Sample records for density control algorithms

  1. On the Impact of Localization and Density Control Algorithms in Target Tracking Applications for Wireless Sensor Networks

    PubMed Central

    Campos, Andre N.; Souza, Efren L.; Nakamura, Fabiola G.; Nakamura, Eduardo F.; Rodrigues, Joel J. P. C.

    2012-01-01

    Target tracking is an important application of wireless sensor networks. The networks' ability to locate and track an object is directed linked to the nodes' ability to locate themselves. Consequently, localization systems are essential for target tracking applications. In addition, sensor networks are often deployed in remote or hostile environments. Therefore, density control algorithms are used to increase network lifetime while maintaining its sensing capabilities. In this work, we analyze the impact of localization algorithms (RPE and DPE) and density control algorithms (GAF, A3 and OGDC) on target tracking applications. We adapt the density control algorithms to address the k-coverage problem. In addition, we analyze the impact of network density, residual integration with density control, and k-coverage on both target tracking accuracy and network lifetime. Our results show that DPE is a better choice for target tracking applications than RPE. Moreover, among the evaluated density control algorithms, OGDC is the best option among the three. Although the choice of the density control algorithm has little impact on the tracking precision, OGDC outperforms GAF and A3 in terms of tracking time. PMID:22969329

  2. Robust control algorithms for Mars aerobraking

    NASA Technical Reports Server (NTRS)

    Shipley, Buford W., Jr.; Ward, Donald T.

    1992-01-01

    Four atmospheric guidance concepts have been adapted to control an interplanetary vehicle aerobraking in the Martian atmosphere. The first two offer improvements to the Analytic Predictor Corrector (APC) to increase its robustness to density variations. The second two are variations of a new Liapunov tracking exit phase algorithm, developed to guide the vehicle along a reference trajectory. These four new controllers are tested using a six degree of freedom computer simulation to evaluate their robustness. MARSGRAM is used to develop realistic atmospheres for the study. When square wave density pulses perturb the atmosphere all four controllers are successful. The algorithms are tested against atmospheres where the inbound and outbound density functions are different. Square wave density pulses are again used, but only for the outbound leg of the trajectory. Additionally, sine waves are used to perturb the density function. The new algorithms are found to be more robust than any previously tested and a Liapunov controller is selected as the most robust control algorithm overall examined.

  3. Control algorithms for aerobraking in the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Ward, Donald T.; Shipley, Buford W., Jr.

    1991-01-01

    The Analytic Predictor Corrector (APC) and Energy Controller (EC) atmospheric guidance concepts were adapted to control an interplanetary vehicle aerobraking in the Martian atmosphere. Changes are made to the APC to improve its robustness to density variations. These changes include adaptation of a new exit phase algorithm, an adaptive transition velocity to initiate the exit phase, refinement of the reference dynamic pressure calculation and two improved density estimation techniques. The modified controller with the hybrid density estimation technique is called the Mars Hybrid Predictor Corrector (MHPC), while the modified controller with a polynomial density estimator is called the Mars Predictor Corrector (MPC). A Lyapunov Steepest Descent Controller (LSDC) is adapted to control the vehicle. The LSDC lacked robustness, so a Lyapunov tracking exit phase algorithm is developed to guide the vehicle along a reference trajectory. This algorithm, when using the hybrid density estimation technique to define the reference path, is called the Lyapunov Hybrid Tracking Controller (LHTC). With the polynomial density estimator used to define the reference trajectory, the algorithm is called the Lyapunov Tracking Controller (LTC). These four new controllers are tested using a six degree of freedom computer simulation to evaluate their robustness. The MHPC, MPC, LHTC, and LTC show dramatic improvements in robustness over the APC and EC.

  4. Real-time feedback control of the plasma density profile on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Mlynek, A.; Reich, M.; Giannone, L.; Treutterer, W.; Behler, K.; Blank, H.; Buhler, A.; Cole, R.; Eixenberger, H.; Fischer, R.; Lohs, A.; Lüddecke, K.; Merkel, R.; Neu, G.; Ryter, F.; Zasche, D.; ASDEX Upgrade Team

    2011-04-01

    The spatial distribution of density in a fusion experiment is of significant importance as it enters in numerous analyses and contributes to the fusion performance. The reconstruction of the density profile is therefore commonly done in offline data analysis. In this paper, we present an algorithm which allows for density profile reconstruction from the data of the submillimetre interferometer and the magnetic equilibrium in real-time. We compare the obtained results to the profiles yielded by a numerically more complex offline algorithm. Furthermore, we present recent ASDEX Upgrade experiments in which we used the real-time density profile for active feedback control of the shape of the density profile.

  5. Probabilistic DHP adaptive critic for nonlinear stochastic control systems.

    PubMed

    Herzallah, Randa

    2013-06-01

    Following the recently developed algorithms for fully probabilistic control design for general dynamic stochastic systems (Herzallah & Káarnáy, 2011; Kárný, 1996), this paper presents the solution to the probabilistic dual heuristic programming (DHP) adaptive critic method (Herzallah & Káarnáy, 2011) and randomized control algorithm for stochastic nonlinear dynamical systems. The purpose of the randomized control input design is to make the joint probability density function of the closed loop system as close as possible to a predetermined ideal joint probability density function. This paper completes the previous work (Herzallah & Káarnáy, 2011; Kárný, 1996) by formulating and solving the fully probabilistic control design problem on the more general case of nonlinear stochastic discrete time systems. A simulated example is used to demonstrate the use of the algorithm and encouraging results have been obtained. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Fringe-jump corrected far infrared tangential interferometer/polarimeter for a real-time density feedback control system of NSTX plasmasa)

    NASA Astrophysics Data System (ADS)

    Juhn, J.-W.; Lee, K. C.; Hwang, Y. S.; Domier, C. W.; Luhmann, N. C.; Leblanc, B. P.; Mueller, D.; Gates, D. A.; Kaita, R.

    2010-10-01

    The far infrared tangential interferometer/polarimeter (FIReTIP) of the National Spherical Torus Experiment (NSTX) has been set up to provide reliable electron density signals for a real-time density feedback control system. This work consists of two main parts: suppression of the fringe jumps that have been prohibiting the plasma density from use in the direct feedback to actuators and the conceptual design of a density feedback control system including the FIReTIP, control hardware, and software that takes advantage of the NSTX plasma control system (PCS). By investigating numerous shot data after July 2009 when the new electronics were installed, fringe jumps in the FIReTIP are well characterized, and consequently the suppressing algorithms are working properly as shown in comparisons with the Thomson scattering diagnostic. This approach is also applicable to signals taken at a 5 kHz sampling rate, which is a fundamental constraint imposed by the digitizers providing inputs to the PCS. The fringe jump correction algorithm, as well as safety and feedback modules, will be included as submodules either in the gas injection system category or a new category of density in the PCS.

  7. A density based algorithm to detect cavities and holes from planar points

    NASA Astrophysics Data System (ADS)

    Zhu, Jie; Sun, Yizhong; Pang, Yueyong

    2017-12-01

    Delaunay-based shape reconstruction algorithms are widely used in approximating the shape from planar points. However, these algorithms cannot ensure the optimality of varied reconstructed cavity boundaries and hole boundaries. This inadequate reconstruction can be primarily attributed to the lack of efficient mathematic formulation for the two structures (hole and cavity). In this paper, we develop an efficient algorithm for generating cavities and holes from planar points. The algorithm yields the final boundary based on an iterative removal of the Delaunay triangulation. Our algorithm is mainly divided into two steps, namely, rough and refined shape reconstructions. The rough shape reconstruction performed by the algorithm is controlled by a relative parameter. Based on the rough result, the refined shape reconstruction mainly aims to detect holes and pure cavities. Cavity and hole are conceptualized as a structure with a low-density region surrounded by the high-density region. With this structure, cavity and hole are characterized by a mathematic formulation called as compactness of point formed by the length variation of the edges incident to point in Delaunay triangulation. The boundaries of cavity and hole are then found by locating a shape gradient change in compactness of point set. The experimental comparison with other shape reconstruction approaches shows that the proposed algorithm is able to accurately yield the boundaries of cavity and hole with varying point set densities and distributions.

  8. Benefits Assessment of Algorithmically Combining Generic High Altitude Airspace Sectors

    NASA Technical Reports Server (NTRS)

    Bloem, Michael; Gupta, Pramod; Lai, Chok Fung; Kopardekar, Parimal

    2009-01-01

    In today's air traffic control operations, sectors that have traffic demand below capacity are combined so that fewer controller teams are required to manage air traffic. Controllers in current operations are certified to control a group of six to eight sectors, known as an area of specialization. Sector combinations are restricted to occur within areas of specialization. Since there are few sector combination possibilities in each area of specialization, human supervisors can effectively make sector combination decisions. In the future, automation and procedures will allow any appropriately trained controller to control any of a large set of generic sectors. The primary benefit of this will be increased controller staffing flexibility. Generic sectors will also allow more options for combining sectors, making sector combination decisions difficult for human supervisors. A sector-combining algorithm can assist supervisors as they make generic sector combination decisions. A heuristic algorithm for combining under-utilized air space sectors to conserve air traffic control resources has been described and analyzed. Analysis of the algorithm and comparisons with operational sector combinations indicate that this algorithm could more efficiently utilize air traffic control resources than current sector combinations. This paper investigates the benefits of using the sector-combining algorithm proposed in previous research to combine high altitude generic airspace sectors. Simulations are conducted in which all the high altitude sectors in a center are allowed to combine, as will be possible in generic high altitude airspace. Furthermore, the algorithm is adjusted to use a version of the simplified dynamic density (SDD) workload metric that has been modified to account for workload reductions due to automatic handoffs and Automatic Dependent Surveillance Broadcast (ADS-B). This modified metric is referred to here as future simplified dynamic density (FSDD). Finally, traffic demand sets with increased air traffic demand are used in the simulations to capture the expected growth in air traffic demand by the mid-term.

  9. An Error-Entropy Minimization Algorithm for Tracking Control of Nonlinear Stochastic Systems with Non-Gaussian Variables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yunlong; Wang, Aiping; Guo, Lei

    This paper presents an error-entropy minimization tracking control algorithm for a class of dynamic stochastic system. The system is represented by a set of time-varying discrete nonlinear equations with non-Gaussian stochastic input, where the statistical properties of stochastic input are unknown. By using Parzen windowing with Gaussian kernel to estimate the probability densities of errors, recursive algorithms are then proposed to design the controller such that the tracking error can be minimized. The performance of the error-entropy minimization criterion is compared with the mean-square-error minimization in the simulation results.

  10. A novel feedback algorithm for simulating controlled dynamics and confinement in the advanced reversed-field pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahlin, J.-E.; Scheffel, J.

    2005-06-15

    In the advanced reversed-field pinch (RFP), the current density profile is externally controlled to diminish tearing instabilities. Thus the scaling of energy confinement time with plasma current and density is improved substantially as compared to the conventional RFP. This may be numerically simulated by introducing an ad hoc electric field, adjusted to generate a tearing mode stable parallel current density profile. In the present work a current profile control algorithm, based on feedback of the fluctuating electric field in Ohm's law, is introduced into the resistive magnetohydrodynamic code DEBSP [D. D. Schnack and D. C. Baxter, J. Comput. Phys. 55,more » 485 (1984); D. D. Schnack, D. C. Barnes, Z. Mikic, D. S. Marneal, E. J. Caramana, and R. A. Nebel, Comput. Phys. Commun. 43, 17 (1986)]. The resulting radial magnetic field is decreased considerably, causing an increase in energy confinement time and poloidal {beta}. It is found that the parallel current density profile spontaneously becomes hollow, and that a formation, being related to persisting resistive g modes, appears close to the reversal surface.« less

  11. A Sparse Self-Consistent Field Algorithm and Its Parallel Implementation: Application to Density-Functional-Based Tight Binding.

    PubMed

    Scemama, Anthony; Renon, Nicolas; Rapacioli, Mathias

    2014-06-10

    We present an algorithm and its parallel implementation for solving a self-consistent problem as encountered in Hartree-Fock or density functional theory. The algorithm takes advantage of the sparsity of matrices through the use of local molecular orbitals. The implementation allows one to exploit efficiently modern symmetric multiprocessing (SMP) computer architectures. As a first application, the algorithm is used within the density-functional-based tight binding method, for which most of the computational time is spent in the linear algebra routines (diagonalization of the Fock/Kohn-Sham matrix). We show that with this algorithm (i) single point calculations on very large systems (millions of atoms) can be performed on large SMP machines, (ii) calculations involving intermediate size systems (1000-100 000 atoms) are also strongly accelerated and can run efficiently on standard servers, and (iii) the error on the total energy due to the use of a cutoff in the molecular orbital coefficients can be controlled such that it remains smaller than the SCF convergence criterion.

  12. m-BIRCH: an online clustering approach for computer vision applications

    NASA Astrophysics Data System (ADS)

    Madan, Siddharth K.; Dana, Kristin J.

    2015-03-01

    We adapt a classic online clustering algorithm called Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH), to incrementally cluster large datasets of features commonly used in multimedia and computer vision. We call the adapted version modified-BIRCH (m-BIRCH). The algorithm uses only a fraction of the dataset memory to perform clustering, and updates the clustering decisions when new data comes in. Modifications made in m-BIRCH enable data driven parameter selection and effectively handle varying density regions in the feature space. Data driven parameter selection automatically controls the level of coarseness of the data summarization. Effective handling of varying density regions is necessary to well represent the different density regions in data summarization. We use m-BIRCH to cluster 840K color SIFT descriptors, and 60K outlier corrupted grayscale patches. We use the algorithm to cluster datasets consisting of challenging non-convex clustering patterns. Our implementation of the algorithm provides an useful clustering tool and is made publicly available.

  13. Performance Assessment of Model-Based Optimal Feedforward and Feedback Current Profile Control in NSTX-U using the TRANSP Code

    NASA Astrophysics Data System (ADS)

    Ilhan, Z.; Wehner, W. P.; Schuster, E.; Boyer, M. D.; Gates, D. A.; Gerhardt, S.; Menard, J.

    2015-11-01

    Active control of the toroidal current density profile is crucial to achieve and maintain high-performance, MHD-stable plasma operation in NSTX-U. A first-principles-driven, control-oriented model describing the temporal evolution of the current profile has been proposed earlier by combining the magnetic diffusion equation with empirical correlations obtained at NSTX-U for the electron density, electron temperature, and non-inductive current drives. A feedforward + feedback control scheme for the requlation of the current profile is constructed by embedding the proposed nonlinear, physics-based model into the control design process. Firstly, nonlinear optimization techniques are used to design feedforward actuator trajectories that steer the plasma to a desired operating state with the objective of supporting the traditional trial-and-error experimental process of advanced scenario planning. Secondly, a feedback control algorithm to track a desired current profile evolution is developed with the goal of adding robustness to the overall control scheme. The effectiveness of the combined feedforward + feedback control algorithm for current profile regulation is tested in predictive simulations carried out in TRANSP. Supported by PPPL.

  14. A Design Study of Onboard Navigation and Guidance During Aerocapture at Mars. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Fuhry, Douglas Paul

    1988-01-01

    The navigation and guidance of a high lift-to-drag ratio sample return vehicle during aerocapture at Mars are investigated. Emphasis is placed on integrated systems design, with guidance algorithm synthesis and analysis based on vehicle state and atmospheric density uncertainty estimates provided by the navigation system. The latter utilizes a Kalman filter for state vector estimation, with useful update information obtained through radar altimeter measurements and density altitude measurements based on IMU-measured drag acceleration. A three-phase guidance algorithm, featuring constant bank numeric predictor/corrector atmospheric capture and exit phases and an extended constant altitude cruise phase, is developed to provide controlled capture and depletion of orbital energy, orbital plane control, and exit apoapsis control. Integrated navigation and guidance systems performance are analyzed using a four degree-of-freedom computer simulation. The simulation environment includes an atmospheric density model with spatially correlated perturbations to provide realistic variations over the vehicle trajectory. Navigation filter initial conditions for the analysis are based on planetary approach optical navigation results. Results from a selection of test cases are presented to give insight into systems performance.

  15. Density-Aware Clustering Based on Aggregated Heat Kernel and Its Transformation

    DOE PAGES

    Huang, Hao; Yoo, Shinjae; Yu, Dantong; ...

    2015-06-01

    Current spectral clustering algorithms suffer from the sensitivity to existing noise, and parameter scaling, and may not be aware of different density distributions across clusters. If these problems are left untreated, the consequent clustering results cannot accurately represent true data patterns, in particular, for complex real world datasets with heterogeneous densities. This paper aims to solve these problems by proposing a diffusion-based Aggregated Heat Kernel (AHK) to improve the clustering stability, and a Local Density Affinity Transformation (LDAT) to correct the bias originating from different cluster densities. AHK statistically\\ models the heat diffusion traces along the entire time scale, somore » it ensures robustness during clustering process, while LDAT probabilistically reveals local density of each instance and suppresses the local density bias in the affinity matrix. Our proposed framework integrates these two techniques systematically. As a result, not only does it provide an advanced noise-resisting and density-aware spectral mapping to the original dataset, but also demonstrates the stability during the processing of tuning the scaling parameter (which usually controls the range of neighborhood). Furthermore, our framework works well with the majority of similarity kernels, which ensures its applicability to many types of data and problem domains. The systematic experiments on different applications show that our proposed algorithms outperform state-of-the-art clustering algorithms for the data with heterogeneous density distributions, and achieve robust clustering performance with respect to tuning the scaling parameter and handling various levels and types of noise.« less

  16. Novel density-based and hierarchical density-based clustering algorithms for uncertain data.

    PubMed

    Zhang, Xianchao; Liu, Han; Zhang, Xiaotong

    2017-09-01

    Uncertain data has posed a great challenge to traditional clustering algorithms. Recently, several algorithms have been proposed for clustering uncertain data, and among them density-based techniques seem promising for handling data uncertainty. However, some issues like losing uncertain information, high time complexity and nonadaptive threshold have not been addressed well in the previous density-based algorithm FDBSCAN and hierarchical density-based algorithm FOPTICS. In this paper, we firstly propose a novel density-based algorithm PDBSCAN, which improves the previous FDBSCAN from the following aspects: (1) it employs a more accurate method to compute the probability that the distance between two uncertain objects is less than or equal to a boundary value, instead of the sampling-based method in FDBSCAN; (2) it introduces new definitions of probability neighborhood, support degree, core object probability, direct reachability probability, thus reducing the complexity and solving the issue of nonadaptive threshold (for core object judgement) in FDBSCAN. Then, we modify the algorithm PDBSCAN to an improved version (PDBSCANi), by using a better cluster assignment strategy to ensure that every object will be assigned to the most appropriate cluster, thus solving the issue of nonadaptive threshold (for direct density reachability judgement) in FDBSCAN. Furthermore, as PDBSCAN and PDBSCANi have difficulties for clustering uncertain data with non-uniform cluster density, we propose a novel hierarchical density-based algorithm POPTICS by extending the definitions of PDBSCAN, adding new definitions of fuzzy core distance and fuzzy reachability distance, and employing a new clustering framework. POPTICS can reveal the cluster structures of the datasets with different local densities in different regions better than PDBSCAN and PDBSCANi, and it addresses the issues in FOPTICS. Experimental results demonstrate the superiority of our proposed algorithms over the existing algorithms in accuracy and efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Numerical Study of Hydrothermal Wave Suppression in Thermocapillary Flow Using a Predictive Control Method

    NASA Astrophysics Data System (ADS)

    Muldoon, F. H.

    2018-04-01

    Hydrothermal waves in flows driven by thermocapillary and buoyancy effects are suppressed by applying a predictive control method. Hydrothermal waves arise in the manufacturing of crystals, including the "open boat" crystal growth process, and lead to undesirable impurities in crystals. The open boat process is modeled using the two-dimensional unsteady incompressible Navier-Stokes equations under the Boussinesq approximation and the linear approximation of the surface thermocapillary force. The flow is controlled by a spatially and temporally varying heat flux density through the free surface. The heat flux density is determined by a conjugate gradient optimization algorithm. The gradient of the objective function with respect to the heat flux density is found by solving adjoint equations derived from the Navier-Stokes ones in the Boussinesq approximation. Special attention is given to heat flux density distributions over small free-surface areas and to the maximum admissible heat flux density.

  18. Experimental testing of four correction algorithms for the forward scattering spectrometer probe

    NASA Technical Reports Server (NTRS)

    Hovenac, Edward A.; Oldenburg, John R.; Lock, James A.

    1992-01-01

    Three number density correction algorithms and one size distribution correction algorithm for the Forward Scattering Spectrometer Probe (FSSP) were compared with data taken by the Phase Doppler Particle Analyzer (PDPA) and an optical number density measuring instrument (NDMI). Of the three number density correction algorithms, the one that compared best to the PDPA and NDMI data was the algorithm developed by Baumgardner, Strapp, and Dye (1985). The algorithm that corrects sizing errors in the FSSP that was developed by Lock and Hovenac (1989) was shown to be within 25 percent of the Phase Doppler measurements at number densities as high as 3000/cc.

  19. Efficient parallel linear scaling construction of the density matrix for Born-Oppenheimer molecular dynamics.

    PubMed

    Mniszewski, S M; Cawkwell, M J; Wall, M E; Mohd-Yusof, J; Bock, N; Germann, T C; Niklasson, A M N

    2015-10-13

    We present an algorithm for the calculation of the density matrix that for insulators scales linearly with system size and parallelizes efficiently on multicore, shared memory platforms with small and controllable numerical errors. The algorithm is based on an implementation of the second-order spectral projection (SP2) algorithm [ Niklasson, A. M. N. Phys. Rev. B 2002 , 66 , 155115 ] in sparse matrix algebra with the ELLPACK-R data format. We illustrate the performance of the algorithm within self-consistent tight binding theory by total energy calculations of gas phase poly(ethylene) molecules and periodic liquid water systems containing up to 15,000 atoms on up to 16 CPU cores. We consider algorithm-specific performance aspects, such as local vs nonlocal memory access and the degree of matrix sparsity. Comparisons to sparse matrix algebra implementations using off-the-shelf libraries on multicore CPUs, graphics processing units (GPUs), and the Intel many integrated core (MIC) architecture are also presented. The accuracy and stability of the algorithm are illustrated with long duration Born-Oppenheimer molecular dynamics simulations of 1000 water molecules and a 303 atom Trp cage protein solvated by 2682 water molecules.

  20. SOTXTSTREAM: Density-based self-organizing clustering of text streams.

    PubMed

    Bryant, Avory C; Cios, Krzysztof J

    2017-01-01

    A streaming data clustering algorithm is presented building upon the density-based self-organizing stream clustering algorithm SOSTREAM. Many density-based clustering algorithms are limited by their inability to identify clusters with heterogeneous density. SOSTREAM addresses this limitation through the use of local (nearest neighbor-based) density determinations. Additionally, many stream clustering algorithms use a two-phase clustering approach. In the first phase, a micro-clustering solution is maintained online, while in the second phase, the micro-clustering solution is clustered offline to produce a macro solution. By performing self-organization techniques on micro-clusters in the online phase, SOSTREAM is able to maintain a macro clustering solution in a single phase. Leveraging concepts from SOSTREAM, a new density-based self-organizing text stream clustering algorithm, SOTXTSTREAM, is presented that addresses several shortcomings of SOSTREAM. Gains in clustering performance of this new algorithm are demonstrated on several real-world text stream datasets.

  1. Use of computed tomography to identify atrial fibrillation associated differences in left atrial wall thickness and density.

    PubMed

    Dewland, Thomas A; Wintermark, Max; Vaysman, Anna; Smith, Lisa M; Tong, Elizabeth; Vittinghoff, Eric; Marcus, Gregory M

    2013-01-01

    Left atrial (LA) tissue characteristics may play an important role in atrial fibrillation (AF) induction and perpetuation. Although frequently used in clinical practice, computed tomography (CT) has not been employed to describe differences in LA wall properties between AF patients and controls. We sought to noninvasively characterize AF-associated differences in LA tissue using CT. CT images of the LA were obtained in 98 consecutive patients undergoing AF ablation and in 89 controls. A custom software algorithm was used to measure wall thickness and density in four prespecified regions of the LA. On average, LA walls were thinner (-15.5%, 95% confidence interval [CI] -23.2 to -7.8%, P < 0.001) and demonstrated significantly lower density (-19.7 Hounsfield Units [HU], 95% CI -27.0 to -12.5 HU, P < 0.001) in AF patients compared to controls. In linear mixed models adjusting for demographics, clinical variables, and other CT measurements, the average LA, interatrial septum, LA appendage, and anterior walls remained significantly thinner in AF patients. After adjusting for the same potential confounders, history of AF was associated with reduced density in the LA anterior wall and increased density below the right inferior pulmonary vein and in the LA appendage. Application of an automated measurement algorithm to CT imaging of the atrium identified significant thinning of the LA wall and regional alterations in tissue density in patients with a history of AF. These findings suggest differences in LA tissue composition can be noninvasively identified and quantified using CT. ©2012, The Authors. Journal compilation ©2012 Wiley Periodicals, Inc.

  2. A multi-emitter fitting algorithm for potential live cell super-resolution imaging over a wide range of molecular densities.

    PubMed

    Takeshima, T; Takahashi, T; Yamashita, J; Okada, Y; Watanabe, S

    2018-05-25

    Multi-emitter fitting algorithms have been developed to improve the temporal resolution of single-molecule switching nanoscopy, but the molecular density range they can analyse is narrow and the computation required is intensive, significantly limiting their practical application. Here, we propose a computationally fast method, wedged template matching (WTM), an algorithm that uses a template matching technique to localise molecules at any overlapping molecular density from sparse to ultrahigh density with subdiffraction resolution. WTM achieves the localization of overlapping molecules at densities up to 600 molecules μm -2 with a high detection sensitivity and fast computational speed. WTM also shows localization precision comparable with that of DAOSTORM (an algorithm for high-density super-resolution microscopy), at densities up to 20 molecules μm -2 , and better than DAOSTORM at higher molecular densities. The application of WTM to a high-density biological sample image demonstrated that it resolved protein dynamics from live cell images with subdiffraction resolution and a temporal resolution of several hundred milliseconds or less through a significant reduction in the number of camera images required for a high-density reconstruction. WTM algorithm is a computationally fast, multi-emitter fitting algorithm that can analyse over a wide range of molecular densities. The algorithm is available through the website. https://doi.org/10.17632/bf3z6xpn5j.1. © 2018 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.

  3. A new adaptive self-tuning Fourier coefficients algorithm for periodic torque ripple minimization in permanent magnet synchronous motors (PMSM).

    PubMed

    Gómez-Espinosa, Alfonso; Hernández-Guzmán, Víctor M; Bandala-Sánchez, Manuel; Jiménez-Hernández, Hugo; Rivas-Araiza, Edgar A; Rodríguez-Reséndiz, Juvenal; Herrera-Ruíz, Gilberto

    2013-03-19

    A New Adaptive Self-Tuning Fourier Coefficients Algorithm for Periodic Torque Ripple Minimization in Permanent Magnet Synchronous Motors (PMSM) Torque ripple occurs in Permanent Magnet Synchronous Motors (PMSMs) due to the non-sinusoidal flux density distribution around the air-gap and variable magnetic reluctance of the air-gap due to the stator slots distribution. These torque ripples change periodically with rotor position and are apparent as speed variations, which degrade the PMSM drive performance, particularly at low speeds, because of low inertial filtering. In this paper, a new self-tuning algorithm is developed for determining the Fourier Series Controller coefficients with the aim of reducing the torque ripple in a PMSM, thus allowing for a smoother operation. This algorithm adjusts the controller parameters based on the component's harmonic distortion in time domain of the compensation signal. Experimental evaluation is performed on a DSP-controlled PMSM evaluation platform. Test results obtained validate the effectiveness of the proposed self-tuning algorithm, with the Fourier series expansion scheme, in reducing the torque ripple.

  4. New human-centered linear and nonlinear motion cueing algorithms for control of simulator motion systems

    NASA Astrophysics Data System (ADS)

    Telban, Robert J.

    While the performance of flight simulator motion system hardware has advanced substantially, the development of the motion cueing algorithm, the software that transforms simulated aircraft dynamics into realizable motion commands, has not kept pace. To address this, new human-centered motion cueing algorithms were developed. A revised "optimal algorithm" uses time-invariant filters developed by optimal control, incorporating human vestibular system models. The "nonlinear algorithm" is a novel approach that is also formulated by optimal control, but can also be updated in real time. It incorporates a new integrated visual-vestibular perception model that includes both visual and vestibular sensation and the interaction between the stimuli. A time-varying control law requires the matrix Riccati equation to be solved in real time by a neurocomputing approach. Preliminary pilot testing resulted in the optimal algorithm incorporating a new otolith model, producing improved motion cues. The nonlinear algorithm vertical mode produced a motion cue with a time-varying washout, sustaining small cues for longer durations and washing out large cues more quickly compared to the optimal algorithm. The inclusion of the integrated perception model improved the responses to longitudinal and lateral cues. False cues observed with the NASA adaptive algorithm were absent. As a result of unsatisfactory sensation, an augmented turbulence cue was added to the vertical mode for both the optimal and nonlinear algorithms. The relative effectiveness of the algorithms, in simulating aircraft maneuvers, was assessed with an eleven-subject piloted performance test conducted on the NASA Langley Visual Motion Simulator (VMS). Two methods, the quasi-objective NASA Task Load Index (TLX), and power spectral density analysis of pilot control, were used to assess pilot workload. TLX analysis reveals, in most cases, less workload and variation among pilots with the nonlinear algorithm. Control input analysis shows pilot-induced oscillations on a straight-in approach are less prevalent compared to the optimal algorithm. The augmented turbulence cues increased workload on an offset approach that the pilots deemed more realistic compared to the NASA adaptive algorithm. The takeoff with engine failure showed the least roll activity for the nonlinear algorithm, with the least rudder pedal activity for the optimal algorithm.

  5. Cooperative Search and Rescue with Artificial Fishes Based on Fish-Swarm Algorithm for Underwater Wireless Sensor Networks

    PubMed Central

    Zhao, Wei; Tang, Zhenmin; Yang, Yuwang; Wang, Lei; Lan, Shaohua

    2014-01-01

    This paper presents a searching control approach for cooperating mobile sensor networks. We use a density function to represent the frequency of distress signals issued by victims. The mobile nodes' moving in mission space is similar to the behaviors of fish-swarm in water. So, we take the mobile node as artificial fish node and define its operations by a probabilistic model over a limited range. A fish-swarm based algorithm is designed requiring local information at each fish node and maximizing the joint detection probabilities of distress signals. Optimization of formation is also considered for the searching control approach and is optimized by fish-swarm algorithm. Simulation results include two schemes: preset route and random walks, and it is showed that the control scheme has adaptive and effective properties. PMID:24741341

  6. Cooperative search and rescue with artificial fishes based on fish-swarm algorithm for underwater wireless sensor networks.

    PubMed

    Zhao, Wei; Tang, Zhenmin; Yang, Yuwang; Wang, Lei; Lan, Shaohua

    2014-01-01

    This paper presents a searching control approach for cooperating mobile sensor networks. We use a density function to represent the frequency of distress signals issued by victims. The mobile nodes' moving in mission space is similar to the behaviors of fish-swarm in water. So, we take the mobile node as artificial fish node and define its operations by a probabilistic model over a limited range. A fish-swarm based algorithm is designed requiring local information at each fish node and maximizing the joint detection probabilities of distress signals. Optimization of formation is also considered for the searching control approach and is optimized by fish-swarm algorithm. Simulation results include two schemes: preset route and random walks, and it is showed that the control scheme has adaptive and effective properties.

  7. A New Adaptive Self-Tuning Fourier Coefficients Algorithm for Periodic Torque Ripple Minimization in Permanent Magnet Synchronous Motors (PMSM)

    PubMed Central

    Gómez-Espinosa, Alfonso; Hernández-Guzmán, Víctor M.; Bandala-Sánchez, Manuel; Jiménez-Hernández, Hugo; Rivas-Araiza, Edgar A.; Rodríguez-Reséndiz, Juvenal; Herrera-Ruíz, Gilberto

    2013-01-01

    Torque ripple occurs in Permanent Magnet Synchronous Motors (PMSMs) due to the non-sinusoidal flux density distribution around the air-gap and variable magnetic reluctance of the air-gap due to the stator slots distribution. These torque ripples change periodically with rotor position and are apparent as speed variations, which degrade the PMSM drive performance, particularly at low speeds, because of low inertial filtering. In this paper, a new self-tuning algorithm is developed for determining the Fourier Series Controller coefficients with the aim of reducing the torque ripple in a PMSM, thus allowing for a smoother operation. This algorithm adjusts the controller parameters based on the component's harmonic distortion in time domain of the compensation signal. Experimental evaluation is performed on a DSP-controlled PMSM evaluation platform. Test results obtained validate the effectiveness of the proposed self-tuning algorithm, with the Fourier series expansion scheme, in reducing the torque ripple. PMID:23519345

  8. High speed FPGA-based Phasemeter for the far-infrared laser interferometers on EAST

    NASA Astrophysics Data System (ADS)

    Yao, Y.; Liu, H.; Zou, Z.; Li, W.; Lian, H.; Jie, Y.

    2017-12-01

    The far-infrared laser-based HCN interferometer and POlarimeter/INTerferometer\\break (POINT) system are important diagnostics for plasma density measurement on EAST tokamak. Both HCN and POINT provide high spatial and temporal resolution of electron density measurement and used for plasma density feedback control. The density is calculated by measuring the real-time phase difference between the reference beams and the probe beams. For long-pulse operations on EAST, the calculation of density has to meet the requirements of Real-Time and high precision. In this paper, a Phasemeter for far-infrared laser-based interferometers will be introduced. The FPGA-based Phasemeter leverages fast ADCs to obtain the three-frequency signals from VDI planar-diode Mixers, and realizes digital filters and an FFT algorithm in FPGA to provide real-time, high precision electron density output. Implementation of the Phasemeter will be helpful for the future plasma real-time feedback control in long-pulse discharge.

  9. Automated mammographic breast density estimation using a fully convolutional network.

    PubMed

    Lee, Juhun; Nishikawa, Robert M

    2018-03-01

    The purpose of this study was to develop a fully automated algorithm for mammographic breast density estimation using deep learning. Our algorithm used a fully convolutional network, which is a deep learning framework for image segmentation, to segment both the breast and the dense fibroglandular areas on mammographic images. Using the segmented breast and dense areas, our algorithm computed the breast percent density (PD), which is the faction of dense area in a breast. Our dataset included full-field digital screening mammograms of 604 women, which included 1208 mediolateral oblique (MLO) and 1208 craniocaudal (CC) views. We allocated 455, 58, and 91 of 604 women and their exams into training, testing, and validation datasets, respectively. We established ground truth for the breast and the dense fibroglandular areas via manual segmentation and segmentation using a simple thresholding based on BI-RADS density assessments by radiologists, respectively. Using the mammograms and ground truth, we fine-tuned a pretrained deep learning network to train the network to segment both the breast and the fibroglandular areas. Using the validation dataset, we evaluated the performance of the proposed algorithm against radiologists' BI-RADS density assessments. Specifically, we conducted a correlation analysis between a BI-RADS density assessment of a given breast and its corresponding PD estimate by the proposed algorithm. In addition, we evaluated our algorithm in terms of its ability to classify the BI-RADS density using PD estimates, and its ability to provide consistent PD estimates for the left and the right breast and the MLO and CC views of the same women. To show the effectiveness of our algorithm, we compared the performance of our algorithm against a state of the art algorithm, laboratory for individualized breast radiodensity assessment (LIBRA). The PD estimated by our algorithm correlated well with BI-RADS density ratings by radiologists. Pearson's rho values of our algorithm for CC view, MLO view, and CC-MLO-averaged were 0.81, 0.79, and 0.85, respectively, while those of LIBRA were 0.58, 0.71, and 0.69, respectively. For CC view and CC-MLO averaged cases, the difference in rho values between the proposed algorithm and LIBRA showed statistical significance (P < 0.006). In addition, our algorithm provided reliable PD estimates for the left and the right breast (Pearson's ρ > 0.87) and for the MLO and CC views (Pearson's ρ = 0.76). However, LIBRA showed a lower Pearson's rho value (0.66) for both the left and right breasts for the CC view. In addition, our algorithm showed an excellent ability to separate each sub BI-RADS breast density class (statistically significant, p-values = 0.0001 or less); only one comparison pair, density 1 and density 2 in the CC view, was not statistically significant (P = 0.54). However, LIBRA failed to separate breasts in density 1 and 2 for both the CC and MLO views (P > 0.64). We have developed a new deep learning based algorithm for breast density segmentation and estimation. We showed that the proposed algorithm correlated well with BI-RADS density assessments by radiologists and outperformed an existing state of the art algorithm. © 2018 American Association of Physicists in Medicine.

  10. Validation of Ionosonde Electron Density Reconstruction Algorithms with IONOLAB-RAY in Central Europe

    NASA Astrophysics Data System (ADS)

    Gok, Gokhan; Mosna, Zbysek; Arikan, Feza; Arikan, Orhan; Erdem, Esra

    2016-07-01

    Ionospheric observation is essentially accomplished by specialized radar systems called ionosondes. The time delay between the transmitted and received signals versus frequency is measured by the ionosondes and the received signals are processed to generate ionogram plots, which show the time delay or reflection height of signals with respect to transmitted frequency. The critical frequencies of ionospheric layers and virtual heights, that provide useful information about ionospheric structurecan be extracted from ionograms . Ionograms also indicate the amount of variability or disturbances in the ionosphere. With special inversion algorithms and tomographical methods, electron density profiles can also be estimated from the ionograms. Although structural pictures of ionosphere in the vertical direction can be observed from ionosonde measurements, some errors may arise due to inaccuracies that arise from signal propagation, modeling, data processing and tomographic reconstruction algorithms. Recently IONOLAB group (www.ionolab.org) developed a new algorithm for effective and accurate extraction of ionospheric parameters and reconstruction of electron density profile from ionograms. The electron density reconstruction algorithm applies advanced optimization techniques to calculate parameters of any existing analytical function which defines electron density with respect to height using ionogram measurement data. The process of reconstructing electron density with respect to height is known as the ionogram scaling or true height analysis. IONOLAB-RAY algorithm is a tool to investigate the propagation path and parameters of HF wave in the ionosphere. The algorithm models the wave propagation using ray representation under geometrical optics approximation. In the algorithm , the structural ionospheric characteristics arerepresented as realistically as possible including anisotropicity, inhomogenity and time dependence in 3-D voxel structure. The algorithm is also used for various purposes including calculation of actual height and generation of ionograms. In this study, the performance of electron density reconstruction algorithm of IONOLAB group and standard electron density profile algorithms of ionosondes are compared with IONOLAB-RAY wave propagation simulation in near vertical incidence. The electron density reconstruction and parameter extraction algorithms of ionosondes are validated with the IONOLAB-RAY results both for quiet anddisturbed ionospheric states in Central Europe using ionosonde stations such as Pruhonice and Juliusruh . It is observed that IONOLAB ionosonde parameter extraction and electron density reconstruction algorithm performs significantly better compared to standard algorithms especially for disturbed ionospheric conditions. IONOLAB-RAY provides an efficient and reliable tool to investigate and validate ionosonde electron density reconstruction algorithms, especially in determination of reflection height (true height) of signals and critical parameters of ionosphere. This study is supported by TUBITAK 114E541, 115E915 and Joint TUBITAK 114E092 and AS CR 14/001 projects.

  11. Single-image hard-copy display of the spine utilizing digital radiography

    NASA Astrophysics Data System (ADS)

    Artz, Dorothy S.; Janchar, Timothy; Milzman, David; Freedman, Matthew T.; Mun, Seong K.

    1997-04-01

    Regions of the entire spine contain a wide latitude of tissue densities within the imaged field of view presenting a problem for adequate radiological evaluation. With screen/film technology, the optimal technique for one area of the radiograph is sub-optimal for another area. Computed radiography (CR) with its inherent wide dynamic range, has been shown to be better than screen/film for lateral cervical spine imaging, but limitations are still present with standard image processing. By utilizing a dynamic range control (DRC) algorithm based on unsharp masking and signal transformation prior to gradation and frequency processing within the CR system, more vertebral bodies can be seen on a single hard copy display of the lateral cervical, thoracic, and thoracolumbar examinations. Examinations of the trauma cross-table lateral cervical spine, lateral thoracic spine, and lateral thoracolumbar spine were collected on live patient using photostimulable storage phosphor plates, the Fuji FCR 9000 reader, and the Fuji AC-3 computed radiography reader. Two images were produced from a single exposure; one with standard image processing and the second image with the standard process and the additional DRC algorithm. Both sets were printed from a Fuji LP 414 laser printer. Two different DRC algorithms were applied depending on which portion of the spine was not well visualized. One algorithm increased optical density and the second algorithm decreased optical density. The resultant image pairs were then reviewed by a panel of radiologists. Images produced with the additional DRC algorithm demonstrated improved visualization of previously 'under exposed' and 'over exposed' regions within the same image. Where lung field had previously obscured bony detail of the lateral thoracolumbar spine due to 'over exposure,' the image with the DRC applied to decrease the optical density allowed for easy visualization of the entire area of interest. For areas of the lateral cervical spine and lateral thoracic spine that typically have a low optical density value, the DRC algorithm used increased the optical density over that region improving visualization of C7-T2 and T11-L2 vertebral bodies; critical in trauma radiography. Emergency medicine physicians also reviewing the lateral cervical spine images were able to clear 37% of the DRC images compared to 30% of the non-DRC images for removal of the cervical collar. The DRC processed images reviewed by the physicians do not have a typical screen/film appearance; however, these different images were preferred for the three examinations in this study. This method of image processing after being tested and accepted, is in use clinically at Georgetown University Medical Center Department of Radiology for the following examinations: cervical spine, lateral thoracic spine, lateral thoracolumbar examinations, facial bones, shoulder, sternum, feet and portable chest. Computed radiography imaging of the spine is improved with the addition of histogram equalization known as dynamic range control (DRC). More anatomical structures are visualized on a single hard copy display.

  12. Fully probabilistic control for stochastic nonlinear control systems with input dependent noise.

    PubMed

    Herzallah, Randa

    2015-03-01

    Robust controllers for nonlinear stochastic systems with functional uncertainties can be consistently designed using probabilistic control methods. In this paper a generalised probabilistic controller design for the minimisation of the Kullback-Leibler divergence between the actual joint probability density function (pdf) of the closed loop control system, and an ideal joint pdf is presented emphasising how the uncertainty can be systematically incorporated in the absence of reliable systems models. To achieve this objective all probabilistic models of the system are estimated from process data using mixture density networks (MDNs) where all the parameters of the estimated pdfs are taken to be state and control input dependent. Based on this dependency of the density parameters on the input values, explicit formulations to the construction of optimal generalised probabilistic controllers are obtained through the techniques of dynamic programming and adaptive critic methods. Using the proposed generalised probabilistic controller, the conditional joint pdfs can be made to follow the ideal ones. A simulation example is used to demonstrate the implementation of the algorithm and encouraging results are obtained. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. A novel topology control approach to maintain the node degree in dynamic wireless sensor networks.

    PubMed

    Huang, Yuanjiang; Martínez, José-Fernán; Díaz, Vicente Hernández; Sendra, Juana

    2014-03-07

    Topology control is an important technique to improve the connectivity and the reliability of Wireless Sensor Networks (WSNs) by means of adjusting the communication range of wireless sensor nodes. In this paper, a novel Fuzzy-logic Topology Control (FTC) is proposed to achieve any desired average node degree by adaptively changing communication range, thus improving the network connectivity, which is the main target of FTC. FTC is a fully localized control algorithm, and does not rely on location information of neighbors. Instead of designing membership functions and if-then rules for fuzzy-logic controller, FTC is constructed from the training data set to facilitate the design process. FTC is proved to be accurate, stable and has short settling time. In order to compare it with other representative localized algorithms (NONE, FLSS, k-Neighbor and LTRT), FTC is evaluated through extensive simulations. The simulation results show that: firstly, similar to k-Neighbor algorithm, FTC is the best to achieve the desired average node degree as node density varies; secondly, FTC is comparable to FLSS and k-Neighbor in terms of energy-efficiency, but is better than LTRT and NONE; thirdly, FTC has the lowest average maximum communication range than other algorithms, which indicates that the most energy-consuming node in the network consumes the lowest power.

  14. Multifeature-based high-resolution palmprint recognition.

    PubMed

    Dai, Jifeng; Zhou, Jie

    2011-05-01

    Palmprint is a promising biometric feature for use in access control and forensic applications. Previous research on palmprint recognition mainly concentrates on low-resolution (about 100 ppi) palmprints. But for high-security applications (e.g., forensic usage), high-resolution palmprints (500 ppi or higher) are required from which more useful information can be extracted. In this paper, we propose a novel recognition algorithm for high-resolution palmprint. The main contributions of the proposed algorithm include the following: 1) use of multiple features, namely, minutiae, density, orientation, and principal lines, for palmprint recognition to significantly improve the matching performance of the conventional algorithm. 2) Design of a quality-based and adaptive orientation field estimation algorithm which performs better than the existing algorithm in case of regions with a large number of creases. 3) Use of a novel fusion scheme for an identification application which performs better than conventional fusion methods, e.g., weighted sum rule, SVMs, or Neyman-Pearson rule. Besides, we analyze the discriminative power of different feature combinations and find that density is very useful for palmprint recognition. Experimental results on the database containing 14,576 full palmprints show that the proposed algorithm has achieved a good performance. In the case of verification, the recognition system's False Rejection Rate (FRR) is 16 percent, which is 17 percent lower than the best existing algorithm at a False Acceptance Rate (FAR) of 10(-5), while in the identification experiment, the rank-1 live-scan partial palmprint recognition rate is improved from 82.0 to 91.7 percent.

  15. An improved initialization center k-means clustering algorithm based on distance and density

    NASA Astrophysics Data System (ADS)

    Duan, Yanling; Liu, Qun; Xia, Shuyin

    2018-04-01

    Aiming at the problem of the random initial clustering center of k means algorithm that the clustering results are influenced by outlier data sample and are unstable in multiple clustering, a method of central point initialization method based on larger distance and higher density is proposed. The reciprocal of the weighted average of distance is used to represent the sample density, and the data sample with the larger distance and the higher density are selected as the initial clustering centers to optimize the clustering results. Then, a clustering evaluation method based on distance and density is designed to verify the feasibility of the algorithm and the practicality, the experimental results on UCI data sets show that the algorithm has a certain stability and practicality.

  16. Motion Cueing Algorithm Development: Piloted Performance Testing of the Cueing Algorithms

    NASA Technical Reports Server (NTRS)

    Houck, Jacob A. (Technical Monitor); Telban, Robert J.; Cardullo, Frank M.; Kelly, Lon C.

    2005-01-01

    The relative effectiveness in simulating aircraft maneuvers with both current and newly developed motion cueing algorithms was assessed with an eleven-subject piloted performance evaluation conducted on the NASA Langley Visual Motion Simulator (VMS). In addition to the current NASA adaptive algorithm, two new cueing algorithms were evaluated: the optimal algorithm and the nonlinear algorithm. The test maneuvers included a straight-in approach with a rotating wind vector, an offset approach with severe turbulence and an on/off lateral gust that occurs as the aircraft approaches the runway threshold, and a takeoff both with and without engine failure after liftoff. The maneuvers were executed with each cueing algorithm with added visual display delay conditions ranging from zero to 200 msec. Two methods, the quasi-objective NASA Task Load Index (TLX), and power spectral density analysis of pilot control, were used to assess pilot workload. Piloted performance parameters for the approach maneuvers, the vertical velocity upon touchdown and the runway touchdown position, were also analyzed but did not show any noticeable difference among the cueing algorithms. TLX analysis reveals, in most cases, less workload and variation among pilots with the nonlinear algorithm. Control input analysis shows pilot-induced oscillations on a straight-in approach were less prevalent compared to the optimal algorithm. The augmented turbulence cues increased workload on an offset approach that the pilots deemed more realistic compared to the NASA adaptive algorithm. The takeoff with engine failure showed the least roll activity for the nonlinear algorithm, with the least rudder pedal activity for the optimal algorithm.

  17. Central safety factor and β N control on NSTX-U via beam power and plasma boundary shape modification, using TRANSP for closed loop simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyer, M. D.; Andre, R.; Gates, D. A.

    The high-performance operational goals of NSTX-U will require development of advanced feedback control algorithms, including control of ßN and the safety factor profile. In this work, a novel approach to simultaneously controlling ßN and the value of the safety factor on the magnetic axis, q0, through manipulation of the plasma boundary shape and total beam power, is proposed. Simulations of the proposed scheme show promising results and motivate future experimental implementation and eventual integration into a more complex current profile control scheme planned to include actuation of individual beam powers, density, and loop voltage. As part of this work, amore » flexible framework for closed loop simulations within the high-fidelity code TRANSP was developed. The framework, used here to identify control-design-oriented models and to tune and test the proposed controller, exploits many of the predictive capabilities of TRANSP and provides a means for performing control calculations based on user-supplied data (controller matrices, target waveforms, etc.). The flexible framework should enable high-fidelity testing of a variety of control algorithms, thereby reducing the amount of expensive experimental time needed to implement new control algorithms on NSTX-U and other devices.« less

  18. Central safety factor and βN control on NSTX-U via beam power and plasma boundary shape modification, using TRANSP for closed loop simulations

    NASA Astrophysics Data System (ADS)

    Boyer, M. D.; Andre, R.; Gates, D. A.; Gerhardt, S.; Goumiri, I. R.; Menard, J.

    2015-05-01

    The high-performance operational goals of NSTX-U will require development of advanced feedback control algorithms, including control of βN and the safety factor profile. In this work, a novel approach to simultaneously controlling βN and the value of the safety factor on the magnetic axis, q0, through manipulation of the plasma boundary shape and total beam power, is proposed. Simulations of the proposed scheme show promising results and motivate future experimental implementation and eventual integration into a more complex current profile control scheme planned to include actuation of individual beam powers, density, and loop voltage. As part of this work, a flexible framework for closed loop simulations within the high-fidelity code TRANSP was developed. The framework, used here to identify control-design-oriented models and to tune and test the proposed controller, exploits many of the predictive capabilities of TRANSP and provides a means for performing control calculations based on user-supplied data (controller matrices, target waveforms, etc). The flexible framework should enable high-fidelity testing of a variety of control algorithms, thereby reducing the amount of expensive experimental time needed to implement new control algorithms on NSTX-U and other devices.

  19. GDPC: Gravitation-based Density Peaks Clustering algorithm

    NASA Astrophysics Data System (ADS)

    Jiang, Jianhua; Hao, Dehao; Chen, Yujun; Parmar, Milan; Li, Keqin

    2018-07-01

    The Density Peaks Clustering algorithm, which we refer to as DPC, is a novel and efficient density-based clustering approach, and it is published in Science in 2014. The DPC has advantages of discovering clusters with varying sizes and varying densities, but has some limitations of detecting the number of clusters and identifying anomalies. We develop an enhanced algorithm with an alternative decision graph based on gravitation theory and nearby distance to identify centroids and anomalies accurately. We apply our method to some UCI and synthetic data sets. We report comparative clustering performances using F-Measure and 2-dimensional vision. We also compare our method to other clustering algorithms, such as K-Means, Affinity Propagation (AP) and DPC. We present F-Measure scores and clustering accuracies of our GDPC algorithm compared to K-Means, AP and DPC on different data sets. We show that the GDPC has the superior performance in its capability of: (1) detecting the number of clusters obviously; (2) aggregating clusters with varying sizes, varying densities efficiently; (3) identifying anomalies accurately.

  20. Density Control of Multi-Agent Systems with Safety Constraints: A Markov Chain Approach

    NASA Astrophysics Data System (ADS)

    Demirer, Nazli

    The control of systems with autonomous mobile agents has been a point of interest recently, with many applications like surveillance, coverage, searching over an area with probabilistic target locations or exploring an area. In all of these applications, the main goal of the swarm is to distribute itself over an operational space to achieve mission objectives specified by the density of swarm. This research focuses on the problem of controlling the distribution of multi-agent systems considering a hierarchical control structure where the whole swarm coordination is achieved at the high-level and individual vehicle/agent control is managed at the low-level. High-level coordination algorithms uses macroscopic models that describes the collective behavior of the whole swarm and specify the agent motion commands, whose execution will lead to the desired swarm behavior. The low-level control laws execute the motion to follow these commands at the agent level. The main objective of this research is to develop high-level decision control policies and algorithms to achieve physically realizable commanding of the agents by imposing mission constraints on the distribution. We also make some connections with decentralized low-level motion control. This dissertation proposes a Markov chain based method to control the density distribution of the whole system where the implementation can be achieved in a decentralized manner with no communication between agents since establishing communication with large number of agents is highly challenging. The ultimate goal is to guide the overall density distribution of the system to a prescribed steady-state desired distribution while satisfying desired transition and safety constraints. Here, the desired distribution is determined based on the mission requirements, for example in the application of area search, the desired distribution should match closely with the probabilistic target locations. The proposed method is applicable for both systems with a single agent and systems with large number of agents due to the probabilistic nature, where the probability distribution of each agent's state evolves according to a finite-state and discrete-time Markov chain (MC). Hence, designing proper decision control policies requires numerically tractable solution methods for the synthesis of Markov chains. The synthesis problem has the form of a Linear Matrix Inequality Problem (LMI), with LMI formulation of the constraints. To this end, we propose convex necessary and sufficient conditions for safety constraints in Markov chains, which is a novel result in the Markov chain literature. In addition to LMI-based, offline, Markov matrix synthesis method, we also propose a QP-based, online, method to compute a time-varying Markov matrix based on the real-time density feedback. Both problems are convex optimization problems that can be solved in a reliable and tractable way, utilizing existing tools in the literature. A Low Earth Orbit (LEO) swarm simulations are presented to validate the effectiveness of the proposed algorithms. Another problem tackled as a part of this research is the generalization of the density control problem to autonomous mobile agents with two control modes: ON and OFF. Here, each mode consists of a (possibly overlapping) finite set of actions, that is, there exist a set of actions for the ON mode and another set for the OFF mode. We give formulation for a new Markov chain synthesis problem, with additional measurements for the state transitions, where a policy is designed to ensure desired safety and convergence properties for the underlying Markov chain.

  1. Optimal design of low-density SNP arrays for genomic prediction: algorithm and applications

    USDA-ARS?s Scientific Manuscript database

    Low-density (LD) single nucleotide polymorphism (SNP) arrays provide a cost-effective solution for genomic prediction and selection, but algorithms and computational tools are needed for their optimal design. A multiple-objective, local optimization (MOLO) algorithm was developed for design of optim...

  2. Photoreceptor counting and montaging of en-face retinal images from an adaptive optics fundus camera

    PubMed Central

    Xue, Bai; Choi, Stacey S.; Doble, Nathan; Werner, John S.

    2008-01-01

    A fast and efficient method for quantifying photoreceptor density in images obtained with an en-face flood-illuminated adaptive optics (AO) imaging system is described. To improve accuracy of cone counting, en-face images are analyzed over extended areas. This is achieved with two separate semiautomated algorithms: (1) a montaging algorithm that joins retinal images with overlapping common features without edge effects and (2) a cone density measurement algorithm that counts the individual cones in the montaged image. The accuracy of the cone density measurement algorithm is high, with >97% agreement for a simulated retinal image (of known density, with low contrast) and for AO images from normal eyes when compared with previously reported histological data. Our algorithms do not require spatial regularity in cone packing and are, therefore, useful for counting cones in diseased retinas, as demonstrated for eyes with Stargardt’s macular dystrophy and retinitis pigmentosa. PMID:17429482

  3. Photoreceptor counting and montaging of en-face retinal images from an adaptive optics fundus camera

    NASA Astrophysics Data System (ADS)

    Xue, Bai; Choi, Stacey S.; Doble, Nathan; Werner, John S.

    2007-05-01

    A fast and efficient method for quantifying photoreceptor density in images obtained with an en-face flood-illuminated adaptive optics (AO) imaging system is described. To improve accuracy of cone counting, en-face images are analyzed over extended areas. This is achieved with two separate semiautomated algorithms: (1) a montaging algorithm that joins retinal images with overlapping common features without edge effects and (2) a cone density measurement algorithm that counts the individual cones in the montaged image. The accuracy of the cone density measurement algorithm is high, with >97% agreement for a simulated retinal image (of known density, with low contrast) and for AO images from normal eyes when compared with previously reported histological data. Our algorithms do not require spatial regularity in cone packing and are, therefore, useful for counting cones in diseased retinas, as demonstrated for eyes with Stargardt's macular dystrophy and retinitis pigmentosa.

  4. A Fast Density-Based Clustering Algorithm for Real-Time Internet of Things Stream

    PubMed Central

    Ying Wah, Teh

    2014-01-01

    Data streams are continuously generated over time from Internet of Things (IoT) devices. The faster all of this data is analyzed, its hidden trends and patterns discovered, and new strategies created, the faster action can be taken, creating greater value for organizations. Density-based method is a prominent class in clustering data streams. It has the ability to detect arbitrary shape clusters, to handle outlier, and it does not need the number of clusters in advance. Therefore, density-based clustering algorithm is a proper choice for clustering IoT streams. Recently, several density-based algorithms have been proposed for clustering data streams. However, density-based clustering in limited time is still a challenging issue. In this paper, we propose a density-based clustering algorithm for IoT streams. The method has fast processing time to be applicable in real-time application of IoT devices. Experimental results show that the proposed approach obtains high quality results with low computation time on real and synthetic datasets. PMID:25110753

  5. A fast density-based clustering algorithm for real-time Internet of Things stream.

    PubMed

    Amini, Amineh; Saboohi, Hadi; Wah, Teh Ying; Herawan, Tutut

    2014-01-01

    Data streams are continuously generated over time from Internet of Things (IoT) devices. The faster all of this data is analyzed, its hidden trends and patterns discovered, and new strategies created, the faster action can be taken, creating greater value for organizations. Density-based method is a prominent class in clustering data streams. It has the ability to detect arbitrary shape clusters, to handle outlier, and it does not need the number of clusters in advance. Therefore, density-based clustering algorithm is a proper choice for clustering IoT streams. Recently, several density-based algorithms have been proposed for clustering data streams. However, density-based clustering in limited time is still a challenging issue. In this paper, we propose a density-based clustering algorithm for IoT streams. The method has fast processing time to be applicable in real-time application of IoT devices. Experimental results show that the proposed approach obtains high quality results with low computation time on real and synthetic datasets.

  6. Density-independent algorithm for sensing moisture content of sawdust based on reflection measurements

    USDA-ARS?s Scientific Manuscript database

    A density-independent algorithm for moisture content determination in sawdust, based on a one-port reflection measurement technique is proposed for the first time. Performance of this algorithm is demonstrated through measurement of the dielectric properties of sawdust with an open-ended haft-mode s...

  7. The Construction of 3-d Neutral Density for Arbitrary Data Sets

    NASA Astrophysics Data System (ADS)

    Riha, S.; McDougall, T. J.; Barker, P. M.

    2014-12-01

    The Neutral Density variable allows inference of water pathways from thermodynamic properties in the global ocean, and is therefore an essential component of global ocean circulation analysis. The widely used algorithm for the computation of Neutral Density yields accurate results for data sets which are close to the observed climatological ocean. Long-term numerical climate simulations, however, often generate a significant drift from present-day climate, which renders the existing algorithm inaccurate. To remedy this problem, new algorithms which operate on arbitrary data have been developed, which may potentially be used to compute Neutral Density during runtime of a numerical model.We review existing approaches for the construction of Neutral Density in arbitrary data sets, detail their algorithmic structure, and present an analysis of the computational cost for implementations on a single-CPU computer. We discuss possible strategies for the implementation in state-of-the-art numerical models, with a focus on distributed computing environments.

  8. Divide-and-conquer density functional theory on hierarchical real-space grids: Parallel implementation and applications

    NASA Astrophysics Data System (ADS)

    Shimojo, Fuyuki; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2008-02-01

    A linear-scaling algorithm based on a divide-and-conquer (DC) scheme has been designed to perform large-scale molecular-dynamics (MD) simulations, in which interatomic forces are computed quantum mechanically in the framework of the density functional theory (DFT). Electronic wave functions are represented on a real-space grid, which is augmented with a coarse multigrid to accelerate the convergence of iterative solutions and with adaptive fine grids around atoms to accurately calculate ionic pseudopotentials. Spatial decomposition is employed to implement the hierarchical-grid DC-DFT algorithm on massively parallel computers. The largest benchmark tests include 11.8×106 -atom ( 1.04×1012 electronic degrees of freedom) calculation on 131 072 IBM BlueGene/L processors. The DC-DFT algorithm has well-defined parameters to control the data locality, with which the solutions converge rapidly. Also, the total energy is well conserved during the MD simulation. We perform first-principles MD simulations based on the DC-DFT algorithm, in which large system sizes bring in excellent agreement with x-ray scattering measurements for the pair-distribution function of liquid Rb and allow the description of low-frequency vibrational modes of graphene. The band gap of a CdSe nanorod calculated by the DC-DFT algorithm agrees well with the available conventional DFT results. With the DC-DFT algorithm, the band gap is calculated for larger system sizes until the result reaches the asymptotic value.

  9. A Novel Topology Control Approach to Maintain the Node Degree in Dynamic Wireless Sensor Networks

    PubMed Central

    Huang, Yuanjiang; Martínez, José-Fernán; Díaz, Vicente Hernández; Sendra, Juana

    2014-01-01

    Topology control is an important technique to improve the connectivity and the reliability of Wireless Sensor Networks (WSNs) by means of adjusting the communication range of wireless sensor nodes. In this paper, a novel Fuzzy-logic Topology Control (FTC) is proposed to achieve any desired average node degree by adaptively changing communication range, thus improving the network connectivity, which is the main target of FTC. FTC is a fully localized control algorithm, and does not rely on location information of neighbors. Instead of designing membership functions and if-then rules for fuzzy-logic controller, FTC is constructed from the training data set to facilitate the design process. FTC is proved to be accurate, stable and has short settling time. In order to compare it with other representative localized algorithms (NONE, FLSS, k-Neighbor and LTRT), FTC is evaluated through extensive simulations. The simulation results show that: firstly, similar to k-Neighbor algorithm, FTC is the best to achieve the desired average node degree as node density varies; secondly, FTC is comparable to FLSS and k-Neighbor in terms of energy-efficiency, but is better than LTRT and NONE; thirdly, FTC has the lowest average maximum communication range than other algorithms, which indicates that the most energy-consuming node in the network consumes the lowest power. PMID:24608008

  10. Simulation Research Framework with Embedded Intelligent Algorithms for Analysis of Multi-Target, Multi-Sensor, High-Cluttered Environments

    NASA Astrophysics Data System (ADS)

    Hanlon, Nicholas P.

    The National Air Space (NAS) can be easily described as a complex aviation system-of-systems that seamlessly works in harmony to provide safe transit for all aircraft within its domain. The number of aircraft within the NAS is growing and according the FAA, "[o]n any given day, more than 85,000 flights are in the skies in the United States...This translates into roughly 5,000 planes in the skies above the United States at any given moment. More than 15,000 federal air traffic controllers in airport traffic control towers, terminal radar approach control facilities and air route traffic control centers guide pilots through the system". The FAA is currently rolling out the Next Generation Air Transportation System (NextGen) to handle projected growth while leveraging satellite-based navigation for improved tracking. A key component to instantiating NextGen lies in the equipage of Automatic Dependent Surveillance-Broadcast (ADS-B), a performance based surveillance technology that uses GPS navigation for more precise positioning than radars providing increased situational awareness to air traffic controllers. Furthermore, the FAA is integrating UAS into the NAS, further congesting the airways and information load on air traffic controllers. The expected increase in aircraft density due to NextGen implementation and UAS integration will require innovative algorithms to cope with the increase data flow and to support air traffic controllers in their decision-making. This research presents a few innovative algorithms to support increased aircraft density and UAS integration into the NAS. First, it is imperative that individual tracks are correlated prior to fusing to ensure a proper picture of the environment is correct. However, current approaches do not scale well as the number of targets and sensors are increased. This work presents a fuzzy clustering design to hierarchically break the problem down into smaller subspaces prior to correlation. This approach provides nearly identical performance metrics at orders of magnitude faster in execution. Second, a fuzzy inference system is presented that alleviates air traffic controllers from information overload by utilizing flight plan data and radar/GPS correlation values to highlight aircraft that deviate from their intended routes. Third, a genetic algorithm optimizes sensor placement that is robust and capable of handling unexpected routes in the environment. Fourth, a fuzzy CUSUM algorithm more accurately detects and corrects aircraft mode changes. Finally, all the work is packaged in a holistic simulation research framework that provides evaluation and analysis of various multi-sensor, multi-target scenarios.

  11. MO-FG-204-06: A New Algorithm for Gold Nano-Particle Concentration Identification in Dual Energy CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, L; Shen, C; Ng, M

    Purpose: Gold nano-particle (GNP) has recently attracted a lot of attentions due to its potential as an imaging contrast agent and radiotherapy sensitiser. Imaging the GNP at its low contraction is a challenging problem. We propose a new algorithm to improve the identification of GNP based on dual energy CT (DECT). Methods: We consider three base materials: water, bone, and gold. Determining three density images from two images in DECT is an under-determined problem. We propose to solve this problem by exploring image domain sparsity via an optimization approach. The objective function contains four terms. A data-fidelity term ensures themore » fidelity between the identified material densities and the DECT images, while the other three terms enforces the sparsity in the gradient domain of the three images corresponding to the density of the base materials by using total variation (TV) regularization. A primal-dual algorithm is applied to solve the proposed optimization problem. We have performed simulation studies to test this model. Results: Our digital phantom in the tests contains water, bone regions and gold inserts of different sizes and densities. The gold inserts contain mixed material consisting of water with 1g/cm3 and gold at a certain density. At a low gold density of 0.0008 g/cm3, the insert is hardly visible in DECT images, especially for those with small sizes. Our algorithm is able to decompose the DECT into three density images. Those gold inserts at a low density can be clearly visualized in the density image. Conclusion: We have developed a new algorithm to decompose DECT images into three different material density images, in particular, to retrieve density of gold. Numerical studies showed promising results.« less

  12. AxonPacking: An Open-Source Software to Simulate Arrangements of Axons in White Matter

    PubMed Central

    Mingasson, Tom; Duval, Tanguy; Stikov, Nikola; Cohen-Adad, Julien

    2017-01-01

    HIGHLIGHTS AxonPacking: Open-source software for simulating white matter microstructure.Validation on a theoretical disk packing problem.Reproducible and stable for various densities and diameter distributions.Can be used to study interplay between myelin/fiber density and restricted fraction. Quantitative Magnetic Resonance Imaging (MRI) can provide parameters that describe white matter microstructure, such as the fiber volume fraction (FVF), the myelin volume fraction (MVF) or the axon volume fraction (AVF) via the fraction of restricted water (fr). While already being used for clinical application, the complex interplay between these parameters requires thorough validation via simulations. These simulations required a realistic, controlled and adaptable model of the white matter axons with the surrounding myelin sheath. While there already exist useful algorithms to perform this task, none of them combine optimisation of axon packing, presence of myelin sheath and availability as free and open source software. Here, we introduce a novel disk packing algorithm that addresses these issues. The performance of the algorithm is tested in term of reproducibility over 50 runs, resulting density, and stability over iterations. This tool was then used to derive multiple values of FVF and to study the impact of this parameter on fr and MVF in light of the known microstructure based on histology sample. The standard deviation of the axon density over runs was lower than 10−3 and the expected hexagonal packing for monodisperse disks was obtained with a density close to the optimal density (obtained: 0.892, theoretical: 0.907). Using an FVF ranging within [0.58, 0.82] and a mean inter-axon gap ranging within [0.1, 1.1] μm, MVF ranged within [0.32, 0.44] and fr ranged within [0.39, 0.71], which is consistent with the histology. The proposed algorithm is implemented in the open-source software AxonPacking (https://github.com/neuropoly/axonpacking) and can be useful for validating diffusion models as well as for enabling researchers to study the interplay between microstructure parameters when evaluating qMRI methods. PMID:28197091

  13. Dose-response algorithms for water-borne Pseudomonas aeruginosa folliculitis.

    PubMed

    Roser, D J; Van Den Akker, B; Boase, S; Haas, C N; Ashbolt, N J; Rice, S A

    2015-05-01

    We developed two dose-response algorithms for P. aeruginosa pool folliculitis using bacterial and lesion density estimates, associated with undetectable, significant, and almost certain folliculitis. Literature data were fitted to Furumoto & Mickey's equations, developed for plant epidermis-invading pathogens: N l = A ln(1 + BC) (log-linear model); P inf = 1-e(-r c C) (exponential model), where A and B are 2.51644 × 107 lesions/m2 and 2.28011 × 10-11 c.f.u./ml P. aeruginosa, respectively; C = pathogen density (c.f.u./ml), N l = folliculitis lesions/m2, P inf = probability of infection, and r C = 4·3 × 10-7 c.f.u./ml P. aeruginosa. Outbreak data indicates these algorithms apply to exposure durations of 41 ± 25 min. Typical water quality benchmarks (≈10-2 c.f.u./ml) appear conservative but still useful as the literature indicated repeated detection likely implies unstable control barriers and bacterial bloom potential. In future, culture-based outbreak testing should be supplemented with quantitative polymerase chain reaction and organic carbon assays, and quantification of folliculitis aetiology to better understand P. aeruginosa risks.

  14. Automated Breast Density Computation in Digital Mammography and Digital Breast Tomosynthesis: Influence on Mean Glandular Dose and BIRADS Density Categorization.

    PubMed

    Castillo-García, Maria; Chevalier, Margarita; Garayoa, Julia; Rodriguez-Ruiz, Alejandro; García-Pinto, Diego; Valverde, Julio

    2017-07-01

    The study aimed to compare the breast density estimates from two algorithms on full-field digital mammography (FFDM) and digital breast tomosynthesis (DBT) and to analyze the clinical implications. We selected 561 FFDM and DBT examinations from patients without breast pathologies. Two versions of a commercial software (Quantra 2D and Quantra 3D) calculated the volumetric breast density automatically in FFDM and DBT, respectively. Other parameters such as area breast density and total breast volume were evaluated. We compared the results from both algorithms using the Mann-Whitney U non-parametric test and the Spearman's rank coefficient for data correlation analysis. Mean glandular dose (MGD) was calculated following the methodology proposed by Dance et al. Measurements with both algorithms are well correlated (r ≥ 0.77). However, there are statistically significant differences between the medians (P < 0.05) of most parameters. The volumetric and area breast density median values from FFDM are, respectively, 8% and 77% higher than DBT estimations. Both algorithms classify 35% and 55% of breasts into BIRADS (Breast Imaging-Reporting and Data System) b and c categories, respectively. There are no significant differences between the MGD calculated using the breast density from each algorithm. DBT delivers higher MGD than FFDM, with a lower difference (5%) for breasts in the BIRADS d category. MGD is, on average, 6% higher than values obtained with the breast glandularity proposed by Dance et al. Breast density measurements from both algorithms lead to equivalent BIRADS classification and MGD values, hence showing no difference in clinical outcomes. The median MGD values of FFDM and DBT examinations are similar for dense breasts (BIRADS d category). Published by Elsevier Inc.

  15. Optimization of Magneto-Rheological Damper for Maximizing Magnetic Flux Density in the Fluid Flow Gap Through FEA and GA Approaches

    NASA Astrophysics Data System (ADS)

    Krishna, Hemanth; Kumar, Hemantha; Gangadharan, Kalluvalappil

    2017-08-01

    A magneto rheological (MR) fluid damper offers cost effective solution for semiactive vibration control in an automobile suspension. The performance of MR damper is significantly depends on the electromagnetic circuit incorporated into it. The force developed by MR fluid damper is highly influenced by the magnetic flux density induced in the fluid flow gap. In the present work, optimization of electromagnetic circuit of an MR damper is discussed in order to maximize the magnetic flux density. The optimization procedure was proposed by genetic algorithm and design of experiments techniques. The result shows that the fluid flow gap size less than 1.12 mm cause significant increase of magnetic flux density.

  16. Scalable Parallel Density-based Clustering and Applications

    NASA Astrophysics Data System (ADS)

    Patwary, Mostofa Ali

    2014-04-01

    Recently, density-based clustering algorithms (DBSCAN and OPTICS) have gotten significant attention of the scientific community due to their unique capability of discovering arbitrary shaped clusters and eliminating noise data. These algorithms have several applications, which require high performance computing, including finding halos and subhalos (clusters) from massive cosmology data in astrophysics, analyzing satellite images, X-ray crystallography, and anomaly detection. However, parallelization of these algorithms are extremely challenging as they exhibit inherent sequential data access order, unbalanced workload resulting in low parallel efficiency. To break the data access sequentiality and to achieve high parallelism, we develop new parallel algorithms, both for DBSCAN and OPTICS, designed using graph algorithmic techniques. For example, our parallel DBSCAN algorithm exploits the similarities between DBSCAN and computing connected components. Using datasets containing up to a billion floating point numbers, we show that our parallel density-based clustering algorithms significantly outperform the existing algorithms, achieving speedups up to 27.5 on 40 cores on shared memory architecture and speedups up to 5,765 using 8,192 cores on distributed memory architecture. In our experiments, we found that while achieving the scalability, our algorithms produce clustering results with comparable quality to the classical algorithms.

  17. redMaGiC: selecting luminous red galaxies from the DES Science Verification data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozo, E.

    We introduce redMaGiC, an automated algorithm for selecting Luminous Red Galaxies (LRGs). The algorithm was developed to minimize photometric redshift uncertainties in photometric large-scale structure studies. redMaGiC achieves this by self-training the color-cuts necessary to produce a luminosity-thresholded LRG sam- ple of constant comoving density. Additionally, we demonstrate that redMaGiC photo-zs are very nearly as accurate as the best machine-learning based methods, yet they require minimal spectroscopic training, do not suffer from extrapolation biases, and are very nearly Gaussian. We apply our algorithm to Dark Energy Survey (DES) Science Verification (SV) data to produce a redMaGiC catalog sampling the redshiftmore » range z ϵ [0.2,0.8]. Our fiducial sample has a comoving space density of 10 -3 (h -1Mpc) -3, and a median photo-z bias (z spec z photo) and scatter (σ z=(1 + z)) of 0.005 and 0.017 respectively.The corresponding 5σ outlier fraction is 1.4%. We also test our algorithm with Sloan Digital Sky Survey (SDSS) Data Release 8 (DR8) and Stripe 82 data, and discuss how spectroscopic training can be used to control photo-z biases at the 0.1% level.« less

  18. A lateral guidance algorithm to reduce the post-aerobraking burn requirements for a lift-modulated orbital transfer vehicle. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Herman, G. C.

    1986-01-01

    A lateral guidance algorithm which controls the location of the line of intersection between the actual and desired orbital planes (the hinge line) is developed for the aerobraking phase of a lift-modulated orbital transfer vehicle. The on-board targeting algorithm associated with this lateral guidance algorithm is simple and concise which is very desirable since computation time and space are limited on an on-board flight computer. A variational equation which describes the movement of the hinge line is derived. Simple relationships between the plane error, the desired hinge line position, the position out-of-plane error, and the velocity out-of-plane error are found. A computer simulation is developed to test the lateral guidance algorithm for a variety of operating conditions. The algorithm does reduce the total burn magnitude needed to achieve the desired orbit by allowing the plane correction and perigee-raising burn to be combined in a single maneuver. The algorithm performs well under vacuum perigee dispersions, pot-hole density disturbance, and thick atmospheres. The results for many different operating conditions are presented.

  19. FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data

    NASA Astrophysics Data System (ADS)

    Min, Junhong; Vonesch, Cédric; Kirshner, Hagai; Carlini, Lina; Olivier, Nicolas; Holden, Seamus; Manley, Suliana; Ye, Jong Chul; Unser, Michael

    2014-04-01

    Super resolution microscopy such as STORM and (F)PALM is now a well known method for biological studies at the nanometer scale. However, conventional imaging schemes based on sparse activation of photo-switchable fluorescent probes have inherently slow temporal resolution which is a serious limitation when investigating live-cell dynamics. Here, we present an algorithm for high-density super-resolution microscopy which combines a sparsity-promoting formulation with a Taylor series approximation of the PSF. Our algorithm is designed to provide unbiased localization on continuous space and high recall rates for high-density imaging, and to have orders-of-magnitude shorter run times compared to previous high-density algorithms. We validated our algorithm on both simulated and experimental data, and demonstrated live-cell imaging with temporal resolution of 2.5 seconds by recovering fast ER dynamics.

  20. FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data

    PubMed Central

    Min, Junhong; Vonesch, Cédric; Kirshner, Hagai; Carlini, Lina; Olivier, Nicolas; Holden, Seamus; Manley, Suliana; Ye, Jong Chul; Unser, Michael

    2014-01-01

    Super resolution microscopy such as STORM and (F)PALM is now a well known method for biological studies at the nanometer scale. However, conventional imaging schemes based on sparse activation of photo-switchable fluorescent probes have inherently slow temporal resolution which is a serious limitation when investigating live-cell dynamics. Here, we present an algorithm for high-density super-resolution microscopy which combines a sparsity-promoting formulation with a Taylor series approximation of the PSF. Our algorithm is designed to provide unbiased localization on continuous space and high recall rates for high-density imaging, and to have orders-of-magnitude shorter run times compared to previous high-density algorithms. We validated our algorithm on both simulated and experimental data, and demonstrated live-cell imaging with temporal resolution of 2.5 seconds by recovering fast ER dynamics. PMID:24694686

  1. Safe Onboard Guidance and Control Under Probabilistic Uncertainty

    NASA Technical Reports Server (NTRS)

    Blackmore, Lars James

    2011-01-01

    An algorithm was developed that determines the fuel-optimal spacecraft guidance trajectory that takes into account uncertainty, in order to guarantee that mission safety constraints are satisfied with the required probability. The algorithm uses convex optimization to solve for the optimal trajectory. Convex optimization is amenable to onboard solution due to its excellent convergence properties. The algorithm is novel because, unlike prior approaches, it does not require time-consuming evaluation of multivariate probability densities. Instead, it uses a new mathematical bounding approach to ensure that probability constraints are satisfied, and it is shown that the resulting optimization is convex. Empirical results show that the approach is many orders of magnitude less conservative than existing set conversion techniques, for a small penalty in computation time.

  2. Design of bearings for rotor systems based on stability

    NASA Technical Reports Server (NTRS)

    Dhar, D.; Barrett, L. E.; Knospe, C. R.

    1992-01-01

    Design of rotor systems incorporating stable behavior is of great importance to manufacturers of high speed centrifugal machinery since destabilizing mechanisms (from bearings, seals, aerodynamic cross coupling, noncolocation effects from magnetic bearings, etc.) increase with machine efficiency and power density. A new method of designing bearing parameters (stiffness and damping coefficients or coefficients of the controller transfer function) is proposed, based on a numerical search in the parameter space. The feedback control law is based on a decentralized low order controller structure, and the various design requirements are specified as constraints in the specification and parameter spaces. An algorithm is proposed for solving the problem as a sequence of constrained 'minimax' problems, with more and more eigenvalues into an acceptable region in the complex plane. The algorithm uses the method of feasible directions to solve the nonlinear constrained minimization problem at each stage. This methodology emphasizes the designer's interaction with the algorithm to generate acceptable designs by relaxing various constraints and changing initial guesses interactively. A design oriented user interface is proposed to facilitate the interaction.

  3. A density distribution algorithm for bone incorporating local orthotropy, modal analysis and theories of cellular solids.

    PubMed

    Impelluso, Thomas J

    2003-06-01

    An algorithm for bone remodeling is presented which allows for both a redistribution of density and a continuous change of principal material directions for the orthotropic material properties of bone. It employs a modal analysis to add density for growth and a local effective strain based analysis to redistribute density. General re-distribution functions are presented. The model utilizes theories of cellular solids to relate density and strength. The code predicts the same general density distributions and local orthotropy as observed in reality.

  4. Entry vehicle performance analysis and atmospheric guidance algorithm for precision landing on Mars. M.S. Thesis - Massachusetts Inst. of Technology

    NASA Technical Reports Server (NTRS)

    Dieriam, Todd A.

    1990-01-01

    Future missions to Mars may require pin-point landing precision, possibly on the order of tens of meters. The ability to reach a target while meeting a dynamic pressure constraint to ensure safe parachute deployment is complicated at Mars by low atmospheric density, high atmospheric uncertainty, and the desire to employ only bank angle control. The vehicle aerodynamic performance requirements and guidance necessary for 0.5 to 1.5 lift drag ratio vehicle to maximize the achievable footprint while meeting the constraints are examined. A parametric study of the various factors related to entry vehicle performance in the Mars environment is undertaken to develop general vehicle aerodynamic design requirements. The combination of low lift drag ratio and low atmospheric density at Mars result in a large phugoid motion involving the dynamic pressure which complicates trajectory control. Vehicle ballistic coefficient is demonstrated to be the predominant characteristic affecting final dynamic pressure. Additionally, a speed brake is shown to be ineffective at reducing the final dynamic pressure. An adaptive precision entry atmospheric guidance scheme is presented. The guidance uses a numeric predictor-corrector algorithm to control downrange, an azimuth controller to govern crossrange, and analytic control law to reduce the final dynamic pressure. Guidance performance is tested against a variety of dispersions, and the results from selected tests are presented. Precision entry using bank angle control only is demonstrated to be feasible at Mars.

  5. Segmentation Algorithms for Detection of Targets in IR Imagery (Algorithmes de Segmentation pour la Detection de Cibles sur Images IR),

    DTIC Science & Technology

    1981-01-01

    This fact being established, leptokurtic and platykurtic density functions are defined in terms of deviations from the normal density function. Thus...the usual definitions (Ref. 6) are: Leptokurtic - A density function that is peaked, K > 0, [18] and Platykurtic - A density function that is flat, K...has long Deen accepted that a symmetrical platykurtic density function, with K<O, is characterized by a flatter top and more abrupt terminals than the

  6. Conceptual Design of the ITER Plasma Control System

    NASA Astrophysics Data System (ADS)

    Snipes, J. A.

    2013-10-01

    The conceptual design of the ITER Plasma Control System (PCS) has been approved and the preliminary design has begun for the 1st plasma PCS. This is a collaboration of many plasma control experts from existing devices to design and test plasma control techniques applicable to ITER on existing machines. The conceptual design considered all phases of plasma operation, ranging from non-active H/He plasmas through high fusion gain inductive DT plasmas to fully non-inductive steady-state operation, to ensure that the PCS control functionality and architecture can satisfy the demands of the ITER Research Plan. The PCS will control plasma equilibrium and density, plasma heat exhaust, a range of MHD instabilities (including disruption mitigation), and the non-inductive current profile required to maintain stable steady-state scenarios. The PCS architecture requires sophisticated shared actuator management and event handling systems to prioritize control goals, algorithms, and actuators according to dynamic control needs and monitor plasma and plant system events to trigger automatic changes in the control algorithms or operational scenario, depending on real-time operating limits and conditions.

  7. Adaptive Feedback in Local Coordinates for Real-time Vision-Based Motion Control Over Long Distances

    NASA Astrophysics Data System (ADS)

    Aref, M. M.; Astola, P.; Vihonen, J.; Tabus, I.; Ghabcheloo, R.; Mattila, J.

    2018-03-01

    We studied the differences in noise-effects, depth-correlated behavior of sensors, and errors caused by mapping between coordinate systems in robotic applications of machine vision. In particular, the highly range-dependent noise densities for semi-unknown object detection were considered. An equation is proposed to adapt estimation rules to dramatic changes of noise over longer distances. This algorithm also benefits the smooth feedback of wheels to overcome variable latencies of visual perception feedback. Experimental evaluation of the integrated system is presented with/without the algorithm to highlight its effectiveness.

  8. Evaluation of an Automated Swallow-Detection Algorithm Using Visual Biofeedback in Healthy Adults and Head and Neck Cancer Survivors.

    PubMed

    Constantinescu, Gabriela; Kuffel, Kristina; Aalto, Daniel; Hodgetts, William; Rieger, Jana

    2018-06-01

    Mobile health (mHealth) technologies may offer an opportunity to address longstanding clinical challenges, such as access and adherence to swallowing therapy. Mobili-T ® is an mHealth device that uses surface electromyography (sEMG) to provide biofeedback on submental muscles activity during exercise. An automated swallow-detection algorithm was developed for Mobili-T ® . This study evaluated the performance of the swallow-detection algorithm. Ten healthy participants and 10 head and neck cancer (HNC) patients were fitted with the device. Signal was acquired during regular, effortful, and Mendelsohn maneuver saliva swallows, as well as lip presses, tongue, and head movements. Signals of interest were tagged during data acquisition and used to evaluate algorithm performance. Sensitivity and positive predictive values (PPV) were calculated for each participant. Saliva swallows were compared between HNC and controls in the four sEMG-based parameters used in the algorithm: duration, peak amplitude ratio, median frequency, and 15th percentile of the power spectrum density. In healthy participants, sensitivity and PPV were 92.3 and 83.9%, respectively. In HNC patients, sensitivity was 92.7% and PPV was 72.2%. In saliva swallows, HNC patients had longer event durations (U = 1925.5, p < 0.001), lower median frequency (U = 2674.0, p < 0.001), and lower 15th percentile of the power spectrum density [t(176.9) = 2.07, p < 0.001] than healthy participants. The automated swallow-detection algorithm performed well with healthy participants and retained a high sensitivity, but had lowered PPV with HNC patients. With respect to Mobili-T ® , the algorithm will next be evaluated using the mHealth system.

  9. A clustering algorithm for determining community structure in complex networks

    NASA Astrophysics Data System (ADS)

    Jin, Hong; Yu, Wei; Li, ShiJun

    2018-02-01

    Clustering algorithms are attractive for the task of community detection in complex networks. DENCLUE is a representative density based clustering algorithm which has a firm mathematical basis and good clustering properties allowing for arbitrarily shaped clusters in high dimensional datasets. However, this method cannot be directly applied to community discovering due to its inability to deal with network data. Moreover, it requires a careful selection of the density parameter and the noise threshold. To solve these issues, a new community detection method is proposed in this paper. First, we use a spectral analysis technique to map the network data into a low dimensional Euclidean Space which can preserve node structural characteristics. Then, DENCLUE is applied to detect the communities in the network. A mathematical method named Sheather-Jones plug-in is chosen to select the density parameter which can describe the intrinsic clustering structure accurately. Moreover, every node on the network is meaningful so there were no noise nodes as a result the noise threshold can be ignored. We test our algorithm on both benchmark and real-life networks, and the results demonstrate the effectiveness of our algorithm over other popularity density based clustering algorithms adopted to community detection.

  10. An index of refraction algorithm for seawater over temperature, pressure, salinity, density, and wavelength

    NASA Astrophysics Data System (ADS)

    Millard, R. C.; Seaver, G.

    1990-12-01

    A 27-term index of refraction algorithm for pure and sea waters has been developed using four experimental data sets of differing accuracies. They cover the range 500-700 nm in wavelength, 0-30°C in temperature, 0-40 psu in salinity, and 0-11,000 db in pressure. The index of refraction algorithm has an accuracy that varies from 0.4 ppm for pure water at atmospheric pressure to 80 ppm at high pressures, but preserves the accuracy of each original data set. This algorithm is a significant improvement over existing descriptions as it is in analytical form with a better and more carefully defined accuracy. A salinometer algorithm with the same uncertainty has been created by numerically inverting the index algorithm using the Newton-Raphson method. The 27-term index algorithm was used to generate a pseudo-data set at the sodium D wavelength (589.26 nm) from which a 6-term densitometer algorithm was constructed. The densitometer algorithm also produces salinity as an intermediate step in the salinity inversion. The densitometer residuals have a standard deviation of 0.049 kg m -3 which is not accurate enough for most oceanographic applications. However, the densitometer algorithm was used to explore the sensitivity of density from this technique to temperature and pressure uncertainties. To achieve a deep ocean densitometer of 0.001 kg m -3 accuracy would require the index of refraction to have an accuracy of 0.3 ppm, the temperature an accuracy of 0.01°C and the pressure 1 db. Our assessment of the currently available index of refraction measurements finds that only the data for fresh water at atmospheric pressure produce an algorithm satisfactory for oceanographic use (density to 0.4 ppm). The data base for the algorithm at higher pressures and various salinities requires an order of magnitude or better improvement in index measurement accuracy before the resultant density accuracy will be comparable to the currently available oceanographic algorithm.

  11. Short-term reproducibility of computed tomography-based lung density measurements in alpha-1 antitrypsin deficiency and smokers with emphysema.

    PubMed

    Shaker, S B; Dirksen, A; Laursen, L C; Maltbaek, N; Christensen, L; Sander, U; Seersholm, N; Skovgaard, L T; Nielsen, L; Kok-Jensen, A

    2004-07-01

    To study the short-term reproducibility of lung density measurements by multi-slice computed tomography (CT) using three different radiation doses and three reconstruction algorithms. Twenty-five patients with smoker's emphysema and 25 patients with alpha1-antitrypsin deficiency underwent 3 scans at 2-week intervals. Low-dose protocol was applied, and images were reconstructed with bone, detail, and soft algorithms. Total lung volume (TLV), 15th percentile density (PD-15), and relative area at -910 Hounsfield units (RA-910) were obtained from the images using Pulmo-CMS software. Reproducibility of PD-15 and RA-910 and the influence of radiation dose, reconstruction algorithm, and type of emphysema were then analysed. The overall coefficient of variation of volume adjusted PD-15 for all combinations of radiation dose and reconstruction algorithm was 3.7%. The overall standard deviation of volume-adjusted RA-910 was 1.7% (corresponding to a coefficient of variation of 6.8%). Radiation dose, reconstruction algorithm, and type of emphysema had no significant influence on the reproducibility of PD-15 and RA-910. However, bone algorithm and very low radiation dose result in overestimation of the extent of emphysema. Lung density measurement by CT is a sensitive marker for quantitating both subtypes of emphysema. A CT-protocol with radiation dose down to 16 mAs and soft or detail reconstruction algorithm is recommended.

  12. Algorithms for computing the geopotential using a simple density layer

    NASA Technical Reports Server (NTRS)

    Morrison, F.

    1976-01-01

    Several algorithms have been developed for computing the potential and attraction of a simple density layer. These are numerical cubature, Taylor series, and a mixed analytic and numerical integration using a singularity-matching technique. A computer program has been written to combine these techniques for computing the disturbing acceleration on an artificial earth satellite. A total of 1640 equal-area, constant surface density blocks on an oblate spheroid are used. The singularity-matching algorithm is used in the subsatellite region, Taylor series in the surrounding zone, and numerical cubature on the rest of the earth.

  13. Atmospheric constituent density profiles from full disk solar occultation experiments

    NASA Technical Reports Server (NTRS)

    Lumpe, J. D.; Chang, C. S.; Strickland, D. J.

    1991-01-01

    Mathematical methods are described which permit the derivation of the number of density profiles of atmospheric constituents from solar occultation measurements. The algorithm is first applied to measurements corresponding to an arbitrary solar-intensity distribution to calculate the normalized absorption profile. The application of Fourier transform to the integral equation yields a precise expression for the corresponding number density, and the solution is employed with the data given in the form of Laguerre polynomials. The algorithm is employed to calculate the results for the case of uniform distribution of solar intensity, and the results demonstrate the convergence properties of the method. The algorithm can be used to effectively model representative model-density profiles with constant and altitude-dependent scale heights.

  14. Breast cancer screening in the era of density notification legislation: summary of 2014 Massachusetts experience and suggestion of an evidence-based management algorithm by multi-disciplinary expert panel.

    PubMed

    Freer, Phoebe E; Slanetz, Priscilla J; Haas, Jennifer S; Tung, Nadine M; Hughes, Kevin S; Armstrong, Katrina; Semine, A Alan; Troyan, Susan L; Birdwell, Robyn L

    2015-09-01

    Stemming from breast density notification legislation in Massachusetts effective 2015, we sought to develop a collaborative evidence-based approach to density notification that could be used by practitioners across the state. Our goal was to develop an evidence-based consensus management algorithm to help patients and health care providers follow best practices to implement a coordinated, evidence-based, cost-effective, sustainable practice and to standardize care in recommendations for supplemental screening. We formed the Massachusetts Breast Risk Education and Assessment Task Force (MA-BREAST) a multi-institutional, multi-disciplinary panel of expert radiologists, surgeons, primary care physicians, and oncologists to develop a collaborative approach to density notification legislation. Using evidence-based data from the Institute for Clinical and Economic Review, the Cochrane review, National Comprehensive Cancer Network guidelines, American Cancer Society recommendations, and American College of Radiology appropriateness criteria, the group collaboratively developed an evidence-based best-practices algorithm. The expert consensus algorithm uses breast density as one element in the risk stratification to determine the need for supplemental screening. Women with dense breasts and otherwise low risk (<15% lifetime risk), do not routinely require supplemental screening per the expert consensus. Women of high risk (>20% lifetime) should consider supplemental screening MRI in addition to routine mammography regardless of breast density. We report the development of the multi-disciplinary collaborative approach to density notification. We propose a risk stratification algorithm to assess personal level of risk to determine the need for supplemental screening for an individual woman.

  15. Adiabatic Quantum Search in Open Systems.

    PubMed

    Wild, Dominik S; Gopalakrishnan, Sarang; Knap, Michael; Yao, Norman Y; Lukin, Mikhail D

    2016-10-07

    Adiabatic quantum algorithms represent a promising approach to universal quantum computation. In isolated systems, a key limitation to such algorithms is the presence of avoided level crossings, where gaps become extremely small. In open quantum systems, the fundamental robustness of adiabatic algorithms remains unresolved. Here, we study the dynamics near an avoided level crossing associated with the adiabatic quantum search algorithm, when the system is coupled to a generic environment. At zero temperature, we find that the algorithm remains scalable provided the noise spectral density of the environment decays sufficiently fast at low frequencies. By contrast, higher order scattering processes render the algorithm inefficient at any finite temperature regardless of the spectral density, implying that no quantum speedup can be achieved. Extensions and implications for other adiabatic quantum algorithms will be discussed.

  16. Postmortem validation of breast density using dual-energy mammography

    PubMed Central

    Molloi, Sabee; Ducote, Justin L.; Ding, Huanjun; Feig, Stephen A.

    2014-01-01

    Purpose: Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. Methods: Forty postmortem breasts were imaged using a dual energy mammography system. Glandular and adipose equivalent phantoms of uniform thickness were used to calibrate a dual energy basis decomposition algorithm. Dual energy decomposition was applied after scatter correction to calculate breast density. Breast density was also estimated using radiologist reader assessment, standard histogram thresholding and a fuzzy C-mean algorithm. Chemical analysis was used as the reference standard to assess the accuracy of different techniques to measure breast composition. Results: Breast density measurements using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm, and dual energy were in good agreement with the measured fibroglandular volume fraction using chemical analysis. The standard error estimates using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean, and dual energy were 9.9%, 8.6%, 7.2%, and 4.7%, respectively. Conclusions: The results indicate that dual energy mammography can be used to accurately measure breast density. The variability in breast density estimation using dual energy mammography was lower than reader assessment rankings, standard histogram thresholding, and fuzzy C-mean algorithm. Improved quantification of breast density is expected to further enhance its utility as a risk factor for breast cancer. PMID:25086548

  17. Postmortem validation of breast density using dual-energy mammography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molloi, Sabee, E-mail: symolloi@uci.edu; Ducote, Justin L.; Ding, Huanjun

    2014-08-15

    Purpose: Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. Methods: Forty postmortem breasts were imaged using a dual energy mammography system. Glandular and adipose equivalent phantoms of uniform thickness were used to calibrate a dual energy basis decomposition algorithm. Dual energy decompositionmore » was applied after scatter correction to calculate breast density. Breast density was also estimated using radiologist reader assessment, standard histogram thresholding and a fuzzy C-mean algorithm. Chemical analysis was used as the reference standard to assess the accuracy of different techniques to measure breast composition. Results: Breast density measurements using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm, and dual energy were in good agreement with the measured fibroglandular volume fraction using chemical analysis. The standard error estimates using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean, and dual energy were 9.9%, 8.6%, 7.2%, and 4.7%, respectively. Conclusions: The results indicate that dual energy mammography can be used to accurately measure breast density. The variability in breast density estimation using dual energy mammography was lower than reader assessment rankings, standard histogram thresholding, and fuzzy C-mean algorithm. Improved quantification of breast density is expected to further enhance its utility as a risk factor for breast cancer.« less

  18. redMaGiC: Selecting luminous red galaxies from the DES Science Verification data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozo, E.; Rykoff, E. S.; Abate, A.

    Here, we introduce redMaGiC, an automated algorithm for selecting luminous red galaxies (LRGs). The algorithm was specifically developed to minimize photometric redshift uncertainties in photometric large-scale structure studies. redMaGiC achieves this by self-training the colour cuts necessary to produce a luminosity-thresholded LRG sample of constant comoving density. We demonstrate that redMaGiC photo-zs are very nearly as accurate as the best machine learning-based methods, yet they require minimal spectroscopic training, do not suffer from extrapolation biases, and are very nearly Gaussian. We apply our algorithm to Dark Energy Survey (DES) Science Verification (SV) data to produce a redMaGiC catalogue sampling themore » redshift range z ϵ [0.2, 0.8]. Our fiducial sample has a comoving space density of 10 –3 (h –1 Mpc) –3, and a median photo-z bias (zspec – zphoto) and scatter (σz/(1 + z)) of 0.005 and 0.017, respectively. The corresponding 5σ outlier fraction is 1.4 per cent. We also test our algorithm with Sloan Digital Sky Survey Data Release 8 and Stripe 82 data, and discuss how spectroscopic training can be used to control photo-z biases at the 0.1 per cent level.« less

  19. redMaGiC: Selecting luminous red galaxies from the DES Science Verification data

    DOE PAGES

    Rozo, E.; Rykoff, E. S.; Abate, A.; ...

    2016-05-30

    Here, we introduce redMaGiC, an automated algorithm for selecting luminous red galaxies (LRGs). The algorithm was specifically developed to minimize photometric redshift uncertainties in photometric large-scale structure studies. redMaGiC achieves this by self-training the colour cuts necessary to produce a luminosity-thresholded LRG sample of constant comoving density. We demonstrate that redMaGiC photo-zs are very nearly as accurate as the best machine learning-based methods, yet they require minimal spectroscopic training, do not suffer from extrapolation biases, and are very nearly Gaussian. We apply our algorithm to Dark Energy Survey (DES) Science Verification (SV) data to produce a redMaGiC catalogue sampling themore » redshift range z ϵ [0.2, 0.8]. Our fiducial sample has a comoving space density of 10 –3 (h –1 Mpc) –3, and a median photo-z bias (zspec – zphoto) and scatter (σz/(1 + z)) of 0.005 and 0.017, respectively. The corresponding 5σ outlier fraction is 1.4 per cent. We also test our algorithm with Sloan Digital Sky Survey Data Release 8 and Stripe 82 data, and discuss how spectroscopic training can be used to control photo-z biases at the 0.1 per cent level.« less

  20. Adaptive non-linear control for cancer therapy through a Fokker-Planck observer.

    PubMed

    Shakeri, Ehsan; Latif-Shabgahi, Gholamreza; Esmaeili Abharian, Amir

    2018-04-01

    In recent years, many efforts have been made to present optimal strategies for cancer therapy through the mathematical modelling of tumour-cell population dynamics and optimal control theory. In many cases, therapy effect is included in the drift term of the stochastic Gompertz model. By fitting the model with empirical data, the parameters of therapy function are estimated. The reported research works have not presented any algorithm to determine the optimal parameters of therapy function. In this study, a logarithmic therapy function is entered in the drift term of the Gompertz model. Using the proposed control algorithm, the therapy function parameters are predicted and adaptively adjusted. To control the growth of tumour-cell population, its moments must be manipulated. This study employs the probability density function (PDF) control approach because of its ability to control all the process moments. A Fokker-Planck-based non-linear stochastic observer will be used to determine the PDF of the process. A cost function based on the difference between a predefined desired PDF and PDF of tumour-cell population is defined. Using the proposed algorithm, the therapy function parameters are adjusted in such a manner that the cost function is minimised. The existence of an optimal therapy function is also proved. The numerical results are finally given to demonstrate the effectiveness of the proposed method.

  1. Ubiquitousness of link-density and link-pattern communities in real-world networks

    NASA Astrophysics Data System (ADS)

    Šubelj, L.; Bajec, M.

    2012-01-01

    Community structure appears to be an intrinsic property of many complex real-world networks. However, recent work shows that real-world networks reveal even more sophisticated modules than classical cohesive (link-density) communities. In particular, networks can also be naturally partitioned according to similar patterns of connectedness among the nodes, revealing link-pattern communities. We here propose a propagation based algorithm that can extract both link-density and link-pattern communities, without any prior knowledge of the true structure. The algorithm was first validated on different classes of synthetic benchmark networks with community structure, and also on random networks. We have further applied the algorithm to different social, information, technological and biological networks, where it indeed reveals meaningful (composites of) link-density and link-pattern communities. The results thus seem to imply that, similarly as link-density counterparts, link-pattern communities appear ubiquitous in nature and design.

  2. AMOBH: Adaptive Multiobjective Black Hole Algorithm.

    PubMed

    Wu, Chong; Wu, Tao; Fu, Kaiyuan; Zhu, Yuan; Li, Yongbo; He, Wangyong; Tang, Shengwen

    2017-01-01

    This paper proposes a new multiobjective evolutionary algorithm based on the black hole algorithm with a new individual density assessment (cell density), called "adaptive multiobjective black hole algorithm" (AMOBH). Cell density has the characteristics of low computational complexity and maintains a good balance of convergence and diversity of the Pareto front. The framework of AMOBH can be divided into three steps. Firstly, the Pareto front is mapped to a new objective space called parallel cell coordinate system. Then, to adjust the evolutionary strategies adaptively, Shannon entropy is employed to estimate the evolution status. At last, the cell density is combined with a dominance strength assessment called cell dominance to evaluate the fitness of solutions. Compared with the state-of-the-art methods SPEA-II, PESA-II, NSGA-II, and MOEA/D, experimental results show that AMOBH has a good performance in terms of convergence rate, population diversity, population convergence, subpopulation obtention of different Pareto regions, and time complexity to the latter in most cases.

  3. Patterns of brain structural connectivity differentiate normal weight from overweight subjects

    PubMed Central

    Gupta, Arpana; Mayer, Emeran A.; Sanmiguel, Claudia P.; Van Horn, John D.; Woodworth, Davis; Ellingson, Benjamin M.; Fling, Connor; Love, Aubrey; Tillisch, Kirsten; Labus, Jennifer S.

    2015-01-01

    Background Alterations in the hedonic component of ingestive behaviors have been implicated as a possible risk factor in the pathophysiology of overweight and obese individuals. Neuroimaging evidence from individuals with increasing body mass index suggests structural, functional, and neurochemical alterations in the extended reward network and associated networks. Aim To apply a multivariate pattern analysis to distinguish normal weight and overweight subjects based on gray and white-matter measurements. Methods Structural images (N = 120, overweight N = 63) and diffusion tensor images (DTI) (N = 60, overweight N = 30) were obtained from healthy control subjects. For the total sample the mean age for the overweight group (females = 32, males = 31) was 28.77 years (SD = 9.76) and for the normal weight group (females = 32, males = 25) was 27.13 years (SD = 9.62). Regional segmentation and parcellation of the brain images was performed using Freesurfer. Deterministic tractography was performed to measure the normalized fiber density between regions. A multivariate pattern analysis approach was used to examine whether brain measures can distinguish overweight from normal weight individuals. Results 1. White-matter classification: The classification algorithm, based on 2 signatures with 17 regional connections, achieved 97% accuracy in discriminating overweight individuals from normal weight individuals. For both brain signatures, greater connectivity as indexed by increased fiber density was observed in overweight compared to normal weight between the reward network regions and regions of the executive control, emotional arousal, and somatosensory networks. In contrast, the opposite pattern (decreased fiber density) was found between ventromedial prefrontal cortex and the anterior insula, and between thalamus and executive control network regions. 2. Gray-matter classification: The classification algorithm, based on 2 signatures with 42 morphological features, achieved 69% accuracy in discriminating overweight from normal weight. In both brain signatures regions of the reward, salience, executive control and emotional arousal networks were associated with lower morphological values in overweight individuals compared to normal weight individuals, while the opposite pattern was seen for regions of the somatosensory network. Conclusions 1. An increased BMI (i.e., overweight subjects) is associated with distinct changes in gray-matter and fiber density of the brain. 2. Classification algorithms based on white-matter connectivity involving regions of the reward and associated networks can identify specific targets for mechanistic studies and future drug development aimed at abnormal ingestive behavior and in overweight/obesity. PMID:25737959

  4. Dose calculation accuracy of the Monte Carlo algorithm for CyberKnife compared with other commercially available dose calculation algorithms.

    PubMed

    Sharma, Subhash; Ott, Joseph; Williams, Jamone; Dickow, Danny

    2011-01-01

    Monte Carlo dose calculation algorithms have the potential for greater accuracy than traditional model-based algorithms. This enhanced accuracy is particularly evident in regions of lateral scatter disequilibrium, which can develop during treatments incorporating small field sizes and low-density tissue. A heterogeneous slab phantom was used to evaluate the accuracy of several commercially available dose calculation algorithms, including Monte Carlo dose calculation for CyberKnife, Analytical Anisotropic Algorithm and Pencil Beam convolution for the Eclipse planning system, and convolution-superposition for the Xio planning system. The phantom accommodated slabs of varying density; comparisons between planned and measured dose distributions were accomplished with radiochromic film. The Monte Carlo algorithm provided the most accurate comparison between planned and measured dose distributions. In each phantom irradiation, the Monte Carlo predictions resulted in gamma analysis comparisons >97%, using acceptance criteria of 3% dose and 3-mm distance to agreement. In general, the gamma analysis comparisons for the other algorithms were <95%. The Monte Carlo dose calculation algorithm for CyberKnife provides more accurate dose distribution calculations in regions of lateral electron disequilibrium than commercially available model-based algorithms. This is primarily because of the ability of Monte Carlo algorithms to implicitly account for tissue heterogeneities, density scaling functions; and/or effective depth correction factors are not required. Copyright © 2011 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  5. Entanglement and magnetism in high-spin graphene nanodisks

    NASA Astrophysics Data System (ADS)

    Hagymási, I.; Legeza, Ö.

    2018-01-01

    We investigate the ground-state properties of triangular graphene nanoflakes with zigzag edge configurations. The description of zero-dimensional nanostructures requires accurate many-body techniques since the widely used density-functional theory with local density approximation or Hartree-Fock methods cannot handle the strong quantum fluctuations. Applying the unbiased density-matrix renormalization group algorithm we calculate the magnetization and entanglement patterns with high accuracy for different interaction strengths and compare them to the mean-field results. With the help of quantum information analysis and subsystem density matrices we reveal that the edges are strongly entangled with each other. We also address the effect of electron and hole doping and demonstrate that the magnetic properties of triangular nanoflakes can be controlled by an electric field, which reveals features of flat-band ferromagnetism. This may open up new avenues in graphene based spintronics.

  6. Density implications of shift compensation postprocessing in holographic storage systems

    NASA Astrophysics Data System (ADS)

    Menetrier, Laure; Burr, Geoffrey W.

    2003-02-01

    We investigate the effect of data page misregistration, and its subsequent correction in postprocessing, on the storage density of holographic data storage systems. A numerical simulation is used to obtain the bit-error rate as a function of hologram aperture, page misregistration, pixel fill factors, and Gaussian additive intensity noise. Postprocessing of simulated data pages is performed by a nonlinear pixel shift compensation algorithm [Opt. Lett. 26, 542 (2001)]. The performance of this algorithm is analyzed in the presence of noise by determining the achievable areal density. The impact of inaccurate measurements of page misregistration is also investigated. Results show that the shift-compensation algorithm can provide almost complete immunity to page misregistration, although at some penalty to the baseline areal density offered by a system with zero tolerance to misalignment.

  7. Effects of activity and energy budget balancing algorithm on laboratory performance of a fish bioenergetics model

    USGS Publications Warehouse

    Madenjian, Charles P.; David, Solomon R.; Pothoven, Steven A.

    2012-01-01

    We evaluated the performance of the Wisconsin bioenergetics model for lake trout Salvelinus namaycush that were fed ad libitum in laboratory tanks under regimes of low activity and high activity. In addition, we compared model performance under two different model algorithms: (1) balancing the lake trout energy budget on day t based on lake trout energy density on day t and (2) balancing the lake trout energy budget on day t based on lake trout energy density on day t + 1. Results indicated that the model significantly underestimated consumption for both inactive and active lake trout when algorithm 1 was used and that the degree of underestimation was similar for the two activity levels. In contrast, model performance substantially improved when using algorithm 2, as no detectable bias was found in model predictions of consumption for inactive fish and only a slight degree of overestimation was detected for active fish. The energy budget was accurately balanced by using algorithm 2 but not by using algorithm 1. Based on the results of this study, we recommend the use of algorithm 2 to estimate food consumption by fish in the field. Our study results highlight the importance of accurately accounting for changes in fish energy density when balancing the energy budget; furthermore, these results have implications for the science of evaluating fish bioenergetics model performance and for more accurate estimation of food consumption by fish in the field when fish energy density undergoes relatively rapid changes.

  8. Breast Cancer Screening in the Era of Density Notification Legislation: Summary of 2014 Massachusetts Experience and Suggestion of An Evidence-Based Management Algorithm by Multi-disciplinary Expert Panel

    PubMed Central

    Freer, Phoebe E.; Slanetz, Priscilla J.; Haas, Jennifer S.; Tung, Nadine M.; Hughes, Kevin S.; Armstrong, Katrina; Semine, A. Alan; Troyan, Susan L.; Birdwell, Robyn L.

    2015-01-01

    Purpose Stemming from breast density notification legislation in Massachusetts effective 2015, we sought to develop a collaborative evidence-based approach to density notification that could be used by practitioners across the state. Our goal was to develop an evidence-based consensus management algorithm to help patients and health care providers follow best practices to implement a coordinated, evidence-based, cost-effective, sustainable practice and to standardize care in recommendations for supplemental screening. Methods We formed the Massachusetts Breast Risk Education and Assessment Task Force (MA-BREAST) a multi-institutional, multi-disciplinary panel of expert radiologists, surgeons, primary care physicians, and oncologists to develop a collaborative approach to density notification legislation. Using evidence-based data from the Institute for Clinical and Economic Review (ICER), the Cochrane review, National Comprehensive Cancer Network (NCCN) guidelines, American Cancer Society (ACS) recommendations, and American College of Radiology (ACR) appropriateness criteria, the group collaboratively developed an evidence-based best-practices algorithm. Results The expert consensus algorithm uses breast density as one element in the risk stratification to determine the need for supplemental screening. Women with dense breasts and otherwise low risk (<15% lifetime risk), do not routinely require supplemental screening per the expert consensus. Women of high risk (>20% lifetime) should consider supplemental screening MRI in addition to routine mammography regardless of breast density. Conclusion We report the development of the multi-disciplinary collaborative approach to density notification. We propose a risk stratification algorithm to assess personal level of risk to determine the need for supplemental screening for an individual woman. PMID:26290416

  9. A user-friendly, low-cost turbidostat with versatile growth rate estimation based on an extended Kalman filter.

    PubMed

    Hoffmann, Stefan A; Wohltat, Christian; Müller, Kristian M; Arndt, Katja M

    2017-01-01

    For various experimental applications, microbial cultures at defined, constant densities are highly advantageous over simple batch cultures. Due to high costs, however, devices for continuous culture at freely defined densities still experience limited use. We have developed a small-scale turbidostat for research purposes, which is manufactured from inexpensive components and 3D printed parts. A high degree of spatial system integration and a graphical user interface provide user-friendly operability. The used optical density feedback control allows for constant continuous culture at a wide range of densities and offers to vary culture volume and dilution rates without additional parametrization. Further, a recursive algorithm for on-line growth rate estimation has been implemented. The employed Kalman filtering approach based on a very general state model retains the flexibility of the used control type and can be easily adapted to other bioreactor designs. Within several minutes it can converge to robust, accurate growth rate estimates. This is particularly useful for directed evolution experiments or studies on metabolic challenges, as it allows direct monitoring of the population fitness.

  10. Fast clustering using adaptive density peak detection.

    PubMed

    Wang, Xiao-Feng; Xu, Yifan

    2017-12-01

    Common limitations of clustering methods include the slow algorithm convergence, the instability of the pre-specification on a number of intrinsic parameters, and the lack of robustness to outliers. A recent clustering approach proposed a fast search algorithm of cluster centers based on their local densities. However, the selection of the key intrinsic parameters in the algorithm was not systematically investigated. It is relatively difficult to estimate the "optimal" parameters since the original definition of the local density in the algorithm is based on a truncated counting measure. In this paper, we propose a clustering procedure with adaptive density peak detection, where the local density is estimated through the nonparametric multivariate kernel estimation. The model parameter is then able to be calculated from the equations with statistical theoretical justification. We also develop an automatic cluster centroid selection method through maximizing an average silhouette index. The advantage and flexibility of the proposed method are demonstrated through simulation studies and the analysis of a few benchmark gene expression data sets. The method only needs to perform in one single step without any iteration and thus is fast and has a great potential to apply on big data analysis. A user-friendly R package ADPclust is developed for public use.

  11. Algorithms for constructing optimal paths and statistical analysis of passenger traffic

    NASA Astrophysics Data System (ADS)

    Trofimov, S. P.; Druzhinina, N. G.; Trofimova, O. G.

    2018-01-01

    Several existing information systems of urban passenger transport (UPT) are considered. Author’s UPT network model is presented. To a passenger a new service is offered that is the best path from one stop to another stop at a specified time. The algorithm and software implementation for finding the optimal path are presented. The algorithm uses the current UPT schedule. The article also describes the algorithm of statistical analysis of trip payments by the electronic E-cards. The algorithm allows obtaining the density of passenger traffic during the day. This density is independent of the network topology and UPT schedules. The resulting density of the traffic flow can solve a number of practical problems. In particular, the forecast for the overflow of passenger transport in the «rush» hours, the quantitative comparison of different topologies transport networks, constructing of the best UPT timetable. The efficiency of the proposed integrated approach is demonstrated by the example of the model town with arbitrary dimensions.

  12. Fourier transform magnetic resonance current density imaging (FT-MRCDI) from one component of magnetic flux density.

    PubMed

    Ider, Yusuf Ziya; Birgul, Ozlem; Oran, Omer Faruk; Arikan, Orhan; Hamamura, Mark J; Muftuler, L Tugan

    2010-06-07

    Fourier transform (FT)-based algorithms for magnetic resonance current density imaging (MRCDI) from one component of magnetic flux density have been developed for 2D and 3D problems. For 2D problems, where current is confined to the xy-plane and z-component of the magnetic flux density is measured also on the xy-plane inside the object, an iterative FT-MRCDI algorithm is developed by which both the current distribution inside the object and the z-component of the magnetic flux density on the xy-plane outside the object are reconstructed. The method is applied to simulated as well as actual data from phantoms. The effect of measurement error on the spatial resolution of the current density reconstruction is also investigated. For 3D objects an iterative FT-based algorithm is developed whereby the projected current is reconstructed on any slice using as data the Laplacian of the z-component of magnetic flux density measured for that slice. In an injected current MRCDI scenario, the current is not divergence free on the boundary of the object. The method developed in this study also handles this situation.

  13. A Comparative Evaluation of Anomaly Detection Algorithms for Maritime Video Surveillance

    DTIC Science & Technology

    2011-01-01

    of k-means clustering and the k- NN Localized p-value Estimator ( KNN -LPE). K-means is a popular distance-based clustering algorithm while KNN -LPE...implemented the sparse cluster identification rule we described in Section 3.1. 2. k-NN Localized p-value Estimator ( KNN -LPE): We implemented this using...Average Density ( KNN -NAD): This was implemented as described in Section 3.4. Algorithm Parameter Settings The global and local density-based anomaly

  14. Parameter estimation by Differential Search Algorithm from horizontal loop electromagnetic (HLEM) data

    NASA Astrophysics Data System (ADS)

    Alkan, Hilal; Balkaya, Çağlayan

    2018-02-01

    We present an efficient inversion tool for parameter estimation from horizontal loop electromagnetic (HLEM) data using Differential Search Algorithm (DSA) which is a swarm-intelligence-based metaheuristic proposed recently. The depth, dip, and origin of a thin subsurface conductor causing the anomaly are the parameters estimated by the HLEM method commonly known as Slingram. The applicability of the developed scheme was firstly tested on two synthetically generated anomalies with and without noise content. Two control parameters affecting the convergence characteristic to the solution of the algorithm were tuned for the so-called anomalies including one and two conductive bodies, respectively. Tuned control parameters yielded more successful statistical results compared to widely used parameter couples in DSA applications. Two field anomalies measured over a dipping graphitic shale from Northern Australia were then considered, and the algorithm provided the depth estimations being in good agreement with those of previous studies and drilling information. Furthermore, the efficiency and reliability of the results obtained were investigated via probability density function. Considering the results obtained, we can conclude that DSA characterized by the simple algorithmic structure is an efficient and promising metaheuristic for the other relatively low-dimensional geophysical inverse problems. Finally, the researchers after being familiar with the content of developed scheme displaying an easy to use and flexible characteristic can easily modify and expand it for their scientific optimization problems.

  15. Validation of simultaneous reverse optimization reconstruction algorithm in a practical circular subaperture stitching interferometer

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Li, Dong; Liu, Yu; Liu, Jingxiao; Li, Jingsong; Yu, Benli

    2017-11-01

    We demonstrate the validity of the simultaneous reverse optimization reconstruction (SROR) algorithm in circular subaperture stitching interferometry (CSSI), which is previously proposed for non-null aspheric annular subaperture stitching interferometry (ASSI). The merits of the modified SROR algorithm in CSSI, such as auto retrace error correction, no need of overlap and even permission of missed coverage, are analyzed in detail in simulations and experiments. Meanwhile, a practical CSSI system is proposed for this demonstration. An optical wedge is employed to deflect the incident beam for subaperture scanning by its rotation and shift instead of the six-axis motion-control system. Also the reference path can provide variable Zernike defocus for each subaperture test, which would decrease the fringe density. Experiments validating the SROR algorithm in this CSSI is implemented with cross validation by testing of paraboloidal mirror, flat mirror and astigmatism mirror. It is an indispensable supplement in SROR application in general subaperture stitching interferometry.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumuluru, Jaya Shankar; McCulloch, Richard Chet James

    In this work a new hybrid genetic algorithm was developed which combines a rudimentary adaptive steepest ascent hill climbing algorithm with a sophisticated evolutionary algorithm in order to optimize complex multivariate design problems. By combining a highly stochastic algorithm (evolutionary) with a simple deterministic optimization algorithm (adaptive steepest ascent) computational resources are conserved and the solution converges rapidly when compared to either algorithm alone. In genetic algorithms natural selection is mimicked by random events such as breeding and mutation. In the adaptive steepest ascent algorithm each variable is perturbed by a small amount and the variable that caused the mostmore » improvement is incremented by a small step. If the direction of most benefit is exactly opposite of the previous direction with the most benefit then the step size is reduced by a factor of 2, thus the step size adapts to the terrain. A graphical user interface was created in MATLAB to provide an interface between the hybrid genetic algorithm and the user. Additional features such as bounding the solution space and weighting the objective functions individually are also built into the interface. The algorithm developed was tested to optimize the functions developed for a wood pelleting process. Using process variables (such as feedstock moisture content, die speed, and preheating temperature) pellet properties were appropriately optimized. Specifically, variables were found which maximized unit density, bulk density, tapped density, and durability while minimizing pellet moisture content and specific energy consumption. The time and computational resources required for the optimization were dramatically decreased using the hybrid genetic algorithm when compared to MATLAB's native evolutionary optimization tool.« less

  17. REM sleep behaviour disorder is associated with lower fast and higher slow sleep spindle densities.

    PubMed

    O'Reilly, Christian; Godin, Isabelle; Montplaisir, Jacques; Nielsen, Tore

    2015-12-01

    To investigate differences in sleep spindle properties and scalp topography between patients with rapid eye movement sleep behaviour disorder (RBD) and healthy controls, whole-night polysomnograms of 35 patients diagnosed with RBD and 35 healthy control subjects matched for age and sex were compared. Recordings included a 19-lead 10-20 electroencephalogram montage and standard electromyogram, electrooculogram, electrocardiogram and respiratory leads. Sleep spindles were automatically detected using a standard algorithm, and their characteristics (amplitude, duration, density, frequency and frequency slope) compared between groups. Topological analyses of group-discriminative features were conducted. Sleep spindles occurred at a significantly (e.g. t34 = -4.49; P = 0.00008 for C3) lower density (spindles ∙ min(-1) ) for RBD (mean ± SD: 1.61 ± 0.56 for C3) than for control (2.19 ± 0.61 for C3) participants. However, when distinguishing slow and fast spindles using thresholds individually adapted to the electroencephalogram spectrum of each participant, densities smaller (31-96%) for fast but larger (20-120%) for slow spindles were observed in RBD in all derivations. Maximal differences were in more posterior regions for slow spindles, but over the entire scalp for fast spindles. Results suggest that the density of sleep spindles is altered in patients with RBD and should therefore be investigated as a potential marker of future neurodegeneration in these patients. © 2015 European Sleep Research Society.

  18. Density-matrix-based algorithm for solving eigenvalue problems

    NASA Astrophysics Data System (ADS)

    Polizzi, Eric

    2009-03-01

    A fast and stable numerical algorithm for solving the symmetric eigenvalue problem is presented. The technique deviates fundamentally from the traditional Krylov subspace iteration based techniques (Arnoldi and Lanczos algorithms) or other Davidson-Jacobi techniques and takes its inspiration from the contour integration and density-matrix representation in quantum mechanics. It will be shown that this algorithm—named FEAST—exhibits high efficiency, robustness, accuracy, and scalability on parallel architectures. Examples from electronic structure calculations of carbon nanotubes are presented, and numerical performances and capabilities are discussed.

  19. Cubic scaling algorithms for RPA correlation using interpolative separable density fitting

    NASA Astrophysics Data System (ADS)

    Lu, Jianfeng; Thicke, Kyle

    2017-12-01

    We present a new cubic scaling algorithm for the calculation of the RPA correlation energy. Our scheme splits up the dependence between the occupied and virtual orbitals in χ0 by use of Cauchy's integral formula. This introduces an additional integral to be carried out, for which we provide a geometrically convergent quadrature rule. Our scheme also uses the newly developed Interpolative Separable Density Fitting algorithm to further reduce the computational cost in a way analogous to that of the Resolution of Identity method.

  20. A novel algorithm using an orthotropic material model for topology optimization

    NASA Astrophysics Data System (ADS)

    Tong, Liyong; Luo, Quantian

    2017-09-01

    This article presents a novel algorithm for topology optimization using an orthotropic material model. Based on the virtual work principle, mathematical formulations for effective orthotropic material properties of an element containing two materials are derived. An algorithm is developed for structural topology optimization using four orthotropic material properties, instead of one density or area ratio, in each element as design variables. As an illustrative example, minimum compliance problems for linear and nonlinear structures are solved using the present algorithm in conjunction with the moving iso-surface threshold method. The present numerical results reveal that: (1) chequerboards and single-node connections are not present even without filtering; (2) final topologies do not contain large grey areas even using a unity penalty factor; and (3) the well-known numerical issues caused by low-density material when considering geometric nonlinearity are resolved by eliminating low-density elements in finite element analyses.

  1. Self-consistent predictor/corrector algorithms for stable and efficient integration of the time-dependent Kohn-Sham equation

    NASA Astrophysics Data System (ADS)

    Zhu, Ying; Herbert, John M.

    2018-01-01

    The "real time" formulation of time-dependent density functional theory (TDDFT) involves integration of the time-dependent Kohn-Sham (TDKS) equation in order to describe the time evolution of the electron density following a perturbation. This approach, which is complementary to the more traditional linear-response formulation of TDDFT, is more efficient for computation of broad-band spectra (including core-excited states) and for systems where the density of states is large. Integration of the TDKS equation is complicated by the time-dependent nature of the effective Hamiltonian, and we introduce several predictor/corrector algorithms to propagate the density matrix, one of which can be viewed as a self-consistent extension of the widely used modified-midpoint algorithm. The predictor/corrector algorithms facilitate larger time steps and are shown to be more efficient despite requiring more than one Fock build per time step, and furthermore can be used to detect a divergent simulation on-the-fly, which can then be halted or else the time step modified.

  2. RS-Forest: A Rapid Density Estimator for Streaming Anomaly Detection.

    PubMed

    Wu, Ke; Zhang, Kun; Fan, Wei; Edwards, Andrea; Yu, Philip S

    Anomaly detection in streaming data is of high interest in numerous application domains. In this paper, we propose a novel one-class semi-supervised algorithm to detect anomalies in streaming data. Underlying the algorithm is a fast and accurate density estimator implemented by multiple fully randomized space trees (RS-Trees), named RS-Forest. The piecewise constant density estimate of each RS-tree is defined on the tree node into which an instance falls. Each incoming instance in a data stream is scored by the density estimates averaged over all trees in the forest. Two strategies, statistical attribute range estimation of high probability guarantee and dual node profiles for rapid model update, are seamlessly integrated into RS-Forest to systematically address the ever-evolving nature of data streams. We derive the theoretical upper bound for the proposed algorithm and analyze its asymptotic properties via bias-variance decomposition. Empirical comparisons to the state-of-the-art methods on multiple benchmark datasets demonstrate that the proposed method features high detection rate, fast response, and insensitivity to most of the parameter settings. Algorithm implementations and datasets are available upon request.

  3. RS-Forest: A Rapid Density Estimator for Streaming Anomaly Detection

    PubMed Central

    Wu, Ke; Zhang, Kun; Fan, Wei; Edwards, Andrea; Yu, Philip S.

    2015-01-01

    Anomaly detection in streaming data is of high interest in numerous application domains. In this paper, we propose a novel one-class semi-supervised algorithm to detect anomalies in streaming data. Underlying the algorithm is a fast and accurate density estimator implemented by multiple fully randomized space trees (RS-Trees), named RS-Forest. The piecewise constant density estimate of each RS-tree is defined on the tree node into which an instance falls. Each incoming instance in a data stream is scored by the density estimates averaged over all trees in the forest. Two strategies, statistical attribute range estimation of high probability guarantee and dual node profiles for rapid model update, are seamlessly integrated into RS-Forest to systematically address the ever-evolving nature of data streams. We derive the theoretical upper bound for the proposed algorithm and analyze its asymptotic properties via bias-variance decomposition. Empirical comparisons to the state-of-the-art methods on multiple benchmark datasets demonstrate that the proposed method features high detection rate, fast response, and insensitivity to most of the parameter settings. Algorithm implementations and datasets are available upon request. PMID:25685112

  4. [Amplicon density-weighted algorithms for analyzing dissimilarity and dynamic alterations of RAPD polymorphisms of Cordyceps sinensis].

    PubMed

    Yao, Yi-sang; Gao, Ling; Li, Yu-ling; Ma, Shao-li; Wu, Zi-mei; Tan, Ning-zhi; Wu, Jian-yong; Ni, Lu-qun; Zhu, Jia-shi

    2014-08-18

    To examine the dynamic maturational alterations of random amplified polymorphic DNA (RAPD) molecular marker polymorphism resulted from differential expressions of multiple fungi in the caterpillar body, stroma and ascocarp portion of Cordyceps sinensis (Cs). Used the fuzzy, integral RAPD molecular marker polymorphism method with 20 random primers; used density-weighted cluster algorithms and ZUNIX similarity equations; compared RAPD polymorphisms of the caterpillar body, stroma and ascocarp of Cs during maturation; and compared RAPD polymorphisms of Cs and Hirsutella sinensis (Hs). Density-unweighted algorithms neglected the differences in density of the DNA amplicons. Use of the density-weighted ZUNIX similarity equations and the clustering method integrated components of the amplicon density differences in similarity computations and clustering construction and prevented from the loss of the information of fungal genomes. An overall similarity 0.42 (< the overall dissimilarity 0.58) was observed for all compartments of Cs at different maturation stages. The similarities for the stromata or caterpillar bodies of Cs at 3 maturational stages were 0.57 or 0.50, respectively. During Cs maturation, there were dynamic Low→High→Low alterations of the RAPD polymorphisms between stromata and caterpillar bodies dissected from the same pieces of Cs. The polymorphic similarity was the highest (0.87) between the ascocarp and mature stroma, forming a clustering clade, while the premature stroma and caterpillar body formed another clade. These 2 clades merged into one cluster. Another clade containing the maturing stroma and caterpillar body merged with mature caterpillar body, forming another cluster. The RAPD polymorphic similarities between Hs and Cs samples were 0.55-0.69. Hs were separated from Cs clusters by the out-group control Paecilomyces militaris. The wealthy RAPD polymorphisms change dynamically in the Cs compartments with maturation. The different RAPD polymorphism for Hs from those for Cs supports the hypothesis of integrated micro-ecosystem Cs with multiple fungi, but does not support the "single fungal species" hypothesis for Cs and the anamorph-teleomorph connection between Hs and Cs.

  5. Density controls the kinetic stability of ultrastable glasses

    NASA Astrophysics Data System (ADS)

    Fullerton, Christopher J.; Berthier, Ludovic

    2017-08-01

    We use a swap Monte Carlo algorithm to numerically prepare bulk glasses with kinetic stability comparable to that of glass films produced experimentally by physical vapor deposition. By melting these systems into the liquid state, we show that some of our glasses retain their amorphous structures longer than 105 times the equilibrium structural relaxation time. This “exceptional” kinetic stability cannot be achieved for bulk glasses produced by slow cooling. We perform simulations at both constant volume and constant pressure to demonstrate that the density mismatch between the ultrastable glass and the equilibrium liquid accounts for a major part of the observed kinetic stability.

  6. Computing the Density Matrix in Electronic Structure Theory on Graphics Processing Units.

    PubMed

    Cawkwell, M J; Sanville, E J; Mniszewski, S M; Niklasson, Anders M N

    2012-11-13

    The self-consistent solution of a Schrödinger-like equation for the density matrix is a critical and computationally demanding step in quantum-based models of interatomic bonding. This step was tackled historically via the diagonalization of the Hamiltonian. We have investigated the performance and accuracy of the second-order spectral projection (SP2) algorithm for the computation of the density matrix via a recursive expansion of the Fermi operator in a series of generalized matrix-matrix multiplications. We demonstrate that owing to its simplicity, the SP2 algorithm [Niklasson, A. M. N. Phys. Rev. B2002, 66, 155115] is exceptionally well suited to implementation on graphics processing units (GPUs). The performance in double and single precision arithmetic of a hybrid GPU/central processing unit (CPU) and full GPU implementation of the SP2 algorithm exceed those of a CPU-only implementation of the SP2 algorithm and traditional matrix diagonalization when the dimensions of the matrices exceed about 2000 × 2000. Padding schemes for arrays allocated in the GPU memory that optimize the performance of the CUBLAS implementations of the level 3 BLAS DGEMM and SGEMM subroutines for generalized matrix-matrix multiplications are described in detail. The analysis of the relative performance of the hybrid CPU/GPU and full GPU implementations indicate that the transfer of arrays between the GPU and CPU constitutes only a small fraction of the total computation time. The errors measured in the self-consistent density matrices computed using the SP2 algorithm are generally smaller than those measured in matrices computed via diagonalization. Furthermore, the errors in the density matrices computed using the SP2 algorithm do not exhibit any dependence of system size, whereas the errors increase linearly with the number of orbitals when diagonalization is employed.

  7. Automated segmentation of white matter fiber bundles using diffusion tensor imaging data and a new density based clustering algorithm.

    PubMed

    Kamali, Tahereh; Stashuk, Daniel

    2016-10-01

    Robust and accurate segmentation of brain white matter (WM) fiber bundles assists in diagnosing and assessing progression or remission of neuropsychiatric diseases such as schizophrenia, autism and depression. Supervised segmentation methods are infeasible in most applications since generating gold standards is too costly. Hence, there is a growing interest in designing unsupervised methods. However, most conventional unsupervised methods require the number of clusters be known in advance which is not possible in most applications. The purpose of this study is to design an unsupervised segmentation algorithm for brain white matter fiber bundles which can automatically segment fiber bundles using intrinsic diffusion tensor imaging data information without considering any prior information or assumption about data distributions. Here, a new density based clustering algorithm called neighborhood distance entropy consistency (NDEC), is proposed which discovers natural clusters within data by simultaneously utilizing both local and global density information. The performance of NDEC is compared with other state of the art clustering algorithms including chameleon, spectral clustering, DBSCAN and k-means using Johns Hopkins University publicly available diffusion tensor imaging data. The performance of NDEC and other employed clustering algorithms were evaluated using dice ratio as an external evaluation criteria and density based clustering validation (DBCV) index as an internal evaluation metric. Across all employed clustering algorithms, NDEC obtained the highest average dice ratio (0.94) and DBCV value (0.71). NDEC can find clusters with arbitrary shapes and densities and consequently can be used for WM fiber bundle segmentation where there is no distinct boundary between various bundles. NDEC may also be used as an effective tool in other pattern recognition and medical diagnostic systems in which discovering natural clusters within data is a necessity. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Variational optimization algorithms for uniform matrix product states

    NASA Astrophysics Data System (ADS)

    Zauner-Stauber, V.; Vanderstraeten, L.; Fishman, M. T.; Verstraete, F.; Haegeman, J.

    2018-01-01

    We combine the density matrix renormalization group (DMRG) with matrix product state tangent space concepts to construct a variational algorithm for finding ground states of one-dimensional quantum lattices in the thermodynamic limit. A careful comparison of this variational uniform matrix product state algorithm (VUMPS) with infinite density matrix renormalization group (IDMRG) and with infinite time evolving block decimation (ITEBD) reveals substantial gains in convergence speed and precision. We also demonstrate that VUMPS works very efficiently for Hamiltonians with long-range interactions and also for the simulation of two-dimensional models on infinite cylinders. The new algorithm can be conveniently implemented as an extension of an already existing DMRG implementation.

  9. An extended affinity propagation clustering method based on different data density types.

    PubMed

    Zhao, XiuLi; Xu, WeiXiang

    2015-01-01

    Affinity propagation (AP) algorithm, as a novel clustering method, does not require the users to specify the initial cluster centers in advance, which regards all data points as potential exemplars (cluster centers) equally and groups the clusters totally by the similar degree among the data points. But in many cases there exist some different intensive areas within the same data set, which means that the data set does not distribute homogeneously. In such situation the AP algorithm cannot group the data points into ideal clusters. In this paper, we proposed an extended AP clustering algorithm to deal with such a problem. There are two steps in our method: firstly the data set is partitioned into several data density types according to the nearest distances of each data point; and then the AP clustering method is, respectively, used to group the data points into clusters in each data density type. Two experiments are carried out to evaluate the performance of our algorithm: one utilizes an artificial data set and the other uses a real seismic data set. The experiment results show that groups are obtained more accurately by our algorithm than OPTICS and AP clustering algorithm itself.

  10. Improved algorithm for computerized detection and quantification of pulmonary emphysema at high-resolution computed tomography (HRCT)

    NASA Astrophysics Data System (ADS)

    Tylen, Ulf; Friman, Ola; Borga, Magnus; Angelhed, Jan-Erik

    2001-05-01

    Emphysema is characterized by destruction of lung tissue with development of small or large holes within the lung. These areas will have Hounsfield values (HU) approaching -1000. It is possible to detect and quantificate such areas using simple density mask technique. The edge enhancement reconstruction algorithm, gravity and motion of the heart and vessels during scanning causes artefacts, however. The purpose of our work was to construct an algorithm that detects such image artefacts and corrects them. The first step is to apply inverse filtering to the image removing much of the effect of the edge enhancement reconstruction algorithm. The next step implies computation of the antero-posterior density gradient caused by gravity and correction for that. Motion artefacts are in a third step corrected for by use of normalized averaging, thresholding and region growing. Twenty healthy volunteers were investigated, 10 with slight emphysema and 10 without. Using simple density mask technique it was not possible to separate persons with disease from those without. Our algorithm improved separation of the two groups considerably. Our algorithm needs further refinement, but may form a basis for further development of methods for computerized diagnosis and quantification of emphysema by HRCT.

  11. User's guide for ERB-7 SEFDT. Volume 3: Quality control report for year-2

    NASA Technical Reports Server (NTRS)

    Vasanth, K. L.

    1984-01-01

    Problems in the solar data generated by the Nimbus 7 satellite are discussed specifically for scientific users. Major and minor data flaws in the Solar and Earth Flux Data Tape (SEFDT) were identified, defined and categorized. Solar channel assembly misalignment, data gaps, and algorithm errors were among the problems described in detail. Solar flux density data derived from SEFDT are presented in graphical form.

  12. Algebraic reconstruction for 3D magnetic resonance-electrical impedance tomography (MREIT) using one component of magnetic flux density.

    PubMed

    Ider, Y Ziya; Onart, Serkan

    2004-02-01

    Magnetic resonance-electrical impedance tomography (MREIT) algorithms fall into two categories: those utilizing internal current density and those utilizing only one component of measured magnetic flux density. The latter group of algorithms have the advantage that the object does not have to be rotated in the magnetic resonance imaging (MRI) system. A new algorithm which uses only one component of measured magnetic flux density is developed. In this method, the imaging problem is formulated as the solution of a non-linear matrix equation which is solved iteratively to reconstruct resistivity. Numerical simulations are performed to test the algorithm both for noise-free and noisy cases. The uniqueness of the solution is monitored by looking at the singular value behavior of the matrix and it is shown that at least two current injection profiles are necessary. The method is also modified to handle region-of-interest reconstructions. In particular it is shown that, if the image of a certain xy-slice is sought for, then it suffices to measure the z-component of magnetic flux density up to a distance above and below that slice. The method is robust and has good convergence behavior for the simulation phantoms used.

  13. Angular filter refractometry analysis using simulated annealing [An improved method for characterizing plasma density profiles using angular filter refractometry

    DOE PAGES

    Angland, P.; Haberberger, D.; Ivancic, S. T.; ...

    2017-10-30

    Here, a new method of analysis for angular filter refractometry images was developed to characterize laser-produced, long-scale-length plasmas using an annealing algorithm to iterative converge upon a solution. Angular filter refractometry (AFR) is a novel technique used to characterize the density pro files of laser-produced, long-scale-length plasmas. A synthetic AFR image is constructed by a user-defined density profile described by eight parameters, and the algorithm systematically alters the parameters until the comparison is optimized. The optimization and statistical uncertainty calculation is based on a minimization of themore » $$\\chi$$2 test statistic. The algorithm was successfully applied to experimental data of plasma expanding from a flat, laser-irradiated target, resulting in average uncertainty in the density profile of 5-10% in the region of interest.« less

  14. Angular filter refractometry analysis using simulated annealing [An improved method for characterizing plasma density profiles using angular filter refractometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angland, P.; Haberberger, D.; Ivancic, S. T.

    Here, a new method of analysis for angular filter refractometry images was developed to characterize laser-produced, long-scale-length plasmas using an annealing algorithm to iterative converge upon a solution. Angular filter refractometry (AFR) is a novel technique used to characterize the density pro files of laser-produced, long-scale-length plasmas. A synthetic AFR image is constructed by a user-defined density profile described by eight parameters, and the algorithm systematically alters the parameters until the comparison is optimized. The optimization and statistical uncertainty calculation is based on a minimization of themore » $$\\chi$$2 test statistic. The algorithm was successfully applied to experimental data of plasma expanding from a flat, laser-irradiated target, resulting in average uncertainty in the density profile of 5-10% in the region of interest.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grzetic, S; Weldon, M; Noa, K

    Purpose: This study compares the newly released MaxFOV Revision 1 EFOV reconstruction algorithm for GE RT590 to the older WideView EFOV algorithm. Two radiotherapy overlays from Q-fix and Diacor, are included in our analysis. Hounsfield Units (HU) generated with the WideView algorithm varied in the extended field (beyond 50cm) and the scanned object’s border varied from slice to slice. A validation of HU consistency between the two reconstruction algorithms is performed. Methods: A CatPhan 504 and CIRS062 Electron Density Phantom were scanned on a GE RT590 CT-Simulator. The phantoms were positioned in multiple locations within the scan field of viewmore » so some of the density plugs were outside the 50cm reconstruction circle. Images were reconstructed using both the WideView and MaxFOV algorithms. The HU for each scan were characterized both in average over a volume and in profile. Results: HU values are consistent between the two algorithms. Low-density material will have a slight increase in HU value and high-density material will have a slight decrease in HU value as the distance from the sweet spot increases. Border inconsistencies and shading artifacts are still present with the MaxFOV reconstruction on the Q-fix overlay but not the Diacor overlay (It should be noted that the Q-fix overlay is not currently GE-certified). HU values for water outside the 50cm FOV are within 40HU of reconstructions at the sweet spot of the scanner. CatPhan HU profiles show improvement with the MaxFOV algorithm as it approaches the scanner edge. Conclusion: The new MaxFOV algorithm improves the contour border for objects outside of the standard FOV when using a GE-approved tabletop. Air cavities outside of the standard FOV create inconsistent object borders. HU consistency is within GE specifications and the accuracy of the phantom edge improves. Further adjustments to the algorithm are being investigated by GE.« less

  16. Space-based Doppler lidar sampling strategies: Algorithm development and simulated observation experiments

    NASA Technical Reports Server (NTRS)

    Emmitt, G. D.; Wood, S. A.; Morris, M.

    1990-01-01

    Lidar Atmospheric Wind Sounder (LAWS) Simulation Models (LSM) were developed to evaluate the potential impact of global wind observations on the basic understanding of the Earth's atmosphere and on the predictive skills of current forecast models (GCM and regional scale). Fully integrated top to bottom LAWS Simulation Models for global and regional scale simulations were developed. The algorithm development incorporated the effects of aerosols, water vapor, clouds, terrain, and atmospheric turbulence into the models. Other additions include a new satellite orbiter, signal processor, line of sight uncertainty model, new Multi-Paired Algorithm and wind error analysis code. An atmospheric wind field library containing control fields, meteorological fields, phenomena fields, and new European Center for Medium Range Weather Forecasting (ECMWF) data was also added. The LSM was used to address some key LAWS issues and trades such as accuracy and interpretation of LAWS information, data density, signal strength, cloud obscuration, and temporal data resolution.

  17. Numerical simulation of inductive method for determining spatial distribution of critical current density

    NASA Astrophysics Data System (ADS)

    Kamitani, A.; Takayama, T.; Tanaka, A.; Ikuno, S.

    2010-11-01

    The inductive method for measuring the critical current density jC in a high-temperature superconducting (HTS) thin film has been investigated numerically. In order to simulate the method, a non-axisymmetric numerical code has been developed for analyzing the time evolution of the shielding current density. In the code, the governing equation of the shielding current density is spatially discretized with the finite element method and the resulting first-order ordinary differential system is solved by using the 5th-order Runge-Kutta method with an adaptive step-size control algorithm. By using the code, the threshold current IT is evaluated for various positions of a coil. The results of computations show that, near a film edge, the accuracy of the estimating formula for jC is remarkably degraded. Moreover, even the proportional relationship between jC and IT will be lost there. Hence, the critical current density near a film edge cannot be estimated by using the inductive method.

  18. Automatic Whistler Detector and Analyzer system: Implementation of the analyzer algorithm

    NASA Astrophysics Data System (ADS)

    Lichtenberger, JáNos; Ferencz, Csaba; Hamar, Daniel; Steinbach, Peter; Rodger, Craig J.; Clilverd, Mark A.; Collier, Andrew B.

    2010-12-01

    The full potential of whistlers for monitoring plasmaspheric electron density variations has not yet been realized. The primary reason is the vast human effort required for the analysis of whistler traces. Recently, the first part of a complete whistler analysis procedure was successfully automated, i.e., the automatic detection of whistler traces from the raw broadband VLF signal was achieved. This study describes a new algorithm developed to determine plasmaspheric electron density measurements from whistler traces, based on a Virtual (Whistler) Trace Transformation, using a 2-D fast Fourier transform transformation. This algorithm can be automated and can thus form the final step to complete an Automatic Whistler Detector and Analyzer (AWDA) system. In this second AWDA paper, the practical implementation of the Automatic Whistler Analyzer (AWA) algorithm is discussed and a feasible solution is presented. The practical implementation of the algorithm is able to track the variations of plasmasphere in quasi real time on a PC cluster with 100 CPU cores. The electron densities obtained by the AWA method can be used in investigations such as plasmasphere dynamics, ionosphere-plasmasphere coupling, or in space weather models.

  19. An adaptive guidance algorithm for an aerodynamically assisted orbital plane change maneuver. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Blissit, J. A.

    1986-01-01

    Using analysis results from the post trajectory optimization program, an adaptive guidance algorithm is developed to compensate for density, aerodynamic and thrust perturbations during an atmospheric orbital plane change maneuver. The maneuver offers increased mission flexibility along with potential fuel savings for future reentry vehicles. Although designed to guide a proposed NASA Entry Research Vehicle, the algorithm is sufficiently generic for a range of future entry vehicles. The plane change analysis provides insight suggesting a straight-forward algorithm based on an optimized nominal command profile. Bank angle, angle of attack, and engine thrust level, ignition and cutoff times are modulated to adjust the vehicle's trajectory to achieve the desired end-conditions. A performance evaluation of the scheme demonstrates a capability to guide to within 0.05 degrees of the desired plane change and five nautical miles of the desired apogee altitude while maintaining heating constraints. The algorithm is tested under off-nominal conditions of + or -30% density biases, two density profile models, + or -15% aerodynamic uncertainty, and a 33% thrust loss and for various combinations of these conditions.

  20. Angular filter refractometry analysis using simulated annealing.

    PubMed

    Angland, P; Haberberger, D; Ivancic, S T; Froula, D H

    2017-10-01

    Angular filter refractometry (AFR) is a novel technique used to characterize the density profiles of laser-produced, long-scale-length plasmas [Haberberger et al., Phys. Plasmas 21, 056304 (2014)]. A new method of analysis for AFR images was developed using an annealing algorithm to iteratively converge upon a solution. A synthetic AFR image is constructed by a user-defined density profile described by eight parameters, and the algorithm systematically alters the parameters until the comparison is optimized. The optimization and statistical uncertainty calculation is based on the minimization of the χ 2 test statistic. The algorithm was successfully applied to experimental data of plasma expanding from a flat, laser-irradiated target, resulting in an average uncertainty in the density profile of 5%-20% in the region of interest.

  1. Modal characterization of the ASCIE segmented optics testbed: New algorithms and experimental results

    NASA Technical Reports Server (NTRS)

    Carrier, Alain C.; Aubrun, Jean-Noel

    1993-01-01

    New frequency response measurement procedures, on-line modal tuning techniques, and off-line modal identification algorithms are developed and applied to the modal identification of the Advanced Structures/Controls Integrated Experiment (ASCIE), a generic segmented optics telescope test-bed representative of future complex space structures. The frequency response measurement procedure uses all the actuators simultaneously to excite the structure and all the sensors to measure the structural response so that all the transfer functions are measured simultaneously. Structural responses to sinusoidal excitations are measured and analyzed to calculate spectral responses. The spectral responses in turn are analyzed as the spectral data become available and, which is new, the results are used to maintain high quality measurements. Data acquisition, processing, and checking procedures are fully automated. As the acquisition of the frequency response progresses, an on-line algorithm keeps track of the actuator force distribution that maximizes the structural response to automatically tune to a structural mode when approaching a resonant frequency. This tuning is insensitive to delays, ill-conditioning, and nonproportional damping. Experimental results show that is useful for modal surveys even in high modal density regions. For thorough modeling, a constructive procedure is proposed to identify the dynamics of a complex system from its frequency response with the minimization of a least-squares cost function as a desirable objective. This procedure relies on off-line modal separation algorithms to extract modal information and on least-squares parameter subset optimization to combine the modal results and globally fit the modal parameters to the measured data. The modal separation algorithms resolved modal density of 5 modes/Hz in the ASCIE experiment. They promise to be useful in many challenging applications.

  2. Classical Optimal Control for Energy Minimization Based On Diffeomorphic Modulation under Observable-Response-Preserving Homotopy.

    PubMed

    Soley, Micheline B; Markmann, Andreas; Batista, Victor S

    2018-06-12

    We introduce the so-called "Classical Optimal Control Optimization" (COCO) method for global energy minimization based on the implementation of the diffeomorphic modulation under observable-response-preserving homotopy (DMORPH) gradient algorithm. A probe particle with time-dependent mass m( t;β) and dipole μ( r, t;β) is evolved classically on the potential energy surface V( r) coupled to an electric field E( t;β), as described by the time-dependent density of states represented on a grid, or otherwise as a linear combination of Gaussians generated by the k-means clustering algorithm. Control parameters β defining m( t;β), μ( r, t;β), and E( t;β) are optimized by following the gradients of the energy with respect to β, adapting them to steer the particle toward the global minimum energy configuration. We find that the resulting COCO algorithm is capable of resolving near-degenerate states separated by large energy barriers and successfully locates the global minima of golf potentials on flat and rugged surfaces, previously explored for testing quantum annealing methodologies and the quantum optimal control optimization (QuOCO) method. Preliminary results show successful energy minimization of multidimensional Lennard-Jones clusters. Beyond the analysis of energy minimization in the specific model systems investigated, we anticipate COCO should be valuable for solving minimization problems in general, including optimization of parameters in applications to machine learning and molecular structure determination.

  3. Statistical learning methods for aero-optic wavefront prediction and adaptive-optic latency compensation

    NASA Astrophysics Data System (ADS)

    Burns, W. Robert

    Since the early 1970's research in airborne laser systems has been the subject of continued interest. Airborne laser applications depend on being able to propagate a near diffraction-limited laser beam from an airborne platform. Turbulent air flowing over the aircraft produces density fluctuations through which the beam must propagate. Because the index of refraction of the air is directly related to the density, the turbulent flow imposes aberrations on the beam passing through it. This problem is referred to as Aero-Optics. Aero-Optics is recognized as a major technical issue that needs to be solved before airborne optical systems can become routinely fielded. This dissertation research specifically addresses an approach to mitigating the deleterious effects imposed on an airborne optical system by aero-optics. A promising technology is adaptive optics: a feedback control method that measures optical aberrations and imprints the conjugate aberrations onto an outgoing beam. The challenge is that it is a computationally-difficult problem, since aero-optic disturbances are on the order of kilohertz for practical applications. High control loop frequencies and high disturbance frequencies mean that adaptive-optic systems are sensitive to latency in sensors, mirrors, amplifiers, and computation. These latencies build up to result in a dramatic reduction in the system's effective bandwidth. This work presents two variations of an algorithm that uses model reduction and data-driven predictors to estimate the evolution of measured wavefronts over a short temporal horizon and thus compensate for feedback latency. The efficacy of the two methods are compared in this research, and evaluated against similar algorithms that have been previously developed. The best version achieved over 75% disturbance rejection in simulation in the most optically active flow region in the wake of a turret, considerably outperforming conventional approaches. The algorithm is shown to be insensitive to changes in flow condition, and stable in the presence of small latency uncertainty. Consideration is given to practical implementation of the algorithms as well as computational requirement scaling.

  4. Iterative projection algorithms for ab initio phasing in virus crystallography.

    PubMed

    Lo, Victor L; Kingston, Richard L; Millane, Rick P

    2016-12-01

    Iterative projection algorithms are proposed as a tool for ab initio phasing in virus crystallography. The good global convergence properties of these algorithms, coupled with the spherical shape and high structural redundancy of icosahedral viruses, allows high resolution phases to be determined with no initial phase information. This approach is demonstrated by determining the electron density of a virus crystal with 5-fold non-crystallographic symmetry, starting with only a spherical shell envelope. The electron density obtained is sufficiently accurate for model building. The results indicate that iterative projection algorithms should be routinely applicable in virus crystallography, without the need for ancillary phase information. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. A multiresolution inversion for imaging the ionosphere

    NASA Astrophysics Data System (ADS)

    Yin, Ping; Zheng, Ya-Nan; Mitchell, Cathryn N.; Li, Bo

    2017-06-01

    Ionospheric tomography has been widely employed in imaging the large-scale ionospheric structures at both quiet and storm times. However, the tomographic algorithms to date have not been very effective in imaging of medium- and small-scale ionospheric structures due to limitations of uneven ground-based data distributions and the algorithm itself. Further, the effect of the density and quantity of Global Navigation Satellite Systems data that could help improve the tomographic results for the certain algorithm remains unclear in much of the literature. In this paper, a new multipass tomographic algorithm is proposed to conduct the inversion using intensive ground GPS observation data and is demonstrated over the U.S. West Coast during the period of 16-18 March 2015 which includes an ionospheric storm period. The characteristics of the multipass inversion algorithm are analyzed by comparing tomographic results with independent ionosonde data and Center for Orbit Determination in Europe total electron content estimates. Then, several ground data sets with different data distributions are grouped from the same data source in order to investigate the impact of the density of ground stations on ionospheric tomography results. Finally, it is concluded that the multipass inversion approach offers an improvement. The ground data density can affect tomographic results but only offers improvements up to a density of around one receiver every 150 to 200 km. When only GPS satellites are tracked there is no clear advantage in increasing the density of receivers beyond this level, although this may change if multiple constellations are monitored from each receiving station in the future.

  6. CONSENSUS STATEMENT BY THE AMERICAN ASSOCIATION OF CLINICAL ENDOCRINOLOGISTS AND AMERICAN COLLEGE OF ENDOCRINOLOGY ON THE COMPREHENSIVE TYPE 2 DIABETES MANAGEMENT ALGORITHM - 2017 EXECUTIVE SUMMARY.

    PubMed

    Garber, Alan J; Abrahamson, Martin J; Barzilay, Joshua I; Blonde, Lawrence; Bloomgarden, Zachary T; Bush, Michael A; Dagogo-Jack, Samuel; DeFronzo, Ralph A; Einhorn, Daniel; Fonseca, Vivian A; Garber, Jeffrey R; Garvey, W Timothy; Grunberger, George; Handelsman, Yehuda; Hirsch, Irl B; Jellinger, Paul S; McGill, Janet B; Mechanick, Jeffrey I; Rosenblit, Paul D; Umpierrez, Guillermo E

    2017-02-01

    A1C = hemoglobin A1C AACE = American Association of Clinical Endocrinologists ACCORD = Action to Control Cardiovascular Risk in Diabetes ACCORD BP = Action to Control Cardiovascular Risk in Diabetes Blood Pressure ACEI = angiotensin-converting enzyme inhibitor ADVANCE = Action in Diabetes and Vascular Disease: Preterax and Diamicron MR Controlled Evaluation AGI = alpha-glucosidase inhibitor apo B = apolipoprotein B ASCVD = atherosclerotic cardiovascular disease BAS = bile acid sequestrant BMI = body mass index BP = blood pressure CHD = coronary heart disease CKD = chronic kidney disease CVD = cardiovascular disease DASH = Dietary Approaches to Stop Hypertension DPP-4 = dipeptidyl peptidase 4 eGFR = estimated glomerular filtration rate FDA = Food and Drug Administration GLP-1 = glucagon-like peptide 1 HDL-C = high-density lipoprotein cholesterol IMPROVE-IT = Improved Reduction of Outcomes: Vytorin Efficacy International Trial LDL-C = low-density lipoprotein cholesterol LDL-P = low-density lipoprotein particle Look AHEAD = Look Action for Health in Diabetes NPH = neutral protamine Hagedorn OSA = obstructive sleep apnea SFU = sulfonylurea SGLT-2 = sodium glucose cotransporter-2 SMBG = self-monitoring of blood glucose T2D = type 2 diabetes TZD = thiazolidinedione VADT = Veterans Affairs Diabetes Trial.

  7. Determination of vehicle density from traffic images at day and nighttime

    NASA Astrophysics Data System (ADS)

    Mehrübeoğlu, Mehrübe; McLauchlan, Lifford

    2007-02-01

    In this paper we extend our previous work to address vehicle differentiation in traffic density computations1. The main goal of this work is to create vehicle density history for given roads under different weather or light conditions and at different times of the day. Vehicle differentiation is important to account for connected or otherwise long vehicles, such as trucks or tankers, which lead to over-counting with the original algorithm. Average vehicle size in pixels, given the magnification within the field of view for a particular camera, is used to separate regular cars and long vehicles. A separate algorithm and procedure have been developed to determine traffic density after dark when the vehicle headlights are turned on. Nighttime vehicle recognition utilizes blob analysis based on head/taillight images. The high intensity of vehicle lights are identified in binary images for nighttime vehicle detection. The stationary traffic image frames are downloaded from the internet as they are updated. The procedures are implemented in MATLAB. The results of both nighttime traffic density and daytime long vehicle identification algorithms are described in this paper. The determination of nighttime traffic density, and identification of long vehicles at daytime are improvements over the original work1.

  8. Adaptive noise correction of dual-energy computed tomography images.

    PubMed

    Maia, Rafael Simon; Jacob, Christian; Hara, Amy K; Silva, Alvin C; Pavlicek, William; Mitchell, J Ross

    2016-04-01

    Noise reduction in material density images is a necessary preprocessing step for the correct interpretation of dual-energy computed tomography (DECT) images. In this paper we describe a new method based on a local adaptive processing to reduce noise in DECT images An adaptive neighborhood Wiener (ANW) filter was implemented and customized to use local characteristics of material density images. The ANW filter employs a three-level wavelet approach, combined with the application of an anisotropic diffusion filter. Material density images and virtual monochromatic images are noise corrected with two resulting noise maps. The algorithm was applied and quantitatively evaluated in a set of 36 images. From that set of images, three are shown here, and nine more are shown in the online supplementary material. Processed images had higher signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) than the raw material density images. The average improvements in SNR and CNR for the material density images were 56.5 and 54.75%, respectively. We developed a new DECT noise reduction algorithm. We demonstrate throughout a series of quantitative analyses that the algorithm improves the quality of material density images and virtual monochromatic images.

  9. Fast algorithm for bilinear transforms in optics

    NASA Astrophysics Data System (ADS)

    Ostrovsky, Andrey S.; Martinez-Niconoff, Gabriel C.; Ramos Romero, Obdulio; Cortes, Liliana

    2000-10-01

    The fast algorithm for calculating the bilinear transform in the optical system is proposed. This algorithm is based on the coherent-mode representation of the cross-spectral density function of the illumination. The algorithm is computationally efficient when the illumination is partially coherent. Numerical examples are studied and compared with the theoretical results.

  10. J-substitution algorithm in magnetic resonance electrical impedance tomography (MREIT): phantom experiments for static resistivity images.

    PubMed

    Khang, Hyun Soo; Lee, Byung Il; Oh, Suk Hoon; Woo, Eung Je; Lee, Soo Yeol; Cho, Min Hyoung; Kwon, Ohin; Yoon, Jeong Rock; Seo, Jin Keun

    2002-06-01

    Recently, a new static resistivity image reconstruction algorithm is proposed utilizing internal current density data obtained by magnetic resonance current density imaging technique. This new imaging method is called magnetic resonance electrical impedance tomography (MREIT). The derivation and performance of J-substitution algorithm in MREIT have been reported as a new accurate and high-resolution static impedance imaging technique via computer simulation methods. In this paper, we present experimental procedures, denoising techniques, and image reconstructions using a 0.3-tesla (T) experimental MREIT system and saline phantoms. MREIT using J-substitution algorithm effectively utilizes the internal current density information resolving the problem inherent in a conventional EIT, that is, the low sensitivity of boundary measurements to any changes of internal tissue resistivity values. Resistivity images of saline phantoms show an accuracy of 6.8%-47.2% and spatial resolution of 64 x 64. Both of them can be significantly improved by using an MRI system with a better signal-to-noise ratio.

  11. Precise algorithm to generate random sequential adsorption of hard polygons at saturation

    NASA Astrophysics Data System (ADS)

    Zhang, G.

    2018-04-01

    Random sequential adsorption (RSA) is a time-dependent packing process, in which particles of certain shapes are randomly and sequentially placed into an empty space without overlap. In the infinite-time limit, the density approaches a "saturation" limit. Although this limit has attracted particular research interest, the majority of past studies could only probe this limit by extrapolation. We have previously found an algorithm to reach this limit using finite computational time for spherical particles and could thus determine the saturation density of spheres with high accuracy. In this paper, we generalize this algorithm to generate saturated RSA packings of two-dimensional polygons. We also calculate the saturation density for regular polygons of three to ten sides and obtain results that are consistent with previous, extrapolation-based studies.

  12. Precise algorithm to generate random sequential adsorption of hard polygons at saturation.

    PubMed

    Zhang, G

    2018-04-01

    Random sequential adsorption (RSA) is a time-dependent packing process, in which particles of certain shapes are randomly and sequentially placed into an empty space without overlap. In the infinite-time limit, the density approaches a "saturation" limit. Although this limit has attracted particular research interest, the majority of past studies could only probe this limit by extrapolation. We have previously found an algorithm to reach this limit using finite computational time for spherical particles and could thus determine the saturation density of spheres with high accuracy. In this paper, we generalize this algorithm to generate saturated RSA packings of two-dimensional polygons. We also calculate the saturation density for regular polygons of three to ten sides and obtain results that are consistent with previous, extrapolation-based studies.

  13. Towards global optimization with adaptive simulated annealing

    NASA Astrophysics Data System (ADS)

    Forbes, Gregory W.; Jones, Andrew E.

    1991-01-01

    The structure of the simulated annealing algorithm is presented and its rationale is discussed. A unifying heuristic is then introduced which serves as a guide in the design of all of the sub-components of the algorithm. Simply put this heuristic principle states that at every cycle in the algorithm the occupation density should be kept as close as possible to the equilibrium distribution. This heuristic has been used as a guide to develop novel step generation and temperature control methods intended to improve the efficiency of the simulated annealing algorithm. The resulting algorithm has been used in attempts to locate good solutions for one of the lens design problems associated with this conference viz. the " monochromatic quartet" and a sample of the results is presented. 1 Global optimization in the context oflens design Whatever the context optimization algorithms relate to problems that take the following form: Given some configuration space with coordinates r (x1 . . x) and a merit function written asffr) find the point r whereftr) takes it lowest value. That is find the global minimum. In many cases there is also a set of auxiliary constraints that must be met so the problem statement becomes: Find the global minimum of the merit function within the region defined by E. (r) 0 j 1 2 . . . p and 0 j 1 2 . . . q.

  14. Breast density quantification using magnetic resonance imaging (MRI) with bias field correction: A postmortem study

    PubMed Central

    Ding, Huanjun; Johnson, Travis; Lin, Muqing; Le, Huy Q.; Ducote, Justin L.; Su, Min-Ying; Molloi, Sabee

    2013-01-01

    Purpose: Quantification of breast density based on three-dimensional breast MRI may provide useful information for the early detection of breast cancer. However, the field inhomogeneity can severely challenge the computerized image segmentation process. In this work, the effect of the bias field in breast density quantification has been investigated with a postmortem study. Methods: T1-weighted images of 20 pairs of postmortem breasts were acquired on a 1.5 T breast MRI scanner. Two computer-assisted algorithms were used to quantify the volumetric breast density. First, standard fuzzy c-means (FCM) clustering was used on raw images with the bias field present. Then, the coherent local intensity clustering (CLIC) method estimated and corrected the bias field during the iterative tissue segmentation process. Finally, FCM clustering was performed on the bias-field-corrected images produced by CLIC method. The left–right correlation for breasts in the same pair was studied for both segmentation algorithms to evaluate the precision of the tissue classification. Finally, the breast densities measured with the three methods were compared to the gold standard tissue compositions obtained from chemical analysis. The linear correlation coefficient, Pearson's r, was used to evaluate the two image segmentation algorithms and the effect of bias field. Results: The CLIC method successfully corrected the intensity inhomogeneity induced by the bias field. In left–right comparisons, the CLIC method significantly improved the slope and the correlation coefficient of the linear fitting for the glandular volume estimation. The left–right breast density correlation was also increased from 0.93 to 0.98. When compared with the percent fibroglandular volume (%FGV) from chemical analysis, results after bias field correction from both the CLIC the FCM algorithms showed improved linear correlation. As a result, the Pearson's r increased from 0.86 to 0.92 with the bias field correction. Conclusions: The investigated CLIC method significantly increased the precision and accuracy of breast density quantification using breast MRI images by effectively correcting the bias field. It is expected that a fully automated computerized algorithm for breast density quantification may have great potential in clinical MRI applications. PMID:24320536

  15. Breast density quantification using magnetic resonance imaging (MRI) with bias field correction: a postmortem study.

    PubMed

    Ding, Huanjun; Johnson, Travis; Lin, Muqing; Le, Huy Q; Ducote, Justin L; Su, Min-Ying; Molloi, Sabee

    2013-12-01

    Quantification of breast density based on three-dimensional breast MRI may provide useful information for the early detection of breast cancer. However, the field inhomogeneity can severely challenge the computerized image segmentation process. In this work, the effect of the bias field in breast density quantification has been investigated with a postmortem study. T1-weighted images of 20 pairs of postmortem breasts were acquired on a 1.5 T breast MRI scanner. Two computer-assisted algorithms were used to quantify the volumetric breast density. First, standard fuzzy c-means (FCM) clustering was used on raw images with the bias field present. Then, the coherent local intensity clustering (CLIC) method estimated and corrected the bias field during the iterative tissue segmentation process. Finally, FCM clustering was performed on the bias-field-corrected images produced by CLIC method. The left-right correlation for breasts in the same pair was studied for both segmentation algorithms to evaluate the precision of the tissue classification. Finally, the breast densities measured with the three methods were compared to the gold standard tissue compositions obtained from chemical analysis. The linear correlation coefficient, Pearson's r, was used to evaluate the two image segmentation algorithms and the effect of bias field. The CLIC method successfully corrected the intensity inhomogeneity induced by the bias field. In left-right comparisons, the CLIC method significantly improved the slope and the correlation coefficient of the linear fitting for the glandular volume estimation. The left-right breast density correlation was also increased from 0.93 to 0.98. When compared with the percent fibroglandular volume (%FGV) from chemical analysis, results after bias field correction from both the CLIC the FCM algorithms showed improved linear correlation. As a result, the Pearson's r increased from 0.86 to 0.92 with the bias field correction. The investigated CLIC method significantly increased the precision and accuracy of breast density quantification using breast MRI images by effectively correcting the bias field. It is expected that a fully automated computerized algorithm for breast density quantification may have great potential in clinical MRI applications.

  16. The Wang Landau parallel algorithm for the simple grids. Optimizing OpenMPI parallel implementation

    NASA Astrophysics Data System (ADS)

    Kussainov, A. S.

    2017-12-01

    The Wang Landau Monte Carlo algorithm to calculate density of states for the different simple spin lattices was implemented. The energy space was split between the individual threads and balanced according to the expected runtime for the individual processes. Custom spin clustering mechanism, necessary for overcoming of the critical slowdown in the certain energy subspaces, was devised. Stable reconstruction of the density of states was of primary importance. Some data post-processing techniques were involved to produce the expected smooth density of states.

  17. Novel probabilistic and distributed algorithms for guidance, control, and nonlinear estimation of large-scale multi-agent systems

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Saptarshi

    Multi-agent systems are widely used for constructing a desired formation shape, exploring an area, surveillance, coverage, and other cooperative tasks. This dissertation introduces novel algorithms in the three main areas of shape formation, distributed estimation, and attitude control of large-scale multi-agent systems. In the first part of this dissertation, we address the problem of shape formation for thousands to millions of agents. Here, we present two novel algorithms for guiding a large-scale swarm of robotic systems into a desired formation shape in a distributed and scalable manner. These probabilistic swarm guidance algorithms adopt an Eulerian framework, where the physical space is partitioned into bins and the swarm's density distribution over each bin is controlled using tunable Markov chains. In the first algorithm - Probabilistic Swarm Guidance using Inhomogeneous Markov Chains (PSG-IMC) - each agent determines its bin transition probabilities using a time-inhomogeneous Markov chain that is constructed in real-time using feedback from the current swarm distribution. This PSG-IMC algorithm minimizes the expected cost of the transitions required to achieve and maintain the desired formation shape, even when agents are added to or removed from the swarm. The algorithm scales well with a large number of agents and complex formation shapes, and can also be adapted for area exploration applications. In the second algorithm - Probabilistic Swarm Guidance using Optimal Transport (PSG-OT) - each agent determines its bin transition probabilities by solving an optimal transport problem, which is recast as a linear program. In the presence of perfect feedback of the current swarm distribution, this algorithm minimizes the given cost function, guarantees faster convergence, reduces the number of transitions for achieving the desired formation, and is robust to disturbances or damages to the formation. We demonstrate the effectiveness of these two proposed swarm guidance algorithms using results from numerical simulations and closed-loop hardware experiments on multiple quadrotors. In the second part of this dissertation, we present two novel discrete-time algorithms for distributed estimation, which track a single target using a network of heterogeneous sensing agents. The Distributed Bayesian Filtering (DBF) algorithm, the sensing agents combine their normalized likelihood functions using the logarithmic opinion pool and the discrete-time dynamic average consensus algorithm. Each agent's estimated likelihood function converges to an error ball centered on the joint likelihood function of the centralized multi-sensor Bayesian filtering algorithm. Using a new proof technique, the convergence, stability, and robustness properties of the DBF algorithm are rigorously characterized. The explicit bounds on the time step of the robust DBF algorithm are shown to depend on the time-scale of the target dynamics. Furthermore, the DBF algorithm for linear-Gaussian models can be cast into a modified form of the Kalman information filter. In the Bayesian Consensus Filtering (BCF) algorithm, the agents combine their estimated posterior pdfs multiple times within each time step using the logarithmic opinion pool scheme. Thus, each agent's consensual pdf minimizes the sum of Kullback-Leibler divergences with the local posterior pdfs. The performance and robust properties of these algorithms are validated using numerical simulations. In the third part of this dissertation, we present an attitude control strategy and a new nonlinear tracking controller for a spacecraft carrying a large object, such as an asteroid or a boulder. If the captured object is larger or comparable in size to the spacecraft and has significant modeling uncertainties, conventional nonlinear control laws that use exact feed-forward cancellation are not suitable because they exhibit a large resultant disturbance torque. The proposed nonlinear tracking control law guarantees global exponential convergence of tracking errors with finite-gain Lp stability in the presence of modeling uncertainties and disturbances, and reduces the resultant disturbance torque. Further, this control law permits the use of any attitude representation and its integral control formulation eliminates any constant disturbance. Under small uncertainties, the best strategy for stabilizing the combined system is to track a fuel-optimal reference trajectory using this nonlinear control law, because it consumes the least amount of fuel. In the presence of large uncertainties, the most effective strategy is to track the derivative plus proportional-derivative based reference trajectory, because it reduces the resultant disturbance torque. The effectiveness of the proposed attitude control law is demonstrated by using results of numerical simulation based on an Asteroid Redirect Mission concept. The new algorithms proposed in this dissertation will facilitate the development of versatile autonomous multi-agent systems that are capable of performing a variety of complex tasks in a robust and scalable manner.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurt Derr

    Mobile Ad hoc NETworks (MANETs) are distributed self-organizing networks that can change locations and configure themselves on the fly. This paper focuses on an algorithmic approach for the deployment of a MANET within an enclosed area, such as a building in a disaster scenario, which can provide a robust communication infrastructure for search and rescue operations. While a virtual spring mesh (VSM) algorithm provides scalable, self-organizing, and fault-tolerant capabilities required by aMANET, the VSM lacks the MANET's capabilities of deployment mechanisms for blanket coverage of an area and does not provide an obstacle avoidance mechanism. This paper presents a newmore » technique, an extended VSM (EVSM) algorithm that provides the following novelties: (1) new control laws for exploration and expansion to provide blanket coverage, (2) virtual adaptive springs enabling the mesh to expand as necessary, (3) adapts to communications disturbances by varying the density and movement of mobile nodes, and (4) new metrics to assess the performance of the EVSM algorithm. Simulation results show that EVSM provides up to 16% more coverage and is 3.5 times faster than VSM in environments with eight obstacles.« less

  19. Efficient high density train operations

    DOEpatents

    Gordon, Susanna P.; Evans, John A.

    2001-01-01

    The present invention provides methods for preventing low train voltages and managing interference, thereby improving the efficiency, reliability, and passenger comfort associated with commuter trains. An algorithm implementing neural network technology is used to predict low voltages before they occur. Once voltages are predicted, then multiple trains can be controlled to prevent low voltage events. Further, algorithms for managing inference are presented in the present invention. Different types of interference problems are addressed in the present invention such as "Interference. During Acceleration", "Interference Near Station Stops", and "Interference During Delay Recovery." Managing such interference avoids unnecessary brake/acceleration cycles during acceleration, immediately before station stops, and after substantial delays. Algorithms are demonstrated to avoid oscillatory brake/acceleration cycles due to interference and to smooth the trajectories of closely following trains. This is achieved by maintaining sufficient following distances to avoid unnecessary braking/accelerating. These methods generate smooth train trajectories, making for a more comfortable ride, and improve train motor reliability by avoiding unnecessary mode-changes between propulsion and braking. These algorithms can also have a favorable impact on traction power system requirements and energy consumption.

  20. ICAROUS - Integrated Configurable Algorithms for Reliable Operations Of Unmanned Systems

    NASA Technical Reports Server (NTRS)

    Consiglio, María; Muñoz, César; Hagen, George; Narkawicz, Anthony; Balachandran, Swee

    2016-01-01

    NASA's Unmanned Aerial System (UAS) Traffic Management (UTM) project aims at enabling near-term, safe operations of small UAS vehicles in uncontrolled airspace, i.e., Class G airspace. A far-term goal of UTM research and development is to accommodate the expected rise in small UAS traffic density throughout the National Airspace System (NAS) at low altitudes for beyond visual line-of-sight operations. This paper describes a new capability referred to as ICAROUS (Integrated Configurable Algorithms for Reliable Operations of Unmanned Systems), which is being developed under the UTM project. ICAROUS is a software architecture comprised of highly assured algorithms for building safety-centric, autonomous, unmanned aircraft applications. Central to the development of the ICAROUS algorithms is the use of well-established formal methods to guarantee higher levels of safety assurance by monitoring and bounding the behavior of autonomous systems. The core autonomy-enabling capabilities in ICAROUS include constraint conformance monitoring and contingency control functions. ICAROUS also provides a highly configurable user interface that enables the modular integration of mission-specific software components.

  1. Statistical Evaluation of Combined Daily Gauge Observations and Rainfall Satellite Estimations over Continental South America

    NASA Technical Reports Server (NTRS)

    Vila, Daniel; deGoncalves, Luis Gustavo; Toll, David L.; Rozante, Jose Roberto

    2008-01-01

    This paper describes a comprehensive assessment of a new high-resolution, high-quality gauge-satellite based analysis of daily precipitation over continental South America during 2004. This methodology is based on a combination of additive and multiplicative bias correction schemes in order to get the lowest bias when compared with the observed values. Inter-comparisons and cross-validations tests have been carried out for the control algorithm (TMPA real-time algorithm) and different merging schemes: additive bias correction (ADD), ratio bias correction (RAT) and TMPA research version, for different months belonging to different seasons and for different network densities. All compared merging schemes produce better results than the control algorithm, but when finer temporal (daily) and spatial scale (regional networks) gauge datasets is included in the analysis, the improvement is remarkable. The Combined Scheme (CoSch) presents consistently the best performance among the five techniques. This is also true when a degraded daily gauge network is used instead of full dataset. This technique appears a suitable tool to produce real-time, high-resolution, high-quality gauge-satellite based analyses of daily precipitation over land in regional domains.

  2. WE-AB-207B-05: Correlation of Normal Lung Density Changes with Dose After Stereotactic Body Radiotherapy (SBRT) for Early Stage Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Q; Devpura, S; Feghali, K

    2016-06-15

    Purpose: To investigate correlation of normal lung CT density changes with dose accuracy and outcome after SBRT for patients with early stage lung cancer. Methods: Dose distributions for patients originally planned and treated using a 1-D pencil beam-based (PB-1D) dose algorithm were retrospectively recomputed using algorithms: 3-D pencil beam (PB-3D), and model-based Methods: AAA, Acuros XB (AXB), and Monte Carlo (MC). Prescription dose was 12 Gy × 4 fractions. Planning CT images were rigidly registered to the followup CT datasets at 6–9 months after treatment. Corresponding dose distributions were mapped from the planning to followup CT images. Following the methodmore » of Palma et al .(1–2), Hounsfield Unit (HU) changes in lung density in individual, 5 Gy, dose bins from 5–45 Gy were assessed in the peri-tumor region, defined as a uniform, 3 cm expansion around the ITV(1). Results: There is a 10–15% displacement of the high dose region (40–45 Gy) with the model-based algorithms, relative to the PB method, due to the electron scattering of dose away from the tumor into normal lung tissue (Fig.1). Consequently, the high-dose lung region falls within the 40–45 Gy dose range, causing an increase in HU change in this region, as predicted by model-based algorithms (Fig.2). The patient with the highest HU change (∼110) had mild radiation pneumonitis, and the patient with HU change of ∼80–90 had shortness of breath. No evidence of pneumonitis was observed for the 3 patients with smaller CT density changes (<50 HU). Changes in CT densities, and dose-response correlation, as computed with model-based algorithms, are in excellent agreement with the findings of Palma et al. (1–2). Conclusion: Dose computed with PB (1D or 3D) algorithms was poorly correlated with clinically relevant CT density changes, as opposed to model-based algorithms. A larger cohort of patients is needed to confirm these results. This work was supported in part by a grant from Varian Medical Systems, Palo Alto, CA.« less

  3. Reconstructing cortical current density by exploring sparseness in the transform domain

    NASA Astrophysics Data System (ADS)

    Ding, Lei

    2009-05-01

    In the present study, we have developed a novel electromagnetic source imaging approach to reconstruct extended cortical sources by means of cortical current density (CCD) modeling and a novel EEG imaging algorithm which explores sparseness in cortical source representations through the use of L1-norm in objective functions. The new sparse cortical current density (SCCD) imaging algorithm is unique since it reconstructs cortical sources by attaining sparseness in a transform domain (the variation map of cortical source distributions). While large variations are expected to occur along boundaries (sparseness) between active and inactive cortical regions, cortical sources can be reconstructed and their spatial extents can be estimated by locating these boundaries. We studied the SCCD algorithm using numerous simulations to investigate its capability in reconstructing cortical sources with different extents and in reconstructing multiple cortical sources with different extent contrasts. The SCCD algorithm was compared with two L2-norm solutions, i.e. weighted minimum norm estimate (wMNE) and cortical LORETA. Our simulation data from the comparison study show that the proposed sparse source imaging algorithm is able to accurately and efficiently recover extended cortical sources and is promising to provide high-accuracy estimation of cortical source extents.

  4. Evaluation of an analytic linear Boltzmann transport equation solver for high-density inhomogeneities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lloyd, S. A. M.; Ansbacher, W.; Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 3P6

    2013-01-15

    Purpose: Acuros external beam (Acuros XB) is a novel dose calculation algorithm implemented through the ECLIPSE treatment planning system. The algorithm finds a deterministic solution to the linear Boltzmann transport equation, the same equation commonly solved stochastically by Monte Carlo methods. This work is an evaluation of Acuros XB, by comparison with Monte Carlo, for dose calculation applications involving high-density materials. Existing non-Monte Carlo clinical dose calculation algorithms, such as the analytic anisotropic algorithm (AAA), do not accurately model dose perturbations due to increased electron scatter within high-density volumes. Methods: Acuros XB, AAA, and EGSnrc based Monte Carlo are usedmore » to calculate dose distributions from 18 MV and 6 MV photon beams delivered to a cubic water phantom containing a rectangular high density (4.0-8.0 g/cm{sup 3}) volume at its center. The algorithms are also used to recalculate a clinical prostate treatment plan involving a unilateral hip prosthesis, originally evaluated using AAA. These results are compared graphically and numerically using gamma-index analysis. Radio-chromic film measurements are presented to augment Monte Carlo and Acuros XB dose perturbation data. Results: Using a 2% and 1 mm gamma-analysis, between 91.3% and 96.8% of Acuros XB dose voxels containing greater than 50% the normalized dose were in agreement with Monte Carlo data for virtual phantoms involving 18 MV and 6 MV photons, stainless steel and titanium alloy implants and for on-axis and oblique field delivery. A similar gamma-analysis of AAA against Monte Carlo data showed between 80.8% and 87.3% agreement. Comparing Acuros XB and AAA evaluations of a clinical prostate patient plan involving a unilateral hip prosthesis, Acuros XB showed good overall agreement with Monte Carlo while AAA underestimated dose on the upstream medial surface of the prosthesis due to electron scatter from the high-density material. Film measurements support the dose perturbations demonstrated by Monte Carlo and Acuros XB data. Conclusions: Acuros XB is shown to perform as well as Monte Carlo methods and better than existing clinical algorithms for dose calculations involving high-density volumes.« less

  5. A robust statistical estimation (RoSE) algorithm jointly recovers the 3D location and intensity of single molecules accurately and precisely

    NASA Astrophysics Data System (ADS)

    Mazidi, Hesam; Nehorai, Arye; Lew, Matthew D.

    2018-02-01

    In single-molecule (SM) super-resolution microscopy, the complexity of a biological structure, high molecular density, and a low signal-to-background ratio (SBR) may lead to imaging artifacts without a robust localization algorithm. Moreover, engineered point spread functions (PSFs) for 3D imaging pose difficulties due to their intricate features. We develop a Robust Statistical Estimation algorithm, called RoSE, that enables joint estimation of the 3D location and photon counts of SMs accurately and precisely using various PSFs under conditions of high molecular density and low SBR.

  6. Sensor Fusion Based on an Integrated Neural Network and Probability Density Function (PDF) Dual Kalman Filter for On-Line Estimation of Vehicle Parameters and States.

    PubMed

    Vargas-Melendez, Leandro; Boada, Beatriz L; Boada, Maria Jesus L; Gauchia, Antonio; Diaz, Vicente

    2017-04-29

    Vehicles with a high center of gravity (COG), such as light trucks and heavy vehicles, are prone to rollover. This kind of accident causes nearly 33 % of all deaths from passenger vehicle crashes. Nowadays, these vehicles are incorporating roll stability control (RSC) systems to improve their safety. Most of the RSC systems require the vehicle roll angle as a known input variable to predict the lateral load transfer. The vehicle roll angle can be directly measured by a dual antenna global positioning system (GPS), but it is expensive. For this reason, it is important to estimate the vehicle roll angle from sensors installed onboard in current vehicles. On the other hand, the knowledge of the vehicle's parameters values is essential to obtain an accurate vehicle response. Some of vehicle parameters cannot be easily obtained and they can vary over time. In this paper, an algorithm for the simultaneous on-line estimation of vehicle's roll angle and parameters is proposed. This algorithm uses a probability density function (PDF)-based truncation method in combination with a dual Kalman filter (DKF), to guarantee that both vehicle's states and parameters are within bounds that have a physical meaning, using the information obtained from sensors mounted on vehicles. Experimental results show the effectiveness of the proposed algorithm.

  7. Sensor Fusion Based on an Integrated Neural Network and Probability Density Function (PDF) Dual Kalman Filter for On-Line Estimation of Vehicle Parameters and States

    PubMed Central

    Vargas-Melendez, Leandro; Boada, Beatriz L.; Boada, Maria Jesus L.; Gauchia, Antonio; Diaz, Vicente

    2017-01-01

    Vehicles with a high center of gravity (COG), such as light trucks and heavy vehicles, are prone to rollover. This kind of accident causes nearly 33% of all deaths from passenger vehicle crashes. Nowadays, these vehicles are incorporating roll stability control (RSC) systems to improve their safety. Most of the RSC systems require the vehicle roll angle as a known input variable to predict the lateral load transfer. The vehicle roll angle can be directly measured by a dual antenna global positioning system (GPS), but it is expensive. For this reason, it is important to estimate the vehicle roll angle from sensors installed onboard in current vehicles. On the other hand, the knowledge of the vehicle’s parameters values is essential to obtain an accurate vehicle response. Some of vehicle parameters cannot be easily obtained and they can vary over time. In this paper, an algorithm for the simultaneous on-line estimation of vehicle’s roll angle and parameters is proposed. This algorithm uses a probability density function (PDF)-based truncation method in combination with a dual Kalman filter (DKF), to guarantee that both vehicle’s states and parameters are within bounds that have a physical meaning, using the information obtained from sensors mounted on vehicles. Experimental results show the effectiveness of the proposed algorithm. PMID:28468252

  8. Molecular surface mesh generation by filtering electron density map.

    PubMed

    Giard, Joachim; Macq, Benoît

    2010-01-01

    Bioinformatics applied to macromolecules are now widely spread and in continuous expansion. In this context, representing external molecular surface such as the Van der Waals Surface or the Solvent Excluded Surface can be useful for several applications. We propose a fast and parameterizable algorithm giving good visual quality meshes representing molecular surfaces. It is obtained by isosurfacing a filtered electron density map. The density map is the result of the maximum of Gaussian functions placed around atom centers. This map is filtered by an ideal low-pass filter applied on the Fourier Transform of the density map. Applying the marching cubes algorithm on the inverse transform provides a mesh representation of the molecular surface.

  9. Precise algorithm to generate random sequential adsorption of hard polygons at saturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, G.

    Random sequential adsorption (RSA) is a time-dependent packing process, in which particles of certain shapes are randomly and sequentially placed into an empty space without overlap. In the infinite-time limit, the density approaches a "saturation'' limit. Although this limit has attracted particular research interest, the majority of past studies could only probe this limit by extrapolation. We have previously found an algorithm to reach this limit using finite computational time for spherical particles, and could thus determine the saturation density of spheres with high accuracy. Here in this paper, we generalize this algorithm to generate saturated RSA packings of two-dimensionalmore » polygons. We also calculate the saturation density for regular polygons of three to ten sides, and obtain results that are consistent with previous, extrapolation-based studies.« less

  10. Precise algorithm to generate random sequential adsorption of hard polygons at saturation

    DOE PAGES

    Zhang, G.

    2018-04-30

    Random sequential adsorption (RSA) is a time-dependent packing process, in which particles of certain shapes are randomly and sequentially placed into an empty space without overlap. In the infinite-time limit, the density approaches a "saturation'' limit. Although this limit has attracted particular research interest, the majority of past studies could only probe this limit by extrapolation. We have previously found an algorithm to reach this limit using finite computational time for spherical particles, and could thus determine the saturation density of spheres with high accuracy. Here in this paper, we generalize this algorithm to generate saturated RSA packings of two-dimensionalmore » polygons. We also calculate the saturation density for regular polygons of three to ten sides, and obtain results that are consistent with previous, extrapolation-based studies.« less

  11. SU-F-T-444: Quality Improvement Review of Radiation Therapy Treatment Planning in the Presence of Dental Implants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parenica, H; Ford, J; Mavroidis, P

    Purpose: To quantify and compare the effect of metallic dental implants (MDI) on dose distributions calculated using Collapsed Cone Convolution Superposition (CCCS) algorithm or a Monte Carlo algorithm (with and without correcting for the density of the MDI). Methods: Seven previously treated patients to the head and neck region were included in this study. The MDI and the streaking artifacts on the CT images were carefully contoured. For each patient a plan was optimized and calculated using the Pinnacle3 treatment planning system (TPS). For each patient two dose calculations were performed, a) with the densities of the MDI and CTmore » artifacts overridden (12 g/cc and 1 g/cc respectively) and b) without density overrides. The plans were then exported to the Monaco TPS and recalculated using Monte Carlo dose calculation algorithm. The changes in dose to PTVs and surrounding Regions of Interest (ROIs) were examined between all plans. Results: The Monte Carlo dose calculation indicated that PTVs received 6% lower dose than the CCCS algorithm predicted. In some cases, the Monte Carlo algorithm indicated that surrounding ROIs received higher dose (up to a factor of 2). Conclusion: Not properly accounting for dental implants can impact both the high dose regions (PTV) and the low dose regions (OAR). This study implies that if MDI and the artifacts are not appropriately contoured and given the correct density, there is potential significant impact on PTV coverage and OAR maximum doses.« less

  12. The tensor hypercontracted parametric reduced density matrix algorithm: coupled-cluster accuracy with O(r(4)) scaling.

    PubMed

    Shenvi, Neil; van Aggelen, Helen; Yang, Yang; Yang, Weitao; Schwerdtfeger, Christine; Mazziotti, David

    2013-08-07

    Tensor hypercontraction is a method that allows the representation of a high-rank tensor as a product of lower-rank tensors. In this paper, we show how tensor hypercontraction can be applied to both the electron repulsion integral tensor and the two-particle excitation amplitudes used in the parametric 2-electron reduced density matrix (p2RDM) algorithm. Because only O(r) auxiliary functions are needed in both of these approximations, our overall algorithm can be shown to scale as O(r(4)), where r is the number of single-particle basis functions. We apply our algorithm to several small molecules, hydrogen chains, and alkanes to demonstrate its low formal scaling and practical utility. Provided we use enough auxiliary functions, we obtain accuracy similar to that of the standard p2RDM algorithm, somewhere between that of CCSD and CCSD(T).

  13. A new task scheduling algorithm based on value and time for cloud platform

    NASA Astrophysics Data System (ADS)

    Kuang, Ling; Zhang, Lichen

    2017-08-01

    Tasks scheduling, a key part of increasing resource utilization and enhancing system performance, is a never outdated problem especially in cloud platforms. Based on the value density algorithm of the real-time task scheduling system and the character of the distributed system, the paper present a new task scheduling algorithm by further studying the cloud technology and the real-time system: Least Level Value Density First (LLVDF). The algorithm not only introduces some attributes of time and value for tasks, it also can describe weighting relationships between these properties mathematically. As this feature of the algorithm, it can gain some advantages to distinguish between different tasks more dynamically and more reasonably. When the scheme was used in the priority calculation of the dynamic task scheduling on cloud platform, relying on its advantage, it can schedule and distinguish tasks with large amounts and many kinds more efficiently. The paper designs some experiments, some distributed server simulation models based on M/M/C model of queuing theory and negative arrivals, to compare the algorithm against traditional algorithm to observe and show its characters and advantages.

  14. On the characterization of inhomogeneity of the density distribution in supercritical fluids via molecular dynamics simulation and data mining analysis.

    PubMed

    Idrissi, Abdenacer; Vyalov, Ivan; Georgi, Nikolaj; Kiselev, Michael

    2013-10-10

    We combined molecular dynamics simulation and DBSCAN algorithm (Density Based Spatial Clustering of Application with Noise) in order to characterize the local density inhomogeneity distribution in supercritical fluids. The DBSCAN is an algorithm that is capable of finding arbitrarily shaped density domains, where domains are defined as dense regions separated by low-density regions. The inhomogeneity of density domain distributions of Ar system in sub- and supercritical conditions along the 50 bar isobar is associated with the occurrence of a maximum in the fluctuation of number of particles of the density domains. This maximum coincides with the temperature, Tα, at which the thermal expansion occurs. Furthermore, using Voronoi polyhedral analysis, we characterized the structure of the density domains. The results show that with increasing temperature below Tα, the increase of the inhomogeneity is mainly associated with the density fluctuation of the border particles of the density domains, while with increasing temperature above Tα, the decrease of the inhomogeneity is associated with the core particles.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raymund, T.D.

    Recently, several tomographic techniques for ionospheric electron density imaging have been proposed. These techniques reconstruct a vertical slice image of electron density using total electron content data. The data are measured between a low orbit beacon satellite and fixed receivers located along the projected orbital path of the satellite. By using such tomographic techniques, it may be possible to inexpensively (relative to incoherent scatter techniques) image the ionospheric electron density in a vertical plane several times per day. The satellite and receiver geometry used to measure the total electron content data causes the data to be incomplete; that is, themore » measured data do not contain enough information to completely specify the ionospheric electron density distribution in the region between the satellite and the receivers. A new algorithm is proposed which allows the incorporation of other complementary measurements, such as those from ionosondes, and also includes ways to include a priori information about the unknown electron density distribution in the reconstruction process. The algorithm makes use of two-dimensional basis functions. Illustrative application of this algorithm is made to simulated cases with good results. The technique is also applied to real total electron content (TEC) records collected in Scandinavia in conjunction with the EISCAT incoherent scatter radar. The tomographic reconstructions are compared with the incoherent scatter electron density images of the same region of the ionosphere.« less

  16. Comparison of SOM point densities based on different criteria.

    PubMed

    Kohonen, T

    1999-11-15

    Point densities of model (codebook) vectors in self-organizing maps (SOMs) are evaluated in this article. For a few one-dimensional SOMs with finite grid lengths and a given probability density function of the input, the numerically exact point densities have been computed. The point density derived from the SOM algorithm turned out to be different from that minimizing the SOM distortion measure, showing that the model vectors produced by the basic SOM algorithm in general do not exactly coincide with the optimum of the distortion measure. A new computing technique based on the calculus of variations has been introduced. It was applied to the computation of point densities derived from the distortion measure for both the classical vector quantization and the SOM with general but equal dimensionality of the input vectors and the grid, respectively. The power laws in the continuum limit obtained in these cases were found to be identical.

  17. Model-based Optimization and Feedback Control of the Current Density Profile Evolution in NSTX-U

    NASA Astrophysics Data System (ADS)

    Ilhan, Zeki Okan

    Nuclear fusion research is a highly challenging, multidisciplinary field seeking contributions from both plasma physics and multiple engineering areas. As an application of plasma control engineering, this dissertation mainly explores methods to control the current density profile evolution within the National Spherical Torus eXperiment-Upgrade (NSTX-U), which is a substantial upgrade based on the NSTX device, which is located in Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ. Active control of the toroidal current density profile is among those plasma control milestones that the NSTX-U program must achieve to realize its next-step operational goals, which are characterized by high-performance, long-pulse, MHD-stable plasma operation with neutral beam heating. Therefore, the aim of this work is to develop model-based, feedforward and feedback controllers that can enable time regulation of the current density profile in NSTX-U by actuating the total plasma current, electron density, and the powers of the individual neutral beam injectors. Motivated by the coupled, nonlinear, multivariable, distributed-parameter plasma dynamics, the first step towards control design is the development of a physics-based, control-oriented model for the current profile evolution in NSTX-U in response to non-inductive current drives and heating systems. Numerical simulations of the proposed control-oriented model show qualitative agreement with the high-fidelity physics code TRANSP. The next step is to utilize the proposed control-oriented model to design an open-loop actuator trajectory optimizer. Given a desired operating state, the optimizer produces the actuator trajectories that can steer the plasma to such state. The objective of the feedforward control design is to provide a more systematic approach to advanced scenario planning in NSTX-U since the development of such scenarios is conventionally carried out experimentally by modifying the tokamak's actuator trajectories and analyzing the resulting plasma evolution. Finally, the proposed control-oriented model is embedded in feedback control schemes based on optimal control and Model Predictive Control (MPC) approaches. Integrators are added to the standard Linear Quadratic Gaussian (LQG) and MPC formulations to provide robustness against various modeling uncertainties and external disturbances. The effectiveness of the proposed feedback controllers in regulating the current density profile in NSTX-U is demonstrated in closed-loop nonlinear simulations. Moreover, the optimal feedback control algorithm has been implemented successfully in closed-loop control simulations within TRANSP through the recently developed Expert routine. (Abstract shortened by ProQuest.).

  18. Density-based clustering analyses to identify heterogeneous cellular sub-populations

    NASA Astrophysics Data System (ADS)

    Heaster, Tiffany M.; Walsh, Alex J.; Landman, Bennett A.; Skala, Melissa C.

    2017-02-01

    Autofluorescence microscopy of NAD(P)H and FAD provides functional metabolic measurements at the single-cell level. Here, density-based clustering algorithms were applied to metabolic autofluorescence measurements to identify cell-level heterogeneity in tumor cell cultures. The performance of the density-based clustering algorithm, DENCLUE, was tested in samples with known heterogeneity (co-cultures of breast carcinoma lines). DENCLUE was found to better represent the distribution of cell clusters compared to Gaussian mixture modeling. Overall, DENCLUE is a promising approach to quantify cell-level heterogeneity, and could be used to understand single cell population dynamics in cancer progression and treatment.

  19. A programmable two-qubit quantum processor in silicon.

    PubMed

    Watson, T F; Philips, S G J; Kawakami, E; Ward, D R; Scarlino, P; Veldhorst, M; Savage, D E; Lagally, M G; Friesen, Mark; Coppersmith, S N; Eriksson, M A; Vandersypen, L M K

    2018-03-29

    Now that it is possible to achieve measurement and control fidelities for individual quantum bits (qubits) above the threshold for fault tolerance, attention is moving towards the difficult task of scaling up the number of physical qubits to the large numbers that are needed for fault-tolerant quantum computing. In this context, quantum-dot-based spin qubits could have substantial advantages over other types of qubit owing to their potential for all-electrical operation and ability to be integrated at high density onto an industrial platform. Initialization, readout and single- and two-qubit gates have been demonstrated in various quantum-dot-based qubit representations. However, as seen with small-scale demonstrations of quantum computers using other types of qubit, combining these elements leads to challenges related to qubit crosstalk, state leakage, calibration and control hardware. Here we overcome these challenges by using carefully designed control techniques to demonstrate a programmable two-qubit quantum processor in a silicon device that can perform the Deutsch-Josza algorithm and the Grover search algorithm-canonical examples of quantum algorithms that outperform their classical analogues. We characterize the entanglement in our processor by using quantum-state tomography of Bell states, measuring state fidelities of 85-89 per cent and concurrences of 73-82 per cent. These results pave the way for larger-scale quantum computers that use spins confined to quantum dots.

  20. Dual energy approach for cone beam artifacts correction

    NASA Astrophysics Data System (ADS)

    Han, Chulhee; Choi, Shinkook; Lee, Changwoo; Baek, Jongduk

    2017-03-01

    Cone beam computed tomography systems generate 3D volumetric images, which provide further morphological information compared to radiography and tomosynthesis systems. However, reconstructed images by FDK algorithm contain cone beam artifacts when a cone angle is large. To reduce the cone beam artifacts, two-pass algorithm has been proposed. The two-pass algorithm considers the cone beam artifacts are mainly caused by high density materials, and proposes an effective method to estimate error images (i.e., cone beam artifacts images) by the high density materials. While this approach is simple and effective with a small cone angle (i.e., 5 - 7 degree), the correction performance is degraded as the cone angle increases. In this work, we propose a new method to reduce the cone beam artifacts using a dual energy technique. The basic idea of the proposed method is to estimate the error images generated by the high density materials more reliably. To do this, projection data of the high density materials are extracted from dual energy CT projection data using a material decomposition technique, and then reconstructed by iterative reconstruction using total-variation regularization. The reconstructed high density materials are used to estimate the error images from the original FDK images. The performance of the proposed method is compared with the two-pass algorithm using root mean square errors. The results show that the proposed method reduces the cone beam artifacts more effectively, especially with a large cone angle.

  1. Density-based cluster algorithms for the identification of core sets

    NASA Astrophysics Data System (ADS)

    Lemke, Oliver; Keller, Bettina G.

    2016-10-01

    The core-set approach is a discretization method for Markov state models of complex molecular dynamics. Core sets are disjoint metastable regions in the conformational space, which need to be known prior to the construction of the core-set model. We propose to use density-based cluster algorithms to identify the cores. We compare three different density-based cluster algorithms: the CNN, the DBSCAN, and the Jarvis-Patrick algorithm. While the core-set models based on the CNN and DBSCAN clustering are well-converged, constructing core-set models based on the Jarvis-Patrick clustering cannot be recommended. In a well-converged core-set model, the number of core sets is up to an order of magnitude smaller than the number of states in a conventional Markov state model with comparable approximation error. Moreover, using the density-based clustering one can extend the core-set method to systems which are not strongly metastable. This is important for the practical application of the core-set method because most biologically interesting systems are only marginally metastable. The key point is to perform a hierarchical density-based clustering while monitoring the structure of the metric matrix which appears in the core-set method. We test this approach on a molecular-dynamics simulation of a highly flexible 14-residue peptide. The resulting core-set models have a high spatial resolution and can distinguish between conformationally similar yet chemically different structures, such as register-shifted hairpin structures.

  2. A new time dependent density functional algorithm for large systems and plasmons in metal clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baseggio, Oscar; Fronzoni, Giovanna; Stener, Mauro, E-mail: stener@univ.trieste.it

    2015-07-14

    A new algorithm to solve the Time Dependent Density Functional Theory (TDDFT) equations in the space of the density fitting auxiliary basis set has been developed and implemented. The method extracts the spectrum from the imaginary part of the polarizability at any given photon energy, avoiding the bottleneck of Davidson diagonalization. The original idea which made the present scheme very efficient consists in the simplification of the double sum over occupied-virtual pairs in the definition of the dielectric susceptibility, allowing an easy calculation of such matrix as a linear combination of constant matrices with photon energy dependent coefficients. The methodmore » has been applied to very different systems in nature and size (from H{sub 2} to [Au{sub 147}]{sup −}). In all cases, the maximum deviations found for the excitation energies with respect to the Amsterdam density functional code are below 0.2 eV. The new algorithm has the merit not only to calculate the spectrum at whichever photon energy but also to allow a deep analysis of the results, in terms of transition contribution maps, Jacob plasmon scaling factor, and induced density analysis, which have been all implemented.« less

  3. Influence of dose calculation algorithms on the predicted dose distribution and NTCP values for NSCLC patients.

    PubMed

    Nielsen, Tine B; Wieslander, Elinore; Fogliata, Antonella; Nielsen, Morten; Hansen, Olfred; Brink, Carsten

    2011-05-01

    To investigate differences in calculated doses and normal tissue complication probability (NTCP) values between different dose algorithms. Six dose algorithms from four different treatment planning systems were investigated: Eclipse AAA, Oncentra MasterPlan Collapsed Cone and Pencil Beam, Pinnacle Collapsed Cone and XiO Multigrid Superposition, and Fast Fourier Transform Convolution. Twenty NSCLC patients treated in the period 2001-2006 at the same accelerator were included and the accelerator used for treatments were modeled in the different systems. The treatment plans were recalculated with the same number of monitor units and beam arrangements across the dose algorithms. Dose volume histograms of the GTV, PTV, combined lungs (excluding the GTV), and heart were exported and evaluated. NTCP values for heart and lungs were calculated using the relative seriality model and the LKB model, respectively. Furthermore, NTCP for the lungs were calculated from two different model parameter sets. Calculations and evaluations were performed both including and excluding density corrections. There are found statistical significant differences between the calculated dose to heart, lung, and targets across the algorithms. Mean lung dose and V20 are not very sensitive to change between the investigated dose calculation algorithms. However, the different dose levels for the PTV averaged over the patient population are varying up to 11%. The predicted NTCP values for pneumonitis vary between 0.20 and 0.24 or 0.35 and 0.48 across the investigated dose algorithms depending on the chosen model parameter set. The influence of the use of density correction in the dose calculation on the predicted NTCP values depends on the specific dose calculation algorithm and the model parameter set. For fixed values of these, the changes in NTCP can be up to 45%. Calculated NTCP values for pneumonitis are more sensitive to the choice of algorithm than mean lung dose and V20 which are also commonly used for plan evaluation. The NTCP values for heart complication are, in this study, not very sensitive to the choice of algorithm. Dose calculations based on density corrections result in quite different NTCP values than calculations without density corrections. It is therefore important when working with NTCP planning to use NTCP parameter values based on calculations and treatments similar to those for which the NTCP is of interest.

  4. A code-aided carrier synchronization algorithm based on improved nonbinary low-density parity-check codes

    NASA Astrophysics Data System (ADS)

    Bai, Cheng-lin; Cheng, Zhi-hui

    2016-09-01

    In order to further improve the carrier synchronization estimation range and accuracy at low signal-to-noise ratio ( SNR), this paper proposes a code-aided carrier synchronization algorithm based on improved nonbinary low-density parity-check (NB-LDPC) codes to study the polarization-division-multiplexing coherent optical orthogonal frequency division multiplexing (PDM-CO-OFDM) system performance in the cases of quadrature phase shift keying (QPSK) and 16 quadrature amplitude modulation (16-QAM) modes. The simulation results indicate that this algorithm can enlarge frequency and phase offset estimation ranges and enhance accuracy of the system greatly, and the bit error rate ( BER) performance of the system is improved effectively compared with that of the system employing traditional NB-LDPC code-aided carrier synchronization algorithm.

  5. Optimization of Stability Constrained Geometrically Nonlinear Shallow Trusses Using an Arc Length Sparse Method with a Strain Energy Density Approach

    NASA Technical Reports Server (NTRS)

    Hrinda, Glenn A.; Nguyen, Duc T.

    2008-01-01

    A technique for the optimization of stability constrained geometrically nonlinear shallow trusses with snap through behavior is demonstrated using the arc length method and a strain energy density approach within a discrete finite element formulation. The optimization method uses an iterative scheme that evaluates the design variables' performance and then updates them according to a recursive formula controlled by the arc length method. A minimum weight design is achieved when a uniform nonlinear strain energy density is found in all members. This minimal condition places the design load just below the critical limit load causing snap through of the structure. The optimization scheme is programmed into a nonlinear finite element algorithm to find the large strain energy at critical limit loads. Examples of highly nonlinear trusses found in literature are presented to verify the method.

  6. Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, Brad M.; Nathan, Diane L.; Wang Yan

    Purpose: The amount of fibroglandular tissue content in the breast as estimated mammographically, commonly referred to as breast percent density (PD%), is one of the most significant risk factors for developing breast cancer. Approaches to quantify breast density commonly focus on either semiautomated methods or visual assessment, both of which are highly subjective. Furthermore, most studies published to date investigating computer-aided assessment of breast PD% have been performed using digitized screen-film mammograms, while digital mammography is increasingly replacing screen-film mammography in breast cancer screening protocols. Digital mammography imaging generates two types of images for analysis, raw (i.e., 'FOR PROCESSING') andmore » vendor postprocessed (i.e., 'FOR PRESENTATION'), of which postprocessed images are commonly used in clinical practice. Development of an algorithm which effectively estimates breast PD% in both raw and postprocessed digital mammography images would be beneficial in terms of direct clinical application and retrospective analysis. Methods: This work proposes a new algorithm for fully automated quantification of breast PD% based on adaptive multiclass fuzzy c-means (FCM) clustering and support vector machine (SVM) classification, optimized for the imaging characteristics of both raw and processed digital mammography images as well as for individual patient and image characteristics. Our algorithm first delineates the breast region within the mammogram via an automated thresholding scheme to identify background air followed by a straight line Hough transform to extract the pectoral muscle region. The algorithm then applies adaptive FCM clustering based on an optimal number of clusters derived from image properties of the specific mammogram to subdivide the breast into regions of similar gray-level intensity. Finally, a SVM classifier is trained to identify which clusters within the breast tissue are likely fibroglandular, which are then aggregated into a final dense tissue segmentation that is used to compute breast PD%. Our method is validated on a group of 81 women for whom bilateral, mediolateral oblique, raw and processed screening digital mammograms were available, and agreement is assessed with both continuous and categorical density estimates made by a trained breast-imaging radiologist. Results: Strong association between algorithm-estimated and radiologist-provided breast PD% was detected for both raw (r= 0.82, p < 0.001) and processed (r= 0.85, p < 0.001) digital mammograms on a per-breast basis. Stronger agreement was found when overall breast density was assessed on a per-woman basis for both raw (r= 0.85, p < 0.001) and processed (0.89, p < 0.001) mammograms. Strong agreement between categorical density estimates was also seen (weighted Cohen's {kappa}{>=} 0.79). Repeated measures analysis of variance demonstrated no statistically significant differences between the PD% estimates (p > 0.1) due to either presentation of the image (raw vs processed) or method of PD% assessment (radiologist vs algorithm). Conclusions: The proposed fully automated algorithm was successful in estimating breast percent density from both raw and processed digital mammographic images. Accurate assessment of a woman's breast density is critical in order for the estimate to be incorporated into risk assessment models. These results show promise for the clinical application of the algorithm in quantifying breast density in a repeatable manner, both at time of imaging as well as in retrospective studies.« less

  7. Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation

    PubMed Central

    Keller, Brad M.; Nathan, Diane L.; Wang, Yan; Zheng, Yuanjie; Gee, James C.; Conant, Emily F.; Kontos, Despina

    2012-01-01

    Purpose: The amount of fibroglandular tissue content in the breast as estimated mammographically, commonly referred to as breast percent density (PD%), is one of the most significant risk factors for developing breast cancer. Approaches to quantify breast density commonly focus on either semiautomated methods or visual assessment, both of which are highly subjective. Furthermore, most studies published to date investigating computer-aided assessment of breast PD% have been performed using digitized screen-film mammograms, while digital mammography is increasingly replacing screen-film mammography in breast cancer screening protocols. Digital mammography imaging generates two types of images for analysis, raw (i.e., “FOR PROCESSING”) and vendor postprocessed (i.e., “FOR PRESENTATION”), of which postprocessed images are commonly used in clinical practice. Development of an algorithm which effectively estimates breast PD% in both raw and postprocessed digital mammography images would be beneficial in terms of direct clinical application and retrospective analysis. Methods: This work proposes a new algorithm for fully automated quantification of breast PD% based on adaptive multiclass fuzzy c-means (FCM) clustering and support vector machine (SVM) classification, optimized for the imaging characteristics of both raw and processed digital mammography images as well as for individual patient and image characteristics. Our algorithm first delineates the breast region within the mammogram via an automated thresholding scheme to identify background air followed by a straight line Hough transform to extract the pectoral muscle region. The algorithm then applies adaptive FCM clustering based on an optimal number of clusters derived from image properties of the specific mammogram to subdivide the breast into regions of similar gray-level intensity. Finally, a SVM classifier is trained to identify which clusters within the breast tissue are likely fibroglandular, which are then aggregated into a final dense tissue segmentation that is used to compute breast PD%. Our method is validated on a group of 81 women for whom bilateral, mediolateral oblique, raw and processed screening digital mammograms were available, and agreement is assessed with both continuous and categorical density estimates made by a trained breast-imaging radiologist. Results: Strong association between algorithm-estimated and radiologist-provided breast PD% was detected for both raw (r = 0.82, p < 0.001) and processed (r = 0.85, p < 0.001) digital mammograms on a per-breast basis. Stronger agreement was found when overall breast density was assessed on a per-woman basis for both raw (r = 0.85, p < 0.001) and processed (0.89, p < 0.001) mammograms. Strong agreement between categorical density estimates was also seen (weighted Cohen's κ ≥ 0.79). Repeated measures analysis of variance demonstrated no statistically significant differences between the PD% estimates (p > 0.1) due to either presentation of the image (raw vs processed) or method of PD% assessment (radiologist vs algorithm). Conclusions: The proposed fully automated algorithm was successful in estimating breast percent density from both raw and processed digital mammographic images. Accurate assessment of a woman's breast density is critical in order for the estimate to be incorporated into risk assessment models. These results show promise for the clinical application of the algorithm in quantifying breast density in a repeatable manner, both at time of imaging as well as in retrospective studies. PMID:22894417

  8. Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation.

    PubMed

    Keller, Brad M; Nathan, Diane L; Wang, Yan; Zheng, Yuanjie; Gee, James C; Conant, Emily F; Kontos, Despina

    2012-08-01

    The amount of fibroglandular tissue content in the breast as estimated mammographically, commonly referred to as breast percent density (PD%), is one of the most significant risk factors for developing breast cancer. Approaches to quantify breast density commonly focus on either semiautomated methods or visual assessment, both of which are highly subjective. Furthermore, most studies published to date investigating computer-aided assessment of breast PD% have been performed using digitized screen-film mammograms, while digital mammography is increasingly replacing screen-film mammography in breast cancer screening protocols. Digital mammography imaging generates two types of images for analysis, raw (i.e., "FOR PROCESSING") and vendor postprocessed (i.e., "FOR PRESENTATION"), of which postprocessed images are commonly used in clinical practice. Development of an algorithm which effectively estimates breast PD% in both raw and postprocessed digital mammography images would be beneficial in terms of direct clinical application and retrospective analysis. This work proposes a new algorithm for fully automated quantification of breast PD% based on adaptive multiclass fuzzy c-means (FCM) clustering and support vector machine (SVM) classification, optimized for the imaging characteristics of both raw and processed digital mammography images as well as for individual patient and image characteristics. Our algorithm first delineates the breast region within the mammogram via an automated thresholding scheme to identify background air followed by a straight line Hough transform to extract the pectoral muscle region. The algorithm then applies adaptive FCM clustering based on an optimal number of clusters derived from image properties of the specific mammogram to subdivide the breast into regions of similar gray-level intensity. Finally, a SVM classifier is trained to identify which clusters within the breast tissue are likely fibroglandular, which are then aggregated into a final dense tissue segmentation that is used to compute breast PD%. Our method is validated on a group of 81 women for whom bilateral, mediolateral oblique, raw and processed screening digital mammograms were available, and agreement is assessed with both continuous and categorical density estimates made by a trained breast-imaging radiologist. Strong association between algorithm-estimated and radiologist-provided breast PD% was detected for both raw (r = 0.82, p < 0.001) and processed (r = 0.85, p < 0.001) digital mammograms on a per-breast basis. Stronger agreement was found when overall breast density was assessed on a per-woman basis for both raw (r = 0.85, p < 0.001) and processed (0.89, p < 0.001) mammograms. Strong agreement between categorical density estimates was also seen (weighted Cohen's κ ≥ 0.79). Repeated measures analysis of variance demonstrated no statistically significant differences between the PD% estimates (p > 0.1) due to either presentation of the image (raw vs processed) or method of PD% assessment (radiologist vs algorithm). The proposed fully automated algorithm was successful in estimating breast percent density from both raw and processed digital mammographic images. Accurate assessment of a woman's breast density is critical in order for the estimate to be incorporated into risk assessment models. These results show promise for the clinical application of the algorithm in quantifying breast density in a repeatable manner, both at time of imaging as well as in retrospective studies.

  9. Adaptive density trajectory cluster based on time and space distance

    NASA Astrophysics Data System (ADS)

    Liu, Fagui; Zhang, Zhijie

    2017-10-01

    There are some hotspot problems remaining in trajectory cluster for discovering mobile behavior regularity, such as the computation of distance between sub trajectories, the setting of parameter values in cluster algorithm and the uncertainty/boundary problem of data set. As a result, based on the time and space, this paper tries to define the calculation method of distance between sub trajectories. The significance of distance calculation for sub trajectories is to clearly reveal the differences in moving trajectories and to promote the accuracy of cluster algorithm. Besides, a novel adaptive density trajectory cluster algorithm is proposed, in which cluster radius is computed through using the density of data distribution. In addition, cluster centers and number are selected by a certain strategy automatically, and uncertainty/boundary problem of data set is solved by designed weighted rough c-means. Experimental results demonstrate that the proposed algorithm can perform the fuzzy trajectory cluster effectively on the basis of the time and space distance, and obtain the optimal cluster centers and rich cluster results information adaptably for excavating the features of mobile behavior in mobile and sociology network.

  10. Implementation of several mathematical algorithms to breast tissue density classification

    NASA Astrophysics Data System (ADS)

    Quintana, C.; Redondo, M.; Tirao, G.

    2014-02-01

    The accuracy of mammographic abnormality detection methods is strongly dependent on breast tissue characteristics, where a dense breast tissue can hide lesions causing cancer to be detected at later stages. In addition, breast tissue density is widely accepted to be an important risk indicator for the development of breast cancer. This paper presents the implementation and the performance of different mathematical algorithms designed to standardize the categorization of mammographic images, according to the American College of Radiology classifications. These mathematical techniques are based on intrinsic properties calculations and on comparison with an ideal homogeneous image (joint entropy, mutual information, normalized cross correlation and index Q) as categorization parameters. The algorithms evaluation was performed on 100 cases of the mammographic data sets provided by the Ministerio de Salud de la Provincia de Córdoba, Argentina—Programa de Prevención del Cáncer de Mama (Department of Public Health, Córdoba, Argentina, Breast Cancer Prevention Program). The obtained breast classifications were compared with the expert medical diagnostics, showing a good performance. The implemented algorithms revealed a high potentiality to classify breasts into tissue density categories.

  11. Real time estimation of generation, extinction and flow of muscle fibre action potentials in high density surface EMG.

    PubMed

    Mesin, Luca

    2015-02-01

    Developing a real time method to estimate generation, extinction and propagation of muscle fibre action potentials from bi-dimensional and high density surface electromyogram (EMG). A multi-frame generalization of an optical flow technique including a source term is considered. A model describing generation, extinction and propagation of action potentials is fit to epochs of surface EMG. The algorithm is tested on simulations of high density surface EMG (inter-electrode distance equal to 5mm) from finite length fibres generated using a multi-layer volume conductor model. The flow and source term estimated from interference EMG reflect the anatomy of the muscle, i.e. the direction of the fibres (2° of average estimation error) and the positions of innervation zone and tendons under the electrode grid (mean errors of about 1 and 2mm, respectively). The global conduction velocity of the action potentials from motor units under the detection system is also obtained from the estimated flow. The processing time is about 1 ms per channel for an epoch of EMG of duration 150 ms. A new real time image processing algorithm is proposed to investigate muscle anatomy and activity. Potential applications are proposed in prosthesis control, automatic detection of optimal channels for EMG index extraction and biofeedback. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. A Novel Strategy Using Factor Graphs and the Sum-Product Algorithm for Satellite Broadcast Scheduling Problems

    NASA Astrophysics Data System (ADS)

    Chen, Jung-Chieh

    This paper presents a low complexity algorithmic framework for finding a broadcasting schedule in a low-altitude satellite system, i. e., the satellite broadcast scheduling (SBS) problem, based on the recent modeling and computational methodology of factor graphs. Inspired by the huge success of the low density parity check (LDPC) codes in the field of error control coding, in this paper, we transform the SBS problem into an LDPC-like problem through a factor graph instead of using the conventional neural network approaches to solve the SBS problem. Based on a factor graph framework, the soft-information, describing the probability that each satellite will broadcast information to a terminal at a specific time slot, is exchanged among the local processing in the proposed framework via the sum-product algorithm to iteratively optimize the satellite broadcasting schedule. Numerical results show that the proposed approach not only can obtain optimal solution but also enjoys the low complexity suitable for integral-circuit implementation.

  13. An algorithm for modeling entrainment and naturally and chemically dispersed oil droplet size distribution under surface breaking wave conditions.

    PubMed

    Li, Zhengkai; Spaulding, Malcolm L; French-McCay, Deborah

    2017-06-15

    A surface oil entrainment model and droplet size model have been developed to estimate the flux of oil under surface breaking waves. Both equations are expressed in dimensionless Weber number (We) and Ohnesorge number (Oh, which explicitly accounts for the oil viscosity, density, and oil-water interfacial tension). Data from controlled lab studies, large-scale wave tank tests, and field observations have been used to calibrate the constants of the two independent equations. Predictions using the new algorithm compared well with the observed amount of oil removed from the surface and the sizes of the oil droplets entrained in the water column. Simulations with the new algorithm, implemented in a comprehensive spill model, show that entrainment rates increase more rapidly with wind speed than previously predicted based on the existing Delvigne and Sweeney's (1988) model, and a quasi-stable droplet size distribution (d<~50μm) is developed in the near surface water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Low complexity Reed-Solomon-based low-density parity-check design for software defined optical transmission system based on adaptive puncturing decoding algorithm

    NASA Astrophysics Data System (ADS)

    Pan, Xiaolong; Liu, Bo; Zheng, Jianglong; Tian, Qinghua

    2016-08-01

    We propose and demonstrate a low complexity Reed-Solomon-based low-density parity-check (RS-LDPC) code with adaptive puncturing decoding algorithm for elastic optical transmission system. Partial received codes and the relevant column in parity-check matrix can be punctured to reduce the calculation complexity by adaptive parity-check matrix during decoding process. The results show that the complexity of the proposed decoding algorithm is reduced by 30% compared with the regular RS-LDPC system. The optimized code rate of the RS-LDPC code can be obtained after five times iteration.

  15. Deterministic annealing for density estimation by multivariate normal mixtures

    NASA Astrophysics Data System (ADS)

    Kloppenburg, Martin; Tavan, Paul

    1997-03-01

    An approach to maximum-likelihood density estimation by mixtures of multivariate normal distributions for large high-dimensional data sets is presented. Conventionally that problem is tackled by notoriously unstable expectation-maximization (EM) algorithms. We remove these instabilities by the introduction of soft constraints, enabling deterministic annealing. Our developments are motivated by the proof that algorithmically stable fuzzy clustering methods that are derived from statistical physics analogs are special cases of EM procedures.

  16. Reconstruction of internal density distributions in porous bodies from laser ultrasonic data

    NASA Technical Reports Server (NTRS)

    Lu, Yichi; Goldman, Jeffrey A.; Wadley, Haydn N. G.

    1992-01-01

    It is presently shown that, for density-reconstruction problems in which information about the inhomogeneity is known a priori, the nonlinear least-squares algorithm yields satisfactory results on the basis of limited projection data. The back-projection algorithm, which obviates assumptions about the objective function to be reconstructed, does not recover the boundary of the inhomogeneity when the number of projections is limited and ray-bending is ignored.

  17. densityCut: an efficient and versatile topological approach for automatic clustering of biological data

    PubMed Central

    Ding, Jiarui; Shah, Sohrab; Condon, Anne

    2016-01-01

    Motivation: Many biological data processing problems can be formalized as clustering problems to partition data points into sensible and biologically interpretable groups. Results: This article introduces densityCut, a novel density-based clustering algorithm, which is both time- and space-efficient and proceeds as follows: densityCut first roughly estimates the densities of data points from a K-nearest neighbour graph and then refines the densities via a random walk. A cluster consists of points falling into the basin of attraction of an estimated mode of the underlining density function. A post-processing step merges clusters and generates a hierarchical cluster tree. The number of clusters is selected from the most stable clustering in the hierarchical cluster tree. Experimental results on ten synthetic benchmark datasets and two microarray gene expression datasets demonstrate that densityCut performs better than state-of-the-art algorithms for clustering biological datasets. For applications, we focus on the recent cancer mutation clustering and single cell data analyses, namely to cluster variant allele frequencies of somatic mutations to reveal clonal architectures of individual tumours, to cluster single-cell gene expression data to uncover cell population compositions, and to cluster single-cell mass cytometry data to detect communities of cells of the same functional states or types. densityCut performs better than competing algorithms and is scalable to large datasets. Availability and Implementation: Data and the densityCut R package is available from https://bitbucket.org/jerry00/densitycut_dev. Contact: condon@cs.ubc.ca or sshah@bccrc.ca or jiaruid@cs.ubc.ca Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153661

  18. A Scalable O(N) Algorithm for Large-Scale Parallel First-Principles Molecular Dynamics Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osei-Kuffuor, Daniel; Fattebert, Jean-Luc

    2014-01-01

    Traditional algorithms for first-principles molecular dynamics (FPMD) simulations only gain a modest capability increase from current petascale computers, due to their O(N 3) complexity and their heavy use of global communications. To address this issue, we are developing a truly scalable O(N) complexity FPMD algorithm, based on density functional theory (DFT), which avoids global communications. The computational model uses a general nonorthogonal orbital formulation for the DFT energy functional, which requires knowledge of selected elements of the inverse of the associated overlap matrix. We present a scalable algorithm for approximately computing selected entries of the inverse of the overlap matrix,more » based on an approximate inverse technique, by inverting local blocks corresponding to principal submatrices of the global overlap matrix. The new FPMD algorithm exploits sparsity and uses nearest neighbor communication to provide a computational scheme capable of extreme scalability. Accuracy is controlled by the mesh spacing of the finite difference discretization, the size of the localization regions in which the electronic orbitals are confined, and a cutoff beyond which the entries of the overlap matrix can be omitted when computing selected entries of its inverse. We demonstrate the algorithm's excellent parallel scaling for up to O(100K) atoms on O(100K) processors, with a wall-clock time of O(1) minute per molecular dynamics time step.« less

  19. TU-A-12A-07: CT-Based Biomarkers to Characterize Lung Lesion: Effects of CT Dose, Slice Thickness and Reconstruction Algorithm Based Upon a Phantom Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, B; Tan, Y; Tsai, W

    2014-06-15

    Purpose: Radiogenomics promises the ability to study cancer tumor genotype from the phenotype obtained through radiographic imaging. However, little attention has been paid to the sensitivity of image features, the image-based biomarkers, to imaging acquisition techniques. This study explores the impact of CT dose, slice thickness and reconstruction algorithm on measuring image features using a thorax phantom. Methods: Twentyfour phantom lesions of known volume (1 and 2mm), shape (spherical, elliptical, lobular and spicular) and density (-630, -10 and +100 HU) were scanned on a GE VCT at four doses (25, 50, 100, and 200 mAs). For each scan, six imagemore » series were reconstructed at three slice thicknesses of 5, 2.5 and 1.25mm with continuous intervals, using the lung and standard reconstruction algorithms. The lesions were segmented with an in-house 3D algorithm. Fifty (50) image features representing lesion size, shape, edge, and density distribution/texture were computed. Regression method was employed to analyze the effect of CT dose, slice of thickness and reconstruction algorithm on these features adjusting 3 confounding factors (size, density and shape of phantom lesions). Results: The coefficients of CT dose, slice thickness and reconstruction algorithm are presented in Table 1 in the supplementary material. No significant difference was found between the image features calculated on low dose CT scans (25mAs and 50mAs). About 50% texture features were found statistically different between low doses and high doses (100 and 200mAs). Significant differences were found for almost all features when calculated on 1.25mm, 2.5mm, and 5mm slice thickness images. Reconstruction algorithms significantly affected all density-based image features, but not morphological features. Conclusions: There is a great need to standardize the CT imaging protocols for radiogenomics study because CT dose, slice thickness and reconstruction algorithm impact quantitative image features to various degrees as our study has shown.« less

  20. GPS-Free Localization Algorithm for Wireless Sensor Networks

    PubMed Central

    Wang, Lei; Xu, Qingzheng

    2010-01-01

    Localization is one of the most fundamental problems in wireless sensor networks, since the locations of the sensor nodes are critical to both network operations and most application level tasks. A GPS-free localization scheme for wireless sensor networks is presented in this paper. First, we develop a standardized clustering-based approach for the local coordinate system formation wherein a multiplication factor is introduced to regulate the number of master and slave nodes and the degree of connectivity among master nodes. Second, using homogeneous coordinates, we derive a transformation matrix between two Cartesian coordinate systems to efficiently merge them into a global coordinate system and effectively overcome the flip ambiguity problem. The algorithm operates asynchronously without a centralized controller; and does not require that the location of the sensors be known a priori. A set of parameter-setting guidelines for the proposed algorithm is derived based on a probability model and the energy requirements are also investigated. A simulation analysis on a specific numerical example is conducted to validate the mathematical analytical results. We also compare the performance of the proposed algorithm under a variety multiplication factor, node density and node communication radius scenario. Experiments show that our algorithm outperforms existing mechanisms in terms of accuracy and convergence time. PMID:22219694

  1. A new solution-adaptive grid generation method for transonic airfoil flow calculations

    NASA Technical Reports Server (NTRS)

    Nakamura, S.; Holst, T. L.

    1981-01-01

    The clustering algorithm is controlled by a second-order, ordinary differential equation which uses the airfoil surface density gradient as a forcing function. The solution to this differential equation produces a surface grid distribution which is automatically clustered in regions with large gradients. The interior grid points are established from this surface distribution by using an interpolation scheme which is fast and retains the desirable properties of the original grid generated from the standard elliptic equation approach.

  2. Optimal Design of Gradient Materials and Bi-Level Optimization of Topology Using Targets (BOTT)

    NASA Astrophysics Data System (ADS)

    Garland, Anthony

    The objective of this research is to understand the fundamental relationships necessary to develop a method to optimize both the topology and the internal gradient material distribution of a single object while meeting constraints and conflicting objectives. Functionally gradient material (FGM) objects possess continuous varying material properties throughout the object, and they allow an engineer to tailor individual regions of an object to have specific mechanical properties by locally modifying the internal material composition. A variety of techniques exists for topology optimization, and several methods exist for FGM optimization, but combining the two together is difficult. Understanding the relationship between topology and material gradient optimization enables the selection of an appropriate model and the development of algorithms, which allow engineers to design high-performance parts that better meet design objectives than optimized homogeneous material objects. For this research effort, topology optimization means finding the optimal connected structure with an optimal shape. FGM optimization means finding the optimal macroscopic material properties within an object. Tailoring the material constitutive matrix as a function of position results in gradient properties. Once, the target macroscopic properties are known, a mesostructure or a particular material nanostructure can be found which gives the target material properties at each macroscopic point. This research demonstrates that topology and gradient materials can both be optimized together for a single part. The algorithms use a discretized model of the domain and gradient based optimization algorithms. In addition, when considering two conflicting objectives the algorithms in this research generate clear 'features' within a single part. This tailoring of material properties within different areas of a single part (automated design of 'features') using computational design tools is a novel benefit of gradient material designs. A macroscopic gradient can be achieved by varying the microstructure or the mesostructures of an object. The mesostructure interpretation allows for more design freedom since the mesostructures can be tuned to have non-isotropic material properties. A new algorithm called Bi-level Optimization of Topology using Targets (BOTT) seeks to find the best distribution of mesostructure designs throughout a single object in order to minimize an objective value. On the macro level, the BOTT algorithm optimizes the macro topology and gradient material properties within the object. The BOTT algorithm optimizes the material gradient by finding the best constitutive matrix at each location with the object. In order to enhance the likelihood that a mesostructure can be generated with the same equivalent constitutive matrix, the variability of the constitutive matrix is constrained to be an orthotropic material. The stiffness in the X and Y directions (of the base coordinate system) can change in addition to rotating the orthotropic material to align with the loading at each region. Second, the BOTT algorithm designs mesostructures with macroscopic properties equal to the target properties found in step one while at the same time the algorithm seeks to minimize material usage in each mesostructure. The mesostructure algorithm maximizes the strain energy of the mesostructures unit cell when a pseudo strain is applied to the cell. A set of experiments reveals the fundamental relationship between target cell density and the strain (or pseudo strain) applied to a unit cell and the output effective properties of the mesostructure. At low density, a few mesostructure unit cell design are possible, while at higher density the mesostructure unit cell designs have many possibilities. Therefore, at low densities the effective properties of the mesostructure are a step function of the applied pseudo strain. At high densities, the effective properties of the mesostructure are continuous function of the applied pseudo strain. Finally, the macro and mesostructure designs are coordinated so that the macro and meso levels agree on the material properties at each macro region. In addition, a coordination effort seeks to coordinate the boundaries of adjacent mesostructure designs so that the macro load path is transmitted from one mesostructure design to its neighbors. The BOTT algorithm has several advantages over existing algorithms within the literature. First, the BOTT algorithm significantly reduces the computational power required to run the algorithm. Second, the BOTT algorithm indirectly enforces a minimum mesostructure density constraint which increases the manufacturability of the final design. Third, the BOTT algorithm seeks to transfer the load from one mesostructure to its neighbors by coordinating the boundaries of adjacent mesostructure designs. However, the BOTT algorithm can still be improved since it may have difficulty converging due to the step function nature of the mesostructure design problem at low density.

  3. Efficient block preconditioned eigensolvers for linear response time-dependent density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vecharynski, Eugene; Brabec, Jiri; Shao, Meiyue

    We present two efficient iterative algorithms for solving the linear response eigen- value problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into a product eigenvalue problem that is self-adjoint with respect to a K-inner product. This product eigenvalue problem can be solved efficiently by a modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-innermore » product. The solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. However, the other component of the eigenvector can be easily recovered in a postprocessing procedure. Therefore, the algorithms we present here are more efficient than existing algorithms that try to approximate both components of the eigenvectors simultaneously. The efficiency of the new algorithms is demonstrated by numerical examples.« less

  4. Electrical conductivity imaging using gradient B, decomposition algorithm in magnetic resonance electrical impedance tomography (MREIT).

    PubMed

    Park, Chunjae; Kwon, Ohin; Woo, Eung Je; Seo, Jin Keun

    2004-03-01

    In magnetic resonance electrical impedance tomography (MREIT), we try to visualize cross-sectional conductivity (or resistivity) images of a subject. We inject electrical currents into the subject through surface electrodes and measure the z component Bz of the induced internal magnetic flux density using an MRI scanner. Here, z is the direction of the main magnetic field of the MRI scanner. We formulate the conductivity image reconstruction problem in MREIT from a careful analysis of the relationship between the injection current and the induced magnetic flux density Bz. Based on the novel mathematical formulation, we propose the gradient Bz decomposition algorithm to reconstruct conductivity images. This new algorithm needs to differentiate Bz only once in contrast to the previously developed harmonic Bz algorithm where the numerical computation of (inverted delta)2Bz is required. The new algorithm, therefore, has the important advantage of much improved noise tolerance. Numerical simulations with added random noise of realistic amounts show the feasibility of the algorithm in practical applications and also its robustness against measurement noise.

  5. Control algorithms and applications of the wavefront sensorless adaptive optics

    NASA Astrophysics Data System (ADS)

    Ma, Liang; Wang, Bin; Zhou, Yuanshen; Yang, Huizhen

    2017-10-01

    Compared with the conventional adaptive optics (AO) system, the wavefront sensorless (WFSless) AO system need not to measure the wavefront and reconstruct it. It is simpler than the conventional AO in system architecture and can be applied to the complex conditions. Based on the analysis of principle and system model of the WFSless AO system, wavefront correction methods of the WFSless AO system were divided into two categories: model-free-based and model-based control algorithms. The WFSless AO system based on model-free-based control algorithms commonly considers the performance metric as a function of the control parameters and then uses certain control algorithm to improve the performance metric. The model-based control algorithms include modal control algorithms, nonlinear control algorithms and control algorithms based on geometrical optics. Based on the brief description of above typical control algorithms, hybrid methods combining the model-free-based control algorithm with the model-based control algorithm were generalized. Additionally, characteristics of various control algorithms were compared and analyzed. We also discussed the extensive applications of WFSless AO system in free space optical communication (FSO), retinal imaging in the human eye, confocal microscope, coherent beam combination (CBC) techniques and extended objects.

  6. Analysis of an Optimized MLOS Tomographic Reconstruction Algorithm and Comparison to the MART Reconstruction Algorithm

    NASA Astrophysics Data System (ADS)

    La Foy, Roderick; Vlachos, Pavlos

    2011-11-01

    An optimally designed MLOS tomographic reconstruction algorithm for use in 3D PIV and PTV applications is analyzed. Using a set of optimized reconstruction parameters, the reconstructions produced by the MLOS algorithm are shown to be comparable to reconstructions produced by the MART algorithm for a range of camera geometries, camera numbers, and particle seeding densities. The resultant velocity field error calculated using PIV and PTV algorithms is further minimized by applying both pre and post processing to the reconstructed data sets.

  7. Multiple scattering and the density distribution of a Cs MOT.

    PubMed

    Overstreet, K; Zabawa, P; Tallant, J; Schwettmann, A; Shaffer, J

    2005-11-28

    Multiple scattering is studied in a Cs magneto-optical trap (MOT). We use two Abel inversion algorithms to recover density distributions of the MOT from fluorescence images. Deviations of the density distribution from a Gaussian are attributed to multiple scattering.

  8. Maximum likelihood method for estimating airplane stability and control parameters from flight data in frequency domain

    NASA Technical Reports Server (NTRS)

    Klein, V.

    1980-01-01

    A frequency domain maximum likelihood method is developed for the estimation of airplane stability and control parameters from measured data. The model of an airplane is represented by a discrete-type steady state Kalman filter with time variables replaced by their Fourier series expansions. The likelihood function of innovations is formulated, and by its maximization with respect to unknown parameters the estimation algorithm is obtained. This algorithm is then simplified to the output error estimation method with the data in the form of transformed time histories, frequency response curves, or spectral and cross-spectral densities. The development is followed by a discussion on the equivalence of the cost function in the time and frequency domains, and on advantages and disadvantages of the frequency domain approach. The algorithm developed is applied in four examples to the estimation of longitudinal parameters of a general aviation airplane using computer generated and measured data in turbulent and still air. The cost functions in the time and frequency domains are shown to be equivalent; therefore, both approaches are complementary and not contradictory. Despite some computational advantages of parameter estimation in the frequency domain, this approach is limited to linear equations of motion with constant coefficients.

  9. Autopilot for frequency-modulation atomic force microscopy.

    PubMed

    Kuchuk, Kfir; Schlesinger, Itai; Sivan, Uri

    2015-10-01

    One of the most challenging aspects of operating an atomic force microscope (AFM) is finding optimal feedback parameters. This statement applies particularly to frequency-modulation AFM (FM-AFM), which utilizes three feedback loops to control the cantilever excitation amplitude, cantilever excitation frequency, and z-piezo extension. These loops are regulated by a set of feedback parameters, tuned by the user to optimize stability, sensitivity, and noise in the imaging process. Optimization of these parameters is difficult due to the coupling between the frequency and z-piezo feedback loops by the non-linear tip-sample interaction. Four proportional-integral (PI) parameters and two lock-in parameters regulating these loops require simultaneous optimization in the presence of a varying unknown tip-sample coupling. Presently, this optimization is done manually in a tedious process of trial and error. Here, we report on the development and implementation of an algorithm that computes the control parameters automatically. The algorithm reads the unperturbed cantilever resonance frequency, its quality factor, and the z-piezo driving signal power spectral density. It analyzes the poles and zeros of the total closed loop transfer function, extracts the unknown tip-sample transfer function, and finds four PI parameters and two lock-in parameters for the frequency and z-piezo control loops that optimize the bandwidth and step response of the total system. Implementation of the algorithm in a home-built AFM shows that the calculated parameters are consistently excellent and rarely require further tweaking by the user. The new algorithm saves the precious time of experienced users, facilitates utilization of FM-AFM by casual users, and removes the main hurdle on the way to fully automated FM-AFM.

  10. Autopilot for frequency-modulation atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Kuchuk, Kfir; Schlesinger, Itai; Sivan, Uri

    2015-10-01

    One of the most challenging aspects of operating an atomic force microscope (AFM) is finding optimal feedback parameters. This statement applies particularly to frequency-modulation AFM (FM-AFM), which utilizes three feedback loops to control the cantilever excitation amplitude, cantilever excitation frequency, and z-piezo extension. These loops are regulated by a set of feedback parameters, tuned by the user to optimize stability, sensitivity, and noise in the imaging process. Optimization of these parameters is difficult due to the coupling between the frequency and z-piezo feedback loops by the non-linear tip-sample interaction. Four proportional-integral (PI) parameters and two lock-in parameters regulating these loops require simultaneous optimization in the presence of a varying unknown tip-sample coupling. Presently, this optimization is done manually in a tedious process of trial and error. Here, we report on the development and implementation of an algorithm that computes the control parameters automatically. The algorithm reads the unperturbed cantilever resonance frequency, its quality factor, and the z-piezo driving signal power spectral density. It analyzes the poles and zeros of the total closed loop transfer function, extracts the unknown tip-sample transfer function, and finds four PI parameters and two lock-in parameters for the frequency and z-piezo control loops that optimize the bandwidth and step response of the total system. Implementation of the algorithm in a home-built AFM shows that the calculated parameters are consistently excellent and rarely require further tweaking by the user. The new algorithm saves the precious time of experienced users, facilitates utilization of FM-AFM by casual users, and removes the main hurdle on the way to fully automated FM-AFM.

  11. Autopilot for frequency-modulation atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuchuk, Kfir; Schlesinger, Itai; Sivan, Uri, E-mail: phsivan@tx.technion.ac.il

    2015-10-15

    One of the most challenging aspects of operating an atomic force microscope (AFM) is finding optimal feedback parameters. This statement applies particularly to frequency-modulation AFM (FM-AFM), which utilizes three feedback loops to control the cantilever excitation amplitude, cantilever excitation frequency, and z-piezo extension. These loops are regulated by a set of feedback parameters, tuned by the user to optimize stability, sensitivity, and noise in the imaging process. Optimization of these parameters is difficult due to the coupling between the frequency and z-piezo feedback loops by the non-linear tip-sample interaction. Four proportional-integral (PI) parameters and two lock-in parameters regulating these loopsmore » require simultaneous optimization in the presence of a varying unknown tip-sample coupling. Presently, this optimization is done manually in a tedious process of trial and error. Here, we report on the development and implementation of an algorithm that computes the control parameters automatically. The algorithm reads the unperturbed cantilever resonance frequency, its quality factor, and the z-piezo driving signal power spectral density. It analyzes the poles and zeros of the total closed loop transfer function, extracts the unknown tip-sample transfer function, and finds four PI parameters and two lock-in parameters for the frequency and z-piezo control loops that optimize the bandwidth and step response of the total system. Implementation of the algorithm in a home-built AFM shows that the calculated parameters are consistently excellent and rarely require further tweaking by the user. The new algorithm saves the precious time of experienced users, facilitates utilization of FM-AFM by casual users, and removes the main hurdle on the way to fully automated FM-AFM.« less

  12. A Context-sensitive Approach to Anonymizing Spatial Surveillance Data: Impact on Outbreak Detection

    PubMed Central

    Cassa, Christopher A.; Grannis, Shaun J.; Overhage, J. Marc; Mandl, Kenneth D.

    2006-01-01

    Objective: The use of spatially based methods and algorithms in epidemiology and surveillance presents privacy challenges for researchers and public health agencies. We describe a novel method for anonymizing individuals in public health data sets by transposing their spatial locations through a process informed by the underlying population density. Further, we measure the impact of the skew on detection of spatial clustering as measured by a spatial scanning statistic. Design: Cases were emergency department (ED) visits for respiratory illness. Baseline ED visit data were injected with artificially created clusters ranging in magnitude, shape, and location. The geocoded locations were then transformed using a de-identification algorithm that accounts for the local underlying population density. Measurements: A total of 12,600 separate weeks of case data with artificially created clusters were combined with control data and the impact on detection of spatial clustering identified by a spatial scan statistic was measured. Results: The anonymization algorithm produced an expected skew of cases that resulted in high values of data set k-anonymity. De-identification that moves points an average distance of 0.25 km lowers the spatial cluster detection sensitivity by less than 4% and lowers the detection specificity less than 1%. Conclusion: A population-density–based Gaussian spatial blurring markedly decreases the ability to identify individuals in a data set while only slightly decreasing the performance of a standardly used outbreak detection tool. These findings suggest new approaches to anonymizing data for spatial epidemiology and surveillance. PMID:16357353

  13. The endpoint detection technique for deep submicrometer plasma etching

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Du, Zhi-yun; Zeng, Yong; Lan, Zhong-went

    2009-07-01

    The availability of reliable optical sensor technology provides opportunities to better characterize and control plasma etching processes in real time, they could play a important role in endpoint detection, fault diagnostics and processes feedback control and so on. The optical emission spectroscopy (OES) method becomes deficient in the case of deep submicrometer gate etching. In the newly developed high density inductively coupled plasma (HD-ICP) etching system, Interferometry endpoint (IEP) is introduced to get the EPD. The IEP fringe count algorithm is investigated to predict the end point, and then its signal is used to control etching rate and to call end point with OES signal in over etching (OE) processes step. The experiment results show that IEP together with OES provide extra process control margin for advanced device with thinner gate oxide.

  14. Automated Method of Frequency Determination in Software Metric Data Through the Use of the Multiple Signal Classification (MUSIC) Algorithm

    DTIC Science & Technology

    1998-06-26

    METHOD OF FREQUENCY DETERMINATION 4 IN SOFTWARE METRIC DATA THROUGH THE USE OF THE 5 MULTIPLE SIGNAL CLASSIFICATION ( MUSIC ) ALGORITHM 6 7 STATEMENT OF...graph showing the estimated power spectral 12 density (PSD) generated by the multiple signal classification 13 ( MUSIC ) algorithm from the data set used...implemented in this module; however, it is preferred to use 1 the Multiple Signal Classification ( MUSIC ) algorithm. The MUSIC 2 algorithm is

  15. A computer program for borehole compensation of dual-detector density well logs

    USGS Publications Warehouse

    Scott, James Henry

    1978-01-01

    The computer program described in this report was developed for applying a borehole-rugosity and mudcake compensation algorithm to dual-density logs using the following information: the water level in the drill hole, hole diameter (from a caliper log if available, or the nominal drill diameter if not), and the two gamma-ray count rate logs from the near and far detectors of the density probe. The equations that represent the compensation algorithm and the calibration of the two detectors (for converting countrate or density) were derived specifically for a probe manufactured by Comprobe Inc. (5.4 cm O.D. dual-density-caliper); they are not applicable to other probes. However, equivalent calibration and compensation equations can be empirically determined for any other similar two-detector density probes and substituted in the computer program listed in this report. * Use of brand names in this report does not necessarily constitute endorsement by the U.S. Geological Survey.

  16. Angle Statistics Reconstruction: a robust reconstruction algorithm for Muon Scattering Tomography

    NASA Astrophysics Data System (ADS)

    Stapleton, M.; Burns, J.; Quillin, S.; Steer, C.

    2014-11-01

    Muon Scattering Tomography (MST) is a technique for using the scattering of cosmic ray muons to probe the contents of enclosed volumes. As a muon passes through material it undergoes multiple Coulomb scattering, where the amount of scattering is dependent on the density and atomic number of the material as well as the path length. Hence, MST has been proposed as a means of imaging dense materials, for instance to detect special nuclear material in cargo containers. Algorithms are required to generate an accurate reconstruction of the material density inside the volume from the muon scattering information and some have already been proposed, most notably the Point of Closest Approach (PoCA) and Maximum Likelihood/Expectation Maximisation (MLEM) algorithms. However, whilst PoCA-based algorithms are easy to implement, they perform rather poorly in practice. Conversely, MLEM is a complicated algorithm to implement and computationally intensive and there is currently no published, fast and easily-implementable algorithm that performs well in practice. In this paper, we first provide a detailed analysis of the source of inaccuracy in PoCA-based algorithms. We then motivate an alternative method, based on ideas first laid out by Morris et al, presenting and fully specifying an algorithm that performs well against simulations of realistic scenarios. We argue this new algorithm should be adopted by developers of Muon Scattering Tomography as an alternative to PoCA.

  17. Computerized tomography platform using beta rays

    NASA Astrophysics Data System (ADS)

    Paetkau, Owen; Parsons, Zachary; Paetkau, Mark

    2017-12-01

    A computerized tomography (CT) system using a 0.1 μCi Sr-90 beta source, Geiger counter, and low density foam samples was developed. A simple algorithm was used to construct images from the data collected with the beta CT scanner. The beta CT system is analogous to X-ray CT as both types of radiation are sensitive to density variations. This system offers a platform for learning opportunities in an undergraduate laboratory, covering topics such as image reconstruction algorithms, radiation exposure, and the energy dependence of absorption.

  18. Optimization of Layer Densities for Spacecraft Multilayered Insulation Systems

    NASA Technical Reports Server (NTRS)

    Johnson, W. L.

    2009-01-01

    Numerous tests of various multilayer insulation systems have indicated that there are optimal densities for these systems. However, the only method of calculating this optimal density was by a complex physics based algorithm developed by McIntosh. In the 1970's much data were collected on the performance of these insulation systems with many different variables analyzed. All formulas generated included number of layers and layer density as geometric variables in solving for the heat flux, none of them was in a differentiable form for a single geometric variable. It was recently discovered that by converting the equations from heat flux to thermal conductivity using Fourier's Law, the equations became functions of layer density, temperatures, and material properties only. The thickness and number of layers of the blanket were merged into a layer density. These equations were then differentiated with respect to layer density. By setting the first derivative equal to zero, and solving for the layer density, the critical layer density was determined. Taking a second derivative showed that the critical layer density is a minimum in the function and thus the optimum density for minimal heat leak, this is confirmed by plotting the original function. This method was checked and validated using test data from the Multipurpose Hydrogen Testbed which was designed using McIntosh's algorithm.

  19. A histogram-free multicanonical Monte Carlo algorithm for the construction of analytical density of states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisenbach, Markus; Li, Ying Wai

    We report a new multicanonical Monte Carlo (MC) algorithm to obtain the density of states (DOS) for physical systems with continuous state variables in statistical mechanics. Our algorithm is able to obtain an analytical form for the DOS expressed in a chosen basis set, instead of a numerical array of finite resolution as in previous variants of this class of MC methods such as the multicanonical (MUCA) sampling and Wang-Landau (WL) sampling. This is enabled by storing the visited states directly in a data set and avoiding the explicit collection of a histogram. This practice also has the advantage ofmore » avoiding undesirable artificial errors caused by the discretization and binning of continuous state variables. Our results show that this scheme is capable of obtaining converged results with a much reduced number of Monte Carlo steps, leading to a significant speedup over existing algorithms.« less

  20. New Embedded Denotes Fuzzy C-Mean Application for Breast Cancer Density Segmentation in Digital Mammograms

    NASA Astrophysics Data System (ADS)

    Othman, Khairulnizam; Ahmad, Afandi

    2016-11-01

    In this research we explore the application of normalize denoted new techniques in advance fast c-mean in to the problem of finding the segment of different breast tissue regions in mammograms. The goal of the segmentation algorithm is to see if new denotes fuzzy c- mean algorithm could separate different densities for the different breast patterns. The new density segmentation is applied with multi-selection of seeds label to provide the hard constraint, whereas the seeds labels are selected based on user defined. New denotes fuzzy c- mean have been explored on images of various imaging modalities but not on huge format digital mammograms just yet. Therefore, this project is mainly focused on using normalize denoted new techniques employed in fuzzy c-mean to perform segmentation to increase visibility of different breast densities in mammography images. Segmentation of the mammogram into different mammographic densities is useful for risk assessment and quantitative evaluation of density changes. Our proposed methodology for the segmentation of mammograms on the basis of their region into different densities based categories has been tested on MIAS database and Trueta Database.

  1. Surface-Height Determination of Crevassed Glaciers-Mathematical Principles of an Autoadaptive Density-Dimension Algorithm and Validation Using ICESat-2 Simulator (SIMPL) Data

    NASA Technical Reports Server (NTRS)

    Herzfeld, Ute C.; Trantow, Thomas M.; Harding, David; Dabney, Philip W.

    2017-01-01

    Glacial acceleration is a main source of uncertainty in sea-level-change assessment. Measurement of ice-surface heights with a spatial and temporal resolution that not only allows elevation-change calculation, but also captures ice-surface morphology and its changes is required to aid in investigations of the geophysical processes associated with glacial acceleration.The Advanced Topographic Laser Altimeter System aboard NASAs future ICESat-2 Mission (launch 2017) will implement multibeam micropulse photon-counting lidar altimetry aimed at measuring ice-surface heights at 0.7-m along-track spacing. The instrument is designed to resolve spatial and temporal variability of rapidly changing glaciers and ice sheets and the Arctic sea ice. The new technology requires the development of a new mathematical algorithm for the retrieval of height information.We introduce the density-dimension algorithm (DDA) that utilizes the radial basis function to calculate a weighted density as a form of data aggregation in the photon cloud and considers density an additional dimension as an aid in auto-adaptive threshold determination. The auto-adaptive capability of the algorithm is necessary to separate returns from noise and signal photons under changing environmental conditions. The algorithm is evaluated using data collected with an ICESat-2 simulator instrument, the Slope Imaging Multi-polarization Photon-counting Lidar, over the heavily crevassed Giesecke Braer in Northwestern Greenland in summer 2015. Results demonstrate that ICESat-2 may be expected to provide ice-surface height measurements over crevassed glaciers and other complex ice surfaces. The DDA is generally applicable for the analysis of airborne and spaceborne micropulse photon-counting lidar data over complex and simple surfaces.

  2. SA-SOM algorithm for detecting communities in complex networks

    NASA Astrophysics Data System (ADS)

    Chen, Luogeng; Wang, Yanran; Huang, Xiaoming; Hu, Mengyu; Hu, Fang

    2017-10-01

    Currently, community detection is a hot topic. This paper, based on the self-organizing map (SOM) algorithm, introduced the idea of self-adaptation (SA) that the number of communities can be identified automatically, a novel algorithm SA-SOM of detecting communities in complex networks is proposed. Several representative real-world networks and a set of computer-generated networks by LFR-benchmark are utilized to verify the accuracy and the efficiency of this algorithm. The experimental findings demonstrate that this algorithm can identify the communities automatically, accurately and efficiently. Furthermore, this algorithm can also acquire higher values of modularity, NMI and density than the SOM algorithm does.

  3. ARM-based control system for terry rapier loom

    NASA Astrophysics Data System (ADS)

    Shi, Weimin; Gu, Yeqing; Wu, Zhenyu; Wang, Fan

    2007-12-01

    In this paper, a novel ARM-based mechatronics control technique applied in terry rapier loom was presented. Electronic weft selection, electronic fluff, electronic let-off and take-up motions system, which consists of position and speedcontrolled servomechanisms, were studied. The control system configuration, operation principle, and mathematical models of electronic drives system were analyzed. The synchronism among all mechanical motions and an improved intelligent control algorithm for the warp let-off tension control was discussed. The result indict that, by applying electronic and embedded control techniques and the individual servomechanisms, the electronic weft selection, electronic let-off device and electronic take-up device in HGA732T terry rapier loom have greatly simplified the initial complicated mechanism, kept the warp tension constant from full to empty beam, set the variable weft density, eliminated the start mark effectively, promoted its flexibility, reliability and properties, and improved the fabric quality.

  4. Double-blind randomized 12-month soy intervention had no effects on breast MRI fibroglandular tissue density or mammographic density

    PubMed Central

    Wu, Anna H.; Spicer, Darcy; Garcia, Agustin; Tseng, Chiu-Chen; Hovanessian-Larsen, Linda; Sheth, Pulin; Martin, Sue Ellen; Hawes, Debra; Russell, Christy; McDonald, Heather; Tripathy, Debu; Su, Min-Ying; Ursin, Giske; Pike, Malcolm C.

    2015-01-01

    Soy supplementation by breast cancer patients remains controversial. No controlled intervention studies have investigated the effects of soy supplementation on mammographic density in breast cancer patients. We conducted a double-blind, randomized, placebo-controlled intervention study in previously treated breast cancer patients (n=66) and high-risk women (n=29). We obtained digital mammograms and breast magnetic resonance imaging (MRI) scans at baseline and after 12 months of daily soy (50 mg isoflavones per day) (n=46) or placebo (n=49) tablet supplementation. The total breast area (MA) and the area of mammographic density (MD) on the mammogram was measured using a validated computer-assisted method, and mammographic density percent (MD% = 100 × MD/MA) was determined. A well-tested computer algorithm was used to quantitatively measure the total breast volume (TBV) and fibroglandular tissue volume (FGV) on the breast MRI, and the FGV percent (FGV% = 100 × FGV/TBV) was calculated. On the basis of plasma soy isoflavone levels, compliance was excellent. Small decreases in MD% measured by the ratios of month 12 to baseline levels, were seen in the soy (0.95) and the placebo (0.87) groups; these changes did not differ between the treatments (P=0.38). Small decreases in FGV% were also found in both the soy (0.90) and the placebo (0.92) groups; these changes also did not differ between the treatments (P=0.48). Results were comparable in breast cancer patients and high-risk women. We found no evidence that soy supplementation would decrease mammographic density and that MRI might be more sensitive to changes in density than mammography. PMID:26276750

  5. TRACTOGRAPHY DENSITY AND NETWORK MEASURES IN ALZHEIMER'S DISEASE.

    PubMed

    Prasad, Gautam; Nir, Talia M; Toga, Arthur W; Thompson, Paul M

    2013-04-01

    Brain connectivity declines in Alzheimer's disease (AD), both functionally and structurally. Connectivity maps and networks derived from diffusion-based tractography offer new ways to track disease progression and to understand how AD affects the brain. Here we set out to identify (1) which fiber network measures show greatest differences between AD patients and controls, and (2) how these effects depend on the density of fibers extracted by the tractography algorithm. We computed brain networks from diffusion-weighted images (DWI) of the brain, in 110 subjects (28 normal elderly, 56 with early and 11 with late mild cognitive impairment, and 15 with AD). We derived connectivity matrices and network topology measures, for each subject, from whole-brain tractography and cortical parcellations. We used an ODF lookup table to speed up fiber extraction, and to exploit the full information in the orientation distribution function (ODF). This made it feasible to compute high density connectivity maps. We used accelerated tractography to compute a large number of fibers to understand what effect fiber density has on network measures and in distinguishing different disease groups in our data. We focused on global efficiency, transitivity, path length, mean degree, density, modularity, small world, and assortativity measures computed from weighted and binary undirected connectivity matrices. Of all these measures, the mean nodal degree best distinguished diagnostic groups. High-density fiber matrices were most helpful for picking up the more subtle clinical differences, e.g. between mild cognitively impaired (MCI) and normals, or for distinguishing subtypes of MCI (early versus late). Care is needed in clinical analyses of brain connectivity, as the density of extracted fibers may affect how well a network measure can pick up differences between patients and controls.

  6. Rapid determination of cell mass and density using digitally controlled electric field in a microfluidic chip.

    PubMed

    Zhao, Yuliang; Lai, Hok Sum Sam; Zhang, Guanglie; Lee, Gwo-Bin; Li, Wen Jung

    2014-11-21

    The density of a single cell is a fundamental property of cells. Cells in the same cycle phase have similar volume, but the differences in their mass and density could elucidate each cell's physiological state. Here we report a novel technique to rapidly measure the density and mass of a single cell using an optically induced electrokinetics (OEK) microfluidic platform. Presently, single cellular mass and density measurement devices require a complicated fabrication process and their output is not scalable, i.e., it is extremely difficult to measure the mass and density of a large quantity of cells rapidly. The technique reported here operates on a principle combining sedimentation theory, computer vision, and microparticle manipulation techniques in an OEK microfluidic platform. We will show in this paper that this technique enables the measurement of single-cell volume, density, and mass rapidly and accurately in a repeatable manner. The technique is also scalable - it allows simultaneous measurement of volume, density, and mass of multiple cells. Essentially, a simple time-controlled projected light pattern is used to illuminate the selected area on the OEK microfluidic chip that contains cells to lift the cells to a particular height above the chip's surface. Then, the cells are allowed to "free fall" to the chip's surface, with competing buoyancy, gravitational, and fluidic drag forces acting on the cells. By using a computer vision algorithm to accurately track the motion of the cells and then relate the cells' motion trajectory to sedimentation theory, the volume, mass, and density of each cell can be rapidly determined. A theoretical model of micro-sized spheres settling towards an infinite plane in a microfluidic environment is first derived and validated experimentally using standard micropolystyrene beads to demonstrate the viability and accuracy of this new technique. Next, we show that the yeast cell volume, mass, and density could be rapidly determined using this technology, with results comparable to those using the existing method suspended microchannel resonator.

  7. A high resolution pneumatic stepping actuator for harsh reactor environments

    NASA Astrophysics Data System (ADS)

    Tippetts, Thomas B.; Evans, Paul S.; Riffle, George K.

    1993-01-01

    A reactivity control actuator for a high-power density nuclear propulsion reactor must be installed in close proximity to the reactor core. The energy input from radiation to the actuator structure could exceed hundreds of W/cc unless low-cross section, low-absorptivity materials are chosen. Also, for post-test handling and subsequent storage, materials should not be used that are activated into long half-life isotopes. Pneumatic actuators can be constructed from various reactor-compatible materials, but conventional pneumatic piston actuators generally lack the stiffness required for high resolution reactivity control unless electrical position sensors and compensated electronic control systems are used. To overcome these limitations, a pneumatic actuator is under development that positions an output shaft in response to a series of pneumatic pulses, comprising a pneumatic analog of an electrical stepping motor. The pneumatic pulses are generated remotely, beyond the strong radiation environment, and transmitted to the actuator through tubing. The mechanically simple actuator uses a nutating gear harmonic drive to convert motion of small pistons directly to high-resolution angular motion of the output shaft. The digital nature of this actuator is suitable for various reactor control algorithms but is especially compatible with the three bean salad algorithm discussed by Ball et al. (1991).

  8. Final Technical Report [Scalable methods for electronic excitations and optical responses of nanostructures: mathematics to algorithms to observables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saad, Yousef

    2014-03-19

    The master project under which this work is funded had as its main objective to develop computational methods for modeling electronic excited-state and optical properties of various nanostructures. The specific goals of the computer science group were primarily to develop effective numerical algorithms in Density Functional Theory (DFT) and Time Dependent Density Functional Theory (TDDFT). There were essentially four distinct stated objectives. The first objective was to study and develop effective numerical algorithms for solving large eigenvalue problems such as those that arise in Density Functional Theory (DFT) methods. The second objective was to explore so-called linear scaling methods ormore » Methods that avoid diagonalization. The third was to develop effective approaches for Time-Dependent DFT (TDDFT). Our fourth and final objective was to examine effective solution strategies for other problems in electronic excitations, such as the GW/Bethe-Salpeter method, and quantum transport problems.« less

  9. Development of a 3D muon disappearance algorithm for muon scattering tomography

    NASA Astrophysics Data System (ADS)

    Blackwell, T. B.; Kudryavtsev, V. A.

    2015-05-01

    Upon passing through a material, muons lose energy, scatter off nuclei and atomic electrons, and can stop in the material. Muons will more readily lose energy in higher density materials. Therefore multiple muon disappearances within a localized volume may signal the presence of high-density materials. We have developed a new technique that improves the sensitivity of standard muon scattering tomography. This technique exploits these muon disappearances to perform non-destructive assay of an inspected volume. Muons that disappear have their track evaluated using a 3D line extrapolation algorithm, which is in turn used to construct a 3D tomographic image of the inspected volume. Results of Monte Carlo simulations that measure muon disappearance in different types of target materials are presented. The ability to differentiate between different density materials using the 3D line extrapolation algorithm is established. Finally the capability of this new muon disappearance technique to enhance muon scattering tomography techniques in detecting shielded HEU in cargo containers has been demonstrated.

  10. A random-walk algorithm for modeling lithospheric density and the role of body forces in the evolution of the Midcontinent Rift

    USGS Publications Warehouse

    Levandowski, William Brower; Boyd, Oliver; Briggs, Richard; Gold, Ryan D.

    2015-01-01

    We test this algorithm on the Proterozoic Midcontinent Rift (MCR), north-central U.S. The MCR provides a challenge because it hosts a gravity high overlying low shear-wave velocity crust in a generally flat region. Our initial density estimates are derived from a seismic velocity/crustal thickness model based on joint inversion of surface-wave dispersion and receiver functions. By adjusting these estimates to reproduce gravity and topography, we generate a lithospheric-scale model that reveals dense middle crust and eclogitized lowermost crust within the rift. Mantle lithospheric density beneath the MCR is not anomalous, consistent with geochemical evidence that lithospheric mantle was not the primary source of rift-related magmas and suggesting that extension occurred in response to far-field stress rather than a hot mantle plume. Similarly, the subsequent inversion of normal faults resulted from changing far-field stress that exploited not only warm, recently faulted crust but also a gravitational potential energy low in the MCR. The success of this density modeling algorithm in the face of such apparently contradictory geophysical properties suggests that it may be applicable to a variety of tectonic and geodynamic problems. 

  11. A Simulation-Optimization Model for the Management of Seawater Intrusion

    NASA Astrophysics Data System (ADS)

    Stanko, Z.; Nishikawa, T.

    2012-12-01

    Seawater intrusion is a common problem in coastal aquifers where excessive groundwater pumping can lead to chloride contamination of a freshwater resource. Simulation-optimization techniques have been developed to determine optimal management strategies while mitigating seawater intrusion. The simulation models are often density-independent groundwater-flow models that may assume a sharp interface and/or use equivalent freshwater heads. The optimization methods are often linear-programming (LP) based techniques that that require simplifications of the real-world system. However, seawater intrusion is a highly nonlinear, density-dependent flow and transport problem, which requires the use of nonlinear-programming (NLP) or global-optimization (GO) techniques. NLP approaches are difficult because of the need for gradient information; therefore, we have chosen a GO technique for this study. Specifically, we have coupled a multi-objective genetic algorithm (GA) with a density-dependent groundwater-flow and transport model to simulate and identify strategies that optimally manage seawater intrusion. GA is a heuristic approach, often chosen when seeking optimal solutions to highly complex and nonlinear problems where LP or NLP methods cannot be applied. The GA utilized in this study is the Epsilon-Nondominated Sorted Genetic Algorithm II (ɛ-NSGAII), which can approximate a pareto-optimal front between competing objectives. This algorithm has several key features: real and/or binary variable capabilities; an efficient sorting scheme; preservation and diversity of good solutions; dynamic population sizing; constraint handling; parallelizable implementation; and user controlled precision for each objective. The simulation model is SEAWAT, the USGS model that couples MODFLOW with MT3DMS for variable-density flow and transport. ɛ-NSGAII and SEAWAT were efficiently linked together through a C-Fortran interface. The simulation-optimization model was first tested by using a published density-independent flow model test case that was originally solved using a sequential LP method with the USGS's Ground-Water Management Process (GWM). For the problem formulation, the objective is to maximize net groundwater extraction, subject to head and head-gradient constraints. The decision variables are pumping rates at fixed wells and the system's state is represented with freshwater hydraulic head. The results of the proposed algorithm were similar to the published results (within 1%); discrepancies may be attributed to differences in the simulators and inherent differences between LP and GA. The GWM test case was then extended to a density-dependent flow and transport version. As formulated, the optimization problem is infeasible because of the density effects on hydraulic head. Therefore, the sum of the squared constraint violation (SSC) was used as a second objective. The result is a pareto curve showing optimal pumping rates versus the SSC. Analysis of this curve indicates that a similar net-extraction rate to the test case can be obtained with a minor violation in vertical head-gradient constraints. This study shows that a coupled ɛ-NSGAII/SEAWAT model can be used for the management of groundwater seawater intrusion. In the future, the proposed methodology will be applied to a real-world seawater intrusion and resource management problem for Santa Barbara, CA.

  12. Efficient Modeling of Gravity Fields Caused by Sources with Arbitrary Geometry and Arbitrary Density Distribution

    NASA Astrophysics Data System (ADS)

    Wu, Leyuan

    2018-01-01

    We present a brief review of gravity forward algorithms in Cartesian coordinate system, including both space-domain and Fourier-domain approaches, after which we introduce a truly general and efficient algorithm, namely the convolution-type Gauss fast Fourier transform (Conv-Gauss-FFT) algorithm, for 2D and 3D modeling of gravity potential and its derivatives due to sources with arbitrary geometry and arbitrary density distribution which are defined either by discrete or by continuous functions. The Conv-Gauss-FFT algorithm is based on the combined use of a hybrid rectangle-Gaussian grid and the fast Fourier transform (FFT) algorithm. Since the gravity forward problem in Cartesian coordinate system can be expressed as continuous convolution-type integrals, we first approximate the continuous convolution by a weighted sum of a series of shifted discrete convolutions, and then each shifted discrete convolution, which is essentially a Toeplitz system, is calculated efficiently and accurately by combining circulant embedding with the FFT algorithm. Synthetic and real model tests show that the Conv-Gauss-FFT algorithm can obtain high-precision forward results very efficiently for almost any practical model, and it works especially well for complex 3D models when gravity fields on large 3D regular grids are needed.

  13. Localized Ambient Solidity Separation Algorithm Based Computer User Segmentation.

    PubMed

    Sun, Xiao; Zhang, Tongda; Chai, Yueting; Liu, Yi

    2015-01-01

    Most of popular clustering methods typically have some strong assumptions of the dataset. For example, the k-means implicitly assumes that all clusters come from spherical Gaussian distributions which have different means but the same covariance. However, when dealing with datasets that have diverse distribution shapes or high dimensionality, these assumptions might not be valid anymore. In order to overcome this weakness, we proposed a new clustering algorithm named localized ambient solidity separation (LASS) algorithm, using a new isolation criterion called centroid distance. Compared with other density based isolation criteria, our proposed centroid distance isolation criterion addresses the problem caused by high dimensionality and varying density. The experiment on a designed two-dimensional benchmark dataset shows that our proposed LASS algorithm not only inherits the advantage of the original dissimilarity increments clustering method to separate naturally isolated clusters but also can identify the clusters which are adjacent, overlapping, and under background noise. Finally, we compared our LASS algorithm with the dissimilarity increments clustering method on a massive computer user dataset with over two million records that contains demographic and behaviors information. The results show that LASS algorithm works extremely well on this computer user dataset and can gain more knowledge from it.

  14. Localized Ambient Solidity Separation Algorithm Based Computer User Segmentation

    PubMed Central

    Sun, Xiao; Zhang, Tongda; Chai, Yueting; Liu, Yi

    2015-01-01

    Most of popular clustering methods typically have some strong assumptions of the dataset. For example, the k-means implicitly assumes that all clusters come from spherical Gaussian distributions which have different means but the same covariance. However, when dealing with datasets that have diverse distribution shapes or high dimensionality, these assumptions might not be valid anymore. In order to overcome this weakness, we proposed a new clustering algorithm named localized ambient solidity separation (LASS) algorithm, using a new isolation criterion called centroid distance. Compared with other density based isolation criteria, our proposed centroid distance isolation criterion addresses the problem caused by high dimensionality and varying density. The experiment on a designed two-dimensional benchmark dataset shows that our proposed LASS algorithm not only inherits the advantage of the original dissimilarity increments clustering method to separate naturally isolated clusters but also can identify the clusters which are adjacent, overlapping, and under background noise. Finally, we compared our LASS algorithm with the dissimilarity increments clustering method on a massive computer user dataset with over two million records that contains demographic and behaviors information. The results show that LASS algorithm works extremely well on this computer user dataset and can gain more knowledge from it. PMID:26221133

  15. A Reproducible Computerized Method for Quantitation of Capillary Density using Nailfold Capillaroscopy.

    PubMed

    Cheng, Cynthia; Lee, Chadd W; Daskalakis, Constantine

    2015-10-27

    Capillaroscopy is a non-invasive, efficient, relatively inexpensive and easy to learn methodology for directly visualizing the microcirculation. The capillaroscopy technique can provide insight into a patient's microvascular health, leading to a variety of potentially valuable dermatologic, ophthalmologic, rheumatologic and cardiovascular clinical applications. In addition, tumor growth may be dependent on angiogenesis, which can be quantitated by measuring microvessel density within the tumor. However, there is currently little to no standardization of techniques, and only one publication to date reports the reliability of a currently available, complex computer based algorithms for quantitating capillaroscopy data.(1) This paper describes a new, simpler, reliable, standardized capillary counting algorithm for quantitating nailfold capillaroscopy data. A simple, reproducible computerized capillaroscopy algorithm such as this would facilitate more widespread use of the technique among researchers and clinicians. Many researchers currently analyze capillaroscopy images by hand, promoting user fatigue and subjectivity of the results. This paper describes a novel, easy-to-use automated image processing algorithm in addition to a reproducible, semi-automated counting algorithm. This algorithm enables analysis of images in minutes while reducing subjectivity; only a minimal amount of training time (in our experience, less than 1 hr) is needed to learn the technique.

  16. A Reproducible Computerized Method for Quantitation of Capillary Density using Nailfold Capillaroscopy

    PubMed Central

    Daskalakis, Constantine

    2015-01-01

    Capillaroscopy is a non-invasive, efficient, relatively inexpensive and easy to learn methodology for directly visualizing the microcirculation. The capillaroscopy technique can provide insight into a patient’s microvascular health, leading to a variety of potentially valuable dermatologic, ophthalmologic, rheumatologic and cardiovascular clinical applications. In addition, tumor growth may be dependent on angiogenesis, which can be quantitated by measuring microvessel density within the tumor. However, there is currently little to no standardization of techniques, and only one publication to date reports the reliability of a currently available, complex computer based algorithms for quantitating capillaroscopy data.1 This paper describes a new, simpler, reliable, standardized capillary counting algorithm for quantitating nailfold capillaroscopy data. A simple, reproducible computerized capillaroscopy algorithm such as this would facilitate more widespread use of the technique among researchers and clinicians. Many researchers currently analyze capillaroscopy images by hand, promoting user fatigue and subjectivity of the results. This paper describes a novel, easy-to-use automated image processing algorithm in addition to a reproducible, semi-automated counting algorithm. This algorithm enables analysis of images in minutes while reducing subjectivity; only a minimal amount of training time (in our experience, less than 1 hr) is needed to learn the technique. PMID:26554744

  17. An Effective Cuckoo Search Algorithm for Node Localization in Wireless Sensor Network.

    PubMed

    Cheng, Jing; Xia, Linyuan

    2016-08-31

    Localization is an essential requirement in the increasing prevalence of wireless sensor network (WSN) applications. Reducing the computational complexity, communication overhead in WSN localization is of paramount importance in order to prolong the lifetime of the energy-limited sensor nodes and improve localization performance. This paper proposes an effective Cuckoo Search (CS) algorithm for node localization. Based on the modification of step size, this approach enables the population to approach global optimal solution rapidly, and the fitness of each solution is employed to build mutation probability for avoiding local convergence. Further, the approach restricts the population in the certain range so that it can prevent the energy consumption caused by insignificant search. Extensive experiments were conducted to study the effects of parameters like anchor density, node density and communication range on the proposed algorithm with respect to average localization error and localization success ratio. In addition, a comparative study was conducted to realize the same localization task using the same network deployment. Experimental results prove that the proposed CS algorithm can not only increase convergence rate but also reduce average localization error compared with standard CS algorithm and Particle Swarm Optimization (PSO) algorithm.

  18. An Effective Cuckoo Search Algorithm for Node Localization in Wireless Sensor Network

    PubMed Central

    Cheng, Jing; Xia, Linyuan

    2016-01-01

    Localization is an essential requirement in the increasing prevalence of wireless sensor network (WSN) applications. Reducing the computational complexity, communication overhead in WSN localization is of paramount importance in order to prolong the lifetime of the energy-limited sensor nodes and improve localization performance. This paper proposes an effective Cuckoo Search (CS) algorithm for node localization. Based on the modification of step size, this approach enables the population to approach global optimal solution rapidly, and the fitness of each solution is employed to build mutation probability for avoiding local convergence. Further, the approach restricts the population in the certain range so that it can prevent the energy consumption caused by insignificant search. Extensive experiments were conducted to study the effects of parameters like anchor density, node density and communication range on the proposed algorithm with respect to average localization error and localization success ratio. In addition, a comparative study was conducted to realize the same localization task using the same network deployment. Experimental results prove that the proposed CS algorithm can not only increase convergence rate but also reduce average localization error compared with standard CS algorithm and Particle Swarm Optimization (PSO) algorithm. PMID:27589756

  19. Fast inversion of gravity data using the symmetric successive over-relaxation (SSOR) preconditioned conjugate gradient algorithm

    NASA Astrophysics Data System (ADS)

    Meng, Zhaohai; Li, Fengting; Xu, Xuechun; Huang, Danian; Zhang, Dailei

    2017-02-01

    The subsurface three-dimensional (3D) model of density distribution is obtained by solving an under-determined linear equation that is established by gravity data. Here, we describe a new fast gravity inversion method to recover a 3D density model from gravity data. The subsurface will be divided into a large number of rectangular blocks, each with an unknown constant density. The gravity inversion method introduces a stabiliser model norm with a depth weighting function to produce smooth models. The depth weighting function is combined with the model norm to counteract the skin effect of the gravity potential field. As the numbers of density model parameters is NZ (the number of layers in the vertical subsurface domain) times greater than the observed gravity data parameters, the inverse density parameter is larger than the observed gravity data parameters. Solving the full set of gravity inversion equations is very time-consuming, and applying a new algorithm to estimate gravity inversion can significantly reduce the number of iterations and the computational time. In this paper, a new symmetric successive over-relaxation (SSOR) iterative conjugate gradient (CG) method is shown to be an appropriate algorithm to solve this Tikhonov cost function (gravity inversion equation). The new, faster method is applied on Gaussian noise-contaminated synthetic data to demonstrate its suitability for 3D gravity inversion. To demonstrate the performance of the new algorithm on actual gravity data, we provide a case study that includes ground-based measurement of residual Bouguer gravity anomalies over the Humble salt dome near Houston, Gulf Coast Basin, off the shore of Louisiana. A 3D distribution of salt rock concentration is used to evaluate the inversion results recovered by the new SSOR iterative method. In the test model, the density values in the constructed model coincide with the known location and depth of the salt dome.

  20. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms

    NASA Astrophysics Data System (ADS)

    Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R.

    2016-07-01

    Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.

  1. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms.

    PubMed

    Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R

    2016-07-07

    Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.

  2. Combined magnetic and kinetic control of advanced tokamak steady state scenarios based on semi-empirical modelling

    NASA Astrophysics Data System (ADS)

    Moreau, D.; Artaud, J. F.; Ferron, J. R.; Holcomb, C. T.; Humphreys, D. A.; Liu, F.; Luce, T. C.; Park, J. M.; Prater, R.; Turco, F.; Walker, M. L.

    2015-06-01

    This paper shows that semi-empirical data-driven models based on a two-time-scale approximation for the magnetic and kinetic control of advanced tokamak (AT) scenarios can be advantageously identified from simulated rather than real data, and used for control design. The method is applied to the combined control of the safety factor profile, q(x), and normalized pressure parameter, βN, using DIII-D parameters and actuators (on-axis co-current neutral beam injection (NBI) power, off-axis co-current NBI power, electron cyclotron current drive power, and ohmic coil). The approximate plasma response model was identified from simulated open-loop data obtained using a rapidly converging plasma transport code, METIS, which includes an MHD equilibrium and current diffusion solver, and combines plasma transport nonlinearity with 0D scaling laws and 1.5D ordinary differential equations. The paper discusses the results of closed-loop METIS simulations, using the near-optimal ARTAEMIS control algorithm (Moreau D et al 2013 Nucl. Fusion 53 063020) for steady state AT operation. With feedforward plus feedback control, the steady state target q-profile and βN are satisfactorily tracked with a time scale of about 10 s, despite large disturbances applied to the feedforward powers and plasma parameters. The robustness of the control algorithm with respect to disturbances of the H&CD actuators and of plasma parameters such as the H-factor, plasma density and effective charge, is also shown.

  3. Repeatable, accurate, and high speed multi-level programming of memristor 1T1R arrays for power efficient analog computing applications.

    PubMed

    Merced-Grafals, Emmanuelle J; Dávila, Noraica; Ge, Ning; Williams, R Stanley; Strachan, John Paul

    2016-09-09

    Beyond use as high density non-volatile memories, memristors have potential as synaptic components of neuromorphic systems. We investigated the suitability of tantalum oxide (TaOx) transistor-memristor (1T1R) arrays for such applications, particularly the ability to accurately, repeatedly, and rapidly reach arbitrary conductance states. Programming is performed by applying an adaptive pulsed algorithm that utilizes the transistor gate voltage to control the SET switching operation and increase programming speed of the 1T1R cells. We show the capability of programming 64 conductance levels with <0.5% average accuracy using 100 ns pulses and studied the trade-offs between programming speed and programming error. The algorithm is also utilized to program 16 conductance levels on a population of cells in the 1T1R array showing robustness to cell-to-cell variability. In general, the proposed algorithm results in approximately 10× improvement in programming speed over standard algorithms that do not use the transistor gate to control memristor switching. In addition, after only two programming pulses (an initialization pulse followed by a programming pulse), the resulting conductance values are within 12% of the target values in all cases. Finally, endurance of more than 10(6) cycles is shown through open-loop (single pulses) programming across multiple conductance levels using the optimized gate voltage of the transistor. These results are relevant for applications that require high speed, accurate, and repeatable programming of the cells such as in neural networks and analog data processing.

  4. Fourier transform wavefront control with adaptive prediction of the atmosphere.

    PubMed

    Poyneer, Lisa A; Macintosh, Bruce A; Véran, Jean-Pierre

    2007-09-01

    Predictive Fourier control is a temporal power spectral density-based adaptive method for adaptive optics that predicts the atmosphere under the assumption of frozen flow. The predictive controller is based on Kalman filtering and a Fourier decomposition of atmospheric turbulence using the Fourier transform reconstructor. It provides a stable way to compensate for arbitrary numbers of atmospheric layers. For each Fourier mode, efficient and accurate algorithms estimate the necessary atmospheric parameters from closed-loop telemetry and determine the predictive filter, adjusting as conditions change. This prediction improves atmospheric rejection, leading to significant improvements in system performance. For a 48x48 actuator system operating at 2 kHz, five-layer prediction for all modes is achievable in under 2x10(9) floating-point operations/s.

  5. Poster - Thur Eve - 68: Evaluation and analytical comparison of different 2D and 3D treatment planning systems using dosimetry in anthropomorphic phantom.

    PubMed

    Khosravi, H R; Nodehi, Mr Golrokh; Asnaashari, Kh; Mahdavi, S R; Shirazi, A R; Gholami, S

    2012-07-01

    The aim of this study was to evaluate and analytically compare different calculation algorithms applied in our country radiotherapy centers base on the methodology developed by IAEA for treatment planning systems (TPS) commissioning (IAEA TEC-DOC 1583). Thorax anthropomorphic phantom (002LFC CIRS inc.), was used to measure 7 tests that simulate the whole chain of external beam TPS. The dose were measured with ion chambers and the deviation between measured and TPS calculated dose was reported. This methodology, which employs the same phantom and the same setup test cases, was tested in 4 different hospitals which were using 5 different algorithms/ inhomogeneity correction methods implemented in different TPS. The algorithms in this study were divided into two groups including correction based and model based algorithms. A total of 84 clinical test case datasets for different energies and calculation algorithms were produced, which amounts of differences in inhomogeneity points with low density (lung) and high density (bone) was decreased meaningfully with advanced algorithms. The number of deviations outside agreement criteria was increased with the beam energy and decreased with advancement of the TPS calculation algorithm. Large deviations were seen in some correction based algorithms, so sophisticated algorithms, would be preferred in clinical practices, especially for calculation in inhomogeneous media. Use of model based algorithms with lateral transport calculation, is recommended. Some systematic errors which were revealed during this study, is showing necessity of performing periodic audits on TPS in radiotherapy centers. © 2012 American Association of Physicists in Medicine.

  6. Algorithmic formulation of control problems in manipulation

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.

    1975-01-01

    The basic characteristics of manipulator control algorithms are discussed. The state of the art in the development of manipulator control algorithms is briefly reviewed. Different end-point control techniques are described together with control algorithms which operate on external sensor (imaging, proximity, tactile, and torque/force) signals in realtime. Manipulator control development at JPL is briefly described and illustrated with several figures. The JPL work pays special attention to the front or operator input end of the control algorithms.

  7. A finite element algorithm for high-lying eigenvalues with Neumann and Dirichlet boundary conditions

    NASA Astrophysics Data System (ADS)

    Báez, G.; Méndez-Sánchez, R. A.; Leyvraz, F.; Seligman, T. H.

    2014-01-01

    We present a finite element algorithm that computes eigenvalues and eigenfunctions of the Laplace operator for two-dimensional problems with homogeneous Neumann or Dirichlet boundary conditions, or combinations of either for different parts of the boundary. We use an inverse power plus Gauss-Seidel algorithm to solve the generalized eigenvalue problem. For Neumann boundary conditions the method is much more efficient than the equivalent finite difference algorithm. We checked the algorithm by comparing the cumulative level density of the spectrum obtained numerically with the theoretical prediction given by the Weyl formula. We found a systematic deviation due to the discretization, not to the algorithm itself.

  8. Arrangement Analysis of Leaves Optimized on Photon Flux Density or Photosynthetic Rate

    NASA Astrophysics Data System (ADS)

    Obara, Shin'ya; Tanno, Itaru

    By clarifying a plant evolutive process, useful information may be obtained on engineering. Consequently, an analysis algorithm that investigates the optimal arrangement of plant leaves was developed. In the developed algorithm, the Monte Carlo method is introduced and sunlight is simulated. Moreover, the arrangement optimization of leaves is analyzed using a Genetic Algorithm (GA). The number of light quanta (photon flux density) that reaches leaves, or the average photosynthetic rate of the same was set as the objective function, and leaf models of a dogwood and a ginkgo tree were analyzed. The number of leaf models was set between two to four, and the position of the leaf was expressed in terms of the angle of direction, elevation angle, rotation angle, and the representative length of the branch of a leaf. The chromosome model introduced into GA consists of information concerning the position of the leaf. Based on the analysis results, the characteristics of the leaf of an actual plant could be simulated by ensuring the algorithm had multiple constrained conditions. The optimal arrangement of leaves differs in maximization of the photon flux density, and that of the average value of a photosynthetic rate. Furthermore, the leaf form affecting the optimal arrangement of leave and also having a significant influence also on a photosynthetic rate was shown.

  9. Wireless Sensor Networks - Node Localization for Various Industry Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derr, Kurt; Manic, Milos

    Fast, effective monitoring following airborne releases of toxic substances is critical to mitigate risks to threatened population areas. Wireless sensor nodes at fixed predetermined locations may monitor such airborne releases and provide early warnings to the public. A challenging algorithmic problem is determining the locations to place these sensor nodes while meeting several criteria: 1) provide complete coverage of the domain, and 2) create a topology with problem dependent node densities, while 3) minimizing the number of sensor nodes. This manuscript presents a novel approach to determining optimal sensor placement, Advancing Front mEsh generation with Constrained dElaunay Triangulation and Smoothingmore » (AFECETS) that addresses these criteria. A unique aspect of AFECETS is the ability to determine wireless sensor node locations for areas of high interest (hospitals, schools, high population density areas) that require higher density of nodes for monitoring environmental conditions, a feature that is difficult to find in other research work. The AFECETS algorithm was tested on several arbitrary shaped domains. AFECETS simulation results show that the algorithm 1) provides significant reduction in the number of nodes, in some cases over 40%, compared to an advancing front mesh generation algorithm, 2) maintains and improves optimal spacing between nodes, and 3) produces simulation run times suitable for real-time applications.« less

  10. Wireless Sensor Networks - Node Localization for Various Industry Problems

    DOE PAGES

    Derr, Kurt; Manic, Milos

    2015-06-01

    Fast, effective monitoring following airborne releases of toxic substances is critical to mitigate risks to threatened population areas. Wireless sensor nodes at fixed predetermined locations may monitor such airborne releases and provide early warnings to the public. A challenging algorithmic problem is determining the locations to place these sensor nodes while meeting several criteria: 1) provide complete coverage of the domain, and 2) create a topology with problem dependent node densities, while 3) minimizing the number of sensor nodes. This manuscript presents a novel approach to determining optimal sensor placement, Advancing Front mEsh generation with Constrained dElaunay Triangulation and Smoothingmore » (AFECETS) that addresses these criteria. A unique aspect of AFECETS is the ability to determine wireless sensor node locations for areas of high interest (hospitals, schools, high population density areas) that require higher density of nodes for monitoring environmental conditions, a feature that is difficult to find in other research work. The AFECETS algorithm was tested on several arbitrary shaped domains. AFECETS simulation results show that the algorithm 1) provides significant reduction in the number of nodes, in some cases over 40%, compared to an advancing front mesh generation algorithm, 2) maintains and improves optimal spacing between nodes, and 3) produces simulation run times suitable for real-time applications.« less

  11. A Survey of Distributed Optimization and Control Algorithms for Electric Power Systems

    DOE PAGES

    Molzahn, Daniel K.; Dorfler, Florian K.; Sandberg, Henrik; ...

    2017-07-25

    Historically, centrally computed algorithms have been the primary means of power system optimization and control. With increasing penetrations of distributed energy resources requiring optimization and control of power systems with many controllable devices, distributed algorithms have been the subject of significant research interest. Here, this paper surveys the literature of distributed algorithms with applications to optimization and control of power systems. In particular, this paper reviews distributed algorithms for offline solution of optimal power flow (OPF) problems as well as online algorithms for real-time solution of OPF, optimal frequency control, optimal voltage control, and optimal wide-area control problems.

  12. A Survey of Distributed Optimization and Control Algorithms for Electric Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molzahn, Daniel K.; Dorfler, Florian K.; Sandberg, Henrik

    Historically, centrally computed algorithms have been the primary means of power system optimization and control. With increasing penetrations of distributed energy resources requiring optimization and control of power systems with many controllable devices, distributed algorithms have been the subject of significant research interest. Here, this paper surveys the literature of distributed algorithms with applications to optimization and control of power systems. In particular, this paper reviews distributed algorithms for offline solution of optimal power flow (OPF) problems as well as online algorithms for real-time solution of OPF, optimal frequency control, optimal voltage control, and optimal wide-area control problems.

  13. An algorithm to estimate building heights from Google street-view imagery using single view metrology across a representational state transfer system

    NASA Astrophysics Data System (ADS)

    Díaz, Elkin; Arguello, Henry

    2016-05-01

    Urban ecosystem studies require monitoring, controlling and planning to analyze building density, urban density, urban planning, atmospheric modeling and land use. In urban planning, there are many methods for building height estimation using optical remote sensing images. These methods however, highly depend on sun illumination and cloud-free weather. In contrast, high resolution synthetic aperture radar provides images independent from daytime and weather conditions, although, these images rely on special hardware and expensive acquisition. Most of the biggest cities around the world have been photographed by Google street view under different conditions. Thus, thousands of images from the principal streets of a city can be accessed online. The availability of this and similar rich city imagery such as StreetSide from Microsoft, represents huge opportunities in computer vision because these images can be used as input in many applications such as 3D modeling, segmentation, recognition and stereo correspondence. This paper proposes a novel algorithm to estimate building heights using public Google Street-View imagery. The objective of this work is to obtain thousands of geo-referenced images from Google Street-View using a representational state transfer system, and estimate their average height using single view metrology. Furthermore, the resulting measurements and image metadata are used to derive a layer of heights in a Google map available online. The experimental results show that the proposed algorithm can estimate an accurate average building height map of thousands of images using Google Street-View Imagery of any city.

  14. Study on bi-directional pedestrian movement using ant algorithms

    NASA Astrophysics Data System (ADS)

    Sibel, Gokce; Ozhan, Kayacan

    2016-01-01

    A cellular automata model is proposed to simulate bi-directional pedestrian flow. Pedestrian movement is investigated by using ant algorithms. Ants communicate with each other by dropping a chemical, called a pheromone, on the substrate while crawling forward. Similarly, it is considered that oppositely moving pedestrians drop ‘visual pheromones’ on their way and the visual pheromones might cause attractive or repulsive interactions. This pheromenon is introduced into modelling the pedestrians’ walking preference. In this way, the decision-making process of pedestrians will be based on ‘the instinct of following’. At some densities, the relationships of velocity-density and flux-density are analyzed for different evaporation rates of visual pheromones. Lane formation and phase transition are observed for certain evaporation rates of visual pheromones.

  15. Research on NC motion controller based on SOPC technology

    NASA Astrophysics Data System (ADS)

    Jiang, Tingbiao; Meng, Biao

    2006-11-01

    With the rapid development of the digitization and informationization, the application of numerical control technology in the manufacturing industry becomes more and more important. However, the conventional numerical control system usually has some shortcomings such as the poor in system openness, character of real-time, cutability and reconfiguration. In order to solve these problems, this paper investigates the development prospect and advantage of the application in numerical control area with system-on-a-Programmable-Chip (SOPC) technology, and puts forward to a research program approach to the NC controller based on SOPC technology. Utilizing the characteristic of SOPC technology, we integrate high density logic device FPGA, memory SRAM, and embedded processor ARM into a single programmable logic device. We also combine the 32-bit RISC processor with high computing capability of the complicated algorithm with the FPGA device with strong motivable reconfiguration logic control ability. With these steps, we can greatly resolve the defect described in above existing numerical control systems. For the concrete implementation method, we use FPGA chip embedded with ARM hard nuclear processor to construct the control core of the motion controller. We also design the peripheral circuit of the controller according to the requirements of actual control functions, transplant real-time operating system into ARM, design the driver of the peripheral assisted chip, develop the application program to control and configuration of FPGA, design IP core of logic algorithm for various NC motion control to configured it into FPGA. The whole control system uses the concept of modular and structured design to develop hardware and software system. Thus the NC motion controller with the advantage of easily tailoring, highly opening, reconfigurable, and expandable can be implemented.

  16. Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard.

    PubMed

    Terwilliger, Thomas C; Grosse-Kunstleve, Ralf W; Afonine, Pavel V; Moriarty, Nigel W; Zwart, Peter H; Hung, Li Wei; Read, Randy J; Adams, Paul D

    2008-01-01

    The PHENIX AutoBuild wizard is a highly automated tool for iterative model building, structure refinement and density modification using RESOLVE model building, RESOLVE statistical density modification and phenix.refine structure refinement. Recent advances in the AutoBuild wizard and phenix.refine include automated detection and application of NCS from models as they are built, extensive model-completion algorithms and automated solvent-molecule picking. Model-completion algorithms in the AutoBuild wizard include loop building, crossovers between chains in different models of a structure and side-chain optimization. The AutoBuild wizard has been applied to a set of 48 structures at resolutions ranging from 1.1 to 3.2 A, resulting in a mean R factor of 0.24 and a mean free R factor of 0.29. The R factor of the final model is dependent on the quality of the starting electron density and is relatively independent of resolution.

  17. Medium-scale traveling ionospheric disturbances by three-dimensional ionospheric GPS tomography

    NASA Astrophysics Data System (ADS)

    Chen, C. H.; Saito, A.; Lin, C. H.; Yamamoto, M.; Suzuki, S.; Seemala, G. K.

    2016-02-01

    In this study, we develop a three-dimensional ionospheric tomography with the ground-based global position system (GPS) total electron content observations. Because of the geometric limitation of GPS observation path, it is difficult to solve the ill-posed inverse problem for the ionospheric electron density. Different from methods given by pervious studies, we consider an algorithm combining the least-square method with a constraint condition, in which the gradient of electron density tends to be smooth in the horizontal direction and steep in the vicinity of the ionospheric F2 peak. This algorithm is designed to be independent of any ionospheric or plasmaspheric electron density models as the initial condition. An observation system simulation experiment method is applied to evaluate the performance of the GPS ionospheric tomography in detecting ionospheric electron density perturbation at the scale size of around 200 km in wavelength, such as the medium-scale traveling ionospheric disturbances.

  18. Experimental determination of spin-dependent electron density by joint refinement of X-ray and polarized neutron diffraction data.

    PubMed

    Deutsch, Maxime; Claiser, Nicolas; Pillet, Sébastien; Chumakov, Yurii; Becker, Pierre; Gillet, Jean Michel; Gillon, Béatrice; Lecomte, Claude; Souhassou, Mohamed

    2012-11-01

    New crystallographic tools were developed to access a more precise description of the spin-dependent electron density of magnetic crystals. The method combines experimental information coming from high-resolution X-ray diffraction (XRD) and polarized neutron diffraction (PND) in a unified model. A new algorithm that allows for a simultaneous refinement of the charge- and spin-density parameters against XRD and PND data is described. The resulting software MOLLYNX is based on the well known Hansen-Coppens multipolar model, and makes it possible to differentiate the electron spins. This algorithm is validated and demonstrated with a molecular crystal formed by a bimetallic chain, MnCu(pba)(H(2)O)(3)·2H(2)O, for which XRD and PND data are available. The joint refinement provides a more detailed description of the spin density than the refinement from PND data alone.

  19. Pliable Cognitive MAC for Heterogeneous Adaptive Cognitive Radio Sensor Networks.

    PubMed

    Al-Medhwahi, Mohammed; Hashim, Fazirulhisyam; Ali, Borhanuddin Mohd; Sali, Aduwati

    2016-01-01

    The rapid expansion of wireless monitoring and surveillance applications in several domains reinforces the trend of exploiting emerging technologies such as the cognitive radio. However, these technologies have to adjust their working concepts to consider the common characteristics of conventional wireless sensor networks (WSNs). The cognitive radio sensor network (CRSN), still an immature technology, has to deal with new networks that might have different types of data, traffic patterns, or quality of service (QoS) requirements. In this paper, we design and model a new cognitive radio-based medium access control (MAC) algorithm dealing with the heterogeneous nature of the developed networks in terms of either the traffic pattern or the required QoS for the node applications. The proposed algorithm decreases the consumed power on several fronts, provides satisfactory levels of latency and spectrum utilization with efficient scheduling, and manages the radio resources for various traffic conditions. An intensive performance evaluation is conducted to study the impact of key parameters such as the channel idle time length, node density, and the number of available channels. The performance evaluation of the proposed algorithm shows a better performance than the comparable protocols. Moreover, the results manifest that the proposed algorithm is suitable for real time monitoring applications.

  20. Pliable Cognitive MAC for Heterogeneous Adaptive Cognitive Radio Sensor Networks

    PubMed Central

    Ali, Borhanuddin Mohd; Sali, Aduwati

    2016-01-01

    The rapid expansion of wireless monitoring and surveillance applications in several domains reinforces the trend of exploiting emerging technologies such as the cognitive radio. However, these technologies have to adjust their working concepts to consider the common characteristics of conventional wireless sensor networks (WSNs). The cognitive radio sensor network (CRSN), still an immature technology, has to deal with new networks that might have different types of data, traffic patterns, or quality of service (QoS) requirements. In this paper, we design and model a new cognitive radio-based medium access control (MAC) algorithm dealing with the heterogeneous nature of the developed networks in terms of either the traffic pattern or the required QoS for the node applications. The proposed algorithm decreases the consumed power on several fronts, provides satisfactory levels of latency and spectrum utilization with efficient scheduling, and manages the radio resources for various traffic conditions. An intensive performance evaluation is conducted to study the impact of key parameters such as the channel idle time length, node density, and the number of available channels. The performance evaluation of the proposed algorithm shows a better performance than the comparable protocols. Moreover, the results manifest that the proposed algorithm is suitable for real time monitoring applications. PMID:27257964

  1. Time-lapse microscopy and image processing for stem cell research: modeling cell migration

    NASA Astrophysics Data System (ADS)

    Gustavsson, Tomas; Althoff, Karin; Degerman, Johan; Olsson, Torsten; Thoreson, Ann-Catrin; Thorlin, Thorleif; Eriksson, Peter

    2003-05-01

    This paper presents hardware and software procedures for automated cell tracking and migration modeling. A time-lapse microscopy system equipped with a computer controllable motorized stage was developed. The performance of this stage was improved by incorporating software algorithms for stage motion displacement compensation and auto focus. The microscope is suitable for in-vitro stem cell studies and allows for multiple cell culture image sequence acquisition. This enables comparative studies concerning rate of cell splits, average cell motion velocity, cell motion as a function of cell sample density and many more. Several cell segmentation procedures are described as well as a cell tracking algorithm. Statistical methods for describing cell migration patterns are presented. In particular, the Hidden Markov Model (HMM) was investigated. Results indicate that if the cell motion can be described as a non-stationary stochastic process, then the HMM can adequately model aspects of its dynamic behavior.

  2. Investigation into the influence of build parameters on failure of 3D printed parts

    NASA Astrophysics Data System (ADS)

    Fornasini, Giacomo

    Additive manufacturing, including fused deposition modeling (FDM), is transforming the built world and engineering education. Deep understanding of parts created through FDM technology has lagged behind its adoption in home, work, and academic environments. Properties of parts created from bulk materials through traditional manufacturing are understood well enough to accurately predict their behavior through analytical models. Unfortunately, Additive Manufacturing (AM) process parameters create anisotropy on a scale that fundamentally affects the part properties. Understanding AM process parameters (implemented by program algorithms called slicers) is necessary to predict part behavior. Investigating algorithms controlling print parameters (slicers) revealed stark differences between the generation of part layers. In this work, tensile testing experiments, including a full factorial design, determined that three key factors, width, thickness, infill density, and their interactions, significantly affect the tensile properties of 3D printed test samples.

  3. a Hadoop-Based Algorithm of Generating dem Grid from Point Cloud Data

    NASA Astrophysics Data System (ADS)

    Jian, X.; Xiao, X.; Chengfang, H.; Zhizhong, Z.; Zhaohui, W.; Dengzhong, Z.

    2015-04-01

    Airborne LiDAR technology has proven to be the most powerful tools to obtain high-density, high-accuracy and significantly detailed surface information of terrain and surface objects within a short time, and from which the Digital Elevation Model of high quality can be extracted. Point cloud data generated from the pre-processed data should be classified by segmentation algorithms, so as to differ the terrain points from disorganized points, then followed by a procedure of interpolating the selected points to turn points into DEM data. The whole procedure takes a long time and huge computing resource due to high-density, that is concentrated on by a number of researches. Hadoop is a distributed system infrastructure developed by the Apache Foundation, which contains a highly fault-tolerant distributed file system (HDFS) with high transmission rate and a parallel programming model (Map/Reduce). Such a framework is appropriate for DEM generation algorithms to improve efficiency. Point cloud data of Dongting Lake acquired by Riegl LMS-Q680i laser scanner was utilized as the original data to generate DEM by a Hadoop-based algorithms implemented in Linux, then followed by another traditional procedure programmed by C++ as the comparative experiment. Then the algorithm's efficiency, coding complexity, and performance-cost ratio were discussed for the comparison. The results demonstrate that the algorithm's speed depends on size of point set and density of DEM grid, and the non-Hadoop implementation can achieve a high performance when memory is big enough, but the multiple Hadoop implementation can achieve a higher performance-cost ratio, while point set is of vast quantities on the other hand.

  4. A Robustly Stabilizing Model Predictive Control Algorithm

    NASA Technical Reports Server (NTRS)

    Ackmece, A. Behcet; Carson, John M., III

    2007-01-01

    A model predictive control (MPC) algorithm that differs from prior MPC algorithms has been developed for controlling an uncertain nonlinear system. This algorithm guarantees the resolvability of an associated finite-horizon optimal-control problem in a receding-horizon implementation.

  5. Benchmark Results Of Active Tracer Particles In The Open Souce Code ASPECT For Modelling Convection In The Earth's Mantle

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Kaloti, A. P.; Levinson, H. R.; Nguyen, N.; Puckett, E. G.; Lokavarapu, H. V.

    2016-12-01

    We present the results of three standard benchmarks for the new active tracer particle algorithm in ASPECT. The three benchmarks are SolKz, SolCx, and SolVI (also known as the 'inclusion benchmark') first proposed by Duretz, May, Gerya, and Tackley (G Cubed, 2011) and in subsequent work by Theilman, May, and Kaus (Pure and Applied Geophysics, 2014). Each of the three benchmarks compares the accuracy of the numerical solution to a steady (time-independent) solution of the incompressible Stokes equations with a known exact solution. These benchmarks are specifically designed to test the accuracy and effectiveness of the numerical method when the viscosity varies up to six orders of magnitude. ASPECT has been shown to converge to the exact solution of each of these benchmarks at the correct design rate when all of the flow variables, including the density and viscosity, are discretized on the underlying finite element grid (Krobichler, Heister, and Bangerth, GJI, 2012). In our work we discretize the density and viscosity by initially placing the true values of the density and viscosity at the intial particle positions. At each time step, including the initialization step, the density and viscosity are interpolated from the particles onto the finite element grid. The resulting Stokes system is solved for the velocity and pressure, and the particle positions are advanced in time according to this new, numerical, velocity field. Note that this procedure effectively changes a steady solution of the Stokes equaton (i.e., one that is independent of time) to a solution of the Stokes equations that is time dependent. Furthermore, the accuracy of the active tracer particle algorithm now also depends on the accuracy of the interpolation algorithm and of the numerical method one uses to advance the particle positions in time. Finally, we will present new interpolation algorithms designed to increase the overall accuracy of the active tracer algorithms in ASPECT and interpolation algotithms designed to conserve properties, such as mass density, that are being carried by the particles.

  6. A novel consistent and well-balanced algorithm for simulations of multiphase flows on unstructured grids

    NASA Astrophysics Data System (ADS)

    Patel, Jitendra Kumar; Natarajan, Ganesh

    2017-12-01

    We discuss the development and assessment of a robust numerical algorithm for simulating multiphase flows with complex interfaces and high density ratios on arbitrary polygonal meshes. The algorithm combines the volume-of-fluid method with an incremental projection approach for incompressible multiphase flows in a novel hybrid staggered/non-staggered framework. The key principles that characterise the algorithm are the consistent treatment of discrete mass and momentum transport and the similar discretisation of force terms appearing in the momentum equation. The former is achieved by invoking identical schemes for convective transport of volume fraction and momentum in the respective discrete equations while the latter is realised by representing the gravity and surface tension terms as gradients of suitable scalars which are then discretised in identical fashion resulting in a balanced formulation. The hybrid staggered/non-staggered framework employed herein solves for the scalar normal momentum at the cell faces, while the volume fraction is computed at the cell centroids. This is shown to naturally lead to similar terms for pressure and its correction in the momentum and pressure correction equations respectively, which are again treated discretely in a similar manner. We show that spurious currents that corrupt the solution may arise both from an unbalanced formulation where forces (gravity and surface tension) are discretised in dissimilar manner and from an inconsistent approach where different schemes are used to convect the mass and momentum, with the latter prominent in flows which are convection-dominant with high density ratios. Interestingly, the inconsistent approach is shown to perform as well as the consistent approach even for high density ratio flows in some cases while it exhibits anomalous behaviour for other scenarios, even at low density ratios. Using a plethora of test problems of increasing complexity, we conclusively demonstrate that the consistent transport and balanced force treatment results in a numerically stable solution procedure and physically consistent results. The algorithm proposed in this study qualifies as a robust approach to simulate multiphase flows with high density ratios on unstructured meshes and may be realised in existing flow solvers with relative ease.

  7. 3D joint inversion modeling of the lithospheric density structure based on gravity, geoid and topography data — Application to the Alborz Mountains (Iran) and South Caspian Basin region

    NASA Astrophysics Data System (ADS)

    Motavalli-Anbaran, Seyed-Hani; Zeyen, Hermann; Ebrahimzadeh Ardestani, Vahid

    2013-02-01

    We present a 3D algorithm to obtain the density structure of the lithosphere from joint inversion of free air gravity, geoid and topography data based on a Bayesian approach with Gaussian probability density functions. The algorithm delivers the crustal and lithospheric thicknesses and the average crustal density. Stabilization of the inversion process may be obtained through parameter damping and smoothing as well as use of a priori information like crustal thicknesses from seismic profiles. The algorithm is applied to synthetic models in order to demonstrate its usefulness. A real data application is presented for the area of northern Iran (with the Alborz Mountains as main target) and the South Caspian Basin. The resulting model shows an important crustal root (up to 55 km) under the Alborz Mountains and a thin crust (ca. 30 km) under the southernmost South Caspian Basin thickening northward to the Apsheron-Balkan Sill to 45 km. Central and NW Iran is underlain by a thin lithosphere (ca. 90-100 km). The lithosphere thickens under the South Caspian Basin until the Apsheron-Balkan Sill where it reaches more than 240 km. Under the stable Turan platform, we find a lithospheric thickness of 160-180 km.

  8. Evaluation of Electroencephalography Source Localization Algorithms with Multiple Cortical Sources.

    PubMed

    Bradley, Allison; Yao, Jun; Dewald, Jules; Richter, Claus-Peter

    2016-01-01

    Source localization algorithms often show multiple active cortical areas as the source of electroencephalography (EEG). Yet, there is little data quantifying the accuracy of these results. In this paper, the performance of current source density source localization algorithms for the detection of multiple cortical sources of EEG data has been characterized. EEG data were generated by simulating multiple cortical sources (2-4) with the same strength or two sources with relative strength ratios of 1:1 to 4:1, and adding noise. These data were used to reconstruct the cortical sources using current source density (CSD) algorithms: sLORETA, MNLS, and LORETA using a p-norm with p equal to 1, 1.5 and 2. Precision (percentage of the reconstructed activity corresponding to simulated activity) and Recall (percentage of the simulated sources reconstructed) of each of the CSD algorithms were calculated. While sLORETA has the best performance when only one source is present, when two or more sources are present LORETA with p equal to 1.5 performs better. When the relative strength of one of the sources is decreased, all algorithms have more difficulty reconstructing that source. However, LORETA 1.5 continues to outperform other algorithms. If only the strongest source is of interest sLORETA is recommended, while LORETA with p equal to 1.5 is recommended if two or more of the cortical sources are of interest. These results provide guidance for choosing a CSD algorithm to locate multiple cortical sources of EEG and for interpreting the results of these algorithms.

  9. Evaluation of Electroencephalography Source Localization Algorithms with Multiple Cortical Sources

    PubMed Central

    Bradley, Allison; Yao, Jun; Dewald, Jules; Richter, Claus-Peter

    2016-01-01

    Background Source localization algorithms often show multiple active cortical areas as the source of electroencephalography (EEG). Yet, there is little data quantifying the accuracy of these results. In this paper, the performance of current source density source localization algorithms for the detection of multiple cortical sources of EEG data has been characterized. Methods EEG data were generated by simulating multiple cortical sources (2–4) with the same strength or two sources with relative strength ratios of 1:1 to 4:1, and adding noise. These data were used to reconstruct the cortical sources using current source density (CSD) algorithms: sLORETA, MNLS, and LORETA using a p-norm with p equal to 1, 1.5 and 2. Precision (percentage of the reconstructed activity corresponding to simulated activity) and Recall (percentage of the simulated sources reconstructed) of each of the CSD algorithms were calculated. Results While sLORETA has the best performance when only one source is present, when two or more sources are present LORETA with p equal to 1.5 performs better. When the relative strength of one of the sources is decreased, all algorithms have more difficulty reconstructing that source. However, LORETA 1.5 continues to outperform other algorithms. If only the strongest source is of interest sLORETA is recommended, while LORETA with p equal to 1.5 is recommended if two or more of the cortical sources are of interest. These results provide guidance for choosing a CSD algorithm to locate multiple cortical sources of EEG and for interpreting the results of these algorithms. PMID:26809000

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isotalo, Aarno

    A method referred to as tally nuclides is presented for accurately and efficiently calculating the time-step averages and integrals of any quantities that are weighted sums of atomic densities with constant weights during the step. The method allows all such quantities to be calculated simultaneously as a part of a single depletion solution with existing depletion algorithms. Some examples of the results that can be extracted include step-average atomic densities and macroscopic reaction rates, the total number of fissions during the step, and the amount of energy released during the step. Furthermore, the method should be applicable with several depletionmore » algorithms, and the integrals or averages should be calculated with an accuracy comparable to that reached by the selected algorithm for end-of-step atomic densities. The accuracy of the method is demonstrated in depletion calculations using the Chebyshev rational approximation method. Here, we demonstrate how the ability to calculate energy release in depletion calculations can be used to determine the accuracy of the normalization in a constant-power burnup calculation during the calculation without a need for a reference solution.« less

  11. Calculating Time-Integral Quantities in Depletion Calculations

    DOE PAGES

    Isotalo, Aarno

    2016-06-02

    A method referred to as tally nuclides is presented for accurately and efficiently calculating the time-step averages and integrals of any quantities that are weighted sums of atomic densities with constant weights during the step. The method allows all such quantities to be calculated simultaneously as a part of a single depletion solution with existing depletion algorithms. Some examples of the results that can be extracted include step-average atomic densities and macroscopic reaction rates, the total number of fissions during the step, and the amount of energy released during the step. Furthermore, the method should be applicable with several depletionmore » algorithms, and the integrals or averages should be calculated with an accuracy comparable to that reached by the selected algorithm for end-of-step atomic densities. The accuracy of the method is demonstrated in depletion calculations using the Chebyshev rational approximation method. Here, we demonstrate how the ability to calculate energy release in depletion calculations can be used to determine the accuracy of the normalization in a constant-power burnup calculation during the calculation without a need for a reference solution.« less

  12. Optimization lighting layout based on gene density improved genetic algorithm for indoor visible light communications

    NASA Astrophysics Data System (ADS)

    Liu, Huanlin; Wang, Xin; Chen, Yong; Kong, Deqian; Xia, Peijie

    2017-05-01

    For indoor visible light communication system, the layout of LED lamps affects the uniformity of the received power on communication plane. In order to find an optimized lighting layout that meets both the lighting needs and communication needs, a gene density genetic algorithm (GDGA) is proposed. In GDGA, a gene indicates a pair of abscissa and ordinate of a LED, and an individual represents a LED layout in the room. The segmented crossover operation and gene mutation strategy based on gene density are put forward to make the received power on communication plane more uniform and increase the population's diversity. A weighted differences function between individuals is designed as the fitness function of GDGA for reserving the population having the useful LED layout genetic information and ensuring the global convergence of GDGA. Comparing square layout and circular layout, with the optimized layout achieved by the GDGA, the power uniformity increases by 83.3%, 83.1% and 55.4%, respectively. Furthermore, the convergence of GDGA is verified compared with evolutionary algorithm (EA). Experimental results show that GDGA can quickly find an approximation of optimal layout.

  13. Simulating the control of molecular reactions via modulated light fields: from gas phase to solution

    NASA Astrophysics Data System (ADS)

    Thallmair, Sebastian; Keefer, Daniel; Rott, Florian; de Vivie-Riedle, Regina

    2017-04-01

    Over the past few years quantum control has proven to be very successful in steering molecular processes. By combining theory with experiment, even highly complex control aims were realized in the gas phase. In this topical review, we illustrate the past achievements on several examples in the molecular context. The next step for the quantum control of chemical processes is to translate the fruitful interplay between theory and experiment to the condensed phase and thus to the regime where chemical synthesis can be supported. On the theory side, increased efforts to include solvent effects in quantum control simulations were made recently. We discuss two major concepts, namely an implicit description of the environment via the density matrix algorithm and an explicit inclusion of solvent molecules. By application to chemical reactions, both concepts conclude that despite environmental perturbations leading to more complex control tasks, efficient quantum control in the condensed phase is still feasible.

  14. Genetics-based control of a mimo boiler-turbine plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimeo, R.M.; Lee, K.Y.

    1994-12-31

    A genetic algorithm is used to develop an optimal controller for a non-linear, multi-input/multi-output boiler-turbine plant. The algorithm is used to train a control system for the plant over a wide operating range in an effort to obtain better performance. The results of the genetic algorithm`s controller designed from the linearized plant model at a nominal operating point. Because the genetic algorithm is well-suited to solving traditionally difficult optimization problems it is found that the algorithm is capable of developing the controller based on input/output information only. This controller achieves a performance comparable to the standard linear quadratic regulator.

  15. Improved characterization of heterogeneous permeability in saline aquifers from transient pressure data during freshwater injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Peter K.; Lee, Jonghyun; Fu, Xiaojing

    Managing recharge of freshwater into saline aquifers requires accurate estimation of the heterogeneous permeability field for maximizing injection and recovery efficiency. Here we present a methodology for subsurface characterization in saline aquifers that takes advantage of the density difference between the injected freshwater and the ambient saline groundwater. We combine high-resolution forward modeling of density-driven flow with an efficient Bayesian geostatistical inversion algorithm. In the presence of a density difference between the injected and ambient fluids due to differences in salinity, the pressure field is coupled to the spatial distribution of salinity. This coupling renders the pressure field transient: themore » time evolution of the salinity distribution controls the density distribution which then leads to a time-evolving pressure distribution. We exploit this coupling between pressure and salinity to obtain an improved characterization of the permeability field without multiple pumping tests or additional salinity measurements. We show that the inversion performance improves with an increase in the mixed convection ratio—the relative importance between viscous forces from injection and buoyancy forces from density difference. Thus, our work shows that measuring transient pressure data at multiple sampling points during freshwater injection into saline aquifers can be an effective strategy for aquifer characterization, key to the successful management of aquifer recharge.« less

  16. Improved characterization of heterogeneous permeability in saline aquifers from transient pressure data during freshwater injection

    DOE PAGES

    Kang, Peter K.; Lee, Jonghyun; Fu, Xiaojing; ...

    2017-05-31

    Managing recharge of freshwater into saline aquifers requires accurate estimation of the heterogeneous permeability field for maximizing injection and recovery efficiency. Here we present a methodology for subsurface characterization in saline aquifers that takes advantage of the density difference between the injected freshwater and the ambient saline groundwater. We combine high-resolution forward modeling of density-driven flow with an efficient Bayesian geostatistical inversion algorithm. In the presence of a density difference between the injected and ambient fluids due to differences in salinity, the pressure field is coupled to the spatial distribution of salinity. This coupling renders the pressure field transient: themore » time evolution of the salinity distribution controls the density distribution which then leads to a time-evolving pressure distribution. We exploit this coupling between pressure and salinity to obtain an improved characterization of the permeability field without multiple pumping tests or additional salinity measurements. We show that the inversion performance improves with an increase in the mixed convection ratio—the relative importance between viscous forces from injection and buoyancy forces from density difference. Thus, our work shows that measuring transient pressure data at multiple sampling points during freshwater injection into saline aquifers can be an effective strategy for aquifer characterization, key to the successful management of aquifer recharge.« less

  17. Genetically modified haloes: towards controlled experiments in ΛCDM galaxy formation

    NASA Astrophysics Data System (ADS)

    Roth, Nina; Pontzen, Andrew; Peiris, Hiranya V.

    2016-01-01

    We propose a method to generate `genetically modified' (GM) initial conditions for high-resolution simulations of galaxy formation in a cosmological context. Building on the Hoffman-Ribak algorithm, we start from a reference simulation with fully random initial conditions, then make controlled changes to specific properties of a single halo (such as its mass and merger history). The algorithm demonstrably makes minimal changes to other properties of the halo and its environment, allowing us to isolate the impact of a given modification. As a significant improvement over previous work, we are able to calculate the abundance of the resulting objects relative to the reference simulation. Our approach can be applied to a wide range of cosmic structures and epochs; here we study two problems as a proof of concept. First, we investigate the change in density profile and concentration as the collapse times of three individual haloes are varied at fixed final mass, showing good agreement with previous statistical studies using large simulation suites. Secondly, we modify the z = 0 mass of haloes to show that our theoretical abundance calculations correctly recover the halo mass function. The results demonstrate that the technique is robust, opening the way to controlled experiments in galaxy formation using hydrodynamic zoom simulations.

  18. Operation of Power Grids with High Penetration of Wind Power

    NASA Astrophysics Data System (ADS)

    Al-Awami, Ali Taleb

    The integration of wind power into the power grid poses many challenges due to its highly uncertain nature. This dissertation involves two main components related to the operation of power grids with high penetration of wind energy: wind-thermal stochastic dispatch and wind-thermal coordinated bidding in short-term electricity markets. In the first part, a stochastic dispatch (SD) algorithm is proposed that takes into account the stochastic nature of the wind power output. The uncertainty associated with wind power output given the forecast is characterized using conditional probability density functions (CPDF). Several functions are examined to characterize wind uncertainty including Beta, Weibull, Extreme Value, Generalized Extreme Value, and Mixed Gaussian distributions. The unique characteristics of the Mixed Gaussian distribution are then utilized to facilitate the speed of convergence of the SD algorithm. A case study is carried out to evaluate the effectiveness of the proposed algorithm. Then, the SD algorithm is extended to simultaneously optimize the system operating costs and emissions. A modified multi-objective particle swarm optimization algorithm is suggested to identify the Pareto-optimal solutions defined by the two conflicting objectives. A sensitivity analysis is carried out to study the effect of changing load level and imbalance cost factors on the Pareto front. In the second part of this dissertation, coordinated trading of wind and thermal energy is proposed to mitigate risks due to those uncertainties. The problem of wind-thermal coordinated trading is formulated as a mixed-integer stochastic linear program. The objective is to obtain the optimal tradeoff bidding strategy that maximizes the total expected profits while controlling trading risks. For risk control, a weighted term of the conditional value at risk (CVaR) is included in the objective function. The CVaR aims to maximize the expected profits of the least profitable scenarios, thus improving trading risk control. A case study comparing coordinated with uncoordinated bidding strategies depending on the trader's risk attitude is included. Simulation results show that coordinated bidding can improve the expected profits while significantly improving the CVaR.

  19. Imaging of isotropic and anisotropic conductivities from power densities in three dimensions

    NASA Astrophysics Data System (ADS)

    Monard, François; Rim, Donsub

    2018-07-01

    We present numerical reconstructions of anisotropic conductivity tensors in three dimensions, from knowledge of a finite family of power density functionals. Such a problem arises in the coupled-physics imaging modality ultrasound modulated electrical impedance tomography for instance. We improve on the algorithms previously derived in Bal et al (2013 Inverse Problems Imaging 7 353–75) Monard and Bal (2013 Commun. PDE 38 1183–207) for both isotropic and anisotropic cases, and we address the well-known issue of vanishing determinants in particular. The algorithm is implemented and we provide numerical results that illustrate the improvements.

  20. Fuzzy decoupling controller based on multimode control algorithm of PI-single neuron and its application

    NASA Astrophysics Data System (ADS)

    Zhang, Xianxia; Wang, Jian; Qin, Tinggao

    2003-09-01

    Intelligent control algorithms are introduced into the control system of temperature and humidity. A multi-mode control algorithm of PI-Single Neuron is proposed for single loop control of temperature and humidity. In order to remove the coupling between temperature and humidity, a new decoupling method is presented, which is called fuzzy decoupling. The decoupling is achieved by using a fuzzy controller that dynamically modifies the static decoupling coefficient. Taking the control algorithm of PI-Single Neuron as the single loop control of temperature and humidity, the paper provides the simulated output response curves with no decoupling control, static decoupling control and fuzzy decoupling control. Those control algorithms are easily implemented in singlechip-based hardware systems.

  1. The trust-region self-consistent field method in Kohn-Sham density-functional theory.

    PubMed

    Thøgersen, Lea; Olsen, Jeppe; Köhn, Andreas; Jørgensen, Poul; Sałek, Paweł; Helgaker, Trygve

    2005-08-15

    The trust-region self-consistent field (TRSCF) method is extended to the optimization of the Kohn-Sham energy. In the TRSCF method, both the Roothaan-Hall step and the density-subspace minimization step are replaced by trust-region optimizations of local approximations to the Kohn-Sham energy, leading to a controlled, monotonic convergence towards the optimized energy. Previously the TRSCF method has been developed for optimization of the Hartree-Fock energy, which is a simple quadratic function in the density matrix. However, since the Kohn-Sham energy is a nonquadratic function of the density matrix, the local energy functions must be generalized for use with the Kohn-Sham model. Such a generalization, which contains the Hartree-Fock model as a special case, is presented here. For comparison, a rederivation of the popular direct inversion in the iterative subspace (DIIS) algorithm is performed, demonstrating that the DIIS method may be viewed as a quasi-Newton method, explaining its fast local convergence. In the global region the convergence behavior of DIIS is less predictable. The related energy DIIS technique is also discussed and shown to be inappropriate for the optimization of the Kohn-Sham energy.

  2. A hybrid pareto mixture for conditional asymmetric fat-tailed distributions.

    PubMed

    Carreau, Julie; Bengio, Yoshua

    2009-07-01

    In many cases, we observe some variables X that contain predictive information over a scalar variable of interest Y , with (X,Y) pairs observed in a training set. We can take advantage of this information to estimate the conditional density p(Y|X = x). In this paper, we propose a conditional mixture model with hybrid Pareto components to estimate p(Y|X = x). The hybrid Pareto is a Gaussian whose upper tail has been replaced by a generalized Pareto tail. A third parameter, in addition to the location and spread parameters of the Gaussian, controls the heaviness of the upper tail. Using the hybrid Pareto in a mixture model results in a nonparametric estimator that can adapt to multimodality, asymmetry, and heavy tails. A conditional density estimator is built by modeling the parameters of the mixture estimator as functions of X. We use a neural network to implement these functions. Such conditional density estimators have important applications in many domains such as finance and insurance. We show experimentally that this novel approach better models the conditional density in terms of likelihood, compared to competing algorithms: conditional mixture models with other types of components and a classical kernel-based nonparametric model.

  3. Application of multivariate Gaussian detection theory to known non-Gaussian probability density functions

    NASA Astrophysics Data System (ADS)

    Schwartz, Craig R.; Thelen, Brian J.; Kenton, Arthur C.

    1995-06-01

    A statistical parametric multispectral sensor performance model was developed by ERIM to support mine field detection studies, multispectral sensor design/performance trade-off studies, and target detection algorithm development. The model assumes target detection algorithms and their performance models which are based on data assumed to obey multivariate Gaussian probability distribution functions (PDFs). The applicability of these algorithms and performance models can be generalized to data having non-Gaussian PDFs through the use of transforms which convert non-Gaussian data to Gaussian (or near-Gaussian) data. An example of one such transform is the Box-Cox power law transform. In practice, such a transform can be applied to non-Gaussian data prior to the introduction of a detection algorithm that is formally based on the assumption of multivariate Gaussian data. This paper presents an extension of these techniques to the case where the joint multivariate probability density function of the non-Gaussian input data is known, and where the joint estimate of the multivariate Gaussian statistics, under the Box-Cox transform, is desired. The jointly estimated multivariate Gaussian statistics can then be used to predict the performance of a target detection algorithm which has an associated Gaussian performance model.

  4. Parallel Newton-Krylov-Schwarz algorithms for the transonic full potential equation

    NASA Technical Reports Server (NTRS)

    Cai, Xiao-Chuan; Gropp, William D.; Keyes, David E.; Melvin, Robin G.; Young, David P.

    1996-01-01

    We study parallel two-level overlapping Schwarz algorithms for solving nonlinear finite element problems, in particular, for the full potential equation of aerodynamics discretized in two dimensions with bilinear elements. The overall algorithm, Newton-Krylov-Schwarz (NKS), employs an inexact finite-difference Newton method and a Krylov space iterative method, with a two-level overlapping Schwarz method as a preconditioner. We demonstrate that NKS, combined with a density upwinding continuation strategy for problems with weak shocks, is robust and, economical for this class of mixed elliptic-hyperbolic nonlinear partial differential equations, with proper specification of several parameters. We study upwinding parameters, inner convergence tolerance, coarse grid density, subdomain overlap, and the level of fill-in in the incomplete factorization, and report their effect on numerical convergence rate, overall execution time, and parallel efficiency on a distributed-memory parallel computer.

  5. Learning the dynamics of objects by optimal functional interpolation.

    PubMed

    Ahn, Jong-Hoon; Kim, In Young

    2012-09-01

    Many areas of science and engineering rely on functional data and their numerical analysis. The need to analyze time-varying functional data raises the general problem of interpolation, that is, how to learn a smooth time evolution from a finite number of observations. Here, we introduce optimal functional interpolation (OFI), a numerical algorithm that interpolates functional data over time. Unlike the usual interpolation or learning algorithms, the OFI algorithm obeys the continuity equation, which describes the transport of some types of conserved quantities, and its implementation shows smooth, continuous flows of quantities. Without the need to take into account equations of motion such as the Navier-Stokes equation or the diffusion equation, OFI is capable of learning the dynamics of objects such as those represented by mass, image intensity, particle concentration, heat, spectral density, and probability density.

  6. NO2 Total and Tropospheric Vertical Column Densities from OMI on EOS Aura: Update

    NASA Technical Reports Server (NTRS)

    Gleason, J.F.; Bucsela, E.J.; Celarier, E.A.; Veefkind, J.P.; Kim, S.W.; Frost, G.F.

    2009-01-01

    The Ozone Monitoring Instrument (OMI), which is on the EOS AURA satellite, retrieves vertical column densities (VCDs) of NO2, along with those of several other trace gases. The relatively high spatial resolution and daily global coverage of the instrument make it particularly well-suited to monitoring tropospheric pollution at scales on the order of 20 km. The OMI NO2 algorithm distinguishes polluted regions from background stratospheric NO2 using a separation algorithm that relies on the smoothly varying stratospheric NO2 and estimations of both stratospheric and tropospheric air mass factors (AMFs). Version 1 of OMI NO2 data has been released for public use. An overview of OMI NO2 data, some recent results and a description of the improvements for version 2 of the algorithm will be presented.

  7. Progress on Complex Langevin simulations of a finite density matrix model for QCD

    NASA Astrophysics Data System (ADS)

    Bloch, Jacques; Glesaaen, Jonas; Verbaarschot, Jacobus; Zafeiropoulos, Savvas

    2018-03-01

    We study the Stephanov model, which is an RMT model for QCD at finite density, using the Complex Langevin algorithm. Naive implementation of the algorithm shows convergence towards the phase quenched or quenched theory rather than to intended theory with dynamical quarks. A detailed analysis of this issue and a potential resolution of the failure of this algorithm are discussed. We study the effect of gauge cooling on the Dirac eigenvalue distribution and time evolution of the norm for various cooling norms, which were specifically designed to remove the pathologies of the complex Langevin evolution. The cooling is further supplemented with a shifted representation for the random matrices. Unfortunately, none of these modifications generate a substantial improvement on the complex Langevin evolution and the final results still do not agree with the analytical predictions.

  8. Control of equipment isolation system using wavelet-based hybrid sliding mode control

    NASA Astrophysics Data System (ADS)

    Huang, Shieh-Kung; Loh, Chin-Hsiung

    2017-04-01

    Critical non-structural equipment, including life-saving equipment in hospitals, circuit breakers, computers, high technology instrumentations, etc., is vulnerable to strong earthquakes, and on top of that, the failure of the vibration-sensitive equipment will cause severe economic loss. In order to protect vibration-sensitive equipment or machinery against strong earthquakes, various innovative control algorithms are developed to compensate the internal forces that to be applied. These new or improved control strategies, such as the control algorithms based on optimal control theory and sliding mode control (SMC), are also developed for structures engineering as a key element in smart structure technology. The optimal control theory, one of the most common methodologies in feedback control, finds control forces through achieving a certain optimal criterion by minimizing a cost function. For example, the linear-quadratic regulator (LQR) was the most popular control algorithm over the past three decades, and a number of modifications have been proposed to increase the efficiency of classical LQR algorithm. However, except to the advantage of simplicity and ease of implementation, LQR are susceptible to parameter uncertainty and modeling error due to complex nature of civil structures. Different from LQR control, a robust and easy to be implemented control algorithm, SMC has also been studied. SMC is a nonlinear control methodology that forces the structural system to slide along surfaces or boundaries; hence this control algorithm is naturally robust with respect to parametric uncertainties of a structure. Early attempts at protecting vibration-sensitive equipment were based on the use of existing control algorithms as described above. However, in recent years, researchers have tried to renew the existing control algorithms or developing a new control algorithm to adapt the complex nature of civil structures which include the control of both structures and non-structural components. The aim of this paper is to develop a hybrid control algorithm on the control of both structures and equipments simultaneously to overcome the limitations of classical feedback control through combining the advantage of classic LQR and SMC. To suppress vibrations with the frequency contents of strong earthquakes differing from the natural frequencies of civil structures, the hybrid control algorithms integrated with the wavelet-base vibration control algorithm is developed. The performance of classical, hybrid, and wavelet-based hybrid control algorithms as well as the responses of structure and non-structural components are evaluated and discussed through numerical simulation in this study.

  9. Intelligent systems approach for automated identification of individual control behavior of a human operator

    NASA Astrophysics Data System (ADS)

    Zaychik, Kirill B.

    Acceptable results have been obtained using conventional techniques to model the generic human operator's control behavior. However, little research has been done in an attempt to identify an individual based on his/her control behavior. The main hypothesis investigated in this dissertation is that different operators exhibit different control behavior when performing a given control task. Furthermore, inter-person differences are manifested in the amplitude and frequency content of the non-linear component of the control behavior. Two enhancements to the existing models of the human operator, which allow personalization of the modeled control behavior, are presented in this dissertation. One of the proposed enhancements accounts for the "testing" control signals, which are introduced by an operator for more accurate control of the system and/or to adjust his/her control strategy. Such enhancement uses the Artificial Neural Network (ANN), which can be fine-tuned to model the "testing" control behavior of a given individual. The other model enhancement took the form of an equiripple filter (EF), which conditions the power spectrum of the control signal before it is passed through the plant dynamics block. The filter design technique uses Parks-McClellan algorithm, which allows parameterization of the desired levels of power at certain frequencies. A novel automated parameter identification technique (APID) was developed to facilitate the identification process of the parameters of the selected models of the human operator. APID utilizes a Genetic Algorithm (GA) based optimization engine called the Bit-climbing Algorithm (BCA). Proposed model enhancements were validated using the experimental data obtained at three different sources: the Manual Control Laboratory software experiments, Unmanned Aerial Vehicle simulation, and NASA Langley Research Center Visual Motion Simulator studies. Validation analysis involves comparison of the actual and simulated control activity signals. Validation criteria used in this dissertation is based on comparing Power Spectral Densities of the control signals against that of the Precision model of the human operator. This dissertation also addresses the issue of applying the proposed human operator model augmentation to evaluate the effectiveness of the motion feedback when simulating the actual pilot control behavior in a flight simulator. The proposed modeling methodology allows for quantitative assessments and prediction of the need for platform motion, while performing aircraft/pilot simulation studies.

  10. New recursive-least-squares algorithms for nonlinear active control of sound and vibration using neural networks.

    PubMed

    Bouchard, M

    2001-01-01

    In recent years, a few articles describing the use of neural networks for nonlinear active control of sound and vibration were published. Using a control structure with two multilayer feedforward neural networks (one as a nonlinear controller and one as a nonlinear plant model), steepest descent algorithms based on two distinct gradient approaches were introduced for the training of the controller network. The two gradient approaches were sometimes called the filtered-x approach and the adjoint approach. Some recursive-least-squares algorithms were also introduced, using the adjoint approach. In this paper, an heuristic procedure is introduced for the development of recursive-least-squares algorithms based on the filtered-x and the adjoint gradient approaches. This leads to the development of new recursive-least-squares algorithms for the training of the controller neural network in the two networks structure. These new algorithms produce a better convergence performance than previously published algorithms. Differences in the performance of algorithms using the filtered-x and the adjoint gradient approaches are discussed in the paper. The computational load of the algorithms discussed in the paper is evaluated for multichannel systems of nonlinear active control. Simulation results are presented to compare the convergence performance of the algorithms, showing the convergence gain provided by the new algorithms.

  11. Multi-objective control of nonlinear boiler-turbine dynamics with actuator magnitude and rate constraints.

    PubMed

    Chen, Pang-Chia

    2013-01-01

    This paper investigates multi-objective controller design approaches for nonlinear boiler-turbine dynamics subject to actuator magnitude and rate constraints. System nonlinearity is handled by a suitable linear parameter varying system representation with drum pressure as the system varying parameter. Variation of the drum pressure is represented by suitable norm-bounded uncertainty and affine dependence on system matrices. Based on linear matrix inequality algorithms, the magnitude and rate constraints on the actuator and the deviations of fluid density and water level are formulated while the tracking abilities on the drum pressure and power output are optimized. Variation ranges of drum pressure and magnitude tracking commands are used as controller design parameters, determined according to the boiler-turbine's operation range. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Development of model reference adaptive control theory for electric power plant control applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mabius, L.E.

    1982-09-15

    The scope of this effort includes the theoretical development of a multi-input, multi-output (MIMO) Model Reference Control (MRC) algorithm, (i.e., model following control law), Model Reference Adaptive Control (MRAC) algorithm and the formulation of a nonlinear model of a typical electric power plant. Previous single-input, single-output MRAC algorithm designs have been generalized to MIMO MRAC designs using the MIMO MRC algorithm. This MRC algorithm, which has been developed using Command Generator Tracker methodologies, represents the steady state behavior (in the adaptive sense) of the MRAC algorithm. The MRC algorithm is a fundamental component in the MRAC design and stability analysis.more » An enhanced MRC algorithm, which has been developed for systems with more controls than regulated outputs, alleviates the MRC stability constraint of stable plant transmission zeroes. The nonlinear power plant model is based on the Cromby model with the addition of a governor valve management algorithm, turbine dynamics and turbine interactions with extraction flows. An application of the MRC algorithm to a linearization of this model demonstrates its applicability to power plant systems. In particular, the generated power changes at 7% per minute while throttle pressure and temperature, reheat temperature and drum level are held constant with a reasonable level of control. The enhanced algorithm reduces significantly control fluctuations without modifying the output response.« less

  13. Quantum Statistical Mechanics on a Quantum Computer

    NASA Astrophysics Data System (ADS)

    Raedt, H. D.; Hams, A. H.; Michielsen, K.; Miyashita, S.; Saito, K.

    We describe a quantum algorithm to compute the density of states and thermal equilibrium properties of quantum many-body systems. We present results obtained by running this algorithm on a software implementation of a 21-qubit quantum computer for the case of an antiferromagnetic Heisenberg model on triangular lattices of different size.

  14. A Rotor Tip Vortex Tracing Algorithm for Image Post-Processing

    NASA Technical Reports Server (NTRS)

    Overmeyer, Austin D.

    2015-01-01

    A neurite tracing algorithm, originally developed for medical image processing, was used to trace the location of the rotor tip vortex in density gradient flow visualization images. The tracing algorithm was applied to several representative test images to form case studies. The accuracy of the tracing algorithm was compared to two current methods including a manual point and click method and a cross-correlation template method. It is shown that the neurite tracing algorithm can reduce the post-processing time to trace the vortex by a factor of 10 to 15 without compromising the accuracy of the tip vortex location compared to other methods presented in literature.

  15. An assessment of 'shuffle algorithm' collision mechanics for particle simulations

    NASA Technical Reports Server (NTRS)

    Feiereisen, William J.; Boyd, Iain D.

    1991-01-01

    Among the algorithms for collision mechanics used at present, the 'shuffle algorithm' of Baganoff (McDonald and Baganoff, 1988; Baganoff and McDonald, 1990) not only allows efficient vectorization, but also discretizes the possible outcomes of a collision. To assess the applicability of the shuffle algorithm, a simulation was performed of flows in monoatomic gases and the calculated characteristics of shock waves was compared with those obtained using a commonly employed isotropic scattering law. It is shown that, in general, the shuffle algorithm adequately represents the collision mechanics in cases when the goal of calculations are mean profiles of density and temperature.

  16. MRI Brain Tumor Segmentation and Necrosis Detection Using Adaptive Sobolev Snakes.

    PubMed

    Nakhmani, Arie; Kikinis, Ron; Tannenbaum, Allen

    2014-03-21

    Brain tumor segmentation in brain MRI volumes is used in neurosurgical planning and illness staging. It is important to explore the tumor shape and necrosis regions at different points of time to evaluate the disease progression. We propose an algorithm for semi-automatic tumor segmentation and necrosis detection. Our algorithm consists of three parts: conversion of MRI volume to a probability space based on the on-line learned model, tumor probability density estimation, and adaptive segmentation in the probability space. We use manually selected acceptance and rejection classes on a single MRI slice to learn the background and foreground statistical models. Then, we propagate this model to all MRI slices to compute the most probable regions of the tumor. Anisotropic 3D diffusion is used to estimate the probability density. Finally, the estimated density is segmented by the Sobolev active contour (snake) algorithm to select smoothed regions of the maximum tumor probability. The segmentation approach is robust to noise and not very sensitive to the manual initialization in the volumes tested. Also, it is appropriate for low contrast imagery. The irregular necrosis regions are detected by using the outliers of the probability distribution inside the segmented region. The necrosis regions of small width are removed due to a high probability of noisy measurements. The MRI volume segmentation results obtained by our algorithm are very similar to expert manual segmentation.

  17. MRI brain tumor segmentation and necrosis detection using adaptive Sobolev snakes

    NASA Astrophysics Data System (ADS)

    Nakhmani, Arie; Kikinis, Ron; Tannenbaum, Allen

    2014-03-01

    Brain tumor segmentation in brain MRI volumes is used in neurosurgical planning and illness staging. It is important to explore the tumor shape and necrosis regions at di erent points of time to evaluate the disease progression. We propose an algorithm for semi-automatic tumor segmentation and necrosis detection. Our algorithm consists of three parts: conversion of MRI volume to a probability space based on the on-line learned model, tumor probability density estimation, and adaptive segmentation in the probability space. We use manually selected acceptance and rejection classes on a single MRI slice to learn the background and foreground statistical models. Then, we propagate this model to all MRI slices to compute the most probable regions of the tumor. Anisotropic 3D di usion is used to estimate the probability density. Finally, the estimated density is segmented by the Sobolev active contour (snake) algorithm to select smoothed regions of the maximum tumor probability. The segmentation approach is robust to noise and not very sensitive to the manual initialization in the volumes tested. Also, it is appropriate for low contrast imagery. The irregular necrosis regions are detected by using the outliers of the probability distribution inside the segmented region. The necrosis regions of small width are removed due to a high probability of noisy measurements. The MRI volume segmentation results obtained by our algorithm are very similar to expert manual segmentation.

  18. Multivariate Density Estimation and Remote Sensing

    NASA Technical Reports Server (NTRS)

    Scott, D. W.

    1983-01-01

    Current efforts to develop methods and computer algorithms to effectively represent multivariate data commonly encountered in remote sensing applications are described. While this may involve scatter diagrams, multivariate representations of nonparametric probability density estimates are emphasized. The density function provides a useful graphical tool for looking at data and a useful theoretical tool for classification. This approach is called a thunderstorm data analysis.

  19. Optimization and Sensitivity Analysis for a Launch Trajectory

    DTIC Science & Technology

    2014-12-01

    research, the algorithm that will be used is DIDO. DIDO is a MATLAB optimal control toolbox that was named after Dido, the founder and first queen of...is the relative velocity of the vehicle with the atmosphere in km/s, S is the surface area of the vehicle in m2, and Cd is the coefficient of drag ...density reducing aerodynamic drag encountered by the launch vehicle. 0 20 40 60 80 -20 0 20 D is ta nc e -x -y -z 0 20 40 60 80 -2 -1 0 1 V

  20. Efficient algorithm for multiconfiguration pair-density functional theory with application to the heterolytic dissociation energy of ferrocene

    NASA Astrophysics Data System (ADS)

    Sand, Andrew M.; Truhlar, Donald G.; Gagliardi, Laura

    2017-01-01

    The recently developed multiconfiguration pair-density functional theory (MC-PDFT) combines multiconfiguration wave function theory with a density functional that depends on the on-top pair density of an electronic system. In an MC-PDFT calculation, there are two steps: a conventional multiconfiguration self-consistent-field (MCSCF) calculation and a post-MCSCF evaluation of the energy with an on-top density functional. In this work, we present the details of the MC-PDFT algorithm that avoids steeply scaling steps that are present in other post-self-consistent-field multireference calculations of dynamic correlation energy. We demonstrate the favorable scaling by considering systems of H2 molecules with active spaces of several different sizes. We then apply the MC-PDFT method to calculate the heterolytic dissociation enthalpy of ferrocene. We find that MC-PDFT yields results that are at least as accurate as complete active space second-order perturbation theory and are more stable with respect to basis set, but at a fraction of the cost in both time and memory.

  1. Efficient algorithm for multiconfiguration pair-density functional theory with application to the heterolytic dissociation energy of ferrocene.

    PubMed

    Sand, Andrew M; Truhlar, Donald G; Gagliardi, Laura

    2017-01-21

    The recently developed multiconfiguration pair-density functional theory (MC-PDFT) combines multiconfiguration wave function theory with a density functional that depends on the on-top pair density of an electronic system. In an MC-PDFT calculation, there are two steps: a conventional multiconfiguration self-consistent-field (MCSCF) calculation and a post-MCSCF evaluation of the energy with an on-top density functional. In this work, we present the details of the MC-PDFT algorithm that avoids steeply scaling steps that are present in other post-self-consistent-field multireference calculations of dynamic correlation energy. We demonstrate the favorable scaling by considering systems of H 2 molecules with active spaces of several different sizes. We then apply the MC-PDFT method to calculate the heterolytic dissociation enthalpy of ferrocene. We find that MC-PDFT yields results that are at least as accurate as complete active space second-order perturbation theory and are more stable with respect to basis set, but at a fraction of the cost in both time and memory.

  2. Three-dimensional forward solver and its performance analysis for magnetic resonance electrical impedance tomography (MREIT) using recessed electrodes.

    PubMed

    Lee, Byung Il; Oh, Suk Hoon; Woo, Eung Je; Lee, Soo Yeol; Cho, Min Hyoung; Kwon, Ohin; Seo, Jin Keun; Lee, June-Yub; Baek, Woon Sik

    2003-07-07

    In magnetic resonance electrical impedance tomography (MREIT), we try to reconstruct a cross-sectional resistivity (or conductivity) image of a subject. When we inject a current through surface electrodes, it generates a magnetic field. Using a magnetic resonance imaging (MRI) scanner, we can obtain the induced magnetic flux density from MR phase images of the subject. We use recessed electrodes to avoid undesirable artefacts near electrodes in measuring magnetic flux densities. An MREIT image reconstruction algorithm produces cross-sectional resistivity images utilizing the measured internal magnetic flux density in addition to boundary voltage data. In order to develop such an image reconstruction algorithm, we need a three-dimensional forward solver. Given injection currents as boundary conditions, the forward solver described in this paper computes voltage and current density distributions using the finite element method (FEM). Then, it calculates the magnetic flux density within the subject using the Biot-Savart law and FEM. The performance of the forward solver is analysed and found to be enough for use in MREIT for resistivity image reconstructions and also experimental designs and validations. The forward solver may find other applications where one needs to compute voltage, current density and magnetic flux density distributions all within a volume conductor.

  3. Efficient and Stable Routing Algorithm Based on User Mobility and Node Density in Urban Vehicular Network.

    PubMed

    Al-Mayouf, Yusor Rafid Bahar; Ismail, Mahamod; Abdullah, Nor Fadzilah; Wahab, Ainuddin Wahid Abdul; Mahdi, Omar Adil; Khan, Suleman; Choo, Kim-Kwang Raymond

    2016-01-01

    Vehicular ad hoc networks (VANETs) are considered an emerging technology in the industrial and educational fields. This technology is essential in the deployment of the intelligent transportation system, which is targeted to improve safety and efficiency of traffic. The implementation of VANETs can be effectively executed by transmitting data among vehicles with the use of multiple hops. However, the intrinsic characteristics of VANETs, such as its dynamic network topology and intermittent connectivity, limit data delivery. One particular challenge of this network is the possibility that the contributing node may only remain in the network for a limited time. Hence, to prevent data loss from that node, the information must reach the destination node via multi-hop routing techniques. An appropriate, efficient, and stable routing algorithm must be developed for various VANET applications to address the issues of dynamic topology and intermittent connectivity. Therefore, this paper proposes a novel routing algorithm called efficient and stable routing algorithm based on user mobility and node density (ESRA-MD). The proposed algorithm can adapt to significant changes that may occur in the urban vehicular environment. This algorithm works by selecting an optimal route on the basis of hop count and link duration for delivering data from source to destination, thereby satisfying various quality of service considerations. The validity of the proposed algorithm is investigated by its comparison with ARP-QD protocol, which works on the mechanism of optimal route finding in VANETs in urban environments. Simulation results reveal that the proposed ESRA-MD algorithm shows remarkable improvement in terms of delivery ratio, delivery delay, and communication overhead.

  4. Fast Nonlinear Generalized Inversion of Gravity Data with Application to the Three-Dimensional Crustal Density Structure of Sichuan Basin, Southwest China

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Meng, Xiaohong; Li, Fang

    2017-11-01

    Generalized inversion is one of the important steps in the quantitative interpretation of gravity data. With appropriate algorithm and parameters, it gives a view of the subsurface which characterizes different geological bodies. However, generalized inversion of gravity data is time consuming due to the large amount of data points and model cells adopted. Incorporating of various prior information as constraints deteriorates the above situation. In the work discussed in this paper, a method for fast nonlinear generalized inversion of gravity data is proposed. The fast multipole method is employed for forward modelling. The inversion objective function is established with weighted data misfit function along with model objective function. The total objective function is solved by a dataspace algorithm. Moreover, depth weighing factor is used to improve depth resolution of the result, and bound constraint is incorporated by a transfer function to limit the model parameters in a reliable range. The matrix inversion is accomplished by a preconditioned conjugate gradient method. With the above algorithm, equivalent density vectors can be obtained, and interpolation is performed to get the finally density model on the fine mesh in the model domain. Testing on synthetic gravity data demonstrated that the proposed method is faster than conventional generalized inversion algorithm to produce an acceptable solution for gravity inversion problem. The new developed inversion method was also applied for inversion of the gravity data collected over Sichuan basin, southwest China. The established density structure in this study helps understanding the crustal structure of Sichuan basin and provides reference for further oil and gas exploration in this area.

  5. Accurate Construction of Photoactivated Localization Microscopy (PALM) Images for Quantitative Measurements

    PubMed Central

    Coltharp, Carla; Kessler, Rene P.; Xiao, Jie

    2012-01-01

    Localization-based superresolution microscopy techniques such as Photoactivated Localization Microscopy (PALM) and Stochastic Optical Reconstruction Microscopy (STORM) have allowed investigations of cellular structures with unprecedented optical resolutions. One major obstacle to interpreting superresolution images, however, is the overcounting of molecule numbers caused by fluorophore photoblinking. Using both experimental and simulated images, we determined the effects of photoblinking on the accurate reconstruction of superresolution images and on quantitative measurements of structural dimension and molecule density made from those images. We found that structural dimension and relative density measurements can be made reliably from images that contain photoblinking-related overcounting, but accurate absolute density measurements, and consequently faithful representations of molecule counts and positions in cellular structures, require the application of a clustering algorithm to group localizations that originate from the same molecule. We analyzed how applying a simple algorithm with different clustering thresholds (tThresh and dThresh) affects the accuracy of reconstructed images, and developed an easy method to select optimal thresholds. We also identified an empirical criterion to evaluate whether an imaging condition is appropriate for accurate superresolution image reconstruction with the clustering algorithm. Both the threshold selection method and imaging condition criterion are easy to implement within existing PALM clustering algorithms and experimental conditions. The main advantage of our method is that it generates a superresolution image and molecule position list that faithfully represents molecule counts and positions within a cellular structure, rather than only summarizing structural properties into ensemble parameters. This feature makes it particularly useful for cellular structures of heterogeneous densities and irregular geometries, and allows a variety of quantitative measurements tailored to specific needs of different biological systems. PMID:23251611

  6. A scalable geometric multigrid solver for nonsymmetric elliptic systems with application to variable-density flows

    NASA Astrophysics Data System (ADS)

    Esmaily, M.; Jofre, L.; Mani, A.; Iaccarino, G.

    2018-03-01

    A geometric multigrid algorithm is introduced for solving nonsymmetric linear systems resulting from the discretization of the variable density Navier-Stokes equations on nonuniform structured rectilinear grids and high-Reynolds number flows. The restriction operation is defined such that the resulting system on the coarser grids is symmetric, thereby allowing for the use of efficient smoother algorithms. To achieve an optimal rate of convergence, the sequence of interpolation and restriction operations are determined through a dynamic procedure. A parallel partitioning strategy is introduced to minimize communication while maintaining the load balance between all processors. To test the proposed algorithm, we consider two cases: 1) homogeneous isotropic turbulence discretized on uniform grids and 2) turbulent duct flow discretized on stretched grids. Testing the algorithm on systems with up to a billion unknowns shows that the cost varies linearly with the number of unknowns. This O (N) behavior confirms the robustness of the proposed multigrid method regarding ill-conditioning of large systems characteristic of multiscale high-Reynolds number turbulent flows. The robustness of our method to density variations is established by considering cases where density varies sharply in space by a factor of up to 104, showing its applicability to two-phase flow problems. Strong and weak scalability studies are carried out, employing up to 30,000 processors, to examine the parallel performance of our implementation. Excellent scalability of our solver is shown for a granularity as low as 104 to 105 unknowns per processor. At its tested peak throughput, it solves approximately 4 billion unknowns per second employing over 16,000 processors with a parallel efficiency higher than 50%.

  7. Research on intelligent algorithm of electro - hydraulic servo control system

    NASA Astrophysics Data System (ADS)

    Wang, Yannian; Zhao, Yuhui; Liu, Chengtao

    2017-09-01

    In order to adapt the nonlinear characteristics of the electro-hydraulic servo control system and the influence of complex interference in the industrial field, using a fuzzy PID switching learning algorithm is proposed and a fuzzy PID switching learning controller is designed and applied in the electro-hydraulic servo controller. The designed controller not only combines the advantages of the fuzzy control and PID control, but also introduces the learning algorithm into the switching function, which makes the learning of the three parameters in the switching function can avoid the instability of the system during the switching between the fuzzy control and PID control algorithms. It also makes the switch between these two control algorithm more smoother than that of the conventional fuzzy PID.

  8. A fast algorithm for identifying friends-of-friends halos

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Modi, C.

    2017-07-01

    We describe a simple and fast algorithm for identifying friends-of-friends features and prove its correctness. The algorithm avoids unnecessary expensive neighbor queries, uses minimal memory overhead, and rejects slowdown in high over-density regions. We define our algorithm formally based on pair enumeration, a problem that has been heavily studied in fast 2-point correlation codes and our reference implementation employs a dual KD-tree correlation function code. We construct features in a hierarchical tree structure, and use a splay operation to reduce the average cost of identifying the root of a feature from O [ log L ] to O [ 1 ] (L is the size of a feature) without additional memory costs. This reduces the overall time complexity of merging trees from O [ L log L ] to O [ L ] , reducing the number of operations per splay by orders of magnitude. We next introduce a pruning operation that skips merge operations between two fully self-connected KD-tree nodes. This improves the robustness of the algorithm, reducing the number of merge operations in high density peaks from O [δ2 ] to O [ δ ] . We show that for cosmological data set the algorithm eliminates more than half of merge operations for typically used linking lengths b ∼ 0 . 2 (relative to mean separation). Furthermore, our algorithm is extremely simple and easy to implement on top of an existing pair enumeration code, reusing the optimization effort that has been invested in fast correlation function codes.

  9. Boiler-turbine control system design using a genetic algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimeo, R.; Lee, K.Y.

    1995-12-01

    This paper discusses the application of a genetic algorithm to control system design for a boiler-turbine plant. In particular the authors study the ability of the genetic algorithm to develop a proportional-integral (PI) controller and a state feedback controller for a non-linear multi-input/multi-output (MIMO) plant model. The plant model is presented along with a discussion of the inherent difficulties in such controller development. A sketch of the genetic algorithm (GA) is presented and its strategy as a method of control system design is discussed. Results are presented for two different control systems that have been designed with the genetic algorithm.

  10. Hydrodynamic control of microphytoplankton bloom in a coastal sea

    NASA Astrophysics Data System (ADS)

    Murty, K. Narasimha; Sarma, Nittala S.; Pandi, Sudarsana Rao; Chiranjeevulu, Gundala; Kiran, Rayaprolu; Muralikrishna, R.

    2017-08-01

    The influence of hydrodynamics on phytoplankton bloom occurrence/formation has not been adequately reported. Here, we document diurnal observations in the tropical Bay of Bengal's mid-western shelf region which reveal microphytoplankton cell density maxima in association with neap tide many times more than what could be accounted for by solar insolation and nutrient levels. When in summer, phytoplankton cells were abundant and the cell density of Guinardia delicatula reached critical value by tide caused zonation, aggregation happened to an intense bloom. Mucilaginous exudates from the alga due to heat and silicate stress likely promoted and stable water column and weak winds left undisturbed, the transient bloom. The phytoplankton aggregates have implication as food resource in the benthic region implying higher fishery potential, in carbon dioxide sequestration (carbon burial) and in efforts towards improving remote sensing algorithms for chlorophyll in the coastal region.

  11. Simulation of a cascaded longitudinal space charge amplifier for coherent radiation generation

    DOE PAGES

    Halavanau, A.; Piot, P.

    2016-03-03

    Longitudinal space charge (LSC) effects are generally considered as harmful in free-electron lasers as they can seed unfavorable energy modulations that can result in density modulations with associated emittance dilution. It was pointed out, however, that such \\micro-bunching instabilities" could be potentially useful to support the generation of broadband coherent radiation. Therefore there has been an increasing interest in devising accelerator beam lines capable of controlling LSC induced density modulations. In the present paper we augment these previous investigations by combining a grid-less space charge algorithm with the popular particle-tracking program elegant. This high-fidelity model of the space charge ismore » used to benchmark conventional LSC models. We then employ the developed model to optimize the performance of a cascaded longitudinal space charge amplifier using beam parameters comparable to the ones achievable at Fermilab Accelerator Science & Technology (FAST) facility currently under commissioning at Fermilab.« less

  12. Network Coded Cooperative Communication in a Real-Time Wireless Hospital Sensor Network.

    PubMed

    Prakash, R; Balaji Ganesh, A; Sivabalan, Somu

    2017-05-01

    The paper presents a network coded cooperative communication (NC-CC) enabled wireless hospital sensor network architecture for monitoring health as well as postural activities of a patient. A wearable device, referred as a smartband is interfaced with pulse rate, body temperature sensors and an accelerometer along with wireless protocol services, such as Bluetooth and Radio-Frequency transceiver and Wi-Fi. The energy efficiency of wearable device is improved by embedding a linear acceleration based transmission duty cycling algorithm (NC-DRDC). The real-time demonstration is carried-out in a hospital environment to evaluate the performance characteristics, such as power spectral density, energy consumption, signal to noise ratio, packet delivery ratio and transmission offset. The resource sharing and energy efficiency features of network coding technique are improved by proposing an algorithm referred as network coding based dynamic retransmit/rebroadcast decision control (LA-TDC). From the experimental results, it is observed that the proposed LA-TDC algorithm reduces network traffic and end-to-end delay by an average of 27.8% and 21.6%, respectively than traditional network coded wireless transmission. The wireless architecture is deployed in a hospital environment and results are then successfully validated.

  13. A comparison of force control algorithms for robots in contact with flexible environments

    NASA Technical Reports Server (NTRS)

    Wilfinger, Lee S.

    1992-01-01

    In order to perform useful tasks, the robot end-effector must come into contact with its environment. For such tasks, force feedback is frequently used to control the interaction forces. Control of these forces is complicated by the fact that the flexibility of the environment affects the stability of the force control algorithm. Because of the wide variety of different materials present in everyday environments, it is necessary to gain an understanding of how environmental flexibility affects the stability of force control algorithms. This report presents the theory and experimental results of two force control algorithms: Position Accommodation Control and Direct Force Servoing. The implementation of each of these algorithms on a two-arm robotic test bed located in the Center for Intelligent Robotic Systems for Space Exploration (CIRSSE) is discussed in detail. The behavior of each algorithm when contacting materials of different flexibility is experimentally determined. In addition, several robustness improvements to the Direct Force Servoing algorithm are suggested and experimentally verified. Finally, a qualitative comparison of the force control algorithms is provided, along with a description of a general tuning process for each control method.

  14. Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard

    PubMed Central

    Terwilliger, Thomas C.; Grosse-Kunstleve, Ralf W.; Afonine, Pavel V.; Moriarty, Nigel W.; Zwart, Peter H.; Hung, Li-Wei; Read, Randy J.; Adams, Paul D.

    2008-01-01

    The PHENIX AutoBuild wizard is a highly automated tool for iterative model building, structure refinement and density modification using RESOLVE model building, RESOLVE statistical density modification and phenix.refine structure refinement. Recent advances in the AutoBuild wizard and phenix.refine include automated detection and application of NCS from models as they are built, extensive model-completion algorithms and automated solvent-molecule picking. Model-completion algorithms in the AutoBuild wizard include loop building, crossovers between chains in different models of a structure and side-chain optimization. The AutoBuild wizard has been applied to a set of 48 structures at resolutions ranging from 1.1 to 3.2 Å, resulting in a mean R factor of 0.24 and a mean free R factor of 0.29. The R factor of the final model is dependent on the quality of the starting electron density and is relatively independent of resolution. PMID:18094468

  15. Joint refinement model for the spin resolved one-electron reduced density matrix of YTiO3 using magnetic structure factors and magnetic Compton profiles data.

    PubMed

    Gueddida, Saber; Yan, Zeyin; Kibalin, Iurii; Voufack, Ariste Bolivard; Claiser, Nicolas; Souhassou, Mohamed; Lecomte, Claude; Gillon, Béatrice; Gillet, Jean-Michel

    2018-04-28

    In this paper, we propose a simple cluster model with limited basis sets to reproduce the unpaired electron distributions in a YTiO 3 ferromagnetic crystal. The spin-resolved one-electron-reduced density matrix is reconstructed simultaneously from theoretical magnetic structure factors and directional magnetic Compton profiles using our joint refinement algorithm. This algorithm is guided by the rescaling of basis functions and the adjustment of the spin population matrix. The resulting spin electron density in both position and momentum spaces from the joint refinement model is in agreement with theoretical and experimental results. Benefits brought from magnetic Compton profiles to the entire spin density matrix are illustrated. We studied the magnetic properties of the YTiO 3 crystal along the Ti-O 1 -Ti bonding. We found that the basis functions are mostly rescaled by means of magnetic Compton profiles, while the molecular occupation numbers are mainly modified by the magnetic structure factors.

  16. Training Recurrent Neural Networks With the Levenberg-Marquardt Algorithm for Optimal Control of a Grid-Connected Converter.

    PubMed

    Fu, Xingang; Li, Shuhui; Fairbank, Michael; Wunsch, Donald C; Alonso, Eduardo

    2015-09-01

    This paper investigates how to train a recurrent neural network (RNN) using the Levenberg-Marquardt (LM) algorithm as well as how to implement optimal control of a grid-connected converter (GCC) using an RNN. To successfully and efficiently train an RNN using the LM algorithm, a new forward accumulation through time (FATT) algorithm is proposed to calculate the Jacobian matrix required by the LM algorithm. This paper explores how to incorporate FATT into the LM algorithm. The results show that the combination of the LM and FATT algorithms trains RNNs better than the conventional backpropagation through time algorithm. This paper presents an analytical study on the optimal control of GCCs, including theoretically ideal optimal and suboptimal controllers. To overcome the inapplicability of the optimal GCC controller under practical conditions, a new RNN controller with an improved input structure is proposed to approximate the ideal optimal controller. The performance of an ideal optimal controller and a well-trained RNN controller was compared in close to real-life power converter switching environments, demonstrating that the proposed RNN controller can achieve close to ideal optimal control performance even under low sampling rate conditions. The excellent performance of the proposed RNN controller under challenging and distorted system conditions further indicates the feasibility of using an RNN to approximate optimal control in practical applications.

  17. Enhancement of breast periphery region in digital mammography

    NASA Astrophysics Data System (ADS)

    Menegatti Pavan, Ana Luiza; Vacavant, Antoine; Petean Trindade, Andre; Quini, Caio Cesar; Rodrigues de Pina, Diana

    2018-03-01

    Volumetric breast density has been shown to be one of the strongest risk factor for breast cancer diagnosis. This metric can be estimated using digital mammograms. During mammography acquisition, breast is compressed and part of it loses contact with the paddle, resulting in an uncompressed region in periphery with thickness variation. Therefore, reliable density estimation in the breast periphery region is a problem, which affects the accuracy of volumetric breast density measurement. The aim of this study was to enhance breast periphery to solve the problem of thickness variation. Herein, we present an automatic algorithm to correct breast periphery thickness without changing pixel value from internal breast region. The correction pixel values from periphery was based on mean values over iso-distance lines from the breast skin-line using only adipose tissue information. The algorithm detects automatically the periphery region where thickness should be corrected. A correction factor was applied in breast periphery image to enhance the region. We also compare our contribution with two other algorithms from state-of-the-art, and we show its accuracy by means of different quality measures. Experienced radiologists subjectively evaluated resulting images from the tree methods in relation to original mammogram. The mean pixel value, skewness and kurtosis from histogram of the three methods were used as comparison metric. As a result, the methodology presented herein showed to be a good approach to be performed before calculating volumetric breast density.

  18. Reaching Agreement in Quantum Hybrid Networks.

    PubMed

    Shi, Guodong; Li, Bo; Miao, Zibo; Dower, Peter M; James, Matthew R

    2017-07-20

    We consider a basic quantum hybrid network model consisting of a number of nodes each holding a qubit, for which the aim is to drive the network to a consensus in the sense that all qubits reach a common state. Projective measurements are applied serving as control means, and the measurement results are exchanged among the nodes via classical communication channels. In this way the quantum-opeartion/classical-communication nature of hybrid quantum networks is captured, although coherent states and joint operations are not taken into consideration in order to facilitate a clear and explicit analysis. We show how to carry out centralized optimal path planning for this network with all-to-all classical communications, in which case the problem becomes a stochastic optimal control problem with a continuous action space. To overcome the computation and communication obstacles facing the centralized solutions, we also develop a distributed Pairwise Qubit Projection (PQP) algorithm, where pairs of nodes meet at a given time and respectively perform measurements at their geometric average. We show that the qubit states are driven to a consensus almost surely along the proposed PQP algorithm, and that the expected qubit density operators converge to the average of the network's initial values.

  19. Better cancer biomarker discovery through better study design.

    PubMed

    Rundle, Andrew; Ahsan, Habibul; Vineis, Paolo

    2012-12-01

    High-throughput laboratory technologies coupled with sophisticated bioinformatics algorithms have tremendous potential for discovering novel biomarkers, or profiles of biomarkers, that could serve as predictors of disease risk, response to treatment or prognosis. We discuss methodological issues in wedding high-throughput approaches for biomarker discovery with the case-control study designs typically used in biomarker discovery studies, especially focusing on nested case-control designs. We review principles for nested case-control study design in relation to biomarker discovery studies and describe how the efficiency of biomarker discovery can be effected by study design choices. We develop a simulated prostate cancer cohort data set and a series of biomarker discovery case-control studies nested within the cohort to illustrate how study design choices can influence biomarker discovery process. Common elements of nested case-control design, incidence density sampling and matching of controls to cases are not typically factored correctly into biomarker discovery analyses, inducing bias in the discovery process. We illustrate how incidence density sampling and matching of controls to cases reduce the apparent specificity of truly valid biomarkers 'discovered' in a nested case-control study. We also propose and demonstrate a new case-control matching protocol, we call 'antimatching', that improves the efficiency of biomarker discovery studies. For a valid, but as yet undiscovered, biomarker(s) disjunctions between correctly designed epidemiologic studies and the practice of biomarker discovery reduce the likelihood that true biomarker(s) will be discovered and increases the false-positive discovery rate. © 2012 The Authors. European Journal of Clinical Investigation © 2012 Stichting European Society for Clinical Investigation Journal Foundation.

  20. [Research on magnetic coupling centrifugal blood pump control based on a self-tuning fuzzy PI algorithm].

    PubMed

    Yang, Lei; Yang, Ming; Xu, Zihao; Zhuang, Xiaoqi; Wang, Wei; Zhang, Haibo; Han, Lu; Xu, Liang

    2014-10-01

    The purpose of this paper is to report the research and design of control system of magnetic coupling centrifugal blood pump in our laboratory, and to briefly describe the structure of the magnetic coupling centrifugal blood pump and principles of the body circulation model. The performance of blood pump is not only related to materials and structure, but also depends on the control algorithm. We studied the algorithm about motor current double-loop control for brushless DC motor. In order to make the algorithm adjust parameter change in different situations, we used the self-tuning fuzzy PI control algorithm and gave the details about how to design fuzzy rules. We mainly used Matlab Simulink to simulate the motor control system to test the performance of algorithm, and briefly introduced how to implement these algorithms in hardware system. Finally, by building the platform and conducting experiments, we proved that self-tuning fuzzy PI control algorithm could greatly improve both dynamic and static performance of blood pump and make the motor speed and the blood pump flow stable and adjustable.

  1. Low-Density Parity-Check (LDPC) Codes Constructed from Protographs

    NASA Astrophysics Data System (ADS)

    Thorpe, J.

    2003-08-01

    We introduce a new class of low-density parity-check (LDPC) codes constructed from a template called a protograph. The protograph serves as a blueprint for constructing LDPC codes of arbitrary size whose performance can be predicted by analyzing the protograph. We apply standard density evolution techniques to predict the performance of large protograph codes. Finally, we use a randomized search algorithm to find good protographs.

  2. Adaptive control in the presence of unmodeled dynamics. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Rohrs, C. E.

    1982-01-01

    Stability and robustness properties of a wide class of adaptive control algorithms in the presence of unmodeled dynamics and output disturbances were investigated. The class of adaptive algorithms considered are those commonly referred to as model reference adaptive control algorithms, self-tuning controllers, and dead beat adaptive controllers, developed for both continuous-time systems and discrete-time systems. A unified analytical approach was developed to examine the class of existing adaptive algorithms. It was discovered that all existing algorithms contain an infinite gain operator in the dynamic system that defines command reference errors and parameter errors; it is argued that such an infinite gain operator appears to be generic to all adaptive algorithms, whether they exhibit explicit or implicit parameter identification. It is concluded that none of the adaptive algorithms considered can be used with confidence in a practical control system design, because instability will set in with a high probability.

  3. The effect of algorithms on copy number variant detection.

    PubMed

    Tsuang, Debby W; Millard, Steven P; Ely, Benjamin; Chi, Peter; Wang, Kenneth; Raskind, Wendy H; Kim, Sulgi; Brkanac, Zoran; Yu, Chang-En

    2010-12-30

    The detection of copy number variants (CNVs) and the results of CNV-disease association studies rely on how CNVs are defined, and because array-based technologies can only infer CNVs, CNV-calling algorithms can produce vastly different findings. Several authors have noted the large-scale variability between CNV-detection methods, as well as the substantial false positive and false negative rates associated with those methods. In this study, we use variations of four common algorithms for CNV detection (PennCNV, QuantiSNP, HMMSeg, and cnvPartition) and two definitions of overlap (any overlap and an overlap of at least 40% of the smaller CNV) to illustrate the effects of varying algorithms and definitions of overlap on CNV discovery. We used a 56 K Illumina genotyping array enriched for CNV regions to generate hybridization intensities and allele frequencies for 48 Caucasian schizophrenia cases and 48 age-, ethnicity-, and gender-matched control subjects. No algorithm found a difference in CNV burden between the two groups. However, the total number of CNVs called ranged from 102 to 3,765 across algorithms. The mean CNV size ranged from 46 kb to 787 kb, and the average number of CNVs per subject ranged from 1 to 39. The number of novel CNVs not previously reported in normal subjects ranged from 0 to 212. Motivated by the availability of multiple publicly available genome-wide SNP arrays, investigators are conducting numerous analyses to identify putative additional CNVs in complex genetic disorders. However, the number of CNVs identified in array-based studies, and whether these CNVs are novel or valid, will depend on the algorithm(s) used. Thus, given the variety of methods used, there will be many false positives and false negatives. Both guidelines for the identification of CNVs inferred from high-density arrays and the establishment of a gold standard for validation of CNVs are needed.

  4. Coverage maximization under resource constraints using a nonuniform proliferating random walk.

    PubMed

    Saha, Sudipta; Ganguly, Niloy

    2013-02-01

    Information management services on networks, such as search and dissemination, play a key role in any large-scale distributed system. One of the most desirable features of these services is the maximization of the coverage, i.e., the number of distinctly visited nodes under constraints of network resources as well as time. However, redundant visits of nodes by different message packets (modeled, e.g., as walkers) initiated by the underlying algorithms for these services cause wastage of network resources. In this work, using results from analytical studies done in the past on a K-random-walk-based algorithm, we identify that redundancy quickly increases with an increase in the density of the walkers. Based on this postulate, we design a very simple distributed algorithm which dynamically estimates the density of the walkers and thereby carefully proliferates walkers in sparse regions. We use extensive computer simulations to test our algorithm in various kinds of network topologies whereby we find it to be performing particularly well in networks that are highly clustered as well as sparse.

  5. Monochromatic-beam-based dynamic X-ray microtomography based on OSEM-TV algorithm.

    PubMed

    Xu, Liang; Chen, Rongchang; Yang, Yiming; Deng, Biao; Du, Guohao; Xie, Honglan; Xiao, Tiqiao

    2017-01-01

    Monochromatic-beam-based dynamic X-ray computed microtomography (CT) was developed to observe evolution of microstructure inside samples. However, the low flux density results in low efficiency in data collection. To increase efficiency, reducing the number of projections should be a practical solution. However, it has disadvantages of low image reconstruction quality using the traditional filtered back projection (FBP) algorithm. In this study, an iterative reconstruction method using an ordered subset expectation maximization-total variation (OSEM-TV) algorithm was employed to address and solve this problem. The simulated results demonstrated that normalized mean square error of the image slices reconstructed by the OSEM-TV algorithm was about 1/4 of that by FBP. Experimental results also demonstrated that the density resolution of OSEM-TV was high enough to resolve different materials with the number of projections less than 100. As a result, with the introduction of OSEM-TV, the monochromatic-beam-based dynamic X-ray microtomography is potentially practicable for the quantitative and non-destructive analysis to the evolution of microstructure with acceptable efficiency in data collection and reconstructed image quality.

  6. Anisotropic conductivity imaging with MREIT using equipotential projection algorithm.

    PubMed

    Değirmenci, Evren; Eyüboğlu, B Murat

    2007-12-21

    Magnetic resonance electrical impedance tomography (MREIT) combines magnetic flux or current density measurements obtained by magnetic resonance imaging (MRI) and surface potential measurements to reconstruct images of true conductivity with high spatial resolution. Most of the biological tissues have anisotropic conductivity; therefore, anisotropy should be taken into account in conductivity image reconstruction. Almost all of the MREIT reconstruction algorithms proposed to date assume isotropic conductivity distribution. In this study, a novel MREIT image reconstruction algorithm is proposed to image anisotropic conductivity. Relative anisotropic conductivity values are reconstructed iteratively, using only current density measurements without any potential measurement. In order to obtain true conductivity values, only either one potential or conductivity measurement is sufficient to determine a scaling factor. The proposed technique is evaluated on simulated data for isotropic and anisotropic conductivity distributions, with and without measurement noise. Simulation results show that the images of both anisotropic and isotropic conductivity distributions can be reconstructed successfully.

  7. Shrink-wrapped isosurface from cross sectional images

    PubMed Central

    Choi, Y. K.; Hahn, J. K.

    2010-01-01

    Summary This paper addresses a new surface reconstruction scheme for approximating the isosurface from a set of tomographic cross sectional images. Differently from the novel Marching Cubes (MC) algorithm, our method does not extract the iso-density surface (isosurface) directly from the voxel data but calculates the iso-density point (isopoint) first. After building a coarse initial mesh approximating the ideal isosurface by the cell-boundary representation, it metamorphoses the mesh into the final isosurface by a relaxation scheme, called shrink-wrapping process. Compared with the MC algorithm, our method is robust and does not make any cracks on surface. Furthermore, since it is possible to utilize lots of additional isopoints during the surface reconstruction process by extending the adjacency definition, theoretically the resulting surface can be better in quality than the MC algorithm. According to experiments, it is proved to be very robust and efficient for isosurface reconstruction from cross sectional images. PMID:20703361

  8. Progress on Complex Langevin simulations of a finite density matrix model for QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloch, Jacques; Glesaan, Jonas; Verbaarschot, Jacobus

    We study the Stephanov model, which is an RMT model for QCD at finite density, using the Complex Langevin algorithm. Naive implementation of the algorithm shows convergence towards the phase quenched or quenched theory rather than to intended theory with dynamical quarks. A detailed analysis of this issue and a potential resolution of the failure of this algorithm are discussed. We study the effect of gauge cooling on the Dirac eigenvalue distribution and time evolution of the norm for various cooling norms, which were specifically designed to remove the pathologies of the complex Langevin evolution. The cooling is further supplementedmore » with a shifted representation for the random matrices. Unfortunately, none of these modifications generate a substantial improvement on the complex Langevin evolution and the final results still do not agree with the analytical predictions.« less

  9. LSAH: a fast and efficient local surface feature for point cloud registration

    NASA Astrophysics Data System (ADS)

    Lu, Rongrong; Zhu, Feng; Wu, Qingxiao; Kong, Yanzi

    2018-04-01

    Point cloud registration is a fundamental task in high level three dimensional applications. Noise, uneven point density and varying point cloud resolutions are the three main challenges for point cloud registration. In this paper, we design a robust and compact local surface descriptor called Local Surface Angles Histogram (LSAH) and propose an effectively coarse to fine algorithm for point cloud registration. The LSAH descriptor is formed by concatenating five normalized sub-histograms into one histogram. The five sub-histograms are created by accumulating a different type of angle from a local surface patch respectively. The experimental results show that our LSAH is more robust to uneven point density and point cloud resolutions than four state-of-the-art local descriptors in terms of feature matching. Moreover, we tested our LSAH based coarse to fine algorithm for point cloud registration. The experimental results demonstrate that our algorithm is robust and efficient as well.

  10. A cubic scaling algorithm for excited states calculations in particle-particle random phase approximation

    NASA Astrophysics Data System (ADS)

    Lu, Jianfeng; Yang, Haizhao

    2017-07-01

    The particle-particle random phase approximation (pp-RPA) has been shown to be capable of describing double, Rydberg, and charge transfer excitations, for which the conventional time-dependent density functional theory (TDDFT) might not be suitable. It is thus desirable to reduce the computational cost of pp-RPA so that it can be efficiently applied to larger molecules and even solids. This paper introduces an O (N3) algorithm, where N is the number of orbitals, based on an interpolative separable density fitting technique and the Jacobi-Davidson eigensolver to calculate a few low-lying excitations in the pp-RPA framework. The size of the pp-RPA matrix can also be reduced by keeping only a small portion of orbitals with orbital energy close to the Fermi energy. This reduced system leads to a smaller prefactor of the cubic scaling algorithm, while keeping the accuracy for the low-lying excitation energies.

  11. Novel bio-inspired smart control for hazard mitigation of civil structures

    NASA Astrophysics Data System (ADS)

    Kim, Yeesock; Kim, Changwon; Langari, Reza

    2010-11-01

    In this paper, a new bio-inspired controller is proposed for vibration mitigation of smart structures subjected to ground disturbances (i.e. earthquakes). The control system is developed through the integration of a brain emotional learning (BEL) algorithm with a proportional-integral-derivative (PID) controller and a semiactive inversion (Inv) algorithm. The BEL algorithm is based on the neurologically inspired computational model of the amygdala and the orbitofrontal cortex. To demonstrate the effectiveness of the proposed hybrid BEL-PID-Inv control algorithm, a seismically excited building structure equipped with a magnetorheological (MR) damper is investigated. The performance of the proposed hybrid BEL-PID-Inv control algorithm is compared with that of passive, PID, linear quadratic Gaussian (LQG), and BEL control systems. In the simulation, the robustness of the hybrid BEL-PID-Inv control algorithm in the presence of modeling uncertainties as well as external disturbances is investigated. It is shown that the proposed hybrid BEL-PID-Inv control algorithm is effective in improving the dynamic responses of seismically excited building structure-MR damper systems.

  12. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: effect of smoothing of density field on reconstruction and anisotropic BAO analysis

    NASA Astrophysics Data System (ADS)

    Vargas-Magaña, Mariana; Ho, Shirley; Fromenteau, Sebastien.; Cuesta, Antonio. J.

    2017-05-01

    The reconstruction algorithm introduced by Eisenstein et al., which is widely used in clustering analysis, is based on the inference of the first-order Lagrangian displacement field from the Gaussian smoothed galaxy density field in redshift space. The smoothing scale applied to the density field affects the inferred displacement field that is used to move the galaxies, and partially erases the non-linear evolution of the density field. In this article, we explore this crucial step in the reconstruction algorithm. We study the performance of the reconstruction technique using two metrics: first, we study the performance using the anisotropic clustering, extending previous studies focused on isotropic clustering; secondly, we study its effect on the displacement field. We find that smoothing has a strong effect in the quadrupole of the correlation function and affects the accuracy and precision with which we can measure DA(z) and H(z). We find that the optimal smoothing scale to use in the reconstruction algorithm applied to Baryonic Oscillations Spectroscopic Survey-Constant (stellar) MASS (CMASS) is between 5 and 10 h-1 Mpc. Varying from the `usual' 15-5 h-1 Mpc shows ˜0.3 per cent variations in DA(z) and ˜0.4 per cent H(z) and uncertainties are also reduced by 40 per cent and 30 per cent, respectively. We also find that the accuracy of velocity field reconstruction depends strongly on the smoothing scale used for the density field. We measure the bias and uncertainties associated with different choices of smoothing length.

  13. Comparison between iterative wavefront control algorithm and direct gradient wavefront control algorithm for adaptive optics system

    NASA Astrophysics Data System (ADS)

    Cheng, Sheng-Yi; Liu, Wen-Jin; Chen, Shan-Qiu; Dong, Li-Zhi; Yang, Ping; Xu, Bing

    2015-08-01

    Among all kinds of wavefront control algorithms in adaptive optics systems, the direct gradient wavefront control algorithm is the most widespread and common method. This control algorithm obtains the actuator voltages directly from wavefront slopes through pre-measuring the relational matrix between deformable mirror actuators and Hartmann wavefront sensor with perfect real-time characteristic and stability. However, with increasing the number of sub-apertures in wavefront sensor and deformable mirror actuators of adaptive optics systems, the matrix operation in direct gradient algorithm takes too much time, which becomes a major factor influencing control effect of adaptive optics systems. In this paper we apply an iterative wavefront control algorithm to high-resolution adaptive optics systems, in which the voltages of each actuator are obtained through iteration arithmetic, which gains great advantage in calculation and storage. For AO system with thousands of actuators, the computational complexity estimate is about O(n2) ˜ O(n3) in direct gradient wavefront control algorithm, while the computational complexity estimate in iterative wavefront control algorithm is about O(n) ˜ (O(n)3/2), in which n is the number of actuators of AO system. And the more the numbers of sub-apertures and deformable mirror actuators, the more significant advantage the iterative wavefront control algorithm exhibits. Project supported by the National Key Scientific and Research Equipment Development Project of China (Grant No. ZDYZ2013-2), the National Natural Science Foundation of China (Grant No. 11173008), and the Sichuan Provincial Outstanding Youth Academic Technology Leaders Program, China (Grant No. 2012JQ0012).

  14. Density and crosswind from GOCE - comparisons with other satellite data, ground-based observations and models

    NASA Astrophysics Data System (ADS)

    Doornbos, E.; Bruinsma, S.; Conde, M.; Forbes, J. M.

    2013-12-01

    Observations made by the European Space Agency (ESA) Gravity field and Ocean Circulation Explorer (GOCE) satellite have enabled the production of a spin-off product of high resolution and high accuracy data on thermosphere density, derived from aerodynamic analysis of acceleration measurements. In this regard, the mission follows in the footsteps of the earlier accelerometer-carrying gravity missions CHAMP and GRACE. The extremely high accuracy and redundancy of the six accelerometers carried by GOCE in its gravity gradiometer instrument has provided new insights on the performance and calibration of these instruments. Housekeeping data on the activation of the GOCE drag free control thruster, made available by ESA has made the production of the thermosphere data possible. The long duration low altitude of GOCE, enabled by its drag free control system, has ensured the presence of very large aerodynamic accelerations throughout its lifetime. This has been beneficial for the accurate derivation of data on the wind speed encountered by the satellite. We have compared the GOCE density observations with data from CHAMP and GRACE. The crosswind data has been compared with CHAMP observations, as well as ground-based observations, made using Scanning Doppler Imagers in Alaska. Models of the thermosphere can provide a bigger, global picture, required as a background in the interpretation of the local space- and ground-based measurements. The comparison of these different sources of information on thermosphere density and wind, each with their own strengths and weaknesses, can provide scientific insight, as well as inputs for further refinement of the processing algorithms and models that are part of the various techniques. Density and crosswind data derived from GOCE (dusk-dawn) and CHAMP (midnight-noon) satellite accelerometer data, superimposed over HWM07 modelled horizontal wind vectors.

  15. Time reversal and phase coherent music techniques for super-resolution ultrasound imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lianjie; Labyed, Yassin

    Systems and methods for super-resolution ultrasound imaging using a windowed and generalized TR-MUSIC algorithm that divides the imaging region into overlapping sub-regions and applies the TR-MUSIC algorithm to the windowed backscattered ultrasound signals corresponding to each sub-region. The algorithm is also structured to account for the ultrasound attenuation in the medium and the finite-size effects of ultrasound transducer elements. A modified TR-MUSIC imaging algorithm is used to account for ultrasound scattering from both density and compressibility contrasts. The phase response of ultrasound transducer elements is accounted for in a PC-MUSIC system.

  16. A generalization of algebraic surface drawing

    NASA Technical Reports Server (NTRS)

    Blinn, J. F.

    1982-01-01

    An implicit surface mathematical description of three-dimensional space is defined in terms of all points which satisfy some equation F(x, y, z) equals 0. This form is ideal for space-shaded picture drawing, where the coordinates are substituted for x and y and the equation is solved for z. A new algorithm is presented which is applicable to functional forms other than those of first- and second-order polynomial functions, such as the summation of several Gaussian density distributions. The algorithm was created in order to model electron density maps of molecular structures, but is shown to be capable of generating shapes of esthetic interest.

  17. Segmentation-free statistical image reconstruction for polyenergetic x-ray computed tomography with experimental validation.

    PubMed

    Idris A, Elbakri; Fessler, Jeffrey A

    2003-08-07

    This paper describes a statistical image reconstruction method for x-ray CT that is based on a physical model that accounts for the polyenergetic x-ray source spectrum and the measurement nonlinearities caused by energy-dependent attenuation. Unlike our earlier work, the proposed algorithm does not require pre-segmentation of the object into the various tissue classes (e.g., bone and soft tissue) and allows mixed pixels. The attenuation coefficient of each voxel is modelled as the product of its unknown density and a weighted sum of energy-dependent mass attenuation coefficients. We formulate a penalized-likelihood function for this polyenergetic model and develop an iterative algorithm for estimating the unknown density of each voxel. Applying this method to simulated x-ray CT measurements of objects containing both bone and soft tissue yields images with significantly reduced beam hardening artefacts relative to conventional beam hardening correction methods. We also apply the method to real data acquired from a phantom containing various concentrations of potassium phosphate solution. The algorithm reconstructs an image with accurate density values for the different concentrations, demonstrating its potential for quantitative CT applications.

  18. Dose specification for radiation therapy: dose to water or dose to medium?

    NASA Astrophysics Data System (ADS)

    Ma, C.-M.; Li, Jinsheng

    2011-05-01

    The Monte Carlo method enables accurate dose calculation for radiation therapy treatment planning and has been implemented in some commercial treatment planning systems. Unlike conventional dose calculation algorithms that provide patient dose information in terms of dose to water with variable electron density, the Monte Carlo method calculates the energy deposition in different media and expresses dose to a medium. This paper discusses the differences in dose calculated using water with different electron densities and that calculated for different biological media and the clinical issues on dose specification including dose prescription and plan evaluation using dose to water and dose to medium. We will demonstrate that conventional photon dose calculation algorithms compute doses similar to those simulated by Monte Carlo using water with different electron densities, which are close (<4% differences) to doses to media but significantly different (up to 11%) from doses to water converted from doses to media following American Association of Physicists in Medicine (AAPM) Task Group 105 recommendations. Our results suggest that for consistency with previous radiation therapy experience Monte Carlo photon algorithms report dose to medium for radiotherapy dose prescription, treatment plan evaluation and treatment outcome analysis.

  19. Constraining Mass Anomalies Using Trans-dimensional Gravity Inversions

    NASA Astrophysics Data System (ADS)

    Izquierdo, K.; Montesi, L.; Lekic, V.

    2016-12-01

    The density structure of planetary interiors constitutes a key constraint on their composition, temperature, and dynamics. This has motivated the development of non-invasive methods to infer 3D distribution of density anomalies within a planet's interior using gravity observations made from the surface or orbit. On Earth, this information can be supplemented by seismic and electromagnetic observations, but such data are generally not available on other planets and inferences must be made from gravity observations alone. Unfortunately, inferences of density anomalies from gravity are non-unique and even the dimensionality of the problem - i.e., the number of density anomalies detectable in the planetary interior - is unknown. In this project, we use the Reversible Jump Markov chain Monte Carlo (RJMCMC) algorithm to approach gravity inversions in a trans-dimensional way, that is, considering the magnitude of the mass, the latitude, longitude, depth and number of anomalies itself as unknowns to be constrained by the observed gravity field at the surface of a planet. Our approach builds upon previous work using trans-dimensional gravity inversions in which the density contrast between the anomaly and the surrounding material is known. We validate the algorithm by analyzing a synthetic gravity field produced by a known density structure and comparing the retrieved and input density structures. We find excellent agreement between the input and retrieved structure when working in 1D and 2D domains. However, in 3D domains, comprehensive exploration of the much larger space of possible models makes search efficiency a key ingredient in successful gravity inversion. We find that upon a sufficiently long RJMCMC run, it is possible to use statistical information to recover a predicted model that matches the real model. We argue that even more complex problems, such as those involving real gravity acceleration data of a planet as the constraint, our trans-dimensional gravity inversion algorithm provides a good option to overcome the problem of non-uniqueness while achieving parsimony in gravity inversions.

  20. The spectral positioning algorithm of new spectrum vehicle based on convex programming in wireless sensor network

    NASA Astrophysics Data System (ADS)

    Zhang, Yongjun; Lu, Zhixin

    2017-10-01

    Spectrum resources are very precious, so it is increasingly important to locate interference signals rapidly. Convex programming algorithms in wireless sensor networks are often used as localization algorithms. But in view of the traditional convex programming algorithm is too much overlap of wireless sensor nodes that bring low positioning accuracy, the paper proposed a new algorithm. Which is mainly based on the traditional convex programming algorithm, the spectrum car sends unmanned aerial vehicles (uses) that can be used to record data periodically along different trajectories. According to the probability density distribution, the positioning area is segmented to further reduce the location area. Because the algorithm only increases the communication process of the power value of the unknown node and the sensor node, the advantages of the convex programming algorithm are basically preserved to realize the simple and real-time performance. The experimental results show that the improved algorithm has a better positioning accuracy than the original convex programming algorithm.

  1. Discrete-Time Local Value Iteration Adaptive Dynamic Programming: Admissibility and Termination Analysis.

    PubMed

    Wei, Qinglai; Liu, Derong; Lin, Qiao

    In this paper, a novel local value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon optimal control problems for discrete-time nonlinear systems. The focuses of this paper are to study admissibility properties and the termination criteria of discrete-time local value iteration ADP algorithms. In the discrete-time local value iteration ADP algorithm, the iterative value functions and the iterative control laws are both updated in a given subset of the state space in each iteration, instead of the whole state space. For the first time, admissibility properties of iterative control laws are analyzed for the local value iteration ADP algorithm. New termination criteria are established, which terminate the iterative local ADP algorithm with an admissible approximate optimal control law. Finally, simulation results are given to illustrate the performance of the developed algorithm.In this paper, a novel local value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon optimal control problems for discrete-time nonlinear systems. The focuses of this paper are to study admissibility properties and the termination criteria of discrete-time local value iteration ADP algorithms. In the discrete-time local value iteration ADP algorithm, the iterative value functions and the iterative control laws are both updated in a given subset of the state space in each iteration, instead of the whole state space. For the first time, admissibility properties of iterative control laws are analyzed for the local value iteration ADP algorithm. New termination criteria are established, which terminate the iterative local ADP algorithm with an admissible approximate optimal control law. Finally, simulation results are given to illustrate the performance of the developed algorithm.

  2. An isometric muscle force estimation framework based on a high-density surface EMG array and an NMF algorithm

    NASA Astrophysics Data System (ADS)

    Huang, Chengjun; Chen, Xiang; Cao, Shuai; Qiu, Bensheng; Zhang, Xu

    2017-08-01

    Objective. To realize accurate muscle force estimation, a novel framework is proposed in this paper which can extract the input of the prediction model from the appropriate activation area of the skeletal muscle. Approach. Surface electromyographic (sEMG) signals from the biceps brachii muscle during isometric elbow flexion were collected with a high-density (HD) electrode grid (128 channels) and the external force at three contraction levels was measured at the wrist synchronously. The sEMG envelope matrix was factorized into a matrix of basis vectors with each column representing an activation pattern and a matrix of time-varying coefficients by a nonnegative matrix factorization (NMF) algorithm. The activation pattern with the highest activation intensity, which was defined as the sum of the absolute values of the time-varying coefficient curve, was considered as the major activation pattern, and its channels with high weighting factors were selected to extract the input activation signal of a force estimation model based on the polynomial fitting technique. Main results. Compared with conventional methods using the whole channels of the grid, the proposed method could significantly improve the quality of force estimation and reduce the electrode number. Significance. The proposed method provides a way to find proper electrode placement for force estimation, which can be further employed in muscle heterogeneity analysis, myoelectric prostheses and the control of exoskeleton devices.

  3. Visualization of NO2 emission sources using temporal and spatial pattern analysis in Asia

    NASA Astrophysics Data System (ADS)

    Schütt, A. M. N.; Kuhlmann, G.; Zhu, Y.; Lipkowitsch, I.; Wenig, M.

    2016-12-01

    Nitrogen dioxide (NO2) is an indicator for population density and level of development, but the contributions of the different emission sources to the overall concentrations remains mostly unknown. In order to allocate fractions of OMI NO2 to emission types, we investigate several temporal cycles and regional patterns.Our analysis is based on daily maps of tropospheric NO2 vertical column densities (VCDs) from the Ozone Monitoring Instrument (OMI). The data set is mapped to a high resolution grid by a histopolation algorithm. This algorithm is based on a continuous parabolic spline, producing more realistic smooth distributions while reproducing the measured OMI values when integrating over ground pixel areas.In the resulting sequence of zoom in maps, we analyze weekly and annual cycles for cities, countryside and highways in China, Japan and Korea Republic and look for patterns and trends and compare the derived results to emission sources in Middle Europe and North America. Due to increased heating in winter compared to summer and more traffic during the week than on Sundays, we dissociate traffic, heating and power plants and visualized maps with different sources. We will also look into the influence of emission control measures during big events like the Olympic Games 2008 and the World Expo 2010 as a possibility to confirm our classification of NO2 emission sources.

  4. Automatic control algorithm effects on energy production

    NASA Technical Reports Server (NTRS)

    Mcnerney, G. M.

    1981-01-01

    A computer model was developed using actual wind time series and turbine performance data to simulate the power produced by the Sandia 17-m VAWT operating in automatic control. The model was used to investigate the influence of starting algorithms on annual energy production. The results indicate that, depending on turbine and local wind characteristics, a bad choice of a control algorithm can significantly reduce overall energy production. The model can be used to select control algorithms and threshold parameters that maximize long term energy production. The results from local site and turbine characteristics were generalized to obtain general guidelines for control algorithm design.

  5. Adaptive Control Strategies for Flexible Robotic Arm

    NASA Technical Reports Server (NTRS)

    Bialasiewicz, Jan T.

    1996-01-01

    The control problem of a flexible robotic arm has been investigated. The control strategies that have been developed have a wide application in approaching the general control problem of flexible space structures. The following control strategies have been developed and evaluated: neural self-tuning control algorithm, neural-network-based fuzzy logic control algorithm, and adaptive pole assignment algorithm. All of the above algorithms have been tested through computer simulation. In addition, the hardware implementation of a computer control system that controls the tip position of a flexible arm clamped on a rigid hub mounted directly on the vertical shaft of a dc motor, has been developed. An adaptive pole assignment algorithm has been applied to suppress vibrations of the described physical model of flexible robotic arm and has been successfully tested using this testbed.

  6. Efficient block preconditioned eigensolvers for linear response time-dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Vecharynski, Eugene; Brabec, Jiri; Shao, Meiyue; Govind, Niranjan; Yang, Chao

    2017-12-01

    We present two efficient iterative algorithms for solving the linear response eigenvalue problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into an eigenvalue problem that involves the product of two matrices M and K. We show that, because MK is self-adjoint with respect to the inner product induced by the matrix K, this product eigenvalue problem can be solved efficiently by a modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-inner product. The solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. We show that the other component of the eigenvector can be easily recovered in an inexpensive postprocessing procedure. As a result, the algorithms we present here become more efficient than existing methods that try to approximate both components of the eigenvectors simultaneously. In particular, our numerical experiments demonstrate that the new algorithms presented here consistently outperform the existing state-of-the-art Davidson type solvers by a factor of two in both solution time and storage.

  7. Detection of protein complex from protein-protein interaction network using Markov clustering

    NASA Astrophysics Data System (ADS)

    Ochieng, P. J.; Kusuma, W. A.; Haryanto, T.

    2017-05-01

    Detection of complexes, or groups of functionally related proteins, is an important challenge while analysing biological networks. However, existing algorithms to identify protein complexes are insufficient when applied to dense networks of experimentally derived interaction data. Therefore, we introduced a graph clustering method based on Markov clustering algorithm to identify protein complex within highly interconnected protein-protein interaction networks. Protein-protein interaction network was first constructed to develop geometrical network, the network was then partitioned using Markov clustering to detect protein complexes. The interest of the proposed method was illustrated by its application to Human Proteins associated to type II diabetes mellitus. Flow simulation of MCL algorithm was initially performed and topological properties of the resultant network were analysed for detection of the protein complex. The results indicated the proposed method successfully detect an overall of 34 complexes with 11 complexes consisting of overlapping modules and 20 non-overlapping modules. The major complex consisted of 102 proteins and 521 interactions with cluster modularity and density of 0.745 and 0.101 respectively. The comparison analysis revealed MCL out perform AP, MCODE and SCPS algorithms with high clustering coefficient (0.751) network density and modularity index (0.630). This demonstrated MCL was the most reliable and efficient graph clustering algorithm for detection of protein complexes from PPI networks.

  8. Optimal Design of Low-Density SNP Arrays for Genomic Prediction: Algorithm and Applications.

    PubMed

    Wu, Xiao-Lin; Xu, Jiaqi; Feng, Guofei; Wiggans, George R; Taylor, Jeremy F; He, Jun; Qian, Changsong; Qiu, Jiansheng; Simpson, Barry; Walker, Jeremy; Bauck, Stewart

    2016-01-01

    Low-density (LD) single nucleotide polymorphism (SNP) arrays provide a cost-effective solution for genomic prediction and selection, but algorithms and computational tools are needed for the optimal design of LD SNP chips. A multiple-objective, local optimization (MOLO) algorithm was developed for design of optimal LD SNP chips that can be imputed accurately to medium-density (MD) or high-density (HD) SNP genotypes for genomic prediction. The objective function facilitates maximization of non-gap map length and system information for the SNP chip, and the latter is computed either as locus-averaged (LASE) or haplotype-averaged Shannon entropy (HASE) and adjusted for uniformity of the SNP distribution. HASE performed better than LASE with ≤1,000 SNPs, but required considerably more computing time. Nevertheless, the differences diminished when >5,000 SNPs were selected. Optimization was accomplished conditionally on the presence of SNPs that were obligated to each chromosome. The frame location of SNPs on a chip can be either uniform (evenly spaced) or non-uniform. For the latter design, a tunable empirical Beta distribution was used to guide location distribution of frame SNPs such that both ends of each chromosome were enriched with SNPs. The SNP distribution on each chromosome was finalized through the objective function that was locally and empirically maximized. This MOLO algorithm was capable of selecting a set of approximately evenly-spaced and highly-informative SNPs, which in turn led to increased imputation accuracy compared with selection solely of evenly-spaced SNPs. Imputation accuracy increased with LD chip size, and imputation error rate was extremely low for chips with ≥3,000 SNPs. Assuming that genotyping or imputation error occurs at random, imputation error rate can be viewed as the upper limit for genomic prediction error. Our results show that about 25% of imputation error rate was propagated to genomic prediction in an Angus population. The utility of this MOLO algorithm was also demonstrated in a real application, in which a 6K SNP panel was optimized conditional on 5,260 obligatory SNP selected based on SNP-trait association in U.S. Holstein animals. With this MOLO algorithm, both imputation error rate and genomic prediction error rate were minimal.

  9. Optimal Design of Low-Density SNP Arrays for Genomic Prediction: Algorithm and Applications

    PubMed Central

    Wu, Xiao-Lin; Xu, Jiaqi; Feng, Guofei; Wiggans, George R.; Taylor, Jeremy F.; He, Jun; Qian, Changsong; Qiu, Jiansheng; Simpson, Barry; Walker, Jeremy; Bauck, Stewart

    2016-01-01

    Low-density (LD) single nucleotide polymorphism (SNP) arrays provide a cost-effective solution for genomic prediction and selection, but algorithms and computational tools are needed for the optimal design of LD SNP chips. A multiple-objective, local optimization (MOLO) algorithm was developed for design of optimal LD SNP chips that can be imputed accurately to medium-density (MD) or high-density (HD) SNP genotypes for genomic prediction. The objective function facilitates maximization of non-gap map length and system information for the SNP chip, and the latter is computed either as locus-averaged (LASE) or haplotype-averaged Shannon entropy (HASE) and adjusted for uniformity of the SNP distribution. HASE performed better than LASE with ≤1,000 SNPs, but required considerably more computing time. Nevertheless, the differences diminished when >5,000 SNPs were selected. Optimization was accomplished conditionally on the presence of SNPs that were obligated to each chromosome. The frame location of SNPs on a chip can be either uniform (evenly spaced) or non-uniform. For the latter design, a tunable empirical Beta distribution was used to guide location distribution of frame SNPs such that both ends of each chromosome were enriched with SNPs. The SNP distribution on each chromosome was finalized through the objective function that was locally and empirically maximized. This MOLO algorithm was capable of selecting a set of approximately evenly-spaced and highly-informative SNPs, which in turn led to increased imputation accuracy compared with selection solely of evenly-spaced SNPs. Imputation accuracy increased with LD chip size, and imputation error rate was extremely low for chips with ≥3,000 SNPs. Assuming that genotyping or imputation error occurs at random, imputation error rate can be viewed as the upper limit for genomic prediction error. Our results show that about 25% of imputation error rate was propagated to genomic prediction in an Angus population. The utility of this MOLO algorithm was also demonstrated in a real application, in which a 6K SNP panel was optimized conditional on 5,260 obligatory SNP selected based on SNP-trait association in U.S. Holstein animals. With this MOLO algorithm, both imputation error rate and genomic prediction error rate were minimal. PMID:27583971

  10. Using the Pearson Distribution for Synthesis of the Suboptimal Algorithms for Filtering Multi-Dimensional Markov Processes

    NASA Astrophysics Data System (ADS)

    Mit'kin, A. S.; Pogorelov, V. A.; Chub, E. G.

    2015-08-01

    We consider the method of constructing the suboptimal filter on the basis of approximating the a posteriori probability density of the multidimensional Markov process by the Pearson distributions. The proposed method can efficiently be used for approximating asymmetric, excessive, and finite densities.

  11. Improving CMD Areal Density Analysis: Algorithms and Strategies

    NASA Astrophysics Data System (ADS)

    Wilson, R. E.

    2014-06-01

    Essential ideas, successes, and difficulties of Areal Density Analysis (ADA) for color-magnitude diagrams (CMD¡¯s) of resolved stellar populations are examined, with explanation of various algorithms and strategies for optimal performance. A CMDgeneration program computes theoretical datasets with simulated observational error and a solution program inverts the problem by the method of Differential Corrections (DC) so as to compute parameter values from observed magnitudes and colors, with standard error estimates and correlation coefficients. ADA promises not only impersonal results, but also significant saving of labor, especially where a given dataset is analyzed with several evolution models. Observational errors and multiple star systems, along with various single star characteristics and phenomena, are modeled directly via the Functional Statistics Algorithm (FSA). Unlike Monte Carlo, FSA is not dependent on a random number generator. Discussions include difficulties and overall requirements, such as need for fast evolutionary computation and realization of goals within machine memory limits. Degradation of results due to influence of pixelization on derivatives, Initial Mass Function (IMF) quantization, IMF steepness, low Areal Densities (A ), and large variation in A are reduced or eliminated through a variety of schemes that are explained sufficiently for general application. The Levenberg-Marquardt and MMS algorithms for improvement of solution convergence are contained within the DC program. An example of convergence, which typically is very good, is shown in tabular form. A number of theoretical and practical solution issues are discussed, as are prospects for further development.

  12. A grouping method based on grid density and relationship for crowd evacuation simulation

    NASA Astrophysics Data System (ADS)

    Li, Yan; Liu, Hong; Liu, Guang-peng; Li, Liang; Moore, Philip; Hu, Bin

    2017-05-01

    Psychological factors affect the movement of people in the competitive or panic mode of evacuation, in which the density of pedestrians is relatively large and the distance among them is small. In this paper, a crowd is divided into groups according to their social relations to simulate the actual movement of crowd evacuation more realistically and increase the attractiveness of the group based on social force model. The force of group attraction is the synthesis of two forces; one is the attraction of the individuals generated by their social relations to gather, and the other is that of the group leader to the individuals within the group to ensure that the individuals follow the leader. The synthetic force determines the trajectory of individuals. The evacuation process is demonstrated using the improved social force model. In the improved social force model, the individuals with close social relations gradually present a closer and coordinated action while following the leader. In this paper, a grouping algorithm is proposed based on grid density and relationship via computer simulation to illustrate the features of the improved social force model. The definition of the parameters involved in the algorithm is given, and the effect of relational value on the grouping is tested. Reasonable numbers of grids and weights are selected. The effectiveness of the algorithm is shown through simulation experiments. A simulation platform is also established using the proposed grouping algorithm and the improved social force model for crowd evacuation simulation.

  13. Model reference adaptive control of robots

    NASA Technical Reports Server (NTRS)

    Steinvorth, Rodrigo

    1991-01-01

    This project presents the results of controlling two types of robots using new Command Generator Tracker (CGT) based Direct Model Reference Adaptive Control (MRAC) algorithms. Two mathematical models were used to represent a single-link, flexible joint arm and a Unimation PUMA 560 arm; and these were then controlled in simulation using different MRAC algorithms. Special attention was given to the performance of the algorithms in the presence of sudden changes in the robot load. Previously used CGT based MRAC algorithms had several problems. The original algorithm that was developed guaranteed asymptotic stability only for almost strictly positive real (ASPR) plants. This condition is very restrictive, since most systems do not satisfy this assumption. Further developments to the algorithm led to an expansion of the number of plants that could be controlled, however, a steady state error was introduced in the response. These problems led to the introduction of some modifications to the algorithms so that they would be able to control a wider class of plants and at the same time would asymptotically track the reference model. This project presents the development of two algorithms that achieve the desired results and simulates the control of the two robots mentioned before. The results of the simulations are satisfactory and show that the problems stated above have been corrected in the new algorithms. In addition, the responses obtained show that the adaptively controlled processes are resistant to sudden changes in the load.

  14. Design and simulation of control algorithms for stored energy and plasma current in non-inductive scenarios on NSTX-U

    NASA Astrophysics Data System (ADS)

    Boyer, Mark; Andre, Robert; Gates, David; Gerhardt, Stefan; Menard, Jonathan; Poli, Francesca

    2015-11-01

    One of the major goals of NSTX-U is to demonstrate non-inductive operation. To facilitate this and other program goals, the center stack has been upgraded and a second neutral beam line has been added with three sources aimed more tangentially to provide higher current drive efficiency and the ability to shape the current drive profile. While non-inductive start-up and ramp-up scenarios are being developed, initial non-inductive studies will likely rely on clamping the Ohmic coil current after the plasma current has been established inductively. In this work the ability to maintain control of stored energy and plasma current once the Ohmic coil has been clamped is explored. The six neutral beam sources and the mid-plane outer gap of the plasma are considered as actuators. System identification is done using TRANSP simulations in which the actuators are modulated around a reference shot. The resulting reduced model is used to design an optimal control law with anti-windup and a recently developed framework for closed loop simulations in TRANSP is used to test the control. Limitations due to actuator saturation are assessed and robustness to beam modulation, changes in the plasma density and confinement, and changes in density and temperature profile shapes are studied. Supported by US DOE contract DE-AC02-09CH11466.

  15. A Coulomb collision algorithm for weighted particle simulations

    NASA Technical Reports Server (NTRS)

    Miller, Ronald H.; Combi, Michael R.

    1994-01-01

    A binary Coulomb collision algorithm is developed for weighted particle simulations employing Monte Carlo techniques. Charged particles within a given spatial grid cell are pair-wise scattered, explicitly conserving momentum and implicitly conserving energy. A similar algorithm developed by Takizuka and Abe (1977) conserves momentum and energy provided the particles are unweighted (each particle representing equal fractions of the total particle density). If applied as is to simulations incorporating weighted particles, the plasma temperatures equilibrate to an incorrect temperature, as compared to theory. Using the appropriate pairing statistics, a Coulomb collision algorithm is developed for weighted particles. The algorithm conserves energy and momentum and produces the appropriate relaxation time scales as compared to theoretical predictions. Such an algorithm is necessary for future work studying self-consistent multi-species kinetic transport.

  16. Gaussian-input Gaussian mixture model for representing density maps and atomic models.

    PubMed

    Kawabata, Takeshi

    2018-07-01

    A new Gaussian mixture model (GMM) has been developed for better representations of both atomic models and electron microscopy 3D density maps. The standard GMM algorithm employs an EM algorithm to determine the parameters. It accepted a set of 3D points with weights, corresponding to voxel or atomic centers. Although the standard algorithm worked reasonably well; however, it had three problems. First, it ignored the size (voxel width or atomic radius) of the input, and thus it could lead to a GMM with a smaller spread than the input. Second, the algorithm had a singularity problem, as it sometimes stopped the iterative procedure due to a Gaussian function with almost zero variance. Third, a map with a large number of voxels required a long computation time for conversion to a GMM. To solve these problems, we have introduced a Gaussian-input GMM algorithm, which considers the input atoms or voxels as a set of Gaussian functions. The standard EM algorithm of GMM was extended to optimize the new GMM. The new GMM has identical radius of gyration to the input, and does not suddenly stop due to the singularity problem. For fast computation, we have introduced a down-sampled Gaussian functions (DSG) by merging neighboring voxels into an anisotropic Gaussian function. It provides a GMM with thousands of Gaussian functions in a short computation time. We also have introduced a DSG-input GMM: the Gaussian-input GMM with the DSG as the input. This new algorithm is much faster than the standard algorithm. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Efficient and Stable Routing Algorithm Based on User Mobility and Node Density in Urban Vehicular Network

    PubMed Central

    Al-Mayouf, Yusor Rafid Bahar; Ismail, Mahamod; Abdullah, Nor Fadzilah; Wahab, Ainuddin Wahid Abdul; Mahdi, Omar Adil; Khan, Suleman; Choo, Kim-Kwang Raymond

    2016-01-01

    Vehicular ad hoc networks (VANETs) are considered an emerging technology in the industrial and educational fields. This technology is essential in the deployment of the intelligent transportation system, which is targeted to improve safety and efficiency of traffic. The implementation of VANETs can be effectively executed by transmitting data among vehicles with the use of multiple hops. However, the intrinsic characteristics of VANETs, such as its dynamic network topology and intermittent connectivity, limit data delivery. One particular challenge of this network is the possibility that the contributing node may only remain in the network for a limited time. Hence, to prevent data loss from that node, the information must reach the destination node via multi-hop routing techniques. An appropriate, efficient, and stable routing algorithm must be developed for various VANET applications to address the issues of dynamic topology and intermittent connectivity. Therefore, this paper proposes a novel routing algorithm called efficient and stable routing algorithm based on user mobility and node density (ESRA-MD). The proposed algorithm can adapt to significant changes that may occur in the urban vehicular environment. This algorithm works by selecting an optimal route on the basis of hop count and link duration for delivering data from source to destination, thereby satisfying various quality of service considerations. The validity of the proposed algorithm is investigated by its comparison with ARP-QD protocol, which works on the mechanism of optimal route finding in VANETs in urban environments. Simulation results reveal that the proposed ESRA-MD algorithm shows remarkable improvement in terms of delivery ratio, delivery delay, and communication overhead. PMID:27855165

  18. Tuning-free controller to accurately regulate flow rates in a microfluidic network

    NASA Astrophysics Data System (ADS)

    Heo, Young Jin; Kang, Junsu; Kim, Min Jun; Chung, Wan Kyun

    2016-03-01

    We describe a control algorithm that can improve accuracy and stability of flow regulation in a microfluidic network that uses a conventional pressure pump system. The algorithm enables simultaneous and independent control of fluid flows in multiple micro-channels of a microfluidic network, but does not require any model parameters or tuning process. We investigate robustness and optimality of the proposed control algorithm and those are verified by simulations and experiments. In addition, the control algorithm is compared with a conventional PID controller to show that the proposed control algorithm resolves critical problems induced by the PID control. The capability of the control algorithm can be used not only in high-precision flow regulation in the presence of disturbance, but in some useful functions for lab-on-a-chip devices such as regulation of volumetric flow rate, interface position control of two laminar flows, valveless flow switching, droplet generation and particle manipulation. We demonstrate those functions and also suggest further potential biological applications which can be accomplished by the proposed control framework.

  19. Tuning-free controller to accurately regulate flow rates in a microfluidic network

    PubMed Central

    Heo, Young Jin; Kang, Junsu; Kim, Min Jun; Chung, Wan Kyun

    2016-01-01

    We describe a control algorithm that can improve accuracy and stability of flow regulation in a microfluidic network that uses a conventional pressure pump system. The algorithm enables simultaneous and independent control of fluid flows in multiple micro-channels of a microfluidic network, but does not require any model parameters or tuning process. We investigate robustness and optimality of the proposed control algorithm and those are verified by simulations and experiments. In addition, the control algorithm is compared with a conventional PID controller to show that the proposed control algorithm resolves critical problems induced by the PID control. The capability of the control algorithm can be used not only in high-precision flow regulation in the presence of disturbance, but in some useful functions for lab-on-a-chip devices such as regulation of volumetric flow rate, interface position control of two laminar flows, valveless flow switching, droplet generation and particle manipulation. We demonstrate those functions and also suggest further potential biological applications which can be accomplished by the proposed control framework. PMID:26987587

  20. Combining satellite-based fire observations and ground-based lightning detections to identify lightning fires across the conterminous USA

    USGS Publications Warehouse

    Bar-Massada, A.; Hawbaker, T.J.; Stewart, S.I.; Radeloff, V.C.

    2012-01-01

    Lightning fires are a common natural disturbance in North America, and account for the largest proportion of the area burned by wildfires each year. Yet, the spatiotemporal patterns of lightning fires in the conterminous US are not well understood due to limitations of existing fire databases. Our goal here was to develop and test an algorithm that combined MODIS fire detections with lightning detections from the National Lightning Detection Network to identify lightning fires across the conterminous US from 2000 to 2008. The algorithm searches for spatiotemporal conjunctions of MODIS fire clusters and NLDN detected lightning strikes, given a spatiotemporal lag between lightning strike and fire ignition. The algorithm revealed distinctive spatial patterns of lightning fires in the conterminous US While a sensitivity analysis revealed that the algorithm is highly sensitive to the two thresholds that are used to determine conjunction, the density of fires it detected was moderately correlated with ground based fire records. When only fires larger than 0.4 km2 were considered, correlations were higher and the root-mean-square error between datasets was less than five fires per 625 km2 for the entire study period. Our algorithm is thus suitable for detecting broad scale spatial patterns of lightning fire occurrence, and especially lightning fire hotspots, but has limited detection capability of smaller fires because these cannot be consistently detected by MODIS. These results may enhance our understanding of large scale patterns of lightning fire activity, and can be used to identify the broad scale factors controlling fire occurrence.

  1. The combined control algorithm for large-angle maneuver of HITSAT-1 small satellite

    NASA Astrophysics Data System (ADS)

    Zhaowei, Sun; Yunhai, Geng; Guodong, Xu; Ping, He

    2004-04-01

    The HITSAT-1 is the first small satellite developed by Harbin Institute of Technology (HIT) whose mission objective is to test several pivotal techniques. The large angle maneuver control is one of the pivotal techniques of HITSAT-1 and the instantaneous Eulerian axis control algorithm (IEACA) has been applied. Because of using the reaction wheels and magnetorquer as the control actuators, the combined control algorithm has been adopted during the large-angle maneuver course. The computer simulation based on the MATRIX×6.0 software has finished and the results indicated that the combined control algorithm reduced the reaction wheel speeds obviously, and the IEACA algorithm has the advantages of simplicity and efficiency.

  2. A tyre slip-based integrated chassis control of front/rear traction distribution and four-wheel independent brake from moderate driving to limit handling

    NASA Astrophysics Data System (ADS)

    Joa, Eunhyek; Park, Kwanwoo; Koh, Youngil; Yi, Kyongsu; Kim, Kilsoo

    2018-04-01

    This paper presents a tyre slip-based integrated chassis control of front/rear traction distribution and four-wheel braking for enhanced performance from moderate driving to limit handling. The proposed algorithm adopted hierarchical structure: supervisor - desired motion tracking controller - optimisation-based control allocation. In the supervisor, by considering transient cornering characteristics, desired vehicle motion is calculated. In the desired motion tracking controller, in order to track desired vehicle motion, virtual control input is determined in the manner of sliding mode control. In the control allocation, virtual control input is allocated to minimise cost function. The cost function consists of two major parts. First part is a slip-based tyre friction utilisation quantification, which does not need a tyre force estimation. Second part is an allocation guideline, which guides optimally allocated inputs to predefined solution. The proposed algorithm has been investigated via simulation from moderate driving to limit handling scenario. Compared to Base and direct yaw moment control system, the proposed algorithm can effectively reduce tyre dissipation energy in the moderate driving situation. Moreover, the proposed algorithm enhances limit handling performance compared to Base and direct yaw moment control system. In addition to comparison with Base and direct yaw moment control, comparison the proposed algorithm with the control algorithm based on the known tyre force information has been conducted. The results show that the performance of the proposed algorithm is similar with that of the control algorithm with the known tyre force information.

  3. Concurrent design of composite materials and structures considering thermal conductivity constraints

    NASA Astrophysics Data System (ADS)

    Jia, J.; Cheng, W.; Long, K.

    2017-08-01

    This article introduces thermal conductivity constraints into concurrent design. The influence of thermal conductivity on macrostructure and orthotropic composite material is extensively investigated using the minimum mean compliance as the objective function. To simultaneously control the amounts of different phase materials, a given mass fraction is applied in the optimization algorithm. Two phase materials are assumed to compete with each other to be distributed during the process of maximizing stiffness and thermal conductivity when the mass fraction constraint is small, where phase 1 has superior stiffness and thermal conductivity whereas phase 2 has a superior ratio of stiffness to density. The effective properties of the material microstructure are computed by a numerical homogenization technique, in which the effective elasticity matrix is applied to macrostructural analyses and the effective thermal conductivity matrix is applied to the thermal conductivity constraint. To validate the effectiveness of the proposed optimization algorithm, several three-dimensional illustrative examples are provided and the features under different boundary conditions are analysed.

  4. Thermal-Aware Test Access Mechanism and Wrapper Design Optimization for System-on-Chips

    NASA Astrophysics Data System (ADS)

    Yu, Thomas Edison; Yoneda, Tomokazu; Chakrabarty, Krishnendu; Fujiwara, Hideo

    Rapid advances in semiconductor manufacturing technology have led to higher chip power densities, which places greater emphasis on packaging and temperature control during testing. For system-on-chips, peak power-based scheduling algorithms have been used to optimize tests under specified power constraints. However, imposing power constraints does not always solve the problem of overheating due to the non-uniform distribution of power across the chip. This paper presents a TAM/Wrapper co-design methodology for system-on-chips that ensures thermal safety while still optimizing the test schedule. The method combines a simplified thermal-cost model with a traditional bin-packing algorithm to minimize test time while satisfying temperature constraints. Furthermore, for temperature checking, thermal simulation is done using cycle-accurate power profiles for more realistic results. Experiments show that even a minimal sacrifice in test time can yield a considerable decrease in test temperature as well as the possibility of further lowering temperatures beyond those achieved using traditional power-based test scheduling.

  5. Development of a control algorithm for the ultrasound scanning robot (NCCUSR) using ultrasound image and force feedback.

    PubMed

    Kim, Yeoun Jae; Seo, Jong Hyun; Kim, Hong Rae; Kim, Kwang Gi

    2017-06-01

    Clinicians who frequently perform ultrasound scanning procedures often suffer from musculoskeletal disorders, arthritis, and myalgias. To minimize their occurrence and to assist clinicians, ultrasound scanning robots have been developed worldwide. Although, to date, there is still no commercially available ultrasound scanning robot, many control methods have been suggested and researched. These control algorithms are either image based or force based. If the ultrasound scanning robot control algorithm was a combination of the two algorithms, it could benefit from the advantage of each one. However, there are no existing control methods for ultrasound scanning robots that combine force control and image analysis. Therefore, in this work, a control algorithm is developed for an ultrasound scanning robot using force feedback and ultrasound image analysis. A manipulator-type ultrasound scanning robot named 'NCCUSR' is developed and a control algorithm for this robot is suggested and verified. First, conventional hybrid position-force control is implemented for the robot and the hybrid position-force control algorithm is combined with ultrasound image analysis to fully control the robot. The control method is verified using a thyroid phantom. It was found that the proposed algorithm can be applied to control the ultrasound scanning robot and experimental outcomes suggest that the images acquired using the proposed control method can yield a rating score that is equivalent to images acquired directly by the clinicians. The proposed control method can be applied to control the ultrasound scanning robot. However, more work must be completed to verify the proposed control method in order to become clinically feasible. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Breast density evaluation using spectral mammography, radiologist reader assessment and segmentation techniques: a retrospective study based on left and right breast comparison

    PubMed Central

    Molloi, Sabee; Ding, Huanjun; Feig, Stephen

    2015-01-01

    Purpose The purpose of this study was to compare the precision of mammographic breast density measurement using radiologist reader assessment, histogram threshold segmentation, fuzzy C-mean segmentation and spectral material decomposition. Materials and Methods Spectral mammography images from a total of 92 consecutive asymptomatic women (50–69 years old) who presented for annual screening mammography were retrospectively analyzed for this study. Breast density was estimated using 10 radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm and spectral material decomposition. The breast density correlation between left and right breasts was used to assess the precision of these techniques to measure breast composition relative to dual-energy material decomposition. Results In comparison to the other techniques, the results of breast density measurements using dual-energy material decomposition showed the highest correlation. The relative standard error of estimate for breast density measurements from left and right breasts using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm and dual-energy material decomposition was calculated to be 1.95, 2.87, 2.07 and 1.00, respectively. Conclusion The results indicate that the precision of dual-energy material decomposition was approximately factor of two higher than the other techniques with regard to better correlation of breast density measurements from right and left breasts. PMID:26031229

  7. Rule-based fault diagnosis of hall sensors and fault-tolerant control of PMSM

    NASA Astrophysics Data System (ADS)

    Song, Ziyou; Li, Jianqiu; Ouyang, Minggao; Gu, Jing; Feng, Xuning; Lu, Dongbin

    2013-07-01

    Hall sensor is widely used for estimating rotor phase of permanent magnet synchronous motor(PMSM). And rotor position is an essential parameter of PMSM control algorithm, hence it is very dangerous if Hall senor faults occur. But there is scarcely any research focusing on fault diagnosis and fault-tolerant control of Hall sensor used in PMSM. From this standpoint, the Hall sensor faults which may occur during the PMSM operating are theoretically analyzed. According to the analysis results, the fault diagnosis algorithm of Hall sensor, which is based on three rules, is proposed to classify the fault phenomena accurately. The rotor phase estimation algorithms, based on one or two Hall sensor(s), are initialized to engender the fault-tolerant control algorithm. The fault diagnosis algorithm can detect 60 Hall fault phenomena in total as well as all detections can be fulfilled in 1/138 rotor rotation period. The fault-tolerant control algorithm can achieve a smooth torque production which means the same control effect as normal control mode (with three Hall sensors). Finally, the PMSM bench test verifies the accuracy and rapidity of fault diagnosis and fault-tolerant control strategies. The fault diagnosis algorithm can detect all Hall sensor faults promptly and fault-tolerant control algorithm allows the PMSM to face failure conditions of one or two Hall sensor(s). In addition, the transitions between health-control and fault-tolerant control conditions are smooth without any additional noise and harshness. Proposed algorithms can deal with the Hall sensor faults of PMSM in real applications, and can be provided to realize the fault diagnosis and fault-tolerant control of PMSM.

  8. Local Competition-Based Superpixel Segmentation Algorithm in Remote Sensing

    PubMed Central

    Liu, Jiayin; Tang, Zhenmin; Cui, Ying; Wu, Guoxing

    2017-01-01

    Remote sensing technologies have been widely applied in urban environments’ monitoring, synthesis and modeling. Incorporating spatial information in perceptually coherent regions, superpixel-based approaches can effectively eliminate the “salt and pepper” phenomenon which is common in pixel-wise approaches. Compared with fixed-size windows, superpixels have adaptive sizes and shapes for different spatial structures. Moreover, superpixel-based algorithms can significantly improve computational efficiency owing to the greatly reduced number of image primitives. Hence, the superpixel algorithm, as a preprocessing technique, is more and more popularly used in remote sensing and many other fields. In this paper, we propose a superpixel segmentation algorithm called Superpixel Segmentation with Local Competition (SSLC), which utilizes a local competition mechanism to construct energy terms and label pixels. The local competition mechanism leads to energy terms locality and relativity, and thus, the proposed algorithm is less sensitive to the diversity of image content and scene layout. Consequently, SSLC could achieve consistent performance in different image regions. In addition, the Probability Density Function (PDF), which is estimated by Kernel Density Estimation (KDE) with the Gaussian kernel, is introduced to describe the color distribution of superpixels as a more sophisticated and accurate measure. To reduce computational complexity, a boundary optimization framework is introduced to only handle boundary pixels instead of the whole image. We conduct experiments to benchmark the proposed algorithm with the other state-of-the-art ones on the Berkeley Segmentation Dataset (BSD) and remote sensing images. Results demonstrate that the SSLC algorithm yields the best overall performance, while the computation time-efficiency is still competitive. PMID:28604641

  9. Local Competition-Based Superpixel Segmentation Algorithm in Remote Sensing.

    PubMed

    Liu, Jiayin; Tang, Zhenmin; Cui, Ying; Wu, Guoxing

    2017-06-12

    Remote sensing technologies have been widely applied in urban environments' monitoring, synthesis and modeling. Incorporating spatial information in perceptually coherent regions, superpixel-based approaches can effectively eliminate the "salt and pepper" phenomenon which is common in pixel-wise approaches. Compared with fixed-size windows, superpixels have adaptive sizes and shapes for different spatial structures. Moreover, superpixel-based algorithms can significantly improve computational efficiency owing to the greatly reduced number of image primitives. Hence, the superpixel algorithm, as a preprocessing technique, is more and more popularly used in remote sensing and many other fields. In this paper, we propose a superpixel segmentation algorithm called Superpixel Segmentation with Local Competition (SSLC), which utilizes a local competition mechanism to construct energy terms and label pixels. The local competition mechanism leads to energy terms locality and relativity, and thus, the proposed algorithm is less sensitive to the diversity of image content and scene layout. Consequently, SSLC could achieve consistent performance in different image regions. In addition, the Probability Density Function (PDF), which is estimated by Kernel Density Estimation (KDE) with the Gaussian kernel, is introduced to describe the color distribution of superpixels as a more sophisticated and accurate measure. To reduce computational complexity, a boundary optimization framework is introduced to only handle boundary pixels instead of the whole image. We conduct experiments to benchmark the proposed algorithm with the other state-of-the-art ones on the Berkeley Segmentation Dataset (BSD) and remote sensing images. Results demonstrate that the SSLC algorithm yields the best overall performance, while the computation time-efficiency is still competitive.

  10. A novel material detection algorithm based on 2D GMM-based power density function and image detail addition scheme in dual energy X-ray images.

    PubMed

    Pourghassem, Hossein

    2012-01-01

    Material detection is a vital need in dual energy X-ray luggage inspection systems at security of airport and strategic places. In this paper, a novel material detection algorithm based on statistical trainable models using 2-Dimensional power density function (PDF) of three material categories in dual energy X-ray images is proposed. In this algorithm, the PDF of each material category as a statistical model is estimated from transmission measurement values of low and high energy X-ray images by Gaussian Mixture Models (GMM). Material label of each pixel of object is determined based on dependency probability of its transmission measurement values in the low and high energy to PDF of three material categories (metallic, organic and mixed materials). The performance of material detection algorithm is improved by a maximum voting scheme in a neighborhood of image as a post-processing stage. Using two background removing and denoising stages, high and low energy X-ray images are enhanced as a pre-processing procedure. For improving the discrimination capability of the proposed material detection algorithm, the details of the low and high energy X-ray images are added to constructed color image which includes three colors (orange, blue and green) for representing the organic, metallic and mixed materials. The proposed algorithm is evaluated on real images that had been captured from a commercial dual energy X-ray luggage inspection system. The obtained results show that the proposed algorithm is effective and operative in detection of the metallic, organic and mixed materials with acceptable accuracy.

  11. Dictionary Learning on the Manifold of Square Root Densities and Application to Reconstruction of Diffusion Propagator Fields*

    PubMed Central

    Sun, Jiaqi; Xie, Yuchen; Ye, Wenxing; Ho, Jeffrey; Entezari, Alireza; Blackband, Stephen J.

    2013-01-01

    In this paper, we present a novel dictionary learning framework for data lying on the manifold of square root densities and apply it to the reconstruction of diffusion propagator (DP) fields given a multi-shell diffusion MRI data set. Unlike most of the existing dictionary learning algorithms which rely on the assumption that the data points are vectors in some Euclidean space, our dictionary learning algorithm is designed to incorporate the intrinsic geometric structure of manifolds and performs better than traditional dictionary learning approaches when applied to data lying on the manifold of square root densities. Non-negativity as well as smoothness across the whole field of the reconstructed DPs is guaranteed in our approach. We demonstrate the advantage of our approach by comparing it with an existing dictionary based reconstruction method on synthetic and real multi-shell MRI data. PMID:24684004

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545, USA; Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 64R0121, Berkeley, CA 94720, USA; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, England

    The PHENIX AutoBuild Wizard is a highly automated tool for iterative model-building, structure refinement and density modification using RESOLVE or TEXTAL model-building, RESOLVE statistical density modification, and phenix.refine structure refinement. Recent advances in the AutoBuild Wizard and phenix.refine include automated detection and application of NCS from models as they are built, extensive model completion algorithms, and automated solvent molecule picking. Model completion algorithms in the AutoBuild Wizard include loop-building, crossovers between chains in different models of a structure, and side-chain optimization. The AutoBuild Wizard has been applied to a set of 48 structures at resolutions ranging from 1.1 {angstrom} tomore » 3.2 {angstrom}, resulting in a mean R-factor of 0.24 and a mean free R factor of 0.29. The R-factor of the final model is dependent on the quality of the starting electron density, and relatively independent of resolution.« less

  13. Finite-density effects in the Fredrickson-Andersen and Kob-Andersen kinetically-constrained models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teomy, Eial, E-mail: eialteom@post.tau.ac.il; Shokef, Yair, E-mail: shokef@tau.ac.il

    2014-08-14

    We calculate the corrections to the thermodynamic limit of the critical density for jamming in the Kob-Andersen and Fredrickson-Andersen kinetically-constrained models, and find them to be finite-density corrections, and not finite-size corrections. We do this by introducing a new numerical algorithm, which requires negligible computer memory since contrary to alternative approaches, it generates at each point only the necessary data. The algorithm starts from a single unfrozen site and at each step randomly generates the neighbors of the unfrozen region and checks whether they are frozen or not. Our results correspond to systems of size greater than 10{sup 7} ×more » 10{sup 7}, much larger than any simulated before, and are consistent with the rigorous bounds on the asymptotic corrections. We also find that the average number of sites that seed a critical droplet is greater than 1.« less

  14. Retinal optical coherence tomography image enhancement via shrinkage denoising using double-density dual-tree complex wavelet transform

    PubMed Central

    Mayer, Markus A.; Boretsky, Adam R.; van Kuijk, Frederik J.; Motamedi, Massoud

    2012-01-01

    Abstract. Image enhancement of retinal structures, in optical coherence tomography (OCT) scans through denoising, has the potential to aid in the diagnosis of several eye diseases. In this paper, a locally adaptive denoising algorithm using double-density dual-tree complex wavelet transform, a combination of the double-density wavelet transform and the dual-tree complex wavelet transform, is applied to reduce speckle noise in OCT images of the retina. The algorithm overcomes the limitations of commonly used multiple frame averaging technique, namely the limited number of frames that can be recorded due to eye movements, by providing a comparable image quality in significantly less acquisition time equal to an order of magnitude less time compared to the averaging method. In addition, improvements of image quality metrics and 5 dB increase in the signal-to-noise ratio are attained. PMID:23117804

  15. Retinal optical coherence tomography image enhancement via shrinkage denoising using double-density dual-tree complex wavelet transform.

    PubMed

    Chitchian, Shahab; Mayer, Markus A; Boretsky, Adam R; van Kuijk, Frederik J; Motamedi, Massoud

    2012-11-01

    ABSTRACT. Image enhancement of retinal structures, in optical coherence tomography (OCT) scans through denoising, has the potential to aid in the diagnosis of several eye diseases. In this paper, a locally adaptive denoising algorithm using double-density dual-tree complex wavelet transform, a combination of the double-density wavelet transform and the dual-tree complex wavelet transform, is applied to reduce speckle noise in OCT images of the retina. The algorithm overcomes the limitations of commonly used multiple frame averaging technique, namely the limited number of frames that can be recorded due to eye movements, by providing a comparable image quality in significantly less acquisition time equal to an order of magnitude less time compared to the averaging method. In addition, improvements of image quality metrics and 5 dB increase in the signal-to-noise ratio are attained.

  16. Algorithms for output feedback, multiple-model, and decentralized control problems

    NASA Technical Reports Server (NTRS)

    Halyo, N.; Broussard, J. R.

    1984-01-01

    The optimal stochastic output feedback, multiple-model, and decentralized control problems with dynamic compensation are formulated and discussed. Algorithms for each problem are presented, and their relationship to a basic output feedback algorithm is discussed. An aircraft control design problem is posed as a combined decentralized, multiple-model, output feedback problem. A control design is obtained using the combined algorithm. An analysis of the design is presented.

  17. A parallel adaptive quantum genetic algorithm for the controllability of arbitrary networks.

    PubMed

    Li, Yuhong; Gong, Guanghong; Li, Ni

    2018-01-01

    In this paper, we propose a novel algorithm-parallel adaptive quantum genetic algorithm-which can rapidly determine the minimum control nodes of arbitrary networks with both control nodes and state nodes. The corresponding network can be fully controlled with the obtained control scheme. We transformed the network controllability issue into a combinational optimization problem based on the Popov-Belevitch-Hautus rank condition. A set of canonical networks and a list of real-world networks were experimented. Comparison results demonstrated that the algorithm was more ideal to optimize the controllability of networks, especially those larger-size networks. We demonstrated subsequently that there were links between the optimal control nodes and some network statistical characteristics. The proposed algorithm provides an effective approach to improve the controllability optimization of large networks or even extra-large networks with hundreds of thousands nodes.

  18. Performance of 12 DIR algorithms in low-contrast regions for mass and density conserving deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeo, U. J.; Supple, J. R.; Franich, R. D.

    2013-10-15

    Purpose: Deformable image registration (DIR) has become a key tool for adaptive radiotherapy to account for inter- and intrafraction organ deformation. Of contemporary interest, the application to deformable dose accumulation requires accurate deformation even in low contrast regions where dose gradients may exist within near-uniform tissues. One expects high-contrast features to generally be deformed more accurately by DIR algorithms. The authors systematically assess the accuracy of 12 DIR algorithms and quantitatively examine, in particular, low-contrast regions, where accuracy has not previously been established.Methods: This work investigates DIR algorithms in three dimensions using deformable gel (DEFGEL) [U. J. Yeo, M. L.more » Taylor, L. Dunn, R. L. Smith, T. Kron, and R. D. Franich, “A novel methodology for 3D deformable dosimetry,” Med. Phys. 39, 2203–2213 (2012)], for application to mass- and density-conserving deformations. CT images of DEFGEL phantoms with 16 fiducial markers (FMs) implanted were acquired in deformed and undeformed states for three different representative deformation geometries. Nonrigid image registration was performed using 12 common algorithms in the public domain. The optimum parameter setup was identified for each algorithm and each was tested for deformation accuracy in three scenarios: (I) original images of the DEFGEL with 16 FMs; (II) images with eight of the FMs mathematically erased; and (III) images with all FMs mathematically erased. The deformation vector fields obtained for scenarios II and III were then applied to the original images containing all 16 FMs. The locations of the FMs estimated by the algorithms were compared to actual locations determined by CT imaging. The accuracy of the algorithms was assessed by evaluation of three-dimensional vectors between true marker locations and predicted marker locations.Results: The mean magnitude of 16 error vectors per sample ranged from 0.3 to 3.7, 1.0 to 6.3, and 1.3 to 7.5 mm across algorithms for scenarios I to III, respectively. The greatest accuracy was exhibited by the original Horn and Schunck optical flow algorithm. In this case, for scenario III (erased FMs not contributing to driving the DIR calculation), the mean error was half that of the modified demons algorithm (which exhibited the greatest error), across all deformations. Some algorithms failed to reproduce the geometry at all, while others accurately deformed high contrast features but not low-contrast regions—indicating poor interpolation between landmarks.Conclusions: The accuracy of DIR algorithms was quantitatively evaluated using a tissue equivalent, mass, and density conserving DEFGEL phantom. For the model studied, optical flow algorithms performed better than demons algorithms, with the original Horn and Schunck performing best. The degree of error is influenced more by the magnitude of displacement than the geometric complexity of the deformation. As might be expected, deformation is estimated less accurately for low-contrast regions than for high-contrast features, and the method presented here allows quantitative analysis of the differences. The evaluation of registration accuracy through observation of the same high contrast features that drive the DIR calculation is shown to be circular and hence misleading.« less

  19. PSO Algorithm for an Optimal Power Controller in a Microgrid

    NASA Astrophysics Data System (ADS)

    Al-Saedi, W.; Lachowicz, S.; Habibi, D.; Bass, O.

    2017-07-01

    This paper presents the Particle Swarm Optimization (PSO) algorithm to improve the quality of the power supply in a microgrid. This algorithm is proposed for a real-time selftuning method that used in a power controller for an inverter based Distributed Generation (DG) unit. In such system, the voltage and frequency are the main control objectives, particularly when the microgrid is islanded or during load change. In this work, the PSO algorithm is implemented to find the optimal controller parameters to satisfy the control objectives. The results show high performance of the applied PSO algorithm of regulating the microgrid voltage and frequency.

  20. Effects of refractive index mismatch in optical CT imaging of polymer gel dosimeters.

    PubMed

    Manjappa, Rakesh; Makki S, Sharath; Kumar, Rajesh; Kanhirodan, Rajan

    2015-02-01

    Proposing an image reconstruction technique, algebraic reconstruction technique-refraction correction (ART-rc). The proposed method takes care of refractive index mismatches present in gel dosimeter scanner at the boundary, and also corrects for the interior ray refraction. Polymer gel dosimeters with high dose regions have higher refractive index and optical density compared to the background medium, these changes in refractive index at high dose results in interior ray bending. The inclusion of the effects of refraction is an important step in reconstruction of optical density in gel dosimeters. The proposed ray tracing algorithm models the interior multiple refraction at the inhomogeneities. Jacob's ray tracing algorithm has been modified to calculate the pathlengths of the ray that traverses through the higher dose regions. The algorithm computes the length of the ray in each pixel along its path and is used as the weight matrix. Algebraic reconstruction technique and pixel based reconstruction algorithms are used for solving the reconstruction problem. The proposed method is tested with numerical phantoms for various noise levels. The experimental dosimetric results are also presented. The results show that the proposed scheme ART-rc is able to reconstruct optical density inside the dosimeter better than the results obtained using filtered backprojection and conventional algebraic reconstruction approaches. The quantitative improvement using ART-rc is evaluated using gamma-index. The refraction errors due to regions of different refractive indices are discussed. The effects of modeling of interior refraction in the dose region are presented. The errors propagated due to multiple refraction effects have been modeled and the improvements in reconstruction using proposed model is presented. The refractive index of the dosimeter has a mismatch with the surrounding medium (for dry air or water scanning). The algorithm reconstructs the dose profiles by estimating refractive indices of multiple inhomogeneities having different refractive indices and optical densities embedded in the dosimeter. This is achieved by tracking the path of the ray that traverses through the dosimeter. Extensive simulation studies have been carried out and results are found to be matching that of experimental results.

  1. Studying the varied shapes of gold clusters by an elegant optimization algorithm that hybridizes the density functional tight-binding theory and the density functional theory

    NASA Astrophysics Data System (ADS)

    Yen, Tsung-Wen; Lim, Thong-Leng; Yoon, Tiem-Leong; Lai, S. K.

    2017-11-01

    We combined a new parametrized density functional tight-binding (DFTB) theory (Fihey et al. 2015) with an unbiased modified basin hopping (MBH) optimization algorithm (Yen and Lai 2015) and applied it to calculate the lowest energy structures of Au clusters. From the calculated topologies and their conformational changes, we find that this DFTB/MBH method is a necessary procedure for a systematic study of the structural development of Au clusters but is somewhat insufficient for a quantitative study. As a result, we propose an extended hybridized algorithm. This improved algorithm proceeds in two steps. In the first step, the DFTB theory is employed to calculate the total energy of the cluster and this step (through running DFTB/MBH optimization for given Monte-Carlo steps) is meant to efficiently bring the Au cluster near to the region of the lowest energy minimum since the cluster as a whole has explicitly considered the interactions of valence electrons with ions, albeit semi-quantitatively. Then, in the second succeeding step, the energy-minimum searching process will continue with a skilledly replacement of the energy function calculated by the DFTB theory in the first step by one calculated in the full density functional theory (DFT). In these subsequent calculations, we couple the DFT energy also with the MBH strategy and proceed with the DFT/MBH optimization until the lowest energy value is found. We checked that this extended hybridized algorithm successfully predicts the twisted pyramidal structure for the Au40 cluster and correctly confirms also the linear shape of C8 which our previous DFTB/MBH method failed to do so. Perhaps more remarkable is the topological growth of Aun: it changes from a planar (n =3-11) → an oblate-like cage (n =12-15) → a hollow-shape cage (n =16-18) and finally a pyramidal-like cage (n =19, 20). These varied forms of the cluster's shapes are consistent with those reported in the literature.

  2. Effects of refractive index mismatch in optical CT imaging of polymer gel dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manjappa, Rakesh; Makki S, Sharath; Kanhirodan, Rajan, E-mail: rajan@physics.iisc.ernet.in

    2015-02-15

    Purpose: Proposing an image reconstruction technique, algebraic reconstruction technique-refraction correction (ART-rc). The proposed method takes care of refractive index mismatches present in gel dosimeter scanner at the boundary, and also corrects for the interior ray refraction. Polymer gel dosimeters with high dose regions have higher refractive index and optical density compared to the background medium, these changes in refractive index at high dose results in interior ray bending. Methods: The inclusion of the effects of refraction is an important step in reconstruction of optical density in gel dosimeters. The proposed ray tracing algorithm models the interior multiple refraction at themore » inhomogeneities. Jacob’s ray tracing algorithm has been modified to calculate the pathlengths of the ray that traverses through the higher dose regions. The algorithm computes the length of the ray in each pixel along its path and is used as the weight matrix. Algebraic reconstruction technique and pixel based reconstruction algorithms are used for solving the reconstruction problem. The proposed method is tested with numerical phantoms for various noise levels. The experimental dosimetric results are also presented. Results: The results show that the proposed scheme ART-rc is able to reconstruct optical density inside the dosimeter better than the results obtained using filtered backprojection and conventional algebraic reconstruction approaches. The quantitative improvement using ART-rc is evaluated using gamma-index. The refraction errors due to regions of different refractive indices are discussed. The effects of modeling of interior refraction in the dose region are presented. Conclusions: The errors propagated due to multiple refraction effects have been modeled and the improvements in reconstruction using proposed model is presented. The refractive index of the dosimeter has a mismatch with the surrounding medium (for dry air or water scanning). The algorithm reconstructs the dose profiles by estimating refractive indices of multiple inhomogeneities having different refractive indices and optical densities embedded in the dosimeter. This is achieved by tracking the path of the ray that traverses through the dosimeter. Extensive simulation studies have been carried out and results are found to be matching that of experimental results.« less

  3. Comparison of Controller and Flight Deck Algorithm Performance During Interval Management with Dynamic Arrival Trees (STARS)

    NASA Technical Reports Server (NTRS)

    Battiste, Vernol; Lawton, George; Lachter, Joel; Brandt, Summer; Koteskey, Robert; Dao, Arik-Quang; Kraut, Josh; Ligda, Sarah; Johnson, Walter W.

    2012-01-01

    Managing the interval between arrival aircraft is a major part of the en route and TRACON controller s job. In an effort to reduce controller workload and low altitude vectoring, algorithms have been developed to allow pilots to take responsibility for, achieve and maintain proper spacing. Additionally, algorithms have been developed to create dynamic weather-free arrival routes in the presence of convective weather. In a recent study we examined an algorithm to handle dynamic re-routing in the presence of convective weather and two distinct spacing algorithms. The spacing algorithms originated from different core algorithms; both were enhanced with trajectory intent data for the study. These two algorithms were used simultaneously in a human-in-the-loop (HITL) simulation where pilots performed weather-impacted arrival operations into Louisville International Airport while also performing interval management (IM) on some trials. The controllers retained responsibility for separation and for managing the en route airspace and some trials managing IM. The goal was a stress test of dynamic arrival algorithms with ground and airborne spacing concepts. The flight deck spacing algorithms or controller managed spacing not only had to be robust to the dynamic nature of aircraft re-routing around weather but also had to be compatible with two alternative algorithms for achieving the spacing goal. Flight deck interval management spacing in this simulation provided a clear reduction in controller workload relative to when controllers were responsible for spacing the aircraft. At the same time, spacing was much less variable with the flight deck automated spacing. Even though the approaches taken by the two spacing algorithms to achieve the interval management goals were slightly different they seem to be simpatico in achieving the interval management goal of 130 sec by the TRACON boundary.

  4. Deadbeat Predictive Controllers

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Phan, Minh

    1997-01-01

    Several new computational algorithms are presented to compute the deadbeat predictive control law. The first algorithm makes use of a multi-step-ahead output prediction to compute the control law without explicitly calculating the controllability matrix. The system identification must be performed first and then the predictive control law is designed. The second algorithm uses the input and output data directly to compute the feedback law. It combines the system identification and the predictive control law into one formulation. The third algorithm uses an observable-canonical form realization to design the predictive controller. The relationship between all three algorithms is established through the use of the state-space representation. All algorithms are applicable to multi-input, multi-output systems with disturbance inputs. In addition to the feedback terms, feed forward terms may also be added for disturbance inputs if they are measurable. Although the feedforward terms do not influence the stability of the closed-loop feedback law, they enhance the performance of the controlled system.

  5. A programmable two-qubit quantum processor in silicon

    NASA Astrophysics Data System (ADS)

    Watson, T. F.; Philips, S. G. J.; Kawakami, E.; Ward, D. R.; Scarlino, P.; Veldhorst, M.; Savage, D. E.; Lagally, M. G.; Friesen, Mark; Coppersmith, S. N.; Eriksson, M. A.; Vandersypen, L. M. K.

    2018-03-01

    Now that it is possible to achieve measurement and control fidelities for individual quantum bits (qubits) above the threshold for fault tolerance, attention is moving towards the difficult task of scaling up the number of physical qubits to the large numbers that are needed for fault-tolerant quantum computing. In this context, quantum-dot-based spin qubits could have substantial advantages over other types of qubit owing to their potential for all-electrical operation and ability to be integrated at high density onto an industrial platform. Initialization, readout and single- and two-qubit gates have been demonstrated in various quantum-dot-based qubit representations. However, as seen with small-scale demonstrations of quantum computers using other types of qubit, combining these elements leads to challenges related to qubit crosstalk, state leakage, calibration and control hardware. Here we overcome these challenges by using carefully designed control techniques to demonstrate a programmable two-qubit quantum processor in a silicon device that can perform the Deutsch–Josza algorithm and the Grover search algorithm—canonical examples of quantum algorithms that outperform their classical analogues. We characterize the entanglement in our processor by using quantum-state tomography of Bell states, measuring state fidelities of 85–89 per cent and concurrences of 73–82 per cent. These results pave the way for larger-scale quantum computers that use spins confined to quantum dots.

  6. Effect of Taxane-Based Neoadjuvant Chemotherapy on Fibroglandular Tissue Volume and Percent Breast Density in the Contralateral Normal Breast: Evaluated at 3T MR

    PubMed Central

    Chen, Jeon-Hor; Pan, Wei-Fan; Kao, Julian; Lu, Jocelyn; Chen, Li-Kuang; Kuo, Chih-Chen; Chang, Chih-Kai; Chen, Wen-Pin; McLaren, Christine E.; Bahri, Shadfar; Mehta, Rita S.; Su, Min-Ying

    2013-01-01

    The aim of this study was to evaluate the change of breast density in the normal breast of patients receiving neoadjuvant chemotherapy (NAC). Forty-four breast cancer patients were studied. MRI acquisition was performed before treatment (baseline), and 4 and 12 weeks after treatment. A computer algorithm-based program was used to segment breast tissue and calculate breast volume (BV), fibroglandular tissue volume (FV) and percent density (PD) (the ratio of FV over BV x100%). The reduction of FV and PD after treatment was compared to baseline using paired t-tests with a Bonferroni-Holm correction. The association of density reduction with age was analyzed. FV and PD after NAC showed significant decreases compared to the baseline. FV was 110.0ml (67.2, 189.8) (geometric mean (interquartile range)) at baseline, 104.3ml (66.6, 164.4) after 4 weeks (p< 0.0001), and 94.7ml (60.2, 144.4) after 12 weeks (comparison to baseline, p<0.0001; comparison to 4 weeks, p=0.016). PD was 11.2% (6.4, 22.4) at baseline, 10.6% (6.6, 20.3) after 4 weeks (p< 0.0001), and 9.7% (6.2, 17.9) after 12 weeks (comparison to baseline, p=0.0001; comparison to 4 weeks, p =0.018). Younger patients tended to show a higher density reduction, but overall correlation with age was only moderate (r=0.28 for FV, p=0.07 and r=0.52 for PD, p=0.0003). Our study showed that breast density measured from MR images acquired at 3T MR can be accurately quantified using a robust computer-aided algorithm based on nonparametric nonuniformity normalization (N3) and an adaptive fuzzy C-means algorithm. Similar to doxorubicin and cyclophosphamide regimens, the taxane-based NAC regimen also caused density atrophy in the normal breast and showed reduction in FV and PD. The effect of breast density reduction was age-related and duration-related. PMID:23940080

  7. Strategic Control Algorithm Development : Volume 3. Strategic Algorithm Report.

    DOT National Transportation Integrated Search

    1974-08-01

    The strategic algorithm report presents a detailed description of the functional basic strategic control arrival algorithm. This description is independent of a particular computer or language. Contained in this discussion are the geometrical and env...

  8. Enabling Airspace Integration for High Density Urban Air Mobility

    NASA Technical Reports Server (NTRS)

    Mueller, Eric Richard

    2017-01-01

    Aviation technologies and concepts have reached a level of maturity that may soon enable an era of on-demand mobility (ODM) fueled by quiet, efficient, and largely automated air taxis. However, successfully bringing such a system to fruition will require introducing orders of magnitude more aircraft to a given airspace volume than can be accommodated by the traditional air traffic control system, among other important technical challenges. The airspace integration problem is further compounded by requirements to set aside appropriate ground infrastructure for take-off and landing areas and ensuring these new aircraft types and their operations do not burden traditional airspace users and air traffic control. These challenge for ODM may be significantly reduced by extending the concepts and technologies developed to manage small unmanned aircraft systems (UAS) at low altitude the UAS traffic management (UTM) system to higher altitudes and aircraft with humans onboard in controlled airspace, or by equipping ODM aircraft with advanced sensors, algorithms, and interfaces. The precedent of operational freedom inherent in visual flight rules and the technologies developed for large UAS and commercial aircraft automation will contribute to the evolution of an ODM system enabled by UTM. This paper describes the set of air traffic services, normally provided by the traditional air traffic system, that an ODM system would implement to achieve the high densities needed for ODMs economic viability. Finally, the paper proposes a framework for integrating, evaluating, and deploying low-, medium-, and high-density ODM concepts that build on each other to ensure operational and economic feasibility at every step.

  9. Neural Generalized Predictive Control: A Newton-Raphson Implementation

    NASA Technical Reports Server (NTRS)

    Soloway, Donald; Haley, Pamela J.

    1997-01-01

    An efficient implementation of Generalized Predictive Control using a multi-layer feedforward neural network as the plant's nonlinear model is presented. In using Newton-Raphson as the optimization algorithm, the number of iterations needed for convergence is significantly reduced from other techniques. The main cost of the Newton-Raphson algorithm is in the calculation of the Hessian, but even with this overhead the low iteration numbers make Newton-Raphson faster than other techniques and a viable algorithm for real-time control. This paper presents a detailed derivation of the Neural Generalized Predictive Control algorithm with Newton-Raphson as the minimization algorithm. Simulation results show convergence to a good solution within two iterations and timing data show that real-time control is possible. Comments about the algorithm's implementation are also included.

  10. Accurate Grid-based Clustering Algorithm with Diagonal Grid Searching and Merging

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Ye, Chengcheng; Zhu, Erzhou

    2017-09-01

    Due to the advent of big data, data mining technology has attracted more and more attentions. As an important data analysis method, grid clustering algorithm is fast but with relatively lower accuracy. This paper presents an improved clustering algorithm combined with grid and density parameters. The algorithm first divides the data space into the valid meshes and invalid meshes through grid parameters. Secondly, from the starting point located at the first point of the diagonal of the grids, the algorithm takes the direction of “horizontal right, vertical down” to merge the valid meshes. Furthermore, by the boundary grid processing, the invalid grids are searched and merged when the adjacent left, above, and diagonal-direction grids are all the valid ones. By doing this, the accuracy of clustering is improved. The experimental results have shown that the proposed algorithm is accuracy and relatively faster when compared with some popularly used algorithms.

  11. Markov chain algorithms: a template for building future robust low-power systems

    PubMed Central

    Deka, Biplab; Birklykke, Alex A.; Duwe, Henry; Mansinghka, Vikash K.; Kumar, Rakesh

    2014-01-01

    Although computational systems are looking towards post CMOS devices in the pursuit of lower power, the expected inherent unreliability of such devices makes it difficult to design robust systems without additional power overheads for guaranteeing robustness. As such, algorithmic structures with inherent ability to tolerate computational errors are of significant interest. We propose to cast applications as stochastic algorithms based on Markov chains (MCs) as such algorithms are both sufficiently general and tolerant to transition errors. We show with four example applications—Boolean satisfiability, sorting, low-density parity-check decoding and clustering—how applications can be cast as MC algorithms. Using algorithmic fault injection techniques, we demonstrate the robustness of these implementations to transition errors with high error rates. Based on these results, we make a case for using MCs as an algorithmic template for future robust low-power systems. PMID:24842030

  12. Massively parallel algorithms for real-time wavefront control of a dense adaptive optics system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fijany, A.; Milman, M.; Redding, D.

    1994-12-31

    In this paper massively parallel algorithms and architectures for real-time wavefront control of a dense adaptive optic system (SELENE) are presented. The authors have already shown that the computation of a near optimal control algorithm for SELENE can be reduced to the solution of a discrete Poisson equation on a regular domain. Although, this represents an optimal computation, due the large size of the system and the high sampling rate requirement, the implementation of this control algorithm poses a computationally challenging problem since it demands a sustained computational throughput of the order of 10 GFlops. They develop a novel algorithm,more » designated as Fast Invariant Imbedding algorithm, which offers a massive degree of parallelism with simple communication and synchronization requirements. Due to these features, this algorithm is significantly more efficient than other Fast Poisson Solvers for implementation on massively parallel architectures. The authors also discuss two massively parallel, algorithmically specialized, architectures for low-cost and optimal implementation of the Fast Invariant Imbedding algorithm.« less

  13. Density Estimation with Mercer Kernels

    NASA Technical Reports Server (NTRS)

    Macready, William G.

    2003-01-01

    We present a new method for density estimation based on Mercer kernels. The density estimate can be understood as the density induced on a data manifold by a mixture of Gaussians fit in a feature space. As is usual, the feature space and data manifold are defined with any suitable positive-definite kernel function. We modify the standard EM algorithm for mixtures of Gaussians to infer the parameters of the density. One benefit of the approach is it's conceptual simplicity, and uniform applicability over many different types of data. Preliminary results are presented for a number of simple problems.

  14. Visualization of electronic density

    DOE PAGES

    Grosso, Bastien; Cooper, Valentino R.; Pine, Polina; ...

    2015-04-22

    An atom’s volume depends on its electronic density. Although this density can only be evaluated exactly for hydrogen-like atoms, there are many excellent numerical algorithms and packages to calculate it for other materials. 3D visualization of charge density is challenging, especially when several molecular/atomic levels are intertwined in space. We explore several approaches to 3D charge density visualization, including the extension of an anaglyphic stereo visualization application based on the AViz package to larger structures such as nanotubes. We will describe motivations and potential applications of these tools for answering interesting questions about nanotube properties.

  15. A new bias field correction method combining N3 and FCM for improved segmentation of breast density on MRI.

    PubMed

    Lin, Muqing; Chan, Siwa; Chen, Jeon-Hor; Chang, Daniel; Nie, Ke; Chen, Shih-Ting; Lin, Cheng-Ju; Shih, Tzu-Ching; Nalcioglu, Orhan; Su, Min-Ying

    2011-01-01

    Quantitative breast density is known as a strong risk factor associated with the development of breast cancer. Measurement of breast density based on three-dimensional breast MRI may provide very useful information. One important step for quantitative analysis of breast density on MRI is the correction of field inhomogeneity to allow an accurate segmentation of the fibroglandular tissue (dense tissue). A new bias field correction method by combining the nonparametric nonuniformity normalization (N3) algorithm and fuzzy-C-means (FCM)-based inhomogeneity correction algorithm is developed in this work. The analysis is performed on non-fat-sat T1-weighted images acquired using a 1.5 T MRI scanner. A total of 60 breasts from 30 healthy volunteers was analyzed. N3 is known as a robust correction method, but it cannot correct a strong bias field on a large area. FCM-based algorithm can correct the bias field on a large area, but it may change the tissue contrast and affect the segmentation quality. The proposed algorithm applies N3 first, followed by FCM, and then the generated bias field is smoothed using Gaussian kernal and B-spline surface fitting to minimize the problem of mistakenly changed tissue contrast. The segmentation results based on the N3+FCM corrected images were compared to the N3 and FCM alone corrected images and another method, coherent local intensity clustering (CLIC), corrected images. The segmentation quality based on different correction methods were evaluated by a radiologist and ranked. The authors demonstrated that the iterative N3+FCM correction method brightens the signal intensity of fatty tissues and that separates the histogram peaks between the fibroglandular and fatty tissues to allow an accurate segmentation between them. In the first reading session, the radiologist found (N3+FCM > N3 > FCM) ranking in 17 breasts, (N3+FCM > N3 = FCM) ranking in 7 breasts, (N3+FCM = N3 > FCM) in 32 breasts, (N3+FCM = N3 = FCM) in 2 breasts, and (N3 > N3+FCM > FCM) in 2 breasts. The results of the second reading session were similar. The performance in each pairwise Wilcoxon signed-rank test is significant, showing N3+FCM superior to both N3 and FCM, and N3 superior to FCM. The performance of the new N3+FCM algorithm was comparable to that of CLIC, showing equivalent quality in 57/60 breasts. Choosing an appropriate bias field correction method is a very important preprocessing step to allow an accurate segmentation of fibroglandular tissues based on breast MRI for quantitative measurement of breast density. The proposed algorithm combining N3+FCM and CLIC both yield satisfactory results.

  16. Algorithms for Computing the Magnetic Field, Vector Potential, and Field Derivatives for a Thin Solenoid with Uniform Current Density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walstrom, Peter Lowell

    A numerical algorithm for computing the field components B r and B z and their r and z derivatives with open boundaries in cylindrical coordinates for radially thin solenoids with uniform current density is described in this note. An algorithm for computing the vector potential A θ is also described. For the convenience of the reader, derivations of the final expressions from their defining integrals are given in detail, since their derivations are not all easily found in textbooks. Numerical calculations are based on evaluation of complete elliptic integrals using the Bulirsch algorithm cel. The (apparently) new feature of themore » algorithms described in this note applies to cases where the field point is outside of the bore of the solenoid and the field-point radius approaches the solenoid radius. Since the elliptic integrals of the third kind normally used in computing B z and A θ become infinite in this region of parameter space, fields for points with the axial coordinate z outside of the ends of the solenoid and near the solenoid radius are treated by use of elliptic integrals of the third kind of modified argument, derived by use of an addition theorem. Also, the algorithms also avoid the numerical difficulties the textbook solutions have for points near the axis arising from explicit factors of 1/r or 1/r 2 in the some of the expressions.« less

  17. Network congestion control algorithm based on Actor-Critic reinforcement learning model

    NASA Astrophysics Data System (ADS)

    Xu, Tao; Gong, Lina; Zhang, Wei; Li, Xuhong; Wang, Xia; Pan, Wenwen

    2018-04-01

    Aiming at the network congestion control problem, a congestion control algorithm based on Actor-Critic reinforcement learning model is designed. Through the genetic algorithm in the congestion control strategy, the network congestion problems can be better found and prevented. According to Actor-Critic reinforcement learning, the simulation experiment of network congestion control algorithm is designed. The simulation experiments verify that the AQM controller can predict the dynamic characteristics of the network system. Moreover, the learning strategy is adopted to optimize the network performance, and the dropping probability of packets is adaptively adjusted so as to improve the network performance and avoid congestion. Based on the above finding, it is concluded that the network congestion control algorithm based on Actor-Critic reinforcement learning model can effectively avoid the occurrence of TCP network congestion.

  18. Photovoltaic Cells Mppt Algorithm and Design of Controller Monitoring System

    NASA Astrophysics Data System (ADS)

    Meng, X. Z.; Feng, H. B.

    2017-10-01

    This paper combined the advantages of each maximum power point tracking (MPPT) algorithm, put forward a kind of algorithm with higher speed and higher precision, based on this algorithm designed a maximum power point tracking controller with ARM. The controller, communication technology and PC software formed a control system. Results of the simulation and experiment showed that the process of maximum power tracking was effective, and the system was stable.

  19. Implementation of Real-Time Feedback Flow Control Algorithms on a Canonical Testbed

    NASA Technical Reports Server (NTRS)

    Tian, Ye; Song, Qi; Cattafesta, Louis

    2005-01-01

    This report summarizes the activities on "Implementation of Real-Time Feedback Flow Control Algorithms on a Canonical Testbed." The work summarized consists primarily of two parts. The first part summarizes our previous work and the extensions to adaptive ID and control algorithms. The second part concentrates on the validation of adaptive algorithms by applying them to a vibration beam test bed. Extensions to flow control problems are discussed.

  20. Detecting Anomalies in Process Control Networks

    NASA Astrophysics Data System (ADS)

    Rrushi, Julian; Kang, Kyoung-Don

    This paper presents the estimation-inspection algorithm, a statistical algorithm for anomaly detection in process control networks. The algorithm determines if the payload of a network packet that is about to be processed by a control system is normal or abnormal based on the effect that the packet will have on a variable stored in control system memory. The estimation part of the algorithm uses logistic regression integrated with maximum likelihood estimation in an inductive machine learning process to estimate a series of statistical parameters; these parameters are used in conjunction with logistic regression formulas to form a probability mass function for each variable stored in control system memory. The inspection part of the algorithm uses the probability mass functions to estimate the normalcy probability of a specific value that a network packet writes to a variable. Experimental results demonstrate that the algorithm is very effective at detecting anomalies in process control networks.

  1. Magnetic resonance electrical impedance tomography (MREIT): simulation study of J-substitution algorithm.

    PubMed

    Kwon, Ohin; Woo, Eung Je; Yoon, Jeong-Rock; Seo, Jin Keun

    2002-02-01

    We developed a new image reconstruction algorithm for magnetic resonance electrical impedance tomography (MREIT). MREIT is a new EIT imaging technique integrated into magnetic resonance imaging (MRI) system. Based on the assumption that internal current density distribution is obtained using magnetic resonance imaging (MRI) technique, the new image reconstruction algorithm called J-substitution algorithm produces cross-sectional static images of resistivity (or conductivity) distributions. Computer simulations show that the spatial resolution of resistivity image is comparable to that of MRI. MREIT provides accurate high-resolution cross-sectional resistivity images making resistivity values of various human tissues available for many biomedical applications.

  2. A roadmap of clustering algorithms: finding a match for a biomedical application.

    PubMed

    Andreopoulos, Bill; An, Aijun; Wang, Xiaogang; Schroeder, Michael

    2009-05-01

    Clustering is ubiquitously applied in bioinformatics with hierarchical clustering and k-means partitioning being the most popular methods. Numerous improvements of these two clustering methods have been introduced, as well as completely different approaches such as grid-based, density-based and model-based clustering. For improved bioinformatics analysis of data, it is important to match clusterings to the requirements of a biomedical application. In this article, we present a set of desirable clustering features that are used as evaluation criteria for clustering algorithms. We review 40 different clustering algorithms of all approaches and datatypes. We compare algorithms on the basis of desirable clustering features, and outline algorithms' benefits and drawbacks as a basis for matching them to biomedical applications.

  3. The research of automatic speed control algorithm based on Green CBTC

    NASA Astrophysics Data System (ADS)

    Lin, Ying; Xiong, Hui; Wang, Xiaoliang; Wu, Youyou; Zhang, Chuanqi

    2017-06-01

    Automatic speed control algorithm is one of the core technologies of train operation control system. It’s a typical multi-objective optimization control algorithm, which achieve the train speed control for timing, comfort, energy-saving and precise parking. At present, the train speed automatic control technology is widely used in metro and inter-city railways. It has been found that the automatic speed control technology can effectively reduce the driver’s intensity, and improve the operation quality. However, the current used algorithm is poor at energy-saving, even not as good as manual driving. In order to solve the problem of energy-saving, this paper proposes an automatic speed control algorithm based on Green CBTC system. Based on the Green CBTC system, the algorithm can adjust the operation status of the train to improve the efficient using rate of regenerative braking feedback energy while ensuring the timing, comfort and precise parking targets. Due to the reason, the energy-using of Green CBTC system is lower than traditional CBTC system. The simulation results show that the algorithm based on Green CBTC system can effectively reduce the energy-using due to the improvement of the using rate of regenerative braking feedback energy.

  4. Real-Time Feedback Control of Flow-Induced Cavity Tones. Part 2; Adaptive Control

    NASA Technical Reports Server (NTRS)

    Kegerise, M. A.; Cabell, R. H.; Cattafesta, L. N., III

    2006-01-01

    An adaptive generalized predictive control (GPC) algorithm was formulated and applied to the cavity flow-tone problem. The algorithm employs gradient descent to update the GPC coefficients at each time step. Past input-output data and an estimate of the open-loop pulse response sequence are all that is needed to implement the algorithm for application at fixed Mach numbers. Transient measurements made during controller adaptation revealed that the controller coefficients converged to a steady state in the mean, and this implies that adaptation can be turned off at some point with no degradation in control performance. When converged, the control algorithm demonstrated multiple Rossiter mode suppression at fixed Mach numbers ranging from 0.275 to 0.38. However, as in the case of fixed-gain GPC, the adaptive GPC performance was limited by spillover in sidebands around the suppressed Rossiter modes. The algorithm was also able to maintain suppression of multiple cavity tones as the freestream Mach number was varied over a modest range (0.275 to 0.29). Beyond this range, stable operation of the control algorithm was not possible due to the fixed plant model in the algorithm.

  5. Lightweight Battery Charge Regulator Used to Track Solar Array Peak Power

    NASA Technical Reports Server (NTRS)

    Soeder, James F.; Button, Robert M.

    1999-01-01

    A battery charge regulator based on the series-connected boost regulator (SCBR) technology has been developed for high-voltage spacecraft applications. The SCBR regulates the solar array power during insolation to prevent battery overcharge or undercharge conditions. It can also be used to provide regulated battery output voltage to spacecraft loads if necessary. This technology uses industry-standard dc-dc converters and a unique interconnection to provide size, weight, efficiency, fault tolerance, and modularity benefits over existing systems. The high-voltage SCBR shown in the photograph has demonstrated power densities of over 1000 watts per kilogram (W/kg). Using four 150-W dc-dc converter modules, it can process 2500 W of power at 120 Vdc with a minimum input voltage of 90 Vdc. Efficiency of the SCBR was 94 to 98 percent over the entire operational range. Internally, the unit is made of two separate SCBR s, each with its own analog control circuitry, to demonstrate the modularity of the technology. The analog controllers regulate the output current and incorporate the output voltage limit with active current sharing between the two units. They also include voltage and current telemetry, on/off control, and baseplate temperature sensors. For peak power tracking, the SCBR was connected to a LabView-based data acquisition system for telemetry and control. A digital control algorithm for tracking the peak power point of a solar array was developed using the principle of matching the source impedance with the load impedance for maximum energy transfer. The algorithm was successfully demonstrated in a simulated spacecraft electrical system at the Boeing PhantomWorks High Voltage Test Facility in Seattle, Washington. The system consists of a 42-string, high-voltage solar array simulator, a 77-cell, 80-ampere-hour (A-hr) nickel-hydrogen battery, and a constant power-load module. The SCBR and the LabView control algorithm successfully tracked the solar array peak power point through various load transients, including sunlight discharge transients when the total load exceeded the maximum solar array output power.

  6. Component extraction on CT volumes of assembled products using geometric template matching

    NASA Astrophysics Data System (ADS)

    Muramatsu, Katsutoshi; Ohtake, Yutaka; Suzuki, Hiromasa; Nagai, Yukie

    2017-03-01

    As a method of non-destructive internal inspection, X-ray computed tomography (CT) is used not only in medical applications but also for product inspection. Some assembled products can be divided into separate components based on density, which is known to be approximately proportional to CT values. However, components whose densities are similar cannot be distinguished using the CT value driven approach. In this study, we proposed a new component extraction algorithm from the CT volume, using a set of voxels with an assigned CT value with the surface mesh as the template rather than the density. The method has two main stages: rough matching and fine matching. At the rough matching stage, the position of candidate targets is identified roughly from the CT volume, using the template of the target component. At the fine matching stage, these candidates are precisely matched with the templates, allowing the correct position of the components to be detected from the CT volume. The results of two computational experiments showed that the proposed algorithm is able to extract components with similar density within the assembled products on CT volumes.

  7. Ground Operations of the ISS GNC Babb-Mueller Atmospheric Density Model

    NASA Technical Reports Server (NTRS)

    Brogan, Jonathan

    2002-01-01

    The ISS GNC system was updated recently with a new software release that provides onboard state determination capability. Prior to this release, only the Russian segment maintained and propagated the onboard state, which was periodically updated through Russian ground tracking. The new software gives the US segment the capability for maintaining the onboard state, and includes new GPS and state vector propagation capabilities. Part of this software package is an atmospheric density model based on the Babb-Mueller algorithm. Babb-Mueller efficiently mimics a full analytical density model, such as the Jacchia model. While lacchia is very robust and is used in the Mission Control Center, it is too computationally intensive for use onboard. Thus, Babb-Mueller was chosen as an alternative. The onboard model depends on a set of calibration coefficients that produce a curve fit to the lacchia model. The ISS GNC system only maintains one set of coefficients onboard, so a new set must be uplinked by controllers when the atmospheric conditions change. The onboard density model provides a real-time density value, which is used to calculate the drag experienced by the ISS. This drag value is then incorporated into the onboard propagation of the state vector. The propagation of the state vector, and therefore operation of the BabbMueller algorithm, will be most critical when GPS updates and secondary state vector sources fail. When GPS is active, the onboard state vector will be updated every ten seconds, so the propagation error is irrelevant. When GPS is inactive, the state vector must be updated at least every 24 hours, based on current protocol. Therefore, the Babb-Mueller coefficients must be accurate enough to fulfill the state vector accuracy requirements for at least one day. A ground operations concept was needed in order to manage both the on board Babb-Mueller density model and the onboard state quality. The Babb-Mueller coefficients can be determined operationally in two ways. The first method is to calibrate the coefficients in real-time, where a set of custom coefficients is generated for the real-time atmospheric conditions. The second approach is to generate pre-canned sets of coefficients that encompass the expected atmospheric conditions over the lifetime of the vehicle. These predetermined sets are known as occurrences. Even though a particular occurrence will not match the true atmospheric conditions, the error will be constrained by limiting the breadth of each occurrence. Both methods were investigated and the advantages and disadvantages of each were considered. The choice between these implementations was a trade-off between the additional accuracy of the real-time calibration and the simpler development for the approach using occurrences. The operations concept for the frequency of updates was also explored, and depends on the deviation in solar flux that still achieves the necessary accuracy of the coefficients. This was determined based on historical solar flux trends. This analysis resulted in an accurate and reliable implementation of the Babb-Mueller coefficients and how flight controllers use them during realtime operations.

  8. Image quality in thoracic 4D cone-beam CT: A sensitivity analysis of respiratory signal, binning method, reconstruction algorithm, and projection angular spacing

    PubMed Central

    Shieh, Chun-Chien; Kipritidis, John; O’Brien, Ricky T.; Kuncic, Zdenka; Keall, Paul J.

    2014-01-01

    Purpose: Respiratory signal, binning method, and reconstruction algorithm are three major controllable factors affecting image quality in thoracic 4D cone-beam CT (4D-CBCT), which is widely used in image guided radiotherapy (IGRT). Previous studies have investigated each of these factors individually, but no integrated sensitivity analysis has been performed. In addition, projection angular spacing is also a key factor in reconstruction, but how it affects image quality is not obvious. An investigation of the impacts of these four factors on image quality can help determine the most effective strategy in improving 4D-CBCT for IGRT. Methods: Fourteen 4D-CBCT patient projection datasets with various respiratory motion features were reconstructed with the following controllable factors: (i) respiratory signal (real-time position management, projection image intensity analysis, or fiducial marker tracking), (ii) binning method (phase, displacement, or equal-projection-density displacement binning), and (iii) reconstruction algorithm [Feldkamp–Davis–Kress (FDK), McKinnon–Bates (MKB), or adaptive-steepest-descent projection-onto-convex-sets (ASD-POCS)]. The image quality was quantified using signal-to-noise ratio (SNR), contrast-to-noise ratio, and edge-response width in order to assess noise/streaking and blur. The SNR values were also analyzed with respect to the maximum, mean, and root-mean-squared-error (RMSE) projection angular spacing to investigate how projection angular spacing affects image quality. Results: The choice of respiratory signals was found to have no significant impact on image quality. Displacement-based binning was found to be less prone to motion artifacts compared to phase binning in more than half of the cases, but was shown to suffer from large interbin image quality variation and large projection angular gaps. Both MKB and ASD-POCS resulted in noticeably improved image quality almost 100% of the time relative to FDK. In addition, SNR values were found to increase with decreasing RMSE values of projection angular gaps with strong correlations (r ≈ −0.7) regardless of the reconstruction algorithm used. Conclusions: Based on the authors’ results, displacement-based binning methods, better reconstruction algorithms, and the acquisition of even projection angular views are the most important factors to consider for improving thoracic 4D-CBCT image quality. In view of the practical issues with displacement-based binning and the fact that projection angular spacing is not currently directly controllable, development of better reconstruction algorithms represents the most effective strategy for improving image quality in thoracic 4D-CBCT for IGRT applications at the current stage. PMID:24694143

  9. Adaptive block online learning target tracking based on super pixel segmentation

    NASA Astrophysics Data System (ADS)

    Cheng, Yue; Li, Jianzeng

    2018-04-01

    Video target tracking technology under the unremitting exploration of predecessors has made big progress, but there are still lots of problems not solved. This paper proposed a new algorithm of target tracking based on image segmentation technology. Firstly we divide the selected region using simple linear iterative clustering (SLIC) algorithm, after that, we block the area with the improved density-based spatial clustering of applications with noise (DBSCAN) clustering algorithm. Each sub-block independently trained classifier and tracked, then the algorithm ignore the failed tracking sub-block while reintegrate the rest of the sub-blocks into tracking box to complete the target tracking. The experimental results show that our algorithm can work effectively under occlusion interference, rotation change, scale change and many other problems in target tracking compared with the current mainstream algorithms.

  10. Application of independent component analysis for speech-music separation using an efficient score function estimation

    NASA Astrophysics Data System (ADS)

    Pishravian, Arash; Aghabozorgi Sahaf, Masoud Reza

    2012-12-01

    In this paper speech-music separation using Blind Source Separation is discussed. The separating algorithm is based on the mutual information minimization where the natural gradient algorithm is used for minimization. In order to do that, score function estimation from observation signals (combination of speech and music) samples is needed. The accuracy and the speed of the mentioned estimation will affect on the quality of the separated signals and the processing time of the algorithm. The score function estimation in the presented algorithm is based on Gaussian mixture based kernel density estimation method. The experimental results of the presented algorithm on the speech-music separation and comparing to the separating algorithm which is based on the Minimum Mean Square Error estimator, indicate that it can cause better performance and less processing time

  11. Learning control system design based on 2-D theory - An application to parallel link manipulator

    NASA Technical Reports Server (NTRS)

    Geng, Z.; Carroll, R. L.; Lee, J. D.; Haynes, L. H.

    1990-01-01

    An approach to iterative learning control system design based on two-dimensional system theory is presented. A two-dimensional model for the iterative learning control system which reveals the connections between learning control systems and two-dimensional system theory is established. A learning control algorithm is proposed, and the convergence of learning using this algorithm is guaranteed by two-dimensional stability. The learning algorithm is applied successfully to the trajectory tracking control problem for a parallel link robot manipulator. The excellent performance of this learning algorithm is demonstrated by the computer simulation results.

  12. Predicting surface fuel models and fuel metrics using lidar and CIR imagery in a dense mixed conifer forest

    Treesearch

    Marek K. Jakubowksi; Qinghua Guo; Brandon Collins; Scott Stephens; Maggi Kelly

    2013-01-01

    We compared the ability of several classification and regression algorithms to predict forest stand structure metrics and standard surface fuel models. Our study area spans a dense, topographically complex Sierra Nevada mixed-conifer forest. We used clustering, regression trees, and support vector machine algorithms to analyze high density (average 9 pulses/m

  13. Comparison of algorithms for solving the sign problem in the O(3) model in 1 +1 dimensions at finite chemical potential

    NASA Astrophysics Data System (ADS)

    Katz, S. D.; Niedermayer, F.; Nógrádi, D.; Török, Cs.

    2017-03-01

    We study three possible ways to circumvent the sign problem in the O(3) nonlinear sigma model in 1 +1 dimensions. We compare the results of the worm algorithm to complex Langevin and multiparameter reweighting. Using the worm algorithm, the thermodynamics of the model is investigated, and continuum results are shown for the pressure at different μ /T values in the range 0-4. By performing T =0 simulations using the worm algorithm, the Silver Blaze phenomenon is reproduced. Regarding the complex Langevin, we test various implementations of discretizing the complex Langevin equation. We found that the exponentialized Euler discretization of the Langevin equation gives wrong results for the action and the density at low T /m . By performing a continuum extrapolation, we found that this discrepancy does not disappear and depends slightly on temperature. The discretization with spherical coordinates performs similarly at low μ /T but breaks down also at some higher temperatures at high μ /T . However, a third discretization that uses a constraining force to achieve the ϕ2=1 condition gives correct results for the action but wrong results for the density at low μ /T .

  14. Inverse Problems in Geodynamics Using Machine Learning Algorithms

    NASA Astrophysics Data System (ADS)

    Shahnas, M. H.; Yuen, D. A.; Pysklywec, R. N.

    2018-01-01

    During the past few decades numerical studies have been widely employed to explore the style of circulation and mixing in the mantle of Earth and other planets. However, in geodynamical studies there are many properties from mineral physics, geochemistry, and petrology in these numerical models. Machine learning, as a computational statistic-related technique and a subfield of artificial intelligence, has rapidly emerged recently in many fields of sciences and engineering. We focus here on the application of supervised machine learning (SML) algorithms in predictions of mantle flow processes. Specifically, we emphasize on estimating mantle properties by employing machine learning techniques in solving an inverse problem. Using snapshots of numerical convection models as training samples, we enable machine learning models to determine the magnitude of the spin transition-induced density anomalies that can cause flow stagnation at midmantle depths. Employing support vector machine algorithms, we show that SML techniques can successfully predict the magnitude of mantle density anomalies and can also be used in characterizing mantle flow patterns. The technique can be extended to more complex geodynamic problems in mantle dynamics by employing deep learning algorithms for putting constraints on properties such as viscosity, elastic parameters, and the nature of thermal and chemical anomalies.

  15. New multirate sampled-data control law structure and synthesis algorithm

    NASA Technical Reports Server (NTRS)

    Berg, Martin C.; Mason, Gregory S.; Yang, Gen-Sheng

    1992-01-01

    A new multirate sampled-data control law structure is defined and a new parameter-optimization-based synthesis algorithm for that structure is introduced. The synthesis algorithm can be applied to multirate, multiple-input/multiple-output, sampled-data control laws having a prescribed dynamic order and structure, and a priori specified sampling/update rates for all sensors, processor states, and control inputs. The synthesis algorithm is applied to design two-input, two-output tip position controllers of various dynamic orders for a sixth-order, two-link robot arm model.

  16. PID controller tuning using metaheuristic optimization algorithms for benchmark problems

    NASA Astrophysics Data System (ADS)

    Gholap, Vishal; Naik Dessai, Chaitali; Bagyaveereswaran, V.

    2017-11-01

    This paper contributes to find the optimal PID controller parameters using particle swarm optimization (PSO), Genetic Algorithm (GA) and Simulated Annealing (SA) algorithm. The algorithms were developed through simulation of chemical process and electrical system and the PID controller is tuned. Here, two different fitness functions such as Integral Time Absolute Error and Time domain Specifications were chosen and applied on PSO, GA and SA while tuning the controller. The proposed Algorithms are implemented on two benchmark problems of coupled tank system and DC motor. Finally, comparative study has been done with different algorithms based on best cost, number of iterations and different objective functions. The closed loop process response for each set of tuned parameters is plotted for each system with each fitness function.

  17. Performance Analysis of Continuous Black-Box Optimization Algorithms via Footprints in Instance Space.

    PubMed

    Muñoz, Mario A; Smith-Miles, Kate A

    2017-01-01

    This article presents a method for the objective assessment of an algorithm's strengths and weaknesses. Instead of examining the performance of only one or more algorithms on a benchmark set, or generating custom problems that maximize the performance difference between two algorithms, our method quantifies both the nature of the test instances and the algorithm performance. Our aim is to gather information about possible phase transitions in performance, that is, the points in which a small change in problem structure produces algorithm failure. The method is based on the accurate estimation and characterization of the algorithm footprints, that is, the regions of instance space in which good or exceptional performance is expected from an algorithm. A footprint can be estimated for each algorithm and for the overall portfolio. Therefore, we select a set of features to generate a common instance space, which we validate by constructing a sufficiently accurate prediction model. We characterize the footprints by their area and density. Our method identifies complementary performance between algorithms, quantifies the common features of hard problems, and locates regions where a phase transition may lie.

  18. Optimizations for the EcoPod field identification tool

    PubMed Central

    Manoharan, Aswath; Stamberger, Jeannie; Yu, YuanYuan; Paepcke, Andreas

    2008-01-01

    Background We sketch our species identification tool for palm sized computers that helps knowledgeable observers with census activities. An algorithm turns an identification matrix into a minimal length series of questions that guide the operator towards identification. Historic observation data from the census geographic area helps minimize question volume. We explore how much historic data is required to boost performance, and whether the use of history negatively impacts identification of rare species. We also explore how characteristics of the matrix interact with the algorithm, and how best to predict the probability of observing a previously unseen species. Results Point counts of birds taken at Stanford University's Jasper Ridge Biological Preserve between 2000 and 2005 were used to examine the algorithm. A computer identified species by correctly answering, and counting the algorithm's questions. We also explored how the character density of the key matrix and the theoretical minimum number of questions for each bird in the matrix influenced the algorithm. Our investigation of the required probability smoothing determined whether Laplace smoothing of observation probabilities was sufficient, or whether the more complex Good-Turing technique is required. Conclusion Historic data improved identification speed, but only impacted the top 25% most frequently observed birds. For rare birds the history based algorithms did not impose a noticeable penalty in the number of questions required for identification. For our dataset neither age of the historic data, nor the number of observation years impacted the algorithm. Density of characters for different taxa in the identification matrix did not impact the algorithms. Intrinsic differences in identifying different birds did affect the algorithm, but the differences affected the baseline method of not using historic data to exactly the same degree. We found that Laplace smoothing performed better for rare species than Simple Good-Turing, and that, contrary to expectation, the technique did not then adversely affect identification performance for frequently observed birds. PMID:18366649

  19. Percentage depth dose calculation accuracy of model based algorithms in high energy photon small fields through heterogeneous media and comparison with plastic scintillator dosimetry.

    PubMed

    Alagar, Ananda Giri Babu; Mani, Ganesh Kadirampatti; Karunakaran, Kaviarasu

    2016-01-08

    Small fields smaller than 4 × 4 cm2 are used in stereotactic and conformal treatments where heterogeneity is normally present. Since dose calculation accuracy in both small fields and heterogeneity often involves more discrepancy, algorithms used by treatment planning systems (TPS) should be evaluated for achieving better treatment results. This report aims at evaluating accuracy of four model-based algorithms, X-ray Voxel Monte Carlo (XVMC) from Monaco, Superposition (SP) from CMS-Xio, AcurosXB (AXB) and analytical anisotropic algorithm (AAA) from Eclipse are tested against the measurement. Measurements are done using Exradin W1 plastic scintillator in Solid Water phantom with heterogeneities like air, lung, bone, and aluminum, irradiated with 6 and 15 MV photons of square field size ranging from 1 to 4 cm2. Each heterogeneity is introduced individually at two different depths from depth-of-dose maximum (Dmax), one setup being nearer and another farther from the Dmax. The central axis percentage depth-dose (CADD) curve for each setup is measured separately and compared with the TPS algorithm calculated for the same setup. The percentage normalized root mean squared deviation (%NRMSD) is calculated, which represents the whole CADD curve's deviation against the measured. It is found that for air and lung heterogeneity, for both 6 and 15 MV, all algorithms show maximum deviation for field size 1 × 1 cm2 and gradually reduce when field size increases, except for AAA. For aluminum and bone, all algorithms' deviations are less for 15 MV irrespective of setup. In all heterogeneity setups, 1 × 1 cm2 field showed maximum deviation, except in 6MV bone setup. All algorithms in the study, irrespective of energy and field size, when any heterogeneity is nearer to Dmax, the dose deviation is higher compared to the same heterogeneity far from the Dmax. Also, all algorithms show maximum deviation in lower-density materials compared to high-density materials.

  20. Constraining mass anomalies in the interior of spherical bodies using Trans-dimensional Bayesian Hierarchical inference.

    NASA Astrophysics Data System (ADS)

    Izquierdo, K.; Lekic, V.; Montesi, L.

    2017-12-01

    Gravity inversions are especially important for planetary applications since measurements of the variations in gravitational acceleration are often the only constraint available to map out lateral density variations in the interiors of planets and other Solar system objects. Currently, global gravity data is available for the terrestrial planets and the Moon. Although several methods for inverting these data have been developed and applied, the non-uniqueness of global density models that fit the data has not yet been fully characterized. We make use of Bayesian inference and a Reversible Jump Markov Chain Monte Carlo (RJMCMC) approach to develop a Trans-dimensional Hierarchical Bayesian (THB) inversion algorithm that yields a large sample of models that fit a gravity field. From this group of models, we can determine the most likely value of parameters of a global density model and a measure of the non-uniqueness of each parameter when the number of anomalies describing the gravity field is not fixed a priori. We explore the use of a parallel tempering algorithm and fast multipole method to reduce the number of iterations and computing time needed. We applied this method to a synthetic gravity field of the Moon and a long wavelength synthetic model of density anomalies in the Earth's lower mantle. We obtained a good match between the given gravity field and the gravity field produced by the most likely model in each inversion. The number of anomalies of the models showed parsimony of the algorithm, the value of the noise variance of the input data was retrieved, and the non-uniqueness of the models was quantified. Our results show that the ability to constrain the latitude and longitude of density anomalies, which is excellent at shallow locations (<200 km), decreases with increasing depth. With higher computational resources, this THB method for gravity inversion could give new information about the overall density distribution of celestial bodies even when there is no other geophysical data available.

  1. TAIR- TRANSONIC AIRFOIL ANALYSIS COMPUTER CODE

    NASA Technical Reports Server (NTRS)

    Dougherty, F. C.

    1994-01-01

    The Transonic Airfoil analysis computer code, TAIR, was developed to employ a fast, fully implicit algorithm to solve the conservative full-potential equation for the steady transonic flow field about an arbitrary airfoil immersed in a subsonic free stream. The full-potential formulation is considered exact under the assumptions of irrotational, isentropic, and inviscid flow. These assumptions are valid for a wide range of practical transonic flows typical of modern aircraft cruise conditions. The primary features of TAIR include: a new fully implicit iteration scheme which is typically many times faster than classical successive line overrelaxation algorithms; a new, reliable artifical density spatial differencing scheme treating the conservative form of the full-potential equation; and a numerical mapping procedure capable of generating curvilinear, body-fitted finite-difference grids about arbitrary airfoil geometries. Three aspects emphasized during the development of the TAIR code were reliability, simplicity, and speed. The reliability of TAIR comes from two sources: the new algorithm employed and the implementation of effective convergence monitoring logic. TAIR achieves ease of use by employing a "default mode" that greatly simplifies code operation, especially by inexperienced users, and many useful options including: several airfoil-geometry input options, flexible user controls over program output, and a multiple solution capability. The speed of the TAIR code is attributed to the new algorithm and the manner in which it has been implemented. Input to the TAIR program consists of airfoil coordinates, aerodynamic and flow-field convergence parameters, and geometric and grid convergence parameters. The airfoil coordinates for many airfoil shapes can be generated in TAIR from just a few input parameters. Most of the other input parameters have default values which allow the user to run an analysis in the default mode by specifing only a few input parameters. Output from TAIR may include aerodynamic coefficients, the airfoil surface solution, convergence histories, and printer plots of Mach number and density contour maps. The TAIR program is written in FORTRAN IV for batch execution and has been implemented on a CDC 7600 computer with a central memory requirement of approximately 155K (octal) of 60 bit words. The TAIR program was developed in 1981.

  2. Effective Online Bayesian Phylogenetics via Sequential Monte Carlo with Guided Proposals

    PubMed Central

    Fourment, Mathieu; Claywell, Brian C; Dinh, Vu; McCoy, Connor; Matsen IV, Frederick A; Darling, Aaron E

    2018-01-01

    Abstract Modern infectious disease outbreak surveillance produces continuous streams of sequence data which require phylogenetic analysis as data arrives. Current software packages for Bayesian phylogenetic inference are unable to quickly incorporate new sequences as they become available, making them less useful for dynamically unfolding evolutionary stories. This limitation can be addressed by applying a class of Bayesian statistical inference algorithms called sequential Monte Carlo (SMC) to conduct online inference, wherein new data can be continuously incorporated to update the estimate of the posterior probability distribution. In this article, we describe and evaluate several different online phylogenetic sequential Monte Carlo (OPSMC) algorithms. We show that proposing new phylogenies with a density similar to the Bayesian prior suffers from poor performance, and we develop “guided” proposals that better match the proposal density to the posterior. Furthermore, we show that the simplest guided proposals can exhibit pathological behavior in some situations, leading to poor results, and that the situation can be resolved by heating the proposal density. The results demonstrate that relative to the widely used MCMC-based algorithm implemented in MrBayes, the total time required to compute a series of phylogenetic posteriors as sequences arrive can be significantly reduced by the use of OPSMC, without incurring a significant loss in accuracy. PMID:29186587

  3. Motor Control of Two Flywheels Enabling Combined Attitude Control and Bus Regulation

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.

    2004-01-01

    This presentation discussed the flywheel technology development work that is ongoing at NASA GRC with a particular emphasis on the flywheel system control. The "field orientation" motor/generator control algorithm was discussed and explained. The position-sensorless angle and speed estimation algorithm was presented. The motor current response to a step change in command at low (10 kRPM) and high (60 kRPM) was discussed. The flywheel DC bus regulation control was explained and experimental results presented. Finally, the combined attitude control and energy storage algorithm that controls two flywheels simultaneously was presented. Experimental results were shown that verified the operational capability of the algorithm. shows high speed flywheel energy storage (60,000 RPM) and the successful implementation of an algorithm to simultaneously control both energy storage and a single axis of attitude with two flywheels. Overall, the presentation demonstrated that GRC has an operational facility that

  4. Prediction based active ramp metering control strategy with mobility and safety assessment

    NASA Astrophysics Data System (ADS)

    Fang, Jie; Tu, Lili

    2018-04-01

    Ramp metering is one of the most direct and efficient motorway traffic flow management measures so as to improve traffic conditions. However, owing to short of traffic conditions prediction, in earlier studies, the impact on traffic flow dynamics of the applied RM control was not quantitatively evaluated. In this study, a RM control algorithm adopting Model Predictive Control (MPC) framework to predict and assess future traffic conditions, which taking both the current traffic conditions and the RM-controlled future traffic states into consideration, was presented. The designed RM control algorithm targets at optimizing the network mobility and safety performance. The designed algorithm is evaluated in a field-data-based simulation. Through comparing the presented algorithm controlled scenario with the uncontrolled scenario, it was proved that the proposed RM control algorithm can effectively relieve the congestion of traffic network with no significant compromises in safety aspect.

  5. [Preliminary application of an improved Demons deformable registration algorithm in tumor radiotherapy].

    PubMed

    Zhou, Lu; Zhen, Xin; Lu, Wenting; Dou, Jianhong; Zhou, Linghong

    2012-01-01

    To validate the efficiency of an improved Demons deformable registration algorithm and evaluate its application in registration of the treatment image and the planning image in image-guided radiotherapy (IGRT). Based on Brox's gradient constancy assumption and Malis's efficient second-order minimization algorithm, a grey value gradient similarity term was added into the original energy function, and a formula was derived to calculate the update of transformation field. The limited Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm was used to optimize the energy function for automatic determination of the iteration number. The proposed algorithm was validated using mathematically deformed images, physically deformed phantom images and clinical tumor images. Compared with the original Additive Demons algorithm, the improved Demons algorithm achieved a higher precision and a faster convergence speed. Due to the influence of different scanning conditions in fractionated radiation, the density range of the treatment image and the planning image may be different. The improved Demons algorithm can achieve faster and more accurate radiotherapy.

  6. Model-based iterative learning control of Parkinsonian state in thalamic relay neuron

    NASA Astrophysics Data System (ADS)

    Liu, Chen; Wang, Jiang; Li, Huiyan; Xue, Zhiqin; Deng, Bin; Wei, Xile

    2014-09-01

    Although the beneficial effects of chronic deep brain stimulation on Parkinson's disease motor symptoms are now largely confirmed, the underlying mechanisms behind deep brain stimulation remain unclear and under debate. Hence, the selection of stimulation parameters is full of challenges. Additionally, due to the complexity of neural system, together with omnipresent noises, the accurate model of thalamic relay neuron is unknown. Thus, the iterative learning control of the thalamic relay neuron's Parkinsonian state based on various variables is presented. Combining the iterative learning control with typical proportional-integral control algorithm, a novel and efficient control strategy is proposed, which does not require any particular knowledge on the detailed physiological characteristics of cortico-basal ganglia-thalamocortical loop and can automatically adjust the stimulation parameters. Simulation results demonstrate the feasibility of the proposed control strategy to restore the fidelity of thalamic relay in the Parkinsonian condition. Furthermore, through changing the important parameter—the maximum ionic conductance densities of low-threshold calcium current, the dominant characteristic of the proposed method which is independent of the accurate model can be further verified.

  7. SU-F-J-76: Evaluation of the Performance of Different Deformable Image Registration Algorithms in Helical, Axial and Cone-Beam CT Images of a Mobile Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaskowiak, J; Ahmad, S; Ali, I

    Purpose: To investigate quantitatively the performance of different deformable-image-registration algorithms (DIR) with helical (HCT), axial (ACT) and cone-beam CT (CBCT) by evaluating the variations in the CT-numbers and lengths of targets moving with controlled motion-patterns. Methods: Four DIR-algorithms including demons, fast-demons, Horn-Schunk and Locas-Kanade from the DIRART-software are used to register CT-images of a mobile-phantom. A mobile-phantom is scanned with different imaging techniques that include helical, axial and cone-beam CT. The phantom includes three targets with different lengths that are made from water-equivalent material and inserted in low-density-foam which is moved with adjustable motion-amplitudes and frequencies. Results: Most of themore » DIR-algorithms are able to produce the lengths of the stationary-targets, however, they do not produce the CT-number values in CBCT. The image-artifacts induced by motion are more regular in CBCT imaging where the mobile-target elongation increases linearly with motion-amplitude. In ACT and HCT, the motion-artifacts are irregular where some mobile -targets are elongated or shrunk depending on the motion-phase during imaging. The DIR-algorithms are successful in deforming the images of the mobile-targets to the images of the stationary-targets producing the CT-number values and length of the target for motion-amplitudes < 20 mm. Similarly in ACT, all DIR-algorithms produced the actual CT-number and length of the stationary-targets for motion-amplitudes < 15 mm. As stronger motion-artifacts are induced in HCT and ACT, DIR-algorithms fail to produce CT-values and shape of the stationary-targets and fast-demons-algorithm has worst performance. Conclusion: Most of DIR-algorithms produce the CT-number values and lengths of the stationary-targets in HCT and ACT images that has motion-artifacts induced by small motion-amplitudes. As motion-amplitudes increase, the DIR-algorithms fail to deform mobile-target images to the stationary-images in HCT and ACT. In CBCT, DIR-algorithms are successful in producing length and shape of the stationary-targets, however, they fail to produce the accurate CT-number level.« less

  8. A real time microcomputer implementation of sensor failure detection for turbofan engines

    NASA Technical Reports Server (NTRS)

    Delaat, John C.; Merrill, Walter C.

    1989-01-01

    An algorithm was developed which detects, isolates, and accommodates sensor failures using analytical redundancy. The performance of this algorithm was demonstrated on a full-scale F100 turbofan engine. The algorithm was implemented in real-time on a microprocessor-based controls computer which includes parallel processing and high order language programming. Parallel processing was used to achieve the required computational power for the real-time implementation. High order language programming was used in order to reduce the programming and maintenance costs of the algorithm implementation software. The sensor failure algorithm was combined with an existing multivariable control algorithm to give a complete control implementation with sensor analytical redundancy. The real-time microprocessor implementation of the algorithm which resulted in the successful completion of the algorithm engine demonstration, is described.

  9. Design of Genetic Algorithms for Topology Control of Unmanned Vehicles

    DTIC Science & Technology

    2010-01-01

    decentralised topology control mechanism distributed among active running software agents to achieve a uniform spread of terrestrial unmanned vehicles...14. ABSTRACT We present genetic algorithms (GAs) as a decentralised topology control mechanism distributed among active running software agents to...inspired topology control algorithm. The topology control of UVs using a decentralised solution over an unknown geographical terrain is a challenging

  10. Renyi entanglement entropy of interacting fermions calculated using the continuous-time quantum Monte Carlo method.

    PubMed

    Wang, Lei; Troyer, Matthias

    2014-09-12

    We present a new algorithm for calculating the Renyi entanglement entropy of interacting fermions using the continuous-time quantum Monte Carlo method. The algorithm only samples the interaction correction of the entanglement entropy, which by design ensures the efficient calculation of weakly interacting systems. Combined with Monte Carlo reweighting, the algorithm also performs well for systems with strong interactions. We demonstrate the potential of this method by studying the quantum entanglement signatures of the charge-density-wave transition of interacting fermions on a square lattice.

  11. Topology of large-scale structure. IV - Topology in two dimensions

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.; Cohen, Alexander P.; Hamilton, Andrew J. S.; Gott, J. Richard, III; Weinberg, David H.

    1989-01-01

    In a recent series of papers, an algorithm was developed for quantitatively measuring the topology of the large-scale structure of the universe and this algorithm was applied to numerical models and to three-dimensional observational data sets. In this paper, it is shown that topological information can be derived from a two-dimensional cross section of a density field, and analytic expressions are given for a Gaussian random field. The application of a two-dimensional numerical algorithm for measuring topology to cross sections of three-dimensional models is demonstrated.

  12. Object Segmentation and Ground Truth in 3D Embryonic Imaging.

    PubMed

    Rajasekaran, Bhavna; Uriu, Koichiro; Valentin, Guillaume; Tinevez, Jean-Yves; Oates, Andrew C

    2016-01-01

    Many questions in developmental biology depend on measuring the position and movement of individual cells within developing embryos. Yet, tools that provide this data are often challenged by high cell density and their accuracy is difficult to measure. Here, we present a three-step procedure to address this problem. Step one is a novel segmentation algorithm based on image derivatives that, in combination with selective post-processing, reliably and automatically segments cell nuclei from images of densely packed tissue. Step two is a quantitative validation using synthetic images to ascertain the efficiency of the algorithm with respect to signal-to-noise ratio and object density. Finally, we propose an original method to generate reliable and experimentally faithful ground truth datasets: Sparse-dense dual-labeled embryo chimeras are used to unambiguously measure segmentation errors within experimental data. Together, the three steps outlined here establish a robust, iterative procedure to fine-tune image analysis algorithms and microscopy settings associated with embryonic 3D image data sets.

  13. Object Segmentation and Ground Truth in 3D Embryonic Imaging

    PubMed Central

    Rajasekaran, Bhavna; Uriu, Koichiro; Valentin, Guillaume; Tinevez, Jean-Yves; Oates, Andrew C.

    2016-01-01

    Many questions in developmental biology depend on measuring the position and movement of individual cells within developing embryos. Yet, tools that provide this data are often challenged by high cell density and their accuracy is difficult to measure. Here, we present a three-step procedure to address this problem. Step one is a novel segmentation algorithm based on image derivatives that, in combination with selective post-processing, reliably and automatically segments cell nuclei from images of densely packed tissue. Step two is a quantitative validation using synthetic images to ascertain the efficiency of the algorithm with respect to signal-to-noise ratio and object density. Finally, we propose an original method to generate reliable and experimentally faithful ground truth datasets: Sparse-dense dual-labeled embryo chimeras are used to unambiguously measure segmentation errors within experimental data. Together, the three steps outlined here establish a robust, iterative procedure to fine-tune image analysis algorithms and microscopy settings associated with embryonic 3D image data sets. PMID:27332860

  14. The density matrix renormalization group algorithm on kilo-processor architectures: Implementation and trade-offs

    NASA Astrophysics Data System (ADS)

    Nemes, Csaba; Barcza, Gergely; Nagy, Zoltán; Legeza, Örs; Szolgay, Péter

    2014-06-01

    In the numerical analysis of strongly correlated quantum lattice models one of the leading algorithms developed to balance the size of the effective Hilbert space and the accuracy of the simulation is the density matrix renormalization group (DMRG) algorithm, in which the run-time is dominated by the iterative diagonalization of the Hamilton operator. As the most time-dominant step of the diagonalization can be expressed as a list of dense matrix operations, the DMRG is an appealing candidate to fully utilize the computing power residing in novel kilo-processor architectures. In the paper a smart hybrid CPU-GPU implementation is presented, which exploits the power of both CPU and GPU and tolerates problems exceeding the GPU memory size. Furthermore, a new CUDA kernel has been designed for asymmetric matrix-vector multiplication to accelerate the rest of the diagonalization. Besides the evaluation of the GPU implementation, the practical limits of an FPGA implementation are also discussed.

  15. Automated segmentation of knee and ankle regions of rats from CT images to quantify bone mineral density for monitoring treatments of rheumatoid arthritis

    NASA Astrophysics Data System (ADS)

    Cruz, Francisco; Sevilla, Raquel; Zhu, Joe; Vanko, Amy; Lee, Jung Hoon; Dogdas, Belma; Zhang, Weisheng

    2014-03-01

    Bone mineral density (BMD) obtained from a CT image is an imaging biomarker used pre-clinically for characterizing the Rheumatoid arthritis (RA) phenotype. We use this biomarker in animal studies for evaluating disease progression and for testing various compounds. In the current setting, BMD measurements are obtained manually by selecting the regions of interest from three-dimensional (3-D) CT images of rat legs, which results in a laborious and low-throughput process. Combining image processing techniques, such as intensity thresholding and skeletonization, with mathematical techniques in curve fitting and curvature calculations, we developed an algorithm for quick, consistent, and automatic detection of joints in large CT data sets. The implemented algorithm has reduced analysis time for a study with 200 CT images from 10 days to 3 days and has improved the robust detection of the obtained regions of interest compared with manual segmentation. This algorithm has been used successfully in over 40 studies.

  16. Computing approximate random Delta v magnitude probability densities. [for spacecraft trajectory correction

    NASA Technical Reports Server (NTRS)

    Chadwick, C.

    1984-01-01

    This paper describes the development and use of an algorithm to compute approximate statistics of the magnitude of a single random trajectory correction maneuver (TCM) Delta v vector. The TCM Delta v vector is modeled as a three component Cartesian vector each of whose components is a random variable having a normal (Gaussian) distribution with zero mean and possibly unequal standard deviations. The algorithm uses these standard deviations as input to produce approximations to (1) the mean and standard deviation of the magnitude of Delta v, (2) points of the probability density function of the magnitude of Delta v, and (3) points of the cumulative and inverse cumulative distribution functions of Delta v. The approximates are based on Monte Carlo techniques developed in a previous paper by the author and extended here. The algorithm described is expected to be useful in both pre-flight planning and in-flight analysis of maneuver propellant requirements for space missions.

  17. Comparative Analysis of CNV Calling Algorithms: Literature Survey and a Case Study Using Bovine High-Density SNP Data.

    PubMed

    Xu, Lingyang; Hou, Yali; Bickhart, Derek M; Song, Jiuzhou; Liu, George E

    2013-06-25

    Copy number variations (CNVs) are gains and losses of genomic sequence between two individuals of a species when compared to a reference genome. The data from single nucleotide polymorphism (SNP) microarrays are now routinely used for genotyping, but they also can be utilized for copy number detection. Substantial progress has been made in array design and CNV calling algorithms and at least 10 comparison studies in humans have been published to assess them. In this review, we first survey the literature on existing microarray platforms and CNV calling algorithms. We then examine a number of CNV calling tools to evaluate their impacts using bovine high-density SNP data. Large incongruities in the results from different CNV calling tools highlight the need for standardizing array data collection, quality assessment and experimental validation. Only after careful experimental design and rigorous data filtering can the impacts of CNVs on both normal phenotypic variability and disease susceptibility be fully revealed.

  18. Computation of indirect nuclear spin-spin couplings with reduced complexity in pure and hybrid density functional approximations.

    PubMed

    Luenser, Arne; Kussmann, Jörg; Ochsenfeld, Christian

    2016-09-28

    We present a (sub)linear-scaling algorithm to determine indirect nuclear spin-spin coupling constants at the Hartree-Fock and Kohn-Sham density functional levels of theory. Employing efficient integral algorithms and sparse algebra routines, an overall (sub)linear scaling behavior can be obtained for systems with a non-vanishing HOMO-LUMO gap. Calculations on systems with over 1000 atoms and 20 000 basis functions illustrate the performance and accuracy of our reference implementation. Specifically, we demonstrate that linear algebra dominates the runtime of conventional algorithms for 10 000 basis functions and above. Attainable speedups of our method exceed 6 × in total runtime and 10 × in the linear algebra steps for the tested systems. Furthermore, a convergence study of spin-spin couplings of an aminopyrazole peptide upon inclusion of the water environment is presented: using the new method it is shown that large solvent spheres are necessary to converge spin-spin coupling values.

  19. Efficient block preconditioned eigensolvers for linear response time-dependent density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vecharynski, Eugene; Brabec, Jiri; Shao, Meiyue

    Within this paper, we present two efficient iterative algorithms for solving the linear response eigenvalue problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into an eigenvalue problem that involves the product of two matrices M and K. We show that, because MK is self-adjoint with respect to the inner product induced by the matrix K, this product eigenvalue problem can be solved efficiently by amore » modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-inner product. Additionally, the solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. We show that the other component of the eigenvector can be easily recovered in an inexpensive postprocessing procedure. As a result, the algorithms we present here become more efficient than existing methods that try to approximate both components of the eigenvectors simultaneously. In particular, our numerical experiments demonstrate that the new algorithms presented here consistently outperform the existing state-of-the-art Davidson type solvers by a factor of two in both solution time and storage.« less

  20. Efficient block preconditioned eigensolvers for linear response time-dependent density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vecharynski, Eugene; Brabec, Jiri; Shao, Meiyue

    In this article, we present two efficient iterative algorithms for solving the linear response eigenvalue problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into an eigenvalue problem that involves the product of two matrices M and K. We show that, because MK is self-adjoint with respect to the inner product induced by the matrix K, this product eigenvalue problem can be solved efficiently by amore » modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-inner product. The solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. We show that the other component of the eigenvector can be easily recovered in an inexpensive postprocessing procedure. As a result, the algorithms we present here become more efficient than existing methods that try to approximate both components of the eigenvectors simultaneously. In particular, our numerical experiments demonstrate that the new algorithms presented here consistently outperform the existing state-of-the-art Davidson type solvers by a factor of two in both solution time and storage.« less

  1. Efficient block preconditioned eigensolvers for linear response time-dependent density functional theory

    DOE PAGES

    Vecharynski, Eugene; Brabec, Jiri; Shao, Meiyue; ...

    2017-12-01

    In this article, we present two efficient iterative algorithms for solving the linear response eigenvalue problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into an eigenvalue problem that involves the product of two matrices M and K. We show that, because MK is self-adjoint with respect to the inner product induced by the matrix K, this product eigenvalue problem can be solved efficiently by amore » modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-inner product. The solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. We show that the other component of the eigenvector can be easily recovered in an inexpensive postprocessing procedure. As a result, the algorithms we present here become more efficient than existing methods that try to approximate both components of the eigenvectors simultaneously. In particular, our numerical experiments demonstrate that the new algorithms presented here consistently outperform the existing state-of-the-art Davidson type solvers by a factor of two in both solution time and storage.« less

  2. Effective Association of SAR and AIS Data Using Non-Rigid Point Pattern Matching

    NASA Astrophysics Data System (ADS)

    Zhao, Z.; Ji, K. F.; Xing, X. W.; Zou, H. X.

    2014-03-01

    Ship surveillance using multiple remote sensing sensors becomes more and more vital presently. Among the various sensors, space-borne Synthetic Aperture Radar (SAR) is optimal for its high resolution over wide swaths and all-weather working capabilities. Meanwhile, Automatic Identification System (AIS) is efficient to provide ship navigational information. Limited to the progress of ship surveillance using SAR image only, the integration of them significantly benefits more. Data association is the fundamental issue. Many algorithms have been developed including the Nearest-Neighbour (NN) algorithm, the Joint Probabilistic Data Association (JPDA) method, and the Multiple Hypothesis Testing (MHT) approach. Ship positions derived from SAR image can be associated with the ones provided by AIS. State-of-the-art method (NN algorithm) is proved to be feasible. But it faces more challenges under adverse circumstances, such as high-density-shipping condition. We investigate the non-rigid Point Pattern Matching (PPM) method to solve this problem. To the best of our knowledge, this paper is the first to introduce non-rigid PPM to the data association of SAR and AIS. On the basis of introduction to the data association, Coherent Point Drift (CPD) algorithm is investigated. Experiments are carried out and the results illustrate that the CPD algorithm achieves higher accuracy and outperforms state-of-the-art method, especially under high-density-shipping condition.

  3. Efficient block preconditioned eigensolvers for linear response time-dependent density functional theory

    DOE PAGES

    Vecharynski, Eugene; Brabec, Jiri; Shao, Meiyue; ...

    2017-08-24

    Within this paper, we present two efficient iterative algorithms for solving the linear response eigenvalue problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into an eigenvalue problem that involves the product of two matrices M and K. We show that, because MK is self-adjoint with respect to the inner product induced by the matrix K, this product eigenvalue problem can be solved efficiently by amore » modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-inner product. Additionally, the solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. We show that the other component of the eigenvector can be easily recovered in an inexpensive postprocessing procedure. As a result, the algorithms we present here become more efficient than existing methods that try to approximate both components of the eigenvectors simultaneously. In particular, our numerical experiments demonstrate that the new algorithms presented here consistently outperform the existing state-of-the-art Davidson type solvers by a factor of two in both solution time and storage.« less

  4. A comparison of hydrographically and optically derived mixed layer depths

    USGS Publications Warehouse

    Zawada, D.G.; Zaneveld, J.R.V.; Boss, E.; Gardner, W.D.; Richardson, M.J.; Mishonov, A.V.

    2005-01-01

    Efforts to understand and model the dynamics of the upper ocean would be significantly advanced given the ability to rapidly determine mixed layer depths (MLDs) over large regions. Remote sensing technologies are an ideal choice for achieving this goal. This study addresses the feasibility of estimating MLDs from optical properties. These properties are strongly influenced by suspended particle concentrations, which generally reach a maximum at pycnoclines. The premise therefore is to use a gradient in beam attenuation at 660 nm (c660) as a proxy for the depth of a particle-scattering layer. Using a global data set collected during World Ocean Circulation Experiment cruises from 1988-1997, six algorithms were employed to compute MLDs from either density or temperature profiles. Given the absence of published optically based MLD algorithms, two new methods were developed that use c660 profiles to estimate the MLD. Intercomparison of the six hydrographically based algorithms revealed some significant disparities among the resulting MLD values. Comparisons between the hydrographical and optical approaches indicated a first-order agreement between the MLDs based on the depths of gradient maxima for density and c660. When comparing various hydrographically based algorithms, other investigators reported that inherent fluctuations of the mixed layer depth limit the accuracy of its determination to 20 m. Using this benchmark, we found a ???70% agreement between the best hydrographical-optical algorithm pairings. Copyright 2005 by the American Geophysical Union.

  5. Reproducibility of graph metrics of human brain structural networks.

    PubMed

    Duda, Jeffrey T; Cook, Philip A; Gee, James C

    2014-01-01

    Recent interest in human brain connectivity has led to the application of graph theoretical analysis to human brain structural networks, in particular white matter connectivity inferred from diffusion imaging and fiber tractography. While these methods have been used to study a variety of patient populations, there has been less examination of the reproducibility of these methods. A number of tractography algorithms exist and many of these are known to be sensitive to user-selected parameters. The methods used to derive a connectivity matrix from fiber tractography output may also influence the resulting graph metrics. Here we examine how these algorithm and parameter choices influence the reproducibility of proposed graph metrics on a publicly available test-retest dataset consisting of 21 healthy adults. The dice coefficient is used to examine topological similarity of constant density subgraphs both within and between subjects. Seven graph metrics are examined here: mean clustering coefficient, characteristic path length, largest connected component size, assortativity, global efficiency, local efficiency, and rich club coefficient. The reproducibility of these network summary measures is examined using the intraclass correlation coefficient (ICC). Graph curves are created by treating the graph metrics as functions of a parameter such as graph density. Functional data analysis techniques are used to examine differences in graph measures that result from the choice of fiber tracking algorithm. The graph metrics consistently showed good levels of reproducibility as measured with ICC, with the exception of some instability at low graph density levels. The global and local efficiency measures were the most robust to the choice of fiber tracking algorithm.

  6. Unsupervised neural spike sorting for high-density microelectrode arrays with convolutive independent component analysis.

    PubMed

    Leibig, Christian; Wachtler, Thomas; Zeck, Günther

    2016-09-15

    Unsupervised identification of action potentials in multi-channel extracellular recordings, in particular from high-density microelectrode arrays with thousands of sensors, is an unresolved problem. While independent component analysis (ICA) achieves rapid unsupervised sorting, it ignores the convolutive structure of extracellular data, thus limiting the unmixing to a subset of neurons. Here we present a spike sorting algorithm based on convolutive ICA (cICA) to retrieve a larger number of accurately sorted neurons than with instantaneous ICA while accounting for signal overlaps. Spike sorting was applied to datasets with varying signal-to-noise ratios (SNR: 3-12) and 27% spike overlaps, sampled at either 11.5 or 23kHz on 4365 electrodes. We demonstrate how the instantaneity assumption in ICA-based algorithms has to be relaxed in order to improve the spike sorting performance for high-density microelectrode array recordings. Reformulating the convolutive mixture as an instantaneous mixture by modeling several delayed samples jointly is necessary to increase signal-to-noise ratio. Our results emphasize that different cICA algorithms are not equivalent. Spike sorting performance was assessed with ground-truth data generated from experimentally derived templates. The presented spike sorter was able to extract ≈90% of the true spike trains with an error rate below 2%. It was superior to two alternative (c)ICA methods (≈80% accurately sorted neurons) and comparable to a supervised sorting. Our new algorithm represents a fast solution to overcome the current bottleneck in spike sorting of large datasets generated by simultaneous recording with thousands of electrodes. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. An iterative three-dimensional electron density imaging algorithm using uncollimated compton scattered x rays from a polyenergetic primary pencil beam.

    PubMed

    Van Uytven, Eric; Pistorius, Stephen; Gordon, Richard

    2007-01-01

    X-ray film-screen mammography is currently the gold standard for detecting breast cancer. However, one disadvantage is that it projects a three-dimensional (3D) object onto a two-dimensional (2D) image, reducing contrast between small lesions and layers of normal tissue. Another limitation is its reduced sensitivity in women with mammographically dense breasts. Computed tomography (CT) produces a 3D image yet has had a limited role in mammography due to its relatively high dose, low resolution, and low contrast. As a first step towards implementing quantitative 3D mammography, which may improve the ability to detect and specify breast tumors, we have developed an analytical technique that can use Compton scatter to obtain 3D information of an object from a single projection. Imaging material with a pencil beam of polychromatic x rays produces a characteristic scattered photon spectrum at each point on the detector plane. A comparable distribution may be calculated using a known incident x-ray energy spectrum, beam shape, and an initial estimate of the object's 3D mass attenuation and electron density. Our iterative minimization algorithm changes the initially arbitrary electron density voxel matrix to reduce regular differences between the analytically predicted and experimentally measured spectra at each point on the detector plane. The simulated electron density converges to that of the object as the differences are minimized. The reconstruction algorithm has been validated using simulated data produced by the EGSnrc Monte Carlo code system. We applied the imaging algorithm to a cylindrically symmetric breast tissue phantom containing multiple inhomogeneities. A preliminary ROC analysis scores greater than 0.96, which indicate that under the described simplifying conditions, this approach shows promise in identifying and localizing inhomogeneities which simulate 0.5 mm calcifications with an image voxel resolution of 0.25 cm and at a dose comparable to mammography.

  8. An improved cooperative adaptive cruise control (CACC) algorithm considering invalid communication

    NASA Astrophysics Data System (ADS)

    Wang, Pangwei; Wang, Yunpeng; Yu, Guizhen; Tang, Tieqiao

    2014-05-01

    For the Cooperative Adaptive Cruise Control (CACC) Algorithm, existing research studies mainly focus on how inter-vehicle communication can be used to develop CACC controller, the influence of the communication delays and lags of the actuators to the string stability. However, whether the string stability can be guaranteed when inter-vehicle communication is invalid partially has hardly been considered. This paper presents an improved CACC algorithm based on the sliding mode control theory and analyses the range of CACC controller parameters to maintain string stability. A dynamic model of vehicle spacing deviation in a platoon is then established, and the string stability conditions under improved CACC are analyzed. Unlike the traditional CACC algorithms, the proposed algorithm can ensure the functionality of the CACC system even if inter-vehicle communication is partially invalid. Finally, this paper establishes a platoon of five vehicles to simulate the improved CACC algorithm in MATLAB/Simulink, and the simulation results demonstrate that the improved CACC algorithm can maintain the string stability of a CACC platoon through adjusting the controller parameters and enlarging the spacing to prevent accidents. With guaranteed string stability, the proposed CACC algorithm can prevent oscillation of vehicle spacing and reduce chain collision accidents under real-world circumstances. This research proposes an improved CACC algorithm, which can guarantee the string stability when inter-vehicle communication is invalid.

  9. Intelligent inversion method for pre-stack seismic big data based on MapReduce

    NASA Astrophysics Data System (ADS)

    Yan, Xuesong; Zhu, Zhixin; Wu, Qinghua

    2018-01-01

    Seismic exploration is a method of oil exploration that uses seismic information; that is, according to the inversion of seismic information, the useful information of the reservoir parameters can be obtained to carry out exploration effectively. Pre-stack data are characterised by a large amount of data, abundant information, and so on, and according to its inversion, the abundant information of the reservoir parameters can be obtained. Owing to the large amount of pre-stack seismic data, existing single-machine environments have not been able to meet the computational needs of the huge amount of data; thus, the development of a method with a high efficiency and the speed to solve the inversion problem of pre-stack seismic data is urgently needed. The optimisation of the elastic parameters by using a genetic algorithm easily falls into a local optimum, which results in a non-obvious inversion effect, especially for the optimisation effect of the density. Therefore, an intelligent optimisation algorithm is proposed in this paper and used for the elastic parameter inversion of pre-stack seismic data. This algorithm improves the population initialisation strategy by using the Gardner formula and the genetic operation of the algorithm, and the improved algorithm obtains better inversion results when carrying out a model test with logging data. All of the elastic parameters obtained by inversion and the logging curve of theoretical model are fitted well, which effectively improves the inversion precision of the density. This algorithm was implemented with a MapReduce model to solve the seismic big data inversion problem. The experimental results show that the parallel model can effectively reduce the running time of the algorithm.

  10. Rocket experiments for spectral estimation of electron density fine structure in the auroral and equatorial ionosphere and preliminary results

    NASA Technical Reports Server (NTRS)

    Tomei, B. A.; Smith, L. G.

    1986-01-01

    Sounding rockets equipped to monitor electron density and its fine structure were launched into the auroral and equatorial ionosphere in 1980 and 1983, respectively. The measurement electronics are based on the Langmuir probe and are described in detail. An approach to the spectral analysis of the density irregularities is addressed and a software algorithm implementing the approach is given. Preliminary results of the analysis are presented.

  11. Voxel-wise prostate cell density prediction using multiparametric magnetic resonance imaging and machine learning.

    PubMed

    Sun, Yu; Reynolds, Hayley M; Wraith, Darren; Williams, Scott; Finnegan, Mary E; Mitchell, Catherine; Murphy, Declan; Haworth, Annette

    2018-04-26

    There are currently no methods to estimate cell density in the prostate. This study aimed to develop predictive models to estimate prostate cell density from multiparametric magnetic resonance imaging (mpMRI) data at a voxel level using machine learning techniques. In vivo mpMRI data were collected from 30 patients before radical prostatectomy. Sequences included T2-weighted imaging, diffusion-weighted imaging and dynamic contrast-enhanced imaging. Ground truth cell density maps were computed from histology and co-registered with mpMRI. Feature extraction and selection were performed on mpMRI data. Final models were fitted using three regression algorithms including multivariate adaptive regression spline (MARS), polynomial regression (PR) and generalised additive model (GAM). Model parameters were optimised using leave-one-out cross-validation on the training data and model performance was evaluated on test data using root mean square error (RMSE) measurements. Predictive models to estimate voxel-wise prostate cell density were successfully trained and tested using the three algorithms. The best model (GAM) achieved a RMSE of 1.06 (± 0.06) × 10 3 cells/mm 2 and a relative deviation of 13.3 ± 0.8%. Prostate cell density can be quantitatively estimated non-invasively from mpMRI data using high-quality co-registered data at a voxel level. These cell density predictions could be used for tissue classification, treatment response evaluation and personalised radiotherapy.

  12. Measuring the Autocorrelation Function of Nanoscale Three-Dimensional Density Distribution in Individual Cells Using Scanning Transmission Electron Microscopy, Atomic Force Microscopy, and a New Deconvolution Algorithm.

    PubMed

    Li, Yue; Zhang, Di; Capoglu, Ilker; Hujsak, Karl A; Damania, Dhwanil; Cherkezyan, Lusik; Roth, Eric; Bleher, Reiner; Wu, Jinsong S; Subramanian, Hariharan; Dravid, Vinayak P; Backman, Vadim

    2017-06-01

    Essentially all biological processes are highly dependent on the nanoscale architecture of the cellular components where these processes take place. Statistical measures, such as the autocorrelation function (ACF) of the three-dimensional (3D) mass-density distribution, are widely used to characterize cellular nanostructure. However, conventional methods of reconstruction of the deterministic 3D mass-density distribution, from which these statistical measures can be calculated, have been inadequate for thick biological structures, such as whole cells, due to the conflict between the need for nanoscale resolution and its inverse relationship with thickness after conventional tomographic reconstruction. To tackle the problem, we have developed a robust method to calculate the ACF of the 3D mass-density distribution without tomography. Assuming the biological mass distribution is isotropic, our method allows for accurate statistical characterization of the 3D mass-density distribution by ACF with two data sets: a single projection image by scanning transmission electron microscopy and a thickness map by atomic force microscopy. Here we present validation of the ACF reconstruction algorithm, as well as its application to calculate the statistics of the 3D distribution of mass-density in a region containing the nucleus of an entire mammalian cell. This method may provide important insights into architectural changes that accompany cellular processes.

  13. Measuring the Autocorrelation Function of Nanoscale Three-Dimensional Density Distribution in Individual Cells Using Scanning Transmission Electron Microscopy, Atomic Force Microscopy, and a New Deconvolution Algorithm

    PubMed Central

    Li, Yue; Zhang, Di; Capoglu, Ilker; Hujsak, Karl A.; Damania, Dhwanil; Cherkezyan, Lusik; Roth, Eric; Bleher, Reiner; Wu, Jinsong S.; Subramanian, Hariharan; Dravid, Vinayak P.; Backman, Vadim

    2018-01-01

    Essentially all biological processes are highly dependent on the nanoscale architecture of the cellular components where these processes take place. Statistical measures, such as the autocorrelation function (ACF) of the three-dimensional (3D) mass–density distribution, are widely used to characterize cellular nanostructure. However, conventional methods of reconstruction of the deterministic 3D mass–density distribution, from which these statistical measures can be calculated, have been inadequate for thick biological structures, such as whole cells, due to the conflict between the need for nanoscale resolution and its inverse relationship with thickness after conventional tomographic reconstruction. To tackle the problem, we have developed a robust method to calculate the ACF of the 3D mass–density distribution without tomography. Assuming the biological mass distribution is isotropic, our method allows for accurate statistical characterization of the 3D mass–density distribution by ACF with two data sets: a single projection image by scanning transmission electron microscopy and a thickness map by atomic force microscopy. Here we present validation of the ACF reconstruction algorithm, as well as its application to calculate the statistics of the 3D distribution of mass–density in a region containing the nucleus of an entire mammalian cell. This method may provide important insights into architectural changes that accompany cellular processes. PMID:28416035

  14. A reformulation of the coupled perturbed self-consistent field equations entirely within a local atomic orbital density matrix-based scheme

    NASA Astrophysics Data System (ADS)

    Ochsenfeld, Christian; Head-Gordon, Martin

    1997-05-01

    To exploit the exponential decay found in numerical studies for the density matrix and its derivative with respect to nuclear displacements, we reformulate the coupled perturbed self-consistent field (CPSCF) equations and a quadratically convergent SCF (QCSCF) method for Hartree-Fock and density functional theory within a local density matrix-based scheme. Our D-CPSCF (density matrix-based CPSCF) and D-QCSCF schemes open the way for exploiting sparsity and to achieve asymptotically linear scaling of computational complexity with molecular size ( M), in case of D-CPSCF for all O( M) derivative densities. Furthermore, these methods are even for small molecules strongly competitive to conventional algorithms.

  15. Delaunay based algorithm for finding polygonal voids in planar point sets

    NASA Astrophysics Data System (ADS)

    Alonso, R.; Ojeda, J.; Hitschfeld, N.; Hervías, C.; Campusano, L. E.

    2018-01-01

    This paper presents a new algorithm to find under-dense regions called voids inside a 2D point set. The algorithm starts from terminal-edges (local longest-edges) in a Delaunay triangulation and builds the largest possible low density terminal-edge regions around them. A terminal-edge region can represent either an entire void or part of a void (subvoid). Using artificial data sets, the case of voids that are detected as several adjacent subvoids is analyzed and four subvoid joining criteria are proposed and evaluated. Since this work is inspired on searches of a more robust, effective and efficient algorithm to find 3D cosmological voids the evaluation of the joining criteria considers this context. However, the design of the algorithm permits its adaption to the requirements of any similar application.

  16. A parameter estimation algorithm for spatial sine testing - Theory and evaluation

    NASA Technical Reports Server (NTRS)

    Rost, R. W.; Deblauwe, F.

    1992-01-01

    This paper presents the theory and an evaluation of a spatial sine testing parameter estimation algorithm that uses directly the measured forced mode of vibration and the measured force vector. The parameter estimation algorithm uses an ARMA model and a recursive QR algorithm is applied for data reduction. In this first evaluation, the algorithm has been applied to a frequency response matrix (which is a particular set of forced mode of vibration) using a sliding frequency window. The objective of the sliding frequency window is to execute the analysis simultaneously with the data acquisition. Since the pole values and the modal density are obtained from this analysis during the acquisition, the analysis information can be used to help determine the forcing vectors during the experimental data acquisition.

  17. An AK-LDMeans algorithm based on image clustering

    NASA Astrophysics Data System (ADS)

    Chen, Huimin; Li, Xingwei; Zhang, Yongbin; Chen, Nan

    2018-03-01

    Clustering is an effective analytical technique for handling unmarked data for value mining. Its ultimate goal is to mark unclassified data quickly and correctly. We use the roadmap for the current image processing as the experimental background. In this paper, we propose an AK-LDMeans algorithm to automatically lock the K value by designing the Kcost fold line, and then use the long-distance high-density method to select the clustering centers to further replace the traditional initial clustering center selection method, which further improves the efficiency and accuracy of the traditional K-Means Algorithm. And the experimental results are compared with the current clustering algorithm and the results are obtained. The algorithm can provide effective reference value in the fields of image processing, machine vision and data mining.

  18. Transform methods for precision continuum and control models of flexible space structures

    NASA Technical Reports Server (NTRS)

    Lupi, Victor D.; Turner, James D.; Chun, Hon M.

    1991-01-01

    An open loop optimal control algorithm is developed for general flexible structures, based on Laplace transform methods. A distributed parameter model of the structure is first presented, followed by a derivation of the optimal control algorithm. The control inputs are expressed in terms of their Fourier series expansions, so that a numerical solution can be easily obtained. The algorithm deals directly with the transcendental transfer functions from control inputs to outputs of interest, and structural deformation penalties, as well as penalties on control effort, are included in the formulation. The algorithm is applied to several structures of increasing complexity to show its generality.

  19. Control algorithms for dynamic windows for residential buildings

    DOE PAGES

    Firlag, Szymon; Yazdanian, Mehrangiz; Curcija, Charlie; ...

    2015-09-30

    This study analyzes the influence of control algorithms for dynamic windows on energy consumption, number of hours of retracted shades during daylight and shade operations. Five different control algorithms - heating/cooling, simple rules, perfect citizen, heat flow and predictive weather were developed and compared. The performance of a typical residential building was modeled with EnergyPlus. The program Widow was used to generate a Bi-Directional Distribution Function (BSDF) for two window configurations. The BSDF was exported to EnergyPlus using the IDF file format. The EMS feature in EnergyPlus was used to develop custom control algorithms. The calculations were made for fourmore » locations with diverse climate. The results showed that: (a) use of automated shading with proposed control algorithms can reduce the site energy in the range of 11.6-13.0%; in regard to source (primary) energy in the range of 20.1-21.6%, (b) the differences between algorithms in regard to energy savings are not high, (c) the differences between algorithms in regard to number of hours of retracted shades are visible, (e) the control algorithms have a strong influence on shade operation and oscillation of shade can occur, (d) additional energy consumption caused by motor, sensors and a small microprocessor in the analyzed case is very small.« less

  20. Advanced rotorcraft control using parameter optimization

    NASA Technical Reports Server (NTRS)

    Vansteenwyk, Brett; Ly, Uy-Loi

    1991-01-01

    A reliable algorithm for the evaluation of a quadratic performance index and its gradients with respect to the controller design parameters is presented. The algorithm is part of a design algorithm for an optimal linear dynamic output feedback controller that minimizes a finite time quadratic performance index. The numerical scheme is particularly robust when it is applied to the control law synthesis for systems with densely packed modes and where there is a high likelihood of encountering degeneracies in the closed loop eigensystem. This approach through the use of a accurate Pade series approximation does not require the closed loop system matrix to be diagonalizable. The algorithm has been included in a control design package for optimal robust low order controllers. Usefulness of the proposed numerical algorithm has been demonstrated using numerous practical design cases where degeneracies occur frequently in the closed loop system under an arbitrary controller design initialization and during the numerical search.

  1. Design Genetic Algorithm Optimization Education Software Based Fuzzy Controller for a Tricopter Fly Path Planning

    ERIC Educational Resources Information Center

    Tran, Huu-Khoa; Chiou, Juing -Shian; Peng, Shou-Tao

    2016-01-01

    In this paper, the feasibility of a Genetic Algorithm Optimization (GAO) education software based Fuzzy Logic Controller (GAO-FLC) for simulating the flight motion control of Unmanned Aerial Vehicles (UAVs) is designed. The generated flight trajectories integrate the optimized Scaling Factors (SF) fuzzy controller gains by using GAO algorithm. The…

  2. Computing the Power-Density Spectrum for an Engineering Model

    NASA Technical Reports Server (NTRS)

    Dunn, H. J.

    1982-01-01

    Computer program for calculating of power-density spectrum (PDS) from data base generated by Advanced Continuous Simulation Language (ACSL) uses algorithm that employs fast Fourier transform (FFT) to calculate PDS of variable. Accomplished by first estimating autocovariance function of variable and then taking FFT of smoothed autocovariance function to obtain PDS. Fast-Fourier-transform technique conserves computer resources.

  3. Comparison of 2D simulations of detached divertor plasmas with divertor Thomson measurements in the DIII-D tokamak

    DOE PAGES

    Rognlien, Thomas D.; McLean, Adam G.; Fenstermacher, Max E.; ...

    2017-01-27

    A modeling study is reported using new 2D data from DIII-D tokamak divertor plasmas and improved 2D transport model that includes large cross-field drifts for the numerically difficult H-mode regime. The data set, which spans a range of plasmas densities for both forward and reverse toroidal magnetic field (B t) over a range of plasma densities, is provided by divertor Thomson scattering (DTS). Measurements utilizing X-point sweeping give corresponding 2D profiles of electron temperature (T e) and density (n e) across both divertor legs for individual discharges. The calculations show the same features of in/out plasma asymmetries as measured inmore » the experiment, with the normal B t direction (ion ∇B drift toward the X-point) having higher n e and lower T e in the inner divertor leg than outer. Corresponding emission data for total radiated power shows a strong inner-divertor/outer-divertor asymmetry that is reproduced by the simulations. Furthermore, these 2D UEDGE transport simulations are enabled for steep-gradient H-mode conditions by newly implemented algorithms to control isolated grid-scale irregularities.« less

  4. Improving experimental phases for strong reflections prior to density modification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uervirojnangkoorn, Monarin; University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck; Hilgenfeld, Rolf, E-mail: hilgenfeld@biochem.uni-luebeck.de

    A genetic algorithm has been developed to optimize the phases of the strongest reflections in SIR/SAD data. This is shown to facilitate density modification and model building in several test cases. Experimental phasing of diffraction data from macromolecular crystals involves deriving phase probability distributions. These distributions are often bimodal, making their weighted average, the centroid phase, improbable, so that electron-density maps computed using centroid phases are often non-interpretable. Density modification brings in information about the characteristics of electron density in protein crystals. In successful cases, this allows a choice between the modes in the phase probability distributions, and the mapsmore » can cross the borderline between non-interpretable and interpretable. Based on the suggestions by Vekhter [Vekhter (2005 ▶), Acta Cryst. D61, 899–902], the impact of identifying optimized phases for a small number of strong reflections prior to the density-modification process was investigated while using the centroid phase as a starting point for the remaining reflections. A genetic algorithm was developed that optimizes the quality of such phases using the skewness of the density map as a target function. Phases optimized in this way are then used in density modification. In most of the tests, the resulting maps were of higher quality than maps generated from the original centroid phases. In one of the test cases, the new method sufficiently improved a marginal set of experimental SAD phases to enable successful map interpretation. A computer program, SISA, has been developed to apply this method for phase improvement in macromolecular crystallography.« less

  5. [Estimation of Hunan forest carbon density based on spectral mixture analysis of MODIS data].

    PubMed

    Yan, En-ping; Lin, Hui; Wang, Guang-xing; Chen, Zhen-xiong

    2015-11-01

    With the fast development of remote sensing technology, combining forest inventory sample plot data and remotely sensed images has become a widely used method to map forest carbon density. However, the existence of mixed pixels often impedes the improvement of forest carbon density mapping, especially when low spatial resolution images such as MODIS are used. In this study, MODIS images and national forest inventory sample plot data were used to conduct the study of estimation for forest carbon density. Linear spectral mixture analysis with and without constraint, and nonlinear spectral mixture analysis were compared to derive the fractions of different land use and land cover (LULC) types. Then sequential Gaussian co-simulation algorithm with and without the fraction images from spectral mixture analyses were employed to estimate forest carbon density of Hunan Province. Results showed that 1) Linear spectral mixture analysis with constraint, leading to a mean RMSE of 0.002, more accurately estimated the fractions of LULC types than linear spectral and nonlinear spectral mixture analyses; 2) Integrating spectral mixture analysis model and sequential Gaussian co-simulation algorithm increased the estimation accuracy of forest carbon density to 81.5% from 74.1%, and decreased the RMSE to 5.18 from 7.26; and 3) The mean value of forest carbon density for the province was 30.06 t · hm(-2), ranging from 0.00 to 67.35 t · hm(-2). This implied that the spectral mixture analysis provided a great potential to increase the estimation accuracy of forest carbon density on regional and global level.

  6. Motor Control and Regulation for a Flywheel Energy Storage System

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara; Lyons, Valerie

    2003-01-01

    This talk will focus on the motor control algorithms used to regulate the flywheel system at the NASA Glenn Research Center. First a discussion of the inner loop torque control technique will be given. It is based on the principle of field orientation and is implemented without a position or speed sensor (sensorless control). Then the outer loop charge and discharge algorithm will be presented. This algorithm controls the acceleration of the flywheel during charging and the deceleration while discharging. The algorithm also allows the flywheel system to regulate the DC bus voltage during the discharge cycle.

  7. Pressure algorithm for elliptic flow calculations with the PDF method

    NASA Technical Reports Server (NTRS)

    Anand, M. S.; Pope, S. B.; Mongia, H. C.

    1991-01-01

    An algorithm to determine the mean pressure field for elliptic flow calculations with the probability density function (PDF) method is developed and applied. The PDF method is a most promising approach for the computation of turbulent reacting flows. Previous computations of elliptic flows with the method were in conjunction with conventional finite volume based calculations that provided the mean pressure field. The algorithm developed and described here permits the mean pressure field to be determined within the PDF calculations. The PDF method incorporating the pressure algorithm is applied to the flow past a backward-facing step. The results are in good agreement with data for the reattachment length, mean velocities, and turbulence quantities including triple correlations.

  8. Multitarget mixture reduction algorithm with incorporated target existence recursions

    NASA Astrophysics Data System (ADS)

    Ristic, Branko; Arulampalam, Sanjeev

    2000-07-01

    The paper derives a deferred logic data association algorithm based on the mixture reduction approach originally due to Salmond [SPIE vol.1305, 1990]. The novelty of the proposed algorithm provides the recursive formulae for both data association and target existence (confidence) estimation, thus allowing automatic track initiation and termination. T he track initiation performance of the proposed filter is investigated by computer simulations. It is observed that at moderately high levels of clutter density the proposed filter initiates tracks more reliably than its corresponding PDA filter. An extension of the proposed filter to the multi-target case is also presented. In addition, the paper compares the track maintenance performance of the MR algorithm with an MHT implementation.

  9. On-line prognosis of fatigue crack propagation based on Gaussian weight-mixture proposal particle filter.

    PubMed

    Chen, Jian; Yuan, Shenfang; Qiu, Lei; Wang, Hui; Yang, Weibo

    2018-01-01

    Accurate on-line prognosis of fatigue crack propagation is of great meaning for prognostics and health management (PHM) technologies to ensure structural integrity, which is a challenging task because of uncertainties which arise from sources such as intrinsic material properties, loading, and environmental factors. The particle filter algorithm has been proved to be a powerful tool to deal with prognostic problems those are affected by uncertainties. However, most studies adopted the basic particle filter algorithm, which uses the transition probability density function as the importance density and may suffer from serious particle degeneracy problem. This paper proposes an on-line fatigue crack propagation prognosis method based on a novel Gaussian weight-mixture proposal particle filter and the active guided wave based on-line crack monitoring. Based on the on-line crack measurement, the mixture of the measurement probability density function and the transition probability density function is proposed to be the importance density. In addition, an on-line dynamic update procedure is proposed to adjust the parameter of the state equation. The proposed method is verified on the fatigue test of attachment lugs which are a kind of important joint components in aircraft structures. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Geometric characterization and simulation of planar layered elastomeric fibrous biomaterials

    PubMed Central

    Carleton, James B.; D'Amore, Antonio; Feaver, Kristen R.; Rodin, Gregory J.; Sacks, Michael S.

    2014-01-01

    Many important biomaterials are composed of multiple layers of networked fibers. While there is a growing interest in modeling and simulation of the mechanical response of these biomaterials, a theoretical foundation for such simulations has yet to be firmly established. Moreover, correctly identifying and matching key geometric features is a critically important first step for performing reliable mechanical simulations. The present work addresses these issues in two ways. First, using methods of geometric probability we develop theoretical estimates for the mean linear and areal fiber intersection densities for two-dimensional fibrous networks. These densities are expressed in terms of the fiber density and the orientation distribution function, both of which are relatively easy-to-measure properties. Secondly, we develop a random walk algorithm for geometric simulation of two-dimensional fibrous networks which can accurately reproduce the prescribed fiber density and orientation distribution function. Furthermore, the linear and areal fiber intersection densities obtained with the algorithm are in agreement with the theoretical estimates. Both theoretical and computational results are compared with those obtained by post-processing of SEM images of actual scaffolds. These comparisons reveal difficulties inherent to resolving fine details of multilayered fibrous networks. The methods provided herein can provide a rational means to define and generate key geometric features from experimentally measured or prescribed scaffold structural data. PMID:25311685

  11. Automated, contour-based tracking and analysis of cell behaviour over long time scales in environments of varying complexity and cell density.

    PubMed

    Baker, Richard M; Brasch, Megan E; Manning, M Lisa; Henderson, James H

    2014-08-06

    Understanding single and collective cell motility in model environments is foundational to many current research efforts in biology and bioengineering. To elucidate subtle differences in cell behaviour despite cell-to-cell variability, we introduce an algorithm for tracking large numbers of cells for long time periods and present a set of physics-based metrics that quantify differences in cell trajectories. Our algorithm, termed automated contour-based tracking for in vitro environments (ACTIVE), was designed for adherent cell populations subject to nuclear staining or transfection. ACTIVE is distinct from existing tracking software because it accommodates both variability in image intensity and multi-cell interactions, such as divisions and occlusions. When applied to low-contrast images from live-cell experiments, ACTIVE reduced error in analysing cell occlusion events by as much as 43% compared with a benchmark-tracking program while simultaneously tracking cell divisions and resulting daughter-daughter cell relationships. The large dataset generated by ACTIVE allowed us to develop metrics that capture subtle differences between cell trajectories on different substrates. We present cell motility data for thousands of cells studied at varying densities on shape-memory-polymer-based nanotopographies and identify several quantitative differences, including an unanticipated difference between two 'control' substrates. We expect that ACTIVE will be immediately useful to researchers who require accurate, long-time-scale motility data for many cells. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  12. Bayesian inversion of marine CSEM data from the Scarborough gas field using a transdimensional 2-D parametrization

    NASA Astrophysics Data System (ADS)

    Ray, Anandaroop; Key, Kerry; Bodin, Thomas; Myer, David; Constable, Steven

    2014-12-01

    We apply a reversible-jump Markov chain Monte Carlo method to sample the Bayesian posterior model probability density function of 2-D seafloor resistivity as constrained by marine controlled source electromagnetic data. This density function of earth models conveys information on which parts of the model space are illuminated by the data. Whereas conventional gradient-based inversion approaches require subjective regularization choices to stabilize this highly non-linear and non-unique inverse problem and provide only a single solution with no model uncertainty information, the method we use entirely avoids model regularization. The result of our approach is an ensemble of models that can be visualized and queried to provide meaningful information about the sensitivity of the data to the subsurface, and the level of resolution of model parameters. We represent models in 2-D using a Voronoi cell parametrization. To make the 2-D problem practical, we use a source-receiver common midpoint approximation with 1-D forward modelling. Our algorithm is transdimensional and self-parametrizing where the number of resistivity cells within a 2-D depth section is variable, as are their positions and geometries. Two synthetic studies demonstrate the algorithm's use in the appraisal of a thin, segmented, resistive reservoir which makes for a challenging exploration target. As a demonstration example, we apply our method to survey data collected over the Scarborough gas field on the Northwest Australian shelf.

  13. Advancing X-ray scattering metrology using inverse genetic algorithms.

    PubMed

    Hannon, Adam F; Sunday, Daniel F; Windover, Donald; Kline, R Joseph

    2016-01-01

    We compare the speed and effectiveness of two genetic optimization algorithms to the results of statistical sampling via a Markov chain Monte Carlo algorithm to find which is the most robust method for determining real space structure in periodic gratings measured using critical dimension small angle X-ray scattering. Both a covariance matrix adaptation evolutionary strategy and differential evolution algorithm are implemented and compared using various objective functions. The algorithms and objective functions are used to minimize differences between diffraction simulations and measured diffraction data. These simulations are parameterized with an electron density model known to roughly correspond to the real space structure of our nanogratings. The study shows that for X-ray scattering data, the covariance matrix adaptation coupled with a mean-absolute error log objective function is the most efficient combination of algorithm and goodness of fit criterion for finding structures with little foreknowledge about the underlying fine scale structure features of the nanograting.

  14. Integrated Analytical Evaluation and Optimization of Model Parameters against Preprocessed Measurement Data

    DTIC Science & Technology

    1989-06-23

    Iterations .......................... 86 3.2 Comparison between MACH and POLAR ......................... 90 3.3 Flow Chart for VSTS Algorithm...The most recent changes are: a) development of the VSTS (velocity space topology search) algorithm for calculating particle densities b) extension...with simple analytic models. The largest modification of the MACH code was the implementation of the VSTS procedure, which constituted a complete

  15. Digital Oblique Remote Ionospheric Sensing (DORIS) Program Development

    DTIC Science & Technology

    1992-04-01

    waveforms. A new with the ARTIST software (Reinisch and Iluang. autoscaling technique for oblique ionograms 1983, Gamache et al., 1985) which is...development and performance of a complete oblique ionogram autoscaling and inversion algorithm is presented. The inver.i-,n algorithm uses a three...OTIH radar. 14. SUBJECT TERMS 15. NUMBER OF PAGES Oblique Propagation; Oblique lonogram Autoscaling ; i Electron Density Profile Inversion; Simulated 16

  16. Leukocyte Recognition Using EM-Algorithm

    NASA Astrophysics Data System (ADS)

    Colunga, Mario Chirinos; Siordia, Oscar Sánchez; Maybank, Stephen J.

    This document describes a method for classifying images of blood cells. Three different classes of cells are used: Band Neutrophils, Eosinophils and Lymphocytes. The image pattern is projected down to a lower dimensional sub space using PCA; the probability density function for each class is modeled with a Gaussian mixture using the EM-Algorithm. A new cell image is classified using the maximum a posteriori decision rule.

  17. Design and simulation of stratified probability digital receiver with application to the multipath communication

    NASA Technical Reports Server (NTRS)

    Deal, J. H.

    1975-01-01

    One approach to the problem of simplifying complex nonlinear filtering algorithms is through using stratified probability approximations where the continuous probability density functions of certain random variables are represented by discrete mass approximations. This technique is developed in this paper and used to simplify the filtering algorithms developed for the optimum receiver for signals corrupted by both additive and multiplicative noise.

  18. A numerical spectral approach to solve the dislocation density transport equation

    NASA Astrophysics Data System (ADS)

    Djaka, K. S.; Taupin, V.; Berbenni, S.; Fressengeas, C.

    2015-09-01

    A numerical spectral approach is developed to solve in a fast, stable and accurate fashion, the quasi-linear hyperbolic transport equation governing the spatio-temporal evolution of the dislocation density tensor in the mechanics of dislocation fields. The approach relies on using the Fast Fourier Transform algorithm. Low-pass spectral filters are employed to control both the high frequency Gibbs oscillations inherent to the Fourier method and the fast-growing numerical instabilities resulting from the hyperbolic nature of the transport equation. The numerical scheme is validated by comparison with an exact solution in the 1D case corresponding to dislocation dipole annihilation. The expansion and annihilation of dislocation loops in 2D and 3D settings are also produced and compared with finite element approximations. The spectral solutions are shown to be stable, more accurate for low Courant numbers and much less computation time-consuming than the finite element technique based on an explicit Galerkin-least squares scheme.

  19. Imaging sensor constellation for tomographic chemical cloud mapping.

    PubMed

    Cosofret, Bogdan R; Konno, Daisei; Faghfouri, Aram; Kindle, Harry S; Gittins, Christopher M; Finson, Michael L; Janov, Tracy E; Levreault, Mark J; Miyashiro, Rex K; Marinelli, William J

    2009-04-01

    A sensor constellation capable of determining the location and detailed concentration distribution of chemical warfare agent simulant clouds has been developed and demonstrated on government test ranges. The constellation is based on the use of standoff passive multispectral infrared imaging sensors to make column density measurements through the chemical cloud from two or more locations around its periphery. A computed tomography inversion method is employed to produce a 3D concentration profile of the cloud from the 2D line density measurements. We discuss the theoretical basis of the approach and present results of recent field experiments where controlled releases of chemical warfare agent simulants were simultaneously viewed by three chemical imaging sensors. Systematic investigations of the algorithm using synthetic data indicate that for complex functions, 3D reconstruction errors are less than 20% even in the case of a limited three-sensor measurement network. Field data results demonstrate the capability of the constellation to determine 3D concentration profiles that account for ~?86%? of the total known mass of material released.

  20. A wide range real-time synchronous demodulation system for the dispersion interferometer on HL-2M

    NASA Astrophysics Data System (ADS)

    Wu, Tongyu; Zhang, Wei; Yin, Zejie

    2017-09-01

    A real-time synchronous demodulation system has been developed for the dispersion interferometer on a HL-2M tokamak. The system is based on the phase extraction method which uses a ratio of modulation amplitudes. A high-performance field programmable gate array with pipeline process capabilities is used to realize the real time synchronous demodulation algorithm. A fringe jump correction algorithm is applied to follow the fast density changes of the plasma. By using the Peripheral Component Interconnect Express protocol, the electronics can perform real-time density feedback with a temporal resolution of 100 ns. Some experimental results presented show that the electronics can obtain a wide measurement range of 2.28 × 1022 m-2 with high precision.

  1. Spectrum sensing based on cumulative power spectral density

    NASA Astrophysics Data System (ADS)

    Nasser, A.; Mansour, A.; Yao, K. C.; Abdallah, H.; Charara, H.

    2017-12-01

    This paper presents new spectrum sensing algorithms based on the cumulative power spectral density (CPSD). The proposed detectors examine the CPSD of the received signal to make a decision on the absence/presence of the primary user (PU) signal. Those detectors require the whiteness of the noise in the band of interest. The false alarm and detection probabilities are derived analytically and simulated under Gaussian and Rayleigh fading channels. Our proposed detectors present better performance than the energy (ED) or the cyclostationary detectors (CSD). Moreover, in the presence of noise uncertainty (NU), they are shown to provide more robustness than ED, with less performance loss. In order to neglect the NU, we modified our algorithms to be independent from the noise variance.

  2. Time domain simulation of the response of geometrically nonlinear panels subjected to random loading

    NASA Technical Reports Server (NTRS)

    Moyer, E. Thomas, Jr.

    1988-01-01

    The response of composite panels subjected to random pressure loads large enough to cause geometrically nonlinear responses is studied. A time domain simulation is employed to solve the equations of motion. An adaptive time stepping algorithm is employed to minimize intermittent transients. A modified algorithm for the prediction of response spectral density is presented which predicts smooth spectral peaks for discrete time histories. Results are presented for a number of input pressure levels and damping coefficients. Response distributions are calculated and compared with the analytical solution of the Fokker-Planck equations. RMS response is reported as a function of input pressure level and damping coefficient. Spectral densities are calculated for a number of examples.

  3. Vehicle active steering control research based on two-DOF robust internal model control

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Liu, Yahui; Wang, Fengbo; Bao, Chunjiang; Sun, Qun; Zhao, Youqun

    2016-07-01

    Because of vehicle's external disturbances and model uncertainties, robust control algorithms have obtained popularity in vehicle stability control. The robust control usually gives up performance in order to guarantee the robustness of the control algorithm, therefore an improved robust internal model control(IMC) algorithm blending model tracking and internal model control is put forward for active steering system in order to reach high performance of yaw rate tracking with certain robustness. The proposed algorithm inherits the good model tracking ability of the IMC control and guarantees robustness to model uncertainties. In order to separate the design process of model tracking from the robustness design process, the improved 2 degree of freedom(DOF) robust internal model controller structure is given from the standard Youla parameterization. Simulations of double lane change maneuver and those of crosswind disturbances are conducted for evaluating the robust control algorithm, on the basis of a nonlinear vehicle simulation model with a magic tyre model. Results show that the established 2-DOF robust IMC method has better model tracking ability and a guaranteed level of robustness and robust performance, which can enhance the vehicle stability and handling, regardless of variations of the vehicle model parameters and the external crosswind interferences. Contradiction between performance and robustness of active steering control algorithm is solved and higher control performance with certain robustness to model uncertainties is obtained.

  4. Analytic reconstruction of magnetic resonance imaging signal obtained from a periodic encoding field.

    PubMed

    Rybicki, F J; Hrovat, M I; Patz, S

    2000-09-01

    We have proposed a two-dimensional PERiodic-Linear (PERL) magnetic encoding field geometry B(x,y) = g(y)y cos(q(x)x) and a magnetic resonance imaging pulse sequence which incorporates two fields to image a two-dimensional spin density: a standard linear gradient in the x dimension, and the PERL field. Because of its periodicity, the PERL field produces a signal where the phase of the two dimensions is functionally different. The x dimension is encoded linearly, but the y dimension appears as the argument of a sinusoidal phase term. Thus, the time-domain signal and image spin density are not related by a two-dimensional Fourier transform. They are related by a one-dimensional Fourier transform in the x dimension and a new Bessel function integral transform (the PERL transform) in the y dimension. The inverse of the PERL transform provides a reconstruction algorithm for the y dimension of the spin density from the signal space. To date, the inverse transform has been computed numerically by a Bessel function expansion over its basis functions. This numerical solution used a finite sum to approximate an infinite summation and thus introduced a truncation error. This work analytically determines the basis functions for the PERL transform and incorporates them into the reconstruction algorithm. The improved algorithm is demonstrated by (1) direct comparison between the numerically and analytically computed basis functions, and (2) reconstruction of a known spin density. The new solution for the basis functions also lends proof of the system function for the PERL transform under specific conditions.

  5. Enabling Airspace Integration for High-Density On-Demand Mobility Operations

    NASA Technical Reports Server (NTRS)

    Mueller, Eric; Kopardekar, Parimal; Goodrich, Kenneth H.

    2017-01-01

    Aviation technologies and concepts have reached a level of maturity that may soon enable an era of on-demand mobility (ODM) fueled by quiet, efficient, and largely automated air taxis. However, successfully bringing such a system to fruition will require introducing orders of magnitude more aircraft to a given airspace volume than can be accommodated by the traditional air traffic control system, among other important technical challenges. The airspace integration problem is further compounded by requirements to set aside appropriate ground infrastructure for take-off and landing areas and ensuring these new aircraft types and their operations do not burden traditional airspace users and air traffic control. This airspace integration challenge may be significantly reduced by extending the concepts and technologies developed to manage small unmanned aircraft systems (UAS) at low altitudethe UAS traffic management (UTM) systemto higher altitudes and new aircraft types, or by equipping ODM aircraft with advanced sensors, algorithms, and interfaces. The precedent of operational freedom inherent in visual flight rules and the technologies developed for large UAS and commercial aircraft automation will contribute to the evolution of an ODM system enabled by UTM. This paper describes the set of air traffic services, normally provided by the traditional air traffic system, that an ODM system would implement to achieve the high densities needed for ODMs economic viability. Finally, the paper proposes a framework for integrating, evaluating, and deploying low-, medium-, and high-density ODM concepts that build on each other to ensure operational and economic feasibility at every step.

  6. Towards the Engineering of Dependable P2P-Based Network Control — The Case of Timely Routing Control Messages

    NASA Astrophysics Data System (ADS)

    Tutschku, Kurt; Nakao, Akihiro

    This paper introduces a methodology for engineering best-effort P2P algorithms into dependable P2P-based network control mechanism. The proposed method is built upon an iterative approach consisting of improving the original P2P algorithm by appropriate mechanisms and of thorough performance assessment with respect to dependability measures. The potential of the methodology is outlined by the example of timely routing control for vertical handover in B3G wireless networks. In detail, the well-known Pastry and CAN algorithms are enhanced to include locality. By showing how to combine algorithmic enhancements with performance indicators, this case study paves the way for future engineering of dependable network control mechanisms through P2P algorithms.

  7. A controllable sensor management algorithm capable of learning

    NASA Astrophysics Data System (ADS)

    Osadciw, Lisa A.; Veeramacheneni, Kalyan K.

    2005-03-01

    Sensor management technology progress is challenged by the geographic space it spans, the heterogeneity of the sensors, and the real-time timeframes within which plans controlling the assets are executed. This paper presents a new sensor management paradigm and demonstrates its application in a sensor management algorithm designed for a biometric access control system. This approach consists of an artificial intelligence (AI) algorithm focused on uncertainty measures, which makes the high level decisions to reduce uncertainties and interfaces with the user, integrated cohesively with a bottom up evolutionary algorithm, which optimizes the sensor network"s operation as determined by the AI algorithm. The sensor management algorithm presented is composed of a Bayesian network, the AI algorithm component, and a swarm optimization algorithm, the evolutionary algorithm. Thus, the algorithm can change its own performance goals in real-time and will modify its own decisions based on observed measures within the sensor network. The definition of the measures as well as the Bayesian network determine the robustness of the algorithm and its utility in reacting dynamically to changes in the global system.

  8. Long-Term Effects of Acute Stress on the Prefrontal-Limbic System in the Healthy Adult

    PubMed Central

    Wei, Dongtao; Du, Xue; Zhang, Qinglin; Liu, Guangyuan; Qiu, Jiang

    2017-01-01

    Most people are exposed to at least one traumatic event during the course of their lives, but large numbers of people do not develop posttraumatic stress disorders. Although previous studies have shown that repeated and chronic stress change the brain’s structure and function, few studies have focused on the long-term effects of acute stressful exposure in a nonclinical sample, especially the morphology and functional connectivity changes in brain regions implicated in emotional reactivity and emotion regulation. Forty-one months after the 5/12 Wenchuan earthquake, we investigated the effects of trauma exposure on the structure and functional connectivity of the brains of trauma-exposed healthy individuals compared with healthy controls matched for age, sex, and education. We then used machine-learning algorithms with the brain structural features to distinguish between the two groups at an individual level. In the trauma-exposed healthy individuals, our results showed greater gray matter density in prefrontal-limbic brain systems, including the dorsal anterior cingulate cortex, medial prefrontal cortex, amygdala and hippocampus, than in the controls. Further analysis showed stronger amygdala-hippocampus functional connectivity in the trauma-exposed healthy compared to the controls. Our findings revealed that survival of traumatic experiences, without developing PTSD, was associated with greater gray matter density in the prefrontal-limbic systems related to emotional regulation. PMID:28045980

  9. An Iterative Closest Points Algorithm for Registration of 3D Laser Scanner Point Clouds with Geometric Features.

    PubMed

    He, Ying; Liang, Bin; Yang, Jun; Li, Shunzhi; He, Jin

    2017-08-11

    The Iterative Closest Points (ICP) algorithm is the mainstream algorithm used in the process of accurate registration of 3D point cloud data. The algorithm requires a proper initial value and the approximate registration of two point clouds to prevent the algorithm from falling into local extremes, but in the actual point cloud matching process, it is difficult to ensure compliance with this requirement. In this paper, we proposed the ICP algorithm based on point cloud features (GF-ICP). This method uses the geometrical features of the point cloud to be registered, such as curvature, surface normal and point cloud density, to search for the correspondence relationships between two point clouds and introduces the geometric features into the error function to realize the accurate registration of two point clouds. The experimental results showed that the algorithm can improve the convergence speed and the interval of convergence without setting a proper initial value.

  10. An Iterative Closest Points Algorithm for Registration of 3D Laser Scanner Point Clouds with Geometric Features

    PubMed Central

    Liang, Bin; Yang, Jun; Li, Shunzhi; He, Jin

    2017-01-01

    The Iterative Closest Points (ICP) algorithm is the mainstream algorithm used in the process of accurate registration of 3D point cloud data. The algorithm requires a proper initial value and the approximate registration of two point clouds to prevent the algorithm from falling into local extremes, but in the actual point cloud matching process, it is difficult to ensure compliance with this requirement. In this paper, we proposed the ICP algorithm based on point cloud features (GF-ICP). This method uses the geometrical features of the point cloud to be registered, such as curvature, surface normal and point cloud density, to search for the correspondence relationships between two point clouds and introduces the geometric features into the error function to realize the accurate registration of two point clouds. The experimental results showed that the algorithm can improve the convergence speed and the interval of convergence without setting a proper initial value. PMID:28800096

  11. Electric field mill network products to improve detection of the lightning hazard

    NASA Technical Reports Server (NTRS)

    Maier, Launa M.

    1987-01-01

    An electric field mill network has been used at Kennedy Space Center for over 10 years as part of the thunderstorm detection system. Several algorithms are currently available to improve the informational output of the electric field mill data. The charge distributions of roughly 50 percent of all lightning can be modeled as if they reduced the charged cloud by a point charge or a point dipole. Using these models, the spatial differences in the lightning induced electric field changes, and a least squares algorithm to obtain an optimum solution, the three-dimensional locations of the lightning charge centers can be located. During the lifetime of a thunderstorm, dynamically induced charging, modeled as a current source, can be located spatially with measurements of Maxwell current density. The electric field mills can be used to calculate the Maxwell current density at times when it is equal to the displacement current density. These improvements will produce more accurate assessments of the potential electrical activity, identify active cells, and forecast thunderstorm termination.

  12. Predicting Loss-of-Control Boundaries Toward a Piloting Aid

    NASA Technical Reports Server (NTRS)

    Barlow, Jonathan; Stepanyan, Vahram; Krishnakumar, Kalmanje

    2012-01-01

    This work presents an approach to predicting loss-of-control with the goal of providing the pilot a decision aid focused on maintaining the pilot's control action within predicted loss-of-control boundaries. The predictive architecture combines quantitative loss-of-control boundaries, a data-based predictive control boundary estimation algorithm and an adaptive prediction method to estimate Markov model parameters in real-time. The data-based loss-of-control boundary estimation algorithm estimates the boundary of a safe set of control inputs that will keep the aircraft within the loss-of-control boundaries for a specified time horizon. The adaptive prediction model generates estimates of the system Markov Parameters, which are used by the data-based loss-of-control boundary estimation algorithm. The combined algorithm is applied to a nonlinear generic transport aircraft to illustrate the features of the architecture.

  13. Fast-kick-off monotonically convergent algorithm for searching optimal control fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Sheng-Lun; Ho, Tak-San; Rabitz, Herschel

    2011-09-15

    This Rapid Communication presents a fast-kick-off search algorithm for quickly finding optimal control fields in the state-to-state transition probability control problems, especially those with poorly chosen initial control fields. The algorithm is based on a recently formulated monotonically convergent scheme [T.-S. Ho and H. Rabitz, Phys. Rev. E 82, 026703 (2010)]. Specifically, the local temporal refinement of the control field at each iteration is weighted by a fractional inverse power of the instantaneous overlap of the backward-propagating wave function, associated with the target state and the control field from the previous iteration, and the forward-propagating wave function, associated with themore » initial state and the concurrently refining control field. Extensive numerical simulations for controls of vibrational transitions and ultrafast electron tunneling show that the new algorithm not only greatly improves the search efficiency but also is able to attain good monotonic convergence quality when further frequency constraints are required. The algorithm is particularly effective when the corresponding control dynamics involves a large number of energy levels or ultrashort control pulses.« less

  14. Reference dosimetry using radiochromic film

    PubMed Central

    Girard, Frédéric; Bouchard, Hugo

    2012-01-01

    The objectives of this study are to identify and quantify factors that influence radiochromic film dose response and to determine whether such films are suitable for reference dosimetry. The influence of several parameters that may introduce systematic dose errors when performing reference dose measurements were investigated. The effect of the film storage temperature was determined by comparing the performance of three lots of GAFCHROMIC EBT2 films stored at either 4°C or room temperature. The effect of high (>80%) or low (<20%) relative humidity was also determined. Doses measured in optimal conditions with EBT and EBT2 films were then compared with an A12 ionization chamber measurement. Intensity‐modulated radiation therapy quality controls using EBT2 films were also performed in reference dose. The results obtained using reference dose measurements were compared with those obtained using relative dose measurements. Storing the film at 4°C improves the stability of the film over time, but does not eliminate the noncatalytic film development, seen as a rise in optical density over time in the absence of radiation. Relative humidity variations ranging from 80% to 20% have a strong impact on the optical density and could introduce dose errors of up to 15% if the humidity were not controlled during the film storage period. During the scanning procedure, the film temperature influences the optical density that is measured. When controlling for these three parameters, the dose differences between EBT or EBT2 and the A12 chamber are found to be within ±4% (2σ level) over a dose range of 20–350 cGy. Our results also demonstrate the limitation of the Anisotropic Analytical Algorithm for dose calculation of highly modulated treatment plans. PACS numbers: 87.55.Qr; 87.56.Fc PMID:23149793

  15. Metal implants on CT: comparison of iterative reconstruction algorithms for reduction of metal artifacts with single energy and spectral CT scanning in a phantom model.

    PubMed

    Fang, Jieming; Zhang, Da; Wilcox, Carol; Heidinger, Benedikt; Raptopoulos, Vassilios; Brook, Alexander; Brook, Olga R

    2017-03-01

    To assess single energy metal artifact reduction (SEMAR) and spectral energy metal artifact reduction (MARS) algorithms in reducing artifacts generated by different metal implants. Phantom was scanned with and without SEMAR (Aquilion One, Toshiba) and MARS (Discovery CT750 HD, GE), with various metal implants. Images were evaluated objectively by measuring standard deviation in regions of interests and subjectively by two independent reviewers grading on a scale of 0 (no artifact) to 4 (severe artifact). Reviewers also graded new artifacts introduced by metal artifact reduction algorithms. SEMAR and MARS significantly decreased variability of the density measurement adjacent to the metal implant, with median SD (standard deviation of density measurement) of 52.1 HU without SEMAR, vs. 12.3 HU with SEMAR, p < 0.001. Median SD without MARS of 63.1 HU decreased to 25.9 HU with MARS, p < 0.001. Median SD with SEMAR is significantly lower than median SD with MARS (p = 0.0011). SEMAR improved subjective image quality with reduction in overall artifacts grading from 3.2 ± 0.7 to 1.4 ± 0.9, p < 0.001. Improvement of overall image quality by MARS has not reached statistical significance (3.2 ± 0.6 to 2.6 ± 0.8, p = 0.088). There was a significant introduction of artifacts introduced by metal artifact reduction algorithm for MARS with 2.4 ± 1.0, but minimal with SEMAR 0.4 ± 0.7, p < 0.001. CT iterative reconstruction algorithms with single and spectral energy are both effective in reduction of metal artifacts. Single energy-based algorithm provides better overall image quality than spectral CT-based algorithm. Spectral metal artifact reduction algorithm introduces mild to moderate artifacts in the far field.

  16. Reliable numerical computation in an optimal output-feedback design

    NASA Technical Reports Server (NTRS)

    Vansteenwyk, Brett; Ly, Uy-Loi

    1991-01-01

    A reliable algorithm is presented for the evaluation of a quadratic performance index and its gradients with respect to the controller design parameters. The algorithm is a part of a design algorithm for optimal linear dynamic output-feedback controller that minimizes a finite-time quadratic performance index. The numerical scheme is particularly robust when it is applied to the control-law synthesis for systems with densely packed modes and where there is a high likelihood of encountering degeneracies in the closed-loop eigensystem. This approach through the use of an accurate Pade series approximation does not require the closed-loop system matrix to be diagonalizable. The algorithm was included in a control design package for optimal robust low-order controllers. Usefulness of the proposed numerical algorithm was demonstrated using numerous practical design cases where degeneracies occur frequently in the closed-loop system under an arbitrary controller design initialization and during the numerical search.

  17. Genetic algorithm based fuzzy control of spacecraft autonomous rendezvous

    NASA Technical Reports Server (NTRS)

    Karr, C. L.; Freeman, L. M.; Meredith, D. L.

    1990-01-01

    The U.S. Bureau of Mines is currently investigating ways to combine the control capabilities of fuzzy logic with the learning capabilities of genetic algorithms. Fuzzy logic allows for the uncertainty inherent in most control problems to be incorporated into conventional expert systems. Although fuzzy logic based expert systems have been used successfully for controlling a number of physical systems, the selection of acceptable fuzzy membership functions has generally been a subjective decision. High performance fuzzy membership functions for a fuzzy logic controller that manipulates a mathematical model simulating the autonomous rendezvous of spacecraft are learned using a genetic algorithm, a search technique based on the mechanics of natural genetics. The membership functions learned by the genetic algorithm provide for a more efficient fuzzy logic controller than membership functions selected by the authors for the rendezvous problem. Thus, genetic algorithms are potentially an effective and structured approach for learning fuzzy membership functions.

  18. Data-driven gradient algorithm for high-precision quantum control

    NASA Astrophysics Data System (ADS)

    Wu, Re-Bing; Chu, Bing; Owens, David H.; Rabitz, Herschel

    2018-04-01

    In the quest to achieve scalable quantum information processing technologies, gradient-based optimal control algorithms (e.g., grape) are broadly used for implementing high-precision quantum gates, but their performance is often hindered by deterministic or random errors in the system model and the control electronics. In this paper, we show that grape can be taught to be more effective by jointly learning from the design model and the experimental data obtained from process tomography. The resulting data-driven gradient optimization algorithm (d-grape) can in principle correct all deterministic gate errors, with a mild efficiency loss. The d-grape algorithm may become more powerful with broadband controls that involve a large number of control parameters, while other algorithms usually slow down due to the increased size of the search space. These advantages are demonstrated by simulating the implementation of a two-qubit controlled-not gate.

  19. An Efficient Downlink Scheduling Strategy Using Normal Graphs for Multiuser MIMO Wireless Systems

    NASA Astrophysics Data System (ADS)

    Chen, Jung-Chieh; Wu, Cheng-Hsuan; Lee, Yao-Nan; Wen, Chao-Kai

    Inspired by the success of the low-density parity-check (LDPC) codes in the field of error-control coding, in this paper we propose transforming the downlink multiuser multiple-input multiple-output scheduling problem into an LDPC-like problem using the normal graph. Based on the normal graph framework, soft information, which indicates the probability that each user will be scheduled to transmit packets at the access point through a specified angle-frequency sub-channel, is exchanged among the local processors to iteratively optimize the multiuser transmission schedule. Computer simulations show that the proposed algorithm can efficiently schedule simultaneous multiuser transmission which then increases the overall channel utilization and reduces the average packet delay.

  20. Description, characteristics and testing of the NASA airborne radar

    NASA Technical Reports Server (NTRS)

    Jones, W. R.; Altiz, O.; Schaffner, P.; Schrader, J. H.; Blume, H. J. C.

    1991-01-01

    Presented here is a description of a coherent radar scattermeter and its associated signal processing hardware, which have been specifically designed to detect microbursts and record their radar characteristics. Radar parameters, signal processing techniques and detection algorithms, all under computer control, combine to sense and process reflectivity, clutter, and microburst data. Also presented is the system's high density, high data rate recording system. This digital system is capable of recording many minutes of the in-phase and quadrature components and corresponding receiver gains of the scattered returns for selected spatial regions, as well as other aircraft and hardware related parameters of interest for post-flight analysis. Information is given in viewgraph form.

  1. QoS-Oriented High Dynamic Resource Allocation in Vehicular Communication Networks

    PubMed Central

    2014-01-01

    Vehicular ad hoc networks (VANETs) are emerging as new research area and attracting an increasing attention from both industry and research communities. In this context, a dynamic resource allocation policy that maximizes the use of available resources and meets the quality of service (QoS) requirement of constraining applications is proposed. It is a combination of a fair packet scheduling policy and a new adaptive QoS oriented call admission control (CAC) scheme based on the vehicle density variation. This scheme decides whether the connection request is to be admitted into the system, while providing fair access and guaranteeing the desired throughput. The proposed algorithm showed good performance in testing in real world environment. PMID:24616639

  2. Analysis Spectrum of ECG Signal and QRS Detection during Running on Treadmill

    NASA Astrophysics Data System (ADS)

    Agung Suhendra, M.; Ilham R., M.; Simbolon, Artha I.; Faizal A., M.; Munandar, A.

    2018-03-01

    The heart is an important organ in our metabolism in which it controls circulatory and oxygen. The heart exercise is needed one of them using the treadmill to prevent health. To analysis, it using electrocardiograph (ECG) to investigating and diagnosing anomalies of the heart. In this paper, we would like to analysis ECG signals during running on the treadmill with kinds of speeds. There are two analysis ECG signals i.e. QRS detection and power spectrum density (PSD). The result of PSD showed that subject 3 has highly for all subject and the result of QRS detection using pan Tomkins algorithm that a percentage of failed detection is an approaching to 0 % for all subject.

  3. Control Improvement for Jump-Diffusion Processes with Applications to Finance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baeuerle, Nicole, E-mail: nicole.baeuerle@kit.edu; Rieder, Ulrich, E-mail: ulrich.rieder@uni-ulm.de

    2012-02-15

    We consider stochastic control problems with jump-diffusion processes and formulate an algorithm which produces, starting from a given admissible control {pi}, a new control with a better value. If no improvement is possible, then {pi} is optimal. Such an algorithm is well-known for discrete-time Markov Decision Problems under the name Howard's policy improvement algorithm. The idea can be traced back to Bellman. Here we show with the help of martingale techniques that such an algorithm can also be formulated for stochastic control problems with jump-diffusion processes. As an application we derive some interesting results in financial portfolio optimization.

  4. Load Frequency Control of AC Microgrid Interconnected Thermal Power System

    NASA Astrophysics Data System (ADS)

    Lal, Deepak Kumar; Barisal, Ajit Kumar

    2017-08-01

    In this paper, a microgrid (MG) power generation system is interconnected with a single area reheat thermal power system for load frequency control study. A new meta-heuristic optimization algorithm i.e. Moth-Flame Optimization (MFO) algorithm is applied to evaluate optimal gains of the fuzzy based proportional, integral and derivative (PID) controllers. The system dynamic performance is studied by comparing the results with MFO optimized classical PI/PID controllers. Also the system performance is investigated with fuzzy PID controller optimized by recently developed grey wolf optimizer (GWO) algorithm, which has proven its superiority over other previously developed algorithm in many interconnected power systems.

  5. Efficient Algorithms for Estimating the Absorption Spectrum within Linear Response TDDFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brabec, Jiri; Lin, Lin; Shao, Meiyue

    We present a special symmetric Lanczos algorithm and a kernel polynomial method (KPM) for approximating the absorption spectrum of molecules within the linear response time-dependent density functional theory (TDDFT) framework in the product form. In contrast to existing algorithms, the new algorithms are based on reformulating the original non-Hermitian eigenvalue problem as a product eigenvalue problem and the observation that the product eigenvalue problem is self-adjoint with respect to an appropriately chosen inner product. This allows a simple symmetric Lanczos algorithm to be used to compute the desired absorption spectrum. The use of a symmetric Lanczos algorithm only requires halfmore » of the memory compared with the nonsymmetric variant of the Lanczos algorithm. The symmetric Lanczos algorithm is also numerically more stable than the nonsymmetric version. The KPM algorithm is also presented as a low-memory alternative to the Lanczos approach, but the algorithm may require more matrix-vector multiplications in practice. We discuss the pros and cons of these methods in terms of their accuracy as well as their computational and storage cost. Applications to a set of small and medium-sized molecules are also presented.« less

  6. Efficient Algorithms for Estimating the Absorption Spectrum within Linear Response TDDFT

    DOE PAGES

    Brabec, Jiri; Lin, Lin; Shao, Meiyue; ...

    2015-10-06

    We present a special symmetric Lanczos algorithm and a kernel polynomial method (KPM) for approximating the absorption spectrum of molecules within the linear response time-dependent density functional theory (TDDFT) framework in the product form. In contrast to existing algorithms, the new algorithms are based on reformulating the original non-Hermitian eigenvalue problem as a product eigenvalue problem and the observation that the product eigenvalue problem is self-adjoint with respect to an appropriately chosen inner product. This allows a simple symmetric Lanczos algorithm to be used to compute the desired absorption spectrum. The use of a symmetric Lanczos algorithm only requires halfmore » of the memory compared with the nonsymmetric variant of the Lanczos algorithm. The symmetric Lanczos algorithm is also numerically more stable than the nonsymmetric version. The KPM algorithm is also presented as a low-memory alternative to the Lanczos approach, but the algorithm may require more matrix-vector multiplications in practice. We discuss the pros and cons of these methods in terms of their accuracy as well as their computational and storage cost. Applications to a set of small and medium-sized molecules are also presented.« less

  7. Approximation algorithms for planning and control

    NASA Technical Reports Server (NTRS)

    Boddy, Mark; Dean, Thomas

    1989-01-01

    A control system operating in a complex environment will encounter a variety of different situations, with varying amounts of time available to respond to critical events. Ideally, such a control system will do the best possible with the time available. In other words, its responses should approximate those that would result from having unlimited time for computation, where the degree of the approximation depends on the amount of time it actually has. There exist approximation algorithms for a wide variety of problems. Unfortunately, the solution to any reasonably complex control problem will require solving several computationally intensive problems. Algorithms for successive approximation are a subclass of the class of anytime algorithms, algorithms that return answers for any amount of computation time, where the answers improve as more time is allotted. An architecture is described for allocating computation time to a set of anytime algorithms, based on expectations regarding the value of the answers they return. The architecture described is quite general, producing optimal schedules for a set of algorithms under widely varying conditions.

  8. Glycemic penalty index for adequately assessing and comparing different blood glucose control algorithms

    PubMed Central

    Van Herpe, Tom; De Brabanter, Jos; Beullens, Martine; De Moor, Bart; Van den Berghe, Greet

    2008-01-01

    Introduction Blood glucose (BG) control performed by intensive care unit (ICU) nurses is becoming standard practice for critically ill patients. New (semi-automated) 'BG control' algorithms (or 'insulin titration' algorithms) are under development, but these require stringent validation before they can replace the currently used algorithms. Existing methods for objectively comparing different insulin titration algorithms show weaknesses. In the current study, a new approach for appropriately assessing the adequacy of different algorithms is proposed. Methods Two ICU patient populations (with different baseline characteristics) were studied, both treated with a similar 'nurse-driven' insulin titration algorithm targeting BG levels of 80 to 110 mg/dl. A new method for objectively evaluating BG deviations from normoglycemia was founded on a smooth penalty function. Next, the performance of this new evaluation tool was compared with the current standard assessment methods, on an individual as well as a population basis. Finally, the impact of four selected parameters (the average BG sampling frequency, the duration of algorithm application, the severity of disease, and the type of illness) on the performance of an insulin titration algorithm was determined by multiple regression analysis. Results The glycemic penalty index (GPI) was proposed as a tool for assessing the overall glycemic control behavior in ICU patients. The GPI of a patient is the average of all penalties that are individually assigned to each measured BG value based on the optimized smooth penalty function. The computation of this index returns a number between 0 (no penalty) and 100 (the highest penalty). For some patients, the assessment of the BG control behavior using the traditional standard evaluation methods was different from the evaluation with GPI. Two parameters were found to have a significant impact on GPI: the BG sampling frequency and the duration of algorithm application. A higher BG sampling frequency and a longer algorithm application duration resulted in an apparently better performance, as indicated by a lower GPI. Conclusion The GPI is an alternative method for evaluating the performance of BG control algorithms. The blood glucose sampling frequency and the duration of algorithm application should be similar when comparing algorithms. PMID:18302732

  9. NASA Tech Briefs, June 2004

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Topics covered include: COTS MEMS Flow-Measurement Probes; Measurement of an Evaporating Drop on a Reflective Substrate; Airplane Ice Detector Based on a Microwave Transmission Line; Microwave/Sonic Apparatus Measures Flow and Density in Pipe; Reducing Errors by Use of Redundancy in Gravity Measurements; Membrane-Based Water Evaporator for a Space Suit; Compact Microscope Imaging System with Intelligent Controls; Chirped-Superlattice, Blocked-Intersubband QWIP; Charge-Dissipative Electrical Cables; Deep-Sea Video Cameras Without Pressure Housings; RFID and Memory Devices Fabricated Integrally on Substrates; Analyzing Dynamics of Cooperating Spacecraft; Spacecraft Attitude Maneuver Planning Using Genetic Algorithms; Forensic Analysis of Compromised Computers; Document Concurrence System; Managing an Archive of Images; MPT Prediction of Aircraft-Engine Fan Noise; Improving Control of Two Motor Controllers; Electro-deionization Using Micro-separated Bipolar Membranes; Safer Electrolytes for Lithium-Ion Cells; Rotating Reverse-Osmosis for Water Purification; Making Precise Resonators for Mesoscale Vibratory Gyroscopes; Robotic End Effectors for Hard-Rock Climbing; Improved Nutation Damper for a Spin-Stabilized Spacecraft; Exhaust Nozzle for a Multitube Detonative Combustion Engine; Arc-Second Pointer for Balloon-Borne Astronomical Instrument; Compact, Automated Centrifugal Slide-Staining System; Two-Armed, Mobile, Sensate Research Robot; Compensating for Effects of Humidity on Electronic Noses; Brush/Fin Thermal Interfaces; Multispectral Scanner for Monitoring Plants; Coding for Communication Channels with Dead-Time Constraints; System for Better Spacing of Airplanes En Route; Algorithm for Training a Recurrent Multilayer Perceptron; Orbiter Interface Unit and Early Communication System; White-Light Nulling Interferometers for Detecting Planets; and Development of Methodology for Programming Autonomous Agents.

  10. Using the ATL HDI 1000 to collect demodulated RF data for monitoring HIFU lesion formation

    NASA Astrophysics Data System (ADS)

    Anand, Ajay; Kaczkowski, Peter J.; Daigle, Ron E.; Huang, Lingyun; Paun, Marla; Beach, Kirk W.; Crum, Lawrence A.

    2003-05-01

    The ability to accurately track and monitor the progress of lesion formation during HIFU (High Intensity Focused Ultrasound) therapy is important for the success of HIFU-based treatment protocols. To aid in the development of algorithms for accurately targeting and monitoring formation of HIFU induced lesions, we have developed a software system to perform RF data acquisition during HIFU therapy using a commercially available clinical ultrasound scanner (ATL HDI 1000, Philips Medical Systems, Bothell, WA). The HDI 1000 scanner functions on a software dominant architecture, permitting straightforward external control of its operation and relatively easy access to quadrature demodulated RF data. A PC running a custom developed program sends control signals to the HIFU module via GPIB and to the HDI 1000 via Telnet, alternately interleaving HIFU exposures and RF frame acquisitions. The system was tested during experiments in which HIFU lesions were created in excised animal tissue. No crosstalk between the HIFU beam and the ultrasound imager was detected, thus demonstrating synchronization. Newly developed acquisition modes allow greater user control in setting the image geometry and scanline density, and enables high frame rate acquisition. This system facilitates rapid development of signal-processing based HIFU therapy monitoring algorithms and their implementation in image-guided thermal therapy systems. In addition, the HDI 1000 system can be easily customized for use with other emerging imaging modalities that require access to the RF data such as elastographic methods and new Doppler-based imaging and tissue characterization techniques.

  11. CrowdPhase: crowdsourcing the phase problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jorda, Julien; Sawaya, Michael R.; Yeates, Todd O., E-mail: yeates@mbi.ucla.edu

    The idea of attacking the phase problem by crowdsourcing is introduced. Using an interactive, multi-player, web-based system, participants work simultaneously to select phase sets that correspond to better electron-density maps in order to solve low-resolution phasing problems. The human mind innately excels at some complex tasks that are difficult to solve using computers alone. For complex problems amenable to parallelization, strategies can be developed to exploit human intelligence in a collective form: such approaches are sometimes referred to as ‘crowdsourcing’. Here, a first attempt at a crowdsourced approach for low-resolution ab initio phasing in macromolecular crystallography is proposed. A collaborativemore » online game named CrowdPhase was designed, which relies on a human-powered genetic algorithm, where players control the selection mechanism during the evolutionary process. The algorithm starts from a population of ‘individuals’, each with a random genetic makeup, in this case a map prepared from a random set of phases, and tries to cause the population to evolve towards individuals with better phases based on Darwinian survival of the fittest. Players apply their pattern-recognition capabilities to evaluate the electron-density maps generated from these sets of phases and to select the fittest individuals. A user-friendly interface, a training stage and a competitive scoring system foster a network of well trained players who can guide the genetic algorithm towards better solutions from generation to generation via gameplay. CrowdPhase was applied to two synthetic low-resolution phasing puzzles and it was shown that players could successfully obtain phase sets in the 30° phase error range and corresponding molecular envelopes showing agreement with the low-resolution models. The successful preliminary studies suggest that with further development the crowdsourcing approach could fill a gap in current crystallographic methods by making it possible to extract meaningful information in cases where limited resolution might otherwise prevent initial phasing.« less

  12. Automatic two- and three-dimensional mesh generation based on fuzzy knowledge processing

    NASA Astrophysics Data System (ADS)

    Yagawa, G.; Yoshimura, S.; Soneda, N.; Nakao, K.

    1992-09-01

    This paper describes the development of a novel automatic FEM mesh generation algorithm based on the fuzzy knowledge processing technique. A number of local nodal patterns are stored in a nodal pattern database of the mesh generation system. These nodal patterns are determined a priori based on certain theories or past experience of experts of FEM analyses. For example, such human experts can determine certain nodal patterns suitable for stress concentration analyses of cracks, corners, holes and so on. Each nodal pattern possesses a membership function and a procedure of node placement according to this function. In the cases of the nodal patterns for stress concentration regions, the membership function which is utilized in the fuzzy knowledge processing has two meanings, i.e. the “closeness” of nodal location to each stress concentration field as well as “nodal density”. This is attributed to the fact that a denser nodal pattern is required near a stress concentration field. What a user has to do in a practical mesh generation process are to choose several local nodal patterns properly and to designate the maximum nodal density of each pattern. After those simple operations by the user, the system places the chosen nodal patterns automatically in an analysis domain and on its boundary, and connects them smoothly by the fuzzy knowledge processing technique. Then triangular or tetrahedral elements are generated by means of the advancing front method. The key issue of the present algorithm is an easy control of complex two- or three-dimensional nodal density distribution by means of the fuzzy knowledge processing technique. To demonstrate fundamental performances of the present algorithm, a prototype system was constructed with one of object-oriented languages, Smalltalk-80 on a 32-bit microcomputer, Macintosh II. The mesh generation of several two- and three-dimensional domains with cracks, holes and junctions was presented as examples.

  13. Genetic algorithms for adaptive real-time control in space systems

    NASA Technical Reports Server (NTRS)

    Vanderzijp, J.; Choudry, A.

    1988-01-01

    Genetic Algorithms that are used for learning as one way to control the combinational explosion associated with the generation of new rules are discussed. The Genetic Algorithm approach tends to work best when it can be applied to a domain independent knowledge representation. Applications to real time control in space systems are discussed.

  14. An observer-based compensator for distributed delays

    NASA Technical Reports Server (NTRS)

    Luck, Rogelio; Ray, Asok

    1990-01-01

    This paper presents an algorithm for compensating delays that are distributed between the sensor(s), controller and actuator(s) within a control loop. This observer-based algorithm is specially suited to compensation of network-induced delays in integrated communication and control systems. The robustness of the algorithm relative to plant model uncertainties has been examined.

  15. Grand canonical electronic density-functional theory: Algorithms and applications to electrochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundararaman, Ravishankar; Goddard, III, William A.; Arias, Tomas A.

    First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solvemore » the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Lastly, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.« less

  16. Grand canonical electronic density-functional theory: Algorithms and applications to electrochemistry.

    PubMed

    Sundararaman, Ravishankar; Goddard, William A; Arias, Tomas A

    2017-03-21

    First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solve the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Finally, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.

  17. An atomistic fingerprint algorithm for learning ab initio molecular force fields

    NASA Astrophysics Data System (ADS)

    Tang, Yu-Hang; Zhang, Dongkun; Karniadakis, George Em

    2018-01-01

    Molecular fingerprints, i.e., feature vectors describing atomistic neighborhood configurations, is an important abstraction and a key ingredient for data-driven modeling of potential energy surface and interatomic force. In this paper, we present the density-encoded canonically aligned fingerprint algorithm, which is robust and efficient, for fitting per-atom scalar and vector quantities. The fingerprint is essentially a continuous density field formed through the superimposition of smoothing kernels centered on the atoms. Rotational invariance of the fingerprint is achieved by aligning, for each fingerprint instance, the neighboring atoms onto a local canonical coordinate frame computed from a kernel minisum optimization procedure. We show that this approach is superior over principal components analysis-based methods especially when the atomistic neighborhood is sparse and/or contains symmetry. We propose that the "distance" between the density fields be measured using a volume integral of their pointwise difference. This can be efficiently computed using optimal quadrature rules, which only require discrete sampling at a small number of grid points. We also experiment on the choice of weight functions for constructing the density fields and characterize their performance for fitting interatomic potentials. The applicability of the fingerprint is demonstrated through a set of benchmark problems.

  18. Grand canonical electronic density-functional theory: Algorithms and applications to electrochemistry

    DOE PAGES

    Sundararaman, Ravishankar; Goddard, III, William A.; Arias, Tomas A.

    2017-03-16

    First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solvemore » the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Lastly, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.« less

  19. Monte Carlo PDF method for turbulent reacting flow in a jet-stirred reactor

    NASA Astrophysics Data System (ADS)

    Roekaerts, D.

    1992-01-01

    A stochastic algorithm for the solution of the modeled scalar probability density function (PDF) transport equation for single-phase turbulent reacting flow is described. Cylindrical symmetry is assumed. The PDF is represented by ensembles of N representative values of the thermochemical variables in each cell of a nonuniform finite-difference grid and operations on these elements representing convection, diffusion, mixing and reaction are derived. A simplified model and solution algorithm which neglects the influence of turbulent fluctuations on mean reaction rates is also described. Both algorithms are applied to a selectivity problem in a real reactor.

  20. Robust Control Systems.

    DTIC Science & Technology

    1981-12-01

    time control system algorithms that will perform adequately (i.e., at least maintain closed-loop system stability) when ucertain parameters in the...system design models vary significantly. Such a control algorithm is said to have stability robustness-or more simply is said to be "robust". This...cas6s above, the performance is analyzed using a covariance analysis. The development of all the controllers and the performance analysis algorithms is

Top