Unusual chemical compositions of noctilucent-cloud particle nuclei
NASA Technical Reports Server (NTRS)
Hemenway, C. L.
1973-01-01
Two sounding rocket payloads were launched from the ESRO range in Sweden during a noctilucent cloud display. Large numbers of submicron particles were collected, most of which appear to be made up of a high density material coated with a low density material. Typical electron micrographs are shown. Particle chemical compositions have been measured by use of dispersive X-ray analysis equipment attached to an electron microscope and have revealed that most of the high density particle nuclei have atomic weights greater than iron.
Nuopponen, Mari H; Birch, Gillian M; Sykes, Rob J; Lee, Steve J; Stewart, Derek
2006-01-11
Sitka spruce (Picea sitchensis) samples (491) from 50 different clones as well as 24 different tropical hardwoods and 20 Scots pine (Pinus sylvestris) samples were used to construct diffuse reflectance mid-infrared Fourier transform (DRIFT-MIR) based partial least squares (PLS) calibrations on lignin, cellulose, and wood resin contents and densities. Calibrations for density, lignin, and cellulose were established for all wood species combined into one data set as well as for the separate Sitka spruce data set. Relationships between wood resin and MIR data were constructed for the Sitka spruce data set as well as the combined Scots pine and Sitka spruce data sets. Calibrations containing only five wavenumbers instead of spectral ranges 4000-2800 and 1800-700 cm(-1) were also established. In addition, chemical factors contributing to wood density were studied. Chemical composition and density assessed from DRIFT-MIR calibrations had R2 and Q2 values in the ranges of 0.6-0.9 and 0.6-0.8, respectively. The PLS models gave residual mean squares error of prediction (RMSEP) values of 1.6-1.9, 2.8-3.7, and 0.4 for lignin, cellulose, and wood resin contents, respectively. Density test sets had RMSEP values ranging from 50 to 56. Reduced amount of wavenumbers can be utilized to predict the chemical composition and density of a wood, which should allow measurements of these properties using a hand-held device. MIR spectral data indicated that low-density samples had somewhat higher lignin contents than high-density samples. Correspondingly, high-density samples contained slightly more polysaccharides than low-density samples. This observation was consistent with the wet chemical data.
Zi, Xuejuan; Li, Mao; Zhou, Hanlin; Tang, Jun; Cai, Yimin
2017-12-01
The study explored the dynamics of shearing force and its correlation with chemical compositions and in vitro dry matter digestibility (IVDMD) of stylo. The shearing force, diameter, linear density, chemical composition, and IVDMD of different height stylo stem were investigated. Linear regression analysis was done to determine the relationships between the shearing force and cut height, diameter, chemical composition, or IVDMD. The results showed that shearing force of stylo stem increased with plant height increasing and the crude protein (CP) content and IVDMD decreased but fiber content increased over time, resulting in decreased forage value. In addition, tall stem had greater shearing force than short stem. Moreover, shearing force is positively correlated with stem diameter, linear density and fiber fraction, but negatively correlated with CP content and IVDMD. Overall, shearing force is an indicator more direct, easier and faster to measure than chemical composition and digestibility for evaluation of forage nutritive value related to animal performance. Therefore, it can be used to evaluate the nutritive value of stylo.
Guerfel, Mokhtar; Ben Mansour, Mohamed; Ouni, Youssef; Guido, Flamini; Boujnah, Dalenda; Zarrouk, Mokhtar
2012-01-01
The present study focused on the comparison the chemical composition of virgin olive oil samples obtained from fruits of the main Tunisian olive cultivar (Chemlali) grown in four planting densities (156, 100, 69, and 51 trees ha−1). Despite the variability in the triacylglycerols and volatile compounds composition, the quality indices (free fatty acids, peroxide value, and spectrophotometric indices K232 and K270) all of the virgin olive oils samples studied met the commercial standards. Decanal was the major constituent, accounting for about 30% of the whole volatiles. Moreover, the chemical composition of the volatile fraction of the oil from fruits of trees grown at the planting density of 156, 100, and 51 trees ha−1 was also characterised by the preeminence of 1-hexanol, while oils from fruits of trees grown at the planting density of 69 trees ha−1 had higher content of (E)-2-hexenal (20.3%). Our results confirm that planting density is a crucial parameter that may influence the quality of olive oils. PMID:22629139
Biological resistance of polyethylene composites made with chemically modified fiber or flour
Rebecca E. Ibach; Craig M. Clemons
2002-01-01
The role of moisture in the biological decay of wood-plastic composites was investigated. Southern pine wood fiber and ponderosa pine wood flour were chemically modified using either acetic anhydride (AA), butylene oxide (BO), or propylene oxide (PO). A 50:50 mixture of high density polyethylene and either chemically modified fiber or flour, or untreated fiber or flour...
Thermal Stress Effect on Density Changes of Hemp Hurds Composites
NASA Astrophysics Data System (ADS)
Schwarzova, Ivana; Cigasova, Julia; Stevulova, Nadezda
2016-12-01
The aim of this article is to study the behavior of prepared biocomposites based on hemp hurds as a filling agent in composite system. In addition to the filler and water, an alternative binder, called MgO-cement was used. For this objective were prepared three types of samples; samples based on untreated hemp hurds as a referential material and samples based on chemically (with NaOH solution) and physically (by ultrasonic procedure) treated hemp hurds. The thermal stress effect on bulk density changes of hemp hurds composites was monitored. Gradual increase in temperature led to composites density reduction of 30-40 %. This process is connected with mass loss of the adsorbed moisture and physically bound water and also with degradation of organic compounds present in hemp hurds aggregates such as pectin, hemicelluloses and cellulose. Therefore the changes in the chemical composition of treated hemp hurds in comparison to original sample and its thermal decomposition were also studied.
Electronic properties of crystalline Ge1-xSbxTey thin films
NASA Astrophysics Data System (ADS)
Fallica, Roberto; Volpe, Flavio; Longo, Massimo; Wiemer, Claudia; Salicio, Olivier; Abrutis, Adulfas
2012-09-01
Ge1-xSbxTey thin films, grown by metalorganic and hot-wire liquid injection chemical vapor deposition in different crystalline phases, are investigated to determine resistivity, carrier density, and carrier mobility in the 4.2-300 K temperature range. It is found that all these chalcogenides exhibit p-type conduction, high carrier density (>2 . 1020 cm-3), and no carrier freeze-out, regardless of composition. Low-temperature mobility data show that both chemical composition and growth technique affect the defect density and, in turn, the carrier scattering mechanisms. In this regard, charge carrier mobility is analyzed according to semi-empirical scattering models and an interpretation is provided.
Tozin, Luiz R S; Marques, Marcia O M; Rodrigues, Tatiane M
2015-01-01
The essential oils from leaves and inflorescences of Lippia origanoides Kunth present aromatic and medicinal potential and have been used to treat several diseases, including melanoma. In Brazil, L. origanoides is commonly found in campo cerrado and cerrado stricto sensu, physiognomies featured mainly by the differential light conditions to which short and medium-sized plants are subjected. Our aim was to investigate the glandular trichome density and the yield and chemical composition of the essential oils in leaves and inflorescences of L. origanoides from campo cerrado and cerrado stricto sensu. For glandular density analysis, leaves and inflorescences were processed according to conventional techniques for scanning electron microscopy. The essential oils of leaves and inflorescences were obtained by hydrodistillation and identified with gas chromatography. Bracts and sepals showed the highest glandular density, followed by petals and leaves. The glandular density in the abaxial leaf surface was higher in individuals from the campo cerrado. In both populations the essential oil yield was higher in inflorescences than in leaves. The chemical composition of the essential oils varied among individuals from different areas and inside a same population. Our results demonstrated the chemical plasticity of L. origanoides suggesting the importance of monitoring its popular use.
NASA Astrophysics Data System (ADS)
Sarrafzadeh, M.; Hastie, D. R.
2013-12-01
Biogenic volatile organic compounds (VOC) are emitted in large quantities into the atmosphere. These VOC, which includes β-pinene, can react to produce secondary organic aerosols (SOA), which contribute to a substantial fraction of ambient organic aerosols and are known to adversely affect visibility, climate and health. Despite this, the current knowledge regarding the SOA composition, their physical properties and the chemical aging processes they undergo in the atmosphere is limited. In this study, chemical aging of SOA generated from the photooxidation of β-pinene was investigated in the York University smog chamber. The formation and aging of both gas and particle phase products were analyzed using an atmospheric pressure chemical ionization triple quadrupole mass spectrometer. The density of secondary organic matter was also simultaneously measured over the course of the aging experiments, allowing us to improve our understanding in changes in particle composition that may occur. In addition, particle phase and shape was investigated for generated particles from β-pinene oxidation by scanning electron microscope (SEM). Results of this work, including particle density and morphology will be presented as well as comparisons of gas and particle phase products time profiles during aging.
NASA Astrophysics Data System (ADS)
Guerri, Mattia; Cammarano, Fabio
2014-05-01
Seismic velocities - density relationship for the Earth's crust: effects of chemical compositions, amount of water, and implications on gravity and topography Mattia Guerri and Fabio Cammarano Department of Geosciences and Natural Resource Management, Section of Geology, University of Copenhagen, Denmark. A good knowledge of the Earth's crust is not only important to understand its formation and dynamics, but also essential to infer mantle seismic structure, dynamic topography and location of seismic events. Global and local crustal models available (Bassin et al., 2000; Nataf & Ricard, 1996; Molinari & Morelli, 2011) are based on VP-density empirical relationships that do not fully exploit our knowledge on mineral phases forming crustal rocks and their compositions. We assess the effects of various average crustal chemical compositions on the conversion from seismic velocities to density, also testing the influence of water. We consider mineralogies at thermodynamic equilibrium and reference mineral assemblages at given P-T conditions to account for metastability. Stable mineral phases at equilibrium have been computed with the revised Holland and Powell (2002) EOS and thermodynamic database implemented in PerpleX (Connolly 2005). We have computed models of physical properties for the crust following two approaches, i) calculation of seismic velocities and density by assuming the same layers structure of the model CRUST 2.0 (Bassin et al., 2000) and a 3-D thermal structure based on heat-flow measurements; ii) interpretation of the Vp model reported in CRUST 2.0 to obtain density and shear wave velocity for the crustal layers, using the Vp-density relations obtained with the thermodynamic modeling. The obtained density models and CRUST 2.0 one have been used to calculate isostatic topography and gravity field. Our main results consist in, i) phase transitions have a strong effect on the physical properties of crustal rocks, in particular on seismic velocities; ii) models based on different crustal chemical compositions show strong variations on both seismic properties and density; iii) the amount of water is a main factor in determining the physical properties of crustal rocks, drastically changing the phase stability in the mineralogical assemblages; iii) the differences between the various density models that we obtained, and the variations between them and CRUST2.0, translate into strong effects for the calculated isostatic topography and gravity field. Our approach, dealing directly with chemical compositions, is suitable to quantitatively investigate compositional heterogeneity in the Earth's crust. References - Bassin, C., Laske, G. & Masters, G., 2000. The current limits of resolution for surface wave tomography in North America, EOS, Trans. Am. Geophys. Un., 81, F897. - Nataf, H. & Ricard, Y., 1996. 3SMAC: an a priori tomographic model of the upper mantle based on geophysical modeling, Phys. Earth planet. Inter., 95(1-2), 101-122. - Molinari, I. & Morelli, A., 2011. Epcrust: a reference crustal model for the European Plate, Gepohys. J. Int., 185, 352-364. - Connolly JAD (2005) Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth and Planetary Science Letters 236:524-541.
Study of chloride ion transport of composite by using cement and starch as a binder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armynah, Bidayatul; Halide, Halmar; Zahrawani,
This study presents the chemical bonding and the structural properties of composites from accelerator chloride test migration (ACTM). The volume fractions between binder (cement and starch) and charcoal in composites are 20:80 and 60:40. The effect of the binder to the chemical composition, chemical bonding, and structural properties before and after chloride ion passing through the composites was determined by X-ray fluorescence (XRF), by Fourier transform infra-red (FTIR), and x-ray diffraction (XRD), respectively. From the XRD data, XRF data, and the FTIR data shows the amount of chemical composition, the type of binding, and the structure of composites are dependingmore » on the type of binder. The amount of chloride migration using starch as binder is higher than that of cement as a binder due to the density effects.« less
TU-CD-207-01: Characterization of Breast Tissue Composition Using Spectral Mammography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, H; Cho, H; Kumar, N
Purpose: To investigate the feasibility of characterizing the chemical composition of breast tissue, in terms of water and lipid, by using spectral mammography in simulation and postmortem studies. Methods: Analytical simulations were performed to obtain low- and high-energy signals of breast tissue based on previously reported water, lipid, and protein contents. Dual-energy decomposition was used to characterize the simulated breast tissue into water and lipid basis materials and the measured water density was compared to the known value. In experimental studies, postmortem breasts were imaged with a spectral mammography system based on a scanning multi-slit Si strip photon-counting detector. Low-more » and high-energy images were acquired simultaneously from a single exposure by sorting the recorded photons into the corresponding energy bins. Dual-energy material decomposition of the low- and high-energy images yielded individual pixel measurements of breast tissue composition in terms of water and lipid thicknesses. After imaging, each postmortem breast was chemically decomposed into water, lipid and protein. The water density calculated from chemical analysis was used as the reference gold standard. Correlation of the water density measurements between spectral mammography and chemical analysis was analyzed using linear regression. Results: Both simulation and postmortem studies showed good linear correlation between the decomposed water thickness using spectral mammography and chemical analysis. The slope of the linear fitting function in the simulation and postmortem studies were 1.15 and 1.21, respectively. Conclusion: The results indicate that breast tissue composition, in terms of water and lipid, can be accurately measured using spectral mammography. Quantitative breast tissue composition can potentially be used to stratify patients according to their breast cancer risk.« less
Impact of the material composition on proton range variation - A Monte Carlo study
NASA Astrophysics Data System (ADS)
Wu, S. W.; Tung, C. J.; Lee, C. C.; Fan, K. H.; Huang, H. C.; Chao, T. C.
2015-11-01
In this study, we used the Geant4 toolkit to demonstrate the impacts of the material composition of tissues on proton range variation. Bragg curves of different materials subjected to a 250 MeV mono-energy proton beam were simulated and compared. These simulated materials included adipose, heart, brain, cartilage, cortical bone and water. The results showed that there was significant proton range deviation between Bragg curves, especially for cortical bone. The R50 values for a 250 MeV proton beam were approximately 39.55 cm, 35.52 cm, 37.00 cm, 36.51 cm, 36.72 cm, 22.53 cm, and 38.52 cm in the phantoms that were composed completely of adipose, cartilage, tissue, heart, brain, cortical bone, and water, respectively. Mass density and electron density were used to scale the proton range for each material; electron density provided better range scaling. In addition, a similar comparison was performed by artificially setting all material density to 1.0 g/cm3 to evaluate the range deviation due to chemical components alone. Tissue heterogeneity effects due to density variation were more significant, and less significant for chemical composition variation unless the Z/A was very different.
Boday, Dylan J; Stover, Robert J; Muriithi, Beatrice; Keller, Michael W; Wertz, Jason T; Defriend Obrey, Kimberly A; Loy, Douglas A
2009-07-01
Strong polymer-silica aerogel composites were prepared by chemical vapor deposition of cyanoacrylate monomers onto amine-modified aerogels. Amine-modified silica aerogels were prepared by copolymerizing small amounts of (aminopropyl)triethoxysilane with tetraethoxysilane. After silation of the aminated gels with hexamethyldisilazane, they were dried as aerogels using supercritical carbon dioxide processing. The resulting aerogels had only the amine groups as initiators for the cyanoacrylate polymerizations, resulting in cyanoacrylate macromolecules that were higher in molecular weight than those observed with unmodified silica and that were covalently attached to the silica surface. Starting with aminated silica aerogels that were 0.075 g/cm(3) density, composite aerogels were made with densities up to 0.220 g/cm(3) and up to 31 times stronger (flexural strength) than the precursor aerogel and about 2.3 times stronger than an unmodified silica aerogel of the same density.
A Potential Use of 3-D Scanning to Evaluate the Chemical Composition of Pork Meat.
Adamczak, Lech; Chmiel, Marta; Florowski, Tomasz; Pietrzak, Dorota; Witkowski, Marcin; Barczak, Tomasz
2015-07-01
The aim of this study was to determine the possibility of 3-D scanning method in chemical composition evaluation of pork meat. The sampling material comprised neck muscles (1000 g each) obtained from 20 pork carcasses. The volumetric estimation process of the elements was conducted on the basis of point cloud collected using 3-D scanner. Knowing the weight of neck muscles, their density was calculated which was subsequently correlated with the content of basic chemical components of the pork meat (water, protein and fat content, determined by standard methods). The significant correlations (P ≤ 0.05) between meat density and water (r = 0.5213), protein (r = 0.5887), and fat (r = -0.6601) content were obtained. Based on the obtained results it seems likely to employ the 3-D scanning method to compute the meat chemical composition. The use of the 3-D scanning method in industrial practice will allow to evaluate the chemical composition of meat in online mode on a dressing and fabrication line and in a rapid, noninvasive manner. The control of the raw material using the 3-D scanning will allow to make visual assessment more objective and will enable optimal standardization of meat batches prior to processing stage. It will ensure not only the repeatability of product quality characteristics, but also optimal use of raw material-lean and fat meat. The knowledge of chemical composition of meat is essential due to legal requirements associated with mandatory nutrition facts labels on food products. © 2015 Institute of Food Technologists®
Facile synthesis of CoNi2S4/Co9S8 composites as advanced electrode materials for supercapacitors
NASA Astrophysics Data System (ADS)
Zhao, Fenglin; Huang, Wanxia; Zhang, Hongtao; Zhou, Dengmei
2017-12-01
In this paper, a facile chemical bath deposition method was utilized to synthesize three-dimensional nanostructured CoNi2S4/Co9S8 (CNSCS) composites as advanced electrode materials for high performance supercapacitors. CNSCS composites showed remarkable electrochemical performance owing to the high porosity, appropriate pore size distribution, novel architecture and synergistic effect of Ni/Co ions. The electrochemical tests revealed that CNSCS composites exhibited high specific capacitance (1183.3 Fg-1 at the current density of 2 Ag-1), excellent rate performance (74.9% retention with tenfold current density increase) and outstanding cycle life stability. Moreover, the effect of temperature on electrochemical performance of CNSCS composites was investigated and the results indicated the specific capacitance of CoNi2S4/Co9S8 can keep relatively stable in a wide temperature from 0 °C to 50 °C. These results indicated that the synthesized CNSCS composites can be a promising electrode materials candidate for supercapacitors and chemical bath deposition is a promising processing route for CNSCS composites production.
Ultra low density biodegradable shape memory polymer foams with tunable physical properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singhal, Pooja; Wilson, Thomas S.; Cosgriff-Hernandez, Elizabeth
Compositions and/or structures of degradable shape memory polymers (SMPs) ranging in form from neat/unfoamed to ultra low density materials of down to 0.005 g/cc density. These materials show controllable degradation rate, actuation temperature and breadth of transitions along with high modulus and excellent shape memory behavior. A method of m ly low density foams (up to 0.005 g/cc) via use of combined chemical and physical aking extreme blowing agents, where the physical blowing agents may be a single compound or mixtures of two or more compounds, and other related methods, including of using multiple co-blowing agents of successively higher boilingmore » points in order to achieve a large range of densities for a fixed net chemical composition. Methods of optimization of the physical properties of the foams such as porosity, cell size and distribution, cell openness etc. of these materials, to further expand their uses and improve their performance.« less
Spectrometry of the Earth using Neutrino Oscillations
Rott, C.; Taketa, A.; Bose, D.
2015-01-01
The unknown constituents of the interior of our home planet have provoked the human imagination and driven scientific exploration. We herein demonstrate that large neutrino detectors could be used in the near future to significantly improve our understanding of the Earth’s inner chemical composition. Neutrinos, which are naturally produced in the atmosphere, traverse the Earth and undergo oscillations that depend on the Earth’s electron density. The Earth’s chemical composition can be determined by combining observations from large neutrino detectors with seismic measurements of the Earth’s matter density. We present a method that will allow us to perform a measurement that can distinguish between composition models of the outer core. We show that the next-generation large-volume neutrino detectors can provide sufficient sensitivity to reject extreme cases of outer core composition. In the future, dedicated instruments could be capable of distinguishing between specific Earth composition models and thereby reshape our understanding of the inner Earth in previously unimagined ways. PMID:26489447
NASA Astrophysics Data System (ADS)
Zakaria, Nurzam Ezdiani; Baharum, Azizah; Ahmad, Ishak
2018-04-01
The main objective of this research is to study the effects of chemical modification on the mechanical properties of treated Sansevieria trifasciata fiber/natural rubber/high density polyethylene (TSTF/NR/HDPE) composites. Processing of STF/NR/HDPE composites was done by using an internal mixer. The processing parameters used were 135°C for temperature and a mixing rotor speed of 55 rpm for 15 minutes. Filler loading was varied from 10% to 40% of STF and the fiber size used was 125 µm. The composite blends obtained then were pressed with a hot press machine to get test samples of 1 mm and 3 mm of thickness. Samples were evaluated via tensile tests, Izod impact test and scanning electron microscopy (SEM). Results showed that tensile strength and strain value decreased while tensile modulus increased when filler loading increased. Impact strength increased when filler loading increased and began to decrease after 10% of filler amount for treated composites. For untreated composites, impact strength began to decrease after 20% of filler loading. Chemical modification by using silane coupling agent has improved certain mechanical properties of the composites such as tensile strength, strain value and tensile modulus. Adding more amount of filler will also increase the viscosity and the stiffness of the materials.
Kehimkar, Benjamin; Hoggard, Jamin C; Marney, Luke C; Billingsley, Matthew C; Fraga, Carlos G; Bruno, Thomas J; Synovec, Robert E
2014-01-31
There is an increased need to more fully assess and control the composition of kerosene-based rocket propulsion fuels such as RP-1. In particular, it is critical to make better quantitative connections among the following three attributes: fuel performance (thermal stability, sooting propensity, engine specific impulse, etc.), fuel properties (such as flash point, density, kinematic viscosity, net heat of combustion, and hydrogen content), and the chemical composition of a given fuel, i.e., amounts of specific chemical compounds and compound classes present in a fuel as a result of feedstock blending and/or processing. Recent efforts in predicting fuel chemical and physical behavior through modeling put greater emphasis on attaining detailed and accurate fuel properties and fuel composition information. Often, one-dimensional gas chromatography (GC) combined with mass spectrometry (MS) is employed to provide chemical composition information. Building on approaches that used GC-MS, but to glean substantially more chemical information from these complex fuels, we recently studied the use of comprehensive two dimensional (2D) gas chromatography combined with time-of-flight mass spectrometry (GC×GC-TOFMS) using a "reversed column" format: RTX-wax column for the first dimension, and a RTX-1 column for the second dimension. In this report, by applying chemometric data analysis, specifically partial least-squares (PLS) regression analysis, we are able to readily model (and correlate) the chemical compositional information provided by use of GC×GC-TOFMS to RP-1 fuel property information such as density, kinematic viscosity, net heat of combustion, and so on. Furthermore, we readily identified compounds that contribute significantly to measured differences in fuel properties based on results from the PLS models. We anticipate this new chemical analysis strategy will have broad implications for the development of high fidelity composition-property models, leading to an improved approach to fuel formulation and specification for advanced engine cycles. Copyright © 2014 Elsevier B.V. All rights reserved.
Diffusion in plasma: The Hall effect, compositional waves, and chemical spots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urpin, V., E-mail: Vadim.urpin@uv.es
2017-03-15
Diffusion caused by a combined influence of the electric current and Hall effect is considered, and it is argued that such diffusion can form inhomogeneities of a chemical composition in plasma. The considered mechanism can be responsible for the formation of element spots in laboratory and astrophysical plasmas. This current-driven diffusion can be accompanied by propagation of a particular type of waves in which the impurity number density oscillates alone. These compositional waves exist if the magnetic pressure in plasma is much greater than the gas pressure.
Stephen S. Kelley; Thomas Elder; Leslie H. Groom
2005-01-01
Loblolly pine wood between the ages of 5-35 was refined into medium density fiberboard furnish at steam pressures from 2 to 18 bar, The effect of age and processing conditions on the properties of the fibers was assessed by wet chemical analyses, Near Infared Spectroscopy (NIR) and powder X-ray diffraction (XRD).In general ,the percentages of extractives and glucose...
Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification
Reis, Rackel; Dumée, Ludovic F.; Tardy, Blaise L.; Dagastine, Raymond; Orbell, John D.; Schutz, Jürg A.; Duke, Mikel C.
2016-01-01
Advancing the design of thin-film composite membrane surfaces is one of the most promising pathways to deal with treating varying water qualities and increase their long-term stability and permeability. Although plasma technologies have been explored for surface modification of bulk micro and ultrafiltration membrane materials, the modification of thin film composite membranes is yet to be systematically investigated. Here, the performance of commercial thin-film composite desalination membranes has been significantly enhanced by rapid and facile, low pressure, argon plasma activation. Pressure driven water desalination tests showed that at low power density, flux was improved by 22% without compromising salt rejection. Various plasma durations and excitation powers have been systematically evaluated to assess the impact of plasma glow reactions on the physico-chemical properties of these materials associated with permeability. With increasing power density, plasma treatment enhanced the hydrophilicity of the surfaces, where water contact angles decreasing by 70% were strongly correlated with increased negative charge and smooth uniform surface morphology. These results highlight a versatile chemical modification technique for post-treatment of commercial membrane products that provides uniform morphology and chemically altered surface properties. PMID:27363670
Wang, Hongxing; Liu, Dong; Du, Pengcheng; Wei, Wenli; Wang, Qi; Liu, Peng
2017-11-15
The free-standing polyaniline (PANI)-based composite film electrodes were prepared with polyvinyl chloride (PVC) and the aniline modified PVC (PVC-An) films as flexible substrates for supercapacitors, via facile in-situ chemical oxidative polymerization of aniline, with conventional chemical oxidative polymerization or rapid-mixing chemical oxidative polymerization technique. Owing to the grafting of PANI from the PVC-An film as substrate and the suppression of the secondary growth of the primary PANI particles in the rapid-mixing chemical oxidative polymerization, the PVC-g-PANI-2 composite film with loose surface possessed better comprehensive performance, accompanying the high specific capacitance (645.3F/g at a current density of 1A/g), good rate capacitance (retaining 63.2% of original value at a current density of 10A/g and 52.0% at a scan rate of 100mV/s), good cycle stability (retaining 83.1% after 1000 cycles) and the improved internal resistance. Besides its excellent flexibility, it could retain 61.2% of its original specific capacitance under the stress of 8.66MPa for 1h, demonstrating a good tensile-resistance. Copyright © 2017 Elsevier Inc. All rights reserved.
The density-salinity relation of standard seawater
NASA Astrophysics Data System (ADS)
Schmidt, Hannes; Seitz, Steffen; Hassel, Egon; Wolf, Henning
2018-01-01
The determination of salinity by means of electrical conductivity relies on stable salt proportions in the North Atlantic Ocean, because standard seawater, which is required for salinometer calibration, is produced from water of the North Atlantic. To verify the long-term stability of the standard seawater composition, it was proposed to perform measurements of the standard seawater density. Since the density is sensitive to all salt components, a density measurement can detect any change in the composition. A conversion of the density values to salinity can be performed by means of a density-salinity relation. To use such a relation with a target uncertainty in salinity comparable to that in salinity obtained from conductivity measurements, a density measurement with an uncertainty of 2 g m-3 is mandatory. We present a new density-salinity relation based on such accurate density measurements. The substitution measurement method used is described and density corrections for uniform isotopic and chemical compositions are reported. The comparison of densities calculated using the new relation with those calculated using the present reference equations of state TEOS-10 suggests that the density accuracy of TEOS-10 (as well as that of EOS-80) has been overestimated, as the accuracy of some of its underlying density measurements had been overestimated. The new density-salinity relation may be used to verify the stable composition of standard seawater by means of routine density measurements.
Production of glass-ceramics from sewage sludge and waste glass
NASA Astrophysics Data System (ADS)
Rozenstrauha, I.; Sosins, G.; Petersone, L.; Krage, L.; Drille, M.; Filipenkov, V.
2011-12-01
In the present study for recycling of sewage sludge and waste glass from JSC "Valmieras stikla skiedra" treatment of them to the dense glass-ceramic composite material using powder technology is estimated. The physical-chemical properties of composite materials were identified - density 2.19 g/cm3, lowest water absorption of 2.5% and lowest porosity of 5% for the samples obtained in the temperature range of sintering 1120 - 1140 °C. Regarding mineralogical composition of glass-ceramics the following crystalline phases were identified by XRD analysis: quartz (SiO2), anorthite (CaAl2Si2O8) and hematite (Fe2O3), which could ensure the high density of materials and improve the mechanical properties of material - compressive strength up to 60.31±5.09 - 52.67±19.18 MPa. The physical-chemical properties of novel materials corresponds to dense glass-ceramics composite which eventually could be used as a building material, e.g. for floor covering, road pavement, exterior tiles etc.
Multivariate Quantitative Chemical Analysis
NASA Technical Reports Server (NTRS)
Kinchen, David G.; Capezza, Mary
1995-01-01
Technique of multivariate quantitative chemical analysis devised for use in determining relative proportions of two components mixed and sprayed together onto object to form thermally insulating foam. Potentially adaptable to other materials, especially in process-monitoring applications in which necessary to know and control critical properties of products via quantitative chemical analyses of products. In addition to chemical composition, also used to determine such physical properties as densities and strengths.
Analysis of medium-BTU gasification condensates, June 1985-June 1986
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, D.C.
1987-05-01
This report provides the final results of chemical and physical analysis of condensates from biomass gasification systems which are part of the US Department of Energy Biomass Thermochemical Conversion Program. The work described in detail in this report involves extensive analysis of condensates from four medium-BTU gasifiers. The analyses include elemental analysis, ash, moisture, heating value, density, specific chemical analysis, ash, moisture, heating value, density, specific chemical analysis (gas chromatography/mass spectrometry, infrared spectrophotometry, Carbon-13 nuclear magnetic resonance spectrometry) and Ames Assay. This work was an extension of a broader study earlier completed of the condensates of all the gasifers andmore » pyrolyzers in the Biomass Thermochemical Conversion Program. The analytical data demonstrates the wide range of chemical composition of the organics recoverd in the condensates and suggests a direct relationship between operating temperature and chemical composition of the condensates. A continuous pathway of thermal degradation of the tar components as a function of temperature is proposed. Variations in the chemical composition of the organic in the tars are reflected in the physical properties of tars and phase stability in relation to water in the condensate. The biological activity appears to be limited to the tars produced at high temperatures as a result of formation of polycyclic aromatic hydrocarbons in high concentrations. Future studies of the time/temperature relationship to tar composition and the effect of processing atmosphere should be undertaken. Further processing of the condensates either as wastewater treatment or upgrading of the organics to useful products is also recommended. 15 refs., 4 figs., 4 tabs.« less
Sintering Behavior of Hypereutectic Aluminum-Silicon Metal Matrix Composites Powder
NASA Astrophysics Data System (ADS)
Rudianto, Haris; Sun, Yang Sang; Jin, Kim Yong; Woo, Nam Ki
Lightweight materials of Aluminum-Silicon P/M alloys offer the advantage of high-wear resistance, high strength, good temperature resistance, and a low coefficient of thermal expansion. An A359 MMC alloy was mixed together with Alumix 231 in this research. Powders were compacted with compaction pressure up to 700 MPa. Particle size and compaction pressure influenced green density. Compacted powders were sintered in a tube furnace under a flowing nitrogen gas. Sintering temperature, heating rate and sintering time were verified to determine best sintering conditions of the alloys. Chemical composition also contributed to gain higher sintered density. Precipitation strengthening method was used to improve mechanical properties of this materials.T6 heat treatment was carried out to produce fine precipitates to impede movement of dislocation. The chemical composition of this materials allow for the potential formation of several strengthening precipitates including θ (Al2Cu) and β (Mg2Si).
NASA Astrophysics Data System (ADS)
Pokorný, Jaroslav; Pavlíková, Milena; Medved, Igor; Pavlík, Zbyšek; Zahálková, Jana; Rovnaníková, Pavla; Černý, Robert
2016-06-01
Active silica containing materials in the sub-micrometer size range are commonly used for modification of strength parameters and durability of cement based composites. In addition, these materials also assist to accelerate cement hydration. In this paper, two types of diatomaceous earths are used as partial cement replacement in composition of cement paste mixtures. For raw binders, basic physical and chemical properties are studied. The chemical composition of tested materials is determined using classical chemical analysis combined with XRD method that allowed assessment of SiO2 amorphous phase content. For all tested mixtures, initial and final setting times are measured. Basic physical and mechanical properties are measured on hardened paste samples cured 28 days in water. Here, bulk density, matrix density, total open porosity, compressive and flexural strength, are measured. Relationship between compressive strength and total open porosity is studied using several empirical models. The obtained results give evidence of high pozzolanic activity of tested diatomite earths. Their application leads to the increase of both initial and final setting times, decrease of compressive strength, and increase of flexural strength.
Compositional descriptor-based recommender system for the materials discovery
NASA Astrophysics Data System (ADS)
Seko, Atsuto; Hayashi, Hiroyuki; Tanaka, Isao
2018-06-01
Structures and properties of many inorganic compounds have been collected historically. However, it only covers a very small portion of possible inorganic crystals, which implies the presence of numerous currently unknown compounds. A powerful machine-learning strategy is mandatory to discover new inorganic compounds from all chemical combinations. Herein we propose a descriptor-based recommender-system approach to estimate the relevance of chemical compositions where crystals can be formed [i.e., chemically relevant compositions (CRCs)]. In addition to data-driven compositional similarity used in the literature, the use of compositional descriptors as a prior knowledge is helpful for the discovery of new compounds. We validate our recommender systems in two ways. First, one database is used to construct a model, while another is used for the validation. Second, we estimate the phase stability for compounds at expected CRCs using density functional theory calculations.
NASA Astrophysics Data System (ADS)
Huang, Chun-Yi; Chang, Hsin-Wei; Chang, Che-Chen
2018-03-01
Knowledge about the chemical compositions of meso/nanomaterials is fundamental to development of their applications in advanced technologies. Auger electron spectroscopy (AES) is an effective analysis method for the characterization of meso/nanomaterial structures. Although a few studies have reported the use of AES for the analysis of the local composition of these structures, none have explored in detail the validity of the meso/nanoanalysis results generated by the AES instrument. This paper addresses the limitations of AES and the corrections necessary to offset them for this otherwise powerful meso/nanoanalysis tool. The results of corrections made to the AES multi-point analysis of high-density copper-based meso/nanostructures provides major insights into their local chemical compositions and technological prospects, which the primitive composition output of the AES instrument failed to provide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cervantes, O
2010-06-01
Energetic composite powders consisting of sol-gel (SG) derived nanostructured tungsten oxide were produced with various amounts of micrometer-scale tantalum fuel metal. Such energetic composite powders were ignition-tested and results show that the powders are not sensitive to friction, spark and/or impact ignition. Initial consolidation experiments, using the High Pressure Spark Plasma Sintering (HPSPS) technique, on the SG derived nanostructured tungsten oxide produced samples with higher relative density than can be achieved with commercially available tungsten oxide. The SG derived nanostructured tungsten oxide with immobilized tantalum fuel metal (Ta - WO3) energetic composite was consolidated to a density of 9.17 g·cm-3more » or 93% relative density. In addition, those samples were consolidated without significant pre-reaction of the constituents, thus retaining their stored chemical energy.« less
Facile synthesis of hybrid CNTs/NiCo2S4 composite for high performance supercapacitors
NASA Astrophysics Data System (ADS)
Li, Delong; Gong, Youning; Pan, Chunxu
2016-07-01
In this work, a novel carbon nanotubes (CNTs)/NiCo2S4 composite for high performance supercapacitors was prepared via a simple chemical bath deposition combined with a post-anion exchange reaction. The morphologies and phase structures of the composites were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy (Raman), X-ray photoelectron spectroscopy (XPS) and low-temperature sorption of nitrogen (BET). The electro-chemical tests revealed that the CNT/NiCo2S4 composite exhibited high electrochemical performance, because the CNTs were used as a conductive network for the NiCo2S4 hexagonal nanoplates. Compared with pure NiCo2S4 and the mechanically mixed CNTs/NiCo2S4 composite, the CNTs/NiCo2S4 composite electrode material exhibited excellent supercapacitive performance, such as a high specific capacitance up to 1537 F/g (discharge current density of 1 A/g) and an outstanding rate capability of 78.1% retention as the discharge current density increased to 100 A/g. It is therefore expected to be a promising alternative material in the area of energy storage.
Facile synthesis of hybrid CNTs/NiCo2S4 composite for high performance supercapacitors
Li, Delong; Gong, Youning; Pan, Chunxu
2016-01-01
In this work, a novel carbon nanotubes (CNTs)/NiCo2S4 composite for high performance supercapacitors was prepared via a simple chemical bath deposition combined with a post-anion exchange reaction. The morphologies and phase structures of the composites were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy (Raman), X-ray photoelectron spectroscopy (XPS) and low-temperature sorption of nitrogen (BET). The electro-chemical tests revealed that the CNT/NiCo2S4 composite exhibited high electrochemical performance, because the CNTs were used as a conductive network for the NiCo2S4 hexagonal nanoplates. Compared with pure NiCo2S4 and the mechanically mixed CNTs/NiCo2S4 composite, the CNTs/NiCo2S4 composite electrode material exhibited excellent supercapacitive performance, such as a high specific capacitance up to 1537 F/g (discharge current density of 1 A/g) and an outstanding rate capability of 78.1% retention as the discharge current density increased to 100 A/g. It is therefore expected to be a promising alternative material in the area of energy storage. PMID:27406239
Facile synthesis of hybrid CNTs/NiCo2S4 composite for high performance supercapacitors.
Li, Delong; Gong, Youning; Pan, Chunxu
2016-07-11
In this work, a novel carbon nanotubes (CNTs)/NiCo2S4 composite for high performance supercapacitors was prepared via a simple chemical bath deposition combined with a post-anion exchange reaction. The morphologies and phase structures of the composites were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy (Raman), X-ray photoelectron spectroscopy (XPS) and low-temperature sorption of nitrogen (BET). The electro-chemical tests revealed that the CNT/NiCo2S4 composite exhibited high electrochemical performance, because the CNTs were used as a conductive network for the NiCo2S4 hexagonal nanoplates. Compared with pure NiCo2S4 and the mechanically mixed CNTs/NiCo2S4 composite, the CNTs/NiCo2S4 composite electrode material exhibited excellent supercapacitive performance, such as a high specific capacitance up to 1537 F/g (discharge current density of 1 A/g) and an outstanding rate capability of 78.1% retention as the discharge current density increased to 100 A/g. It is therefore expected to be a promising alternative material in the area of energy storage.
Infiltration processing of boron carbide-, boron-, and boride-reactive metal cermets
Halverson, Danny C.; Landingham, Richard L.
1988-01-01
A chemical pretreatment method is used to produce boron carbide-, boron-, and boride-reactive metal composites by an infiltration process. The boron carbide or other starting constituents, in powder form, are immersed in various alcohols, or other chemical agents, to change the surface chemistry of the starting constituents. The chemically treated starting constituents are consolidated into a porous ceramic precursor which is then infiltrated by molten aluminum or other metal by heating to wetting conditions. Chemical treatment of the starting constituents allows infiltration to full density. The infiltrated precursor is further heat treated to produce a tailorable microstructure. The process at low cost produces composites with improved characteristics, including increased toughness, strength.
Tantalum-tungsten oxide thermite composites prepared by sol-gel synthesis and spark plasma sintering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuntz, Joshua D.; Gash, Alexander E.; Cervantes, Octavio G.
2010-08-15
Energetic composite powders consisting of sol-gel derived nanostructured tungsten oxide were produced with various amounts of micrometer-scale tantalum fuel metal. Such energetic composite powders were ignition-tested and the results show that the powders are not sensitive to friction, spark and/or impact ignition. Initial consolidation experiments, using the High-Pressure Spark Plasma Sintering (HPSPS) technique, on the sol-gel derived nanostructured tungsten oxide produced samples with higher relative density than can be achieved with commercially available tungsten oxide. The sol-gel derived nanostructured tungsten oxide with immobilized tantalum fuel metal (Ta-WO{sub 3}) energetic composite was consolidated to a density of 9.17 g cm{sup -3}more » or 93% relative density. In addition, those samples were consolidated without significant pre-reaction of the constituents, thus retaining their stored chemical energy. (author)« less
Tantalum-Tungsten Oxide Thermite Composite Prepared by Sol-Gel Synthesis and Spark Plasma Sintering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cervantes, O; Kuntz, J; Gash, A
2009-02-13
Energetic composite powders consisting of sol-gel derived nanostructured tungsten oxide were produced with various amounts of micrometer-scale tantalum fuel metal. Such energetic composite powders were ignition tested and results show that the powders are not sensitive to friction, spark and/or impact ignition. Initial consolidation experiments, using the High Pressure Spark Plasma Sintering (HPSPS) technique, on the sol-gel derived nanostructured tungsten oxide produced samples with higher relative density than can be achieved with commercially available tungsten oxide. The sol-gel derived nanostructured tungsten oxide with immobilized tantalum fuel metal (Ta - WO{sub 3}) energetic composite was consolidated to a density of 9.17more » g.cm{sup -3} or 93% relative density. In addition those parts were consolidated without significant pre-reaction of the constituents, thus the sample retained its stored chemical energy.« less
A reduced graphene oxide/Co 3O 4 composite for supercapacitor electrode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiang, Chengcheng; Li, Ming; Zhi, Mingjia
2013-03-01
20 nm sized Co 3O 4 nanoparticles are in-situ grown on the chemically reduced graphene oxide (rGO) sheets to form a rGO-Co 3O 4 composite during hydrothermal processing. The rGO-Co 3O 4 composite is employed as the pseudocapacitor electrode in the 2 M KOH aqueous electrolyte solution. The rGOCo 3O 4 composite electrode exhibits a specific capacitance of 472 F/g at a scan rate of 2 mV/s in a two-electrode cell. 82.6% of capacitance is retained when the scan rate increases to 100 mV/s. The rGOCo 3O 4 composite electrode shows high rate capability and excellent long-term stability. It alsomore » exhibits high energy density at relatively high power density. The energy density reaches 39.0 Wh/kg at a power density of 8.3 kW/kg. The super performance of the composite electrode is attributed to the synergistic effects of small size and good redox activity of the Co 3O 4 particles combined with high electronic conductivity of the rGO sheets.« less
Microwave dielectric spectrum of rocks
NASA Technical Reports Server (NTRS)
Ulaby, F. T.; Bengal, T.; East, J.; Dobson, M. C.; Garvin, J.; Evans, D.
1988-01-01
A combination of several measurement techniques was used to investigate the dielectric properties of 80 rock samples in the microwave region. The real part of the dielectric constant, epsilon', was measured in 0.1 GHz steps from 0.5 to 18 GHz, and the imaginary part, epsilon'', was measured at five frequencies extending between 1.6 and 16 GHz. In addition to the dielectric measurements, the bulk density was measured for all the samples and the bulk chemical composition was determined for 56 of the samples. The study shows that epsilon' is frequency-dependent over the 0.5 to 18 GHz range for all rock samples, and that the bulk density rho accounts for about 50 percent of the observed variance of epsilon'. For individual rock types (by genesis), about 90 percent of the observed variance may be explained by the combination of density and the fractional contents of SiO2, Fe2O3, MgO, and TiO2. For the loss factor epsilon'', it was not possible to establish statistically significant relationships between it and the measured properties of the rock samples (density and chemical composition).
Processing of Alumina-Toughened Zirconia Composites
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Choi, Sung R.
2003-01-01
Dense and crack-free 10-mol%-yttria-stabilized zirconia (10YSZ)-alumina composites, containing 0 to 30 mol% of alumina, have been fabricated by hot pressing. Release of pressure before onset of cooling was crucial in obtaining crack-free material. Hot pressing at 1600 C resulted in the formation of ZrC by reaction of zirconia with grafoil. However, no such reaction was observed at 1500 C. Cubic zirconia and -alumina were the only phases detected from x-ray diffraction indicating no chemical reaction between the composite constituents during hot pressing. Microstructure of the composites was analyzed by scanning electron microscopy and transmission electron microscopy. Density and elastic modulus of the composites followed the rule-of-mixtures. Addition of alumina to 10YSZ resulted in lighter, stronger, and stiffer composites by decreasing density and increasing strength and elastic modulus.
NASA Astrophysics Data System (ADS)
Jia, Zhengmei; Huang, Jing; Gong, Yongfeng; Jin, Peipeng; Suo, Xinkun; Li, Hua
2017-02-01
High-density polyethylene (HDPE)-copper (Cu) composite coatings were prepared through depositing HDPE-Cu core-shell particles by flame spraying. The HDPE-Cu composite coatings and the HDPE coatings were aged in xenon lamp ageing testing chamber. The variations of chemical compositions and surface morphology of the coatings before and after the ageing testing were analyzed using infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry and ultraviolet-visible spectrophotometer. Results show that there is no chemical composition variation in the HDPE-Cu coatings. Cracks were found on the surfaces of the HDPE coatings, while the HDPE-Cu coating shows almost intact surface morphology. These results suggest that the HDPE-Cu coatings present better anti-ageing performances than the HDPE coatings. Further assessment of the function of Cu shells on the anti-ageing property reveals that Cu shells not only enhanced the absorption of the coatings to ultraviolet, but also increased their reflectivity to visible light. Additionally, the Cu shells enhanced the decomposition temperature and thermal stability of HDPE in the composite coatings. These results give bright insight into potential anti-ageing applications of the polymer-based structures.
From grand-canonical density functional theory towards rational compound design
NASA Astrophysics Data System (ADS)
von Lilienfeld, Anatole
2008-03-01
The fundamental challenge of rational compound design, ie the reverse engineering of chemical compounds with predefined specific properties, originates in the high-dimensional combinatorial nature of chemical space. Chemical space is the hyper-space of a given set of molecular observables that is spanned by the grand-canonical variables (particle densities of electrons and nuclei) which define chemical composition. A brief but rigorous description of chemical space within the molecular grand-canonical ensemble multi-component density functional theory framework will be given [1]. Numerical results will be presented for intermolecular energies as a continuous function of alchemical variations within a neutral and isoelectronic 10 proton system, including CH4, NH3, H2O, and HF, interacting with formic acid [2]. Furthermore, engineering the Fermi level through alchemical generation of boron-nitrogen doped mutants of benzene shall be discussed [3].[1] von Lilienfeld and Tuckerman JCP 125 154104 (2006)[2] von Lilienfeld and Tuckerman JCTC 3 1083 (2007)[3] Marcon et al. JCP 127 064305 (2007)
Density of the continental roots: Compositional and thermal contributions
Kaban, M.K.; Schwintzer, P.; Artemieva, I.M.; Mooney, W.D.
2003-01-01
The origin and evolution of cratonic roots has been debated for many years. Precambrian cratons are underlain by cold lithospheric roots that are chemically depleted. Thermal and petrologic data indicate that Archean roots are colder and more chemically depleted than Proterozoic roots. This observation has led to the hypothesis that the degree of depletion in a lithospheric root depends mostly on its age. Here we test this hypothesis using gravity, thermal, petrologic, and seismic data to quantify differences in the density of cratonic roots globally. In the first step in our analysis we use a global crustal model to remove the crustal contribution to the observed gravity. The result is the mantle gravity anomaly field, which varies over cratonic areas from -100 to +100 mGal. Positive mantle gravity anomalies are observed for cratons in the northern hemisphere: the Baltic shield, East European Platform, and the Siberian Platform. Negative anomalies are observed over cratons in the southern hemisphere: Western Australia, South America, the Indian shield, and Southern Africa. This indicates that there are significant differences in the density of cratonic roots, even for those of similar age. Root density depends on temperature and chemical depletion. In order to separate these effects we apply a lithospheric temperature correction using thermal estimates from a combination of geothermal modeling and global seismic tomography models. Gravity anomalies induced by temperature variations in the uppermost mantle range from -200 to +300 mGal, with the strongest negative anomalies associated with mid-ocean ridges and the strongest positive anomalies associated with cratons. After correcting for thermal effects, we obtain a map of density variations due to lithospheric compositional variations. These maps indicate that the average density decrease due to the chemical depletion within cratonic roots varies from 1.1% to 1.5%, assuming the chemical boundary layer has the same thickness as the thermal boundary layer. The maximal values of the density drop are in the range 1.7-2.5%, and correspond to the Archean portion of each craton. Temperatures within cratonic roots vary strongly, and our analysis indicates that density variations in the roots due to temperature are larger than the variations due to chemical differences. ?? 2003 Elsevier Science B.V. All rights reserved.
Ralet, M C; Bonnin, E; Thibault, J F
2001-03-25
The inter-molecular distribution of free carboxyl groups of two highly methoxylated pectins enzymatically deesterified by plant and fungus pectin methyl-esterases were investigated by size-exclusion (SEC) and ion-exchange chromatography (IEC). "Homogeneous" populations with respect to molar mass or charge density were thereby obtained and their chemical composition and physico-chemical properties (transport parameter for monovalent cations and calcium, calcium activity coefficient) were studied. Chemical analysis showed that the composition varies from one SEC fraction to another, the highest molar mass fraction being richer in rhamnose and galactose and exhibiting a slightly higher degree of methylation. Separation of pectins by IEC revealed a quite homogeneous charge density distribution for F58 contrary to P60 which exhibited a large distribution of methoxyl groups. The free carboxyl groups distributions and calcium binding behaviours of SEC and IEC fractions were shown to differ widely for highly methoxylated pectins deesterified by plant and fungus pectin methyl-esterases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pradeep Rohatgi
2002-12-31
In this research, the effects of casting foundry, testing laboratory, surface conditions, and casting processes on the mechanical properties of A359-SiC composites were identified. To observe the effects, A359-SiC composites with 20 and 305 SiC particles were cast at three different foundries and tested at three different laboratories. The composites were cast in sand and permanent molds and tested as-cast and machined conditions. To identify the effect of the volume fraction and distribution of particles on the properties of the composites, particle distribution was determined using Clemex Image analysis systems, and particle volume fraction was determined using wet chemical analysismore » and Clemex Image analysis systems. The microstructure and fractured surfaces of the samples were analyzed using SEM, and EDX analysis was done to analyze chemical reaction between the particles and the matrix. The results of the tensile strengths exhibited that the tensile strengths depend on the density and porosity of the composites; in general the higher tensile strength is associated with lower porosity and higher density. In some cases, composites with lower density were higher than these with higher density. In the Al-20% SiC samples, the composites with more inclusions exhibited a lower tensile strength than the ones with fewer inclusions. This suggests that macroscopic casting defects such as micro-porosity, shrinkage porosity and inclusions appear to strongly influence the tensile strength more than the microstructure and particle distribution. The fatigue properties of A359/20 vol.% SiC composites were investigated under strain controlled conditions. Hysteresis loops obtained from strain controlled cyclic loading of 20% SiCp reinforced material did not exhibit any measurable softening or hardening. The fatigue life of Al-20% SiC heat treated alloy at a given total strain showed wide variation in fatigue life, which appeared to be related to factors such as inclusions, porosity, and particle distribution. The inclusions and porosity on the fracture surfaces seem to have a more significant influence on the fatigue life of cast Al-20% SiC as compared to other variables, including SiC particle volume percentage and its distribution. Striations were generally not visible on the fracture surface of the composites. In many specimens, SiC particle fracture was also observed. Fracture was more severe around pores and inclusions than in the matrix away from them. Inclusions and porosity seem to have a much stronger influence on fatigue behavior than the particle distribution. The analysis suggests that the enhancement of fatigue behavior of cast MMCs requires a decrease in the size of defects, porosity, and inclusions. The particle volume fraction determined using wet chemical analysis gives values of SiC vol.% which are closer to the nominal Sic % than the values of SiC% obtained by ultrasonic and Clemex Image Analysis system. In view of ALCAN's recommendation one must use wet chemical analysis for determining the volume percent SiC.« less
Numerical Study on Density Gradient Carbon-Carbon Composite for Vertical Launching System
NASA Astrophysics Data System (ADS)
Yoon, Jin-Young; Kim, Chun-Gon; Lim, Juhwan
2018-04-01
This study presents new carbon-carbon (C/C) composite that has a density gradient within single material, and estimates its heat conduction performance by a numerical method. To address the high heat conduction of a high-density C/C, which can cause adhesion separation in the steel structures of vertical launching systems, density gradient carbon-carbon (DGCC) composite is proposed due to its exhibiting low thermal conductivity as well as excellent ablative resistance. DGCC is manufactured by hybridizing two different carbonization processes into a single carbon preform. One part exhibits a low density using phenolic resin carbonization to reduce heat conduction, and the other exhibits a high density using thermal gradient-chemical vapor infiltration for excellent ablative resistance. Numerical analysis for DGCC is performed with a heat conduction problem, and internal temperature distributions are estimated by the forward finite difference method. Material properties of the transition density layer, which is inevitably formed during DGCC manufacturing, are assumed to a combination of two density layers for numerical analysis. By comparing numerical results with experimental data, we validate that DGCC exhibits a low thermal conductivity, and it can serve as highly effective ablative material for vertical launching systems.
A Comparison of Increment Core Sampling for Estimating Tree Specific Gravity
Michael A. Taras; Harold E. Wadlgren
1963-01-01
Increment cores have been used to evaluate such tree characteristics as age, rate of growth, percentage of various types of tissue, chemical composition, and density. Of the wood characteristics listed, density has come to be of considerable interest to numerous researchers, since it is highly correlated with the strength properties, workability, and weight of wood....
Hot water extracted wood fiber for production of wood plastic composites (WPCs)
Manuel Raul Pelaez-Samaniego; Vikram Yadama; Eini Lowell; Thomas E. Amidon; Timothy L. Chaffee
2013-01-01
Undebarked ponderosa pine chips were treated by hot water extraction to modify the chemical composition. In the treated pine (TP) , the mass was reduced by approximately 20%, and the extract was composed mainly of degradation products of hemicelluloses. Wood flour produced from TP and unextracted chips (untreated pine, UP) was blended with high-density polyethylene (...
Sinergia sostenida: las polillas y el Dr. Wolcott
Frank H. Wadsworth
2007-01-01
The synergy between an insect colony and a curious entomologist is described. Together they determine the relative preference of insects to over 80 woody species. The relationship between wood resistance and insect attacks and wood density and chemical composition of wood is also determined. Finally, a series of chemicals is tested to increase wood resistance to attack...
Handbook of Ecotoxicology. Second Edition.. Lewis Publishers, Boca Raton, FL. 32 p.
Phytoplankton, benthic and epiphytic microalgae, and macroalgae are energy sources critical to most aquatic ecosystems. Changes in their density and composition can effect the chemical and...
Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review
NASA Astrophysics Data System (ADS)
Zhi, Mingjia; Xiang, Chengcheng; Li, Jiangtian; Li, Ming; Wu, Nianqiang
2012-12-01
This paper presents a review of the research progress in the carbon-metal oxide composites for supercapacitor electrodes. In the past decade, various carbon-metal oxide composite electrodes have been developed by integrating metal oxides into different carbon nanostructures including zero-dimensional carbon nanoparticles, one-dimensional nanostructures (carbon nanotubes and carbon nanofibers), two-dimensional nanosheets (graphene and reduced graphene oxides) as well as three-dimensional porous carbon nano-architectures. This paper has described the constituent, the structure and the properties of the carbon-metal oxide composites. An emphasis is placed on the synergistic effects of the composite on the performance of supercapacitors in terms of specific capacitance, energy density, power density, rate capability and cyclic stability. This paper has also discussed the physico-chemical processes such as charge transport, ion diffusion and redox reactions involved in supercapacitors.
Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review.
Zhi, Mingjia; Xiang, Chengcheng; Li, Jiangtian; Li, Ming; Wu, Nianqiang
2013-01-07
This paper presents a review of the research progress in the carbon-metal oxide composites for supercapacitor electrodes. In the past decade, various carbon-metal oxide composite electrodes have been developed by integrating metal oxides into different carbon nanostructures including zero-dimensional carbon nanoparticles, one-dimensional nanostructures (carbon nanotubes and carbon nanofibers), two-dimensional nanosheets (graphene and reduced graphene oxides) as well as three-dimensional porous carbon nano-architectures. This paper has described the constituent, the structure and the properties of the carbon-metal oxide composites. An emphasis is placed on the synergistic effects of the composite on the performance of supercapacitors in terms of specific capacitance, energy density, power density, rate capability and cyclic stability. This paper has also discussed the physico-chemical processes such as charge transport, ion diffusion and redox reactions involved in supercapacitors.
NASA Astrophysics Data System (ADS)
Guruswamy, B.; Ravindrachary, V.; Shruthi, C.; Hegde, Shreedatta; Sagar, Rohan N.
2018-04-01
ZnO nano particles were synthesized using a chemical precipitation method. Pure and ZnO nano particle doped PVA-NaAlg blend composite films were prepared using solution casing method. Structural information of these composites was studied using FTIR. Diffusion kinetics of these polymer blend composite were studied using Flory-Huggins theory. Using these diffusion studies, cross-linking density and swelling properties of the films were analyzed. Mechanical properties of these composite are also studied.
Surface chemistry in photodissociation regions
NASA Astrophysics Data System (ADS)
Esplugues, G. B.; Cazaux, S.; Meijerink, R.; Spaans, M.; Caselli, P.
2016-06-01
Context. The presence of dust can strongly affect the chemical composition of the interstellar medium. We model the chemistry in photodissociation regions (PDRs) using both gas-phase and dust-phase chemical reactions. Aims: Our aim is to determine the chemical compositions of the interstellar medium (gas/dust/ice) in regions with distinct (molecular) gas densities that are exposed to radiation fields with different intensities. Methods: We have significantly improved the Meijerink PDR code by including 3050 new gas-phase chemical reactions and also by implementing surface chemistry. In particular, we have included 117 chemical reactions occurring on grain surfaces covering different processes, such as adsorption, thermal desorption, chemical desorption, two-body reactions, photo processes, and cosmic-ray processes on dust grains. Results: We obtain abundances for different gas and solid species as a function of visual extinction, depending on the density and radiation field. We also analyse the rates of the formation of CO2 and H2O ices in different environments. In addition, we study how chemistry is affected by the presence/absence of ice mantles (bare dust or icy dust) and the impact of considering different desorption probabilities. Conclusions: The type of substrate (bare dust or icy dust) and the probability of desorption can significantly alter the chemistry occurring on grain surfaces, leading to differences of several orders of magnitude in the abundances of gas-phase species, such as CO, H2CO, and CH3OH. The type of substrate, together with the density and intensity of the radiation field, also determine the threshold extinction to form ices of CO2 and H2O. We also conclude that H2CO and CH3OH are mainly released into the gas phase of low, far-ultraviolet illuminated PDRs through chemical desorption upon two-body surface reactions, rather than through photodesorption.
Determination of petrophysical properties of sedimentary rocks by optical methods
NASA Astrophysics Data System (ADS)
Korte, D.; Kaukler, D.; Fanetti, M.; Cabrera, H.; Daubront, E.; Franko, M.
2017-04-01
Petrophysical properties of rocks (thermal diffusivity and conductivity, porosity and density) as well as the correlation between them are of great importance for many geoscientific applications. The porosity of the reservoir rocks and their permeability are the most fundamental physical properties with respect to the storage and transmission of fluids, mainly oil characterization. Accurate knowledge of these parameters for any hydrocarbon reservoir is required for efficient development, management, and prediction of future performance of the oilfield. Thus, the porosity and permeability, as well as the chemical composition must be quantified as precisely as possible. This should be done along with the thermal properties, density, conductivity, diffusivity and effusivity that are intimately related with them. For this reason, photothermal Beam Deflection Spectrometry (BDS) technique for determination of materials' thermal properties together with other methods such as Energy Dispersive X-ray Scanning Electron Microscopy (SEM-EDX) for determining the chemical composition and sample structure, as well as optical microscopy to determine the particles size, were applied for characterization of sedimentary rocks. The rocks were obtained from the Andes south flank in the Venezuela's western basin. The validation of BDS applicability for determination of petrophysical properties of three sedimentary rocks of different texture and composition (all from Late Cretaceous associated with the Luna, Capacho and Colón-Mito Juan geological formations) was performed. The rocks' thermal properties were correlated to the microstructures and chemical composition of the examined samples.
Clark, Dennis A.; Izbicki, John A.; Johnson, Russell D.; Land, Michael
2009-01-01
This report presents data on the physical and hydraulic properties of unsaturated alluvial deposits and on the chemical and isotopic composition of water collected at two recharge sites in the western part of the Mojave Desert, near Victorville, California, from 2001 to 2006. Unsaturated-zone monitoring sites were installed adjacent to the two recharge ponds using the ODEX air-hammer and air rotary method to depths of about 460 feet and 269 feet below land surface. Each of the two unsaturated-zone monitoring sites included a water-table well, matric-potential sensors, and suction-cup lysimeters installed in a single bore hole. Drilling procedures, lithologic and geophysical data, and site construction and instrumentation are described. Core material was analyzed for water content, bulk density, water potential, particle size, and water retention. The chemical composition of leachate from almost 400 samples of cores and cuttings was determined. Water from suction-cup lysimeters also was analyzed for chemical and isotopic composition. In addition, data on the chemical and isotopic composition of groundwater from the two water-table wells are reported along with chemical and isotopic composition of the surface water in the recharge ponds.
Rotational and vibrational Raman spectroscopy for thermochemistry measurements in supersonic flames
NASA Astrophysics Data System (ADS)
Bayeh, Alexander Christian
High speed chemically reacting flows are important in a variety of aerospace applications, namely ramjets, scramjets, afterburners, and rocket exhausts. To study flame extinction under similar high Mach number conditions, we need access to thermochemistry measurements in supersonic environments. In the current work a two-stage miniaturized combustor has been designed that can produce open supersonic methane-air flames amenable to laser diagnostics. The first stage is a vitiation burner, and was inspired by well-known principles of jet combustors. We explored the salient parameters of operation experimentally, and verified flame holding computationally using a well-stirred reactor model. The second stage of the burner generates an external supersonic flame, operating in premixed and partially premixed modes. The very high Mach numbers present in the supersonic flames should provide a useful test bed for the examination of flame suppression and extinction using laser diagnostics. We also present the development of new line imaging diagnostics for thermochemistry measurements in high speed flows. A novel combination of vibrational and rotational Raman scattering is used to measure major species densities (O 2, N2, CH4, H2O,CO2, CO, & H2) and temperature. Temperature is determined by the rotational Raman technique by comparing measured rotational spectra to simulated spectra based on the measured chemical composition. Pressure is calculated from density and temperature measurements through the ideal gas law. The independent assessment of density and temperature allows for measurements in environments where the pressure is not known a priori. In the present study we applied the diagnostics to laboratory scale supersonic air and vitiation jets, and examine the feasibility of such measurements in reacting supersonic flames. Results of full thermochemistry were obtained for the air and vitiation jets that reveal the expected structure of an under-expanded jet. Centerline traces of density, temperature, and pressure of the air jet agree well with computations, while measurements of chemical composition for the vitiation flow also agree well with predicted equilibrium values. Finally, we apply the new diagnostics to the exhaust of the developed burner, and show the first ever results for density, temperature, and pressure, as well as chemical composition in a supersonic flame.
NASA Astrophysics Data System (ADS)
Rudnick, R. L.; Liu, X.
2011-12-01
The continental crust has an "intermediate" bulk composition that is distinct from primary melts of peridotitic mantle (basalt or picrite). This mismatch between the "building blocks" and the "edifice" of the continental crust points to the operation of processes that preferentially remove mafic to ultramafic material from the continents. Such processes include lower crustal recycling (via density foundering or lower crustal subduction - e.g., relamination, Hacker et al., 2011, EPSL), generation of evolved melts via slab melting, and/or chemical weathering. Stable isotope systems document the influence of chemical weathering on the bulk crust composition: the oxygen isotope composition of the bulk crust is distinctly heavier than that of primary, mantle-derived melts (Simon and Lecuyer, 2005, G-cubed) and the Li isotopic composition of the bulk crust is distinctly lighter than that of mantle-derive melts (Teng et al., 2004, GCA; 2008, Chem. Geol.). Both signatures mark the imprint of chemical weathering on the bulk crust composition. Here, we use a simple mass balance model for lithium inputs and outputs from the continental crust to quantify the mass lost due to chemical weathering. We find that a minimum of 15%, a maximum of 60%, and a best estimate of ~40% of the original juvenile rock mass may have been lost via chemical weathering. The accumulated percentage of mass loss due to chemical weathering leads to an average global chemical weathering rate (CWR) of ~ 8×10^9 to 2×10^10 t/yr since 3.5 Ga, which is about an order of magnitude higher than the minimum estimates based on modern rivers (Gaillardet et al., 1999, Chem. Geol.). While we cannot constrain the exact portion of crustal mass loss via chemical weathering, given the uncertainties of the calculation, we can demonstrate that the weathering flux is non-zero. Therefore, chemical weathering must play a role in the evolution of the composition and mass of the continental crust.
The auroral 6300 A emission - Observations and modeling
NASA Technical Reports Server (NTRS)
Solomon, Stanley C.; Hays, Paul B.; Abreu, Vincent J.
1988-01-01
A tomographic inversion is used to analyze measurements of the auroral atomic oxygen emission line at 6300 A made by the atmosphere explorer visible airglow experiment. A comparison is made between emission altitude profiles and the results from an electron transport and chemical reaction model. Measurements of the energetic electron flux, neutral composition, ion composition, and electron density are incorporated in the model.
NASA Astrophysics Data System (ADS)
Arifuzzaman, Shafi M.
The central theme of this Ph.D. dissertation is to develop novel multifunctional polymer coatings for understanding partition of proteins and nanoparticles on polymers grafted to flat surfaces (so-called brushes). Systematic investigation of the adsorption phenomena is accomplished by utilizing surface-anchored assemblies comprising grafted polymers with variation in physical properties (i.e., length or/and grafting density) and chemical functionality. The chemical composition of the brush is tailored by either "chemical coloring" of a parent homopolymer brush with selective chemical moieties or by sequential growth of two chemically dissimilar polymer blocks. We present preparation of two types of tailor-made, surface-grafted copolymers: (1) those composed of hydrophilic and hydrophobic blocks (so-called amphiphilic polymer brushes), and (2) those comprising of anionic and cationic polymer segments (so-called polyampholyte brushes). We describe the organization of functionality in the grafted polymer brushes and the partitioning of proteins and nanoparticles using a battery of complementary analytical probes. Specifically, we address how varying the molecular weight, grafting density, and chemical composition of the brush affects adsorbtion and desorbtion of model proteins and gold nanoparticles. Our observations indicate densely-populated responsive amphiphilic polymers are very efficient in suppressing protein adsorption. In addition, we have established that the length of poly(ethylene glycol) spacers attached to a parent homopolymer brush is a key factor governing uptake of gold nanoparticles. Both grafting density and molecular weight of the coating are important in controlling the kinetics and thermodynamics of protein adsorption on surfaces. Our findings and methodologies can lead to the development of next generation environmentally friendly antifouling surfaces and will find application in medical devices, antifouling coatings and anti reflection finishes.
Transcutaneous Raman Spectroscopy of Bone
NASA Astrophysics Data System (ADS)
Maher, Jason R.
Clinical diagnoses of bone health and fracture risk typically rely upon measurements of bone density or structure, but the strength of a bone is also dependent upon its chemical composition. One technology that has been used extensively in ex vivo, exposed-bone studies to measure the chemical composition of bone is Raman spectroscopy. This spectroscopic technique provides chemical information about a sample by probing its molecular vibrations. In the case of bone tissue, Raman spectra provide chemical information about both the inorganic mineral and organic matrix components, which each contribute to bone strength. To explore the relationship between bone strength and chemical composition, our laboratory has contributed to ex vivo, exposed-bone animal studies of rheumatoid arthritis, glucocorticoid-induced osteoporosis, and prolonged lead exposure. All of these studies suggest that Raman-based predictions of biomechanical strength may be more accurate than those produced by the clinically-used parameter of bone mineral density. The utility of Raman spectroscopy in ex vivo, exposed-bone studies has inspired attempts to perform bone spectroscopy transcutaneously. Although the results are promising, further advancements are necessary to make non-invasive, in vivo measurements of bone that are of sufficient quality to generate accurate predictions of fracture risk. In order to separate the signals from bone and soft tissue that contribute to a transcutaneous measurement, we developed an overconstrained extraction algorithm that is based upon fitting with spectral libraries derived from separately-acquired measurements of the underlying tissue components. This approach allows for accurate spectral unmixing despite the fact that similar chemical components (e.g., type I collagen) are present in both soft tissue and bone and was applied to experimental data in order to transcutaneously detect, to our knowledge for the first time, age- and disease-related spectral differences in murine bone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kehimkar, Benjamin; Hoggard, Jamin C.; Marney, Luke C.
There is an increased need to more fully assess and control the composition of kerosene based rocket propulsion fuels, namely RP-1 and RP-2. In particular, it is crucial to be able to make better quantitative connections between the following three attributes: (a) fuel performance, (b) fuel properties (flash point, density, kinematic viscosity, net heat of combustion, hydrogen content, etc) and (c) the chemical composition of a given fuel (i.e., specific chemical compounds and compound classes present as a result of feedstock blending and processing). Indeed, recent efforts in predicting fuel performance through modeling put greater emphasis on detailed and accuratemore » fuel properties and fuel compositional information. In this regard, advanced distillation curve (ADC) metrology provides improved data relative to classical boiling point and volatility curve techniques. Using ADC metrology, data obtained from RP-1 and RP-2 fuels provides compositional variation information that is directly relevant to predictive modeling of fuel performance. Often, in such studies, one-dimensional gas chromatography (GC) combined with mass spectrometry (MS) is typically employed to provide chemical composition information. Building on approaches using GC-MS, but to glean substantially more chemical composition information from these complex fuels, we have recently studied the use of comprehensive two dimensional gas chromatography combined with time-of-flight mass spectrometry (GC × GC - TOFMS) to provide chemical composition data that is significantly richer than that provided by GC-MS methods. In this report, by applying multivariate data analysis techniques, referred to as chemometrics, we are able to readily model (correlate) the chemical compositional information from RP-1 and RP-2 fuels provided using GC × GC - TOFMS, to the fuel property information such as that provided by the ADC method and other specification properties. We anticipate that this new chemical analysis strategy will have broad implications for the development of high fidelity composition-property models, leading to an optimized approach to fuel formulation and specification for advanced engine cycles.« less
Experimentally investigate ionospheric depletion chemicals in artificially created ionosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Yu; Cao Jinxiang; Wang Jian
2012-09-15
A new approach for investigating ionosphere chemical depletion in the laboratory is introduced. Air glow discharge plasma closely resembling the ionosphere in both composition and chemical reactions is used as the artificially created ionosphere. The ionospheric depletion experiment is accomplished by releasing chemicals such as SF{sub 6}, CCl{sub 2}F{sub 2}, and CO{sub 2} into the model discharge. The evolution of the electron density is investigated by varying the plasma pressure and input power. It is found that the negative ion (SF{sub 6}{sup -}, CCl{sub 2}F{sub 2}{sup -}) intermediary species provide larger reduction of the electron density than the positive ionmore » (CO{sub 2}{sup +}) intermediary species. The negative ion intermediary species are also more efficient in producing ionospheric holes because of their fast reaction rates. Airglow enhancement attributed to SF{sub 6} and CO{sub 2} releases agrees well with the published data. Compared to the traditional methods, the new scheme is simpler to use, both in the release of chemicals and in the electron density measurements. It is therefore more efficient for investigating the release of chemicals in the ionosphere.« less
Structural Flexibility and Alloying in Ultrathin Transition-Metal Chalcogenide Nanowires
Lin, Junhao; Zhang, Yuyang; Zhou, Wu; ...
2016-01-18
Metallic transition-metal chalcogenide (TMC) nanowires are an important building block for 2D electronics that may be fabricated within semiconducting transition-metal dichalcogenide (TMDC) monolayers. Tuning the geometric structure and electronic properties of such nanowires is a promising way to pattern diverse functional channels for wiring multiple units inside a 2D electronic circuit. Nevertheless, few experimental investigations have been reported exploring the structural and compositional tunability of these nanowires, due to difficulties in manipulating the structure and chemical composition of an individual nanowire. Here, using a combination of scanning transmission electron microscopy (STEM) and density functional theory (DFT), we report that TMCmore » nanowires have substantial intrinsic structural flexibility and their chemical composition can be manipulated.« less
Production and Characterization of WC-Reinforced Co-Based Superalloy Matrix Composites
NASA Astrophysics Data System (ADS)
Özgün, Özgür; Dinler, İlyas
2018-05-01
Cobalt-based superalloy matrix composite materials were produced through the powder metallurgy technique using element powders at high purity and nano-sized wolfram carbide (WC) reinforcement in this study. An alloy that had the same chemical composition as the Stellite 6 alloy but not containing carbon was selected as the matrix alloy. The powder mixtures obtained as a result of mixing WC reinforcing member and element powders at the determined ratio were shaped by applying 300 MPa of pressure. The green components were sintered under argon atmosphere at 1240 °C for 120 minutes. The densities of the sintered components were determined by the Archimedes' principle. Microstructural characterization was performed via X-ray diffraction analysis, scanning electron microscope examinations, and energy-dispersive spectrometry. Hardness measurements and tensile tests were performed for determining mechanical characteristics. The relative density values of the sintered components increased by increasing the WC reinforcement ratio and they could almost reach the theoretical density. It was determined from the microstructural examinations that the composite materials consisted of fine and equiaxed grains and coarse carbides demonstrating a homogeneous dispersion along the microstructure at the grain boundaries. As it was the case in the density values, the hardness and strength values of the composites increased by increasing the WC ratio.
Production and Characterization of WC-Reinforced Co-Based Superalloy Matrix Composites
NASA Astrophysics Data System (ADS)
Özgün, Özgür; Dinler, İlyas
2018-07-01
Cobalt-based superalloy matrix composite materials were produced through the powder metallurgy technique using element powders at high purity and nano-sized wolfram carbide (WC) reinforcement in this study. An alloy that had the same chemical composition as the Stellite 6 alloy but not containing carbon was selected as the matrix alloy. The powder mixtures obtained as a result of mixing WC reinforcing member and element powders at the determined ratio were shaped by applying 300 MPa of pressure. The green components were sintered under argon atmosphere at 1240 °C for 120 minutes. The densities of the sintered components were determined by the Archimedes' principle. Microstructural characterization was performed via X-ray diffraction analysis, scanning electron microscope examinations, and energy-dispersive spectrometry. Hardness measurements and tensile tests were performed for determining mechanical characteristics. The relative density values of the sintered components increased by increasing the WC reinforcement ratio and they could almost reach the theoretical density. It was determined from the microstructural examinations that the composite materials consisted of fine and equiaxed grains and coarse carbides demonstrating a homogeneous dispersion along the microstructure at the grain boundaries. As it was the case in the density values, the hardness and strength values of the composites increased by increasing the WC ratio.
NASA Technical Reports Server (NTRS)
Morgan, J. W.; Anders, E.
1979-01-01
The chemical composition of Mars is estimated from the cosmochemical model of Ganapathy and Anders (1974) with additional petrological and geophysical constraints. The model assumes that planets and chondrites underwent the same fractionation processes in the solar nebula, and constraints are imposed by the abundance of the heat-producing elements, U, Th and K, the volatile-rich component and the high density of the mantle. Global abundances of 83 elements are presented, and it is noted that the mantle is an iron-rich garnet wehrlite, nearly identical to the bulk moon composition of Morgan at al. (1978) and that the core is sulfur poor (3.5% S). The comparison of model compositions for the earth, Venus, Mars, the moon and a eucrite parent body suggests that volatile depletion correlates mainly with size rather than with radial distance from the sun.
Physical conditions in CaFe interstellar clouds
NASA Astrophysics Data System (ADS)
Gnaciński, P.; Krogulec, M.
2008-01-01
Interstellar clouds that exhibit strong Ca I and Fe I lines are called CaFe clouds. Ionisation equilibrium equations were used to model the column densities of Ca II, Ca I, K I, Na I, Fe I and Ti II in CaFe clouds. We find that the chemical composition of CaFe clouds is solar and that there is no depletion into dust grains. CaFe clouds have high electron densities, n_e≈1 cm-3, that lead to high column densities of neutral Ca and Fe.
Constraints on continental crustal mass loss via chemical weathering using lithium and its isotopes
NASA Astrophysics Data System (ADS)
Rudnick, R. L.; Liu, X. M.
2012-04-01
The continental crust has an "intermediate" bulk composition that is distinct from primary melts of peridotitic mantle (basalt or picrite). This mismatch between the "building blocks" and the "edifice" that is the continental crust points to the operation of processes that preferentially remove mafic to ultramafic material from the continents. Such processes include lower crustal recycling (via density foundering or lower crustal subduction - e.g., relamination, Hacker et al., 2011, EPSL), generation of evolved melts via slab melting, and/or chemical weathering. Stable isotope systems point to the influence of chemical weathering on the bulk crust composition: the oxygen isotope composition of the bulk crust is distinctly heavier than that of primary, mantle-derived melts (Simon and Lecuyer, 2005, G-cubed) and the Li isotopic composition of the bulk crust is distinctly lighter than that of mantle-derive melts (Teng et al., 2004, GCA; 2008, Chem. Geol.). Both signatures mark the imprint of chemical weathering on the bulk crust composition. Here, we use a simple mass balance model for lithium inputs and outputs from the continental crust to quantify the mass lost due to chemical weathering. We find that a minimum of 15%, a maximum of 60%, and a best estimate of ~40% of the original juvenile rock mass may have been lost via chemical weathering. The accumulated percentage of mass loss due to chemical weathering leads to an average global chemical weathering rate (CWR) of ~ 1×10^10 to 2×10^10 t/yr since 3.5 Ga, which is about an order of magnitude higher than the minimum estimates based on modern rivers (Gaillardet et al., 1999, Chem. Geol.). While we cannot constrain the exact portion of crustal mass loss via chemical weathering, given the uncertainties of the calculation, we can demonstrate that the weathering flux is non-zero. Therefore, chemical weathering must play a role in the evolution of the composition and mass of the continental crust.
Robocast Pb(Zr{sub 0.95}Ti{sub 0.05})O{sub 3} Ceramic Monoliths and Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
TUTTLE,BRUCE A.; SMAY,JAMES E.; CESARANO III,JOSEPH
2000-07-18
Robocasting, a computer controlled slurry deposition technique, was used to fabricate ceramic monoliths and composites of chemically prepared Pb(Zr{sub 0.95}Ti{sub 0.05})O{sub 3} (PZT 95/5) ceramics. Densities and electrical properties of the robocast samples were equivalent to those obtained for cold isostatically pressed (CIP) parts formed at 200 MPa. Robocast composites consisting of alternate layers of the following sintered densities: (93.9%--96.1%--93.9%), were fabricated using different levels of organic pore former additions. Modification from a single to a multiple material deposition robocaster was essential to the fabrication of composites that could withstand repeated cycles of saturated polarization switching under 30 kV/cm fields.more » Further, these composites withstood 500 MPa hydrostatic pressure induced poled ferroelectric (FE) to antiferroelectric (AFE) phase transformation during which strain differences on the order of 0.8% occurred between composite elements.« less
NASA Astrophysics Data System (ADS)
Horvath, Ildiko; Lovell, Brian C.
2018-02-01
This study investigates various types of neutral density features developed in the cusp region during magnetically active and quiet times. Multi-instrument Challenging Minisatellite Payload data provide neutral density, electron temperature, neutral wind speed, and small-scale field-aligned current (SS-FAC) values. Gravity Recovery and Climate Experiment neutral density data are also employed. During active times, cusp densities or density spikes appeared with their underlying flow channels (FCs) and enhanced SS-FACs implying upwelling, fueled by Joule heating, within/above FCs. Both the moderate nightside cusp enhancements under disturbed conditions and the minor dayside cusp enhancements under quiet conditions developed without any underlying FC and enhanced SS-FACs implying the role of particle precipitation in their development. Observations demonstrate the relations of FCs, density spikes, and upwelling-related divergent flows and their connections to the underlying (1) dayside magnetopause reconnection depositing magnetospheric energy into the high-latitude region and (2) Joule heating-driven disturbance dynamo effects. Results provide observational evidence that the moderate nightside cusp enhancements and the minor dayside cusp enhancements detected developed due to direct heating by weak particle precipitation. Chemical compositions related to the dayside density spike and low cusp densities are modeled by Naval Research Laboratory Mass Spectrometer Incoherent Scatter Radar Extended 2000. Modeled composition outputs for the dayside density spike's plasma environment depict some characteristic upwelling signatures. Oppositely, in the case of low dayside cusp densities, composition outputs show opposite characteristics due to the absence of upwelling.
Rolle, Luca; Segade, Susana Río; Torchio, Fabrizio; Giacosa, Simone; Cagnasso, Enzo; Marengo, Fabio; Gerbi, Vincenzo
2011-08-24
Changes in the phenolic composition, phenol extractability indices, and mechanical properties occur in grape berries during the ripening process, but the heterogeneity of the grapes harvested at different ripening stages affects the reliability of the results obtained. In this work, these changes were studied in Nebbiolo grapes harvested during five consecutive weeks and then separated according to three density classes. The changes observed in chemical and mechanical parameters through the ripening process are more related to berry density than harvest date. Therefore, the winemaker has to select the flotation density according to the objective quality properties of the wine to be elaborated. On the other hand, the stiffer grapes were associated with a higher accumulation of proanthocyanidins. The harder grapes provided the higher concentration and extractability of flavanols reactive to vanillin, whereas the thicker ones facilitated the extraction of proanthocyanidins.
MnO2/carbon nanowalls composite electrode for supercapacitor application
NASA Astrophysics Data System (ADS)
Hassan, Sameh; Suzuki, Masaaki; Mori, Shinsuke; El-Moneim, Ahmed Abd
2014-03-01
Amorphous MnO2/carbon nanowalls composite films are developed for the supercapacitor applications. Synthesis of carbon nanowalls template is performed by plasma-enhanced chemical vapor deposition in a CO/H2 microwave discharge system. A well dispersion of amorphous MnO2 domains throughout carbon nanowalls template is obtained by potentiostatic anodic deposition technique. Carbon nanowalls enable to improve the capacitive behavior and rate capability of MnO2, a specific capacitance of 851 F g-1 at a current density of 1 mA cm-2 and charge transfer resistance of 1.02 Ω are obtained. MnO2/carbon nanowalls composite film exhibits energy density of 118 wh kg-1, power density of 783 wh kg-1, and capacitance retention of 92% after long cycle life of 2000 cycles by charging and discharging at 3 mA cm-2. The high density of atomic scale graphitic edges and large surface area of carbon nanowalls in conjunction with the presence of amorphous MnO2 domains facilitate rapid electron and ion transport and hence offering the potential of the improved capacitive behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, Brian J.; Kroll, Jared O.; Peterson, Jacob A.
Here, this paper provides an overview of research evaluating the use of lead tellurite glass as a waste form for salt wastes from electrochemical reprocessing of used nuclear fuel. The efficacy of using lead tellurite glass to immobilize three different salt compositions was evaluated: a LiCl-Li 2O oxide reduction salt containing fission products from oxide fuel, a LiCl-KCl eutectic salt containing fission products from metallic fuel, and SrCl 2. Physical and chemical properties of glasses made with these salts were characterized with X-ray diffraction, bulk density measurements, differential thermal analysis, chemical durability tests, scanning and transmission electron microscopies, and energy-dispersivemore » X-ray spectroscopy. These glasses were found to accommodate high salt concentrations and have high densities, but further development is needed to improve chemical durability.« less
Chemical evolution in spiral and irregular galaxies
NASA Technical Reports Server (NTRS)
Torres-Peimbert, S.
1986-01-01
A brief review of models of chemical evolution of the interstellar medium in our galaxy and other galaxies is presented. These models predict the time variation and radial dependence of chemical composition in the gas as function of the input parameters; initial mass function, stellar birth rate, chemical composition of mass lost by stars during their evolution (yields), and the existence of large scale mass flows, like infall from the halo, outflow to the intergalactic medium or radial flows within a galaxy. At present there is a considerable wealth of observational data on the composition of HII regions in spiral and irregular galaxies to constrain the models. Comparisons are made between theory and the observed physical conditions. In particular, studies of helium, carbon, nitrogen and oxygen abundances are reviewed. In many molecular clouds the information we have on the amount of H2 is derived from the observed CO column density, and a standard CO/H2 ratio derived for the solar neighborhood. Chemical evolution models and the observed variations in O/H and N/O values, point out the need to include these results in a CO/H2 relation that should be, at least, a function of the O/H ratio. This aspect is also discussed.
NASA Astrophysics Data System (ADS)
Kim, Jeonglae; Pope, Stephen B.
2014-05-01
A turbulent lean-premixed propane-air flame stabilised by a triangular cylinder as a flame-holder is simulated to assess the accuracy and computational efficiency of combined dimension reduction and tabulation of chemistry. The computational condition matches the Volvo rig experiments. For the reactive simulation, the Lagrangian Large-Eddy Simulation/Probability Density Function (LES/PDF) formulation is used. A novel two-way coupling approach between LES and PDF is applied to obtain resolved density to reduce its statistical fluctuations. Composition mixing is evaluated by the modified Interaction-by-Exchange with the Mean (IEM) model. A baseline case uses In Situ Adaptive Tabulation (ISAT) to calculate chemical reactions efficiently. Its results demonstrate good agreement with the experimental measurements in turbulence statistics, temperature, and minor species mass fractions. For dimension reduction, 11 and 16 represented species are chosen and a variant of Rate Controlled Constrained Equilibrium (RCCE) is applied in conjunction with ISAT to each case. All the quantities in the comparison are indistinguishable from the baseline results using ISAT only. The combined use of RCCE/ISAT reduces the computational time for chemical reaction by more than 50%. However, for the current turbulent premixed flame, chemical reaction takes only a minor portion of the overall computational cost, in contrast to non-premixed flame simulations using LES/PDF, presumably due to the restricted manifold of purely premixed flame in the composition space. Instead, composition mixing is the major contributor to cost reduction since the mean-drift term, which is computationally expensive, is computed for the reduced representation. Overall, a reduction of more than 15% in the computational cost is obtained.
NASA Astrophysics Data System (ADS)
Fernandez, M.; Torne, M.; Carballo, A.; Jiménez-Munt, I.; Verges, J.; Villasenor, A.; Garcia-Castellanos, D.; Diaz Cusi, J.
2015-12-01
We present a geophysical and petrological study that aims to define the lithosphere structure and the variations of the chemical composition of the lithospheric mantle along three geo-transects crossing Iberia, the westernmost Mediterranean and North Africa. The modeling is based on an integrated geophysical-petrological methodology that combines elevation, gravity, geoid, surface heat flow, seismic and geochemical data. Unlike previous models, where the density of the lithospheric mantle is only temperature-dependent, the applied methodology allows inferring seismic velocities and density in the mantle down to 400 km depth from its chemical composition through self-consistent thermodynamic calculations. The first geo-transect with a length of 1100 km runs from the NE-Iberian Peninsula to the Tell-Atlas Mountains in Algeria. The second profile crosses the entire Iberian Peninsula, from the Northern Iberian Margin to the Alboran Basin. The third runs from the Iberian Massif to the Sahara Platform crossing the Betic-Rif orogenic system through the Gibraltar Strait and the Atlas Mountains. Results are compared to available tomography models and Pn-velocity data. The obtained lithospheric structure shows large lateral variations in crustal and lithospheric mantle thicknesses and mantle chemical composition. Measured low Pn velocities in the Western Mediterranean basin can be explained either by serpentinization and/or seismic anisotropy and only partly by transient thermal effects. In the Bay of Biscay low Pn velocities are explained only by serpentinization. The negative sub-lithospheric velocity anomalies imaged by tomography models below the Iberian plate and the Atlas Mountains are interpreted in terms of high-temperature/low-density regions being responsible for the high mean topography.
NASA Astrophysics Data System (ADS)
Kondratenko, Mikhail S.; Karpushkin, Evgeny A.; Gvozdik, Nataliya A.; Gallyamov, Marat O.; Stevenson, Keith J.; Sergeyev, Vladimir G.
2017-02-01
A series of composite proton-exchange membranes have been prepared via sol-gel modification of commercial Nafion membranes with [N-(2-aminoethyl)-3-aminopropyl]trimethoxysilane. The structure and physico-chemical properties (water uptake, ion-exchange capacity, vanadyl ion permeability, and proton conductivity) of the prepared composite membranes have been studied as a function of the precursor loading (degree of the membrane modification). If the amount of the precursor is below 0.4/1 M ratio of the amino groups of the precursor to the sulfonic groups of Nafion, the composite membranes exhibit decreased vanadium ion permeability while having relatively high proton conductivity. With respect to the use of a non-modified Nafion membrane, the performance of the composite membrane with an optimum precursor loading in a single-cell vanadium redox flow battery demonstrates enhanced energy efficiency in 20-80 mA cm-2 current density range. The maximum efficiency increase of 8% is observed at low current densities.
NASA Astrophysics Data System (ADS)
Lund, Cory; Romanczyk, Brian; Catalano, Massimo; Wang, Qingxiao; Li, Wenjun; DiGiovanni, Domenic; Kim, Moon J.; Fay, Patrick; Nakamura, Shuji; DenBaars, Steven P.; Mishra, Umesh K.; Keller, Stacia
2017-05-01
In this study, the growth of high quality N-polar InGaN films by metalorganic chemical vapor deposition is presented with a focus on growth process optimization for high indium compositions and the structural and tunneling properties of such films. Uniform InGaN/GaN multiple quantum well stacks with indium compositions up to 0.46 were grown with local compositional analysis performed by energy-dispersive X-ray spectroscopy within a scanning transmission electron microscope. Bright room-temperature photoluminescence up to 600 nm was observed for films with indium compositions up to 0.35. To study the tunneling behavior of the InGaN layers, N-polar GaN/In0.35Ga0.65N/GaN tunnel diodes were fabricated which reached a maximum current density of 1.7 kA/cm2 at 5 V reverse bias. Temperature-dependent measurements are presented and confirm tunneling behavior under reverse bias.
Chemical Evolution of a Protoplanetary Disk
NASA Astrophysics Data System (ADS)
Semenov, Dmitry A.
2011-12-01
In this paper we review recent progress in our understanding of the chemical evolution of protoplanetary disks. Current observational constraints and theoretical modeling on the chemical composition of gas and dust in these systems are presented. Strong variations of temperature, density, high-energy radiation intensities in these disks, both radially and vertically, result in a peculiar disk chemical structure, where a variety of processes are active. In hot, dilute and heavily irradiated atmosphere only the most photostable simple radicals and atoms and atomic ions exist, formed by gas-phase processes. Beneath the atmosphere a partly UV-shielded, warm molecular layer is located, where high-energy radiation drives rich ion-molecule and radical-radical chemistry, both in the gas phase and on dust surfaces. In a cold, dense, dark disk midplane many molecules are frozen out, forming thick icy mantles where surface chemistry is active and where complex polyatomic (organic) species are synthesized. Dynamical processes affect disk chemical composition by enriching it in abundances of complex species produced via slow surface processes, which will become detectable with ALMA.
Evolution of Primary Fe-Rich Compounds in Secondary Al-Si-Cu Alloys
NASA Astrophysics Data System (ADS)
Fabrizi, Alberto; Capuzzi, Stefano; Timelli, Giulio
Although iron is usually added in die cast Al-Si foundry alloys to prevent die soldering, primary Fe-rich particles are generally considered as "hardspot" inclusions which compromise the mechanical properties of the alloy, namely ductility and toughness. As there is no economical methods to remove the Fe excess in secondary Al-Si alloys at this time, the control of solidification process and chemical composition of the alloy is a common industrial practice to overcome the negative effects connected with the presence of Fe-rich particles. In this work, the size and morphology as well as the nucleation density of primary Fe-rich particles have been studied as function of cooling rate and alloy chemical composition for secondary Al-Si-Cu alloys. The solidification experiments were carried out using differential scanning calorimetry whereas morphology investigations were conducted using optical and scanning electron microscopy. Mcrosegregations and chemical composition of primary Fe-rich particles were examined by energy dispersive spectroscopy.
Detection of Illicit Drugs with the EURITRACK System
NASA Astrophysics Data System (ADS)
Perot, B.; Carasco, C.; Valkovic, V.; Sudac, D.; Franulovic, A.
2009-03-01
The EURopean Illicit TRAfficking Countermeasures Kit (EURITRACK) inspection system has been developed within the 6th EU Framework Program to complement X-ray scanners in the detection of explosives and other illicit materials hidden in cargo containers. Gamma rays are produced inside the cargo materials by 14 MeV tagged neutron beams, which yields information about the chemical composition of the transported goods. In the beginning of year 2007, the EURITRACK system was implemented in the Seaport of Rijeka, Croatia, primarily to carry out a demonstration using real containers to conduct a series of detection tests. This article reports tests performed with real samples of illicit drugs hidden in a metallic cargo with an average density of 0.2 g/cm3. Heroin and cocaine have been distinguished from benign substances based on their chemical composition. Marijuana, which chemical composition is similar to benign materials, cannot be distinguished from common organic goods. However, the detection of an unexpected organic substance inside the metallic cargo indicates that a suspicious object has been hidden in the container.
A new class of g-modes in neutron stars
NASA Technical Reports Server (NTRS)
Reisenegger, Andreas; Goldreich, Peter
1992-01-01
Because a neutron star is born hot, its internal composition is close to chemical equilibrium. In the fluid core, this implies that the ratio of the number densities of charged particles (protons and electrons) to neutrons is an increasing function of the mass density. This composition gradient stably stratifies the matter giving rise to a Brunt-Vaisala frequency N of about 500/s. Consequently, a neutron star core provides a cavity that supports gravity modes (g-modes). These g-modes are distinct from those previously identified with the thermal stratification of the surface layers and the chemical stratification of the crust. We compute the lowest-order, quadrupolar, g-modes for cold, Newtonian, neutron star models with M/solar M = 0.581 and M/solar M = 1.405, and show that the crustal and core g-modes have similar periods. We also discuss damping mechanisms and estimate damping rates for the core g-modes. Particular attention is paid to damping due to the emission of gravitational radiation.
Siemiaszko, Dariusz; Kowalska, Beata; Jóźwik, Paweł; Kwiatkowska, Monika
2015-01-01
This paper presents the results of studies on the influence of oxygen partial pressure (vacuum level in the chamber) on the properties of FeAl intermetallics. One of the problems in the application of classical methods of prepared Fe-Al intermetallic is the occurrence of oxides. Applying a vacuum during sintering should reduce this effect. In order to analyze the effect of oxygen partial pressure on sample properties, five samples were processed (by a pressure-assisted induction sintering—PAIS method) under the following pressures: 3, 8, 30, 80, and 300 mbar (corresponding to oxygen partial pressures of 0.63, 1.68, 6.3, 16.8, and 63 mbar, respectively). The chemical and phase composition, hardness, density, and microstructure observations indicate that applying a vacuum significantly impacts intermetallic samples. The compact sintered at pressure 3 mbar is characterized by the most homogeneous microstructure, the highest density, high hardness, and nearly homogeneous chemical composition. PMID:28788015
Acoustic characterisation of liquid foams with an impedance tube.
Pierre, Juliette; Guillermic, Reine-Marie; Elias, Florence; Drenckhan, Wiebke; Leroy, Valentin
2013-10-01
Acoustic measurements provide convenient non-invasive means for the characterisation of materials. We show here for the first time how a commercial impedance tube can be used to provide accurate measurements of the velocity and attenuation of acoustic waves in liquid foams, as well as their effective "acoustic" density, over the 0.5-6kHz frequency range. We demonstrate this using two types of liquid foams: a commercial shaving foam and "home-made" foams with well-controlled physico-chemical and structural properties. The sound velocity in the latter foams is found to be independent of the bubble size distribution and is very well described by Wood's law. This implies that the impedance technique may be a convenient way to measure in situ the density of liquid foams. Important questions remain concerning the acoustic attenuation, which is found to be influenced in a currently unpredictible manner by the physico-chemical composition and the bubble size distribution of the characterised foams. We confirm differences in sound velocities in the two types of foams (having the same structural properties) which suggests that the physico-chemical composition of liquid foams has a non-negligible effect on their acoustic properties.
NASA Astrophysics Data System (ADS)
Pradipta, Rangga; Mardiyati, Steven, Purnomo, Ikhsan
2017-03-01
Sanseviera trifasciata commonly called mother-in-law tongue also known as snake plant is native to Indonesia, India and Africa. Sansevieria is a new fiber in composite research and has showed promising properties as reinforcement material in polymer matrix composites. Chemical treatment on reinforcing fiber is crucial to reduce hydrophilic tendency and thus improve compatibility with the matrix. In this study, effect of maleic anhydride as chemical treatment on the mechanical properties of Sansevieria fiber/vinyl ester composite was investigated. Sansevieria fibers were immersed by using NaOH 3% for two hours at 100°C and then treated by using maleic anhydrate for two hours at 120°C. Composites were prepared by solution casting with various volume fractions of fiber; 0%, 2.5%, 5%, 7.5% and 10%. Actual density, volume fraction of void and mechanical properties of composite were conducted according to ASTM standard testing methods D792, D3171 and D3039. It was found that mechanical properties of composites increased as volume fractions of fiber was increased. The highest tensile strength and modulus of elasticity of composites were 57.45 MPa and 3.47 GPa respectively, obtained from composites with volume fraction of fiber 10%.
NASA Astrophysics Data System (ADS)
Lymperakis, L.; Schulz, T.; Freysoldt, C.; Anikeeva, M.; Chen, Z.; Zheng, X.; Shen, B.; Chèze, C.; Siekacz, M.; Wang, X. Q.; Albrecht, M.; Neugebauer, J.
2018-01-01
Nominal InN monolayers grown by molecular beam epitaxy on GaN(0001) are investigated combining in situ reflection high-energy electron diffraction (RHEED), transmission electron microscopy (TEM), and density functional theory (DFT). TEM reveals a chemical intraplane ordering never observed before. Employing DFT, we identify a novel surface stabilization mechanism elastically frustrated rehybridization, which is responsible for the observed chemical ordering. The mechanism also sets an incorporation barrier for indium concentrations above 25% and thus fundamentally limits the indium content in coherently strained layers.
Lin, Tsung-Wu; Dai, Chao-Shuan; Hung, Kuan-Chung
2014-01-01
The application of the composite of Ni3S2 nanoparticles and 3D graphene as a novel cathode material for supercapacitors is systematically investigated in this study. It is found that the electrode capacitance increases by up to 111% after the composite electrode is activated by the consecutive cyclic voltammetry scanning in 1 M KOH. Due to the synergistic effect, the capacitance and the diffusion coefficient of electrolyte ions of the activated composite electrode are ca. 3.7 and 6.5 times higher than those of the Ni3S2 electrode, respectively. Furthermore, the activated composite electrode exhibits an ultrahigh specific capacitance of 3296 F/g and great cycling stability at a current density of 16 A/g. To obtain the reasonable matching of cathode/anode electrodes, the composite of Fe3O4 nanoparticles and chemically reduced graphene oxide (Fe3O4/rGO) is synthesized as the anode material. The Fe3O4/rGO electrode exhibits the specific capacitance of 661 F/g at 1 A/g and excellent rate capability. More importantly, an asymmetric supercapacitor fabricated by two different composite electrodes can be operated reversibly between 0 and 1.6 V and obtain a high specific capacitance of 233 F/g at 5 mV/s, which delivers a maximum energy density of 82.5 Wh/kg at a power density of 930 W/kg. PMID:25449978
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiaoping, E-mail: wxpchina64@aliyun.com, E-mail: wxpchina@sohu.com; Shanghai Key Laboratory of Modern Optical System, Shanghai 200093; Wang, Jinye
A series of single-layer nano-carbon (SNC) films, diamond films, and diamond/nano-carbon (D/NC) composite films have been prepared on the highly doped silicon substrate by using microwave plasma chemical vapor deposition techniques. The films were characterised by scanning electron microscopy, Raman spectroscopy, and field emission I-V measurements. The experimental results indicated that the field emission maximum current density of D/NC composite films is 11.8–17.8 times that of diamond films. And the field emission current density of D/NC composite films is 2.9–5 times that of SNC films at an electric field of 3.0 V/μm. At the same time, the D/NC composite film exhibitsmore » the advantage of improved reproducibility and long term stability (both of the nano-carbon film within the D/NC composite cathode and the SNC cathode were prepared under the same experimental conditions). And for the D/NC composite sample, a high current density of 10 mA/cm{sup 2} at an electric field of 3.0 V/μm was obtained. Diamond layer can effectively improve the field emission characteristics of nano-carbon film. The reason may be due to the diamond film acts as the electron acceleration layer.« less
Analysis and comparison of biomass pyrolysis/gasification condensates: Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, D.C.
1986-06-01
This report provides results of chemical and physical analysis of condensates from eleven biomass gasification and pyrolysis systems. The samples were representative of the various reactor configurations being researched within the Department of Energy, Biomass Thermochemical Conversion program. The condensates included tar phases and aqueous phases. The analyses included gross compositional analysis (elemental analysis, ash, moisture), physical characterization (pour point, viscosity, density, heat of combustion, distillation), specific chemical analysis (gas chromatography/mass spectrometry, infrared spectrophotometry, proton and carbon-13 nuclear magnetic resonance spectrometry) and biological activity (Ames assay and mouse skin tumorigenicity tests). These results are the first step of a longermore » term program to determine the properties, handling requirements, and utility of the condensates recovered from biomass gasification and pyrolysis. The analytical data demonstrates the wide range of chemical composition of the organics recovered in the condensates and suggests a direct relationship between operating temperature and chemical composition of the condensates. A continuous pathway of thermal degradation of the tar components as a function of temperature is proposed. Variations in the chemical composition of the organic components in the tars are reflected in the physical properties of tars and phase stability in relation to water in the condensate. The biological activity appears to be limited to the tars produced at high temperatures. 56 refs., 25 figs., 21 tabs.« less
NASA Astrophysics Data System (ADS)
Venkata Reddy, V.; Gopi Krishna, M.; Praveen Kumar, K.; Naga Kishore, B. S.; Babu Rao, J.; Bhargava, NRMR
2018-02-01
Experiments have been performed under laboratory condition to review the mechanical behaviour of the hybrid composites with aluminium matrix A7075 alloy, reinforced with silicon carbide (SiC) and Flyash. This has been possible by fabricating the samples through usual stir casting technique. Scanning electron microscopy was used for microstructure analysis. Chemical characterization of both matrix and composites was performed by using EDAX. Density, hardness, tensile and deformation studies were conceded out on both the base alloy and composites. Enhanced hardness and deformed properties were observed for all the composites. Interestingly improved tensile results were obtained for the composites than alloy. Dispersion of (SiC) and Flyash particles in aluminium matrix enhances the hardness of the composites.
Laser modification of graphene oxide layers
NASA Astrophysics Data System (ADS)
Malinský, Petr; Macková, Anna; Cutroneo, Mariapompea; Siegel, Jakub; Bohačová, Marie; Klímova, Kateřina; Švorčík, Václav; Sofer, Zdenĕk
2018-01-01
The effect of linearly polarized laser irradiation with various energy densities was successfully used for reduction of graphene oxide (GO). The ion beam analytical methods (RBS, ERDA) were used to follow the elemental composition which is expected as the consequence of GO reduction. The chemical composition analysis was accompanied by structural study showing changed functionalities in the irradiated GO foils using spectroscopy techniques including XPS, FTIR and Raman spectroscopy. The AFM was employed to identify the surface morphology and electric properties evolution were subsequently studied using standard two point method measurement. The used analytical methods report on reduction of irradiated graphene oxide on the surface and the decrease of surface resistivity as a growing function of the laser beam energy density.
NASA Astrophysics Data System (ADS)
Silva, Chinthaka M.; Lindemer, Terrence B.; Voit, Stewart R.; Hunt, Rodney D.; Besmann, Theodore M.; Terrani, Kurt A.; Snead, Lance L.
2014-11-01
Three sets of experimental conditions were tested to synthesize uranium carbonitride (UC1-xNx) kernels from gel-derived urania-carbon microspheres. Primarily, three sequences of gases were used, N2 to N2-4%H2 to Ar, Ar to N2 to Ar, and Ar-4%H2 to N2-4%H2 to Ar-4%H2. Physical and chemical characteristics such as geometrical density, phase purity, and chemical compositions of the synthesized UC1-xNx were measured. Single-phase kernels were commonly obtained with densities generally ranging from 85% to 93% TD and values of x as high as 0.99. In-depth analysis of the microstrutures of UC1-xNx has been carried out and is discussed with the objective of large batch fabrication of high density UC1-xNx kernels.
NASA Astrophysics Data System (ADS)
Riley, Brian J.; Kroll, Jared O.; Peterson, Jacob A.; Pierce, David A.; Ebert, William L.; Williams, Benjamin D.; Snyder, Michelle M. V.; Frank, Steven M.; George, Jaime L.; Kruska, Karen
2017-11-01
This paper provides an overview of research evaluating the use of lead tellurite glass as a waste form for salt wastes from electrochemical reprocessing of used nuclear fuel. The efficacy of using lead tellurite glass to immobilize three different salt compositions was evaluated: a LiCl-Li2O oxide reduction salt containing fission products from oxide fuel, a LiCl-KCl eutectic salt containing fission products from metallic fuel, and SrCl2. Physical and chemical properties of glasses made with these salts were characterized with X-ray diffraction, bulk density measurements, differential thermal analysis, chemical durability tests, scanning and transmission electron microscopies, and energy-dispersive X-ray spectroscopy. These glasses were found to accommodate high salt concentrations and have high densities, but further development is needed to improve chemical durability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, Brian J.; Kroll, Jared O.; Peterson, Jacob A.
This paper provides an overview of research evaluating the use of lead tellurite glass as a waste form for salt wastes from electrochemical reprocessing of used nuclear fuel. The efficacy of using lead tellurite glass to immobilize three different salt compositions was evaluated: a LiCl-Li2O oxide reduction salt containing fission products from oxide fuel, a LiCl-KCl eutectic salt containing fission products from metallic fuel, and SrCl2. Physical and chemical properties of glasses made with these salts were characterized with X-ray diffraction, bulk density measurements, differential thermal analysis, chemical durability tests, scanning and transmission electron microscopies, and energy-dispersive X-ray spectroscopy. Thesemore » glasses were found to accommodate high salt concentrations and have high densities, but further development is needed to improve chemical durability. (C) 2017 Published by Elsevier B.V.« less
Non-equilibrium vibrational and chemical kinetics in shock heated carbon dioxide
NASA Astrophysics Data System (ADS)
Kosareva, A. A.
2018-05-01
The flows of CO2/CO/O2/O/C and CO2/CO/O mixtures behind shock waves are studied in the three-temperature, two-temperature and one-temperature approximations. The influence of the vibrational relaxation and chemical reactions on the flow composition, temperature and velocity is investigated. It is shown that the vibrational non-equilibrium has a significant effect on the macroscopic parameters of the flow near the front of the shock wave. It was found that the composition of the mixture has the greatest effect on the numerical density of CO molecules and O atoms. Also, significant differences between the values of the vibrational temperature of the asymmetric regime have been revealed.
Glass formation, properties, and structure of soda-yttria-silicate glasses
NASA Technical Reports Server (NTRS)
Angel, Paul W.; Hann, Raiford E.
1991-01-01
The glass formation region of the soda yttria silicate system was determined. The glasses within this region were measured to have a density of 2.4 to 3.1 g/cu cm, a refractive index of 1.50 to 1.60, a coefficient of thermal expansion of 7 x 10(exp -6)/C, softening temperatures between 500 and 780 C, and Vickers hardness values of 3.7 to 5.8 GPa. Aqueous chemical durability measurements were made on select glass compositions while infrared transmission spectra were used to study the glass structure and its effect on glass properties. A compositional region was identified which exhibited high thermal expansion, high softening temperatures, and good chemical durability.
Model atmospheres for cool stars. [varying chemical composition
NASA Technical Reports Server (NTRS)
Johnson, H. R.
1974-01-01
This report contains an extensive series of model atmospheres for cool stars having a wide range in chemical composition. Model atmospheres (temperature, pressure, density, etc.) are tabulated, along with emergent energy flux distributions, limb darkening, and information on convection for selected models. The models are calculated under the usual assumptions of hydrostatic equilibrium, constancy of total energy flux (including transport both by radiation and convection) and local thermodynamic equilibrium. Some molecular and atomic line opacity is accounted for as a straight mean. While cool star atmospheres are regimes of complicated physical conditions, and these atmospheres are necessarily approximate, they should be useful for a number of kinds of spectral and atmospheric analysis.
NASA Astrophysics Data System (ADS)
Kent, J. J.; Brandon, A. D.; Lapen, T. J.; Peslier, A. H.; Irving, A. J.; Coleff, D. M.
2012-03-01
NWA 5744 is compared to other magnesian lunar granulites by the chemistry of situ phases and aided by a CT density volume. NWA 5744 may be linked to FAN composition materials, and magnesian granulites as a whole probably have diverse origins.
High Energy-Density Electrodes for Alkali-Metal Battery Systems
1977-11-29
characteristics of real battery systems. In our laboratory, techniques for preparing well-characterized inter - calated Li TaS., and Na TaS. have been...to measure the variation of the chemical potential and diffusivity of sodium with composition x in Na TaSa where x varies from 0 to 1, 0, The...measure the chemical potential and diffusivity ■ Na (s)/Na (propylene carbonate)/Na TaSa (A) of sodium in Na TaSa . x Experimental Tantalum
Near-infrared emission from mesoporous crystalline germanium
NASA Astrophysics Data System (ADS)
Boucherif, Abderraouf; Korinek, Andreas; Aimez, Vincent; Arès, Richard
2014-10-01
Mesoporous crystalline germanium was fabricated by bipolar electrochemical etching of Ge wafer in HF-based electrolyte. It yields uniform mesoporous germanium layers composed of high density of crystallites with an average size 5-7 nm. Subsequent extended chemical etching allows tuning of crystallites size while preserving the same chemical composition. This highly controllable nanostructure exhibits photoluminescence emission above the bulk Ge bandgap, in the near-infrared range (1095-1360nm) with strong evidence of quantum confinement within the crystallites.
16 CFR 1632.6 - Ticking substitution procedure.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., density, and chemical composition; a specific thread; a specific method of quilting; and a specific... ticking is quilted, one cigarette shall be placed over the thread or in the depression created by the quilting process. Each cigarette must be positioned no less than two inches (5.08 cm) from any other...
16 CFR 1632.6 - Ticking substitution procedure.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., density, and chemical composition; a specific thread; a specific method of quilting; and a specific... ticking is quilted, one cigarette shall be placed over the thread or in the depression created by the quilting process. Each cigarette must be positioned no less than two inches (5.08 cm) from any other...
16 CFR 1632.6 - Ticking substitution procedure.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., density, and chemical composition; a specific thread; a specific method of quilting; and a specific... ticking is quilted, one cigarette shall be placed over the thread or in the depression created by the quilting process. Each cigarette must be positioned no less than two inches (5.08 cm) from any other...
16 CFR 1632.6 - Ticking substitution procedure.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., density, and chemical composition; a specific thread; a specific method of quilting; and a specific... ticking is quilted, one cigarette shall be placed over the thread or in the depression created by the quilting process. Each cigarette must be positioned no less than two inches (5.08 cm) from any other...
16 CFR § 1632.6 - Ticking substitution procedure.
Code of Federal Regulations, 2013 CFR
2013-01-01
... specific filling, thickness, density, and chemical composition; a specific thread; a specific method of... ticking is quilted, one cigarette shall be placed over the thread or in the depression created by the quilting process. Each cigarette must be positioned no less than two inches (5.08 cm) from any other...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babeyko, A.Yu.; Sobolev, S.V.; Sinelnikov, E.D.
1994-09-01
In-situ elastic properties in deep boreholes are controlled by several factors, mainly by lithology, petrofabric, fluid-filled cracks and pores. In order to separate the effects of different factors it is useful to extract lithology-controlled part from observed in-situ velocities. For that purpose we calculated mineralogical composition and isotropic crack-free elastic properties in the lower part of the Kola borehole from bulk chemical compositions of core samples. We use a new technique of petrophysical modeling based on thermodynamic approach. The reasonable accuracy of the modeling is confirmed by comparison with the observations of mineralogical composition and laboratory measurements of density andmore » elastic wave velocities in upper crustal crystalline rocks at high confining pressure. Calculations were carried out for 896 core samples from the depth segment of 6840-10535m. Using these results we estimate density and crack-free isotropic elastic properties of 554 lithology-defined layers composing this depth segment. Average synthetic P-wave velocity appears to be 2.7% higher than the velocity from Vertical Seismic Profiling (VSP), and 5% higher than sonic log velocity. Average synthetic S-wave velocity is 1.4% higher than that from VSP. These differences can be explained by superposition of effects of fabric-related anisotropy, cracks aligned parallel to the foliation plain, and randomly oriented cracks, with the effects of cracks being the predominant control. Low sonic log velocities are likely caused by drilling-induced cracking (hydrofractures) in the borehole walls. The calculated synthetic density and velocity cross-sections can be used for much more detailed interpretations, for which, however, new, more detailed and reliable seismic data are required.« less
NASA Astrophysics Data System (ADS)
Kim, H. J.; Ha, S. Y.; Hong, Y. J.; Nam, S.; Oh, S. Y.; Lim, C.
2014-04-01
We describe the effect of irradiation on the early-stage seed formation of submicrometer-scale (SS) SiO2 spheres by a laser-induced process. A quartz cell containing chemical reagents was exposed to a pulsed laser (Nd:YAG, 532 nm) tuned to various energy densities, while SiO2 SS spheres are synthesized in the quartz cell by the Stöber, Fink, and Bohn method. Higher laser energy densities typically produce wider size distributions. In particular, bidisperse SiO2 spheres were obtained when the laser energy density was 1.15 J/cm2. The size distributions were widest with 1.15 J/cm2 and narrowest with 0.33 J/cm2 laser energy density. However, the compositions of the SiO2 SS spheres were not affected by laser irradiation, and we observed by the energy-dispersive X-ray spectroscopy that the compositions of the irradiated and nonirradiated SiO2 SS spheres were the same.
Riffet, Vanessa; Vidal, Julien
2017-06-01
The search for functional materials is currently hindered by the difficulty to find significant correlation between constitutive properties of a material and its functional properties. In the case of amorphous materials, the diversity of local structures, chemical composition, impurities and mass densities makes such a connection difficult to be addressed. In this Letter, the relation between refractive index and composition has been investigated for amorphous AlO x materials, including nonstoichiometric AlO x , emphasizing the role of structural defects and the absence of effect of the band gap variation. It is found that the Newton-Drude (ND) relation predicts the refractive index from mass density with a rather high level of precision apart from some structures displaying structural defects. Our results show especially that O- and Al-based defects act as additive local disturbance in the vicinity of band gap, allowing us to decouple the mass density effects from defect effects (n = n[ND] + Δn defect ).
NASA Astrophysics Data System (ADS)
Kahar, A. W. M.; Ann, L. Ju
2017-06-01
In this study, the influence of banana fibre (BF) loading using sodium hydroxide (NaOH) pre-treated and succinic anhydride-treated (SA) BF on the mechanical properties of linear low-density polyethylene (LLDPE)/thermoplastic starch (TPS) matrix is investigated. LLDPE/TPS/BF composites were developed under different BF conditions, with and without chemical modifications with the BF content ranging from 5% to 30% based on the total composite. The tensile strength showed an increase with an increase of fibre content up to 10%, thereby decreasing gradually beyond this level. NaOH pre-treated and SA treated BF added with LLDPE/TPS composite displays a higher tensile strength as compared to untreated BF in LLDPE/TPS composites. Thermal behaviour of the BF incorporated in LLDPE/TPS composite was characterised using differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). This showed that SA treated BF exhibits better thermal stability, compared to other composites. This is because of the improvement in interfacial adhesion existing between both the fibre and matrix. In addition, a morphology study confirmed that pre-treated and treated BF had excellent interfacial adhesion with LLDPE/TPS matrix, leading to better mechanical properties of resultant composites.
Theoretical studies in interstellar cloud chemistry
NASA Technical Reports Server (NTRS)
Chiu, Y. T.; Prasad, S. S.
1993-01-01
This final report represents the completion of the three tasks under the purchase order no. SCPDE5620,1,2F. Chemical composition of gravitationally contracting, but otherwise quiescent, interstellar clouds and of interstellar clouds traversed by high velocity shocks, were modeled in a comprehensive manner that represents a significant progress in modeling these objects. The evolutionary chemical modeling, done under this NASA contract, represents a notable advance over the 'classical' fixed condition equilibrium models because the evolutionary models consider not only the chemical processes but also the dynamical processes by which the dark interstellar clouds may have assumed their present state. The shock calculations, being reported here, are important because they extend the limited chemical composition derivable from dynamical calculations for the total density and temperature structures behind the shock front. In order to be tractable, the dynamical calculations must severely simplify the chemistry. The present shock calculations take the shock profiles from the dynamical calculations and derive chemical composition in a comprehensive manner. The results of the present modeling study are still to be analyzed with reference to astronomical observational data and other contemporary model predictions. As far as humanly possible, this analysis will be continued with CRE's (Creative Research Enterprises's) IR&D resources, until a sponsor is found.
Sha, Linna; Gao, Peng; Wu, Tingting; Chen, Yujin
2017-11-22
In this work, a microwave welding method has been used for the construction of chemical Ni-C bonding at the interface between carbon nanotubes (CNTs) and metal Ni to provide a different surface electron distribution, which determined the electromagnetic (EM) wave absorption properties based on a surface plasmon resonance mechanism. Through a serial of detailed examinations, such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman spectrum, the as-expected chemical Ni-C bonding between CNTs and metal Ni has been confirmed. And the Brunauer-Emmett-Teller and surface zeta potential measurements uncovered the great evolution of structure and electronic density compared with CNTs, metal Ni, and Ni-CNT composite without Ni-C bonding. Correspondingly, except the EM absorption due to CNTs and metal Ni in the composite, another wide and strong EM absorption band ranging from 10 to 18 GHz was found, which was induced by the Ni-C bonded interface. With a thinner thickness and more exposed Ni-C interfaces, the Ni-CNT composite displayed less reflection loss.
Subseafloor processes in mid-ocean ridge hydrothennal systems
NASA Astrophysics Data System (ADS)
Alt, Jeffrey C.
Convective circulation of seawater through oceanic crust at mid-ocean ridges (MOR) and on ridge flanks has wide-ranging effects on heat transport, the chemical and isotopic compositions of ocean crust and seawater, mineralization of the crust, and on the physical properties of oceanic basement. Submarine hydrothermal systems remove about 30% of the heat lost from oceanic crust [Selater et al., 1981; Stein and Stein, 1994], and chemical and isotopic exchange between seawater and basement rocks exerts important controls on the composition of seawater [Edmond et al., 1979a; Thompson, 1983]. The composition of altered crust is also changed and, when subducted, this altered crust can contribute to chemical and isotopic heterogeneities in the mantle [Zindler and Hart, 1986] and may affect the compositions of volcanic rocks in island arcs [Perfit et al., 1980; Tatsumi, 1989]. Mineralization of ocean crust occurs where metals, leached from large volumes of altered crust at depth, are concentrated at or near the surface by hydrothermal circulation [Hannington, 1995]. Hydrothermal alteration of magnetic minerals may affect the source of marine magnetic anomalies [Pariso and Johnson, 1991], and the formation of secondary minerals influences the density, porosity, and seismic velocity structure of the crust [Wilkens et al., 1991; Jacobson, 1992].
Guldberg, Marianne; Jensen, Søren Lund; Knudsen, Torben; Steenberg, Thomas; Kamstrup, Ole
2002-04-01
Man-made vitreous fibers (MMVF) are classified within the European Union (EU) as carcinogenic category 3 (possibly carcinogenic), but criteria exist to exonerate fibers from this classification. The HT stone wool fiber type is a MMVF that fulfills European regulatory requirements for exoneration from classification as a carcinogen based on in vivo testing. The chemical composition of the fibers and the results of the in vivo and in vitro studies that defined the chemical compositional range for a CAS registry number for these fibers are presented and discussed. Results from in vitro dissolution measurements at pH 4.5 of 52 fiber compositions (9-23 wt% Al(2)O(3) and 32-47 wt% SiO(2)) ranging from traditional stone wool to the biosoluble HT fibers are presented. The results are evaluated as a function of the ratio Al/(Al+Si) in the glass network and as a function of the fraction of Si-O-Si linkages in the glass. It is suggested that the dissolution mechanism for these fibers relates to the density of the surface silica layer on dissolving fibers and that the fraction of Si-O-Si linkages influences this. (c) 2002 Elsevier Science (USA).
Chae, Changju; Kim, Jinmin; Kim, Ju Young; Ji, Seulgi; Lee, Sun Sook; Kang, Yongku; Choi, Youngmin; Suk, Jungdon; Jeong, Sunho
2018-02-07
Recently, the achievement of newly designed carbon-sulfur composite materials has attracted a tremendous amount of attention as high-performance cathode materials for lithium-sulfur batteries. To date, sulfur materials have been generally synthesized by a sublimation technique in sealed containers. This is a well-developed technique for the synthesizing of well-ordered sulfur materials, but it is limited when used to scale up synthetic procedures for practical applications. In this study, we suggest an easily scalable, room-temperature/ambient-pressure chemical pathway for the synthesis of highly functioning cathode materials using electrostatically assembled, amine-terminated carbon materials. It is demonstrated that stable cycling performance outcomes are achievable with a capacity of 730 mAhg -1 at a current density of 1 C with good cycling stability by a virtue of the characteristic chemical/physical properties (a high conductivity for efficient charge conduction and the presence of a number of amine groups that can interact with sulfur atoms during electrochemical reactions) of composite materials. The critical roles of conductive carbon moieties and amine functional groups inside composite materials are clarified with combinatorial analyses by X-ray photoelectron spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jandl, Adam, E-mail: jandl@mit.edu; Bulsara, Mayank T.; Fitzgerald, Eugene A.
The properties of InAs{sub x}P{sub 1−x} compositionally graded buffers grown by metal organic chemical vapor deposition are investigated. We report the effects of strain gradient (ε/thickness), growth temperature, and strain initiation sequence (gradual or abrupt strain introduction) on threading dislocation density, surface roughness, epi-layer relaxation, and tilt. We find that gradual introduction of strain causes increased dislocation densities (>10{sup 6}/cm{sup 2}) and tilt of the epi-layer (>0.1°). A method of abrupt strain initiation is proposed which can result in dislocation densities as low as 1.01 × 10{sup 5} cm{sup −2} for films graded from the InP lattice constant to InAs{sub 0.15}P{sub 0.85}.more » A model for a two-energy level dislocation nucleation system is proposed based on our results.« less
Defect structure in electrodeposited nanocrystalline Ni layers with different Mo concentrations
NASA Astrophysics Data System (ADS)
Kapoor, Garima; Péter, László; Fekete, Éva; Gubicza, Jenő
2018-05-01
The effect of molybdenum (Mo) alloying on the lattice defect structure in electrodeposited nanocrystalline nickel (Ni) films was studied. The electrodeposited layers were prepared on copper substrate at room temperature, with a constant current density and pH value. The chemical composition of these layers was determined by EDS. In addition, X-ray diffraction line profile analysis was carried out to study the microstructural parameters such as the crystallite size, the dislocation density and the stacking fault probability. It was found that the higher Mo content yielded more than one order of magnitude larger dislocation density while the crystallite size was only slightly smaller. In addition, the twin boundary formation activity during deposition increased with increasing Mo concentration. The results obtained on electrodeposited layers were compared with previous research carried out on bulk nanocrystalline Ni-Mo materials with similar compositions but processed by severe plastic deformation.
NASA Astrophysics Data System (ADS)
Pijarowski, Piotr Marek; Tic, Wilhelm Jan
2014-06-01
A research on diatomite sorbents was carried out to investigate their ability to remove hazardous substances from oil spillages. We used two types of sorbents available on the market with differences in material density and particles size of composition. As sorbents we used Ekoterm oil and unleaded petrol 95 coming from refinery PKN Orlen S.A. Two types of sorbents with similar chemical composition but different granulometric composition were used. They are marked as D1 and C1 samples. The fastest absorbent was C1, but D1 sample was the most absorptive.
NASA Astrophysics Data System (ADS)
Whitacre, Ryan John
In the field of renewable materials, natural fiber composites demonstrate the capacity to be a viable structural material. When normalized by density, flax fiber mechanical properties are competitive with E-glass fibers. However, the hydrophilic nature of flax fibers reduces the interfacial bond strength with polymer thermosets, limiting composite mechanical properties. Corn zein protein was selected as a natural bio-based coupling agent because of its combination of hydrophobic and hydrophilic properties. Zein was deposited on the surface of flax, which was then processed into unidirectional composite. The mechanical properties of zein treated samples where measured and compared against commonly utilized synthetic treatments sodium hydroxide and silane which incorporate harsh chemicals. Fourier transform infrared spectroscopy, chemical analysis, and scanning electron microscopy were also used to determine analyze zein treatments. Results demonstrate the environmentally friendly zein treatment successfully increased tensile strength 8%, flexural strength 17%, and shear strength 30% compared to untreated samples.
Investigation of Tank 241-AW-104 Composite Floating Layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meznarich, H. K.; Bolling, S. D.; Lachut, J. S.
Seven grab samples and one field blank were taken from Tank 241-AW-104 (AW-104) on June 2, 2017, and received at 222-S Laboratory on June 5, 2017. A visible layer with brown solids was observed floating on the top of two surface tank waste samples (4AW-17-02 and 4AW 17 02DUP). The floating layer from both samples was collected, composited, and submitted for chemical analyses and solid phase characterization in order to understand the composition of the floating layer. Tributyl phosphate and tridecane were higher in the floating layer than in the aqueous phase. Density in the floating layer was slightly lowermore » than the mean density of all grab samples. Sodium nitrate and sodium carbonate were major components with a trace of gibbsite and very small size agglomerates were present in the solids of the floating layer. The supernate consisted of organics, soluble salt, and particulates.« less
Riley, Brian J.; Kroll, Jared O.; Peterson, Jacob A.; ...
2017-08-30
Here, this paper provides an overview of research evaluating the use of lead tellurite glass as a waste form for salt wastes from electrochemical reprocessing of used nuclear fuel. The efficacy of using lead tellurite glass to immobilize three different salt compositions was evaluated: a LiCl-Li 2O oxide reduction salt containing fission products from oxide fuel, a LiCl-KCl eutectic salt containing fission products from metallic fuel, and SrCl 2. Physical and chemical properties of glasses made with these salts were characterized with X-ray diffraction, bulk density measurements, differential thermal analysis, chemical durability tests, scanning and transmission electron microscopies, and energy-dispersivemore » X-ray spectroscopy. These glasses were found to accommodate high salt concentrations and have high densities, but further development is needed to improve chemical durability.« less
Vacancy-mediated fcc/bcc phase separation in Fe1 -xNix ultrathin films
NASA Astrophysics Data System (ADS)
Menteş, T. O.; Stojić, N.; Vescovo, E.; Ablett, J. M.; Niño, M. A.; Locatelli, A.
2016-08-01
The phase separation occurring in Fe-Ni thin films near the Invar composition is studied by using high-resolution spectromicroscopy techniques and density functional theory calculations. Annealed at temperatures around 300 ∘C ,Fe0.70Ni0.30 films on W(110) break into micron-sized bcc and fcc domains with compositions in agreement with the bulk Fe-Ni phase diagram. Ni is found to be the diffusing species in forming the chemical heterogeneity. The experimentally determined energy barrier of 1.59 ±0.09 eV is identified as the vacancy formation energy via density functional theory calculations. Thus, the principal role of the surface in the phase separation process is attributed to vacancy creation without interstitials.
Density fingering in spatially modulated Hele-Shaw cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toth, Tamara; Horvath, Dezso; Toth, Agota
Density fingering of the chlorite-tetrathionate reaction has been studied experimentally in a periodically heterogeneous Hele-Shaw cell where the heterogeneity is introduced in the form of spatial modulation of gap width along the front. Depending on the spatial wavelength, gap width, and chemical composition, three types of cellular structures have been observed. The initial evolution is characterized by dispersion curves, while the long time behavior is described by the change in the autocorrelation function of the front profile and in the mixing length of the patterns.
NASA Astrophysics Data System (ADS)
Renault Laborne, Alexandra; Gavoille, Pierre; Malaplate, Joël; Pokor, Cédric; Tanguy, Benoît
2015-05-01
Annealed specimens of type 304L and 316 stainless steel and cold-worked 316 specimens were irradiated in the Phénix reactor in the temperature range 381-394 °C and to different damage doses up to 39 dpa. The microstructure and microchemistry of both 304L and 316 have been examined using the combination of the different techniques of TEM to establish the void swelling and precipitation behavior under neutron irradiation. TEM observations are compared with results of measurements of immersion density and thermo-electric power obtained on the same irradiated stainless steels. The similarities and differences in their behavior on different scales are used to understand the factors in terms of the chemical composition and metallurgical state of steels, affecting the precipitation under irradiation and the swelling behavior. Irradiation induces the formation of some precipitate phases (e.g., M6C and M23C6-type carbides, and γ'- and G-phases), Frank loops and cavities. According to the metallurgical state and chemical composition of the steel, the amount of each type of radiation-induced defects is not the same, affecting their density and thermo-electric power.
Dependences of Ratio of the Luminosity to Ionization on Velocity and Chemical Composition of Meteors
NASA Technical Reports Server (NTRS)
Narziev, M.
2011-01-01
On the bases of results simultaneous photographic and radio echo observations, the results complex radar and television observations of meteors and also results of laboratory modeling of processes of a luminescence and ionization, correlation between of luminous intensity Ip to linear electronic density q from of velocities and chemical structure are investigated. It is received that by increasing value of velocities of meteors and decrease of nuclear weight of substance of particles, lg Ip/q decreased more than one order.
Effects of Fiber Reinforcement on Clay Aerogel Composites
Finlay, Katherine A.; Gawryla, Matthew D.; Schiraldi, David A.
2015-01-01
Novel, low density structures which combine biologically-based fibers with clay aerogels are produced in an environmentally benign manner using water as solvent, and no additional processing chemicals. Three different reinforcing fibers, silk, soy silk, and hemp, are evaluated in combination with poly(vinyl alcohol) matrix polymer combined with montmorillonite clay. The mechanical properties of the aerogels are demonstrated to increase with reinforcing fiber length, in each case limited by a critical fiber length, beyond which mechanical properties decline due to maldistribution of filler, and disruption of the aerogel structure. Rather than the classical model for reinforced composite properties, the chemical compatibility of reinforcing fibers with the polymer/clay matrix dominated mechanical performance, along with the tendencies of the fibers to kink under compression. PMID:28793515
Creep Behavior and Durability of Cracked CMC
NASA Technical Reports Server (NTRS)
Bhatt, R. T.; Fox, Dennis; Smith, Craig
2015-01-01
To understand failure mechanisms and durability of cracked Ceramic matrix composites (CMCs), Melt Infiltration (MI) SiCSiC composites with Sylramic-iBN fibers and full Chemical vapour infiltration SiCSiC composites with Sylramic-ion bombarded BN (iBN) and Hi-Nicalon -S fibers were pre-cracked between 150 to 200 megapascal and then creep and Sustained Peak Low Cycle Fatigue (SPLCF) tested at 13150 C at stress levels from 35 to 103 megapascal for up to 200 hours under furnace and burner rig conditions. In addition creep testing was also conducted on pre-cracked full Chemical vapour infiltration SiCSiC composites at 14500 C between 35 and 103 megapascal for up to 200 hours under furnace conditions. If the specimens survived the 200 hour durability tests, then they were tensile tested at room temperature to determine their residual tensile properties. The failed specimens were examined by Scanning electron microscope (SEM) to determine the failure modes and mechanisms. The influence of crack healing matrix, fiber types, crack density, testing modes and interface oxidation on durability of cracked Ceramic matrix composites (CMCs) will be discussed.
Sagiyama, Koki; Rudraraju, Shiva; Garikipati, Krishna
2016-09-13
Here, we consider solid state phase transformations that are caused by free energy densities with domains of non-convexity in strain-composition space; we refer to the non-convex domains as mechano-chemical spinodals. The non-convexity with respect to composition and strain causes segregation into phases with different crystal structures. We work on an existing model that couples the classical Cahn-Hilliard model with Toupin’s theory of gradient elasticity at finite strains. Both systems are represented by fourth-order, nonlinear, partial differential equations. The goal of this work is to develop unconditionally stable, second-order accurate time-integration schemes, motivated by the need to carry out large scalemore » computations of dynamically evolving microstructures in three dimensions. We also introduce reduced formulations naturally derived from these proposed schemes for faster computations that are still second-order accurate. Although our method is developed and analyzed here for a specific class of mechano-chemical problems, one can readily apply the same method to develop unconditionally stable, second-order accurate schemes for any problems for which free energy density functions are multivariate polynomials of solution components and component gradients. Apart from an analysis and construction of methods, we present a suite of numerical results that demonstrate the schemes in action.« less
NASA Astrophysics Data System (ADS)
Jean, A.; Chaker, M.; Diawara, Y.; Leung, P. K.; Gat, E.; Mercier, P. P.; Pépin, H.; Gujrathi, S.; Ross, G. G.; Kieffer, J. C.
1992-10-01
Hydrogenated amorphous a-SixC1-x:H films with various compositions (0.2≤x≤0.8) were prepared by a radio frequency (rf 100 kHz) glow discharge decomposition of a silane and methane mixture diluted in argon. The deposition system used was a commercially available plasma enhanced chemical vapor deposition reactor allowing a high throughput (22 wafers of 4 in. diameter each run). The properties of the films such as thickness, density, and stress were investigated. The composition, including hydrogen content and Si/C ratio, and the structure of the films were systematically examined by means of several diagnostics including electron recoil detection, x-ray photoelectron spectroscopy, and infrared (IR) absorption analysis. Thickness and density of the films were dependent on the film composition, while the stress of the films was highly compressive (3×109-1×1010 dynes/cm2). Density was about 2.4 g/cm3 for nearly stoichiometric SiC films. The hydrogen content of the films was practically constant at 27 at. % over the whole investigated composition range. The IR analyses suggested that the structure of the silicon carbide films is inorganic-like over the whole range of compositions. From stoichiometric to carbon-rich films, the structure mainly consists of a tetrahedral network where silicon atoms are randomly replaced by carbon atoms and one hydrogen atom is bonded to silicon (SiH group). However, the presence of SiH2 groups and microvoids was observed in the structure of Si-rich silicon carbide films. Finally, the development of SiC membranes for x-ray lithography was presented including the control of film stress by means of rapid thermal annealing. Silicon carbide membranes of relatively high surface area (32×32 mm2) and showing high optical transparency (80%) were successfully fabricated.
NASA Astrophysics Data System (ADS)
Saksena, Rajat; Christensen, Kenneth T.; Pearlstein, Arne J.
2014-11-01
Use of laser diagnostics in liquid-liquid flows is limited by refractive index mismatch. This can be avoided using a surrogate pair of immiscible index-matched liquids, with density and viscosity ratios matching those of the original liquid pair. We demonstrate that a wide range of density and viscosity ratios is accessible using aqueous solutions of 1,2-propanediol and CsBr (for which index, density, and viscosity are available), and solutions of light and heavy silicone oils and 1-bromooctane (for which we measured the same properties at 119 compositions). For each liquid phase, polynomials in the composition variables were fitted to index and density and to the logarithm of kinematic viscosity, and the fits were used to determine accessible density and viscosity ratios for each matchable index. Index-matched solution pairs can be prepared with density and viscosity ratios equal to those for water-liquid CO2 at 0oC over a range of pressure, and for water-crude oil and water-trichloroethylene, each over a range of temperature. For representative index-matched solutions, equilibration changes index, density, and viscosity only slightly, and chemical analysis show that no component of either solution has significant interphase solubility. Partially supported by Intl. Inst. for Carbon-Neutral Energy Research.
NASA Astrophysics Data System (ADS)
Kesler, V. G.; Seleznev, V. A.; Kovchavtsev, A. P.; Guzev, A. A.
2010-05-01
X-ray photoelectron spectroscopy and atomic force microscopy were used to examine the chemical composition and surface morphology of InAs(1 1 1)A surface chemically etched in isopropanol-hydrochloric acid solution (HCl-iPA) and subsequently annealed in vacuum in the temperature range 200-500 °C. Etching for 2-30 min resulted in the formation of "pits" and "hillocks" on the sample surface, respectively 1-2 nm deep and high, with lateral dimensions 50-100 nm. The observed local formations, whose density was up to 3 × 10 8 cm -2, entirely vanished from the surface after the samples were vacuum-annealed at temperatures above 300 °C. Using a direct method, electron beam microanalysis, we have determined that the defects of the hillock type includes oxygen and excessive As, while the "pits" proved to be identical in their chemical composition to InAs. Vacuum anneals were found to cause a decrease in As surface concentration relative to In on InAs surface, with a concomitant rise of surface recombination rate.
Fabrication and characterization of bolus material using polydimethyl-siloxane
NASA Astrophysics Data System (ADS)
Wiratma Jaya, Gede; Sutanto, Heri
2018-01-01
Bolus has been used in radiotherapy to reduce tissue harm and to increase the superficial dose for skin cancer treatment. Commonly, a bolus is made of melamine in several hospitals. In this research, polydimethyl-siloxane (PDMS) material was used for bolus fabrication. The aims of the study are to investigate bolus density, percentage surface dose and its structural strength for each various composition. In bolus preparation, bolus material used composition variation between PDMS volume and catalyst volume. Composition variation were 20:1, 22:1, 24:1, 26:1, 28:1, 30:1 and 32:1. PDMS and catalyst were mixed by chemical solution deposition method. Bolus was molded by using glass cast with the size of 10 × 10 × 0.5 cm3. Bolus density was analyzed by mass per volume equation, for bolus radiation was examined by the linear accelerator using two electron energy (5 and 7 MeV) and bolus strain and tensile strength were examined by Brookfield CT 3 machine. The results of bolus density were similar with soft tissue density, while the lowest and highest density each variation are 22:1 and 28:1. In general, the use of bolus has increased the surface dose. Percentage of surface dose at 5 MeV energy is higher than 7 MeV energy. The highest percentage of surface dose at 5 MeV energy with 0.5 and 1.0 cm bolus thickness was achieved at composition of 32:1. For strain and tensile strength result, the lowest and highest strain each variation are 22:1 and 28:1, then the lowest and highest tensile strength each variation are 32:1 and 28:1. These results is important to select composition material for bolus fabrication in radiotherapy treatment.
Yang, Feifei; Liu, Yijin; Martha, Surendra K; Wu, Ziyu; Andrews, Joy C; Ice, Gene E; Pianetta, Piero; Nanda, Jagjit
2014-08-13
Understanding the evolution of chemical composition and morphology of battery materials during electrochemical cycling is fundamental to extending battery cycle life and ensuring safety. This is particularly true for the much debated high energy density (high voltage) lithium-manganese rich cathode material of composition Li(1 + x)M(1 - x)O2 (M = Mn, Co, Ni). In this study we combine full-field transmission X-ray microscopy (TXM) with X-ray absorption near edge structure (XANES) to spatially resolve changes in chemical phase, oxidation state, and morphology within a high voltage cathode having nominal composition Li1.2Mn0.525Ni0.175Co0.1O2. Nanoscale microscopy with chemical/elemental sensitivity provides direct quantitative visualization of the cathode, and insights into failure. Single-pixel (∼ 30 nm) TXM XANES revealed changes in Mn chemistry with cycling, possibly to a spinel conformation and likely including some Mn(II), starting at the particle surface and proceeding inward. Morphological analysis of the particles revealed, with high resolution and statistical sampling, that the majority of particles adopted nonspherical shapes after 200 cycles. Multiple-energy tomography showed a more homogeneous association of transition metals in the pristine particle, which segregate significantly with cycling. Depletion of transition metals at the cathode surface occurs after just one cycle, likely driven by electrochemical reactions at the surface.
2015-01-01
Understanding the evolution of chemical composition and morphology of battery materials during electrochemical cycling is fundamental to extending battery cycle life and ensuring safety. This is particularly true for the much debated high energy density (high voltage) lithium–manganese rich cathode material of composition Li1 + xM1 – xO2 (M = Mn, Co, Ni). In this study we combine full-field transmission X-ray microscopy (TXM) with X-ray absorption near edge structure (XANES) to spatially resolve changes in chemical phase, oxidation state, and morphology within a high voltage cathode having nominal composition Li1.2Mn0.525Ni0.175Co0.1O2. Nanoscale microscopy with chemical/elemental sensitivity provides direct quantitative visualization of the cathode, and insights into failure. Single-pixel (∼30 nm) TXM XANES revealed changes in Mn chemistry with cycling, possibly to a spinel conformation and likely including some Mn(II), starting at the particle surface and proceeding inward. Morphological analysis of the particles revealed, with high resolution and statistical sampling, that the majority of particles adopted nonspherical shapes after 200 cycles. Multiple-energy tomography showed a more homogeneous association of transition metals in the pristine particle, which segregate significantly with cycling. Depletion of transition metals at the cathode surface occurs after just one cycle, likely driven by electrochemical reactions at the surface. PMID:25054780
Izbicki, John A.; Clark, Dennis A.; Pimental, Maria I.; Land, Michael; Radyk, John C.; Michel, Robert L.
2000-01-01
This report presents data on the physical properties of unsaturated alluvial deposits and on the chemical and isotopic composition of soil water and soil gas collected at 12 monitoring sites in the western part of the Mojave Desert, near Victorville, California. Sites were installed using the ODEX air-hammer method. Seven sites were located in the active channels of Oro Grande and Sheep Creek Washes. The remaining five sites were located away from the active washes. Most sites were drilled to a depth of about 100 feet below land surface; two sites were drilled to the water table almost 650 feet below land surface. Drilling procedures, lithologic and geophysical data, and site construction and instrumentation are described. Core material was analyzed for water content, bulk density, water potential, particle size, and water retention. The chemical composition of leachate from almost 1,000 subsamples of cores and cuttings was determined. Water extracted from selected subsamples of cores was analyzed for tritium and the stable isotopes of oxygen and hydrogen. Water from suction-cup lysimeters and soil-gas samples also were analyzed for chemical and isotopic composition. In addition, data on the chemical and isotopic composition of bulk precipitation from five sites and on ground water from two water-table wells are reported.
Perryman, Shane E; Rees, Gavin N; Walsh, Christopher J; Grace, Michael R
2011-05-01
The export of nitrogen from urban catchments is a global problem, and denitrifying bacteria in stream ecosystems are critical for reducing in-stream N. However, the environmental factors that control the composition of denitrifying communities in streams are not well understood. We determined whether denitrifying community composition in sediments of nine streams on the eastern fringe of Melbourne, Australia was correlated with two measures of catchment urban impact: effective imperviousness (EI, the proportion of a catchment covered by impervious surfaces with direct connection to streams) or septic tank density (which affects stream water chemistry, particularly stream N concentrations). Denitrifying community structure was examined by comparing terminal restriction fragment length polymorphisms of nosZ genes in the sediments, as the nosZ gene codes for nitrous oxide reductase, the last step in the denitrification pathway. We also determined the chemical and physical characteristics of the streams that were best correlated with denitrifying community composition. EI was strongly correlated with community composition and sediment physical and chemical properties, while septic tank density was not. Sites with high EI were sandier, with less fine sediment and lower organic carbon content, higher sediment cations (calcium, sodium and magnesium) and water filterable reactive phosphorus concentrations. These were also the best small-scale environmental variables that explained denitrifying community composition. Among our study streams, which differed in the degree of urban stormwater impact, sediment grain size and carbon content are the most likely drivers of change in community composition. Denitrifying community composition is another in a long list of ecological indicators that suggest the profound degradation of streams is caused by urban stormwater runoff. While the relationships between denitrifying community composition and denitrification rates are yet to be unequivocally established, landscape-scale indices of environmental impact such as EI may prove to be useful indicators of change in microbial communities.
Kolanthai, Elayaraja; Sindu, Pugazhendhi Abinaya; Khajuria, Deepak Kumar; Veerla, Sarath Chandra; Kuppuswamy, Dhandapani; Catalani, Luiz Henrique; Mahapatra, D Roy
2018-04-18
Developing a biodegradable scaffold remains a major challenge in bone tissue engineering. This study was aimed at developing novel alginate-chitosan-collagen (SA-CS-Col)-based composite scaffolds consisting of graphene oxide (GO) to enrich porous structures, elicited by the freeze-drying technique. To characterize porosity, water absorption, and compressive modulus, GO scaffolds (SA-CS-Col-GO) were prepared with and without Ca 2+ -mediated crosslinking (chemical crosslinking) and analyzed using Raman, Fourier transform infrared (FTIR), X-ray diffraction (XRD), and scanning electron microscopy techniques. The incorporation of GO into the SA-CS-Col matrix increased both crosslinking density as indicated by the reduction of crystalline peaks in the XRD patterns and polyelectrolyte ion complex as confirmed by FTIR. GO scaffolds showed increased mechanical properties which were further increased for chemically crosslinked scaffolds. All scaffolds exhibited interconnected pores of 10-250 μm range. By increasing the crosslinking density with Ca 2+ , a decrease in the porosity/swelling ratio was observed. Moreover, the SA-CS-Col-GO scaffold with or without chemical crosslinking was more stable as compared to SA-CS or SA-CS-Col scaffolds when placed in aqueous solution. To perform in vitro biochemical studies, mouse osteoblast cells were grown on various scaffolds and evaluated for cell proliferation by using MTT assay and mineralization and differentiation by alizarin red S staining. These measurements showed a significant increase for cells attached to the SA-CS-Col-GO scaffold compared to SA-CS or SA-CS-Col composites. However, chemical crosslinking of SA-CS-Col-GO showed no effect on the osteogenic ability of osteoblasts. These studies indicate the potential use of GO to prepare free SA-CS-Col scaffolds with preserved porous structure with elongated Col fibrils and that these composites, which are biocompatible and stable in a biological medium, could be used for application in engineering bone tissues.
Kraft pulp from budworm-infested jack pine
J. Y. Zhu; Gary C. Myers
2006-01-01
This study evaluated the quality of kraft pulp from bud-worm-infested jack pine. The logs were classified as merchantable live, suspect, or merchantable dead. Raw materials were evaluated through visual inspection, analysis of the chemical composition, SilviScan measurement of the density, and measurement of the tracheid length. Unbleached pulps were then refined using...
Human activities cause distinct dissolved organic matter composition across freshwater ecosystems.
Williams, Clayton J; Frost, Paul C; Morales-Williams, Ana M; Larson, James H; Richardson, William B; Chiandet, Aisha S; Xenopoulos, Marguerite A
2016-02-01
Dissolved organic matter (DOM) composition in freshwater ecosystems is influenced by the interactions among physical, chemical, and biological processes that are controlled, at one level, by watershed landscape, hydrology, and their connections. Against this environmental template, humans may strongly influence DOM composition. Yet, we lack a comprehensive understanding of DOM composition variation across freshwater ecosystems differentially affected by human activity. Using optical properties, we described DOM variation across five ecosystem groups of the Laurentian Great Lakes region: large lakes, Kawartha Lakes, Experimental Lakes Area, urban stormwater ponds, and rivers (n = 184 sites). We determined how between ecosystem variation in DOM composition related to watershed size, land use and cover, water quality measures (conductivity, dissolved organic carbon (DOC), nutrient concentration, chlorophyll a), and human population density. The five freshwater ecosystem groups had distinctive DOM composition from each other. These significant differences were not explained completely through differences in watershed size nor spatial autocorrelation. Instead, multivariate partial least squares regression showed that DOM composition was related to differences in human impact across freshwater ecosystems. In particular, urban/developed watersheds with higher human population densities had a unique DOM composition with a clear anthropogenic influence that was distinct from DOM composition in natural land cover and/or agricultural watersheds. This nonagricultural, human developed impact on aquatic DOM was most evident through increased levels of a microbial, humic-like parallel factor analysis component (C6). Lotic and lentic ecosystems with low human population densities had DOM compositions more typical of clear water to humic-rich freshwater ecosystems but C6 was only present at trace to background levels. Consequently, humans are strongly altering the quality of DOM in waters nearby or flowing through highly populated areas, which may alter carbon cycles in anthropogenically disturbed ecosystems at broad scales. © 2015 John Wiley & Sons Ltd.
Human activities cause distinct dissolved organic matter composition across freshwater ecosystems
Williams, Clayton J.; Frost, Paul C.; Morales-Williams, Ana M.; Larson, James H.; Richardson, William B.; Chiandet, Aisha S.; Xenopoulos, Marguerite A.
2016-01-01
Dissolved organic matter (DOM) composition in freshwater ecosystems is influenced by interactions between physical, chemical, and biological processes that are controlled, at one level, by watershed landscape, hydrology, and their connections. Against this environmental template, humans may strongly influence DOM composition. Yet, we lack a comprehensive understanding of DOM composition variation across freshwater ecosystems differentially affected by human activity. Using optical properties, we described DOM variation across five ecosystem groups of the Laurentian Great Lakes Region: large lakes, Kawartha Lakes, Experimental Lakes Area, urban stormwater ponds, and rivers (n = 184 sites). We determined how between ecosystem variation in DOM composition related to watershed size, land use and cover, water quality measures (conductivity, dissolved organic carbon (DOC), nutrient concentration, chlorophyll a), and human population density. The five freshwater ecosystem groups had distinctive DOM composition from each other. These significant differences were not explained completely through differences in watershed size nor spatial autocorrelation. Instead, multivariate partial least squares regression showed that DOM composition was related to differences in human impact across freshwater ecosystems. In particular, urban/developed watersheds with higher human population densities had a unique DOM composition with a clear anthropogenic influence that was distinct from DOM composition in natural land cover and/or agricultural watersheds. This nonagricultural, human developed impact on aquatic DOM was most evident through increased levels of a microbial, humic-like parallel factor analysis component (C6). Lotic and lentic ecosystems with low human population densities had DOM compositions more typical of clear water to humic-rich freshwater ecosystems but C6 was only present at trace to background levels. Consequently, humans are strongly altering the quality of DOM in waters nearby or flowing through highly populated areas, which may alter carbon cycles in anthropogenically disturbed ecosystems at broad scales.
Hardness and wear analysis of Cu/Al2O3 composite for application in EDM electrode
NASA Astrophysics Data System (ADS)
Hussain, M. Z.; Khan, U.; Jangid, R.; Khan, S.
2018-02-01
Ceramic materials, like Aluminium Oxide (Al2O3), have high mechanical strength, high wear resistance, high temperature resistance and good chemical durability. Powder metallurgy processing is an adaptable method commonly used to fabricate composites because it is a simple method of composite preparation and has high efficiency in dispersing fine ceramic particles. In this research copper and novel material aluminium oxide/copper (Al2O3/Cu) composite has been fabricated for the application of electrode in Electro-Discharge Machine (EDM) using powder metallurgy technique. Al2O3 particles with different weight percentages (0, 1%, 3% and 5%) were reinforced into copper matrix using powder metallurgy technique. The powders were blended and compacted at a load of 100MPa to produce green compacts and sintered at a temperature of 574 °C. The effect of aluminium oxide content on mass density, Rockwell hardness and wear behaviour were investigated. Wear behaviour of the composites was investigated on Die-Sink EDM (Electro-Discharge Machine). It was found that wear rate is highly depending on hardness, mass density and green protective carbonate layer formation at the surface of the composite.
Chemical Aging of Environmentally Friendly Cleaners
NASA Technical Reports Server (NTRS)
Biegert, L. L.; Evans, K. B.; Olsen, B. D.; Weber, B. L.
2001-01-01
Use of cleaners in the manufacturing area demands bottles that will hold a sufficient amount of material and allow for easy and controlled dispensing by the operator without contamination or material leaching from the bottle. The manufacturing storage conditions are also a factor that may affect cleaner chemical integrity and its potential to leave a residue on the part. A variety of squeeze bottles stored in mild (72 F, 10% R.H., dark) and harsh (105 F, 50% R.H., fluorescent lighting) conditions were evaluated to determine the effect of environment and bottle exposure on ozone depleting chemicals (ODC) cleaners chemical composition. Low Density Polyethylene (LDPE) bottles were found to be quite permeable to all the cleaners evaluated in this study indicating this bottle type should not be used in the manufacturing area. Fluorinated Polyethylene (FLPE) bottles showed little cleaner loss and change in cleaner chemical composition over time suggesting these bottles would be acceptable for use. Chemical analysis indicates limonene containing cleaners show increased non-volatile residue (NVR) content with storage under harsh conditions. Some cleaners use BHT (butylated hydroxytoluene) as stabilizer and to protect against limonene oxidation. Under harsh conditions, BHT was quickly depleted resulting in higher NVR levels.
Seasonal variations of Saanen goat milk composition and the impact of climatic conditions.
Kljajevic, Nemanja V; Tomasevic, Igor B; Miloradovic, Zorana N; Nedeljkovic, Aleksandar; Miocinovic, Jelena B; Jovanovic, Snezana T
2018-01-01
The aim of this research was to investigate the effect of climatic conditions and their impact on seasonal variations of physico-chemical characteristics of Saanen goat milk produced over a period of 4 years. Lactation period (early, mid and late) and year were considered as factors that influence physico-chemical composition of milk. Pearson's coefficient of correlation was calculated between the physico-chemical characteristics of milk (fat, proteins, lactose, non-fat dry matter, density, freezing point, pH, titrable acidity) and climatic condition parameters (air temperature, temperature humidity index-THI, solar radiation duration, relative humidity). Results showed that all physico-chemical characteristics of Saanen goat milk varied significantly throughout the lactation period and years. The decrease of fat, protein, non-fat dry matter and lactose content in goat milk during the mid-lactation period was more pronounced than was previously reported in the literature. The highest values for these characteristics were recorded in the late lactation period. Observed variations were explained by negative correlation between THI and the physico-chemical characteristics of Saanen goat milk. This indicated that Saanen goats were very prone to heat stress, which implied the decrease of physico-chemical characteristics during hot summers.
NASA Astrophysics Data System (ADS)
Karki, Bijaya B.; Ghosh, Dipta B.; Maharjan, Charitra; Karato, Shun-ichiro; Park, Jeffrey
2018-05-01
Density is a key property controlling the chemical state of Earth's interior. Our knowledge about the density of relevant melt compositions is currently poor at deep-mantle conditions. Here we report results from first-principles molecular-dynamics simulations of Fe-bearing MgSiO3 liquids considering different valence and spin states of iron over the whole mantle pressure conditions. Our simulations predict the high-spin to low-spin transition in both ferrous and ferric iron in the silicate liquid to occur gradually at pressures around 100 GPa. The calculated iron-induced changes in the melt density (about 8% increase for 25% iron content) are primarily due to the difference in atomic mass between Mg and Fe, with smaller contributions (<2%) from the valence and spin states. A comparison of the predicted density of mixtures of (Mg,Fe)(Si,Fe)O3 and (Mg,Fe)O liquids with the mantle density indicates that the density contrast between the melt and residual-solid depends strongly on pressure (depth): in the shallow lower mantle (depths < 1,000 km), the melt is lighter than the solids, whereas in the deep lower mantle (e.g., the D″ layer), the melt density exceeds the mantle density when iron content is relatively high and/or melt is enriched with Fe-rich ferropericlase.
Vacancy-mediated fcc/bcc phase separation in Fe 1-xNi x ultrathin films
Mentes, T. O.; Stojic, N.; Vescovo, E.; ...
2016-08-01
The phase separation occurring in Fe-Ni thin lms near the Invar composition is studied by using high resolution spectromicroscopy techniques and density functional theory calculations. Annealed at temperatures around 300 C, Fe 0.70Ni 0.30 lms on W(110) break into micron-sized bcc and fcc domains with compositions in agreement with the bulk Fe-Ni phase diagram. Ni is found to be the di using species in forming the chemical heterogeneity. The experimentally-determined energy barrier of 1.59 0.09 eV is identi ed as the vacancy formation energy via density functional theory calculations. Thus, the principal role of the surface in the phase separationmore » process is attributed to vacancy creation without interstitials.« less
Properties of sugar-based low-melting mixtures
NASA Astrophysics Data System (ADS)
Fischer, Veronika; Kunz, Werner
2014-05-01
Physico-chemical properties of ternary sugar-based low-melting mixtures were determined. Choline chloride, urea and glucose or sorbitol, serving as sugars, were blended in various compositions. The refractive index, density, viscosity, decomposition temperatures and glass transition temperatures were measured. Further, the influence of temperature and water content was investigated. The results show that the mixtures are liquid below room temperature and the viscosity and density are dependent on the temperature and composition. Moreover, the viscosity decreases with increasing water content. These mixtures are biodegradable, low toxic, non-volatile, non-reactive with water and can be accomplished with low-cost materials. In consideration of these advantages and a melting point below room temperature, these low-melting mixtures can be a good alternative to ionic liquids as well as environmentally unfriendly and toxic solvents.
Enhanced optical and electrochemical properties of polyaniline/cobalt oxide nano composite
NASA Astrophysics Data System (ADS)
Niranjana, M.; Yesappa, L.; Ashokkumar, S. P.; Vijeth, H.; Basappa, M.; Devendrappa, H.
2018-05-01
Polyaniline and its composites at different wt. % of Cobalt oxide nano (PDC1, PDC2 and PDC5) were prepared by in-situ chemical reaction method The optical property was carried out using UV-Vis. Absorption Spectroscopy. The electrochemical property like cyclic voltammetry and galvonostatic charging-discharging was carried out for PANI and PDC nanocomposite electrode materials. A specific capacitance of 212.08 F/g and 336.41 F/g with scan rates 100 and 200 mV/s at 0.4 A/g current density respectively. These results are suggesting PDC composite is a prominent candidate for supercapacitor properties applications.
NASA Astrophysics Data System (ADS)
Fournier, René; Afzal-Hussain, Sabeen
2013-02-01
We report the results of density functional theory for 39 clusters AxBy (x + y = 10 or 12) where A and B are metals from group 1, 2, 11, 12, 13, or 14 of the periodic table. The chemical compositions were chosen to satisfy an electronic shell closing criterion. We performed an unbiased search for the global minimum (GM) by taboo search in descriptor space in each case. Eight of the 39 putative GM are cages even though none of the clusters contains gold, a metal with a well known propensity to form cages. These cages are large enough to accommodate a dopant atom with an atomic radius varying between 0.7 Å and 1.2 Å. The chemical compositions most likely to produce cages have an element of group 11 alloyed with an element of group 2, 12, or 13.
Size and density sorting of dust grains in SPH simulations of protoplanetary discs
NASA Astrophysics Data System (ADS)
Pignatale, F. C.; Gonzalez, J.-F.; Cuello, Nicolas; Bourdon, Bernard; Fitoussi, Caroline
2017-07-01
The size and density of dust grains determine their response to gas drag in protoplanetary discs. Aerodynamical (size × density) sorting is one of the proposed mechanisms to explain the grain properties and chemical fractionation of chondrites. However, the efficiency of aerodynamical sorting and the location in the disc in which it could occur are still unknown. Although the effects of grain sizes and growth in discs have been widely studied, a simultaneous analysis including dust composition is missing. In this work, we present the dynamical evolution and growth of multicomponent dust in a protoplanetary disc using a 3D, two-fluid (gas+dust) smoothed particle hydrodynamics code. We find that the dust vertical settling is characterized by two phases: a density-driven phase that leads to a vertical chemical sorting of dust and a size-driven phase that enhances the amount of lighter material in the mid-plane. We also see an efficient radial chemical sorting of the dust at large scales. We find that dust particles are aerodynamically sorted in the inner disc. The disc becomes sub-solar in its Fe/Si ratio on the surface since the early stage of evolution but sub-solar Fe/Si can be also found in the outer disc-mid-plane at late stages. Aggregates in the disc mimic the physical and chemical properties of chondrites, suggesting that aerodynamical sorting played an important role in determining their final structure.
Alexander Kholodov; David Graham; Ji-Won Moon
2018-01-22
This dataset provides the results of physical, chemical, and thermal characterization of soils at the Council Road Site at MM71, Seward Peninsula, Alaska. Soil pits were dug on 11 September 2016 at three sites. This dataset includes field observations and descriptions of soil layers or horizons, field measurements of soil volumetric water content, soil temperature, thermal conductivity, and heat capacity. Laboratory measurements of soil properties include gravimetric water content, bulk density, volumetric water content, total carbon and nitrogen, and elemental composition from X-ray fluorescence for some elements.
Nanowire sensors and arrays for chemical/biomolecule detection
NASA Technical Reports Server (NTRS)
Yun, Minhee; Lee, Choonsup; Vasquez, Richard P.; Ramanathan, K.; Bangar, M. A.; Chen, W.; Mulchandan, A.; Myung, N. V.
2005-01-01
We report electrochemical growth of single nanowire based sensors using e-beam patterned electrolyte channels, potentially enabling the controlled fabrication of individually addressable high density arrays. The electrodeposition technique results in nanowires with controlled dimensions, positions, alignments, and chemical compositions. Using this technique, we have fabricated single palladium nanowires with diameters ranging between 75 nm and 300 nm and conducting polymer nanowires (polypyrrole and polyaniline) with diameters between 100 nm and 200 nm. Using these single nanowires, we have successfully demonstrated gas sensing with Pd nanowires and pH sensing with polypirrole nanowires.
Low temperature hall effect investigation of conducting polymer-carbon nanotubes composite network.
Bahrami, Afarin; Talib, Zainal Abidin; Yunus, Wan Mahmood Mat; Behzad, Kasra; M Abdi, Mahnaz; Din, Fasih Ud
2012-11-14
Polypyrrole (PPy) and polypyrrole-carboxylic functionalized multi wall carbon nanotube composites (PPy/f-MWCNT) were synthesized by in situ chemical oxidative polymerization of pyrrole on the carbon nanotubes (CNTs). The structure of the resulting complex nanotubes was characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The effects of f-MWCNT concentration on the electrical properties of the resulting composites were studied at temperatures between 100 K and 300 K. The Hall mobility and Hall coefficient of PPy and PPy/f-MWCNT composite samples with different concentrations of f-MWCNT were measured using the van der Pauw technique. The mobility decreased slightly with increasing temperature, while the conductivity was dominated by the gradually increasing carrier density.
Carbon Nanomaterials as Reinforcements for Composites
NASA Technical Reports Server (NTRS)
Zhu, Shen; Su, Ching-Hua; Lehoczky, S. L.; Curreri, Peter A. (Technical Monitor)
2002-01-01
Carbon nanomaterials including fellerenes, nanotubes (CNT) and nanofibers have been proposed for many applications. One of applications is to use the carbon nanomaterials as reinforcements for composites, especially for polymer matrices. Carbon nanotubes is a good reinforcement for lightweight composite applications due to its low mass density and high Young's modulus. Two obscures need to overcome for carbon nanotubes as reinforcements in composites, which are large quantity production and functioning the nanotubes. This presentation will discuss the carbon nanotube growth by chemical vapor deposition. In order to reduce the cost of producing carbon nanotubes as well as preventing the sliding problems, carbon nanotubes were also synthesized on carbon fibers. The synthesis process and characterization results of nanotubes and nanotubes/fibers will be discussed in the presentation.
Polydopamine and MnO2 core-shell composites for high-performance supercapacitors
NASA Astrophysics Data System (ADS)
Hou, Ding; Tao, Haisheng; Zhu, Xuezhen; Li, Maoguo
2017-10-01
Polydopamine and MnO2 core-shell composites (PDA@MnO2) for high-performance supercapacitors had been successfully synthesized by a facile and fast method. The morphology, crystalline phase and chemical composition of PDA@MnO2 composites are characterized using SEM, TEM, XRD, EDS and XPS. The performance of PDA@MnO2 composites are further investigated by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy in 1 M Na2SO4 electrolyte. The PDA@MnO2 core-shell nanostructure composites exhibit a high capacitance of 193 F g-1 at the current density of 1A g-1 and retained over 81.2% of its initial capacitance after 2500 cycles of charge-discharge at 2 A g-1. The results manifest that the PDA@MnO2 composites can be potentially applied in supercapacitors.
Melting Experiments in the Fe-FeSi System at High Pressure
NASA Astrophysics Data System (ADS)
Ozawa, H.; Hirose, K.
2013-12-01
The principal light element in the Earth's core must reproduce the density jump at the inner core boundary (ICB). Silicon is thought to be a plausible light element in the core, and the melting phase relations in Fe-FeSi binary system at the ICB pressure are of great importance. Theoretical calculations on the Fe-FeSi binary system suggested that the difference in Si content between the outer core and the inner core would be too small to satisfy the observed density jump at the ICB [Alfè et al., 2002 EPSL], which requires other light elements in addition to silicon. Here we experimentally examined partitioning of silicon between liquid and solid iron up to 97 GPa. High pressure and temperature conditions were generated in a laser-heated diamond-anvil cell. Chemical compositions of co-existing quenched liquid and solid Fe-Si alloys were determined with a field-emission-type electron probe micro-analyzer. We used Fe-Si alloy containing 9 wt% Si as a starting material. Chemical analyses on the recovered samples from 39 and 49 GPa demonstrated the coexistence of quenched Si-depleted liquid and Si-enriched solid. In contrast, silicon partitions preferentially into liquid metal at 97 GPa, suggesting the starting composition (Fe-9wt% Si) lies on the iron-rich part of the eutectic. These results indicate the eutectic composition shifts toward FeSi between 49 and 97 GPa.
Self-contained filtered density function
Nouri, Arash G.; Nik, Mehdi B.; Givi, Pope; ...
2017-09-18
The filtered density function (FDF) closure is extended to a “self-contained” format to include the subgrid-scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large-eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF). In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via amore » set of stochastic differential equation for each of the transport variables. This yields a self-contained SGS closure. We demonstrated how LES is conducted of a turbulent shear flow with transport of a passive scalar. Finally, the consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.« less
Physiochemical Characterization of Briquettes Made from Different Feedstocks
Karunanithy, C.; Wang, Y.; Muthukumarappan, K.; Pugalendhi, S.
2012-01-01
Densification of biomass can address handling, transportation, and storage problems and also lend itself to an automated loading and unloading of transport vehicles and storage systems. The purpose of this study is to compare the physicochemical properties of briquettes made from different feedstocks. Feedstocks such as corn stover, switchgrass, prairie cord grass, sawdust, pigeon pea grass, and cotton stalk were densified using a briquetting system. Physical characterization includes particle size distribution, geometrical mean diameter (GMD), densities (bulk and true), porosity, and glass transition temperature. The compositional analysis of control and briquettes was also performed. Statistical analyses confirmed the existence of significant differences in these physical properties and chemical composition of control and briquettes. Correlation analysis confirms the contribution of lignin to bulk density and durability. Among the feedstocks tested, cotton stalk had the highest bulk density of 964 kg/m3 which is an elevenfold increase compared to control cotton stalk. Corn stover and pigeon pea grass had the highest (96.6%) and lowest (61%) durability. PMID:22792471
Near-surface bulk densities of asteroids derived from dual-polarization radar observations
NASA Astrophysics Data System (ADS)
Virkki, A.; Taylor, P. A.; Zambrano-Marin, L. F.; Howell, E. S.; Nolan, M. C.; Lejoly, C.; Rivera-Valentin, E. G.; Aponte, B. A.
2017-09-01
We present a new method to constrain the near-surface bulk density and surface roughness of regolith on asteroid surfaces using planetary radar measurements. The number of radar observations has increased rapidly during the last five years, allowing us to compare and contrast the radar scattering properties of different small-body populations and compositional types. This provides us with new opportunities to investigate their near-surface physical properties such as the chemical composition, bulk density, porosity, or the structural roughness in the scale of centimeters to meters. Because the radar signal can penetrate into a planetary surface up to a few decimeters, radar can reveal information that is hidden from other ground-based methods, such as optical and infrared measurements. The near-surface structure of asteroids and comets in centimeter-to-meter scale is essential information for robotic and human space missions, impact threat mitigation, and understanding the history of these bodies as well as the formation of the whole Solar System.
Process for preparing energetic materials
Simpson, Randall L [Livermore, CA; Lee, Ronald S [Livermore, CA; Tillotson, Thomas M [Tracy, CA; Hrubesh, Lawrence W [Pleasanton, CA; Swansiger, Rosalind W [Livermore, CA; Fox, Glenn A [Livermore, CA
2011-12-13
Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.
Sol-Gel Manufactured Energetic Materials
Simpson, Randall L.; Lee, Ronald S.; Tillotson, Thomas M.; Hrubesh, Lawrence W.; Swansiger, Rosalind W.; Fox, Glenn A.
2005-05-17
Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.
Sol-gel manufactured energetic materials
Simpson, Randall L.; Lee, Ronald S.; Tillotson, Thomas M.; Hrubesh, Lawrence W.; Swansiger, Rosalind W.; Fox, Glenn A.
2003-12-23
Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.
Self-contained filtered density function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nouri, Arash G.; Nik, Mehdi B.; Givi, Pope
The filtered density function (FDF) closure is extended to a “self-contained” format to include the subgrid-scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large-eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF). In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via amore » set of stochastic differential equation for each of the transport variables. This yields a self-contained SGS closure. We demonstrated how LES is conducted of a turbulent shear flow with transport of a passive scalar. Finally, the consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.« less
NASA Astrophysics Data System (ADS)
Yoon, Soon-Gil; Lee, Jai-Chan; Safari, A.
1994-09-01
The chemical composition and electrical properties were investigated for epitaxially crystallized (Ba(0.5),Sr(0.5))TiO3 (BST) films deposited on Pt/MgO and YBa2Cu3O(7-x) (YBCO)/MgO substrates by the laser ablation technique. Rutherford backscattering spectroscopy analysis shows that thin films on Pt/MgO have almost the same stoichiometric composition as the target material. Films deposited at 600 C exhibited an excellent epitaxial growth, a dielectric constant of 430, and a dissipation factor of 0.02 at 10 kHz frequency. They have a charge storage density of 40 fC/sq micron at an applied electric field of 0.15 MV/cm. Leakage current density of BST thin films on Pt/MgO was smaller than on YBCO/MgO. Their leakage current density is about 0.8 microA/sq cm at an applied electric field of 0.15 MV/cm.
Self-contained filtered density function
NASA Astrophysics Data System (ADS)
Nouri, A. G.; Nik, M. B.; Givi, P.; Livescu, D.; Pope, S. B.
2017-09-01
The filtered density function (FDF) closure is extended to a "self-contained" format to include the subgrid-scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large-eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF). In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via a set of stochastic differential equation for each of the transport variables. This yields a self-contained SGS closure. For demonstration, LES is conducted of a turbulent shear flow with transport of a passive scalar. The consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.
Coupling geodynamic with thermodynamic modelling for reconstructions of magmatic systems
NASA Astrophysics Data System (ADS)
Rummel, Lisa; Kaus, Boris J. P.; White, Richard
2016-04-01
Coupling geodynamic with petrological models is fundamental for understanding magmatic systems from the melting source in the mantle to the point of magma crystallisation in the upper crust. Most geodynamic codes use very simplified petrological models consisting of a single, fixed, chemistry. Here, we develop a method to better track the petrological evolution of the source rock and corresponding volcanic and plutonic rocks by combining a geodynamic code with a thermodynamic model for magma generation and evolution. For the geodynamic modelling a finite element code (MVEP2) solves the conservation of mass, momentum and energy equations. The thermodynamic modelling of phase equilibria in magmatic systems is performed with pMELTS for mantle-like bulk compositions. The thermodynamic dependent properties calculated by pMELTS are density, melt fraction and the composition of the liquid and solid phase in the chemical system: SiO2-TiO2-Al2O3-Fe2O3-Cr2O3-FeO-MgO-CaO-Na2O-K2O-P2O5-H2O. In order to take into account the chemical depletion of the source rock with increasing melt extraction events, calculation of phase diagrams is performed in two steps: 1) With an initial rock composition density, melt fraction as well as liquid and solid composition are computed over the full upper mantle P-T range. 2) Once the residual rock composition (equivalent to the solid composition after melt extraction) is significantly different from the initial rock composition and the melt fraction is lower than a critical value, the residual composition is used for next calculations with pMELTS. The implementation of several melt extraction events take the change in chemistry into account until the solidus is shifted to such high temperatures that the rock cannot be molten anymore under upper mantle conditions. An advantage of this approach is that we can track the change of melt chemistry with time, which can be compared with natural constraints. In the thermo-mechanical code the thermodynamic dependent properties from pre-computed phase diagrams are carried by each particle using marker-in-cell method . Thus the physical and chemical properties can change locally as a function of previous melt extraction events, pressure and temperature conditions. After each melt extraction event, the residual rock composition is compared with the bulk composition of previous computed phase diagrams, so that the used phase diagram is replaced by the phase diagram with the closest bulk chemistry. In the thermo-mechanical code, the melt is extracted directly to the surface as volcanites and within the crust as plutonites. The density of the crust and new generated crust is calculated with the thermodynamic modelling tool Perple_X. We have investigated the influence of several input parameters on the magma composition to compare it with real rock samples from Eifel (West-Germany). In order to take the very inhomogeneous chemistry of European mantle into account, we include not only primitive mantle but also metasomatised mantle fragments in the melting source of a plume (Eifel plume).
Ding, Huanjun; Sennung, David; Cho, Hyo-Min; Molloi, Sabee
2016-01-01
Purpose: The positive predictive power for malignancy can potentially be improved, if the chemical compositions of suspicious breast lesions can be reliably measured in screening mammography. The purpose of this study is to investigate the feasibility of quantifying breast lesion composition, in terms of water and lipid contents, with spectral mammography. Methods: Phantom and tissue samples were imaged with a spectral mammography system based on silicon-strip photon-counting detectors. Dual-energy calibration was performed for material decomposition, using plastic water and adipose-equivalent phantoms as the basis materials. The step wedge calibration phantom consisted of 20 calibration configurations, which ranged from 2 to 8 cm in thickness and from 0% to 100% in plastic water density. A nonlinear rational fitting function was used in dual-energy calibration of the imaging system. Breast lesion phantoms, made from various combinations of plastic water and adipose-equivalent disks, were embedded in a breast mammography phantom with a heterogeneous background pattern. Lesion phantoms with water densities ranging from 0% to 100% were placed at different locations of the heterogeneous background phantom. The water density in the lesion phantoms was measured using dual-energy material decomposition. The thickness and density of the background phantom were varied to test the accuracy of the decomposition technique in different configurations. In addition, an in vitro study was also performed using mixtures of lean and fat bovine tissue of 25%, 50%, and 80% lean weight percentages as the background. Lesions were simulated by using breast lesion phantoms, as well as small bovine tissue samples, composed of carefully weighed lean and fat bovine tissues. The water densities in tissue samples were measured using spectral mammography and compared to measurement using chemical decomposition of the tissue. Results: The thickness of measured and known water contents was compared for various lesion configurations. There was a good linear correlation between the measured and the known values. The root-mean-square errors in water thickness measurements were 0.3 and 0.2 mm for the plastic phantom and bovine tissue backgrounds, respectively. Conclusions: The results indicate that spectral mammography can be used to accurately characterize breast lesion composition in terms of their equivalent water and lipid contents. PMID:27782705
Spaak, Jurg W; Baert, Jan M; Baird, Donald J; Eisenhauer, Nico; Maltby, Lorraine; Pomati, Francesco; Radchuk, Viktoriia; Rohr, Jason R; Van den Brink, Paul J; De Laender, Frederik
2017-10-01
There has been considerable focus on the impacts of environmental change on ecosystem function arising from changes in species richness. However, environmental change may affect ecosystem function without affecting richness, most notably by affecting population densities and community composition. Using a theoretical model, we find that, despite invariant richness, (1) small environmental effects may already lead to a collapse of function; (2) competitive strength may be a less important determinant of ecosystem function change than the selectivity of the environmental change driver and (3) effects on ecosystem function increase when effects on composition are larger. We also present a complementary statistical analysis of 13 data sets of phytoplankton and periphyton communities exposed to chemical stressors and show that effects on primary production under invariant richness ranged from -75% to +10%. We conclude that environmental protection goals relying on measures of richness could underestimate ecological impacts of environmental change. © 2017 The Authors Ecology Letters published by CNRS and John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, Chinthaka M; Lindemer, Terrence; Voit, Stewart L
2014-11-01
Three sets of different experimental conditions by changing the cover gases during the sample preparation were tested to synthesize uranium carbonitride (UC1-xNx) microparticles. In the first two sets of experiments using (N2 to N2-4%H2 to Ar) and (Ar to N2 to Ar) environments, single phase UC1-xNx was synthesized. When reducing environments (Ar-4%H2 to N2-4%H2 to Ar-4%H2) were utilized, theoretical densities up to 97% of single phase UC1-xNx kernels were obtained. Physical and chemical characteristics such as density, phase purity, and chemical compositions of the synthesized UC1-xNx materials for the diferent experimental conditions used are provided. In-depth analysis of the microstruturesmore » of UC1-xNx has been carried out and is discussed with the objective of large batch fabrication of high density UC1-xNx kernels.« less
Chemical Aging of Environmentally Friendly Cleaners
NASA Technical Reports Server (NTRS)
Evans, K.; Biegert, L.; Olsen, B.; Weber, B.; McCool, Alex (Technical Monitor)
2001-01-01
Use of cleaners in the manufacturing area demands bottles that will hold a sufficient amount of material and allow for easy and controlled dispensing by the operator without contamination or material leaching from the bottle. The manufacturing storage conditions are also a factor that may affect cleaner chemical integrity and its potential to leave a residue on the part. A variety of squeeze bottles stored in mild (72 F, 10 % R.H., dark) and harsh (105 F, 50 % R.H., fluorescent lighting) conditions were evaluated to determine the effect of environment and bottle exposure on the chemical composition of TCA (1,1,1 trichloroethane) replacement solvents. Low Density Polyethylene (LDPE) bottles were found to be quite permeable to all the cleaners evaluated in this study indicating this bottle type should not be used in the manufacturing area. Fluorinated Polyethylene (FLPE) bottles showed little cleaner loss and change in cleaner chemical composition over time suggesting these bottles would be acceptable for use. Chemical analysis indicates limonene-containing cleaners show increased non-volatile residue (NVR) content with storage under harsh conditions. Some cleaners use BHT (butylated hydroxytoluene) as stabilizer and to protect against limonene oxidation. Under harsh conditions, BHT was quickly depleted resulting in higher NVR levels.
Balasubramanian, V; Natarajan, K; Rajeshkannan, V; Perumal, P
2014-11-01
Partially degraded high-density polyethylene (HDPE) was collected from plastic waste dump yard for biodegradation using fungi. Of various fungi screened, strain MF12 was found efficient in degrading HDPE by weight loss and Fourier transform infrared (FT-IR) spectrophotometric analysis. Strain MF12 was selected as efficient HDPE degraders for further studies, and their growth medium composition was optimized. Among those different media used, basal minimal medium (BMM) was suitable for the HDPE degradation by strain MF12. Strain MF12 was subjected to 28S rRNA sequence analysis and identified as Aspergillus terreus MF12. HDPE degradation was carried out using combinatorial physical and chemical treatments in conjunction to biological treatment. The high level of HDPE degradation was observed in ultraviolet (UV) and KMnO4/HCl with A. terreus MF12 treatment, i.e., FT10. The abiotic physical and chemical factors enhance the biodegradation of HDPE using A. terreus MF12.
NASA Astrophysics Data System (ADS)
Kil, Yeon-Ho; Kang, Sukill; Jeong, Tae Soo; Shim, Kyu-Hwan; Kim, Dae-Jung; Choi, Yong-Dae; Kim, Mi Joung; Kim, Taek Sung
2018-05-01
The Ge1- x Sn x layers were grown by using rapid thermal chemical-vapor deposition (RTCVD) on boron-doped p-type Si (100) substrates with Sn compositions up to x = 0.83%. In order to obtain effect of the Sn composition on the structural and the optical characteristics, we utilized highresolution X-ray diffraction (HR-XRD), etch pit density (EPD), atomic force microscopy (AFM), Raman spectroscopy, and photocurrent (PC) spectra. The Sn compositions in the Ge1- x Sn x layers were found to be of x = 0.00%, 0.51%, 0.65%, and 0.83%. The root-mean-square (RMS) of the surface roughness of the Ge1- x Sn x layer increased from 2.02 nm to 3.40 nm as the Sn composition was increased from 0.51% to 0.83%, and EPD was on the order of 108 cm-2. The Raman spectra consist of only one strong peak near 300 cm-1, which is assigned to the Ge-Ge LO peaks and the Raman peaks shift to the wave number with increasing Sn composition. Photocurrent spectra show near energy band gap peaks and their peak energies decrease with increasing Sn composition due to band-gap bowing in the Ge1- x Sn x layer. An increase in the band gap bowing parameter was observed with increasing Sn composition.
Westerholm, R; Egebäck, K E
1994-01-01
This paper presents results from the characterization of vehicle exhaust that were obtained primarily within the Swedish Urban Air Project, "Tätortsprojektet." Exhaust emissions from both gasoline- and diesel-fueled vehicles have been investigated with respect to regulated pollutants (carbon monoxide [CO], hydrocarbon [HC], nitrogen oxides [NOx], and particulate), unregulated pollutants, and in bioassay tests (Ames test, TCDD receptor affinity tests). Unregulated pollutants present in both the particle- and the semi-volatile phases were characterized. Special interest was focused on the impact of fuel composition on heavy-duty diesel vehicle emissions. It was confirmed that there exists a quantifiable relationship between diesel-fuel variables of the fuel blends, the chemical composition of the emissions, and their biological effects. According to the results from the multivariate analysis, the most important fuel parameters are: polycyclic aromatic hydrocarbons (PAH) content, 90% distillation point, final boiling point, specific heat, aromatic content, density, and sulfur content. PMID:7529699
NASA Astrophysics Data System (ADS)
Brimhall, George H.; Dietrich, William E.
1987-03-01
Relations characterizing the chemical, physical, and mechanical changes resulting from metasomatic hydrochemical processes are developed using mass balance models which formally link chemical composition to bulk density, mineral density, volumetric properties, porosity, and amount of deformation (strain). Rigorous analysis of aqueous solute transport effects is then made possible in a variety of porous media flow environments including chemical weathering, pedogenesis (soil formation), diagenesis, ore deposition and enrichment, and metamorphism. Application of these linear constitutive relations to chemical weathering profiles shows that immobile and locally mobile chemical elements, with masses conserved on the scale of soil profiles, can be accurately identified from analysis of appropriate data arrays and then used as natural geochemical tracers to infer the nature and extent of hydrochemical weathering processes and volume changes during pedogenesis. Assumptions commonly made in the past about the supposed immobility of certain elements, e.g., Ti and Zr, become unnecessary. Quantitative differentiation between the effects of residual and supergene fractionation is then easily made. These methods are applied to Ni-rich laterites developed by weathering of ultramafic rocks, showing that during ordinary residual enrichment, Ni is concentrated by as much as 4× protolith peridotite concentrations. This occurs simply by silicate mineral dissolution and removal of chemical elements other than Ni ( e.g., Mg) with a corresponding reduction in saprolite density and increase in bulk porosity without significant deformation. In contrast, laterites with mineable concentrations of Ni which are similarly undeformed (such as the Nickel Mountain Mine in Riddle, Oregon) have experienced, in addition to residual enrichment, strong supergene enrichment by fractionation of ore elements between a leached zone from which Ni is extracted and a complementary enriched zone positioned farther along the direction of ground water flow. Soil-forming processes in podzol chronosequences developed on sandy beach terraces of the Mendocino Coast of California involved soil column collapse of 60 percent by dissolution of silicate minerals in the albic horizon of Al and Fe leaching, and 70 percent dilation (expansion) in the overlying organic-rich layer by root growth. The amount of erosion based upon paleosurface reconstructions using the excess mass of Fe, Al, Pb, Ga, and Cu in the zone of supergene enrichment (spodic horizon) below the ground water table indicates that subsurface erosion by dissolutional collapse is three times that of surficial erosion. Finally, using published chemical data for Ti, Zr, and Cr on major bauxite deposits in Australia where erosion rates are thought to be low, we infer that there may have been major amounts of dissolutional collapse to explain the upwards increase of detrital zircon and rutile in weathering profiles.
Modeling of Fine-Particle Formation in Turbulent Flames
NASA Astrophysics Data System (ADS)
Raman, Venkat; Fox, Rodney O.
2016-01-01
The generation of nanostructured particles in high-temperature flames is important both for the control of emissions from combustion devices and for the synthesis of high-value chemicals for a variety of applications. The physiochemical processes that lead to the production of fine particles in turbulent flames are highly sensitive to the flow physics and, in particular, the history of thermochemical compositions and turbulent features they encounter. Consequently, it is possible to change the characteristic size, structure, composition, and yield of the fine particles by altering the flow configuration. This review describes the complex multiscale interactions among turbulent fluid flow, gas-phase chemical reactions, and solid-phase particle evolution. The focus is on modeling the generation of soot particles, an unwanted pollutant from automobile and aircraft engines, as well as metal oxides, a class of high-value chemicals sought for specialized applications, including emissions control. Issues arising due to the numerical methods used to approximate the particle number density function, the modeling of turbulence-chemistry interactions, and model validation are also discussed.
Andersen, Mathias Bækbo; Frey, Jared; Pennathur, Sumita; Bruus, Henrik
2011-01-01
We present a combined theoretical and experimental analysis of the solid-liquid interface of fused-silica nanofabricated channels with and without a hydrophilic 3-cyanopropyldimethylchlorosilane (cyanosilane) coating. We develop a model that relaxes the assumption that the surface parameters C(1), C(2), and pK(+) are constant and independent of surface composition. Our theoretical model consists of three parts: (i) a chemical equilibrium model of the bare or coated wall, (ii) a chemical equilibrium model of the buffered bulk electrolyte, and (iii) a self-consistent Gouy-Chapman-Stern triple-layer model of the electrochemical double layer coupling these two equilibrium models. To validate our model, we used both pH-sensitive dye-based capillary filling experiments as well as electro-osmotic current-monitoring measurements. Using our model we predict the dependence of ζ potential, surface charge density, and capillary filling length ratio on ionic strength for different surface compositions, which can be difficult to achieve otherwise. Copyright © 2010 Elsevier Inc. All rights reserved.
Savazzi, Filippo; Risplendi, Francesca; Mallia, Giuseppe; Harrison, Nicholas M; Cicero, Giancarlo
2018-04-05
Graphene oxide (GO) is a versatile 2D material whose properties can be tuned by changing the type and concentration of oxygen-containing functional groups attached to its surface. However, a detailed knowledge of the dependence of the chemo/physical features of this material on its chemical composition is largely unknown. We combine classical molecular dynamics and density functional theory simulations to predict the structural and electronic properties of GO at low degree of oxidation and suggest a revision of the Lerf-Klinowski model. We find that layer deformation is larger for samples containing high concentrations of epoxy groups and that correspondingly the band gap increases. Targeted chemical modification of the GO surface appears to be an effective route to tailor the electronic properties of the monolayer for given applications. Our simulations also show that the chemical shift of the C-1s XPS peak allows one to unambiguously characterize GO composition, resolving the peak attribution uncertainty often encountered in experiments.
True density and apparent density during the drying process for vegetables and fruits: a review.
Rodríguez-Ramírez, J; Méndez-Lagunas, L; López-Ortiz, A; Torres, S Sandoval
2012-12-01
This review presents the concepts involved in determining the density of foodstuffs, and summarizes the volumetric determination techniques used to calculate true density and apparent density in foodstuffs exposed to the drying process. The behavior of density with respect to moisture content (X) and drying temperature (T) is presented and explained with a basis in changes in structure, conformation, chemical composition, and second-order phase changes that occur in the processes of mass and heat transport, as reported to date in the literature. A review of the empirical and theoretical equations that represent density is presented, and their application in foodstuffs is discussed. This review also addresses cases with nonideal density behavior, including variations in ρ(s) and ρ(w) as a function of the inside temperature of the material, depending on drying conditions (X, T). A compilation of studies regarding the density of dehydrated foodstuffs is also presented. © 2012 Institute of Food Technologists®
Al Attar, Lina; Safia, Bassam; Abdul Ghani, Basem
2016-03-01
Scale generated from the maintenance of equipment contaminated by naturally occurring radioactive materials may contain also chemical components that cause hazardous pollution to human health and the environment. This study spotlights the characterisation of chemical pollutants in scales in relation to home-made comparison samples as no reference material for such waste exists. Analysis by energy dispersive x-ray fluorescence, with accuracy and precision better than 90%, revealed that barium was the most abundant element in scale samples, ranging from 1.4 to 38.2%. The concentrations of the toxic elements such as lead and chromium were as high as 2.5 and 1.2% respectively. Statistically, high correlation was observed between the concentration of Ba and Sr, sample density, radionuclide contents ((210)Pb and (226)Ra) and self-attenuation factor used for the radio-measurements. However, iron showed a reverse correlation. Interpretation of data with regards to the mineralogical components indicated that (226)Ra and (210)Pb co-precipitated with the insoluble salt Ba0.75Sr0.25SO4. Since both Ba and Sr have high Z, samples of high density (ρ) were accompanied with high values of self-attenuation correction factors (Cf) for the emitted radiation; correlation matrix of Pearson reached 0.935 between ρ and Cf. An attempt to eliminate the effect of the elemental composition and improve gamma measurements of (210)Pb activity concentration in scale samples was made, which showed no correction for self-attenuation was needed when sample densities were in the range 1.0-1.4 g cm(-3). For denser samples, a mathematical model was developed. Accurate determinations of radionuclide and chemical contents of scale would facilitate future Environmental Impact Assessment for the petroleum industry. Copyright © 2015 Elsevier Ltd. All rights reserved.
A realistic molecular model of cement hydrates.
Pellenq, Roland J-M; Kushima, Akihiro; Shahsavari, Rouzbeh; Van Vliet, Krystyn J; Buehler, Markus J; Yip, Sidney; Ulm, Franz-Josef
2009-09-22
Despite decades of studies of calcium-silicate-hydrate (C-S-H), the structurally complex binder phase of concrete, the interplay between chemical composition and density remains essentially unexplored. Together these characteristics of C-S-H define and modulate the physical and mechanical properties of this "liquid stone" gel phase. With the recent determination of the calcium/silicon (C/S = 1.7) ratio and the density of the C-S-H particle (2.6 g/cm(3)) by neutron scattering measurements, there is new urgency to the challenge of explaining these essential properties. Here we propose a molecular model of C-S-H based on a bottom-up atomistic simulation approach that considers only the chemical specificity of the system as the overriding constraint. By allowing for short silica chains distributed as monomers, dimers, and pentamers, this C-S-H archetype of a molecular description of interacting CaO, SiO2, and H2O units provides not only realistic values of the C/S ratio and the density computed by grand canonical Monte Carlo simulation of water adsorption at 300 K. The model, with a chemical composition of (CaO)(1.65)(SiO2)(H2O)(1.75), also predicts other essential structural features and fundamental physical properties amenable to experimental validation, which suggest that the C-S-H gel structure includes both glass-like short-range order and crystalline features of the mineral tobermorite. Additionally, we probe the mechanical stiffness, strength, and hydrolytic shear response of our molecular model, as compared to experimentally measured properties of C-S-H. The latter results illustrate the prospect of treating cement on equal footing with metals and ceramics in the current application of mechanism-based models and multiscale simulations to study inelastic deformation and cracking.
Time Neutron Technique for UXO Discrimination
2010-12-01
mixture of TNT and RDX C-4 CFD Composition 4 military plastic explosive Constant Fraction Discriminator Cps CsI counts per second inorganic...Pdfs Probability Density Functions PET Positron Emission Tomography Pfa Probability of False Alarm PFTNA Pulsed Fast/Thermal Neutron Analysis PMTs...the ordnance type (rocket, mortar , projectile, etc.) and what filler material it contains (inert or empty), practice, HE, illumination, chemical (i.e
Cusack, Daniela F; Silver, Whendee L; Torn, Margaret S; Burton, Sarah D; Firestone, Mary K
2011-03-01
Microbial communities and their associated enzyme activities affect the amount and chemical quality of carbon (C) in soils. Increasing nitrogen (N) deposition, particularly in N-rich tropical forests, is likely to change the composition and behavior of microbial communities and feed back on ecosystem structure and function. This study presents a novel assessment of mechanistic links between microbial responses to N deposition and shifts in soil organic matter (SOM) quality and quantity. We used phospholipid fatty acid (PLFA) analysis and microbial enzyme assays in soils to assess microbial community responses to long-term N additions in two distinct tropical rain forests. We used soil density fractionation and 13C nuclear magnetic resonance (NMR) spectroscopy to measure related changes in SOM pool sizes and chemical quality. Microbial biomass increased in response to N fertilization in both tropical forests and corresponded to declines in pools of low-density SOM. The chemical quality of this soil C pool reflected ecosystem-specific changes in microbial community composition. In the lower-elevation forest, there was an increase in gram-negative bacteria PLFA biomass, and there were significant losses of labile C chemical groups (O-alkyls). In contrast, the upper-elevation tropical forest had an increase in fungal PLFAs with N additions and declines in C groups associated with increased soil C storage (alkyls). The dynamics of microbial enzymatic activities with N addition provided a functional link between changes in microbial community structure and SOM chemistry. Ecosystem-specific changes in microbial community composition are likely to have far-reaching effects on soil carbon storage and cycling. This study indicates that microbial communities in N-rich tropical forests can be sensitive to added N, but we can expect significant variability in how ecosystem structure and function respond to N deposition among tropical forest types.
NASA Astrophysics Data System (ADS)
Bártová, H.; Trojek, T.; Johnová, K.
2017-11-01
This article describes the method for the estimation of depth distribution of radionuclides in a material with gamma-ray spectrometry, and the identification of a layered structure of a material with X-ray fluorescence analysis. This method is based on the measurement of a ratio of two gamma or X-ray lines of a radionuclide or a chemical element, respectively. Its principle consists in different attenuation coefficient for these two lines in a measured material. The main aim of this investigation was to show how the detected ratio of these two lines depends on depth distribution of an analyte and mainly how this ratio depends on density and chemical composition of measured materials. Several different calculation arrangements were made and a lot of Monte Carlo simulation with the code MCNP - Monte Carlo N-Particle (Briesmeister, 2000) was performed to answer these questions. For X-ray spectrometry, the calculated Kα/Kβ diagrams were found to be almost independent upon matrix density and composition. Thanks to this phenomenon it would be possible to draw only one Kα/Kβ diagram for an element whose depth distribution is examined.
NASA Astrophysics Data System (ADS)
Dmitriyeva, Olga; Hamm, Steven C.; Knies, David L.; Cantwell, Richard; McConnell, Matt
2018-05-01
Our previous work experimentally demonstrated the enhancement of electrochemical hydrogen insertion into palladium by modifying the chemical composition of the cathode surface with Pb, Pt and Bi, referred to as surface promoters. The experiment demonstrated that an optimal combination of the surface promoters led to an increase in hydrogen fugacity of more than three orders of magnitude, while maintaining the same current density. This manuscript discusses the application of Density Functional Theory (DFT) to elucidate the thermodynamics and kinetics of observed enhancement of electrochemical hydrogen insertion into palladium. We present theoretical simulations that: (1) establish the elevation of hydrogen's chemical potential on Pb and Bi surfaces to enhance hydrogen insertion, (2) confirm the increase of a Tafel activation barrier that results in a decrease of the reaction rate at the given hydrogen overpotential, and (3) explain why the surface promoter's coverage needs to be non-uniform, namely to allow hydrogen insertion into palladium bulk while simultaneously locking hydrogen below the surface (the corking effect). The discussed DFT-based method can be used for efficient scanning of different material configurations to design a highly effective hydrogen storage system.
Positive segregation as a function of buoyancy force during steel ingot solidification.
Radovic, Zarko; Jaukovic, Nada; Lalovic, Milisav; Tadic, Nebojsa
2008-12-01
We analyze theoretically and experimentally solute redistribution in the dendritic solidification process and positive segregation during solidification of steel ingots. Positive segregation is mainly caused by liquid flow in the mushy zone. Changes in the liquid steel velocity are caused by the temperature gradient and by the increase in the solid fraction during solidification. The effects of buoyancy and of the change in the solid fraction on segregation intensity are analyzed. The relationships between the density change, liquid fraction and the steel composition are considered. Such elements as W, Ni, Mo and Cr decrease the effect of the density variations, i.e. they show smaller tendency to segregate. Based on the modeling and experimental results, coefficients are provided controlling the effects of chemical composition, secondary dendrite arm spacing and the solid fraction.
NASA Astrophysics Data System (ADS)
Esmaili, Parisa; Kangarlou, Haleh; Savaloni, Hadi; Ghorannevis, Mahmood
Aqueous solutions with 70 °C and pH = 2.5 constant values were prepared from convenient chemical compounds to produce In2S3: Cu crystals and thin films. Crystal compositions were grown in this solution under special conditions. Micrographs showed amorphous In2S3 orange powder and transparent vitreous pieces of CuInS2 crystals. Indium sulfide films were produced using the same solution in CBD method, on the glass substrates at different [Cu/In] molar ratio concentrations. Cu+ ions by different concentration doped from copper chloride source into In2S3 films. The produced films were post-annealed at 400 °C for about 1 h. Their crystallography, phase transitions, element analysis and nanostructures were investigated by X-ray diffraction, SEM, EDAX and AFM analyses. β-In2S3 phase was dominant and by doping copper impurity, XRD results suggested the formation of CuInS2 compositions. Morphology of the films, nano-structures, grain shapes and hardness was changed. Optical reflectance was measured in the UV-VIS wavelength range by a spectrophotometer. Other optical properties and optical band gaps were calculated using Kramers-Kronig relations on reflectivity curves. Electronic properties were calculated by full potential linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT). In this approach, generalized gradient approximation (GGA) was used for the exchange-correlation potential calculation. Band gap structures, density of states and imaginary parts of dielectric function were calculated for In2S3: Cu compositions.
Olsen, Peter C.; Gordon, N. Ross; Simmons, Kevin L.
1993-01-01
The present invention is a material and method of making the material that exhibits improved radiation attenuation simulation of real lungs, i.e., an "authentic lung tissue" or ALT phantom. Specifically, the ALT phantom is a two-part polyurethane medium density foam mixed with calcium carbonate, potassium carbonate if needed for K-40 background, lanthanum nitrate, acetone, and a nitrate or chloride form of a radionuclide. This formulation is found to closely match chemical composition and linear attenuation of real lungs. The ALT phantom material is made according to established procedures but without adding foaming agents or preparing thixotropic concentrate and with a modification for ensuring uniformity of density of the ALT phantom that is necessary for accurate simulation. The modification is that the polyurethane chemicals are mixed at a low temperature prior to pouring the polyurethane mixture into the mold.
Olsen, P.C.; Gordon, N.R.; Simmons, K.L.
1993-11-30
The present invention is a material and method of making the material that exhibits improved radiation attenuation simulation of real lungs, i.e., an ``authentic lung tissue`` or ALT phantom. Specifically, the ALT phantom is a two-part polyurethane medium density foam mixed with calcium carbonate, potassium carbonate if needed for K-40 background, lanthanum nitrate, acetone, and a nitrate or chloride form of a radionuclide. This formulation is found to closely match chemical composition and linear attenuation of real lungs. The ALT phantom material is made according to established procedures but without adding foaming agents or preparing thixotropic concentrate and with a modification for ensuring uniformity of density of the ALT phantom that is necessary for accurate simulation. The modification is that the polyurethane chemicals are mixed at a low temperature prior to pouring the polyurethane mixture into the mold.
NASA Astrophysics Data System (ADS)
Filley, Timothy R.; McCormick, Melissa K.; Crow, Susan E.; Szlavecz, Katalin; Whigham, Dennis F.; Johnston, Cliff T.; van den Heuvel, Ronald N.
2008-03-01
To investigate the control of earthworm populations on leaf litter biopolymer decay dynamics, we analyzed the residues of Liriodendron tulipifera L. (tulip poplar) leaves after six months of decay, comparing open surface litter and litter bag experiments among forests with different native and invasive earthworm abundances. Six plots were established in successional tulip poplar forests where sites varied in earthworm density and biomass, roughly 4-10 fold, of nonnative lumbricid species. Analysis of residues by diffuse reflectance Fourier transform infrared spectroscopy and alkaline CuO extraction indicated that open decay in sites with abundant earthworms resulted in residues depleted in cuticular aliphatic and polysaccharide components and enriched in ether-linked lignin relative to open decay in low earthworm abundance plots. Decay within earthworm-excluding litter bags resulted in an increase in aliphatic components relative to initial amendment and similar chemical trajectory to low earthworm open decay experiments. All litter exhibited a decline in cinnamyl-based lignin and an increase in nitrogen content. The influence of earthworm density on the chemical trajectory of litter decay was primarily a manifestation of the physical separation and concentration of lignin-rich and cutin-poor petioles with additional changes promoted by either microorganisms and/or mesofauna resulting in nitrogen addition and polysaccharide loss. These results illustrate how projected increases in invasive earthworm activity in northern North American forests could alter the chemical composition of organic matter in litter residues and potentially organic matter reaching the soil which may result in shifts in the aromatic and aliphatic composition of soils in different systems.
Chemical coloring on stainless steel by ultrasonic irradiation.
Cheng, Zuohui; Xue, Yongqiang; Ju, Hongbin
2018-01-01
To solve the problems of high temperature and non-uniformity of coloring on stainless steel, a new chemical coloring process, applying ultrasonic irradiation to the traditional chemical coloring process, was developed in this paper. The effects of ultrasonic frequency and power density (sound intensity) on chemical coloring on stainless steel were studied. The uniformity of morphology and colors was observed with the help of polarizing microscope and scanning electron microscopy (SEM), and the surface compositions were characterized by X-ray photoelectric spectroscopy (XPS), meanwhile, the wear resistance and the corrosion resistance were investigated, and the effect mechanism of ultrasonic irradiation on chemical coloring was discussed. These results show that in the process of chemical coloring on stainless steel by ultrasonic irradiation, the film composition is the same as the traditional chemical coloring, and this method can significantly enhance the uniformity, the wear and corrosion resistances of the color film and accelerate the coloring rate which makes the coloring temperature reduced to 40°C. The effects of ultrasonic irradiation on the chemical coloring can be attributed to the coloring rate accelerated and the coloring temperature reduced by thermal-effect, the uniformity of coloring film improved by dispersion-effect, and the wear and corrosion resistances of coloring film enhanced by cavitation-effect. Ultrasonic irradiation not only has an extensive application prospect for chemical coloring on stainless steel but also provides an valuable reference for other chemical coloring. Copyright © 2017 Elsevier B.V. All rights reserved.
Graphene and Polymer Composites for Supercapacitor Applications: a Review
NASA Astrophysics Data System (ADS)
Gao, Yang
2017-06-01
Supercapacitors, as one of the energy storage devices, exhibit ultrahigh capacitance, high power density, and long cycle. High specific surface area, mechanical and chemical stability, and low cost are often required for supercapacitor materials. Graphene, as a new emerging carbon material, has attracted a lot of attention in energy storage field due to its intrinsic properties. Polymers are often incorporated into graphene for a number of enhanced or new properties as supercapacitors. In this paper, different polymers which are used to form composite materials for supercapacitor applications are reviewed. The functions, strategies, and the enhanced properties of graphene and polymer composites are discussed. Finally, the recent development of graphene and polymers for flexible supercapacitors are also discussed.
Plastic Foam Withstands Greater Temperatures And Pressures
NASA Technical Reports Server (NTRS)
Cranston, John A.; Macarthur, Doug
1993-01-01
Improved plastic foam suitable for use in foam-core laminated composite parts and in tooling for making fiber/matrix-composite parts. Stronger at high temperatures, more thermally and dimensionally stable, machinable, resistant to chemical degradation, and less expensive. Compatible with variety of matrix resins. Made of polyisocyanurate blown with carbon dioxide and has density of 12 to 15 pounds per cubic feet. Does not contibute to depletion of ozone from atmosphere. Improved foam used in cores of composite panels in such diverse products as aircraft, automobiles, railroad cars, boats, and sporting equipment like surfboards, skis, and skateboards. Also used in thermally stable flotation devices in submersible vehicles. Machined into mandrels upon which filaments wound to make shells.
Systematics of the CHON and other light-element particle populations in Comet Halley
NASA Technical Reports Server (NTRS)
Clark, Benton; Mason, Larry W.; Kissel, Jochen
1986-01-01
Based on chemical signatures measured by the PIA experiment during the Giotto flyby of comet Halley, particle classifications were designated. In addition to silicate-like grains and particles of mixed (cosmic) composition, there appear to be several light-element rich populations, including the CHON, (H,C), (H,C,O), and (H,C,N) particle types. These compositional classes are further distinguished by differences in mass distributions, a density indicator, and variations in relative abundance within the coma. These particle populations are evidence for chemical heterogeneity in the surface of the cometary nucleus. Particles found mainly in the inner coma may be volatile icy grains. Most of the N of the comet may be found in up to three different populations of grains; one or more of these may be responsible for the observation of cyanojets.
Carbon chemistry of the Apollo 15 and 16 deep drill cores
NASA Technical Reports Server (NTRS)
Wszolek, P. C.; Burlingame, A. L.
1973-01-01
The carbon chemistry of the Apollo 15 and 16 deep drill cores is a function of the surface exposure plus the chemical and mineralogical composition of the individual samples. The depth profiles of carbide and methane yields in the Apollo 15 core show a general decline with depth and correlate with the solar wind noble gas content, percentage agglutinates, track densities, and metallic iron. All horizons examined were exposed for a considerable time on the lunar surface. The Apollo 16 core samples show that chemical and mineralogical composition plays an important role in determining the nature of carbide-like material present in the fines. The higher aluminum and calcium contents and lower iron contents of highlands material result in carbide-like material yielding less CD4 and more C2D2 (deuteroacetylene) upon DF acid dissolution.
Atmospheric-pressure electric discharge as an instrument of chemical activation of water solutions
NASA Astrophysics Data System (ADS)
Rybkin, V. V.; Shutov, D. A.
2017-11-01
Results of experimental studies and numerical simulations of physicochemical characteristics of plasmas generated in different types of atmospheric-pressure discharges (pulsed streamer corona, gliding electric arc, dielectric barrier discharge, glow-discharge electrolysis, diaphragmatic discharge, and dc glow discharge) used to initiate various chemical processes in water solutions are analyzed. Typical reactor designs are considered. Data on the power supply characteristics, plasma electron parameters, gas temperatures, and densities of active particles in different types of discharges excited in different gases and their dependences on the external parameters of discharges are presented. The chemical composition of active particles formed in water is described. Possible mechanisms of production and loss of plasma particles are discussed.
NASA Technical Reports Server (NTRS)
Hergenrother, Paul M.
1999-01-01
A thermoset or network polymer is an organic material where the molecules are tied together through chemical bonds (crosslinks) and therefore they cannot move past one another. As a result, these materials exhibit a certain degree of dimensional stability. The chemical composition and the degree of crosslink density of the thermoset have a pronounced effect upon the properties. High temperature thermosets offer a favorable combination of properties that makes them attractive for many applications. Their most important features are the excellent processability particularly of the low molecular weight precusor forms, the chemical and solvent resistance and the dimensional stability. The market for high temperature thermosets will increase as new uses for them are uncovered and new thermosets with better combinations of properties are developed.
The effect of Bahiagrass roots on soil erosion resistance of Aquults in subtropical China
NASA Astrophysics Data System (ADS)
Ye, Chao; Guo, Zhonglu; Li, Zhaoxia; Cai, Chongfa
2017-05-01
Herbaceous species, especially their roots, are believed to have an important role in enhancing soil strength and protecting soil against erosion. This study evaluated the effects of root distribution characteristics on soil shear resistance and soil detachment rates, correlations among root mechanical properties, root chemical composition and root parameters, and whether the Wu-Waldron model can accurately estimate soil reinforcement by roots. Bahiagrass (Paspalum notatum) was planted in planter boxes by overlapping four rectangle frames (0.4 × 0.1 × 0.1 m). A series of laboratory tests of direct shear strength and soil detachment were conducted on two soils that were derived from granite and shale with different soil depths and sowing densities. The results indicated that soil aggregate stability was positively correlated with root characteristics. Over 70% of the total measured root parameters were distributed in the upper 20 cm of the soil, and they decreased with increasing soil depth and decreasing sowing density. The tensile properties (root tensile strength and root tensile force) were significantly correlated with root diameter. The contents of root main chemical compositions were significantly correlated with root diameter while hemicellulose showed no obvious trend with root diameter (P = 0.12). Root tensile strength and root tensile force were also significantly correlated with the contents of these four compositions, except hemicellulose. The relative soil detachment demonstrated a significant negative correlation with root parameters with sowing densities from 5 to 30 g m- 2, and it remained at a relatively low value when the sowing density was > 20 g m- 2. The soil detachment rate, erodibility factor and critical flow shear stress were well correlated with the root area ratio, sowing density, and soil depth. The Wu-Waldron model was found to be inappropriate for these soils, as it overestimated additional soil shear strength due to roots by 152-366% in the upper 20 cm, and 11-48% in deeper soil layers. This study demonstrated that the root area ratio was a more suitable root characteristic parameter that contributes to soil reinforcement.
X-ray CT core imaging of Oman Drilling Project on D/V CHIKYU
NASA Astrophysics Data System (ADS)
Michibayashi, K.; Okazaki, K.; Leong, J. A. M.; Kelemen, P. B.; Johnson, K. T. M.; Greenberger, R. N.; Manning, C. E.; Harris, M.; de Obeso, J. C.; Abe, N.; Hatakeyama, K.; Ildefonse, B.; Takazawa, E.; Teagle, D. A. H.; Coggon, J. A.
2017-12-01
We obtained X-ray computed tomography (X-ray CT) images for all cores (GT1A, GT2A, GT3A and BT1A) in Oman Drilling Project Phase 1 (OmanDP cores), since X-ray CT scanning is a routine measurement of the IODP measurement plan onboard Chikyu, which enables the non-destructive observation of the internal structure of core samples. X-ray CT images provide information about chemical compositions and densities of the cores and is useful for assessing sample locations and the quality of the whole-round samples. The X-ray CT scanner (Discovery CT 750HD, GE Medical Systems) on Chikyu scans and reconstructs the image of a 1.4 m section in 10 minutes and produces a series of scan images, each 0.625 mm thick. The X-ray tube (as an X-ray source) and the X-ray detector are installed inside of the gantry at an opposing position to each other. The core sample is scanned in the gantry with the scanning rate of 20 mm/sec. The distribution of attenuation values mapped to an individual slice comprises the raw data that are used for subsequent image processing. Successive two-dimensional (2-D) slices of 512 x 512 pixels yield a representation of attenuation values in three-dimensional (3-D) voxels of 512 x 512 by 1600 in length. Data generated for each core consist of core-axis-normal planes (XY planes) of X-ray attenuation values with dimensions of 512 × 512 pixels in 9 cm × 9 cm cross-section, meaning at the dimensions of a core section, the resolution is 0.176 mm/pixel. X-ray intensity varies as a function of X-ray path length and the linear attenuation coefficient (LAC) of the target material is a function of the chemical composition and density of the target material. The basic measure of attenuation, or radiodensity, is the CT number given in Hounsfield units (HU). CT numbers of air and water are -1000 and 0, respectively. Our preliminary results show that CT numbers of OmanDP cores are well correlated to gamma ray attenuation density (GRA density) as a function of chemical composition and mineral density, so that their profiles with respect to the core depth provide quick lithological information such as mineral identification and phase boundary etc. Moreover, X-ray CT images can be used for 3-D fabric analyses of the whole core even after core cutting into halves for individual analyses.
Diffusive Transport and Structural Properties of Liquid Iron Alloys at High Pressure
NASA Astrophysics Data System (ADS)
Posner, E.; Rubie, D. C.; Steinle-Neumann, G.; Frost, D. J.
2017-12-01
Diffusive transport properties of liquid iron alloys at high pressures (P) and temperatures (T) place important kinetic constraints on processes related to the origin and evolution of planetary cores. Earth's core composition is largely controlled by the extent of chemical equilibration achieved between liquid metal bodies and a silicate magma ocean during core formation, which can be estimated using chemical diffusion data. In order to estimate the time and length scales of metal-silicate chemical equilibration, we have measured chemical diffusion rates of Si, O and Cr in liquid iron over the P-T range of 1-18 GPa and 1873-2643 K using a multi-anvil apparatus. We have also performed first-principles molecular dynamic simulations of comparable binary liquid compositions, in addition to pure liquid Fe, over a much wider P-T range (1 bar-330 GPa, 2200-5500 K) in order to both validate the simulation results with experimental data at conditions accessible in the laboratory and to extend our dataset to conditions of the Earth's core. Over the entire P-T range studied using both methods, diffusion coefficients are described consistently and well using an exponential function of the homologous temperature relation. Si, Cr and Fe diffusivities of approximately 5 × 10-9 m2 s-1 are constant along the melting curve from ambient to core pressures, while oxygen diffusion is 2-3 times faster. Our results indicate that in order for the composition of the Earth's core to represent chemical equilibrium, impactor cores must have broken up into liquid droplet sizes no larger than a few tens of cm. Structural properties, analyzed using partial radial distribution functions from the molecular dynamics simulations, reveal a pressure-induced structural change in liquid Fe0.96O0.04 at densities of 8 g cm-3, in agreement with previous experimental studies. For densities above 8 g cm-3, the liquid is essentially close packed with a local CsCl-like (B2) packing of Fe around O under conditions of the Earth's core.
Physico-chemical properties and extrusion behaviour of selected common bean varieties.
Natabirwa, Hedwig; Muyonga, John H; Nakimbugwe, Dorothy; Lungaho, Mercy
2018-03-01
Extrusion processing offers the possibility of processing common beans industrially into highly nutritious and functional products. However, there is limited information on properties of extrudates from different bean varieties and their association with raw material characteristics and extrusion conditions. In this study, physico-chemical properties of raw and extruded Bishaz, K131, NABE19, Roba1 and RWR2245 common beans were determined. The relationships between bean characteristics and extrusion conditions on the extrudate properties were analysed. Extrudate physico-chemical and pasting properties varied significantly (P < 0.05) among bean varieties. Expansion ratio and water solubility decreased, while bulk density, water absorption, peak and breakdown viscosities increased as feed moisture increased. Protein exhibited significant positive correlation (P < 0.05) with water solubility index, and negative correlations (P < 0.05) with water absorption, bulk density and pasting viscosities. Iron and dietary fibre showed positive correlation while total ash exhibited negative correlation with peak viscosity, final viscosity and setback. Similar trends were observed in principal component analysis. Extrudate physico-chemical properties were found to be associated with beans protein, starch, iron, zinc and fibre contents. Therefore, bean chemical composition may serve as an indicator for beans extrusion behaviour and could be useful in selection of beans for extrusion. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Zhai, Jinghao; Lu, Xiaohui; Li, Ling; Zhang, Qi; Zhang, Ci; Chen, Hong; Yang, Xin; Chen, Jianmin
2017-06-01
Biomass burning aerosol has an important impact on the global radiative budget. A better understanding of the correlations between the mixing states of biomass burning particles and their optical properties is the goal of a number of current studies. In this work, the effective density, chemical composition, and optical properties of rice straw burning particles in the size range of 50-400 nm were measured using a suite of online methods. We found that the major components of particles produced by burning rice straw included black carbon (BC), organic carbon (OC), and potassium salts, but the mixing states of particles were strongly size dependent. Particles of 50 nm had the smallest effective density (1.16 g cm-3) due to a relatively large proportion of aggregate BC. The average effective densities of 100-400 nm particles ranged from 1.35 to 1.51 g cm-3 with OC and inorganic salts as dominant components. Both density distribution and single-particle mass spectrometry showed more complex mixing states in larger particles. Upon heating, the separation of the effective density distribution modes confirmed the external mixing state of less-volatile BC or soot and potassium salts. The size-resolved optical properties of biomass burning particles were investigated at two wavelengths (λ = 450 and 530 nm). The single-scattering albedo (SSA) showed the lowest value for 50 nm particles (0.741 ± 0.007 and 0.889 ± 0.006) because of the larger proportion of BC content. Brown carbon played an important role for the SSA of 100-400 nm particles. The Ångström absorption exponent (AAE) values for all particles were above 1.6, indicating the significant presence of brown carbon in all sizes. Concurrent measurements in our work provide a basis for discussing the physicochemical properties of biomass burning aerosol and its effects on the global climate and atmospheric environment.
Venus Global Reference Atmospheric Model
NASA Technical Reports Server (NTRS)
Justh, Hilary L.
2017-01-01
Venus Global Reference Atmospheric Model (Venus-GRAM) is an engineering-level atmospheric model developed by MSFC that is widely used for diverse mission applications including: Systems design; Performance analysis; Operations planning for aerobraking, Entry, Descent and Landing, and aerocapture; Is not a forecast model; Outputs include density, temperature, pressure, wind components, and chemical composition; Provides dispersions of thermodynamic parameters, winds, and density; Optional trajectory and auxiliary profile input files Has been used in multiple studies and proposals including NASA Engineering and Safety Center (NESC) Autonomous Aerobraking and various Discovery proposals; Released in 2005; Available at: https://software.nasa.gov/software/MFS-32314-1.
Si based GeSn light emitter: mid-infrared devices in Si photonics
NASA Astrophysics Data System (ADS)
Yu, S. Q.; Ghetmiri, S. A.; Du, W.; Margetis, J.; Zhou, Y.; Mosleh, A.; Al-Kabi, S.; Nazzal, A.; Sun, G.; Soref, R. A.; Tolle, J.; Li, B.; Naseem, H. A.
2015-02-01
Ge1-xSnx/Ge thin films and Ge/Ge1-xSnx/Ge n-i-p double heterostructure (DHS) have been grown using commercially available reduced pressure chemical vapor deposition (RPCVD) reactor. The Sn compositional material and optical characteristics have been investigated. A direct bandgap GeSn material has been identified with Sn composition of 10%. The GeSn DHS samples were fabricated into LED devices. Room temperature electroluminescence spectra were studied. A maximum emission power of 28mW was obtained with 10% Sn LED under the injection current density of 800 A/cm2.
NASA Astrophysics Data System (ADS)
Fomina, E. V.; Lesovik, V. S.; Fomin, A. E.; Kozhukhova, N. I.; Lebedev, M. S.
2018-03-01
Argillite is a carbonaceous industrial by-product that is a potential source in environmentally friendly and source-saving construction industry. In this research, chemical and mineral composition as well as particle size distribution of argillite were studied and used to develop autoclave aerated concrete as partial substitute of quartz sand. Effect of the argillite as a mineral admixture in autoclave aerated concrete was investigated in terms of compressive and tensile strength, density, heat conductivity etc. The obtained results demonstrated an efficiency of argillite as an energy-saving material in autoclave construction composites.
3D macroporous graphene frameworks for supercapacitors with high energy and power densities.
Choi, Bong Gill; Yang, Minho; Hong, Won Hi; Choi, Jang Wook; Huh, Yun Suk
2012-05-22
In order to develop energy storage devices with high power and energy densities, electrodes should hold well-defined pathways for efficient ionic and electronic transport. Herein, we demonstrate high-performance supercapacitors by building a three-dimensional (3D) macroporous structure that consists of chemically modified graphene (CMG). These 3D macroporous electrodes, namely, embossed-CMG (e-CMG) films, were fabricated by using polystyrene colloidal particles as a sacrificial template. Furthermore, for further capacitance boost, a thin layer of MnO(2) was additionally deposited onto e-CMG. The porous graphene structure with a large surface area facilitates fast ionic transport within the electrode while preserving decent electronic conductivity and thus endows MnO(2)/e-CMG composite electrodes with excellent electrochemical properties such as a specific capacitance of 389 F/g at 1 A/g and 97.7% capacitance retention upon a current increase to 35 A/g. Moreover, when the MnO(2)/e-CMG composite electrode was asymmetrically assembled with an e-CMG electrode, the assembled full cell shows remarkable cell performance: energy density of 44 Wh/kg, power density of 25 kW/kg, and excellent cycle life.
Soil chemical factors and grassland species density in Emas National Park (central Brazil).
Amorim, P K; Batalha, M A
2008-05-01
Studies of grasslands on specific soil types suggest that different nutrients can limit biomass production and, hence, species composition and number. The Brazilian cerrado is the major savanna region in America and once covered about 2 million km(2), mainly in the Brazilian Central Plateau, under seasonal climate, with wet summer and dry winter. In view of the importance of soil chemical factors in the distribution of the vegetation forms within the Cerrado domain and which may influence the number of species, we analyzed some soil characteristics in three herbaceous vegetation forms -- hyperseasonal cerrado, seasonal cerrado, and wet grassland -- in Emas National Park, a core cerrado site, to investigate the relationship between number of species and soil characteristics. We collected vegetation and soil samples in these three vegetation forms and submitted the obtained data to multiple linear regression. We found out that aluminum and pH were the best predictors of species density, the former positively related to species density and the latter negatively related. Since the predictable variation in species density is important in determining areas of conservation, we can postulate that these two soil factors are indicators of high species density areas in tropical grasslands, which could be used in selecting priority sites for conservation.
Postmortem validation of breast density using dual-energy mammography
Molloi, Sabee; Ducote, Justin L.; Ding, Huanjun; Feig, Stephen A.
2014-01-01
Purpose: Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. Methods: Forty postmortem breasts were imaged using a dual energy mammography system. Glandular and adipose equivalent phantoms of uniform thickness were used to calibrate a dual energy basis decomposition algorithm. Dual energy decomposition was applied after scatter correction to calculate breast density. Breast density was also estimated using radiologist reader assessment, standard histogram thresholding and a fuzzy C-mean algorithm. Chemical analysis was used as the reference standard to assess the accuracy of different techniques to measure breast composition. Results: Breast density measurements using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm, and dual energy were in good agreement with the measured fibroglandular volume fraction using chemical analysis. The standard error estimates using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean, and dual energy were 9.9%, 8.6%, 7.2%, and 4.7%, respectively. Conclusions: The results indicate that dual energy mammography can be used to accurately measure breast density. The variability in breast density estimation using dual energy mammography was lower than reader assessment rankings, standard histogram thresholding, and fuzzy C-mean algorithm. Improved quantification of breast density is expected to further enhance its utility as a risk factor for breast cancer. PMID:25086548
Postmortem validation of breast density using dual-energy mammography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molloi, Sabee, E-mail: symolloi@uci.edu; Ducote, Justin L.; Ding, Huanjun
2014-08-15
Purpose: Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. Methods: Forty postmortem breasts were imaged using a dual energy mammography system. Glandular and adipose equivalent phantoms of uniform thickness were used to calibrate a dual energy basis decomposition algorithm. Dual energy decompositionmore » was applied after scatter correction to calculate breast density. Breast density was also estimated using radiologist reader assessment, standard histogram thresholding and a fuzzy C-mean algorithm. Chemical analysis was used as the reference standard to assess the accuracy of different techniques to measure breast composition. Results: Breast density measurements using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm, and dual energy were in good agreement with the measured fibroglandular volume fraction using chemical analysis. The standard error estimates using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean, and dual energy were 9.9%, 8.6%, 7.2%, and 4.7%, respectively. Conclusions: The results indicate that dual energy mammography can be used to accurately measure breast density. The variability in breast density estimation using dual energy mammography was lower than reader assessment rankings, standard histogram thresholding, and fuzzy C-mean algorithm. Improved quantification of breast density is expected to further enhance its utility as a risk factor for breast cancer.« less
Ultrathin dendrimer-graphene oxide composite film for stable cycling lithium-sulfur batteries.
Liu, Wen; Jiang, Jianbing; Yang, Ke R; Mi, Yingying; Kumaravadivel, Piranavan; Zhong, Yiren; Fan, Qi; Weng, Zhe; Wu, Zishan; Cha, Judy J; Zhou, Henghui; Batista, Victor S; Brudvig, Gary W; Wang, Hailiang
2017-04-04
Lithium-sulfur batteries (Li-S batteries) have attracted intense interest because of their high specific capacity and low cost, although they are still hindered by severe capacity loss upon cycling caused by the soluble lithium polysulfide intermediates. Although many structure innovations at the material and device levels have been explored for the ultimate goal of realizing long cycle life of Li-S batteries, it remains a major challenge to achieve stable cycling while avoiding energy and power density compromises caused by the introduction of significant dead weight/volume and increased electrochemical resistance. Here we introduce an ultrathin composite film consisting of naphthalimide-functionalized poly(amidoamine) dendrimers and graphene oxide nanosheets as a cycling stabilizer. Combining the dendrimer structure that can confine polysulfide intermediates chemically and physically together with the graphene oxide that renders the film robust and thin (<1% of the thickness of the active sulfur layer), the composite film is designed to enable stable cycling of sulfur cathodes without compromising the energy and power densities. Our sulfur electrodes coated with the composite film exhibit very good cycling stability, together with high sulfur content, large areal capacity, and improved power rate.
Alkali-Activated Aluminium-Silicate Composites as Insulation Materials for Industrial Application
NASA Astrophysics Data System (ADS)
Dembovska, L.; Bajare, D.; Pundiene, I.; Bumanis, G.
2015-11-01
The article reports on the study of thermal stability of alkali-activated aluminium- silicate composites (ASC) at temperature 800-1100°C. ASC were prepared by using calcined kaolinite clay, aluminium scrap recycling waste, lead-silicate glass waste and quartz sand. As alkali activator, commercial sodium silicate solution modified with an addition of sodium hydroxide was used. The obtained alkali activation solution had silica modulus Ms=1.67. Components of aluminium scrap recycling waste (aluminium nitride (AlN) and iron sulphite (FeSO3)) react in the alkali media and create gases - ammonia and sulphur dioxide, which provide the porous structure of the material [1]. Changes in the chemical composition of ASC during heating were identified and quantitatively analysed by using DTA/TG, dimension changes during the heating process were determined by using HTOM, pore microstructure was examined by SEM, and mineralogical composition of ASC was determined by XRD. The density of ASC was measured in accordance with EN 1097-7. ASC with density around 560 kg/m3 and heat resistance up to 1100°C with shrinkage less than 5% were obtained. The intended use of this material is the application as an insulation material for industrial purposes at elevated temperatures.
Composite films of highly ordered Si nanowires embedded in SiGe0.3 for thermoelectric applications
NASA Astrophysics Data System (ADS)
Kikuchi, Akiou; Yao, Akifumi; Mori, Isamu; Ono, Takahito; Samukawa, Seiji
2017-10-01
We fabricated a high-density array of silicon nanowires (SiNWs) with a diameter of 10 nm embedded in silicon germanium (SiGe0.3) to give a composite thin film for thermoelectric device applications. The SiNW array was first fabricated by bio-template mask and neutral beam etching techniques. The SiNW array was then embedded in SiGe0.3 by thermal chemical vapor deposition. The cross-plane thermal conductivity of the SiNW-SiGe0.3 composite film with a thickness of 100 nm was 3.5 ± 0.3 W/mK in the temperature range of 300-350 K. Moreover, the temperature dependences of the in-plane electrical conductivity and in-plane Seebeck coefficient of the SiNW-SiGe0.3 composite were evaluated. The fabricated SiNW-SiGe0.3 composite film displayed a maximum power factor of 1 × 103 W/m K2 (a Seebeck coefficient of 4.8 × 103 μV/K and an electrical conductivity of 4.4 × 103 S/m) at 873 K. The present high-density SiNW array structure represents a new route to realize practical thermoelectric devices using mature Si processes without any rare metals.
Molecular Model for HNBR with Tunable Cross-Link Density.
Molinari, N; Khawaja, M; Sutton, A P; Mostofi, A A
2016-12-15
We introduce a chemically inspired, all-atom model of hydrogenated nitrile butadiene rubber (HNBR) and assess its performance by computing the mass density and glass-transition temperature as a function of cross-link density in the structure. Our HNBR structures are created by a procedure that mimics the real process used to produce HNBR, that is, saturation of the carbon-carbon double bonds in NBR, either by hydrogenation or by cross-linking. The atomic interactions are described by the all-atom "Optimized Potentials for Liquid Simulations" (OPLS-AA). In this paper, first, we assess the use of OPLS-AA in our models, especially using NBR bulk properties, and second, we evaluate the validity of the proposed model for HNBR by investigating mass density and glass transition as a function of the tunable cross-link density. Experimental densities are reproduced within 3% for both elastomers, and qualitatively correct trends in the glass-transition temperature as a function of monomer composition and cross-link density are obtained.
Nanoscale morphogenesis of nylon-sputtered plasma polymer particles
NASA Astrophysics Data System (ADS)
Choukourov, Andrei; Shelemin, Artem; Pleskunov, Pavel; Nikitin, Daniil; Khalakhan, Ivan; Hanuš, Jan
2018-05-01
Sub-micron polymer particles are highly important in various fields including astrophysics, thermonuclear fusion and nanomedicine. Plasma polymerization offers the possibility to produce particles with tailor-made size, crosslink density and chemical composition to meet the requirements of a particular application. However, the mechanism of nucleation and growth of plasma polymer particles as well as diversity of their morphology remain far from being clear. Here, we prepared nitrogen-containing plasma polymer particles by rf magnetron sputtering of nylon in a gas aggregation cluster source with variable length. The method allowed the production of particles with roughly constant chemical composition and number density but with the mean size changing from 80 to 320 nm. Atomic Force Microscopy with super-sharp probes was applied to study the evolution of the particle surface topography as they grow in size. Height–height correlation and power spectral density functions were obtained to quantify the roughness exponent α = 0.78, the growth exponent β = 0.35, and the dynamic exponent 1/z = 0.50. The set of critical exponents indicates that the particle surface evolves in a self-affine mode and the overall particle growth is caused by the accretion of polymer-forming species from the gas phase and not by coagulation. Redistribution of the incoming material over the surface coupled with the inhomogeneous distribution of inner stress is suggested as the main factor that determines the morphogenesis of the plasma polymer particles.
NASA Astrophysics Data System (ADS)
Hamzah, M.; Khenfouch, M.; Rjeb, A.; Sayouri, S.; Houssaini, D. S.; Darhouri, M.; Srinivasu, VV
2018-03-01
Polyethylene is the most commonly used plastic in daily life, covering wide areas of application e.g. this polymer is used as a greenhouses covering material. This article investigates the effect of photo-oxidation on commercial unstabilised Low Density Polyethylene (uLDPE), as result of outdoor weathering factors. In this study, the samples were exposed for four months to the natural weather. The physico-chemical effects of natural ageing were studied by attenuated total reflection Fourier transform infrared (ATR-FTIR) and X-ray photoelectron (XPS) spectroscopy to elucidate the chemical composition, the nature of chemical bonds established and further to interrogate the changes that occur on the surface of the uLDPE samples. The main chemical change of uLDPE results in the formation of different kinds of carbonyl and vinyl groups identifiable in the ATR-FTIR and XPS spectra. The degree of crystallinity for these samples was calculated in terms of time exposure. An increase in the degree of crystallinity due to chemicrystallization was observed, which we indicative of the occurrences of chain scission. During outdoor exposure it was found that the photo-oxidation results in the formation of chain scission occurrences via Norrish type II reactions.
NASA Astrophysics Data System (ADS)
Qi, Wen; Zhao, Haihua; Wu, Ying; Zeng, Hong; Tao, Tao; Chen, Chao; Kuang, Chunjiang; Zhou, Shaoxiong; Huang, Yunhui
2017-02-01
Recently, metal phosphides have been investigated as potential anode materials because of higher specific capacity compared with those of carbonaceous materials. However, the rapid capacity fade upon cycling leads to poor durability and short cycle life, which cannot meet the need of lithium-ion batteries with high energy density. Herein, we report a layer-structured GeP3/C nanocomposite anode material with high performance prepared by a facial and large-scale ball milling method via in-situ mechanical reaction. The P-O-C bonds are formed in the composite, leading to close contact between GeP3 and carbon. As a result, the GeP3/C anode displays excellent lithium storage performance with a high reversible capacity up to 1109 mA h g-1 after 130 cycles at a current density of 0.1 A g-1. Even at high current densities of 2 and 5 A g-1, the reversible capacities are still as high as 590 and 425 mA h g-1, respectively. This suggests that the GeP3/C composite is promising to achieve high-energy lithium-ion batteries and the mechanical milling is an efficient method to fabricate such composite electrode materials especially for large-scale application.
A nanostructured graphene/polyaniline hybrid material for supercapacitors
NASA Astrophysics Data System (ADS)
Wang, Hualan; Hao, Qingli; Yang, Xujie; Lu, Lude; Wang, Xin
2010-10-01
A flexible graphene/polyaniline hybrid material as a supercapacitor electrode was synthesized by an in situ polymerization-reduction/dedoping-redoping process. This product was first prepared in an ethylene glycol medium, then treated with hot sodium hydroxide solution to obtain the reduced graphene oxide/polyaniline hybrid material. Sodium hydroxide also acted as a dedoping reagent for polyaniline in the composite. After redoping in an acidic solution, the thin, uniform and flexible conducting graphene/polyaniline product was obtained with unchanged morphology. The chemical structure of the materials was characterized by X-ray photoelectron spectroscopy and Raman spectroscopy. The composite material showed better electrochemical performances than the pure individual components. A high specific capacitance of 1126 F g-1 was obtained with a retention life of 84% after 1000 cycles for supercapacitors. The energy density and power density were also better than those of pure component materials.
A nanostructured graphene/polyaniline hybrid material for supercapacitors.
Wang, Hualan; Hao, Qingli; Yang, Xujie; Lu, Lude; Wang, Xin
2010-10-01
A flexible graphene/polyaniline hybrid material as a supercapacitor electrode was synthesized by an in situ polymerization-reduction/dedoping-redoping process. This product was first prepared in an ethylene glycol medium, then treated with hot sodium hydroxide solution to obtain the reduced graphene oxide/polyaniline hybrid material. Sodium hydroxide also acted as a dedoping reagent for polyaniline in the composite. After redoping in an acidic solution, the thin, uniform and flexible conducting graphene/polyaniline product was obtained with unchanged morphology. The chemical structure of the materials was characterized by X-ray photoelectron spectroscopy and Raman spectroscopy. The composite material showed better electrochemical performances than the pure individual components. A high specific capacitance of 1126 F g(-1) was obtained with a retention life of 84% after 1000 cycles for supercapacitors. The energy density and power density were also better than those of pure component materials.
NASA Astrophysics Data System (ADS)
Tang, Chunguang; Harrowell, Peter
2018-06-01
In this paper, we compare the composition fluctuations and interaction potentials of a good metallic glass former, Cu50Zr50, and a poor glass former, Ni50Al50. The Bhatia-Thornton correlation functions are calculated. Motivated by the observation of chemical ordering at the NiAl surface, we derive a new property, R^ c n(q ) , corresponding to the linear susceptibility of concentration to a perturbation in density. We present a direct comparison of the potentials for the two model alloys using a 2nd order density expansion, and establish that the one-body energy plays a crucial role in stabilizing the crystal relative to the liquid in both alloys but that the three-body contribution to the heat of fusion is significantly larger in NiAl than CuZr.
NASA Astrophysics Data System (ADS)
He, Xin; Yang, Wenyao; Mao, Xiling; Xu, Lu; Zhou, Yujiu; Chen, Yan; Zhao, Yuetao; Yang, Yajie; Xu, Jianhua
2018-02-01
Flexible supercapacitors that maintain electrochemical performance under deformation have attracted much attention for the potential application in the flexible electronics market. A compressible and flexible free-standing electrodes sponge and all-solid-state symmetric supercapacitors based on as-prepared electrodes are presented. The carbon nanotubes (CNTs) framework is synthesized by chemical vapor deposition (CVD) method, and then composited with poly (3,4-ethylenedioxythiophene) PEDOT by the electrodeposition. This CNTs/PEDOT sponge electrode shows highest mass-specific capacitance of 147 Fg-1 at 0.5 A g-1, tuned by the PEDOT mass loading, and exhibits good cyclic stability with the evidence that more than 95% of capacitance is remained after 3000 cycles. Furthermore, the symmetric supercapacitor shows the highest energy density of 12.6 Wh kg-1 under the power density of 1 kW kg-1 and highest power density of 10.2 kW kg-1 with energy density of 8 Wh kg-1, which exhibits both high energy density and power density. The electrochemical performance of composite electrode also indicates that the operate voltage of device could be extend to 1.4 V by the n-doping and p-doping process in different potential of PEDOT component. This flexible supercapacitor maintains stable electrochemical performance working on different bending condition, which shows promising prospect for wearable energy storage applications.
NASA Astrophysics Data System (ADS)
Zhang, Bin; Wang, Jun; Chen, Xiaocheng; Su, Xiaogang; Zou, Yi; Huo, Siqi; Chen, Wei; Wang, Junpeng
2018-04-01
Silver nanoparticles was uniformly anchored on the surface of hollow poly(acrylonitrile) microspheres with a facile chemical method using hydrazine hydrate as reductant. Integrating these conducting hollow spheres (PANS@Ag) with chemical reduced graphene oxide (RGO) dispersed in epoxy resin, a lightweight microwave absorber was successfully prepared with enhanced microwave absorption performance. The chemical constitution and surface morphology of as-synthesized RGO and PANS@Ag powders were characterized by XRD, XPS, FE-SEM and SAED, while the electromagnetic properties of these different proportion PANS@Ag-RGO/EP samples were analyzed through vector network analyzer (VNA). The minimum reflection loss (RL) could reach up to ‑28.1 dB at 8.8 GHz with a layer thickness of 2 mm, and the corresponding effective absorption bandwidth (RL values less than ‑10 dB) was from 7.9 GHz to 9.8 GHz. However, the dosage of PANS@Ag and RGO was merely 3 wt% and 1 wt%, respectively. As the content of PANS@Ag powders decreased to 1 wt%, the PANS@Ag-RGO/EP samples still retained effective microwave absorption performance and the optimal RL was ‑14.7 dB. The density of as-prepared absorbers was in the range of 0.49 ∼ 0.87 g cm‑3. The low content, low density and enhanced microwave absorption performance endow the hybrid composites with competitive application prospect in stealth technology field.
NASA Astrophysics Data System (ADS)
Paredes, Virginia; Salvagni, Emiliano; Rodríguez-Castellón, Enrique; Manero, José María
2017-08-01
Metals are widely employed for many biological artificial replacements, and it is known that the quality and the physical/chemical properties of the surface are crucial for the success of the implant. Therefore, control over surface implant materials and their elastic moduli may be crucial to avoid undesired effects. In this study, surface modification upon cleaning and activation of a low elastic modulus Ti alloy (Ti25Hf21Nb) was investigated. Two different methods, oxygen plasma (OP) cleaning and piranha (PI) solution, were studied and compared. Both surface treatments were effective for organic contaminant removal and to increase the Ti-oxide layer thickness rather than other metal-oxides present at the surface, which is beneficial for biocompatibility of the material. Furthermore, both techniques drastically increased hydrophilicity and introduced oxidation and hydroxylation (OH)-functional groups at the surface that may be beneficial for further chemical modifications. However, these treatments did not alter the surface roughness and bulk material properties. The surfaces were fully characterized in terms of surface roughness, wettability, oxide layer composition, and hydroxyl surface density through analytical techniques (interferometry, X-ray photoelectron spectroscopy (XPS), contact angle, and zinc complexation). These findings provide essential information when planning surface modifications for cleanliness, oxide layer thickness, and surface hydroxyl density, as control over these factors is essential for many applications, especially in biomaterials.
NASA Astrophysics Data System (ADS)
Santos, V. E. O.; Celante, V. G.; Lelis, M. F. F.; Freitas, M. B. J. G.
2012-11-01
Chemical and electrochemical recycling methods for the Ni, Co, Zn and Mn from the positives electrodes of spent Ni-MH batteries were developed. The materials recycled by chemical precipitation have the composition β-Ni(OH)2, Co(OH)2, Zn(OH)2 and Mn3O4. The powder retains sulphate, nitrate and carbonate anions from the mother solution as well as adsorbed water. Studies using cyclic voltammetry show that the current density decreases for scan rates greater than 10 mV s-1 because of the formation of hydroxide films. The amounts of Ni2+, Co2+, Zn2+ and Mn2+ were obtained by analysis of the solution using the inductively coupled plasma with optical emission spectroscopy technique, which demonstrated that the electrodeposition method exhibits anomalous behaviour. The amount of deposited nickel ions is related to the composition of the sulfamate bath. The presence of manganese in the electrodeposits is due to the precipitation of Mn(OH)2, and Zn(OH)42- does not undergo reduction in the investigated potential range. The electrodeposited material contains Ni, Co, CoO, Co(OH)2, and Mn3O4. A charge efficiency of 83.7% was attained for the electrodeposits formed by the application of -1.1 V vs. Ag/AgCl at a charge density of -90 C cm-2. The dissolution of the electrodeposits depends on the applied potential.
NASA Astrophysics Data System (ADS)
Fang, Bingcheng; Li, Jiajun; Zhao, Naiqin; Shi, Chunsheng; Ma, Liying; He, Chunnian; He, Fang; Liu, Enzuo
2017-12-01
In order to explore an efficient way of modifying graphene to improve the Cu/graphene interfacial bonding and remain the excellent mechanical and physical properties of graphene, the interaction between Cu and the pristine, atomic oxygen functionalized and boron- or nitrogen-doped graphene with and without defects was systematically investigated by density functional theory calculation. The electronic structure analysis revealed that the chemically active oxygen can enhance the binding energy Eb of Cu with graphene by forming strong covalent bonds, supporting the experimental study suggesting an vital role of intermediate oxygen in the improvement of the mechanical properties of graphene/Cu composites. Due to the strong hybridization between Cu-3d electron states and the 2p states of both boron and carbon atoms, the boron-doping effect is comparable to or even better than the chemical bridging role of oxygen in the reduced graphene oxide reinforced Cu matrix composite. Furthermore, we evidenced an enhancement of mechanical properties including bulk modulus, shear modulus and Young modulus of graphene/Cu composite after boron doping, which closely relates to the increased interfacial binding energy between boron-doped graphene and Cu surfaces.
High Photocatalytic Performance of Two Types of Graphene Modified TiO2 Composite Photocatalysts
NASA Astrophysics Data System (ADS)
Zhang, Jun; Li, Sen; Tang, Bo; Wang, Zhengwei; Ji, Guojian; Huang, Weiqiu; Wang, Jinping
2017-07-01
High quality and naturally continuous structure of three-dimensional graphene network (3DGN) endow it a promising candidate to modify TiO2. Although the resulting composite photocatalysts display outstanding performances, the lacking of active sites of the 3DGN not only goes against a close contact between the graphene basal plane and TiO2 nanoparticles (weaken electron transport ability) but also limits the efficient adsorption of pollutant molecules. Similar with surface functional groups of the reduced graphene oxide (RGO) nanosheets, surface defects of the 3DGN can act as the adsorption sites. However, the defect density of the 3DGN is difficult to control (a strict cool rate of substrate and a strict flow of precursor gas are necessary) because of its growth approach (chemical vapor deposition method). In this study, to give full play to the functions of graphene, the RGO nanosheets and 3DGN co-modified TiO2 composite photocatalysts are prepared. After optimizing the mass fraction of the RGO nanosheets in the composite photocatalyst, the resulting chemical adsorption ability and yields of strong oxidizing free radicals increase significantly, indicating the synergy of the RGO nanosheets and 3DGN.
Buckybomb: Reactive Molecular Dynamics Simulation
Chaban, Vitaly V.; Fileti, Eudes Eterno; Prezhdo, Oleg V.
2015-02-24
Energetic materials, such as explosives, propellants, and pyrotechnics, are widely used in civilian and military applications. Nanoscale explosives represent a special group because of the high density of energetic covalent bonds. The reactive molecular dynamics (ReaxFF) study of nitrofullerene decomposition reported here provides a detailed chemical mechanism of explosion of a nanoscale carbon material. Upon initial heating, C 60(NO 2) 12 disintegrates, increasing temperature and pressure by thousands of Kelvins and bars within tens of picoseconds. The explosion starts with NO 2 group isomerization into C-O-N-O, followed by emission of NO molecules and formation of CO groups on the buckyballmore » surface. NO oxidizes into NO 2, and C 60 falls apart, liberating CO 2. At the highest temperatures, CO 2 gives rise to diatomic carbon. Lastly, the study shows that the initiation temperature and released energy depend strongly on the chemical composition and density of the material.« less
NASA Astrophysics Data System (ADS)
Dudukalov, A.
Leakage from pipe-lines, nonhermetic wells and other industrial equipment of highly mineralized chloride-sodium brines, incidentally produced during oil field exploitation is one of the main source of fresh groundwater contamination on the Arlan oil field. Thermodynamic calculation, aimed to define more exactly brines chemical composi- tion and density was carried out by FREZCHEM2 program (Mironenko M.V. et al. 1997). Five brines types with mineralization of 137.9, 181.2, 217.4, 243.7, 267.8 g/l and density of 1.176, 1.09, 1.135, 1.153, 1.167 g/cm3 correspondingly were used. It is necessary to note that preliminarily chemical compositions of two last brines were corrected according to their mineralization. During calculations it was determined the following density values of brines: 1.082, 1.114, 1.131, 1.146, 1.158 g/cm3 conse- quently. Obtained results demonstrate the significant discrepancy in experimental and model estimates. Significant excess of anions over cations in experimental data indicates a major prob- lem with the analytical measurements. During calculations it was analyzed the possi- bility of changes in brines density depending on editing to cations or deducting from anions requisite amount of agent for keeping charge balance equal to zero. Received results demonstrate that in this case brines density can change on 0.004-0.011 g/cm3.
Condensation and mixing in supernova ejecta
NASA Astrophysics Data System (ADS)
Fedkin, A. V.; Meyer, B. S.; Grossman, L.
2010-06-01
Low-density graphite spherules from the Murchison carbonaceous chondrite contain TiC grains and possess excess 28Si and 44Ca (from decay of short-lived 44Ti). These and other isotopic anomalies indicate that such grains formed by condensation from mixtures of ejecta from the interior of a core-collapse supernova with those from the exterior. Using homogenized chemical and isotopic model compositions of the eight main burning zones as end-members, Travaglio et al. (1999) attempted to find mixtures whose isotopic compositions match those observed in the graphite spherules, subject to the condition that the atomic C/O ratio = 1. They were partially successful, but this chemical condition does not guarantee condensation of TiC at a higher temperature than graphite, which is indicated by the spherule textures. In the present work, model compositions of relatively thin layers of ejecta within the main burning zones computed by Rauscher et al. (2002) for Type II supernovae of 15, 21 and 25 M ʘ are used to construct mixtures whose chemical compositions cause equilibrium condensation of TiC at a higher temperature than graphite in an attempt to match the textures and isotopic compositions of the spherules simultaneously. The variation of pressure with temperature and the change in elemental abundances with time due to radioactive decay were taken into account in the condensation calculations. Layers were found within the main Ni, O/Ne, He/C and He/N zones that, when mixed together, simultaneously match the carbon, nitrogen and oxygen isotopic compositions, 44Ti/ 48Ti ratios and inferred initial 26Al/ 27Al ratios of the low-density graphite spherules, even at subsolar 12C/ 13C ratios. Due to the relatively large proportion of material from the Ni zone and the relative amounts of the two layers of the Ni zone required to meet these conditions, predicted 28Si excesses are larger than observed in the low-density graphite spherules, and large negative δ46Ti/ 48Ti, δ47Ti/ 48Ti, δ49Ti/ 48Ti and δ50Ti/ 48Ti are produced, in contrast to the observed normal δ46Ti/ 48Ti and δ47Ti/ 48Ti, large positive δ49Ti/ 48Ti and smaller positive δ50Ti/ 48Ti. Although better matches to the observed δ46Ti/ 48Ti, δ47Ti/ 48Ti and 28Si excesses can be found using much smaller amounts of Ni zone material and some Si/S zone material, it is very difficult to match simultaneously the Ti and Si isotopic compositions in any mixtures of material from these deep layers with He/C and He/N zone material, regardless of the condensation sequence. The occurrence of Fe-rich, Si-poor metal grains inside the graphite spherules does not have a satisfactory explanation.
Synthesis and Performance Characterization of a Nanocomposite Ternary Thermite: Al/Fe2O3/SiO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prentice, D; Pantoya, M L; Clapsaddle, B J
2005-02-04
Making solid energetic materials requires the physical mixing of solid fuels and oxidizers or the incorporation of fuel and oxidizing moieties into a single molecule. The former are referred to as composite energetic materials (i.e., thermites, propellants, pyrotechnics) and the latter are deemed monomolecular energetic materials (i.e., explosives). Mass diffusion between the fuel and oxidizer is the rate controlling step for composite reactions while bond breaking and chemical kinetics control monomolecular reactions. Although composites have higher energy densities than monomolecular species, they release that energy over a longer period of time because diffusion controlled reactions are considerably slower than chemistrymore » controlled reactions. Conversely, monomolecular species exhibit greater power due to more rapid kinetics than physically mixed energetics. Reducing the diffusion distance between fuel and oxidizer species within an energetic composite would enhance the reaction rate. Recent advances in nanotechnology have spurred the development of nano-scale fuel and oxidizer particles that can be combined into a composite and effectively reduce diffusion distances to nano-scale dimensions or less. These nanocomposites have the potential to deliver the best of both worlds: high energy density of the physically mixed composite with the high power of the monomolecular species. Toward this end, researchers at Lawrence Livermore National Laboratory (LLNL) developed nano-particle synthesis techniques, based on sol-gel chemistry, for the production of thermite nanocomposites.« less
Evaluation of dredged material proposed for ocean disposal from Shark River Project area
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antrim, L.D.; Gardiner, W.W.; Barrows, E.S.
1996-09-01
The objective of the Shark River Project was to evaluate proposed dredged material to determine its suitability for unconfined ocean disposal at the Mud Dump Site. Tests and analyses were conducted on the Shark River sediments. The evaluation of proposed dredged material consisted of bulk sediment chemical and physical analysis, chemical analyses of dredging site water and elutriate, water-column and benthic acute toxicity tests, and bioaccumulation tests. Individual sediment core samples collected from the Shark River were analyzed for grain size, moisture content, and total organic carbon (TOC). One sediment composite was analyzed for bulk density, specific gravity, metals, chlorinatedmore » pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAHs), and 1,4- dichlorobenzene. Dredging site water and elutriate, prepared from suspended-particulate phase (SPP) of the Shark River sediment composite, were analyzed for metals, pesticides, and PCBs. Benthic acute toxicity tests and bioaccumulation tests were performed.« less
Nazmutdinov, Renat R; Zinkicheva, Tamara T; Vassiliev, Sergey Yu; Glukhov, Dmitri V; Tsirlina, Galina A; Probst, Michael
2010-04-01
The structure of sodium cryolite melts was studied using Raman spectroscopy and quantum chemical calculations performed at the density functional theory level. The existence of bridged forms in the melts was argued first from the analysis of experimental Raman spectra. In the quantum chemical modelling emphasis was put on the construction of potential energy surfaces describing the formation/dissociation of certain complex species. Effects of the ionic environment were found to play a crucial role in the energetics of model processes. The structure of the simplest possible polymeric forms involving two Al centres linked through F atoms ("dimers") was thoroughly investigated. The calculated equilibrium constants and model Raman spectra yield additional evidence in favour of the dimers. This agrees with a self-consistent analysis of a series of Raman spectra for a wide range of the melt composition. Copyright 2010. Published by Elsevier B.V.
Zhang, Kexiong; Liang, Hongwei; Liu, Yang; Shen, Rensheng; Guo, Wenping; Wang, Dongsheng; Xia, Xiaochuan; Tao, Pengcheng; Yang, Chao; Luo, Yingmin; Du, Guotong
2014-01-01
Low Al-composition p-GaN/Mg-doped Al0.25Ga0.75N/n+-GaN polarization-induced backward tunneling junction (PIBTJ) was grown by metal-organic chemical vapor deposition on sapphire substrate. A self-consistent solution of Poisson-Schrödinger equations combined with polarization-induced theory was used to model PIBTJ structure, energy band diagrams and free carrier concentrations distribution. The PIBTJ displays reliable and reproducible backward tunneling with a current density of 3 A/cm2 at the reverse bias of −1 V. The absence of negative differential resistance behavior of PIBTJ at forward bias can mainly be attributed to the hole compensation centers, including C, H and O impurities, accumulated at the p-GaN/Mg-doped AlGaN heterointerface. PMID:25205042
NASA Astrophysics Data System (ADS)
Feng, Jinkui; Zhang, Zhen; Ci, Lijie; Zhai, Wei; Ai, Qing; Xiong, Shenglin
2015-08-01
A novel one-pot chemical dealloying method has been developed to prepare nanocomposite of reduced graphene oxide (RGO) and silicon dendrite from cheap commercial Al-Si eutectic precursor. The RGO anchoring could act as both conductive agent and buffer layer for Si volume change in the application of lithium ion batteries (LIBs). The Si/RGO composites show an initial reversible capacity of 2280 mAh g-1, excellent capacity retention of 1942 mAh g-1 even after 100 cycles, and a high capacity of 1521 mAh g-1 even at the rate of 4000 mA g-1. Electrochemical impedance spectroscopy (EIS) measurement proved that Si/RGO composite has the lower charge transfer resistance. This work proposes an economic and facile method to prepare silicon based anode material for next generation LIBs with high energy density.
Separation phenomena for gaseous mixture flowing through a long tube into vacuum
NASA Astrophysics Data System (ADS)
Sharipov, Felix; Kalempa, Denize
2005-12-01
A gaseous mixture flow through a long tube into vacuum is considered assuming the pressure to be arbitrary at the tube entrance. Thus, the flow regime can vary from hydrodynamic at the entrance to free molecular at the tube exit. The distributions of density and concentration along the tube were obtained for the mixture helium-xenon at various values of the concentration and rarefaction at the tube entrance. It was shown that the variation of the concentration along the tube can be significant. The flow rates of both species determining the chemical composition in the down flow container were calculated. An analysis of these data shows that the chemical composition in the down flow container can be different from that in the up flow one, i.e., the separation phenomenon takes place. The results presented in the article can be used in practice to avoid the separation phenomenon or to intensify it if necessary.
Feasibility Study on Manufacturing Lightweight Aggregates from Water Purification Sludge
NASA Astrophysics Data System (ADS)
Peng, Ching-Fang; Chen, How-Ji
2018-02-01
This study mainly discussed the feasibility of manufacturing lightweight aggregates from water purification sludge in Taiwan. They were analysed for the physical and chemical composition before the sintering test for lightweight aggregates in a laboratory. Then the physical and mechanical properties of the synthesized aggregates were assessed. The result showed that the chemical composition of sludge in the water purification plants was within the appropriate range for manufacturing lightweight aggregate as proposed in the literature. The sintering test demonstrated that the particle density of aggregates from the ten types of water purification sludge were mostly less than 1.8 g/cm3. In addition, the dry unit weight, the organic impurity, the ignition loss, and other characteristics of synthesized aggregates met the requirement of CNS standards, while its water absorption and crushing strength also fulfilled the general commercial specifications. Therefore, reclamation of water purification sludge for production of lightweight aggregate is indeed feasible.
Zhang, Kexiong; Liang, Hongwei; Liu, Yang; Shen, Rensheng; Guo, Wenping; Wang, Dongsheng; Xia, Xiaochuan; Tao, Pengcheng; Yang, Chao; Luo, Yingmin; Du, Guotong
2014-09-10
Low Al-composition p-GaN/Mg-doped Al0.25Ga0.75N/n(+)-GaN polarization-induced backward tunneling junction (PIBTJ) was grown by metal-organic chemical vapor deposition on sapphire substrate. A self-consistent solution of Poisson-Schrödinger equations combined with polarization-induced theory was used to model PIBTJ structure, energy band diagrams and free carrier concentrations distribution. The PIBTJ displays reliable and reproducible backward tunneling with a current density of 3 A/cm(2) at the reverse bias of -1 V. The absence of negative differential resistance behavior of PIBTJ at forward bias can mainly be attributed to the hole compensation centers, including C, H and O impurities, accumulated at the p-GaN/Mg-doped AlGaN heterointerface.
NASA Astrophysics Data System (ADS)
Zhang, Kexiong; Liang, Hongwei; Shen, Rensheng; Wang, Dongsheng; Tao, Pengcheng; Liu, Yang; Xia, Xiaochuan; Luo, Yingmin; Du, Guotong
2014-02-01
Negative differential resistance (NDR) behavior was observed in low Al-composition p-GaN/Mg-doped-Al0.15Ga0.85N/n+-GaN hetero-junction grown by metal-organic chemical vapor deposition on sapphire substrate. The energy band and free carrier concentration of hetero-junction were studied by the model of the self-consistent solution of Schrödinger-Poisson equations combined with polarization engineering theory. At the forward bias of 0.95 V, the NDR effect has a high peak-to-valley current ratio of ˜9 with a peak current of 22.4 mA (˜current density of 11.4 A/cm2). An interesting phenomenon of NDR disappearance after consecutive scans and recurrence after electrical treatment was observed, which was associated with Poole-Frenkel effect.
Microscopic Scale Simulation of the Ablation of Fibrous Materials
NASA Technical Reports Server (NTRS)
Lachaud, Jean Romain; Mansour, Nagi N.
2010-01-01
Ablation by oxidation of carbon-fiber preforms impregnated in carbonized phenolic matrix is modeled at microscopic scale. Direct numerical simulations show that the carbonized phenolic matrix ablates in volume leaving the carbon fibers exposed. This is due to the fact that the reactivity of carbonized phenolic is higher than the reactivity of carbon fibers. After the matrix is depleted, the fibers ablate showing progressive reduction of their diameter. The overall material recession occurs when the fibers are consumed. Two materials with the same carbon-fiber preform, density and chemical composition, but with different matrix distributions are studied. These studies show that at moderate temperatures (< 1000 K) the microstructure of the material influences its recession rate; a fact that is not captured by current models that are based on chemical composition only. Surprisingly, the response of these impregnated-fiber materials is weakly dependent on the microstructure at very high temperatures (e.g., Stardust peak heating conditions: 3360K).
Liu, Hanwen; Zou, Yuqin; Tao, Li; Ma, Zhaoling; Liu, Dongdong; Zhou, Peng; Liu, Hongbo; Wang, Shuangyin
2017-09-01
A facile vacuum filtration method is applied for the first time to construct sandwich-structure anode. Two layers of graphene stacks sandwich a composite of black phosphorus (BP), which not only protect BP from quickly degenerating but also serve as current collector instead of copper foil. The BP composite, reduced graphene oxide coated on BP via chemical bonding, is simply synthesized by solvothermal reaction at 140 °C. The sandwiched film anode used for lithium-ion battery exhibits reversible capacities of 1401 mAh g -1 during the 200th cycle at current density of 100 mA g -1 indicating superior cycle performance. Besides, this facile vacuum filtration method may also be available for other anode material with well dispersion in N-methyl pyrrolidone (NMP). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Significant aspects on thermal degradation of hybrid biocomposite material
NASA Astrophysics Data System (ADS)
Bavan, D. Saravana; Kumar, G. C. Mohan
2013-06-01
Interest in use of bio fibers is increasing rapidly in structural and automotive applications because of few important properties such as low density, mechanical properties, renewability, biodegradation and sustainability. The present work is focused on fabricating a hybrid bio-composite material processed through compression molding technique. Natural fibers of maize and jute with bio polymeric resin of epoxidized soya bean oil are used as a matrix in obtaining a hybrid bio composite material. Thermal degradation of the prepared material is studied through Thermal gravimetric analyzer. Chemical treatment of the fibers was performed to have a better adhesion between the fibers and the matrix. The work is also surveyed on various parameters influencing the thermal properties and other aspects for a hybrid bio composite material.
Polymer-Cement Composites with Self-Healing Ability for Geothermal and Fossil Energy Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Childers, M. Ian; Nguyen, Manh-Thuong; Rod, Kenton A.
Sealing of wellbores in geothermal and tight oil/gas reservoirs by filling the annulus with cement is a well-established practice. Failure of the cement as a result of physical and/or chemical stress is a common problem with serious environmental and financial consequences. Numerous alternative cement blends have been proposed for the oil and gas industry. Most of these possess poor mechanical properties, or are not designed to work in high temperature environments. This work reports on a novel polymer-cement composite with remarkable self-healing ability that maintains the required properties of typical wellbore cements and may be stable at most geothermal temperatures.more » We combine for the first time experimental analysis of physical and chemical properties with density functional theory simulations to evaluate cement performance. The thermal stability and mechanical strength are attributed to the formation of a number of chemical interactions between the polymer and cement matrix including covalent bonds, hydrogen bonding, and van der Waals interactions. Self-healing was demonstrated by sealing fractures with 0.3–0.5 mm apertures, 2 orders of magnitude larger than typical wellbore fractures. This polymer-cement composite represents a major advance in wellbore cementing that could improve the environmental safety and economics of enhanced geothermal energy and tight oil/gas production.« less
Niether, Wiebke; Smit, Inga; Armengot, Laura; Schneider, Monika; Gerold, Gerhard; Pawelzik, Elke
2017-11-29
Cocoa beans are produced all across the humid tropics under different environmental conditions provided by the region but also by the season and the type of production system. Agroforestry systems compared to monocultures buffer climate extremes and therefore provide a less stressful environment for the understory cocoa, especially under seasonally varying conditions. We measured the element concentration as well as abiotic stress indicators (polyamines and total phenolic content) in beans derived from five different production systems comparing monocultures and agroforestry systems and from two harvesting seasons. Concentrations of N, Mg, S, Fe, Mn, Na, and Zn were higher in beans produced in agroforestry systems with high stem density and leaf area index. In the dry season, the N, Fe, and Cu concentration of the beans increased. The total phenolic content increased with proceeding of the dry season while other abiotic stress indicators like spermine decreased, implying an effect of the water availability on the chemical composition of the beans. Agroforestry systems did not buffer the variability of stress indicators over the seasons compared to monocultures. The effect of environmental growing conditions on bean chemical composition was not strong but can contribute to variations in cocoa bean quality.
NASA Astrophysics Data System (ADS)
Diaferia, G.; Cammarano, F.
2017-12-01
Unraveling the temperature distribution and composition of Earth's crust is key for understanding its origin, evolution, and mechanical behavior. Models of compressional (
A process for the chemical preparation of high-field ZnO varistors
Brooks, R.A.; Dosch, R.G.; Tuttle, B.A.
1986-02-19
Chemical preparation techniques involving co-precipitation of metals are used to provide microstructural characteristics necessary in order to produce ZnO varistors and their precursors for high field applications. The varistors produced have homogeneous and/or uniform dopant distributions and a submicron average grain size with a narrow size distribution. Precursor powders are prepared via chemical precipitation techniques and varistors made by sintering uniaxially and/or isostatically pressed pellets. Using these methods, varistors were made which were suitable for high-power applications, having values of breakdown field, E/sub B/, in the 10 to 100 kV/cm range, ..cap alpha.. > 30 and densities in the range of 65 to 99% of theoretical, depending on both composition and sintering temperature.
Process for the chemical preparation of high-field ZnO varistors
Brooks, Robert A.; Dosch, Robert G.; Tuttle, Bruce A.
1987-01-01
Chemical preparation techniques involving co-precipitation of metals are used to provide micro-structural characteristics necessary in order to produce ZnO varistors and their precursors for high field applications. The varistors produced have homogeneous and/or uniform dopant distributions and a submicron average grain size with a narrow size distribution. Precursor powders are prepared via chemical precipitation techniques and varistors made by sintering uniaxially and/or isostatically pressed pellets. Using these methods, varistors were made which were suitable for high-power applications, having values of breakdown field, E.sub.B, in the 10-100 kV/cm range, .alpha.>30 and densities in the range of 65-99% of theoretical, depending on both composition and sintering temperature.
Demonstration of Minimally Machined Honeycomb Silicon Carbide Mirrors
NASA Technical Reports Server (NTRS)
Goodman, William
2012-01-01
Honeycomb silicon carbide composite mirrors are made from a carbon fiber preform that is molded into a honeycomb shape using a rigid mold. The carbon fiber honeycomb is densified by using polymer infiltration pyrolysis, or through a reaction with liquid silicon. A chemical vapor deposit, or chemical vapor composite (CVC), process is used to deposit a polishable silicon or silicon carbide cladding on the honeycomb structure. Alternatively, the cladding may be replaced by a freestanding, replicated CVC SiC facesheet that is bonded to the honeycomb. The resulting carbon fiber-reinforced silicon carbide honeycomb structure is a ceramic matrix composite material with high stiffness and mechanical strength, high thermal conductivity, and low CTE (coefficient of thermal expansion). This innovation enables rapid, inexpensive manufacturing. The web thickness of the new material is less than 1 millimeter, and core geometries tailored. These parameters are based on precursor carbon-carbon honeycomb material made and patented by Ultracor. It is estimated at the time of this reporting that the HoneySiC(Trademark) will have a net production cost on the order of $38,000 per square meter. This includes an Ultracor raw material cost of about $97,000 per square meter, and a Trex silicon carbide deposition cost of $27,000 per square meter. Even at double this price, HoneySiC would beat NASA's goal of $100,000 per square meter. Cost savings are estimated to be 40 to 100 times that of current mirror technologies. The organic, rich prepreg material has a density of 56 kilograms per cubic meter. A charred carbon-carbon panel (volatile organics burnt off) has a density of 270 kilograms per cubic meter. Therefore, it is estimated that a HoneySiC panel would have a density of no more than 900 kilograms per cubic meter, which is about half that of beryllium and about onethird the density of bulk silicon carbide. It is also estimated that larger mirrors could be produced in a matter of weeks. Each cell is completely uniform, maintaining the shape of the inserted mandrel. Furthermore, the layup creates pressure that insures node bond strength. Each node is a composite laminate using only the inherent resin system to form the bond. This contrasts starkly with the other known method of producing composite honeycomb, in which individual corrugations are formed, cured, and then bonded together in a secondary process. By varying the size of the mandrels within the layup, varying degrees of density can be achieved. Typical sizes are 3/8 and 3/16 in. (approximately 10 and 5 millimeters). Cell sizes up to 1 in. (approximately 25 millimeters) have been manufactured. Similarly, the shape of the core can be altered for a flexible honeycomb structure.
Chen, Jinxiang; Wang, Yong; Gu, Chenglong; Liu, Jianxun; Liu, Yufu; Li, Min; Lu, Yun
2013-06-18
This study investigated the mechanisms, using microscopy and strength testing approaches, by which the addition of maleic anhydride grafted high-density polyethylene (MAPE) enhances the mechanical properties of basalt fiber-wood-plastic composites (BF-WPCs). The maximum values of the specific tensile and flexural strengths are achieved at a MAPE content of 5%-8%. The elongation increases rapidly at first and then continues slowly. The nearly complete integration of the wood fiber with the high-density polyethylene upon MAPE addition to WPC is examined, and two models of interfacial behavior are proposed. We examined the physical significance of both interfacial models and their ability to accurately describe the effects of MAPE addition. The mechanism of formation of the Model I interface and the integrated matrix is outlined based on the chemical reactions that may occur between the various components as a result of hydrogen bond formation or based on the principle of compatibility, resulting from similar polarity. The Model I fracture occurred on the outer surface of the interfacial layer, visually demonstrating the compatibilization effect of MAPE addition.
Coutinho, Etiene Silva; Fernandes, G Wilson; Berbara, Ricardo Luís Louro; Valério, Henrique Maia; Goto, Bruno Tomio
2015-11-01
Variation in arbuscular mycorrhizal fungi (AMF) communities is described for the first time in rupestrian grasslands in Brazil along an altitudinal gradient of 700 m (800 to 1400 m a.s.l.). Hypotheses tested were that soil properties influence the variation in AMF communities and that the frequency of the most common species of AMF is inversely influenced by the richness of other AMF. Field and laboratory data were collected on AMF community composition, richness, density, and frequency in the altitudinal gradient, and the relationships with several physical-chemical soil properties and altitude were evaluated. Fifty-one species of AMF were recorded, with 14 species being reported as possibly new to science and nine species representing new records for Brazil. This single elevation gradient alone contains 22% of the known world diversity of AMF. Soil properties and AMF community density and richness varied significantly along the elevation (p < 0.05). AMF density and richness were higher at the intermediate altitude, while AMF species composition differed statistically among the altitudes.
Valence and spin states of iron are invisible in Earth’s lower mantle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jiachao; Dorfman, Susannah M.; Zhu, Feng
Heterogeneity in Earth’s mantle is a record of chemical and dynamic processes over Earth’s history. The geophysical signatures of heterogeneity can only be interpreted with quantitative constraints on effects of major elements such as iron on physical properties including density, compressibility, and electrical conductivity. However, deconvolution of the effects of multiple valence and spin states of iron in bridgmanite (Bdg), the most abundant mineral in the lower mantle, has been challenging. Here we show through a study of a ferric-iron-only (Mg 0.46Fe 3+0.53)(Si 0.49Fe 3+ 0.51)O 3 Bdg that Fe 3+ in the octahedral site undergoes a spin transition betweenmore » 43 and 53 GPa at 300 K. The resolved effects of the spin transition on density, bulk sound velocity, and electrical conductivity are smaller than previous estimations, consistent with the smooth depth profiles from geophysical observations. For likely mantle compositions, the valence state of iron has minor effects on density and sound velocities relative to major cation composition.« less
Valence and spin states of iron are invisible in Earth’s lower mantle
Liu, Jiachao; Dorfman, Susannah M.; Zhu, Feng; ...
2018-03-29
Heterogeneity in Earth’s mantle is a record of chemical and dynamic processes over Earth’s history. The geophysical signatures of heterogeneity can only be interpreted with quantitative constraints on effects of major elements such as iron on physical properties including density, compressibility, and electrical conductivity. However, deconvolution of the effects of multiple valence and spin states of iron in bridgmanite (Bdg), the most abundant mineral in the lower mantle, has been challenging. Here we show through a study of a ferric-iron-only (Mg 0.46Fe 3+0.53)(Si 0.49Fe 3+ 0.51)O 3 Bdg that Fe 3+ in the octahedral site undergoes a spin transition betweenmore » 43 and 53 GPa at 300 K. The resolved effects of the spin transition on density, bulk sound velocity, and electrical conductivity are smaller than previous estimations, consistent with the smooth depth profiles from geophysical observations. For likely mantle compositions, the valence state of iron has minor effects on density and sound velocities relative to major cation composition.« less
Hu, Chenglong; Hong, Wenhu; Xu, Xiaojing; Tang, Sufang; Du, Shanyi; Cheng, Hui-Ming
2017-10-13
Carbon fiber (CF) reinforced carbon-silicon carbide (C/C-SiC) composites are one of the most promising lightweight materials for re-entry thermal protection, rocket nozzles and brake discs applications. In this paper, a novel sandwich-structured C/C-SiC composite, containing two exterior C/SiC layers, two gradient C/C-SiC layers and a C/C core, has been designed and fabricated by two-step electromagnetic-coupling chemical vapor infiltration (E-CVI) for a 20-hour deposition time. The cross-section morphologies, interface microstructures and SiC-matrix growth characteristics and compositions of the composites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD), respectively. Microstructure characterization indicates that the SiC growth includes an initial amorphous SiC zone, a gradual crystallization of SiC and grow-up of nano-crystal, and a columnar grain region. The sandwich structure, rapid deposition rate and growth characteristics are attributed to the formation of thermal gradient and the establishment of electromagnetic field in the E-CVI process. The composite possesses low density of 1.84 g/cm 3 , high flexural strength of 325 MPa, and low linear ablation rate of 0.38 μm/s under exposure to 5-cycle oxyacetylene flame for 1000 s at ~1700 °C.
NASA Astrophysics Data System (ADS)
Rakhi, R. B.; Alshareef, H. N.
2011-10-01
Graphene nanosheets (GNs) dispersed with SnO2 nanoparticles loaded multiwalled carbon nanotubes (SnO2-MWCNTs) were investigated as electrode materials for supercapacitors. SnO2-MWCNTs were obtained by a chemical method followed by calcination. GNs/SnO2-MWCNTs nanocomposites were prepared by ultrasonication of the GNs and SnO2-MWCNTs. Electrochemical double layer capacitors were fabricated using the composite as the electrode material and aqueous KOH as the electrolyte. Electrochemical performance of the composite electrodes were compared to that of pure GNs electrodes and the results are discussed. Electrochemical measurements show that the maximum specific capacitance, power density and energy density obtained for supercapacitor using GNs/SnO2-MWCNTs nanocomposite electrodes were respectively 224 F g-1, 17.6 kW kg-1 and 31 Wh kg-1. The fabricated supercapacitor device exhibited excellent cycle life with ∼81% of the initial specific capacitance retained after 6000 cycles. The results suggest that the hybrid composite is a promising supercapacitor electrode material.
NASA Astrophysics Data System (ADS)
Cartas, Andrew R.
The innovative and advanced purpose of this study is to understand and establish proper sintering procedures for Spark Plasma Sintering process in order to fabricate high density, high thermal conductivity UO2 -CNT pellets. Mixing quality and chemical reactions have been investigated by field emission scanning electron microscopy (FESEM), wavelength dispersive spectroscopy (WDS), and X-ray diffraction (XRD). The effect of various types of CNTs on the mixing and sintering quality of UO2-CNT pellets with SPS processing have been examined. The Archimedes Immersion Method, laser flash method, and FE-SEM will be used to investigate the density, thermal conductivity, grain size, pinning effects, and CNT dispersion of fabricated UO2-CNT pellets. Pre-fabricated CNT's were added to UO 2 powder and dispersed via sonication and/or ball milling and then made into composite nuclear pellets. An investigation of the economic impact of SPS on the nuclear fuel cycle for producing pure and composite UO2 fuels was conducted.
Formulations for Stronger Solid Oxide Fuel-Cell Electrolytes
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Goldsby, John C.; Choi, Sung R.
2004-01-01
Tests have shown that modification of chemical compositions can increase the strengths and fracture toughnesses of solid oxide fuel-cell (SOFC) electrolytes. Heretofore, these solid electrolytes have been made of yttria-stabilized zirconia, which is highly conductive for oxygen ions at high temperatures, as needed for operation of fuel cells. Unfortunately yttria-stabilized zirconia has a high coefficient of thermal expansion, low resistance to thermal shock, low fracture toughness, and low mechanical strength. The lack of strength and toughness are especially problematic for fabrication of thin SOFC electrolyte membranes needed for contemplated aeronautical, automotive, and stationary power-generation applications. The modifications of chemical composition that lead to increased strength and fracture toughness consist in addition of alumina to the basic yttria-stabilized zirconia formulations. Techniques for processing of yttria-stabilized zirconia/alumina composites containing as much as 30 mole percent of alumina have been developed. The composite panels fabricated by these techniques have been found to be dense and free of cracks. The only material phases detected in these composites has been cubic zirconia and a alumina: this finding signifies that no undesired chemical reactions between the constituents occurred during processing at elevated temperatures. The flexural strengths and fracture toughnesses of the various zirconia-alumina composites were measured in air at room temperature as well as at a temperature of 1,000 C (a typical SOFC operating temperature). The measurements showed that both flexural strength and fracture toughness increased with increasing alumina content at both temperatures. In addition, the modulus of elasticity and the thermal conductivity were found to increase and the density to decrease with increasing alumina content. The oxygen-ion conductivity at 1,000 C was found to be unchanged by the addition of alumina.
NASA Astrophysics Data System (ADS)
Yan, Xiaomei; Xu, Xiao; Liu, Qin; Guo, Jia; Kang, Longtian; Yao, Jiannian
2018-06-01
Iron single-atom catalyst in form of iron-nitrogen-carbon structure possesses the excellent catalytic activity in various chemical reactions. However, exploring a sustainable and stable single-atom metal catalyst still faces a great challenge due to low yield and complicated synthesis. Here, we report a functional multi-wall carbon nanotubes modified with iron phthalocyanine molecules via a liquid chemical reaction and realize the performance of similar single-atom catalysis for oxygen reduction reaction. A serial of characterizations strongly imply the structure change of iron phthalocyanine molecule and its close recombination with multi-wall carbon nanotubes, which are in favor of ORR catalysis. Compared to commercial platinum-carbon catalyst, composites exhibit superior activity for oxygen reduction reaction with higher half-wave potential (0.86 V), lower Tafel slope (38 mV dec-1), higher limiting current density and excellent electrochemical stability. The corresponding Zinc-air battery also presents higher maximum power density and discharge stability. Therefore, these findings provide a facile route to synthesize a highly efficient non-precious metal carbon-based catalyst.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varley, J. B.; Conway, A. M.; Voss, L. F.
Thallium bromide (TlBr) crystals subjected to hydrochloric acid (HCl) chemical treatments have been shown to advantageously affect device performance and longevity in TlBr-based room temperature radiation detectors, yet the exact mechanisms of the improvements remain poorly understood. Here in this paper, we investigate the influence of several HCl chemical treatments on device-grade TlBr and describe the changes in the composition and electronic structure of the surface. Composition analysis and depth profiles obtained from secondary ion mass spectrometry (SIMS) identify the extent to which each HCl etch condition affects the detector surface region and forms of a graded TlBr/TlBr 1-xCL xmore » surface heterojunction. Using a combination of X-ray photoemission spectroscopy (XPS) and hybrid density functional calculations, we are able to determine the valence band offsets, band gaps, and conduction band offsets as a function of Cl content over the entire composition range of TIBr 1-xC1 X. This study establishes a strong correlation between device process conditions, surface chemistry, and electronic structure with the goal of further optimizing the long-term stability and radiation response of TlBr-based detectors.« less
Structure-conserving spontaneous transformations between nanoparticles
NASA Astrophysics Data System (ADS)
Krishnadas, K. R.; Baksi, Ananya; Ghosh, Atanu; Natarajan, Ganapati; Pradeep, Thalappil
2016-11-01
Ambient, structure- and topology-preserving chemical reactions between two archetypal nanoparticles, Ag25(SR)18 and Au25(SR)18, are presented. Despite their geometric robustness and electronic stability, reactions between them in solution produce alloys, AgmAun(SR)18 (m+n=25), keeping their M25(SR)18 composition, structure and topology intact. We demonstrate that a mixture of Ag25(SR)18 and Au25(SR)18 can be transformed to any arbitrary alloy composition, AgmAun(SR)18 (n=1-24), merely by controlling the reactant compositions. We capture one of the earliest events of the process, namely the formation of the dianionic adduct, (Ag25Au25(SR)36)2-, by electrospray ionization mass spectrometry. Molecular docking simulations and density functional theory (DFT) calculations also suggest that metal atom exchanges occur through the formation of an adduct between the two clusters. DFT calculations further confirm that metal atom exchanges are thermodynamically feasible. Such isomorphous transformations between nanoparticles imply that microscopic pieces of matter can be transformed completely to chemically different entities, preserving their structures, at least in the nanometric regime.
Wang, Jinjie; Dong, Liubing; Xu, Chengjun; Ren, Danyang; Ma, Xinpei; Kang, Feiyu
2018-04-04
Polymorphous supercapacitors were constructed from flexible three-dimensional carbon network/polyaniline (PANI)/MnO 2 composite textile electrodes. The flexible textile electrodes were fabricated through a layer-by-layer construction strategy: PANI, carbon nanotubes (CNTs), and MnO 2 were deposited on activated carbon fiber cloth (ACFC) in turn through an electropolymerization process, "dipping and drying" method, and in situ chemical reaction, respectively. In the fabricated ACFC/PANI/CNTs/MnO 2 textile electrodes, the ACFC/CNT hybrid framework serves as a porous and electrically conductive 3D network for the rapid transmission of electrons and electrolyte ions, where ACFC, PANI, and MnO 2 are high-performance supercapacitor electrode materials. In the electrolyte of H 2 SO 4 solution, the textile electrode-based symmetric supercapacitor delivers superior areal capacitance, energy density, and power density of 4615 mF cm -2 (for single electrode), 157 μW h cm -2 , and 10372 μW cm -2 , respectively, whereas asymmetric supercapacitor assembled with the prepared composite textile as the positive electrode and ACFC as the negative electrode exhibits an improved energy density of 413 μW h cm -2 and a power density of 16120 μW cm -2 . On the basis of the ACFC/PANI/CNTs/MnO 2 textile electrodes, symmetric and asymmetric solid-state textile supercapacitors with a PVA/H 2 SO 4 gel electrolyte were also produced. These solid-state textile supercapacitors exhibit good electrochemical performance and high flexibility. Furthermore, flexible solid-state fiber-like supercapacitors were prepared with fiber bundle electrodes dismantled from the above composite textiles. Overall, this work makes a meaningful exploration of the versatile applications of textile electrodes to produce polymorphous supercapacitors.
Chemical characterization of the early evolutionary phases of high-mass star-forming regions
NASA Astrophysics Data System (ADS)
Gerner, Thomas
2014-10-01
The formation of high-mass stars is a very complex process and up to date no comprehensive theory about it exists. This thesis studies the early stages of high-mass star-forming regions and employs astrochemistry as a tool to probe their different physical conditions. We split the evolutionary sequence into four observationally motivated stages that are based on a classification proposed in the literature. The sequence is characterized by an increase of the temperatures and densities that strongly influences the chemistry in the different stages. We observed a sample of 59 high-mass star-forming regions that cover the whole sequence and statistically characterized the chemical compositions of the different stages. We determined average column densities of 18 different molecular species and found generally increasing abundances with stage. We fitted them for each stage with a 1D model, such that the result of the best fit to the previous stage was used as new input for the following. This is a unique approach and allowed us to infer physical properties like the temperature and density structure and yielded a typical chemical lifetime for the high-mass star-formation process of 1e5 years. The 18 analyzed molecular species also included four deuterated molecules whose chemistry is particularly sensitive to thermal history and thus is a promising tool to infer chemical ages. We found decreasing trends of the D/H ratios with evolutionary stage for 3 of the 4 molecular species and that the D/H ratio depends more on the fraction of warm and cold gas than on the total amount of gas. That indicates different chemical pathways for the different molecules and confirms the potential use of deuterated species as chemical age indicators. In addition, we mapped a low-mass star forming region in order to study the cosmic ray ionization rate, which is an important parameter in chemical models. While in chemical models it is commonly fixed, we found that it ! strongly varies with environment.
Surface modification of polyethylene/graphene composite using corona discharge
NASA Astrophysics Data System (ADS)
Popelka, Anton; Noorunnisa Khanam, P.; AlMaadeed, Mariam Ali
2018-03-01
Polyethylene/graphene composites are suitable for electromagnetic interference shielding applications and are often fabricated as sandwich structures. However, the hydrophobic character of these composites can lead to delamination. Corona treatment was used to enhance the surface hydrophilicity of composites prepared from linear low-density polyethylene (LLDPE) and graphene nanoplatelets (GNPs) with different content (2, 4, 6, and 8 wt.%). This enhancement of wettability also led to good adhesion properties. The presence of GNPs in LLDPE had a positive effect on the surface properties after corona treatment. The surface free energy of the LLDPE/GNP composites increased by almost 64.6% for 2 wt.% of GNPs in the LLDPE/GNP composite, while the surface free energy of neat LLDPE increased by only 38.1%. The best improvement in adhesion properties after corona treatment was observed for 2 wt.% of GNPs in the LLDPE/GNP composite, while peel resistance increased by 137.9%. Various analytical techniques and methods proved that the changes in the surface morphology and chemical composition of the LLDPE/GNP composite after this treatment resulted in an improvement of adhesion.
A framework to spatially cluster air pollution monitoring sites in US based on the PM2.5 composition
Austin, Elena; Coull, Brent A.; Zanobetti, Antonella; Koutrakis, Petros
2013-01-01
Background Heterogeneity in the response to PM2.5 is hypothesized to be related to differences in particle composition across monitoring sites which reflect differences in source types as well as climatic and topographic conditions impacting different geographic locations. Identifying spatial patterns in particle composition is a multivariate problem that requires novel methodologies. Objectives Use cluster analysis methods to identify spatial patterns in PM2.5 composition. Verify that the resulting clusters are distinct and informative. Methods 109 monitoring sites with 75% reported speciation data during the period 2003–2008 were selected. These sites were categorized based on their average PM2.5 composition over the study period using k-means cluster analysis. The obtained clusters were validated and characterized based on their physico-chemical characteristics, geographic locations, emissions profiles, population density and proximity to major emission sources. Results Overall 31 clusters were identified. These include 21 clusters with 2 or more sites which were further grouped into 4 main types using hierarchical clustering. The resulting groupings are chemically meaningful and represent broad differences in emissions. The remaining clusters, encompassing single sites, were characterized based on their particle composition and geographic location. Conclusions The framework presented here provides a novel tool which can be used to identify and further classify sites based on their PM2.5 composition. The solution presented is fairly robust and yielded groupings that were meaningful in the context of air-pollution research. PMID:23850585
MRI of chemical reactions and processes.
Britton, Melanie M
2017-08-01
As magnetic resonance imaging (MRI) can spatially resolve a wealth of molecular information available from nuclear magnetic resonance (NMR), it is able to non-invasively visualise the composition, properties and reactions of a broad range of spatially-heterogeneous molecular systems. Hence, MRI is increasingly finding applications in the study of chemical reactions and processes in a diverse range of environments and technologies. This article will explain the basic principles of MRI and how it can be used to visualise chemical composition and molecular properties, providing an overview of the variety of information available. Examples are drawn from the disciplines of chemistry, chemical engineering, environmental science, physics, electrochemistry and materials science. The review introduces a range of techniques used to produce image contrast, along with the chemical and molecular insight accessible through them. Methods for mapping the distribution of chemical species, using chemical shift imaging or spatially-resolved spectroscopy, are reviewed, as well as methods for visualising physical state, temperature, current density, flow velocities and molecular diffusion. Strategies for imaging materials with low signal intensity, such as those containing gases or low sensitivity nuclei, using compressed sensing, para-hydrogen or polarisation transfer, are discussed. Systems are presented which encapsulate the diversity of chemical and physical parameters observable by MRI, including one- and two-phase flow in porous media, chemical pattern formation, phase transformations and hydrodynamic (fingering) instabilities. Lastly, the emerging area of electrochemical MRI is discussed, with studies presented on the visualisation of electrochemical deposition and dissolution processes during corrosion and the operation of batteries, supercapacitors and fuel cells. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
El-Zaeddi, Hussein; Martínez-Tomé, Juan; Calín-Sánchez, Ángel; Burló, Francisco; Carbonell-Barrachina, Ángel A
2017-01-01
Two independent field experiments were carried out to investigate the influence of (i) three irrigation treatments (ID0 = 1585 m 3 ha -1 , considered as a control; ID1 = 1015 m 3 ha -1 ; and ID2 = 2180 m 3 ha -1 ) and (ii) three plant density treatments (PD0 = 5.56 plants m -2 , considered as a control; PD1 = 4.44 plants m -2 ; and PD2 = 7.41 plants m -2 ) on the production, volatile composition of essential oil, and sensory quality of dill. The highest plant yield was obtained with intermediate conditions of both irrigation dose (ID0) and plant density (PD0). The main compounds of the essential oil were α-phellandrene, dill ether and β-phellandrene. The highest irrigation dose (ID2) produced the highest concentrations of most of the main compounds: α-phellandrene (49.5 mg per 100 g), β-phellandrene (6.89 mg per 100 g) and limonene (2.49 mg per 100 g). A similar pattern was found for the highest plant density (PD2): α-phellandrene (71.0 mg per 100 g), dill ether (16.7 mg per 100 g) and β-phellandrene (9.70 mg per 100 g). The use of descriptive sensory analysis helped in reaching a final decision, and the dill plants with the highest sensory quality were those of the ID2 and PD0 treatments. The final recommendation is to use the irrigation dose ID2 and the plant density PD2 if the objective is to produce dill samples with the highest aromatic and sensory quality; however, if the only objective is to produce high amounts of dill, the best options are ID0 and PD0. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Liu, Qun; Hou, Zhishuai; Wen, Haishen; Li, Jifang; He, Feng; Wang, Jinhuan; Guan, Biao; Wang, Qinglong
2016-08-01
The goal of the study was to examine the effect of stocking density on the water quality of culture area, as well as the growth, body composition and cortisol content of rainbow trout ( Oncorhynchus mykiss). Pen-reared trout were stocked in densities of 40, 60, 80 fish individuals m-3 (4.6, 6.6, 8.6 kg m-3, SD1, SD2 and SD3 groups, respectively) for 300 days. Compared to the water from SD1 and SD2, that from SD3 exhibited significantly higher NH 4 + -N content and COD (chemical-oxygen-demand), and a significant reduction of dissolved oxygen in day 180 (40.6 kg m-3). Stocking density was significantly associated with body weight, standard length, VSI (viscerosomatic index), CF (condition factor) and FC (food coefficient) in group SD3, particularly in day 240 and day 300 (45 or 49.3 kg m-3). Increased crude fat and decreased crude protein were displayed in high density group when the density reached to 36 kg m-3. As a cumulative effect of density-related stress, VSI, CF, FC, moisture, and crude protein content varied over time in each density group (SD1, SD2, and SD3). In summary, trout exhibited a better growth performance in low density (26.3 kg m-3) than those reared in high densities (36 and 45 kg m-3). The results indicate that rainbow trout (114.44 g ± 6.21 g, 19.69 cm ± 0.31 cm) initially stocked in 6.6 or 8.6 kg m-3 should be lightened to less than 36 kg m-3 after an intensive rearing for 240 days.
NASA Astrophysics Data System (ADS)
Chen, Ling; Song, Zhaoxia; Liu, Guichang; Qiu, Jieshan; Yu, Chang; Qin, Jiwei; Ma, Lin; Tian, Fengqin; Liu, Wei
2013-02-01
Polyaniline-MnO2 nanowire (PANI-MNW) composites were prepared by in situ chemical oxidative polymerization of aniline monomer in a suspension of MnO2 nanowires. The structure and morphology of the PANI-MNW composites were characterized by powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). Their electrochemical properties were investigated using cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy in 1 mol/L KOH electrolyte. The PANI-MNW composites show significantly better specific capacity and redox performance in comparison to the untreated MnO2 nanowires. The enhanced properties can be mainly attributed to the composite structure wherein high porosity is created between MnO2 nanowires and PANI during the process of fabricating the PANI-MNW nanocomposites. A specific capacitance as high as 256 F/g is obtained at a current density of 1 A/g for PANI-MNW-5, and the composite also shows a good cyclic performance and coulomb efficiency.
NASA Astrophysics Data System (ADS)
Wang, Minchao; Jamal, Ruxangul; Wang, Yujie; Yang, Lei; Liu, Fangfang; Abdiryim, Tursun
2015-09-01
In this study, poly(3,4-ethylenedioxythiophene)/thiophene-grafted graphene oxide (PEDOT/Th-GO) composites from covalently linking of Th-GO with PEDOT chains were prepared via in situ chemical polymerization with different weight percentage of Th-GO ranging between 40 and 70 % in reaction medium. The resulting composite materials were characterized using a various analytical techniques. The structural analysis showed that the composites displayed a higher degree of conjugation and thermal stability than pure PEDOT, and the weight percentage of Th-GO could affect the doping level, amount of undesired conjugated segments, and porous structure of composites. Electrochemical analysis suggested that the highest specific capacitance of 320 F g-1 at a current density of 1 A g-1 with good cycling stability (capacitance retention of 80 % at 1 A g-1 after 1000 cycles) was achieved for the composite prepared from 50 wt% Th-GO content in reaction medium.
Wang, Minchao; Jamal, Ruxangul; Wang, Yujie; Yang, Lei; Liu, Fangfang; Abdiryim, Tursun
2015-12-01
In this study, poly(3,4-ethylenedioxythiophene)/thiophene-grafted graphene oxide (PEDOT/Th-GO) composites from covalently linking of Th-GO with PEDOT chains were prepared via in situ chemical polymerization with different weight percentage of Th-GO ranging between 40 and 70 % in reaction medium. The resulting composite materials were characterized using a various analytical techniques. The structural analysis showed that the composites displayed a higher degree of conjugation and thermal stability than pure PEDOT, and the weight percentage of Th-GO could affect the doping level, amount of undesired conjugated segments, and porous structure of composites. Electrochemical analysis suggested that the highest specific capacitance of 320 F g(-1) at a current density of 1 A g(-1) with good cycling stability (capacitance retention of 80 % at 1 A g(-1) after 1000 cycles) was achieved for the composite prepared from 50 wt% Th-GO content in reaction medium.
Wood-plastic composites as promising green-composites for automotive industries!
Ashori, Alireza
2008-07-01
Wood-plastic composite (WPC) is a very promising and sustainable green material to achieve durability without using toxic chemicals. The term WPCs refers to any composites that contain plant fiber and thermosets or thermoplastics. In comparison to other fibrous materials, plant fibers are in general suitable to reinforce plastics due to relative high strength and stiffness, low cost, low density, low CO2 emission, biodegradability and annually renewable. Plant fibers as fillers and reinforcements for polymers are currently the fastest-growing type of polymer additives. Since automakers are aiming to make every part either recyclable or biodegradable, there still seems to be some scope for green-composites based on biodegradable polymers and plant fibers. From a technical point of view, these bio-based composites will enhance mechanical strength and acoustic performance, reduce material weight and fuel consumption, lower production cost, improve passenger safety and shatterproof performance under extreme temperature changes, and improve biodegradability for the auto interior parts.
Conserva, Enrico; Lanuti, Anna; Menini, Maria
2010-01-01
This paper reports on an in vitro comparison of osteoblast and mesenchymal stem cell (MSC) adhesion, proliferation, and differentiation related to two different surface treatments applied to the same implant design to determine whether the interaction between cells and implants is influenced by surface structure and chemical composition of the implants. Thirty-nine implants with a sandblasted (SB) surface and 39 implants with a grit-blasted and high-temperature acid-etched (GBAE) surface were used. The implant macrostructures and microstructures were analyzed by high- and low-voltage scanning electron microscopy (SEM) and by stereo-SEM. The surface chemical composition was investigated by energy dispersive analysis and x-ray photoemission spectroscopy. SaOS-2 osteoblasts and human MSCs were used for the evaluation of cell proliferation and alkaline phosphatase enzymatic activity in contact with the two surfaces. The GBAE surface showed fewer contaminants and a very high percentage of titanium (19.7%) compared to the SB surface (14.2%). The two surfaces showed similar mean roughness (Ra), but the depth (Rz) and density (RSm) of the porosity were significantly increased in the GBAE surface. The GBAE surface presented more osteoblast and MSC proliferation than the SB surface. No statistically significant differences in alkaline phosphatase activity were found between surfaces for either cellular line. The GBAE surface showed less surface contaminants and a higher percentage of titanium (19.7%) than the SB surface. The macro/micropore structured design and chemical composition of the GBAE surface allowed greater cell adhesion and proliferation and an earlier cell spreading but did not play an obvious role in in vitro cellular differentiation.
NASA Astrophysics Data System (ADS)
Millet, Dylan B.; Goldstein, Allen H.; Allan, James D.; Bates, Timothy S.; Boudries, Hacene; Bower, Keith N.; Coe, Hugh; Ma, Yilin; McKay, Megan; Quinn, Patricia K.; Sullivan, Amy; Weber, Rodney J.; Worsnop, Douglas R.
2004-12-01
We report hourly in-situ observations of C1-C8 speciated volatile organic compounds (VOCs) obtained at Trinidad Head CA in April and May 2002 as part of the NOAA Intercontinental Transport and Chemical Transformation study. Factor analysis of the VOC data set was used to define the dominant processes driving atmospheric chemical composition at the site, and to characterize the sources for measured species. Strong decreases in background concentration were observed for several of the VOCs during the experiment due to seasonal changes in OH concentration. CO was the most important contributor to the total measured OH reactivity at the site at all times. Oxygenated VOCs were the primary component of both the total VOC burden and of the VOC OH reactivity, and their relative importance was enhanced under conditions when local source contributions were minimal. VOC variability exhibited a strong dependence on residence time (slnX = 1.55τ-0.44, r2 = 0.98; where slnX is the standard deviation of the natural logarithm of the mixing ratio), and this relationship was used, in conjunction with measurements of 222Rn, to estimate the average OH concentration during the study period (6.1 × 105 molec/cm3). We also employed the variability-lifetime relationship defined by the VOC data set to estimate submicron aerosol residence times as a function of chemical composition. Two independent measures of aerosol chemical composition yielded consistent residence time estimates. Lifetimes calculated in this manner were between 3-7 days for aerosol nitrate, organics, sulfate, and ammonium. The lifetime estimate for methane sulfonic acid (˜12 days) was slightly outside of this range. The lifetime of the total aerosol number density was estimated at 9.8 days.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardiner, W.W.; Barrows, E.S.; Antrim, L.D
Buttermilk Channel was one of seven waterways that was sampled and evaluated for dredging and sediment disposal. Sediment samples were collected and analyses were conducted on sediment core samples. The evaluation of proposed dredged material from the channel included bulk sediment chemical analyses, chemical analyses of site water and elutriate, water column and benthic acute toxicity tests, and bioaccumulation studies. Individual sediment core samples were analyzed for grain size, moisture content, and total organic carbon. A composite sediment samples, representing the entire area proposed for dredging, was analyzed for bulk density, polynuclear aromatic hydrocarbons, and 1,4-dichlorobenzene. Site water and elutriatemore » were analyzed for metals, pesticides, and PCBs.« less
Method of forming a chemical composition
Bingham, Dennis N.; Wilding, Bruce M.; Klingler, Kerry M.; Zollinger, William T.; Wendt, Kraig M.
2007-10-09
A method of forming a chemical composition such as a chemical hydride is described and which includes the steps of selecting a composition having chemical bonds and which is capable of forming a chemical hydride; providing a source of hydrogen; and exposing the selected composition to an amount of ionizing radiation to encourage the changing of the chemical bonds of the selected composition, and chemically reacting the selected composition with the source of hydrogen to facilitate the formation of a chemical hydride.
Modeling of nanoscale liquid mixture transport by density functional hydrodynamics
NASA Astrophysics Data System (ADS)
Dinariev, Oleg Yu.; Evseev, Nikolay V.
2017-06-01
Modeling of multiphase compositional hydrodynamics at nanoscale is performed by means of density functional hydrodynamics (DFH). DFH is the method based on density functional theory and continuum mechanics. This method has been developed by the authors over 20 years and used for modeling in various multiphase hydrodynamic applications. In this paper, DFH was further extended to encompass phenomena inherent in liquids at nanoscale. The new DFH extension is based on the introduction of external potentials for chemical components. These potentials are localized in the vicinity of solid surfaces and take account of the van der Waals forces. A set of numerical examples, including disjoining pressure, film precursors, anomalous rheology, liquid in contact with heterogeneous surface, capillary condensation, and forward and reverse osmosis, is presented to demonstrate modeling capabilities.
Influence of Bulk Carbonaceous Matter on Pluto's Structure and Evolution
NASA Astrophysics Data System (ADS)
McKinnon, W. B.; Stern, S. A.; Weaver, H. A., Jr.; Spencer, J. R.; Moore, J. M.; Young, L. A.; Olkin, C.
2017-12-01
The rock/ice mass ratio of the Pluto system is about 2/1 (McKinnon et al., Icarus 287, 2017) [1], though this neglects the potential role of bulk carbonaceous matter ("CHON"), an important cometary component and one likely important in the ancestral Kuiper belt. The wealth of measurements at comet 67P/Churyumov-Gerasimenko (a Jupiter-family comet and thus one formed in the same region of the outer Solar System as Pluto) by Rosetta are particularly instructive. E.g., Davidsson et al. (A&A 592, 2016) [2] propose in their "composition A" that 67P/Ch-G is 25% metal/sulfides, 42% rock/organics, and 32% ice by mass. For their assumed component densities, the overall grain density is 1820 kg/m3. Fulle et al. (MNRAS 462, 2016) [3] posit 5 ± 2 volume % Fe-sulfides of density 4600 kg/m3, 28 ± 5% Mg,Fe-olivines and -pyroxenes of density 3200 kg/m3, 52 ± 12% hydrocarbons of density 1200 kg/m3, and 15 ± 6% ices of 917 kg/m3. This composition yields a primordial grain density (dust + ice) of 1885 ± 240 kg/m3. Both of these cometary density estimates [2,3] are consistent with Pluto-Charon, especially as Pluto's uncompressed (STP) density is close to 1820 kg/m3 and that of the system as a whole is close to 1800 kg/m3 [1]. We consider the potential compositional and structural implications of these proposed 67P/Ch-G compositions when applied to Pluto and Charon. The amount of ice in model A of [2] is a good match to Pluto structural models. Their rock/organics component, however, is taken to be half graphite (2000 kg/m3) by volume. The composition in [3] is more divergent: very ice poor, and on the order of 50% light hydrocarbons by volume. Regardless of the differences between [2] and [3], the possibility of massive internal graphite or carbonaceous layers within Pluto is real. We discuss the possible consequences for Pluto's structure, rock/ice ratio, thermal and chemical evolution, and even interpretation of its gravity field from tectonics. For example, radiogenic heat flows could be lessened in comparison with pure ice+rock±ocean interior models. And could the inferred gravity high at Sputnik Planitia (Nimmo et al., Nature 540, 2016) actually be due to an uplifted graphite-rich layer? A bulk carbonaceous contribution to icy satellites is also possible, and may behind the rich organic chemistry in Enceladus' plume vapor (Waite et al., Nature 460, 2009).
NASA Astrophysics Data System (ADS)
Yang, Yang; Xu, Di; Wu, Qingyong; Diao, Peng
2016-10-01
Solar powered hydrogen evolution reaction (HER) is one of the key reactions in solar-to-chemical energy conversion. It is desirable to develop photocathodic materials that exhibit high activity toward photoelectrochemical (PEC) HER at more positive potentials because a higher potential means a lower overpotential for HER. In this work, the Cu2O/CuO bilayered composites were prepared by a facile method that involved an electrodeposition and a subsequent thermal oxidation. The resulting Cu2O/CuO bilayered composites exhibited a surprisingly high activity and good stability toward PEC HER, expecially at high potentials in alkaline solution. The photocurrent density for HER was 3.15 mA·cm-2 at the potential of 0.40 V vs. RHE, which was one of the two highest reported at the same potential on copper-oxide-based photocathode. The high photoactivity of the bilayered composite was ascribed to the following three advantages of the Cu2O/CuO heterojunction: (1) the broadened light absorption band that made more efficient use of solar energy, (2) the large space-charge-region potential that enabled a high efficiency for electron-hole separation, and (3) the high majority carrier density that ensured a faster charge transportation rate. This work reveals the potential of the Cu2O/CuO bilayered composite as a promising photocathodic material for solar water splitting.
Chemical composition and properties of ashes from combustion plants using Miscanthus as fuel.
Lanzerstorfer, Christof
2017-04-01
Miscanthus giganteus is one of the energy crops considered to show potential for a substantial contribution to sustainable energy production. In the literature there is little data available about the chemical composition of ashes from the combustion of Miscanthus and practically no data about their physical properties. However, for handling, treatment and utilization of the ashes this information is important. In this study ashes from two biomass combustion plants using Miscanthus as fuel were investigated. The density of the ashes was 2230±35kg/m 3 , which was similar to the density of ashes from straw combustion. Also the bulk densities were close to those reported for straw ashes. The flowability of the ashes was a little worse than the flowability of ashes from wood combustion. The measured heavy metal concentrations were below the usual limits for utilization of the ashes as soil conditioner. The concentrations in the bottom ash were similar to those reported for ash from forest residue combustion plants. In comparison with cyclone fly ashes from forest residue combustion the measured heavy metal concentrations in the cyclone fly ash were considerably lower. Cl - , S and Zn were enriched in the cyclone fly ash which is also known for ashes from wood combustion. In comparison with literature data obtained from Miscanthus plant material the concentrations of K, Cl - and S were lower. This can be attributed to the fact that the finest fly ash is not collected by the cyclone de-dusting system of the Miscanthus combustion plants. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Iro, Zaharaddeen S.; Subramani, C.; Kesavan, T.; Dash, S. S.; Sasidharan, M.; Sundramoorthy, Ashok K.
2017-12-01
A composite of MnO2/SiO2 sphere was coated on single-wall carbon nanotubes (MnO2/SiO2/SWCNT) using one-pot hydrothermal synthesis method. KMnO4 was used as an oxidizing agent for mild functionalization of single-wall carbon nanotubes (SWCNT), and also as a precursor of MnO2. A comparative study in the presence of SiO2 and SWCNT was carried out using bare MnO2 as a reference. After addition of SiO2, the composite obtained showed an increase in both the specific capacitance and cycle life which can be associated with spherical shape of SiO2 which offered reduction sites for MnO2. With the addition of SWCNT less than 5%, the composite further showed an increase in capacitance and cycle life, this is because of the good conductive nature, excellent mechanical property and chemical stability of SWCNT. The electrochemical behaviour was studied using cyclic voltammetry and galvanostatic charge/discharge method in 1 M Na2SO4 electrolyte. The specific capacitance of MnO2, MnO2/SiO2 and MnO2/SiO2/SWCNT composite is 73.6 F g-1, 108.7 F g-1 and 136 F g-1 at a current density of 1 A g-1, respectively. The MnO2/SiO2/SWCNT energy density was 68 Wh kg-1 with power density of 444.4 W kg-1. The MnO2/SiO2/SWCNT composite retained 88% of its specific capacitance after 500 cycles. We envisage that this hybrid material could be applied for preparation of supercapacitor electrode.
Essential oil yield and composition reflect browsing damage of junipers.
Markó, Gábor; Gyuricza, Veronika; Bernáth, Jeno; Altbacker, Vilmos
2008-12-01
The impact of browsing on vegetation depends on the relative density and species composition of browsers. Herbivore density and plant damage can be either site-specific or change seasonally and spatially. For juniper (Juniperus communis) forests of a sand dune region in Hungary, it has been assumed that plant damage investigated at different temporal and spatial scales would reflect selective herbivory. The level of juniper damage was tested for a possible correlation with the concentration of plant secondary metabolites (PSMs) in plants and seasonal changes in browsing pressure. Heavily browsed and nonbrowsed junipers were also assumed to differ in their chemical composition, and the spatial distribution of browsing damage within each forest was analyzed to reveal the main browser. Long-term differences in local browsing pressure were also expected and would be reflected in site-specific age distributions of distant juniper populations. The concentrations of PSMs (essential oils) varied significantly among junipers and seasons. Heavily browsed shrubs contained the lowest oil yield; essential oils were highest in shrubs bearing no damage, indicating that PSMs might contribute to reduce browsing in undamaged shrubs. There was a seasonal fluctuation in the yield of essential oil that was lower in the summer period than in other seasons. Gas chromatography (GC) revealed differences in some essential oil components, suggesting that certain chemicals could have contributed to reduced consumption. The consequential long-term changes were reflected in differences in age distribution between distant juniper forests. These results confirm that both the concentration of PSMs and specific compounds of the essential oil may play a role in selective browsing damage by local herbivores.
NASA Astrophysics Data System (ADS)
Ozawa, Haruka; Hirose, Kei; Yonemitsu, Kyoko; Ohishi, Yasuo
2016-12-01
We carried out melting experiments on Fe-Si alloys to 127 GPa in a laser-heated diamond-anvil cell (DAC). On the basis of textural and chemical characterizations of samples recovered from a DAC, a change in eutectic liquid composition in the Fe-FeSi binary system was examined with increasing pressure. The chemical compositions of coexisting liquid and solid phases were quantitatively determined with field-emission-type electron microprobes. The results demonstrate that silicon content in the eutectic liquid decreases with increasing pressure to less than 1.5 ± 0.1 wt.% Si at 127 GPa. If silicon is a single light element in the core, 4.5 to 12 wt.% Si is required in the outer core in order to account for its density deficit from pure iron. However, such a liquid core, whose composition is on the Si-rich side of the eutectic point, crystallizes less dense solid, CsCl (B2)-type phase at the inner core boundary (ICB). Our data also show that the difference in silicon concentration between coexisting solid and liquid is too small to account for the observed density contrast across the ICB. These indicate that silicon cannot be the sole light element in the core. Previous geochemical and cosmochemical arguments, however, strongly require ∼6 wt.% Si in the core. It is possible that the Earth's core originally included ∼6 wt.% Si but then became depleted in silicon by crystallizing SiO2 or MgSiO3.
Klukkert, Marten; Wu, Jian X; Rantanen, Jukka; Carstensen, Jens M; Rades, Thomas; Leopold, Claudia S
2016-07-30
Monitoring of tablet quality attributes in direct vicinity of the production process requires analytical techniques that allow fast, non-destructive, and accurate tablet characterization. The overall objective of this study was to investigate the applicability of multispectral UV imaging as a reliable, rapid technique for estimation of the tablet API content and tablet hardness, as well as determination of tablet intactness and the tablet surface density profile. One of the aims was to establish an image analysis approach based on multivariate image analysis and pattern recognition to evaluate the potential of UV imaging for automatized quality control of tablets with respect to their intactness and surface density profile. Various tablets of different composition and different quality regarding their API content, radial tensile strength, intactness, and surface density profile were prepared using an eccentric as well as a rotary tablet press at compression pressures from 20MPa up to 410MPa. It was found, that UV imaging can provide both, relevant information on chemical and physical tablet attributes. The tablet API content and radial tensile strength could be estimated by UV imaging combined with partial least squares analysis. Furthermore, an image analysis routine was developed and successfully applied to the UV images that provided qualitative information on physical tablet surface properties such as intactness and surface density profiles, as well as quantitative information on variations in the surface density. In conclusion, this study demonstrates that UV imaging combined with image analysis is an effective and non-destructive method to determine chemical and physical quality attributes of tablets and is a promising approach for (near) real-time monitoring of the tablet compaction process and formulation optimization purposes. Copyright © 2015 Elsevier B.V. All rights reserved.
Anion Exchange in II-VI Semiconducting Nanostructures via Atomic Templating.
Agarwal, Rahul; Krook, Nadia M; Ren, Ming-Liang; Tan, Liang Z; Liu, Wenjing; Rappe, Andrew M; Agarwal, Ritesh
2018-03-14
Controlled chemical transformation of nanostructures is a promising technique to obtain precisely designed novel materials, which are difficult to synthesize otherwise. We report high-temperature vapor-phase anion-exchange reactions to chemically transform II-VI semiconductor nanostructures (100-300 nm length scale) while retaining the single crystallinity, crystal structure, morphology, and even defect distribution of the parent material via atomic templating. The concept of atomic templating is employed to obtain kinetically controlled, thermodynamically metastable structural phases such as zincblende CdSe and CdS from zincblende CdTe upon complete chemical replacement of Te with Se or S. The underlying transformation mechanisms are explained through first-principles density functional theory calculations. Atomic templating is a unique path to independently tune materials' phase and composition at the nanoscale, allowing the synthesis of novel materials.
High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis
NASA Astrophysics Data System (ADS)
Röttger, Max; Domenech, Trystan; van der Weegen, Rob; Breuillac, Antoine; Nicolaÿ, Renaud; Leibler, Ludwik
2017-04-01
Windmills, cars, and dental restoration demand polymer materials and composites that are easy to process, assemble, and recycle while exhibiting outstanding mechanical, thermal, and chemical resistance. Vitrimers, which are polymer networks able to shuffle chemical bonds through exchange reactions, could address these demands if they were prepared from existing plastics and processed with fast production rates and current equipment. We report the metathesis of dioxaborolanes, which is rapid and thermally robust, and use it to prepare vitrimers from polymers as different as poly(methyl methacrylate), polystyrene, and high-density polyethylene that, although permanently cross-linked, can be processed multiple times by means of extrusion or injection molding. They show superior chemical resistance and dimensional stability and can be efficiently assembled. The strategy is applicable to polymers with backbones made of carbon-carbon single bonds.
Towards Resonant-State THz Laser Based on Strained p-Ge and SiGe QW Structures
2006-07-01
used. The relaxed compositionally graded Si1-xGex/Si(001) buffer layer with low threading dislocations density have been grown by chemical vapour ...observe in absorption experiments. 5. Intracenter optical transitions between hydrogenic levels in doped silicon, germanium, and gallium arsenid [P...34, b. Critical magnetic field Hc vs valence band splitting Δ. Lines show the calculated Hc(Δ) dependence. 14. The gallium -doped Ge crystals with
The first find of massive pyrolusite in a deep-water basin of the Sea of Japan
NASA Astrophysics Data System (ADS)
Astakhova, N. V.; S"edin, V. T.; Mozherovsky, A. V.; Lopatnikov, E. A.
2015-05-01
Data are presented on the chemical composition and the content of microelements including REEs in samples of pyrolusite, todorokite, and birnessite collected from a depth of 3500-3200 m by dredging a nameless elevation in the Central Basin of the Sea of Japan. The samples of pyrolusite are characterized by high hardness and density (3.35 g/cm3). The conclusion of their hydrothermal genesis is made.
NASA Astrophysics Data System (ADS)
Seko, Atsuto; Hayashi, Hiroyuki; Kashima, Hisashi; Tanaka, Isao
2018-01-01
Chemically relevant compositions (CRCs) and atomic arrangements of inorganic compounds have been collected as inorganic crystal structure databases. Machine learning is a unique approach to search for currently unknown CRCs from vast candidates. Herein we propose matrix- and tensor-based recommender system approaches to predict currently unknown CRCs from database entries of CRCs. Firstly, the performance of the recommender system approaches to discover currently unknown CRCs is examined. A Tucker decomposition recommender system shows the best discovery rate of CRCs as the majority of the top 100 recommended ternary and quaternary compositions correspond to CRCs. Secondly, systematic density functional theory (DFT) calculations are performed to investigate the phase stability of the recommended compositions. The phase stability of the 27 compositions reveals that 23 currently unknown compounds are newly found to be stable. These results indicate that the recommender system has great potential to accelerate the discovery of new compounds.
The nature of the MDI/wood bond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcinko, J.J.; Phanopoulos, C.; Newman, W.H.
1995-12-01
Polymeric diphenylmethane diisocyanate (pMDI) binders have been used in the wood composite industry for 20 years. Almost one half of the oriented strand board (OSB) manufactures in North America are taking advantage of its processing speed and superior board performance. MDI`s current use in Strandboard, MDF (medium density fiber board), LVL (laminated veneer lumber), Plywood, and Particleboard is wide spread. A fundamental understanding of the role of MIDI as a binder in these complex composites is essential for further processing optimization. Experimental data is presented which investigates the nature of the chemical bonding in wood composites. Solid state nuclear magneticmore » resonance (NMR) data is combined with data from thermal analysis and fluorescence microscopy to investigate the chemistry, penetration, and morphology of the isocyanate/wood interphase. Structure property relationships are developed and related to composite performance. The study contrasts isocyanate and phenol formaldehyde binder systems.« less
Modeling of Thermal Conductivity of CVI-Densified Composites at Fiber and Bundle Level
Guan, Kang; Wu, Jianqing; Cheng, Laifei
2016-01-01
The evolution of the thermal conductivities of the unidirectional, 2D woven and 3D braided composites during the CVI (chemical vapor infiltration) process have been numerically studied by the finite element method. The results show that the dual-scale pores play an important role in the thermal conduction of the CVI-densified composites. According to our results, two thermal conductivity models applicable for CVI process have been developed. The sensitivity analysis demonstrates the parameter with the most influence on the CVI-densified composites’ thermal conductivity is matrix cracking’s density, followed by volume fraction of the bundle and thermal conductance of the matrix cracks, finally by micro-porosity inside the bundles and macro-porosity between the bundles. The obtained results are well consistent with the reported data, thus our models could be useful for designing the processing and performance of the CVI-densified composites. PMID:28774130
Preliminary results seen with Rosetta/ROSINA: early cometary activity of 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Gasc, Sebastien; Altwegg, Kathrin; Jäckel, Annette; Rubin, Martin; Tzou, Chia-Yu; Wurz, Peter; Fiethe, Björn; Korth, Axel; Rème, Henri
2014-11-01
On 1 August 2014, the ROSETTA spacecraft approached the comet 67P/Churyumov-Gerasimenko (67P/CG) close enough to start its detailed characterisation. In this phase, the distance between Rosetta and 67P/CG is below 1’000 km, at a heliocentric distance of less than 3.6 AU. The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) [1] measures the composition of 67P/CG’s atmosphere and ionosphere, and additionally derives the bulk velocity of gas. ROSINA consists of the COmetary Pressure Sensor (COPS) and two mass spectrometers for the analysis of neutral gas and cometary ions in the coma of the comet: the Double Focusing Mass Spectrometer (DFMS) and the Reflectron Time Of Flight mass spectrometer (RTOF). Since beginning of August, the ROSINA sensors are continuously monitoring the density and chemical composition of the coma of 67P/CG. The goal of this work is not only to determine the abundance of major species like CO2, CO, and H2O, but also to analyse the development of the composition as a function of the heliocentric distance. We will present the first mass spectra of RTOF as well as the total density and the molecular composition measurements obtained at 67P/CG.
Gandhiraman, R P; Gubala, V; Le, N C H; Nam, Le Cao Hoai; Volcke, C; Doyle, C; James, B; Daniels, S; Williams, D E
2010-08-01
The performances of new polymeric materials with excellent optical properties and good machinability have led the biomedical diagnostics industry to develop cheap disposable biosensor platforms appropriate for point of care applications. Zeonor, a type of cycloolefin polymer (COP), is one such polymer that presents an excellent platform for biosensor chips. These polymer substrates have to be modified to have suitable physico-chemical properties for immobilizing proteins. In this work, we have demonstrated the amine functionalization of COP substrates, by plasma enhanced chemical vapour deposition (PECVD), through codeposition of ethylene diamine and 3-aminopropyltriethoxysilane precursors, for building chemistries on the plastic chip. The elemental composition, adhesion, ageing and reactivity of the plasma polymerized film were examined. The Si-O functionality present in amino silane contributed for a good interfacial adhesion of the coating to COP substrates and also acted as a network building layer for plasma polymerization. Wet chemical modification was then carried out on the amine functionalized chips to create chemically reactive isothiocyanate sites and protein repellent fluorinated sites on the same chip. The density of the reactive and repellent sites was altered by choosing appropriate mixtures of homofunctional phenyldiisothiocyanate (PDITC), pentafluoroisothiocyanate (5FITC) and phenylisothiocyanate (PITC) compounds. By tailoring the density of reactive binding sites and protein repellent sites, the non-specific binding of ssDNA has been decreased to a significant extent. Copyright 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, J; Penfold, S; Royal Adelaide Hospital, Adelaide, SA
2015-06-15
Purpose: To investigate the robustness of dual energy CT (DECT) and single energy CT (SECT) proton stopping power calibration techniques and quantify the associated errors when imaging a phantom differing in chemical composition to that used during stopping power calibration. Methods: The CIRS tissue substitute phantom was scanned in a CT-simulator at 90kV and 140kV. This image set was used to generate a DECT proton SPR calibration based on a relationship between effective atomic number and mean excitation energy. A SECT proton SPR calibration based only on Hounsfield units (HUs) was also generated. DECT and SECT scans of a secondmore » phantom of known density and chemical composition were performed. The SPR of the second phantom was calculated with the DECT approach (SPR-DECT),the SECT approach (SPR-SECT) and finally the known density and chemical composition of the phantom (SPR-ref). The DECT and SECT image sets were imported into the Pinnacle{sup 3} research release of proton therapy treatment planning. The difference in dose when exposed to a common pencil beam distribution was investigated. Results: SPR-DECT was found to be in better agreement with SPR-ref than SPR- SECT. The mean difference in SPR for all materials was 0.51% for DECT and 6.89% for SECT. With the exception of Teflon, SPR-DECT was found to agree with SPR-ref to within 1%. Significant differences in calculated dose were found when using the DECT image set or the SECT image set. Conclusion: The DECT calibration technique was found to be more robust to situations in which the physical properties of the test materials differed from the materials used during SPR calibration. Furthermore, it was demonstrated that the DECT and SECT SPR calibration techniques can Result in significantly different calculated dose distributions.« less
NASA Astrophysics Data System (ADS)
Santoni, F.; Silva Mosqueda, D. M.; Pumiglia, D.; Viceconti, E.; Conti, B.; Boigues Muñoz, C.; Bosio, B.; Ulgiati, S.; McPhail, S. J.
2017-12-01
An innovative experimental setup is used for in-depth and in-operando characterization of solid oxide fuel cell anodic processes. This work focuses on the heterogeneous reactions taking place on a 121 cm2 anode-supported cell (ASC) running with a H2, CH4, CO2, CO and steam gas mixture as a fuel, using an operating temperature of 923 K. The results have been obtained by analyzing the gas composition and temperature profiles along the anode surface in different conditions: open circuit voltage (OCV) and under two different current densities, 165 mA cm-2 and 330 mA cm-2, corresponding to 27% and 54% of fuel utilization, respectively. The gas composition and temperature analysis results are consistent, allowing to monitor the evolution of the principal chemical and electrochemical reactions along the anode surface. A possible competition between CO2 and H2O in methane internal reforming is shown under OCV condition and low current density values, leading to two different types of methane reforming: Steam Reforming and Dry Reforming. Under a current load of 40 A, the dominance of exothermic reactions leads to a more marked increase of temperature in the portion of the cell close to the inlet revealing that current density is not uniform along the anode surface.
Zhang, Jianyi; Pei, Chunlei; Schiano, Serena; Heaps, David; Wu, Chuan-Yu
2016-09-01
Roll compaction is a commonly used dry granulation process in pharmaceutical, fine chemical and agrochemical industries for materials sensitive to heat or moisture. The ribbon density distribution plays an important role in controlling properties of granules (e.g. granule size distribution, porosity and strength). Accurate characterisation of ribbon density distribution is critical in process control and quality assurance. The terahertz imaging system has a great application potential in achieving this as the terahertz radiation has the ability to penetrate most of the pharmaceutical excipients and the refractive index reflects variations in density and chemical compositions. The aim of this study is to explore whether terahertz pulse imaging is a feasible technique for quantifying ribbon density distribution. Ribbons were made of two grades of microcrystalline cellulose (MCC), Avicel PH102 and DG, using a roll compactor at various process conditions and the ribbon density variation was investigated using terahertz imaging and section methods. The density variations obtained from both methods were compared to explore the reliability and accuracy of the terahertz imaging system. An average refractive index is calculated from the refractive index values in the frequency range between 0.5 and 1.5THz. It is shown that the refractive index gradually decreases from the middle of the ribbon towards to the edges. Variations of density distribution across the width of the ribbons are also obtained using both the section method and the terahertz imaging system. It is found that the terahertz imaging results are in excellent agreement with that obtained using the section method, demonstrating that terahertz imaging is a feasible and rapid tool to characterise ribbon density distributions. Copyright © 2016 Elsevier B.V. All rights reserved.
Ponnusamy, Vinoth Kumar; Mani, Veerappan; Chen, Shen-Ming; Huang, Wan-Tran; Jen, Jen-Fon
2014-03-01
In this study, a simple and fast microwave assisted chemical reduction method for the preparation of graphene nanosheet/polyethyleneimine/gold nanoparticle (GNS/PEI/AuNP) composite was developed. PEI, a cationic polymer, was used both as a non-covalent functionalizing agent for the graphene oxide nanosheets (GONSs) through electrostatic interactions in the aqueous medium and also as a stabilizing agent for the formation of AuNPs on PEI wrapped GNSs. This preparation method involves a simple mixing step followed by a simultaneous microwave assisted chemical reduction of the GONSs and gold ions. The prepared composite exhibits the dispersion of high density AuNPs which were densely decorated on the large surface area of the PEI wrapped GNS. X-ray photoelectron spectroscopy, powder X-ray diffraction, high-resolution transmission electron microscopy, field-emission scanning electron microscopy with energy dispersive X-ray spectroscopy, and thermo-gravimetric analysis, were used to characterize the properties of the resultant composite. The prepared GNS/PEI/AuNP composite film exhibited excellent electrocatalytical activity towards the selective determination of dopamine in the presence of ascorbic acid, which showed potential application in electrochemical sensors. The applicability of the presented sensor was also demonstrated for the determination of dopamine in human urine samples. © 2013 Elsevier B.V. All rights reserved.
Monreal, Carlos M; Schnitzer, Morris
2011-01-01
The chemical and physical properties of raw biooils prevent their direct use in combustion engines. We processed raw pyrolytic biooil derived from chicken manure to yield a colorless refined biooil with diesel qualities. Chemical characterization of the refined biooil involved elemental and several spectroscopic analyses. The physical measurements employed were viscosity, density and heat of combustion. The elemental composition (% wt/wt) of the refined biooil was 82.7 % C, 15.3 % H, 0.2 % N and 1.8 % O, no S. Its viscosity was 0.006 Pa.s and a heat of combustion of 43 MJ kg(-1). The refined biooil fraction contains n-alkanes, ranging from n-C(14) to n-C(27), alkenes varying from C(10:1) to C(22:1), and long-chain alcohols. The refined biooil makes a good diesel fuel due to its chemical and physical properties.
The chemical evolution of molecular clouds
NASA Technical Reports Server (NTRS)
Iglesias, E.
1977-01-01
The nonequilibrium chemistry of dense molecular clouds (10,000 to 1 million hydrogen molecules per cu cm) is studied in the framework of a model that includes the latest published chemical data and most of the recent theoretical advances. In this model the only important external source of ionization is assumed to be high-energy cosmic-ray bombardment; standard charge-transfer reactions are taken into account as well as reactions that transfer charge from molecular ions to trace-metal atoms. Schemes are proposed for the synthesis of such species as NCO, HNCO, and CN. The role played by adsorption and condensation of molecules on the surface of dust grains is investigated, and effects on the chemical evolution of a dense molecular cloud are considered which result from varying the total density or the elemental abundances and from assuming negligible or severe condensation of gaseous species on dust grains. It is shown that the chemical-equilibrium time scale is given approximately by the depletion times of oxygen and nitrogen when the condensation efficiency is negligible; that this time scale is probably in the range from 1 to 4 million years, depending on the elemental composition and initial conditions in the cloud; and that this time scale is insensitive to variations in the total density.
Characterization of brines and evaporites of Lake Katwe, Uganda
NASA Astrophysics Data System (ADS)
Kasedde, Hillary; Kirabira, John Baptist; Bäbler, Matthäus U.; Tilliander, Anders; Jonsson, Stefan
2014-03-01
Lake Katwe brines and evaporites were investigated to determine their chemical, mineralogical and morphological composition. 30 brine samples and 3 solid salt samples (evaporites) were collected from different locations of the lake deposit. Several analytical techniques were used to determine the chemical composition of the samples including Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES), Inductively Coupled Plasma-Sector Field Mass Spectrometry (ICP-SFMS), ion chromatography, and potentiometric titration. The mineralogical composition and morphology of the evaporites was determined using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. Physical parameters of the lake brines such as density, electrical conductivity, pH, and salinity were also studied. The results show that the lake brines are highly alkaline and rich in Na+, Cl-, CO32-, SO42-, and HCO3- with lesser amounts of K+, Mg2+, Ca2+, Br-, and F- ions. The brines show an intermediate transition between Na-Cl and Na-HCO3 water types. Among the trace metals, the lake brines were found to be enriched in B, I, Sr, Fe, Mo, Ba, and Mn. The solid salts are composed of halite mixed with other salts such as hanksite, burkeite and trona. It was also observed that the composition of the salts varies considerably even within the same grades.
Mavadat, Maryam; Ghasemzadeh-Barvarz, Massoud; Turgeon, Stéphane; Duchesne, Carl; Laroche, Gaétan
2013-12-23
We investigated the effect of various plasma parameters (relative density of atomic N and H, plasma temperature, and vibrational temperature) and process conditions (pressure and H2/(N2 + H2) ratio) on the chemical composition of modified poly(tetrafluoroethylene) (PTFE). The plasma parameters were measured by means of near-infrared (NIR) and UV-visible emission spectroscopy with and without actinometry. The process conditions of the N2-H2 microwave discharges were set at various pressures ranging from 100 to 2000 mTorr and H2/(N2+H2) gas mixture ratios between 0 and 0.4. The surface chemical composition of the modified polymers was determined by X-ray photoelectron spectroscopy (XPS). A mathematical model was constructed using the partial least-squares regression algorithm to correlate the plasma information (process condition and plasma parameters as determined by emission spectroscopy) with the modified surface characteristics. To construct the model, a set of data input variables containing process conditions and plasma parameters were generated, as well as a response matrix containing the surface composition of the polymer. This model was used to predict the composition of PTFE surfaces subjected to N2-H2 plasma treatment. Contrary to what is generally accepted in the literature, the present data demonstrate that hydrogen is not directly involved in the defluorination of the surface but rather produces atomic nitrogen and/or NH radicals that are shown to be at the origin of fluorine atom removal from the polymer surface. The results show that process conditions alone do not suffice in predicting the surface chemical composition and that the plasma characteristics, which cannot be easily correlated with these conditions, should be considered. Process optimization and control would benefit from plasma diagnostics, particularly infrared emission spectroscopy.
Sensitivity analysis of the Gupta and Park chemical models on the heat flux by DSMC and CFD codes
NASA Astrophysics Data System (ADS)
Morsa, Luigi; Festa, Giandomenico; Zuppardi, Gennaro
2012-11-01
The present study is the logical continuation of a former paper by the first author in which the influence of the chemical models by Gupta and by Park on the computation of heat flux on the Orion and EXPERT capsules was evaluated. Tests were carried out by the direct simulation Monte Carlo code DS2V and by the computational fluiddynamic (CFD) code H3NS. DS2V implements the Gupta model, while H3NS implements the Park model. In order to compare the effects of the chemical models, the Park model was implemented also in DS2V. The results showed that DS2V and H3NS compute a different composition both in the flow field and on the surface, even using the same chemical model (Park). Furthermore DS2V computes, by the two chemical models, different compositions in the flow field but the same composition on the surface, therefore the same heat flux. In the present study, in order to evaluate the influence of these chemical models also in a CFD code, the Gupta and the Park models have been implemented in FLUENT. Tests by DS2V and by FLUENT, have been carried out for the EXPERT capsule at the altitude of 70 km and with velocity of 5000 m/s. The capsule experiences a hypersonic, continuum low density regime. Due to the energy level of the flow, the vibration equation, lacking in the original version of FLUENT, has been implemented. The results of the heat flux computation verify that FLUENT is quite sensitive to the Gupta and to the Park chemical models. In fact, at the stagnation point, the percentage difference between the models is about 13%. On the opposite the DS2V results by the two models are practically equivalent.
Chemically-bonded brick production based on burned clay by means of semidry pressing
NASA Astrophysics Data System (ADS)
Voroshilov, Ivan; Endzhievskaya, Irina; Vasilovskaya, Nina
2016-01-01
We presented a study on the possibility of using the burnt rocks of the Krasnoyarsk Territory for production of chemically-bonded materials in the form of bricks which are so widely used in multistory housing and private house construction. The radiographic analysis of the composition of burnt rock was conducted and a modifier to adjust the composition uniformity was identified. The mixing moisture content was identified and optimal amount at 13-15% was determined. The method of semidry pressing has been chosen. The process of obtaining moldings has been theoretically proved; the advantages of chemically-bonded wall materials compared to ceramic brick were shown. The production of efficient artificial stone based on material burnt rocks, which is comparable with conventionally effective ceramic materials or effective with cell tile was proved, the density of the burned clay-based cell tile makes up to 1630-1785 kg m3, with compressive strength of 13.6-20.0 MPa depending on the compression ratio and cement consumption, frost resistance index is F50, and the thermal conductivity in the masonry is λ = 0,459-0,546 W m * °C. The clear geometric dimensions of pressed products allow the use of the chemically-bonded brick based on burnt clay as a facing brick.
NASA Astrophysics Data System (ADS)
Shaw, G. E.; Quinn, P. K.
2008-12-01
We are measuring the latitudinal gradient and time variation of aerosol chemical composition across Alaska looking for drifts that might be attributable to alteration in sources and chemical signatures that might allow the identification of sources. Alaska is a very clean region in the sense that the state has a low population density with little polluting emission sources. However it "receives" anthropogenic chemical signals from areas upstream in the westerly's, such as from China, and impacts of Arctic Haze. The region also generates sometime copious amounts of aerosol from wildfire in its boreal forests and condensed compounds from gases emitted by its surrounding oceans. The time series of aerosol composition from this small network goes back about a decade and shows clearly the spring peaking of anthropogenic signal known as Arctic Haze. This signal peaks year after year in spring months at all stations, but is most concentrated at north most stations. On the other hand, a signal indicative of products from the ocean, mainly sulfate with large fractional amounts of MSA peaks, year after year, in the summer and is strongest at the lower latitudes. We have identified not only chemical signatures associated with wildfire smoke from wildfires in Alaska, but the changed signatures from wildfires in far away regions, from Mongolia for example.
Chemical Treatment of Waste Abaca for Natural Fiber-Reinforced Geopolymer Composite
Malenab, Roy Alvin J.; Ngo, Janne Pauline S.; Promentilla, Michael Angelo B.
2017-01-01
The use of natural fibers in reinforced composites to produce eco-friendly materials is gaining more attention due to their attractive features such as low cost, low density and good mechanical properties, among others. This work thus investigates the potential of waste abaca (Manila hemp) fiber as reinforcing agent in an inorganic aluminosilicate material known as geopolymer. In this study, the waste fibers were subjected to different chemical treatments to modify the surface characteristics and to improve the adhesion with the fly ash-based geopolymer matrix. Definitive screening design of experiment was used to investigate the effect of successive chemical treatment of the fiber on its tensile strength considering the following factors: (1) NaOH pretreatment; (2) soaking time in aluminum salt solution; and (3) final pH of the slurry. The results show that the abaca fiber without alkali pretreatment, soaked for 12 h in Al2(SO4)3 solution and adjusted to pH 6 exhibited the highest tensile strength among the treated fibers. Test results confirmed that the chemical treatment removes the lignin, pectin and hemicellulose, as well as makes the surface rougher with the deposition of aluminum compounds. This improves the interfacial bonding between geopolymer matrix and the abaca fiber, while the geopolymer protects the treated fiber from thermal degradation. PMID:28772936
Zhao, J P; Chen, J L; Zhao, G P; Zheng, M Q; Jiang, R R; Wen, J
2009-12-01
A study was conducted to evaluate the effects of varying nutrient density with constant ME:CP ratio on growing performance, carcass characteristics, and blood responses in 2 distinct broiler breeds of male chickens (Arbor Acres, a commercial line, and Beijing-You, a Chinese nonimproved line). Experimental diets were formulated with high, medium, or low nutrient densities for 3 growing phases. Starter diets (1 to 21 d) contained 23, 21, and 19% CP with 3,059, 2,793, and 2,527 kcal/kg of ME; grower diets (22 to 35 d) contained 21, 19, and 17% CP with 3,150, 2,850, and 2,550 kcal/kg of ME; and finisher diets (36 to 42 d for Arbor Acres and 36 to 91 d for Beijing-You) had 19, 17, and 15% CP with 3,230, 2,890, and 2,550 kcal/kg of ME. Male hatchlings (216 of each breed) were randomly assigned to 6 replicates of 12 birds in each treatment. Arbor Acres broilers had better (P < 0.001) BW gain, feed conversion ratio (FCR), and carcass yield, but had greater (P < 0.001) abdominal and carcass fat deposition. In both breeds, the higher nutrient density increased (P < 0.05) BW gain, protein efficiency ratio, and energy efficiency ratio while decreasing (P < 0.05) feed intake and FCR. The breed differences were increased for FCR, protein efficiency ratio, and energy efficiency ratio in the starter period and decreased for carcass chemical composition, respectively, by higher nutrient density. These findings indicate that 1) genetic improvement has a significant effect on broiler responses to dietary nutrient density, 2) performance differences between breeds are lessened with diets of low nutrient density, 3) carcass quality differences are less when birds were fed diets of high nutrient density, 4) carcass composition is hardly modified by nutrient density and both breeds exhibit similar metabolite responses to dietary concentrations, and 5) optimal diets are deduced for these breeds for the 3 growing phases.
Optimisation d'analyses de grenat almandin realisees au microscope electronique a balayage
NASA Astrophysics Data System (ADS)
Larose, Miguel
The electron microprobe (EMP) is considered as the golden standard for the collection of precise and representative chemical composition of minerals in rocks, but data of similar quality should be obtainable with a scanning electron microscope (SEM). This thesis presents an analytical protocol aimed at optimizing operational parameters of an SEM paired with an EDS Si(Li) X-ray detector (JEOL JSM-840A) for the imaging, quantitative chemical analysis and compositional X-ray maps of almandine garnet found in pelitic schists from the Canadian Cordillera. Results are then compared to those obtained for the same samples on a JEOL JXA 8900 EMP. For imaging purposes, the secondary electrons and backscattered electrons signals have been used to obtain topographic and chemical contrast of the samples, respectively. The SEM allows the acquisition of images with higher resolution than the EMP when working at high magnifications. However, for millimetric size minerals requiring very low magnifications, the EMP can usually match the imaging capabilities of an SEM. When optimizing images for both signals, the optimal operational parameters to show similar contrasts are not restricted to a unique combination of values. Optimization of operational parameters for quantitative chemical analysis resulted in analytical data with a similar precision and showing good correlation to that obtained with an EMP. Optimization of operational parameters for compositional X-ray maps aimed at maximizing the collected intensity within a pixel as well as complying with the spatial resolution criterion in order to obtain a qualitative compositional map representative of the chemical variation within the grain. Even though various corrections were needed, such as the shadow effect and the background noise removal, as well as the impossibility to meet the spatial resolution criterion because of the limited pixel density available on the SEM, the compositional X-ray maps show a good correlation with those obtained with the EMP, even for concentrations as low as 0,5%. When paired with a rigorous analytical protocol, the use of an SEM equipped with an EDS Si (Li) X-ray detector allows the collection of qualitative and quantitative results similar to those obtained with an EMP for all three of the applications considered.
NASA Astrophysics Data System (ADS)
Esteban, J. J.; Tubía, J. M.; Cuevas, J.; Gil Ibarguchi, J. I.
2012-04-01
Garnet porphyroblast textures and compositions, coupled to those of accompanying phases, are one of the most useful tools to determine the change of P-T conditions during metamorphism. This is currently done quantitatively through the use of conventional thermobarometry and pseudosection analysis, whose validity is conditioned by assumptions on the chemical mineral equilibrium (e.g. Spear, 1993). In the case of metapelites, the classic approach involves the use of core to rim compositions in zoned garnets and coexisting phases by electron microprobe analysis. Nonetheless, it is a high time consuming technique. As an alternative, we test the use of back-scattered electron (BSE) images and semi-quantitative energy-dispersive X-ray spectroscopy profiles obtained by scanning eletron microscope (SEM-EDX) to distinguish between clockwise and counterclockwise P-T paths. We applied these SEM techniques in samples of micaschist from the Yunquera Unit (Internal Zone, Betic Cordilleras, Spain) (Dürr, 1969). BSE images were obtained on selected areas covering the texturally and mineralogically most significant garnet-bearing portions, whereas semiquantitative profiles for Ca, Fe, Mg and Mn were obtained by means of EDX counting. Different types of chemical profiles were observed: (a) normal (growth) continuous zoning, (b) discontinuous, and (c) reverse continuous zoning. The patterns of chemical profiles are in agreement with changes in internal microstructures and density of inclusion. Two types of continuous growth zoning were identified in subspherical garnets bearing internal foliations. XMn and XFe ratios show the classical bell-shaped geometry while XCa increases in some cases and decreases in others towards rims. Discontinuous garnet profiles are typical of multistage garnet growth, which is outlined by the occurrence of alternating low- and high-inclusion density areas. Garnets with low-inclusion density cores show homogeneous core composition with an abrupt change towards the rims marked by a rapid increase in XCa and decrease in XFe and XMg ratios. Garnets with high-density inclusion cores depict XCa ratios at core similar to the previous ones and a sudden decrease towards the rims, whereas XFe and XMg continuously increase from core to rim. Reverse continuous profiles are typical of small idiomorphic garnets either enclosed or surrounding large muscovite porphyroblasts. These garnets show an increase in XMn and a decrease in XFe and XMg ratios from core to rim with minor variations in Ca. Taken as a whole, the chemical profiles reveal a generalized increase in Fe# [Fe/(Fe+Mg)] towards the rims that would attest to a temperature increase during the growth of the garnets. In addition, continuous and discontinuous variations in XCa ratios in large garnets suggest prograde garnet growth following a clockwise P-T path evolution, that is, a pressure increase followed by decrease under continuously increasing T conditions. As a conclusion, it is suggested that a method based mainly on the acquisition of BSE images and semiquantitative chemical profiles on selected minerals, and their interpretation using conventional thermo-barometric reasoning would be useful in the establishment of relative P-T paths that might help to save time and better identify the areas of interest for later detailed electron microprobe studies.
Electrodeposition of nickel-iridium alloy films from aqueous solutions
NASA Astrophysics Data System (ADS)
Wu, Wangping; Jiang, Jinjin; Jiang, Peng; Wang, Zhizhi; Yuan, Ningyi; Ding, Jianning
2018-03-01
Nickel-iridium (Ni-Ir) alloy films were electrodeposited from aqueous solutions on copper substrates under galvanostatic conditions. The effects of bath composition and deposition time on the faradaic efficiency (FE), partial current densities, chemical composition, morphology and crystallographic structure of the films were studied. The results show that the Ni-Ir alloys with Ir content as high as 37 at% and FE as high as 44% were obtained. Increase in concentration of citric acid had little or no effect on the composition of the alloys, but resulted in a significant decrease in FE and partial current densities of Ni and Ir. The FE and the partial current density of Ni slightly decreased with increasing Ir3+ concentration, however, Ir content increased while partial current density of Ir remained stable. The increase of Ni2+ concentration could result in the increase of the FE and the rate of Ni-Ir deposition, and even no cracks formed on the surface. The surface average roughness and root mean square roughness of the film were 6.8 ± 0.3 nm and 5.4 ± 0.3 nm, respectively. The mixture phases contained significant amounts of Ni oxides and a small amount of metallic Ni, Ir and Ir oxides on the surface. After argon ion sputter cleaning, the film was mainly composed of metallic Ni and Ir. The film consisted of the amorphous and nanocrystalline phases. The Ni content in the deposits was higher than that in the electrolyte, the co-deposition of Ni-Ir alloy was a normal deposition.
GLASS TRANSITION AND DEGREE OF CONVERSION OF A LIGHT-CURED ORTHODONTIC COMPOSITE
Sostena, Michela M. D. S.; Nogueira, Renata A.; Grandini, Carlos R.; Moraes, João Carlos Silos
2009-01-01
Objective: This study evaluated the glass transition temperature (Tg) and degree of conversion (DC) of a light-cured (Fill Magic) versus a chemically cured (Concise) orthodontic composite. Material and Methods: Anelastic relaxation spectroscopy was used for the first time to determine the Tg of a dental composite, while the DC was evaluated by infrared spectroscopy. The light-cured composite specimens were irradiated with a commercial LED light-curing unit using different exposure times (40, 90 and 120 s). Results: Fill Magic presented lower Tg than Concise (35-84°C versus 135°C), but reached a higher DC. Conclusions: The results of this study suggest that Fill Magic has lower Tg than Concise due to its higher organic phase content, and that when this light-cured composite is used to bond orthodontic brackets, a minimum energy density of 7.8 J/cm2 is necessary to reach adequate conversion level and obtain satisfactory adhesion. PMID:20027428
Tensile Properties and Microstructural Characterization of Hi-Nicalon SiC/RBSN Composites
NASA Technical Reports Server (NTRS)
Bhatt, Ramakrishna T.
1998-01-01
The room temperature physical and mechanical properties of silicon carbide fiber-reinforced reaction-bonded silicon nitride matrix composites (SiC/RBSN) were measured, and the composite microstructure was analyzed. The composites consist of nearly 24 vol% of aligned Hi-Nicalon SiC fiber yarns in a approx. 30 vol% porous silicon nitride matrix. The fiber yarns were coated by chemical vapor deposition with a 0.8 mm layer of boron nitride (BN) followed by a 0.2 mm layer of SiC. In the as-fabricated condition, both 1-D and 2-D composites exhibited high strength and graceful failure, and showed improved properties w en compared with unreinforced matrix of comparable density. No indication of reaction between the SiC fiber and BN coating was noticed, but the outer SiC layer reacted locally with the nitridation enhancing additive in the RBSN matrix. A comparison is made between the predicted and measured values of matrix cracking strength.
Tensile Properties and Microstructural Characterization of Hi-Nicalon SiC/RBSN Composites
NASA Technical Reports Server (NTRS)
Bhatt, Ramakrishna T.
1998-01-01
The room temperature physical and mechanical properties of silicon carbide fiber-reinforced reaction-bonded silicon nitride matrix composites (SiC/RBSN) were measured, and the composite microstructure was analyzed. The composites consist of nearly 24 vol% of aligned Hi-Nicalon SiC fiber yarns in a approx. 30 vo1% porous silicon nitride matrix. The fiber yarns were coated by chemical vapor deposition with a 0.8 micron layer of boron nitride (BN) followed by a 0.2 micron layer of SiC. In the as-fabricated condition, both 1-D and 2-D composites exhibited high strength and graceful failure, and showed improved properties when compared with unreinforced matrix of comparable density. No indication of reaction between the SiC fiber and BN coating was noticed, but the outer SiC layer reacted locally with the nitridation enhancing additive in the RBSN matrix. A comparison is made between the predicted and measured values of matrix cracking strength.
Ba, Ousmane M; Marmey, Pascal; Anselme, Karine; Duncan, Anthony C; Ponche, Arnaud
2016-09-01
A polystyrene surface (PS) was initially treated by cold nitrogen and oxygen plasma in order to incorporate in particular amine and hydroxyl functions, respectively. The evolution of the chemical nature of the surface was further monitored over a long time period (580 days) by chemical assay, XPS and contact angle measurements. Surface density quantification of primary amine groups was performed using three chemical amine assays: 4-nitrobenzaldehyde (4-NBZ), Sulfo succinimidyl 6-[3'(2 pyridyldithio)-pionamido] hexanoate (Sulfo-LC-SPDP) and iminothiolane (ITL). The results showed amine densities were in the range of 2 per square nanometer (comparable to the results described in the literature) after 5min of nitrogen plasma treatment. Over the time period investigated, chemical assays, XPS and contact angles suggest a drastic significant evolution of the chemical nature of the surface within the first two weeks. Beyond that time period and up to almost two years, nitrogen plasma modified substrates exhibits a slow and continuous oxidation whereas oxygen plasma modifed polystyrene surface is chemically stable after two weeks of storage. The latter appeared to "ease of" showing relatively mild changes within the one year period. Our results suggest that it may be preferable to wait for a chemical "stabilization" period of two weeks before subsequent covalent immobilization of proteins onto the surface. The originality of this work resides in the study of the plasma treated surface chemistry evolution over long periods of storage time (580 days) considerably exceeding those described in the literature. Copyright © 2016 Elsevier B.V. All rights reserved.
Nanoarchitectured graphene-based supercapacitors for next-generation energy-storage applications.
Salunkhe, Rahul R; Lee, Ying-Hui; Chang, Kuo-Hsin; Li, Jing-Mei; Simon, Patrice; Tang, Jing; Torad, Nagy L; Hu, Chi-Chang; Yamauchi, Yusuke
2014-10-20
Tremendous development in the field of portable electronics and hybrid electric vehicles has led to urgent and increasing demand in the field of high-energy storage devices. In recent years, many research efforts have been made for the development of more efficient energy-storage devices such as supercapacitors, batteries, and fuel cells. In particular, supercapacitors have great potential to meet the demands of both high energy density and power density in many advanced technologies. For the last half decade, graphene has attracted intense research interest for electrical double-layer capacitor (EDLC) applications. The unique electronic, thermal, mechanical, and chemical characteristics of graphene, along with the intrinsic benefits of a carbon material, make it a promising candidate for supercapacitor applications. This Review focuses on recent research developments in graphene-based supercapacitors, including doped graphene, activated graphene, graphene/metal oxide composites, graphene/polymer composites, and graphene-based asymmetric supercapacitors. The challenges and prospects of graphene-based supercapacitors are also discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Combinatorial Optimization of Heterogeneous Catalysts Used in the Growth of Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Cassell, Alan M.; Verma, Sunita; Delzeit, Lance; Meyyappan, M.; Han, Jie
2000-01-01
Libraries of liquid-phase catalyst precursor solutions were printed onto iridium-coated silicon substrates and evaluated for their effectiveness in catalyzing the growth of multi-walled carbon nanotubes (MWNTs) by chemical vapor deposition (CVD). The catalyst precursor solutions were composed of inorganic salts and a removable tri-block copolymer (EO)20(PO)70(EO)20 (EO = ethylene oxide, PO = propylene oxide) structure-directing agent (SDA), dissolved in ethanol/methanol mixtures. Sample libraries were quickly assayed using scanning electron microscopy after CVD growth to identify active catalysts and CVD conditions. Composition libraries and focus libraries were then constructed around the active spots identified in the discovery libraries to understand how catalyst precursor composition affects the yield, density, and quality of the nanotubes. Successful implementation of combinatorial optimization methods in the development of highly active, carbon nanotube catalysts is demonstrated, as well as the identification of catalyst formulations that lead to varying densities and shapes of aligned nanotube towers.
PEVC-FMDF for Large Eddy Simulation of Compressible Turbulent Flows
NASA Astrophysics Data System (ADS)
Nouri Gheimassi, Arash; Nik, Mehdi; Givi, Peyman; Livescu, Daniel; Pope, Stephen
2017-11-01
The filtered density function (FDF) closure is extended to a ``self-contained'' format to include the subgrid scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint ``pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF).'' In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via a set of stochastic differential equation (SDE) for each of the transport variables. This yields a self-contained SGS closure. For demonstration, LES is conducted of a turbulent shear flow with transport of a passive scalar. The consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.
Chen, Jinxiang; Wang, Yong; Gu, Chenglong; Liu, Jianxun; Liu, Yufu; Li, Min; Lu, Yun
2013-01-01
This study investigated the mechanisms, using microscopy and strength testing approaches, by which the addition of maleic anhydride grafted high-density polyethylene (MAPE) enhances the mechanical properties of basalt fiber-wood-plastic composites (BF-WPCs). The maximum values of the specific tensile and flexural strengths areachieved at a MAPE content of 5%–8%. The elongation increases rapidly at first and then continues slowly. The nearly complete integration of the wood fiber with the high-density polyethylene upon MAPE addition to WPC is examined, and two models of interfacial behavior are proposed. We examined the physical significance of both interfacial models and their ability to accurately describe the effects of MAPE addition. The mechanism of formation of the Model I interface and the integrated matrix is outlined based on the chemical reactions that may occur between the various components as a result of hydrogen bond formation or based on the principle of compatibility, resulting from similar polarity. The Model I fracture occurred on the outer surface of the interfacial layer, visually demonstrating the compatibilization effect of MAPE addition. PMID:28809285
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oji, L. N.; Reboul, S. H.
The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) Engineering (SRR-E) to provide sample characterization and analyses of Tank 51 sludge samples in support of Sludge Batch (SB) 10. The six Tank 51 sludge samples were sampled and delivered to SRNL in August of 2017. These six Tank 51 sludge samples, after undergoing physical characterizations which included rheology, weight percent total solid, dissolved solids and density measurements, were combined into one composite Tank 51 sample and analyzed for corrosion controls analytes, select radionuclides, chemical elements, density and weight percent total solids.
Effect of Interface Shape and Magnetic Field on the Microstructure of Bulk Ge:Ga
NASA Technical Reports Server (NTRS)
Cobb, S. D.; Szofran, F. R.; Volz, M. P.
1999-01-01
Thermal and compositional gradients induced during the growth process contribute significantly to the development of defects in the solidified boule. Thermal gradients and the solid-liquid interface shape can be greatly effected by ampoule material. Compositional gradients are strongly influenced by interface curvature and convective flow in the liquid. Results of this investigation illustrate the combined influences of interface shape and convective fluid flow. An applied magnetic field was used to reduce the effects of convective fluid flow in the electrically conductive melt during directional solidification. Several 8 mm diameter boules of Ga-doped Ge were grown at different field strengths, up to 5 Tesla, in four different ampoule materials. Compositional profiles indicate mass transfer conditions ranged from completely mixed to diffusion controlled. The influence of convection in the melt on the developing crystal microstructure and defect density was investigated as a function of field strength and ampoule material. Chemical etching and electron backscattered electron diffraction were used to map the crystal structure of each boule along the center plane. Dislocation etch pit densities were measured for each boule. Results show the influence of magnetic field strength and ampoule material on overall crystal quality.
Lee, Hyung-Ik; Park, Jong-Bong; Xianyu, Wenxu; Kim, Kihong; Chung, Jae Gwan; Kyoung, Yong Koo; Byun, Sunjung; Yang, Woo Young; Park, Yong Young; Kim, Seong Min; Cho, Eunae; Shin, Jai Kwang
2017-10-26
We report on the degradation process by water vapor of hydrogenated amorphous silicon oxynitride (SiON:H) films deposited by plasma-enhanced chemical vapor deposition at low temperature. The stability of the films was investigated as a function of the oxygen content and deposition temperature. Degradation by defects such as pinholes was not observed with transmission electron microscopy. However, we observed that SiON:H film degrades by reacting with water vapor through only interstitial paths and nano-defects. To monitor the degradation process, the atomic composition, mass density, and fully oxidized thickness were measured by using high-resolution Rutherford backscattering spectroscopy and X-ray reflectometry. The film rapidly degraded above an oxygen composition of ~27 at%, below a deposition temperature of ~150 °C, and below an mass density of ~2.15 g/cm 3 . This trend can be explained by the extents of porosity and percolation channel based on the ring model of the network structure. In the case of a high oxygen composition or low temperature, the SiON:H film becomes more porous because the film consists of network channels of rings with a low energy barrier.
NASA Astrophysics Data System (ADS)
Cousin, A.; Meslin, P. Y.; Dehouck, E.; David, G.; Rapin, W.; Schröder, S.; Forni, O.; Gasnault, O.; Williams, A. J.; Lasue, J.; Stein, N.; Ehlmann, B. L.; Payre, V.; Anderson, R. B.; Blaney, D. L.; Bridges, N. T.; Clark, B. C.; Frydenvang, J.; Gasda, P. J.; Johnson, J. R.; Lanza, N.; l'Haridon, J.; Mangold, N.; Maurice, S.; Newsom, H. E.; Ollila, A.; Pinet, P. C.; Sautter, V.; Thomas, N. H.; Wiens, R. C.
2017-12-01
In situ analysis of the chemical and mineralogical composition of the martian soil, and the determination of its volatile inventory, can provide important constraints on the bulk composition of the martian crust, on its igneous diversity, but also on the physical and chemical weathering processes that have altered its primary igneous constituents. Transport processes that have occurred over long geological time scales, however, make this analysis quite complex, as constituents from different unknown sources are mixed together, and may have been sorted according to grain size or density. A meteoritic contribution is also present. Disentangling the influence of each of these processes requires the use of different analytical techniques, at different spatial scales, and at different locations over the planet. We will present an overview of the soil analyses obtained over the past 5 years by the ChemCam instrument on board MSL/Curiosity. Their specificity lies in their small spatial scale ( 300 μm), close to the average grains' size. At this scale, chemical trends are observed, resulting from the mixing of different end-members with different grain sizes: coarse felsic grains of likely local origin, fine grains with a basaltic composition close to soil compositions observed at other landing sites, but distinct from local rocks, and a fine-grained, Si-poor, volatile-rich component probably associated with the XRD-amorphous component detected by the CheMin instrument. The thin ablation depth associated with each laser shot ( 1 μm) enables us to analyse the surface of the grains, which is characterized by a strong, but variable hydrogen signal. These analyses provide constraints on the composition of a possible alteration rind or coating present at their surface. An extensive, multi-instrument investigation of active dunes (barchan and linear dunes) has also been carried out, revealing slight chemical differences with surrounding soils, and a more homogeneous composition, although chemical variations as a function of grain size are observed, with coarser grains enriched in mafic minerals. These results illustrate the still ongoing influence of aeolian transport on the physical sorting of loose, unconsolidated sediments. These results also provide ground truth for orbital IR observations of aeolian bedforms.
Chemical Composition of the Semi-Volatile Grains of Comet 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Wurz, P.; Altwegg, K.; Balsiger, H. R.; Berthelier, J. J.; De Keyser, J.; Fiethe, B.; Fuselier, S. A.; Gasc, S.; Gombosi, T. I.; Korth, A.; Mall, U.; Reme, H.; Rubin, M.; Tzou, C. Y.
2017-12-01
Rosetta was in orbit of comet 67P/Churyumov-Gerasimenko from August 2014 to September 2016. On board is the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) experiment that has been continuously collecting data on the chemical composition and activity of the coma from 3.5 AU to pericentre at 1.24 AU and out again to 3.5 AU. ROSINA consists of two mass spectrometers, the Double Focusing Mass Spectrometer (DFMS) and the Reflectron-type Time-Of-Flight (RTOF), as well as the COmet Pressure Sensor (COPS). ROSINA recorded the neutral gas and thermal plasma in the comet's coma. The two mass spectrometers have high dynamic ranges and complement each other with high mass resolution, and high time resolution and large mass range. COPS measures total gas densities, bulk velocities, and gas temperatures. Occasionally, a dust grain of cometary origin enters the ion source of a ROSINA instrument where the volatile part evaporates since these ion sources are hot. The release of volatiles from cometary dust grains was observed with all three ROSINA instruments on several occasions. Because the volatile content of such a dust grain is completely evaporated after a few seconds, the RTOF instrument is best suited for the investigation of its chemical composition since complete mass spectra are recorded during this time. During the mission 9 dust grains were observed with RTOF during the October 2014 to July 2016 time period. It is estimated that these grains contain about 10-15 g of volatiles. The mass spectra were interpreted with a set of 75 molecules, with the major groups of chemical species being hydrocarbons, oxygenated hydrocarbons, nitrogen-bearing molecules, sulphur-bearing molecules, halogenated molecules and others. About 70% of these grains are depleted in water compared to the comet coma, thus, can be considered as semi-volatile dust grains, and the other about 30% are water grains. The chemical composition varies considerably from grain to grain, indicating large chemical heterogeneity at these scales. In contrast, the elemental abundances vary much less.
The calculation of thermophysical properties of nickel plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apfelbaum, E. M.
2015-09-15
The thermophysical properties of Nickel plasma have been calculated for the temperatures 10–60 kK and densities less than 1 g/cm{sup 3}. These properties are the pressure, internal energy, heat capacity, and the electronic transport coefficients (electrical conductivity, thermal conductivity, and thermal power). The thermodynamic values have been calculated by means of the chemical model, which also allows one to obtain the ionic composition of considered plasma. The composition has been used to calculate the electronic transport coefficients within the relaxation time approximation. The results of the present investigation have been compared with the calculations of other researchers and available data ofmore » measurements.« less
ATLAS-SOHO: Satellite Arrival and Uncrating, Uncrating of the Propulsion Unit and Electric Module
NASA Technical Reports Server (NTRS)
1995-01-01
The SOHO satellite, part of the International Solar-Terrestrial Physics Program (ISTP), is a solar observatory designed to study the structure, chemical composition, and dynamics of the solar interior. It will also observe the structure (density, temperature and velocity fields), dynamics and composition of the outer solar atmosphere, and the solar wind and its relation to the solar atmosphere. The spacecraft was launched on December 2, 1995. This video shows the unloading of the satellite from the transport plane at the Kennedy Space Station and the lowering to an awaiting flatbed truck. The video also shows the uncrating of the satellite, the propulsion unit and the electric module in a clean room.
High-coercivity FePt nanoparticle assemblies embedded in silica thin films.
Yan, Q; Purkayastha, A; Singh, A P; Li, H; Li, A; Ramanujan, R V; Ramanath, G
2009-01-14
The ability to process assemblies using thin film techniques in a scalable fashion would be a key to transmuting the assemblies into manufacturable devices. Here, we embed FePt nanoparticle assemblies into a silica thin film by sol-gel processing. Annealing the thin film composite at 650 degrees C transforms the chemically disordered fcc FePt phase into the fct phase, yielding magnetic coercivity values H(c)>630 mT. The positional order of the particles is retained due to the protection offered by the silica host. Such films with assemblies of high-coercivity magnetic particles are attractive for realizing new types of ultra-high-density data storage devices and magneto-composites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prokhorov, I. A., E-mail: igor.prokhorov@mail.ru; Voloshin, A. E.; Ralchenko, V. G.
2016-11-15
Comparative investigations of homoepitaxial diamond films with natural and modified isotopic compositions, grown by chemical vapor deposition (CVD) on type-Ib diamond substrates, are carried out using double-crystal X-ray diffractometry and topography. The lattice mismatch between the substrate and film is precisely measured. A decrease in the lattice constant on the order of (Δa/a){sub relax} ∼ (1.1–1.2) × 10{sup –4} is recorded in isotopically modified {sup 13}C (99.96%) films. The critical thicknesses of pseudomorphic diamond films is calculated. A significant increase in the dislocation density due to the elastic stress relaxation is revealed by X-ray topography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, L.; Tselev, A.; Jesse, S.
The correlation between local mechanical (elasto-plastic) and structural (composition) properties of coal presents significant fundamental and practical interest for coal processing and the development of rheological models of coal to coke transformations and for advancing novel approaches. Here, we explore the relationship between the local structural, chemical composition and mechanical properties of coal using a combination of confocal micro-Raman imaging and band excitation atomic force acoustic microscopy (BE-AFAM) for a bituminous coal. This allows high resolution imaging (10s of nm) of mechanical properties of the heterogeneous (banded) architecture of coal and correlating them to the optical gap, average crystallite size,more » the bond-bending disorder of sp2 aromatic double bonds and the defect density. This methodology hence allows the structural and mechanical properties of coal components (lithotypes, microlithotypes, and macerals) to be understood, and related to local chemical structure, potentially allowing for knowledge-based modelling and optimization of coal utilization processes.« less
NASA Astrophysics Data System (ADS)
Vaxenburg, Roman; Lifshitz, Efrat
2012-02-01
Tunability of energy levels and wavefunctions of carriers in colloidal quantum dots (CQDs) has a marked effect on numerous physical aspects, such as Coulomb interactions and charge separation, which in turn has a direct impact on the functioning of CQD-based opto-electronic devices. The electronic properties of CQDs are conventionally controlled by variation of their size. Here we demonstrate a theoretical approach to engineer the electronic properties of IV-VI CQDs by introducing an alloy composition in core and core/shell heterostructures, having the general chemical formula PbSexS1-x/PbSeyS1-y (0 ≤ x ≤ 1, 0 ≤ y ≤ 1), while maintaining a constant size. The theoretical model considered an effective mass anisotropy and smooth potential step at the core/shell interface. The model revealed the influence induced by variation of chemical composition and core-to-shell division on the band-gap energy, remote states’ density, internal charge separation, electron-hole Coulomb interaction, and optical transition oscillator strength.
Gamma rays shielding and sensing application of some rare earth doped lead-alumino-phosphate glasses
NASA Astrophysics Data System (ADS)
Kaur, Preet; Singh, Devinder; Singh, Tejbir
2018-03-01
Seven rare earth (Sm3+, Eu3+ and Nd3+) doped lead alumino phosphate glasses were prepared. The protective and sensing measures from gamma rays were analysed in terms of parameters viz. density (ρ), refractive index, energy band gap (Eg), mean free path (mfp), effective atomic number (Zeff) and buildup factors (energy absorption EABF as well as exposure buildup factor EBF). The energy dependent parameters (mfp, Zeff, EABF and EBF) were investigated in the energy region from 15 keV to 15 MeV. EABF and EBF values were observed to be maximum in the intermediate energy region. Besides, the EABF and EBF values for the prepared samples are shown to have strong dependence on chemical composition of the glass at lower energy, whereas, it is almost independent of chemical composition in higher energy region. The prepared glass samples are found to have potential applications in radiation shielding as well as radiation sensing, which further find numerous applications in the field of medicine and industry.
The molecular composition of dense interstellar clouds
NASA Technical Reports Server (NTRS)
Allen, M.; Robinson, G. W.
1977-01-01
Presented in this paper is an ab initio chemical model for dense interstellar clouds that incorporates 598 grain surface reactions, with small grains providing the reaction area. Gas-phase molecules are depleted through collisions with grains. The abundances of 372 chemical species are calculated as a function of time and are found to be of sufficient magnitude to explain most observations. Peak abundances are achieved on time scales of the order of 100,000 to 1 million years, depending on cloud density and kinetic temperature. The reaction rates for ion-molecule chemistry are approximately the same, indicating that surface and gas-phase chemistry may be coupled in certain regions. The composition of grain mantles is shown to be a function of grain radius. In certain grain-size ranges, large molecules containing two or more heavy atoms are more predominant than lighter 'ices' - H2O, NH3, and CH4. It is possible that absorption due to these large molecules in the mantle may contribute to the observed 3-micron band in astronomical spectra.
NASA Astrophysics Data System (ADS)
Boniatti, Rosiana; Bandeira, Aline L.; Crespi, Ângela E.; Aguzzoli, Cesar; Baumvol, Israel J. R.; Figueroa, Carlos A.
2013-09-01
The interaction of bio-ethanol on steel surfaces modified by plasma-assisted diffusion technologies is studied for the first time. The influence of surface microstructure and chemical composition on corrosion behaviour of AISI 4140 low-alloy steel in fuel-grade bio-ethanol was investigated. The steel surfaces were modified by plasma nitro-carburizing followed plasma oxidizing. X-ray diffraction, scanning electron microscopy, optical microscopy, X-ray dispersive spectroscopy, and glow-discharge optical emission spectroscopy were used to characterize the modified surface before and after immersion tests in bio-ethanol up to 77 days. The main corrosion mechanism is pit formation. The pit density and pit size were measured in order to quantify the corrosion resistance which was found to depend more strongly on microstructure and morphology of the oxide layer than on its thickness. The best corrosion protection was observed for samples post-oxidized at 480 °C and 90 min.
Radon diffusion coefficients in 360 waterproof materials of different chemical composition.
Jiránek, M; Kotrbatá, M
2011-05-01
This paper summarises the results of radon diffusion coefficient measurements in 360 common waterproof materials available throughout Europe. The materials were grouped into 26 categories according to their chemical composition. It was found that the diffusion coefficients of materials used for protecting houses against radon vary within eight orders from 10(-15) to 10(-8) m(2) s(-1). The lowest values were obtained for bitumen membranes with an Al carrier film and for ethylene vinyl acetate membranes. The highest radon diffusion coefficient values were discovered for sodium bentonite membranes, rubber membranes made of ethylene propylene diene monomer and polymer cement coatings. The radon diffusion coefficients for waterproofings widely used for protecting houses, i.e. flexible polyvinyl chloride, high-, low-density polyethylene, polypropylene and bitumen membranes, vary in the range from 3 × 10(-12) to 3 × 10(-11) m(2) s(-1). Tests were performed which confirmed that the radon diffusion coefficient is also an effective tool for verifying the air-tightness of joints.
Density functional theory in materials science.
Neugebauer, Jörg; Hickel, Tilmann
2013-09-01
Materials science is a highly interdisciplinary field. It is devoted to the understanding of the relationship between (a) fundamental physical and chemical properties governing processes at the atomistic scale with (b) typically macroscopic properties required of materials in engineering applications. For many materials, this relationship is not only determined by chemical composition, but strongly governed by microstructure. The latter is a consequence of carefully selected process conditions (e.g., mechanical forming and annealing in metallurgy or epitaxial growth in semiconductor technology). A key task of computational materials science is to unravel the often hidden composition-structure-property relationships using computational techniques. The present paper does not aim to give a complete review of all aspects of materials science. Rather, we will present the key concepts underlying the computation of selected material properties and discuss the major classes of materials to which they are applied. Specifically, our focus will be on methods used to describe single or polycrystalline bulk materials of semiconductor, metal or ceramic form.
Phase Analysis of Laser Direct Etching and Water Assisted Laser Combined Etching of SiC Ceramics
NASA Astrophysics Data System (ADS)
Yuan, Genfu; Cong, Qidong; Zhang, Chen; Xie, Bingbing
2017-12-01
In this study, to discover the etching mechanism of SiC ceramics under laser direct etching and water-jet assisted laser combined etching, the phenomena of substance change on the etched surface were investigated. Also, the rules of substance transfer in etching are discussed. The elemental content change and the phase change of the etching products on the etched surface were analyzed by energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), respectively. These studies showed a high amount of carbon black on the etched surface, because of the decomposition of SiC ceramics under the high-power-density laser irradiation. SiC decomposed to Si under the laser irradiation, and the subsequent chemical reaction of Si and O2 easily produced SiO2. The SiO2 on the etched surface melted and vaporized, whereas most of SiO2 was removed through splashing, changing the chemical composition of the etched surface. Following the water jet introduction, an increased amount of O existed on the combined etching surface, because the chemical reaction of SiC and H2O easily produced SiO2 under the high-power-density laser irradiation.
An estimate of the bulk viscosity of the hadronic medium
NASA Astrophysics Data System (ADS)
Sarwar, Golam; Chatterjee, Sandeep; Alam, Jane
2017-05-01
The bulk viscosity (ζ) of the hadronic medium has been estimated within the ambit of the Hadron Resonance Gas (HRG) model including the Hagedorn density of states. The HRG thermodynamics within a grand canonical ensemble provides the mean hadron number as well as its fluctuation. The fluctuation in the chemical composition of the hadronic medium in the grand canonical ensemble can result in non-zero divergence of the hadronic fluid flow velocity, allowing us to estimate the ζ of the hadronic matter up to a relaxation time. We study the influence of the hadronic spectrum on ζ and find its correlation with the conformal symmetry breaking measure, ε -3P. We estimate ζ along the contours with constant, S/{N}B (total entropy/net baryon number) in the T-μ plane (temperature-baryonic chemical potential) for S/{N}B=30,45 and 300. We also assess the value of ζ on the chemical freeze-out curve for various centers of mass energy (\\sqrt{{s}{NN}}) and find that the bulk viscosity to entropy density ratio, \\zeta /s is larger in the energy range of the beam energy scan program of RHIC, low energy SPS run, AGS, NICA and FAIR, than LHC energies.
2013-05-31
21 Figure 15. Example of a Possible Foreign Object Observed in a Small Number of Slides. This Object May Be a Hair, Thread, or Plant Material that...h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene 16 Distribution A. Approved for public release...material during sampling. These were subject to particle analysis as described above in order to estimate the coverage ratio and particle density of
Demonstration/Validation of a Surface Cleaning Control to Mitigate Storm Water Metal Contaminants
2014-04-01
added to a pre- weighed 125-ml low density polyethylene (LDPE) bottle. The particles were digested with 1.0 ml of concentrated trace metal grade (TMG...Sorenson. 2005. “ Residential Street-Dirt Accumulation Rates and Chemical Composition, and Removal Efficiencies by Mechanical- and Vacuum-Type...Bay, and M. Kayhanian. 2003. “A Review of the Contaminants and Toxicity Associated with Particles in Stormwater Runoff.” Caltrans CTSW-RT-03-059.73.15
Fabrication of thorium bearing carbide fuels
Gutierrez, R.L.; Herbst, R.J.; Johnson, K.W.R.
Thorium-uranium carbide and thorium-plutonium carbide fuel pellets have been fabricated by the carbothermic reduction process. Temperatures of 1750/sup 0/C and 2000/sup 0/C were used during the reduction cycle. Sintering temperatures of 1800/sup 0/C and 2000/sup 0/C were used to prepare fuel pellet densities of 87% and > 94% of theoretical, respectively. The process allows the fabrication of kilogram quantities of fuel with good reproductibility of chemical and phase composition.
Substructure of the inner core of the Earth.
Herndon, J M
1996-01-01
The rationale is disclosed for a substructure within the Earth's inner core, consisting of an actinide subcore at the center of the Earth, surrounded by a subshell composed of the products of nuclear fission and radioactive decay. Estimates are made as to possible densities, physical dimensions, and chemical compositions. The feasibility for self-sustaining nuclear fission within the subcore is demonstrated, and implications bearing on the structure and geodynamic activity of the inner core are discussed. PMID:11607625
Wang, B.; Luo, Y.; Myung, K. H.; Liu, J. X.
2014-01-01
This study aimed to investigate the effects of storage duration and temperature on the characteristics of wet brewers grains (WBG) as feeds for ruminant animals. Four storage temperatures (5°C, 15°C, 25°C, and 35°C) and four durations (0, 1, 2, and 3 d) were arranged in a 4×4 factorial design. Surface spoilage, chemical composition and microorganism density were analyzed. An in vitro gas test was also conducted to determine the pH, ammonia-nitrogen and volatile fatty acid (VFA) concentrations after 24 h incubation. Surface spoilage was apparent at higher temperatures such as 25°C and 35°C. Nutrients contents decreased concomitantly with prolonged storage times (p<0.01) and increasing temperatures (p<0.01). The amount of yeast and mold increased (p<0.05) with increasing storage times and temperatures. As storage temperature increased, gas production, in vitro disappearance of organic matter, pH, ammonia nitrogen and total VFA from the WBG in the rumen decreased (p<0.01). Our results indicate that lower storage temperature promotes longer beneficial use period. However, when storage temperature exceeds 35°C, WBG should be used within a day to prevent impairment of rumen fermentation in the subtropics such as Southeast China, where the temperature is typically above 35°C during summer. PMID:25050021
NASA Astrophysics Data System (ADS)
Steffens, M.; Kölbl, A.; Kögel-Knabner, I.
2009-04-01
Grazing is one of the most important factors that may reduce soil organic matter (SOM) stocks and subsequently deteriorate aggregate stability in grassland topsoils. Land use management and grazing reduction are assumed to increase the input of OM, improve the soil aggregation and change species composition of vegetation (changes depth of OM input). Many studies have evaluated the impact of grazing cessation on SOM quantity. But until today little is known about the impact of grazing cessation on the chemical quality of SOM in density fractions, aggregate size classes and different horizons. The central aim of this study was to analyse the quality of SOM fractions in differently sized aggregates and horizons as affected by increased inputs of organic matter due to grazing exclusion. We applied a combined aggregate size, density and particle size fractionation procedure to sandy steppe topsoils with different organic matter inputs due to different grazing intensities (continuously grazed = Cg, winter grazing = Wg, ungrazed since 1999 = Ug99, ungrazed since 1979 = Ug79). Three different particulate organic matter (POM; free POM, in aggregate occluded POM and small in aggregate occluded POM) and seven mineral-associated organic matter fractions were separated for each of three aggregate size classes (coarse = 2000-6300 m, medium = 630-2000 m and fine =
Li, Keyan; Xie, Hui; Liu, Jun; Ma, Zengsheng; Zhou, Yichun; Xue, Dongfeng
2013-10-28
Toward engineering high performance anode alloys for Li-ion batteries, we proposed a useful method to quantitatively estimate the bulk modulus of binary alloys in terms of metallic electronegativity (EN), alloy composition and formula volume. On the basis of our proposed potential viewpoint, EN as a fundamental chemistry concept can be extended to be an important physical parameter to characterize the mechanical performance of Li-Si and Li-Sn alloys as anode materials for Li-ion batteries. The bulk modulus of binary alloys is linearly proportional to the combination of average metallic EN and atomic density of alloys. We calculated the bulk moduli of Li-Si and Li-Sn alloys with different Li concentrations, which can agree well with the reported data. The bulk modulus of Li-Si and Li-Sn alloys decreases with increasing Li concentration, leading to the elastic softening of the alloys, which is essentially caused by the decreased strength of constituent chemical bonds in alloys from the viewpoint of EN. This work provides a deep understanding of mechanical failure of Si and Sn anodes for Li-ion batteries, and permits the prediction of the composition dependent bulk modulus of various lithiated alloys on the basis of chemical formula, metallic EN and cell volume (or alloy density), with no structural details required.
Thermal inertia and radar reflectivity of the Martian north polar ERG: Low-density aggregates
NASA Technical Reports Server (NTRS)
Herkenhoff, K. E.
1993-01-01
The north polar layered deposits on Mars appear to be the source of the dark material that comprises the north polar erg. The physical properties and chemical composition of the erg material therefore have important implications for the origin and evolution of the Martian layered deposits. Viking bistatic radar and infrared thermal mapping (IRTM) data indicate that the bulk density of the erg material is lower than that of the average Martian surface. These data are consistent with hypotheses involving formation of filamentary sublimation residue (FSR) particles from erosion of the layered deposits. The color and albedo of the erg and of the layered deposits, and the presence of magnetic material on Mars, suggest that the dark material is composed of low-density aggregates of magnetic dust grains, perhaps similar to FSR particles created in laboratory experiments.
XAFSmass: a program for calculating the optimal mass of XAFS samples
NASA Astrophysics Data System (ADS)
Klementiev, K.; Chernikov, R.
2016-05-01
We present a new implementation of the XAFSmass program that calculates the optimal mass of XAFS samples. It has several improvements as compared to the old Windows based program XAFSmass: 1) it is truly platform independent, as provided by Python language, 2) it has an improved parser of chemical formulas that enables parentheses and nested inclusion-to-matrix weight percentages. The program calculates the absorption edge height given the total optical thickness, operates with differently determined sample amounts (mass, pressure, density or sample area) depending on the aggregate state of the sample and solves the inverse problem of finding the elemental composition given the experimental absorption edge jump and the chemical formula.
Corrosion resistant metallic glasses for biosensing applications
NASA Astrophysics Data System (ADS)
Sagasti, Ariane; Lopes, Ana Catarina; Lasheras, Andoni; Palomares, Verónica; Carrizo, Javier; Gutierrez, Jon; Barandiaran, J. Manuel
2018-04-01
We report the fabrication by melt spinning, the magnetic and magnetoelastic characterization and corrosion behaviour study (by potentiodynamic methods) of an Fe-based, Fe-Ni-Cr-Si-B metallic glass to be used as resonant platform for biological and chemical detection purposes. The same study has been performed in Fe-Co-Si-B (with excellent magnetoelastic properties) and Fe-Ni-B (with good corrosion properties due to the substitution of Co by Ni) composition amorphous alloys. The well-known, commercial metallic glass with high corrosion resistance Metglas 2826MB®(Fe40Ni38Mo4B18), widely used for such biological and chemical detection purposes, has been also fully characterized and used as reference. For our Fe-Ni-Cr-Si-B alloy, we have measured values of magnetization (1.22 T), magnetostriction (11.5 ppm) and ΔE effect (6.8 %) values, as well as corrosion potential (-0.25 V), current density (2.54 A/m2), and polarization resistance (56.22 Ω.cm2) that make this composition very promising for the desired biosensing applications. The obtained parameters from our exhaustive characterization are compared with the values obtained for the other different composition metallic glasses and discussed in terms of Ni and Cr content.
Investigation into the use of microwave sensors to monitor particulate manufacturing processes
NASA Astrophysics Data System (ADS)
Austin, John Samuel, III
Knowledge of a material's properties in-line during manufacture is of critical importance to many industries, including the pharmaceutical industry, and can be used for either process or quality control. Different microwave sensor configurations were tested to determine both the moisture content and the bulk density in pharmaceutical powders during processing on-line. Although these parameters can significantly affect a material's flowability, compressibility, and cohesivity, in the presence of blends, the picture is incomplete. Due to the ease with which particulate blends tend to segregate, blend uniformity and chemical composition are two critical parameters in nearly all solids manufacturing industries. The prevailing wisdom has been that microwave sensors are not capable of or sensitive enough to measure the relative concentrations of components in a blend. Consequently, it is common to turn to near infrared sensing to determine material composition on-line. In this study, a novel microwave sensor was designed and utilized to determine, separately, the concentrations of different components in a blend of pharmaceutical powders. This custom microwave sensor was shown to have comparable accuracy to the state-of-the-art for both chemical composition and moisture content determination.
Modeling the Elastic Modulus of 2D Woven CVI SiC Composites
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.
2006-01-01
The use of fiber, interphase, CVI SiC minicomposites as structural elements for 2D-woven SiC fiber reinforced chemically vapor infiltrated (CVI) SiC matrix composites is demonstrated to be a viable approach to model the elastic modulus of these composite systems when tensile loaded in an orthogonal direction. The 0deg (loading direction) and 90deg (perpendicular to loading direction) oriented minicomposites as well as the open porosity and excess SiC associated with CVI SiC composites were all modeled as parallel elements using simple Rule of Mixtures techniques. Excellent agreement for a variety of 2D woven Hi-Nicalon(TradeMark) fiber-reinforced and Sylramic-iBN reinforced CVI SiC matrix composites that differed in numbers of plies, constituent content, thickness, density, and number of woven tows in either direction (i.e, balanced weaves versus unbalanced weaves) was achieved. It was found that elastic modulus was not only dependent on constituent content, but also the degree to which 90deg minicomposites carried load. This depended on the degree of interaction between 90deg and 0deg minicomposites which was quantified to some extent by composite density. The relationships developed here for elastic modulus only necessitated the knowledge of the fractional contents of fiber, interphase and CVI SiC as well as the tow size and shape. It was concluded that such relationships are fairly robust for orthogonally loaded 2D woven CVI SiC composite system and can be implemented by ceramic matrix composite component modelers and designers for modeling the local stiffness in simple or complex parts fabricated with variable constituent contents.
Carbon Nanotubes for Supercapacitor
2010-01-01
As an electrical energy storage device, supercapacitor finds attractive applications in consumer electronic products and alternative power source due to its higher energy density, fast discharge/charge time, low level of heating, safety, long-term operation stability, and no disposable parts. This work reviews the recent development of supercapacitor based on carbon nanotubes (CNTs) and their composites. The purpose is to give a comprehensive understanding of the advantages and disadvantages of carbon nanotubes-related supercapacitor materials and to find ways for the improvement in the performance of supercapacitor. We first discussed the effects of physical and chemical properties of pure carbon nanotubes, including size, purity, defect, shape, functionalization, and annealing, on the supercapacitance. The composites, including CNTs/oxide and CNTs/polymer, were further discussed to enhance the supercapacitance and keep the stability of the supercapacitor by optimally engineering the composition, particle size, and coverage. PMID:20672061
Influence of Constituents on Creep Properties of SiC/SiC Composites
NASA Technical Reports Server (NTRS)
Bhatt, R.; DiCarlo, J.
2016-01-01
SiC-SiC composites are being considered as potential candidate materials for next generation turbine components such as combustor liners, nozzle vanes and blades because of their low density, high temperature capability, and tailorable mechanical properties. These composites are essentially fabricated by infiltrating matrix into a stacked array of fibers or fiber preform by one or a combination of manufacturing methods such as, Melt Infiltration (MI) of molten silicon metal, Chemical Vapor Infiltration (CVI), Polymer Infiltration and Pyrolysis (PIP). To understand the influence of constituents, the SiC-SiC composites fabricated by MI, CVI, and PIP methods were creep tested in air between 12000 and 14500 degrees Centigrade for up to 500 hours. The failed specimens were analyzed under a scanning electron microscope to assess damage mechanisms. Also, knowing the creep deformation parameters of the fiber and the matrix under the testing conditions, the creep behavior of the composites was modeled and compared with the measured data. The implications of the results on the long term durability of these composites will be discussed.
An LES-PBE-PDF approach for modeling particle formation in turbulent reacting flows
NASA Astrophysics Data System (ADS)
Sewerin, Fabian; Rigopoulos, Stelios
2017-10-01
Many chemical and environmental processes involve the formation of a polydispersed particulate phase in a turbulent carrier flow. Frequently, the immersed particles are characterized by an intrinsic property such as the particle size, and the distribution of this property across a sample population is taken as an indicator for the quality of the particulate product or its environmental impact. In the present article, we propose a comprehensive model and an efficient numerical solution scheme for predicting the evolution of the property distribution associated with a polydispersed particulate phase forming in a turbulent reacting flow. Here, the particulate phase is described in terms of the particle number density whose evolution in both physical and particle property space is governed by the population balance equation (PBE). Based on the concept of large eddy simulation (LES), we augment the existing LES-transported probability density function (PDF) approach for fluid phase scalars by the particle number density and obtain a modeled evolution equation for the filtered PDF associated with the instantaneous fluid composition and particle property distribution. This LES-PBE-PDF approach allows us to predict the LES-filtered fluid composition and particle property distribution at each spatial location and point in time without any restriction on the chemical or particle formation kinetics. In view of a numerical solution, we apply the method of Eulerian stochastic fields, invoking an explicit adaptive grid technique in order to discretize the stochastic field equation for the number density in particle property space. In this way, sharp moving features of the particle property distribution can be accurately resolved at a significantly reduced computational cost. As a test case, we consider the condensation of an aerosol in a developed turbulent mixing layer. Our investigation not only demonstrates the predictive capabilities of the LES-PBE-PDF model but also indicates the computational efficiency of the numerical solution scheme.
Yang, Yang; Xu, Di; Wu, Qingyong; Diao, Peng
2016-01-01
Solar powered hydrogen evolution reaction (HER) is one of the key reactions in solar-to-chemical energy conversion. It is desirable to develop photocathodic materials that exhibit high activity toward photoelectrochemical (PEC) HER at more positive potentials because a higher potential means a lower overpotential for HER. In this work, the Cu2O/CuO bilayered composites were prepared by a facile method that involved an electrodeposition and a subsequent thermal oxidation. The resulting Cu2O/CuO bilayered composites exhibited a surprisingly high activity and good stability toward PEC HER, expecially at high potentials in alkaline solution. The photocurrent density for HER was 3.15 mA·cm−2 at the potential of 0.40 V vs. RHE, which was one of the two highest reported at the same potential on copper-oxide-based photocathode. The high photoactivity of the bilayered composite was ascribed to the following three advantages of the Cu2O/CuO heterojunction: (1) the broadened light absorption band that made more efficient use of solar energy, (2) the large space-charge-region potential that enabled a high efficiency for electron-hole separation, and (3) the high majority carrier density that ensured a faster charge transportation rate. This work reveals the potential of the Cu2O/CuO bilayered composite as a promising photocathodic material for solar water splitting. PMID:27748380
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ping; Howard, Bret H.
Thermal pretreatment of biomass by torrefaction and low temperature pyrolysis has the potential for generating high quality and more suitable fuels. To utilize a model to describe the complex and dynamic changes taking place during these two treatments for process design, optimization and scale-up, detailed data is needed on the property evolution during treatment of well-defined individual biomass particles. The objectives of this study are to investigate the influence of thermal pretreatment temperatures on wood biomass biochemical compositions, physical properties and microstructure. Wild cherry wood was selected as a model biomass and prepared for this study. The well-defined wood particlemore » samples were consecutively heated at 220, 260, 300, 350, 450 and 550 °C for 0.5 h under nitrogen. Untreated and treated samples were characterized for biochemical composition changes (cellulose, hemicellulose, and lignin) by thermogravimetric analyzer (TGA), physical properties (color, dimensions, weight, density and grindablity), chemical property (proximate analysis and heating value) and microstructural changes by scanning electron microscopy (SEM). Hemicellulose was mostly decomposed in the samples treated at 260 and 300 °C and resulted in the cell walls weakening resulting in improved grindability. The dimensions of the wood were reduced in all directions and shrinkage increased with increased treatment temperature and weight loss. With increased treatment temperature, losses of weight and volume increased and bulk density decreased. The low temperature pyrolyzed wood samples improved solid fuel property with high fuel ratio, which are close to lignite/bituminous coal. Morphology of the wood remained intact through the treatment range but the cell walls were thinner. Lastly, these results will improve the understanding of the property changes of the biomass during pretreatment and will help to develop models for process simulation and potential application of the treated biomass.« less
Wang, Ping; Howard, Bret H.
2017-12-23
Thermal pretreatment of biomass by torrefaction and low temperature pyrolysis has the potential for generating high quality and more suitable fuels. To utilize a model to describe the complex and dynamic changes taking place during these two treatments for process design, optimization and scale-up, detailed data is needed on the property evolution during treatment of well-defined individual biomass particles. The objectives of this study are to investigate the influence of thermal pretreatment temperatures on wood biomass biochemical compositions, physical properties and microstructure. Wild cherry wood was selected as a model biomass and prepared for this study. The well-defined wood particlemore » samples were consecutively heated at 220, 260, 300, 350, 450 and 550 °C for 0.5 h under nitrogen. Untreated and treated samples were characterized for biochemical composition changes (cellulose, hemicellulose, and lignin) by thermogravimetric analyzer (TGA), physical properties (color, dimensions, weight, density and grindablity), chemical property (proximate analysis and heating value) and microstructural changes by scanning electron microscopy (SEM). Hemicellulose was mostly decomposed in the samples treated at 260 and 300 °C and resulted in the cell walls weakening resulting in improved grindability. The dimensions of the wood were reduced in all directions and shrinkage increased with increased treatment temperature and weight loss. With increased treatment temperature, losses of weight and volume increased and bulk density decreased. The low temperature pyrolyzed wood samples improved solid fuel property with high fuel ratio, which are close to lignite/bituminous coal. Morphology of the wood remained intact through the treatment range but the cell walls were thinner. Lastly, these results will improve the understanding of the property changes of the biomass during pretreatment and will help to develop models for process simulation and potential application of the treated biomass.« less
NASA Astrophysics Data System (ADS)
Khan, A.; Boschi, L.; Connolly, J. A. D.
2009-09-01
We invert global observations of fundamental and higher-order Love and Rayleigh surface wave dispersion data jointly at selected locations for 1-D radial profiles of Earth's mantle composition, thermal state, and anisotropic structure using a stochastic sampling algorithm. Considering mantle compositions as equilibrium assemblages of basalt and harzburgite, we employ a self-consistent thermodynamic method to compute their phase equilibria and bulk physical properties (P, S wave velocity and density). Combining these with locally varying anisotropy profiles, we determine anisotropic P and S wave velocities to calculate dispersion curves for comparison with observations. Models fitting data within uncertainties provide us with a range of profiles of composition, temperature, and anisotropy. This methodology presents an important complement to conventional seismic tomography methods. Our results indicate radial and lateral gradients in basalt fraction, with basalt depletion in the upper and enrichment of the upper part of the lower mantle, in agreement with results from geodynamical calculations, melting processes at mid-ocean ridges, and subduction of chemically stratified lithosphere. Compared with preliminary reference Earth model (PREM) and seismic tomography models, our velocity models are generally faster in the upper transition zone (TZ) and slower in the lower TZ, implying a steeper velocity gradient. While less dense than PREM, density gradients in the TZ are also steeper. Mantle geotherms are generally adiabatic in the TZ, whereas in the upper part of the lower mantle, stronger lateral variations are observed. The retrieved anisotropy structure agrees with previous studies indicating positive as well as laterally varying upper mantle anisotropy, while there is little evidence for anisotropy in and below the TZ.
Episodic large-scale overturn of two-layer mantles in terrestrial planets
NASA Astrophysics Data System (ADS)
Herrick, D. L.; Parmentier, E. M.
1994-01-01
It is usually assumed that the upper and lower mantles of a chemically stratified planet are arranged so that the upper mantle is chemically less dense and that these layers convect separately. Possible buoyant overturn of the two mantle layers has not previously been considered. Such overturn would initially occur when thermal expansion of a chemically denser lower mantle more than offsets the compositional density difference between the layers, reversing the relative sense of buoyancy. Once overturn has occurred, the chemically denser, but thermally less dense upper mantle cools more efficiently than the lower mantle and loses its relative thermal buoyancy. If mixing is slow, this leads to repeated overturns that result in thermal histories that differ radically from those obtained without this large-scale overturning. Thermal evolution calculations, for a two-layer mantle over a wide range of parameter space, show that large-scale overturn occurs cyclically with a well-defined period. This period depends most strongly on the viscosity of the lower mantle, to which it is approximately proportional. Geologically interesting overturn periods on the order of 107 to 109 years result for lower mantle viscosities of 1022 to 1024 Pa s for the Earth and Venus, and 1021 to 1023 Pa s for Mars. The mantles of Mercury and the Moon are too thin to permit two-layer convection, and therefore the model is not appropriate for them. Overturn cannot occur on Earth or Venus if the compositional density difference between the layers exceeds about 4%, or on Mars if it exceeds about 2%. Large-scale mantle overturn could have significant tectonic consequences such as the initiation of a new plate tectonic cycle on the Earth or a major resurfacing event on Mars or Venus. Such episodic events in the evolution of a planet are not easily explained by whole mantle thermal convection.
Episodic large-scale overturn of two-layer mantles in terrestrial planets
NASA Technical Reports Server (NTRS)
Herrick, David L.; Parmentier, E. M.
1994-01-01
It is usually assumed that the upper and lower mantles of a chemically stratified planet are arranged so that the upper mantle is chemically less dense and that these layers convect separately. Possible buoyant overturn of the two mantle layers has not previously been considered. Such overturn would initially occur when thermal expansion of a chemically denser lower mantle more than offsets the compositional density difference between the layers, reversing the relative sense of buoyancy. Once overturn has occurred, the chemically denser, but thermally less dense upper mantle cools more efficiently than the lower mantle and loses its relative thermal buoyancy. If mixing is slow, this leads to repeated overturns that result in thermal histories that differ radically from those obtained without this large-scale overturning. Thermal evolution calculations, for a two-layer mantle over a wide range of parameter space, show that large-scale overturn occurs cyclically with a well-defined period. This period depends most strongly on the viscosity of the lower mantle, to which it is approximately proportional. Geologically interesting overturn periods on the order of 10(exp 7) to 10(exp 9) years result for lower mantle viscosities of 10(exp 22) to 10(exp 24) Pa s for the Earth and Venus, and 10(exp 21) to 10(exp 23) Pa s for Mars. The mantles of Mercury and the Moon are too thin to permit two-layer convection, and therefore the model is not appropriate for them. Overturn cannot occur on Earth or Venus if the compositional density difference between the layers exceeds about 4%, or on Mars if it exceeds about 2%. Large-scale mantle overturn could have significant tectonic consequences such as the initiation of a new plate tectonic cycle on the Earth or a major resurfacing event on Mars or Venus. Such episodic events in the evolution of a planet are not easily explained by whole mantle thermal convection.
NASA Astrophysics Data System (ADS)
Spencer, Matthew Todd
Aerosols affect the lives of people every day. They can decrease visibility, alter cloud formation and cloud lifetimes, change the energy balance of the earth and are implicated in causing numerous health problems. Measuring the physical and chemical properties of aerosols is essential to understand and mitigate any negative impacts that aerosols might have on climate and human health. Aerosol time-of-flight mass spectrometry (ATOFMS) is a technique that measures the size and chemical composition of individual particles in real time. The goal of this dissertation is to develop new and useful approaches for measuring the physical and/or chemical properties of particles using ATOFMS. This has been accomplished using laboratory experiments, ambient field measurements and sometimes comparisons between them. A comparison of mass spectra generated from petrochemical particles was made to light duty vehicle (LDV) and heavy duty diesel vehicle (HDDV) particle mass spectra. This comparison has given us new insight into how to differentiate between particles from these two sources. A method for coating elemental carbon (EC) particles with organic carbon (OC) was used to generate a calibration curve for quantifying the fraction of organic carbon and elemental carbon on particles using ATOFMS. This work demonstrates that it is possible to obtain quantitative chemical information with regards to EC and OC using ATOFMS. The relationship between electrical mobility diameter and aerodynamic diameter is used to develop a tandem differential mobility analyzer-ATOFMS technique to measure the effective density, size and chemical composition of particles. The method is applied in the field and gives new insight into the physical/chemical properties of particles. The size resolved chemical composition of aerosols was measured in the Indian Ocean during the monsoonal transition period. This field work shows that a significant fraction of aerosol transported from India was from biomass burning and appeared to be internally mixed with sulfate which suggests it was cloud processed during transport. Lastly, noble metal nanoparticles are explored as potential matrices for visible wavelength single particle matrix assisted laser desorption/ionization mass spectrometry (VIS-MALDI). This work demonstrates that noble metal nanoparticle matrices can be used for VIS-MALDI analysis.
Coupling of HDPE/hydroxyapatite composites by silane-based methodologies.
Sousa, R A; Reis, R L; Cunha, A M; Bevis, M J
2003-06-01
Several coupling treatments based on silane chemicals were investigated for the development of high density (HDPE)/hydroxyapatite (HA) composites. Two HA powders, sintered HA (HAs) and non sintered HA (HAns), were studied in combination with five silanes, namely y-methacryloxy propyltrimethoxy silane (MEMO), 3-(2-aminoethyl)aminopropyltrimethoxy silane (DAMO), vinyltrimethoxy silane (VTMO), 3-aminopropyltriethoxy silane (AMEO) and trimethoxypropyl silane (PTMO). The HA particles were treated by a dipping in method or by spraying with silane solutions. After drying, the treated powders were compounded with HDPE or HDPE with acrylic acid and/or organic peroxide and subsequently compression molded. The tensile test specimens obtained from the molded plates were tensile tested and their fracture surfaces were observed by scanning electron microscopy (SEM). For the sintered HA (HAs) composites, the most effective coupling treatments concerning stiffness are those based on MEMO and AMEO. The low influence of these coupling procedures on strength is believed to be associated to the low volume fraction and the relatively smooth surface of the used HA particles. For the non-sintered HA (HAns) composites, it was possible to improve significantly both the stiffness and the strength. Amino silanes demonstrated to be highly efficient concerning strength enhancement. The higher effectiveness of the coupling treatments for HAns filled composites is attributed to their higher particle surface area, smaller particle size distribution and expected higher chemical reactivity. For both cases, the improvement in mechanical performance after the coupling treatment is consistent with the enhancement in interfacial adhesion observed by SEM.
NASA Astrophysics Data System (ADS)
Jongprateep, Oratai; Sato, Nicha
2018-04-01
Calcium titanate (CaTiO3) has been recognized as a material for fabrication of dielectric components, owing to its moderate dielectric constant and excellent microwave response. Enhancement of dielectric properties of the material can be achieved through doping, compositional and microstructural control. This study, therefore, aimed at investigating effects of powder synthesis techniques on compositions, microstructure, and dielectric properties of Mg-doped CaTiO3. Solution combustion and solid-state reaction were powder synthesis techniques employed in preparation of undoped CaTiO3 and CaTiO3 doped with 5-20 at% Mg. Compositional analysis revealed that powder synthesis techniques did not exhibit a significant effect on formation of secondary phases. When Mg concentration did not exceed 5 at%, the powders prepared by both techniques contained only a single phase. An increase of MgO secondary phase was observed as Mg concentrations increased from 10 to 20 at%. Experimental results, on the contrary, revealed that powder synthesis techniques contributed to significant differences in microstructure. Solution combustion technique produced powders with finer particle sizes, which consequently led to finer grain sizes and density enhancement. High-density specimens with fine microstructure generally exhibit improved dielectric properties. Dielectric measurements revealed that dielectric constants of all samples ranged between 231 and 327 at 1 MHz, and that superior dielectric constants were observed in samples prepared by the solution combustion technique.
NASA Astrophysics Data System (ADS)
Li, Haoran; Wienecke, Steven; Romanczyk, Brian; Ahmadi, Elaheh; Guidry, Matthew; Zheng, Xun; Keller, Stacia; Mishra, Umesh K.
2018-02-01
A GaN/InGaN composite channel design for vertically scaled N-polar high-electron-mobility transistor (HEMT) structures is proposed and demonstrated by metal-organic chemical vapor deposition. In a conventional N-polar HEMT structure, as the channel thickness (tch) decreases, the sheet charge density (ns) decreases, the electric field in the channel increases, and the centroid of the two-dimensional electron gas (2DEG) moves towards the back-barrier/channel interface, resulting in stronger scattering and lower electron mobility (μ). In this study, a thin InGaN layer was introduced in-between the channel and the AlGaN cap to increase the 2DEG density and reduce the electric field in the channel and therefore increase the electron mobility. The dependence of μ on the InGaN thickness (tInGaN) and the indium composition (xIn) was investigated for different channel thicknesses. With optimized tInGaN and xIn, significant improvements in electron mobility were observed. For a 6 nm channel HEMT structure, the electron mobility increased from 606 to 1141 cm2/(V.s) when the 6 nm thick pure GaN channel was replaced by the 4 nm GaN/2 nm In0.1Ga0.9N composite channel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jiahua; Penfold, Scott N., E-mail: scott.penfold@adelaide.edu.au
Purpose: The accuracy of proton dose calculation is dependent on the ability to correctly characterize patient tissues with medical imaging. The most common method is to correlate computed tomography (CT) numbers obtained via single-energy CT (SECT) with proton stopping power ratio (SPR). CT numbers, however, cannot discriminate between a change in mass density and change in chemical composition of patient tissues. This limitation can have consequences on SPR calibration accuracy. Dual-energy CT (DECT) is receiving increasing interest as an alternative imaging modality for proton therapy treatment planning due to its ability to discriminate between changes in patient density and chemicalmore » composition. In the current work we use a phantom of known composition to demonstrate the dosimetric advantages of proton therapy treatment planning with DECT over SECT. Methods: A phantom of known composition was scanned with a clinical SECT radiotherapy CT-simulator. The phantom was rescanned at a lower X-ray tube potential to generate a complimentary DECT image set. A set of reference materials similar in composition to the phantom was used to perform a stoichiometric calibration of SECT CT number to proton SPRs. The same set of reference materials was used to perform a DECT stoichiometric calibration based on effective atomic number. The known composition of the phantom was used to assess the accuracy of SPR calibration with SECT and DECT. Intensity modulated proton therapy (IMPT) treatment plans were generated with the SECT and DECT image sets to assess the dosimetric effect of the imaging modality. Isodose difference maps and root mean square (RMS) error calculations were used to assess dose calculation accuracy. Results: SPR calculation accuracy was found to be superior, on average, with DECT relative to SECT. Maximum errors of 12.8% and 2.2% were found for SECT and DECT, respectively. Qualitative examination of dose difference maps clearly showed the dosimetric advantages of DECT imaging, compared to SECT imaging for IMPT dose calculation for the case investigated. Quantitatively, the maximum dose calculation error in the SECT plan was 7.8%, compared to a value of 1.4% in the DECT plan. When considering the high dose target region, the root mean square (RMS) error in dose calculation was 2.1% and 0.4% for SECT and DECT, respectively. Conclusions: DECT-based proton treatment planning in a commercial treatment planning system was successfully demonstrated for the first time. DECT is an attractive imaging modality for proton therapy treatment planning owing to its ability to characterize density and chemical composition of patient tissues. SECT and DECT scans of a phantom of known composition have been used to demonstrate the dosimetric advantages obtainable in proton therapy treatment planning with DECT over the current approach based on SECT.« less
NASA Technical Reports Server (NTRS)
Mohapatra, R. K.; Murty, S. V. S.
2002-01-01
Chemical and (oxygen) isotopic compositions of SNC meteorites have been used by a number of workers to infer the nature of precursor materials for the accretion of Mars. The idea that chondritic materials played a key role in the formation of Mars has been the central assumption in these works. Wanke and Dreibus have proposed a mixture of two types of chondritic materials, differing in oxygen fugacity but having CI type bulk chemical composition for the nonvolatile elements, for Mars' precursor. But a number of studies based on high pressure and temperature melting experiments do not favor a CI type bulk planet composition for Mars, as it predicts a bulk planet Fe/Si ratio much higher than that reported from the recent Pathfinder data. Oxygen forms the bulk of Mars (approximately 40% by wt.) and might provide clues to the type of materials that formed Mars. But models based on the oxygen isotopic compositions of SNC meteorites predict three different mixtures of precursor materials for Mars: 90% H + 10% CM, 85% H + 11% CV + 4% CI and 45% EH + 55% H. As each of these models has been shown to be consistent with the bulk geophysical properties (such as mean density, and moment of inertia factor) of Mars, the nature of the material that accreted to form Mars remains ambiguous.
An Investigation of SiC/SiC Woven Composite Under Monotonic and Cyclic Loading
NASA Technical Reports Server (NTRS)
Lang, J.; Sankar, J.; Kelkar, A. D.; Bhatt, R. T.; Singh, M.; Lua, J.
1997-01-01
The desirable properties in ceramic matrix composites (CMCs), such as high temperature strength, corrosion resistance, high toughness, low density, or good creep resistance have led to increased use of CMCs in high-speed engine structural components and structures that operate in extreme temperature and hostile aero-thermo-chemical environments. Ceramic matrix composites have been chosen for turbine material in the design of 21 st-century civil propulsion systems to achieve high fuel economy, improved reliability, extended life, and reduced cost. Most commercial CMCs are manufactured using a chemical vapor infiltration (CVI) process. However, a lower cost fabrication known as melt-infiltration process is also providing CMCs marked for use in hot sections of high-speed civil transports. The scope of this paper is to report on the material and mechanical characterization of the CMCs subjected to this process and to predict the behavior through an analytical model. An investigation of the SiC/SiC 8-harness woven composite is ongoing and its tensile strength and fatigue behavior is being characterized for room and elevated temperatures. The investigation is being conducted at below and above the matrix cracking stress once these parameters are identified. Fractography and light microscopy results are being studied to characterize the failure modes resulting from pure uniaxial loading. A numerical model is also being developed to predict the laminate properties by using the constituent material properties and tow undulation.
Sercu, Bram; Jones, Antony D G; Wu, Cindy H; Escobar, Mauricio H; Serlin, Carol L; Knapp, Timothy A; Andersen, Gary L; Holden, Patricia A
2013-01-01
In situ chemical oxidation with permanganate has become an accepted remedial treatment for groundwater contaminated with chlorinated solvents. This study focuses on the immediate and short-term effects of sodium permanganate (NaMnO(4)) on the indigenous subsurface microbial community composition in groundwater impacted by trichloroethylene (TCE). Planktonic and biofilm microbial communities were studied using groundwater grab samples and reticulated vitreous carbon passive samplers, respectively. Microbial community composition was analyzed by terminal restriction fragment length polymorphism and a high-density phylogenetic microarray (PhyloChip). Significant reductions in microbial diversity and biomass were shown during NaMnO(4) exposure, followed by recovery within several weeks after the oxidant concentrations decreased to <1 mg/L. Bray-Curtis similarities and nonmetric multidimensional scaling showed that microbial community composition before and after NaMnO(4) was similar, when taking into account the natural variation of the microbial communities. Also, 16S rRNA genes of two reductive dechlorinators (Desulfuromonas spp. and Sulfurospirillum spp.) and diverse taxa capable of cometabolic TCE oxidation were detected in similar quantities by PhyloChip across all monitoring wells, irrespective of NaMnO(4) exposure and TCE concentrations. However, minimal biodegradation of TCE was observed in this study, based on oxidized conditions, concentration patterns of chlorinated and nonchlorinated hydrocarbons, geochemistry, and spatiotemporal distribution of TCE-degrading bacteria.
Zhang, Manyu; Ma, Xiaowei; Bi, Han; Zhao, Xuebing; Wang, Chao; Zhang, Jie; Li, Yuesheng; Che, Renchao
2017-09-15
A facile chemical method for Co doping Ni-CNTs@α-Ni(OH) 2 combining with an in situ phase transformation process is successfully proposed and employed to synthesize three-dimensional (3D) hierarchical Ni-CNTs@β-(Ni, Co) binary hydroxides. This strategy can effectively maintain the coaxial-cable-like structure of Ni-CNTs@α-Ni(OH) 2 and meanwhile increase the content of Co as much as possible. Eventually, the specific capacitances and electrical conductivity of the composites are remarkably enhanced. The optimized composite exhibits high specific capacitances of 2861.8F g -1 at 1A g -1 (39.48F cm -2 at 15mAcm -2 ), good rate capabilities of 1221.8F g -1 at 20A g -1 and cycling stabilities (87.6% of capacitance retention after 5000cycles at 5A g -1 ). The asymmetric supercapacitor (ASC) constructed with the as-synthesized composite and activated carbon as positive and negative electrode delivers a high specific capacitance of 287.7F g -1 at 1A g -1 . The device demonstrates remarkable energy density (96Whkg -1 ) and high power density (15829.4Wkg -1 ). The retention of capacitance remains 83.5% at the current density of 5A g -1 after 5000cycles. The charged and discharged samples are further studied by ex situ electron energy loss spectroscopy (EELS) analysis, XRD and SEM to figure out the reasons of capacitance fading. Overall, it is believable that this facile synthetic strategy can be applied to prepare various nanostructured metal hydroxide/CNT composites for high performance supercapacitor electrode materials. Copyright © 2017. Published by Elsevier Inc.
Chatterjee, Tirtha; Rickard, Mark A; Pearce, Eric; Pangburn, Todd O; Li, Yongfu; Lyons, John W; Cong, Rongjuan; deGroot, A Willem; Meunier, David M
2016-09-23
Recent advances in catalyst technology have enabled the synthesis of olefin block copolymers (OBC). One type is a "hard-soft" OBC with a high density polyethylene (HDPE) block and a relatively low density polyethylene (VLDPE) block targeted as thermoplastic elastomers. Presently, one of the major challenges is to fractionate HDPE segments from the other components in an experimental OBC sample (block copolymers and VLDPE segments). Interactive high temperature liquid chromatography (HTLC) is ineffective for OBC separation as the HDPE segments and block copolymer chains experience nearly identical enthalpic interactions with the stationary phase and co-elute. In this work we have overcome this challenge by using liquid chromatography under the limiting conditions of desorption (LC LCD). A solvent plug (discrete barrier) is introduced in front of the sample which specifically promotes the adsorption of HDPE segments on the stationary phase (porous graphitic carbon). Under selected thermodynamic conditions, VLDPE segments and block copolymer chains crossed the barrier while HDPE segments followed the pore-included barrier solvent and thus enabled separation. The barrier solvent composition was optimized and the chemical composition of fractionated polymer chains was investigated as a function of barrier solvent strength using an online Fourier-transform infrared (FTIR) detector. Our study revealed that both the HDPE segments as well as asymmetric block copolymer chains (HDPE block length≫VLDPE block length) are retained in the separation and the barrier strength can be tailored to retain a particular composition. At the optimum barrier solvent composition, this method can be applied to separate effective HDPE segments from the other components, which has been demonstrated using an experimental OBC sample. Copyright © 2016 Elsevier B.V. All rights reserved.
Distance determination to Broad Line Absorbers in AGN
NASA Astrophysics Data System (ADS)
Bautista, Manuel; Arav, N.; Dunn, J.; Edmonds, D.; Korista, K. T.; Moe, M.; Benn, C.; Ignacio, G.
2009-01-01
We present various techniques for the determination of the physical conditions (density, temperature, total hydrogen column density, and ionization structure), chemical composition, and distances of Broad Line Absorbers (BAL) to the central engine in AGN. We start by discussing various density diagnostics from absorption lines from species such as C II, Si II, and Fe III. On the other hand, lines from metastable levels Fe II are often affected by Bowen fluorescence by scattered C IV photons. Lines from metastable levels of Ni II are usually excited by continuum fluorescence and mostly sensitive to the strength of the radiation field shortward of the Lyman continuum and as such they cam be used as direct distance indicators. Further, we show how the total hydrogen density of the absorber, its ionization parameter and distance can be determined through photoionization modeling of the absorber. Finally, we present our results for outflows of three different quasars: QSO 2359-1241 and SDSS J0318-0600.
Performance of steel wool fiber reinforced geopolymer concrete
NASA Astrophysics Data System (ADS)
Faris, Meor Ahmad; Abdullah, Mohd Mustafa Al Bakri; Ismail, Khairul Nizar; Muniandy, Ratnasamy; Ariffin, Nurliayana
2017-09-01
In this paper, performance of geopolymer concrete was studied by mixing of Class F fly ash from Manjung power station, Lumut, Perak, Malaysia with alkaline activator which are combination of sodium hydroxide and sodium silicate. Steel wool fiber were added into the geopolymer concrete as reinforcement with different weight percentage vary from 0 % - 5 %. Chemical compositions of Malaysian fly ash was first analyzed by using X-ray fluorescence. All geopolymer concrete reinforced with steel wool fiber with different weight percentage were tested in terms of density, workability, and compression. Result shows Malaysian fly ash identified by using XRF was class F. Density of geopolymer concrete close to density of OPC which is approximately 2400 kg/m3 and the density was increase gradually with the additions of steel fiber. However, the inclusions of steel fibers also shows some reduction to the workability of geopolymer concrete. Besides, the compressive strength was increased with the increasing of fibers addition until maximum of 18.6 % improvement at 3 % of steel fibers.
Geophysical, petrological and mineral physics constraints on Earth's surface topography
NASA Astrophysics Data System (ADS)
Guerri, Mattia; Cammarano, Fabio; Tackley, Paul J.
2015-04-01
Earth's surface topography is controlled by isostatically compensated density variations within the lithosphere, but dynamic topography - i.e. the topography due to adjustment of surface to mantle convection - is an important component, specially at a global scale. In order to separate these two components it is fundamental to estimate crustal and mantle density structure and rheological properties. Usually, crustal density is constrained from interpretation of available seismic data (mostly VP profiles) based on empirical relationships such those in Brocher [2005]. Mantle density structure is inferred from seismic tomography models. Constant coefficients are used to interpret seismic velocity anomalies in density anomalies. These simplified methods are unable to model the effects that pressure and temperature variations have on mineralogical assemblage and physical properties. Our approach is based on a multidisciplinary method that involves geophysical observables, mineral physics constraints, and petrological data. Mantle density is based on the thermal interpretation of global seismic tomography models assuming various compositional structures, as in Cammarano et al. [2011]. We further constrain the top 150 km by including heat-flow data and considering the thermal evolution of the oceanic lithosphere. Crustal density is calculated as in Guerri and Cammarano [2015] performing thermodynamic modeling of various average chemical compositions proposed for the crust. The modeling, performed with the code PerpleX [Connolly, 2005], relies on the thermodynamic dataset from Holland and Powell [1998]. Compressional waves velocity and crustal layers thickness from the model CRUST 1.0 [Laske et al., 2013] offer additional constrains. The resulting lithospheric density models are tested against gravity (GOCE) data. Various crustal and mantle density models have been tested in order to ascertain the effects that uncertainties in the estimate of those features have on the modeled topography. We also test several viscosity models, either radially symmetric, the V1 profile from Mitrovica and Forte [2004], or more complex laterally varying structures. All the property fields are expanded in spherical harmonics, until degree 24, and implemented in the code StagYY [Tackley, 2008] to perform mantle instantaneous flow modeling and compute surface topography and gravitational field. Our results show the importance of constraining the crustal and mantle density structure relying on a multidisciplinary approach that involves experimentally robust thermodynamic datasets. Crustal density field has a strong effect on the isostatic component of topography. The models that we test, CRUST 1.0 and those in Guerri and Cammarano [2015], produce strong differences in the computed isostatic topography, in the range ±600 m. For the lithospheric mantle, relying on experimentally robust material properties constraints is necessary to infer a reliable density model that takes into account chemical heterogeneities. This approach is also fundamental to correctly interpret seismic models in temperature, a crucial parameter, necessary to determine the lithosphere-asthenosphere boundary, where static effects on topography leave place to dynamic ones. The comparison between results obtained with different viscosity fields, either radially symmetric or vertically and laterally varying, shows how lateral viscosity variations affect the results, in particular the modeled geoid, at different wavelengths. References: Brocher, T. M. (2005), Empirical Relations between Elastic Wavespeeds and Density in the Earth's Crust, Bulletin of the Seismological Society of America, 95(6), 2081-2092. Cammarano, F., P. J. Tackley, and L. Boschi (2011), Seismic, petrological and geodynamical constraints on thermal and compositional structure of the upper mantle: global thermochemical models, Geophys. J. Int. Connolly, J. A. D. (2005), Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation, Earth and Planetary Science Letters (236), 524-541. Guerri, M., and F. Cammarano (2015), On the effects of chemical composition, water and temperature on physical properties of the Earth's continental crust, submitted to Geochemistry, Geophysics, Geosystem. Holland, T. J. B., and R. Powell (1998), An internally consistent thermodynamic data set for phases of petrological interest, J. metamorphic Geol., 16(309-343). Laske, G., G. Masters, Z. Ma, and M. E. Pasyanos (2013), CRUST1.0: An updated global model of Earth's crust, in EGU General Assembly 2013, edited, Geophysical Research Abstracts, Vienna. Mitrovica, J. X., and A. M. Forte (2004), A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data, Earth and Planetary Science Letters, 225, 177-189. Tackley, P. J. (2008), Modelling compressible mantle convection with large viscosity contrasts in a three-dimensional spherical shell using the yin-yang grid, Phys. Earth Planet. Int.
Chemically-bonded brick production based on burned clay by means of semidry pressing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voroshilov, Ivan, E-mail: Nixon.06@mail.ru; Endzhievskaya, Irina, E-mail: icaend@mail.ru; Vasilovskaya, Nina, E-mail: icaend@mail.ru
We presented a study on the possibility of using the burnt rocks of the Krasnoyarsk Territory for production of chemically-bonded materials in the form of bricks which are so widely used in multistory housing and private house construction. The radiographic analysis of the composition of burnt rock was conducted and a modifier to adjust the composition uniformity was identified. The mixing moisture content was identified and optimal amount at 13-15% was determined. The method of semidry pressing has been chosen. The process of obtaining moldings has been theoretically proved; the advantages of chemically-bonded wall materials compared to ceramic brick weremore » shown. The production of efficient artificial stone based on material burnt rocks, which is comparable with conventionally effective ceramic materials or effective with cell tile was proved, the density of the burned clay-based cell tile makes up to 1630-1785 kg \\ m{sup 3}, with compressive strength of 13.6-20.0 MPa depending on the compression ratio and cement consumption, frost resistance index is F50, and the thermal conductivity in the masonry is λ = 0,459-0,546 W \\ m {sup *} °C. The clear geometric dimensions of pressed products allow the use of the chemically-bonded brick based on burnt clay as a facing brick.« less
Sinigoi, S.; Quick, J.E.; Mayer, A.; Budahn, J.
1996-01-01
The southern Ivrea-Verbano Zone of the Italian Western Alps contains a huge mafic complex that intruded high-grade metamorphic rocks while they were resident in the lower crust. Geologic mapping and chemical variations of the igneous body were used to study the evolution of underplated crust. Slivers of crustal rocks (septa) interlayered with igneous mafic rocks are concentrated in a narrow zone deep in the complex (Paragneiss-bearing Belt) and show evidence of advanced degrees of partial melting. Variations of rare-earth-element patterns and Sr isotope composition of the igneous rocks across the sequence are consistent with increasing crustal contamination approaching the septa. Therefore, the Paragneiss-bearing Belt is considered representative of an "assimilation region" where in-situ interaction between mantle- and crust-derived magmas resulted in production of hybrid melts. Buoyancy caused upwards migration of the hybrid melts that incorporated the last septa and were stored at higher levels, feeding the Upper Mafic Complex. Synmagmatic stretching of the assimilation region facilitated mixing and homogenization of melts. Chemical variations of granitoids extracted from the septa show that deep septa are more depleted than shallow ones. This suggests that the first incorporated septa were denser than the later ones, as required by the high density of the first-injected mafic magmas. It is inferred that density contrasts between mafic melts and crustal rocks play a crucial role for the processes of contamination of continental magmas. In thick under- plated crust, the extraction of early felsic/hybrid melts from the lower crust may be required to increase the density of the lower crust and to allow the later mafic magmas to penetrate higher crustal levels.
Mineral and chemical variations within an ash-flow sheet from Aso caldera, Southwestern Japan
Lipman, P.W.
1967-01-01
Although products of individual volcanic eruptions, especially voluminous ash-flow eruptions, have been considered among the best available samples of natural magmas, detailed petrographic and chemical study indicates that bulk compositions of unaltered Pleistocene ash-flow tuffs from Aso caldera, Japan, deviate significantly from original magmatic compositions. The last major ash-flow sheet from Aso caldera is as much as 150 meters thick and shows a general vertical compositional change from phenocryst-poor rhyodacite upward into phenocryst-rich trachyandesite; this change apparently reflects in inverse order a compositionally zoned magma chamber in which more silicic magma overlay more mafic magma. Details of these magmatic variations were obscured, however, by: (1) mixing of compositionally distinct batches of magma during upwelling in the vent, as indicated by layering and other heterogeneities within single pumice lumps; (2) mixing of particulate fragments-pumice lumps, ash, and phenocrysts-of varied compositions during emplacement, with the result that separate pumice lenses from a single small outcrop may have a compositional range nearly as great as the bulk-rook variation of the entire sheet; (3) density sorting of phenocrysts and ash during eruption and emplacement, resulting in systematic modal variations with distance from the caldera; (4) addition of xenocrysts, resulting in significant contamination and modification of proportions of crystals in the tuffs; and (5) ground-water leaching of glassy fractions during hydration after cooling. Similar complexities characterize ash-flow tuffs under study in southwestern Nevada and in the San Juan Mountains, Colorado, and probably are widespread in other ash-flow fields as well. Caution and careful planning are required in study of the magmatic chemistry and phenocryst mineralogy of these rocks. ?? 1967 Springer-Verlag.
Modeling of the reactant conversion rate in a turbulent shear flow
NASA Technical Reports Server (NTRS)
Frankel, S. H.; Madnia, C. K.; Givi, P.
1992-01-01
Results are presented of direct numerical simulations (DNS) of spatially developing shear flows under the influence of infinitely fast chemical reactions of the type A + B yields Products. The simulation results are used to construct the compositional structure of the scalar field in a statistical manner. The results of this statistical analysis indicate that the use of a Beta density for the probability density function (PDF) of an appropriate Shvab-Zeldovich mixture fraction provides a very good estimate of the limiting bounds of the reactant conversion rate within the shear layer. This provides a strong justification for the implementation of this density in practical modeling of non-homogeneous turbulent reacting flows. However, the validity of the model cannot be generalized for predictions of higher order statistical quantities. A closed form analytical expression is presented for predicting the maximum rate of reactant conversion in non-homogeneous reacting turbulence.
NASA Astrophysics Data System (ADS)
Viswanthan, Aranganathan; Shetty, Adka Nityananda
2018-04-01
The reduced graphene oxide/polyaniline/Ni(OH)2 (GP-Ni(OH)2) and reduced graphene oxide/polyaniline/Ni (GP-Ni) nanocomposites were synthesized by facile in situ single step chemical method. The constituents were confirmed by powder-XRD, and the electrochemical characterizations were carried out using cyclic voltammetry(CV), galvanostatic charge/discharge (GCD) and electrochemical impedance spectroscopy (EIS). The electrochemical contribution of Ni(OH)2 and Ni to their supercapacitance along with reduced graphene oxide and polyaniline was compared. The GP-Ni nanocomposite exhibited a specific capacitance of 266.66 F g-1, energy density of 53.33 W h kg-1 and power density of 1385 W kg-1 at a current density of 0.25 A g-1 and the results were enhanced to 21% and more promising than that of nanocomposite GP-Ni(OH)2.
NASA Astrophysics Data System (ADS)
Rahimabady, Mojtaba; Chen, Shuting; Yao, Kui; Eng Hock Tay, Francis; Lu, Li
2011-10-01
Dense α-phase blend films of vinylidene fluoride (VDF) oligomer and poly(vinylidene fluoride) (PVDF) of various compositions were prepared from chemical solution deposition. The dielectric constant of the films was unexpectedly lower, and the mechanical strength was higher than either of the two components, leading to high electromechanical dielectric breakdown strength (>850 MV/m vs. 300˜500 MV/m for typical PVDF-based films). The properties were attributed to the unique blend structure with high crystallinity and densely packed rigid amorphous phase incorporating long and short chains. A maximum polarization of 162 mC/m2 and a large electric energy density up to 27.3 J/cm3 were obtained.
NASA Technical Reports Server (NTRS)
Marubashi, K.; Reber, C. A.; Taylor, H. A., Jr.
1976-01-01
The temporal response of the densities of upper-atmospheric ion and neutral constituents to a particular geomagnetic storm is studied using simultaneous ion and neutral-composition data obtained by the OGO 6 satellite during consecutive orbits at altitudes greater than 400 km. The investigated constituents include H(+), O(+), N2, O, He, and H. Derivation of the H density is reviewed, and the main effects of the storm are discussed, particularly temporal and global variations in the densities. It is found that: (1) the H and He densities began to decrease near the time of sudden commencement, with the decrease amounting to more than 40% of the quiet-time densities during the maximum stage at high latitudes; (2) the O and N2 densities exhibited an overall increase which began later than the change in H and He densities; (3) the H(+) density decreased differently in two distinct regions separated near the low-latitude boundary of the light-ion trough; and (4) the O(+) density showed an increase during earlier stages of the storm and decreased only in the Northern Hemisphere during the recovery phase. Certain physical and chemical processes are suggested which play principal roles in the ionospheric response to the storm
Template-free synthesis of multifunctional carbonaceous microcone forests
NASA Astrophysics Data System (ADS)
Wang, Qiang; Yang, Lei; Dai, Bing; Bai, Jie; Yang, Zhenhuai; Guo, Shuai; He, Yurong; Han, Jiecai; Zhu, Jiaqi
2018-01-01
Forests of vertically aligned carbonaceous microcones are fabricated directly on a nickel mesh by microwave-plasma-assisted chemical vapor deposition. The microstructure is formed through a simple one-step process involving self-assembly. The fabricated composite exhibits superhydrophobicity and superoleophilicity as well as low density, owing to which it floats on water and can be used for the in-situ separation of oil from water at the oil/water interface. Furthermore, the composite exhibits pH responsivity, and its water permeability can be varied simply by altering the pH of the aqueous solution. In addition, the composite is suitable for use as an electrode material for supercapacitors owing to its large geometric surface area, porous structure, and superior electrical properties, which allow for fast ion and electron transportation. Thus, this composite consisting of forests of vertically aligned carbonaceous microcones on a nickel mesh is expected to find use in a wide range of fields and applications, including in environmental cleanup, flow switches, and energy storage devices.
Flame Retardant Effect of Nano Fillers on Polydimethylsiloxane Composites.
Jagdale, Pravin; Salimpour, Samera; Islam, Md Hujjatul; Cuttica, Fabio; Hernandez, Francisco C Robles; Tagliaferro, Alberto; Frache, Alberto
2018-02-01
Polydimethylsiloxane has exceptional fire retardancy characteristics, which make it a popular polymer in flame retardancy applications. Flame retardancy of polydimethylsiloxane with different nano fillers was studied. Polydimethylsiloxane composite fire property varies because of the shape, size, density, and chemical nature of nano fillers. In house made carbon and bismuth oxide nano fillers were used in polydimethylsiloxane composite. Carbon from biochar (carbonised bamboo) and a carbon by-product (carbon soot) were selected. For comparative study of nano fillers, standard commercial multiwall carbon nano tubes (functionalised, graphitised and pristine) as nano fillers were selected. Nano fillers in polydimethylsiloxane positively affects their fire retardant properties such as total smoke release, peak heat release rate, and time to ignition. Charring and surface ceramization are the main reasons for such improvement. Nano fillers in polydimethylsiloxane may affect the thermal mobility of polymer chains, which can directly affect the time to ignition. The study concludes that the addition of pristine multiwall carbon nano tubes and bismuth oxide nano particles as filler in polydimethylsiloxane composite improves the fire retardant property.
NASA Astrophysics Data System (ADS)
David, Lamuel; Singh, Gurpreet
2013-03-01
We study synthesis of free-standing polymer derived SiCN/ MoS2 composite paper anode for Li-ion battery application. This was achieved following a two-step approach: First, polysilazane was interfaced with exfoliated MoS2 nanosheets which upon pyrolysis resulted in SiCN/MoS2 composite. Second, dispersion of SiCN/MoS2 in isopropanol was vacuum filtered resulting in formation of a self-standing composite paper. Physical and chemical characterization of the composite was carried out by use of electron microscopy, Fourier transform infrared spectroscopy (FT-IR) and Thermo-gravimetric analysis (TGA). FT-IR data indicated complete conversion of polysilazane precursor to SiCN ceramic, while electron microscopy confirmed layered structure of the paper. Thermo-gravimetric analysis showed enhanced thermodynamic stability of the composite paper up to 800 °C. Electrochemical analysis of SiCN/MoS2 composite paper anodes showed that Li-ion can reversible intercalate in the voltage range of 0-2.5 V with a first cycle discharge capacity of 770 mAh/g at a current density of 100 mA/g.
NASA Astrophysics Data System (ADS)
Mu, Junwu; Guan, Zhidong; Bian, Tianya; Li, Zengshan; Wang, Kailun; Liu, Sui
2014-10-01
Fasteners made of the anisotropic carbon/carbon (C/C) composite material have been developed for joining C/C composite material components in the high-temperature environment. The fastener specimens are fabricated from the C/C composites which are made from laminated carbon cloths with Z-direction carbon fibers being punctured as perform. Densification process cycles such as the thermal gradient chemical vapor infiltration (CVI) technology were repeated to obtain high density C/C composites fastener. The fasteners were machined parallel to the carbon cloths (X-Y direction). A method was proposed to test pull-through mechanical behavior of the countersunk-head C/C composite material fasteners. The damage morphologies of the fasteners were observed through the charge coupled device (CCD) and the scanning electron microscope (SEM). The internal micro-structure were observed through the high-resolution Mirco-CT systems. Finally, an excellent simulation of the C/C composite countersunk-head fasteners were performed with the finite element method (FEM), in which the damage evolution model of the fastener was established based on continuum damage mechanics. The simulation is correspond well with the test result . The damage evolution process and the relation between the countersunk depth and the ultimate load was investigated.
Gupta, Sanju; Aberg, Bryce; Carrizosa, Sara B.; Dimakis, Nicholas
2016-01-01
Graphene nanosheets and graphene nanoribbons, G combined with vanadium pentoxide (VO) nanobelts (VNBs) and VNBs forming GVNB composites with varying compositions were synthesized via a one-step low temperature facile hydrothermal decomposition method as high-performance electrochemical pseudocapacitive electrodes. VNBs from vanadium pentoxides (VO) are formed in the presence of graphene oxide (GO), a mild oxidant, which transforms into reduced GO (rGOHT), assisting in enhancing the electronic conductivity coupled with the mechanical robustness of VNBs. From electron microscopy, surface sensitive spectroscopy and other complementary structural characterization, hydrothermally-produced rGO nanosheets/nanoribbons are decorated with and inserted within the VNBs’ layered crystal structure, which further confirmed the enhanced electronic conductivity of VNBs. Following the electrochemical properties of GVNBs being investigated, the specific capacitance Csp is determined from cyclic voltammetry (CV) with a varying scan rate and galvanostatic charging-discharging (V–t) profiles with varying current density. The rGO-rich composite V1G3 (i.e., VO/GO = 1:3) showed superior specific capacitance followed by VO-rich composite V3G1 (VO/GO = 3:1), as compared to V1G1 (VO/GO = 1:1) composite, besides the constituents, i.e., rGO, rGOHT and VNBs. Composites V1G3 and V3G1 also showed excellent cyclic stability and a capacitance retention of >80% after 500 cycles at the highest specific current density. Furthermore, by performing extensive simulations and modeling of electrochemical impedance spectroscopy data, we determined various circuit parameters, including charge transfer and solution resistance, double layer and low frequency capacitance, Warburg impedance and the constant phase element. The detailed analyses provided greater insights into physical-chemical processes occurring at the electrode-electrolyte interface and highlighted the comparative performance of thin heterogeneous composite electrodes. We attribute the superior performance to the open graphene topological network being beneficial to available ion diffusion sites and the faster transport kinetics having a larger accessible geometric surface area and synergistic integration with optimal nanostructured VO loading. Computational simulations via periodic density functional theory (DFT) with and without V2O5 adatoms on graphene sheets are also performed. These calculations determine the total and partial electronic density of state (DOS) in the vicinity of the Fermi level (i.e., higher electroactive sites), in turn complementing the experimental results toward surface/interfacial charge transfer on heterogeneous electrodes. PMID:28773738
A Special Material or a New State of Matter: A Review and Reconsideration of the Aerogel
Du, Ai; Zhou, Bin; Zhang, Zhihua; Shen, Jun
2013-01-01
The ultrahighly nanoporous aerogel is recognized as a state of matter rather than as a functional material, because of its qualitative differences in bulk properties, transitional density and enthalpy between liquid and gas, and diverse chemical compositions. In this review, the characteristics, classification, history and preparation of the aerogel were introduced. More attention was paid to the sol-gel method for preparing different kinds of aerogels, given its important role on bridging the synthetic parameters with the properties. At last, preparation of a novel single-component aerogel, design of a composite aerogel and industrial application of the aerogel were regarded as the research tendency of the aerogel state in the near future. PMID:28809350
Research and Development of High-Strength of Al-Zn-Mg-Cu Alloys
NASA Astrophysics Data System (ADS)
Vakhromov, R. O.; Antipov, V. V.; Tkachenko, E. A.
The paper is focused on high-strength alloys (UTS=600-650 MPa, specific strength (UTS/density) 220-230 kN•m/kg) which will allow one to retain aluminum's predominant position during the next 15-20 years as applied in advanced aircraft primary structures. Parameters of microstructure (dispersoids, precipitates, degree of recrystallisation, grain size) and properties of semiproducts were studied in dependence on content of base alloying elements in chemical compositions of alloys (total sum of Zn+Mg+Cu — higher than 10 % mass). Contribution of minor additions (Zr, Sc, Ag) to strengthening and creation of improved combination of service properties was investigated. Evolution of phase composition and properties was studied as a dependence of different aging treatments.
Yang, Lei; Cheng, Zhe; Liu, Ze; Liu, Meilin
2015-01-13
Embodiments of the present disclosure include chemical compositions, structures, anodes, cathodes, electrolytes for solid oxide fuel cells, solid oxide fuel cells, fuel cells, fuel cell membranes, separation membranes, catalytic membranes, sensors, coatings for electrolytes, electrodes, membranes, and catalysts, and the like, are disclosed.
NASA Technical Reports Server (NTRS)
Bernhardt, Paul A.; Scales, W. A.
1990-01-01
Ionospheric plasma density irregularities can be produced by chemical releases into the upper atmosphere. F-region plasma modification occurs by: (1) chemically enhancing the electron number density; (2) chemically reducing the electron population; or (3) physically convecting the plasma from one region to another. The three processes (production, loss, and transport) determine the effectiveness of ionospheric chemical releases in subtle and surprising ways. Initially, a chemical release produces a localized change in plasma density. Subsequent processes, however, can lead to enhanced transport in chemically modified regions. Ionospheric modifications by chemical releases excites artificial enhancements in airglow intensities by exothermic chemical reactions between the newly created plasma species. Numerical models were developed to describe the creation and evolution of large scale density irregularities and airglow clouds generated by artificial means. Experimental data compares favorably with theses models. It was found that chemical releases produce transient, large amplitude perturbations in electron density which can evolve into fine scale irregularities via nonlinear transport properties.
Synthesis And Characterization Of Reduced Size Ferrite Reinforced Polymer Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borah, Subasit; Bhattacharyya, Nidhi S.
2008-04-24
Small sized Co{sub 1-x}Ni{sub x}Fe{sub 2}O{sub 4} ferrite particles are synthesized by chemical route. The precursor materials are annealed at 400, 600 and 800 C. The crystallographic structure and phases of the samples are characterized by X-ray diffraction (XRD). The annealed ferrite samples crystallized into cubic spinel structure. Transmission Electron Microscopy (TEM) micrographs show that the average particle size of the samples are <20 nm. Particulate magneto-polymer composite materials are fabricated by reinforcing low density polyethylene (LDPE) matrix with the ferrite samples. The B-H loop study conducted at 10 kHz on the toroid shaped composite samples shows reduction in magneticmore » losses with decrease in size of the filler sample. Magnetic losses are detrimental for applications of ferrite at high powers. The reduction in magnetic loss shows a possible application of Co-Ni ferrites at high microwave power levels.« less
A general approach to DNA-programmable atom equivalents.
Zhang, Chuan; Macfarlane, Robert J; Young, Kaylie L; Choi, Chung Hang J; Hao, Liangliang; Auyeung, Evelyn; Liu, Guoliang; Zhou, Xiaozhu; Mirkin, Chad A
2013-08-01
Nanoparticles can be combined with nucleic acids to programme the formation of three-dimensional colloidal crystals where the particles' size, shape, composition and position can be independently controlled. However, the diversity of the types of material that can be used is limited by the lack of a general method for preparing the basic DNA-functionalized building blocks needed to bond nanoparticles of different chemical compositions into lattices in a controllable manner. Here we show that by coating nanoparticles protected with aliphatic ligands with an azide-bearing amphiphilic polymer, followed by the coupling of DNA to the polymer using strain-promoted azide-alkyne cycloaddition (also known as copper-free azide-alkyne click chemistry), nanoparticles bearing a high-density shell of nucleic acids can be created regardless of nanoparticle composition. This method provides a route to a virtually endless class of programmable atom equivalents for DNA-based colloidal crystallization.
Performance of a single layer fuel cell based on a mixed proton-electron conducting composite
NASA Astrophysics Data System (ADS)
Zagórski, Krzysztof; Wachowski, Sebastian; Szymczewska, Dagmara; Mielewczyk-Gryń, Aleksandra; Jasiński, Piotr; Gazda, Maria
2017-06-01
Many of the challenges in solid oxide fuel cell technology stem from chemical and mechanical incompatibilities between the anode, cathode and electrolyte materials. Numerous attempts have been made to identify compatible materials. Here, these challenges are circumvented by the introduction of a working single layer fuel cell, fabricated from a composite of proton conducting BaCe0.6Zr0.2Y0.2O3-δ and a mixture of semiconducting oxides - Li2O, NiO, and ZnO. Structural and electrical properties of the composite, related to its fuel cell performance are investigated. The single layer fuel cell shows a maximum OCV of 0.83 V and a peak power density of 3.86 mW cm-2 at 600 °C. Activation and mass transport losses are identified as the major limiting factor for efficiency and power output.
Prediction of a New Phase of Cu x S near Stoichiometric Composition
Khatri, Prashant; Huda, Muhammad N.
2015-01-01
Cumore » 2 S is known to be a promising solar absorber material due to its suitable band gap and the abundance of its constituent elements. 2 S is known to have complex phase structures depending on the concentration of vacancies. Its instability of phases is due to favorable formation of vacancies and the mobility of atoms within the crystal. Understanding its phase structures is of crucial important for its application as solar absorber material. In this paper, we have predicted a new crystal phase of copper sulfide ( x S) around chemical composition of x = 1.98 by utilizing crystal database search and density functional theory. We have shown that this new crystal phase of x S is more favorable than low chalcocite structure even at stoichiometric composition of x = 2 . However, vacancy formation probability was found to be higher in this new phase than the low chalcocite structure.« less
NASA Astrophysics Data System (ADS)
Wu, Xuan; Zhao, Wei; Wang, Hong; Qi, Xiujun; Xing, Zheng; Zhuang, Quanchao; Ju, Zhicheng
2018-02-01
Potassium-ion batteries are attracting great attention as a promising alternative to lithium-ion batteries due to the abundance and low price of potassium. Herein, the phosphorus/carbon composite, obtained by a simple ball-milling of 20 wt% commercial red phosphorus and 80 wt% graphite, is studied as a novel anode for potassium-ion batteries. Considering the high theoretical specific capacity of phosphorus and formation of stable phosphorus-carbon bond, which can alleviate the volume expansion efficiently, the phosphorus/carbon composite exhibits a high charge capacity of 323.5 mA h g-1 after 50 cycles at a current density of 50 mA g-1 with moderate rate capability and cycling stability. By the X-ray diffraction analysis, the alloying-dealloying mechanism of phosphorus is proposed to form a KP phase. Meanwhile, prepotassiation treatment is conducted to improve the low initial coulomb efficiency.
Physical and chemical characteristics of cenospheres from the combustion of heavy fuel oil
NASA Technical Reports Server (NTRS)
Clayton, R. M.; Back, L. H.
1989-01-01
Photomicrography of particle cross sections, measurements of density, porosity, and surface area, and determinations of chemical compositions, have been used in conjunction with SEM of surface structure to characterize cenospheres generated by combustion of residual oil in a steam power plant. Large and small cenospheres, which respectively fall into the 100-200 and small 20-40 micron range, are spheroidal and hollow, with at least one blowhole; outer/inner diameter ratios for the shells are of the order of 1.3-1.4. Typically, a cenosphere contains only about 18 vol pct solid material. The presence of S, Fe, Na, and V in substantial concentrations presage high temperature heat exchanger surface corrosion problems due to cenosphere deposition.
Thermal and galvanomagnetic properties of monocrystals CuInGa{sub 2}Te{sub 5}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abilov, Ch. I., E-mail: cabilov@yahoo.com; Hasanova, M. Sh., E-mail: mhsh28@mail.ru; Huseynova, N. T.
By the methods of the physic-chemical analysis, determination of density and by measurement of micro hardness the character of chemical interaction in the In{sub 2}Te{sub 3}-Cu{sub 2}Ga{sub 4}Te{sub 7} system has been investigated and its faze diagram has been plotted. It is established that the system is quasibinary, of eutectic type. In the system the chemical combination of CuGa{sub 2}InTe{sub 5} composition melting congruently at 855°C is generated. There have been revealed solid solutions boundary of which based on In{sub 2}Te{sub 3} reach 5mol% at room temperatures. Temperature dependences of electric conductivity, the coefficient of thermo-emf, general heat conductivity, themore » Hall mobility of charge carriers.The mechanisms of electron-phonon diffusion in crystals of its compound have been revealed.« less
Multifunctional porous solids derived from tannins
NASA Astrophysics Data System (ADS)
Celzard, Alain; Fierro, Vanessa; Pizzi, Antonio; Zhao, Weigang
2013-03-01
Tannins are extremely valuable, non toxic, wood extractives combining reactivity towards aldehydes, low cost, natural origin and easy handling. When polymerized in the presence of suitable chemicals including blowing agent, ultra lightweight rigid tannin-based foams are obtained. If pyrolyzed under inert gas, reticulated carbon foams having the same pore structure and the same density are obtained. The most remarkable features of tannin-based foams are the following: mechanical resistance similar to, or higher than, that of commercial phenolic foams, tuneable pore size and permeability, infusibility, very low thermal conductivity, cheapness, ecological character, high resistance to flame and to chemicals. Carbon foams have even better properties and are also electrically conducting. Consequently, various applications are suggested for organic foams: cores of sandwich composite panels, sound and shock absorbers and thermal insulators, whereas carbon foams can be used as porous electrodes, filters for molten metals and corrosive chemicals, catalyst supports and adsorbents.
Landau, S Y; Dvash, L; Yehuda, Y; Muklada, H; Peleg, G; Henkin, Z; Voet, H; Ungar, E D
2018-02-01
In the context of determining the sustainable carrying capacity of dry-Mediterranean herbaceous rangelands, we examined the effect of animal density on cattle nutrition, which is fundamental to animal performance and welfare. The effects on dietary components of low (0.56 cows/ha; L) and high (1.11 cows/ha; H) animal densities were monitored for three consecutive years in grazing beef cows. In the dry season (summer and early autumn), cows had free access to N-rich poultry litter (PL) given as a dietary supplement. In each season, near-IR spectroscopy (NIRS) was used to predict the chemical composition of herbage samples (ash, NDF, CP, in vitro dry matter digestibility (IVDMD) and metabolizable energy (ME) content from IVDMD). Near-IR spectroscopy was applied also to faecal samples to determine the chemical composition of the diet selected by the animal, as well as the contents of ash, NDF and CP in the faeces themselves. A faecal-NIRS equation was applied to estimate the dietary proportion of PL. Seasonal categories were green, dry without PL supplementation and dry with it. We found no effects of animal density on nutrition during the green season but effects were apparent when cows consumed dry pasture. Ash content predicted by faecal NIRS was higher in the diet than in plant samples clipped from pasture, which infers that cows ingested soil. Dietary and faecal ash contents were higher (P<0.05) at the H, implying greater soil intake in these animals. During the dry period, dietary contents of ME were higher in L than in H (P<0.05). Poultry litter supplementation was associated with a marked increase (P<0.01) in dietary and faecal CP contents. Poultry litter represented 0.45 and 0.59 of the diet in treatments L and H, respectively (P<0.05). Consequently, treatment H had higher faecal protein (P<0.05). A tendency of higher dietary protein (P=0.08) and lower dietary NDF (P=0.10) in treatment H was probably related to greater PL ingestion. Given that high and sustained rates of poultry litter consumption are detrimental to animal health, the above results cast doubts on the long-term sustainability of the higher of the animal densities tested. Although it may be sustainable vis-à-vis the vegetation, treatment H may have exceeded the boundaries of what is acceptable for cow health. Chemical information revealed with NIRS can be used to evaluate whether animal densities are compatible with animal health and welfare standards and can play a role in determining the carrying capacity of Mediterranean rangelands.
"Prospecting Asteroids: Indirect technique to estimate overall density and inner composition"
NASA Astrophysics Data System (ADS)
Such, Pamela
2016-07-01
Spectroscopic studies of asteroids make possible to obtain some information on their composition from the surface but say little about the innermost material, porosity and density of the object. In addition, spectroscopic observations are affected by the effects of "space weathering" produced by the bombardment of charged particles for certain materials that change their chemical structure, albedo and other physical properties, partly altering their chances of identification. Data such as the mass, size and density of the asteroids are essential at the time to propose space missions in order to determine the best candidates for space exploration and is of great importance to determine a priori any of them remotely from Earth. From many years ago its determined masses of largest asteroids studying the gravitational effects they have on smaller asteroids when they approach them (see Davis and Bender, 1977; Schubart and Matson, 1979; School et al 1987; Hoffman, 1989b, among others), but estimates of the masses of the smallest objects is limited to the effects that occur in extreme close encounters to other asteroids of similar size. This paper presents the results of a search for approaches of pair of asteroids that approximate distances less than 0.0004 UA (50,000 km) of each other in order to study their masses through the astrometric method and to estimate in a future their densities and internal composition. References Davis, D. R., and D. F. Bender. 1977. Asteroid mass determinations: search for futher encounter opportunities. Bull. Am. Astron. Soc. 9, 502-503. Hoffman, M. 1989b. Asteroid mass determination: Present situation and perspectives. In asteroids II (R. P. Binzel, T. Gehreis, and M. S. Matthews, Eds.), pp 228-239. Univ. Arizona Press, Tucson. School, H. L. D. Schmadel and S. Roser 1987. The mass of the asteroid (10) Hygiea derived from observations of (829) Academia. Astron. Astrophys. 179, 311-316. Schubart, J. And D. L. Matson 1979. Masses and densities of asteroids. In Asteroids (T. Gehrels, Ed.), pp.
NASA Astrophysics Data System (ADS)
Tugiman; Ariani, F.; Taher, F.; Hasibuan, M. S.; Suprianto
2017-12-01
Palm oil processing industries are very attractive because they offer plenty products with high economic value. The CPO factory processes not only produces crude palm oil but also generates fly ash (FA) particles waste in its final process. The purpose of this investigation to analyze and increase the benefits of particles as reinforcement materials for fabricating aluminum matrix composites (AMC’s) by different casting route. Stirring, centrifugal and squeeze casting method was conducted in this study. Further, the chemical composition of FA particles, densities and mechanical properties have been analyzed. The characteristics of composite material were investigated using an Optical microscope, scanning electron microscope (SEM), hardness (Brinell), impact strength (Charpy). The pin on disc method was used to measure the wear rate. The results show that SiO2, Fe2O3, and Al2O3 are the main compounds of fly ash particles. These particles enhanced the hardness and reduce wear resistance of aluminum matrix composites. The squeeze method gives better results than stir and centrifugal casting.
Leland, Harry V.
1995-01-01
Benthic-algal distributions in the Yakima River, Washington, basin were, examined in relation to geology, land use, water chemistry, and stream habitat using indicator-species classification (TWINSPAN) and canonical correspondence analysis (CCA). Algal assemblages identified byTWINSPAN were each associated with a narrow range of water-quality conditions. In the Cascade geologic province, where timber harvest and grazing are the dominant land uses, differences in community structure (CCA site scores) and concentrations of major ions (Ca and Mg) and nutrients (solute P, SiO2 and inorganic N) varied with dominant rock type of the basin. In agricultural areas of the Columbia Plateau province, differences in phytobenthos structure were based primarily on the degree of enrichment of dissolved solids, inorganic N, and solute P from irrigation-return flows and subsurface drainage. Habitat characteristics strongly correlated with community structure included reach altitude, turbidity, substratum embeddedness (Columbia Plateau), large woody-debris density (Cascade Range), and composition and density of the riparian vegetation. Algal biomass (AFDM) correlated with composition and density of the riparian vegetation but not with measured chemical-constituent concentrations. Nitrogen limitation in streams of the Cascade Range favored nitrogen-fixing blue-green algae and diatoms with endosymbiotic blue-greens, whereas nitrogen heterotrophs were abundant in agricultural areas of the Columbia Plateau.
Leland, Harry V.
1995-01-01
Benthic-algal distributions in the Yakima River, Washington, basin were, examined in relation to geology, land use, water chemistry, and stream habitat using indicator-species classification (TWINSPAN) and canonical correspondence analysis (CCA). Algal assemblages identified byTWINSPAN were each associated with a narrow range of water-quality conditions. In the Cascade geologic province, where timber harvest and grazing are the dominant land uses, differences in community structure (CCA site scores) and concentrations of major ions (Ca and Mg) and nutrients (solute P, SiO2 and inorganic N) varied with dominant rock type of the basin. In agricultural areas of the Columbia Plateau province, differences in phytobenthos structure were based primarily on the degree of enrichment of dissolved solids, inorganic N, and solute P from irrigation-return flows and subsurface drainage. Habitat characteristics strongly correlated with community structure included reach altitude, turbidity, substratum embeddedness (Columbia Plateau), large woody-debris density (Cascade Range), and composition and density of the riparian vegetation. Algal biomass (AFDM) correlated with composition and density of the riparian vegetation but not with measured chemical-constituent concentrations. Nitrogen limitation in streams of the Cascade Range favored nitrogen-fixing blue-green algae and diatoms with endosymbiotic blue-greens, whereas nitrogen heterotrophs were abundant in agricultural areas of the Columbia Plateau.
Bittolo Bon, G; Cazzolato, G; Zago, S; Avogaro, P
1985-01-01
Lipoproteins in the d less than 1.006 g/ml density range obtained form 13 healthy normolipidemic subjects and from 15 patients affected by primary endogenous hypertriglyceridemia after 14-h fasting were subfractionated by filtration in Biogel A-15 M columns. The mass values and chemical composition of very low density lipoprotein (VLDL) subfractions 1 and 2 thus obtained were studied. In each subfraction the behavior of apolipoprotein B (Apo B) was tested by sodium dodecyl-sulfate polyacrylamide gel electrophoresis. VLDL2 was higher and richer in cholesterol and proteins than VLDL1, while the percentage content of triglycerides was lower. In hypertriglyceridemic patients both VLDL1 and VLDL2 were higher than in normolipidemic subjects, the difference being particularly evident for VLDL1. In both VLDL1 and VLDL2 of nearly all the subjects studied the presence in electrophoretic gels of a large Apo B-100 band and of a minor Apo B-48 band with the appropriate mobility of lymph chylomicrons was detected. The Apo B-100/Apo B-48 ratio was about 6 in VLDL1 and 24 in VLDL2. A trend of a reduced Apo B-100/Apo B-48 ratio was observed in VLDL1 of hypertriglyceridemic patients.
[Distribution and species composition of hyporheic macroinvertebrates in a mountain stream].
Zhang, Yue-wei; Yuan, Xing-zhong; Liu, Hong; Ren, Hai-qing; Deng, Wei; Wang, Xiao-feng
2015-09-01
Hyporheic macroinvertebrates are an important component of stream ecosystem. The composition and distribution of the hyporheic macroinvertebrates were investigated using artificial substrates in the upper reaches of Heishuitan River in August, December 2013 and April 2014. The results indicated that a total of 27 microinvertbrate species were identified in all three seasons. In summer, 22 species were identified, accounting for 81.8% of aquatic insects. 16 species were identified both in winter and spring, accounting for 75.0% and 62.5% of aquatic insects, respectively. The density of macroinvertebrate assemblage was significantly lower in summer than in winter and spring, and was the highest in spring. The biomass of macroinvertebrate assemblage was significantly higher in winter than in summer and spring, and was the lowest in summer. Species richness, Shannon index and Pielou index all had no significant difference among the three seasons. The density and richness of macroinvertebrates decreased with bed depth, and the maximum invertebrate density was found within the top 20 cm of the stream bed. Collector-filterer and collector-gatherer were the dominant functional feeding group in all three seasons. The community structure and temporal-spatial distribution of macroinvertebrates were determined by interactions and life history strategy of macroinvertebrates, and physical-chemical factors of hyporheic zone.
NASA Astrophysics Data System (ADS)
Klose, Carolin; Breitwieser, Matthias; Vierrath, Severin; Klingele, Matthias; Cho, Hyeongrae; Büchler, Andreas; Kerres, Jochen; Thiele, Simon
2017-09-01
We show that the combination of direct membrane deposition with proton conductive nanofiber reinforcement yields highly durable and high power density fuel cells. Sulfonated poly(ether ketone) (SPEK) was directly electrospun onto gas diffusion electrodes and then filled with Nafion by inkjet-printing resulting in a 12 μm thin membrane. The ionic membrane resistance (30 mΩ*cm2) was well below that of a directly deposited membrane reinforced with chemically inert (PVDF-HFP) nanofibers (47 mΩ*cm2) of comparable thickness. The power density of the fuel cell with SPEK reinforced membrane (2.04 W/cm2) is 30% higher than that of the PVDF-HFP reinforced reference sample (1.57 W/cm2). During humidity cycling and open circuit voltage (OCV) hold, the SPEK reinforced Nafion membrane showed no measurable degradation in terms of H2 crossover current density, thus fulfilling the target of 2 mA/cm2 of the DOE after degradation. The chemical accelerated stress test (100 h OCV hold at 90 °C, 30% RH, H2/air, 50/50 kPa) revealed a degradation rate of about 0.8 mV/h for the fuel cell with SPEK reinforced membrane, compared to 1.0 mV/h for the PVDF-HFP reinforced membrane.
Formation of aggregated nanoparticle spheres through femtosecond laser surface processing
NASA Astrophysics Data System (ADS)
Tsubaki, Alfred T.; Koten, Mark A.; Lucis, Michael J.; Zuhlke, Craig; Ianno, Natale; Shield, Jeffrey E.; Alexander, Dennis R.
2017-10-01
A detailed structural and chemical analysis of a class of self-organized surface structures, termed aggregated nanoparticle spheres (AN-spheres), created using femtosecond laser surface processing (FLSP) on silicon, silicon carbide, and aluminum is reported in this paper. AN-spheres are spherical microstructures that are 20-100 μm in diameter and are composed entirely of nanoparticles produced during femtosecond laser ablation of material. AN-spheres have an onion-like layered morphology resulting from the build-up of nanoparticle layers over multiple passes of the laser beam. The material properties and chemical composition of the AN-spheres are presented in this paper based on scanning electron microscopy (SEM), focused ion beam (FIB) milling, transmission electron microscopy (TEM), and energy dispersive x-ray spectroscopy (EDX) analysis. There is a distinct difference in the density of nanoparticles between concentric rings of the onion-like morphology of the AN-sphere. Layers of high-density form when the laser sinters nanoparticles together and low-density layers form when nanoparticles redeposit while the laser ablates areas surrounding the AN-sphere. The dynamic nature of femtosecond laser ablation creates a variety of nanoparticles that make-up the AN-spheres including Si/C core-shell, nanoparticles that directly fragmented from the base material, nanoparticles with carbon shells that retarded oxidation, and amorphous, fully oxidized nanoparticles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Chandrima; Ghosh, Arup; Haldar, Manas Kamal, E-mail: manashaldar@cgcri.res.in
The present work intends to study the development of magnesium aluminate spinel aggregates from Indian magnesite in a single firing stage. The raw magnesite has been evaluated in terms of chemical analysis, differential thermal analysis, thermogravimetric analysis, infrared spectroscopy, and X-ray diffraction. The experimental batch containing Indian magnesite and calcined alumina has been sintered in the temperature range of 1550 °C–1700 °C. The sintered material has been characterized in terms of physico-chemical properties like bulk density, apparent porosity, true density, relative density and thermo-mechanical/mechanical properties like hot modulus of rupture, thermal shock resistance, cold modulus of rupture and structural propertiesmore » by X-ray diffraction in terms of phase identification and evaluation of crystal structure parameters of corresponding phases by Rietveld analysis. The microstructures developed at different temperatures have been analyzed by field emission scanning electron microscope study and compositional analysis of the developed phase has been carried out by energy dispersive X-ray study. - Highlights: • The studies have been done to characterize the developed magnesium aluminate spinel. • The studies reveal correlation between refractory behavior of spinel and developed microstructures. • The studies show the values of lattice parameters of developed phases.« less
Park, Jong-Seok; Lim, Youn-Mook; Nho, Young-Chang
2015-01-01
Polyurethane (PU) is a very popular polymer that is used in a variety of applications due to its good mechanical, thermal, and chemical properties. However, PU recycling has received significant attention due to environmental issues. In this study, we developed a recycling method for waste PU that utilizes the radiation grafting technique. Grafting of waste PU was carried out using a radiation technique with polyethylene-graft-maleic anhydride (PE-g-MA). The PE-g-MA-grafted PU/high density polyethylene (HDPE) composite was prepared by melt-blending at various concentrations (0–10 phr) of PE-g-MA-grafted PU. The composites were characterized using fourier transform infrared spectroscopy (FT-IR), and their surface morphology and thermal/mechanical properties are reported. For 1 phr PU, the PU could be easily introduced to the HDPE during the melt processing in the blender after the radiation-induced grafting of PU with PE-g-MA. PE-g-MA was easily reacted with PU according to the increasing radiation dose and was located at the interface between the PU and the HDPE during the melt processing in the blender, which improved the interfacial interactions and the mechanical properties of the resultant composites. However, the elongation at break for a PU content >2 phr was drastically decreased. PMID:28788022
Separation Process of Fine Coals by Ultrasonic Vibration Gas-Solid Fluidized Bed
Wei, Hua; Xie, Weining
2017-01-01
Ultrasonic vibration gas-solid fluidized bed was proposed and introduced to separate fine coals (0.5–0.125 mm fraction). Several technological methods such as XRF, XRD, XPS, and EPMA were used to study the composition of heavy products to evaluate the separation effect. Results show that the ultrasonic vibration force field strengthens the particle separation process based on density when the vibration frequency is 35 kHz and the fluidization number is 1.8. The ash difference between the light and heavy products and the recovery of combustible material obtain the maximum values of 47.30% and 89.59%, respectively. The sulfur content of the heavy product reaches the maximum value of 6.78%. Chemical state analysis of sulfur shows that organic sulfur (-C-S-), sulfate-sulfur (-SO4), and pyrite-sulfur (-S2) are confirmed in the original coal and heavy product. Organic sulfur (-C-S-) is mainly concentrated in the light product, and pyrite-sulfur (-S2) is significantly enriched in the heavy product. The element composition, phase composition, backscatter imagery, and surface distribution of elements for heavy product show concentration of high-density minerals including pyrite, quartz, and kaolinite. Some harmful elements such as F, Pb, and As are also concentrated in the heavy product. PMID:28845160
The Use of Pristine and Intercalated Graphite Fiber Composites as Buss Bars in Lead-Acid Batteries
NASA Technical Reports Server (NTRS)
Opaluch, Amanda M.
2004-01-01
This study was conducted as a part of the Firefly Energy Space Act Agreement project to investigate the possible use of composite materials in lead acid batteries. Specifically, it examined the use of intercalated graphite composites as buss bars. Currently, buss bars of these batteries are made of lead, a material that is problematic for several reasons. Over time, the lead is subject to both corrosion at the positive plate and sulfation at the negative plate, resulting in decreased battery life. In addition, the weight and size of the lead buss bars make for a heavy and cumbersome battery that is undesirable. Functionality and practicality of lead buss bars is adequate at best; consequently, investigation of more efficient composite materials would be advantageous. Practically speaking, graphite composites have a low density that is nearly one fourth that of its lead counterpart. A battery made of less dense materials would be more attractive to the consumer and the producer because it would be light and convenient. More importantly, low weight would be especially beneficial because it would result in greater overall power density of the battery. In addition to power density, use of graphite composite materials can also increase the life of the battery. From a functional standpoint, corrosion and sulfation at the positive and negative plates are major obstacles when considering how to extend battery life. Neither of these reactions are a factor when graphite composites replace lead parts because graphite is chemically non-reactive with the electrolyte within the battery. Without the problem of corrosion or sulfation, battery life expectancy can be almost doubled. The replacement of lead battery parts with composite materials is also more environmentally favorable because of easy disposal of organic materials. For this study, both pristine and bromine intercalated single-ply graphite fiber composites were created. The composites were fabricated in such a way as to facilitate their use in a 3" x 1/2" buss bar test cell. The prime objective of this investigation was to examine the effectiveness of a variety of graphite composite materials to act as buss bars and carry the current to and from the positive and negative battery plates. This energy transfer can be maximized by use of materials with high conductivity to minimize the buss resistance. Electrical conductivity of composites was measured using both a contactless eddy current probe and a four point measurement. In addition, the stability of these materials at battery-use conditions was characterized.
Calnan, Sonya; Gabriel, Onno; Rothert, Inga; Werth, Matteo; Ring, Sven; Stannowski, Bernd; Schlatmann, Rutger
2015-09-02
In this study, various silicon dielectric films, namely, a-SiOx:H, a-SiNx:H, and a-SiOxNy:H, grown by plasma enhanced chemical vapor deposition (PECVD) were evaluated for use as interlayers (ILs) between crystalline silicon and glass. Chemical bonding analysis using Fourier transform infrared spectroscopy showed that high values of oxidant gases (CO2 and/or N2), added to SiH4 during PECVD, reduced the Si-H and N-H bond density in the silicon dielectrics. Various three layer stacks combining the silicon dielectric materials were designed to minimize optical losses between silicon and glass in rear side contacted heterojunction pn test cells. The PECVD grown silicon dielectrics retained their functionality despite being subjected to harsh subsequent processing such as crystallization of the silicon at 1414 °C or above. High values of short circuit current density (Jsc; without additional hydrogen passivation) required a high density of Si-H bonds and for the nitrogen containing films, additionally, a high N-H bond density. Concurrently high values of both Jsc and open circuit voltage Voc were only observed when [Si-H] was equal to or exceeded [N-H]. Generally, Voc correlated with a high density of [Si-H] bonds in the silicon dielectric; otherwise, additional hydrogen passivation using an active plasma process was required. The highest Voc ∼ 560 mV, for a silicon acceptor concentration of about 10(16) cm(-3), was observed for stacks where an a-SiOxNy:H film was adjacent to the silicon. Regardless of the cell absorber thickness, field effect passivation of the buried silicon surface by the silicon dielectric was mandatory for efficient collection of carriers generated from short wavelength light (in the vicinity of the glass-Si interface). However, additional hydrogen passivation was obligatory for an increased diffusion length of the photogenerated carriers and thus Jsc in solar cells with thicker absorbers.
Madeira, Marta S; Rolo, Eva A; Lopes, Paula A; Ramos, Denis A; Alfaia, Cristina M; Pires, Virgínia Mr; Martins, Susana V; Pinto, Rui Ma; Prates, José Am
2018-01-01
The individual and combined effects of betaine and arginine supplemented to reduced protein diets were investigated on plasma metabolites, hepatic fatty acid composition and mRNA levels of lipid-sensitive factors in commercial pigs. Betaine has previously been shown to reduce carcass fat deposition and arginine improves meat quality of finishing pigs. Forty male crossbred pigs were randomly assigned to one of five diets (n = 8): 160 g kg -1 of crude protein (NPD), 130 g kg -1 of crude protein (RPD), RPD with 3.3 g kg -1 of betaine, RPD with 15 g kg -1 of arginine, and RPD with 3.3 g kg -1 of betaine and 15 g kg -1 of arginine. The restriction of dietary protein increased total lipids (P < 0.001), total cholesterol (P < 0.001), high-density lipoprotein-cholesterol (P < 0.001) and low-density lipoprotein cholesterol (P < 0.001). Betaine and arginine, individually or combined, reduced the majority of plasma lipids (P < 0.05) without affecting total fatty acids in the liver and the overall gene expression pattern. These findings suggest a positive effect of betaine and arginine, singly or combined, by reversing plasma lipids increase promoted by dietary protein restriction. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Uv Spectroscopy of Low-Redshift Active Galaxies -- Cyc 4
NASA Astrophysics Data System (ADS)
Boggess, Albert
1994-01-01
FOS will be used to measure the ultraviolet spectrum of active galaxies. Complementary and simultaneous visual and infrared data will also be obtained. The profile of the emission lines will provide information on the broadening mechanism and dynamics of the emitting regions. Comparison of the profile and radial velocity of the emission lines produced by species of different ioni- zation potential will allow the study of the thermal and density stratification of the emitting regions. The degree of asymmetry of lines at different wave- lengths will allow the absorbing material be identified and located. The ratio of the UV to visible lines, such as those for O I and He II will be used to estimate the reddening along the line of sight. Ratio of emission line fluxes will be compared with models in order to derive the ionization mechanism, elec- tron temperature and density, and chemical composition of the emitting gas. The emission line properties of low luminosity will be compared with those of high luminosity objects in order to investigate the covering factor and evolutionary effects. The continumm spectrum from the UV to the IR will be used to establish the emission mechanism and the nature and luminosity of the energy source. The weak absorption lines will be used to establish the physical conditions and the chemical composition of the gas in: our Galaxy, intergalactic medium and the parent galaxy. Absorption produced by broad line clouds will give information on cloud motion and covering factor.
Effect of aging on the microstructure, hardness and chemical composition of dentin.
Montoya, C; Arango-Santander, S; Peláez-Vargas, A; Arola, D; Ossa, E A
2015-12-01
Understanding the effects of biological aging on human tissues has been a topic of extensive research. With the increase in healthy seniors and quality of life that topic is becoming increasingly important. In this investigation the effects of aging on the microstructure, chemical composition and hardness of human coronal dentin was studied from a comparison of teeth within "young" and "old" age groups. The microstructure of dentin within three regions (i.e., inner, middle and outer) was analyzed using electron and optical microscopy. The mineral-to-collagen ratio in these three regions was estimated using Raman spectroscopy and the hardness was evaluated using microindentation. Results showed that there were significant differences in tubule density, tubule diameter and peritubular cuff diameter with depth. Although there was no difference in tubule density and diameter of the tubules between the age groups, there was a significant difference in the occlusion ratio. A significant increase in hardness between young and old patients was found for middle and outer dentin. An increase in mineral-to-collagen ratio from inner to outer dentin was also found for both groups. In old patients, an increase in mineral content was found in outer coronal dentin as a consequence of tubule occlusion. An increase in occlusion ratio, hardness, and mineral content was found in the dentin of adult patients with age. This increase is most evident in the outer coronal dentin. Copyright © 2015 Elsevier Ltd. All rights reserved.
Influence of magnetic materials on the transport properties of superconducting composite conductors
NASA Astrophysics Data System (ADS)
Glowacki, B. A.; Majoros, M.; Campbell, A. M.; Hopkins, S. C.; Rutter, N. A.; Kozlowski, G.; Peterson, T. L.
2009-03-01
Magnetic materials can help to improve the performance of practical superconductors on the macro/microscale as magnetic diverters and also on the nanoscale as effective pinning centres. It has been established by numerical modelling that magnetic shielding of the filaments reduces ac losses in self-field conditions due to decoupling of the filaments and, at the same time, it increases the critical current of the composite. This effect is especially beneficial for coated conductors, in which the anisotropic properties of the superconductor are amplified by the conductor architecture. However, ferromagnetic coatings are often chemically incompatible with YBa2Cu3O7 and (Pb,Bi)2Sr2Ca2Cu3O9 conductors, and buffer layers have to be used. In contrast, in MgB2 conductors an iron matrix may remain in direct contact with the superconducting core. The application of superconducting-magnetic heterostructures requires consideration of the thermal and electromagnetic stability of the superconducting materials used. On the one hand, magnetic components reduce the critical current gradient across the individual filaments but, on the other hand, they often reduce the thermal conductivity between the superconducting core and the cryogen, which may cause the destruction of the conductor in the event of thermal instability. A possible nanoscale method of improving the critical current density of superconducting conductors is the introduction of sub-micron magnetic pinning centres. However, the volumetric density and chemical compatibility of magnetic inclusions has to be controlled to avoid suppression of the superconducting properties.
Kim, Ho Young; Jeong, Sooyeon; Jeong, Seung Yol; Baeg, Kang-Jun; Han, Joong Tark; Jeong, Mun Seok; Lee, Geon-Woong; Jeong, Hee Jin
2015-03-12
Despite the recent progress in the fabrication of field emitters based on graphene nanosheets, their morphological and electrical properties, which affect their degree of field enhancement as well as the electron tunnelling barrier height, should be controlled to allow for better field-emission properties. Here we report a method that allows the synthesis of graphene-based emitters with a high field-enhancement factor and a low work function. The method involves forming monolithic three-dimensional (3D) graphene structures by freeze-drying of a highly concentrated graphene paste and subsequent work-function engineering by chemical doping. Graphene structures with vertically aligned edges were successfully fabricated by the freeze-drying process. Furthermore, their number density could be controlled by varying the composition of the graphene paste. Al- and Au-doped 3D graphene emitters were fabricated by introducing the corresponding dopant solutions into the graphene sheets. The resulting field-emission characteristics of the resulting emitters are discussed. The synthesized 3D graphene emitters were highly flexible, maintaining their field-emission properties even when bent at large angles. This is attributed to the high crystallinity and emitter density and good chemical stability of the 3D graphene emitters, as well as to the strong interactions between the 3D graphene emitters and the substrate.
Free-standing 3D graphene/polyaniline composite film electrodes for high-performance supercapacitors
NASA Astrophysics Data System (ADS)
Wang, Shiyong; Ma, Li; Gan, Mengyu; Fu, Shenna; Dai, Wenqin; Zhou, Tao; Sun, Xiaowu; Wang, Huihui; Wang, Huining
2015-12-01
The research paper describes polyaniline (PANI) nanowires array on flexible polystyrene microsphere/reduced graphene (PS/rGN) film is synthesized by dilute polymerization, and then the PS microspheres are removed to form free-standing three-dimensional (3D) rGN/PANI composite film. The chemical and structural properties of the 3D rGN/PANI film are characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET), and the results confirm the 3D rGN/PANI film is synthesized successfully. When the film is used as a supercapacitor electrode, the maximum specific capacitance is as high as 740 F g-1 (or 581 F cm-3 for volumetric capacitance) at a current density of 0.5 A g-1 and the specific capacitance retains 87% of the initial after constant charge-discharge 1000 cycles at current density of 10 A g-1. It is believed that the free-standing 3D rGN/PANI film will have a great potential for application in supercapacitors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cionca, C.; Walko, D. A.; Yacoby, Y.
2007-01-01
We have used Bragg rod x-ray diffraction combined with a direct method of phase retrieval to extract atomic resolution electron-density maps of a complementary series of heteroepitaxial III-V semiconductor samples. From the three-dimensional electron-density maps we derive the monolayer spacings, the chemical compositions, and the characteristics of the bonding for all atomic planes in the film and across the film-substrate interface. InAs films grown on GaSb(001) under two different As conditions (using dimer or tetramer forms) both showed conformal roughness and mixed GaAs/InSb interfacial bonding character. The As tetramer conditions favored InSb bonding at the interface while, in the casemore » of the dimer, the percentages corresponding to GaAs and InSb bonding were equal within the experimental error. The GaSb film grown on InAs(001) displayed significant In and As interdiffusion and had a relatively large fraction of GaAs-like bonds at the interface.« less
Varley, J. B.; Conway, A. M.; Voss, L. F.; ...
2015-02-09
Thallium bromide (TlBr) crystals subjected to hydrochloric acid (HCl) chemical treatments have been shown to advantageously affect device performance and longevity in TlBr-based room temperature radiation detectors, yet the exact mechanisms of the improvements remain poorly understood. Here in this paper, we investigate the influence of several HCl chemical treatments on device-grade TlBr and describe the changes in the composition and electronic structure of the surface. Composition analysis and depth profiles obtained from secondary ion mass spectrometry (SIMS) identify the extent to which each HCl etch condition affects the detector surface region and forms of a graded TlBr/TlBr 1-xCL xmore » surface heterojunction. Using a combination of X-ray photoemission spectroscopy (XPS) and hybrid density functional calculations, we are able to determine the valence band offsets, band gaps, and conduction band offsets as a function of Cl content over the entire composition range of TIBr 1-xC1 X. This study establishes a strong correlation between device process conditions, surface chemistry, and electronic structure with the goal of further optimizing the long-term stability and radiation response of TlBr-based detectors.« less
Becaro, Aline A; Puti, Fernanda C; Correa, Daniel S; Paris, Elaine C; Marconcini, José M; Ferreira, Marcos D
2015-03-01
This paper reports the antibacterial effect and physico-chemical characterization of films containing silver nanoparticles for use as food packaging. Two masterbatches (named PEN and PEC) con- taining silver nanoparticles embedded in distinct carriers (silica and titanium dioxide) were mixed with low-density polyethylene (LDPE) in different compositions and extruded to produce plain films. These films were characterized by Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC), Thermogravimetric analysis (TGA) and Fourier Transform Infrared Spectroscopy (FTIR). The morphology of the films showed the formation of agglomerates of nanoparticles in both PEN and PEC composites. X-ray analyses confirmed the presence of SiO2 in PEN samples and TiO2 in PEC samples. Thermal analyses indicated an increase in thermal stability of the PEC compositions. The antimicrobial efficacy was determined by applying the test strain for Escherichia coli and Staphylococcus aureus, according to the Japanese Industrial Standard Method (JIS Z 2801:2000). The films analyzed showed antimicrobial properties against the tested microorganisms, presenting better activity against the S. aureus than E. Coli. These findings suggest that LDPE films with silver nanoparticles are promising to provide a significant contribution to the quality and safety of packaged food.
Trivedi, Samarth; Alameh, Kamal
2016-01-01
In this paper, vertically aligned carbon nanotube (VACNT) membranes of different densities are developed and their performances are investigated. VACNT arrays of densities 5 × 10(9), 10(10), 5 × 10(10) and 10(11) tubes cm(-2), are initially grown on 1 cm × 1 cm silicon substrates using chemical vapour deposition. A VACNT membrane is realised by attaching a 300 μm-thick 1 cm × 1 cm VACNT array on silicon to a 4″ glass substrate, applying polydimethylsiloxane (PDMS) through spin coating to fill the gaps between the VACNTs, and using a microtome to slice the VACNT-PDMS composite into 25-μm-thick membranes. Experimental results show that the permeability of the developed VACNT membranes increases with the density of the VACNTs, while the salt rejection is almost independent of the VACNT density. The best measured permeance is attained with a VACNT membrane having a CNT density of 10(11) tubes cm(-2) is 1203 LMH at 1 bar.
de Vega, Clara; Herrera, Carlos M
2013-04-01
Interactions between plants and ants abound in nature and have significant consequences for ecosystem functioning. Recently, it has been suggested that nectar-foraging ants transport microorganisms to flowers; more specifically, they transport yeasts, which can potentially consume sugars and alter nectar composition. Therefore, ants could indirectly change nectar sugar profile, an important floral feature involved in the plant-pollinator mutualism. But this novel role for ants has never been tested. We here investigate the effects of nectarivorous ants and their associated yeasts on the floral nectar sugar composition of an ant-pollinated plant. Differences in the nectar sugar composition of ant-excluded and ant-visited flowers were examined in 278 samples by using high-performance liquid-chromatography. The importance of the genetic identity and density of ant-transported basidiomycetous and ascomycetous yeasts on the variation of nectar traits was also evaluated. Ant visitation had significant effects on nectar sugar composition. The nectar of ant-visited flowers contained significantly more fructose, more glucose, and less sucrose than the nectar of ant-excluded flowers, but these effects were context dependent. Nectar changes were correlated with the density of yeast cells in nectar. The magnitude of the effects of ant-transported ascomycetes was much higher than that of basiodiomycetes. Ants and their associated yeasts induce changes in nectar sugar traits, reducing the chemical control of the plant over this important floral trait. The potential relevance of this new role for ants as indirect nectar modifiers is a rich topic for future research into the ecology of ant-flower interactions.
Effect of carbon nanofibers on the infiltration and thermal conductivity of carbon/carbon composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jinsong, E-mail: lijinsong@buaa.edu.cn; School of Physics and Nuclear Energy Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191; Luo, Ruiying, E-mail: ryluo@buaa.edu.cn
Highlights: {yields} The CNFs improve the infiltration rate and thermal properties of carbon/carbon composites. {yields} The densification rate increases with the CNF content increasing at the beginning of infiltration. {yields} The values of the thermal conductivity of the composite obtain their maximum values at 5 wt.%. -- Abstract: Preforms containing 0, 5, 10, 15 and 20 wt.% carbon nanofibers (CNFs) were fabricated by spreading layers of carbon cloth, and infiltrated using the electrified preform heating chemical vapor infiltration method (ECVI) under atmospheric pressure. Initial thermal gradients were determined. Resistivity and density evolutions with infiltration time have been recorded. Scanning electronmore » microscopy, polarized light micrograph and X-ray diffraction technique were used to analyze the experiment results. The results showed that the infiltration rate increased with the rising of CNF content, and after 120 h of infiltration, the density was the highest when the CNF content was 5 wt.%, but the composite could not be densified efficiently as the CNF content ranged from 10 wt.% to 20 wt.%. CNF-reinforced C/C composites have enhanced thermal conductivity, the values at 5 wt.% were increased by nearly 5.5-24.1% in the X-Y direction and 153.8-251.3% in the Z direction compared to those with no CNFs. When the additive content was increased to 20 wt.%, due to the holes and cavities in the CNF web and between carbon cloth and matrix, the thermal conductivities in the X-Y and Z directions decreased from their maximum values at 5 wt.%.« less
Decarbonation in an intracratonic setting: Insight from petrological-thermomechanical modeling
NASA Astrophysics Data System (ADS)
Gonzalez, Christopher M.; Gorczyk, Weronika
2017-08-01
Cratons form the stable core roots of the continental crust. Despite long-term stability, cratons have failed in the past. Cratonic destruction (e.g., North Atlantic Craton) due to chemical rejuvenation at the base of the lithosphere remains poorly constrained numerically. We use 2-D petrological-thermomechanical models to assess cratonic rifting characteristics and mantle CO2 degassing in the presence of a carbonated subcontinental lithospheric mantle (SCLM). We test two tectonothermal SCLM compositions: Archon (depleted) and Tecton (fertilized) using 2 CO2 wt % in the bulk composition to represent a metasomatized SCLM. We parameterize cratonic breakup via extensional duration (7-12 Ma; full breakup), tectonothermal age, TMoho (300-600°C), and crustal rheology. The two compositions with metasomatized SCLMs share similar rifting features and decarbonation trends during initial extension. However, we show long-term (>67 Ma) stability differences due to lithospheric density contrasts between SCLM compositions. The Tecton model shows convective removal and thinning of the metasomatized SCLM during failed rifting. The Archon composition remained stable, highlighting the primary role for SCLM density even when metasomatized at its base. In the short-term, three failed rifting characteristics emerge: failed rifting without decarbonation, failed rifting with decarbonation, and semifailed rifting with dry asthenospheric melting and decarbonation. Decarbonation trends were greatest in the failed rifts, reaching peak fluxes of 94 × 104 kg m-3. Increased TMoho did not alter the effects of rifting or decarbonation. Lastly, we show mantle regions where decarbonation, mantle melting in the presence of carbonate, and preservation of carbonated mantle occur during rifting.
Bingham, Dennis N.; Klingler, Kerry M.; Wilding, Bruce M.; Zollinger, William T.
2006-12-26
A method of producing hydrogen is disclosed and which includes providing a first composition; providing a second composition; reacting the first and second compositions together to produce a chemical hydride; providing a liquid and reacting the chemical hydride with the liquid in a manner to produce a high pressure hydrogen gas and a byproduct which includes the first composition; and reusing the first composition formed as a byproduct in a subsequent chemical reaction to form additional chemical hydride.
Özcan, Mehmet Musa; Al Juhaimi, Fahad Y
2011-08-01
The proximate composition and physico-chemical properties (moisture, crude lipid, crude protein, ash, and crude fiber, peroxide value, saponification value, acidity, relative density and refractive index) of prickly pear seed and corresponding oil were determined. The mineral contents (Ca, Cu, Fe, K, Mg, Na, P, Mn and Zn) of samples were analyzed by inductively coupled plasma atomic emission spectrometry. Minerals determined were: calcium 471.2 mg/kg, potassium 532.7 mg/kg, magnesium 117.3 mg/kg, phosphorus 1,627.5 mg/kg and natrium 71.3 mg/kg. The fatty acid profiles of seed oil from the Opuntia ficus indica were analyzed by gas chromatography. Linoleic acid was established as the major fatty acid (61.01%), followed by oleic (25.52%) and palmitic (12.23%) acids. Both myristic, stearic and arachidonic acids were detected in O. ficus indica seed oil in low amounts. As a result, O. ficus indica seeds are an important source of natural fiber and, given its high linoleic acid content, its oil can be used as a nutraceutic agent.
Wright, Laura E; Frye, Jennifer B; Timmermann, Barbara N; Funk, Janet L
2010-09-08
Extracts prepared from turmeric (Curcuma longa L., [Zingiberaceae]) containing bioactive phenolic curcuminoids were evaluated for bone-protective effects in a hypogonadal rat model of postmenopausal osteoporosis. Three-month female Sprague-Dawley rats were ovariectomized (OVX) and treated with a chemically complex turmeric fraction (41% curcuminoids by weight) or a curcuminoid-enriched turmeric fraction (94% curcuminoids by weight), both dosed at 60 mg/kg 3x per week, or vehicle alone. Effects of two months of treatment on OVX-induced bone loss were followed prospectively by serial assessment of bone mineral density (BMD) of the distal femur using dual-energy X-ray absorptiometry (DXA), while treatment effects on trabecular bone microarchitecture were assessed at two months by microcomputerized tomography (microCT). Chemically complex turmeric did not prevent bone loss, however, the curcuminoid-enriched turmeric prevented up to 50% of OVX-induced loss of trabecular bone and also preserved the number and connectedness of the strut-like trabeculae. These results suggest that turmeric may have bone-protective effects but that extract composition is a critical factor.
Wright, Laura E.; Frye, Jennifer B.; Timmermann, Barbara N.; Funk, Janet L.
2010-01-01
Extracts prepared from turmeric (Curcuma longa L., [Zingiberaceae]) containing bioactive phenolic curcuminoids were evaluated for bone-protective effects in a hypogonadal rat model of postmenopausal osteoporosis. Three-month female Sprague Dawley rats were ovariectomized (OVX) and treated with a chemically complex turmeric fraction (41% curcuminoids by weight) or a curcuminoid-enriched turmeric fraction (94% curcuminoids by weight), both dosed at 60mg/kg 3x per week, or vehicle alone. Effects of two months of treatment on OVX-induced bone loss were followed prospectively by serial assessment of bone mineral density (BMD) of the distal femur using dual-energy x-ray absorptiometry (DXA), while treatment effects on trabecular bone microarchitecture were assessed at two months by micro-computerized tomography (μCT). Chemically complex turmeric did not prevent bone loss, however, the curcuminoid-enriched turmeric prevented up to 50% of OVX-induced loss of trabecular bone and also preserved the number and connectedness of the strut-like trabeculae. These results suggest that turmeric may have bone-protective effects but that extract composition is a critical factor. PMID:20695490
Aesthetic value improvement of the ruby stone using heat treatment and its synergetic surface study
NASA Astrophysics Data System (ADS)
Sahoo, Rakesh K.; Mohapatra, Birendra K.; Singh, Saroj K.; Mishra, Barada K.
2015-02-01
The surface behavior of the natural ruby stones before and after heat treatment with metal oxide additives like: zinc oxide (ZnO) and lead oxide (PbO) have been studied. The surface appearance of the ruby stones processed with the metal oxides changed whereas the bulk densities of the stones remained within the range of 3.9-4.0 g/cm3. The cracks healing and pores filling by the metal oxides on the surface of the ruby have been examined using scanning electron microscopy. The chemical compositions based on the XPS survey scans are in good agreement with the expected composition. The phase and crystallinity of the ruby stones original and heat-treated were obtained from their X-ray diffraction patterns. The change in peak separation between R1 and R2 - peaks in photoluminescence spectra and the contrary binding energy shift of the Al 2p peaks in the X-ray photoelectron spectra have been explicated. Moreover, in this work we describe the change in surface chemical and physical characteristics of the ruby stone before and after heat treatment.
Arita, Emiko S; Silveira, Gilson P; Cortes, Arthur R; Brucoli, Henrique C
2012-01-01
The development of countless types and trends of high viscosite and flowable composite resins, with different physical and chemical properties applicable to their broad use in dental clinics calls for further studies regarding their radiopacity level. The aim of this study was to evaluate the radiopacity levels of high viscosity and the flowable composite resins, using digital imaging. 96 composite resin discs 5 mm in diameter and 3 mm thick were radiographed and analyzed. The image acquisition system used was the Digora® Phosphor Storage System and the images were analyzed with the Digora software for Windows. The exposure conditions were: 70 kVp, 8 mA, and 0.2 s. The focal distance was 40 cm. The image densities were obtained with the pixel values of the materials in the digital image. Most of the high viscosity composite resins presented higher radiopacity levels than the flowable composite resins, with statistically significant differences between the trends and groups analyzed (P < 0.05). Among the high viscosity composite resins, Tetric®Ceram presented the highest radiopacity levels and Glacier® presented the lowest. Among the flowable composite resins, Tetric®Flow presented the highest radiopacity levels and Wave® presented the lowest.
Characteristics of Commercial SiC and Synthetic SiC as an Aggregate in Geopolymer Composites
NASA Astrophysics Data System (ADS)
Irfanita, R.; Afifah, K. N.; Asrianti; Subaer
2017-03-01
This main objective of this study is to investigate the effect silicon carbide (SiC) as an aggregate on the mechanical strength and microstructure of the geopolymer composites. The geopolymers binder were produced by using alkaline activation method of metakaolin and cured at 70oC for 2 hours. In this study commercial and synthetic SiC were used as aggregate to produce composite structure. Synthetic SiC was produced from rice husk ash and coconut shell carbon calcined at 750oC for 2 hours. The addition of SiC in geopolymers paste was varied from 0.25g, 0.50g to 0.75g to form geopolymers composites. The chemical compositions and crystallinity level of SiC and the resulting composites were measured by means of Rigaku MiniFlexII X-Ray Diffraction (XRD). The microstructure of SiC and the composites were examined by using Tescan Vega3SB Scanning Electron Microscopy (SEM). The physical and mechanical properties of the samples were determined based on apparent porosity, bulk density, and three bending flexural strength measurements. The results showed that the commercial and synthetic SiC were effectively produced geopolymers composites with different microstructure, physical and mechanical strength.
NASA Astrophysics Data System (ADS)
Yeo, S.; Mckenna, E.; Baney, R.; Subhash, G.; Tulenko, J.
2013-02-01
Uranium dioxide (UO2)-10 vol% silicon carbide (SiC) composite fuel pellets were produced by oxidative sintering and Spark Plasma Sintering (SPS) at a range of temperatures from 1400 to 1600 °C. Both SiC whiskers and SiC powder particles were utilized. Oxidative sintering was employed over 4 h and the SPS sintering was employed only for 5 min at the highest hold temperature. It was noted that composite pellets sintered by SPS process revealed smaller grain size, reduced formation of chemical products, higher density, and enhanced interfacial contact compared to the pellets made by oxidative sintering. For given volume of SiC, the pellets with powder particles yielded a smaller grain size than pellets with SiC whiskers. Finally thermal conductivity measurements at 100 °C, 500 °C, and 900 °C revealed that SPS sintered UO2-SiC composites exhibited an increase of up to 62% in thermal conductivity compared to UO2 pellets, while the oxidative sintered composite pellets revealed significantly inferior thermal conductivity values. The current study points to the improved processing capabilities of SPS compared to oxidative sintering of UO2-SiC composites.
Infrared spectroscopic study of the synthetic Mg-Ni talc series
NASA Astrophysics Data System (ADS)
Blanchard, Marc; Méheut, Merlin; Delon, Louise; Poirier, Mathilde; Micoud, Pierre; Le Roux, Christophe; Martin, François
2018-05-01
Five talc samples [(Mg,Ni)3Si4O10(OH)2] covering the entire Mg-Ni solid solution were synthesized following a recently developed and patented process (Dumas et al., Process for preparing a composition comprising synthetic mineral particles and composition, 2013a; Procédé de préparation d'une composition comprenant des particules minérales synthétiques et composition, 2013b), which produces sub-micron talc particles replying to industrial needs. Near- and mid-infrared spectra were collected and compared to infrared spectra modeled from first-principles calculations based on density functional theory. The good agreement between experimental and theoretical spectra allowed assigning unambiguously all absorption bands. We focused in particular on the four main OH stretching bands, which represent good probes of their local physical and chemical environment. The description of the vibrational modes at the origin of these absorption bands and the theoretical determination of absorption coefficients provide a firm basis for quantifying the talc chemical composition from infrared spectroscopy and for discussing the distribution of divalent cations in the octahedral sheet. Results confirm that these synthetic talc samples have a similar structure as natural talc, with a random distribution of Mg and Ni atoms. They only differ from natural talc by their hydrophilic character, which is due to their large proportion of reactive sites on sheet edges due to sub-micronic size of the particles. Therefore, the contribution on infrared spectra of hydroxyls adsorbed on edge sites has also been investigated by computing the infrared signature of hydroxyls of surface models.
Zelenyuk, Alla; Imre, Dan; Wilson, Jacqueline; Zhang, Zhiyuan; Wang, Jun; Mueller, Klaus
2015-02-01
Understanding the effect of aerosols on climate requires knowledge of the size and chemical composition of individual aerosol particles-two fundamental properties that determine an aerosol's optical properties and ability to serve as cloud condensation or ice nuclei. Here we present our aircraft-compatible single particle mass spectrometers, SPLAT II and its new, miniaturized version, miniSPLAT that measure in-situ and in real-time the size and chemical composition of individual aerosol particles with extremely high sensitivity, temporal resolution, and sizing precision on the order of a monolayer. Although miniSPLAT's size, weight, and power consumption are significantly smaller, its performance is on par with SPLAT II. Both instruments operate in dual data acquisition mode to measure, in addition to single particle size and composition, particle number concentrations, size distributions, density, and asphericity with high temporal resolution. We also present ND-Scope, our newly developed interactive visual analytics software package. ND-Scope is designed to explore and visualize the vast amount of complex, multidimensional data acquired by our single particle mass spectrometers, along with other aerosol and cloud characterization instruments on-board aircraft. We demonstrate that ND-Scope makes it possible to visualize the relationships between different observables and to view the data in a geo-spatial context, using the interactive and fully coupled Google Earth and Parallel Coordinates displays. Here we illustrate the utility of ND-Scope to visualize the spatial distribution of atmospheric particles of different compositions, and explore the relationship between individual particle compositions and their activity as cloud condensation nuclei.
NASA Astrophysics Data System (ADS)
Shimoda, G.; Kogiso, T.
2017-12-01
Chemical composition of altered oceanic crust is one of important constraints to delineate chemical heterogeneity of the mantle. Accordingly, many researchers have been studied to determine bulk chemical composition of altered oceanic crust mainly based on chemical compositions of old oceanic crusts at Site 801 and Site 417/418, and young crust at Site 504 (e.g., Staudigel et al., 1996; Bach et al. 2003; Kuo et al., 2016). Their careful estimation provided reliable bulk chemical compositions of these Sites and revealed common geochemical feature of alteration. To assess effect of recycling of altered oceanic crust on chemical evolution of the mantle, it might be meaningful to discuss whether the reported chemical compositions of altered oceanic crusts can represent chemical composition of globally subducted oceanic crusts. Reported chemical compositions of fresh glass or less altered samples from Site 801, 417/418 and 504 were highly depleted compared to that of global MORB reported by Gale et al. (2013), suggesting that there might be sampling bias. Hence, it could be important to consider chemical difference between oceanic crusts of these three Sites and global MORB to discuss effect of recycling of oceanic crust on isotopic heterogeneity of the mantle. It has been suggested that one of controlling factors of chemical variation of oceanic crust is crustal spreading rate because different degree of partial melting affects chemical composition of magmas produced at a mid-ocean ridge. Crustal spreading rate could also affect intensity of alteration. Namely, oceanic crusts produced at slow-spreading ridges may prone to be altered due to existence of larger displacement faults compared to fast spreading ridges which have relatively smooth topography. Thus, it might be significant to evaluate isotopic evolution of oceanic crusts those were produced at different spreading rates. In this presentation, we will provide a possible chemical variation of altered oceanic crusts based on reported bulk chemical compositions of altered oceanic crusts and global data sets of MORB. On the basis of the chemical variation, we will discuss isotopic evolution of altered oceanic crusts to delineate isotopic variation of recycled oceanic crusts.
NASA Astrophysics Data System (ADS)
Kusuma, H. H.; Ibrahim, Z.; Othaman, Z.
2018-03-01
Titanium doped sapphire (Ti:Al2O3) crystal has attracted attention not only as beautiful gemstones, but also due to their applications as high power laser action. It is very important crystal for tunable solid state laser. Ti:Al2O3 crystals have been success grown using the Czocharlski method with automatic diameter control (ADC) system. The crystals were grown with different pull rates. The structure of the crystal was characterized with X-Ray Diffraction (XRD). The density of the crystal was measurement based on the Archimedes principle and the chemical composition of the crystal was confirmed by the Energy Dispersive X-ray (EDX) Spectroscopy. The XRD patterns of crystals are showed single main peak with a high intensity. Its shows that the samples are single crystal. The Ti:Al2O3 grown with different pull rate will affect the distribution of the concentration of dopant Ti3+ and densities on the sapphire crystals boules as well on the crystal growth process. The increment of the pull rate will increase the percentage distribution of Ti3+ and on the densities of the Ti:Al2O3 crystal boules. This may be attributed to the speed factor of the pull rate of the crystal that then caused changes in the heat flow in the furnace and then causes the homogeneities is changed of species distribution of atoms along crystal.
Modeling KBOs Charon, Orcus and Salacia by means of a new equation of state for porous icy bodies
NASA Astrophysics Data System (ADS)
Malamud, U.; Prialnik, D.
2015-10-01
We use a one-dimensional adaptive-grid thermal evolution code to model intermediate sized Kuiper belt objects Charon, Orcus and Salacia and compare their measured bulk densities with those resulting from evolutionary calculations at the end of 4.6 Gyr. Our model assumes an initial homogeneous composition of mixed ice and rock, and follows the multiphase flow of water through the porous rocky medium, consequent differentiation and aqueous chemical alterations in the rock. Heating sources include long-lived radionuclides, serpentinization reactions, release of gravitational potential energy due to compaction, and crystallization of amorphous ice. The density profile is calculated by assuming hydrostatic equilibrium to be maintained through changes in composition, pressure and temperature. To this purpose, we construct an equation of state suitable for porous icy bodies with radii of a few hundred km, based on the best available empirical studies of ice and rock compaction, and on comparisons with rock porosities in Earth analog and Solar System silicates. We show that the observed bulk densities can be reproduced by assuming the same set of initial and physical parameters, including the same rock/ice mass ratio for all three bodies. We conclude that the mass of the object uniquely determines the evolution of porosity, and thus explains the observed differences in bulk density. The final structure of all three objects is differentiated, with an inner rocky core, and outer ice-enriched mantle. The degree of differentiation, too, is determined by the object's mass.
NASA Astrophysics Data System (ADS)
Malamud, Uri; Prialnik, Dina
2015-01-01
We use a one-dimensional adaptive-grid thermal evolution code to model Kuiper belt objects Charon, Orcus and Salacia and compare their measured bulk densities with those resulting from evolutionary calculations at the end of 4.6 Gyr. Our model assumes an initial homogeneous composition of mixed ice and rock, and follows the multiphase flow of water through the porous rocky medium, consequent differentiation and aqueous chemical alterations in the rock. Heating sources include long-lived radionuclides, serpentinization reactions, release of gravitational potential energy due to compaction, and crystallization of amorphous ice. The density profile is calculated by assuming hydrostatic equilibrium to be maintained through changes in composition, pressure and temperature. To this purpose, we construct an equation of state suitable for porous icy bodies with radii of a few hundred km, based on the best available empirical studies of ice and rock compaction, and on comparisons with rock porosities in Earth analog and Solar System silicates. We show that the observed bulk densities can be reproduced by assuming the same set of initial and physical parameters, including the same rock/ice mass ratio for all three bodies. We conclude that the mass of the object uniquely determines the evolution of porosity, and thus explains the observed differences in bulk density. The final structure of all three objects is differentiated, with an inner rocky core, and outer ice-enriched mantle. The degree of differentiation, too, is determined by the object's mass.
Hu, Mingli; Bai, Mei; Ye, Wei; Wang, Yaling; Wu, Hong
2018-06-01
Dried flower buds of Magnolia biondii Pamp. are the main ingredient in "Xin-yi" in China, and the volatile oils of M. biondii flower buds are the principal medicinal component. Gas chromatographymass spectrometry (GC-MS) and microscopic techniques were employed to detect the volatile yields of M. biondii flowers at various growth stages. The volatile oil yields of M. biondii flowers differed significantly at different growth stages and were closely related to flower dry weight, oil cell density and degree of oil accumulation. In February 2016, flower buds had the highest dry weight, the maximum percentage of oil cells at the oil saturation stage and the highest density of oil cells, which coincided with the highest oil yield. In March 2016, flower buds had a lower dry weight, a higher percentage of oil cells at the oil-degrading stage and the lowest oil cell density, resulting in decreased oil yields. The total amounts of the major medicinal components in the M. biondii flower also showed regular changes at different growth stages. In January and February of 2016, M. biondii flowers had a higher dry weight, volatile oil yield and total content of medicinal ingredients, which was the best time for harvesting high-quality medicinal components. Our study reveals that volatile oil content and chemical composition are closely related to the growth stage of M. biondii flower buds. The results provide a scientific morphology and composition index for evaluating the medicinal value and harvesting of high-quality M. biondii medicinal herbs.
Unravelling the chemical characteristics of YSOs
NASA Astrophysics Data System (ADS)
van Dishoeck, Ewine F.
1999-10-01
The formation of stars is accompanied by orders of magnitude changes in the physical conditions, with densities in the envelopes and disks increasing from 104 cm-3 to > 1013 cm-3 and temperatures from ~ 10 K in the cold quiescent gas to 10,000 K in shocked regions. The abundances and excitation of the various molecules respond to these changes, and are therefore excellent probes of the physical evolution of YSOs. Moreover, a comprehensive inventory of the chemical composition of envelopes and disks at different evolutionary stages is essential to study the chemistry of matter as it is incorporated into new solar systems. Recent observations of the envelopes of YSOs using single-dish telescopes and millimeter interferometers clearly reveal the potential of submillimeter lines to probe these physical and chemical changes. However, the existing data generally lack the spatial resolution to separate the different physical components, such as the warm inner envelope or `hot core', the region of interaction of the outflow with the envelope and any possible circumstellar disk. ALMA will be essential to provide an `unblurred' view of the YSO environment and unravel the chemical evolution during star formation. In this talk, an overview will be given of recent single-dish and interferometer results of the chemistry in the envelopes and disks around low- and high-mass young stellar objects. Together with ISO data on solid-state material, these observations lead to a chemical scenario in which both gas-phase and gas-grain chemistry (in particular freeze-out and evaporation) play an important role. The evaporated molecules drive a rich chemistry in the warm gas, which can result in complex organic molecules. The potential of ALMA to test chemical theories and determine the composition of gas and dust as it enters forming planetary systems will be illustrated.
Variability of chemical analysis of reinforcing bar produced in Saudi Arabia
NASA Astrophysics Data System (ADS)
Salman, A.; Djavanroodi, F.
2018-04-01
In view of the importance and demanding roles of steel rebar’s in the reinforced concrete structures, accurate information on the properties of the steels is important at the design stage. In the steelmaking process, production variations in chemical composition are unavoidable. The aim of this work is to study the variability of the chemical composition of reinforcing steel produced throughout the Saudi Arabia and asses the quality of steel rebar’s acoording to ASTM A615. 68 samples of ASTM A615 Grade 60 from different manufacturers were collected and tested using the Spectrometer test to obtain Chemical Compositions. EasyFit (5.6) software is utilized to conducted statistical analysis. Chemical compositions distributions and, control charts are generated for the compositions. Results showed that some compositions are above the upper line of the control chart. Finally, the analyses show that less than 3% of the steel failed to meet minimum ASTM standards for chemical composition.
Yunoki, Shunji; Sugiura, Hiroaki; Ikoma, Toshiyuki; Kondo, Eiji; Yasuda, Kazunori; Tanaka, Junzo
2011-02-01
The aim of this study was to evaluate the effects of increased collagen-matrix density on the mechanical properties and in vivo absorbability of porous hydroxyapatite (HAp)-collagen composites as artificial bone materials. Seven types of porous HAp-collagen composites were prepared from HAp nanocrystals and dense collagen fibrils. Their densities and HAp/collagen weight ratios ranged from 122 to 331 mg cm⁻³ and from 20/80 to 80/20, respectively. The flexural modulus and strength increased with an increase in density, reaching 2.46 ± 0.48 and 0.651 ± 0.103 MPa, respectively. The porous composites with a higher collagen-matrix density exhibited much higher mechanical properties at the same densities, suggesting that increasing the collagen-matrix density is an effective way of improving the mechanical properties. It was also suggested that other structural factors in addition to collagen-matrix density are required to achieve bone-like mechanical properties. The in vivo absorbability of the composites was investigated in bone defects of rabbit femurs, demonstrating that the absorption rate decreased with increases in the composite density. An exhaustive increase in density is probably limited by decreases in absorbability as artificial bones.
Homogenization limit for a multiband effective mass model in heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morandi, O., E-mail: morandi@ipcms.unistra.fr
We study the homogenization limit of a multiband model that describes the quantum mechanical motion of an electron in a quasi-periodic crystal. In this approach, the distance among the atoms that constitute the material (lattice parameter) is considered a small quantity. Our model include the description of materials with variable chemical composition, intergrowth compounds, and heterostructures. We derive the effective multiband evolution system in the framework of the kp approach. We study the well posedness of the mathematical problem. We compare the effective mass model with the standard kp models for uniform and non-uniforms crystals. We show that in themore » limit of vanishing lattice parameter, the particle density obtained by the effective mass model, converges to the exact probability density of the particle.« less
Electron Density Calibration for Radiotherapy Treatment Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrera-Martinez, F.; Rodriguez-Villafuerte, M.; Martinez-Davalos, A.
2006-09-08
Computed tomography (CT) images are used as basic input data for most modern radiosurgery treatment planning systems (TPS). CT data not only provide anatomic information to delineate target volumes, but also allow the introduction of corrections for tissue inhomogeneities into dose calculations during the treatment planning procedure. These corrections involve the determination of a relationship between tissue electron density ({rho}e) and their corresponding Hounsfield Units (HU). In this work, an elemental analysis of different commercial tissue equivalent materials using Scanning Electron Microscopy was carried out to characterize their chemical composition. The tissue equivalent materials were chosen to ensure a largemore » range of {rho}e to be included in the CT scanner calibration. A phantom was designed and constructed with these materials to simulate the size of a human head.« less
Pressureless sintering of whisker-toughened ceramic composites
Tiegs, T.N.
1993-05-04
A pressureless sintering method is disclosed for use in the production of whisker-toughened ceramic composites wherein the sintered density of composites containing up to about 20 vol. % SiC whiskers is improved by reducing the average aspect ratio of the whiskers to from about 10 to about 20. Sintering aids further improve the density, permitting the production of composites containing 20 vol. % SiC with sintered densities of 94% or better of theoretical density by a pressureless sintering method.
Pressureless sintering of whiskered-toughened ceramic composites
Tiegs, Terry N.
1994-01-01
A pressureless sintering method is disclosed for use in the production of whisker-toughened ceramic composites wherein the sintered density of composites containing up to about 20 vol. % SiC whiskers is improved by reducing the average aspect ratio of the whiskers to from about 10 to about 20. Sintering aids further improve the density, permitting the production of composites containing 20 vol. % SiC with sintered densities of 94% or better of theoretical density by a pressureless sintering method.
Pressureless sintering of whisker-toughened ceramic composites
Tiegs, Terry N.
1993-01-01
A pressureless sintering method is disclosed for use in the production of whisker-toughened ceramic composites wherein the sintered density of composites containing up to about 20 vol. % SiC whiskers is improved by reducing the average aspect ratio of the whiskers to from about 10 to about 20. Sintering aids further improve the density, permitting the production of composites containing 20 vol. % SiC with sintered densities of 94% or better of theoretical density by a pressureless sintering method.
NASA Astrophysics Data System (ADS)
Kurudirek, Murat; Türkmen, İbrahim; Özdemir, Yüksel
2009-09-01
Total mass attenuation coefficients, mean free paths (MFP), half-value (HVT) and tenth-value (TVT) thicknesses of Portland cement and three mixtures have been calculated in function of the energy from 1 keV to 100 GeV. Both in the low- and high-energy region there were significant variations in those parameters where photoelectric process and pair production partially dominates, respectively. In general, the attenuation parameters were found to vary with chemical composition, density of given material and photon energy.
NASA Astrophysics Data System (ADS)
Shmotin, Yu. N.; Logunov, A. V.; Leshchenko, I. A.; Danilov, D. V.
2016-12-01
The studies directed on designing an advanced rhenium-free nickel superalloy, which is an analog of ZhS32VI alloy, are performed. The chemical composition of the alloy has been found and an experimental alloy batch has been melted (10 kg). Microstructural and metallographic studies and strength tests are carried out. The new single-crystal superalloy has a long-term strength σ1000 100= 238-248 MPa at a density of 8.87 g/cm3.
Preparation of YBa2Cu3O7 High Tc Superconducting Coatings by Plasma Spraying
NASA Astrophysics Data System (ADS)
Danroc, J.; Lacombe, J.
The following sections are included: * INTRODUCTION * THE COMPOUND YBa2Cu3O7-δ * Structure * Critical temperature * Critical current density * Phase equilibria in the YBaCuO system * PREPARATION OF YBa2Cu3O7 COATINGS * General organisation of the preparation process * The powder * Hot plasma spraying of YBa2Cu3O7 * The post-spraying thermal treatment * CHARACTERISTICS OF THE YBa2Cu3O7-δ COATINGS * Chemical composition * Crystalline structure * Morphology of the coatings * Electrical and magnetic characteristics * Conclusion * REFERENCES
Kirkendall void formation in reverse step graded Si1-xGex/Ge/Si(001) virtual substrates
NASA Astrophysics Data System (ADS)
Sivadasan, Vineet; Rhead, Stephen; Leadley, David; Myronov, Maksym
2018-02-01
Formation of Kirkendall voids is demonstrated in the Ge underlayer of reverse step graded Si1-xGex/Ge buffer layers grown on Si(001) using reduced pressure chemical vapour deposition (RP-CVD). This phenomenon is seen when the constant composition Si1-xGex layer is grown at high temperatures and for x ≤ 0.7. The density and size of the spherical voids can be tuned by changing Ge content in the Si1-xGex and other growth parameters.
General properties of HII regions in galaxies
NASA Technical Reports Server (NTRS)
Smirnov, M. A.; Komberg, B. V.
1979-01-01
The structure, electron density, and dimensions of HII regions in galaxies are discussed. These parameters are correlated to the chemical composition gradient along the galactic radius, the dimensions of the three largest HII regions in the galaxy, and the amount of hydrogen in the galaxy, as well as the mass, dimensions, and total optical luminosity of the galaxy. The relationships of HII regions to star formation and galactic nucleus activity are discussed and the kinematic properties of the SB and Sab galaxies are related to the size of HII regions.
LDEX-PLUS: Lunar Dust Experiment with Chemical Analysis Capability to search for Water
NASA Astrophysics Data System (ADS)
Horanyi, M.; Sternovsky, Z.; Gruen, E.; Kempf, S.; Srama, R.; Postberg, F.
2010-12-01
The Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphee and Dust Explorer Mission (LADEE) is scheduled for launch in early 2013. It will map the variability of the density and size distributions of dust in the lunar vicinity. LDEX is an impact ionization instrument, at an impact speed of > 1.6 km/s, it is capable of measuring the mass of grains with m > 10^(-11) g, and it can also identify a population of smaller grains with m > 10^(-14) kg with a density of n > 10^(-4) cm^(-3). This talk is to introduce the LDEX-PLUS instrument that extends the LDEX capabilities to also measure the chemical composition of the impacting particles with a mass resolution of M/ΔM > 30. We will summarize the science goals, measurement requirements, and the resource needs of this instrument. Traditional methods to analyze surfaces of airless planetary objects from an orbiter are IR and gamma ray spectroscopy, and neutron backscatter measurements. Here we present a complementary method to analyze dust particles as samples of planetary objects from which they were released. The Moon, Mercury, and all other airless planetary object are exposed to the ambient meteoroid bombardment that erodes their surface and generates secondary ejecta particles. Therefore, such objects are enshrouded in clouds of dust particles that have been lifted from their surfaces. In situ mass spectroscopic analysis of these dust particles impacting onto a detector of an orbiting spacecraft reveals their composition, and the origin of each analyzed grain can be determined with an accuracy at the surface that is approximately the altitude of the orbit. Since the detection rates can be on the order of thousands per day, a spatially resolved mapping of the surface composition can be achieved. Possible enhancements include the addition of a dust trajectory sensor to improve the spatial resolution on the surface to ~ 10 km from an altitude of 100 km, and a reflectron type instrument geometry to increase the chemical composition mass resolution to M/ΔM >> 100, enabling isotopic measurements. This ‘dust spectrometer’ approach provides key chemical and isotopic constraints for varying provinces on the surfaces, leading to better understanding of the body’s geological evolution. The method is in principal applicable to orbiters about any planetary object with a radius > 1000 km and with only a thin or no atmosphere. Here we focus on the scientific benefit of a dust spectrometer on a spacecraft orbiting Earth’s Moon, as LDEX-PLUS is of particular interest to verify from orbit the presence of water ice in the permanently shadowed lunar craters.
NASA Astrophysics Data System (ADS)
Ruaud, M.; Wakelam, V.; Gratier, P.; Bonnell, I. A.
2018-04-01
Aim. We study the effect of large scale dynamics on the molecular composition of the dense interstellar medium during the transition between diffuse to dense clouds. Methods: We followed the formation of dense clouds (on sub-parsec scales) through the dynamics of the interstellar medium at galactic scales. We used results from smoothed particle hydrodynamics (SPH) simulations from which we extracted physical parameters that are used as inputs for our full gas-grain chemical model. In these simulations, the evolution of the interstellar matter is followed for 50 Myr. The warm low-density interstellar medium gas flows into spiral arms where orbit crowding produces the shock formation of dense clouds, which are held together temporarily by the external pressure. Results: We show that depending on the physical history of each SPH particle, the molecular composition of the modeled dense clouds presents a high dispersion in the computed abundances even if the local physical properties are similar. We find that carbon chains are the most affected species and show that these differences are directly connected to differences in (1) the electronic fraction, (2) the C/O ratio, and (3) the local physical conditions. We argue that differences in the dynamical evolution of the gas that formed dense clouds could account for the molecular diversity observed between and within these clouds. Conclusions: This study shows the importance of past physical conditions in establishing the chemical composition of the dense medium.
Selective Disparity of Ordinary Chondritic Precursors in Micrometeorite Flux
NASA Astrophysics Data System (ADS)
Rudraswami, N. G.; Fernandes, D.; Naik, A. K.; Shyam Prasad, M.; Carrillo-Sánchez, J. D.; Plane, J. M. C.; Feng, W.; Taylor, S.
2018-01-01
All known extraterrestrial dust (micrometeoroids) entering the Earth’s atmosphere is anticipated to have a significant contribution from ordinary chondritic precursors, as seen in meteorites, but this is an apparent contradiction that needs to be addressed. Ordinary chondrites represent a minor contribution to the overall meteor influx compared to carbonaceous chondrites, which are largely dominated by CI and/or CM chondrites. However, the near-Earth asteroid population presents a scenario with sufficient scope for generation of dust-sized debris from ordinary chondritic sources. The bulk chemical composition of 3255 micrometeorites (MMs) collected from Antarctica and deep-sea sediments has shown Mg/Si largely dominated by carbonaceous chondrites, and less than 10% having ordinary chondritic precursors. The chemical ablation model is combined with different initial chondritic compositions (CI, CV, L, LL, H), and the results clearly indicate that high-density (≥2.8 g cm‑3) precursors, such as CV and ordinary chondrites in the size range 100–700 μm and zenith angle 0°–70°, ablate at much faster rates and lose their identity even before reaching the Earth’s surface and hence are under-represented in our collections. Moreover, their ability to survive as MMs remains grim for high-velocity micrometeoroids (>16 km s‑1). The elemental ratio for CV and ordinary chondrites are also similar to each other irrespective of the difference in the initial chemical composition. In conclusion, MMs belonging to ordinary chondritic precursors’ concentrations may not be insignificant in thermosphere, as they are found on Earth’s surface.
NASA Astrophysics Data System (ADS)
Oshima, Yusuke; Iimura, Tadahiro; Saitou, Takashi; Imamura, Takeshi
2015-02-01
Osteoporosis is a major bone disease that connotes the risk of fragility fractures resulting from alterations to bone quantity and/or quality to mechanical competence. Bone strength arises from both bone quantity and quality. Assessment of bone quality and bone quantity is important for prediction of fracture risk. In spite of the two factors contribute to maintain the bone strength, only one factor, bone mineral density is used to determine the bone strength in the current diagnosis of osteoporosis. On the other hand, there is no practical method to measure chemical composition of bone tissue including hydroxyapatite and collagen non-invasively. Raman spectroscopy is a powerful technique to analyze chemical composition and material properties of bone matrix non-invasively. Here we demonstrated Raman spectroscopic analysis of the bone matrix in osteoporosis model rat. Ovariectomized (OVX) rat was made and the decalcified sections of tibias were analyzed by a Raman microscope. In the results, Raman bands of typical collagen appeared in the obtained spectra. Although the typical mineral bands at 960 cm-1 (Phosphate) was absent due to decalcified processing, we found that Raman peak intensities of amide I and C-C stretching bands were significantly different between OVX and sham-operated specimens. These differences on the Raman spectra were statistically compared by multivariate analyses, principal component analysis (PCA) and liner discrimination analysis (LDA). Our analyses suggest that amide I and C-C stretching bands can be related to stability of bone matrix which reflects bone quality.
Chen, Kun; Wu, Tao; Wei, Haoyun; Zhou, Tian; Li, Yan
2016-01-01
Coherent anti-Stokes Raman microscopy (CARS) is a quantitative, chemically specific, and label-free optical imaging technique for studying inhomogeneous systems. However, the complicating influence of the nonresonant response on the CARS signal severely limits its sensitivity and specificity and especially limits the extent to which CARS microscopy has been used as a fully quantitative imaging technique. On the basis of spectral focusing mechanism, we establish a dual-soliton Stokes based CARS microspectroscopy and microscopy scheme capable of quantifying the spatial information of densities and chemical composition within inhomogeneous samples, using a single fiber laser. Dual-soliton Stokes scheme not only removes the nonresonant background but also allows robust acquisition of multiple characteristic vibrational frequencies. This all-fiber based laser source can cover the entire fingerprint (800-2200 cm−1) region with a spectral resolution of 15 cm−1. We demonstrate that quantitative degree determination of lipid-chain unsaturation in the fatty acids mixture can be achieved by the characterization of C = C stretching and CH2 deformation vibrations. For microscopy purposes, we show that the spatially inhomogeneous distribution of lipid droplets can be further quantitatively visualized using this quantified degree of lipid unsaturation in the acyl chain for contrast in the hyperspectral CARS images. The combination of compact excitation source and background-free capability to facilitate extraction of quantitative composition information with multiplex spectral peaks will enable wider applications of quantitative chemical imaging in studying biological and material systems. PMID:27867704
Yadegari, Hossein; Sun, Qian; Sun, Xueliang
2016-09-01
Alkali metal-oxygen (Li-O2 , Na-O2 ) batteries have attracted a great deal of attention recently due to their high theoretical energy densities, comparable to gasoline, making them attractive candidates for application in electrical vehicles. However, the limited cycling life and low energy efficiency (high charging overpotential) of these cells hinder their commercialization. The Li-O2 battery system has been extensively studied in this regard during the past decade. Compared to the numerous reports of Li-O2 batteries, the research on Na-O2 batteries is still in its infancy. Although, Na-O2 batteries show a number of attractive properties such as low charging overpotential and high round-trip energy efficiency, their cycling life is currently limited to a few tens of cycles. Therefore, understanding the chemistry behind Na-O2 cells is critical towards enhancing their performance and advancing their development. Chemical and electrochemical reactions of Na-O2 batteries are reviewed and compared with those of Li-O2 batteries in the present review, as well as recent works on the chemical composition and morphology of the discharge products in these batteries. Furthermore, the determining kinetics factors for controlling the chemical composition of the discharge products in Na-O2 cells are discussed and the potential research directions toward improving Na-O2 cells are proposed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Rauwel, E.; Dubourdieu, C.; Holländer, B.; Rochat, N.; Ducroquet, F.; Rossell, M. D.; Van Tendeloo, G.; Pelissier, B.
2006-07-01
Addition of yttrium in HfO2 thin films prepared on silicon by metal organic chemical vapor deposition is investigated in a wide compositional range (2.0-99.5at.%). The cubic structure of HfO2 is stabilized for 6.5at.%. The permittivity is maximum for yttrium content of 6.5-10at.%; in this range, the effective permittivity, which results from the contribution of both the cubic phase and silicate phase, is of 22. These films exhibit low leakage current density (5×10-7A /cm2 at -1V for a 6.4nm film). The cubic phase is stable upon postdeposition high temperature annealing at 900°C under NH3.
Pressureless sintering of whiskered-toughened ceramic composites
Tiegs, T.N.
1994-12-27
A pressureless sintering method is disclosed for use in the production of whisker-toughened ceramic composites wherein the sintered density of composites containing up to about 20 vol. % SiC whiskers is improved by reducing the average aspect ratio of the whiskers to from about 10 to about 20. Sintering aids further improve the density, permitting the production of composites containing 20 vol. % SiC with sintered densities of 94% or better of theoretical density by a pressureless sintering method. 6 figures.
Xuan, Lihui; Hui, Dongxue; Cheng, Wanli; Wong, Andrew H H; Han, Guangping; Tan, Wei Khong; Tawi, Carlson A D
2017-07-12
The effects of alkaline copper quaternary (ACQ) and zinc borate (ZB) on the resistance of corn stalk fiber (CSF)-reinforced high-density polyethylene (HDPE) composites to biodegradation were examined. Both biocides could inhibit termites, mold fungi, and wood-decay fungi, even at high CSF formulations (i.e., 60%). Additionally, ACQ enhanced the resistance of the composite materials to certain biotic stresses better than ZB. The CSF/HDPE composites treated with ACQ at the 3.0% level exhibited a superior performance against termites, white rot fungi, and brown rot fungi. ACQ treatment at the 1% level was optimal for inhibiting soft rot fungi. Furthermore, mold growth was not observed on ACQ-treated CSF/HDPE samples. The untreated CSF/HDPE composites were more susceptible to mold infections and decay than the untreated poplar/HDPE composites, likely because of an incomplete removal of the pith. The chemical features of the corn stalk may also have influenced these differences, but this possibility will need to be explored in future investigations. Furthermore, the CSF component of CSF/HDPE composites is highly susceptible to fungal attacks, with the soft rot fungus inducing the largest mass losses, followed by the white rot fungus, and then the brown rot fungus.
Effect of Preservative Pretreatment on the Biological Durability of Corn Straw Fiber/HDPE Composites
Xuan, Lihui; Hui, Dongxue; Cheng, Wanli; Wong, Andrew H. H.; Han, Guangping; Tan, Wei Khong; Tawi, Carlson A. D.
2017-01-01
The effects of alkaline copper quaternary (ACQ) and zinc borate (ZB) on the resistance of corn stalk fiber (CSF)-reinforced high-density polyethylene (HDPE) composites to biodegradation were examined. Both biocides could inhibit termites, mold fungi, and wood-decay fungi, even at high CSF formulations (i.e., 60%). Additionally, ACQ enhanced the resistance of the composite materials to certain biotic stresses better than ZB. The CSF/HDPE composites treated with ACQ at the 3.0% level exhibited a superior performance against termites, white rot fungi, and brown rot fungi. ACQ treatment at the 1% level was optimal for inhibiting soft rot fungi. Furthermore, mold growth was not observed on ACQ-treated CSF/HDPE samples. The untreated CSF/HDPE composites were more susceptible to mold infections and decay than the untreated poplar/HDPE composites, likely because of an incomplete removal of the pith. The chemical features of the corn stalk may also have influenced these differences, but this possibility will need to be explored in future investigations. Furthermore, the CSF component of CSF/HDPE composites is highly susceptible to fungal attacks, with the soft rot fungus inducing the largest mass losses, followed by the white rot fungus, and then the brown rot fungus. PMID:28773150
Wang, Yanmei; He, Jiacai; Li, Quanli; Shen, Jijia
2014-02-01
To prepare sodium alginate-nanohydroxyapatite composite material and to explore its feasibility as a bone repair material. Sodium alginate-nanohydroxyapatite composite material was prepared using chemical cross-linking and freeze-drying technology. The composite was characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM) and its porosity was measured by liquid displacement method. The fifth passage of bone marrow stromal stem cells (BMSCs) were incubated on the composite material and then growth was observed by inverted microscope and SEM. BMSCs were cultured with liquid extracts of the material, methyl thiazolyl tetrazolium (MTT) assay was used to calculate the relative growth rate (RGR) on 1, 3, 5 d and to evaluate the cytotoxicity. Fresh dog blood was added into the liquid extracts to conduct hemolysis test, the spectrophotometer was used to determine the optical density (OD) and to calculate the hemolysis rate. Sodium alginate-nanohydroxyapatite composite material displayed porosity, the porous pore rate was (88.6 +/- 4.5)%. BMSCs showed full stretching and vigorous growth under inverted microscope and SEM. BMSCs cultured with liquid extracts of the material had good activities. The toxicity of composite material was graded as 1. Hemolysis test results showed that the hemolysis rate of the composite material was 1.28%, thus meeting the requirement of medical biomaterials. The composite material fabricated in this study has high porosity and good biocompatibility.
Orozco Fariñas, Rodolfo; Iglesias Prieto, José Ignacio; Massarrah Halabi, Jorge; Mancebo Gómez, José María; Pérez-Castro Ellendt, Enrique
2011-01-01
The present study is a continuation of an earlier article published on the incidence, clinical manifestations, treatment and risk factors associated with postlithotripsy renal hematomas (1). To assess the possible influence of the size and radiodensity of kidney stones on the incidence and clinical behavior of renal postlithotripsy hematomas. Observational prospective study of 324 renal units in the same number of patients undergoing extracorporeal renal lithotripsy. The variables "calculus size" and "radiographic calculus density" were evaluaArch. ted statistically by means of the IPSS 0.15 program on the basis of 42 postlithotripsy hematomas diagnosed and grouped according to their clinical behavior. Higher incidence of hematomas was observed in hiperdense calculi (25%) versus medium density calculi (7,4%), this difference was significant in the asymptomatic hematoma group. Calculus size was unrelated to the incidence of renal hematoma, but there was a significant association between renal hematoma and radiographic calculus density, probably due to the relation of radiographic density to chemical composition and, ultimately, to hardness and ultrastructure. Ultrastructure is yet another factor, among others, to be taken into account as a potential conditioning factor for this complication.
Environmental and Chemical Aging of Fatty-Acid-Based Vinyl Ester Composites
2011-04-01
Environmental and Chemical Aging of Fatty- Acid -Based Vinyl Ester Composites by Steven E. Boyd and John J. La Scala ARL-TR-5523 April...2011 Environmental and Chemical Aging of Fatty- Acid -Based Vinyl Ester Composites Steven E. Boyd and John J. La Scala Weapons and Materials...COVERED (From - To) October 2009–September 2010 4. TITLE AND SUBTITLE Environmental and Chemical Aging of Fatty- Acid -Based Vinyl Ester Composites
Current-voltage hysteresis and dielectric properties of PVA coated MWCNT film
NASA Astrophysics Data System (ADS)
Das, Amit Kumar; Meikap, Ajit Kumar
2017-12-01
In this work, we have prepared polyvinyl alcohol (PVA) coated multiwall carbon nanotube (MWCNT) film by an in situ chemical oxidative preparation technique. The thermogravimetric analysis clearly explains the thermal degradation of pure polymer and polymer nanocomposite film. We have studied the AC electrical transport properties and current-voltage (I-V) characteristic of PVA-MWCNT composites within the temperature range 300 ≤ T ≤ 423 K and frequency range 150 Hz ≤ f ≤ 2 MHz. It is observed that the dielectric constant of the composite film increases significantly. The frequency variation of AC conductivity follows the power law ( ωS ) and a sharp transition from small polaron tunneling to correlated barrier hopping model is found. The imaginary part of electric modulus shows non-Debye type asymmetric behaviour. The impedance spectroscopy shows the negative temperature coefficient of resistance of the composite film. Nyquist plot of the composite film at different temperatures is established from impedance measurement. The current-voltage characteristic (under ± 20 V) shows hysteresis behaviour and field dependent resistance. We simulate the experimentally observed current density-electric field data with the established theory.
NASA Astrophysics Data System (ADS)
Liu, Peng; Wang, Yunjiao; Wang, Xue; Yang, Chao; Yi, Yanfeng
2012-11-01
Polypyrrole-coated samarium oxide nanobelts were synthesized by the in situ chemical oxidative surface polymerization technique based on the self-assembly of pyrrole on the surface of the amine-functionalized Sm2O3 nanobelts. The morphologies of the polypyrrole/samarium oxide (PPy/Sm2O3) nanocomposites were characterized using transmission electron microscope. The UV-vis absorbance of these samples was also investigated, and the remarkable enhancement was clearly observed. The electrochemical behaviors of the PPy/Sm2O3 composites were investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge-discharge. The results indicated that the PPy/Sm2O3 composite electrode was fully reversible and achieved a very fast Faradaic reaction. After being corrected into the weight percentage of the PPy/Sm2O3 composite at a current density of 20 mA cm-2 in a 1.0 M NaNO3 electrolyte solution, a maximum discharge capacity of 771 F g-1 was achieved in a half-cell setup configuration for the PPy/Sm2O3 composites electrode with the potential application to electrode materials for electrochemical capacitors.
Current-voltage hysteresis and dielectric properties of PVA coated MWCNT film
NASA Astrophysics Data System (ADS)
Das, Amit Kumar; Meikap, Ajit Kumar
2018-06-01
In this work, we have prepared polyvinyl alcohol (PVA) coated multiwall carbon nanotube (MWCNT) film by an in situ chemical oxidative preparation technique. The thermogravimetric analysis clearly explains the thermal degradation of pure polymer and polymer nanocomposite film. We have studied the AC electrical transport properties and current-voltage (I-V) characteristic of PVA-MWCNT composites within the temperature range 300 ≤ T ≤ 423 K and frequency range 150 Hz ≤ f ≤ 2 MHz. It is observed that the dielectric constant of the composite film increases significantly. The frequency variation of AC conductivity follows the power law ( ωS ) and a sharp transition from small polaron tunneling to correlated barrier hopping model is found. The imaginary part of electric modulus shows non-Debye type asymmetric behaviour. The impedance spectroscopy shows the negative temperature coefficient of resistance of the composite film. Nyquist plot of the composite film at different temperatures is established from impedance measurement. The current-voltage characteristic (under ± 20 V) shows hysteresis behaviour and field dependent resistance. We simulate the experimentally observed current density-electric field data with the established theory.
NASA Astrophysics Data System (ADS)
Chung, Yongjin; Christwardana, Marcelinus; Tannia, Daniel Chris; Kim, Ki Jae; Kwon, Yongchai
2017-08-01
An enzyme cluster composite (TPA/GOx) formed from glucose oxidase (GOx) and terephthalaldehyde (TPA) that is coated onto polyethyleneimine (PEI) and carbon nanotubes (CNTs) is suggested as a new catalyst ([(TPA/GOx)/PEI]/CNT). In this catalyst, TPA promotes inter-GOx links by crosslinking to form a large and porous structure, and the TPA/GOx composite is again crosslinked with PEI/CNT to increase the amount of immobilized GOx. Such a two-step crosslinking (i) increases electron transfer because of electron delocalization by π conjugation and (ii) reduces GOx denaturation because of the formation of strong chemical bonds while its porosity facilitates mass transfer. With these features, an enzymatic biofuel cell (EBC) employing the new catalyst is fabricated and induces an excellent maximum power density (1.62 ± 0.08 mW cm-2), while the catalytic activity of the [(TPA/GOx)/PEI]/CNT catalyst is outstanding. This is clear evidence that the two-step crosslinking and porous structure caused by adoption of the TPA/GOx composite affect the performance enhancement of EBC.
The Composition and Thermal State of Mars
NASA Astrophysics Data System (ADS)
Khan, A.; Connolly, J.
Previous studies concerning the internal composition and constitution of Mars are essentially limited to forward modeling of some relatively simple models of the martian internal structure and therefore provide little information on what we can actually learn from the data. In view of the limitations inherent in forward models, we propose to invert a number of geophysical data to directly constrain the martian composition and thermal state. The inverse method employed here is general and provides through the unified description of phase equilibria a way of constructing planetary models where the radial variation of mineralogy and physical structure with pressure and temperature is naturally specified, allowing us to directly invert for chemical composition and temperature. Given these parameters mineralogy, Mg# (MgO/(MgO+FeO)) and bulk physical properties can be calculated. The approach used here has recently been applied successfully to the Moon and Earth in analyses of both eletromagnetic sounding as well as seismic data. The data used in the inversion are, mean moment of inertia, mean density, second degree tidal Love number, tidal dissipation factor and of course mean radius.
Properties and processing characteristics of low density carbon cloth phenolic composites
NASA Technical Reports Server (NTRS)
Wang, C. Jeff
1993-01-01
Ply-lift and pocketing are two critical anomalies of carbon cloth phenolic composites (CCPC) in rocket nozzle applications. Ply lift occurs at low temperatures when the A/P and in-plane permeabilities of the composite materials are still very low and in-plane porous paths are blocked. Pocketing occurs at elevated temperatures when in-plane permeability is reduced by the A/P compressive stress. The thermostructural response of CCPC in a rapid heating environment involves simultaneous heat, mass, and momentum transfer along with the degradation of phenolic resin in a multiphase system with temperature- and time-dependent material properties as well as dynamic processing conditions. Three temperature regions represent the consequent chemical reactions, material transformations, and property transitions, and provide a quick qualitative method for characterizing the thermostructural behavior of a CCPC. In order to optimize the FM5939 LDCCP (low density carbon cloth phenolic) for the nozzle performance required in the Advanced Solid Rocket Motor (ASRM) program, a fundamental study on LDCCP materials was conducted. The cured composite has a density of 1.0 +/- 0.5 gm/cc which includes 10 to 25 percent void volume. The weight percent of carbon microballoon is low (7-15 percent). However, they account for approximately one third of the volume and historically their percentages have not been controlled very tightly. In addition, the composite properties show no correlation with microballoon weight percent or fiber properties (e.g. fiber density or fiber moisture adsorption capacity). Test results concerning the ply-lift anomaly in the MNASA motor firings were: (1) Steeper ply angle (shorter path lenght) designs minimized/eliminated by lifting, (2) material with higher void volume ply lifted less frequently, (3) materials with high (greater than 9 percent) microballoon content had a higher rate of ply lifting, and (4) LDCCP materials failed at microballoon-resin interfaces. The objectives of this project are: (1) to investigate the effects of carbon microballoon and cabosil fillers as well as fiber heat treatment on plylift-related mechanical properties, (2) to develop a science-based thermostructural process model for the carbon phenolics. The model can be used in the future for the selection of the improved ASRM materials, (3) to develop the micro-failure mechanisms for the ply-lift initiation and propagation processes during the thermoelastic region of phenolic degradation, i.e. postcuring and devolatilization.
Electron precipitation control of the Mars nightside ionosphere
NASA Astrophysics Data System (ADS)
Lillis, R. J.; Girazian, Z.; Mitchell, D. L.; Adams, D.; Xu, S.; Benna, M.; Elrod, M. K.; Larson, D. E.; McFadden, J. P.; Andersson, L.; Fowler, C. M.
2017-12-01
The nightside ionosphere of Mars is known to be highly variable, with densities varying substantially with ion species, solar zenith angle, solar wind conditions and geographic location. The factors that control its structure include neutral densities, day-night plasma transport, plasma temperatures, dynamo current systems driven by neutral winds, solar energetic particle events, superthermal electron precipitation, chemical reaction rates and the strength, geometry and topology of crustal magnetic fields. The MAVEN mission has been the first to systematically sample the nightside ionosphere by species, showing that shorter-lived species such as CO2+ and O+ are more correlated with electron precipitation flux than longer lived species such as O2+ and NO+, as would be expected, and is shown in the figure below from Girazian et al. [2017, under review at Geophysical Research Letters]. In this study we use electron pitch-angle and energy spectra from the Solar Wind Electron Analyzer (SWEA) and Solar Energetic Particle (SEP) instruments, ion and neutral densities from the Neutral Gas and Ion Mass Spectrometer (NGIMS), electron densities and temperatures from the Langmuir Probe and Waves (LPW) instrument, as well as electron-neutral ionization cross-sections. We present a comprehensive statistical study of electron precipitation on the Martian nightside and its effect on the vertical, local-time and geographic structure and composition of the ionosphere, over three years of MAVEN observations. We also calculate insitu electron impact ionization rates and compare with ion densities to judge the applicability of photochemical models of the formation and maintenance of the nightside ionosphere. Lastly, we show how this applicability varies with altitude and is affected by ion transport measured by the Suprathermal and thermal Ion Composition (STATIC) instrument.
Vector diagram of the chemical compositions of tektites and earth lavas
NASA Technical Reports Server (NTRS)
Kvasha, L. G.; Gorshkov, G. S.
1978-01-01
The chemical compositions of tektites and various volcanic glasses, similar in composition to tektites are compared by a petrochemical method. The advantage of the method is that a large number of chemical analyses of igneous rocks can be graphically compared with the help of vectors, plotted in relation to six parameters. These parameters, calculated from ratios of the main oxides given by silicate analysis, reflect the chief characteristics of igneous rock. Material for the study was suppled by data from chemical analysis characterizing tektites of all known locations and data from chemical analyses of obsidians similar in chemical composition to tektites of various petrographical provinces.
Regulating continent growth and composition by chemical weathering
Lee, Cin-Ty Aeolus; Morton, Douglas M.; Little, Mark G.; Kistler, Ronald; Horodyskyj, Ulyana N.; Leeman, William P.; Agranier, Arnaud
2008-01-01
Continents ride high above the ocean floor because they are underlain by thick, low-density, Si-rich, and Mg-poor crust. However, the parental magmas of continents were basaltic, which means they must have lost Mg relative to Si during their maturation into continents. Igneous differentiation followed by lower crustal delamination and chemical weathering followed by subduction recycling are possible solutions, but the relative magnitudes of each process have never been quantitatively constrained because of the lack of appropriate data. Here, we show that the relative contributions of these processes can be obtained by simultaneous examination of Mg and Li (an analog for Mg) on the regional and global scales in arcs, delaminated lower crust, and river waters. At least 20% of Mg is lost from continents by weathering, which translates into >20% of continental mass lost by weathering (40% by delamination). Chemical weathering leaves behind a more Si-rich and Mg-poor crust, which is less dense and hence decreases the probability of crustal recycling by subduction. Net continental growth is thus modulated by chemical weathering and likely influenced by secular changes in weathering mechanisms. PMID:18362343
Mechanisms of transport and electron transfer at conductive polymer/liquid interfaces
NASA Astrophysics Data System (ADS)
Ratcliff, Erin
Organic semiconductors (OSCs) have incredible prospects for next-generation, flexible electronic devices including bioelectronics, thermoelectrics, opto-electronics, and energy storage and conversion devices. Yet many fundamental challenges still exist. First, solution processing prohibits definitive control over microstructure, which is fundamental for controlling electrical, ionic, and thermal transport properties. Second, OSCs generally suffer from poor electrical conductivities due to a combination of low carriers and low mobility. Third, polymeric semiconductors have potential-dependent, dynamically evolving electronic and chemical states, leading to complex interfacial charge transfer properties in contact with liquids. This talk will focus on the use of alternative synthetic strategies of oxidative chemical vapor deposition and electrochemical deposition to control physical, electronic, and chemical structure. We couple our synthetic efforts with energy-, time-, and spatially resolved spectroelectrochemical and microscopy techniques to understand the critical interfacial chemistry-microstructure-property relationships: first at the macroscale, and then moving towards the nanoscale. In particular, approaches to better understand electron transfer events at polymer/liquid interfaces as a function of: 1.) chemical composition; 2.) electronic density of states (DOS); and 3.) crystallinity and microstructure will be discussed.
Polymerization and Structure of Bio-Based Plastics: A Computer Simulation
NASA Astrophysics Data System (ADS)
Khot, Shrikant N.; Wool, Richard P.
2001-03-01
We recently examined several hundred chemical pathways to convert chemically functionalized plant oil triglycerides, monoglycerides and reactive diluents into high performance plastics with a broad range of properties (US Patent No. 6,121,398). The resulting polymers had linear, branched, light- and highly-crosslinked chain architectures and could be used as pressure sensitive adhesives, elastomers and high performance rigid thermoset composite resins. To optimize the molecular design and minimize the number of chemical trials in this system with excess degrees of freedom, we developed a computer simulation of the free radical polymerization process. The triglyceride structure, degree of chemical substitution, mole fractions, fatty acid distribution function, and reaction kinetic parameters were used as initial inputs on a 3d lattice simulation. The evolution of the network fractal structure was computed and used to measure crosslink density, dangling ends, degree of reaction and defects in the lattice. The molecular connectivity was used to determine strength via a vector percolation model of fracture. The simulation permitted the optimal design of new bio-based materials with respect to monomer selection, cure reaction conditions and desired properties. Supported by the National Science Foundation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Müller, Gabriel Timm; Giacobbo, Alexandre; Santos Chiaramonte, Edson Abel dos
Highlights: • Photoelectrooxidation (PEO) emerges as a new technology for leachate treatment. • Aging of sanitary landfills acts on leachate composition and biodegradability. • PEO is applied as leachate pretreatment before the biological processes. • PEO produced significant changes in the leachate matrix, easing biological process. - Abstract: The sanitary landfill leachate is a dark liquid, of highly variable composition, with recalcitrant features that hamper conventional biological treatment. The physical–chemical characteristics of the leachate along the landfill aging, as well as their effects on the efficiency of the conventional treatment, were evaluated at this paper. The feasibility of photoelectrooxidation processmore » as an alternative technique for treatment of landfill leachates was also determined. Photoelectrooxidation experiments were conducted in a bench-scale reactor. Analysis of the raw leachate revealed many critical parameters demonstrating that the recalcitrance of leachate tends to increase with time, directly influencing the decline in efficiency of the conventional treatment currently employed. The effects of current density and lamp power were investigated. Using a 400 W power lamp and a current density of 31.5 mA cm{sup −2}, 53% and 61% efficiency for the removal of ammoniacal nitrogen and chemical oxygen demand were respectively achieved by applying photoelectrooxidation process. With the removal of these pollutants, downstream biological treatment should be improved. These results demonstrate that photoelectrooxidation is a feasible technique for the treatment of sanitary landfill leachate, even considering this effluent’s high resistance to treatment.« less
Tansey, J T; Thuren, T Y; Jerome, W G; Hantgan, R R; Grant, K; Waite, M
1997-10-07
Hepatic lipase (HL) hydrolysis of phosphatidylcholine (PC) was studied in recombinant high-density lipoprotein particles (r-HDL). r-HDL were made from cholate mixed micelles that contained PC, apo AI, and, in some cases, unesterified cholesterol. r-HDL were characterized using chemical composition, nondenaturing gradient gel electrophoresis, transmission electron microscopy, and dynamic light scattering. The r-HDL were found to be discoidal and in the size range of native HDL. Upon treatment of cholesterol-containing r-HDL with lecithin-cholesterol acyltransferase (LCAT), to form cholesteryl ester, the discoidal r-HDL became spheroidal. The effects of r-HDL morphology and size on HL activity were studied on r-HDL made of palmitoyloleoyl-PC, unesterified cholesterol, cholesteryl ester, and apolipoprotein AI. Spheroidal r-HDL were hydrolyzed at a faster rate than discoidal r-HDL. Protein-poor r-HDL were hydrolyzed by HL at a faster rate than protein rich r-HDL. Unesterified cholesterol had no apparent effect on particle PC hydrolysis. The hydrolysis of different species of PC [dipalmitoyl (DPPC), dioleoyl(DOPC), palmitoylarachidonoyl (PAPC), and palmitoyloleoyl (POPC)] in r-HDL was also investigated. In discoidal r-HDL, we found that POPC >/= DOPC = PAPC/DPPC. However, in LCAT-treated spheroidal r-HDL, POPC = DOPC > PAPC/DPPC. In both discoidal and spheroidal rHDL, DPPC containing r-HDL were not hydrolyzed to a significant extent. Collectively, these studies demonstrate that the physico-chemical properties of particles (such as phospholipid packing and phospholipid acyl composition) play a significant role in hydrolysis of HDL phospholipid by HL and, therefore, in reverse cholesterol transport.
Senior, C.L.; Zeng, T.; Che, J.; Ames, M.R.; Sarofim, A.F.; Olmez, I.; Huggins, Frank E.; Shah, N.; Huffman, G.P.; Kolker, A.; Mroczkowski, S.; Palmer, C.; Finkelman, R.
2000-01-01
Trace elements in coal have diverse modes of occurrence that will greatly influence their behavior in many coal utilization processes. Mode of occurrence is important in determining the partitioning during coal cleaning by conventional processes, the susceptibility to oxidation upon exposure to air, as well as the changes in physical properties upon heating. In this study, three complementary methods were used to determine the concentrations and chemical states of trace elements in pulverized samples of four US coals: Pittsburgh, Illinois No. 6, Elkhorn and Hazard, and Wyodak coals. Neutron Activation Analysis (NAA) was used to measure the absolute concentration of elements in the parent coals and in the size- and density-fractionated samples. Chemical leaching and X-ray absorption fine structure (XAFS) spectroscopy were used to provide information on the form of occurrence of an element in the parent coals. The composition differences between size-segregated coal samples of different density mainly reflect the large density difference between minerals, especially pyrite, and the organic portion of the coal. The heavy density fractions are therefore enriched in pyrite and the elements associated with pyrite, as also shown by the leaching and XAFS methods. Nearly all the As is associated with pyrite in the three bituminous coals studied. The sub-bituminous coal has a very low content of pyrite and arsenic; in this coal arsenic appears to be primarily organically associated. Selenium is mainly associated with pyrite in the bituminous coal samples. In two bituminous coal samples, zinc is mostly in the form of ZnS or associated with pyrite, whereas it appears to be associated with other minerals in the other two coals. Zinc is also the only trace element studied that is significantly more concentrated in the smaller (45 to 63 ??m) coal particles.
Chemistry of sprite discharges through ion-neutral reactions
NASA Astrophysics Data System (ADS)
Hiraki, Y.; Kasai, Y.; Fukunishi, H.
2008-02-01
We estimate the concentration changes, caused by a single streamer in sprites, of ozone and related minor species as odd nitrogen (NOx) and hydrogen (HOx) families in the upper stratosphere and mesosphere. The streamer has an intense electric field and high electron density at its head where a large number of chemically-radical ions and atoms are produced through electron impact on neutral molecules. After propagation of the streamer, the densities of minor species can be perturbed through ion-neutral chemical reactions initiated by the relaxation of these radical products. We evaluate the production rates of ions and atoms using electron kinetics model and assuming the electric field and electron density in the streamer head. We calculate the density variations mainly for NOx, Ox, and HOx species using a one-dimensional model of the neutral and ion composition of the middle atmosphere, including the effect of the sprite streamer. Results at the nighttime condition show that the densities of NO, O3, H, and OH increase suddenly through reactions triggered by firstly produced atomic nitrogen and oxygen, and electrons just after streamer initiation. It is shown that NO and NO2 still remain for 1 h by a certain order of increase with their source-sink balance predominantly around 60 km; for other species, increases in O3, OH, HO2, and H2O2 still remain in the range of 40-70 km. From this affirmative result of long time behavior previously not presented, we emphasize that sprites would have a power to impact on local chemistry at night. We also discuss comparison with previous studies and suggestion for satellite observations.
Chemistry of sprite discharges through ion-neutral reactions
NASA Astrophysics Data System (ADS)
Hiraki, Y.; Kasai, Y.; Fukunishi, H.
2008-07-01
We estimate the concentration changes, caused by streamer discharge in sprites, of ozone and related minor species as odd nitrogen (NOx) and hydrogen (HOx) families in the upper stratosphere and mesosphere. The streamer has an intense electric field and high electron density at its head, where a large number of chemically-radical ions and atoms are produced through electron impact on neutral molecules. After its propagation, densities of minor species can be perturbed through ion-neutral chemical reactions initiated by the relaxation of these radical products. We evaluate the production rates of ions and atoms using an electron kinetics model and by assuming that the electric field and electron density are in the head region. We calculate the density variations mainly for NOx, Ox, and HOx species using a one-dimensional model of the neutral and ion composition of the middle atmosphere, including the effect of the sprite streamer. Results at the nighttime condition show that the densities of NO, O3, H, and OH increase suddenly through reactions triggered by the first atomic nitrogen and oxygen product, and electrons just after streamer initiation. It is shown that NO and NO2 still remain for 1 h by a certain order of increase with their source-sink balance, predominantly around 60 km; for other species, increases in O3, OH, HO2, and H2O2 still remain in the range of 40 70 km. From this affirmative result of long-time behavior previously not presented, we emphasize that sprites would have the power to impact local chemistry at night. We also discuss the consistency with previous theoretical and observational studies, along with future suggestions.
Molten silicate mantle during a giant impact. Speciation from vapor to supercritical state
NASA Astrophysics Data System (ADS)
Caracas, R.; Stewart, S. T.
2017-12-01
We employ large-scale first-principles molecular dynamics simulations to understand the physical and chemical behavior of the molten protolunar disk, at the atomic level. We consider the average composition of the Earth's mantle as proposed by Sun and McDonough (1995). We cover the 0.75 - 7.5 g/cm3 density range and 2000 - 10000 K temperature range. This allows us to investigate the entire disk, from the interior of the molten core to the outer regions of the vaporized disk. At high density, the liquid is highly polymerized and viscous, consistent with previous studies. At low density and low temperatures, in the 2000 to 4000 K range, we capture the nucleation of bubbles. The bubbles contain a low-density gas phase rich in individual alkaline and calc-alkaline cations and SiOx groups. When volatiles are present in the system, such molecular species are the first ones to evaporate and be present in these bubbles. We propose numerical tools to detect the liquid-vapor equilibrium. The critical curves are reached consistently regardless of the thermodynamic path we chose to obtain the low densities. We analyze the equilibrium between the gas of the bubbles and the liquid. At high temperature, we identify the supercritical region characterized by one homogeneous fluid, rich in ionic species. We show that the chemical speciation is very different from the one obtained at ambient pressure conditions. Critical curves are necessary to understand the separation and degassing of volatiles during the recovery from a giant impact. Acknowledgements: This research was supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement n°681818 - IMPACT). The ab initio simulations were performed on the GENCI supercomputers, under eDARI/CINES grants x106368.
Sol-gel Technology and Advanced Electrochemical Energy Storage Materials
NASA Technical Reports Server (NTRS)
Chu, Chung-tse; Zheng, Haixing
1996-01-01
Advanced materials play an important role in the development of electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. The sol-gel process is a versatile solution for use in the fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. This processing technique is particularly useful in producing porous materials with high surface area and low density, two of the most desirable characteristics for electrode materials. In addition,the porous surface of gels can be modified chemically to create tailored surface properties, and inorganic/organic micro-composites can be prepared for improved material performance device fabrication. Applications of several sol-gel derived electrode materials in different energy storage devices are illustrated in this paper. V2O5 gels are shown to be a promising cathode material for solid state lithium batteries. Carbon aerogels, amorphous RuO2 gels and sol-gel derived hafnium compounds have been studied as electrode materials for high energy density and high power density electrochemical capacitors.
NASA Astrophysics Data System (ADS)
Gu, Xiaofeng
Multicomponent Zr-based bulk metallic glasses are the most promising metallic glass forming systems. They exhibit great glass forming ability and fascinating mechanical properties, and thus are considered as potential structural materials. One potential application is that they could be replacements of the depleted uranium for making kinetic energy armor-piercing projectiles, but the density of existing Zr-based alloys is too low for this application. Based on the chemical and crystallographic similarities between Zr and Hf, we have developed two series of bulk metallic glasses with compositions of (HfxZr1-x) 52.5Cu17.9Ni14.6Al10Ti5 and (HfxZr1-x) 57Cu20Ni8Al10Ti5 ( x = 0--1) by gradually replacing Zr by Hf. Remarkably increased density and improved mechanical properties have been achieved in these alloys. In these glasses, Hf and Zr play an interchangeable role in determining the short range order. Although the glass forming ability decreases continuously with Hf addition, most of these alloys remain bulk glass-forming. Recently, nanocomposites produced from bulk metallic glasses have attracted wide attention due to improved mechanical properties. However, their crystalline microstructure (the grain size and the crystalline volume fraction) has to be optimized. We have investigated crystallization of (Zr, Hf)-based bulk metallic glasses, including the composition dependence of crystallization paths and crystallization mechanisms. Our results indicate that the formation of high number density nanocomposites from bulk metallic glasses can be attributed to easy nucleation and slowing-down growth processes, while the multistage crystallization behavior makes it more convenient to control the microstructure evolution. Metallic glasses are known to exhibit unique plastic deformation behavior. At low temperature and high stress, plastic flow is localized in narrow shear bands. Macroscopic investigations of shear bands (e.g., chemical etching) suggest that the internal structure of shear bands is different from that of undeformed surroundings, but the direct structural characterization of shear bands down to the atomic level has been lacking. In this work, we have used transmission electron microscopy to explore the structural and chemical changes inside the shear bands. Nanometer-scale defects (void-like and high density regions) have been identified as a result of plastic deformation. It is these defects that distinguish shear bands from undeformed regions. Processes occurring in an active shear band and after stress removal are analogous to a thermally activated relaxation except that the relaxation time is much shorter in the former case.
Dynamics of differentiation in magma reservoirs
NASA Astrophysics Data System (ADS)
Jaupart, Claude; Tait, Stephen
1995-09-01
In large magma chambers, gradients of temperature and composition develop due to cooling and to fractional crystallization. Unstable density differences lead to differential motions between melt and crystals, and a major goal is to explain how this might result in chemical differentiation of magma. Arriving at a full description of the physics of crystallizing magma chambers is a challenge because of the large number of processes potentially involved, the many coupled variables, and the different geometrical shapes. Furthermore, perturbations are caused by the reinjection of melt from a deep source, eruption to the Earth's surface, and the assimilation of country rock. Physical models of increasing complexity have been developed with emphasis on three fundamental approaches. One is, given that large gradients in temperature and composition may occur, to specify how to apply thermodynamic constraints so that coexisting liquid and solid compositions may be calculated. The second is to leave the differentiation trend as the solution to be found, i.e., to specify how cooling occurs and to predict the evolution of the composition of the residual liquid and of the solid forming. The third is to simplify the physics so that the effects of coupled heat and mass transfer may be studied with a reduced set of variables. The complex shapes of magma chambers imply that boundary layers develop with density gradients at various angles to gravity, leading to various convective flows and profiles qf liquid stratification. Early studies were mainly concerned with describing fluid flow in the liquid interior of large reservoirs, due to gradients developed at the margins. More recent work has focused on the internal structure and flow field of boundary layers and in particular on the gradients of solid fraction and interstitial melt composition which develop within them. Crystal settling may occur in a surprisingly diverse range of regimes and may lead to intermittent deposition events even with small crystal concentrations. Incorporating thermodynamic constraints in the study of the dynamics of settling has only just begun. Many dynamical phenomena have been found using theoretical arguments, laboratory experiments on analog systems, and numerical calculations on simplified chemical systems. However, they have seldom been applied to natural silicate melts whose phase diagrams and important physical properties such as thermal conductivity and chemical diffusion coefficients remain poorly known. There is a gap between model predictions and observations, as many models are designed to explain large-scale features and many observations deal with the local texture and mineral assemblages of the rocks. This review stresses the relevance to the geological problem of the work carried out in parallel in other disciplines, such as physics, fluid dynamics, and metallurgy.
Improved Anode for a Direct Methanol Fuel Cell
NASA Technical Reports Server (NTRS)
Valdez, Thomas; Narayanan, Sekharipuram
2005-01-01
A modified chemical composition has been devised to improve the performance of the anode of a direct methanol fuel cell. The main feature of the modified composition is the incorporation of hydrous ruthenium oxide into the anode structure. This modification can reduce the internal electrical resistance of the cell and increase the degree of utilization of the anode catalyst. As a result, a higher anode current density can be sustained with a smaller amount of anode catalyst. These improvements can translate into a smaller fuel-cell system and higher efficiency of conversion. Some background information is helpful for understanding the benefit afforded by the addition of hydrous ruthenium oxide. The anode of a direct methanol fuel cell sustains the electro-oxidation of methanol to carbon dioxide in the reaction CH3OH + H2O--->CO2 + 6H(+) + 6e(-). An electrocatalyst is needed to enable this reaction to occur. The catalyst that offers the highest activity is an alloy of approximately equal numbers of atoms of the noble metals platinum and ruthenium. The anode is made of a composite material that includes high-surface-area Pt/Ru alloy particles and a proton-conducting ionomeric material. This composite is usually deposited onto a polymer-electrolyte (proton-conducting) membrane and onto an anode gas-diffusion/current-collector sheet that is subsequently bonded to the proton-conducting membrane by hot pressing. Heretofore, the areal density of noble-metal catalyst typically needed for high performance has been about 8 mg/cm2. However, not all of the catalyst has been utilized in the catalyzed electro-oxidation reaction. Increasing the degree of utilization of the catalyst would make it possible to improve the performance of the cell for a given catalyst loading and/or reduce the catalyst loading (thereby reducing the cost of the cell). The use of carbon and possibly other electronic conductors in the catalyst layer has been proposed for increasing the utilization of the catalyst by increasing electrical connectivity between catalyst particles. However, the relatively low density of carbon results in thick catalyst layers that impede the mass transport of methanol to the catalytic sites. Also, the electrical conductivity of carbon is less than 1/300th of typical metals. Furthermore, the polymer-electrolyte membrane material is acidic and most metals are not chemically stable in contact with it. Finally, a material that conducts electrons (but not protons) does not contribute to the needed transport of protons produced in the electro-oxidation reaction.
Zorn, Gilad; Castner, David G; Tyagi, Anuradha; Wang, Xin; Wang, Hui; Yan, Mingdi
2015-03-01
Perfluorophenylazide (PFPA) chemistry is a novel method for tailoring the surface properties of solid surfaces and nanoparticles. It is general and versatile, and has proven to be an efficient way to immobilize graphene, proteins, carbohydrates, and synthetic polymers. The main thrust of this work is to provide a detailed investigation on the chemical composition and surface density of the PFPA tailored surface. Specifically, gold surfaces were treated with PFPA-derivatized (11-mercaptoundecyl)tetra(ethylene glycol) (PFPA-MUTEG) mixed with 2-[2-(2-mercaptoethoxy)ethoxy]ethanol (MDEG) at varying solution mole ratios. Complementary analytical techniques were employed to characterize the resulting films including Fourier transform infrared spectroscopy to detect fingerprints of the PFPA group, x-ray photoelectron spectroscopy and ellipsometry to study the homogeneity and uniformity of the films, and near edge x-ray absorption fine structures to study the electronic and chemical structure of the PFPA groups. Results from these studies show that the films prepared from 90:10 and 80:20 PFPA-MUTEG/MDEG mixed solutions exhibited the highest surface density of PFPA and the most homogeneous coverage on the surface. A functional assay using surface plasmon resonance with carbohydrates covalently immobilized onto the PFPA-modified surfaces showed the highest binding affinity for lectin on the PFPA-MUTEG/MDEG film prepared from a 90:10 solution.
Preparation and Reactivity of Gasless Nanostructured Energetic Materials
Manukyan, Khachatur V.; Shuck, Christopher E.; Rogachev, Alexander S.; Mukasyan, Alexander S.
2015-01-01
High-Energy Ball Milling (HEBM) is a ball milling process where a powder mixture placed in the ball mill is subjected to high-energy collisions from the balls. Among other applications, it is a versatile technique that allows for effective preparation of gasless reactive nanostructured materials with high energy density per volume (Ni+Al, Ta+C, Ti+C). The structural transformations of reactive media, which take place during HEBM, define the reaction mechanism in the produced energetic composites. Varying the processing conditions permits fine tuning of the milling-induced microstructures of the fabricated composite particles. In turn, the reactivity, i.e., self-ignition temperature, ignition delay time, as well as reaction kinetics, of high energy density materials depends on its microstructure. Analysis of the milling-induced microstructures suggests that the formation of fresh oxygen-free intimate high surface area contacts between the reagents is responsible for the enhancement of their reactivity. This manifests itself in a reduction of ignition temperature and delay time, an increased rate of chemical reaction, and an overall decrease of the effective activation energy of the reaction. The protocol provides a detailed description for the preparation of reactive nanocomposites with tailored microstructure using short-term HEBM method. It also describes a high-speed thermal imaging technique to determine the ignition/combustion characteristics of the energetic materials. The protocol can be adapted to preparation and characterization of a variety of nanostructured energetic composites. PMID:25868065
NASA Astrophysics Data System (ADS)
Tronganh, Nguyen; Gao, Yang; Jiang, Wei; Tao, Haihua; Wang, Shanshan; Zhao, Bing; Jiang, Yong; Chen, Zhiwen; Jiao, Zheng
2018-05-01
Constructing heterostructure can endow composites with many novel physical and electrochemical properties due to the built-in specific charge transfer dynamics. However, controllable fabrication route to heterostructures is still a great challenge up to now. In this work, a SiO2-assisted hydrothermal method is developed to fabricate heterostructured nickel sulfides/reduced graphene oxide (NiSx/rGO) composite. The SiO2 particles hydrolyzed from tetraethyl orthosilicate could assist the surface controllable co-growth of 3D nanoflowers and 0D nanoparticles of Ni3S2/NiS decorated on reduced graphene oxide, and the possible co-growth mechanism is discussed in detail. In this composite, the heterostructured nanocomposite with different morphologies, chemical compositions and crystal structures, along with varied electronic states and band structure, can promote the interface charge transfer kinetics and lead to excellent lithium storage performances. Electrochemical measurements reveal that the NiSx/rGO composite presents 1187.0 mA h g-1 at 100 mA g-1 and achieves a highly stable capacity of 561.2 mA h g-1 even when the current density is up to 5 A g-1.
NASA Astrophysics Data System (ADS)
Pedrós, J.; Boscá, A.; Martínez, J.; Ruiz-Gómez, S.; Pérez, L.; Barranco, V.; Calle, F.
2016-06-01
A 3D hierarchical porous composite structure is developed via the controlled electrodeposition of a polyaniline nanofiber sponge (PANI-NFS) that fills the pores of a chemical vapor deposited graphene foam (GF). The PANI-NFS/GF composite combines the efficient electronic transport in the GF scaffold (with 100-500 μm pore size) with the rapid diffusion of the electrolyte ions into the high-specific-surface-area and densely-packed PANI-NFS (with 100-500 nm pore size). The factor of 1000 in the pore hierarchy and the synergy between the materials, that form a supercapacitor composite electrode with an integrated extended current collector, lead to both very high gravimetric and volumetric capacitances. In particular, values of 1474 F g-1 and 86 F cm-3 for a GF filling factor of 11% (leading to an estimated value of 782 F cm-3 for 100%), respectively, are obtained at a current density of 0.47 A g-1. Moreover, the composite electrode presents a capacitance retention of 83% after 15000 cycles. This excellent behavior makes the PANI-NFS/GF composite electrodes very attractive for high-performance supercapacitors.
NASA Astrophysics Data System (ADS)
Elumalai, Vijayakumar; Sangeetha, Dharmalingam
2018-01-01
A series of novel composite anion exchange membranes were prepared via simple solution casting method using synthesized quaternary ammonium functionalized Polyhedral Oligomeric Silsesquioxane (QA-POSS) with Quaternary polysulfone (QPSU). QA-POSS was synthesized from prepared Cl-POSS and well characterized by FT-IR, NMR, SEM and TEM analyses to confirm the chemical modifications and cubic morphologies. The QA-POSS nano particles have dual role in the membrane providing additional ion conducting groups and reinforcing the membrane in molecular level for the overall improvement of composite membrane. Additionally, the composite membranes were characterized by XRD, SEM, Ion exchange capacity (IEC), water uptake and conductivity to ensure the suitability of its use as an electrolyte in alkaline fuel cell. Finally, membrane electrode assembly (MEA) was fabricated using Pt anode (0.25 mg/cm2), Ag cathode (0.375 mg/cm2) and various synthesized composite membranes, and then it was tested in real time fuel cell setup. The membrane with 15% QA-POSS showed the maximum power density of 321 mW/cm2. The results showed that QA-POSS possess the ability to enhance the performance of the anion exchange membrane significantly.
Efficiency of Composite Binders with Antifreezing Agents
NASA Astrophysics Data System (ADS)
Ogurtsova, Y. N.; Zhernovsky, I. V.; Botsman, L. N.
2017-11-01
One of the non-heating methods of cold-weather concreting is using concretes hardening at negative temperatures. This method consists in using chemical additives which reduce the freezing temperature of the liquid phase and provide for concrete hardening at negative temperatures. The non-heating cold-weather concreting, due to antifreezing agents, allows saving heat and electric energy at the more flexible work performance technology. At selecting the antifreezing components, the possibility of concreting at temperatures up to minus 20 °C and combination with a plasticizer contained in the composite binder were taken into account. The optimal proportions of antifreezing and complex agents produced by MC-Bauchemie Russia for fine-grained concretes were determined. So, the introduction of antifreezing and complex agents allows obtaining a structure of composite characteristic for cement stone in the conditions of below zero temperatures at using different binders; the hydration of such composite proceeded naturally. Low-water-demand binders (LWDB) based composites are characterized by a higher density and homogeneity due to a high dispersity of a binder and its complicated surface providing for a lot of crystallization centers. LWDB contains small pores keeping water in a liquid form and promoting a more complete hydration process.
Meroño, Tomás; Brites, Fernando; Dauteuille, Carolane; Lhomme, Marie; Menafra, Martín; Arteaga, Alejandra; Castro, Marcelo; Saez, María Soledad; Ballerga, Esteban González; Sorroche, Patricia; Rey, Jorge; Lesnik, Philippe; Sordá, Juan Andrés; Chapman, M John; Kontush, Anatol; Daruich, Jorge
2015-05-01
Iron overload (IO) has been associated with glucose metabolism alterations and increased risk of cardiovascular disease (CVD). Primary IO is associated with mutations in the HFE gene. To which extent HFE gene mutations and metabolic alterations contribute to the presence of atherogenic lipoprotein modifications in primary IO remains undetermined. The present study aimed to assess small, dense low-density lipoprotein (LDL) levels, chemical composition of LDL and high-density lipoprotein (HDL) particles, and HDL functionality in IO patients. Eighteen male patients with primary IO and 16 sex- and age-matched controls were recruited. HFE mutations (C282Y, H63D and S65C), measures of insulin sensitivity and secretion (calculated from the oral glucose tolerance test), chemical composition and distribution profile of LDL and HDL subfractions (isolated by gradient density ultracentrifugation) and HDL functionality (as cholesterol efflux and antioxidative activity) were studied. IO patients compared with controls exhibited insulin resistance (HOMA-IR (homoeostasis model assessment-estimated insulin resistance): +93%, P< 0.001). Metabolic profiles differed across HFE genotypes. C282Y homozygotes (n=7) presented a reduced β-cell function and insulin secretion compared with non-C282Y patients (n=11) (-58% and -73%, respectively, P< 0.05). In addition, C282Y homozygotes featured a predominance of large, buoyant LDL particles (C282Y: 43±5; non-C282Y: 25±8; controls: 32±7%; P< 0.001), whereas non-C282Y patients presented higher amounts of small, dense LDL (C282Y: 23±5; non-C282Y: 39±10; controls: 26±4%; P< 0.01). HDL particles were altered in C282Y homozygotes. However, HDL functionality was conserved. In conclusion, metabolic alterations and HFE gene mutations are involved in the presence of atherogenic lipoprotein modifications in primary IO. To what extent such alterations could account for an increase in CVD risk remains to be determined.
NASA Astrophysics Data System (ADS)
Rotella, H.; Caby, B.; Ménesguen, Y.; Mazel, Y.; Valla, A.; Ingerle, D.; Detlefs, B.; Lépy, M.-C.; Novikova, A.; Rodriguez, G.; Streli, C.; Nolot, E.
2017-09-01
The optical and electrical properties of transparent conducting oxide (TCO) thin films are strongly linked with the structural and chemical properties such as elemental depth profile. In R&D environments, the development of non-destructive characterization techniques to probe the composition over the depth of deposited films is thus necessary. The combination of Grazing-Incidence X-ray Fluorescence (GIXRF) and X-ray reflectometry (XRR) is emerging as a fab-compatible solution for the measurement of thickness, density and elemental profile in complex stacks. Based on the same formalism, both techniques can be implemented on the same experimental set-up and the analysis can be combined in a single software in order to refine the sample model. While XRR is sensitive to the electronic density profile, GIXRF is sensitive to the atomic density (i. e. the elemental depth profile). The combination of both techniques allows to get simultaneous information about structural properties (thickness and roughness) as well as the chemical properties. In this study, we performed a XRR-GIXRF combined analysis on indium-free TCO thin films (Ga doped ZnO compound) in order to correlate the optical properties of the films with the elemental distribution of Ga dopant over the thickness. The variation of optical properties due to annealing process were probed by spectroscopic ellipsometry measurements. We studied the evolution of atomic profiles before and after annealing process. We show that the blue shift of the band gap in the optical absorption edge is linked to a homogenization of the atomic profiles of Ga and Zn over the layer after the annealing. This work demonstrates that the combination of the techniques gives insight into the material composition and makes the XRR-GIXRF combined analysis a promising technique for elemental depth profiling.
Zhang, Zhikun; Zhang, Lei; Li, Aimin
2015-04-01
Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment. In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2h) showed the properties of density of 1.92 ± 0.05 g/cm(3), weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced compared to conventional vitrification and sintering method. Chemical resistance and heavy metals leaching results of glass ceramic composites further confirmed the possibility of its engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Unterborn, Cayman T.
2018-01-01
A planet’s mass-radius relationship alone is not a good indicator for its potential to be "Earth-like." While useful in coarse characterizations for distinguishing whether an exoplanet is water/atmosphere- or rock/iron-dominated, there is considerable degeneracy in using the mass-radius relation to determine the mineralogy and structure of a purely terrestrial planet like the Earth. The chemical link between host-stars and rocky planets and the utility of this connection in breaking the degeneracy in the mass-radius relationship is well documented. Given the breadth of observed stellar compositions, modeling the complex effects of these compositional variations on a terrestrial planet’s mineralogy, structure and temperature profile, and the potential pitfalls therein, falls within the purview of the geosciences.I will demonstrate here, the utility in adopting the composition of a terrestrial planet’s host star for contextualizing individual systems (e.g. TRAPPIST-1), as well as for the more general case of quantifying the geophysical consequences of stellar compositional diversity. This includes the potential for a host-star to produce planets able to undergo mantle convection, surface-to-interior degassing and long-term plate tectonics. As we search for truly “Earth-like” planets, we must move away from the simple density-driven definition of “Earth-like” and towards a more holistic view that includes both geochemistry and geophysics. Combining geophysical models and those of planetary formation with host-star abundance data, then, is of paramount importance. This will aid not only in our understanding of the mass-radius relationship but also provide foundational results necessary interpreting future atmospheric observations through the lens of surface-interior interactions (e.g. volcanism) and planetary evolution as a whole.
NASA Astrophysics Data System (ADS)
Lou, Leo; Nelson, Alan E.; Heo, Giseon; Major, Paul W.
2008-08-01
The surface chemical composition of dental enamel has been postulated as a contributing factor in the variation of bond strength of brackets bonded to teeth, and hence, the probability of bracket failure during orthodontic treatment. This study systematically investigated the chemical composition of 98 bonding surfaces of human maxillary premolars using X-ray photoelectron spectroscopy (XPS) to ascertain compositional differences between right and left first premolars. The major elements detected in all samples were calcium, phosphorus, oxygen, nitrogen and carbon. Surface compositions were highly variable between samples and several elements were found to be highly correlated. No statistical significant difference in the chemical composition of the maxillary right and left first premolars was found ( p > 0.05). Knowledge of the chemical composition of enamel surfaces will facilitate future studies that relate this information to the variations in dental enamel bond strength.
The elemental abundances (with uncertainties) of the most Earth-like planet
NASA Astrophysics Data System (ADS)
Wang, Haiyang S.; Lineweaver, Charles H.; Ireland, Trevor R.
2018-01-01
To first order, the Earth as well as other rocky planets in the Solar System and rocky exoplanets orbiting other stars, are refractory pieces of the stellar nebula out of which they formed. To estimate the chemical composition of rocky exoplanets based on their stellar hosts' elemental abundances, we need a better understanding of the devolatilization that produced the Earth. To quantify the chemical relationships between the Earth, the Sun and other bodies in the Solar System, the elemental abundances of the bulk Earth are required. The key to comparing Earth's composition with those of other objects is to have a determination of the bulk composition with an appropriate estimate of uncertainties. Here we present concordance estimates (with uncertainties) of the elemental abundances of the bulk Earth, which can be used in such studies. First we compile, combine and renormalize a large set of heterogeneous literature values of the primitive mantle (PM) and of the core. We then integrate standard radial density profiles of the Earth and renormalize them to the current best estimate for the mass of the Earth. Using estimates of the uncertainties in i) the density profiles, ii) the core-mantle boundary and iii) the inner core boundary, we employ standard error propagation to obtain a core mass fraction of 32.5 ± 0.3 wt%. Our bulk Earth abundances are the weighted sum of our concordance core abundances and concordance PM abundances. Unlike previous efforts, the uncertainty on the core mass fraction is propagated to the uncertainties on the bulk Earth elemental abundances. Our concordance estimates for the abundances of Mg, Sn, Br, B, Cd and Be are significantly lower than previous estimates of the bulk Earth. Our concordance estimates for the abundances of Na, K, Cl, Zn, Sr, F, Ga, Rb, Nb, Gd, Ta, He, Ar, and Kr are significantly higher. The uncertainties on our elemental abundances usefully calibrate the unresolved discrepancies between standard Earth models under various geochemical and geophysical assumptions.
NASA Technical Reports Server (NTRS)
1995-01-01
The success of any solution methodology for studying gas-turbine combustor flows depends a great deal on how well it can model various complex, rate-controlling processes associated with turbulent transport, mixing, chemical kinetics, evaporation and spreading rates of the spray, convective and radiative heat transfer, and other phenomena. These phenomena often strongly interact with each other at disparate time and length scales. In particular, turbulence plays an important role in determining the rates of mass and heat transfer, chemical reactions, and evaporation in many practical combustion devices. Turbulence manifests its influence in a diffusion flame in several forms depending on how turbulence interacts with various flame scales. These forms range from the so-called wrinkled, or stretched, flamelets regime, to the distributed combustion regime. Conventional turbulence closure models have difficulty in treating highly nonlinear reaction rates. A solution procedure based on the joint composition probability density function (PDF) approach holds the promise of modeling various important combustion phenomena relevant to practical combustion devices such as extinction, blowoff limits, and emissions predictions because it can handle the nonlinear chemical reaction rates without any approximation. In this approach, mean and turbulence gas-phase velocity fields are determined from a standard turbulence model; the joint composition field of species and enthalpy are determined from the solution of a modeled PDF transport equation; and a Lagrangian-based dilute spray model is used for the liquid-phase representation with appropriate consideration of the exchanges of mass, momentum, and energy between the two phases. The PDF transport equation is solved by a Monte Carlo method, and existing state-of-the-art numerical representations are used to solve the mean gasphase velocity and turbulence fields together with the liquid-phase equations. The joint composition PDF approach was extended in our previous work to the study of compressible reacting flows. The application of this method to several supersonic diffusion flames associated with scramjet combustor flow fields provided favorable comparisons with the available experimental data. A further extension of this approach to spray flames, three-dimensional computations, and parallel computing was reported in a recent paper. The recently developed PDF/SPRAY/computational fluid dynamics (CFD) module combines the novelty of the joint composition PDF approach with the ability to run on parallel architectures. This algorithm was implemented on the NASA Lewis Research Center's Cray T3D, a massively parallel computer with an aggregate of 64 processor elements. The calculation procedure was applied to predict the flow properties of both open and confined swirl-stabilized spray flames.
NASA Astrophysics Data System (ADS)
Robert, C. G.; Ayob, A.; Zaki, M. F. Muhammad; Razali, M. E.; Lew, E. V.; Hong, P. Y.
2018-03-01
Malaysia promotes coal as an option for solid fuel in electric power generation. Demanding of electricity needs, therefore, has led to increase the coal consumption and thus producing more coal waste products. The disposal of coal waste ashes has been a main concern to power generation station due to the need of disposal sites and operational costs. This study investigates the composition of fly ash (FA) and bottom ash (BA) mixtures with difference component percentage treated with sodium lauryl sulphate (SLS) and polyvinyl alcohol (PVA) at 1.5 and 2.5 wt% solutions and examined in terms of specific gravity, pH, maximum dry density properties, and its surface morphology. Although the chemical composition of the SLS and PVA treated fly and bottom ashes studied in this current work is not altered extensively, significant changes could be observed in its physicochemical properties. Chemically treated fly and bottom ashes mixtures with SLS and PVA at 1.5 wt% solution exhibited specific gravity of 1.97 to 2.92 and high pH values within range of 9.28 to 10.52. The mixture of BA:FA=0:1 ratio depicting high maximum dry density of 1.35 to 1.56 g/cm3 in both SLS and PVA solutions at 1.5 and 2.5 wt%. Scanning electron microscopy image shows distinct surface morphologies of SLS-treated fly and bottom ashes mixture that the particles are packed closely, strongly bonded similar to popcorn shape due to the effect of active silanol groups acted on coal ashes surface with the presence of Al-O/Si-O/other oxides. These findings suggest that higher level of chemical interaction between the fly and bottom ashes particles, significantly enhances pozzolanic reactions such as shear strength, plasticity, cementing properties, and thus other engineering properties.
Slavov, Svetoslav H; Wilkes, Jon G; Buzatu, Dan A; Kruhlak, Naomi L; Willard, James M; Hanig, Joseph P; Beger, Richard D
2014-12-01
Modified 3D-SDAR fingerprints combining (13)C and (15)N NMR chemical shifts augmented with inter-atomic distances were used to model the potential of chemicals to induce phospholipidosis (PLD). A curated dataset of 328 compounds (some of which were cationic amphiphilic drugs) was used to generate 3D-QSDAR models based on tessellations of the 3D-SDAR space with grids of different density. Composite PLS models averaging the aggregated predictions from 100 fully randomized individual models were generated. On each of the 100 runs, the activities of an external blind test set comprised of 294 proprietary chemicals were predicted and averaged to provide composite estimates of their PLD-inducing potentials (PLD+ if PLD is observed, otherwise PLD-). The best performing 3D-QSDAR model utilized a grid with a density of 8ppm×8ppm in the C-C region, 8ppm×20ppm in the C-N region and 20ppm×20ppm in the N-N region. The classification predictive performance parameters of this model evaluated on the basis of the external test set were as follows: accuracy=0.70, sensitivity=0.73 and specificity=0.66. A projection of the most frequently occurring bins on the standard coordinate space suggested a toxicophore composed of an aromatic ring with a centroid 3.5-7.5Å distant from an amino-group. The presence of a second aromatic ring separated by a 4-5Å spacer from the first ring and at a distance of between 5.5Å and 7Å from the amino-group was also associated with a PLD+ effect. These models provide comparable predictive performance to previously reported models for PLD with the added benefit of being based entirely on non-confidential, publicly available training data and with good predictive performance when tested in a rigorous, external validation exercise. Published by Elsevier Ltd.
Glass-ceramic route of BSCCO superconductors - Fabrication of amorphous precursor
NASA Astrophysics Data System (ADS)
Nilsson, Andreas; Gruner, Wolfgang; Acker, Jörg; Wetzig, Klaus
2007-09-01
It is well known that many Bi-Sr-Ca-Cu-O compositions are glass-forming and some Bi-based glasses such as Bi 2Sr 2CaCu 2O x and Bi 2Sr 2Ca 2Cu 3O x are converted into high critical temperature superconductors after proper annealing. In order to fabricate superconductors having high- Tc and high critical current density using the glass-ceramic route, it is necessary to clarify the total chemical composition of the quenched glasses prepared in most cases by rapid quenching of melts from around 1200 °C in air. The total oxygen content measured directly reflects a significant oxygen deficit due to the melting process. We have also investigated the cation content in quenched Bi 2Sr 2Ca 2Cu 3O x precursors and found that there are substantial differences from the nominal composition to the quenched materials especially for calcium. Such glasses also show some CaO crystalline reflexes in the XRD patterns.
Composition and evolution of the atmosphere of Venus
NASA Technical Reports Server (NTRS)
Donahue, Thomas (Principal Investigator)
1996-01-01
The contract year started by analyzing Jovian atmospheric data acquired by the Galileo Probe Mass Spectrometer (GPMS). Two Venus hydrogen projects got underway as well. The first study strives to understand how to reconcile the standard treatment of the evolution of the H2O and HDO resevoirs on Venus over 4.5 Gyr in the presence of H and D escape and injection by comets. The second study is calculating the charge exchange contribution to hydrogen loss rates, using realistic models for exospheric H, H(+), D, D(+), and ion temperature from PV data. This report includes the following papers as attachments and supporting data: 'The Galileo Probe Mass Spectrometer: Composition of Jupiter's Atmosphere'; 'Chemical Composition Measurements of the Atmosphere of Jupiter with the Galileo Probe Mass Spectrometer'; 'Ion/Neutral Escape of Hydrogen and Deuterium: Evolution of Water'; 'Hydrogen and Deuterium in the Thermosphere of Venus: Solar Cycle Variations and Escape'; and 'Solar Cycle Variations in H(+) and D(+) Densities in the Venus Ionosphere: Implications for Escape'.
A novel model for estimating organic chemical bioconcentration in agricultural plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hung, H.; Mackay, D.; Di Guardo, A.
1995-12-31
There is increasing recognition that much human and wildlife exposure to organic contaminants can be traced through the food chain to bioconcentration in vegetation. For risk assessment, there is a need for an accurate model to predict organic chemical concentrations in plants. Existing models range from relatively simple correlations of concentrations using octanol-water or octanol-air partition coefficients, to complex models involving extensive physiological data. To satisfy the need for a relatively accurate model of intermediate complexity, a novel approach has been devised to predict organic chemical concentrations in agricultural plants as a function of soil and air concentrations, without themore » need for extensive plant physiological data. The plant is treated as three compartments, namely, leaves, roots and stems (including fruit and seeds). Data readily available from the literature, including chemical properties, volume, density and composition of each compartment; metabolic and growth rate of plant; and readily obtainable environmental conditions at the site are required as input. Results calculated from the model are compared with observed and experimentally-determined concentrations. It is suggested that the model, which includes a physiological database for agricultural plants, gives acceptably accurate predictions of chemical partitioning between plants, air and soil.« less
Computer Code for Nanostructure Simulation
NASA Technical Reports Server (NTRS)
Filikhin, Igor; Vlahovic, Branislav
2009-01-01
Due to their small size, nanostructures can have stress and thermal gradients that are larger than any macroscopic analogue. These gradients can lead to specific regions that are susceptible to failure via processes such as plastic deformation by dislocation emission, chemical debonding, and interfacial alloying. A program has been developed that rigorously simulates and predicts optoelectronic properties of nanostructures of virtually any geometrical complexity and material composition. It can be used in simulations of energy level structure, wave functions, density of states of spatially configured phonon-coupled electrons, excitons in quantum dots, quantum rings, quantum ring complexes, and more. The code can be used to calculate stress distributions and thermal transport properties for a variety of nanostructures and interfaces, transport and scattering at nanoscale interfaces and surfaces under various stress states, and alloy compositional gradients. The code allows users to perform modeling of charge transport processes through quantum-dot (QD) arrays as functions of inter-dot distance, array order versus disorder, QD orientation, shape, size, and chemical composition for applications in photovoltaics and physical properties of QD-based biochemical sensors. The code can be used to study the hot exciton formation/relation dynamics in arrays of QDs of different shapes and sizes at different temperatures. It also can be used to understand the relation among the deposition parameters and inherent stresses, strain deformation, heat flow, and failure of nanostructures.
Breulmann, Marc; Masyutenko, Nina Petrovna; Kogut, Boris Maratovich; Schroll, Reiner; Dörfler, Ulrike; Buscot, François; Schulz, Elke
2014-11-01
The quality, stability and availability of organic carbon (OC) in soil organic matter (SOM) can vary widely between differently managed ecosystems. Several approaches have been developed for isolating SOM fractions to examine their ecological roles, but links between the bioavailability of the OC of size-density fractions and soil microbial communities have not been previously explored. Thus, in the presented laboratory study we investigated the potential bioavailability of OC and the structure of associated microbial communities in different particle-size and density fractions of SOM. For this we used samples from four grassland ecosystems with contrasting management intensity regimes and two soil types: a Haplic Cambisol and a typical Chernozem. A combined size-density fractionation protocol was applied to separate clay-associated SOM fractions (CF1, <1 μm; CF2, 1-2 μm) from light SOM fractions (LF1, <1.8 g cm(-3); LF2, 1.8-2.0 g cm(-3)). These fractions were used as carbon sources in a respiration experiment to determine their potential bioavailability. Measured CO2-release was used as an index of substrate accessibility and linked to the soil microbial community structure, as determined by phospholipid fatty acids (PLFA) analysis. Several key factors controlling decomposition processes, and thus the potential bioavailability of OC, were identified: management intensity and the plant community composition of the grasslands (both of which affect the chemical composition and turnover of OC) and specific properties of individual SOM fractions. The PLFA patterns highlighted differences in the composition of microbial communities associated with the examined grasslands, and SOM fractions, providing the first broad insights into their active microbial communities. From observed interactions between abiotic and biotic factors affecting the decomposition of SOM fractions we demonstrate that increasing management intensity could enhance the potential bioavailability of OC, not only in the active and intermediate SOM pools, but also in the passive pool. Copyright © 2014 Elsevier B.V. All rights reserved.
Baris Yalcin; Steve E Amos; Andrew S D Souza; Craig M Clemons; I Sedat Gunes; Troy K Ista
2012-01-01
Hollow glass microspheres were introduced into wood flour/high density polyethylene composites by melt compounding in a twin-screw extruder. The prepared composites were subsequently converted to extruded profiles in order to obtain composite sheeting. The presence of hollow glass microspheres highly reduced the density of the extruded sheets down to 0.9 g/cc, while...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelenyuk, Alla; Imre, D.; Wilson, Jacqueline M.
2015-02-01
Understanding the effect of aerosols on climate requires knowledge of the size and chemical composition of individual aerosol particles - two fundamental properties that determine an aerosol’s optical properties and ability to serve as cloud condensation or ice nuclei. Here we present miniSPLAT, our new aircraft compatible single particle mass spectrometer, that measures in-situ and in real-time size and chemical composition of individual aerosol particles with extremely high sensitivity, temporal resolution, and sizing precision on the order of a monolayer. miniSPLAT operates in dual data acquisition mode to measure, in addition to single particle size and composition, particle number concentrations,more » size distributions, density, and asphericity with high temporal resolution. When compared to our previous instrument, SPLAT II, miniSPLAT has been significantly reduced in size, weight, and power consumption without loss in performance. We also present ND-Scope, our newly developed interactive visual analytics software package. ND-Scope is designed to explore and visualize the vast amount of complex, multidimensional data acquired by our single particle mass spectrometers, along with other aerosol and cloud characterization instruments on-board aircraft. We demonstrate that ND-Scope makes it possible to visualize the relationships between different observables and to view the data in a geo-spatial context, using the interactive and fully coupled Google Earth and Parallel Coordinates displays. Here we illustrate the utility of ND-Scope to visualize the spatial distribution of atmospheric particles of different compositions, and explore the relationship between individual particle composition and their activity as cloud condensation nuclei.« less