluate markers of cartilage and bone turnover in patients with chondromalacia patellae. 18 patients with chondromalacia patellae were studied. Serum cartilage oligomeric matrix protein (s-COMP) and bone sialoprotein (s-BSP) levels were measured by enzyme linked immunosorbent assay (ELISA) and compared with those of age and sex matched healthy control subjects. Periarticular bone mineral density (BMD) of both knee joints was assessed by dual energy x ray absorptiometry (DXA). s-COMP levels were significantly raised in all patients with chondromalacia patellae compared with healthy control subjects (p=0.0001). s-BSP levels did not differ significantly between the groups (p=0.41). BMD of the patella was significantly reduced in patients with chondromalacia patellae compared with the control subjects (p=0.016). In patients with bilateral chondromalacia patellae, BMD of the patella was lower in the more symptomatic knee joint (p=0.005). Changes in periarticular BMD were localised to the patella and were not present in femoral regions. Neither s-COMP (p=0.18) nor s-BSP (p=0.40) levels correlated with patellar BMD. Increased s-COMP levels, reflecting cartilage degradation, and reduced BMD localised to the patella may represent clinically useful markers in the diagnosis and monitoring of patients with chondromalacia patellae. Measures of cartilage degradation did not correlate with loss of patellar bone density, suggesting dissociated pathophysiological mechanisms.
Dolan, Eimear; McGoldrick, Adrian; Davenport, Colin; Kelleher, Grainne; Byrne, Brendan; Tormey, William; Smith, Diarmuid; Warrington, Giles D
2012-09-01
Horse-racing jockeys are a group of weight-restricted athletes, who have been suggested as undertaking rapid and extreme weight cycling practices in order to comply with stipulated body-mass standards. The aim of this study was to examine bone mass, turnover and endocrine function in jockeys and to compare this group with age, gender and body mass index matched controls. Twenty male professional jockeys and 20 healthy male controls participated. Dual energy X-ray absorptiometry scans and early morning fasting blood and urine samples were used to measure bone mass, turnover and a hormonal profile. Total body bone mineral density (BMD) was significantly lower in jockeys (1.143 ± 0.05 vs. 1.27 ± 0.06 g cm(-3), p < 0.01). Bone resorptive activity was elevated in the jockey group as indicated by significantly higher urinary NTx/creatinine (76.94 ± 29.52 vs. 55.9 ± 13.9 nmol mmol(-1), p < 0.01), resulting in a significantly negative uncoupling index between bone resorption and formation. Sex hormone binding globulin (SHBG) levels were significantly higher in jockeys (41.21 ± 9.77 vs. 28.24 ± 9.98 nmol L(-1), p < 0.01) with a lower percentage of bioavailable testosterone (48.89 ± 7.38 vs. 59.18 ± 6.74 %, p < 0.01). SHBG and insulin-like growth factor-1 were independent predictors of total body and femoral neck BMD, respectively (p < 0.05). In conclusion, it appears that professional jockeys have an elevated rate of bone loss and reduced bone mass that appears to be associated with disrupted hormonal activity. It is likely that this may have occurred in response to the chronic weight cycling habitually experienced by this group.
A New Insight to Bone Turnover: Role of ω-3 Polyunsaturated Fatty Acids
López-Frías, Magdalena; López-Aliaga, Inmaculada; Ochoa, Julio J.
2013-01-01
Background. Evidence has shown that long-chain polyunsaturated fatty acids (LCPUFA), especially the ω-3 fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are beneficial for bone health and turnover. Objectives. This review summarizes findings from both in vivo and in vitro studies and the effects of LC PUFA on bone metabolism, as well as the relationship with the oxidative stress, the inflammatory process, and obesity. Results. Some studies in humans indicate that LCPUFA can increase bone formation, affect peak bone mass in adolescents, and reduce bone loss. However, the cellular mechanisms of action of the LCPUFA are complex and involve modulation of fatty acid metabolites such as prostaglandins, resolvins and protectins, several signaling pathways, cytokines, and growth factors, although in certain aspects there is still some controversy. LCPUFA affect receptor activator of nuclear factor κ β (RANK), a receptor found on the osteoclast, causing bone resorption, which controls osteoclast formation. Conclusions. Since fatty acids are an endogenous source of reactive oxygen species, free radicals alter the process of bone turnover; however, although there are clinical evidences linking bone metabolism and dietary lipids, more clinical trials are necessary to prove whether ω-3 PUFA supplementation plays a major role in bone health. PMID:24302863
Zoledronic Acid for the Treatment and Prevention of Primary and Secondary Osteoporosis
Rizzoli, René
2010-01-01
There is increasing interest in therapies that can be administered less frequently and/or avoid gastrointestinal irritation. The efficacy of once-yearly zoledronic acid (5 mg) in the treatment and prevention of osteoporosis has been evaluated in different patient populations. In the 3-year HORIZON-Pivotal Fracture Trial in postmenopausal women with osteoporosis, zoledronic acid reduced the risk of vertebral and hip fracture by 70% and 41%, respectively, versus placebo. The efficacy of zoledronic acid in preventing subsequent fracture in patients with a hip fracture was evaluated in the HORIZON-Recurrent Fracture Trial. New vertebral and nonvertebral fractures were significantly reduced by treatment initiated within 90 days of incident hip fracture, without evidence of delayed fracture healing. Data from a 1-year study show that a single zoledronic acid 5-mg infusion is superior to oral risedronate 5 mg/day for treatment and prevention of glucocorticoid-induced osteoporosis. Increases in bone mineral density and decreases in bone turnover markers were significantly greater with zoledronic acid than with risedronate. Two different treatment regimens of zoledronic acid were found to be more effective than placebo for prevention of bone loss in postmenopausal women and reducing markers of bone turnover after 2 years. In conclusion, zoledronic acid 5 mg once-yearly infusion has demonstrated marked efficacy in the treatment and prevention of primary and secondary osteoporosis, with a combination of fracture risk reduction and prevention of bone loss at key sites. It is the only agent shown to reduce the incidence of fracture and mortality in patients with a previous low-trauma hip fracture. PMID:22870433
Bonani, Marco; Meyer, Ursina; Frey, Diana; Graf, Nicole; Bischoff-Ferrari, Heike A; Wüthrich, Rudolf P
2016-01-01
In a randomized controlled clinical trial in kidney transplant recipients (NCT01377467) we have recently shown that RANKL inhibition with denosumab significantly improved areal bone mineral density (aBMD) when given during the first year after transplantation. The effect of denosumab on skeletal microstructure and bone strength in kidney transplant recipients is not known. The purpose of the present bone microarchitecture ancillary study was to investigate high-resolution peripheral quantitative computed tomography (HRpQCT) data from the distal tibia and distal radius in 24 study patients that had been randomized to receive either two injections of denosumab 60 mg at baseline and after 6 months (n=10) or no treatment (n=14). Consistent with the full trial findings, denosumab reduced biomarkers of bone turnover, and significantly increased aBMD at the lumbar spine (median difference of 4.7%; 95% confidence interval [CI] 2.6 - 7.8; p<0.001). Bone quality as assessed by total and cortical volumetric bone mineral density (Tot. vBMD, Ct.vBMD) and cortical thickness (Ct.Th) increased significantly at the tibia, while changes at the radius were less pronounced. The trabecular volumetric BMD (Tb.vBMD), thickness (Tb. Th), separation (Tb.Sp) and number (Tb.N) and the cortical porosity (Ct.Po) at the tibia and the radius did not significantly change in both treatment groups. Micro-finite element analysis (µFEA) showed that bone stiffness increased significantly at the tibia (median difference 5.6%; 95% CI 1.8% - 9.2%; p=0.002) but not at the radius (median difference 2.9%, 95% CI -3.7% - 9.1%; p=0.369). Likewise, failure load increased significantly at the tibia (median difference 5.1%; 95% CI 2.1% - 8.1%; p=0.002) but not at the radius (median difference 2.4%, 95% CI -3.2% - 8.5%; p=0.336). These findings demonstrate that denosumab improves bone density and bone quality in first-year kidney transplant recipients at risk to develop osteoporosis. © 2016 The Author(s) Published by S. Karger AG, Basel.
Reduced bone density in androgen-deficient women with acquired immune deficiency syndrome wasting.
Huang, J S; Wilkie, S J; Sullivan, M P; Grinspoon, S
2001-08-01
Women with acquired immune deficiency syndrome wasting are at an increased risk of osteopenia because of low weight, changes in body composition, and hormonal alterations. Although women comprise an increasing proportion of human immunodeficiency virus-infected patients, prior studies have not investigated bone loss in this expanding population of patients. In this study we investigated bone density, bone turnover, and hormonal parameters in 28 women with acquired immune deficiency syndrome wasting and relative androgen deficiency (defined as free testosterone < or =3.0 pg/ml, weight < or =90% ideal body weight, weight loss > or =10% from preillness maximum weight, or weight <100% ideal body weight with weight loss > or =5% from preillness maximum weight). Total body (1.04 +/- 0.08 vs. 1.10 +/- 0.07 g/cm2, human immunodeficiency virus-infected vs. control respectively; P < 0.01), anteroposterior lumbar spine (0.94 +/- 0.12 vs. 1.03 +/- 0.09 g/cm2; P = 0.005), lateral lumbar spine (0.71 +/- 0.14 vs. 0.79 +/- 0.09 g/cm2; P = 0.02), and hip (Ward's triangle; 0.68 +/- 0.14 vs. 0.76 +/- 0.12 g/cm2; P = 0.05) bone density were reduced in the human immunodeficiency virus-infected compared with control subjects. Serum N-telopeptide, a measure of bone resorption, was increased in human immunodeficiency virus-infected patients, compared with control subjects (14.6 +/- 5.8 vs. 11.3 +/- 3.8 nmol/liter bone collagen equivalents, human immunodeficiency virus-infected vs. control respectively; P = 0.03). Although body mass index was similar between the groups, muscle mass was significantly reduced in the human immunodeficiency virus-infected vs. control subjects (16 +/- 4 vs. 21 +/- 4 kg, human immunodeficiency virus-infected vs. control, respectively; P < 0.0001). In univariate regression analysis, muscle mass (r = 0.53; P = 0.004) and estrogen (r = 0.51; P = 0.008), but not free testosterone (r = -0.05, P = 0.81), were strongly associated with lumbar spine bone density in the human immunodeficiency virus-infected patients. The association between muscle mass and bone density remained significant, controlling for body mass index, hormonal status, and age (P = 0.048) in multivariate regression analysis. These data indicate that both hormonal and body composition factors contribute to reduced bone density in women with acquired immune deficiency syndrome wasting. Anabolic strategies to increase muscle mass may be useful to increase bone density among osteopenic women with acquired immune deficiency syndrome wasting.
Bogaczewicz, Jaroslaw; Karczmarewicz, Elzbieta; Pludowski, Pawel; Zabek, Jakub; Kowalski, Jan; Lukaszkiewicz, Jacek; Wozniacka, Anna
2015-01-01
To investigate the feasibility of bone turnover markers (BTMs) for the assessment of bone metabolism in patients with systemic lupus erythematosus (SLE), according to the guidelines of the International Osteoporosis Foundation and the International Federation of Clinical Chemistry and Laboratory Medicine. The study included 43 female SLE patients. Serum procollagen type I N propeptide (PINP), C-terminal telopeptide of type I collagen (CTX), osteocalcin, PTH, 25(OH)D, anti-cardiolipin, anti-dsDNA, and anti-nucleosome levels were measured. PINP and CTX levels were elevated in SLE patients aged > 45 in comparison to those aged < 45, although with borderline significance (p = 0.05, respectively). Correlations were found between BTMs: the strongest being between PINP and osteocalcin (τ = 0.69, p < 0.05). PINP and osteocalcin were found to be associated with PTH (τ = 0.3, τ = 0.29, respectively, p < 0.05). Age correlated with PINP (τ = 0.23, p < 0.05). Elevated PINP was found more frequently than elevated osteocalcin or CTX, both in patients aged < 45 (p = 0.001) and > 45 (p < 0.001). No significant difference in PINP, osteocalcin or CTX levels was found with respect to season, neither in the entire SLE group, nor in the under-45 or over-45 groups. Previous glucocorticoid treatment was not associated with difference in BTMs. Increased BTMs in SLE appear to predominantly reflect the pattern of bone remodeling related to age. Increased PINP is expected to be the most frequent outcome among BTMs. Better diagnoses of bone disturbances with BTMs performed in accordance with international reference standards need to be included in the approach to SLE patients, in addition to bone mineral density assessment. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.
Wei, Qiu-shi; Wang, Hai-bin; Wang, Jun-ling; Fang, Bin; Zhou, Guang-quan; Tan, Xin; He, Wei; Deng, Wei-min
2015-02-01
To assess the ability of whole body vibration (WBV) with the kidney-tonifying herbal Fufang (Bushen Zhuanggu Granules, BZG) to prevent osteoporosis in ovariectomized rats. Fifty 6-month-old female Sprague Dawley rats were divided into five groups: sham-operated (SHAM), ovariectomized (OVX), OVX with WBV (OVX + WBV), OVX with BZG (OVX + BZG), OVX with both WBV and BZG (OVX + WBV + BZG). The SHAM group received normal saline. After 12 weeks of treatment, the rats were killed, their serum concentrations of osteopontin (OPN), receptor activator of nuclear factor kappa-B ligand RANKL and bone turnover markers assayed and bone mineral density (BMD), histomorphometry and bone strength evaluated. Concentrations of OPN were significantly lower in the SHAM, OVX + WBV and OVX + WBV + BZG groups at 12 weeks, whereas concentrations of RANKL had decreased significantly in the SHAM, OVX + WBV, OVX + BZG and OVX + WBV + BZG groups. In the OVX + WBV, OVX + BZG and OVX + WBV + BZG groups the amount of bone turnover had been significantly antagonized. Compared with OVX group, BMD, % trabecular area (Tb.Ar), number of trabeculae (Tb.N) and assessed biomechanical variables were higher in OVX+WBV group, whereas and BMD, %Tb.Ar, Tb.N, maximal load and yield load were higher in the OVX + BZG group. All tested indices were significantly lower in the OVX + WBV and OVX + BZG groups than in the OVX + WBV + BZG group. Either WBV or BZG alone prevents OVX-induced bone loss. However, BZG enhances the effect of WBV by further enhancing BMD, bone architecture and strength. © 2015 Chinese Orthopaedic Association and Wiley Publishing Asia Pty Ltd.
Larmonier, C. B.; McFadden, R.-M. T.; Hill, F. M.; Schreiner, R.; Ramalingam, R.; Besselsen, D. G.; Ghishan, F. K.
2013-01-01
Decreased bone mineral density (BMD) represents an extraintestinal complication of inflammatory bowel disease (IBD). Vitamin D3 has been considered a viable adjunctive therapy in IBD. However, vitamin D3 plays a pleiotropic role in bone modeling and regulates the bone formation-resorption balance, depending on the physiological environment, and supplementation during active IBD may have unintended consequences. We evaluated the effects of vitamin D3 supplementation during the active phase of disease on colonic inflammation, BMD, and bone metabolism in an adoptive IL-10−/− CD4+ T cell transfer model of chronic colitis. High-dose vitamin D3 supplementation for 12 days during established disease had negligible effects on mucosal inflammation. Plasma vitamin D3 metabolites correlated with diet, but not disease, status. Colitis significantly reduced BMD. High-dose vitamin D3 supplementation did not affect cortical bone but led to a further deterioration of trabecular bone morphology. In mice fed a high vitamin D3 diet, colitis more severely impacted bone formation markers (osteocalcin and bone alkaline phosphatase) and increased bone resorption markers, ratio of receptor activator of NF-κB ligand to osteoprotegrin transcript, plasma osteoprotegrin level, and the osteoclast activation marker tartrate-resistant acid phosphatase (ACp5). Bone vitamin D receptor expression was increased in mice with chronic colitis, especially in the high vitamin D3 group. Our data suggest that vitamin D3, at a dose that does not improve inflammation, has no beneficial effects on bone metabolism and density during active colitis or may adversely affect BMD and bone turnover. These observations should be taken into consideration in the planning of further clinical studies with high-dose vitamin D3 supplementation in patients with active IBD. PMID:23639807
Larmonier, C B; McFadden, R-M T; Hill, F M; Schreiner, R; Ramalingam, R; Besselsen, D G; Ghishan, F K; Kiela, P R
2013-07-01
Decreased bone mineral density (BMD) represents an extraintestinal complication of inflammatory bowel disease (IBD). Vitamin D₃ has been considered a viable adjunctive therapy in IBD. However, vitamin D₃ plays a pleiotropic role in bone modeling and regulates the bone formation-resorption balance, depending on the physiological environment, and supplementation during active IBD may have unintended consequences. We evaluated the effects of vitamin D₃ supplementation during the active phase of disease on colonic inflammation, BMD, and bone metabolism in an adoptive IL-10-/- CD4⁺ T cell transfer model of chronic colitis. High-dose vitamin D₃ supplementation for 12 days during established disease had negligible effects on mucosal inflammation. Plasma vitamin D₃ metabolites correlated with diet, but not disease, status. Colitis significantly reduced BMD. High-dose vitamin D₃ supplementation did not affect cortical bone but led to a further deterioration of trabecular bone morphology. In mice fed a high vitamin D₃ diet, colitis more severely impacted bone formation markers (osteocalcin and bone alkaline phosphatase) and increased bone resorption markers, ratio of receptor activator of NF-κB ligand to osteoprotegrin transcript, plasma osteoprotegrin level, and the osteoclast activation marker tartrate-resistant acid phosphatase (ACp5). Bone vitamin D receptor expression was increased in mice with chronic colitis, especially in the high vitamin D₃ group. Our data suggest that vitamin D₃, at a dose that does not improve inflammation, has no beneficial effects on bone metabolism and density during active colitis or may adversely affect BMD and bone turnover. These observations should be taken into consideration in the planning of further clinical studies with high-dose vitamin D₃ supplementation in patients with active IBD.
The effect of pregnancy and lactation on bone mineral density in fluoride-exposed rats.
Yildiz, Mustafa; Oral, Baha
2006-06-01
Fluoride increases metabolic turnover of the bone in favour of bone formation. Excessive intake of fluoride may lead to pathological changes in teeth and bones: dental and skeletal fluorosis. In this study, we investigated the effect of pregnancy and lactation on bone mineral density (BMD) in fluoride-exposed rats. Female Wistar rats were given commercially available spring water with 100 ppm fluoride (N = 8), or without addition (N = 8) for 18 weeks. At 16 weeks of age, four female rats and one male rat were kept in a cage for 5 days; all females were successfully impregnated. BMD was measured at 16 weeks of age, on the first day postpartum, and at the end of lactation. Spinal BMD was significantly higher in fluoride-exposed rats than control (P < 0.05), but there were no differences in femoral BMD (P = 0.670). During pregnancy, spinal BMD and femoral BMD were not significantly changed in fluoride-exposed rats, whereas BMD of the spine was significantly decreased in the control rats (P = 0.013), but not in the femur. During lactation, BMD was significantly decreased at the two regions compared to initial values (P < 0.05) in both groups. This study shows that pregnancy has no effect on bone, but lactation has a decreasing effect on BMD in fluoride-exposed rats.
Smith, Brenda J; Bu, So Young; Wang, Yan; Rendina, Elizabeth; Lim, Yin F; Marlow, Denver; Clarke, Stephen L; Cullen, Diane M; Lucas, Edralin A
2014-01-01
Dried plum has been reported to have potent effects on bone in osteopenic animal models, but the mechanisms through which bone metabolism is altered in vivo remain unclear. To address this issue, a study comparing the metabolic response of dried plum to the anabolic agent, parathyroid hormone (PTH), was undertaken. Six month-old female Sprague Dawley rats (n=84) were sham-operated (SHAM) or ovariectomized (OVX) and maintained on a control diet for 6wks until osteopenia was confirmed. Treatments were initiated consisting of a control diet (AIN-93M) supplemented with dried plum (0, 5, 15 or 25%; w/w) or a positive control group receiving PTH. At the end of 6wks of treatment, whole body and femoral bone mineral density (BMD) were restored by the two higher doses of dried plum to the level of the SHAM group. Trabecular bone volume and cortical thickness were also improved with these two doses of dried plum. Dried plum suppressed the OVX-induced increase in bone turnover as indicated by systemic biomarkers of bone metabolism, N-terminal procollagen type 1 (P1NP) and deoxypyridinoline (DPD). Dynamic bone histomorphometric analysis of the tibial metaphysis revealed that dried plum restored the OVX-induced increase in cancellous bone formation rate (BFR) and mineralizing surface (MS/BS) to the SHAM group, but some doses of dried plum increased endocortical mineral apposition rate (MAR). As expected, PTH significantly increased endocortical MAR and BFR, periosteal BFR, and trabecular MAR and BFR beyond that of the OVX and maintained the accelerated rate of bone resorption associated with OVX. Dried plum up-regulated bone morphogenetic protein 4 (Bmp4) and insulin-like growth factor 1 (Igf1) while down-regulating nuclear factor T cell activator 1 (Nfatc1). These findings demonstrate that in the adult osteopenic OVX animal, the effects of dried plum differ from that of PTH in that dried plum primarily suppressed bone turnover with the exception of the indices of bone formation at the endocortical surface. © 2013.
2012-01-01
Background Vitamin D is an essential nutrient for maintaining bone health, to include protecting against stress fracture during periods of rapid bone turnover. The objective of this longitudinal, observational study was to assess vitamin D status, biomarkers of bone turnover, and vitamin D and calcium intake in female Soldiers (n = 91) during US Army basic combat training (BCT). Methods Anthropometric, biological and dietary intake data were collected at wk 0, 3, 6, and 9 of the 10 wk BCT course. Mixed models repeated measures ANOVAs were used to assess main effects of time, race, and time-by-race interactions. Results White volunteers experienced a decrease in serum 25(OH)D levels, whereas non-white volunteers experienced an increase during BCT. However, serum 25(OH)D levels were lower in non-whites than whites at all timepoints (P-interaction < 0.05). Group mean PTH levels increased (P < 0.05) during the first 3 wk of training, remained elevated for the duration of BCT, and were higher in non-whites compared to whites (P-race < 0.05). Biomarkers of both bone formation (bone alkaline phosphatase and procollagen I N-terminal peptide) and resorption (tartrate-resistant acid phosphatase and C-terminal telopeptide) increased (P < 0.05) during BCT, indicating increased bone turnover. Estimated daily intakes of vitamin D and calcium were below recommended levels (15 μg and 1000 mg/day, respectively), both before (group mean ± SEM; 3.9 μg/d ± 0.4 and 887 mg/d ± 67) and during BCT (4.1 μg/d ± 0.3 and 882 mg/d ± 51). Conclusions These findings demonstrate that female Soldiers experience dynamic changes in vitamin D status coupled with increased bone turnover and potentially inadequate vitamin D and calcium intake during military training. PMID:22866974
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koskela, A., E-mail: antti.koskela@oulu.fi
Perfluorooctanoic acid (PFOA) is a ubiquitous and persistent environmental chemical, which has been used extensively due to its stability and surface tension-lowering properties. Toxicological effects include induction of neonatal mortality and reproductive toxicity. In this study, pregnant C57BL/6 mice were exposed orally to 0.3 mg PFOA/kg/day throughout pregnancy, and female offspring were studied at the age of 13 or 17 months. Morphometrical and biomechanical properties of femurs and tibias were analyzed with micro-computed tomography and 3-point bending, and bone PFOA concentrations were determined by mass spectrometry. The effects of PFOA on bone cell differentiation were studied in osteoclasts from C57BL/6more » mice and in the MC3T3 pre-osteoblast cell line. PFOA exposed mice showed increased femoral periosteal area as well as decreased mineral density of tibias. Biomechanical properties of these bones were not affected. Bone PFOA concentrations were clearly elevated even at the age of 17 months. In osteoblasts, low concentrations of PFOA increased osteocalcin (OCN) expression and calcium secretion, but at PFOA concentrations of 100 μM and above osteocalcin (OCN) expression and calcium secretion were decreased. The number of osteoclasts was increased at all PFOA concentrations tested and resorption activity dose-dependently increased from 0.1–1.0 μM, but decreased at higher concentrations. The results show that PFOA accumulates in bone and is present in bones until the old age. PFOA has the potential to influence bone turnover over a long period of time. Therefore bone is a target tissue for PFOA, and altered bone geometry and mineral density seem to persist throughout the life of the animal. - Highlights: • Bone is a target tissue for PFOA both in vivo and in vitro. • Maternal exposure during pregnancy results in PFOA accumulation in bone of the offspring. • PFOA is present in bones until the old age. • PFOA causes mild alterations in bone morphometry and decreases bone mineral density. • Low PFOA concentrations stimulate the resorption activity of osteoclasts.« less
Bone turnover, calcium homeostasis, and vitamin D status in Danish vegans.
Hansen, Tue H; Madsen, Marie T B; Jørgensen, Niklas R; Cohen, Arieh S; Hansen, Torben; Vestergaard, Henrik; Pedersen, Oluf; Allin, Kristine H
2018-01-23
A vegan diet has been associated with increased bone fracture risk, but the physiology linking nutritional exposure to bone metabolism has only been partially elucidated. This study investigated whether a vegan diet is associated with increased bone turnover and altered calcium homeostasis due to insufficient intake of calcium and vitamin D. Fractionated and total 25-hydroxyvitamin D (25(OH)-D), parathyroid hormone (PTH), calcium, and four bone turnover markers (osteocalcin, N-terminal propeptide of type I procollagen (PINP), bone-specific alkaline phosphatase (BAP), and C-terminal telopeptide of type I collagen (CTX)) were measured in serum from 78 vegans and 77 omnivores. When adjusting for seasonality and constitutional covariates (age, sex, and body fat percentage) vegans had higher concentrations of PINP (32 [95% CI: 7, 64]%, P = 0.01) and BAP (58 [95% CI: 27, 97]%, P < 0.001) compared to omnivores, whereas CTX (30 [95% CI: -1, 72]%, P = 0.06) and osteocalcin (21.8 [95% CI: -9.3, 63.7]%, P = 0.2) concentrations did not differ between the two groups. Vegans had higher serum PTH concentration (38 [95% CI: 19, 60]%; P < 0.001) and lower 25(OH)-D serum concentration (-33 [95% CI: -45, -19]%; P < 0.001), but similar serum calcium concentration (-1 [95% CI: -3, 1]%, P = 0.18 compared to omnivores. Vegans have higher levels of circulating bone turnover markers compared to omnivores, which may in the long-term lead to poorer bone health. Differences in dietary habits including intake of vitamin D and calcium may, at least partly, explain the observed differences.
Mechanisms Inducing Low Bone Density in Duchenne Muscular Dystrophy in Mice and Humans
Rufo, Anna; Del Fattore, Andrea; Capulli, Mattia; Carvello, Francesco; De Pasquale, Loredana; Ferrari, Serge; Pierroz, Dominique; Morandi, Lucia; De Simone, Michele; Rucci, Nadia; Bertini, Enrico; Bianchi, Maria Luisa; De Benedetti, Fabrizio; Teti, Anna
2011-01-01
Patients affected by Duchenne muscular dystrophy (DMD) and dystrophic MDX mice were investigated in this study for their bone phenotype and systemic regulators of bone turnover. Micro–computed tomographic (µCT) and histomorphometric analyses showed reduced bone mass and higher osteoclast and bone resorption parameters in MDX mice compared with wild-type mice, whereas osteoblast parameters and mineral apposition rate were lower. In a panel of circulating pro-osteoclastogenic cytokines evaluated in the MDX sera, interleukin 6 (IL-6) was increased compared with wild-type mice. Likewise, DMD patients showed low bone mineral density (BMD) Z-scores and high bone-resorption marker and serum IL-6. Human primary osteoblasts from healthy donors incubated with 10% sera from DMD patients showed decreased nodule mineralization. Many osteogenic genes were downregulated in these cultures, including osterix and osteocalcin, by a mechanism blunted by an IL-6-neutralizing antibody. In contrast, the mRNAs of osteoclastogenic cytokines IL6, IL11, inhibin-βA, and TGFβ2 were increased, although only IL-6 was found to be high in the circulation. Consistently, enhancement of osteoclastogenesis was noted in cultures of circulating mononuclear precursors from DMD patients or from healthy donors cultured in the presence of DMD sera or IL-6. Circulating IL-6 also played a dominant role in osteoclast formation because ex vivo wild-type calvarial bones cultured with 10% sera of MDX mice showed increase osteoclast and bone-resorption parameters that were dampen by treatment with an IL-6 antibody. These results point to IL-6 as an important mediator of bone loss in DMD and suggest that targeted anti-IL-6 therapy may have a positive impact on the bone phenotype in these patients. © 2011 American Society for Bone and Mineral Research PMID:21509823
Effects of Gymnastics Activities on Bone Accrual during Growth: A Systematic Review
Jürimäe, Jaak; Gruodyte-Raciene, Rita; Baxter-Jones, Adam D. G.
2018-01-01
The amount of bone gained during childhood and adolescence impacts greatly on lifetime skeletal health. The purpose of this review is to summarize current evidence of the effects of gymnastics activities on bone mineral accrual during growth and to describe possible factors that influence bone mineral gains. The PubMed and SportDiscus databases were searched, and a total of 24 articles met the selection criteria and were included in this review. Artistic and rhythmic gymnasts presented higher bone mineral density and content values compared to untrained controls, despite possible negative effects associated with hormonal levels, dietary restrictions and body fat. The results suggest that gymnasts had similar bone turnover values compared to untrained controls. High-intensity mechanical loading of gymnastics activity appears to increase bone development and counterbalance negative effects, such as later pubertal development, lower body fat mass and lower hormone levels. In conclusion, gymnasts present higher bone mineral values in comparison with untrained controls. The osteogenic effect of gymnastics athletic activity has a positive influence on bone mineral accrual and overcomes the possible negative influence of high athletic activity that may cause negative energy balance and low body fat mass which are associated with lower bone accrual. Key points Children and adolescent gymnasts present higher bone mineral density and content values compared to untrained controls, despite a variety of possible negative factors. Gymnastics activity with high-impact mechanical loading appears to be especially osteogenic to achieve maximum possible peak bone accrual during growth and maturation. Skeletal benefits of gymnastics activity in childhood are maintained for several years after retirement from gymnastics trainings in young adulthood. PMID:29769826
Vanderschueren, D; Boonen, S; Ederveen, A G; de Coster, R; Van Herck, E; Moermans, K; Vandenput, L; Verstuyf, A; Bouillon, R
2000-11-01
Aromatization of androgens into estrogens may be important for maintenance of the male skeleton. To address this hypothesis, we evaluated the skeletal effects of selective estrogen deficiency as induced by the aromatase inhibitor vorozole (Vor), with or without 17beta-estradiol (E(2)) administration (1.35 microg/day), in aged (12-month-old) male rats. A baseline group was killed at the start of the experiment (Base). The control group (Control), the group treated with vorozole alone (Vor), the group treated with E(2) alone (E(2)), or the group with a combination of both (Vor + E(2)) were killed 15 weeks later. Vorozole significantly increased serum testosterone (T) and reduced serum E(2) compared with Control. Body weight gain and serum insulin-like growth factor-I (IGF-I) were also lower in Vor, whereas significant weight loss and decrease of serum IGF-I occurred as a result of E(2) administration. Bone formation as assessed by serum osteocalcin was unaffected but osteoid surface in the proximal metaphysis of the tibia was increased in Vor-treated rats. Bone resorption as evaluated by urinary deoxypyridinoline excretion was increased in Vor. Biochemical parameters of bone turnover were reduced significantly in all E(2) treated rats. Premature closure of the growth plates and decreased osteoid and mineralizing surfaces were also observed in E(2) and Vor + E(2). Apparent bone density of lumbar vertebrae and femur, as measured by dual-energy X-ray absorptiometry (DXA), was significantly reduced in Vor. Vorozole decreased femoral bone density mainly in the distal femur (trabecular and cortical region). This decrease of bone density was not present in E(2) and Vor + E(2). Similar findings were observed when bone density was assessed by peripheral quantitative computed tomography (pQCT); that is, trabecular density of the distal femur, the proximal tibia, and the distal lumbar vertebra were all lower in Vor. This decrease in density was not observed in all E(2)-treated animals. In conclusion, administration of the aromatase inhibitor, vorozole, to aged male rats induces net trabecular bone loss in both the appendicular and axial skeleton, despite a concomitant increase in serum testosterone. E(2) administration is able to prevent this trabecular bone loss in vorozole-treated animals.
Ruddle, N H; Li, C B; Horne, W C; Santiago, P; Troiano, N; Jay, G; Horowitz, M; Baron, R
1993-11-01
HTLV-I infection can result in adult T cell leukemia with accompanying hypercalcemia and increased bone resorption. A viral etiology has also been invoked for Paget's disease, a disease of high bone turnover. Delineation of pathogenetic mechanisms of viral-associated bone diseases has been impeded by the complexity of viral and host factors. In order to consider the relationship of HTLV-I infection to skeletal changes we have evaluated the role of a single viral gene in mice transgenic for HTLV-I tax under the control of the viral promoter. Tax mice exhibited severe skeletal abnormalities characterized by high bone turnover, increases in osteoblast and osteoclast numbers and activity, and myelofibrosis. These changes were apparent as early as two months of age. Tax mRNA and protein were highly expressed in bone but not in bone marrow nor in any other tissues except, as previously reported, salivary gland and neurofibromas when they did develop. Within bone, tax protein was detected in only two cell types, mature osteoclasts and spindle-shaped cells within the endosteal myelofibrosis. These observations suggest that local expression of the tax gene, which encodes a viral regulatory protein known to influence host gene expression, can induce within the bone environment marked changes in bone cell activity, resulting in profound skeletal alterations.
Coelingh Bennink, Herjan J T; Verhoeven, Carole; Zimmerman, Yvette; Visser, Monique; Foidart, Jean-Michel; Gemzell-Danielsson, Kristina
2017-06-01
Estetrol (E4) is an estrogen produced exclusively by the human fetal liver during pregnancy. In this study the pharmacodynamic effects of escalating doses of E4 in postmenopausal women were investigated. This was a partly randomized, open-label, multiple-rising-dose study in 49 postmenopausal women. Participants were randomized to receive either 2 mg E4 or 2 mg estradiol-valerate (E2 V) for 28 days. Subsequent dose-escalation groups were (non-randomized): 10, 20 and 40 mg E4. Blood samples were collected regularly for measuring endocrine and hemostasis variables, lipids and lipoproteins, fasting glucose and bone turnover markers. Estetrol treatment resulted in a decrease of follicle-stimulating hormone and luteinizing hormone and an increase of sex-hormone binding globulin. Changes in hemostasis variables were small. A lowering effect on low-density lipoprotein cholesterol was accompanied with an increase in high-density lipoprotein cholesterol and no or minimal changes in triglycerides. The considerable decrease in osteocalcin levels in the three highest E4 dose groups and the small decrease in C-telopeptide levels were comparable to the E2 V control group and suggest a preventive effect on bone loss. All changes observed were dose-dependent. In this study, estetrol treatment showed dose-dependent estrogenic effects on endocrine parameters, bone turnover markers, and lipids and lipoproteins. The effect on triglycerides was small as were the effects on hemostatic variables. These results support the further investigation of estetrol as a candidate for hormone therapy. Quantitatively, the effects of 10 mg estetrol were similar to the study comparator 2 mg estradiol valerate.
Sun, Li; Zhu, Ling-Ling; Lu, Ping; Yuen, Tony; Li, Jianhua; Ma, Risheng; Baliram, Ramkumarie; Moonga, Surinder S.; Liu, Peng; Zallone, Alberta; New, Maria I.; Davies, Terry F.; Zaidi, Mone
2013-01-01
Clinical data showing correlations between low thyroid-stimulating hormone (TSH) levels and high bone turnover markers, low bone mineral density, and an increased risk of osteoporosis-related fractures are buttressed by mouse genetic and pharmacological studies identifying a direct action of TSH on the skeleton. Here we show that the skeletal actions of TSH deficiency are mediated, in part, through TNFα. Compound mouse mutants generated by genetically deleting the Tnfα gene on a Tshr−/− (homozygote) or Tshr+/− (heterozygote) background resulted in full rescue of the osteoporosis, low bone formation, and hyperresorption that accompany TSH deficiency. Studies using ex vivo bone marrow cell cultures showed that TSH inhibits and stimulates TNFα production from macrophages and osteoblasts, respectively. TNFα, in turn, stimulates osteoclastogenesis but also enhances the production in bone marrow of a variant TSHβ. This locally produced TSH suppresses osteoclast formation in a negative feedback loop. We speculate that TNFα elevations due to low TSH signaling in human hyperthyroidism contribute to the bone loss that has traditionally been attributed solely to high thyroid hormone levels. PMID:23716650
Chen, J T; Shiraki, M; Katase, K; Kato, T; Hirai, Y; Hasumi, K
1994-10-01
To study the correlation between the basal serum calcitonin level and L2-4 bone mineral density (BMD), a cross sectional study of 384 healthy subjects (106 premenopausal, 88 perimenopausal and 109 postmenopausal subjects) and a longitudinal study of 42 oophorectomized subjects were conducted. A positive correlation was found in perimenopause (r = 0.219, p = 0.040) but not in premenopause (r = 0.069, p = 0.4898) and postmenopause (r = 0.141, p = 0.0554) in a cross sectional study. The percent reduction in L2-4BMD compared to the baseline also correlated with preoperative calcitonin levels at 6 months after oophorectomy (r = 0.333, p = 0.0442), but not significantly at 12 months (r = 0.224, p = 0.27). These data suggest that the basal calcitonin level correlates to L2-4BMD only at perimenopause or in the early postoophorectomized period when bone turnover is accelerated and bone resorption seems to be faster than bone formation. In addition the premenopausal basal calcitonin level may be an indicator of the fast loser after menopause.
[Imaging of diabetic osteopathy].
Patsch, J; Pietschmann, P; Schueller-Weidekamm, C
2015-04-01
Diabetic bone diseases are more than just osteoporosis in patients with diabetes mellitus (DM): a relatively high bone mineral density is paired with a paradoxically high risk of fragility fractures. Diabetics exhibit low bone turnover, osteocyte dysfunction, relative hypoparathyroidism and an accumulation of advanced glycation end products in the bone matrix. Besides typical insufficiency fractures, diabetics show a high risk for peripheral fractures of the lower extremities (e.g. metatarsal fractures). The correct interdisciplinary assessment of fracture risks in patients with DM is therefore a clinical challenge. There are two state of the art imaging methods for the quantification of fracture risks: dual energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT). Radiography, multidetector computed tomography (MDCT) and magnetic resonance imaging (MRI) are suitable for the detection of insufficiency fractures. Novel research imaging techniques, such as high-resolution peripheral quantitative computed tomography (HR-pQCT) provide non-invasive insights into bone microarchitecture of the peripheral skeleton. Using MR spectroscopy, bone marrow composition can be studied. Both methods have been shown to be capable of discriminating between type 2 diabetic patients with and without prevalent fragility fractures and thus bear the potential of improving the current standard of care. Currently both methods remain limited to clinical research applications. DXA and HR-pQCT are valid tools for the quantification of bone mineral density and assessment of fracture risk in patients with DM, especially if interpreted in the context of clinical risk factors. Radiography, CT and MRI are suitable for the detection of insufficiency fractures.
Frassetto, L A; Hardcastle, A C; Sebastian, A; Aucott, L; Fraser, W D; Reid, D M; Macdonald, H M
2012-12-01
In vitro studies demonstrate that bone is degraded in an acidic environment due to chemical reactions and through effects on bone cells. Clinical evidence is insufficient to unequivocally resolve whether the diet net acid or base load bone affects breakdown in humans. Increasing dietary salt (sodium chloride, NaCl) mildly increases blood acidity in humans and in rats with increased sensitivity to the blood pressure effects of salt, whereas increased potassium (K) intake can decrease blood pressure. Blood pressure responses to NaCl or K may potentially be a marker for increased bone turnover or lower bone mineral density (BMD) in women at higher risk for osteoporosis and fracture. We retrospectively analysed data from two data sets (California and NE Scotland) of postmenopausal women (n=266) enrolled in long-term randomized, placebo-controlled studies of the effects of administration of low- or high-dose dietary K alkali supplementation on bone turnover in relation to sodium or chloride excretion (a marker of dietary salt intake). Mean arterial pressure (MAP) was calculated from blood pressure measures, MAP was divided into tertiles and its influence on the effect of dietary NaCl and K alkali supplementation on deoxypyridinoline markers of bone resorption and BMD by DEXA was tested. Data was analysed for each data set separately and then combined. Percentage change in BMD after 24 months was less for California compared with North East Scotland (hip: -0.6 ± 2.8% and -1.5 ± 2.4%, respectively (P=0.027); spine: -0.5 ± 3.4% and -2.6 ± 3.5%, (P<0.001). We found no effect of dietary alkali treatment on BMD change or bone resorption for either centre. Adjusting for the possible calcium- or potassium-lowering effects on blood pressure did not alter the results. Blood pressure responses to Na, Cl or K intake did not help predict a BMD response to diet alkali therapy.
USDA-ARS?s Scientific Manuscript database
Recent studies with genetically modified mice and dietary antioxidants have suggested an important role for superoxide derived from NADPH oxidase (NOX) enzymes and other reactive oxygen species (ROS) such as hydrogen peroxide in regulation of normal bone turnover during development and also in the r...
SIRT6 deficiency culminates in low-turnover osteopenia.
Sugatani, Toshifumi; Agapova, Olga; Malluche, Hartmut H; Hruska, Keith A
2015-12-01
Deficiency of Sirtuin 6 (SIRT6), a chromatin-related deacetylase, in mice reveals severe premature aging phenotypes including osteopenia. However, the underlying molecular mechanisms of SIRT6 in bone metabolism are unknown. Here we show that SIRT6 deficiency in mice produces low-turnover osteopenia caused by impaired bone formation and bone resorption, which are mechanisms similar to those of age-related bone loss. Mechanistically, SIRT6 interacts with runt-related transcription factor 2 (Runx2) and osterix (Osx), which are the two key transcriptional regulators of osteoblastogenesis, and deacetylates histone H3 at Lysine 9 (H3K9) at their promoters. Hence, excessively elevated Runx2 and Osx in SIRT6(-/-) osteoblasts lead to impaired osteoblastogenesis. In addition, SIRT6 deficiency produces hyperacetylation of H3K9 in the promoter of dickkopf-related protein 1 (Dkk1), a potent negative regulator of osteoblastogenesis, and osteoprotegerin, an inhibitor of osteoclastogenesis. Therefore, the resulting up-regulation of Dkk1 and osteoprotegerin levels contribute to impaired bone remodeling, leading to osteopenia with a low bone turnover in SIRT6-deficient mice. These results establish a new link between SIRT6 and bone remodeling that positively regulates osteoblastogenesis and osteoclastogenesis. Copyright © 2015 Elsevier Inc. All rights reserved.
Bone anabolics in osteoporosis: Actuality and perspectives
Montagnani, Andrea
2014-01-01
Vertebral and nonvertebral fractures prevention is the main goal for osteoporosis therapy by inhibiting bone resorption and/or stimulating bone formation. Antiresorptive drugs decrease the activation frequency, thereby determining a secondary decrease in bone formation rate and a low bone turnover. Bisphosphonates are today’s mainstay among antiresorptive treatment of osteoporosis. Also, oral selective estrogen receptor modulators and recently denosumab have a negative effect on bone turnover. Agents active on bone formation are considered a better perspective in the treatment of severe osteoporosis. Recombinant-human parathyroid hormone (PTH) has showed to increase bone formation and significantly decrease vertebral fractures in severe patients, but with a modest effect on nonvertebral fractures. The study of Wnt signaling pathway, that induces prevalently an osteoblastic activity, opens large possibilities to antagonists of Wnt-inhibitors, such as sclerostin antibodies and dickkopf-1 antagonists, with potential effects not only on trabecular bone but also on cortical bone. PMID:25035827
ATOMIC ENERGY COMMISSION PROGRESS REPORT ON BONE RESEARCH , 1960-1961
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1962-10-31
A review of osteoporosis concepts is presented. Activities in an experimental program to study osteoporosis by examining mineral metabolism in bone and by examining bone composition and density are reported. Sr/sup 85/ was administered to seven osteoporotic patients as a tracer for skeletal mineral metabolism. The activity levels in the blood and the excretion rate were measured. From these data the accretion rate and the diffusible component volume were calculated. It was found that the accretion rate was not increased in any case. The size of the diffusible component was normal in six patients and reduced in one. Concurrent experimentsmore » with estrogen administration were conducted. Over-all results indicate that in osteoporosis, the rate of bone accretion is never elevated and an effect of estrogen administration was the decrease of bone resorption rather than stimulation of bone formation. In studies of skeletal metabolism, the kinetics of Sr/sup 85/ metabolism was compared in normal subjects and patients with skeletal disorders. Various aspects of the results are analyzed and it is concluded that values obtained by kinetic studies appear to be quantitative, reproducible, and to correlate with presently established information on alterations of bone metabolism in systemic deseases. In studies of peripheral circulation and bone growth, I/sup 131tagged human serum albumin was injected in animals. The investigation was conducted to determine blood volumne turnover rate in extremities, to correlate changes in this rate with fractures and bone disorders, and to examine the method for use in evaluation of circulation under certain pathological conditions. Data and findings are included. Data are also included on in vitro mobilization of Sr/ sup 85/ during bone formation and bone density studies. (J.R.D.)« less
Scheiner, S; Pivonka, P; Smith, D W; Dunstan, C R; Hellmich, C
2014-01-01
Denosumab, a fully human monoclonal antibody, has been approved for the treatment of postmenopausal osteoporosis. The therapeutic effect of denosumab rests on its ability to inhibit osteoclast differentiation. Here, we present a computational approach on the basis of coupling a pharmacokinetics model of denosumab with a pharmacodynamics model for quantifying the effect of denosumab on bone remodeling. The pharmacodynamics model comprises an integrated systems biology-continuum micromechanics approach, including a bone cell population model, considering the governing biochemical factors of bone remodeling (including the action of denosumab), and a multiscale micromechanics-based bone mechanics model, for implementing the mechanobiology of bone remodeling in our model. Numerical studies of postmenopausal osteoporosis show that denosumab suppresses osteoclast differentiation, thus strongly curtailing bone resorption. Simulation results also suggest that denosumab may trigger a short-term bone volume gain, which is, however, followed by constant or decreasing bone volume. This evolution is accompanied by a dramatic decrease of the bone turnover rate by more than one order of magnitude. The latter proposes dominant occurrence of secondary mineralization (which is not anymore impeded through cellular activity), leading to higher mineral concentration per bone volume. This explains the overall higher bone mineral density observed in denosumab-related clinical studies. Copyright © 2013 John Wiley & Sons, Ltd. PMID:24039120
Hohman, Emily E; Weaver, Connie M
2015-02-01
Grapes and their associated phytochemicals have been investigated for beneficial effects on cardiovascular health, cancer prevention, and other chronic diseases, but the effect of grape consumption on bone health has not been fully determined. We previously found short-term benefits of grape products on reducing bone turnover in ovariectomized rats. The objective of this study was to determine the long-term benefits of a grape-enriched diet on bone in ovariectomized rats. Rats were ovariectomized at 3 mo of age and were administered a single dose of (45)Ca to prelabel bones at 4 mo of age. After a 1-mo equilibration period, baseline urinary (45)Ca excretion was determined. Rats (n = 22/group) were then randomly assigned to a modified AIN93M diet containing 25% freeze-dried grape powder or to a control diet for 8 wk. Urinary (45)Ca excretion was monitored throughout the study to determine changes in bone (45)Ca retention. Calcium balance was assessed after 1 and 8 wk of consuming the experimental diets, and a calcium kinetic study was performed at 8 wk. After 8 wk, femurs were collected for micro-computed tomographic imaging, 3-point bending, and reference point indentation. Rats fed the grape-enriched diet had 44% greater net bone calcium retention than did rats fed the control diet. There were no differences in calcium balance due to diet at either week 1 or week 8, but there was a significant increase in net calcium absorption (10.6%) and retention (5.7%) from week 1 to week 8 in the grape-enriched diet group only. Grape-enriched diet-fed rats had 3% greater cortical thickness and 11% greater breaking strength. There were no differences in femur bone mineral density, trabecular microarchitecture, or reference point indentation variables due to diet. This study of ovariectomized rats indicates that the consumption of grape products may improve calcium utilization and suppress bone turnover, resulting in improvements in bone quality. © 2015 American Society for Nutrition.
Bone involvement in adult patients affected with Ehlers-Danlos syndrome.
Eller-Vainicher, C; Bassotti, A; Imeraj, A; Cairoli, E; Ulivieri, F M; Cortini, F; Dubini, M; Marinelli, B; Spada, A; Chiodini, I
2016-08-01
The Ehlers-Danlos syndrome is characterized by abnormal connective tissue but bone involvement is debated. We found a reduced BMD and bone quality and increased prevalence of asymptomatic vertebral fractures in eugonadal patients with Ehlers-Danlos syndrome. These findings suggest the need of a bone health evaluation in these patients. The Ehlers-Danlos (EDS) syndrome is characterized by abnormalities of the connective tissue leading to ligamentous laxity and skin and tissue fragility. We evaluated the bone metabolism, bone mineral density (BMD) and bone quality (measured by trabecular bone score, TBS), and the prevalence of vertebral fractures (VFx) in a group of eugonadal adult EDS patients. Fifty consecutive Caucasian patients, aged 30-50 years (36 females, 14 males) with classical or hypermobility EDS and 50 age-, gender-, and body mass index (BMI)-matched control subjects were enrolled. In all subjects' calcium-phosphorous metabolism, bone turnover, BMD at the lumbar spine (LS) and femur (femoral neck, FN and total femur, FT) and TBS by dual-energy X-ray absorptiometry, and the VFx presence by spine radiograph were assessed. Patients showed reduced BMD (Z-scores LS -0.45 ± 1.00, FN -0.56 ± 1.01, FT -0.58 ± 0.92) and TBS (1.299 ± 0.111) and increased prevalence of morphometric VFx (32 %) than controls (Z-scores LS 0.09 ± 1.22, FN 0.01 ± 0.97, FT 0.08 ± 0.89; TBS 1.382 ± 0.176; VFx 8 %, p <0.05 for all comparisons), while vitamin D levels, calcium-phosphorous metabolism, and bone turnover were comparable. Fractured EDS patients showed lower TBS values than non-fractured ones (1.245 ± 0.138 vs 1.325 ± 0.086, p < 0.05), despite comparable BMD. In EDS patients, the VFx presence was significantly associated with TBS even after adjusting for sex, age, BMD, EDS type, and falls frequency. EDS patients have reduced BMD and bone quality (as measured by TBS) and increased prevalence of VFx.
Evaluation of local bone turnover in painful hip by 18F-fluoride positron emission tomography.
Kobayashi, Naomi; Inaba, Yutaka; Tezuka, Taro; Ike, Hiroyuki; Kubota, So; Kawamura, Masaki; Saito, Tomoyuki
2016-04-01
The diagnosis of painful hip without remarkable radiographic findings is still challenging. In recent years, femoroacetabular impingement (FAI) has been recognized as an important cause of painful hip. The hypothesis of this study was that local bone turnover may be accelerated in painful hip, especially in FAI lesions. To test this, patients with unilateral symptomatic hip underwent F-fluoride PET, which directly correlates with osteoblast activity and therefore bone turnover. In total, 27 patients with unilateral symptomatic painful hip were enrolled. The diagnosis included 15 cam-type FAI cases, six labral tear cases, and six early-stage osteoarthritis cases. The region of interest for cam and pincer lesions was identified and the maximum standardized uptake value (SUVmax) in these regions and the contralateral asymptomatic regions were measured by F-fluoride PET. The SUVmax ratio was defined as symptomatic side SUVmax/asymptomatic side SUVmax. The α angle and center-edge angle were measured by plain radiograph. The SUVmax of both cam and pincer lesions were significantly higher than the SUVmax of the contralateral regions (P<0.0001). The cam SUVmax ratio correlated positively with the α angle (r=0.5, P=0.007). Patients with an α angle of more than or equal to 60° had a significantly higher cam SUVmax ratio than the less than 60° group (P=0.017). This study showed the accelerated local bone turnover in painful hip, partly in FAI cases. Accelerated bone turnover may play a significant role in FAI pathophysiology; therefore, its recognition by imaging modality may contribute toward a more sensitive diagnosis in painful hip.
Bristow, Sarah M; Gamble, Greg D; Stewart, Angela; Horne, Lauren; House, Meaghan E; Aati, Opetaia; Mihov, Borislav; Horne, Anne M; Reid, Ian R
2014-11-28
Ca supplements are used for bone health; however, they have been associated with increased cardiovascular risk, which may relate to their acute effects on serum Ca concentrations. Microcrystalline hydroxyapatite (MCH) could affect serum Ca concentrations less than conventional Ca supplements, but its effects on bone turnover are unclear. In the present study, we compared the acute and 3-month effects of MCH with conventional Ca supplements on concentrations of serum Ca, phosphate, parathyroid hormone and bone turnover markers. We randomised 100 women (mean age 71 years) to 1 g/d of Ca as citrate or carbonate (citrate-carbonate), one of two MCH preparations, or a placebo. Blood was sampled for 8 h after the first dose, and after 3 months of daily supplementation. To determine whether the acute effects changed over time, eight participants assigned to the citrate dose repeated 8 h of blood sampling at 3 months. There were no differences between the citrate and carbonate groups, or between the two MCH groups, so their results were pooled. The citrate-carbonate dose increased ionised and total Ca concentrations for up to 8 h, and this was not diminished after 3 months. MCH increased ionised Ca concentrations less than the citrate-carbonate dose; however, it raised the concentrations of phosphate and the Ca-phosphate product. The citrate-carbonate and MCH doses produced comparable decreases in bone resorption (measured as serum C-telopeptide (CTX)) over 8 h and bone turnover (CTX and procollagen type-I N-terminal propeptide) at 3 months. These findings suggest that Ca preparations, in general, produce repeated sustained increases in serum Ca concentrations after ingestion of each dose and that Ca supplements with smaller effects on serum Ca concentrations may have equivalent efficacy in suppressing bone turnover.
Tanaka, Yu-Ki; Yajima, Nobuyuki; Higuchi, Yusuke; Yamato, Hideyuki; Hirata, Takafumi
2017-12-01
Herein, we measure the Ca isotope ratios ( 44 Ca/ 42 Ca and 43 Ca/ 42 Ca) in serum and bone samples collected from rats with chronic kidney disease (CKD) or diabetes mellitus (DM). For the serum samples, the isotope ratios are lower for the CKD (δ 44 Ca/ 42 Ca serum = 0.16 ± 0.11‰; 2SD, n = 6) and the DM (δ 44 Ca/ 42 Ca serum = -0.11 ± 0.25‰; 2SD, n = 7) rats than that for the control rats (δ 44 Ca/ 42 Ca serum = 0.25 ± 0.04‰; 2SD, n = 7). Bone samples from two distinct positions of 20 rats in total, namely, the center and proximal parts of the tibial diaphysis, are subject to Ca isotope analysis. The resulting δ 44 Ca/ 42 Ca values for the bone of the proximal part are about 0.3‰ lower than that for the serum samples from the same rats. The larger isotope fractionations between the serum and bone are consistent with previously reported data for vertebrate animals (e.g., Skulan and DePaolo, 1999), which suggests the preferential incorporation of lighter Ca isotopes through bone formation. For the bones from the control and CKD rats, there were no differences in the δ 44 Ca/ 42 Ca values between the positions of the bone. In contrast, the δ 44 Ca/ 42 Ca values of the bone for the DM rats were different between the positions of the bone. Due to the lower bone turnover rate for the DM rats, the δ 44 Ca/ 42 Ca for the middle of the diaphysis can reflect the Ca isotopes in the bone formed prior to the progression of DM states. Thus, the resulting δ 44 Ca/ 42 Ca values show a clear correlation with bone mineral density (BMD). This can be due to the release of isotopically lighter Ca from the bone to the serum. In the present study, our data demonstrate that the δ 44 Ca/ 42 Ca value for serum can be used as a new biomarker for evaluating changes in bone turnover rate, followed by changes in bone volume.
Ardawi, M-S M; Qari, M H; Rouzi, A A; Maimani, A A; Raddadi, R M
2011-02-01
The various factors that may contribute to vitamin D deficiency or insufficiency were examined among healthy Saudi pre- and postmenopausal women. Vitamin D deficiency was highly prevalent among studied Saudi women with obesity, poor sunlight exposure, poor dietary vitamin D supplementation and age as the main risk factors. The various factors that may contribute to vitamin D deficiency or insufficiency in relation to bone health among Saudi women are not known. The main objectives of the present study were to determine the factors influencing vitamin D status in relation to serum 25-hydroxyvitamin D (25(OH)D), intact parathyroid hormone (PTH), bone turnover markers (BTMs), bone mineral density (BMD), and vitamin D receptor genotype (VDR) in healthy Saudi pre- and postmenopausal women. A total number of 1,172 healthy Saudi women living in the Jeddah area were randomly selected and studied. Anthropometric parameters, socioeconomic status, sun exposure index together with serum levels of 25(OH)D, calcitriol, intact PTH, Ca, PO4, Mg, creatinine, albumin, and biochemical BTMs were measured. BMD was measured by a dual energy X-ray absorptiometry and VDR genotypes were also determined. About 80.0% of Saudi women studied exhibited vitamin D deficiency (serum 25(OH)D<50.0 nmol/L) with only 11.8% of all women were considered with adequate vitamin D status (serum 25(OH)D>75 nmol/L). Secondary hyperparathyroidism was evident in 18.5% and 24.6% in pre- and postmenopausal women with 25(OH)D<50 nmol/L. Serum 25(OH)D was lower (P<0.001) and intact PTH higher (P<0.001) in the upper quintiles of body mass index (BMI) and waist-to-hip ratio (WHR). Multiple linear regression analysis showed that BMI, sun exposure index, poor dietary vitamin D supplementation, WHR, and age were independent positive predictors of serum 25(OH)D values. Vitamin D deficiency is highly prevalent among healthy Saudi pre-and postmenopausal women and largely attributed to obesity, poor exposure to sunlight, poor dietary vitamin D supplementation, and age.
Gaffney-Stomberg, Erin; Lutz, Laura J; Rood, Jennifer C; Cable, Sonya J; Pasiakos, Stefan M; Young, Andrew J; McClung, James P
2014-11-01
Calcium and vitamin D are essential nutrients for bone health. Periods of activity with repetitive mechanical loading, such as military training, may result in increases in parathyroid hormone (PTH), a key regulator of Ca metabolism, and may be linked to the development of stress fractures. Previous studies indicate that consumption of a Ca and vitamin D supplement may reduce stress fracture risk in female military personnel during initial military training, but circulating markers of Ca and bone metabolism and measures of bone density and strength have not been determined. This randomized, double-blind, placebo-controlled trial sought to determine the effects of providing supplemental Ca and vitamin D (Ca+Vit D, 2000mg and 1000IU/d, respectively), delivered as 2 snack bars per day throughout 9weeks of Army initial military training (or basic combat training, BCT) on PTH, vitamin D status, and measures of bone density and strength in personnel undergoing BCT, as well as independent effects of BCT on bone parameters. A total of 156 men and 87 women enrolled in Army BCT (Fort Sill, OK; 34.7°N latitude) volunteered for this study. Anthropometric, biochemical, and dietary intake data were collected pre- and post-BCT. In addition, peripheral quantitative computed tomography was utilized to assess tibia bone density and strength in a subset of volunteers (n=46). Consumption of supplemental Ca+Vit D increased circulating ionized Ca (group-by-time, P=0.022), maintained PTH (group-by-time, P=0.032), and increased the osteoprotegerin:RANKL ratio (group-by-time, P=0.006). Consistent with the biochemical markers, Ca+Vit D improved vBMD (group-by-time, P=0.024) at the 4% site and cortical BMC (group-by-time, P=0.028) and thickness (group-by-time, P=0.013) at the 14% site compared to placebo. These data demonstrate the benefit of supplemental Ca and vitamin D for maintaining bone health during periods of elevated bone turnover, such as initial military training. This trial was registered with ClincialTrials.gov, NCT01617109. Published by Elsevier Inc.
Derepas, Charlène; Kosar, Christina; Avitzur, Yaron; Wales, Paul W; Courtney-Martin, Glenda
2015-01-01
Metabolic bone disease (MBD) is a well-recognized but poorly understood complication of long-term parenteral nutrition (PN). Bone histomorphometry in adults has provided useful information but does not provide quantitative measures of bone resorption and is to invasive for children. Measurement of bone turnover markers provides an alternative less invasive approach. We therefore aimed to measure bone turnover markers in children on long-term PN for intestinal failure (IF), and to compare them to age- and gender-matched controls. Serum concentrations of osteocalcin (OC), bone-specific alkaline phosphatase (BSAP), and c-telopeptide (CTx) were measured in IF patients treated at a multidisciplinary intestinal rehabilitation and home PN program at the Hospital for Sick Children, Toronto, Canada. Age- and gender-matched control participants were recruited for comparison. A total of 13 IF patients and 20 control participants were recruited. IF patients had lower serum OC and CTx concentrations when compared with controls: 42.43 ± 11.54 vs 68.39 ± 20.95 µg/L (P < .01) and 7.454 ± 2.17 vs 9.246 ± 1.92 (P < .05; mean ± SD) µg/L for OC and CTx, respectively. In a subgroup of 9 IF patients for whom BMD was available, OC and CTx concentration were negatively correlated to BMD (g/cm(2)) and BMD z score. Bone turnover markers may be useful indicators for identifying children on long-term PN at risk of MBD. Further studies are needed to validate the current results and determine the factors that influence the occurrence and evolution of MBD in children on PN. © 2013 American Society for Parenteral and Enteral Nutrition.
Johnson, K A; Skinner, G A; Muir, P
2001-05-01
To quantify geometric, inertial, and histomorphometric properties at the mid-diaphyseal level of left and right metacarpal bones (MCB) of racing Greyhounds. MCB from 7 racing Greyhounds euthanatized for reasons unrelated to MCB abnormalities. Mid-diaphyseal transverse sections of left and right MCB were stained with H&E or microradiographed. Images of stained sections were digitized, and cross-sectional area, cortical area, and maximum and minimum area moments of inertia of each bone were determined. Histomorphometric data (osteonal density, osteonal birefringence, and endosteal new lamellar bone thickness) were collected in 4 quadrants (dorsal, palmar, lateral, medial). Values were compared between limbs and among bones and quadrants. Cross-sectional area, cortical area, and maximum and minimum moments of inertia of left MCB-IV and -V were significantly greater, compared with contralateral bones. Overall osteonal densities in the dorsal quadrants of left MCB were greater, compared with lateral and medial quadrants. Also, percentage of birefringent osteons was significantly greater in the dorsal quadrant of left MCB-III, -IV, and -V, compared with the palmar quadrant. Thickness of new endosteal lamellar bone was not significantly influenced by limb, bone, or quadrant. Increased cortical thickness and geometric properties of left MCB-IV and -V of Greyhounds, together with altered turnover and orientation of osteons in the dorsal quadrants of left MCB, are site-specific adaptive responses associated with asymmetric cyclic loading as a result of racing on circular tracks. Site-specific adaptive remodeling may be important in the etiopathogenesis of fatigue fractures in racing Greyhounds.
Trabecular bone deficits among Vietnamese immigrants.
Melton, L J; Marquez, M A; McCready, L K; Achenbach, S J; Riggs, B L; Amin, S; Khosla, S
2011-05-01
Compared to white women, lower areal bone mineral density (aBMD) in middle-aged Vietnamese immigrants is due to reduced trabecular volumetric bone mineral density (vBMD), which in turn is associated with greater trabecular separation along with lower estrogen levels. The epidemiology of osteoporosis in Asian populations is still poorly known, but we previously found a deficit in lumbar spine aBMD among postmenopausal Southeast Asian women, compared to white women, that persisted after correction for bone size. This issue was revisited using more sophisticated imaging techniques. Twenty Vietnamese immigrants (age, 44-79 years) were compared to 162 same-aged white women with respect to aBMD at the hip, spine and wrist, vBMD at the hip and spine by quantitative computed tomography and vBMD and bone microstructure at the ultradistal radius by high-resolution pQCT. Bone turnover and sex steroid levels were assessed in a subset (20 Vietnamese and 40 white women). The aBMD was lower at all sites among the Vietnamese women, but femoral neck vBMD did not differ from middle-aged white women. Significant differences in lumbar spine and ultradistal radius vBMD in the Vietnamese immigrants were due to lower trabecular vBMD, which was associated with increased trabecular separation. Bone resorption was elevated and bone formation depressed among the Vietnamese immigrants, although trends were not statistically significant. Serum estradiol was positively associated with trabecular vBMD in the Vietnamese women, but their estrogen levels were dramatically lower compared to white women. Although reported discrepancies in aBMD among Asian women are mainly an artifact of smaller bone size, we identified a specific deficit in the trabecular bone among a sample of Vietnamese immigrants that may be related to low estrogen levels and which needs further study.
Trabecular bone deficits among Vietnamese immigrants
Marquez, M. A.; McCready, L. K.; Achenbach, S. J.; Riggs, B. L.; Amin, S.; Khosla, S.
2011-01-01
Summary Compared to white women, lower areal bone mineral density (aBMD) in middle-aged Vietnamese immigrants is due to reduced trabecular volumetric bone mineral density (vBMD), which in turn is associated with greater trabecular separation along with lower estrogen levels. Introduction The epidemiology of osteoporosis in Asian populations is still poorly known, but we previously found a deficit in lumbar spine aBMD among postmenopausal Southeast Asian women, compared to white women, that persisted after correction for bone size. This issue was revisited using more sophisticated imaging techniques. Methods Twenty Vietnamese immigrants (age, 44–79 years) were compared to 162 same-aged white women with respect to aBMD at the hip, spine and wrist, vBMD at the hip and spine by quantitative computed tomography and vBMD and bone microstructure at the ultradistal radius by high-resolution pQCT. Bone turnover and sex steroid levels were assessed in a subset (20 Vietnamese and 40 white women). Results The aBMD was lower at all sites among the Vietnamese women, but femoral neck vBMD did not differ from middle-aged white women. Significant differences in lumbar spine and ultradistal radius vBMD in the Vietnamese immigrants were due to lower trabecular vBMD, which was associated with increased trabecular separation. Bone resorption was elevated and bone formation depressed among the Vietnamese immigrants, although trends were not statistically significant. Serum estradiol was positively associated with trabecular vBMD in the Vietnamese women, but their estrogen levels were dramatically lower compared to white women. Conclusions Although reported discrepancies in aBMD among Asian women are mainly an artifact of smaller bone size, we identified a specific deficit in the trabecular bone among a sample of Vietnamese immigrants that may be related to low estrogen levels and which needs further study. PMID:20658128
Webb, Emma A; Balasubramanian, Meena; Fratzl-Zelman, Nadja; Cabral, Wayne A; Titheradge, Hannah; Alsaedi, Atif; Saraff, Vrinda; Vogt, Julie; Cole, Trevor; Stewart, Susan; Crabtree, Nicola J; Sargent, Brandi M; Gamsjaeger, Sonja; Paschalis, Eleftherios P; Roschger, Paul; Klaushofer, Klaus; Shaw, Nick J; Marini, Joan C; Högler, Wolfgang
2017-06-01
Recessive mutations in TMEM38B cause type XIV osteogenesis imperfecta (OI) by dysregulating intracellular calcium flux. Clinical and bone material phenotype description and osteoblast differentiation studies. Natural history study in pediatric research centers. Eight patients with type XIV OI. Clinical examinations included bone mineral density, radiographs, echocardiography, and muscle biopsy. Bone biopsy samples (n = 3) were analyzed using histomorphometry, quantitative backscattered electron microscopy, and Raman microspectroscopy. Cellular differentiation studies were performed on proband and control osteoblasts and normal murine osteoclasts. Type XIV OI clinical phenotype ranges from asymptomatic to severe. Previously unreported features include vertebral fractures, periosteal cloaking, coxa vara, and extraskeletal features (muscular hypotonia, cardiac abnormalities). Proband lumbar spine bone density z score was reduced [median -3.3 (range -4.77 to +0.1; n = 7)] and increased by +1.7 (1.17 to 3.0; n = 3) following bisphosphonate therapy. TMEM38B mutant bone has reduced trabecular bone volume, osteoblast, and particularly osteoclast numbers, with >80% reduction in bone resorption. Bone matrix mineralization is normal and nanoporosity low. We demonstrate a complex osteoblast differentiation defect with decreased expression of early markers and increased expression of late and mineralization-related markers. Predominance of trimeric intracellular cation channel type B over type A expression in murine osteoclasts supports an intrinsic osteoclast defect underlying low bone turnover. OI type XIV has a bone histology, matrix mineralization, and osteoblast differentiation pattern that is distinct from OI with collagen defects. Probands are responsive to bisphosphonates and some show muscular and cardiovascular features possibly related to intracellular calcium flux abnormalities. Copyright © 2017 Endocrine Society
Panahifar, Arash; Mahmoudi, Morteza; Doschak, Michael R
2013-06-12
In this article, we report the synthesis and in vitro evaluation of a new class of nonionizing bone-targeting contrast agents based on bisphosphonate-conjugated superparamagnetic iron oxide nanoparticles (SPIONs), for use in imaging of bone turnover with magnetic resonance imaging (MRI). Similar to bone-targeting (99m)Technetium medronate, our novel contrast agent uses bisphosphonates to impart bone-seeking properties, but replaces the former radioisotope with nonionizing SPIONs which enables their subsequent detection using MRI. Our reported method is relatively simple, quick and cost-effective and results in BP-SPIONs with a final nanoparticle size of 17 nm under electron microscopy technique (i.e., TEM). In-vitro binding studies of our novel bone tracer have shown selective binding affinity (around 65%) for hydroxyapatite, the principal mineral of bone. Bone-targeting SPIONs offer the potential for use as nonionizing MRI contrast agents capable of imaging dynamic bone turnover, for use in the diagnosis and monitoring of metabolic bone diseases and related bone pathology.
Epidemiology, etiology, and diagnosis of osteoporosis.
Lane, Nancy E
2006-02-01
Osteoporosis, a major public health problem, is becoming increasingly prevalent with the aging of the world population. Osteoporosis is a skeletal disorder characterized by compromised bone strength, which predisposes the individual to an increased risk of fractures of the hip, spine, and other skeletal sites. The clinical consequences and economic burden of this disease call for measures to assess individuals who are at high risk to allow for appropriate intervention. Many risk factors are associated with osteoporotic fracture, including low peak bone mass, hormonal factors, the use of certain drugs (eg, glucocorticoids), cigarette smoking, low physical activity, low intake of calcium and vitamin D, race, small body size, and a personal or a family history of fracture. All of these factors should be taken into account when assessing the risk of fracture and determining whether further treatment is required. Because osteoporotic fracture risk is higher in older women than in older men, all postmenopausal women should be evaluated for signs of osteoporosis during routine physical examinations. Radiologic laboratory assessments of bone mineral density generally should be reserved for patients at highest risk, including all women over the age of 65, younger postmenopausal women with risk factors, and all postmenopausal women with a history of fractures. The evaluation of biochemical markers of bone turnover has been useful in clinical research. However, the predictive factor of these measurements is not defined clearly, and these findings should not be used as a replacement for bone density testing. Together, clinical assessment of osteoporotic risk factors and objective measures of bone mineral density can help to identify patients who will benefit from intervention and, thus, can potentially reduce the morbidity and mortality associated with osteoporosis-associated fractures in this population.
Kim, Ki-Tack; Kang, Kyung-Chung; Shin, Dong-Eun; Lee, Sang-Hoon; Lee, Jung-Hee; Kwon, Tae-Yoon
2015-10-01
Vitamin D is considered essential for bone and muscle health, and some studies have demonstrated the positive effects of vitamin D on metabolic diseases and cancer. Nevertheless, a high prevalence of vitamin D deficiency has been reported in various populations, regardless of country or race. However, no studies regarding the prevalence of vitamin D deficiency in Korean orthopedic patients currently exist. This cross-sectional study included 272 male and 937 female patients aged 50 years and older who were consecutively admitted to the authors' orthopedic department. Vitamin D (25-hydroxy vitamin D), bone turnover markers (osteocalcin, c-telopeptide), and bone mineral density were measured. The prevalence of vitamin D deficiency and its association with other factors were evaluated. Mean patient age was 67.2 ± 8.9 years, and mean level of vitamin D was 16.1 ± 9.1 ng/mL. Overall, 91.2% of patients had deficient (<20 ng/mL; 70.6%) or insufficient (20-30 ng/mL; 20.6%) levels of vitamin D. Vitamin D level did not vary by age group or sex. The level of vitamin D was significantly associated with osteocalcin, c-telopeptide, calcium, alkaline phosphatase, total cholesterol, triglycerides, low-density lipoprotein cholesterol, and glucose (P<.01). Vitamin D level in Korean orthopedic patients of this region was extremely low, regardless of sex and age. Although vitamin D was not directly associated with bone mineral density, there were significant associations between vitamin D and other factors related to bone health and metabolic diseases. Copyright 2015, SLACK Incorporated.
Metabolic bone disease in the preterm infant: Current state and future directions
Rehman, Moghis Ur; Narchi, Hassib
2015-01-01
Neonatal osteopenia is an important area of interest for neonatologists due to continuing increased survival of preterm infants. It can occur in high-risk infants such as preterm infants, infants on long-term diuretics or corticosteroids, and those with neuromuscular disorders. Complications such as rickets, pathological fractures, impaired respiratory function and poor growth in childhood can develop and may be the first clinical evidence of the condition. It is important for neonatologists managing such high-risk patients to regularly monitor biochemical markers for evidence of abnormal bone turnover and inadequate mineral intake in order to detect the early phases of impaired bone mineralization. Dual-energy X-ray absorptiometry has become an increasingly used research tool for assessing bone mineral density in children and neonates, but more studies are still needed before it can be used as a useful clinical tool. Prevention and early detection of osteopenia are key to the successful management of this condition and oral phosphate supplements should be started as soon as is feasible. PMID:26413483
Krivosíková, Zora; Krajcovicová-Kudlácková, Marica; Spustová, Viera; Stefíková, Kornélia; Valachovicová, Martina; Blazícek, Pavel; Nĕmcová, Tatiana
2010-04-01
A long-term vegetarian diet is generally poor in vitamin B group. The lack of vitamin B(12) together with vitamin B(6) and folate deficiency is closely related to homocysteine metabolism. Hyperhomocysteinemia was found to be associated with increased bone turnover markers and increased fracture risk. Thus, hyperhomocysteinemia, vitamin B(12) and folate deficiency may be regarded as novel risk factors for micronutrient deficiency-related osteoporosis. To assess the possible impact of a vegetarian diet on bone mineral density in cohort of Slovak vegetarian women. Fasting serum glucose, albumin, calcium, phosphorous and creatinine as well as bone markers, serum vitamin B(12), folate and plasma levels of total homocysteine were assessed in two nutritional groups (vegetarians vs. nonvegetarians) of apparently healthy women (age range 20-70 years). Bone mineral density of the femoral neck, trochanter, total femur and lumbar spine was measured in all subjects. Vegetarians had a significantly lower weight (p < 0.05), higher PTH (p < 0.01) and homocysteine (p < 0.001). Vitamin B(12) was significantly higher in nonvegetarians (p < 0.001). No differences were observed in folate levels. Univariate analysis showed significant association between homocysteine and B(12) (p < 0.01), folate (p < 0.001), creatinine (p < 0.001), total proteins (p < 0.049), age (p < 0.001) and vegetarian food intake (p < 0.001). Vegetarians had a significantly lower TrFBMD (p < 0.05) and ToFBMD (p < 0.05). Age and CTx were significant predictors in all sites of measured BMD and PTH. A strong correlation between homocysteine and FNBMD (r = -0.2009, p < 0.002), TrFBMD (r = -0.1810, p < 0.004) and ToFBMD (r = -0.2225, p < 0.001) was found in all subjects. Homocysteine is one of the predictors of bone mineral density, and hyperhomocysteinemia is associated with lower bone mineral density. In healthy adults, homocysteine levels are dependent on age as well as on nutritional habits. Thus, elderly women on a vegetarian diet seem to be at higher risk of osteoporosis development than nonvegetarian women.
McCloskey, Eugene V; Vasikaran, Samuel; Cooper, Cyrus
2011-01-01
The best indirect evidence that increased bone turnover contributes to fracture risk is the fact that most of the proven therapies for osteoporosis are inhibitors of bone turnover. The evidence base that we can use biochemical markers of bone turnover in the assessment of fracture risk is somewhat less convincing. This relates to natural variability in the markers, problems with the assays, disparity in the statistical analyses of relevant studies and the independence of their contribution to fracture risk. More research is clearly required to address these deficiencies before biochemical markers might contribute a useful independent risk factor for inclusion in FRAX(®). Copyright © 2011. Published by Elsevier Inc.
[OSTEOPOROSIS AND DIABETES - IN WHICH WAY ARE THEY RELATED?
Tell-Lebanon, Osnat; Rotman-Pikielny, Pnina
2016-11-01
Diabetes and osteoporosis are common diseases with growing prevalence in the aging population. Many recent studies have reported an association between diabetes mellitus and an increased osteoporotic fracture rate. Compared to control subjects, decreased bone mineral density has been observed in patients with type 1 diabetes mellitus, while those with type 2 diabetes display a unique skeletal phenotype of increased bone mineral density, but impaired architectural structure and mineral properties. Accumulation of advanced glycation end products changes collagen structure and suppression of bone turnover causes impairment of repair and adaptation mechanisms. These seem to be significant factors impairing bone strength. In addition, longer disease duration, disease complications, insulin use and increased falls, as well as the use of drugs like thiazolidinediones for treatment, are all reported risk factors for fractures among patients with diabetes. Conventional diagnostic tools, including DXA measurements and the fracture risk assessment (FRAX) tool, seem to underestimate fracture risk so that for every FRAX, the actual risk of fracture is higher in the diabetic patient. Despite the unique pathophysiology of bone disease in patients with diabetes, as far as we know, existing drug treatments for osteoporosis are as effective as in patients without diabetes. Therefore, physicians should be aware of the higher risk for osteoporotic fracture among patients with diabetes and treat them according to the clinical algorithms used for all patients.
Vitamin D status and bone turnover in women with acute hip fracture.
Nuti, Ranuccio; Martini, Giuseppe; Valenti, Roberto; Gambera, Dario; Gennari, Luigi; Salvadori, Stefania; Avanzati, Annalisa
2004-05-01
Hypovitaminosis D is common in elderly women. Few data are available on vitamin D status and bone turnover in women with acute hip fracture. The aims of this study were to determine whether elderly Italian women with an acute hip fracture also had low vitamin D levels and an increase of bone turnover compared with elderly women with osteoporosis but without fractures. Seventy-four women with acute osteoporotic hip fracture and 73 women with postmenopausal osteoporosis were studied. All women were self-sufficient and had adequate sunlight exposure. To exclude the effect of trauma on serum 25-hydroxycolecalciferol levels and bone markers (bone alkaline phosphatase and C-terminal telopeptides of Type I collagen as indices of bone formation and bone resorption), blood samples were drawn within 24 hours of the fracture. Current data indicated that in our patients the prevalence of hypovitaminosis D is common although to a lesser extent than in women who are housebound. Women with acute hip fractures had a higher prevalence of vitamin deficiency defined as serum 25-hydroxycolecalciferol lower than 12 ng/mL, compared with women with osteoporosis. Moreover, the presence of fracture did not influence the rate of bone formation, whereas the increase in bone resorption could be attributed to an older age of women with acute hip fracture because of similar values of parathyroid hormone levels in the two groups.
Corrie, Heather; Brooke-Wavell, Katherine; Mansfield, Neil J; Cowley, Alison; Morris, Robert; Masud, Tahir
2015-01-01
whole-body vibration training may improve neuromuscular function, falls risk and bone density, but previous studies have had conflicting findings. this study aimed to evaluate the influence of vertical vibration (VV) and side-alternating vibration (SV) on musculoskeletal health in older people at risk of falls. single-blind, randomised, controlled trial comparing vibration training to sham vibration (Sham) in addition to usual care. participants were 61 older people (37 women and 24 men), aged 80.2 + 6.5 years, referred to an outpatient falls prevention service. participants were randomly assigned to VV, SV or Sham in addition to the usual falls prevention programme. Participants were requested to attend three vibration sessions per week for 12 weeks, with sessions increasing to six, 1 min bouts of vibration. Falls risk factors and neuromuscular tests were assessed, and blood samples collected for determination of bone turnover, at baseline and following the intervention. chair stand time, timed-up-and-go time, fear of falling, NEADL index and postural sway with eyes open improved in the Sham group. There were significantly greater gains in leg power in the VV than in the Sham group and in bone formation in SV and VV compared with the Sham group. Conversely, body sway improved less in the VV than in the Sham group. Changes in falls risk factors did not differ between the groups. whole-body vibration increased leg power and bone formation, but it did not provide any additional benefits to balance or fall risk factors beyond a falls prevention programme in older people at risk of falls. © The Author 2014. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Zerwekh, J. E.; Ruml, L. A.; Gottschalk, F.; Pak, C. Y.; Blomqvist, C. G. (Principal Investigator)
1998-01-01
This study was undertaken to examine the effects of 12 weeks of skeletal unloading on parameters of calcium homeostasis, calcitropic hormones, bone histology, and biochemical markers of bone turnover in 11 normal subjects (9 men, 2 women; 34 +/- 11 years of age). Following an ambulatory control evaluation, all subjects underwent 12 weeks of bed rest. An additional metabolic evaluation was performed after 12 days of reambulation. Bone mineral density declined at the spine (-2.9%, p = 0.092) and at the hip (-3.8%, p = 0.002 for the trochanter). Bed rest prompted a rapid, sustained, significant increase in urinary calcium and phosphorus as well as a significant increase in serum calcium. Urinary calcium increased from a pre-bed rest value of 5.3 mmol/day to values as high as 73 mmol/day during bed rest. Immunoreactive parathyroid hormone and serum 1,25-dihydroxyvitamin D declined significantly during bed rest, although the mean values remained within normal limits. Significant changes in bone histology included a suppression of osteoblastic surface for cancellous bone (3.1 +/- 1.3% to 1.9 +/- 1.5%, p = 0.0142) and increased bone resorption for both cancellous and cortical bone. Cortical eroded surface increased from 3.5 +/- 1.1% to 7.3 +/- 4.0% (p = 0.018) as did active osteoclastic surface (0.2 +/- 0.3% to 0.7 +/- 0.7%, p = 0.021). Cancellous eroded surface increased from 2.1 +/- 1.1% to 4.7 +/- 2.2% (p = 0.002), while mean active osteoclastic surface doubled (0.2 +/- 0.2% to 0.4 +/- 0.3%, p = 0.020). Serum biochemical markers of bone formation (osteocalcin, bone-specific alkaline phosphatase, and type I procollagen extension peptide) did not change significantly during bed rest. Urinary biochemical markers of bone resorption (hydroxyproline, deoxypyridinoline, and N-telopeptide of type I collagen) as well as a serum marker of bone resorption (type I collagen carboxytelopeptide) all demonstrated significant increases during bed rest which declined toward normal during reambulation. Thus, under the conditions of this study, the human skeleton appears to respond to unloading by a rapid and sustained increase in bone resorption and a more subtle decrease in bone formation.
Doustimotlagh, Amir Hossein; Dehpour, Ahmad Reza; Etemad-Moghadam, Shahroo; Alaeddini, Mojgan; Ostadhadi, Sattar; Golestani, Abolfazl
2018-06-01
Chronic liver disease (CLD) affects millions of people and its impact on bone loss has become a subject of interest. Nitric oxide and endogenous opioids are suggested to increase during cholestasis/cirrhosis and may impact bone resorption by different mechanisms. The receptor activator of nuclear factor-κB (RANK)/RANK-ligand (RANKL)/osteoprotegerin (OPG) signaling pathway regulates bone resorption, but its role in metabolic bone disease subsequent to CLD is unknown. We aimed to investigate the involvement of nitrergic and opioidergic systems in bone loss relative to the RANK/RANKL/OPG pathway, in bile duct-ligated (BDL) rats. Eighty BDL/sham-operated (SO) rats received injections of 3 mg/kg/day Nω-Nitro-L-arginine methyl ester ± naltrexone (10 mg/kg/day) or saline for 28 days. Plasma bone turnover markers, OPG, RANK, and RANKL along with mRNA expression levels of the latter three were assessed. Plasma bone turnover markers and OPG level increased, but RANKL decreased in the BDL group compared with their SO controls (both: P ≤ 0.05). Administration of naltrexone reduced bone turnover markers and OPG level while increased RANKL content in comparison to BDL rats ( P ≤ 0.05). As compared to untreated BDL rats, nitric oxide inhibition showed no effect on bone turnover marker i.e. OPG, RANK, and RANKL levels. BDL significantly increased RANK mRNA, but had no significant effect on RANKL and OPG mRNA expression. The lack of association between plasma levels and quantitative gene expression of RANKL and OPG suggests an indirect function of these markers in BDL rats. Considering that opioid receptor blockage by naltrexone in BDL animals caused a significant decrease in OPG and an increase in RANKL plasma contents, it could be postulated that the opioidergic system may have a regulatory effect on these bone markers.
Effect of aromatase inhibition on bone metabolism in elderly hypogonadal men.
Leder, Benjamin Z; Finkelstein, Joel S
2005-12-01
Both estrogens and androgens play important roles in skeletal development and maintenance in men. The relative importance of estrogens and androgens in male bone metabolism, however, remains undefined. Anastrozole is an oral aromatase inhibitor that decreases estrogen production and increases androgen production in men. Currently, anastrozole is being investigated as a potential agent for the treatment of hypogonadism in aging men. Because anastrozole lowers estrogen levels and raises androgen levels, its effect on bone metabolism is difficult to predict. To assess the effects of anastrozole on bone turnover, we randomized 37 elderly (ages 62-74) mildly hypogonadal men (serum testosterone <350 ng/dl) to receive either anastrozole 1 mg daily (n=12), anastrozole 1 mg twice weekly (n=11), or daily placebo (n=14) for 12 weeks. Serum gonadal steroid levels, serum and urine biochemical markers of bone turnover, serum osteoprotegerin, and total body bone mineral density were measured at baseline and week 12. Mean serum levels of total and bioavailable testosterone increased substantially in both treated groups. Specifically, mean +/- SD bioavailable testosterone levels increased from 99+/-31 ng/dl to 207+/-65 ng/dl in the group receiving 1 mg of anastrozole daily and from 115+/-37 ng/dl to 178+/-55 ng/dl in the subjects receiving 1 mg of anastrozole twice weekly ( p <0.001 vs placebo for both groups). Serum estradiol levels decreased modestly in both treated groups (from 26+/-8 pg/ml to 17+/-6 pg/ml in the daily treatment group and from 27+/-8 pg/ml to 17+/-5 pg/ml in the twice-weekly treatment group, p <0.001 vs placebo for both groups). Despite these hormonal changes, no increases in biochemical markers of bone resorption were observed. Specifically, mean serum N-telopeptide and urinary deoxypyridinoline concentrations remained stable in both treated groups over the 12-week treatment period. Similarly, serum biochemical markers of bone formation (osteocalcin and amino-terminal propeptide of type 1 collagen), serum osteoprotegerin, and total body bone mineral density did not change. These data demonstrate that although short-term administration of anastrozole decreases serum estradiol levels in elderly men with mild hypogonadism, this intervention does not adversely affect bone metabolism over a 12-week period. This lack of an effect may be due to the concomitant increase in testosterone production, the relative modest effect on estradiol production, or a combination of both factors. These results suggest that anastrozole therapy is unlikely to have an adverse effect on bone metabolism when taken over extended periods and may prove to be a valuable method of normalizing testosterone production in older men.
Cho, Sun Wook; Bae, Jae Hyun; Noh, Gyeong Woon; Kim, Ye An; Moon, Min Kyong; Park, Kyoung Un; Song, Junghan; Yi, Ka Hee; Park, Do Joon; Chung, June-Key; Cho, Bo Youn; Park, Young Joo
2015-01-01
Osteoporosis-related fractures are one of the complications of Graves' disease. This study hypothesized that the different actions of thyroid-stimulating hormone receptor (TSHR) antibodies, both stimulating and blocking activities in Graves' disease patients might oppositely impact bone turnover. Newly diagnosed premenopausal Graves' disease patients were enrolled (n = 93) and divided into two groups: patients with TSHR antibodies with thyroid-stimulating activity (stimulating activity group, n = 83) and patients with TSHR antibodies with thyroid-stimulating activity combined with blocking activity (blocking activity group, n = 10). From the stimulating activity group, patients who had matched values for free T4 and TSH binding inhibitor immunoglobulin (TBII) to the blocking activity group were further classified as stimulating activity-matched control (n = 11). Bone turnover markers BS-ALP, Osteocalcin, and C-telopeptide were significantly lower in the blocking activity group than in the stimulating activity or stimulating activity-matched control groups. The TBII level showed positive correlations with BS-ALP and osteocalcin levels in the stimulating activity group, while it had a negative correlation with the osteocalcin level in the blocking activity group. In conclusion, the activation of TSHR antibody-activated TSH signaling contributes to high bone turnover, independent of the actions of thyroid hormone, and thyroid-stimulation blocking antibody has protective effects against bone metabolism in Graves' disease.
Elevated Levels of Peripheral Kynurenine Decrease Bone Strength in Rats with Chronic Kidney Disease
Kalaska, Bartlomiej; Pawlak, Krystyna; Domaniewski, Tomasz; Oksztulska-Kolanek, Ewa; Znorko, Beata; Roszczenko, Alicja; Rogalska, Joanna; Brzoska, Malgorzata M.; Lipowicz, Pawel; Doroszko, Michal; Pryczynicz, Anna; Pawlak, Dariusz
2017-01-01
The diagnosis and treatment of bone disorders in patients with chronic kidney disease (CKD) represent a clinical challenge. CKD leads to mineral and bone complications starting early in the course of renal failure. Recently, we have observed the positive relationship between intensified central kynurenine turnover and bone strength in rats with subtotal 5/6 nephrectomy (5/6 Nx)-induced CKD. The aim of the present study was to determine the association between peripheral kynurenine pathway metabolites and bone strength in rats with 5/6 Nx-induced CKD. The animals were sacrificed 1 and 3 months after 5/6 Nx or sham operation. Nephrectomized rats presented higher concentrations of serum creatinine, urea nitrogen, and parathyroid hormone both 1 and 3 months after nephrectomy. These animals revealed higher concentrations of kynurenine and 3-hydroxykynurenine in the serum and higher gene expression of aryl hydrocarbon receptor (AhR) as a physiological receptor for kynurenine and AhR-dependent cytochrome in the bone tissue. Furthermore, nephrectomy significantly increased the number of osteoclasts in the bone without affecting their resorptive activity measured in serum. These changes were particularly evident in rats 1 month after 5/6 Nx. The main bone biomechanical parameters of the tibia were unchanged between nephrectomized and sham-operated rats but were significantly increased in older compared to younger animals. A similar trend was observed for geometrical parameters measured with calipers, bone mineral density based on Archimedes' method and image of bone microarchitecture obtained from micro-computed tomography analyses of tibial cortical bone. In nephrectomized animals, peripheral kynurenine levels correlated negatively with the main parameters of bone biomechanics, bone geometry, and bone mineral density values. In conclusion, our data suggest that CKD-induced elevated levels of peripheral kynurenine cause pathological changes in bone structure via AhR pathway. This finding opens new opportunities for the treatment/prevention of osteoporosis in CKD. PMID:29163188
Tamminen, Inari S; Valta, Helena; Jalanko, Hannu; Salminen, Sari; Mäyränpää, Mervi K; Isaksson, Hanna; Kröger, Heikki; Mäkitie, Outi
2014-08-01
Organ transplantation may lead to secondary osteoporosis in children. This study characterized bone histomorphometric findings in pediatric solid organ transplant recipients who were assessed for suspected secondary osteoporosis. Iliac crest biopsies were obtained from 19 children (7.6-18.8 years, 11 male) who had undergone kidney (n = 6), liver (n = 9), or heart (n = 4) transplantation a median 4.6 years (range 0.6-16.3 years) earlier. All patients had received oral glucocorticoids at the time of the biopsy. Of the 19 patients, 21 % had sustained peripheral fractures and 58 % vertebral compression fractures. Nine children (47 %) had a lumbar spine BMD Z-score below -2.0. Histomorphometric analyses showed low trabecular bone volume (< -1.0 SD) in 6 children (32 %) and decreased trabecular thickness in 14 children (74 %). Seven children (37 %) had high bone turnover at biopsy, and low turnover was found in 6 children (32 %), 1 of whom had adynamic bone disease. There was a great heterogeneity in the histological findings in different transplant groups, and the results were unpredictable using non-invasive methods. The observed changes in bone quality (i.e. abnormal turnover rate, thin trabeculae) rather than the actual loss of trabecular bone, might explain the increased fracture risk in pediatric solid organ transplant recipients.
Wen, H J; Huang, T H; Li, T L; Chong, P N; Ang, B S
2017-02-01
Measurement of bone turnover markers is an alternative way to determine the effects of exercise on bone health. A 10-week group-based step aerobics exercise significantly improved functional fitness in postmenopausal women with low bone mass, and showed a positive trend in reducing resorption activity via bone turnover markers. The major goal of this study was to determine the effects of short-term group-based step aerobics (GBSA) exercise on the bone metabolism, bone mineral density (BMD), and functional fitness of postmenopausal women (PMW) with low bone mass. Forty-eight PMW (aged 58.2 ± 3.5 years) with low bone mass (lumbar spine BMD T-score of -2.00 ± 0.67) were recruited and randomly assigned to an exercise group (EG) or to a control group (CG). Participants from the EG attended a progressive 10-week GBSA exercise at an intensity of 75-85 % of heart rate reserve, 90 min per session, and three sessions per week. Serum bone metabolic markers (C-terminal telopeptide of type 1 collagen [CTX] and osteocalcin), BMD, and functional fitness components were measured before and after the training program. Mixed-models repeated measures method was used to compare differences between the groups (α = 0.05). After the 10-week intervention period, there was no significant exercise program by time interaction for CTX; however, the percent change for CTX was significantly different between the groups (EG = -13.1 ± 24.4 % vs. CG = 11.0 ± 51.5 %, P < 0.05). While there was no significant change of osteocalcin in both groups. As expected, there was no significant change of BMD in both groups. In addition, the functional fitness components in the EG were significantly improved, as demonstrated by substantial enhancement in both lower- and upper-limb muscular strength and cardiovascular endurance (P < 0.05). The current short-term GBSA exercise benefited to bone metabolism and general health by significantly reduced bone resorption activity and improved functional fitness in PMW with low bone mass. This suggested GBSA could be adopted as a form of group-based exercise for senior community.
Heterogeneous glycation of cancellous bone and its association with bone quality and fragility.
Karim, Lamya; Vashishth, Deepak
2012-01-01
Non-enzymatic glycation (NEG) and enzymatic biochemical processes create crosslinks that modify the extracellular matrix (ECM) and affect the turnover of bone tissue. Because NEG affects turnover and turnover at the local level affects microarchitecture and formation and removal of microdamage, we hypothesized that NEG in cancellous bone is heterogeneous and accounts partly for the contribution of microarchitecture and microdamage on bone fragility. Human trabecular bone cores from 23 donors were subjected to compression tests. Mechanically tested cores as well as an additional 19 cores were stained with lead-uranyl acetate and imaged to determine microarchitecture and measure microdamage. Post-yield mechanical properties were measured and damaged trabeculae were extracted from a subset of specimens and characterized for the morphology of induced microdamage. Tested specimens and extracted trabeculae were quantified for enzymatic and non-enzymatic crosslink content using a colorimetric assay and Ultra-high Performance Liquid Chromatography (UPLC). Results show that an increase in enzymatic crosslinks was beneficial for bone where they were associated with increased toughness and decreased microdamage. Conversely, bone with increased NEG required less strain to reach failure and were less tough. NEG heterogeneously modified trabecular microarchitecture where high amounts of NEG crosslinks were found in trabecular rods and with the mechanically deleterious form of microdamage (linear microcracks). The extent of NEG in tibial cancellous bone was the dominant predictor of bone fragility and was associated with changes in microarchitecture and microdamage.
Heterogeneous Glycation of Cancellous Bone and Its Association with Bone Quality and Fragility
Karim, Lamya; Vashishth, Deepak
2012-01-01
Non-enzymatic glycation (NEG) and enzymatic biochemical processes create crosslinks that modify the extracellular matrix (ECM) and affect the turnover of bone tissue. Because NEG affects turnover and turnover at the local level affects microarchitecture and formation and removal of microdamage, we hypothesized that NEG in cancellous bone is heterogeneous and accounts partly for the contribution of microarchitecture and microdamage on bone fragility. Human trabecular bone cores from 23 donors were subjected to compression tests. Mechanically tested cores as well as an additional 19 cores were stained with lead-uranyl acetate and imaged to determine microarchitecture and measure microdamage. Post-yield mechanical properties were measured and damaged trabeculae were extracted from a subset of specimens and characterized for the morphology of induced microdamage. Tested specimens and extracted trabeculae were quantified for enzymatic and non-enzymatic crosslink content using a colorimetric assay and Ultra-high Performance Liquid Chromatography (UPLC). Results show that an increase in enzymatic crosslinks was beneficial for bone where they were associated with increased toughness and decreased microdamage. Conversely, bone with increased NEG required less strain to reach failure and were less tough. NEG heterogeneously modified trabecular microarchitecture where high amounts of NEG crosslinks were found in trabecular rods and with the mechanically deleterious form of microdamage (linear microcracks). The extent of NEG in tibial cancellous bone was the dominant predictor of bone fragility and was associated with changes in microarchitecture and microdamage. PMID:22514706
A toxicity profile of osteoprotegerin in the cynomolgus monkey.
Smith, Brenda B; Cosenza, Mary Ellen; Mancini, Audrey; Dunstan, Colin; Gregson, Richard; Martin, Steven W; Smith, Susan Y; Davis, Harold
2003-01-01
Osteoprotegerin (OPG) is a novel secreted glycoprotein of the tumor necrosis factor (TNF) receptor superfamily that acts as an antiresorptive agent inhibiting osteoclast maturation. OPG acts by competitively inhibiting the association of the OPG ligand with the RANK receptor on osteoclasts and osteoclast precursors. This inhibition of osteoclasts can lead to excess accumulation of newly synthesized bone and cartilage in vivo. The purpose of this study was to investigate the potential toxicity of a human recombinant form of OPG in the young cynomolgus monkey. OPG was administered by intravenous (i.v.) or subcutaneous (s.c.) injection three times per week for either 4 or 13 weeks. There were no deaths during the study, no clinical signs related to treatment, no effect on body weight, appetence, or ophthalmology. No toxicologically relevant changes in routine laboratory investigations, organ weights, or gross or histopathological findings were observed. Serum ionized calcium and phosphorus were decreased at all dose levels. Evaluations were performed to monitor biochemical markers of bone resorption (N-telopeptide [NTx], deoxypyridinoline [DPD]), bone formation (skeletal alkaline phosphatase [sALP], osteocalcin [OC]), parathyroid hormone [PTH], and bone density of the proximal tibia and distal radius in vivo. Dose-related decreases in NTx and/or DPD were observed at each dose level, with up to a 90% decrease in NTx noted for animals treated i.v. or s.c. at 15 mg/kg. Similar decreases were observed for sALP and OC. PTH was increased for animals treated at 5 and 15 mg/kg (i.v. or s.c.). Trabecular bone density was increased for the majority of males and females treated i.v. or s.c. at 15 mg/kg and males treated i.v. at 5 mg/kg. Microscopic examination of the sternebrae revealed corresponding increases in bone. Decreases in markers of bone turnover, and corresponding increases in bone density, were consistent with the pharmacological action of OPG as an osteoclast inhibitor. The no-observable-adverse-effect level (NOAEL) of OPG was 15 mg/kg.
Bowden, Sasigarn A; Robinson, Renee F; Carr, Roxane; Mahan, John D
2008-06-01
The purpose of this work was to determine the prevalence of vitamin D deficiency and insufficiency in children with osteopenia or osteoporosis and to evaluate the relationship between serum 25-hydroxyvitamin D levels and bone parameters, including bone mineral density. Serum 25-hydroxyvitamin D, 1,25 dihydroxyvitamin D, parathyroid hormone, and other bone markers, as well as bone mineral density, were obtained for 85 pediatric patients with primary osteoporosis (caused by osteogenesis imperfecta or juvenile idiopathic osteoporosis) and secondary osteopenia or osteoporosis caused by various underlying chronic illnesses. Pearson's correlation was used to assess the relationship between vitamin D levels and different bone parameters. Vitamin D insufficiency (defined as serum 25-hydroxyvitamin D <30 ng/mL) was observed in 80.0% of patients. Overt vitamin D deficiency (defined as serum 25-hydroxyvitamin D <10 ng/mL) was present in 3.5% of patients. Using a more recent definition for vitamin D deficiency in adults (defined as serum 25-hydroxyvitamin D <20 ng/mL), 21.1% of the patients had vitamin D deficiency. There was a significant inverse correlation between 25-hydroxyvitamin D and parathyroid hormone levels. There was a positive correlation between 1,25 dihydroxyvitamin D and parathyroid hormone, alkaline phosphatase, and urine markers for bone turnover. Vitamin D insufficiency was remarkably common in pediatric patients with primary and secondary osteopenia or osteoporosis. The inverse relationship between 25-hydroxyvitamin D and parathyroid hormone levels suggests a physiologic impact of insufficient vitamin D levels that may contribute to low bone mass or worsen the primary bone disease. We suggest that monitoring and supplementation of vitamin D should be a priority in the management of pediatric patients with osteopenia or osteoporosis.
Decreased Bone Formation and Osteopenia in Lamin A/C-Deficient Mice
Vidal, Christopher; McCorquodale, Thomas; Herrmann, Markus; Fatkin, Diane; Duque, Gustavo
2011-01-01
Age-related bone loss is associated with changes in bone cellularity with characteristically low levels of osteoblastogenesis. The mechanisms that explain these changes remain unclear. Although recent in vitro evidence has suggested a new role for proteins of the nuclear envelope in osteoblastogenesis, the role of these proteins in bone cells differentiation and bone metabolism in vivo remains unknown. In this study, we used the lamin A/C null (Lmna −/−) mice to identify the role of lamin A/C in bone turnover and bone structure in vivo. At three weeks of age, histological and micro computed tomography measurements of femurs in Lmna −/− mice revealed a significant decrease in bone mass and microarchitecture in Lmna −/− mice as compared with their wild type littermates. Furthermore, quantification of cell numbers after normalization with bone surface revealed a significant reduction in osteoblast and osteocyte numbers in Lmna −/− mice compared with their WT littermates. In addition, Lmna −/− mice have significantly lower osteoclast number, which show aberrant changes in their shape and size. Finally, mechanistic analysis demonstrated that absence of lamin A/C is associated with increase expression of MAN-1 a protein of the nuclear envelope closely regulated by lamin A/C, which also colocalizes with Runx2 thus affecting its capacity as osteogenic transcription factor. In summary, these data clearly indicate that the presence of lamin A/C is necessary for normal bone turnover in vivo and that absence of lamin A/C induces low bone turnover osteopenia resembling the cellular changes of age-related bone loss. PMID:21547077
The suture provides a niche for mesenchymal stem cells of craniofacial bones
Zhao, Hu; Feng, Jifan; Ho, Thach-Vu; Grimes, Weston; Urata, Mark; Chai, Yang
2015-01-01
Bone tissue undergoes constant turnover supported by stem cells. Recent studies showed that perivascular mesenchymal stem cells (MSCs) contribute to the turnover of long bones. Craniofacial bones are flat bones derived from a different embryonic origin than the long bones. The identity and regulating niche for craniofacial bone MSCs remain unknown. Here, we identify Gli1+ cells within the suture mesenchyme as the major MSC population for craniofacial bones. They are not associated with vasculature, give rise to all craniofacial bones in the adult and are activated during injury repair. Gli1+ cells are typical MSCs in vitro. Ablation of Gli1+ cells leads to craniosynostosis and arrest of skull growth, indicating these cells are an indispensible stem cell population. Twist1+/− mice with craniosynostosis show reduced Gli1+ MSCs in sutures, suggesting that craniosynostosis may result from diminished suture stem cells. Our study indicates that craniofacial sutures provide a unique niche for MSCs for craniofacial bone homeostasis and repair. PMID:25799059
Folwarczna, Joanna; Janas, Aleksandra; Pytlik, Maria; Cegieła, Urszula; Śliwiński, Leszek; Krivošíková, Zora; Štefíková, Kornélia; Gajdoš, Martin
2016-03-02
Diabetes increases bone fracture risk. Trigonelline, an alkaloid with potential antidiabetic activity, is present in considerable amounts in coffee. The aim of the study was to investigate the effects of trigonelline on experimental diabetes-induced disorders in the rat skeletal system. Effects of trigonelline (50 mg/kg p.o. daily for four weeks) were investigated in three-month-old female Wistar rats, which, two weeks before the start of trigonelline administration, received streptozotocin (60 mg/kg i.p.) or streptozotocin after nicotinamide (230 mg/kg i.p.). Serum bone turnover markers, bone mineralization, and mechanical properties were studied. Streptozotocin induced diabetes, with significant worsening of bone mineralization and bone mechanical properties. Streptozotocin after nicotinamide induced slight glycemia increases in first days of experiment only, however worsening of cancellous bone mechanical properties and decreased vertebral bone mineral density (BMD) were demonstrated. Trigonelline decreased bone mineralization and tended to worsen bone mechanical properties in streptozotocin-induced diabetic rats. In nicotinamide/streptozotocin-treated rats, trigonelline significantly increased BMD and tended to improve cancellous bone strength. Trigonelline differentially affected the skeletal system of rats with streptozotocin-induced metabolic disorders, intensifying the osteoporotic changes in streptozotocin-treated rats and favorably affecting bones in the non-hyperglycemic (nicotinamide/streptozotocin-treated) rats. The results indicate that, in certain conditions, trigonelline may damage bone.
Zheng, Jenny; van Schaick, Erno; Wu, Liviawati Sutjandra; Jacqmin, Philippe; Perez Ruixo, Juan Jose
2015-08-01
Osteoporosis is a chronic skeletal disease characterized by low bone strength resulting in increased fracture risk. New treatments for osteoporosis are still an unmet medical need because current available treatments have various limitations. Bone mineral density (BMD) is an important endpoint for evaluating new osteoporosis treatments; however, the BMD response is often slower and less profound than that of bone turnover markers (BTMs). If the relationship between BTMs and BMD can be quantified, the BMD response can be predicted by the changes in BTM after a single dose; therefore, a decision based on BMD changes can be informed early. We have applied a bone cycle model to a phase 2 denosumab dose-ranging study in osteopenic women to quantitatively link serum denosumab pharmacokinetics, BTMs, and lumbar spine (LS) BMD. The data from two phase 3 denosumab studies in patients with low bone mass, FREEDOM and DEFEND, were used for external validation. Both internal and external visual predictive checks demonstrated that the model was capable of predicting LS BMD at the denosumab regimen of 60 mg every 6 months. It has been demonstrated that the model, in combination with the changes in BTMs observed from a single-dose study in men, is capable of predicting long-term BMD outcomes (e.g., LS BMD response in men after 1 year of treatment) in different populations. We propose that this model can be used to inform drug development decisions for osteoporosis treatment early via evaluating LS BMD response when BTM data become available in early trials.
Min, Yong-Ki; Lee, Dong-Yun; Choi, Suk-Joo; Kim, Joo Han; Choi, DooSeok; Yoon, Byung-Koo
2013-07-01
This study was conducted to evaluate the effects of adding the bisphosphonate alendronate (ALEN) to ongoing hormone therapy (HT) on bone mineral density (BMD) in postmenopausal Korean women. This randomized, double-blind, placebo-controlled clinical trial at a university hospital included a total of 139 postmenopausal women who had low BMD after HT lasting at least 1 year. Women received either ALEN (10 mg/d) or placebo in combination with HT for 1 year. Changes in BMD and biochemical markers of bone turnover were evaluated. Lumbar spine and total hip BMDs increased significantly in both treatment groups after 1 year. The addition of ALEN, when compared with HT alone, did not produce a significant change in BMD at the lumbar spine (3.7% vs 4.3%) and total hip (2.2% vs 3.2%) after adjusting for controllable variables. Serum osteocalcin showed a similar change, but urinary deoxypyridinoline response differed between treatment groups. Compared with HT alone, the addition of ALEN to ongoing HT for 1 year does not make a difference in BMD among postmenopausal Korean women with low BMD.
Cascão, Rita; Finnilä, Mikko A. J.; Lopes, Inês P.; Saarakkala, Simo; Zioupos, Peter; Canhão, Helena; Fonseca, João E.
2018-01-01
Introduction Arthritis induces joint erosions and skeletal bone fragility. Objectives The main goal of this work was to analyze the early arthritis induced events at bone architecture and mechanical properties at tissue level. Methods Eighty-eight Wistar rats were randomly housed in experimental groups, as follows: adjuvant induced arthritis (AIA) (N = 47) and a control healthy group (N = 41). Rats were monitored during 22 days for the inflammatory score, ankle perimeter and body weight and sacrificed at different time points (11 and 22 days post disease induction). Bone samples were collected for histology, micro computed tomography (micro-CT), 3-point bending and nanoindentation. Blood samples were also collected for bone turnover markers and systemic cytokine quantification. Results At bone tissue level, measured by nanoindentation, there was a reduction of hardness in the arthritic group, associated with an increase of the ratio of bone concentric to parallel lamellae and of the area of the osteocyte lacuna. In addition, increased bone turnover and changes in the microstructure and mechanical properties were observed in arthritic animals, since the early phase of arthritis, when compared with healthy controls. Conclusion We have shown in an AIA rat model that arthritis induces very early changes at bone turnover, structural degradation and mechanical weakness. Bone tissue level is also affected since the early phase of arthritis, characterized by decreased tissue hardness associated with changes in bone lamella organization and osteocyte lacuna surface. These observations highlight the pertinence of immediate control of inflammation in the initial stages of arthritis. PMID:29315314
Ardawi, Mohammed-Salleh M; Badawoud, Mohammed H; Hassan, Sherif M; Rouzi, Abdulrahim A; Ardawi, Jumanah M S; AlNosani, Nouf M; Qari, Mohammed H; Mousa, Shaker A
2016-02-01
Lycopene supplementation decreases oxidative stress and exhibits beneficial effects on bone health, but the mechanisms through which it alters bone metabolism in vivo remain unclear. The present study aims to evaluate the effects of lycopene treatment on postmenopausal osteoporosis. Six-month-old female Wistar rats (n=264) were sham-operated (SHAM) or ovariectomized (OVX). The SHAM group received oral vehicle only and the OVX rats were randomized into five groups receiving oral daily lycopene treatment (mg/kg body weight per day): 0 OVX (control), 15 OVX, 30 OVX, and 45 OVX, and one group receiving alendronate (ALN) (2μg/kg body weight per day), for 12weeks. Bone densitometry measurements, bone turnover markers, biomechanical testing, and histomorphometric analysis were conducted. Micro computed tomography was also used to evaluate changes in microarchitecture. Lycopene treatment suppressed the OVX-induced increase in bone turnover, as indicated by changes in biomarkers of bone metabolism: serum osteocalcin (s-OC), serum N-terminal propeptide of type 1 collagen (s-PINP), serum crosslinked carboxyterminal telopeptides (s-CTX-1), and urinary deoxypyridinoline (u-DPD). Significant improvement in OVX-induced loss of bone mass, bone strength, and microarchitectural deterioration was observed in lycopene-treated OVX animals. These effects were observed mainly at sites rich in trabecular bone, with less effect in cortical bone. Lycopene treatment down-regulated osteoclast differentiation concurrent with up-regulating osteoblast together with glutathione peroxidase (GPx) catalase (CAT) and superoxide dismutase (SOD) activities. These findings demonstrate that lycopene treatment in OVX rats primarily suppressed bone turnover to restore bone strength and microarchitecture. Copyright © 2015. Published by Elsevier Inc.
Boulier, A; Schwarz, J; Lespesailles, E; Baniel, A; Tomé, D; Blais, A
2016-10-01
Nutritional approaches may help to preserve bone quality. The purpose of our study was to demonstrate the efficiency of an innovative bone health product (BHP) including micellar casein rich in calcium, vitamin D2 and vitamin K2, to improve bone mineral density. The aim of postmenopausal osteoporosis treatment is to decrease bone resorption and/or increase bone formation. Because of the slow bone turnover, osteoporosis prevention and therapies are long-lasting, implying great costs and poor compliance. Even if the effects of nutrition on bone are not as marked as that of pharmaceutical agents, it can be of great help. The purpose of our study was to demonstrate the efficiency of an innovative bone health product (BHP) containing micellar casein rich in calcium, vitamin D2 and vitamin K2, for the improvement of bone mineral density (BMD). An ovariectomized mice model was used to study the effect of different concentrations of the ingredient on BMD and microarchitectural parameters. Blood concentrations of C-terminal telopeptide of type I collagen (CTX), N-terminal propeptide of type 1 procollagene (PINP), alkaline phosphatase (ALP), osteocalcin (OC) and RANKL were also measured to evaluate bone remodelling, To evaluate the efficiency of the product to modulate osteoblast and osteoclast growth and differentiation, primary murine bone cells were used. In vivo studies showed that BMD and microarchitectural parameters were dose-dependently improved after ingestion of the supplement for 3 months. We also report increased osteoblast activity as shown by increased OC activity and decreased osteoclastogenesis as shown by reduced CTX activity. In vitro studies support that BHPs stimulate osteoblast differentiation and mineralization and inhibit osteoclast resorption activity. Our results show that, when chronically ingested, BHPs improve BMD of ovariectomized mice. This work supports that providing an ingredient including micellar casein rich in calcium, vitamin D2 and vitamin K2 is more efficient than the control diet to maintain bone quality.
High phosphate feeding promotes mineral and bone abnormalities in mice with chronic kidney disease.
Lau, Wei Ling; Linnes, Michael; Chu, Emily Y; Foster, Brian L; Bartley, Bryan A; Somerman, Martha J; Giachelli, Cecilia M
2013-01-01
Chronic kidney disease-mineral bone disorder (CKD-MBD) is a systemic syndrome characterized by imbalances in mineral homeostasis, renal osteodystrophy (ROD) and ectopic calcification. The mechanisms underlying this syndrome in individuals with chronic kidney disease (CKD) are not yet clear. We examined the effect of normal phosphate (NP) or high phosphate (HP) feeding in the setting of CKD on bone pathology, serum biochemistry and vascular calcification in calcification-prone dilute brown non-agouti (DBA/2) mice. In both NP and HP-fed CKD mice, elevated serum parathyroid hormone and alkaline phosphatase (ALP) levels were observed, but serum phosphorus levels were equivalent compared with sham controls. CKD mice on NP diet showed trabecular alterations in the long bone consistent with high-turnover ROD, including increased trabecular number with abundant osteoblasts and osteoclasts. Despite trabecular bone and serum biochemical changes, CKD/NP mice did not develop vascular calcification. In contrast, CKD/HP mice developed arterial medial calcification (AMC), more severe trabecular bone alterations and cortical bone abnormalities that included decreased cortical thickness and density, and increased cortical porosity. Cortical bone porosity and trabecular number strongly correlated with the degree of aortic calcification. HP feeding was required to induce the full spectrum of CKD-MBD symptoms in CKD mice.
Harness, Eric T.; Witzke, Kara A.
2014-01-01
Purpose Osteoporosis is a severe complication of spinal cord injury (SCI). Many exercise modalities are used to slow bone loss, yet their efficacy is equivocal. This study examined the effect of activity-based therapy (ABT) targeting the lower extremities on bone health in individuals with SCI. Methods Thirteen men and women with SCI (age and injury duration = 29.7 ± 7.8 and 1.9 ± 2.7 years) underwent 6 months of ABT. At baseline and after 3 and 6 months of training, blood samples were obtained to assess bone formation (serum procollagen type 1 N propeptide (PINP) and bone resorption (serum C-terminal telopeptide of type I collagen (CTX), and participants underwent dual-energy X-ray absorptiometry scans to obtain total body and regional estimates of bone mineral density (BMD). Results Results demonstrated significant increases (p < 0.05) in spine BMD (+4.8 %; 1.27 ± 0.22–1.33 ± 0.24 g/cm2) and decreases (p < 0.01) in total hip BMD (−6.1 %; 0.98 ± 0.18–0.91 ± 0.16 g/cm2) from 0 to 6 months of training. BMD at the bilateral distal femur (−7.5 to −11.0 %) and proximal tibia (− 8.0 to −11.2 %) declined but was not different (p > 0.05) versus baseline. Neither PINP nor CTX was altered (p> 0.05) with training. Conclusions Chronic activity-based therapy did not reverse bone loss typically observed soon after injury, yet reductions in BMD were less than the expected magnitude of decline in lower extremity BMD in persons with recent SCI. PMID:24097172
Kennedy, Oran D; Brennan, Orlaith; Mauer, Peter; O'Brien, Fergal J; Rackard, Susan M; Taylor, David; Lee, T Clive
2008-01-01
This study investigates the effect of microdamage on bone quality in osteoporosis using an ovariectomised (OVX) sheep model of osteoporosis. Thirty-four sheep were divided into an OVX group (n=16) and a control group (n=18). Fluorochromes were administered intravenously at 3 monthly intervals after surgery to label bone turnover. After sacrifice, beams were removed from the metatarsal and tested in three-point bending. Following failure, microcracks were identified and quantified in terms of region, location and interaction with osteons. Number of cycles to failure (Nf) was lower in the OVX group relative to controls by approximately 7%. Crack density (CrDn) was higher in the OVX group compared to controls. CrDn was 2.5 and 3.5 times greater in the compressive region compared to tensile in control and OVX bone respectively. Combined results from both groups showed that 91% of cracks remained in interstitial bone, approximately 8% of cracks penetrated unlabelled osteons and less than 1% penetrated into labelled osteons. All cases of labelled osteon penetration occurred in controls. Crack surface density (CrSDn), was 25% higher in the control group compared to OVX. It is known that crack behaviour on meeting microstructural features such as osteons will depend on crack length. We have shown that osteon age also affects crack propagation. Long cracks penetrated unlabelled osteons but not labelled ones. Some cracks in the control group did penetrate labelled osteons. This may be due the fact that control bone is more highly mineralized. CrSDn was increased by 25% in the control group compared to OVX. Further study of these fracture mechanisms will help determine the effect of microdamage on bone quality and how this contributes to bone fragility.
Tarlton, John F; Wilkins, Lindsay J; Toscano, Michael J; Avery, Nick C; Knott, Lynda
2013-02-01
The omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) are the immediate precursors to a number of important mediators of immunity, inflammation and bone function, with products of omega-6 generally thought to promote inflammation and favour bone resorption. Western diets generally provide a 10 to 20-fold deficit in omega-3 PUFAs compared with omega-6, and this is thought to have contributed to the marked rise in incidence of disorders of modern human societies, such as heart disease, colitis and perhaps osteoporosis. Many of our food production animals, fed on grains rich in omega-6, are also exposed to a dietary deficit in omega-3, with perhaps similar health consequences. Bone fragility due to osteoporotic changes in laying hens is a major economic and welfare problem, with our recent estimates of breakage rates indicating up to 95% of free range hens suffer breaks during lay. Free range hens housed in full scale commercial systems were provided diets supplemented with omega-3 alpha linolenic acid, and the skeletal benefits were investigated by comparison to standard diets rich in omega-6. There was a significant 40-60% reduction in keel bone breakage rate, and a corresponding reduction in breakage severity in the omega-3 supplemented hens. There was significantly greater bone density and bone mineral content, alongside increases in total bone and trabecular volumes. The mechanical properties of the omega-3 supplemented hens were improved, with strength, energy to break and stiffness demonstrating significant increases. Alkaline phosphatase (an osteoblast marker) and tartrate-resistant acid phosphatase (an osteoclast marker) both showed significant increases with the omega-3 diets, indicating enhanced bone turnover. This was corroborated by the significantly lower levels of the mature collagen crosslinks, hydroxylysyl pyridinoline, lysyl pyridinoline and histidinohydroxy-lysinonorleucine, with a corresponding significant shift in the mature:immature crosslink ratio. The improved skeletal health in laying hens corresponds to as many as 68million fewer hens suffering keel fractures in the EU each year. The biomechanical and biochemical evidence suggests that increased bone turnover has enhanced the bone mechanical properties, and that this may suggest potential benefits for human osteoporosis. Copyright © 2012 Elsevier Inc. All rights reserved.
Effects of soccer vs swim training on bone formation in sedentary middle-aged women.
Mohr, Magni; Helge, Eva W; Petersen, Liljan F; Lindenskov, Annika; Weihe, Pál; Mortensen, Jann; Jørgensen, Niklas R; Krustrup, Peter
2015-12-01
The present study examined the effects of 15 weeks of soccer training and two different swimming training protocols on bone turnover in sedentary middle-aged women. Eighty-three premenopausal mildly hypertensive women [age: 45 ± 6 (± SD) years, height: 165 ± 6 cm, weight: 80.0 ± 14.1 kg, body fat: 42.6 ± 5.7 %, systolic blood pressure/diastolic blood pressure: 138 ± 6/85 ± 3 mmHg] were randomized into soccer training (SOC, n = 21), high-intensity intermittent swimming (HS, n = 21), moderate-intensity swimming (MS, n = 21) intervention groups, and a control group (C, n = 20). The training groups completed three sessions per week for 15 weeks. DXA scans were performed and resting blood samples were drawn pre- and post-intervention. In SOC, plasma osteocalcin, procollagen type I N propeptide and C-terminal telopeptide increased (P < 0.05) by 37 ± 15, 52 ± 23 and 42 ± 18 %, respectively, with no changes in MS, HS and C. The intervention-induced increase in SOC was larger (P < 0.05) than in MS, HS and C. In SOC, leg BMC increased (P < 0.05) by 3.1 ± 4.5 %, with a larger increase in SOC than in C. Femoral shaft and trochanter bone mineral density (BMD) increased (P < 0.05) by 1.7 ± 1.9 and 2.4 ± 2.9 %, respectively, in SOC, with a greater (P < 0.05) change in SOC than in MS and C, whereas total body and total leg BMD did not change in any of the groups. In conclusion, 15 weeks of soccer training with sedentary middle-aged women caused marked increases in bone turnover markers, with concomitant increases in leg bone mass. No changes in bone formation and resorption markers were seen after prolonged submaximal or high-intensity intermittent swimming training. Thus, soccer training appears to provide a powerful osteogenic stimulus in middle-aged women.
Hamzah, Lisa; Tiraboschi, Juan M; Iveson, Helen; Toby, Martina; Mant, Christine; Cason, John; Burling, Keith; Wandolo, Emily; Jendrulek, Isabelle; Taylor, Chris; Ibrahim, Fowzia; Kulasegaram, Ranjababu; Teague, Alastair; Post, Frank A; Fox, Julie
2016-01-01
Efavirenz (EFV) has been associated with reductions in vitamin D (25[OH]D) and tenofovir (TDF) with increased bone turnover, reductions in bone mineral density (BMD) and renal tubular dysfunction. We hypothesized that switching from fixed-dose TDF/emtricitabine (FTC)/EFV to darunavir/ritonavir monotherapy (DRV/r) might increase 25(OH)D and BMD, and improve renal tubular function. Subjects with HIV RNA <50 copies/ml on TDF/FTC/EFV for ≥6 months were randomized 1:1 to ongoing TDF/FTC/EFV or DRV/r (800/100 mg once daily) for 48 weeks. The primary end point was change from baseline in 25(OH)D at week 48. Secondary end points included changes in BMD, bone turnover markers and renal tubular function. A total of 64 subjects (86% male, 66% white, mean [sd] CD4(+) T-cell count 537.3 [191.5]/mm(3)) were analysed. After adjustment for baseline 25(OH)D and demographics, at week 48 DRV/r monotherapy was associated with a +3.6 (95% CI 0.6, 6.6) ng/ml increase in 25(OH)D compared to TDF/FTC/EFV (P=0.02). DRV/r monotherapy was associated with an increase in BMD (+2.9% versus -0.003% at the neck of femur and +2.6% versus +0.008% at the lumbar spine for DRV/r versus TDF/FTC/EFV; P<0.05 for all) and reductions in bone biomarkers compared with those remaining on TDF/FTC/EFV. No significant difference in renal tubular function was observed. Reasons for discontinuation in the DRV/r arm included side effects (n=4) and viral load rebound (n=3), all of which resolved with DRV/r discontinuation or regimen intensification. Switching from TDF/FTC/EFV to DRV/r in patients with suppressed HIV RNA resulted in significant improvements in 25(OH)D and bone biomarkers, and a 2-3% increase in BMD.
Farinola, N; Kanjanapan, Y
2013-11-01
Denosumab, an anti-resorptive treatment for osteoporosis and skeletal metastases from solid tumours, can cause hypocalcaemia. The incidence may be higher than previously reported due to varying serum calcium cut-off and timing of measurement. The following cases illustrate patients at risk of hypocalcaemia despite supplementation. These populations, with underlying high bone turnover from metastatic bone disease or secondary hyperparathyroidism due to renal failure, may require closer monitoring of calcium levels post-denosumab administration. © 2013 The Authors; Internal Medicine Journal © 2013 Royal Australasian College of Physicians.
Stanford, Clark M
2010-01-25
Bone adaptation or integration of an implant is characterized by a series of biological reactions that start with bone turnover at the interface (a process of localized necrosis), followed by rapid repair. The wound healing response is guided by a complex activation of macrophages leading to tissue turnover and new osteoblast differentiation on the implant surface. The complex role of implant surface topography and impact on healing response plays a role in biological criteria that can guide the design and development of future tissue-implant surface interfaces.
Stabnov, L; Kasukawa, Y; Guo, R; Amaar, Y; Wergedal, J E; Baylink, D J; Mohan, S
2002-06-01
Insulin-like growth factor-1 (IGF-1) increases both bone formation and bone resorption processes. To test the hypothesis that treatment with an antiresorber along with IGF-1, during the pubertal growth phase, would be more effective than IGF-1 alone to increase peak bone mass, we used an IGF-1 MIDI mouse model, which exhibits a >60% reduction in circulating IGF-1 levels. We first determined an optimal IGF-1 delivery by evaluating IGF-1 administration (2 mg/kg body weight/day) by either a single daily injection, three daily injections, or by continuous delivery via a minipump during puberty. Of the three regimens, the three daily IGF-1 injections and IGF-1 through a minipump produced a significant increase in total body bone mineral density (BMD) (6.0% and 4.4%, respectively) and in femoral BMD (4.3% and 6.2%, respectively) compared with the control group. Single subcutaneous (s.c.) administration did not increase BMD. We chose IGF-1 administration three times daily for testing the combined effects of IGF-1 and alendronate (100 microg/kg per day). The treatment of IGF-1 + alendronate for a period of 2 weeks increased total body BMD at 1 week and 3 weeks after treatment (21.1% and 20.5%, respectively) and femoral BMD by 29% at 3 weeks after treatment. These increases were significantly greater than those produced by IGF-1 alone. IGF-1, but not alendronate, increased bone length. IGF-1 and/or alendronate increased both periosteal and endosteal circumference. Combined treatment caused a greater increase in the total body bone mineral content (BMC) and periosteal circumference compared with individual treatment with IGF-1 or alendronate. Our data demonstrate that: (1) inhibition of bone turnover during puberty increases net bone density; and (2) combined treatment with IGF-1 and alendronate is more effective than IGF-1 or alendronate alone in increasing peak bone mass in an IGF-1-deficient MIDI mouse model.
Gender differences in bone turnover in 2-year-old Thoroughbreds.
Jackson, B F; Lonnell, C; Verheyen, K; Wood, J L N; Pfeiffert, D U; Price, J S
2003-11-01
Injuries to the skeleton are a major cause of morbidity and mortality in racehorses and age, gender and season have all been shown to influence risk of injury. To use biochemical markers of bone cell activity to establish to whether cellular processes in bone underlie these described effects. Blood samples were collected monthly from 2-year-old horses in race training between November 1998 and September 1999. Mean age at the start of the study was 20 months (range 18-23 months), with no significant difference in average age between colts (n = 84) and fillies (n = 63). Three markers were measured; osteocalcin (OC, bone formation), the carboxyterminal cross-linked telopeptide of type I collagen (ICTP, bone resorption) and the carboxyterminal propeptide of type I collagen (PICP), which is less 'bone-specific' than the other 2 markers. Colts had, on average, 3.62 ng/ml higher OC concentrations (P = 0.044) and 0.68 mg/l higher ICTP concentrations (P = 0.01) than fillies. The effect of gender was not statistically significant for PICP. However, in May, PICP concentrations were on average 157 mg/l higher in fillies than colts. There was no effect of age or season on marker concentrations. This study has shown that there are gender differences in bone turnover markers in 2-year-old Thoroughbreds; however, age, within the limited range studied, did not have a significant effect on bone cell activity. Lower bone marker concentrations may reflect smaller bone size and/or earlier skeletal maturation in fillies. An increase in concentrations of PICP in fillies in spring and early summer may relect an influence of sex hormones on collagen turnover. Gender differences in bone cell activity in 2-year-old colts and fillies may influence bone's adaptive responses to training and risk of injury.
Sharma, Ashish K; Toussaint, Nigel D; Masterson, Rosemary; Holt, Stephen G; Rajapakse, Chamith S; Ebeling, Peter R; Mohanty, Sindhu T; Baldock, Paul; Elder, Grahame J
2018-05-23
Cortical bone is a significant determinant of bone strength and its deterioration contributes to bone fragility. Thin cortices and increased cortical porosity have been noted in patients with chronic kidney disease (CKD), but the "Turnover Mineralization Volume" classification of renal osteodystrophy does not emphasize cortical bone as a key parameter. We aimed to assess trabecular and cortical bone microarchitecture by histomorphometry and micro-CT in patients with CKD G5 and 5D (dialysis). Transiliac bone biopsies were performed in 14 patients undergoing kidney transplantation (n = 12) and parathyroidectomy (n = 2). Structural parameters were analysed by histomorphometry and micro-CT including trabecular bone volume, thickness (TbTh), number (TbN) and separation and cortical thickness (CtTh) and porosity (CtPo). Indices of bone remodelling and mineralisation were obtained and relationships to bone biomarkers examined. Associations were determined by Spearman's or Pearson's rank correlation coefficients. By micro-CT, trabecular parameters were within normal ranges in most patients, but all patients showed very low CtTh (127 ± 44 µm) and high CtPo (60.3 ± 22.5%). CtPo was inversely related to TbN (r = -0.56; p = 0.03) by micro-CT and to TbTh (r = -0.60; p = 0.024) by histomorphometry and correlated to parathyroid hormone values (r = 0.62; p = 0.021). By histomorphometry, bone turnover was high in 50%, low in 21% and normal in 29%, while 36% showed abnormal patterns of mineralization. Significant positive associations were observed between osteoblast surface, osteoclast surface, mineralization surface and bone turnover markers. Deterioration of cortical -microarchitecture despite predominantly normal trabecular parameters reinforces the importance of comprehensive cortical evaluation in patients with CKD. © 2018 S. Karger AG, Basel.
Amstrup, Anne Kristine; Sikjaer, Tanja; Heickendorff, Lene; Mosekilde, Leif; Rejnmark, Lars
2015-09-01
Melatonin is known for its regulation of circadian rhythm. Recently, studies have shown that melatonin may have a positive effect on the skeleton. By increasing age, the melatonin levels decrease, which may lead to a further imbalanced bone remodeling. We aimed to investigate whether treatment with melatonin could improve bone mass and integrity in humans. In a double-blind RCT, we randomized 81 postmenopausal osteopenic women to 1-yr nightly treatment with melatonin 1 mg (N = 20), 3 mg (N = 20), or placebo (N = 41). At baseline and after 1-yr treatment, we measured bone mineral density (BMD) by dual X-ray absorptiometry, quantitative computed tomography (QCT), and high-resolution peripheral QCT (HR-pQCT) and determined calciotropic hormones and bone markers. Mean age of the study subjects was 63 (range 56-73) yr. Compared to placebo, femoral neck BMD increased by 1.4% in response to melatonin (P < 0.05) in a dose-dependent manner (P < 0.01), as BMD increased by 0.5% in the 1 mg/day group (P = 0.55) and by 2.3% (P < 0.01) in the 3 mg/day group. In the melatonin group, trabecular thickness in tibia increased by 2.2% (P = 0.04), and volumetric bone mineral density (vBMD) in the spine, by 3.6% (P = 0.04) in the 3 mg/day. Treatment did not significantly affect BMD at other sites or levels of bone turnover markers; however, 24-hr urinary calcium was decreased in response to melatonin by 12.2% (P = 0.02). In conclusion, 1-yr treatment with melatonin increased BMD at femoral neck in a dose-dependent manner, while high-dose melatonin increased vBMD in the spine. Further studies are needed to assess the mechanisms of action and whether the positive effect of nighttime melatonin will protect against fractures. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Tower, R J; Campbell, G M; Müller, M; Glüer, C C; Tiwari, S
2015-05-01
The turnover of bone is a tightly regulated process between bone formation and resorption to ensure skeletal homeostasis. This process differs between bone types, with trabecular bone often associated with higher turnover than cortical bone. Analyses of bone by micro-computed tomography (micro-CT) reveal changes in structure and mineral content, but are limited in the study of metabolic activity at a single time point, while analyses of serum markers can reveal changes in bone metabolism, but cannot delineate the origin of any aberrant findings. To obtain a site-specific assessment of bone metabolic status, bisphosphonate binding kinetics were utilized. Using a fluorescently-labeled bisphosphonate, we show that early binding kinetics monitored in vivo using fluorescent molecular tomography (FMT) can monitor changes in bone metabolism in response to bone loss, stimulated by ovariectomy (OVX), or bone gain, resulting from treatment with the anabolic bone agent parathyroid hormone (PTH), and is capable of distinguishing different, metabolically distinct skeletal sites. Using time-lapse micro-CT, longitudinal bone turnover was quantified. The spine showed a significantly greater percent resorbing volume and surface in response to OVX, while mice treated with PTH showed significantly greater resorbing volume per bone surface in the spine and significantly greater forming surfaces in the knee. Correlation studies between binding kinetics and micro-CT suggest that forming surfaces, as assessed by time-lapse micro-CT, are preferentially reflected in the rate constant values while forming and resorbing bone volumes primarily affect plateau values. Additionally, we developed a blood pool correction method which now allows for quantitative multi-compartment analyses to be conducted using FMT. These results further expand our understanding of bisphosphonate binding and the use of bisphosphonate binding kinetics as a tool to monitor site-specific changes in bone metabolism in vivo. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Olson, Erik J.; Lindgren, Bruce R.; Carlson, Cathy S.
2008-01-01
The aims of the present study were to assess the effects of long-term estrogen replacement therapy (ERT) on size and indices of bone turnover in periarticular osteophytes in ovariectomized cynomolgus monkeys and to compare dynamic indices of bone turnover in osteophyte bone with those of subchondral bone (SCB) and epiphyseal/metaphyseal cancellous (EMC) bone. One hundred sixty-five adult female cynomolgus macaques were bilaterally ovariectomized and randomly divided into three age- and weight-matched treatment groups for a 36-month treatment period. Group 1 (OVX control) received no treatment, Group 2 (SPE) received soy phytoestrogens, and Group 3 (ERT) received conjugated equine estrogens in the diet; all monkeys were labeled with calcein before necropsy. A midcoronal, plastic-embedded section of the right proximal tibia from 20 randomly selected animals per treatment group was examined histologically. Forty-nine of the sections (OVX control, n=16; SPE, n=16; ERT, n=17) contained lateral abaxial osteophytes, and static and dynamic histomorphometry measurements were taken from osteophyte bone, SCB from the lateral tibial plateau, and EMC bone. Data were analyzed using the ANOVA and Kruskal-Wallis test, correlation and regression methods, and the Friedman and Wilcoxon signed rank test. There was no significant effect of long-term ERT on osteophyte area or on any static or dynamic histomorphometry parameters. The bone volume, trabecular number, and trabecular thickness in osteophyte bone were considerably higher than in EMC bone; whereas, trabecular separation was considerably lower in osteophyte bone. In all three treatment groups, BS/BV was significantly lower in osteophyte bone vs. EMC bone and significantly higher in osteophyte bone vs. lateral SCB. We conclude that osteophyte area and static and dynamic histomorphometry parameters within periarticular tibial osteophytes in ovariectomized cynomolgus monkeys are not significantly influenced by long-term ERT, but that site differences in static and dynamic bone histomorphometry parameters exist, particularly between EMC and osteophyte bone. PMID:18291743
Olson, Erik J; Lindgren, Bruce R; Carlson, Cathy S
2008-05-01
The aims of the present study were to assess the effects of long-term estrogen replacement therapy (ERT) on size and indices of bone turnover in periarticular osteophytes in ovariectomized cynomolgus monkeys and to compare dynamic indices of bone turnover in osteophyte bone with those of subchondral bone (SCB) and epiphyseal/metaphyseal cancellous (EMC) bone. One hundred sixty-five adult female cynomolgus macaques were bilaterally ovariectomized and randomly divided into three age- and weight-matched treatment groups for a 36-month treatment period. Group 1 (OVX control) received no treatment, Group 2 (SPE) received soy phytoestrogens, and Group 3 (ERT) received conjugated equine estrogens in the diet; all monkeys were labeled with calcein before necropsy. A midcoronal, plastic-embedded section of the right proximal tibia from 20 randomly selected animals per treatment group was examined histologically. Forty-nine of the sections (OVX control, n=16; SPE, n=16; ERT, n=17) contained lateral abaxial osteophytes, and static and dynamic histomorphometry measurements were taken from osteophyte bone, SCB from the lateral tibial plateau, and EMC bone. Data were analyzed using the ANOVA and Kruskal-Wallis test, correlation and regression methods, and the Friedman and Wilcoxon signed rank test. There was no significant effect of long-term ERT on osteophyte area or on any static or dynamic histomorphometry parameters. The bone volume, trabecular number, and trabecular thickness in osteophyte bone were considerably higher than in EMC bone; whereas, trabecular separation was considerably lower in osteophyte bone. In all three treatment groups, BS/BV was significantly lower in osteophyte bone vs. EMC bone and significantly higher in osteophyte bone vs. lateral SCB. We conclude that osteophyte area and static and dynamic histomorphometry parameters within periarticular tibial osteophytes in ovariectomized cynomolgus monkeys are not significantly influenced by long-term ERT, but that site differences in static and dynamic bone histomorphometry parameters exist, particularly between EMC and osteophyte bone.
Response of bone turnover markers to raloxifene treatment in postmenopausal women with osteopenia.
Naylor, K E; Jacques, R M; Peel, N F A; Gossiel, F; Eastell, R
2016-08-01
We used two methods of identifying women who reached the target for raloxifene treatment with bone turnover markers. Both approaches identified women that responded to treatment but did not fully agree and may be complementary. The change in bone turnover markers (BTMs) in response to osteoporosis therapy can be assessed by a decrease beyond the least significant change (LSC) or below the mean of the reference interval (RI). We compared the performance of these two approaches in women treated with raloxifene. Fifty postmenopausal osteopenic women (age 51-72 years) were randomised to raloxifene or no treatment for 2 years. Blood samples were collected for the measurement of BTM. The LSC for each marker was calculated from the untreated women and the RI obtained from healthy premenopausal women (age 35-40 years). Bone mineral density (BMD) was measured at the spine and hip. There was a decrease in BTM in response to raloxifene treatment, percentage change at 12 weeks: C terminal telopeptide of type I collagen (CTX) -39 % (95 % CI -48 to -28) and N terminal propeptide of type I procollagen (PINP) -32 % (95 % CI -40 to -23) P < 0.001. The proportion of women classified as responding to treatment using LSC at 12 weeks was as follows: CTX 38 % and PINP 52 % and at 48 weeks CTX 60 % and PINP 65 %. For the RI approach, the proportion of women classified as responding to treatment at 12 weeks was CTX and PINP 38 % and at 48 weeks CTX 40 % and PINP 45 %. There was a significant difference in the change in spine BMD in the raloxifene-treated group compared to the no-treatment group at week 48: difference 0.031 g/cm(2) (95 % CI 0.016 to 0.046, P < 0.001). The two approaches identified women that reached the target for treatment using BTM. Both LSC and RI criteria appear useful in identifying treatment response, but the two approaches do not fully overlap and may be complementary.
Maïmoun, L; Coste, O; Mariano-Goulart, D; Galtier, F; Mura, T; Philibert, P; Briot, K; Paris, F; Sultan, C
2011-12-01
Peripubertal artistic gymnasts display elevated areal bone mineral density at various bone sites, despite delayed menarche and a high frequency of menstrual disorders, factors that may compromise bone health. The concomitant improvement in femoral bone geometry and strength suggested that this type of physical activity might have favourable clinical impact. The purpose of this study is to evaluate the effect of artistic gymnastics (GYM) on areal bone mineral density (aBMD), femoral bone geometry and bone markers and its relationship with the osteoprotegerin (OPG)/rank-ligand (RANKL) system in peripubertal girls. Forty-six girls (age 10-17.2 years) were recruited for this study: 23 elite athletes in the GYM group (training 12-30 h/week, age at start of training 5.3 years) and 23 age-matched (± 6 months; leisure physical activity ≤ 3 h/week) controls (CON). The aBMD at whole body, total proximal femur, lumbar spine, mid-radius and skull was determined using dual-X-ray absorptiometry. Hip structural analysis (HSA software) was applied at the femur to evaluate cross-sectional area (CSA, cm(2)), cross-sectional moment of inertia (CSMI, cm(4)), and the section modulus (Z, cm(3)) and buckling ratio at neck, intertrochanteric region and shaft. Markers of bone turnover and OPG/RANKL levels were also analysed. GYM had higher (5.5-16.4%) non-adjusted aBMD and adjusted aBMD for age, fat-free soft tissue and fat mass at all bone sites, skull excepted and the difference increased with age. In the three femoral regions adjusted for body weight and height, CSA (12.5-18%), CSMI (14-18%), Z (15.5-18.6%) and mean cortical thickness (13.6-21%) were higher in GYM than CON, while the buckling ratio (21-27.1%) was lower. Bone markers decreased with age in both groups and GYM presented higher values than CON only in the postmenarchal period. A similar increase in RANKL with age without OPG variation was observed for both groups. GYM is associated not only with an increase in aBMD but also an improvement in bone geometry associated with an increase in bone remodelling. These adaptations seem to be independent of the OPG/RANKL system.
Bredella, Miriam A; Gerweck, Anu V; Barber, Lauren A; Breggia, Anne; Rosen, Clifford J; Torriani, Martin; Miller, Karen K
2014-05-01
Abdominal adiposity is associated with low BMD and decreased growth hormone (GH) secretion, an important regulator of bone homeostasis. The purpose of our study was to determine the effects of a short course of GH on markers of bone turnover and bone marrow fat in premenopausal women with abdominal adiposity. In a 6-month, randomized, double-blind, placebo-controlled trial we studied 79 abdominally obese premenopausal women (21-45 y) who underwent daily sc injections of GH vs. placebo. Main outcome measures were body composition by DXA and CT, bone marrow fat by proton MR spectroscopy, P1NP, CTX, 25(OH)D, hsCRP, undercarboxylated osteocalcin (ucOC), preadipocyte factor 1 (Pref 1), apolipoprotein B (ApoB), and IGF-1. GH increased IGF-1, P1NP, 25(OH)D, ucOC, bone marrow fat and lean mass, and decreased abdominal fat, hsCRP, and ApoB compared with placebo (p<0.05). There was a trend toward an increase in CTX and Pref-1. Among all participants, a 6-month increase in IGF-1 correlated with 6-month increase in P1NP (p=0.0005), suggesting that subjects with the greatest increases in IGF-1 experienced the greatest increases in bone formation. A six-month decrease in abdominal fat, hsCRP, and ApoB inversely predicted 6-month change in P1NP, and 6-month increase in lean mass and 25(OH)D positively predicted 6-month change in P1NP (p≤0.05), suggesting that subjects with greatest decreases in abdominal fat, inflammation and ApoB, and the greatest increases in lean mass and 25(OH)D experienced the greatest increases in bone formation. A six-month increase in bone marrow fat correlated with 6-month increase in P1NP (trend), suggesting that subjects with the greatest increases in bone formation experienced the greatest increases in bone marrow fat. Forward stepwise regression analysis indicated that increase in lean mass and decrease in abdominal fat were positive predictors of P1NP. When IGF-1 was added to the model, it became the only predictor of P1NP. GH replacement in abdominally obese premenopausal women for 6 months increased bone turnover and bone marrow fat. Reductions in abdominal fat, and inflammation, and increases in IGF-1, lean mass and vitamin D were associated with increased bone formation. The increase in bone marrow fat may reflect changes in energy demand from increased bone turnover. Copyright © 2014 Elsevier Inc. All rights reserved.
Murad, Rafat; Shezad, Zahra; Ahmed, Saara; Ashraf, Mussarat; Qadir, Murad; Rehman, Rehana
2018-03-01
To compare biochemical parameters serum tumour necrosis factor alpha, calcium, magnesium, bone-specific alkaline phosphatase and vitamin D in postmenopausal women. This cross-sectional study was carried out from June 2015 to July 2016 at Jinnah Medical and Dental College, Karachi, and comprised postmenopausal women. Bone mineral density done by dual energy X-ray absorptiometryscan categorised subjects by World Health Organisation classification into normal (T score > -1) osteopenic (T score between -1 and -2.5) and osteoporotic (T score < -2.5). Biochemical parameters like tumour necrosis alpha, calcium, magnesium, bone-specific alkaline phosphatase and vitamin D were measured by solid phase enzyme amplified sensitivity immunoassay method. SPSS 16 was used to analyse the data. Of the 146 women, 34(23%) were normal, 93(67%) were osteopenic and 19(13%) were osteoporotic. There was significant difference in mean body mass index, serum tumour necrosis factor alpha and calcium in all the three groups (p<0.01). Significant mean difference was observed in serum calcium levels between normal and osteopenic, and between normal and osteoporotic group (p<0.05 each) without any significant mean difference between osteopenic and osteoporotic groups (p>0.05). A significant difference was observed for mean tumour necrosis factor alpha values between normal and osteoporotic groups (p<0.05). Tumour necrosis factor alpha showed negative correlation with bone mineral density in osteopenic and osteoporotic groups (p>0.05). Increased bone turnover in postmenopausal osteopenic women can be predicted by increased serum cytokine.
USDA-ARS?s Scientific Manuscript database
Chronic alcohol consumption results in bone loss through increased bone resorption and decreased bone formation. These effects can be reversed by estradiol (E2) supplementation. Soy diets are suggested to have protective effects on bone loss in men and women, as a result of the presence of soy prote...
High intake of milk, but not meat, decreases bone turnover in prepubertal boys after 7 days.
Budek, A Z; Hoppe, C; Michaelsen, K F; Mølgaard, C
2007-08-01
To compare the short-term effect of a high milk and a high meat intake, identical in protein amount, on bone turnover during prepuberty. A University department. From 28, randomly recruited, 8-year-old boys, first 14 were assigned to the milk group and next 14 to the meat group. In each group, 12 boys finished the dietary intervention. Milk (1.5 l/day) and meat (250 g/d), both containing approximately 53 g of protein, were given together with the habitual diet for 7 days. At baseline and day-7, serum osteocalcin (s-OC), bone-specific alkaline phosphatase (s-BAP) and C-terminal telopeptides of type I collagen (s-CTX) were measured (immunoassay) and dietary intake was estimated (a 3-day weighted food record). Baseline s-OC, s-BAP and s-CTX were not significantly different between the groups. After 7 days, the average protein intake increased in both groups by 47.5 g; the milk group had higher (P<0.0001) calcium intake; s-OC and s-CTX decreased (P< or =0.04) in the milk group (-30.9%; -18.7%, respectively) compared with the meat group (+6.4%; -1.0%, respectively) and s-BAP decreased (P=0.06) both in the milk (-3.9%) and the meat group (-7.5%). At the equal protein intake, milk, but not meat, decreased bone turnover in prepubertal boys after 7 days. This effect was probably due to some milk-derived compounds, rather than to the total protein intake. Future studies should elucidate the mechanism(s) of milk-related decline of bone turnover and its relevance for peak bone mass during growth. University PhD scholarships.
Essley, B.; McNanley, T.; Cooper, B.; McIntyre, A.; Witter, F.; Harris, Z.; O’Brien, K.
2014-01-01
Osteoprotegerin (OPG) is involved in the regulation of bone turnover, but little is known about this protein during pregnancy or among neonates. We undertook a prospective longitudinal study to identify relationships between OPG, markers of bone turnover and birth outcomes in 155 pregnant adolescents (13–18 years) and their newborns. Maternal blood samples were collected at mid-gestation and at delivery. Cord blood was obtained at delivery. Serum OPG, estradiol and markers of bone formation (osteocalcin) and resorption (N-telopeptide) were assessed in all samples. Placental OPG expression was assessed in placental tissue obtained at delivery. Bone markers and OPG increased significantly from mid-gestation (26.0 ± 3.4 weeks) to delivery (39.3 ± 2.6 weeks). Neonatal OPG was significantly lower, but bone turnover markers were significantly higher than maternal values at mid-gestation and at parturition (P < 0.001). African-American adolescents had higher concentrations of OPG than Caucasian adolescents at mid-gestation (P = 0.01) and delivery (P = 0.04). Gestational age and estradiol were also predictors of maternal OPG at mid-gestation and delivery. OPG concentrations in cord blood were correlated with maternal OPG concentrations and were negatively associated with infant birth weight z-score (P = 0.02) and ponderal index (P = 0.02). In conclusion, maternal OPG concentrations increased across gestation and were significantly higher than neonatal OPG concentrations. Maternal and neonatal OPG concentrations were not associated with markers of bone turnover or placental OPG expression, but neonatal OPG was inversely associated with neonatal anthropometric measures. Additional research is needed to identify roles of OPG during pregnancy. PMID:25141264
The effect of body composition and BMI on 25(OH)D response in vitamin D-supplemented athletes
CASSITY, EVAN P.; REDZIC, MAJA; TEAGER, CASSIDY R.; THOMAS, D. TRAVIS
2016-01-01
Fat mass is inversely associated with vitamin D status, and athletes with the most adipose tissue may have the greatest risk for insufficient (25(OH)D 20–32 ng mL−1) or deficient (25(OH)D < 20 ng ml−1) status. The effects of fat and lean mass on 25 (OH)D change in response to vitamin D supplementation have yet to be elucidated in athletes. In addition, vitamin D has a known role in bone health yet a link between short-term changes in 25(OH)D and bone turnover in indoor athletes have not yet been described. Thirty-two collegiate swimmers and divers (19 male, 13 female; 19 (1) years) participated in a 6-month randomized controlled trial and consumed either 4000 IU d−1 of vitamin D3 (n = 19) or placebo (PLA; n = 13). Anthropometry and blood collection of 25(OH)D, bone-specific alkaline phosphatase (B-ALP) and N-terminal telopeptide (NTx) occurred at three time points. Dual-energy X-ray absorptiometry measured body composition analysis at baseline and endpoint. In the vitamin D group, BMI was negatively correlated with 6-month 25(OH)D change (R =−0.496; P = .03) and a stronger predictor of 25(OH)D change (P = .04) than ultraviolet B exposure and fat mass change.Athletes in the high bone turnover group showed significantly greater losses of 25(OH)D over 6-months compared to athletes in the low bone turnover group (P = .03). These results suggest athletes within the normal BMI category experience a diminished response to 4000 IU d−1 of vitamin D3 supplementation, and periods of high bone turnover may be an additional risk factor for developing compromised vitamin D status in athletes. PMID:26698109
Crofton, Patricia M
2009-01-01
Children with cancer are exposed to multiple influences that may adversely affect bone health. Some treatments have direct deleterious effects on bone whilst others may have indirect effects mediated through various endocrine abnormalities. Most clinical outcome studies have concentrated on survivors of acute lymphoblastic leukaemia (ALL). There is now good evidence that earlier treatment protocols that included cranial irradiation with doses of 24 Gy or greater may result in growth hormone deficiency and low bone mineral density (BMD) in the lumbar spine and femoral neck. Under current protocols, BMD decreases during intensive chemotherapy and fracture risk increases. Although total body BMD may eventually return to normal after completion of chemotherapy, lumbar spine trabecular BMD may remain low for many years. The implications for long-term fracture risk are unknown. Risk factors for low BMD include high dose methotrexate, higher cumulative doses of glucocorticoids, male gender and low physical activity. BMD outcome in non-ALL childhood cancers has been less well studied but there is evidence that survivors of childhood brain or bone tumours, and survivors of bone marrow transplants for childhood malignancy, all have a high risk of long-term osteopenia. Long-term follow-up is required, with appropriate treatment of any endocrine abnormalities identified. Copyright (c) 2009 S. Karger AG, Basel.
Zhang, Y; Wang, L; Song, Y; Zhao, X; Wong, M S; Zhang, W
2016-03-01
The skeletal renin-angiotensin system contributes to the development of osteoporosis. The renin inhibitor aliskiren exhibited beneficial effects on trabecular bone of osteoporotic mice, and this action might be mediated through angiotensin and bradykinin receptor pathways. This study implies the potential application of renin inhibitor in the management for postmenopausal osteoporosis. The skeletal renin-angiotensin system plays key role in the pathological process of osteoporosis. The present study is designed to elucidate the effect of renin inhibitor aliskiren on trabecular bone and its potential action mechanism in ovariectomized (OVX) mice. The OVX mice were treated with low dose (5 mg/kg) or high dose (25 mg/kg) of aliskiren or its vehicle for 8 weeks. The bone turnover markers were measured by ELISA. The structural parameters of trabecular bone at lumbar vertebra (LV) and distal femoral metaphysis were measured by micro-CT. The expression of messenger RNA (mRNA) and protein was studied by RT-PCR and immunoblotting, respectively. Aliskiren treatment reduced urinary excretion of calcium and serum level of tartrate-resistant acid phosphatase in OVX mice. The treatment with aliskiren significantly increased bone volume (BV/TV) and connectivity density (Conn.D) of trabecular bone at LV-2 and LV-5 as well as dramatically enhanced BV/TV, Conn.D, bone mineral density (BMD/BV) and decreased bone surface (BS/BV) at the distal femoral end. Aliskiren significantly down-regulated the expression of angiotensinogen, angiotensin II (Ang II), Ang II type 1 receptor, bradykinin receptor (BR)-1, and osteocytic-specific gene sclerostin as well as the osteoclast-specific genes, including carbonic anhydrase II, matrix metalloproteinase-9, and cathepsin K. This study revealed that renin inhibitor aliskiren exhibited the beneficial effects on trabecular bone of ovariectomy-induced osteoporotic mice, and the underlying mechanism for this action might be mediated through Ang II and BR signaling pathways in bone.
Wade-Gueye, Ndéye Marième; Boudiffa, Maya; Laroche, Norbert; Vanden-Bossche, Arnaud; Fournier, Carole; Aubin, Jane E; Vico, Laurence; Lafage-Proust, Marie-Hélène; Malaval, Luc
2010-11-01
Bone sialoprotein (BSP) belongs to the small integrin-binding ligand, N-linked glycoprotein (SIBLING) family, whose members play multiple and distinct roles in the development, turnover, and mineralization of bone and dentin. The functions of BSP in bone remodeling are not yet well established. We previously showed that BSP knockout (BSP(-/-)) mice exhibit a higher trabecular bone volume, concomitant with lower bone remodeling, than wild-type (BSP(+/+)) mice. To determine whether bone turnover can be stimulated in the absence of BSP, we subjected BSP(+/+) and BSP(-/-) mice to catabolic [ovariectomy (OVX)] or anabolic (intermittent PTH administration) hormonal challenges. BSP(-/-) mice progressively develop hypocalcemia and high serum PTH between 2 and 4 months of age. Fifteen and 30 d after OVX, microtomography analysis showed a significant decrease of trabecular bone volume in tibiae of both genotypes. Histomorphometric parameters of bone formation and resorption were significantly increased by OVX. PTH treatment resulted in an increase of trabecular thickness and both bone formation and resorption parameters at all skeletal sites in both genotypes and a decrease of trabecular bone volume in tibiae of BSP(+/+) but not BSP(-/-) mice. PTH increased cortical thickness and bone area in BSP(+/+) but not BSP(-/-) mice and stimulated the bone formation rate specifically in the endosteum of BSP(+/+) mice and the periosteum of BSP(-/-) mice. PTH enhanced the expression of RANKL, MEPE, and DMP1 in both genotypes but increased OPG and OPN expression only in BSP(-/-) mice. In conclusion, despite the low basal turnover, both catabolic and anabolic challenges increase bone formation and resorption in BSP(-/-) mice, suggesting that compensatory pathways are operative in the skeleton of BSP-deficient mice. Although up-regulation of one or several other SIBLINGs is a possible mechanism, further studies are needed to analyze the interplay and cross-regulation involved in compensating for the absence of BSP.
Bonnick, Sydney; De Villiers, Tobias; Odio, Alberto; Palacios, Santiago; Chapurlat, Roland; DaSilva, Carolyn; Scott, Boyd B; Le Bailly De Tilleghem, Celine; Leung, Albert T; Gurner, Deborah
2013-12-01
Odanacatib (ODN) is a selective cathepsin K inhibitor being developed to treat osteoporosis. The effects of ODN were evaluated on bone mineral density (BMD), biochemical markers of bone turnover, and safety in patients previously treated with alendronate. This was a randomized, double-blind, placebo-controlled, 24-month study. The study was conducted at private or institutional practices. Postmenopausal women (n = 243) ≥ 60 years of age with low BMD at the total hip, femoral neck, or trochanter (T-score ≤-2.5 but >-3.5 without prior fracture or ≤-1.5 but >-3.5 with prior fracture) on alendronate for ≥ 3 years. The intervention included ODN 50 mg or placebo weekly. The primary end point was percentage change from baseline of femoral neck BMD at month 24. BMD was assessed by dual-energy x-ray absorptiometry at baseline and 6, 12, and 24 months. Biochemical markers of bone turnover (serum C-telopeptides of type 1 collagen, urinary N-telopeptides of type 1 collagen, serum bone specific alkaline phosphatase, and serum N-terminal propeptide of type 1 collagen) were measured at baseline and 3, 6, 12, 18, and 24 months. In the ODN group, BMD changes from baseline at the femoral neck, trochanter, total hip, and lumbar spine at 24 months (1.7%, 1.8%, 0.8%, and 2.3%, respectively) were significantly different from the placebo group. ODN significantly decreased urinary N-telopeptides of type 1 collagen to creatinine ratio and significantly increased serum N-terminal propeptide of type 1 collagen compared with placebo. Serum C-telopeptides of type 1 collagen was unexpectedly increased with ODN treatment. The safety profile appeared similar between groups. ODN provided incremental BMD gains in osteoporotic women after alendronate treatment.
Pitale, Shailesh; Thomas, Mathew; Rathi, Gaurav; Deshmukh, Vaishali; Kumar, Prasanna; Reddy, Sanjay; Shetty, Naresh; Kakar, Atul; Babhulkar, Sushrut; Mody, Bharat; Chacko, Jacob; Acharya, Sudeep; Joglekar, Sadhna; Halbe, Vipul; Kravitz, Barbara G; Waterhouse, Brian; Nino, Antonio J; Fitzpatrick, Lorraine A
2015-01-01
Osteoporosis is a serious condition affecting up to 50% of Indian postmenopausal women. Denosumab reduces bone resorption by targeting the receptor activator of nuclear factor-κB ligand. This study assessed the efficacy and safety of denosumab in Indian postmenopausal women with osteoporosis. In this double-blind, multicenter, phase 3 study, 250 Indian postmenopausal women aged 55 to 75 years (T-score <-2.5 and >-4.0 at the lumbar spine or total hip; serum 25(OH) D levels ≥20 ng/mL) were randomized to receive one subcutaneous dose of denosumab 60 mg or placebo. All subjects received oral calcium ≥1000 mg and vitamin D3 ≥ 400 IU daily. The primary end point was mean percent change in bone mineral density (BMD) at the lumbar spine from baseline to Month 6. Secondary end points included mean percent change from baseline in BMD at total hip, femoral neck, and trochanter at Month 6 and median percent change from baseline in bone turnover markers at Months 1, 3, and 6. Total 225 subjects (denosumab = 111, placebo = 114) completed the six-month study. Baseline demographics were similar between groups. A 3.1% (95% confidence interval, 1.9%, 4.2%) increase favoring denosumab versus placebo was seen for the primary end point (P < 0.0001). Denosumab demonstrated a significant treatment benefit over placebo for the secondary end points. There were no fractures or withdrawals due to adverse events. Consistent with results from studies conducted in other parts of the world, denosumab was well tolerated and effective in increasing BMD and decreasing bone turnover markers over a six-month period in Indian postmenopausal women.
Krikke, M; Klomberg, R C W; van der Veer, E; Tesselaar, K; Verhaar, H J J; Hoepelman, A I M; Arends, J E
2017-05-01
A higher risk of developing osteopenia/ osteoporosis has been seen in HIV-infected patients. We compared HIV-infected patients, all treated with combination antiretroviral therapy (cART), with a low bone mineral density (BMD) (T-score < -1) to those with a normal BMD (T-score > -1), examining the relation with T-cell activation and bone turnover markers (c-terminal telopeptide (CTX) and procollagen type 1 amino-terminal propeptide (P1NP)). In this single visit pilot study, bone turnover markers, T-cell activation (CD38 + HLA - DR +) and senescence (CD57+) of T cells were measured in patients who had previously undergone dual energy X-ray absorptiometry scanning. All study participants (n = 16) were male, on cART, with a median age of 61 years (IQR 56-66). Nine patients had osteopenia/osteoporosis. When comparing the patients with osteopenia/osteoporosis with those with a normal BMD, no differences in activation and senescence were found. A relation was seen between higher bone formation (P1NP) and patients who were on cART for longer. The median length of cART use was 5.5 years (IQR 4.5-7.8), with all patients on nucleoside reverse transcriptase inhibitors, 88% on tenofovir, 63% on non-nucleoside reverse transcriptase inhibitors (NNRTIs) and 38% on protease inhibitors. Osteopenia/osteoporosis was seen in 100% of the patients on protease inhibitors versus 30% of those on NNRTIs. This study did not find an association between activated T cells and BMD, thus did not explain the higher prevalence of osteopenia/osteoporosis in HIV-infected patients. Interestingly, this small pilot showed that cART might influence BMD, with a possible negative effect for protease inhibitors and a possible protective effect for NNRTIs. These results warrant further investigation.
High prevalence of morphometric vertebral deformities in patients with inflammatory bowel disease.
Heijckmann, Anna Caroline; Huijberts, Maya S P; Schoon, Erik J; Geusens, Piet; de Vries, Jolanda; Menheere, Paul P C A; van der Veer, Eveline; Wolffenbuttel, Bruce H R; Stockbrugger, Reinhold W; Dumitrescu, Bianca; Nieuwenhuijzen Kruseman, Arie C
2008-08-01
Earlier studies have documented that the prevalence of decreased bone mineral density (BMD) is elevated in patients with inflammatory bowel disease. The objective of this study was to investigate the prevalence of vertebral deformities in inflammatory bowel disease patients and their relation with BMD and bone turnover. One hundred and nine patients with Crohn's disease (CD) and 72 with ulcerative colitis (UC) (age 44.5+/-14.2 years) were studied. BMD of the hip (by dual X-ray absorptiometry) was measured and a lateral single energy densitometry of the spine for assessment of vertebral deformities was performed. Serum markers of bone resorption (carboxy-terminal cross-linked telopeptide of type I collagen) and formation (procollagen type I amino-terminal propeptide) were measured, and determinants of prevalent vertebral deformities were assessed using logistic regression analysis. Vertebral deformities were found in 25% of both CD and UC patients. Comparing patients with and without vertebral deformities, no significant difference was found between Z-scores and T-scores of BMD, or levels of serum carboxy-terminal cross-linked telopeptide of type I collagen and serum procollagen type I amino-terminal propeptide. Using logistic regression analysis the only determinant of any morphometric vertebral deformity was sex. The presence of multiple vertebral deformities was associated with older age and glucocorticoid use. The prevalence of morphometric vertebral deformities is high in CD and UC. Male sex, but neither disease activity, bone turnover markers, clinical risk factors, nor BMD predicted their presence. The determinants for having more than one vertebral deformity were age and glucocorticoid use. This implies that in addition to screening for low BMD, morphometric assessment of vertebral deformities is warranted in CD and UC.
Multiple fractures and impaired bone metabolism in Wolfram syndrome: a case report.
Catalano, Antonino; Bellone, Federica; Cicala, Giuseppe; Giandalia, Annalisa; Morabito, Nunziata; Cucinotta, Domenico; Russo, Giuseppina Tiziana
2017-01-01
Wolfram Syndrome (WS) is a rare and lethal disease characterized by optic atrophy, diabetes mellitus, diabetes insipidus, and hearing loss. To date, osteoporotic related fractures have not been reported in affected patients. Here, we describe the case of a man affected by WS complicated by several bone fragility fractures. A 50-year-old Caucasian man was hospitalized because of tibia and fibula fractures. His clinical features included diabetes mellitus, diabetes insipidus, optic atrophy and deafness that were consistent with an unrecognized WS diagnosis, which was confirmed by the identification of a specific mutation in gene WFS1 encoding wolframin. Bone mineral density by phalangeal quantitative ultrasound demonstrated severe osteoporosis, with high serum levels of surrogate markers of bone turn-over. Previously unidentified rib fractures were also detected. To the best of our knowledge, this is the first report of osteoporotic related fractures in a patient affected by WS. Although no effective treatments are currently available to delay the progression of the disease, this case report suggests to evaluate fracture risk in the diagnostic work-up of WS.
Bone turnover biomarkers in obese postmenopausal Saudi women with type-II diabetes mellitus.
Alselami, Nada M; Noureldeen, Amani F H; Al-Ghamdi, Maryam A; Khan, Jalaluddin A; Moselhy, Said S
2015-03-01
There is a high prevalence of diabetes mellitus type-2 (T2DM) and osteoporosis are problems worldwide. In this study, we evaluated the correlation between T2DM and bone turnover in diabetic obese postmenopausal Saudi women. The present study included total of 65 T2-DM obese postmenopausal Saudi women, (36 uncontrolled, 29 controlled). The following serum biochemical parameters were evaluated [fasting blood glucose (FBG), total calcium (Ca), phosphorus (Pi), parathyroid hormone (PTH), 1,25-(OH)2 Vitamin D3, osteocalcin (OC), procollagen (PICP) and cathepsin k (Cath K)]. Serum OC levels were significantly decreased in diabetic obese postmenopausal group compared to their respective healthy group (P < 0.004). PICP and Cath K were significantly elevated in diabetic postmenopausal group compared to the healthy group (P < 0.024 & 0.001). A significant elevation in 1,25(OH)2 Vitamin D3, Ca and Pi levels in diabetic obese postmenopausal patients group compared to the healthy group. However, a non-significant changes was observed in serum PTH level between different groups. In this study, the changes in the biochemical parameters and bone turnover markers in obese women are strong risk factors for diabetes development that may contribute to osteopenia and osteoporosis. The study showed the strong effect of T2DM on biochemical markers of bone turnover in obese postmenopausal Saudi women.
NASA Technical Reports Server (NTRS)
Sibonga, J. D.; Iwaniec, U.; Wu, H.
2011-01-01
PURPOSE: We obtained bone tissue to evaluate the collateral effects of experiments designed to investigate molecular mechanisms of radio-adaptation in a mouse model. Radio-adaptation describes a process by which the prior exposure to low dose radiation can protect against the toxic effect of a subsequent high dose exposure. In the radio-adaptation experiments, C57Bl/6 mice were exposed to either a Sham or a priming Low Dose (5 cGy) of Cs-137 gamma rays before being exposed to either a Sham or High Dose (6 Gy) 24 hours later. ANALYSIS: Bone tissue were obtained from two experiments where mice were sacrificed at 3 days (n=3/group, 12 total) and at 14 days (n=6/group, 24 total) following high dose exposure. Tissues were analyzed to 1) evaluate a radio-adaptive response in bone tissue and 2) describe cellular and microstructural effects for two skeletal sites with different rates of bone turnover. One tibia and one lumbar vertebrae (LV2), collected at the 3-day time-point, were analyzed by bone histomorphometry and micro-CT to evaluate the cellular response and any evidence of microarchitectural impact. Likewise, tibia and LV2, collected at the 14-day time-point, were analyzed by micro-CT alone to evaluate resulting changes to bone structure and microarchitecture. The data were analyzed by 2-way ANOVA to evaluate the effects of the priming low dose radiation, of the high dose radiation, and of any interaction between the priming low and high doses of radiation. Bone histomorphometry was performed in the cancellous bone (aka trabecular bone) compartments of the proximal tibial metaphysis and of LV2. RESULTS: Cellular Response @ 3 Days The priming Low Dose radiation decreased osteoblast-covered bone perimeter in the proximal tibia and the total cell density in the bone marrow in the LV2. High Dose radiation, regardless of prior exposure to priming dose, dramatically reduced total cell density in bone marrow of both the long bone and vertebra. However, in the proximal tibia, High Dose radiation increased the osteoclast-covered bone perimeters, the density of adipocytes in bone marrow, and the area of bone marrow occupied by fat cells -- while in the LV2, adipocytes were rare and not stimulated by High Dose radiation. In an unexpected response, High Dose radiation dramatically increased (10-fold) osteoblast-covered bone perimeter in the LV2.
Matsuura, Takashi; Tokutomi, Kentaro; Sasaki, Michiko; Katafuchi, Michitsuna; Mizumachi, Emiri; Sato, Hironobu
2014-01-01
Bone undergoes constant remodeling throughout life. The cellular and biochemical mechanisms of bone remodeling vary in a region-specific manner. There are a number of notable differences between the mandible and long bones, including developmental origin, osteogenic potential of mesenchymal stem cells, and the rate of bone turnover. Collagen, the most abundant matrix protein in bone, is responsible for determining the relative strength of particular bones. Posttranslational modifications of collagen, such as intermolecular crosslinking and lysine hydroxylation, are the most essential determinants of bone strength, although the amount of collagen is also important. In comparison to long bones, the mandible has greater collagen content, a lower amount of mature crosslinks, and a lower extent of lysine hydroxylation. The great abundance of immature crosslinks in mandibular collagen suggests that there is a lower rate of cross-link maturation. This means that mandibular collagen is relatively immature and thus more readily undergoes degradation and turnover. The greater rate of remodeling in mandibular collagen likely renders more flexibility to the bone and leaves it more suited to constant exercise. As reviewed here, it is important in clinical dentistry to understand the distinctive features of the bones of the jaw.
Tokutomi, Kentaro; Sasaki, Michiko; Katafuchi, Michitsuna; Mizumachi, Emiri; Sato, Hironobu
2014-01-01
Bone undergoes constant remodeling throughout life. The cellular and biochemical mechanisms of bone remodeling vary in a region-specific manner. There are a number of notable differences between the mandible and long bones, including developmental origin, osteogenic potential of mesenchymal stem cells, and the rate of bone turnover. Collagen, the most abundant matrix protein in bone, is responsible for determining the relative strength of particular bones. Posttranslational modifications of collagen, such as intermolecular crosslinking and lysine hydroxylation, are the most essential determinants of bone strength, although the amount of collagen is also important. In comparison to long bones, the mandible has greater collagen content, a lower amount of mature crosslinks, and a lower extent of lysine hydroxylation. The great abundance of immature crosslinks in mandibular collagen suggests that there is a lower rate of cross-link maturation. This means that mandibular collagen is relatively immature and thus more readily undergoes degradation and turnover. The greater rate of remodeling in mandibular collagen likely renders more flexibility to the bone and leaves it more suited to constant exercise. As reviewed here, it is important in clinical dentistry to understand the distinctive features of the bones of the jaw. PMID:24818151
Campos, Raquel Munhoz da Silveira; Masquio, Deborah Cristina Landi; Corgosinho, Flávia Campos; Carvalho-Ferreira, Joana Pereira de; Molin Netto, Bárbara Dal; Clemente, Ana Paula Grotti; Tock, Lian; Tufik, Sergio; Mello, Marco Túlio de; Dâmaso, Ana Raimunda
2018-05-17
Obesity is a multifactorial disease characterized by the presence of the pro-inflammatory state associated with the development of many comorbidities, including bone turnover marker alterations. This study aimed to investigate the role of the inflammatory state on bone turnover markers in obese adolescents undergoing interdisciplinary weight loss treatment for one year. Thirty four post-pubescent obese adolescents with primary obesity, a body mass index (BMI) greater than > 95th percentile of the CDC reference growth charts, participated in the present investigation. Measurements of body composition, bone turnover markers, inflammatory biomarkers and visceral and subcutaneous fat were taken. Adolescents were submitted to one year of interdisciplinary treatment (clinical approach, physical exercise, physiotherapy intervention, nutritional and psychological counseling). Reduction in body mass, body fat mass, visceral and subcutaneous fat, as well as, an increase in the body lean mass and bone mineral content was observed. An improvement in inflammatory markers was seen with an increase in adiponectin, adiponectin/leptin ratio and inteleukin-15. Moreover, a positive correlation between the adiponectin/leptin ratio and osteocalcin was demonstrated. Further, both lean and body fat mass were predictors of osteocalcin. Negative associations between leptin with osteocalcin, adiponectin with Beta CTX-collagen, and visceral fat with adiponectin were observed. It is possible to conclude that the inflammatory state can negatively influence the bone turnover markers in obese adolescents. In addition, the interdisciplinary weight loss treatment improved the inflammatory state and body composition in obese adolescents. Therefore, the present findings should be considered in clinical practice.
Izuora, Kenneth E; Ezeanolue, Echezona E; Neubauer, Michael F; Gewelber, Civon L; Allenback, Gayle L; Shan, Guogen; Umpierrez, Guillermo E
2016-06-01
The underlying mechanisms for increased osteopenia and fracture rates in patients with diabetes are not well understood, but may relate to chronic systemic inflammation. We assessed the effect of treating periodontal disease (POD), a cause of chronic inflammation, on inflammatory and bone turnover markers in patients with diabetes. Using an investigator-administered questionnaire, we screened a cross-section of patients presenting for routine outpatient diabetes care. We recruited 22 subjects with POD. Inflammatory and bone turnover markers were measured at baseline and 3 months following POD treatment (scaling, root planing and subantimicrobial dose doxycycline). There were nonsignificant reductions in high-sensitivity C-reactive protein (6.34-5.52mg/L, P = 0.626) and tumor necrosis factor-alpha (10.37-10.01pg/mL, P = 0.617). There were nonsignificant increases in urinary C-terminal telopeptide (85.50-90.23pg/mL, P = 0.684) and bone-specific alkaline phosphatase (7.45-8.79pg/mL, P = 0.074). Patients with >90% adherence with doxycycline were 6.4 times more likely to experience reduction in tumor necrosis factor-alpha (P = 0.021) and 2.8 times more likely to experience reductions in high-sensitivity C-reactive protein (P = 0.133). Treatment of POD in patients with diabetes resulted in nonsignificant lowering of inflammatory markers and nonsignificant increase in bone turnover markers. However, adherence to doxycycline therapy resulted in better treatment effects. Copyright © 2016 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.
Blood lead levels and bone turnover with weight reduction in women.
Riedt, Claudia S; Buckley, Brian T; Brolin, Robert E; Ambia-Sobhan, Hasina; Rhoads, George G; Shapses, Sue A
2009-01-01
High bone turnover states are known to raise blood lead levels (BPb). Caloric restriction will increase bone turnover, yet it remains unknown if weight reduction increases BPb due to mobilization of skeletal stores. We measured whole blood Pb levels ((206)Pb) by inductively coupled plasma mass spectrometry in 73 women (age 24-75 years; BMI 23- 61 kg/m(2)) before and after 6 months of severe weight loss (S-WL), moderate weight loss (M-WL), or weight maintenance (WM). Baseline BPb levels were relatively low at 0.2-6.0 microg/dl, and directly associated with age (r=0.49, P<0.0001). After severe WL (-37.4+/-9.3 kg, n=17), BPb increased by 2.1+/-3.9 microg/dl (P<0.05), resulting in BPb levels of 1.3-12.5 microg/dl. M-WL (-5.6+/-2.7 kg, n=39) and WM (0.3+/-1.3 kg, n=17) did not result in an increase in BPb levels (0.5+/-3.2 and 0.0+/-0.7 microg/dl, M-WL and WM, respectively). BPb levels increased more with greater WL (r=0.24, P<0.05). Bone turnover markers increased only with severe WL and were directly correlated with WL. At baseline, higher calcium intake was associated with lower BPb (r=-0.273, P<0.02), however, this association was no longer present after 6 months. Severe weight reduction in obese women increases skeletal bone mobilization and BPb, but values remain well below levels defined as Pb overexposure.
Park, Heyjun; Brannon, Patsy M; West, Allyson A; Yan, Jian; Jiang, Xinyin; Perry, Cydne A; Malysheva, Olga; Mehta, Saurabh; Caudill, Marie A
2017-02-01
Vitamin D plays a central role in calcium homeostasis; however, its relationship with bone turnover during pregnancy remains unclear due to a lack of studies that have rigorously controlled for vitamin D and other nutrients known to influence bone metabolism. Similarly, prior investigations of the effect of pregnancy on bone turnover relative to the nonpregnant state may have been confounded by varying intakes of these nutrients. Nested within a controlled intake study, the present investigation sought to quantify associations between maternal vitamin D biomarkers and biochemical markers of bone turnover among pregnant (versus nonpregnant) women and their fetuses under conditions of equivalent and adequate intakes of vitamin D and related nutrients. Changes in markers of bone turnover across the third trimester were also examined. Healthy pregnant (26-29 wk gestation; n=26) and nonpregnant (n=21) women consumed 511IU vitamin D/d, 1.6g calcium/d, and 1.9g phosphorus/d for 10weeks while participating in a controlled feeding study featuring two choline doses. Based on linear mixed models adjusted for influential covariates (e.g., BMI, ethnicity, and season), pregnant women had 50-150% higher (P<0.001) concentrations of bone resorption markers than nonpregnant women. Among pregnant women, increases in maternal 25(OH)D across the study period were associated (P<0.020) with lower osteocalcin and deoxypyridinoline at study-end, and higher fetal osteocalcin. In addition, maternal free 25(OH)D, 1,25(OH) 2 D and 24,25(OH) 2 D tended to be negatively associated (P≤0.063) with maternal NTx at study-end, and maternal free 25(OH)D and 24,25(OH) 2 D were positively associated (P≤0.021) with fetal CTx. Similarly, maternal 3-epi-25(OH)D 3 was negatively related (P≤0.037) to maternal NTx and deoxypyridinoline at study-end. These declines in bone resorption markers resulting from higher vitamin D biomarker concentrations among pregnant women coincided with increases in their albumin-corrected serum calcium concentrations, indicating that calcium transfer to the fetus was uncompromised. Notably, none of these associations achieved statistical significance among nonpregnant women. Overall, our study findings suggest that achieving higher maternal concentrations of vitamin D biomarkers might attenuate third-trimester bone resorption while ensuring sufficient calcium delivery to the fetus. Copyright © 2016 Elsevier Inc. All rights reserved.
Aziz, Najib; Butch, Anthony W; Quint, Joshua J; Detels, Roger
2015-01-01
Objective To evaluate the association of bone turnover biomarkers with blood levels of alkaline phosphatase (ALP), bone-specific alkaline phosphatase (BAP), osteocalcin (OC), tartrate-resistant acid phosphatase (TRAP), parathyroid hormone (PTH), and other blood markers in HIV-1 infected men receiving anti-retroviral therapy (ART). Advances in the treatment of HIV-1 infection have extended the life span of HIV-1 infected individuals. However, these advances may come at the price of metabolic side effects and bone disorders, including premature osteopenia, osteoporosis and osteonecrosis. Methods Analyses of Ostase BAP, osteocalcin, and TRAP in blood were measured in three groups of MACS participants: 35 HIV-1 infected men on ART (A); 35 HIV-1- infected men not on ART (B); and 34 HIV-1 uninfected men (C). Results The mean and standard deviation results for groups A, B, and C were 19.7 ± 6.56, 17.2 ± 3.96, and 16.9 ± 5.78 for ostase BAP; 7.9 ± 9.53, 8.5 ± 8.30, and 5.5 ± 1.65 for osteocalcin; and 3.9 ± 1.04, 3.1 ± 0.81, and 2.5 ± 0.59 for TRAP, respectively. Simple and multivariate analyses showed significant differences in mean TRAP and BAP concentrations between the three groups. In addition strong correlations between blood levels of Ostase BAP and TRAP (r=0.570, p=0.0004), and between blood levels of Ostase BAP and PTH (r=0.436, P=0.0098) for HIV-1 infected men on ART were observed. Conclusion New strategies for measurement of blood and urine biochemical markers of bone formation and resorption during bone turnover can be useful for clinical monitoring of treatment of HIV-1 infected patients. Recently developed methods for measuring serum levels of TRAP and Ostase BAP represent superior laboratory tools for assessing the hyperactivity of osteoclasts, osteoblasts and bone loss in HIV-1 infected individuals receiving ART. Measurements of TRAP and BAP as bone turnover biomarkers are economical and are important for monitoring bone metabolism during ART and the need for osteoporosis treatment. PMID:25705563
USDA-ARS?s Scientific Manuscript database
Ovariectomy (OVX)-induced bone loss has been linked to increased bone turnover and higher bone matrix collagen degradation as the result of osteoclast activation. However, the role of degraded collagen matrix in the fate of resident bone-forming cells is unclear. In this report, we show that OVX-i...
Szulc, P; Naylor, K; Hoyle, N R; Eastell, R; Leary, E T
2017-09-01
The National Bone Health Alliance (NBHA) recommends standardized sample handling and patient preparation for C-terminal telopeptide of type I collagen (CTX-I) and N-terminal propeptide of type I procollagen (PINP) measurements to reduce pre-analytical variability. Controllable and uncontrollable patient-related factors are reviewed to facilitate interpretation and minimize pre-analytical variability. The IOF and the International Federation of Clinical Chemistry (IFCC) Bone Marker Standards Working Group have identified PINP and CTX-I in blood to be the reference markers of bone turnover for the fracture risk prediction and monitoring of osteoporosis treatment. Although used in clinical research for many years, bone turnover markers (BTM) have not been widely adopted in clinical practice primarily due to their poor within-subject and between-lab reproducibility. The NBHA Bone Turnover Marker Project team aim to reduce pre-analytical variability of CTX-I and PINP measurements through standardized sample handling and patient preparation. Recommendations for sample handling and patient preparations were made based on review of available publications and pragmatic considerations to reduce pre-analytical variability. Controllable and un-controllable patient-related factors were reviewed to facilitate interpretation and sample collection. Samples for CTX-I must be collected consistently in the morning hours in the fasted state. EDTA plasma is preferred for CTX-I for its greater sample stability. Sample collection conditions for PINP are less critical as PINP has minimal circadian variability and is not affected by food intake. Sample stability limits should be observed. The uncontrollable aspects (age, sex, pregnancy, immobility, recent fracture, co-morbidities, anti-osteoporotic drugs, other medications) should be considered in BTM interpretation. Adopting standardized sample handling and patient preparation procedures will significantly reduce controllable pre-analytical variability. The successful adoption of such recommendations necessitates the close collaboration of various stakeholders at the global stage, including the laboratories, the medical community, the reagent manufacturers and the regulatory agencies.
Zhang, Zhi-Guo; Chen, Yan-Jing; Xiang, Li-Hua; Pan, Jing-Hua; Wang, Zhen; Xiao, Gary Guishan; Ju, Da-Hong
2017-11-01
The aim of the present study was to assess the effectiveness of Rhizoma Dioscoreae extract (RDE) on preventing rat alveolar bone loss induced by ovariectomy (OVX), and to determine the role of interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) signaling pathway in this effect. Female Wistar rats were subjected to OVX or sham surgery. The rats that had undergone OVX were treated with RDE (RDE group), vehicle (OVX group) or 17β-estradiol subcutaneous injection (E2 group). Subsequently, bone metabolic activity was assessed by analyzing 3-D alveolar bone construction, bone mineral density, as well as the plasma biomarkers of bone turnover. The gene expression of alveolar bone in the OVX and RDE groups was evaluated by IL-6/STAT3 signaling pathway polymerase chain reaction (PCR) arrays, and differentially expressed genes were determined through reverse transcription-quantitative PCR. The inhibitory effect of RDE on alveolar bone loss in the OVX group was demonstrated in the study. In comparison with the OVX group, the RDE group exhibited 19 downregulated genes and 1 upregulated gene associated with the IL-6/STAT3 signaling pathway in alveolar bone. Thus, RDE was shown to relieve OVX-induced alveolar bone loss in rats, an effect which was likely associated with decreased abnormal bone remodeling via regulation of the IL-6/STAT3 signaling pathway.
Feichtinger, Xaver; Muschitz, Christian; Heimel, Patrick; Baierl, Andreas; Fahrleitner-Pammer, Astrid; Redl, Heinz; Resch, Heinrich; Geiger, Elisabeth; Skalicky, Susanna; Dormann, Rainer; Plachel, Fabian; Pietschmann, Peter; Grillari, Johannes; Hackl, Matthias; Kocijan, Roland
2018-03-20
The assessment of bone quality and the prediction of fracture risk in idiopathic osteoporosis (IOP) are complex prospects as bone mineral density (BMD) and bone turnover markers (BTM) do not indicate fracture-risk. MicroRNAs (miRNAs) are promising new biomarkers for bone diseases, but the current understanding of the biological information contained in the variability of miRNAs is limited. Here, we investigated the association between serum-levels of 19 miRNA biomarkers of idiopathic osteoporosis to bone microstructure and bone histomorphometry based upon bone biopsies and µCT (9.3 μm) scans from 36 patients. Four miRNAs were found to be correlated to bone microarchitecture and seven miRNAs to dynamic histomorphometry (p < 0.05). Three miRNAs, namely, miR-29b-3p, miR-324-3p, and miR-550a-3p showed significant correlations to histomorphometric parameters of bone formation as well as microstructure parameters. miR-29b-3p and miR-324-p were found to be reduced in patients undergoing anti-resorptive therapy. This is the first study to report that serum levels of bone-related miRNAs might be surrogates of dynamic histomorphometry and potentially reveal changes in bone microstructure. Although these findings enhance the potential value of circulating miRNAs as bone biomarkers, further experimental studies are required to qualify the clinical utility of miRNAs to reflect dynamic changes in bone formation and microstructure.
Zoledronic acid: a review of its use in the treatment of osteoporosis.
Deeks, Emma D; Perry, Caroline M
2008-01-01
Zoledronic acid (Aclasta; Reclast), a third-generation nitrogen-containing bisphosphonate, is the first once-yearly treatment to have been approved for use in patients with postmenopausal osteoporosis or at high risk of fracture. Intravenous zoledronic acid 5 mg once yearly is effective in reducing the risk of several types of fracture in patients with postmenopausal osteoporosis or recent low-trauma hip fracture. Moreover, improvements in bone mineral density (BMD) and reductions in markers of bone turnover are also generally observed. Zoledronic acid is generally well tolerated. Additional comparative data are required to definitively position zoledronic acid with respect to other agents. In the meantime, intravenous zoledronic acid 5 mg once yearly is a convenient and effective treatment option that may have an advantage over some other agents, for which adherence to treatment regimens is a recognized problem.
Travison, T G; Chiu, G R; McKinlay, J B; Araujo, A B
2011-10-01
The relative importance of various contributors to racial/ethnic variation in BMC/BMD is not established. Using population-based data, we determined that body composition differences (specifically skeletal muscle and fat mass) are among the strongest contributors to these variations. Racial/ethnic variation in fracture risk is well documented, but the mechanisms by which such heterogeneity arises are poorly understood. We analyzed data from black, Hispanic, and white men enrolled in the Boston Area Community Health/Bone (BACH/Bone) Survey to determine the contributions of risk factors to racial/ethnic differences in bone mineral content (BMC) and density (BMD). In a population-based study, BMC, BMD, and body composition were ascertained by DXA. Socioeconomic status, health history, and dietary intake were obtained via interview. Hormones and markers of bone turnover were obtained from non-fasting blood samples. Multivariate analyses measured percentage reductions in estimated racial/ethnic differences in BMC/BMD, accompanying the successive removal of covariates from linear regression models. Black men demonstrated greater BMC than their Hispanic and white counterparts. At the femoral neck, adjustment for covariables was sufficient to reduce these differences by 46% and 35%, respectively. While absolute differences in BMC were smaller at the distal radius than femoral neck, the proportionate reductions in racial/ethnic differences after covariable adjustment were comparable or greater. Multivariate models provided evidence that lean and fat mass, serum 25(OH)D, osteocalcin, estradiol, and aspects of socioeconomic status influence the magnitude of racial/ethnic differences in BMC, with lean and fat mass providing the strongest effects. Results for BMD were similar, but typically of lesser magnitude and statistical significance. These cross-sectional analyses demonstrate that much of the racial/ethnic heterogeneity in measures of bone mass and density can be accounted for through variation in body composition, diet, and socio-demographic factors.
Thorup, Anne Cathrine; Lambert, Max Norman; Kahr, Henriette Strøm; Bjerre, Mette; Jeppesen, Per Bendix
2015-01-01
Objective. To investigate the effect by which daily consumption of a novel red clover (RC) extract influences bone health, inflammatory status, and cardiovascular health in healthy menopausal women. Design. A 12-week randomized, double-blinded, placebo-controlled trial involving 60 menopausal women receiving a daily dose of 150 mL RC extract containing 37.1 mg isoflavones (33.8 mg as aglycones) or placebo. Methods. Bone parameters were changes in bone mineral density (BMD), bone mineral content (BMC), and T-score at the lumbar spine and femoral neck. Bone turnover (CTx) and inflammatory markers were measured in plasma and finally blood pressure (BP) was evaluated. Results. RC extract had positive effect on bone health, and only the women receiving the placebo experienced a decline in BMD (p < 0.01) at the lumbar spine. T-score at the lumbar spine only decreased in the placebo group (p < 0.01). CTx decreased in the RC group with −9.94 (±4.93)%, although not significant. Conclusion. Daily consumption of RC extract over a 12-week period was found to have a beneficial effect on bone health in menopausal women based on BMD and T-score at the lumbar spine and plasma CTx levels. No changes in BP or inflammation markers were found and no side effects were observed. PMID:26265926
Ma, Xinlong; Lv, Jianwei; Sun, Xiaolei; Ma, Jianxiong; Xing, Guosheng; Wang, Ying; Sun, Lei; Wang, Jianbao; Li, Fengbo; Li, Yanjun; Zhao, Zhihu
2016-04-25
Naringin maintains bone mass in various osteoporosis models, while its effect on bone in disuse osteoporosis has not been reported. The present study explores whether naringin can prevent disuse osteoporosis induced by unilateral sciatic neurectomy (USN) and whether the Semaphorin 3A-induced Wnt/β-catenin signalling pathway is involved in the osteoprotection of naringin. Naringin dose-dependently prevented the deterioration of bone mineral density (BMD), trabecular structure and biomechanical strength in femur due to USN. Naringin increased bone formation but inhibited resorption, as indicated by bone-turnover markers in blood and urine and the histological staining of Osteocalcin (OCN) and tartrate-resistant acid phosphatase (TRAP) in femur. Semaphorin 3A (Sema3A) and active β-catenin protein decreased after USN and could be restored by naringin to the levels of the sham-operated rats. In addition, naringin in vitro promoted the differentiation of osteoblasts and inhibited osteoclastic differentiation. Our studies suggest that the down-regulation of Sema3A and the subsequent inactivation of Wnt/β-catenin signalling may be some of the mechanisms involved in USN-induced osteoporosis. Naringin could increase the expression of Sema3A and the activation of Wnt/β-catenin signalling to prevent disuse osteoporosis induced by denervation. Thus, naringin functions in bone maintenance and could be a promising therapeutic alternative in preventing disuse osteoporosis.
Ma, Xinlong; Lv, Jianwei; Sun, Xiaolei; Ma, Jianxiong; Xing, Guosheng; Wang, Ying; Sun, Lei; Wang, Jianbao; Li, Fengbo; Li, Yanjun; Zhao, Zhihu
2016-01-01
Naringin maintains bone mass in various osteoporosis models, while its effect on bone in disuse osteoporosis has not been reported. The present study explores whether naringin can prevent disuse osteoporosis induced by unilateral sciatic neurectomy (USN) and whether the Semaphorin 3A-induced Wnt/β-catenin signalling pathway is involved in the osteoprotection of naringin. Naringin dose-dependently prevented the deterioration of bone mineral density (BMD), trabecular structure and biomechanical strength in femur due to USN. Naringin increased bone formation but inhibited resorption, as indicated by bone-turnover markers in blood and urine and the histological staining of Osteocalcin (OCN) and tartrate-resistant acid phosphatase (TRAP) in femur. Semaphorin 3A (Sema3A) and active β-catenin protein decreased after USN and could be restored by naringin to the levels of the sham-operated rats. In addition, naringin in vitro promoted the differentiation of osteoblasts and inhibited osteoclastic differentiation. Our studies suggest that the down-regulation of Sema3A and the subsequent inactivation of Wnt/β-catenin signalling may be some of the mechanisms involved in USN-induced osteoporosis. Naringin could increase the expression of Sema3A and the activation of Wnt/β-catenin signalling to prevent disuse osteoporosis induced by denervation. Thus, naringin functions in bone maintenance and could be a promising therapeutic alternative in preventing disuse osteoporosis. PMID:27109829
Effects of dietary bread crust Maillard reaction products on calcium and bone metabolism in rats.
Roncero-Ramos, Irene; Delgado-Andrade, Cristina; Haro, Ana; Ruiz-Roca, Beatriz; Morales, Francisco J; Navarro, María Pilar
2013-06-01
Maillard reaction products (MRP) consumption has been related with the development of bone degenerative disorders, probably linked to changes in calcium metabolism. We aimed to investigate the effects of MRP intake from bread crust on calcium balance and its distribution, and bone metabolism. During 88 days, rats were fed control diet or diets containing bread crust as source of MRP, or its soluble high molecular weight, soluble low molecular weight or insoluble fractions (bread crust, HMW, LMW and insoluble diets, respectively). In the final week, a calcium balance was performed, then animals were sacrified and some organs removed to analyse calcium levels. A second balance was carried out throughout the experimental period to calculate global calcium retention. Biochemical parameters and bone metabolism markers were measured in serum or urine. Global calcium bioavailability was unmodified by consumption of bread crust or its isolate fractions, corroborating the previously described low affinity of MRP to bind calcium. Despite this, a higher calcium concentration was found in femur due to smaller bones having a lower relative density. The isolate consumption of the fractions altered some bone markers, reflecting a situation of increased bone resorption or higher turnover; this did not take place in the animals fed the bread crust diet. Thus, the bread crust intake does not affect negatively calcium bioavailability and bone metabolism.
Kit W-sh Mutation Prevents Cancellous Bone Loss during Calcium Deprivation.
Lotinun, Sutada; Suwanwela, Jaijam; Poolthong, Suchit; Baron, Roland
2018-01-01
Calcium is essential for normal bone growth and development. Inadequate calcium intake increases the risk of osteoporosis and fractures. Kit ligand/c-Kit signaling plays an important role in regulating bone homeostasis. Mice with c-Kit mutations are osteopenic. The present study aimed to investigate whether impairment of or reduction in c-Kit signaling affects bone turnover during calcium deprivation. Three-week-old male WBB6F1/J-Kit W /Kit W-v /J (W/W v ) mice with c-Kit point mutation, Kit W-sh /HNihrJaeBsmJ (W sh /W sh ) mice with an inversion mutation in the regulatory elements upstream of the c-Kit promoter region, and their wild-type controls (WT) were fed either a normal (0.6% calcium) or a low calcium diet (0.02% calcium) for 3 weeks. μCT analysis indicated that both mutants fed normal calcium diet had significantly decreased cortical thickness and cancellous bone volume compared to WT. The low calcium diet resulted in a comparable reduction in cortical bone volume and cortical thickness in the W/W v and W sh /W sh mice, and their corresponding controls. As expected, the low calcium diet induced cancellous bone loss in the W/W v mice. In contrast, W sh /W sh cancellous bone did not respond to this diet. This c-Kit mutation prevented cancellous bone loss by antagonizing the low calcium diet-induced increase in osteoblast and osteoclast numbers in the W sh /W sh mice. Gene expression profiling showed that calcium deficiency increased Osx, Ocn, Alp, type I collagen, c-Fms, M-CSF, and RANKL/OPG mRNA expression in controls; however, the W sh mutation suppressed these effects. Our findings indicate that although calcium restriction increased bone turnover, leading to osteopenia, the decreased c-Kit expression levels in the W sh /W sh mice prevented the low calcium diet-induced increase in cancellous bone turnover and bone loss but not the cortical bone loss.
Pueraria mirifica alleviates cortical bone loss in naturally menopausal monkeys.
Kittivanichkul, Donlaporn; Charoenphandhu, Narattaphol; Khemawoot, Phisit; Malaivijitnond, Suchinda
2016-11-01
Since the in vitro and in vivo anti-osteoporotic effects of Pueraria mirifica (PM) in rodents have been verified, its activity in menopausal monkeys was evaluated as required before it can be applicable for human use. In this study, postmenopausal osteoporotic monkeys were divided into two groups (five per group), and fed daily with standard diet alone (PMP0 group) or diet mixed with 1000 mg/kg body weight (BW) of PM powder (PMP1000 group) for 16 months. Every 2 months, the bone mineral density (BMD), bone mineral content (BMC) and bone geometry parameters (cortical area and thickness and periosteal and endosteal circumference) at the distal radius and proximal tibia were determined using peripheral quantitative computed tomography together with plasma and urinary bone markers. Compared with the baseline (month 0) values, the cortical, but not trabecular, BMDs and BMCs and the cortical area and thickness at the metaphysis and diaphysis of the radius and tibia of the PMP0 group continuously decreased during the 16-month study period. In contrast, PMP1000 treatment ameliorated the bone loss mainly at the cortical diaphysis by decreasing bone turnover, as indicated by the lowered plasma bone-specific alkaline phosphatase and osteocalcin levels. Generally, changes in the cortical bone geometry were in the opposite direction to the cortical bone mass after PMP1000 treatment. This study indicated that postmenopausal monkeys continuously lose their cortical bone compartment, and they have a higher possibility for long bone fractures. Oral PMP treatment could improve both the bone quantity (BMC and BMD) and quality (bone geometry). © 2016 Society for Endocrinology.
Toussaint, Nigel D; Elder, Grahame J; Kerr, Peter G
2009-01-01
Cardiovascular disease is highly prevalent in chronic kidney disease (CKD) and is often associated with increased vascular stiffness and calcification. Recent studies have suggested a complex interaction between vascular calcification and abnormalities of bone and mineral metabolism, with an inverse relationship between arterial calcification and bone mineral density (BMD). Although osteoporosis is recognized and treated in CKD 1 to 3, the interpretation of BMD levels in the osteoporotic range is controversial in CKD 4, 5, and 5D when renal osteodystrophy is generally present. In addition, there is a paucity of data for patients with CKD mineral and bone disorder (MBD), because studies using bisphosphonates in postmenopausal and glucocorticoid-induced osteoporosis have generally excluded patients with significant CKD. For these patients, treatment of low BMD using standard therapies for osteoporosis is not without potential for harm due to the possibility of worsening low bone turnover, osteomalacia, mixed uraemic osteodystrophy, and of exacerbated hyperparathyroidism; and bisphosphonates should only be used selectively and with caution. Some experimental and clinical studies have also suggested that bisphosphonates may reduce progression of extra-osseous calcification and inhibit the development of atherosclerosis. The authors review the potential benefits and risks associated with bisphosphonate use for bone protection in CKD, and assess their effect on vascular calcification and atherosclerosis.
Kiel, Douglas P.; Hannan, Marian T.; Barton, Bruce A.; Bouxsein, Mary L.; Lang, Thomas. F.; Brown, Kathleen M.; Shane, Elizabeth; Magaziner, Jay; Zimmerman, Sheryl; Rubin, Clinton T.
2011-01-01
Background Osteoporosis is a common complication of aging. Alternatives to pharmacologic treatment are needed for older adults. Non-pharmacologic treatment with low magnitude, high frequency mechanical stimulation has been shown to prevent bone loss in animal and human studies. Methods The VIBES (Vibration to Improve Bone Density in Elderly Subjects) study is a randomized, double-blind, sham-controlled trial of the efficacy of low magnitude, high frequency mechanical stimulation in 200 men and women aged 60 years and older with bone mineral density T-scores by dual-x-ray absorptiometry between –1 and –2.5 at entry. Participants are healthy, cognitively intact residents of independent living communities in the Boston area who receive free calcium and Vitamin D supplements. They are randomly assigned to active or sham treatment and stand on their assigned platform once daily for 10 minutes. All platforms have adherence data collection software downloadable to a laptop computer. Adverse events are closely monitored. 174 participants were randomized and will be followed for two years. Almost all active subjects have attained one year of follow-up. Bone mineral density is measured by both dual x-ray absorptiometry and quantitative computed tomography at baseline and annually. The main analysis will compare mean changes from baseline in volumetric bone density by quantitative computed tomography in active and sham groups. Adherence and treatment effect magnitude will also be evaluated. Secondary analyses will compare changes in three biochemical markers of bone turnover as well as longitudinal comparisons of muscle and balance endpoints. Results The VIBES trial has completed its first year of data collection and encountered multiple challenges leading to valuable lessons learned about the areas of recruitment from independent living communities, deployment of multi-user mechanical devices using radio frequency identification cards and electronic adherence monitoring, organization of transportation for imaging at a central site, and the expansion of study aims to include additional musculoskeletal outcomes. Conclusions These lessons will guide future investigations in studies of individuals of advanced age. PMID:20571129
Multiple melanocortin receptors are expressed in bone cells
NASA Technical Reports Server (NTRS)
Zhong, Qing; Sridhar, Supriya; Ruan, Ling; Ding, Ke-Hong; Xie, Ding; Insogna, Karl; Kang, Baolin; Xu, Jianrui; Bollag, Roni J.; Isales, Carlos M.
2005-01-01
Melanocortin receptors belong to the seven transmembrane domain, G-protein coupled family of receptors. There are five members of this receptor family labeled MC1R-MC5R. These receptors are activated by fragments derived from a larger molecule, proopiomelanocortin (POMC) and include ACTH, alpha beta and gamma-MSH and beta-endorphin. Because of in vitro and in vivo data suggesting direct effects of these POMC molecules on bone and bone turnover, we examined bone and bone derived cells for the presence of the various members of the melanocortin receptor family. We report that the five known melanocortin receptors are expressed to varying degrees in osteoblast-like and osteoclastic cells. POMC fragments increased proliferation and expression of a variety of genes in osteoblastic cells. Furthermore, POMC mRNA was detected in osteoclastic cells. These data demonstrate that POMC-derived peptide hormones acting through high affinity melanocortin receptors have specific effects on bone cells. Thus, in addition to the indirect effects of POMC-derived hormones on bone turnover through their modulation of steroid hormone secretion, POMC fragments may have direct and specific effects on bone cell subpopulations.
Bergmann, P; Body, J-J; Boonen, S; Boutsen, Y; Devogelaer, J-P; Goemaere, S; Kaufman, J-M; Reginster, J-Y; Gangji, V
2009-01-01
Objectives: To review the clinical value of bone turnover markers (BTM), to initiate and/or monitor anti-resorptive treatment for osteoporosis compared with bone mineral density (BMD) and to evaluate suitable BTM and changes in BTM levels for significance of treatment efficiency. Methodology: Consensus meeting generating guidelines for clinical practice after review and discussion of the randomised controlled trials or meta-analyses on the management of osteoporosis in postmenopausal women. Results: Although the correlation between BMD and BTM is statistically significant, BTM cannot be used as predictive markers of BMD in an individual patient. Both are independent predictors of fracture risk, but BTM can only be used as an additional risk factor in the decision to treat. Current data do not support the use of BTM to select the optimal treatment. However, they can be used to monitor treatment efficiency before BMD changes can be evaluated. Early changes in BTM can be used to measure the clinical efficacy of an anti-resorptive treatment and to reinforce patient compliance. Discussion: Determining a threshold of BTM reflecting an optimal long-term effect is not obvious. The objective should be the return to the premenopausal range and/or a decrease at least equal to the least significant change (30%). Preanalytical and analytical variability of BTM is an important limitation to their use. Serum C-terminal cross-linked telopeptide of type I collagen (CTX), procollagen 1 N terminal extension peptide and bone specific alkaline phosphatase (BSALP) appear to be the most suitable. Conclusion: Consensus regarding the use of BTM resulted in guidelines for clinical practice. BMD determines the indication to treat osteoporosis. BTM reflect treatment efficiency and can be used to motivate patients to persist with their medication. PMID:19125989
Implications of diminished ovarian reserve (DOR) extend well beyond reproductive concerns.
Pal, Lubna; Bevilacqua, Kris; Zeitlian, Gohar; Shu, Jun; Santoro, Nanette
2008-01-01
To investigate whether a diagnosis of diminished ovarian reserve (DOR) in premenopausal years has adverse implications for skeletal health and quality of life. This was a cross-sectional study of infertile, albeit healthy, mid-reproductive-age women (younger than 42 y) attending an academic infertility practice. Eighty-nine women with varying causes of infertility were prospectively enrolled. Serum (cycle d 1-3) was collected for markers of ovarian reserve, bone metabolism, testosterone, and free androgen index. Bone mineral density (BMD) was assessed and categorized as low if the Z score was less than -1.0). Infertile women with DOR (n = 28) demonstrated significantly higher serum follicle-stimulating hormone levels (P < 0.001), lower müllerian-inhibiting substance (MIS) levels (P < 0.001), smaller ovarian dimensions (P < 0.05), lower testosterone levels (P = 0.035), lower free androgen index (P = 0.019), and enhanced bone metabolism (P = 0.003); although the prevalence of low BMD was higher in women with DOR who were younger than 41, this relationship was not of statistical significance (P = 0.106). Women younger than 41 years of age with DOR were significantly more likely to manifest disturbed sleep (P = 0.049) and acknowledge dissatisfaction with sexual intimacy (P = 0.004) compared with those with infertility and normal ovarian reserve. After adjustment for potential confounders, a diagnosis of DOR was significantly associated with low BMD, increased bone turnover, sexual dissatisfaction, and disturbed sleep. Our data suggest that DOR unmasked in the context of infertility evaluation has adverse implications for a woman's well-being that extend well beyond the thus far appreciated reproductive concerns. A decline in ovarian hormones, specifically estrogen and testosterone, concomitant with DOR may be hypothesized as a mechanism that can explain the observed multisystem ramifications of DOR including increased bone turnover, low BMD, sexual distress, and disturbed sleep.
Weighted Vest Use during Dietary Weight Loss on Bone Health in Older Adults with Obesity.
Kelleher, Jessica L; Beavers, Daniel P; Henderson, Rebecca M; Yow, Dixie; Crotts, Charlotte; Kiel, Jessica; Nicklas, Barbara J; Beavers, Kristen M
2017-01-01
To examine the effects of daily weighted vest use during a dietary weight loss intervention, on (a) hip and spine bone mineral density (aBMD), and (b) biomarkers of bone turnover, in older adults with obesity. 37 older (70.1 ± 3.0 years) adults with obesity (BMI=35.3 ± 2.9) underwent a 22 week dietary weight loss intervention (1100-1300 kcal/day) with (Diet+Vest; n=20) or without (Diet; n=17) weighted vest use (goal: 10+ h/day; weight added incrementally based on amount of weight lost). Total body weight; DXA-acquired aBMD of the total hip, femoral neck and lumbar spine; and biomarkers of bone turnover (OC, BALP, P1NP, CTX) were measured at baseline and follow up. General linear models, adjusted for baseline values of the outcome and gender, were used to examine intervention effects. Average weight loss was significant in both groups (-11.2 ± 4.4 kg and -11.0 ± 6.3 kg, Diet+Vest and Diet groups, respectively), with no difference between groups (p=0.91). Average weighted vest use was 6.7 ± 2.2 h/day. No significant changes in aBMD or biomarkers were observed, although trends were noted for total hip aBMD and BALP. Loss in total hip aBMD was greater in the Diet group compared with Diet+Vest (Δ: -18.7 [29.3, -8.1] mg/cm 2 versus -6.1 [-15.7, 3.5] mg/cm 2 ; p=0.08). BALP increased in the Diet+Vest group by 3.8% (Δ: 0.59 [-0.33, 1.50] μg/L) and decreased by -4.6% in the Diet group (Δ: -0.70 [-1.70, 0.31] μg/L, p=0.07). Weighted vest use during weight loss may attenuate loss of hip aBMD and increase bone formation in older adults with obesity. Further study is warranted.
Lee, Sang Gil; Kim, Bohkyung; Soung, Do Yu; Vance, Terrence; Lee, Jong Suk; Lee, Ji-Young; Koo, Sung I; Kim, Dae-Ok; Drissi, Hicham; Chun, Ock K
2015-04-01
Berry consumption can prevent bone loss. However, the effects of different berries with distinct anthocyanin composition have not been thoroughly examined. The present study compared the effects of blueberry, blackberry, and black currant on bone health using a mouse model of diet-induced obesity. To investigate the effect of different berry supplements against a high-fat (HF) diet in vivo, 40 HF diet-induced obese (DIO) C57BL mice were assigned into four groups and fed a HF diet (35% w/w) with or without berry supplementation for 12 weeks (n=10). We measured adipose tissue mass (epididymal and retroperitoneal), plasma antioxidant, bone-related biomarkers, femur bone mineral density (BMD), and bone mineral content (proximal and distal). Adipose masses were negatively correlated with proximal BMD, but positively associated with plasma superoxide dismutase (SOD) concentrations (P<.001). Berry supplementation did not change the plasma ferric reducing antioxidant power, SOD, and insulin-like growth factor-1. However, the black currant group exhibited greater plasma alkaline phosphatase compared with the control group (P<.05). BMD in the distal epiphysis was significantly different between the blueberry and blackberry group (P<.05). However, berry supplementation did not affect bone mass compared with control. The present study demonstrates a negative relationship between fat mass and bone mass. In addition, our findings suggest that the anthocyanin composition of berries will affect bone turnover, warranting further research to investigate the underlying mechanisms.
Ryan, B M; Russel, M G V M; Schurgers, L; Wichers, M; Sijbrandij, J; Stockbrugger, R W; Schoon, E
2004-10-15
Patients with Crohn's disease are at increased risk of osteoporosis. Disease activity and circulating proinflammatory cytokines are thought to play a role in this process. Infliximab, a chimaeric antitumour necrosis factor-alpha antibody is effective in the treatment of Crohn's disease. The aim of this study was to investigate the impact of treatment with infliximab on bone turnover in Crohn's disease patients. This was a prospective trial. Twenty-four patients with active Crohn's disease were treated with infliximab (5 mg/kg). Bone markers were assayed pre- and post-treatment. Bone formation was measured using serum bone-specific alkaline phosphatase and total osteocalcin and bone resorption using serum N-telopeptide cross-linked type 1 collagen. Infliximab therapy caused a significant increase in both markers of bone formation in patients with active Crohn's disease. No significant change in the bone resorption marker serum N-telopeptide cross-linked type 1 was found. Infliximab therapy had a significant beneficial effect on bone metabolism in patients with active Crohn's disease. These findings further support the theory that active ongoing inflammation and high levels of circulating cytokines play a pivotal role in the pathogenesis of bone loss in patients with Crohn's disease.
Nuti, R; Vattimo, A; Turchetti, V; Righi, G
1984-10-01
The present study was performed in 30 patients who needed steroid therapy: courses of triamcinolone or DTM 8-15 given orally lasted 30 days. In 15 of these patients glucoactive corticosteroids were administered in combination with 5 micrograms/day of 25OH-vitamin D3 (25OHD3). 47Calcium oral test and 99mTc-MDP kinetics, as an index of bone turnover, were performed at the beginning of the therapy and after 30 days. At the end of treatment a significant improvement of intestinal radiocalcium transport together with a decrease in bone turnover in the group of patients treated with 25OHD3 was observed. As it concerns plasma calcium level, inorganic phosphate, the urinary excretion of calcium, phosphate and hydroxyproline no significant difference between the two groups examined were noticed. These results indicate that the adverse effects of glucoactive corticosteroids on intestinal calcium transport and bone turnover may be counteracted by the combined administration of physiological doses of 25OHD3.
Kress, B C; Mizrahi, I A; Armour, K W; Marcus, R; Emkey, R D; Santora, A C
1999-07-01
Biochemical bone markers are sensitive to the changes in bone turnover that result from treatment of postmenopausal osteoporotic women with antiresorptive therapies. Although information is available on the use of bone markers in monitoring therapy in groups of subjects, less is known regarding how these markers perform in individual patients. Serum bone alkaline phosphatase (bone ALP) concentrations, measured with the Tandem(R) Ostase(R) assay, were used to monitor the biochemical response of bone in postmenopausal women with osteoporosis receiving either 10 mg/day alendronate therapy (n = 74) or calcium supplementation (n = 148) for 24 months. Bone ALP decreased significantly from baseline at 3 months (P =0.0001), reaching a nadir between 3 and 6 months of alendronate therapy. The magnitude of the bone ALP decrease in the treated osteoporotic population was consistent with normalization to premenopausal concentrations. Of the 74 alendronate-treated subjects, 63 (85.1%) demonstrated a decrease from baseline in bone ALP by 6 months that exceeded the least significant change of 25%. The bone ALP decrease from baseline exceeded 25% in 72 (97%) by the end of the study. The bone ALP assay is a sensitive and reliable tool that may be used to monitor the reduction in bone turnover after alendronate therapy in individual postmenopausal osteoporotic women.
Bone Loss During Spaceflight: Available Models and Counter-Measures
NASA Technical Reports Server (NTRS)
Morris, Jonathan; Bach, David; Geller, David
2015-01-01
There is ongoing concern for human health during spaceflights. Of particular interest is the uncoupling of bone remodeling and its resultant effect on calcium metabolism and bone loss. The calculated average loss of bone mineral density (BMD) is approximately 1-1.5% per month of spaceflight. The effect of decreased BMD on associated fractures in astronauts is not known. Currently on the International Space Station (ISS), bone loss is managed through dietary supplements and modifications and resistance exercise regimen. As the duration of space flights increases, a review of the current methods available for the prevention of bone loss is warranted. The goal of this project is to review and summarize recent studies that have focused on maintaining BMD during exposure to microgravity. Interventions were divided into physical (Table 1), nutritional (Table 2), or pharmacologic (Table 3) categories. Physical modalities included resistance exercise, low level vibration, and low intensity pulsed ultrasound. Nutritional interventions included altering protein, salt, and fat intake; and vitamin D supplementation. Pharmacologic interventions included the use of bisphosphonates and beta blockers. Studies reported outcomes based on bone density determined by DXA bone scan, micro-architecture of histology and microCT, and serum and urine markers of bone turnover. The ground analog models utilized to approximate osseous physiology in microgravity included human patients previously paralyzed or subjects confined to bedrest. Ground analog animal models include paralysis, immobilization and ovariectomies. As a result of the extensive research performed there is a multi-modality approach available for the management of BMD during spaceflight that includes resistance training, nutrition and dietary supplements. However, there is a paucity of literature describing a formalized tiered protocol to guide investigators through the progression from animal models to human patient ground analogs to experiments on the ISS. With regards to testing, further evaluation to determine the association between non-invasive tests and fracture during and after spaceflight needs to be performed.
Shah, Krupa; Armamento-Villareal, Reina; Parimi, Nehu; Chode, Suresh; Sinacore, David R.; Hilton, Tiffany N.; Napoli, Nicola; Qualls, Clifford; Villareal, Dennis T.
2011-01-01
Weight-loss therapy to improve health in obese older adults is controversial because it causes further bone loss. Therefore, it is recommended that weight-loss therapy should include an intervention to minimize bone loss such as exercise training (ET). The purpose of this study was to determine the independent and combined effects of weight loss and ET on bone metabolism in relation to bone mineral density (BMD) in obese older adults. One-hundred-seven older (age >65 yrs) obese (BMI ≥30 kg/m2) adults were randomly assigned to a control group, diet group, exercise group, and diet-exercise group for 1 year. Body weight decreased in the diet (−9.6%) and diet-exercise (−9.4%) groups, not in the exercise (−1%) and control (−0.2%) groups (between-group P<.001). However, despite comparable weight loss, bone loss at the total hip was relatively less in the diet-exercise group (−1.1%) than in the diet group (−2.6%), whereas BMD increased in the exercise group (1.5%) (between-group P<.001) Serum C-terminal telopeptide (CTX) and osteocalcin concentrations increased in the diet group (31% and 24%) while they decreased in the exercise group (−13% and −15%) (between-group P<.001). In contrast, similar to the control group, serum CTX and osteocalcin concentrations did not change in the diet-exercise group. Serum procollagen propeptide concentrations decreased in the exercise group (−15%) compared with the diet group (9%) (P=.04). Serum leptin and estradiol concentrations decreased in the diet (−25% and −15%) and diet-exercise (−38% and −13%) groups, not in the exercise and control groups (between-group P=.001). Multivariate analyses revealed that changes in lean body mass (β=.33), serum osteocalcin (β= −.24), and 1-RM strength (β=.23) were independent predictors of changes in hip BMD (all P<.05). In conclusion, the addition of ET to weight-loss therapy among obese older adults prevents weight-loss-induced increase in bone turnover and attenuates weight-loss-induced reduction in hip BMD despite weight-loss-induced decrease in bone-active hormones. PMID:21786319
Xu, Jincheng; Lombardi, Giovanni; Jiao, Wei; Banfi, Giuseppe
2016-08-01
Osteoporosis and postmenopausal bone loss pose a huge social and economic burden worldwide. Regular exercise and physical activity are effective interventions for maximizing or maintaining peak bone mass and preventing bone loss in the elderly; however, most recommendations are addressed to the general public and lack specific indications for girls and women, the segment of the population most at risk for developing osteoporosis. The aim of this overview of systematic reviews and meta-analyses was to summarize current evidence for the effects of exercise and physical activity interventions on bone status in girls and women, and to explore whether specific exercise programs exist for improving or maintaining bone mass or bone strength in females. The PubMed, EMBASE, PEDro, and Cochrane Library databases were searched from January 2009, updated to 22 June 2015, using the following groups of search terms: (i) 'physical activity' and 'exercise'; and (ii) 'bone', 'bone health', 'bone strength', 'bone structure', 'bone metabolism', 'bone turnover', and 'bone biomarkers'. Searches and screening were limited to systematic reviews or meta-analyses of studies in females and published in English. Our final analysis included 12 articles that met the inclusion criteria. Combined-impact exercise protocols (impact exercise with resistance training) are the best choice to preserve/improve bone mineral density in pre- and postmenopausal women. Peak bone mass in young girls can be improved with short bouts of school-based high-impact plyometric exercise programs. Whole-body vibration exercises have no beneficial effects on bone in postmenopausal or elderly women. Lifelong exercise, specific for age, is an effective way to sustain bone health in girls and women.
Bone metabolism in cow milk allergic children.
Jakusova, Lubica; Jesenak, Milos; Schudichova, Jela; Banovcin, Peter
2013-07-01
Children with cow milk allergy are suspected to develop calcium metabolism disturbances. We observed increased markers of bone turnover in these children. Children with cow milk allergy are more prone to develop the disturbances of the bone mineralization even in the first year of life.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riggs, B.L. Melton III, L.J.
This book contains 20 chapters. Some of the titles are: Radiology of asteoporosis; Quantitative computed tomography in assessment of osteoporosis; Nuclear medicine and densitometry; Assessment of bone turnover by histormorphometry in osteoporosis; and The biochemistry of bone.
Kim, SoJung; Bemben, Michael G.; Knehans, Allen W.; Bemben, Debra A.
2015-01-01
Although Yoga has the potential to be an alternative physical activity to enhance bone health, there is a lack of high quality evidence for this type of intervention. The purpose of this randomized controlled trial was to examine the effects of a progressive 8-month Ashtanga-based Yoga program on bone turnover markers (BTM), areal bone mineral density (aBMD) and volumetric bone characteristics in premenopausal women. Thirty-four premenopausal women (35-50 years) were randomly assigned either to a Yoga group (YE, n = 16) or a control group (CON, n = 18). Participants in YE group performed 60 minutes of an Ashtanga-based Yoga series 2 times/week with one day between sessions for 8 months, and the session intensity was progressively increased by adding the number of sun salutations (SS). Participants in CON were encouraged to maintain their normal daily lifestyles monitored by the bone specific physical activity questionnaire (BPAQ) at 2 month intervals for 8 months. Body composition was measured by dual energy x-ray absorptiometry (DXA). Bone formation (bone alkaline phosphatase, Bone ALP) and bone resorption (Tartrate-Resistant Acid Phosphatase-5b, TRAP5b) markers were assessed at baseline and after 8 months. aBMD of total body, lumbar spine and dual proximal femur and tibia bone characteristics were measured using DXA and peripheral Quantitative Computed Tomography (pQCT), respectively. We found that the serum Bone ALP concentrations were maintained in YE, but significantly (p = 0.005) decreased in CON after the 8 month intervention, and there were significant (p = 0.002) group differences in Bone ALP percent changes (YE 9.1 ± 4.0% vs. CON -7.1 ± 2.3%). No changes in TRAP5b were found in either group. The 8-month Yoga program did not increase aBMD or tibia bone strength variables. Body composition results showed no changes in weight, fat mass, or % fat, but small significant increases in bone free lean body mass occurred in both groups. The findings of this study suggest that regular long-term Ashtanga Yoga had a small positive effect on bone formation but did not alter aBMD or tibia bone characteristics in premenopausal women. Key points Regular long-term Ashtanga-based Yoga program had a small positive effect on bone formation, but no effects were found on bone resorption. None of the bone density or geometry variables were changed by the 8-month Ashtanga-based Yoga intervention. Future Yoga interventions should focus on longer duration and greater frequency to elicit improvements in bone mineral density. PMID:26664272
Wannenes, Francesca; Papa, Vincenza; Greco, Emanuela A.; Fornari, Rachele; Marocco, Chiara; Di Luigi, Luigi; Donini, Lorenzo M.; Lenzi, Andrea
2014-01-01
Obesity and sarcopenia have been associated with mineral metabolism derangement and low bone mineral density (BMD). We investigated whether imbalance of serum factors in obese or obese sarcopenic patients could affect bone cell activity in vitro. To evaluate and characterize potential cellular and molecular changes of human osteoblasts, cells were exposed to sera of four groups of patients: (1) affected by obesity with normal BMD (O), (2) affected by obesity with low BMD (OO), (3) affected by obesity and sarcopenia (OS), and (4) affected by obesity, sarcopenia, and low BMD (OOS) as compared to subjects with normal body weight and normal BMD (CTL). Patients were previously investigated and characterized for body composition, biochemical and bone turnover markers. Then, sera of different groups of patients were used to incubate human osteoblasts and evaluate potential alterations in cell homeostasis. Exposure to OO, OS, and OOS sera significantly reduced alkaline phosphatase, osteopontin, and BMP4 expression compared to cells exposed to O and CTL, indicating a detrimental effect on osteoblast differentiation. Interestingly, sera of all groups of patients induced intracellular alteration in Wnt/β-catenin molecular pathway, as demonstrated by the significant alteration of specific target genes expression and by altered β-catenin cellular compartmentalization and GSK3β phosphorylation. In conclusion our results show for the first time that sera of obese subjects with low bone mineral density and sarcopenia significantly alter osteoblasts homeostasis in vitro, indicating potential detrimental effects of trunk fat on bone formation and skeletal homeostasis. PMID:24963291
Osteoporosis in men: epidemiology and treatment with denosumab
Sidlauskas, Kristel M; Sutton, Emily E; Biddle, Michael A
2014-01-01
Osteoporosis is a major public health care concern. Although often described as a disease affecting postmenopausal women, researchers and clinicians have emphasized its prevalence in men in recent years. The National Osteoporosis Foundation has stated that up to 25% of men over the age of 50 years will experience a fracture due to osteoporosis. Men who suffer from a major fracture have higher mortality rates than women. Pharmacologic therapy options for treating osteoporosis are limited for men as compared with women, so each medication approved for use in this population represents an important clinical option. In September 2012, the US Food and Drug Administration approved a new indication for denosumab to increase bone mass in men with osteoporosis at high risk for fracture. Denosumab is a fully human monoclonal antibody and novel antiresorptive agent that works by binding receptor activator of nuclear factor kappa-β ligand (RANKL) and inhibiting the signaling cascade that causes osteoclast maturation, activity, and survival. Ultimately, denosumab suppresses bone turnover and increases bone mineral density in both trabecular and cortical bone. Approval for treating osteoporosis in men was based on data from the ADAMO trial which displayed efficacy in increasing bone mineral density at the lumbar spine, total hip, femoral neck, hip trochanter, and one-third radius. Studies indicate that denosumab is effective and safe, and has superior adherence rates and patient satisfaction. Although long-term data and further research on fracture reduction rates in men should be explored, at this time denosumab is one of several appropriate first-line treatment options for men with osteoporosis. PMID:24748777
Osteoporosis in men: epidemiology and treatment with denosumab.
Sidlauskas, Kristel M; Sutton, Emily E; Biddle, Michael A
2014-01-01
Osteoporosis is a major public health care concern. Although often described as a disease affecting postmenopausal women, researchers and clinicians have emphasized its prevalence in men in recent years. The National Osteoporosis Foundation has stated that up to 25% of men over the age of 50 years will experience a fracture due to osteoporosis. Men who suffer from a major fracture have higher mortality rates than women. Pharmacologic therapy options for treating osteoporosis are limited for men as compared with women, so each medication approved for use in this population represents an important clinical option. In September 2012, the US Food and Drug Administration approved a new indication for denosumab to increase bone mass in men with osteoporosis at high risk for fracture. Denosumab is a fully human monoclonal antibody and novel antiresorptive agent that works by binding receptor activator of nuclear factor kappa-β ligand (RANKL) and inhibiting the signaling cascade that causes osteoclast maturation, activity, and survival. Ultimately, denosumab suppresses bone turnover and increases bone mineral density in both trabecular and cortical bone. Approval for treating osteoporosis in men was based on data from the ADAMO trial which displayed efficacy in increasing bone mineral density at the lumbar spine, total hip, femoral neck, hip trochanter, and one-third radius. Studies indicate that denosumab is effective and safe, and has superior adherence rates and patient satisfaction. Although long-term data and further research on fracture reduction rates in men should be explored, at this time denosumab is one of several appropriate first-line treatment options for men with osteoporosis.
Bilić-Ćurčić, Ines; Makarović, Sandra; Mihaljević, Ivan; Franceschi, Maja; Jukić, Tomislav
2017-03-01
Diabetes mellitus type 2 is associated with greater bone mineral density (BMD) due to obesity, although rapid bone loss observed over time could be explained by elevated chronic inflammation. The objective of this study was to investigate the relationship between central adiposity and hyperinsulinemia, as well as inflammation markers with vertebral and femoral BMD and bone turnover markers in postmenopausal women with type 2 diabetes. Femoral and vertebral BMD, osteocalcin, pyrilinks D, beta-CrossLaps (B-CTx), insulin, C-reactive protein (CRP), fibrinogen and plasminogen activator inhibitor-1 (PAI-1) were measured in 114 postmenopausal female patients with diabetes type 2. The patients of similar age, HbA1c levels and diabetes duration were divided into 2 groups based on their body mass index (BMI) values: lower or equal to 27 kg/m(2) (31 patients) and higher than 27 kg/m(2) (83 patients). Lower levels of osteocalcin (p=0.001), B-CTx (p=0.000007) and pyrilinks D (p=0.0365), and higher femoral BMD (p=0.00006), insulin level (p=0.0002), PAI-1 (p=0.00000) and CRP (p=0.002) were found in the overweight group. There were no signifi cant differences in vertebral BMD and fibrinogen. Osteocalcin and B-CTx showed inverse correlation, and femoral BMD positive correlation with waist circumference, insulin level and PAI-1. This suggests that abdominal obesity and hyperinsulinemia as components of the metabolic syndrome could increase femoral BMD by lowering bone rate. In addition, the only inflammation marker linked with femoral BMD was PAI-1, which is associated with increased mineralization of cortical bone in mouse.
Chen, H-L; Tung, Y-T; Chuang, C-H; Tu, M-Y; Tsai, T-C; Chang, S-Y; Chen, C-M
2015-02-01
Kefir treatment in ovariectomized (OVX) rats could significantly decrease the levels of bone turnover markers and prevent OVX-induced bone loss, deterioration of trabecular microarchitecture, and biomechanical dysfunction that may be due to increase intracellular calcium uptake through the TRPV6 calcium channel. Osteoporosis is a disease characterized by low bone mass and structural deterioration of bone tissue, leading to an increased fracture risk. The incidence of osteoporosis increases with age and occurs most frequently in postmenopausal women due to estrogen deficiency, as the balance between bone resorption and bone formation shifts towards increased levels of bone resorption. Among various methods of prevention and treatment for osteoporosis, an increase in calcium intake is the most commonly recommended preventive measure. Kefir is a fermented milk product made with kefir grains that degrade milk proteins into various peptides with health-promoting effects, including immunomodulating-, antithrombotic-, antimicrobial-, and calcium-absorption-enhancing bioactivities. The aim of this study is to investigate the effect of kefir on osteoporosis prophylaxis in an ovariectomized rat model. A total of 56 16-week-old female Sprague-Dawley (SD) rats were divided into 7 experimental groups: sham (normal), OVX/Mock, OVX/1X kefir (164 mg/kg BW/day), OVX/2X kefir (328 mg/kg BW/day), OVX/4X kefir (656 mg/kg BW/day), OVX/ALN (2.5 mg/kg BW/day), and OVX/REBONE (800 mg/kg BW/day). After 12-week treatment with kefir, the bone physiology in the OVX rat model was investigated. Accordingly, the aim of this study was to investigate the possible transport mechanism involved in calcium absorption using the Caco-2 human cell line. A 12-week treatment with kefir on the OVX-induced osteoporosis model reduced the levels of C-terminal telopeptides of type I collagen (CTx), bone turnover markers, and trabecular separation (Tb. Sp.). Additionally, treatment with kefir increased trabecular bone mineral density (BMD), bone volume (BV/TV), trabecular thickness (Tb. Th), trabecular number (Tb. N), and the biomechanical properties (hardness and modulus) of the distal femur with a dose-dependent efficacy. In addition, in in vitro assay, we found that kefir increased intracellular calcium uptake in Caco-2 cell through TRPV6 calcium channels and not through L-type voltage-operated calcium channels. The protective effect of kefir in the OVX rat model may occur through increasing intracellular calcium uptake through the TRPV6 calcium channel.
Gu, Jie-mei; Wang, Li; Lin, Hua; Chen, De-cai; Tang, Hai; Jin, Xiao-lan; Xia, Wei-bo; Hu, Yun-qiu; Fu, Wen-zhen; He, Jin-wei; Zhang, Hao; Wang, Chun; Yue, Hua; Hu, Wei-wei; Liu, Yu-juan; Zhang, Zhen-lin
2015-07-01
Oral risedronate is effective in the treatment of postmenopausal osteoporosis when administered daily, weekly, or monthly. In this 1-year, randomized, double-blind, multicenter study we compared the weekly 35-mg and daily 5-mg risedronate dosing regimens in the treatment of Chinese postmenopausal women with osteoporosis or osteopenia. Postmenopausal women with primary osteoporosis or osteopenia were randomly assigned to the weekly group or daily group (n=145 for each) that received oral risedronate 35 mg once a week or 5 mg daily, respectively, for 1 year. The subjects' bone mineral densities (BMDs), bone turnover markers (P1NP and β-CTX), new vertebral fractures, and adverse events were assessed at baseline and during the treatments. All subjects in the weekly group and 144 subjects in the daily group completed the study. The primary efficacy endpoint after 1 year, ie the mean percent changes in the lumbar spine BMD (95% CI) were 4.87% (3.92% to 5.81%) for the weekly group and 4.35% (3.31% to 5.39%) for the daily group. The incidences of clinical adverse events were 48.3% in the weekly group and 54.2% in the daily group. The weekly 35-mg and daily 5-mg risedronate dosing regimens during 1 year of follow-up show similar efficacy in improving BMDs and biochemical markers of bone turnover in Chinese postmenopausal women with osteoporosis or osteopenia. Moreover, the two dosing regimens exhibit similar safety and tolerability.
Vitamin D and its relationship with markers of bone metabolism in healthy Asian women.
Tan, Karen M L; Saw, Sharon; Sethi, Sunil K
2013-07-01
In this study, we aimed to determine the normal ranges of 25-hydroxy-vitamin D(3) (25-OHD(3)), parathyroid hormone (PTH), and the markers of bone turnover, procollagen type 1 N propeptide (P1NP) and C-terminal cross-linked telopeptide of type 1 collagen (CTX), in normal healthy women in Singapore, and to explore the relationship between vitamin D, PTH, and these markers of bone turnover in the women. One hundred and ninety-seven healthy women, aged 25 to 60, were selected from a hospital staff health screening program; 68% were Chinese, 18% Malay, and 14% Indian. P1NP, CTX, and 25-OHD(3) were measured using the Roche Cobas® electrochemiluminescence immunoassay. Serum PTH was measured using the Siemens ADVIA Centaur® immunoassay. Sixty-five percent had 25-OHD(3) concentrations <50 nmol/l. Vitamin D insufficiency (25-OHD(3) < 50 nmol/l) was more prevalent in Malays (89%) and Indians (82%) compared to Chinese (56%). There was no correlation between vitamin D and age. PTH positively correlated with age, and Malays and Indians had higher PTH concentrations than Chinese. There was an inverse correlation between PTH and 25-OHD(3), but no threshold of 25-OHD(3) concentrations at which PTH plateaued. The bone turnover markers P1NP and CTX inversely correlated with age but were not different between ethnic groups. CTX and P1NP exhibited good correlation, however, there was no significant correlation between 25-OHD(3) or PTH concentrations and the bone turnover markers P1NP and CTX. Healthy women in Singapore have a high prevalence of vitamin D insufficiency. Vitamin D insufficiency was more prevalent in Malays and Indians compared to Chinese. © 2013 Wiley Periodicals, Inc.
Mazzuca, Steven A; Brandt, Kenneth D; Lane, Kathleen A; Chakr, Rafael
2011-11-01
To explore whether the risk of incident tibiofemoral (TF) osteoarthritis (OA) in the radiographically normal contralateral knee of overweight/obese women with unilateral knee OA is mediated by malalignment and/or preceded by increased turnover of subchondral bone. We used data of post hoc analyses from a randomized controlled trial. Cross-sectional analyses evaluated the baseline association between frontal plane alignment and bone turnover in the medial TF compartment in 78 radiographically normal contralateral knees. Longitudinal analyses ascertained whether incident radiographic OA (TF osteophyte formation within 30 months) was associated with malalignment and/or increased bone turnover at baseline. Alignment subcategories (varus/neutral/valgus) were based on the anatomic axis angle. (99m)Tc-methylene diphosphonate uptake in a late-phase bone scan was quantified in regions of interest in the medial tibia (MT) and medial femur (MF) and adjusted for uptake in a reference segment of the ipsilateral tibial shaft (TS). MF and MT uptake in varus contralateral knees was 50-55% greater than in the TS. Adjusted MT uptake in varus contralateral knees was significantly greater than that in neutral and valgus contralateral knees (mean 1.55 versus 1.38 and 1.43, respectively; P < 0.05). Among 69 contralateral knees followed longitudinally, 22 (32%) developed TF OA. Varus angulation was associated with a marginally significant increase in the odds of incident OA (adjusted odds ratio 3.98, P = 0.067). While the small sample size limited our ability to detect statistically significant risk factors, these data suggest that the risk of developing bilateral TF OA in overweight/obese women may be mediated by varus malalignment. Copyright © 2011 by the American College of Rheumatology.
Iwaniec, Urszula T; Turner, Russell T
2013-03-01
A reciprocal association between bone marrow fat and bone mass has been reported in ovariectomized rodents, suggesting that bone marrow adipogenesis has a negative effect on bone growth and turnover balance. Mice with loss of function mutations in kit receptor (kit(W/W-v)) have no bone marrow adipocytes in tibia or lumbar vertebra. We therefore tested the hypothesis that marrow fat contributes to the development of osteopenia by comparing the skeletal response to ovariectomy (ovx) in growing wild type (WT) and bone marrow adipocyte-deficient kit(W/W-v) mice. Mice were ovx at 4 weeks of age and sacrificed 4 or 10 weeks post-surgery. Body composition was measured at necropsy by dual-energy X-ray absorptiometry. Cortical (tibia) and cancellous (tibia and lumbar vertebra) bone architecture were evaluated by microcomputed tomography. Bone marrow adipocyte size and density, osteoblast- and osteoclast-lined bone perimeters, and bone formation were determined by histomorphometry. Ovx resulted in an increase in total body fat mass at 10 weeks post-ovx in both genotypes, but the response was attenuated in the in kit(W/W-v) mice. Adipocytes were present in bone marrow of tibia and lumbar vertebra in WT mice and bone marrow adiposity increased following ovx. In contrast, marrow adipocytes were not detected in either intact or ovx kit(W/W-v) mice. However, ovx in WT and kit(W/W-v) mice resulted in statistically indistinguishable changes in cortical and cancellous bone mass, cortical and cancellous bone formation rate, and cancellous osteoblast and osteoclast-lined bone perimeters. In conclusion, our findings do not support a causal role for increased bone marrow fat as a mediator of ovx-induced osteopenia in mice. Copyright © 2012 Elsevier Inc. All rights reserved.
Mechanical Loading Attenuates Radiation-Induced Bone Loss in Bone Marrow Transplanted Mice.
Govey, Peter M; Zhang, Yue; Donahue, Henry J
2016-01-01
Exposure of bone to ionizing radiation, as occurs during radiotherapy for some localized malignancies and blood or bone marrow cancers, as well as during space travel, incites dose-dependent bone morbidity and increased fracture risk. Rapid trabecular and endosteal bone loss reflects acutely increased osteoclastic resorption as well as decreased bone formation due to depletion of osteoprogenitors. Because of this dysregulation of bone turnover, bone's capacity to respond to a mechanical loading stimulus in the aftermath of irradiation is unknown. We employed a mouse model of total body irradiation and bone marrow transplantation simulating treatment of hematologic cancers, hypothesizing that compression loading would attenuate bone loss. Furthermore, we hypothesized that loading would upregulate donor cell presence in loaded tibias due to increased engraftment and proliferation. We lethally irradiated 16 female C57Bl/6J mice at age 16 wks with 10.75 Gy, then IV-injected 20 million GFP(+) total bone marrow cells. That same day, we initiated 3 wks compression loading (1200 cycles 5x/wk, 10 N) in the right tibia of 10 of these mice while 6 mice were irradiated, non-mechanically-loaded controls. As anticipated, before-and-after microCT scans demonstrated loss of trabecular bone (-48.2% Tb.BV/TV) and cortical thickness (-8.3%) at 3 wks following irradiation. However, loaded bones lost 31% less Tb.BV/TV and 8% less cortical thickness (both p<0.001). Loaded bones also had significant increases in trabecular thickness and tissue mineral densities from baseline. Mechanical loading did not affect donor cell engraftment. Importantly, these results demonstrate that both cortical and trabecular bone exposed to high-dose therapeutic radiation remain capable of an anabolic response to mechanical loading. These findings inform our management of bone health in cases of radiation exposure.
Diaz-Castro, Javier; López-Aliaga, Inmaculada; Rueda, Ricardo
2016-01-01
Nutrition during pregnancy and lactation could exert a key role not only on maternal bone, but also could influence the skeletal development of the offspring. This study was performed in rats to assess the relationship between maternal dietary intake of prebiotic oligofructose-enriched inulin and its role in bone turnover during gestation and lactation, as well as its effect on offspring peak bone mass/architecture during early adulthood. Rat dams were fed either with standard rodent diet (CC group), calcium-fortified diet (Ca group), or prebiotic oligofructose-enriched inulin supplemented diet (Pre group), during the second half of gestation and lactation. Bone mineral density (BMD) and content (BMC), as well as micro-structure of dams and offspring at different stages were analysed. Dams in the Pre group had significantly higher trabecular thickness (Tb.Th), trabecular bone volume fraction (BV/TV) and smaller specific bone surface (BS/BV) of the tibia in comparison with CC dams. The Pre group offspring during early adulthood had an increase of the lumbar vertebra BMD when compared with offspring of CC and Ca groups. The Pre group offspring also showed significant increase versus CC in cancellous and cortical structural parameters of the lumbar vertebra 4 such as Tb.Th, cortical BMD and decreased BS/BV. The results indicate that oligofructose-enriched inulin supplementation can be considered as a plausible nutritional option for protecting against maternal bone loss during gestation and lactation preventing bone fragility and for optimizing peak bone mass and architecture of the offspring in order to increase bone strength. PMID:27115490
Molecular mechanisms underlying the actions of dietary factors on the skeleton
USDA-ARS?s Scientific Manuscript database
This book chapter summarizes the current state of knowledge on molecular mechanisms whereby nutritional status and dietary factors found in fruits, vegetables, and grains affect bone turnover and skeletal quality. The Wnt-beta catenin and bone morphogenic protein (BMP) pathways in osteoblast bone ce...
Is Serum Serotonin Involved in the Bone Loss of Young Females with Anorexia Nervosa?
Maïmoun, L; Guillaume, S; Lefebvre, P; Philibert, P; Bertet, H; Picot, M-C; Courtet, P; Mariano-Goulart, D; Renard, E; Sultan, C
2016-03-01
Recent experimental data suggest that circulating serotonin interacts with bone metabolism, although this is less clear in humans. This study investigated whether serum serotonin interferes with bone metabolism in young women with anorexia nervosa (AN), a clinical model of energy deprivation. Serum serotonin, markers of bone turnover [osteocalcin (OC), procollagen type I N-terminal propeptide (PINP), type I-C telopeptide breakdown products (CTX)], leptin, soluble leptin receptor (sOB-R), and insulin-like growth factor-1 (IGF-1) and its binding protein (IGFBP-3) were assessed. Whole body, spine, hip, and radius areal bone mineral density BMD (aBMD) were assessed by dual-energy X-ray absorptiometry in 21 patients with AN and 19 age-matched controls. Serum serotonin, leptin, IGF-1, IGFBP-3, OC, PINP, and aBMD at all sites, radius excepted, were significantly reduced in AN whereas CTX and sOB-R were increased compared with controls. Serum serotonin levels were positively correlated with weight, body mass index, whole body fat mass, leptin, and IGF-1, and negatively with CTX for the entire population. Low serum serotonin levels are observed in patients with AN. Although no direct link between low serum serotonin levels and bone mass was identified in these patients, the negative relationship between serotonin and markers of bone resorption found in all population nevertheless suggests the implication of serotonin in bone metabolism. Impact of low serum serotonin on bone in AN warrants further studies. © Georg Thieme Verlag KG Stuttgart · New York.
Mechanical Loading Attenuates Radiation-Induced Bone Loss in Bone Marrow Transplanted Mice
Govey, Peter M.; Zhang, Yue; Donahue, Henry J.
2016-01-01
Exposure of bone to ionizing radiation, as occurs during radiotherapy for some localized malignancies and blood or bone marrow cancers, as well as during space travel, incites dose-dependent bone morbidity and increased fracture risk. Rapid trabecular and endosteal bone loss reflects acutely increased osteoclastic resorption as well as decreased bone formation due to depletion of osteoprogenitors. Because of this dysregulation of bone turnover, bone’s capacity to respond to a mechanical loading stimulus in the aftermath of irradiation is unknown. We employed a mouse model of total body irradiation and bone marrow transplantation simulating treatment of hematologic cancers, hypothesizing that compression loading would attenuate bone loss. Furthermore, we hypothesized that loading would upregulate donor cell presence in loaded tibias due to increased engraftment and proliferation. We lethally irradiated 16 female C57Bl/6J mice at age 16 wks with 10.75 Gy, then IV-injected 20 million GFP(+) total bone marrow cells. That same day, we initiated 3 wks compression loading (1200 cycles 5x/wk, 10 N) in the right tibia of 10 of these mice while 6 mice were irradiated, non-mechanically-loaded controls. As anticipated, before-and-after microCT scans demonstrated loss of trabecular bone (-48.2% Tb.BV/TV) and cortical thickness (-8.3%) at 3 wks following irradiation. However, loaded bones lost 31% less Tb.BV/TV and 8% less cortical thickness (both p<0.001). Loaded bones also had significant increases in trabecular thickness and tissue mineral densities from baseline. Mechanical loading did not affect donor cell engraftment. Importantly, these results demonstrate that both cortical and trabecular bone exposed to high-dose therapeutic radiation remain capable of an anabolic response to mechanical loading. These findings inform our management of bone health in cases of radiation exposure. PMID:27936104
Jackson, Leila W; Cromer, Barbara A; Panneerselvamm, Ashok
2010-11-01
Blood lead levels (BLLs) have been shown to increase during periods of high bone turnover such as pregnancy and menopause. We examined the associations between bone turnover and micronutrient intake with BLLs in women 20-85 years of age (n = 2,671) participating in the National Health and Nutrition Examination Survey, 1999-2002. Serum bone-specific alkaline phosphatase (BAP) and urinary cross-linked N-telopeptides (NTx) were measured as markers of bone formation and resorption, respectively. Lead was quantified in whole blood. The association between tertiles of BAP and NTx, and BLLs was examined using linear regression with natural log transformed BLLs as the dependent variable and interpreted as the percent difference in geometric mean BLLs. In adjusted analyses, mean BLLs among postmenopausal women in the upper tertiles of NTx and BAP were 34% [95% confidence interval (CI), 23%-45%] and 30% (95% CI, 17%-43%) higher than BLLs among women in the lowest tertiles of NTx and BAP, respectively. These associations were weaker, but remained statistically significant, among premenopausal women (NTx: 10%; 95% CI, 0.60%-19%; BAP: 14%; 95% CI, 6%-22%). Within tertiles of NTx and BAP, calcium intake above the Dietary Reference Intake (DRI), compared with below the DRI, was associated with lower mean BLLs among postmenopausal women but not premenopausal women, although most of the associations were not statistically significant. We observed similar associations for vitamin D supplement use. Bone resorption and bone formation were associated with a significant increase in BLLs among pre- and postmenopausal women.
Impact of air pollution on vitamin D deficiency and bone health in adolescents.
Feizabad, Elham; Hossein-Nezhad, Arash; Maghbooli, Zhila; Ramezani, Majid; Hashemian, Roxana; Moattari, Syamak
2017-12-01
The association between air pollution and bone health was evaluated in adolescents in the city of Tehran. This study is essentially ecological. Vitamin D deficiency among adolescents has been reported at higher rates in polluted areas than in non-polluted areas. Additionally, residence in polluted areas is associated with lower levels of bone alkaline phosphatase. The aim of this study was to evaluate the association between ambient air pollution and bone turnover in adolescents and to compare the prevalence of vitamin D deficiency between polluted and non-polluted areas of Tehran. This cross-sectional population-based study was conducted on 325 middle- and high-school students (both girls and boys) in Tehran in the winter. During the study period, detailed daily data on air pollution were obtained from archived data collected by Tehran Air Quality Control Company (AQCC). Serum levels of calcium, phosphorus, parathyroid hormone (PTH), bone-specific alkaline phosphatase, 25(OH) vitamin D, osteocalcin, cross-linked C-telopeptide (CTX), total protein, albumin, and creatinine were obtained from the study group. Vitamin D deficiency was more prevalent in polluted areas than in non-polluted areas. After adjustment for age and sex, residence in the polluted area showed a statistically significant positive association with vitamin D deficiency and a statistically significant negative association with bone turnover. Interestingly, high calcium intake (>5000 mg/week) protects against the effects of air pollution on bone turnover. Air pollution is a chief factor determining the amount of solar UVB that reaches the earth's surface. Thus, atmospheric pollution may play a significant independent role in the development of vitamin D deficiency.
Blood Lead, Bone Turnover, and Survival in Amyotrophic Lateral Sclerosis.
Fang, Fang; Peters, Tracy L; Beard, John D; Umbach, David M; Keller, Jean; Mariosa, Daniela; Allen, Kelli D; Ye, Weimin; Sandler, Dale P; Schmidt, Silke; Kamel, Freya
2017-11-01
Blood lead and bone turnover may be associated with the risk of amyotrophic lateral sclerosis (ALS). We aimed to assess whether these factors were also associated with time from ALS diagnosis to death through a survival analysis of 145 ALS patients enrolled during 2007 in the National Registry of Veterans with ALS. Associations of survival time with blood lead and plasma biomarkers of bone resorption (C-terminal telopeptides of type I collagen (CTX)) and bone formation (procollagen type I amino-terminal peptide (PINP)) were estimated using Cox models adjusted for age at diagnosis, diagnostic certainty, diagnostic delay, site of onset, and score on the Revised ALS Functional Rating Scale. Hazard ratios were calculated for each doubling of biomarker concentration. Blood lead, plasma CTX, and plasma PINP were mutually adjusted for one another. Increased lead (hazard ratio (HR) = 1.38; 95% confidence interval (CI): 1.03, 1.84) and CTX (HR = 2.03; 95% CI: 1.42, 2.89) were both associated with shorter survival, whereas higher PINP was associated with longer survival (HR = 0.59; 95% CI: 0.42, 0.83), after ALS diagnosis. No interactions were observed between lead or bone turnover and other prognostic indicators. Lead toxicity and bone metabolism may be involved in ALS pathophysiology. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Potential Role of L-Arginine and Vitamin E Against Bone Loss Induced by Nano-Zinc Oxide in Rats.
Abdelkarem, Hala M; Fadda, Laila H; El-Sayed, Eman M; Radwan, Omyma K
2018-05-04
The purpose of this study was to illustrate the effects of zinc oxide nanoparticles (ZnO-NPs) administration on bone turnover and bone resorbing agents in rats and how L-arginine (L-arg) or vitamin E (vit E) co-administrations might affect them. Fasting rats were randomly divided into four groups (n = 10): G1-normal healthy animals; G2-ZnO-NPs-exposed rats (600 mg/kg - 1/day -1 ); G3-ZnO-NPs-exposed rats co-administrated L-arg (200 mg/kg - 1/day -1 ); G4-ZnO-NPs-exposed rats co-administrated vit E (200 mg/kg - 1/day -1 ). The ingredients were orally administered daily. The body weight and food consumption of rats were recorded during the administration period and the experiment continued for three consecutive weeks. The results demonstrated that ZnO-NPs administration induced bone loss in rats as manifested by reduced activity of bone alkaline phosphatase (B-ALP) and increased level of C-terminal peptide type I collagen (CTx). The increase of inflammatory markers, tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) by ZnO-NPs suggests that deleterious effects of ZnO-NPs on bone turnover were, in part, due to inflammation. Confirming to this suggestion, both L-arg and vit E reduced TNF-α and IL-6 levels and consequently decreased bone resorption as indicated by reduced serum CTx level. This study proved that ZnO-NPs can induce bone turnover, which may be reduced by L-arg or vit.E co-administration, partly by anti-inflammatory mechanism.
Inaba, Masaaki; Okuno, Senji; Nagayama, Harumi; Yamada, Shinsuke; Ishimura, Eiji; Imanishi, Yasuo; Shoji, Shigeichi
2015-03-01
Control of phosphate is the most critical in the treatment of chronic kidney disease with mineral and bone disorder (CKD-MBD). Because calcium-containing phosphate binder to CKD patients is known to induce adynamic bone disease with ectopic calcification by increasing calcium load, we examined the effect of lanthanum carbonate (LaC), a non-calcium containing phosphate binder, to restore bone turnover in 27 hemodialysis patients with suppressed parathyroid function (serum intact parathyroid hormone [iPTH] ≦ 150 pg/mL). At the initiation of LaC administration, the dose of calcium-containing phosphate binder calcium carbonate (CaC) was withdrawn or reduced based on serum phosphate. After initiation of LaC administration, serum calcium and phosphate decreased significantly by 4 weeks, whereas whole PTH and iPTH increased. A significant and positive correlation between decreases of serum calcium, but not phosphate, with increases of whole PTH and iPTH, suggested that the decline in serum calcium with reduction of calcium load by LaC might increase parathyroid function. Serum bone resorption markers, such as serum tartrate-resistant acid phosphatase 5b, and N-telopeptide of type I collagen increased significantly by 4 weeks after LaC administration, which was followed by increases of serum bone formation markers including serum bone alkaline phosphatase, intact procollagen N-propeptide, and osteocalcin. Therefore, it was suggested that LaC attenuated CaC-induced suppression of parathyroid function and bone turnover by decreasing calcium load. In conclusion, replacement of CaC with LaC, either partially or totally, could increase parathyroid function and resultant bone turnover in hemodialysis patients with serum iPTH ≦ 150 pg/mL. Copyright © 2015 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Gestational age, sex and maternal parity correlate with bone turnover in premature infants.
Aly, Hany; Moustafa, Mohamed F; Amer, Hanna A; Hassanein, Sahar; Keeves, Christine; Patel, Kantilal
2005-05-01
Factors affecting bone turnover in premature infants are not entirely clear but certainly are different from those influencing bones of adults and children. To identify fetal and maternal factors that might influence bone turnover, we prospectively studied 50 infants (30 preterm and 20 full-term) born at Ain Shams University Obstetric Hospital in Cairo, Egypt. Maternal parity and medical history and infant's weight, gestational age, gender and anthropometrical measurements were recorded. Cord blood samples were collected and serum type I collagen C-terminal propeptide (PICP) was assessed as a marker for fetal bone formation. First morning urine samples were collected and pyridinoline cross-links of collagen (Pyd) were measured as an index for bone resorption. Serum PICP was higher in premature infants when compared with full-term infants (73.30 +/- 15.1 versus 64.3 +/- 14.7, p = 0.022) and was higher in male premature infants when compared with females (81.64 +/- 9.06 versus 66.0 +/- 15.7, p = 0.018). In a multiple regression model using PICP as the dependent variable and controlling for different infant and maternal conditions, PICP significantly correlated with infant gender (r = 8.26 +/- 4.1, p = 0.05) maternal parity (r = -2.106 +/- 0.99, p = 0.041) and diabetes (r = 22.488 +/- 8.73, p = 0.041). Urine Pyd tended to increase in premature infants (612 +/- 308 versus 434 +/- 146, p = 0.057) and correlated significantly with gestational age (r = -63.93 +/- 19.55, p = 0.002). Therefore, bone formation (PICP) is influenced by fetal age and gender, as well as maternal parity and diabetes. Bone resorption (Pyd) is mostly dependent on gestational age only. Further in-depth studies are needed to enrich management of this vulnerable population.
Simões, Tania Mara Rodrigues; Zapata, Carmiña Lucía Vargas; Donangelo, Carmen Marino
2015-09-01
To investigate the influence of the use of oral hormonal contraceptive agents (OCA) on the biochemical indices related to metabolic zinc utilization and distribution, and to bone turnover in young adult women. Cross-sectional study. Blood and urine samples from non-users (-OCA; control; n=69) and users of hormonal contraceptives for at least 3 months (+OCA; n=62) were collected under controlled conditions. Indices of zinc homeostasis and of bone turnover were analyzed in serum or plasma (total, albumin-bound and α2-macroglobulin-bound zinc, albumin and total and bone alkaline phosphatase activity), in erythrocytes (zinc and metallothionein) and in urine (zinc, calcium and hydroxyproline). The habitual zinc and calcium intakes were evaluated by a food frequency questionnaire. Dietary zinc intake was similar in both groups and on average above recommended values, whereas calcium intake was similarly sub-adequate in +OCA and -OCA. Compared to controls, +OCA had lower concentrations of total and α2-macroglobulin-bound zinc (11 and 28.5%, respectively, p<0.001), serum albumin (13%, p<0.01), total and bone-specific alkaline phosphatase activity (13 and 18%, respectively, p<0.05), erythrocyte metallothionein (13%, p<0.01), and, urinary zinc (34%, p<0.05). OCA use decreases serum zinc, alters zinc distribution in major serum fractions with possible effects on tissue uptake, enhances zinc retention in the body and decreases bone turnover. Prolonged OCA use may lead to lower peak bone mass and/or to impaired bone mass maintenance in young women, particularly in those with marginal calcium intake. The observed OCA effects were more evident in women younger than 25 years and in nulliparous women, deserving special attention in future studies.
PTH (1-34) affects bone turnover governed by osteocytes exposed to fluoride.
Yu, Xiuhua; Yu, Haolan; Jiang, Ningning; Zhang, Xiuyun; Zhang, Mengmeng; Xu, Hui
2018-05-15
Exposure to fluoride from environmental sources remains an overlooked, but serious public health risk. In this study, we looked into the role osteocytes play on the mechanism underlying fluoride induced osteopathology. We analyzed bone formation and resorption related genes generated by osteocytes that were exposed to varied doses of fluoride with and without PTH in vitro. Correspondingly, osteogenesis and osteoclastogenesis related genes were also investigated in rats exposed to fluoride for 8 weeks, and the PTH(1-34)was applied at the last 3 weeks to observe its role in regulating bone turnover upon fluoride treatment. The data in vitro indicated that fluoride treatment inhibited Sost expression of mRNA and protein and stimulated RANKL mRNA protein expression as well as the RANKL/OPG ratio in the primary osteocytes. Single PTH treatment played the similar role on expression of these genes and proteins. The PTH combined administration enhanced the action of fluoride treatment on RNAKL/OPG and SOST/Sclerostin. The up-regulation of RANKL and decreasing of Sost induced by fluoride and/or PTH treatment was validated in vivo and suggests that osteocytes are a major source of RANKL and Sost, both of which play essential roles in fluoride affecting osteogenesis and osteoclastogenesis. Expression of Wnt/β-catenin was up-regulated in both in vitro osteocytes treated with high dose of fluoride and bone tissue of rats in the presence of fluoride and PTH. In vivo, fluoride and single PTH stimulated bone turnover respectively, furthermore, PTH combined with low dose of fluoride treatment reinforced the osteogenesis and osteoclastogenesis genes expression, however, co-treatment of PTH reversed the effect of high dose of fluoride on osteogenesis and osteoclastogenensis related factors. In conclusion, this study demonstrated that osteocytes play a key role in fluoride activated bone turnover, and PTH participates in the process of fluoride modulating SOST/Sclerostin and RANKL expression. Copyright © 2018 Elsevier B.V. All rights reserved.
Williams, Donald S; McCracken, Paul J; Purcell, Mona; Pickarski, Maureen; Mathers, Parker D; Savitz, Alan T; Szumiloski, John; Jayakar, Richa Y; Somayajula, Sangeetha; Krause, Stephen; Brown, Keenan; Winkelmann, Christopher T; Scott, Boyd B; Cook, Lynn; Motzel, Sherri L; Hargreaves, Richard; Evelhoch, Jeffrey L; Cabal, Antonio; Dardzinski, Bernard J; Hangartner, Thomas N; Duong, Le T
2013-10-01
Odanacatib (ODN) is a selective and reversible Cathepsin K (CatK) inhibitor currently being developed as a once weekly treatment for osteoporosis. Here, effects of ODN compared to alendronate (ALN) on bone turnover, DXA-based areal bone mineral density (aBMD), QCT-based volumetric BMD (vBMD) and geometric parameters were studied in ovariectomized (OVX) rhesus monkeys. Treatment was initiated 10 days after ovariectomy and continued for 20 months. The study consisted of four groups: L-ODN (2 mg/kg, daily p.o.), H-ODN (8/4 mg/kg daily p.o.), ALN (15 μg/kg, twice weekly, s.c.), and VEH (vehicle, daily, p.o.). L-ODN and ALN doses were selected to approximate the clinical exposures of the ODN 50-mg and ALN 70-mg once-weekly, respectively. L-ODN and ALN effectively reduced bone resorption markers uNTx and sCTx compared to VEH. There was no additional efficacy with these markers achieved with H-ODN. Conversely, ODN displayed inversely dose-dependent reduction of bone formation markers, sP1NP and sBSAP, and L-ODN reduced formation to a lesser degree than ALN. At month 18 post-OVX, L-ODN showed robust increases in lumbar spine aBMD (11.4%, p<0.001), spine trabecular vBMD (13.7%, p<0.001), femoral neck (FN) integral (int) vBMD (9.0%, p<0.001) and sub-trochanteric proximal femur (SubTrPF) int vBMD, (6.4%, p<0.001) compared to baseline. L-ODN significantly increased FN cortical thickness (Ct.Th) and cortical bone mineral content (Ct.BMC) by 22.5% (p<0.001) and 21.8% (p<0.001), respectively, and SubTrPF Ct.Th and Ct.BMC by 10.9% (p<0.001) and 11.3% (p<0.001) respectively. Compared to ALN, L-ODN significantly increased FN Ct. BMC by 8.7% (p<0.05), and SubTrPF Ct.Th by 7.6% (p<0.05) and Ct.BMC by 6.2% (p<0.05). H-ODN showed no additional efficacy compared to L-ODN in OVX-monkeys in prevention mode. Taken together, the results from this study have demonstrated that administration of ODN at levels which approximate clinical exposure in OVX-monkeys had comparable efficacy to ALN in DXA-based aBMD and QCT-based vBMD. However, FN cortical mineral content clearly demonstrated superior efficacy of ODN versus ALN in this model of estrogen-deficient non-human primates. © 2013 Elsevier Inc. All rights reserved.
Bone growth and turnover in progesterone receptor knockout mice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rickard, David J.; Iwaniec, Urszula T.; Evans, Glenda
2008-05-01
The role of progesterone receptor (PR) signaling in skeletal metabolism is controversial. To address whether signaling through the PR is necessary for normal bone growth and turnover, we performed histomorphometric and mCT analyses of bone from homozygous female PR knockout (PRKO) mice at 6, 12, and 26 weeks of age. These mice possess a null mutation of the PR locus, which blocks the gene expression of A and B isoforms of PR. Body weight gain, uterine weight gain and tibia longitudinal bone growth was normal in PRKO mice. In contrast, total and cortical bone mass were increased in long bonesmore » of post-pubertal (12 and 26-week-old) PRKO mice, whereas cancellous bone mass was normal in the tibia but increased in the humerus. The striking 57% decrease in cancellous bone from the proximal tibia metaphysis which occurred between 6 and 26 weeks in WT mice was abolished in PRKO mice. The improved bone balance in aging PRKO mice was associated with elevated bone formation and a tendency toward reduced osteoclast perimeter. Taken together, these findings suggest that PR signaling in mice attenuates the accumulation of cortical bone mass during adolescence and is required for early age-related loss of cancellous bone.« less
Piazzetta, Giovana; Baracho, Filipe R; Oliveira, Larissa de; Santos, Gustavo R; Kulak, Carolina A M; Borba, Victória Z C
2014-11-01
We describe four cases of atypical femoral fractures treated at the Department of Endocrinology, Hospital de Clínicas, Federal University of Paraná (SEMPR) which, although characteristic of this type of fracture, presented clinical peculiarities that should be considered and serve as a warning in these patients, such as: late diagnosis with maintenance of bisphosphonates; absence of co-morbidities with excellent result; failure of fracture healing; use of anabolic medication after the fracture and the use of bone turnover markers at the follow up.
Isaac, J; Erthal, J; Gordon, J; Duverger, O; Sun, H-W; Lichtler, A C; Stein, G S; Lian, J B; Morasso, M I
2014-01-01
Human mutations and in vitro studies indicate that DLX3 has a crucial function in bone development, however, the in vivo role of DLX3 in endochondral ossification has not been established. Here, we identify DLX3 as a central attenuator of adult bone mass in the appendicular skeleton. Dynamic bone formation, histologic and micro-computed tomography analyses demonstrate that in vivo DLX3 conditional loss of function in mesenchymal cells (Prx1-Cre) and osteoblasts (OCN-Cre) results in increased bone mass accrual observed as early as 2 weeks that remains elevated throughout the lifespan owing to increased osteoblast activity and increased expression of bone matrix genes. Dlx3OCN-conditional knockout mice have more trabeculae that extend deeper in the medullary cavity and thicker cortical bone with an increased mineral apposition rate, decreased bone mineral density and increased cortical porosity. Trabecular TRAP staining and site-specific Q-PCR demonstrated that osteoclastic resorption remained normal on trabecular bone, whereas cortical bone exhibited altered osteoclast patterning on the periosteal surface associated with high Opg/Rankl ratios. Using RNA sequencing and chromatin immunoprecipitation-Seq analyses, we demonstrate that DLX3 regulates transcription factors crucial for bone formation such as Dlx5, Dlx6, Runx2 and Sp7 as well as genes important to mineral deposition (Ibsp, Enpp1, Mepe) and bone turnover (Opg). Furthermore, with the removal of DLX3, we observe increased occupancy of DLX5, as well as increased and earlier occupancy of RUNX2 on the bone-specific osteocalcin promoter. Together, these findings provide novel insight into mechanisms by which DLX3 attenuates bone mass accrual to support bone homeostasis by osteogenic gene pathway regulation. PMID:24948010
Zhang, Zhiguo; Xiang, Lihua; Bai, Dong; Wang, Wenlai; Li, Yan; Pan, Jinghua; Liu, Hong; Wang, Shaojun; Xiao, Gary Guishan; Ju, Dahong
2014-12-12
The aim of this study was to evaluate the osteoprotective effect of aqueous Rhizoma Dioscoreae extract (RDE) on the alveolar bone of rats with ovariectomy-induced bone loss. Female Wistar rats were subjected to either ovariectomy or a sham operation (SHAM). The ovariectomized (OVX) rats were treated with vehicle (OVX) or RDE by oral gavage or with 17β-estradiol (E2) subcutaneously. After treatments, the bone mineral density (BMD), the three-dimensional bone architecture of the alveolar bone and the plasma biomarkers of bone turnover were analyzed to assess bone metabolism, and the histomorphometry of the alveolar bone was observed. Microarrays were used to evaluate gene expression profiles in alveolar bone from RDE-treated and OVX rats. The differential expression of genes was further analyzed using Ingenuity Pathway Analysis (IPA). The key findings were verified using real-time quantitative RT-PCR (qRT-PCR). Our results showed that RDE inhibited alveolar bone loss in OVX rats. Compared to the OVX rats, the RDE-treated rats showed upregulated expression levels of 207 genes and downregulated expression levels of 176 genes in the alveolar bone. The IPA showed that several genes had the potential to code for proteins that were involved in the Wnt/β-catenin signaling pathway (Wnt7a, Fzd2, Tcf3, Spp1, Frzb, Sfrp2 and Sfrp4) and the p38 MAPK signaling pathway (Il1rn and Mapk14). These experiments revealed that RDE could inhibit ovariectomy-induced alveolar bone loss in rats. The mechanism of this anti-osteopenic effect in alveolar bone may be involved in the reduced abnormal bone remodeling, which is associated with the modulation of the Wnt/β-catenin and the p38 MAPK signaling pathways via gene regulation.
USDA-ARS?s Scientific Manuscript database
Background. Prior studies suggest that elevated markers of bone turnover are prognostic for poor survival in castration resistant prostate cancer (CRPC). The predictive role of these markers relative to bone-targeted therapy is unknown. We prospectively evaluated the prognostic and predictive value ...
Wölfl, Christoph; Schweppenhäuser, Daniela; Gühring, Thorsten; Takur, Caner; Höner, Bernd; Kneser, Ulrich; Grützner, Paul Alfred; Kolios, Leila
2014-01-01
The incidence of osteoporotic fractures increases as our population ages. Until now, the exact biochemical processes that occur during the healing of metaphyseal fractures remain unclear. Diagnostic instruments that allow a dynamic insight into the fracture healing process are as yet unavailable. In the present matched pair analysis, we study the time course of the osteoanabolic markers bone specific alkaline phosphatase (BAP) and transforming growth factor β1 (TGFβ1), as well as the osteocatabolic markers crosslinked C-telopeptide of type-I-collagen (β-CTX) and serum band 5 tartrate-resistant acid phosphatase (TRAP5b), during the healing of fractures that have a low level of bone mineral density (BMD) compared with fractures that have a normal BMD. Between March 2007 and February 2009, 30 patients aged older than 50 years who suffered a metaphyseal fracture were included in our study. BMDs were verified by dual energy Xray absorptiometry (DXEA) scans. The levels of BTMs were examined over an 8-week period. Osteoanabolic BAP levels in those with low levels of BMD were significantly different from the BAP levels in those with normal BMD. BAP levels in the former group increased constantly, whereas the latter group showed an initial strong decrease in BAP followed by slowly rising values. Osteocatabolic β-CTX increased in the bone of the normal BMD group constantly, whereas these levels decreased significantly in the bone of the group with low BMD from the first week. TRAP5b was significantly reduced in the low level BMD group. With this work, we conduct first insights into the molecular biology of the fracture healing process in patients with low levels of BMD that explains the mechanism of its fracture healing. The results may be one reason for the reduced healing qualities in bones with low BMD.
West, Sarah L; Lok, Charmaine E; Jamal, Sophie A
2010-08-20
Chronic kidney disease (CKD) is associated with an increased risk of fracture. Decreased bone mass and disruption of microarchitecture occur early in the course of CKD and worsens with the progressive decline in renal function so that at the time of initiation of dialysis at least 50% of patients have had a fracture. Despite the excess fracture risk, and the associated increases in morbidity and mortality, little is known about the factors that are associated with an increase in fracture risk. Our study aims to identify prognostic factors for bone loss and fractures in patients with stages 3 to 5 CKD. This prospective study aims to enroll two hundred and sixty men and women with stages 3 to 5 CKD. Subjects will be followed for 24 months and we will examine the ability of: 1) bone mineral density by dual x-ray absorptiometry at the spine, hip, and radius; 2) volumetric bone density by high resolution peripheral quantitated computed tomography at the radius and tibia; 3) serum markers of bone turnover; 4) bone formation rate by bone biopsy; and 5) muscle strength and balance to predict spine and non-spine fractures, identified by self-report and/or vertebral morphometry. All measurements will be obtained at baseline, at 12 and at 24 months with the exception of bone biopsy, which will be measured once at 12 months. Subjects will be contacted every 4 months to determine if there have been incident fractures or falls. This study is one of the first that aims to identify risk factors for fracture in early stage CKD patients. Ultimately, by identifying risk factors for fracture and targeting treatments in this group-before the initiation of renal replacement therapy--we will reduce the burden of disease due to fractures among patients with CKD.
Hayhoe, Richard P G; Lentjes, Marleen A H; Luben, Robert N; Khaw, Kay-Tee; Welch, Ailsa A
2015-08-01
In our aging population, maintenance of bone health is critical to reduce the risk of osteoporosis and potentially debilitating consequences of fractures in older individuals. Among modifiable lifestyle and dietary factors, dietary magnesium and potassium intakes are postulated to influence bone quality and osteoporosis, principally via calcium-dependent alteration of bone structure and turnover. We investigated the influence of dietary magnesium and potassium intakes, as well as circulating magnesium, on bone density status and fracture risk in an adult population in the United Kingdom. A random subset of 4000 individuals from the European Prospective Investigation into Cancer and Nutrition-Norfolk cohort of 25,639 men and women with baseline data was used for bone density cross-sectional analyses and combined with fracture cases (n = 1502) for fracture case-cohort longitudinal analyses (mean follow-up 13.4 y). Relevant biological, lifestyle, and dietary covariates were used in multivariate regression analyses to determine associations between dietary magnesium and potassium intakes and calcaneal broadband ultrasound attenuation (BUA), as well as in Prentice-weighted Cox regression to determine associated risk of fracture. Separate analyses, excluding dietary covariates, investigated associations of BUA and fractures with serum magnesium concentration. Statistically significant positive trends in calcaneal BUA for women (n = 1360) but not men (n = 968) were apparent across increasing quintiles of magnesium plus potassium (Mg+K) z score intake (P = 0.03) or potassium intake alone (P = 0.04). Reduced hip fracture risk in both men (n = 1958) and women (n = 2755) was evident for individuals in specific Mg+K z score intake quintiles compared with the lowest. Statistically significant trends in fracture risk in men across serum magnesium concentration groups were apparent for spine fractures (P = 0.02) and total hip, spine, and wrist fractures (P = 0.02). None of these individual statistically significant associations remained after adjustment for multiple testing. These findings enhance the limited literature studying the association of magnesium and potassium with bone density and demonstrate that further investigation is warranted into the mechanisms involved and the potential protective role against osteoporosis. © 2015 American Society for Nutrition.
On the Origin of the High Column Density Turnover in the HI Column Density Distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erkal, Denis; Gnedin, Nickolay Y.; Kravtsov, Andrey V.
We study the high column density regime of the HI column density distribution function and argue that there are two distinct features: a turnover at NHI ~ 10^21 cm^-2 which is present at both z=0 and z ~ 3, and a lack of systems above NHI ~ 10^22 cm^-2 at z=0. Using observations of the column density distribution, we argue that the HI-H2 transition does not cause the turnover at NHI ~ 10^21 cm^-2, but can plausibly explain the turnover at NHI > 10^22 cm^-2. We compute the HI column density distribution of individual galaxies in the THINGS sample andmore » show that the turnover column density depends only weakly on metallicity. Furthermore, we show that the column density distribution of galaxies, corrected for inclination, is insensitive to the resolution of the HI map or to averaging in radial shells. Our results indicate that the similarity of HI column density distributions at z=3 and z=0 is due to the similarity of the maximum HI surface densities of high-z and low-z disks, set presumably by universal processes that shape properties of the gaseous disks of galaxies. Using fully cosmological simulations, we explore other candidate physical mechanisms that could produce a turnover in the column density distribution. We show that while turbulence within GMCs cannot affect the DLA column density distribution, stellar feedback can affect it significantly if the feedback is sufficiently effective in removing gas from the central 2-3 kpc of high-redshift galaxies. Finally, we argue that it is meaningful to compare column densities averaged over ~ kpc scales with those estimated from quasar spectra which probe sub-pc scales due to the steep power spectrum of HI column density fluctuations observed in nearby galaxies.« less
Warden, Stuart J.; Hill, Kathleen M.; Ferira, Ashley J.; Laing, Emma M.; Martin, Berdine R.; Hausman, Dorothy B.; Weaver, Connie M.; Peacock, Munro; Lewis, Richard D.
2014-01-01
Introduction Racial differences in bone structure likely have roots in childhood as bone size develops predominantly during growth. This study aimed to compare cortical bone health within the tibial diaphysis of black and white children in the early stages of puberty, and explore the contributions of biochemical variables in explaining racial variation in cortical bone properties. Methods A cross-sectional study was performed comparing peripheral quantitative computed tomography-derived cortical bone measures of the tibial diaphysis and biochemical variables in 314 participants (n=155 males; n=164 blacks) in the early stages of puberty. Results Blacks had greater cortical volumetric bone mineral density, mass and size compared to whites (all p<0.01), contributing to blacks having 17.0% greater tibial strength (polar strength-strain index [SSIP]) (p<0.001). Turnover markers indicated blacks had higher bone formation (osteocalcin [OC] and bone specific alkaline phosphatase) and lower bone resorption (N-terminal telopeptide) than whites (all p<0.01). Blacks also had lower 25-hydroxyvitamin D [25(OH)D], and higher 1,25-dihydroxyvitamin D [1,25(OH)2D] and parathyroid hormone (PTH) (all p<0.05). There were no correlations between tibial bone properties, and 25(OH)D and PTH in whites (all p≥0.10); however, SSIP was negatively and positively correlated with 25(OH)D and PTH in blacks, respectively (all p≤0.02). Variation in bone cross-sectional area and SSIP attributable to race was partially explained by tibial length, 25(OH)D/PTH and OC. Conclusions Divergence in tibial cortical bone properties between blacks and whites is established by the early stages of puberty with the enhanced cortical bone properties in black children possibly being explained by higher PTH and OC. PMID:23093348
Dénarié, Delphine; Constant, Elodie; Thomas, Thierry
2014-01-01
Objective. The aim of this review is to clarify the usefulness of bone, cartilage, and synovial biomarker in the management of rheumatoid arthritis (RA) therapy in remission. Synovial Biomarkers. High MMP-3 levels are associated with joint progression in RA patients, but there is no data about their utility in clinical remission. IIINys and Glc-Gal-PYD seem to be more specific to synovium, but more studies are required. Cartilage Biomarkers. Unbalance between cartilage break-down biomarkers (urinary CTX II and COMP) and cartilage formation biomarker (PIIANP) was described. This unbalance is also associated with joint destruction and prognosis of destruction. No data are available on patients in remission. Bone Biomarkers. RA activity is correlated with an increase of bone resorption markers such as CTX I, PYD, and TRACP 5b and a decrease of bone formation markers such as OC and BALP. RA therapies seem to improve bone turnover in limiting bone resorption. There is no study about bone marker utility in remission. Conclusion. Biomarkers seem to correlate with RA activity and progression. They also could be used to manage RA therapies, but we need more data on RA remission to predict relapse. PMID:24744505
Management of beta-thalassemia-associated osteoporosis.
Giusti, Andrea; Pinto, Valeria; Forni, Gian Luca; Pilotto, Alberto
2016-03-01
Beta-Thalassemia-associated osteoporosis is a multifactorial and complex condition. Different acquired and genetic factors are involved in its pathogenesis. These factors produce an imbalance in bone remodeling by inhibiting osteoblast activity and increasing osteoclast function, leading to bone loss and increased fracture risk. The management of patients presenting with thalassemia-associated osteoporosis should consist of the implementation of general measures and the prescription of a specific pharmacological agent, with the aim of reducing fracture risk and preventing disability and deterioration of quality of life. General measures include control of anemia, adequate chelation therapy, healthy nutrition and lifestyle, regular exercise, adequate management of comorbid conditions, hormone replacement therapy in patients with hypogonadism, and vitamin D supplementation/therapy. Among the pharmacological agents currently available for the management of osteoporosis in postmenopausal women and men, bisphosphonates have been shown to improve bone mineral density, to reduce bone turnover, and to decrease bone/back pain in patients with thalassemia-associated osteoporosis, with a good profile of safety and tolerability. On the other hand, there are limited experiences with other pharmacological agents (e.g., denosumab or teriparatide). The complexity of this condition presents diagnostic and therapeutic challenges and underscores the importance of a comprehensive and multidisciplinary approach. © 2016 New York Academy of Sciences.
Sheedy, John R; Gooley, Paul R; Nahid, Amsha; Tull, Dedreia L; McConville, Malcolm J; Kukuljan, Sonja; Nowson, Caryl A; Daly, Robin M; Ebeling, Peter R
2014-11-01
The musculoskeletal benefits of calcium and vitamin-D3 supplementation and exercise have been extensively studied, but the effect on metabolism remains contentious. Urine samples were analyzed by (1)H-NMR spectroscopy from participants recruited for an 18-month, randomized controlled trial of a multi-component exercise program and calcium and vitamin-D3 fortified milk consumption. It was shown previously that no increase in musculoskeletal composition was observed for participants assigned to the calcium and vitamin-D3 intervention, but exercise resulted in increased bone mineral density, total lean body mass, and muscle strength. Retrospective metabolomics analysis of urine samples from patients involved in this study revealed no distinct changes in the urinary metabolome in response to the calcium and vitamin-D3 intervention, but significant changes followed the exercise intervention, notably a reduction in creatinine and an increase in choline, guanidinoacetate, and hypoxanthine (p < 0.001, fold change > 1.5). These metabolites are intrinsically involved in anaerobic ATP synthesis, intracellular buffering, and methyl-balance regulation. The exercise intervention had a marked effect on the urine metabolome and markers of muscle turnover but none of these metabolites were obvious markers of bone turnover. Measurement of specific urinary exercise biomarkers may provide a basis for monitoring performance and metabolic response to exercise regimes.
Jafari, Tina; Faghihimani, Elham; Feizi, Awat; Iraj, Bijan; Javanmard, Shaghayegh Haghjooy; Esmaillzadeh, Ahmad; Fallah, Aziz A; Askari, Gholamreza
2016-02-01
Low levels of serum 25-hydroxy vitamin D (25(OH)D) are common in type 2 diabetic patients and cause several complications particularly, in postmenopausal women due to their senile and physiological conditions. This study aimed to assess the effects of vitamin D-fortified low fat yogurt on glycemic status, anthropometric indexes, inflammation, and bone turnover in diabetic postmenopausal women. In a randomized, placebo-controlled, double-blind parallel-group clinical trial, 59 postmenopausal women with type 2 diabetes received fortified yogurt (FY; 2000 IU vitamin D in 100 g/day) or plain yogurt (PY) for 12 weeks. Glycemic markers, anthropometric indexes, inflammatory, and bone turnover markers were assessed at baseline and after 12 weeks. After intervention, in FY group (vs PY group), were observed: significant increase in serum 25(OH)D and decrease of PTH (stable values in PY); significant improvement in serum fasting insulin, HOMA-IR, HOMA-B, QUICKI, and no changes in serum fasting glucose and HbA1c (significant worsening of all indexes in PY); significant improvement in WC, WHR, FM, and no change in weight and BMI (stable values in PY); significant increase of omentin (stable in PY) and decrease of sNTX (significant increase in PY). Final values of glycemic markers (except HbA1c), omentin, and bone turnover markers significantly improved in FY group compared to PY group. Regarding final values of serum 25(OH)D in FY group, subjects were classified in insufficient and sufficient categories. Glycemic status improved more significantly in the insufficient rather than sufficient category; whereas the other parameters had more amelioration in the sufficient category. Daily consumption of 2000 IU vitamin D-fortified yogurt for 12 weeks improved glycemic markers (except HbA1c), anthropometric indexes, inflammation, and bone turnover markers in postmenopausal women with type 2 diabetes. www.irct.ir (IRCT2013110515294N1). Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Villareal, Dennis T; Kotyk, John J; Armamento-Villareal, Reina C; Kenguva, Venkata; Seaman, Pamela; Shahar, Allon; Wald, Michael J; Kleerekoper, Michael; Fontana, Luigi
2011-02-01
Calorie restriction (CR) reduces bone quantity but not bone quality in rodents. Nothing is known regarding the long-term effects of CR with adequate intake of vitamin and minerals on bone quantity and quality in middle-aged lean individuals. In this study, we evaluated body composition, bone mineral density (BMD), and serum markers of bone turnover and inflammation in 32 volunteers who had been eating a CR diet (approximately 35% less calories than controls) for an average of 6.8 ± 5.2 years (mean age 52.7 ± 10.3 years) and 32 age- and sex-matched sedentary controls eating Western diets (WD). In a subgroup of 10 CR and 10 WD volunteers, we also measured trabecular bone (TB) microarchitecture of the distal radius using high-resolution magnetic resonance imaging. We found that the CR volunteers had significantly lower body mass index than the WD volunteers (18.9 ± 1.2 vs. 26.5 ± 2.2 kg m(-2) ; P = 0.0001). BMD of the lumbar spine (0.870 ± 0.11 vs. 1.138 ± 0.12 g cm(-2) , P = 0.0001) and hip (0.806 ± 0.12 vs. 1.047 ± 0.12 g cm(-2) , P = 0.0001) was also lower in the CR than in the WD group. Serum C-terminal telopeptide and bone-specific alkaline phosphatase concentration were similar between groups, while serum C-reactive protein (0.19 ± 0.26 vs. 1.46 ± 1.56 mg L(-1) , P = 0.0001) was lower in the CR group. Trabecular bone microarchitecture parameters such as the erosion index (0.916 ± 0.087 vs. 0.877 ± 0.088; P = 0.739) and surface-to-curve ratio (10.3 ± 1.4 vs. 12.1 ± 2.1, P = 0.440) were not significantly different between groups. These findings suggest that markedly reduced BMD is not associated with significantly reduced bone quality in middle-aged men and women practicing long-term calorie restriction with adequate nutrition.
Rogers, Robert S; Dawson, Andrew W; Wang, Ze; Thyfault, John P; Hinton, Pamela S
2011-11-01
The time course of changes in plasma bone turnover markers following an acute bout of resistance training (RT) or plyometrics (PLY) has not been well characterized. This study is the first to compare the acute response of bone formation and resorption markers to a single bout of RT or PLY. Using a partially randomized, cross-over study design, 12 recreationally active men, aged 43 ± 5 yr, each completed four exercise trials: RT (Fed/Fasted) and PLY (Fed/Fasted). In addition to the RT and PLY trials, 5 of the original 12 participants also completed a fasted, no-exercise control trial to examine time-of-day variation. For each trial, blood was drawn immediately before exercise (PRE), immediately following exercise, and 15 min, 30 min, 1 h, 2 h, and 24 h following PRE for determination of plasma bone-specific alkaline phosphatase (BAP), osteocalcin (OC), tartrate-resistant acid phosphatase 5b (TRAP5b), COOH-terminal telopeptide of type I collagen (CTX), testosterone, parathyroid hormone, and cortisol. A one-factor repeated-measures ANOVA was performed for each trial to detect changes in bone markers during the 2 h following RT or PLY. TRAP5b transiently decreased during the 2 h following all exercise trials (main effect for time, P < 0.05), but returned to PRE concentrations 2 h postexercise. BAP, CTX, and OC remained unchanged, except for reductions in BAP and CTX following PLY-Fasted and PLY-Fed, respectively. During the control trial, BAP decreased, while TRAP5b, CTX, and OC remained unchanged. In general, plasma hormone concentrations decreased during the 2 h following PLY or RT, and cumulative decreases in TRAP5b during the 2 h following exercise were positively correlated with cumulative decreases in parathyroid hormone. The results of the present study suggest that the timing of the measurement of bone turnover markers relative to the last exercise bout is important for detection of exercise-associated changes in bone turnover markers, as the markers returned to preexercise values within 2 h of RT or PLY.
Prevention of disuse osteoporosis: Effect of sodium fluoride during five weeks of bed rest
NASA Technical Reports Server (NTRS)
Schneider, Victor S.
1987-01-01
An attempt was made to modify factors which promote disuse osteoporosis and thereby prevent it from occurring. Since fluoride is currently used to enhance bone formation in the treatment of low turnover osteoporosis, it was hypothesized that if the fluoride ion was available over a long period of time that it would slow the demonstrated loss of calcium by inhibiting bone resorption and enhancing bone formation. This study was used to determine whether oral medication with sodium F will modify or prevent 5 weeks of bed rest induced disuse osteoporosis, to determine the longitudinal effects of 5 weeks of bed rest on PTH, CT and calcitriol, to measure muscle volume changes and metabolic activity by magnetic resonance imaging and magnetic resonance spectroscopy during prolonged bed rest, to measure changes in peak muscle strength and fatigability, and to measure bone turnover in bone biopsies. Subjects were studied during 1 week of equilibration, 4 weeks of control ambulation, 5 weeks of bed rest, and 1 week of reambulation.
Rictor/mTORC2 loss in osteoblasts impairs bone mass and strength.
Liu, Dong-Mei; Zhao, Lin; Liu, Ting-Ting; Jiao, Pei-Lin; Zhao, Dian-Dian; Shih, Mei-Shu; Tao, Bei; Sun, Li-Hao; Zhao, Hong-Yan; Liu, Jian-Min
2016-09-01
Mammalian target of rapamycin (mTOR) is a Ser/Thr kinase conserved through evolution that coordinates extra cellular signals associated with cell growth. Main functions of mTOR present in the form of two complexes, namely mTORC1 and mTORC2, which are distinct in their unique components, raptor and rictor. In the current study, using a Cre/loxp system, we found an anabolic effect of mTORC2 signaling on skeleton. Osteoblast differentiation was reduced, with down-regulation of mTORC2 signaling activity in primary cultures of osteoblasts that did not contain rictor. Mice with a specific deletion of rictor in mature osteoblasts showed a significant reduction in lean mass and bone mineral density by dual energy x-ray absorptiometry analysis. Micro-computed tomography, histomorphometric, and molecular biological analyses revealed a marked impairment of the cortical bone mass and microarchitecture, as well as minor changes in trabecular bone, of the Rictorob(-/-) mice. Cortical bone mass and thickness of the femoral mid-shaft were dramatically reduced, with unusual increases in porosity and marrow area in Rictorob(-/-) mice. Thinner trabeculae were found in the L4 vertebrae with relatively normal structural indices of trabecular numbers and separation. A lower rate of bone turnover was observed, as the consequence of the decreased individual osteoblast activity and bone resorption. Furthermore, these changes were associated with significantly decreased bone biomechanical properties. In conclusion, expression of rictor in osteoblasts is essential for the maintenance of normal bone remodeling and microarchitecture, especially for the maintenance of the cortical bone. Copyright © 2016 Elsevier Inc. All rights reserved.
Johnson, Matthew E; Deliard, Sandra; Zhu, Fengchang; Xia, Qianghua; Wells, Andrew D; Hankenson, Kurt D; Grant, Struan F A
2014-04-01
Genome-wide association studies (GWAS) have demonstrated that genetic variation at the MADS box transcription enhancer factor 2, polypeptide C (MEF2C) locus is robustly associated with bone mineral density, primarily at the femoral neck. MEF2C is a transcription factor known to operate via the Wnt signaling pathway. Our hypothesis was that MEF2C regulates the expression of a set of molecular pathways critical to skeletal function. Drawing on our laboratory and bioinformatic experience with ChIP-seq, we analyzed ChIP-seq data for MEF2C available via the ENCODE project to gain insight in to its global genomic binding pattern. We aligned the ChIP-seq data generated for GM12878 (an established lymphoblastoid cell line) and, using the analysis package HOMER, a total of 17,611 binding sites corresponding to 8,118 known genes were observed. We then performed a pathway analysis of the gene list using Ingenuity. At 5 kb, the gene list yielded 'EIF2 Signaling' as the most significant annotation, with a P value of 5.01 × 10(-26). Moving further out, this category remained the top pathway at 50 and 100 kb, then dropped to just second place at 500 kb and beyond by 'Molecular Mechanisms of Cancer'. In addition, at 50 kb and beyond 'RANK Signaling in Osteoclasts' was a consistent feature and resonates with the main general finding from GWAS of bone density. We also observed that MEF2C binding sites were significantly enriched primarily near inflammation associated genes identified from GWAS; indeed, a similar enrichment for inflammation genes has been reported previously using a similar approach for the vitamin D receptor, an established key regulator of bone turnover. Our analyses point to known connective tissue and skeletal processes but also provide novel insights in to networks involved in skeletal regulation. The fact that a specific GWAS category is enriched points to a possible role of inflammation through which it impacts bone mineral density.
USDA-ARS?s Scientific Manuscript database
Although consuming dietary protein above current recommendations during energy deficit enhances blood lipid profiles and preserves lean body mass, concerns have been raised regarding effects of high-protein diets on bone health. To determine whether calcium homeostasis and bone turnover are affected...
Jackson, Leila W.; Cromer, Barbara A.; Panneerselvamm, Ashok
2010-01-01
Background Blood lead levels (BLLs) have been shown to increase during periods of high bone turnover such as pregnancy and menopause. Objectives We examined the associations between bone turnover and micronutrient intake with BLLs in women 20–85 years of age (n = 2,671) participating in the National Health and Nutrition Examination Survey, 1999–2002. Methods Serum bone-specific alkaline phosphatase (BAP) and urinary cross-linked N-telopeptides (NTx) were measured as markers of bone formation and resorption, respectively. Lead was quantified in whole blood. The association between tertiles of BAP and NTx, and BLLs was examined using linear regression with natural log-transformed BLLs as the dependent variable and interpreted as the percent difference in geometric mean BLLs. Results In adjusted analyses, mean BLLs among postmenopausal women in the upper tertiles of NTx and BAP were 34% [95% confidence interval (CI), 23%–45%] and 30% (95% CI, 17%–43%) higher than BLLs among women in the lowest tertiles of NTx and BAP, respectively. These associations were weaker, but remained statistically significant, among premenopausal women (NTx: 10%; 95% CI, 0.60%–19%; BAP: 14%; 95% CI, 6%–22%). Within tertiles of NTx and BAP, calcium intake above the Dietary Reference Intake (DRI), compared with below the DRI, was associated with lower mean BLLs among postmenopausal women but not premenopausal women, although most of the associations were not statistically significant. We observed similar associations for vitamin D supplement use. Conclusions Bone resorption and bone formation were associated with a significant increase in BLLs among pre-and postmenopausal women. PMID:20688594
[Secondary osteoporosis induced by anticoagulants?].
Riess, H; Loew, A; Himmelreich, G
2001-07-01
Generalized osteoporosis is a result of different causes and pathogenic mechanisms, which often combine forces to become clinically relevant. Among the different exogenic factors, drugs play an important role, frequently in connection with other factors such as immobilization or pregnancy. It has been suggested that anticoagulation therapy with heparins or coumarins may induce osteoporotic changes or enhance the development of osteoporosis for other reasons. According to in vitro experiments, preclinical trials, and clinical investigations, it seems reasonable to assume that heparins induce increased bone loss in a time- and dose-related manner. Low-molecular-weight heparins most likely have less effect on bone turnover when compared to unfractionated heparin. Oral anticoagulation therapy with vitamin K-antagonists is believed to have a weak effect on induction of osteoporosis, but clinical studies are contradictory. In spite of the fact that a relevant effect of these drugs on the induction of osteoporosis is questionable, it must be taken into consideration that anticoagulant drugs may enhance the negative effects on bone density of other risk factors capable of inducing osteoporosis such as immobilization, pregnancy, or endocrinological disorders.
RANKL/Osteoprotegerin System and Bone Turnover in Hashimoto Thyroiditis.
Konca Degertekin, Ceyla; Turhan Iyidir, Ozlem; Aktas Yılmaz, Banu; Elbeg, Sehri; Pasaoglu, Ozge Tugce; Pasaoglu, Hatice; Cakır, Nuri; Arslan, Metin
2016-10-01
Hypothyroidism is associated with changes in bone metabolism. The impact of hypothyroidism and the associated autoimmunity on the mediators of bone turnover in Hashimoto's thyroiditis (HT) is not known. In this study, we assessed the levels of OPG, RANKL, and IL-6 along with markers of bone formation as osteocalcin (OC) and markers of bone resorption as type 1 collagen C telopeptide (CTX) and tartrate-resistant acid phosphatase isoform 5b (TRAcP 5b) in 30 hypothyroid and 30 euthyroid premenopausal HT patients and 20 healthy premenopausal controls. We found that TRAcP 5b (p = 0.006), CTX (p = 0.01), OC (p = 0.017), and IL-6 (p < 0.001) levels were lower in the hypothyroid group compared to euthyroid HT patients and controls. OPG levels were higher (p < 0.001) and RANKL levels were lower (p = 0.021) in hypothyroid and euthyroid HT patients compared to controls. TSH was negatively correlated with IL-6 (rho = -0.434, p < 0.001), OC (rho = -0.313, p = 0.006), TRAcP 5b (rho = -0.335, p = 0.003), and positively correlated with OPG (rho = 0.248, p = 0.029). RANKL/OPG ratio was independently associated with the presence of HT. In conclusion, bone turnover is slowed down by hypothyroidism in premenopausal patients with HT. Thyroid autoimmunity might have a unique impact on OPG/RANKL levels apart from the resultant hypothyroidism.
USDA-ARS?s Scientific Manuscript database
High protein diets may attenuate bone loss during energy restriction (ER). The objective of the current study was to determine whether high protein diets suppress bone turnover and improve bone quality in rats during ER and whether dietary protein source affects this relationship. Eighty 12-week o...
[Low bone mineral density in juvenile idiopathic arthritis: Prevalence and related factors].
Galindo Zavala, Rocío; Núñez Cuadros, Esmeralda; Martín Pedraz, Laura; Díaz-Cordovés Rego, Gisela; Sierra Salinas, Carlos; Urda Cardona, Antonio
2017-10-01
Height adjustment is currently recommended for Z-score bone mineral density (BMD) assessed by dual energy X-ray absorptiometry. At present there are no studies that evaluate the prevalence of low BMD in paediatric patients with Juvenile Idiopathic Arthritis (JIA) in Spain following current recommendations. To evaluate low BMD in JIA in paediatric patients with JIA in Spain following the latest recommendations, as well as to assess associated factors. Observational cross-sectional study of Spanish JIA patients from 5 to 16 years-old, followed-up in a Paediatric Rheumatology Unit between July 2014 and July 2015. Anthropometric, clinical and treatment data were recorded. Dual energy X-ray absorptiometry, and bone metabolism parameters were collected, and a completed diet and exercise questionnaire was obtained. A total of 92 children participated. The population prevalence estimation of low BMD was less than 5% (95% CI). A significant positive correlation was found in the multiple linear regression analysis between the body mass index percentile (B: 0.021; P<.001) and lean mass index (B: 0.0002; P=.012), and BMD Z-score adjusted for height (Z-SAH). A significant negative correlation was found between fat mass index (B: -0.0001; P=.018) and serum type I collagen N-propeptide (B: -0,0006; P=.036) and Z-SAH. Low BMD prevalence in JIA patients in our population is low. An adequate nutritional status and the prevalence of lean over fat mass seem to promote the acquisition of bone mass. Those JIA patients with lower BMD could be subjected to an increase of bone turnover. Copyright © 2016 Asociación Española de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.
Lambert, Laura J; Challa, Anil K; Niu, Aidi; Zhou, Lihua; Tucholski, Janusz; Johnson, Maria S; Nagy, Tim R; Eberhardt, Alan W; Estep, Patrick N; Kesterson, Robert A; Grams, Jayleen M
2016-10-01
Osteocalcin, also known as bone γ-carboxyglutamate protein (Bglap), is expressed by osteoblasts and is commonly used as a clinical marker of bone turnover. A mouse model of osteocalcin deficiency has implicated osteocalcin as a mediator of changes to the skeleton, endocrine system, reproductive organs and central nervous system. However, differences between mouse and human osteocalcin at both the genome and protein levels have challenged the validity of extrapolating findings from the osteocalcin-deficient mouse model to human disease. The rat osteocalcin (Bglap) gene locus shares greater synteny with that of humans. To further examine the role of osteocalcin in disease, we created a rat model with complete loss of osteocalcin using the CRISPR/Cas9 system. Rat osteocalcin was modified by injection of CRISPR/Cas9 mRNA into the pronuclei of fertilized single cell Sprague-Dawley embryos, and animals were bred to homozygosity and compound heterozygosity for the mutant alleles. Dual-energy X-ray absorptiometry (DXA), glucose tolerance testing (GTT), insulin tolerance testing (ITT), microcomputed tomography (µCT), and a three-point break biomechanical assay were performed on the excised femurs at 5 months of age. Complete loss of osteocalcin resulted in bones with significantly increased trabecular thickness, density and volume. Cortical bone volume and density were not increased in null animals. The bones had improved functional quality as evidenced by an increase in failure load during the biomechanical stress assay. Differences in glucose homeostasis were observed between groups, but there were no differences in body weight or composition. This rat model of complete loss of osteocalcin provides a platform for further understanding the role of osteocalcin in disease, and it is a novel model of increased bone formation with potential utility in osteoporosis and osteoarthritis research. © 2016. Published by The Company of Biologists Ltd.
Polak-Jonkisz, Dorota; Zwolińska, Danuta; Nahaczewska, Wiesława
2010-01-01
Chronic kidney disease (CKD) leads to bone and mineral complications, which are manifested, among others, by hyperparathyroidism, calcium-phosphate and vitamin D balance disturbances. The results of investigation assessing the usefulness of CAP/CIP ratio, (cyclase activating PTH/cyclase inactive PTH) as a marker of bone turnover and bone disturbances in this group of patients are contradictory. was to estimate the concentration of CAP and CIP of parathormone, connection with selected calcium-phosphate balance parameters and usefulness of CAP/CIP ratio to differentiate bone mineral density in patients with CKD treated with repeated haemodialysis. The study included 31 children aged 5 to 18 years. Group I - 15 haemodialysed children. Group II - 16 healthy children. The patients underwent the following serum measurements: calcium concentration (Ca), inorganic phosphate (P), 1.25-dihydroxyvitamin D, parathormone (intact PTH), and CAP, CIP were evaluated with Scantibodies Laboratory Inc test. In group I the densitometric examination was done using the Lunar DPX-L system, performing the overall bone measurement. In children from group I the average values of iPTH concentration and both CIP and CAP components were significantly elevated (p<0.05) as compared to group II. CAP/CIP ratio in group I was <1; in healthy children >1. Average concentrations of Ca and 1.25(OH)2D in serum of group I were lowered, although without statistical significance in comparison with group II. CAP/CIP ratio does not differentiate the children with bone disturbances. Densitometric examination revealed osteopenic changes in 3 children and osteoporosis in 2 children. There were no statistically significant correlations between the examined parameters. 1. The CIP/CAP ratio does not differentiate the bone mineral density status and it is not associated with biochemical parameters of calcium-phosphate metabolism. 2. This indicates its poor diagnostic utility with reference to mineralization disturbances in children with chronic kidney disease.
Effect of type 2 diabetes-related non-enzymatic glycation on bone biomechanical properties
Karim, Lamya; Bouxsein, Mary L.
2015-01-01
There is clear evidence that patients with type 2 diabetes mellitus (T2D) have increased fracture risk, despite having high bone mineral density (BMD) and body mass index (BMI). Thus, poor bone quality has been implicated as a mechanism contributing to diabetic skeletal fragility. Poor bone quality in T2D may result from the accumulation of advanced glycation end-products (AGEs), which are post-translational modifications of collagen resulting from a spontaneous reaction between extracellular sugars and amino acid residues on collagen fibers. This review discusses what is known and what is not known regarding AGE accumulation and diabetic skeletal fragility, examining evidence from in vitro experiments to simulate a diabetic state, ex vivo studies in normal and diabetic human bone, and diabetic animal models. Key findings in the literature are that AGEs increase with age, affect bone cell behavior, and are altered with changes in bone turnover. Further, they affect bone mechanical properties and microdamage accumulation, and can be inhibited in vitro by various inhibitors and breakers (e.g. aminoguanidine, N-Phenacylthiazolium Bromide, vitamin B6). While a few studies report higher AGEs in diabetic animal models, there is little evidence of AGE accumulation in bone from diabetic patients. There are several limitations and inconsistencies in the literature that should be noted and studied in greater depth including understanding the discrepancies between glycation levels across reported studies, clarifying differences in AGEs in cortical versus cancellous bone, and improving the very limited data available regarding glycation content in diabetic animal and human bone, and its corresponding effect on bone material properties in T2D. PMID:26211993
Perinatal collagen turnover markers in intrauterine growth restriction.
Gourgiotis, Demetrios; Briana, Despina D; Georgiadis, Anestis; Boutsikou, Maria; Baka, Stavroula; Marmarinos, Antonios; Hassiakos, Demetrios; Malamitsi-Puchner, Ariadne
2012-09-01
To investigate bone and connective tissue collagen turnover in intrauterine growth restricted (IUGR) pregnancies, by determining circulating markers of type I collagen synthesis (carboxy-terminal propeptide of type I procollagen [PICP], representing bone formation) and degradation (cross-linked telopeptide of type I collagen [ICTP], representing bone resorption) as well as type III collagen synthesis (N-terminal propeptide of type-III procollagen [PIIINP], reflecting growth and tissue maturity). Plasma PICP, ICTP and PIIINP concentrations were measured in 40 mothers and their 20 asymmetric IUGR and 20 appropriate for gestational age (AGA) full-term fetuses and neonates on postnatal day 1-(N1) and 4-(N4). Fetal PICP, fetal and N4 ICTP, as well as fetal, N1 and N4 PIIINP concentrations were higher in the IUGR group (p ≤ 0.038, in all cases). In both groups, maternal PICP, ICTP and PIIINP concentrations were lower than fetal, N1 and N4 ones (p<0.001, in each case). Type I collagen turnover is enhanced in IUGR than AGA fetuses/neonates. Similarly, fetal/neonatal PIIINP concentrations are elevated in IUGR, probably due to stress, responsible for induction of tissue maturation, and/or to impaired excretory renal function, leading to reduced protein clearance. Fetal/neonatal PICP, ICTP and PIIINP concentrations are higher than maternal concentrations, possibly reflecting increased skeletal growth and collagen turnover in the former.
Evaluation of bone, nutrition, and physical function in Shorinji Kempo athletes
Sumida, Sachiko; Iwamoto, Jun; Kamide, Naoto; Otani, Toshiro
2012-01-01
The objectives of this study were to reveal the proportion of Shorinji Kempo athletes who had suffered fractures related to sports activities, and to evaluate bone mass, bone turnover, nutritional status, and physical function in these athletes. A medical examination was carried out for 16 Shorinji Kempo collegiate athletes. Seven athletes (43.8%) had experienced a sports-related traumatic fracture during Shorinji Kempo practice. Four athletes (25.0%) had a lower speed of sound (% young adult mean < 100%), and five athletes (31.3%) had higher levels of urinary cross-linked N-terminal telopeptides of type 1 collagen (a bone turnover marker) than the age-adjusted standard values. All the athletes had a lower daily calcium intake than the adequate intake, 12 (75.0%) had a lower daily vitamin D intake, and 15 (93.8%) had a lower daily vitamin K intake. Significant positive correlations were found between the vertical jump height, and the daily energy, and protein intakes. Results suggest that fractures are a common injury in Shorinji Kempo athletes, and that some Shorinji Kempo athletes need to improve their bone mass, bone metabolism, and nutritional status in order to strengthen bone and improve physical function. PMID:24198593
Lack of association between vitamin D receptor genotypes and osteoporosis in Koreans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Sung Kil; Park, Young Suk; Park, Jae Min
To evaluate whether common allelic variants in the gene encoding the vitamin D receptor (VDR) were useful in predicting differences in bone mineral density (BMD) and bone turnover rate in Koreans, we analyzed the restriction pattern of the polymerase chain reaction product of the VDR gene with the Bsm1 enzyme and serum osteocalcin in patients with osteoporosis. The prevalence of the BB genotype in the controls was extremely low when compared with that in other reports: the BB, Bb, and bb genotypes accounted for 1.4%, 12.9%, and 85.7%, respectively. Only 2.8% of those patients with osteoporosis had the BB genotype.more » In contrast, 12.5% had the Bb genotype, and 84.7% had the bb genotype. The prevalence of the BB genotype in patients with severe osteoporosis was also extremely low: the BB, Bb and bb genotypes accounted for 0%, 12.4%, and 87.6%, respectively. Compared with the mean serum osteocalcin level of the pre- and post-menopausal controls, the levels in patients with severe osteoporosis was higher, and this was statistically significant. As expected, a negative correlation was observed between the serum osteocalcin levels and the age-matched Z scores for spinal BMD. However, no correlation was found in the femoral neck BMD. These results suggest that restriction fragment length polymorphism analysis of the VDR gene with a Bsm1 restriction enzyme in Koreans is not helpful for early detection of patients at risk of developing osteoporosis. This is true even in patients with a high rate of bone turnover. Our data suggest extreme ethnic differences in the pattern of prevalence of the VDR allele. 19 refs., 5 figs., 2 tabs.« less
Osteomesopyknosis: report of a new case with bone histology.
Hardouin, P; Flautre, B; Sutter, B; Leclet, H; Grardel, B; Fauquert, P
1994-01-01
A new case of osteomesopyknosis, a rare autosomal dominant axial osteosclerosis is reported, with 4 affected members of the same family. Biochemical investigations, bone mineral content (BMC) measurement, 99mTc HMDP bone scan and microscopy of iliac crest bone and femoral head have been performed on 1 subject. A marked increase of BMC was found, without abnormality of biochemical data. Microscopy of bone showed an increase of trabecular thickness, and a low rate of bone turnover. No abnormality of mineralization was found on microradiographs.
Dong, Bingzi; Endo, Itsuro; Ohnishi, Yukiyo; Kondo, Takeshi; Hasegawa, Tomoka; Amizuka, Norio; Kiyonari, Hiroshi; Shioi, Go; Abe, Masahiro; Fukumoto, Seiji; Matsumoto, Toshio
2015-11-01
Activating mutations of calcium-sensing receptor (CaSR) cause autosomal dominant hypocalcemia (ADH). ADH patients develop hypocalcemia, hyperphosphatemia, and hypercalciuria, similar to the clinical features of hypoparathyroidism. The current treatment of ADH is similar to the other forms of hypoparathyroidism, using active vitamin D3 or parathyroid hormone (PTH). However, these treatments aggravate hypercalciuria and renal calcification. Thus, new therapeutic strategies for ADH are needed. Calcilytics are allosteric antagonists of CaSR, and may be effective for the treatment of ADH caused by activating mutations of CaSR. In order to examine the effect of calcilytic JTT-305/MK-5442 on CaSR harboring activating mutations in the extracellular and transmembrane domains in vitro, we first transfected a mutated CaSR gene into HEK cells. JTT-305/MK-5442 suppressed the hypersensitivity to extracellular Ca(2+) of HEK cells transfected with the CaSR gene with activating mutations in the extracellular and transmembrane domains. We then selected two activating mutations locating in the extracellular (C129S) and transmembrane (A843E) domains, and generated two strains of CaSR knock-in mice to build an ADH mouse model. Both mutant mice mimicked almost all the clinical features of human ADH. JTT-305/MK-5442 treatment in vivo increased urinary cAMP excretion, improved serum and urinary calcium and phosphate levels by stimulating endogenous PTH secretion, and prevented renal calcification. In contrast, PTH(1-34) treatment normalized serum calcium and phosphate but could not reduce hypercalciuria or renal calcification. CaSR knock-in mice exhibited low bone turnover due to the deficiency of PTH, and JTT-305/MK-5442 as well as PTH(1-34) increased bone turnover and bone mineral density (BMD) in these mice. These results demonstrate that calcilytics can reverse almost all the phenotypes of ADH including hypercalciuria and renal calcification, and suggest that calcilytics can become a novel therapeutic agent for ADH. © 2015 American Society for Bone and Mineral Research.
The Effects of Season-Long Vitamin D Supplementation on Collegiate Swimmers and Divers
Lewis, Regina M.; Redzic, Maja; Thomas, D. Travis
2015-01-01
The purpose of this 6-month randomized, placebo-controlled trial was to determine the effect of season-long (September–March) vitamin D supplementation on changes in vitamin D status, which is measured as 25(OH) D, body composition, inflammation, and frequency of illness and injury. Forty-five male and female athletes were randomized to 4,000 IU vitamin D (n = 23) or placebo (n = 22). Bone turnover markers (NTx and BS AP), 25(OH)D, and inflammatory cytokines (TNF-alpha, IL-6, and ILl-β) were measured at baseline, midpoint, and endpoint. Body composition was assessed by DXA and injury and illness data were collected. All athletes had sufficient 25(OH)D (> 32 ng/ml) at baseline (mean: 57 ng/ml). At midpoint and endpoint, 13% and 16% of the total sample had 25(OH)D < 32 ng/ml, respectively. 25(OH)D was not positively correlated with bone mineral density (BMD) in the total body, proximal dual femur, or lumbar spine. In men, total body (p = .04) and trunk (p = .04) mineral-free lean mass (MFL) were positively correlated with 25(OH)D. In women, right femoral neck BMD (p = .02) was positively correlated with 25(OH)D. 25(OH)D did not correlate with changes in bone turnover markers or inflammatory cytokines. Illness (n = 1) and injury (n = 13) were not related to 25(OH)D; however, 77% of injuries coincided with decreases in 25(OH)D. Our data suggests that 4,000 IU vitamin D supplementation is an inexpensive intervention that effectively increased 25(OH)D, which was positively correlated to bone measures in the proximal dual femur and MFL. Future studies with larger sample sizes and improved supplement compliance are needed to expand our understanding of the effects of vitamin D supplementation in athletes. PMID:23475128
Ammann, Patrick; Brennan, Tara C; Mekraldi, Samia; Aubert, Michel L; Rizzoli, René
2010-06-01
Isocaloric protein undernutrition is associated with decreased bone mass and decreased bone strength, together with lower IGF-I levels. It remains unclear whether administration of growth hormone (GH) corrects these alterations in bone metabolism. Six-month-old female rats were fed isocaloric diets containing either 2.5% or 15% casein for 2 weeks. Bovine growth hormone (bGH, 0.5 or 2.5mg/kg of body weight) or vehicle was then administered as subcutaneous injections, twice daily, to rats on either diet for 4 weeks. At the proximal tibia, analysis of bone mineral density (BMD), maximal load and histomorphometry were performed. In addition, urinary deoxypyridinoline, plasma osteocalcin and IGF-I concentrations were measured. Weight was monitored weekly. bGH caused a dose-dependent increase in plasma IGF-I regardless of the dietary protein content. However, bGH dose-dependently decreased BMD and bone strength in rats fed the low-protein diet. There was no significant effect of bGH on BMD in rats fed the normal protein diet within this short-term treatment period, however bone formation as detected by histomorphometry was improved in this group but not the low-protein group. Osteoclast surface was increased in the low-protein bGH-treated animals only. Changes in bone turnover markers were detectable under both normal and low-protein diets. These results emphasize the major importance of dietary protein intake in the bone response to short-term GH administration, and highlight the need for further investigation into the effects of GH treatment in patients with reduced protein intake. Copyright 2010 Elsevier Inc. All rights reserved.
Wang, Yan; Lin, Bo
2012-01-01
It is unclear whether the new anti-catabolic agent denosumab represents a viable alternative to the widely used anti-catabolic agent pamidronate in the treatment of Multiple Myeloma (MM)-induced bone disease. This lack of clarity primarily stems from the lack of sufficient clinical investigations, which are costly and time consuming. However, in silico investigations require less time and expense, suggesting that they may be a useful complement to traditional clinical investigations. In this paper, we aim to (i) develop integrated computational models that are suitable for investigating the effects of pamidronate and denosumab on MM-induced bone disease and (ii) evaluate the responses to pamidronate and denosumab treatments using these integrated models. To achieve these goals, pharmacokinetic models of pamidronate and denosumab are first developed and then calibrated and validated using different clinical datasets. Next, the integrated computational models are developed by incorporating the simulated transient concentrations of pamidronate and denosumab and simulations of their actions on the MM-bone compartment into the previously proposed MM-bone model. These integrated models are further calibrated and validated by different clinical datasets so that they are suitable to be applied to investigate the responses to the pamidronate and denosumab treatments. Finally, these responses are evaluated by quantifying the bone volume, bone turnover, and MM-cell density. This evaluation identifies four denosumab regimes that potentially produce an overall improved bone-related response compared with the recommended pamidronate regime. This in silico investigation supports the idea that denosumab represents an appropriate alternative to pamidronate in the treatment of MM-induced bone disease. PMID:23028650