Agetsuma, Naoki; Koda, Ryosuke; Tsujino, Riyou; Agetsuma-Yanagihara, Yoshimi
2015-02-01
Population densities of wildlife species tend to be correlated with resource productivity of habitats. However, wildlife density has been greatly modified by increasing human influences. For effective conservation, we must first identify the significant factors that affect wildlife density, and then determine the extent of the areas in which the factors should be managed. Here, we propose a protocol that accomplishes these two tasks. The main threats to wildlife are thought to be habitat alteration and hunting, with increases in alien carnivores being a concern that has arisen recently. Here, we examined the effect of these anthropogenic disturbances, as well as natural factors, on the local density of Yakushima macaques (Macaca fuscata yakui). We surveyed macaque densities at 30 sites across their habitat using data from 403 automatic cameras. We quantified the effect of natural vegetation (broad-leaved forest, mixed coniferous/broad-leaved forest, etc.), altered vegetation (forestry area and agricultural land), hunting pressure, and density of feral domestic dogs (Canis familiaris). The effect of each vegetation type was analyzed at numerous spatial scales (between 150 and 3,600-m radii from the camera locations) to determine the best scale for explaining macaque density (effective spatial scale). A model-selection procedure (generalized linear mixed model) was used to detect significant factors affecting macaque density. We detected that the most effective spatial scale was 400 m in radius, a scale that corresponded to group range size of the macaques. At this scale, the amount of broad-leaved forest was selected as a positive factor, whereas mixed forest and forestry area were selected as negative factors for macaque density. This study demonstrated the importance of the simultaneous evaluation of all possible factors of wildlife population density at the appropriate spatial scale. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Mosquera, Martín A.
2017-10-01
Provided the initial state, the Runge-Gross theorem establishes that the time-dependent (TD) external potential of a system of non-relativistic electrons determines uniquely their TD electronic density, and vice versa (up to a constant in the potential). This theorem requires the TD external potential and density to be Taylor-expandable around the initial time of the propagation. This paper presents an extension without this restriction. Given the initial state of the system and evolution of the density due to some TD scalar potential, we show that a perturbative (not necessarily weak) TD potential that induces a non-zero divergence of the external force-density, inside a small spatial subset and immediately after the initial propagation time, will cause a change in the density within that subset, implying that the TD potential uniquely determines the TD density. In this proof, we assume unitary evolution of wavefunctions and first-order differentiability (which does not imply analyticity) in time of the internal and external force-densities, electronic density, current density, and their spatial derivatives over the small spatial subset and short time interval.
Broekhuis, Femke; Gopalaswamy, Arjun M.
2016-01-01
Many ecological theories and species conservation programmes rely on accurate estimates of population density. Accurate density estimation, especially for species facing rapid declines, requires the application of rigorous field and analytical methods. However, obtaining accurate density estimates of carnivores can be challenging as carnivores naturally exist at relatively low densities and are often elusive and wide-ranging. In this study, we employ an unstructured spatial sampling field design along with a Bayesian sex-specific spatially explicit capture-recapture (SECR) analysis, to provide the first rigorous population density estimates of cheetahs (Acinonyx jubatus) in the Maasai Mara, Kenya. We estimate adult cheetah density to be between 1.28 ± 0.315 and 1.34 ± 0.337 individuals/100km2 across four candidate models specified in our analysis. Our spatially explicit approach revealed ‘hotspots’ of cheetah density, highlighting that cheetah are distributed heterogeneously across the landscape. The SECR models incorporated a movement range parameter which indicated that male cheetah moved four times as much as females, possibly because female movement was restricted by their reproductive status and/or the spatial distribution of prey. We show that SECR can be used for spatially unstructured data to successfully characterise the spatial distribution of a low density species and also estimate population density when sample size is small. Our sampling and modelling framework will help determine spatial and temporal variation in cheetah densities, providing a foundation for their conservation and management. Based on our results we encourage other researchers to adopt a similar approach in estimating densities of individually recognisable species. PMID:27135614
Broekhuis, Femke; Gopalaswamy, Arjun M
2016-01-01
Many ecological theories and species conservation programmes rely on accurate estimates of population density. Accurate density estimation, especially for species facing rapid declines, requires the application of rigorous field and analytical methods. However, obtaining accurate density estimates of carnivores can be challenging as carnivores naturally exist at relatively low densities and are often elusive and wide-ranging. In this study, we employ an unstructured spatial sampling field design along with a Bayesian sex-specific spatially explicit capture-recapture (SECR) analysis, to provide the first rigorous population density estimates of cheetahs (Acinonyx jubatus) in the Maasai Mara, Kenya. We estimate adult cheetah density to be between 1.28 ± 0.315 and 1.34 ± 0.337 individuals/100km2 across four candidate models specified in our analysis. Our spatially explicit approach revealed 'hotspots' of cheetah density, highlighting that cheetah are distributed heterogeneously across the landscape. The SECR models incorporated a movement range parameter which indicated that male cheetah moved four times as much as females, possibly because female movement was restricted by their reproductive status and/or the spatial distribution of prey. We show that SECR can be used for spatially unstructured data to successfully characterise the spatial distribution of a low density species and also estimate population density when sample size is small. Our sampling and modelling framework will help determine spatial and temporal variation in cheetah densities, providing a foundation for their conservation and management. Based on our results we encourage other researchers to adopt a similar approach in estimating densities of individually recognisable species.
Sissoko, Mahamadou S.; van den Hoogen, Lotus L.; Samake, Yacouba; Tapily, Amadou; Diarra, Adama Z.; Coulibaly, Maimouna; Bouare, Madama; Gaudart, Jean; Knight, Philip; Sauerwein, Robert W.; Takken, Willem; Bousema, Teun; Doumbo, Ogobara K.
2015-01-01
Heterogeneity in malaria exposure is most readily recognized in areas with low-transmission patterns. By comparison, little research has been done on spatial patterns in malaria exposure in high-endemic settings. We determined the spatial clustering of clinical malaria incidence, asymptomatic parasite carriage, and Anopheles density in two villages in Mali exposed to low- and mesoendemic-malaria transmission. In the two study areas that were < 1 km2 in size, we observed evidence for spatial clustering of Anopheles densities or malaria parasite carriage during the dry season. Anopheles density and malaria prevalence appeared associated in some of our detected hotspots. However, many households with high parasite prevalence or high Anopheles densities were located outside the identified hotspots. Our findings indicate that within small villages exposed to low- or mesoendemic-malaria transmission, spatial patterns in mosquito densities and parasite carriage are best detected in the dry season. Considering the high prevalence of parasite carriage outside detected hotspots, the suitability of the area for targeting control efforts to households or areas of more intense malaria transmission may be limited. PMID:26324728
Luminosity function of faint galaxies with ultraviolet continuum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stepanyan, D.A.
1985-05-01
The spatial density of faint galaxies with ultraviolet continuum in the Second Survey of the Byurakan Astrophysical Observatory is determined. The luminosity function of galaxies with ultraviolet continuum can be extended to objects fainter by 1-1.5 magnitudes. The spatial density of such galaxies in the interval of luminosities -16 /sup m/ .5 to -21 /sup m/ .5 is on the average 0.08 of the total density of field galaxies in the same interval of absolute magnitudes. The spatial density of low-luminosity galaxies with ultraviolet continuum is very high. In the interval from -12 /sup m/ .5 to -15 /sup m/more » .5 it is 0.23 Mpc/sup -3/.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, M.-L.; Pailloux, F.; Mauchamp, V.
The understanding of the mechanisms of helium bubble formation and evolution in materials requires the quantitative determination of several key quantities such as the helium density in the bubbles. Helium nanobubbles of about 16 nm in diameter were created in silicon by helium implantation at high fluence and subsequent annealing. Individual nanobubbles were analyzed by spatially resolved Electron Energy-loss Spectroscopy (EELS). We report on the in situ probing of helium desorption from the nanobubbles under electron irradiation. This opens new perspectives for a more accurate determination of the helium density through spatially resolved EELS.
Radiation reabsorption in a laser-produced plasma
NASA Astrophysics Data System (ADS)
Brunner, W.; John, R. W.; Paul, H.; Steudel, H.
1988-11-01
Taking into account the emission and absorption of resonance radiation in a recombining laser-produced plasma of intermediate density, the system of rate equations for the population densities coupled with the radiative transfer equation is approximately treated. In the case of spatially varying absorption, an approximate form of the rate equation determining the population density of the upper resonance level is derived. By applying this relation to an axially symmetric plasma, a simple formula that describes the effect of radiation reabsorption on the spatial behavior of the population density is obtained.
Spatial structure in the diet of imperial eagles Aquila heliaca in Kazakhstan
Katzner, T.E.; Bragin, E.A.; Knick, S.T.; Smith, A.T.
2006-01-01
We evaluated the relationship between spatial variability in prey and food habits of eastern imperial eagles Aquila heliaca at a 90,000 ha national nature reserve in north-central Kazakhstan. Eagle diet varied greatly within the population and the spatial structure of eagle diet within the population varied according to the scale of measurement. Patterns in dietary response were inconsistent with expectations if either ontogenetic imprinting or competition determined diet choice, but they met expectations if functional response determined diet. Eagles nesting near a high-density prey resource used that resource almost exclusively. In contrast, in locations with no single high-density prey species, eagles' diet was more diverse. Our results demonstrate that spatial structuring of diet of vertebrate predators can provide important insight into the mechanisms that drive dietary decisions. ?? OIKOS.
Restricted cross-scale habitat selection by American beavers.
Francis, Robert A; Taylor, Jimmy D; Dibble, Eric; Strickland, Bronson; Petro, Vanessa M; Easterwood, Christine; Wang, Guiming
2017-12-01
Animal habitat selection, among other ecological phenomena, is spatially scale dependent. Habitat selection by American beavers Castor canadensis (hereafter, beaver) has been studied at singular spatial scales, but to date no research addresses multi-scale selection. Our objectives were to determine if beaver habitat selection was specialized to semiaquatic habitats and if variables explaining habitat selection are consistent between landscape and fine spatial scales. We built maximum entropy (MaxEnt) models to relate landscape-scale presence-only data to landscape variables, and used generalized linear mixed models to evaluate fine spatial scale habitat selection using global positioning system (GPS) relocation data. Explanatory variables between the landscape and fine spatial scale were compared for consistency. Our findings suggested that beaver habitat selection at coarse (study area) and fine (within home range) scales was congruent, and was influenced by increasing amounts of woody wetland edge density and shrub edge density, and decreasing amounts of open water edge density. Habitat suitability at the landscape scale also increased with decreasing amounts of grass frequency. As territorial, central-place foragers, beavers likely trade-off open water edge density (i.e., smaller non-forested wetlands or lodges closer to banks) for defense and shorter distances to forage and obtain construction material. Woody plants along edges and expanses of open water for predator avoidance may limit beaver fitness and subsequently determine beaver habitat selection.
Restricted cross-scale habitat selection by American beavers
Taylor, Jimmy D; Dibble, Eric; Strickland, Bronson; Petro, Vanessa M; Easterwood, Christine; Wang, Guiming
2017-01-01
Abstract Animal habitat selection, among other ecological phenomena, is spatially scale dependent. Habitat selection by American beavers Castor canadensis (hereafter, beaver) has been studied at singular spatial scales, but to date no research addresses multi-scale selection. Our objectives were to determine if beaver habitat selection was specialized to semiaquatic habitats and if variables explaining habitat selection are consistent between landscape and fine spatial scales. We built maximum entropy (MaxEnt) models to relate landscape-scale presence-only data to landscape variables, and used generalized linear mixed models to evaluate fine spatial scale habitat selection using global positioning system (GPS) relocation data. Explanatory variables between the landscape and fine spatial scale were compared for consistency. Our findings suggested that beaver habitat selection at coarse (study area) and fine (within home range) scales was congruent, and was influenced by increasing amounts of woody wetland edge density and shrub edge density, and decreasing amounts of open water edge density. Habitat suitability at the landscape scale also increased with decreasing amounts of grass frequency. As territorial, central-place foragers, beavers likely trade-off open water edge density (i.e., smaller non-forested wetlands or lodges closer to banks) for defense and shorter distances to forage and obtain construction material. Woody plants along edges and expanses of open water for predator avoidance may limit beaver fitness and subsequently determine beaver habitat selection. PMID:29492032
Vaughn, Nicholas R.; Asner, Gregory P.; Smit, Izak P. J.; Riddel, Edward S.
2015-01-01
Factors controlling savanna woody vegetation structure vary at multiple spatial and temporal scales, and as a consequence, unraveling their combined effects has proven to be a classic challenge in savanna ecology. We used airborne LiDAR (light detection and ranging) to map three-dimensional woody vegetation structure throughout four savanna watersheds, each contrasting in geologic substrate and climate, in Kruger National Park, South Africa. By comparison of the four watersheds, we found that geologic substrate had a stronger effect than climate in determining watershed-scale differences in vegetation structural properties, including cover, height and crown density. Generalized Linear Models were used to assess the spatial distribution of woody vegetation structural properties, including cover, height and crown density, in relation to mapped hydrologic, topographic and fire history traits. For each substrate and climate combination, models incorporating topography, hydrology and fire history explained up to 30% of the remaining variation in woody canopy structure, but inclusion of a spatial autocovariate term further improved model performance. Both crown density and the cover of shorter woody canopies were determined more by unknown factors likely to be changing on smaller spatial scales, such as soil texture, herbivore abundance or fire behavior, than by our mapped regional-scale changes in topography and hydrology. We also detected patterns in spatial covariance at distances up to 50–450 m, depending on watershed and structural metric. Our results suggest that large-scale environmental factors play a smaller role than is often attributed to them in determining woody vegetation structure in southern African savannas. This highlights the need for more spatially-explicit, wide-area analyses using high resolution remote sensing techniques. PMID:26660502
Vaughn, Nicholas R; Asner, Gregory P; Smit, Izak P J; Riddel, Edward S
2015-01-01
Factors controlling savanna woody vegetation structure vary at multiple spatial and temporal scales, and as a consequence, unraveling their combined effects has proven to be a classic challenge in savanna ecology. We used airborne LiDAR (light detection and ranging) to map three-dimensional woody vegetation structure throughout four savanna watersheds, each contrasting in geologic substrate and climate, in Kruger National Park, South Africa. By comparison of the four watersheds, we found that geologic substrate had a stronger effect than climate in determining watershed-scale differences in vegetation structural properties, including cover, height and crown density. Generalized Linear Models were used to assess the spatial distribution of woody vegetation structural properties, including cover, height and crown density, in relation to mapped hydrologic, topographic and fire history traits. For each substrate and climate combination, models incorporating topography, hydrology and fire history explained up to 30% of the remaining variation in woody canopy structure, but inclusion of a spatial autocovariate term further improved model performance. Both crown density and the cover of shorter woody canopies were determined more by unknown factors likely to be changing on smaller spatial scales, such as soil texture, herbivore abundance or fire behavior, than by our mapped regional-scale changes in topography and hydrology. We also detected patterns in spatial covariance at distances up to 50-450 m, depending on watershed and structural metric. Our results suggest that large-scale environmental factors play a smaller role than is often attributed to them in determining woody vegetation structure in southern African savannas. This highlights the need for more spatially-explicit, wide-area analyses using high resolution remote sensing techniques.
Cornell, K.L.; Donovan, T.M.
2010-01-01
Understanding how spatial habitat patterns influence abundance and dynamics of animal populations is a primary goal in landscape ecology. We used an information-theoretic approach to investigate the association between habitat patterns at multiple spatial scales and demographic patterns for black-throated blue warblers (Dendroica caerulescens) at 20 study sites in west-central Vermont, USA from 2002 to 2005. Sites were characterized by: (1) territory-scale shrub density, (2) patch-scale shrub density occurring within 25 ha of territories, and (3) landscape-scale habitat patterns occurring within 5 km radius extents of territories. We considered multiple population parameters including abundance, age ratios, and annual fecundity. Territory-scale shrub density was most important for determining abundance and age ratios, but landscape-scale habitat structure strongly influenced reproductive output. Sites with higher territory-scale shrub density had higher abundance, and were more likely to be occupied by older, more experienced individuals compared to sites with lower shrub density. However, annual fecundity was higher on sites located in contiguously forested landscapes where shrub density was lower than the fragmented sites. Further, effects of habitat pattern at one spatial scale depended on habitat conditions at different scales. For example, abundance increased with increasing territory-scale shrub density, but this effect was much stronger in fragmented landscapes than in contiguously forested landscapes. These results suggest that habitat pattern at different spatial scales affect demographic parameters in different ways, and that effects of habitat patterns at one spatial scale depends on habitat conditions at other scales. ?? Springer Science+Business Media B.V. 2009.
Using spatial mark-recapture for conservation monitoring of grizzly bear populations in Alberta.
Boulanger, John; Nielsen, Scott E; Stenhouse, Gordon B
2018-03-26
One of the challenges in conservation is determining patterns and responses in population density and distribution as it relates to habitat and changes in anthropogenic activities. We applied spatially explicit capture recapture (SECR) methods, combined with density surface modelling from five grizzly bear (Ursus arctos) management areas (BMAs) in Alberta, Canada, to assess SECR methods and to explore factors influencing bear distribution. Here we used models of grizzly bear habitat and mortality risk to test local density associations using density surface modelling. Results demonstrated BMA-specific factors influenced density, as well as the effects of habitat and topography on detections and movements of bears. Estimates from SECR were similar to those from closed population models and telemetry data, but with similar or higher levels of precision. Habitat was most associated with areas of higher bear density in the north, whereas mortality risk was most associated (negatively) with density of bears in the south. Comparisons of the distribution of mortality risk and habitat revealed differences by BMA that in turn influenced local abundance of bears. Combining SECR methods with density surface modelling increases the resolution of mark-recapture methods by directly inferring the effect of spatial factors on regulating local densities of animals.
Poelmans, Ward; Van Raemdonck, Mario; Verstichel, Brecht; De Baerdemacker, Stijn; Torre, Alicia; Lain, Luis; Massaccesi, Gustavo E; Alcoba, Diego R; Bultinck, Patrick; Van Neck, Dimitri
2015-09-08
We perform a direct variational determination of the second-order (two-particle) density matrix corresponding to a many-electron system, under a restricted set of the two-index N-representability P-, Q-, and G-conditions. In addition, we impose a set of necessary constraints that the two-particle density matrix must be derivable from a doubly occupied many-electron wave function, i.e., a singlet wave function for which the Slater determinant decomposition only contains determinants in which spatial orbitals are doubly occupied. We rederive the two-index N-representability conditions first found by Weinhold and Wilson and apply them to various benchmark systems (linear hydrogen chains, He, N2, and CN(-)). This work is motivated by the fact that a doubly occupied many-electron wave function captures in many cases the bulk of the static correlation. Compared to the general case, the structure of doubly occupied two-particle density matrices causes the associate semidefinite program to have a very favorable scaling as L(3), where L is the number of spatial orbitals. Since the doubly occupied Hilbert space depends on the choice of the orbitals, variational calculation steps of the two-particle density matrix are interspersed with orbital-optimization steps (based on Jacobi rotations in the space of the spatial orbitals). We also point to the importance of symmetry breaking of the orbitals when performing calculations in a doubly occupied framework.
Herrando-Pérez, Salvador; Delean, Steven; Brook, Barry W; Cassey, Phillip; Bradshaw, Corey J A
2014-01-01
The use of long-term population data to separate the demographic role of climate from density-modified demographic processes has become a major topic of ecological investigation over the last two decades. Although the ecological and evolutionary mechanisms that determine the strength of density feedbacks are now well understood, the degree to which climate gradients shape those processes across taxa and broad spatial scales remains unclear. Intuitively, harsh or highly variable environmental conditions should weaken compensatory density feedbacks because populations are hypothetically unable to achieve or maintain densities at which social and trophic interactions (e.g., competition, parasitism, predation, disease) might systematically reduce population growth. Here we investigate variation in the strength of compensatory density feedback, from long-term time series of abundance over 146 species of birds and mammals, in response to spatial gradients of broad-scale temperature precipitation variables covering 97 localities in 28 countries. We use information-theoretic metrics to rank phylogenetic generalized least-squares regression models that control for sample size (time-series length) and phylogenetic non-independence. Climatic factors explained < 1% of the remaining variation in density-feedback strength across species, with the highest non-control, model-averaged effect sizes related to extreme precipitation variables. We could not link our results directly to other published studies, because ecologists use contrasting responses, predictors and statistical approaches to correlate density feedback and climate--at the expense of comparability in a macroecological context. Censuses of multiple populations within a given species, and a priori knowledge of the spatial scales at which density feedbacks interact with climate, seem to be necessary to determine cross-taxa variation in this phenomenon. Despite the availability of robust modelling tools, the appropriate data have not yet been gathered for most species, meaning that we cannot yet make any robust generalisations about how demographic feedbacks interact with climate.
Herrando-Pérez, Salvador; Delean, Steven; Brook, Barry W.; Cassey, Phillip; Bradshaw, Corey J. A.
2014-01-01
The use of long-term population data to separate the demographic role of climate from density-modified demographic processes has become a major topic of ecological investigation over the last two decades. Although the ecological and evolutionary mechanisms that determine the strength of density feedbacks are now well understood, the degree to which climate gradients shape those processes across taxa and broad spatial scales remains unclear. Intuitively, harsh or highly variable environmental conditions should weaken compensatory density feedbacks because populations are hypothetically unable to achieve or maintain densities at which social and trophic interactions (e.g., competition, parasitism, predation, disease) might systematically reduce population growth. Here we investigate variation in the strength of compensatory density feedback, from long-term time series of abundance over 146 species of birds and mammals, in response to spatial gradients of broad-scale temperature precipitation variables covering 97 localities in 28 countries. We use information-theoretic metrics to rank phylogenetic generalized least-squares regression models that control for sample size (time-series length) and phylogenetic non-independence. Climatic factors explained < 1% of the remaining variation in density-feedback strength across species, with the highest non-control, model-averaged effect sizes related to extreme precipitation variables. We could not link our results directly to other published studies, because ecologists use contrasting responses, predictors and statistical approaches to correlate density feedback and climate – at the expense of comparability in a macroecological context. Censuses of multiple populations within a given species, and a priori knowledge of the spatial scales at which density feedbacks interact with climate, seem to be necessary to determine cross-taxa variation in this phenomenon. Despite the availability of robust modelling tools, the appropriate data have not yet been gathered for most species, meaning that we cannot yet make any robust generalisations about how demographic feedbacks interact with climate. PMID:24618822
Snowden, Aleksandra J; Freiburger, Tina L
2015-05-01
We estimated spatially lagged regression and spatial regime models to determine if the variation in total, on-premise, and off-premise alcohol outlet(1) density is related to robbery density, while controlling for direct and moderating effects of social disorganization.(2) Results suggest that the relationship between alcohol outlet density and robbery density is sensitive to the measurement of social disorganization levels. Total alcohol outlet density and off-premise alcohol outlet density were significantly associated with robbery density when social disorganization variables were included separately in the models. However, when social disorganization levels were captured as a four item index, only the association between off-premise alcohol outlets and robbery density remained significant. More work is warranted in identifying the role of off-premise alcohol outlets and their characteristics in robbery incidents. Copyright © 2015 Elsevier Inc. All rights reserved.
Determining density of maize canopy. 1: Digitized photography
NASA Technical Reports Server (NTRS)
Stoner, E. R.; Baumgardner, M. F.; Swain, P. H.
1972-01-01
The relationship between different densities of maize (Zea mays L.) canopies and the energy reflected by these canopies was studied. Field plots were laid out, representing four growth stages of maize, on a dark soil and on a very light colored surface soil. Spectral and spatial data were obtained from color and color infrared photography taken from a vertical distance of 10 m above the maize canopies. Estimates of ground cover were related to field measurements of leaf area index. Ground cover was predicted from leaf area index measurements by a second order equation. Color infrared photography proved helpful in determining the density of maize canopy on dark soils. Color photography was useful for determining canopy density on light colored soils. The near infrared dye layer is the most valuable in canopy density determinations.
Talwar, Sameer; Roopwani, Rahul; Anderson, Carl A; Buckner, Ira S; Drennen, James K
2017-08-01
Near-infrared chemical imaging (NIR-CI) combines spectroscopy with digital imaging, enabling spatially resolved analysis and characterization of pharmaceutical samples. Hardness and relative density are critical quality attributes (CQA) that affect tablet performance. Intra-sample density or hardness variability can reveal deficiencies in formulation design or the tableting process. This study was designed to develop NIR-CI methods to predict spatially resolved tablet density and hardness. The method was implemented using a two-step procedure. First, NIR-CI was used to develop a relative density/solid fraction (SF) prediction method for pure microcrystalline cellulose (MCC) compacts only. A partial least squares (PLS) model for predicting SF was generated by regressing the spectra of certain representative pixels selected from each image against the compact SF. Pixel selection was accomplished with a threshold based on the Euclidean distance from the median tablet spectrum. Second, micro-indentation was performed on the calibration compacts to obtain hardness values. A univariate model was developed by relating the empirical hardness values to the NIR-CI predicted SF at the micro-indented pixel locations: this model generated spatially resolved hardness predictions for the entire tablet surface.
Spatial variability of heating profiles in windrowed poultry litter
USDA-ARS?s Scientific Manuscript database
In-house windrow composting of broiler litter has been suggested as a means to reduce microbial populations between flocks. Published time-temperature goals are used to determine the success of the composting process for microbial reductions. Spatial and temporal density of temperature measurement ...
Optimizing density patterns to achieve desired light extraction for displays
NASA Astrophysics Data System (ADS)
Davenport, T. L. R.; Cassarly, W. J.
2007-01-01
In displays such as backlights and signage, it is often desirable to produce a particular spatial luminance distribution of light. This work demonstrates an iterative optimization technique for determining the density of light extractors required to produce desired luminance distributions.
Drewes, Jan; Zhu, Weina; Melcher, David
2018-01-01
The study of how visual processing functions in the absence of visual awareness has become a major research interest in the vision-science community. One of the main sources of evidence that stimuli that do not reach conscious awareness-and are thus "invisible"-are still processed to some degree by the visual system comes from studies using continuous flash suppression (CFS). Why and how CFS works may provide more general insight into how stimuli access awareness. As spatial and temporal properties of stimuli are major determinants of visual perception, we hypothesized that these properties of the CFS masks would be of significant importance to the achieved suppression depth. In previous studies however, the spatial and temporal properties of the masks themselves have received little study, and masking parameters vary widely across studies, making a metacomparison difficult. To investigate the factors that determine the effectiveness of CFS, we varied both the temporal frequency and the spatial density of Mondrian-style masks. We consistently found the longest suppression duration for a mask temporal frequency of around 6 Hz. In trials using masks with reduced spatial density, suppression was weaker and frequency tuning was less precise. In contrast, removing color reduced mask effectiveness but did not change the pattern of suppression strength as a function of frequency. Overall, this pattern of results stresses the importance of CFS mask parameters and is consistent with the idea that CFS works by disrupting the spatiotemporal mechanisms that underlie conscious access to visual input.
Janneke Hille Ris Lambers; James S. Clark
2003-01-01
Processes limiting recruitment of trees may have large impacts on forest dynamics. In this paper, we determined the effects of dispersal, shrubs (Rhododendron maximum), and density-dependent mortality on seed and seedling distributions of Southern Appalachian trees. We quantified the spatial distribution of seed rain, seed bank densities, first-year...
Domnich, Alexander; Arata, Lucia; Amicizia, Daniela; Signori, Alessio; Gasparini, Roberto; Panatto, Donatella
2016-11-16
Geographical accessibility is an important determinant for the utilisation of community pharmacies. The present study explored patterns of spatial accessibility with respect to pharmacies in Liguria, Italy, a region with particular geographical and demographic features. Municipal density of pharmacies was proxied as the number of pharmacies per capita and per km2, and spatial autocorrelation analysis was performed to identify spatial clusters. Both non-spatial and spatial models were constructed to predict the study outcome. Spatial autocorrelation analysis showed a highly significant clustered pattern in the density of pharmacies per capita (I=0.082) and per km2 (I=0.295). Potentially under-supplied areas were mostly located in the mountainous hinterland. Ordinary least-squares (OLS) regressions established a significant positive relationship between the density of pharmacies and income among municipalities located at high altitudes, while no such association was observed in lower-lying areas. However, residuals of the OLS models were spatially auto-correlated. The best-fitting mixed geographically weighted regression (GWR) models outperformed the corresponding OLS models. Pharmacies per capita were best predicted by two local predictors (altitude and proportion of immigrants) and two global ones (proportion of elderly residents and income), while the local terms population, mean altitude and rural status and the global term income functioned as independent variables predicting pharmacies per km2. The density of pharmacies in Liguria was found to be associated with both socio-economic and landscape factors. Mapping of mixed GWR results would be helpful to policy-makers.
Analytic solution of the Spencer-Lewis angular-spatial moments equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filippone, W.L.
A closed-form solution for the angular-spatial moments of the Spencer-Lewis equation is presented that is valid for infinite homogeneous media. From the moments, the electron density distribution as a function of position and path length (energy) is reconstructed for several sample problems involving plane isotropic sources of electrons in aluminium. The results are in excellent agreement with those determined numerically using the streaming ray method. The primary use of the closed form solution will most likely be to generate accurate electron transport benchmark solutions. In principle, the electron density as a function of space, path length, and direction can bemore » determined for planar sources of arbitrary angular distribution.« less
Proximity-induced magnetism in transition-metal substituted graphene
Crook, Charles B.; Constantin, Costel; Ahmed, Towfiq; Zhu, Jian-Xin; Balatsky, Alexander V.; Haraldsen, Jason T.
2015-01-01
We investigate the interactions between two identical magnetic impurities substituted into a graphene superlattice. Using a first-principles approach, we calculate the electronic and magnetic properties for transition-metal substituted graphene systems with varying spatial separation. These calculations are compared for three different magnetic impurities, manganese, chromium, and vanadium. We determine the electronic band structure, density of states, and Millikan populations (magnetic moment) for each atom, as well as calculate the exchange parameter between the two magnetic atoms as a function of spatial separation. We find that the presence of magnetic impurities establishes a distinct magnetic moment in the graphene lattice, where the interactions are highly dependent on the spatial and magnetic characteristic between the magnetic and carbon atoms, which leads to either ferromagnetic or antiferromagnetic behavior. Furthermore, through an analysis of the calculated exchange energies and partial density of states, it is determined that interactions between the magnetic atoms can be classified as an RKKY interaction. PMID:26235646
Generation of laser-induced periodic surface structures on transparent material-fused silica
NASA Astrophysics Data System (ADS)
Schwarz, Simon; Rung, Stefan; Hellmann, Ralf
2016-05-01
We report on a comparison between simulated and experimental results for the generation of laser-induced periodic surface structures with low spatial frequency on dielectrics. Using the established efficacy factor theory extended by a Drude model, we determine the required carrier density for the generation of low spatial frequency LIPSS (LSFL) and forecast their periodicity and orientation. In a subsequent calculative step, we determine the fluence of ultrashort laser pulses necessary to excite this required carrier density in due consideration of the pulse number dependent ablation threshold. The later calculation is based on a rate equation including photo- and avalanche ionization and derives appropriate process parameters for a selective generation of LSFL. Exemplarily, we apply this approach to the generation of LSFL on fused silica using a 1030 nm femtosecond laser. The experimental results for the orientation and spatial periodicity of LSFL reveal excellent agreement with the simulation.
Generation of laser-induced periodic surface structures on transparent material-fused silica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarz, Simon; Rung, Stefan; Hellmann, Ralf
2016-05-02
We report on a comparison between simulated and experimental results for the generation of laser-induced periodic surface structures with low spatial frequency on dielectrics. Using the established efficacy factor theory extended by a Drude model, we determine the required carrier density for the generation of low spatial frequency LIPSS (LSFL) and forecast their periodicity and orientation. In a subsequent calculative step, we determine the fluence of ultrashort laser pulses necessary to excite this required carrier density in due consideration of the pulse number dependent ablation threshold. The later calculation is based on a rate equation including photo- and avalanche ionizationmore » and derives appropriate process parameters for a selective generation of LSFL. Exemplarily, we apply this approach to the generation of LSFL on fused silica using a 1030 nm femtosecond laser. The experimental results for the orientation and spatial periodicity of LSFL reveal excellent agreement with the simulation.« less
Abdala-Roberts, Luis; Parra-Tabla, Víctor; Moreira, Xoaquín; Ramos-Zapata, José
2017-02-01
The factors driving variation in species interactions are often unknown, and few studies have made a link between changes in interactions and the strength of selection. We report on spatial variation in functional responses by a seed predator (SP) and its parasitic wasps associated with the herb Ruellia nudiflora . We assessed the influence of plant density on consumer responses and determined whether density effects and spatial variation in functional responses altered natural selection by these consumers on the plant. We established common gardens at two sites in Yucatan, Mexico, and planted R. nudiflora at two densities in each garden. We recorded fruit output and SP and parasitoid attack; calculated relative fitness (seed number) under scenarios of three trophic levels (accounting for SP and parasitoid effects), two trophic levels (accounting for SP but not parasitoid effects), and one trophic level (no consumer effects); and compared selection strength on fruit number under these scenarios across sites and densities. There was spatial variation in SP recruitment, whereby the SP functional response was negatively density-dependent at one site but density-independent at the other; parasitoid responses were density-independent and invariant across sites. Site variation in SP attack led, in turn, to differences in SP selection on fruit output, and parasitoids did not alter SP selection. There were no significant effects of density at either site. Our results provide a link between consumer functional responses and consumer selection on plants, which deepens our understanding of geographic variation in the evolutionary outcomes of multitrophic interactions. © 2017 Botanical Society of America.
Skórka, Piotr; Nowicki, Piotr; Bonk, Maciej; Król, Wiesław; Szpiłyk, Damian; Woyciechowski, Michal
2016-01-01
The type of matrix, the landscape surrounding habitat patches, may determine the distribution and function of local populations. However, the matrix is often heterogeneous, and its various components may differentially contribute to metapopulation processes at different spatial scales, a phenomenon that has rarely been investigated. The aim of this study was to estimate the relative importance of matrix composition and spatial scale, habitat quality, and management intensity on the occurrence and density of local populations of two endangered large blue butterflies: Phengaris teleius and P. nausithous. Presence and abundance data were assessed over two years, 2011–12, in 100 local patches within two heterogeneous regions (near Kraków and Tarnów, southern Poland). The matrix composition was analyzed at eight spatial scales. We observed high occupancy rates in both species, regions and years. With the exception of area and isolation, almost all of the matrix components contributed to Phengaris sp. densities. The different matrix components acted at different spatial scales (grassland cover within 4 and 3 km, field cover within 0.4 and 0.3 km and water cover within 4 km radii for P. teleius and P. nausithous, respectively) and provided the highest independent contribution to the butterfly densities. Additionally, the effects of a 0.4 km radius of forest cover and a food plant cover on P. teleius, and a 1 km radius of settlement cover and management intensity on P. nausithous densities were observed. Contrary to former studies we conclude that the matrix heterogeneity and spatial scale rather than general matrix type are of relevance for densities of butterflies. Conservation strategies for these umbrella species should concentrate on maintaining habitat quality and managing matrix composition at the most appropriate spatial scales. PMID:28005942
Kajzer-Bonk, Joanna; Skórka, Piotr; Nowicki, Piotr; Bonk, Maciej; Król, Wiesław; Szpiłyk, Damian; Woyciechowski, Michal
2016-01-01
The type of matrix, the landscape surrounding habitat patches, may determine the distribution and function of local populations. However, the matrix is often heterogeneous, and its various components may differentially contribute to metapopulation processes at different spatial scales, a phenomenon that has rarely been investigated. The aim of this study was to estimate the relative importance of matrix composition and spatial scale, habitat quality, and management intensity on the occurrence and density of local populations of two endangered large blue butterflies: Phengaris teleius and P. nausithous. Presence and abundance data were assessed over two years, 2011-12, in 100 local patches within two heterogeneous regions (near Kraków and Tarnów, southern Poland). The matrix composition was analyzed at eight spatial scales. We observed high occupancy rates in both species, regions and years. With the exception of area and isolation, almost all of the matrix components contributed to Phengaris sp. densities. The different matrix components acted at different spatial scales (grassland cover within 4 and 3 km, field cover within 0.4 and 0.3 km and water cover within 4 km radii for P. teleius and P. nausithous, respectively) and provided the highest independent contribution to the butterfly densities. Additionally, the effects of a 0.4 km radius of forest cover and a food plant cover on P. teleius, and a 1 km radius of settlement cover and management intensity on P. nausithous densities were observed. Contrary to former studies we conclude that the matrix heterogeneity and spatial scale rather than general matrix type are of relevance for densities of butterflies. Conservation strategies for these umbrella species should concentrate on maintaining habitat quality and managing matrix composition at the most appropriate spatial scales.
A spatial analysis of social and economic determinants of tuberculosis in Brazil.
Harling, Guy; Castro, Marcia C
2014-01-01
We investigated the spatial distribution, and social and economic correlates, of tuberculosis in Brazil between 2002 and 2009 using municipality-level age/sex-standardized tuberculosis notification data. Rates were very strongly spatially autocorrelated, being notably high in urban areas on the eastern seaboard and in the west of the country. Non-spatial ecological regression analyses found higher rates associated with urbanicity, population density, poor economic conditions, household crowding, non-white population and worse health and healthcare indicators. These associations remained in spatial conditional autoregressive models, although the effect of poverty appeared partially confounded by urbanicity, race and spatial autocorrelation, and partially mediated by household crowding. Our analysis highlights both the multiple relationships between socioeconomic factors and tuberculosis in Brazil, and the importance of accounting for spatial factors in analysing socioeconomic determinants of tuberculosis. © 2013 Published by Elsevier Ltd.
Royle, J. Andrew; Chandler, Richard B.; Gazenski, Kimberly D.; Graves, Tabitha A.
2013-01-01
Population size and landscape connectivity are key determinants of population viability, yet no methods exist for simultaneously estimating density and connectivity parameters. Recently developed spatial capture–recapture (SCR) models provide a framework for estimating density of animal populations but thus far have not been used to study connectivity. Rather, all applications of SCR models have used encounter probability models based on the Euclidean distance between traps and animal activity centers, which implies that home ranges are stationary, symmetric, and unaffected by landscape structure. In this paper we devise encounter probability models based on “ecological distance,” i.e., the least-cost path between traps and activity centers, which is a function of both Euclidean distance and animal movement behavior in resistant landscapes. We integrate least-cost path models into a likelihood-based estimation scheme for spatial capture–recapture models in order to estimate population density and parameters of the least-cost encounter probability model. Therefore, it is possible to make explicit inferences about animal density, distribution, and landscape connectivity as it relates to animal movement from standard capture–recapture data. Furthermore, a simulation study demonstrated that ignoring landscape connectivity can result in negatively biased density estimators under the naive SCR model.
Royle, J Andrew; Chandler, Richard B; Gazenski, Kimberly D; Graves, Tabitha A
2013-02-01
Population size and landscape connectivity are key determinants of population viability, yet no methods exist for simultaneously estimating density and connectivity parameters. Recently developed spatial capture--recapture (SCR) models provide a framework for estimating density of animal populations but thus far have not been used to study connectivity. Rather, all applications of SCR models have used encounter probability models based on the Euclidean distance between traps and animal activity centers, which implies that home ranges are stationary, symmetric, and unaffected by landscape structure. In this paper we devise encounter probability models based on "ecological distance," i.e., the least-cost path between traps and activity centers, which is a function of both Euclidean distance and animal movement behavior in resistant landscapes. We integrate least-cost path models into a likelihood-based estimation scheme for spatial capture-recapture models in order to estimate population density and parameters of the least-cost encounter probability model. Therefore, it is possible to make explicit inferences about animal density, distribution, and landscape connectivity as it relates to animal movement from standard capture-recapture data. Furthermore, a simulation study demonstrated that ignoring landscape connectivity can result in negatively biased density estimators under the naive SCR model.
Larabell, Carolyn A.; Le Gros, Mark A.; McQueen, David M.; Peskin, Charles S.
2014-01-01
In this work, we examine how volume exclusion caused by regions of high chromatin density might influence the time required for proteins to find specific DNA binding sites. The spatial variation of chromatin density within mouse olfactory sensory neurons is determined from soft X-ray tomography reconstructions of five nuclei. We show that there is a division of the nuclear space into regions of low-density euchromatin and high-density heterochromatin. Volume exclusion experienced by a diffusing protein caused by this varying density of chromatin is modeled by a repulsive potential. The value of the potential at a given point in space is chosen to be proportional to the density of chromatin at that location. The constant of proportionality, called the volume exclusivity, provides a model parameter that determines the strength of volume exclusion. Numerical simulations demonstrate that the mean time for a protein to locate a binding site localized in euchromatin is minimized for a finite, nonzero volume exclusivity. For binding sites in heterochromatin, the mean time is minimized when the volume exclusivity is zero (the protein experiences no volume exclusion). An analytical theory is developed to explain these results. The theory suggests that for binding sites in euchromatin there is an optimal level of volume exclusivity that balances a reduction in the volume searched in finding the binding site, with the height of effective potential barriers the protein must cross during the search process. PMID:23955281
Magnetic Resonance Imaging of Ventilation and Perfusion in the Lung
NASA Technical Reports Server (NTRS)
Prisk, Gordon Kim (Inventor); Hopkins, Susan Roberta (Inventor); Pereira De Sa, Rui Carlos (Inventor); Theilmann, Rebecca Jean (Inventor); Buxton, Richard Bruce (Inventor); Cronin, Matthew Vincent (Inventor)
2017-01-01
Methods, devices, and systems are disclosed for implementing a fully quantitative non-injectable contrast proton MRI technique to measure spatial ventilation-perfusion (VA/Q) matching and spatial distribution of ventilation and perfusion. In one aspect, a method using MRI to characterize ventilation and perfusion in a lung includes acquiring an MR image of the lung having MR data in a voxel and obtaining a breathing frequency parameter, determining a water density value, a specific ventilation value, and a perfusion value in at least one voxel of the MR image based on the MR data and using the water density value to determine an air content value, and determining a ventilation-perfusion ratio value that is the product of the specific ventilation value, the air content value, the inverse of the perfusion value, and the breathing frequency.
Fuentes, Cesar Mario; Hernandez, Vladimir
2013-01-01
The aim of this study is to examine the spatial distribution of pedestrian injury collisions and analyse the environmental (social and physical) risk factors in Ciudad Juarez, Mexico. More specifically, this study investigates the influence of land use, density, traffic and socio-economic characteristics. This cross sectional study is based on pedestrian injury collision data that were collected by the Municipal Transit Police during 2008-2009. This research presents an analysis of vehicle-pedestrian collisions and their spatial risk determinants using mixed methods that included (1) spatial/geographical information systems (GIS) analysis of pedestrian collision data and (2) ordinary least squares (OLS) regression analysis to explain the density of pedestrian collisions data. In our model, we found a higher probability for pedestrian collisions in census tracts with population and employment density, large concentration of commercial/retail land uses and older people (65 and more). Interventions to alleviate this situation including transportation planning such as decentralisation of municipal transport system, investment in road infrastructure - density of traffic lights, pedestrian crossing, road design, improves lane demarcation. Besides, land use planning interventions should be implemented in commercial/retail areas, in particular separating pedestrian and vehicular spaces.
Hurford, Amy; Hebblewhite, Mark; Lewis, Mark A
2006-11-01
A reduced probability of finding mates at low densities is a frequently hypothesized mechanism for a component Allee effect. At low densities dispersers are less likely to find mates and establish new breeding units. However, many mathematical models for an Allee effect do not make a distinction between breeding group establishment and subsequent population growth. Our objective is to derive a spatially explicit mathematical model, where dispersers have a reduced probability of finding mates at low densities, and parameterize the model for wolf recolonization in the Greater Yellowstone Ecosystem (GYE). In this model, only the probability of establishing new breeding units is influenced by the reduced probability of finding mates at low densities. We analytically and numerically solve the model to determine the effect of a decreased probability in finding mates at low densities on population spread rate and density. Our results suggest that a reduced probability of finding mates at low densities may slow recolonization rate.
Li, Kevin; Vandermeer, John H; Perfecto, Ivette
2016-05-01
Spatial patterns in ecology can be described as reflective of environmental heterogeneity (exogenous), or emergent from dynamic relationships between interacting species (endogenous), but few empirical studies focus on the combination. The spatial distribution of the nests of Azteca sericeasur, a keystone tropical arboreal ant, is thought to form endogenous spatial patterns among the shade trees of a coffee plantation through self-regulating interactions with controlling agents (i.e. natural enemies). Using inhomogeneous point process models, we found evidence for both types of processes in the spatial distribution of A. sericeasur. Each year's nest distribution was determined mainly by a density-dependent relationship with the previous year's lagged nest density; but using a novel application of a Thomas cluster process to account for the effects of nest clustering, we found that nest distribution also correlated significantly with tree density in the later years of the study. This coincided with the initiation of agricultural intensification and tree felling on the coffee farm. The emergence of this significant exogenous effect, along with the changing character of the density-dependent effect of lagged nest density, provides clues to the mechanism behind a unique phenomenon observed in the plot, that of an increase in nest population despite resource limitation in nest sites. Our results have implications in coffee agroecological management, as this system provides important biocontrol ecosystem services. Further research is needed, however, to understand the effective scales at which these relationships occur.
Zhu, JiangLing; Shi, Yue; Fang, LeQi; Liu, XingE; Ji, ChengJun
2015-06-01
The physical and mechanical properties of wood affect the growth and development of trees, and also act as the main criteria when determining wood usage. Our understanding on patterns and controls of wood physical and mechanical properties could provide benefits for forestry management and bases for wood application and forest tree breeding. However, current studies on wood properties mainly focus on wood density and ignore other wood physical properties. In this study, we established a comprehensive database of wood physical properties across major tree species in China. Based on this database, we explored spatial patterns and driving factors of wood properties across major tree species in China. Our results showed that (i) compared with wood density, air-dried density, tangential shrinkage coefficient and resilience provide more accuracy and higher explanation power when used as the evaluation index of wood physical properties. (ii) Among life form, climatic and edaphic variables, life form is the dominant factor shaping spatial patterns of wood physical properties, climatic factors the next, and edaphic factors have the least effects, suggesting that the effects of climatic factors on spatial variations of wood properties are indirectly induced by their effects on species distribution.
Role of Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse) in local dengue epidemics in Taiwan.
Tsai, Pui-Jen; Teng, Hwa-Jen
2016-11-09
Aedes mosquitoes in Taiwan mainly comprise Aedes albopictus and Ae. aegypti. However, the species contributing to autochthonous dengue spread and the extent at which it occurs remain unclear. Thus, in this study, we spatially analyzed real data to determine spatial features related to local dengue incidence and mosquito density, particularly that of Ae. albopictus and Ae. aegypti. We used bivariate Moran's I statistic and geographically weighted regression (GWR) spatial methods to analyze the globally spatial dependence and locally regressed relationship between (1) imported dengue incidences and Breteau indices (BIs) of Ae. albopictus, (2) imported dengue incidences and BI of Ae. aegypti, (3) autochthonous dengue incidences and BI of Ae. albopictus, (4) autochthonous dengue incidences and BI of Ae. aegypti, (5) all dengue incidences and BI of Ae. albopictus, (6) all dengue incidences and BI of Ae. aegypti, (7) BI of Ae. albopictus and human population density, and (8) BI of Ae. aegypti and human population density in 348 townships in Taiwan. In the GWR models, regression coefficients of spatially regressed relationships between the incidence of autochthonous dengue and vector density of Ae. aegypti were significant and positive in most townships in Taiwan. However, Ae. albopictus had significant but negative regression coefficients in clusters of dengue epidemics. In the global bivariate Moran's index, spatial dependence between the incidence of autochthonous dengue and vector density of Ae. aegypti was significant and exhibited positive correlation in Taiwan (bivariate Moran's index = 0.51). However, Ae. albopictus exhibited positively significant but low correlation (bivariate Moran's index = 0.06). Similar results were observed in the two spatial methods between all dengue incidences and Aedes mosquitoes (Ae. aegypti and Ae. albopictus). The regression coefficients of spatially regressed relationships between imported dengue cases and Aedes mosquitoes (Ae. aegypti and Ae. albopictus) were significant in 348 townships in Taiwan. The results indicated that local Aedes mosquitoes do not contribute to the dengue incidence of imported cases. The density of Ae. aegypti positively correlated with the density of human population. By contrast, the density of Ae. albopictus negatively correlated with the density of human population in the areas of southern Taiwan. The results indicated that Ae. aegypti has more opportunities for human-mosquito contact in dengue endemic areas in southern Taiwan. Ae. aegypti, but not Ae. albopictus, and human population density in southern Taiwan are closely associated with an increased risk of autochthonous dengue incidence.
Wong, Man Sing; Ho, Hung Chak; Yang, Lin; Shi, Wenzhong; Yang, Jinxin; Chan, Ta-Chien
2017-07-24
Dust events have long been recognized to be associated with a higher mortality risk. However, no study has investigated how prolonged dust events affect the spatial variability of mortality across districts in a downwind city. In this study, we applied a spatial regression approach to estimate the district-level mortality during two extreme dust events in Hong Kong. We compared spatial and non-spatial models to evaluate the ability of each regression to estimate mortality. We also compared prolonged dust events with non-dust events to determine the influences of community factors on mortality across the city. The density of a built environment (estimated by the sky view factor) had positive association with excess mortality in each district, while socioeconomic deprivation contributed by lower income and lower education induced higher mortality impact in each territory planning unit during a prolonged dust event. Based on the model comparison, spatial error modelling with the 1st order of queen contiguity consistently outperformed other models. The high-risk areas with higher increase in mortality were located in an urban high-density environment with higher socioeconomic deprivation. Our model design shows the ability to predict spatial variability of mortality risk during an extreme weather event that is not able to be estimated based on traditional time-series analysis or ecological studies. Our spatial protocol can be used for public health surveillance, sustainable planning and disaster preparation when relevant data are available.
X-ray imaging spectroscopic diagnostics on Nike
NASA Astrophysics Data System (ADS)
Aglitskiy, Y.; Karasik, M.; Serlin, V.; Weaver, J. L.; Oh, J.; Obenschain, S. P.; Ralchenko, Yu.
2017-10-01
Electron temperature and density diagnostics of the laser plasma produced within the focal spot of the NRL's Nike laser are being explored with the help of X-ray imaging spectroscopy. Spectra of He-like and H-like ions were taken by Nike focusing spectrometers in a range of lower (1.8 kev, Si XIV) and higher (6.7 kev, Fe XXV) x-ray energies. Data that were obtained with spatial resolution were translated into the temperature and density as functions of distance from the target. As an example electron density was determined from He-like satellites to Ly-alpha in Si XIV. The dielectronic satellites with intensity ratios that are sensitive to collisional transfer of population between different triplet groups of double-excited states 2l2l' in Si XIII were observed with high spatial and spectral resolution Lineouts taken at different axial distances from the planar Si target show changing spectral shapes due to the different electron densities as determined by supporting non-LTE simulations. These shapes are relatively insensitive to the plasma temperature which was measured using different spectral lines. This work was supported by the US DOE/NNSA.
Modeling space-charge-limited current transport in spatially disordered organic semiconductors
NASA Astrophysics Data System (ADS)
Zubair, M.; Ang, Y. S.; Ang, L. K.
Charge transport properties in organic semiconductors are determined by two kinds of microscopic disorder, namely energetic disorder and the spatial disorder. It is demonstrated that the thickness dependence of space-charge limited current (SCLC) can be related to spatial disorder within the framework of fractional-dimensional space. We present a modified Mott-Gurney (MG) law in different regimes to model the varying thickness dependence in such spatially disordered materials. We analyze multiple experimental results from literature where thickness dependence of SCLC shows that the classical MG law might lead to less accurate extraction of mobility parameter, whereas the modified MG law would be a better choice in such devices. Experimental SCLC measurement in a PPV-based structure was previously modeled using a carrier-density dependent model which contradicts with a recent experiment that confirms a carrier-density independent mobility originating from the disordered morphology of the polymer. Here, this is reconciled by the modified MG law which intrinsically takes into account the effect of spatial disorder without the need of using a carrier-density dependent model. This work is supported by Singapore Temasek Laboratories (TL) Seed Grant (IGDS S16 02 05 1).
Surface radiant flux densities inferred from LAC and GAC AVHRR data
NASA Astrophysics Data System (ADS)
Berger, F.; Klaes, D.
To infer surface radiant flux densities from current (NOAA-AVHRR, ERS-1/2 ATSR) and future meteorological (Envisat AATSR, MSG, METOP) satellite data, the complex, modular analysis scheme SESAT (Strahlungs- und Energieflüsse aus Satellitendaten) could be developed (Berger, 2001). This scheme allows the determination of cloud types, optical and microphysical cloud properties as well as surface and TOA radiant flux densities. After testing of SESAT in Central Europe and the Baltic Sea catchment (more than 400scenes U including a detailed validation with various surface measurements) it could be applied to a large number of NOAA-16 AVHRR overpasses covering the globe.For the analysis, two different spatial resolutions U local area coverage (LAC) andwere considered. Therefore, all inferred results, like global area coverage (GAC) U cloud cover, cloud properties and radiant properties, could be intercompared. Specific emphasis could be made to the surface radiant flux densities (all radiative balance compoments), where results for different regions, like Southern America, Southern Africa, Northern America, Europe, and Indonesia, will be presented. Applying SESAT, energy flux densities, like latent and sensible heat flux densities could also be determined additionally. A statistical analysis of all results including a detailed discussion for the two spatial resolutions will close this study.
Spatial dynamics of the 1918 influenza pandemic in England, Wales and the United States.
Eggo, Rosalind M; Cauchemez, Simon; Ferguson, Neil M
2011-02-06
There is still limited understanding of key determinants of spatial spread of influenza. The 1918 pandemic provides an opportunity to elucidate spatial determinants of spread on a large scale. To better characterize the spread of the 1918 major wave, we fitted a range of city-to-city transmission models to mortality data collected for 246 population centres in England and Wales and 47 cities in the US. Using a gravity model for city-to-city contacts, we explored the effect of population size and distance on the spread of disease and tested assumptions regarding density dependence in connectivity between cities. We employed Bayesian Markov Chain Monte Carlo methods to estimate parameters of the model for population, infectivity, distance and density dependence. We inferred the most likely transmission trees for both countries. For England and Wales, a model that estimated the degree of density dependence in connectivity between cities was preferable by deviance information criterion comparison. Early in the major wave, long distance infective interactions predominated, with local infection events more likely as the epidemic became widespread. For the US, with fewer more widely dispersed cities, statistical power was lacking to estimate population size dependence or the degree of density dependence, with the preferred model depending on distance only. We find that parameters estimated from the England and Wales dataset can be applied to the US data with no likelihood penalty.
Spatial dynamics of the 1918 influenza pandemic in England, Wales and the United States
Eggo, Rosalind M.; Cauchemez, Simon; Ferguson, Neil M.
2011-01-01
There is still limited understanding of key determinants of spatial spread of influenza. The 1918 pandemic provides an opportunity to elucidate spatial determinants of spread on a large scale. To better characterize the spread of the 1918 major wave, we fitted a range of city-to-city transmission models to mortality data collected for 246 population centres in England and Wales and 47 cities in the US. Using a gravity model for city-to-city contacts, we explored the effect of population size and distance on the spread of disease and tested assumptions regarding density dependence in connectivity between cities. We employed Bayesian Markov Chain Monte Carlo methods to estimate parameters of the model for population, infectivity, distance and density dependence. We inferred the most likely transmission trees for both countries. For England and Wales, a model that estimated the degree of density dependence in connectivity between cities was preferable by deviance information criterion comparison. Early in the major wave, long distance infective interactions predominated, with local infection events more likely as the epidemic became widespread. For the US, with fewer more widely dispersed cities, statistical power was lacking to estimate population size dependence or the degree of density dependence, with the preferred model depending on distance only. We find that parameters estimated from the England and Wales dataset can be applied to the US data with no likelihood penalty. PMID:20573630
2011-01-01
Background Population antimicrobial use may influence resistance emergence. Resistance is an ecological phenomenon due to potential transmissibility. We investigated spatial and temporal patterns of ciprofloxacin (CIP) population consumption related to E. coli resistance emergence and dissemination in a major Brazilian city. A total of 4,372 urinary tract infection E. coli cases, with 723 CIP resistant, were identified in 2002 from two outpatient centres. Cases were address geocoded in a digital map. Raw CIP consumption data was transformed into usage density in DDDs by CIP selling points influence zones determination. A stochastic model coupled with a Geographical Information System was applied for relating resistance and usage density and for detecting city areas of high/low resistance risk. Results E. coli CIP resistant cluster emergence was detected and significantly related to usage density at a level of 5 to 9 CIP DDDs. There were clustered hot-spots and a significant global spatial variation in the residual resistance risk after allowing for usage density. Conclusions There were clustered hot-spots and a significant global spatial variation in the residual resistance risk after allowing for usage density. The usage density of 5-9 CIP DDDs per 1,000 inhabitants within the same influence zone was the resistance triggering level. This level led to E. coli resistance clustering, proving that individual resistance emergence and dissemination was affected by antimicrobial population consumption. PMID:21356088
Stephanie Moore; Nathan J. Mantua; Jan A. Newton; Mitsuhiro Kawase; Mark J. Warner; Jonathan P. Kellogg
2008-01-01
Temporal and spatial patterns of variability in Puget Sound's oceanographic properties are determined using continuous vertical profile data from two long-term monitoring programs; monthly observations at 16 stations from 1993 to 2002, and biannual observations at 40 stations from 1998 to 2003. Climatological monthly means of temperature, salinity, and density...
Proximity-induced magnetism in transition-metal substituted graphene
Crook, Charles B.; Constantin, Costel; Ahmed, Towfiq; ...
2015-08-03
We investigate the interactions between two identical magnetic impurities substituted into a graphene superlattice. Using a first-principles approach, we calculate the electronic and magnetic properties for transition-metal substituted graphene systems with varying spatial separation. These calculations are compared for three different magnetic impurities, manganese, chromium, and vanadium. We determine the electronic band structure, density of states, and Millikan populations (magnetic moment) for each atom, as well as calculate the exchange parameter between the two magnetic atoms as a function of spatial separation. We find that the presence of magnetic impurities establishes a distinct magnetic moment in the graphene lattice, wheremore » the interactions are highly dependent on the spatial and magnetic characteristic between the magnetic and carbon atoms, which leads to either ferromagnetic or antiferromagnetic behavior. Furthermore, through an analysis of the calculated exchange energies and partial density of states, it is determined that interactions between the magnetic atoms can be classified as an RKKY interaction.« less
The landscape context of cereal aphid–parasitoid interactions
Thies, Carsten; Roschewitz, Indra; Tscharntke, Teja
2005-01-01
Analyses at multiple spatial scales may show how important ecosystem services such as biological control are determined by processes acting on the landscape scale. We examined cereal aphid–parasitoid interactions in wheat fields in agricultural landscapes differing in structural complexity (32–100% arable land). Complex landscapes were associated with increased aphid mortality resulting from parasitism, but also with higher aphid colonization, thereby counterbalancing possible biological control by parasitoids and lastly resulting in similar aphid densities across landscapes. Thus, undisturbed perennial habitats appeared to enhance both pests and natural enemies. Analyses at multiple spatial scales (landscape sectors of 0.5–6 km diameter) showed that correlations between parasitism and percentage of arable land were significant at scales of 0.5–2 km, whereas aphid densities responded to percentage of arable land at scales of 1–6 km diameter. Hence, the higher trophic level populations appeared to be determined by smaller landscape sectors owing to dispersal limitation, showing the ‘functional spatial scale’ for species-specific landscape management. PMID:15695212
Shi, Pei-Jian; Xu, Qiang; Sandhu, Hardev S; Gielis, Johan; Ding, Yu-Long; Li, Hua-Rong; Dong, Xiao-Bo
2015-10-01
The relationship between spatial density and size of plants is an important topic in plant ecology. The self-thinning rule suggests a -3/2 power between average biomass and density or a -1/2 power between stand yield and density. However, the self-thinning rule based on total leaf area per plant and density of plants has been neglected presumably because of the lack of a method that can accurately estimate the total leaf area per plant. We aimed to find the relationship between spatial density of plants and total leaf area per plant. We also attempted to provide a novel model for accurately describing the leaf shape of bamboos. We proposed a simplified Gielis equation with only two parameters to describe the leaf shape of bamboos one model parameter represented the overall ratio of leaf width to leaf length. Using this method, we compared some leaf parameters (leaf shape, number of leaves per plant, ratio of total leaf weight to aboveground weight per plant, and total leaf area per plant) of four bamboo species of genus Indocalamus Nakai (I. pedalis (Keng) P.C. Keng, I. pumilus Q.H. Dai and C.F. Keng, I. barbatus McClure, and I. victorialis P.C. Keng). We also explored the possible correlation between spatial density and total leaf area per plant using log-linear regression. We found that the simplified Gielis equation fit the leaf shape of four bamboo species very well. Although all these four species belonged to the same genus, there were still significant differences in leaf shape. Significant differences also existed in leaf area per plant, ratio of leaf weight to aboveground weight per plant, and leaf length. In addition, we found that the total leaf area per plant decreased with increased spatial density. Therefore, we directly demonstrated the self-thinning rule to improve light interception.
NASA Technical Reports Server (NTRS)
Scudder, J. D.; Aggson, T. L.; Mangeney, A.; Lacombe, C.; Harvey, C. C.
1986-01-01
Data collected by the ISEE dual-spacecraft mission (on November 7, 1977) on a slowly moving, supercritical, high-beta, quasi-perpendicular bow shock are presented, and the local geometry, spatial scales, and stationarity of this shock wave are assessed in a self-consistent Rankine-Hugoniot-constrained frame of reference. Included are spatial profiles of the ac and dc magnetic and electric fields, electron and proton fluid velocities, current densities, electron and proton number densities, temperatures, pressures, and partial densities of the reflected protons. The observed layer profile is shown to be nearly phase standing and one-dimensional in a Rankine-Hugoniot frame, empirically determined by the magnetofluid parameters outside the layer proper.
Dispersal responses override density effects on genetic diversity during post-disturbance succession
Landguth, Erin L.; Bull, C. Michael; Banks, Sam C.; Gardner, Michael G.; Driscoll, Don A.
2016-01-01
Dispersal fundamentally influences spatial population dynamics but little is known about dispersal variation in landscapes where spatial heterogeneity is generated predominantly by disturbance and succession. We tested the hypothesis that habitat succession following fire inhibits dispersal, leading to declines over time in genetic diversity in the early successional gecko Nephrurus stellatus. We combined a landscape genetics field study with a spatially explicit simulation experiment to determine whether successional patterns in genetic diversity were driven by habitat-mediated dispersal or demographic effects (declines in population density leading to genetic drift). Initial increases in genetic structure following fire were likely driven by direct mortality and rapid population expansion. Subsequent habitat succession increased resistance to gene flow and decreased dispersal and genetic diversity in N. stellatus. Simulated changes in population density alone did not reproduce these results. Habitat-mediated reductions in dispersal, combined with changes in population density, were essential to drive the field-observed patterns. Our study provides a framework for combining demographic, movement and genetic data with simulations to discover the relative influence of demography and dispersal on patterns of landscape genetic structure. Our results suggest that succession can inhibit connectivity among individuals, opening new avenues for understanding how disturbance regimes influence spatial population dynamics. PMID:27009225
Behavior of Excited Argon Atoms in Inductively Driven Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
HEBNER,GREGORY A.; MILLER,PAUL A.
1999-12-07
Laser induced fluorescence has been used to measure the spatial distribution of the two lowest energy argon excited states, 1s{sub 5} and 1s{sub 4}, in inductively driven plasmas containing argon, chlorine and boron trichloride. The behavior of the two energy levels with plasma conditions was significantly different, probably because the 1s{sub 5} level is metastable and the 1s{sub 4} level is radiatively coupled to the ground state but is radiation trapped. The argon data is compared with a global model to identify the relative importance of processes such as electron collisional mixing and radiation trapping. The trends in the datamore » suggest that both processes play a major role in determining the excited state density. At lower rfpower and pressure, excited state spatial distributions in pure argon were peaked in the center of the discharge, with an approximately Gaussian profile. However, for the highest rfpowers and pressures investigated, the spatial distributions tended to flatten in the center of the discharge while the density at the edge of the discharge was unaffected. The spatially resolved excited state density measurements were combined with previous line integrated measurements in the same discharge geometry to derive spatially resolved, absolute densities of the 1s{sub 5} and 1s{sub 4} argon excited states and gas temperature spatial distributions. Fluorescence lifetime was a strong fi.mction of the rf power, pressure, argon fraction and spatial location. Increasing the power or pressure resulted in a factor of two decrease in the fluorescence lifetime while adding Cl{sub 2} or BCl{sub 3} increased the fluorescence lifetime. Excited state quenching rates are derived from the data. When Cl{sub 2} or BCl{sub 3} was added to the plasma, the maximum argon metastable density depended on the gas and ratio. When chlorine was added to the argon plasma, the spatial density profiles were independent of chlorine fraction. While it is energetically possible for argon excited states to dissociate some of the molecular species present in this discharge, it does not appear to be a significant source of dissociation. The major source of interaction between the argon and the molecular species BCl{sub 3} and Cl{sub 2} appears to be through modification of the electron density.« less
A Hydrodynamic Theory for Spatially Inhomogeneous Semiconductor Lasers. 2; Numerical Results
NASA Technical Reports Server (NTRS)
Li, Jianzhong; Ning, C. Z.; Biegel, Bryan A. (Technical Monitor)
2001-01-01
We present numerical results of the diffusion coefficients (DCs) in the coupled diffusion model derived in the preceding paper for a semiconductor quantum well. These include self and mutual DCs in the general two-component case, as well as density- and temperature-related DCs under the single-component approximation. The results are analyzed from the viewpoint of free Fermi gas theory with many-body effects incorporated. We discuss in detail the dependence of these DCs on densities and temperatures in order to identify different roles played by the free carrier contributions including carrier statistics and carrier-LO phonon scattering, and many-body corrections including bandgap renormalization and electron-hole (e-h) scattering. In the general two-component case, it is found that the self- and mutual- diffusion coefficients are determined mainly by the free carrier contributions, but with significant many-body corrections near the critical density. Carrier-LO phonon scattering is dominant at low density, but e-h scattering becomes important in determining their density dependence above the critical electron density. In the single-component case, it is found that many-body effects suppress the density coefficients but enhance the temperature coefficients. The modification is of the order of 10% and reaches a maximum of over 20% for the density coefficients. Overall, temperature elevation enhances the diffusive capability or DCs of carriers linearly, and such an enhancement grows with density. Finally, the complete dataset of various DCs as functions of carrier densities and temperatures provides necessary ingredients for future applications of the model to various spatially inhomogeneous optoelectronic devices.
Osei, Frank B; Duker, Alfred A
2008-01-01
Background Cholera has persisted in Ghana since its introduction in the early 70's. From 1999 to 2005, the Ghana Ministry of Health officially reported a total of 26,924 cases and 620 deaths to the WHO. Etiological studies suggest that the natural habitat of V. cholera is the aquatic environment. Its ability to survive within and outside the aquatic environment makes cholera a complex health problem to manage. Once the disease is introduced in a population, several environmental factors may lead to prolonged transmission and secondary cases. An important environmental factor that predisposes individuals to cholera infection is sanitation. In this study, we exploit the importance of two main spatial measures of sanitation in cholera transmission in an urban city, Kumasi. These are proximity and density of refuse dumps within a community. Results A spatial statistical modelling carried out to determine the spatial dependency of cholera prevalence on refuse dumps show that, there is a direct spatial relationship between cholera prevalence and density of refuse dumps, and an inverse spatial relationship between cholera prevalence and distance to refuse dumps. A spatial scan statistics also identified four significant spatial clusters of cholera; a primary cluster with greater than expected cholera prevalence, and three secondary clusters with lower than expected cholera prevalence. A GIS based buffer analysis also showed that the minimum distance within which refuse dumps should not be sited within community centres is 500 m. Conclusion The results suggest that proximity and density of open space refuse dumps play a contributory role in cholera infection in Kumasi. PMID:19087235
Graves, T.A.; Kendall, Katherine C.; Royle, J. Andrew; Stetz, J.B.; Macleod, A.C.
2011-01-01
Few studies link habitat to grizzly bear Ursus arctos abundance and these have not accounted for the variation in detection or spatial autocorrelation. We collected and genotyped bear hair in and around Glacier National Park in northwestern Montana during the summer of 2000. We developed a hierarchical Markov chain Monte Carlo model that extends the existing occupancy and count models by accounting for (1) spatially explicit variables that we hypothesized might influence abundance; (2) separate sub-models of detection probability for two distinct sampling methods (hair traps and rub trees) targeting different segments of the population; (3) covariates to explain variation in each sub-model of detection; (4) a conditional autoregressive term to account for spatial autocorrelation; (5) weights to identify most important variables. Road density and per cent mesic habitat best explained variation in female grizzly bear abundance; spatial autocorrelation was not supported. More female bears were predicted in places with lower road density and with more mesic habitat. Detection rates of females increased with rub tree sampling effort. Road density best explained variation in male grizzly bear abundance and spatial autocorrelation was supported. More male bears were predicted in areas of low road density. Detection rates of males increased with rub tree and hair trap sampling effort and decreased over the sampling period. We provide a new method to (1) incorporate multiple detection methods into hierarchical models of abundance; (2) determine whether spatial autocorrelation should be included in final models. Our results suggest that the influence of landscape variables is consistent between habitat selection and abundance in this system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fertig, Fabian, E-mail: fabian.fertig@ise.fraunhofer.de; Greulich, Johannes; Rein, Stefan
We present a spatially resolved method to determine the short-circuit current density of crystalline silicon solar cells by means of lock-in thermography. The method utilizes the property of crystalline silicon solar cells that the short-circuit current does not differ significantly from the illuminated current under moderate reverse bias. Since lock-in thermography images locally dissipated power density, this information is exploited to extract values of spatially resolved current density under short-circuit conditions. In order to obtain an accurate result, one or two illuminated lock-in thermography images and one dark lock-in thermography image need to be recorded. The method can be simplifiedmore » in a way that only one image is required to generate a meaningful short-circuit current density map. The proposed method is theoretically motivated, and experimentally validated for monochromatic illumination in comparison to the reference method of light-beam induced current.« less
Reiss, S; Stachs, O; Guthoff, R; Stolz, H
2011-12-01
The confocal Brillouin spectroscopy is an innovative measurement method that allows the non-invasive determination of the rheological properties of materials. Its application in ophthalmology can offer the possibility to determine in-vivo the deformation properties of sections of transparent biological tissue such as the cornea or eye lens with spatial resolution. This seems to be a promising approach concerning current presbyopia research. Due to the spatially resolved detection of the viscoelastic lens properties, a better understanding of the natural aging process of the lens and the influences of different lens opacities on the stiffness is expected. From the obtained spectral data the relative protein levels, the relative refractive index profile and the relative density profile within the lens tissue can be derived in addition. A measurement set-up for confocal Brillouin microscopy based on spectral analysis of spontaneous Brillouin scattering signals by using a high-resolution dispersive device is presented. First in-vitro test results on animal and human lenses are presented and evaluated concerning their rheological significance. These data are compared with known research results. © Georg Thieme Verlag KG Stuttgart · New York.
Determination of mean pressure from PIV in compressible flows using the Reynolds-averaging approach
NASA Astrophysics Data System (ADS)
van Gent, Paul L.; van Oudheusden, Bas W.; Schrijer, Ferry F. J.
2018-03-01
The feasibility of computing the flow pressure on the basis of PIV velocity data has been demonstrated abundantly for low-speed conditions. The added complications occurring for high-speed compressible flows have, however, so far proved to be largely inhibitive for the accurate experimental determination of instantaneous pressure. Obtaining mean pressure may remain a worthwhile and realistic goal to pursue. In a previous study, a Reynolds-averaging procedure was developed for this, under the moderate-Mach-number assumption that density fluctuations can be neglected. The present communication addresses the accuracy of this assumption, and the consistency of its implementation, by evaluating of the relevance of the different contributions resulting from the Reynolds-averaging. The methodology involves a theoretical order-of-magnitude analysis, complemented with a quantitative assessment based on a simulated and a real PIV experiment. The assessments show that it is sufficient to account for spatial variations in the mean velocity and the Reynolds-stresses and that temporal and spatial density variations (fluctuations and gradients) are of secondary importance and comparable order-of-magnitude. This result permits to simplify the calculation of mean pressure from PIV velocity data and to validate the approximation of neglecting temporal and spatial density variations without having access to reference pressure data.
Nijhout, H Frederik; Cinderella, Margaret; Grunert, Laura W
2014-03-01
The wings of butterflies and moths develop from imaginal disks whose structure is always congruent with the final adult wing. It is therefore possible to map every point on the imaginal disk to a location on the adult wing throughout ontogeny. We studied the growth patterns of the wings of two distantly related species with very different adult wing shapes, Junonia coenia and Manduca sexta. The shape of the wing disks change throughout their growth phase in a species-specific pattern. We measured mitotic densities and mitotic orientation in successive stages of wing development approximately one cell division apart. Cell proliferation was spatially patterned, and the density of mitoses was highly correlated with local growth. Unlike other systems in which the direction of mitoses has been viewed as the primary determinant of directional growth, we found that in these two species the direction of growth was only weakly correlated with the orientation of mitoses. Directional growth appears to be imposed by a constantly changing spatial pattern of cell division coupled with a weak bias in the orientation of cell division. Because growth and cell division in imaginal disk require ecdysone and insulin signaling, the changing spatial pattern of cell division may due to a changing pattern of expression of receptors or downstream elements in the signaling pathways for one or both of these hormones. Evolution of wing shape comes about by changes in the progression of spatial patterns of cell division. © 2014 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Brosius, Jeffrey W. (Principal Investigator)
1996-01-01
The plasma properties and magnetic field structure of the solar corona were determined using coordinated observations obtained with NASA/GSFC's Solar EUV Rocket Telescope and Spectrograph (SERTS), the Very Large Array (VLA), and Kitt Peak photospheric longitudinal magnetograms. A problem was identified with the SERTS calibration as determined from laboratory measurements. A revised calibration curve was derived by requiring that the numerous available measured line intensity ratios agreed with their respective theoretical values. Densities were derived from line intensity ratios, and active region densities were found to typically exceed quiet Sun densities by factors of only about 2. The active region density was found to remain constant across the SERTS slit, despite the fact that the emission line intensities vary significantly. This indicates that the product of the path length and the volume filling factor must vary significantly from the active region outskirts to the central core. Filling factors were derived and found to range from much less than one to nearly unity. Wavelength shifts were examined along the SERTS slit in the spatially resolved spectra, but no evidence was found for significant Doppler shifts in active region 7563 or in the quiet Sun. The numerical procedure developed by Monsignori-Fossi and Landini was used to derive the active region and quiet sun differential emission measure (DEM) from the spatially averaged spectra. A DEM was estimated for each spatial pixel in the two dimensional active region images by scaling the averaged active region DEM based upon corresponding pixel intensities of SERTS Mg IX, Fe XV, and Fe XVI images. These results, along with density measurements, were used in an IDL computer code which calculated the temperature dependence of the coronal magnetic field in each spatial pixel by minimizing the difference between the observed and calculated 20 and 6 cm microwave brightness temperatures.
NASA Astrophysics Data System (ADS)
Kamitani, A.; Takayama, T.; Tanaka, A.; Ikuno, S.
2010-11-01
The inductive method for measuring the critical current density jC in a high-temperature superconducting (HTS) thin film has been investigated numerically. In order to simulate the method, a non-axisymmetric numerical code has been developed for analyzing the time evolution of the shielding current density. In the code, the governing equation of the shielding current density is spatially discretized with the finite element method and the resulting first-order ordinary differential system is solved by using the 5th-order Runge-Kutta method with an adaptive step-size control algorithm. By using the code, the threshold current IT is evaluated for various positions of a coil. The results of computations show that, near a film edge, the accuracy of the estimating formula for jC is remarkably degraded. Moreover, even the proportional relationship between jC and IT will be lost there. Hence, the critical current density near a film edge cannot be estimated by using the inductive method.
Saito, Hirotaka; McKenna, Sean A
2007-07-01
An approach for delineating high anomaly density areas within a mixture of two or more spatial Poisson fields based on limited sample data collected along strip transects was developed. All sampled anomalies were transformed to anomaly count data and indicator kriging was used to estimate the probability of exceeding a threshold value derived from the cdf of the background homogeneous Poisson field. The threshold value was determined so that the delineation of high-density areas was optimized. Additionally, a low-pass filter was applied to the transect data to enhance such segmentation. Example calculations were completed using a controlled military model site, in which accurate delineation of clusters of unexploded ordnance (UXO) was required for site cleanup.
Global Ultraviolet Imager (GUVI) investigation
NASA Technical Reports Server (NTRS)
Christensen, Andrew B.
1995-01-01
This report covers the activities performed under NAS5-32572. The results of those activities are included in this Final Report. TIMED Science Objectives: (1) To determine the temperature, density, and wind structure of the MLTI (mixed layer thermal inertia), including the seasonal and latitudinal variations; and (2) To determine the relative importance of the various radiative, chemical, electrodynamical, and dynamical sources and sinks of energy for the thermal structure of the MLTI. GUVI Science Goals: (1) Determine the spatial and temporal variations of temperature and constituent densities in the lower thermosphere; and (2) Determine the importance of auroral energy sources and solar EUV (extreme ultraviolet) to the energy balance of the region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fertig, Fabian, E-mail: fabian.fertig@ise.fraunhofer.de; Greulich, Johannes; Rein, Stefan
Spatially resolved determination of solar cell parameters is beneficial for loss analysis and optimization of conversion efficiency. One key parameter that has been challenging to access by an imaging technique on solar cell level is short-circuit current density. This work discusses the robustness of a recently suggested approach to determine short-circuit current density spatially resolved based on a series of lock-in thermography images and options for a simplified image acquisition procedure. For an accurate result, one or two emissivity-corrected illuminated lock-in thermography images and one dark lock-in thermography image have to be recorded. The dark lock-in thermography image can bemore » omitted if local shunts are negligible. Furthermore, it is shown that omitting the correction of lock-in thermography images for local emissivity variations only leads to minor distortions for standard silicon solar cells. Hence, adequate acquisition of one image only is sufficient to generate a meaningful map of short-circuit current density. Beyond that, this work illustrates the underlying physics of the recently proposed method and demonstrates its robustness concerning varying excitation conditions and locally increased series resistance. Experimentally gained short-circuit current density images are validated for monochromatic illumination in comparison to the reference method of light-beam induced current.« less
Optical Diagnostics in the Gaseous Electronics Conference Reference Cell
Hebner, G. A.; Greenberg, K. E.
1995-01-01
A number of laser-induced fluorescence and absorption spectroscopy studies have been conducted using Gaseous Electronics Conference Reference Cells. Laser-induced fluorescence has been used to measure hydrogen atom densities, to measure argon metastable spatial profiles, to determine the sheath electric field, and to infer the electron density and temperature. Absorption spectroscopy, using lamp sources and diode lasers, has been used to measure metastable atom densities in helium and argon discharges and fluorocarbon densities in silicon etching discharges. The experimental techniques and sample results of these investigations are reviewed. PMID:29151748
The impact of habitat fragmentation on tsetse abundance on the plateau of eastern Zambia.
Ducheyne, E; Mweempwa, C; De Pus, C; Vernieuwe, H; De Deken, R; Hendrickx, G; Van den Bossche, P
2009-09-01
Tsetse-transmitted human or livestock trypanosomiasis is one of the major constraints to rural development in sub-Saharan Africa. The epidemiology of the disease is determined largely by tsetse fly density. A major factor, contributing to tsetse population density is the availability of suitable habitat. In large parts of Africa, encroachment of people and their livestock resulted in a destruction and fragmentation of such suitable habitat. To determine the effect of habitat change on tsetse density a study was initiated in a tsetse-infested zone of eastern Zambia. The study area represents a gradient of habitat change, starting from a zone with high levels of habitat destruction and ending in an area where livestock and people are almost absent. To determine the distribution and density of the fly, tsetse surveys were conducted throughout the study area in the dry and in the rainy season. Landsat ETM+ imagery covering the study area were classified into four land cover classes (munga, miombo, agriculture and settlements) and two auxiliary spectral classes (clouds and shadow) using a Gaussian Maximum Likelihood Classifier. The classes were regrouped into natural vegetation and agricultural zone. The binary images were overlaid with hexagons to obtain the spatial spectrum of spatial pattern. Hexagonal coverage was selected because of its compact and regular form. To identify scale-specific spatial patterns and associated entomological phenomena, the size of the hexagonal coverage was varied (250 and 500 m). Per coverage, total class area, mean patch size, number of patches and patch size standard deviation were used as fragmentation indices. Based on the fragmentation index values, the study zone was classified using a Partitioning Around Mediods (PAM) method. The number of classes was determined using the Wilks' lambda coefficient. To determine the impact of habitat fragmentation on tsetse abundance, the correlation between the fragmentation indices and the index of apparent density of the flies was determined and habitat changes most affecting tsetse abundance was identified. From this it followed that there is a clear relationship between habitat fragmentation and the abundance of tsetse flies. Heavily fragmented areas have lower numbers of tsetse flies, but when the fragmentation of natural vegetation decreases, the number of tsetse flies increases following a sigmoidal-like curve.
Wilkie, Emma M; Bishop, Melanie J; O'Connor, Wayne A
2013-01-01
Understanding how the density and spatial arrangement of invaders is critical to developing management strategies of pest species. The Pacific oyster, Crassostrea gigas, has been translocated around the world for aquaculture and in many instances has established wild populations. Relative to other species of bivalve, it displays rapid suspension feeding, which may cause mortality of pelagic invertebrate larvae. We compared the effect on settlement of Sydney rock oyster, Saccostrea glomerata, larvae of manipulating the spatial arrangement and density of native S. glomerata, and non-native C. gigas. We hypothesized that while manipulations of dead oysters would reveal the same positive relationship between attachment surface area and S. glomerata settlement between the two species, manipulations of live oysters would reveal differing density-dependent effects between the native and non-native oyster. In the field, whether oysters were live or dead, more larvae settled on C. gigas than S. glomerata when substrate was arranged in monospecific clumps. When, however, the two species were interspersed, there were no differences in larval settlement between them. By contrast, in aquaria simulating a higher effective oyster density, more larvae settled on live S. glomerata than C. gigas. When C. gigas was prevented from suspension feeding, settlement of larvae on C. gigas was enhanced. By contrast, settlement was similar between the two species when dead. While the presently low densities of the invasive oyster C. gigas may enhance S. glomerata larval settlement in east Australian estuaries, future increases in densities could produce negative impacts on native oyster settlement. Synthesis and applications: Our study has shown that both the spatial arrangement and density of invaders can influence their impact. Hence, management strategies aimed at preventing invasive populations reaching damaging sizes should not only consider the threshold density at which impacts exceed some acceptable limit, but also how patch formation modifies this. PMID:24455120
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, L.; Ding, W. X.; Brower, D. L.
2010-10-15
Differential interferometry employs two parallel laser beams with a small spatial offset (less than beam width) and frequency difference (1-2 MHz) using common optics and a single mixer for a heterodyne detection. The differential approach allows measurement of the electron density gradient, its fluctuations, as well as the equilibrium density distribution. This novel interferometry technique is immune to fringe skip errors and is particularly useful in harsh plasma environments. Accurate calibration of the beam spatial offset, accomplished by use of a rotating dielectric wedge, is required to enable broad application of this approach. Differential interferometry has been successfully used onmore » the Madison Symmetric Torus reversed-field pinch plasma to directly measure fluctuation-induced transport along with equilibrium density profile evolution during pellet injection. In addition, by combining differential and conventional interferometry, both linear and nonlinear terms of the electron density fluctuation energy equation can be determined, thereby allowing quantitative investigation of the origin of the density fluctuations. The concept, calibration, and application of differential interferometry are presented.« less
Periodicity of the density wake past a vortex ring in a stratified liquid
NASA Astrophysics Data System (ADS)
Prokhorov, V.
2009-04-01
Spatial coherent structure of the density wake past a vortex ring moving horizontally in viscid stratified liquid is experimentally revealed. It follows from analysis that repetition period of the structure is determined by rotation radial frequency (or mean vorticity) of the vortex core and toward speed of the vortex ring. The wake formation of the ring is considered in respect to vorticity shedding which produces velocity disturbances in ambient medium. In case of stratified liquid velocity fluctuations, in their turn, cause density field distortion. This process is superimposed by vortex core oscillations, and, in result, vorticity shedding will be not monotonous but modulated at some frequency. So, the density wake is periodically structured, and the spatial period is defined by intrinsic frequency of the core and forward speed of the ring. To support analysis, experiments were conducted in which vortex rings excited by spring-piston generator were observed with high-sensitive Schlieren instrument and computer-controlled camera. Experimental tank was filled with salt-stratified water of constant buoyancy period, vortex ring velocities range from 3 to 16 cm/s. Spatial period is derived from schlieren image using two independent methods, both 2D spectral analysis and geometry calculations of the vortex core. Spatial periods and vortex intrinsic frequencies calculated by both algorithms are in good agreement; they vary in power lows depending on vortex speed
Spatial pattern analysis of Cu, Zn and Ni and their interpretation in the Campania region (Italy)
NASA Astrophysics Data System (ADS)
Petrik, Attila; Albanese, Stefano; Jordan, Gyozo; Rolandi, Roberto; De Vivo, Benedetto
2017-04-01
The uniquely abundant Campanian topsoil dataset enabled us to perform a spatial pattern analysis on 3 potentially toxic elements of Cu, Zn and Ni. This study is focusing on revealing the spatial texture and distribution of these elements by spatial point pattern and image processing analysis such as lineament density and spatial variability index calculation. The application of these methods on geochemical data provides a new and efficient tool to understand the spatial variation of concentrations and their background/baseline values. The determination and quantification of spatial variability is crucial to understand how fast the change in concentration is in a certain area and what processes might govern the variation. The spatial variability index calculation and image processing analysis including lineament density enables us to delineate homogenous areas and analyse them with respect to lithology and land use. Identification of spatial outliers and their patterns were also investigated by local spatial autocorrelation and image processing analysis including the determination of local minima and maxima points and singularity index analysis. The spatial variability of Cu and Zn reveals the highest zone (Cu: 0.5 MAD, Zn: 0.8-0.9 MAD, Median Deviation Index) along the coast between Campi Flegrei and the Sorrento Peninsula with the vast majority of statistically identified outliers and high-high spatial clustered points. The background/baseline maps of Cu and Zn reveals a moderate to high variability (Cu: 0.3 MAD, Zn: 0.4-0.5 MAD) NW-SE oriented zone including disrupted patches from Bisaccia to Mignano following the alluvial plains of Appenine's rivers. This zone has high abundance of anomaly concentrations identified using singularity analysis and it also has a high density of lineaments. The spatial variability of Ni shows the highest variability zone (0.6-0.7 MAD) around Campi Flegrei where the majority of low outliers are concentrated. The variability of background/baseline map of Ni reveals a shift to the east in case of highest variability zones coinciding with limestone outcrops. The high segmented area between Mignano and Bisaccia partially follows the alluvial plains of Appenine's rivers which seem to be playing a crucial role in the distribution and redistribution pattern of Cu, Zn and Ni in Campania. The high spatial variability zones of the later elements are located in topsoils on volcanoclastic rocks and are mostly related to cultivation and urbanised areas.
[Sociodemographic context of homicide in Mexico City: a spatial analysis].
Fuentes Flores, César; Sánchez Salinas, Omar
2015-12-01
Investigate the spatial distribution pattern of the homicide rate and its relation to sociodemographic features in the Benito Juárez, Coyoacán, and Cuauhtémoc districts of Mexico City in 2010. Inferential cross-sectional study that uses spatial analysis methods to study the spatial association of the homicide rate and demographic features. Spatial association was determined through the location quotient, multiple regression analysis, and the use of geographically weighted regression. Homicides show a heterogeneous location pattern with high rates in areas with non-residential land use, low population density, and low marginalization. Spatial analysis tools are powerful instruments for the design of prevention- and recreation-focused public safety policies that aim to reduce mortality from external causes such as homicides.
NASA Astrophysics Data System (ADS)
Leonard, A. W.; McLean, A. G.; Makowski, M. A.; Stangeby, P. C.
2017-08-01
The midplane separatrix density is characterized in response to variations in upstream parallel heat flux density and central density through deuterium gas injection. The midplane density is determined from a high spatial resolution Thomson scattering diagnostic at the midplane with power balance analysis to determine the separatrix location. The heat flux density is varied by scans of three parameters, auxiliary heating, toroidal field with fixed plasma current, and plasma current with fixed safety factor, q 95. The separatrix density just before divertor detachment onset is found to scale consistent with the two-point model when radiative dissipation is taken into account. The ratio of separatrix to pedestal density, n e,sep/n e,ped varies from ⩽30% to ⩾60% over the dataset, helping to resolve the conflicting scaling of core plasma density limit and divertor detachment onset. The scaling of the separatrix density at detachment onset is combined with H-mode power threshold scaling to obtain a scaling ratio of minimum n e,sep/n e,ped expected in future devices.
Ellis, Alicia M
2008-01-01
1. Researchers often use the spatial distribution of insect offspring as a measure of adult oviposition preferences, and then make conclusions about the consequences of these preferences for population growth and the relationship between life-history traits (e.g. oviposition preference and offspring performance). However, several processes other than oviposition preference can generate spatial patterns of offspring density (e.g. dispersal limitations, spatially heterogeneous mortality rates). Incorrectly assuming that offspring distributions reflect oviposition preferences may therefore compromise our ability to understand the mechanisms determining population distributions and the relationship between life-history traits. 2. The purpose of this study was to perform an empirical study at the whole-system scale to examine the movement and oviposition behaviours of the eastern tree hole mosquito Ochlerotatus triseriatus (Say) and test the importance of these behaviours in determining population distribution relative to other mechanisms. 3. A mark-release-recapture experiment was performed to distinguish among the following alternative hypotheses that may explain a previously observed aggregated distribution of tree hole mosquito offspring: (H(1)) mosquitoes prefer habitats with particular vegetation characteristics and these preferences determine the distribution of their offspring; (H(2)) mosquitoes distribute their eggs randomly or evenly throughout their environment, but spatial differences in developmental success generate an aggregated pattern of larval density; (H(3)) mosquitoes randomly colonize habitats, but have limited dispersal capability causing them to distribute offspring where founder populations were established; (H(4)) wind or other environmental factors may lead to passive aggregation, or spatial heterogeneity in adult mortality (H(5)), rather than dispersal, generates clumped offspring distributions. 4. Results indicate that the distribution of tree hole mosquito larvae is determined in part by adult habitat selection (H(1)), but do not exclude additional effects from passive aggregation (H(4)), or spatial patterns in adult mortality (H(5)). 5. This research illustrates the importance of studying oviposition behaviour at the population scale to better evaluate its relative importance in determining population distribution and dynamics. Moreover, this study demonstrates the importance of linking behavioural and population dynamics for understanding evolutionary relationships among life-history traits (e.g. preference and offspring performance) and predicting when behaviour will be important in determining population phenomena.
Density thresholds for Mopeia virus invasion and persistence in its host Mastomys natalensis.
Goyens, J; Reijniers, J; Borremans, B; Leirs, H
2013-01-21
Well-established theoretical models predict host density thresholds for invasion and persistence of parasites with a density-dependent transmission. Studying such thresholds in reality, however, is not obvious because it requires long-term data for several fluctuating populations of different size. We developed a spatially explicit and individual-based SEIR model of Mopeia virus in multimammate mice Mastomys natalensis. This is an interesting model system for studying abundance thresholds because the host is the most common African rodent, populations fluctuate considerably and the virus is closely related to Lassa virus but non-pathogenic to humans so can be studied safely in the field. The simulations show that, while host density clearly is important, sharp thresholds are only to be expected for persistence (and not for invasion), since at short time-spans (as during invasion), stochasticity is determining. Besides host density, also the spatial extent of the host population is important. We observe the repeated local occurrence of herd immunity, leading to a decrease in transmission of the virus, while even a limited amount of dispersal can have a strong influence in spreading and re-igniting the transmission. The model is most sensitive to the duration of the infectious stage, the size of the home range and the transmission coefficient, so these are important factors to determine experimentally in the future. Copyright © 2012 Elsevier Ltd. All rights reserved.
Observations Of Planetary Nebula NGC 3242 Using STIS From HST19 GO 12600
NASA Astrophysics Data System (ADS)
Miller, Timothy R.; Dufour, Reginald J.; Henry, Richard B. C.; Kwitter, Karen B.; Shaw, Richard A.; Balick, Bruce; Corradi, Romano
2014-06-01
During HST Cycle 19, we obtained long-slit spectra using STIS of the planetary nebula NGC 3242 with higher spatial resolution than previously published. The full wavelength range is around 1100-10200Å, covering many nebular lines for determining numerous ionic abundances and electron densities and temperatures. In this work, we first analyze the low- and moderate-resolution UV emission lines of carbon, nitrogen and oxygen. In particular, the resolved lines of C_III] 1907 and C_III] 1909 have yielded a direct measurement of one of the dominant ionic species for carbon and a determination of the density occupied by doubly-ionized carbon and other similar ions. Next, the spatial emission profile of these lines reveals variations in the inferred density along the line of sight from about 2800-11500 cm-3, compared with a value ~3800 cm-3, when averaged over the entire slit. Similarly, the electron temperature is around 12000K for the entire slit and ranges from about 11400-14000K when the slit is divided into smaller sub-regions. Lastly, these sub-regions of the nebula have been modeled in detail with the photoionization code CLOUDY. This modeling will assess the density profile that produces the observed density variation, reproduce the temperature fluctuations, and constrain the central star temperature. We acknowledge the gracious support from HST and the University of Oklahoma.
Development of Weeds Density Evaluation System Based on RGB Sensor
NASA Astrophysics Data System (ADS)
Solahudin, M.; Slamet, W.; Wahyu, W.
2018-05-01
Weeds are plant competitors which potentially reduce the yields due to competition for sunlight, water and soil nutrients. Recently, for chemical-based weed control, site-specific weed management that accommodates spatial and temporal diversity of weeds attack in determining the appropriate dose of herbicide based on Variable Rate Technology (VRT) is preferable than traditional approach with single dose herbicide application. In such application, determination of the level of weed density is an important task. Several methods have been studied to evaluate the density of weed attack. The objective of this study is to develop a system that is able to evaluate weed density based on RGB (Red, Green, and Blue) sensors. RGB sensor was used to acquire the RGB values of the surface of the field. An artificial neural network (ANN) model was then used for determining the weed density. In this study the ANN model was trained with 280 training data (70%), 60 validation data (15%), and 60 testing data (15%). Based on the field test, using the proposed method the weed density could be evaluated with an accuracy of 83.75%.
Does interference competition with wolves limit the distribution and abundance of coyotes?
Berger, Kim Murray; Gese, Eric M
2007-11-01
Interference competition with wolves Canis lupus is hypothesized to limit the distribution and abundance of coyotes Canis latrans, and the extirpation of wolves is often invoked to explain the expansion in coyote range throughout much of North America. We used spatial, seasonal and temporal heterogeneity in wolf distribution and abundance to test the hypothesis that interference competition with wolves limits the distribution and abundance of coyotes. From August 2001 to August 2004, we gathered data on cause-specific mortality and survival rates of coyotes captured at wolf-free and wolf-abundant sites in Grand Teton National Park (GTNP), Wyoming, USA, to determine whether mortality due to wolves is sufficient to reduce coyote densities. We examined whether spatial segregation limits the local distribution of coyotes by evaluating home-range overlap between resident coyotes and wolves, and by contrasting dispersal rates of transient coyotes captured in wolf-free and wolf-abundant areas. Finally, we analysed data on population densities of both species at three study areas across the Greater Yellowstone Ecosystem (GYE) to determine whether an inverse relationship exists between coyote and wolf densities. Although coyotes were the numerically dominant predator, across the GYE, densities varied spatially and temporally in accordance with wolf abundance. Mean coyote densities were 33% lower at wolf-abundant sites in GTNP, and densities declined 39% in Yellowstone National Park following wolf reintroduction. A strong negative relationship between coyote and wolf densities (beta = -3.988, P < 0.005, r(2) = 0.54, n = 16), both within and across study sites, supports the hypothesis that competition with wolves limits coyote populations. Overall mortality of coyotes resulting from wolf predation was low, but wolves were responsible for 56% of transient coyote deaths (n = 5). In addition, dispersal rates of transient coyotes captured at wolf-abundant sites were 117% higher than for transients captured in wolf-free areas. Our results support the hypothesis that coyote abundance is limited by competition with wolves, and suggest that differential effects on survival and dispersal rates of transient coyotes are important mechanisms by which wolves reduce coyote densities.
NASA Astrophysics Data System (ADS)
Cvetanović, Nikola; Galmiz, Oleksandr; Synek, Petr; Zemánek, Miroslav; Brablec, Antonín; Hoder, Tomáš
2018-02-01
Optical emission spectroscopy, fast intensified CCD imaging and electrical measurements were applied to investigate the basic plasma parameters of surface barrier discharge emerging from a conductive water electrode. The discharge was generated at the triple-line interface of atmospheric pressure argon gas and conductive water solution at the fused silica dielectrics using a sinusoidal high-voltage waveform. The spectroscopic methods of atomic line broadening and molecular spectroscopy were used to determine the electron densities and the gas temperature in the active plasma. These parameters were obtained for both applied voltage polarities and resolved spatially. Two different spectral signatures were identified in the spatially resolved spectra resulting in electron densities differing by two orders of magnitude. It is shown that two discharge mechanisms take a place: the streamer and the leader one, with electron densities of 1014 and 1016 cm-3, respectively. This spectroscopic evidence is supported by the combined diagnostics of electrical current measurements and phase-resolved intensified CCD camera imaging.
Kodama, Keita; Tajima, Yoshihiro; Shimizu, Takamichi; Ohata, Satoshi; Shiraishi, Hiroaki; Horiguchi, Toshihiro
2014-08-30
We investigated effects of severe hypoxia (dissolved oxygen <1 ml l(-1)) on recruitment of mantis shrimp Oratosquilla oratoria in Tokyo Bay. Ten-year field surveys were conducted to examine quantitative relationships in annual mean densities of larvae and juveniles, and spatial distribution of juveniles and severe hypoxia. There was no significant correlation between annual mean densities of larvae and juveniles, suggesting that mortality during larval or juvenile stages varies among years, which might have regulated abundance of young-of-the-year juveniles. Juvenile density was low in the severely hypoxic area, implying that hypoxia could affect survivals and spatial distribution of juveniles. Meanwhile, there are yearly fluctuations in juvenile density in normoxic areas of both northern and southern part of the bay. This evidence suggests that abundance of post-settled juveniles might have been determined by not only effects of hypoxia, but also other factors influencing mortality during the early life stages. Copyright © 2014 Elsevier Ltd. All rights reserved.
Etherington, L.L.; Eggleston, D.B.
2003-01-01
We assessed determinants and consequences of multistage dispersal on spatial recruitment of the blue crab, Callinectes sapidus, within the Croatan, Albemarle, Pamlico Estuarine System (CAPES), North Carolina, U.S.A. Large-scale sampling of early juvenile crabs over 4 years indicated that spatial abundance patterns were size-dependent and resulted from primary post-larval dispersal (pre-settlement) and secondary juvenile dispersal (early post-settlement). In general, primary dispersal led to high abundances within more seaward habitats, whereas secondary dispersal (which was relatively consistent) expanded the distribution of juveniles, potentially increasing the estuarine nursery capacity. There were strong relationships between juvenile crab density and specific wind characteristics; however, these patterns were spatially explicit. Various physical processes (e.g., seasonal wind events, timing and magnitude of tropical cyclones) interacted to influence dispersal during multiple stages and determined crab recruitment patterns. Our results suggest that the nursery value of different habitats is highly dependent on the dispersal potential (primary and secondary dispersal) to and from these areas, which is largely determined by the relative position of habitats within the estuarine landscape.
NASA Astrophysics Data System (ADS)
Arthur, N. A.; Foster, J. E.; Barnat, E. V.
2018-05-01
Two-dimensional electron density measurements are made in a magnetic ring cusp discharge using laser collisional induced fluorescence. The magnet rings are isolated from the anode structure such that they can be biased independently in order to modulate electron flows through the magnetic cusps. Electron density images are captured as a function of bias voltage in order to assess the effects of current flow through the cusp on the spatial extent of the cusp. We anticipated that for a fixed current density being funneled through the magnetic cusp, the leak width would necessarily increase. Unexpectedly, the leak width, as measured by LCIF images, does not increase. This suggests that the current density is not constant, and that possibly either electrons are being heated or additional ionization events are occurring within the cusp. Spatially resolving electron temperature would be needed to determine if electrons are being heated within the cusp. We also observe breakdown of the anode magnetosheath and formation of anode spots at high bias voltage.
R. Justin DeRose; Shih-Yu Wang; John D. Shaw
2013-01-01
This study introduces a novel tree-ring dataset, with unparalleled spatial density, for use as a climate proxy. Ancillary Douglas fir and pinyon pine tree-ring data collected by the U.S. Forest Service Forest Inventory and Analysis Program (FIA data) were subjected to a series of tests to determine their feasibility as climate proxies. First, temporal coherence between...
Krawczyk, Christopher; Gradziel, Pat; Geraghty, Estella M.
2014-01-01
Objectives. We used a geographic information system and cluster analyses to determine locations in need of enhanced Special Supplemental Nutrition Program for Women, Infants, and Children (WIC) Program services. Methods. We linked documented births in the 2010 California Birth Statistical Master File with the 2010 data from the WIC Integrated Statewide Information System. Analyses focused on the density of pregnant women who were eligible for but not receiving WIC services in California’s 7049 census tracts. We used incremental spatial autocorrelation and hot spot analyses to identify clusters of WIC-eligible nonparticipants. Results. We detected clusters of census tracts with higher-than-expected densities, compared with the state mean density of WIC-eligible nonparticipants, in 21 of 58 (36.2%) California counties (P < .05). In subsequent county-level analyses, we located neighborhood-level clusters of higher-than-expected densities of eligible nonparticipants in Sacramento, San Francisco, Fresno, and Los Angeles Counties (P < .05). Conclusions. Hot spot analyses provided a rigorous and objective approach to determine the locations of statistically significant clusters of WIC-eligible nonparticipants. Results helped inform WIC program and funding decisions, including the opening of new WIC centers, and offered a novel approach for targeting public health services. PMID:24354821
Woodland type and spatial distribution of nymphal Ixodes scapularis (Acari: Ixodidae)
Ginsberg, Howard S.; Zhioua, Elyes; Mitra, Shaibal; Fischer, Jason L.; Buckley, P.A.; Verret, Frank; Underwood, H. Brian; Buckley, Francine G.
2004-01-01
Spatial distribution patterns of black-legged ticks, Ixodes scapularis, in deciduous and coniferous woodlands were studied by sampling ticks in different woodland types and at sites from which deer had been excluded and by quantifying movement patterns of tick host animals (mammals and birds) at the Lighthouse Tract, Fire Island, NY, from 1994 to 2000. Densities of nymphal ticks were greater in deciduous than coniferous woods in 3 of 7 yr. Only engorged ticks survived the winter, and overwintering survival of engorged larvae in experimental enclosures did not differ between deciduous and coniferous woods. Nymphs were not always most abundant in the same forest type as they had been as larvae, and the habitat shift between life stages differed in direction in different years. Therefore, forest type by itself did not account for tick distribution patterns. Nymphal densities were lower where deer had been excluded compared with areas with deer present for 3 yr after exclusion, suggesting that movement patterns of vertebrate hosts influenced tick distribution, but nymphal densities increased dramatically in one of the enclosures in the fourth year. Therefore, movements of ticks on animal hosts apparently contribute substantially to tick spatial distribution among woodland types, but the factor(s) that determine spatial distribution of nymphal I. scapularis shift from year to year.
Multi-Point Measurements to Characterize Radiation Belt Electron Precipitation Loss
NASA Astrophysics Data System (ADS)
Blum, L. W.
2017-12-01
Multipoint measurements in the inner magnetosphere allow the spatial and temporal evolution of various particle populations and wave modes to be disentangled. To better characterize and quantify radiation belt precipitation loss, we utilize multi-point measurements both to study precipitating electrons directly as well as the potential drivers of this loss process. Magnetically conjugate CubeSat and balloon measurements are combined to estimate of the temporal and spatial characteristics of dusk-side precipitation features and quantify loss due to these events. To then understand the drivers of precipitation events, and what determines their spatial structure, we utilize measurements from the dual Van Allen Probes to estimate spatial and temporal scales of various wave modes in the inner magnetosphere, and compare these to precipitation characteristics. The structure, timing, and spatial extent of waves are compared to those of MeV electron precipitation during a few individual events to determine when and where EMIC waves cause radiation belt electron precipitation. Magnetically conjugate measurements provide observational support of the theoretical picture of duskside interaction of EMIC waves and MeV electrons leading to radiation belt loss. Finally, understanding the drivers controlling the spatial scales of wave activity in the inner magnetosphere is critical for uncovering the underlying physics behind the wave generation as well as for better predicting where and when waves will be present. Again using multipoint measurements from the Van Allen Probes, we estimate the spatial and temporal extents and evolution of plasma structures and their gradients in the inner magnetosphere, to better understand the drivers of magnetospheric wave characteristic scales. In particular, we focus on EMIC waves and the plasma parameters important for their growth, namely cold plasma density and cool and warm ion density, anisotropy, and composition.
Ellingson, A.R.; Andersen, D.C.
2002-01-01
1. The hypothesis that the habitat-scale spatial distribution of the, Apache cicada Diceroprocta apache Davis is unaffected by the presence of the invasive exotic saltcedar Tamarix ramosissima was tested using data from 205 1-m2 quadrats placed within the flood-plain of the Bill Williams River, Arizona, U.S.A. Spatial dependencies within and between cicada density and habitat variables were estimated using Moran's I and its bivariate analogue to discern patterns and associations at spatial scales from 1 to 30 m. 2. Apache cicadas were spatially aggregated in high-density clusters averaging 3m in diameter. A positive association between cicada density, estimated by exuvial density, and the per cent canopy cover of a native tree, Goodding's willow Salix gooddingii, was detected in a non-spatial correlation analysis. No non-spatial association between cicada density and saltcedar canopy cover was detected. 3. Tests for spatial cross-correlation using the bivariate IYZ indicated the presence of a broad-scale negative association between cicada density and saltcedar canopy cover. This result suggests that large continuous stands of saltcedar are associated with reduced cicada density. In contrast, positive associations detected at spatial scales larger than individual quadrats suggested a spill-over of high cicada density from areas featuring Goodding's willow canopy into surrounding saltcedar monoculture. 4. Taken together and considered in light of the Apache cicada's polyphagous habits, the observed spatial patterns suggest that broad-scale factors such as canopy heterogeneity affect cicada habitat use more than host plant selection. This has implications for management of lower Colorado River riparian woodlands to promote cicada presence and density through maintenance or creation of stands of native trees as well as manipulation of the characteristically dense and homogeneous saltcedar canopies.
Ellingson, A.R.; Andersen, D.C.
2002-01-01
1. The hypothesis that the habitat-scale spatial distribution of the Apache cicada Diceroprocta apache Davis is unaffected by the presence of the invasive exotic saltcedar Tamarix ramosissima was tested using data from 205 1-m2 quadrats placed within the flood-plain of the Bill Williams River, Arizona, U.S.A. Spatial dependencies within and between cicada density and habitat variables were estimated using Moran's I and its bivariate analogue to discern patterns and associations at spatial scales from 1 to 30 m.2. Apache cicadas were spatially aggregated in high-density clusters averaging 3 m in diameter. A positive association between cicada density, estimated by exuvial density, and the per cent canopy cover of a native tree, Goodding's willow Salix gooddingii, was detected in a non-spatial correlation analysis. No non-spatial association between cicada density and saltcedar canopy cover was detected.3. Tests for spatial cross-correlation using the bivariate IYZ indicated the presence of a broad-scale negative association between cicada density and saltcedar canopy cover. This result suggests that large continuous stands of saltcedar are associated with reduced cicada density. In contrast, positive associations detected at spatial scales larger than individual quadrats suggested a spill-over of high cicada density from areas featuring Goodding's willow canopy into surrounding saltcedar monoculture.4. Taken together and considered in light of the Apache cicada's polyphagous habits, the observed spatial patterns suggest that broad-scale factors such as canopy heterogeneity affect cicada habitat use more than host plant selection. This has implications for management of lower Colorado River riparian woodlands to promote cicada presence and density through maintenance or creation of stands of native trees as well as manipulation of the characteristically dense and homogeneous saltcedar canopies.
Smith, D.R.; Rogala, J.T.; Gray, B.R.; Zigler, S.J.; Newton, T.J.
2011-01-01
Reliable estimates of abundance are needed to assess consequences of proposed habitat restoration and enhancement projects on freshwater mussels in the Upper Mississippi River (UMR). Although there is general guidance on sampling techniques for population assessment of freshwater mussels, the actual performance of sampling designs can depend critically on the population density and spatial distribution at the project site. To evaluate various sampling designs, we simulated sampling of populations, which varied in density and degree of spatial clustering. Because of logistics and costs of large river sampling and spatial clustering of freshwater mussels, we focused on adaptive and non-adaptive versions of single and two-stage sampling. The candidate designs performed similarly in terms of precision (CV) and probability of species detection for fixed sample size. Both CV and species detection were determined largely by density, spatial distribution and sample size. However, designs did differ in the rate that occupied quadrats were encountered. Occupied units had a higher probability of selection using adaptive designs than conventional designs. We used two measures of cost: sample size (i.e. number of quadrats) and distance travelled between the quadrats. Adaptive and two-stage designs tended to reduce distance between sampling units, and thus performed better when distance travelled was considered. Based on the comparisons, we provide general recommendations on the sampling designs for the freshwater mussels in the UMR, and presumably other large rivers.
McPhee, D.K.; Langenheim, V.E.; Watt, J.T.
2011-01-01
This isostatic residual gravity map is part of an effort to map the three-dimensional distribution of rocks in the central California Coast Ranges and will serve as a basis for modeling the shape of basins and for determining the location and geometry of faults within the Paso Robles quadrangle. Local spatial variations in the Earth\\'s gravity field, after accounting for variations caused by elevation, terrain, and deep crustal structure reflect the distribution of densities in the mid- to upper crust. Densities often can be related to rock type, and abrupt spatial changes in density commonly mark lithological or structural boundaries. High-density rocks exposed within the central Coast Ranges include Mesozoic granitic rocks (exposed northwest of Paso Robles), Jurassic to Cretaceous marine strata of the Great Valley Sequence (exposed primarily northeast of the San Andreas fault), and Mesozoic sedimentary and volcanic rocks of the Franciscan Complex [exposed in the Santa Lucia Range and northeast of the San Andreas fault (SAF) near Parkfield, California]. Alluvial sediments and Tertiary sedimentary rocks are characterized by low densities; however, with increasing depth of burial and age, the densities of these rocks may become indistinguishable from those of older basement rocks.
Approach for computing 1D fracture density: application to fracture corridor characterization
NASA Astrophysics Data System (ADS)
Viseur, Sophie; Chatelée, Sebastien; Akriche, Clement; Lamarche, Juliette
2016-04-01
Fracture density is an important parameter for characterizing fractured reservoirs. Many stochastic simulation algorithms that generate fracture networks indeed rely on the determination of a fracture density on volumes (P30) to populate the reservoir zones with individual fracture surfaces. However, only 1D fracture density (P10) are available from subsurface data and it is then important to be able to accurately estimate this entity. In this paper, a novel approach is proposed to estimate fracture density from scan-line or well data. This method relies on regression, hypothesis testing and clustering techniques. The objective of the proposed approach is to highlight zones where fracture density are statistically very different or similar. This technique has been applied on both synthetic and real case studies. These studies concern fracture corridors, which are particular tectonic features that are generally difficult to characterize from subsurface data. These tectonic features are still not well known and studies must be conducted to better understand their internal spatial organization and variability. The presented synthetic cases aim at showing the ability of the approach to extract known features. The real case study illustrates how this approach allows the internal spatial organization of fracture corridors to be characterized.
Experimental evaluation of fluctuating density and radiated noise from a high temperature jet
NASA Technical Reports Server (NTRS)
Massier, P. F.; Parthasarathy, S. P.; Cuffel, R. F.
1973-01-01
An experimental investigation has been conducted to characterize the fluctuating density within a high-temperature (1100 K) subsonic jet and to characterize by the noise radiated to the surroundings. Cross correlations obtained by introducing time delay to the signals detected from spatially separated crossed laser beams set up as a Schlieren system were used to determine radial and axial distributions of the convection velocity of the moving noise sources (eddies). In addition, the autocorrelation of the fluctuating density was evaluated in the moving frame of reference of the eddies. Also, the autocorrelation of the radiated noise in the moving reference frame was evaluated from cross correlations by introducing time delay to the signals detected by spatially separated pairs of microphones. Radial distributions of the mean velocity were obtained from measurements of the stagnation temperature, and stagnation and static pressures with the use of probes.
Davis, Amy J; Leland, Bruce; Bodenchuk, Michael; VerCauteren, Kurt C; Pepin, Kim M
2017-06-01
Population density is a key driver of disease dynamics in wildlife populations. Accurate disease risk assessment and determination of management impacts on wildlife populations requires an ability to estimate population density alongside management actions. A common management technique for controlling wildlife populations to monitor and mitigate disease transmission risk is trapping (e.g., box traps, corral traps, drop nets). Although abundance can be estimated from trapping actions using a variety of analytical approaches, inference is limited by the spatial extent to which a trap attracts animals on the landscape. If the "area of influence" were known, abundance estimates could be converted to densities. In addition to being an important predictor of contact rate and thus disease spread, density is more informative because it is comparable across sites of different sizes. The goal of our study is to demonstrate the importance of determining the area sampled by traps (area of influence) so that density can be estimated from management-based trapping designs which do not employ a trapping grid. To provide one example of how area of influence could be calculated alongside management, we conducted a small pilot study on wild pigs (Sus scrofa) using two removal methods 1) trapping followed by 2) aerial gunning, at three sites in northeast Texas in 2015. We estimated abundance from trapping data with a removal model. We calculated empirical densities as aerial counts divided by the area searched by air (based on aerial flight tracks). We inferred the area of influence of traps by assuming consistent densities across the larger spatial scale and then solving for area impacted by the traps. Based on our pilot study we estimated the area of influence for corral traps in late summer in Texas to be ∼8.6km 2 . Future work showing the effects of behavioral and environmental factors on area of influence will help mangers obtain estimates of density from management data, and determine conditions where trap-attraction is strongest. The ability to estimate density alongside population control activities will improve risk assessment and response operations against disease outbreaks. Published by Elsevier B.V.
Lightning characteristics of derecho producing mesoscale convective systems
NASA Astrophysics Data System (ADS)
Bentley, Mace L.; Franks, John R.; Suranovic, Katelyn R.; Barbachem, Brent; Cannon, Declan; Cooper, Stonie R.
2016-06-01
Derechos, or widespread, convectively induced wind storms, are a common warm season phenomenon in the Central and Eastern United States. These damaging and severe weather events are known to sweep quickly across large spatial regions of more than 400 km and produce wind speeds exceeding 121 km h-1. Although extensive research concerning derechos and their parent mesoscale convective systems already exists, there have been few investigations of the spatial and temporal distribution of associated cloud-to-ground lightning with these events. This study analyzes twenty warm season (May through August) derecho events between 2003 and 2013 in an effort to discern their lightning characteristics. Data used in the study included cloud-to-ground flash data derived from the National Lightning Detection Network, WSR-88D imagery from the University Corporation for Atmospheric Research, and damaging wind report data obtained from the Storm Prediction Center. A spatial and temporal analysis was conducted by incorporating these data into a geographic information system to determine the distribution and lightning characteristics of the environments of derecho producing mesoscale convective systems. Primary foci of this research include: (1) finding the approximate size of the lightning activity region for individual and combined event(s); (2) determining the intensity of each event by examining the density and polarity of lightning flashes; (3) locating areas of highest lightning flash density; and (4) to provide a lightning spatial analysis that outlines the temporal and spatial distribution of flash activity for particularly strong derecho producing thunderstorm episodes.
Quantitative imaging of carbon dimer precursor for nanomaterial synthesis in the carbon arc
Vekselman, V.; Khrabry, A.; Kaganovich, I.; ...
2018-02-06
Delineating the dominant processes responsible for nanomaterial synthesis in a plasma environment requires measurements of the precursor species contributing to the growth of nanostructures. Here, we performed comprehensive measurements of spatial and temporal profiles of carbon dimers (C 2) in sub-atmospheric-pressure carbon arc by laser-induced fluorescence. Measured spatial profiles of C 2 coincide with the growth region of carbon nanotubes (Fang et al 2016 Carbon 107 273–80) and vary depending on the arc operation mode, which is determined by the discharge current and the ablation rate of the graphite anode. The C 2 density profile exhibits large spatial and timemore » variations due to motion of the arc core. A comparison of the experimental data with the 2D simulation results of self-consistent arc modeling shows good agreement. The model predicts well the main processes determining spatial profiles of carbon dimers (C 2).« less
Quantitative imaging of carbon dimer precursor for nanomaterial synthesis in the carbon arc
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vekselman, V.; Khrabry, A.; Kaganovich, I.
Delineating the dominant processes responsible for nanomaterial synthesis in a plasma environment requires measurements of the precursor species contributing to the growth of nanostructures. Here, we performed comprehensive measurements of spatial and temporal profiles of carbon dimers (C 2) in sub-atmospheric-pressure carbon arc by laser-induced fluorescence. Measured spatial profiles of C 2 coincide with the growth region of carbon nanotubes (Fang et al 2016 Carbon 107 273–80) and vary depending on the arc operation mode, which is determined by the discharge current and the ablation rate of the graphite anode. The C 2 density profile exhibits large spatial and timemore » variations due to motion of the arc core. A comparison of the experimental data with the 2D simulation results of self-consistent arc modeling shows good agreement. The model predicts well the main processes determining spatial profiles of carbon dimers (C 2).« less
Zald, Harold S.J.; Spies, Thomas A.; Seidl, Rupert; Pabst, Robert J.; Olsen, Keith A.; Steel, E. Ashley
2016-01-01
Forest carbon (C) density varies tremendously across space due to the inherent heterogeneity of forest ecosystems. Variation of forest C density is especially pronounced in mountainous terrain, where environmental gradients are compressed and vary at multiple spatial scales. Additionally, the influence of environmental gradients may vary with forest age and developmental stage, an important consideration as forest landscapes often have a diversity of stand ages from past management and other disturbance agents. Quantifying forest C density and its underlying environmental determinants in mountain terrain has remained challenging because many available data sources lack the spatial grain and ecological resolution needed at both stand and landscape scales. The objective of this study was to determine if environmental factors influencing aboveground live carbon (ALC) density differed between young versus old forests. We integrated aerial light detection and ranging (lidar) data with 702 field plots to map forest ALC density at a grain of 25 m across the H.J. Andrews Experimental Forest, a 6369 ha watershed in the Cascade Mountains of Oregon, USA. We used linear regressions, random forest ensemble learning (RF) and sequential autoregressive modeling (SAR) to reveal how mapped forest ALC density was related to climate, topography, soils, and past disturbance history (timber harvesting and wildfires). ALC increased with stand age in young managed forests, with much greater variation of ALC in relation to years since wildfire in old unmanaged forests. Timber harvesting was the most important driver of ALC across the entire watershed, despite occurring on only 23% of the landscape. More variation in forest ALC density was explained in models of young managed forests than in models of old unmanaged forests. Besides stand age, ALC density in young managed forests was driven by factors influencing site productivity, whereas variation in ALC density in old unmanaged forests was also affected by finer scale topographic conditions associated with sheltered sites. Past wildfires only had a small influence on current ALC density, which may be a result of long times since fire and/or prevalence of non-stand replacing fire. Our results indicate that forest ALC density depends on a suite of multi-scale environmental drivers mediated by complex mountain topography, and that these relationships are dependent on stand age. The high and context-dependent spatial variability of forest ALC density has implications for quantifying forest carbon stores, establishing upper bounds of potential carbon sequestration, and scaling field data to landscape and regional scales. PMID:27041818
The mean density and two-point correlation function for the CfA redshift survey slices
NASA Technical Reports Server (NTRS)
De Lapparent, Valerie; Geller, Margaret J.; Huchra, John P.
1988-01-01
The effect of large-scale inhomogeneities on the determination of the mean number density and the two-point spatial correlation function were investigated for two complete slices of the extension of the Center for Astrophysics (CfA) redshift survey (de Lapparent et al., 1986). It was found that the mean galaxy number density for the two strips is uncertain by 25 percent, more so than previously estimated. The large uncertainty in the mean density introduces substantial uncertainty in the determination of the two-point correlation function, particularly at large scale; thus, for the 12-deg slice of the CfA redshift survey, the amplitude of the correlation function at intermediate scales is uncertain by a factor of 2. The large uncertainties in the correlation functions might reflect the lack of a fair sample.
Effects of high density on spacing behaviour and reproduction in Akodon azarae: A fencing experiment
NASA Astrophysics Data System (ADS)
Ávila, Belén; Bonatto, Florencia; Priotto, José; Steinmann, Andrea R.
2016-01-01
We studied the short term spacing behavioural responses of Pampean grassland mouse (Akodon azarae) with regard to population density in four 0.25 ha enclosures (two control and two experimental) in the 2011 breeding season. Based on the hypothesis that A. azarae breeding females exhibit spacing behaviour, and breeding males show a fusion spatial response, we tested the following predictions: (1) home range size and intrasexual overlap degree of females are independent of population density values; (2) at high population density, home range size of males decreases and the intrasexual home range overlap degree increases. To determine if female reproductive success decreases at high population density, we analyzed pregnancy rate, size and weight of litters, and period until fecundation in both low and high enclosure population density. We found that both males and females varied their home range size in relation to population density. Although male home ranges were always bigger than those of females in populations with high density, home range sizes of both sexes decreased. Females kept exclusive home ranges independent of density values meanwhile males decreased home range overlap in high breeding density populations. Although females produced litters of similar size in both treatments, weight of litter, pregnant rate and period until fecundation varied in relation to population density. Our results did not support the hypothesis that at high density females of A. azarae exhibit spacing behaviour neither that males exhibit a fusion spatial response.
Percolation threshold determines the optimal population density for public cooperation
NASA Astrophysics Data System (ADS)
Wang, Zhen; Szolnoki, Attila; Perc, Matjaž
2012-03-01
While worldwide census data provide statistical evidence that firmly link the population density with several indicators of social welfare, the precise mechanisms underlying these observations are largely unknown. Here we study the impact of population density on the evolution of public cooperation in structured populations and find that the optimal density is uniquely related to the percolation threshold of the host graph irrespective of its topological details. We explain our observations by showing that spatial reciprocity peaks in the vicinity of the percolation threshold, when the emergence of a giant cooperative cluster is hindered neither by vacancy nor by invading defectors, thus discovering an intuitive yet universal law that links the population density with social prosperity.
Bissoli, Lorena B; Bernardino, Angelo F
2018-01-01
Tropical estuaries are highly productive and support diverse benthic assemblages within mangroves and tidal flats habitats. Determining differences and similarities of benthic assemblages within estuarine habitats and between regional ecosystems may provide scientific support for management of those ecosystems. Here we studied three tropical estuaries in the Eastern Marine Ecoregion of Brazil to assess the spatial variability of benthic assemblages from vegetated (mangroves) and unvegetated (tidal flats) habitats. A nested sampling design was used to determine spatial scales of variability in benthic macrofaunal density, biomass and secondary production. Habitat differences in benthic assemblage composition were evident, with mangrove forests being dominated by annelids (Oligochaeta and Capitellidae) whereas peracarid crustaceans were also abundant on tidal flats. Macrofaunal biomass, density and secondary production also differed between habitats and among estuaries. Those differences were related both to the composition of benthic assemblages and to random spatial variability, underscoring the importance of hierarchical sampling in estuarine ecological studies. Given variable levels of human impacts and predicted climate change effects on tropical estuarine assemblages in Eastern Brazil, our data support the use of benthic secondary production to address long-term changes and improved management of estuaries in Eastern Brazil.
Bissoli, Lorena B.
2018-01-01
Tropical estuaries are highly productive and support diverse benthic assemblages within mangroves and tidal flats habitats. Determining differences and similarities of benthic assemblages within estuarine habitats and between regional ecosystems may provide scientific support for management of those ecosystems. Here we studied three tropical estuaries in the Eastern Marine Ecoregion of Brazil to assess the spatial variability of benthic assemblages from vegetated (mangroves) and unvegetated (tidal flats) habitats. A nested sampling design was used to determine spatial scales of variability in benthic macrofaunal density, biomass and secondary production. Habitat differences in benthic assemblage composition were evident, with mangrove forests being dominated by annelids (Oligochaeta and Capitellidae) whereas peracarid crustaceans were also abundant on tidal flats. Macrofaunal biomass, density and secondary production also differed between habitats and among estuaries. Those differences were related both to the composition of benthic assemblages and to random spatial variability, underscoring the importance of hierarchical sampling in estuarine ecological studies. Given variable levels of human impacts and predicted climate change effects on tropical estuarine assemblages in Eastern Brazil, our data support the use of benthic secondary production to address long-term changes and improved management of estuaries in Eastern Brazil. PMID:29507833
Spatial relationships among cereal yields and selected soil physical and chemical properties.
Lipiec, Jerzy; Usowicz, Bogusław
2018-08-15
Sandy soils occupy large area in Poland (about 50%) and in the world. This study aimed at determining spatial relationships of cereal yields and the selected soil physical and chemical properties in three study years (2001-2003) on low productive sandy Podzol soil (Podlasie, Poland). The yields and soil properties in plough and subsoil layers were determined at 72-150 points. The test crops were: wheat, wheat and barley mixture and oats. To explore the spatial relationship between cereal yields and each soil property spatial statistics was used. The best fitting models were adjusted to empirical semivariance and cross-semivariance, which were used to draw maps using kriging. Majority of the soil properties and crop yields exhibited low and medium variability (coefficient of variation 5-70%). The effective ranges of the spatial dependence (the distance at which data are autocorrelated) for yields and all soil properties were 24.3-58.5m and 10.5-373m, respectively. Nugget to sill ratios showed that crop yields and soil properties were strongly spatially dependent except bulk density. Majority of the pairs in cross-semivariograms exhibited strong spatial interdependence. The ranges of the spatial dependence varied in plough layer between 54.6m for yield×pH up to 2433m for yield×silt content. Corresponding ranges in subsoil were 24.8m for crop yield×clay content in 2003 and 1404m for yield×bulk density. Kriging maps allowed separating sub-field area with the lowest yield and soil cation exchange capacity, organic carbon content and pH. This area had lighter color on the aerial photograph due to high content of the sand and low content of soil organic carbon. The results will help farmers at identifying sub-field areas for applying localized management practices to improve these soil properties and further spatial studies in larger scale. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kumlu, Kadriye Burcu Yavuz; Tüdeş, Şule
2017-10-01
The sustainability agenda has maintained its importance since the days, when the production system took its capitalist form, as well as the population in the urban areas started to rise. Increasing number of both goods and the people have caused the degradation of the certain systems, which generate the urban areas. These systems could mainly be classified as social, environmental, physical and economical systems. Today, urban areas still have difficulty to protect those systems, due to the significant demand of the population. Therefore, studies related with the sustainable issues are significant in the sense of continuity of the urban systems. Therefore, in this paper, those studies in the context of the effects of physical decisions taken in the spatial planning process on urban sustainability, will be examined. The components of the physical decisions are limited to land use, density and design. Land use decisions will be examined in the context of mixed land use. On the other hand, decisions related with density will be analyzed in the sense of population density and floor area ratio (FAR). Besides, design decisions will be examined, by linking them with neighborhood design criteria. Additionally, the term of urban sustainability will only be limited to its social and environmental contexts in this study. Briefly stated, studies in the sustainable literature concerned with the effects of land use, density and design decisions taken in the spatial planning process on the social and environmental sustainability will be examined in this paper. After the compilation and the analyze of those studies, a theoretical approach will be proposed to determine social and environmental sustainability in the context of land use, density and design decisions, taken in the spatial planning process.
Lobon-Cervia, J.; Gonzalez, G.; Budy, P.
2011-01-01
1.The objective was to identify the factors driving spatial and temporal variation in annual production (PA) and turnover (production/biomass) ratio (P/BA) of resident brown trout Salmo trutta in tributaries of the Rio Esva (Cantabrian Mountains, Asturias, north-western Spain). We examined annual production (total production of all age-classes over a year) (PA) and turnover (P/BA) ratios, in relation to year-class production (production over the entire life time of a year-class) (PT) and turnover (P/BT) ratio, over 14years at a total of 12 sites along the length of four contrasting tributaries. In addition, we explored whether the importance of recruitment and site depth for spatial and temporal variations in year-class production (PT), elucidated in previous studies, extends to annual production. 2.Large spatial (among sites) and temporal (among years) variation in annual production (range 1.9-40.3gm-2 per year) and P/BA ratio (range 0.76-2.4per year) typified these populations, values reported here including all the variation reported globally for salmonids streams inhabited by one or several species. 3.Despite substantial differences among streams and sites in all production attributes, when all data were pooled, annual (PA) and year-class production (PT) and annual (P/BA) and year-class P/BT ratios were tightly linked. Annual (PA) and year-class production (PT) were similar but not identical, i.e. PT=0.94 PA, whereas the P/BT ratios were 4+P/BA ratios. 4.Recruitment (Rc) and mean annual density (NA) were major density-dependent drivers of production and their relationships were described by simple mathematical models. While year-class production (PT) was determined (R2=70.1%) by recruitment (Rc), annual production (PA) was determined (R2=60.3%) by mean annual density (NA). In turn, variation in recruitment explained R2=55.2% of variation in year-class P/BT ratios, the latter attaining an asymptote at P/BT=6 at progressively higher levels of recruitment. Similarly, variations in mean annual density (NA) explained R2=52.1% of variation in annual P/BA, the latter reaching an asymptote at P/BA=2.1. This explained why P/BT is equal to P/BA plus the number of year-classes at high but not at low densities. 5.Site depth was a major determinant of spatial (among sites) variation in production attributes. All these attributes described two-phase trajectories with site depth, reaching a maximum at sites of intermediate depth and declining at shallower and deeper sites. As a consequence, at sites where recruitment and mean annual density reached minimum or maximum values, annual (PA) and year-class production (PT) and annual (P/BA) and year-class P/BT ratios also reached minimum and maximum values. ?? 2011 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Fu, W. J.; Jiang, P. K.; Zhou, G. M.; Zhao, K. L.
2014-04-01
Spatial pattern information of carbon density in forest ecosystem including forest litter carbon (FLC) plays an important role in evaluating carbon sequestration potentials. The spatial variation of FLC density in the typical subtropical forests in southeastern China was investigated using Moran's I, geostatistics and a geographical information system (GIS). A total of 839 forest litter samples were collected based on a 12 km (south-north) × 6 km (east-west) grid system in Zhejiang province. Forest litter carbon density values were very variable, ranging from 10.2 kg ha-1 to 8841.3 kg ha-1, with an average of 1786.7 kg ha-1. The aboveground biomass had the strongest positive correlation with FLC density, followed by forest age and elevation. Global Moran's I revealed that FLC density had significant positive spatial autocorrelation. Clear spatial patterns were observed using local Moran's I. A spherical model was chosen to fit the experimental semivariogram. The moderate "nugget-to-sill" (0.536) value revealed that both natural and anthropogenic factors played a key role in spatial heterogeneity of FLC density. High FLC density values were mainly distributed in northwestern and western part of Zhejiang province, which were related to adopting long-term policy of forest conservation in these areas, while Hang-Jia-Hu (HJH) Plain, Jin-Qu (JQ) Basin and coastal areas had low FLC density due to low forest coverage and intensive management of economic forests. These spatial patterns were in line with the spatial-cluster map described by local Moran's I. Therefore, Moran's I, combined with geostatistics and GIS, could be used to study spatial patterns of environmental variables related to forest ecosystem.
Spatial variation and density-dependent dispersal in competitive coexistence.
Amarasekare, Priyanga
2004-01-01
It is well known that dispersal from localities favourable to a species' growth and reproduction (sources) can prevent competitive exclusion in unfavourable localities (sinks). What is perhaps less well known is that too much emigration can undermine the viability of sources and cause regional competitive exclusion. Here, I investigate two biological mechanisms that reduce the cost of dispersal to source communities. The first involves increasing the spatial variation in the strength of competition such that sources can withstand high rates of emigration; the second involves reducing emigration from sources via density-dependent dispersal. I compare how different forms of spatial variation and modes of dispersal influence source viability, and hence source-sink coexistence, under dominance and pre-emptive competition. A key finding is that, while spatial variation substantially reduces dispersal costs under both types of competition, density-dependent dispersal does so only under dominance competition. For instance, when spatial variation in the strength of competition is high, coexistence is possible (regardless of the type of competition) even when sources experience high emigration rates; when spatial variation is low, coexistence is restricted even under low emigration rates. Under dominance competition, density-dependent dispersal has a strong effect on coexistence. For instance, when the emigration rate increases with density at an accelerating rate (Type III density-dependent dispersal), coexistence is possible even when spatial variation is quite low; when the emigration rate increases with density at a decelerating rate (Type II density-dependent dispersal), coexistence is restricted even when spatial variation is quite high. Under pre-emptive competition, density-dependent dispersal has only a marginal effect on coexistence. Thus, the diversity-reducing effects of high dispersal rates persist under pre-emptive competition even when dispersal is density dependent, but can be significantly mitigated under dominance competition if density-dependent dispersal is Type III rather than Type II. These results lead to testable predictions about source-sink coexistence under different regimes of competition, spatial variation and dispersal. They identify situations in which density-independent dispersal provides a reasonable approximation to species' dispersal patterns, and those under which consideration of density-dependent dispersal is crucial to predicting long-term coexistence. PMID:15306322
NASA Astrophysics Data System (ADS)
Jourde, K.; Gibert, D.; Marteau, J.
2015-04-01
This paper examines how the resolution of small-scale geological density models is improved through the fusion of information provided by gravity measurements and density muon radiographies. Muon radiography aims at determining the density of geological bodies by measuring their screening effect on the natural flux of cosmic muons. Muon radiography essentially works like medical X-ray scan and integrates density information along elongated narrow conical volumes. Gravity measurements are linked to density by a 3-D integration encompassing the whole studied domain. We establish the mathematical expressions of these integration formulas - called acquisition kernels - and derive the resolving kernels that are spatial filters relating the true unknown density structure to the density distribution actually recovered from the available data. The resolving kernels approach allows to quantitatively describe the improvement of the resolution of the density models achieved by merging gravity data and muon radiographies. The method developed in this paper may be used to optimally design the geometry of the field measurements to perform in order to obtain a given spatial resolution pattern of the density model to construct. The resolving kernels derived in the joined muon/gravimetry case indicate that gravity data are almost useless to constrain the density structure in regions sampled by more than two muon tomography acquisitions. Interestingly the resolution in deeper regions not sampled by muon tomography is significantly improved by joining the two techniques. The method is illustrated with examples for La Soufrière of Guadeloupe volcano.
The spatial distribution of pet dogs and pet cats on the island of Ireland
2011-01-01
Background There is considerable international research regarding the link between human demographics and pet ownership. In several international studies, pet ownership was associated with household demographics including: the presence of children in the household, urban/rural location, level of education and age/family structure. What is lacking across all these studies, however, is an understanding of how these pets are spatially distributed throughout the regions under study. This paper describes the spatial distribution of pet dog and pet cat owning households on the island of Ireland. Results In 2006, there were an estimated 640,620 pet dog owning households and 215,542 pet cat owning households in Ireland. These estimates are derived from logistic regression modelling, based on household composition to determine pet dog ownership and the type of house to determine pet cat ownership. Results are presented using chloropleth maps. There is a higher density of pet dog owning households in the east of Ireland and in the cities than the west of Ireland and rural areas. However, in urban districts there are a lower proportion of households owning pet dogs than in rural districts. There are more households with cats in the urban areas, but the proportion of households with cats is greater in rural areas. Conclusions The difference in spatial distribution of dog ownership is a reflection of a generally higher density of households in the east of Ireland and in major cities. The higher proportion of ownership in the west is understandable given the higher proportion of farmers and rural dwellings in this area. Spatial representation allows us to visualise the impact of human household distribution on the density of both pet dogs and pet cats on the island of Ireland. This information can be used when analysing risk of disease spread, for market research and for instigating veterinary care. PMID:21663606
The spatial distribution of pet dogs and pet cats on the island of Ireland.
Downes, Martin J; Clegg, Tracy A; Collins, Daniel M; McGrath, Guy; More, Simon J
2011-06-10
There is considerable international research regarding the link between human demographics and pet ownership. In several international studies, pet ownership was associated with household demographics including: the presence of children in the household, urban/rural location, level of education and age/family structure. What is lacking across all these studies, however, is an understanding of how these pets are spatially distributed throughout the regions under study. This paper describes the spatial distribution of pet dog and pet cat owning households on the island of Ireland. In 2006, there were an estimated 640,620 pet dog owning households and 215,542 pet cat owning households in Ireland. These estimates are derived from logistic regression modelling, based on household composition to determine pet dog ownership and the type of house to determine pet cat ownership. Results are presented using chloropleth maps. There is a higher density of pet dog owning households in the east of Ireland and in the cities than the west of Ireland and rural areas. However, in urban districts there are a lower proportion of households owning pet dogs than in rural districts. There are more households with cats in the urban areas, but the proportion of households with cats is greater in rural areas. The difference in spatial distribution of dog ownership is a reflection of a generally higher density of households in the east of Ireland and in major cities. The higher proportion of ownership in the west is understandable given the higher proportion of farmers and rural dwellings in this area. Spatial representation allows us to visualise the impact of human household distribution on the density of both pet dogs and pet cats on the island of Ireland. This information can be used when analysing risk of disease spread, for market research and for instigating veterinary care.
Wattanathorn, Jintanaporn; Kirisattayakul, Woranan; Suriharn, Bhalang; Lertrat, Kamol
2018-05-30
Due to requirement of novel memory enhancer for menopausal women, this study aimed to determine safety and effect of the functional drink containing the extracts of purple corn cob and pandan leaves (PCP) on memory and brain changes in experimental menopause induced by bilateral ovariectomy (OVX). Acute toxicity of PCP was carried out in female Wistar rats. The results showed that LD50 was more than 2000 mg/kg BW. To determine the cognitive enhancing effect of PCP, OVX rats were orally treated with PCP at the doses of 20, 40, and 80 mg/kg BW for 28 days. The spatial memory was assessed every 7 days throughout the study period. At the end of the study, oxidative stress status, acetylcholinesterase (AChE) activity, monoamine oxidase (MAO) activity, neuronal density, and extracellular signal regulated protein kinase 1 and 2 (ERK1/2) signaling in hippocampus were measured. The improved spatial memory, ERK1/2 expression, and neuron density in dentate gyrus of hippocampus were observed in PCP-treated rats. In addition, a reduction of AChE activity was also observed. Unfortunately, no improved oxidative stress status was observed. Taken altogether, PCP exerts the memory-enhancing effect partly through the suppression of AChE and the increase in ERK signaling in the hippocampus.
Dunham, J.B.; Cade, B.S.; Terrell, J.W.
2002-01-01
We used regression quantiles to model potentially limiting relationships between the standing crop of cutthroat trout Oncorhynchus clarki and measures of stream channel morphology. Regression quantile models indicated that variation in fish density was inversely related to the width:depth ratio of streams but not to stream width or depth alone. The spatial and temporal stability of model predictions were examined across years and streams, respectively. Variation in fish density with width:depth ratio (10th-90th regression quantiles) modeled for streams sampled in 1993-1997 predicted the variation observed in 1998-1999, indicating similar habitat relationships across years. Both linear and nonlinear models described the limiting relationships well, the latter performing slightly better. Although estimated relationships were transferable in time, results were strongly dependent on the influence of spatial variation in fish density among streams. Density changes with width:depth ratio in a single stream were responsible for the significant (P < 0.10) negative slopes estimated for the higher quantiles (>80th). This suggests that stream-scale factors other than width:depth ratio play a more direct role in determining population density. Much of the variation in densities of cutthroat trout among streams was attributed to the occurrence of nonnative brook trout Salvelinus fontinalis (a possible competitor) or connectivity to migratory habitats. Regression quantiles can be useful for estimating the effects of limiting factors when ecological responses are highly variable, but our results indicate that spatiotemporal variability in the data should be explicitly considered. In this study, data from individual streams and stream-specific characteristics (e.g., the occurrence of nonnative species and habitat connectivity) strongly affected our interpretation of the relationship between width:depth ratio and fish density.
NASA Astrophysics Data System (ADS)
Salas, P.; Oonk, J. B. R.; van Weeren, R. J.; Wolfire, M. G.; Emig, K. L.; Toribio, M. C.; Röttgering, H. J. A.; Tielens, A. G. G. M.
2018-04-01
Quantitative understanding of the interstellar medium requires knowledge of its physical conditions. Low-frequency carbon radio recombination lines (CRRLs) trace cold interstellar gas and can be used to determine its physical conditions (e.g. electron temperature and density). In this work, we present spatially resolved observations of the low-frequency (≤390 MHz) CRRLs centred around C268α, C357α, C494α, and C539α towards Cassiopeia A on scales of ≤1.2 pc. We compare the spatial distribution of CRRLs with other interstellar medium tracers. This comparison reveals a spatial offset between the peak of the CRRLs and other tracers, which is very characteristic for photodissociation regions and that we take as evidence for CRRLs being preferentially detected from the surfaces of molecular clouds. Using the CRRLs, we constrain the gas electron temperature and density. These constraints on the gas conditions suggest variations of less than a factor of 2 in pressure over ˜1 pc scales, and an average hydrogen density of 200-470 cm-3. From the electron temperature and density maps, we also constrain the ionized carbon emission measure, column density, and path length. Based on these, the hydrogen column density is larger than 1022 cm-2, with a peak of ˜4 × 1022 cm-2 towards the south of Cassiopeia A. Towards the southern peak, the line-of-sight length is ˜40 pc over a ˜2 pc wide structure, which implies that the gas is a thin surface layer on a large (molecular) cloud that is only partially intersected by Cassiopeia A. These observations highlight the utility of CRRLs as tracers of low-density extended H I and CO-dark gas halo's around molecular clouds.
NASA Astrophysics Data System (ADS)
Nambu, Ryogen; Saito, Hajime; Tanaka, Yoshio; Higano, Junya; Kuwahara, Hisami
2012-03-01
There are many studies on spatial distributions of Asari clam Ruditapes philippinarum adults on tidal flats but few have dealt with spatial distributions of newly settled Asari clam (<0.3 mm shell length, indicative of settlement patterns) in relation to physical/topographical conditions on tidal flats. We examined small-scale spatial distributions of newly settled individuals on the Matsunase tidal flat, central Japan, during the low spring tides on two days 29th-30th June 2007, together with the shear stress from waves and currents on the flat. The characteristics of spatial distribution of newly settled Asari clam markedly varied depending on both of hydrodynamic and topographical conditions on the tidal flat. Using generalized linear models (GLMs), factors responsible for affecting newly settled Asari clam density and its spatial distribution were distinguished between sampling days, with "crest" sites always having a negative influence each on the density and the distribution on both sampling days. The continuously recorded data for the wave-current flows at the "crest" site on the tidal flat showed that newly settled Asari clam, as well as bottom sediment particles, at the "crest" site to be easily displaced. Small-scale spatial distributions of newly settled Asari clam changed with more advanced benthic stages in relation to the wave shear stress.
Breast density estimation from high spectral and spatial resolution MRI
Li, Hui; Weiss, William A.; Medved, Milica; Abe, Hiroyuki; Newstead, Gillian M.; Karczmar, Gregory S.; Giger, Maryellen L.
2016-01-01
Abstract. A three-dimensional breast density estimation method is presented for high spectral and spatial resolution (HiSS) MR imaging. Twenty-two patients were recruited (under an Institutional Review Board--approved Health Insurance Portability and Accountability Act-compliant protocol) for high-risk breast cancer screening. Each patient received standard-of-care clinical digital x-ray mammograms and MR scans, as well as HiSS scans. The algorithm for breast density estimation includes breast mask generating, breast skin removal, and breast percentage density calculation. The inter- and intra-user variabilities of the HiSS-based density estimation were determined using correlation analysis and limits of agreement. Correlation analysis was also performed between the HiSS-based density estimation and radiologists’ breast imaging-reporting and data system (BI-RADS) density ratings. A correlation coefficient of 0.91 (p<0.0001) was obtained between left and right breast density estimations. An interclass correlation coefficient of 0.99 (p<0.0001) indicated high reliability for the inter-user variability of the HiSS-based breast density estimations. A moderate correlation coefficient of 0.55 (p=0.0076) was observed between HiSS-based breast density estimations and radiologists’ BI-RADS. In summary, an objective density estimation method using HiSS spectral data from breast MRI was developed. The high reproducibility with low inter- and low intra-user variabilities shown in this preliminary study suggest that such a HiSS-based density metric may be potentially beneficial in programs requiring breast density such as in breast cancer risk assessment and monitoring effects of therapy. PMID:28042590
[Spatial distribution pattern of Pontania dolichura larvae and sampling technique].
Zhang, Feng; Chen, Zhijie; Zhang, Shulian; Zhao, Huiyan
2006-03-01
In this paper, the spatial distribution pattern of Pontania dolichura larvae was analyzed with Taylor's power law, Iwao's distribution function, and six aggregation indexes. The results showed that the spatial distribution pattern of P. dolichura larvae was of aggregated, and the basic component of the distribution was individual colony, with the aggregation intensity increased with density. On branches, the aggregation was caused by the adult behavior of laying eggs and the spatial position of leaves, while on leaves, the aggregation was caused by the spatial position of news leaves in spring when m < 2.37, and by the spatial position of news leaves in spring and the behavior of eclosion and laying eggs when m > 2.37. By using the parameters alpha and beta in Iwao's m * -m regression equation, the optimal and sequential sampling numbers were determined.
Coarse-Grained Theory of Biological Charge Transfer with Spatially and Temporally Correlated Noise.
Liu, Chaoren; Beratan, David N; Zhang, Peng
2016-04-21
System-environment interactions are essential in determining charge-transfer (CT) rates and mechanisms. We developed a computationally accessible method, suitable to simulate CT in flexible molecules (i.e., DNA) with hundreds of sites, where the system-environment interactions are explicitly treated with numerical noise modeling of time-dependent site energies and couplings. The properties of the noise are tunable, providing us a flexible tool to investigate the detailed effects of correlated thermal fluctuations on CT mechanisms. The noise is parametrizable by molecular simulation and quantum calculation results of specific molecular systems, giving us better molecular resolution in simulating the system-environment interactions than sampling fluctuations from generic spectral density functions. The spatially correlated thermal fluctuations among different sites are naturally built-in in our method but are not readily incorporated using approximate spectral densities. Our method has quantitative accuracy in systems with small redox potential differences (
Spatial analysis of rural land development
Seong-Hoon Cho; David H. Newman
2005-01-01
This article examines patterns of rural land development and density using spatial econometric models with the application of Geographical Information System (GIS). The cluster patterns of both development and high-density development indicate that the spatially continuous expansions of development and high-density development exist in relatively remote rural areas....
Zhang, Chuan; Chen, Hong-Song; Zhang, Wei; Nie, Yun-Peng; Ye, Ying-Ying; Wang, Ke-Lin
2014-06-01
Surface soil water-physical properties play a decisive role in the dynamics of deep soil water. Knowledge of their spatial variation is helpful in understanding the processes of rainfall infiltration and runoff generation, which will contribute to the reasonable utilization of soil water resources in mountainous areas. Based on a grid sampling scheme (10 m x 10 m) and geostatistical methods, this paper aimed to study the spatial variability of surface (0-10 cm) soil water content, soil bulk density and saturated hydraulic conductivity on a typical shrub slope (90 m x 120 m, projected length) in Karst area of northwest Guangxi, southwest China. The results showed that the surface soil water content, bulk density and saturated hydraulic conductivity had different spatial dependence and spatial structure. Sample variogram of the soil water content was fitted well by Gaussian models with the nugget effect, while soil bulk density and saturated hydraulic conductivity were fitted well by exponential models with the nugget effect. Variability of soil water content showed strong spatial dependence, while the soil bulk density and saturated hydraulic conductivity showed moderate spatial dependence. The spatial ranges of the soil water content and saturated hydraulic conductivity were small, while that of the soil bulk density was much bigger. In general, the soil water content increased with the increase of altitude while it was opposite for the soil bulk densi- ty. However, the soil saturated hydraulic conductivity had a random distribution of large amounts of small patches, showing high spatial heterogeneity. Soil water content negatively (P < 0.01) correlated with the bulk density and saturated hydraulic conductivity, while there was no significant correlation between the soil bulk density and saturated hydraulic conductivity.
Estimating abundance of mountain lions from unstructured spatial sampling
Russell, Robin E.; Royle, J. Andrew; Desimone, Richard; Schwartz, Michael K.; Edwards, Victoria L.; Pilgrim, Kristy P.; Mckelvey, Kevin S.
2012-01-01
Mountain lions (Puma concolor) are often difficult to monitor because of their low capture probabilities, extensive movements, and large territories. Methods for estimating the abundance of this species are needed to assess population status, determine harvest levels, evaluate the impacts of management actions on populations, and derive conservation and management strategies. Traditional mark–recapture methods do not explicitly account for differences in individual capture probabilities due to the spatial distribution of individuals in relation to survey effort (or trap locations). However, recent advances in the analysis of capture–recapture data have produced methods estimating abundance and density of animals from spatially explicit capture–recapture data that account for heterogeneity in capture probabilities due to the spatial organization of individuals and traps. We adapt recently developed spatial capture–recapture models to estimate density and abundance of mountain lions in western Montana. Volunteers and state agency personnel collected mountain lion DNA samples in portions of the Blackfoot drainage (7,908 km2) in west-central Montana using 2 methods: snow back-tracking mountain lion tracks to collect hair samples and biopsy darting treed mountain lions to obtain tissue samples. Overall, we recorded 72 individual capture events, including captures both with and without tissue sample collection and hair samples resulting in the identification of 50 individual mountain lions (30 females, 19 males, and 1 unknown sex individual). We estimated lion densities from 8 models containing effects of distance, sex, and survey effort on detection probability. Our population density estimates ranged from a minimum of 3.7 mountain lions/100 km2 (95% Cl 2.3–5.7) under the distance only model (including only an effect of distance on detection probability) to 6.7 (95% Cl 3.1–11.0) under the full model (including effects of distance, sex, survey effort, and distance x sex on detection probability). These numbers translate to a total estimate of 293 mountain lions (95% Cl 182–451) to 529 (95% Cl 245–870) within the Blackfoot drainage. Results from the distance model are similar to previous estimates of 3.6 mountain lions/100 km2 for the study area; however, results from all other models indicated greater numbers of mountain lions. Our results indicate that unstructured spatial sampling combined with spatial capture–recapture analysis can be an effective method for estimating large carnivore densities.
NASA Astrophysics Data System (ADS)
Fu, W. J.; Jiang, P. K.; Zhou, G. M.; Zhao, K. L.
2013-12-01
The spatial variation of forest litter carbon (FLC) density in the typical subtropical forests in southeast China was investigated using Moran's I, geostatistics and a geographical information system (GIS). A total of 839 forest litter samples were collected based on a 12 km (South-North) × 6 km (East-West) grid system in Zhejiang Province. Forest litter carbon density values were very variable, ranging from 10.2 kg ha-1 to 8841.3 kg ha-1, with an average of 1786.7 kg ha-1. The aboveground biomass had the strongest positive correlation with FLC density, followed by forest age and elevation. Global Moran's I revealed that FLC density had significant positive spatial autocorrelation. Clear spatial patterns were observed using Local Moran's I. A spherical model was chosen to fit the experimental semivariogram. The moderate "nugget-to-sill" (0.536) value revealed that both natural and anthropogenic factors played a key role in spatial heterogeneity of FLC density. High FLC density values were mainly distributed in northwestern and western part of Zhejiang province, which were related to adopting long-term policy of forest conservation in these areas. While Hang-Jia-Hu (HJH) Plain, Jin-Qu (JQ) basin and coastal areas had low FLC density due to low forest coverage and intensive management of economic forests. These spatial patterns in distribution map were in line with the spatial-cluster map described by local Moran's I. Therefore, Moran's I, combined with geostatistics and GIS could be used to study spatial patterns of environmental variables related to forest ecosystem.
Life-History and Spatial Determinants of Somatic Growth Dynamics in Komodo Dragon Populations
Laver, Rebecca J.; Purwandana, Deni; Ariefiandy, Achmad; Imansyah, Jeri; Forsyth, David; Ciofi, Claudio; Jessop, Tim S.
2012-01-01
Somatic growth patterns represent a major component of organismal fitness and may vary among sexes and populations due to genetic and environmental processes leading to profound differences in life-history and demography. This study considered the ontogenic, sex-specific and spatial dynamics of somatic growth patterns in ten populations of the world’s largest lizard the Komodo dragon (Varanus komodoensis). The growth of 400 individual Komodo dragons was measured in a capture-mark-recapture study at ten sites on four islands in eastern Indonesia, from 2002 to 2010. Generalized Additive Mixed Models (GAMMs) and information-theoretic methods were used to examine how growth rates varied with size, age and sex, and across and within islands in relation to site-specific prey availability, lizard population density and inbreeding coefficients. Growth trajectories differed significantly with size and between sexes, indicating different energy allocation tactics and overall costs associated with reproduction. This leads to disparities in maximum body sizes and longevity. Spatial variation in growth was strongly supported by a curvilinear density-dependent growth model with highest growth rates occurring at intermediate population densities. Sex-specific trade-offs in growth underpin key differences in Komodo dragon life-history including evidence for high costs of reproduction in females. Further, inverse density-dependent growth may have profound effects on individual and population level processes that influence the demography of this species. PMID:23028983
Duncan, Dustin T; Kawachi, Ichiro; Kum, Susan; Aldstadt, Jared; Piras, Gianfranco; Matthews, Stephen A; Arbia, Giuseppe; Castro, Marcia C; White, Kellee; Williams, David R
2014-04-01
The racial/ethnic and income composition of neighborhoods often influences local amenities, including the potential spatial distribution of trees, which are important for population health and community wellbeing, particularly in urban areas. This ecological study used spatial analytical methods to assess the relationship between neighborhood socio-demographic characteristics (i.e. minority racial/ethnic composition and poverty) and tree density at the census tact level in Boston, Massachusetts (US). We examined spatial autocorrelation with the Global Moran's I for all study variables and in the ordinary least squares (OLS) regression residuals as well as computed Spearman correlations non-adjusted and adjusted for spatial autocorrelation between socio-demographic characteristics and tree density. Next, we fit traditional regressions (i.e. OLS regression models) and spatial regressions (i.e. spatial simultaneous autoregressive models), as appropriate. We found significant positive spatial autocorrelation for all neighborhood socio-demographic characteristics (Global Moran's I range from 0.24 to 0.86, all P =0.001), for tree density (Global Moran's I =0.452, P =0.001), and in the OLS regression residuals (Global Moran's I range from 0.32 to 0.38, all P <0.001). Therefore, we fit the spatial simultaneous autoregressive models. There was a negative correlation between neighborhood percent non-Hispanic Black and tree density (r S =-0.19; conventional P -value=0.016; spatially adjusted P -value=0.299) as well as a negative correlation between predominantly non-Hispanic Black (over 60% Black) neighborhoods and tree density (r S =-0.18; conventional P -value=0.019; spatially adjusted P -value=0.180). While the conventional OLS regression model found a marginally significant inverse relationship between Black neighborhoods and tree density, we found no statistically significant relationship between neighborhood socio-demographic composition and tree density in the spatial regression models. Methodologically, our study suggests the need to take into account spatial autocorrelation as findings/conclusions can change when the spatial autocorrelation is ignored. Substantively, our findings suggest no need for policy intervention vis-à-vis trees in Boston, though we hasten to add that replication studies, and more nuanced data on tree quality, age and diversity are needed.
Revisiting the Stability of Spatially Heterogeneous Predator-Prey Systems Under Eutrophication.
Farkas, J Z; Morozov, A Yu; Arashkevich, E G; Nikishina, A
2015-10-01
We employ partial integro-differential equations to model trophic interaction in a spatially extended heterogeneous environment. Compared to classical reaction-diffusion models, this framework allows us to more realistically describe the situation where movement of individuals occurs on a faster time scale than on the demographic (population) time scale, and we cannot determine population growth based on local density. However, most of the results reported so far for such systems have only been verified numerically and for a particular choice of model functions, which obviously casts doubts about these findings. In this paper, we analyse a class of integro-differential predator-prey models with a highly mobile predator in a heterogeneous environment, and we reveal the main factors stabilizing such systems. In particular, we explore an ecologically relevant case of interactions in a highly eutrophic environment, where the prey carrying capacity can be formally set to 'infinity'. We investigate two main scenarios: (1) the spatial gradient of the growth rate is due to abiotic factors only, and (2) the local growth rate depends on the global density distribution across the environment (e.g. due to non-local self-shading). For an arbitrary spatial gradient of the prey growth rate, we analytically investigate the possibility of the predator-prey equilibrium in such systems and we explore the conditions of stability of this equilibrium. In particular, we demonstrate that for a Holling type I (linear) functional response, the predator can stabilize the system at low prey density even for an 'unlimited' carrying capacity. We conclude that the interplay between spatial heterogeneity in the prey growth and fast displacement of the predator across the habitat works as an efficient stabilizing mechanism. These results highlight the generality of the stabilization mechanisms we find in spatially structured predator-prey ecological systems in a heterogeneous environment.
Supine breast US: how to correlate breast lesions from prone MRI
Telegrafo, Michele; Rella, Leonarda; Stabile Ianora, Amato A; Angelelli, Giuseppe
2016-01-01
Objective: To evaluate spatial displacement of breast lesions from prone MR to supine ultrasound positions, and to determine whether the degree of displacement may be associated with breast density and lesion histotype. Methods: 380 patients underwent breast MR and second-look ultrasound. The MR and ultrasound lesion location within the breast gland, distances from anatomical landmarks (nipple, skin and pectoral muscle), spatial displacement (distance differences from the landmarks within the same breast region) and region displacement (breast region change) were prospectively evaluated. Differences between MR and ultrasound measurements, association between the degree of spatial displacement and both breast density and lesion histotypes were calculated. Results: In 290/380 (76%) patients, 300 MR lesions were detected. 285/300 (95%) lesions were recognized on ultrasound. By comparing MR and ultrasound, spatial displacement occurred in 183/285 (64.3%) cases while region displacement in 102/285 (35.7%) cases with a circumferential movement along an arc centred on the nipple, having supine ultrasound as the reference standard. A significant association between the degree of lesion displacement and breast density was found (p < 0.00001) with a significant higher displacement in case of fatty breasts. No significant association between the degree of displacement and lesion histotype was found (p = 0.1). Conclusion: Lesion spatial displacement from MRI to ultrasound may occur especially in adipose breasts. Lesion–nipple distance and circumferential displacement from the nipple need to be considered for ultrasound lesion detection. Advances in knowledge: Second-look ultrasound breast lesion detection could be improved by calculating the lesion–nipple distance and considering that spatial displacement from MRI occurs with a circumferential movement along an arc centred on the nipple. PMID:26689093
Supine breast US: how to correlate breast lesions from prone MRI.
Telegrafo, Michele; Rella, Leonarda; Stabile Ianora, Amato A; Angelelli, Giuseppe; Moschetta, Marco
2016-01-01
To evaluate spatial displacement of breast lesions from prone MR to supine ultrasound positions, and to determine whether the degree of displacement may be associated with breast density and lesion histotype. 380 patients underwent breast MR and second-look ultrasound. The MR and ultrasound lesion location within the breast gland, distances from anatomical landmarks (nipple, skin and pectoral muscle), spatial displacement (distance differences from the landmarks within the same breast region) and region displacement (breast region change) were prospectively evaluated. Differences between MR and ultrasound measurements, association between the degree of spatial displacement and both breast density and lesion histotypes were calculated. In 290/380 (76%) patients, 300 MR lesions were detected. 285/300 (95%) lesions were recognized on ultrasound. By comparing MR and ultrasound, spatial displacement occurred in 183/285 (64.3%) cases while region displacement in 102/285 (35.7%) cases with a circumferential movement along an arc centred on the nipple, having supine ultrasound as the reference standard. A significant association between the degree of lesion displacement and breast density was found (p < 0.00001) with a significant higher displacement in case of fatty breasts. No significant association between the degree of displacement and lesion histotype was found (p = 0.1). Lesion spatial displacement from MRI to ultrasound may occur especially in adipose breasts. Lesion-nipple distance and circumferential displacement from the nipple need to be considered for ultrasound lesion detection. Second-look ultrasound breast lesion detection could be improved by calculating the lesion-nipple distance and considering that spatial displacement from MRI occurs with a circumferential movement along an arc centred on the nipple.
Nelson, John Stuart; Milner, Thomas Edward; Chen, Zhongping
1999-01-01
Optical Doppler tomography permits imaging of fluid flow velocity in highly scattering media. The tomography system combines Doppler velocimetry with high spatial resolution of partially coherent optical interferometry to measure fluid flow velocity at discrete spatial locations. Noninvasive in vivo imaging of blood flow dynamics and tissue structures with high spatial resolutions of the order of 2 to 10 microns is achieved in biological systems. The backscattered interference signals derived from the interferometer may be analyzed either through power spectrum determination to obtain the position and velocity of each particle in the fluid flow sample at each pixel, or the interference spectral density may be analyzed at each frequency in the spectrum to obtain the positions and velocities of the particles in a cross-section to which the interference spectral density corresponds. The realized resolutions of optical Doppler tomography allows noninvasive in vivo imaging of both blood microcirculation and tissue structure surrounding the vessel which has significance for biomedical research and clinical applications.
Badland, Hannah; Mavoa, Suzanne; Livingston, Michael; David, Stephanie; Giles-Corti, Billie
2016-05-01
Reducing access to alcohol is an important and cost-effective strategy for decreasing alcohol consumption and associated harm. Yet this is a less common approach to alcohol control in Australia. The aim of this research was to ascertain which alcohol outlet density spatial measures were related to long-term health outcomes, and the extent to which this differs for those living in more or less disadvantaged neighbourhoods. Existing Australian state-level spatial alcohol policies were reviewed. No appropriate spatial policies were identified; therefore, the literature was used to identify potential alcohol-related spatial measures. Spatial measures of alcohol outlet density were generated in a geographical information system and linked with health survey data drawn from 3141 adults living in metropolitan Melbourne. Logistic regression analysis was used to examine associations between alcohol outlet density measures, self-rated health and area-level disadvantage. Twelve spatial measures of alcohol outlet density were generated. Alcohol outlet density and self-rated health associations varied by area-level disadvantage. For those living in more disadvantaged areas, not having off-licenses available within 800 m, or on-licenses available within 400 m were protective of self-rated health. Local alcohol outlet density may have a more detrimental effect on self-rated health for those living in more disadvantaged neighbourhoods, compared with those living in more advantaged areas. There is a need for spatial alcohol policies to help reduce alcohol-related harm. This research proposes a set of spatial measures to generate a more consistent understanding of alcohol availability in Australia. [Badland H, Mavoa S, Livingston M, David S, Giles-Corti B. Testing spatial measures of alcohol outlet density with self-rated health in the Australian context: Implications for policy and practice. Drug Alcohol Rev 2016;35:298-306]. © 2015 Australasian Professional Society on Alcohol and other Drugs.
Mangrove canopy density analysis using Sentinel-2A imagery satellite data
NASA Astrophysics Data System (ADS)
Wachid, M. N.; Hapsara, R. P.; Cahyo, R. D.; Wahyu, G. N.; Syarif, A. M.; Umarhadi, D. A.; Fitriani, A. N.; Ramadhanningrum, D. P.; Widyatmanti, W.
2017-06-01
Teluk Jor has alluvium surface sediment that came from volcanic materials. Sea wave that relatively calm and the closed beach shape support the existence of mangrove forest at Teluk Jor. Sentinel-2A imagery has a good spatial and spectral resolution for mangrove density study. The regression between samples and the NDVI values of Sentinel-2A used to analyze the mangrove canopy density. Mangrove canopy density was identified using field survey with transect method. The regression analysis shows field data and NDVI value has correlation R=0.7739 and coefficient of determination R2=0.5989. The result of the analysis shows area of low density 397,900 m2, moderate density 336,200 m2, the high density has 110,300 m2 and very high density has 500 m2. This research also found that mangrove genus in Teluk Jor consists of Rhizopora, Ceriops, Aegiceras and Sonneratia.
NASA Astrophysics Data System (ADS)
Jourde, K.; Gibert, D.; Marteau, J.
2015-08-01
This paper examines how the resolution of small-scale geological density models is improved through the fusion of information provided by gravity measurements and density muon radiographies. Muon radiography aims at determining the density of geological bodies by measuring their screening effect on the natural flux of cosmic muons. Muon radiography essentially works like a medical X-ray scan and integrates density information along elongated narrow conical volumes. Gravity measurements are linked to density by a 3-D integration encompassing the whole studied domain. We establish the mathematical expressions of these integration formulas - called acquisition kernels - and derive the resolving kernels that are spatial filters relating the true unknown density structure to the density distribution actually recovered from the available data. The resolving kernel approach allows one to quantitatively describe the improvement of the resolution of the density models achieved by merging gravity data and muon radiographies. The method developed in this paper may be used to optimally design the geometry of the field measurements to be performed in order to obtain a given spatial resolution pattern of the density model to be constructed. The resolving kernels derived in the joined muon-gravimetry case indicate that gravity data are almost useless for constraining the density structure in regions sampled by more than two muon tomography acquisitions. Interestingly, the resolution in deeper regions not sampled by muon tomography is significantly improved by joining the two techniques. The method is illustrated with examples for the La Soufrière volcano of Guadeloupe.
RipleyGUI: software for analyzing spatial patterns in 3D cell distributions
Hansson, Kristin; Jafari-Mamaghani, Mehrdad; Krieger, Patrik
2013-01-01
The true revolution in the age of digital neuroanatomy is the ability to extensively quantify anatomical structures and thus investigate structure-function relationships in great detail. To facilitate the quantification of neuronal cell patterns we have developed RipleyGUI, a MATLAB-based software that can be used to detect patterns in the 3D distribution of cells. RipleyGUI uses Ripley's K-function to analyze spatial distributions. In addition the software contains statistical tools to determine quantitative statistical differences, and tools for spatial transformations that are useful for analyzing non-stationary point patterns. The software has a graphical user interface making it easy to use without programming experience, and an extensive user manual explaining the basic concepts underlying the different statistical tools used to analyze spatial point patterns. The described analysis tool can be used for determining the spatial organization of neurons that is important for a detailed study of structure-function relationships. For example, neocortex that can be subdivided into six layers based on cell density and cell types can also be analyzed in terms of organizational principles distinguishing the layers. PMID:23658544
Temporal and spatial distribution of metallic species in the upper atmosphere
NASA Astrophysics Data System (ADS)
Correira, John Thomas
2009-06-01
Every day the Earth is bombarded by approximately 100 tons of meteoric material. Much of this material is completely ablated on atmospheric entry, resulting in a layer of atomic metals in the upper atmosphere between 70 km - 150 km. These neutral atoms are ionized by solar radiation and charge exchange. Metal ions have a long lifetime against recombination loss, allowing them to be redistributed globally by electromagnetic forces, especially when lifted to altitudes >150 km. UV radiances from the Global Ozone Monitoring Experiment (GOME) spectrometer are used to determine long-term dayside variations of the total vertical column density below 795 km of the meteoric metal species Mg and Mg + in the upper atmosphere. A retrieval algorithm developed to determine magnesium column densities was applied to all available data from the years 1996-2001. Long term results show middle latitude dayside Mg + peaks in vertical content during the summer, while neutral Mg demonstrates a much more subtle maximum in summer. Atmospheric metal concentrations do not correlate strongly solar activity. An analysis of spatial variations shows geospatial distributions are patchy, with local regions of increased column density. To study short term variations and the role of meteor showers a time dependent mass flux rate is calculated using published estimates of meteor stream mass densities and activity profiles. An average daily mass flux rate is also calculated and used as a baseline against which shower mass flux rates are compared. These theoretical mass flux rates are then compared with GOME derived metal column densities. There appears to be little correlation between modeled meteor shower mass flux rates and changes in the observed neutral magnesium and Mg + metal column densities.
Absolute Hugoniot measurements from a spherically convergent shock using x-ray radiography
NASA Astrophysics Data System (ADS)
Swift, Damian C.; Kritcher, Andrea L.; Hawreliak, James A.; Lazicki, Amy; MacPhee, Andrew; Bachmann, Benjamin; Döppner, Tilo; Nilsen, Joseph; Collins, Gilbert W.; Glenzer, Siegfried; Rothman, Stephen D.; Kraus, Dominik; Falcone, Roger W.
2018-05-01
The canonical high pressure equation of state measurement is to induce a shock wave in the sample material and measure two mechanical properties of the shocked material or shock wave. For accurate measurements, the experiment is normally designed to generate a planar shock which is as steady as possible in space and time, and a single state is measured. A converging shock strengthens as it propagates, so a range of shock pressures is induced in a single experiment. However, equation of state measurements must then account for spatial and temporal gradients. We have used x-ray radiography of spherically converging shocks to determine states along the shock Hugoniot. The radius-time history of the shock, and thus its speed, was measured by radiographing the position of the shock front as a function of time using an x-ray streak camera. The density profile of the shock was then inferred from the x-ray transmission at each instant of time. Simultaneous measurement of the density at the shock front and the shock speed determines an absolute mechanical Hugoniot state. The density profile was reconstructed using the known, unshocked density which strongly constrains the density jump at the shock front. The radiographic configuration and streak camera behavior were treated in detail to reduce systematic errors. Measurements were performed on the Omega and National Ignition Facility lasers, using a hohlraum to induce a spatially uniform drive over the outside of a solid, spherical sample and a laser-heated thermal plasma as an x-ray source for radiography. Absolute shock Hugoniot measurements were demonstrated for carbon-containing samples of different composition and initial density, up to temperatures at which K-shell ionization reduced the opacity behind the shock. Here we present the experimental method using measurements of polystyrene as an example.
Individual-Area Relationship Best Explains Goose Species Density in Wetlands
Prins, Herbert H. T.; Cao, Lei; de Boer, Willem Fred
2015-01-01
Explaining and predicting animal distributions is one of the fundamental objectives in ecology and conservation biology. Animal habitat selection can be regulated by top-down and bottom-up processes, and is mediated by species interactions. Species varying in body size respond differently to top-down and bottom-up determinants, and hence understanding these allometric responses to those determinants is important for conservation. In this study, using two differently sized goose species wintering in the Yangtze floodplain, we tested the predictions derived from three different hypotheses (individual-area relationship, food resource and disturbance hypothesis) to explain the spatial and temporal variation in densities of two goose species. Using Generalized Linear Mixed Models with a Markov Chain Monte Carlo technique, we demonstrated that goose density was positive correlated with patch area size, suggesting that the individual area-relationship best predicts differences in goose densities. Moreover, the other predictions, related to food availability and disturbance, were not significant. Buffalo grazing probably facilitated greater white-fronted geese, as the number of buffalos was positively correlated to the density of this species. We concluded that patch area size is the most important factor determining the density of goose species in our study area. Patch area size is directly determined by water levels in the Yangtze floodplain, and hence modifying the hydrological regimes can enlarge the capacity of these wetlands for migratory birds. PMID:25996502
Spatially associated clump populations in Rosette from CO and dust maps
NASA Astrophysics Data System (ADS)
Veltchev, Todor V.; Ossenkopf-Okada, Volker; Stanchev, Orlin; Schneider, Nicola; Donkov, Sava; Klessen, Ralf S.
2018-04-01
Spatial association of clumps from different tracers turns out to be a valuable tool to determine the physical properties of molecular clouds. It provides a reliable estimate for the X-factors, serves to trace the density of clumps seen in column densities only, and allows one to measure the velocity dispersion of clumps identified in dust emission. We study the spatial association between clump populations, extracted by use of the GAUSSCLUMPS technique from 12CO (1-0), 13CO (1-0) line maps and Herschel dust-emission maps of the star-forming region Rosette, and analyse their physical properties. All CO clumps that overlap with another CO or dust counterpart are found to be gravitationally bound and located in the massive star-forming filaments of the molecular cloud. They obey a single mass-size relation M_cl∝ R_cl^γ with γ ≃ 3 (implying constant mean density) and display virtually no velocity-size relation. We interpret their population as low-density structures formed through compression by converging flows and still not evolved under the influence of self-gravity. The high-mass parts of their clump mass functions are fitted by a power law dN_cl/d log M_cl∝ M_cl^{Γ } and display a nearly Salpeter slope Γ ˜ -1.3. On the other hand, clumps extracted from the dust-emission map exhibit a shallower mass-size relation with γ = 2.5 and mass functions with very steep slopes Γ ˜ -2.3 even if associated with CO clumps. They trace density peaks of the associated CO clumps at scales of a few tenths of pc where no single density scaling law should be expected.
Study on Adaptive Parameter Determination of Cluster Analysis in Urban Management Cases
NASA Astrophysics Data System (ADS)
Fu, J. Y.; Jing, C. F.; Du, M. Y.; Fu, Y. L.; Dai, P. P.
2017-09-01
The fine management for cities is the important way to realize the smart city. The data mining which uses spatial clustering analysis for urban management cases can be used in the evaluation of urban public facilities deployment, and support the policy decisions, and also provides technical support for the fine management of the city. Aiming at the problem that DBSCAN algorithm which is based on the density-clustering can not realize parameter adaptive determination, this paper proposed the optimizing method of parameter adaptive determination based on the spatial analysis. Firstly, making analysis of the function Ripley's K for the data set to realize adaptive determination of global parameter MinPts, which means setting the maximum aggregation scale as the range of data clustering. Calculating every point object's highest frequency K value in the range of Eps which uses K-D tree and setting it as the value of clustering density to realize the adaptive determination of global parameter MinPts. Then, the R language was used to optimize the above process to accomplish the precise clustering of typical urban management cases. The experimental results based on the typical case of urban management in XiCheng district of Beijing shows that: The new DBSCAN clustering algorithm this paper presents takes full account of the data's spatial and statistical characteristic which has obvious clustering feature, and has a better applicability and high quality. The results of the study are not only helpful for the formulation of urban management policies and the allocation of urban management supervisors in XiCheng District of Beijing, but also to other cities and related fields.
Farias, Paulo R S; Barbosa, José C; Busoli, Antonio C; Overal, William L; Miranda, Vicente S; Ribeiro, Susane M
2008-01-01
The fall armyworm, Spodoptera frugiperda (J.E. Smith), is one of the chief pests of maize in the Americas. The study of its spatial distribution is fundamental for designing correct control strategies, improving sampling methods, determining actual and potential crop losses, and adopting precise agricultural techniques. In São Paulo state, Brazil, a maize field was sampled at weekly intervals, from germination through harvest, for caterpillar densities, using quadrates. In each of 200 quadrates, 10 plants were sampled per week. Harvest weights were obtained in the field for each quadrate, and ear diameters and lengths were also sampled (15 ears per quadrate) and used to estimate potential productivity of the quadrate. Geostatistical analyses of caterpillar densities showed greatest ranges for small caterpillars when semivariograms were adjusted for a spherical model that showed greatest fit. As the caterpillars developed in the field, their spatial distribution became increasingly random, as shown by a model adjusted to a straight line, indicating a lack of spatial dependence among samples. Harvest weight and ear length followed the spherical model, indicating the existence of spatial variability of the production parameters in the maize field. Geostatistics shows promise for the application of precise methods in the integrated control of pests.
Phase separation driven by density-dependent movement: A novel mechanism for ecological patterns.
Liu, Quan-Xing; Rietkerk, Max; Herman, Peter M J; Piersma, Theunis; Fryxell, John M; van de Koppel, Johan
2016-12-01
Many ecosystems develop strikingly regular spatial patterns because of small-scale interactions between organisms, a process generally referred to as spatial self-organization. Self-organized spatial patterns are important determinants of the functioning of ecosystems, promoting the growth and survival of the involved organisms, and affecting the capacity of the organisms to cope with changing environmental conditions. The predominant explanation for self-organized pattern formation is spatial heterogeneity in establishment, growth and mortality, resulting from the self-organization processes. A number of recent studies, however, have revealed that movement of organisms can be an important driving process creating extensive spatial patterning in many ecosystems. Here, we review studies that detail movement-based pattern formation in contrasting ecological settings. Our review highlights that a common principle, where movement of organisms is density-dependent, explains observed spatial regular patterns in all of these studies. This principle, well known to physics as the Cahn-Hilliard principle of phase separation, has so-far remained unrecognized as a general mechanism for self-organized complexity in ecology. Using the examples presented in this paper, we explain how this movement principle can be discerned in ecological settings, and clarify how to test this mechanism experimentally. Our study highlights that animal movement, both in isolation and in unison with other processes, is an important mechanism for regular pattern formation in ecosystems. Copyright © 2016 Elsevier B.V. All rights reserved.
Estimating neuronal connectivity from axonal and dendritic density fields
van Pelt, Jaap; van Ooyen, Arjen
2013-01-01
Neurons innervate space by extending axonal and dendritic arborizations. When axons and dendrites come in close proximity of each other, synapses between neurons can be formed. Neurons vary greatly in their morphologies and synaptic connections with other neurons. The size and shape of the arborizations determine the way neurons innervate space. A neuron may therefore be characterized by the spatial distribution of its axonal and dendritic “mass.” A population mean “mass” density field of a particular neuron type can be obtained by averaging over the individual variations in neuron geometries. Connectivity in terms of candidate synaptic contacts between neurons can be determined directly on the basis of their arborizations but also indirectly on the basis of their density fields. To decide when a candidate synapse can be formed, we previously developed a criterion defining that axonal and dendritic line pieces should cross in 3D and have an orthogonal distance less than a threshold value. In this paper, we developed new methodology for applying this criterion to density fields. We show that estimates of the number of contacts between neuron pairs calculated from their density fields are fully consistent with the number of contacts calculated from the actual arborizations. However, the estimation of the connection probability and the expected number of contacts per connection cannot be calculated directly from density fields, because density fields do not carry anymore the correlative structure in the spatial distribution of synaptic contacts. Alternatively, these two connectivity measures can be estimated from the expected number of contacts by using empirical mapping functions. The neurons used for the validation studies were generated by our neuron simulator NETMORPH. An example is given of the estimation of average connectivity and Euclidean pre- and postsynaptic distance distributions in a network of neurons represented by their population mean density fields. PMID:24324430
Bače, Radek; Svoboda, Miroslav; Janda, Pavel; Morrissey, Robert C.; Wild, Jan; Clear, Jennifer L.; Čada, Vojtěch; Donato, Daniel C.
2015-01-01
Background Severe canopy-removing disturbances are native to many temperate forests and radically alter stand structure, but biotic legacies (surviving elements or patterns) can lend continuity to ecosystem function after such events. Poorly understood is the degree to which the structural complexity of an old-growth forest carries over to the next stand. We asked how pre-disturbance spatial pattern acts as a legacy to influence post-disturbance stand structure, and how this legacy influences the structural diversity within the early-seral stand. Methods Two stem-mapped one-hectare forest plots in the Czech Republic experienced a severe bark beetle outbreak, thus providing before-and-after data on spatial patterns in live and dead trees, crown projections, down logs, and herb cover. Results Post-disturbance stands were dominated by an advanced regeneration layer present before the disturbance. Both major species, Norway spruce (Picea abies) and rowan (Sorbus aucuparia), were strongly self-aggregated and also clustered to former canopy trees, pre-disturbance snags, stumps and logs, suggesting positive overstory to understory neighbourhood effects. Thus, although the disturbance dramatically reduced the stand’s height profile with ~100% mortality of the canopy layer, the spatial structure of post-disturbance stands still closely reflected the pre-disturbance structure. The former upper tree layer influenced advanced regeneration through microsite and light limitation. Under formerly dense canopies, regeneration density was high but relatively homogeneous in height; while in former small gaps with greater herb cover, regeneration density was lower but with greater heterogeneity in heights. Conclusion These findings suggest that pre-disturbance spatial patterns of forests can persist through severe canopy-removing disturbance, and determine the spatial structure of the succeeding stand. Such patterns constitute a subtle but key legacy effect, promoting structural complexity in early-seral forests as well as variable successional pathways and rates. This influence suggests a continuity in spatial ecosystem structure that may well persist through multiple forest generations. PMID:26421726
Spectroscopic imaging of metal halide high-intensity discharge lamps
NASA Astrophysics Data System (ADS)
Bonvallet, Geoffrey A.
The body of this work consists of three main research projects. An optical- and near-ultraviolet-wavelength absorption study sought to determine absolute densities of ground and excited level Sc atoms, ground level Sc + ions, and ground level Na atoms in a commercial 250 W metal halide high intensity discharge lamp during operation. These measurements also allowed the determination of the arc temperature and absolute electron density as functions of radius. Through infrared emission spectroscopy, relative densities of sodium and scandium were determined as functions of radius. Using the absolute densities gained from the optical experiment, these relative densities were calibrated. In addition, direct observation of the infrared emission allowed us to characterize the infrared power losses of the lamp. When considered as a fraction of the overall power consumption, the near-infrared spectral power losses were not substantial enough to warrant thorough investigation of their reduction in these lamps. The third project was an attempt to develop a portable x-ray diagnostic experiment. Two-dimensional spatial maps of the lamps were analyzed to determine absolute elemental mercury densities and the arc temperature as a function of radius. Two methods were used to improve the calibration of the density measurements and to correct for the spread in x-ray energy: known solutions of mercury in nitric acid, and an arc lamp which was uniformly heated to evaporate the mercury content. Although many complexities arose in this experiment, its goal was successfully completed.
Indermaur, Lukas; Schmidt, Benedikt R; Tockner, Klement; Schaub, Michael
2010-07-01
Body size at metamorphosis is a critical trait in the life history of amphibians. Despite the wide-spread use of amphibians as experimental model organisms, there is a limited understanding of how multiple abiotic and biotic factors affect the variation in metamorphic traits under natural conditions. The aim of our study was to quantify the effects of abiotic and biotic factors on spatial variation in the body size of tadpoles and size at metamorphosis of the European common toad (Bufo b. spinosus). Our study population was distributed over the riverbed (active tract) and the fringing riparian forest of a natural floodplain. The riverbed had warm ponds with variable hydroperiod and few predators, whereas the forest had ponds with the opposite characteristics. Spatial variation in body size at metamorphosis was governed by the interactive effects of abiotic and biotic factors. The particular form of the interaction between water temperature and intraspecific tadpole density suggests that abiotic factors laid the foundation for biotic factors: intraspecific density decreased growth only at high temperature. Predation and intraspecific density jointly reduced metamorphic size. Interspecific density had a negligible affect on body size at metamorphosis, suggesting weak inter-anuran interactions in the larval stage. Population density at metamorphosis was about one to two orders of magnitudes higher in the riverbed ponds than in the forest ponds, mainly because of lower tadpole mortality. Based on our results, we conclude that ponds in the riverbed appear to play a pivotal role for the population because tadpole growth and survival is best in this habitat.
NASA Astrophysics Data System (ADS)
Elliott, Drew; Sutherland, Derek; Siddiqui, Umair; Scime, Earl; Everson, Chris; Morgan, Kyle; Hossack, Aaron; Nelson, Brian; Jarboe, Tom
2016-11-01
Two-photon laser-induced fluorescence measurements were performed on the helicity injected torus (HIT-SI3) device to determine the density and temperature of the background neutral deuterium population. Measurements were taken in 2 ms long pulsed plasmas after the inductive helicity injectors were turned off. Attempts to measure neutrals during the main phase of the plasma were unsuccessful, likely due to the density of neutrals being below the detection threshold of the diagnostic. An unexpectedly low density of atomic deuterium was measured in the afterglow; roughly 100 times lower than the theoretical prediction of 1017 m-3. The neutral temperatures measured were on the order of 1 eV. Temporally and spatially resolved neutral density and temperature data are presented.
Bull, James J.; Christensen, Kelly A.; Scott, Carly; Crandall, Cameron J.; Krone, Stephen M.
2018-01-01
Bacteria growing on surfaces appear to be profoundly more resistant to control by lytic bacteriophages than do the same cells grown in liquid. Here, we use simulation models to investigate whether spatial structure per se can account for this increased cell density in the presence of phages. A measure is derived for comparing cell densities between growth in spatially structured environments versus well mixed environments (known as mass action). Maintenance of sensitive cells requires some form of phage death; we invoke death mechanisms that are spatially fixed, as if produced by cells. Spatially structured phage death provides cells with a means of protection that can boost cell densities an order of magnitude above that attained under mass action, although the effect is sometimes in the opposite direction. Phage and bacteria self organize into separate refuges, and spatial structure operates so that the phage progeny from a single burst do not have independent fates (as they do with mass action). Phage incur a high loss when invading protected areas that have high cell densities, resulting in greater protection for the cells. By the same metric, mass action dynamics either show no sustained bacterial elevation or oscillate between states of low and high cell densities and an elevated average. The elevated cell densities observed in models with spatial structure do not approach the empirically observed increased density of cells in structured environments with phages (which can be many orders of magnitude), so the empirical phenomenon likely requires additional mechanisms than those analyzed here. PMID:29382134
Spatial analysis of alcohol-related motor vehicle crash injuries in southeastern Michigan.
Meliker, Jaymie R; Maio, Ronald F; Zimmerman, Marc A; Kim, Hyungjin Myra; Smith, Sarah C; Wilson, Mark L
2004-11-01
Temporal, behavioral and social risk factors that affect injuries resulting from alcohol-related motor vehicle crashes have been characterized in previous research. Much less is known about spatial patterns and environmental associations of alcohol-related motor vehicle crashes. The aim of this study was to evaluate geographic patterns of alcohol-related motor vehicle crashes and to determine if locations of alcohol outlets are associated with those crashes. In addition, we sought to demonstrate the value of integrating spatial and traditional statistical techniques in the analysis of this preventable public health risk. The study design was a cross-sectional analysis of individual-level blood alcohol content, traffic report information, census block group data, and alcohol distribution outlets. Besag and Newell's spatial analysis and traditional logistic regression both indicated that areas of low population density had more alcohol-related motor vehicle crashes than expected (P < 0.05). There was no significant association between alcohol outlets and alcohol-related motor vehicle crashes using distance analyses, logistic regression, and Chi-square. Differences in environmental or behavioral factors characteristic of areas of low population density may be responsible for the higher proportion of alcohol-related crashes occurring in these areas.
Rifai, Sami W; Urquiza Muñoz, José D; Negrón-Juárez, Robinson I; Ramírez Arévalo, Fredy R; Tello-Espinoza, Rodil; Vanderwel, Mark C; Lichstein, Jeremy W; Chambers, Jeffrey Q; Bohlman, Stephanie A
2016-10-01
Wind disturbance can create large forest blowdowns, which greatly reduces live biomass and adds uncertainty to the strength of the Amazon carbon sink. Observational studies from within the central Amazon have quantified blowdown size and estimated total mortality but have not determined which trees are most likely to die from a catastrophic wind disturbance. Also, the impact of spatial dependence upon tree mortality from wind disturbance has seldom been quantified, which is important because wind disturbance often kills clusters of trees due to large treefalls killing surrounding neighbors. We examine (1) the causes of differential mortality between adult trees from a 300-ha blowdown event in the Peruvian region of the northwestern Amazon, (2) how accounting for spatial dependence affects mortality predictions, and (3) how incorporating both differential mortality and spatial dependence affect the landscape level estimation of necromass produced from the blowdown. Standard regression and spatial regression models were used to estimate how stem diameter, wood density, elevation, and a satellite-derived disturbance metric influenced the probability of tree death from the blowdown event. The model parameters regarding tree characteristics, topography, and spatial autocorrelation of the field data were then used to determine the consequences of non-random mortality for landscape production of necromass through a simulation model. Tree mortality was highly non-random within the blowdown, where tree mortality rates were highest for trees that were large, had low wood density, and were located at high elevation. Of the differential mortality models, the non-spatial models overpredicted necromass, whereas the spatial model slightly underpredicted necromass. When parameterized from the same field data, the spatial regression model with differential mortality estimated only 7.5% more dead trees across the entire blowdown than the random mortality model, yet it estimated 51% greater necromass. We suggest that predictions of forest carbon loss from wind disturbance are sensitive to not only the underlying spatial dependence of observations, but also the biological differences between individuals that promote differential levels of mortality. © 2016 by the Ecological Society of America.
Duncan, Dustin T.; Kawachi, Ichiro; Kum, Susan; Aldstadt, Jared; Piras, Gianfranco; Matthews, Stephen A.; Arbia, Giuseppe; Castro, Marcia C.; White, Kellee; Williams, David R.
2017-01-01
The racial/ethnic and income composition of neighborhoods often influences local amenities, including the potential spatial distribution of trees, which are important for population health and community wellbeing, particularly in urban areas. This ecological study used spatial analytical methods to assess the relationship between neighborhood socio-demographic characteristics (i.e. minority racial/ethnic composition and poverty) and tree density at the census tact level in Boston, Massachusetts (US). We examined spatial autocorrelation with the Global Moran’s I for all study variables and in the ordinary least squares (OLS) regression residuals as well as computed Spearman correlations non-adjusted and adjusted for spatial autocorrelation between socio-demographic characteristics and tree density. Next, we fit traditional regressions (i.e. OLS regression models) and spatial regressions (i.e. spatial simultaneous autoregressive models), as appropriate. We found significant positive spatial autocorrelation for all neighborhood socio-demographic characteristics (Global Moran’s I range from 0.24 to 0.86, all P=0.001), for tree density (Global Moran’s I=0.452, P=0.001), and in the OLS regression residuals (Global Moran’s I range from 0.32 to 0.38, all P<0.001). Therefore, we fit the spatial simultaneous autoregressive models. There was a negative correlation between neighborhood percent non-Hispanic Black and tree density (rS=−0.19; conventional P-value=0.016; spatially adjusted P-value=0.299) as well as a negative correlation between predominantly non-Hispanic Black (over 60% Black) neighborhoods and tree density (rS=−0.18; conventional P-value=0.019; spatially adjusted P-value=0.180). While the conventional OLS regression model found a marginally significant inverse relationship between Black neighborhoods and tree density, we found no statistically significant relationship between neighborhood socio-demographic composition and tree density in the spatial regression models. Methodologically, our study suggests the need to take into account spatial autocorrelation as findings/conclusions can change when the spatial autocorrelation is ignored. Substantively, our findings suggest no need for policy intervention vis-à-vis trees in Boston, though we hasten to add that replication studies, and more nuanced data on tree quality, age and diversity are needed. PMID:29354668
Electro-optic measurement of terahertz pulse energy distribution.
Sun, J H; Gallacher, J G; Brussaard, G J H; Lemos, N; Issac, R; Huang, Z X; Dias, J M; Jaroszynski, D A
2009-11-01
An accurate and direct measurement of the energy distribution of a low repetition rate terahertz electromagnetic pulse is challenging because of the lack of sensitive detectors in this spectral range. In this paper, we show how the total energy and energy density distribution of a terahertz electromagnetic pulse can be determined by directly measuring the absolute electric field amplitude and beam energy density distribution using electro-optic detection. This method has potential use as a routine method of measuring the energy density of terahertz pulses that could be applied to evaluating future high power terahertz sources, terahertz imaging, and spatially and temporarily resolved pump-probe experiments.
Real time quantitative imaging for semiconductor crystal growth, control and characterization
NASA Technical Reports Server (NTRS)
Wargo, Michael J.
1991-01-01
A quantitative real time image processing system has been developed which can be software-reconfigured for semiconductor processing and characterization tasks. In thermal imager mode, 2D temperature distributions of semiconductor melt surfaces (900-1600 C) can be obtained with temperature and spatial resolutions better than 0.5 C and 0.5 mm, respectively, as demonstrated by analysis of melt surface thermal distributions. Temporal and spatial image processing techniques and multitasking computational capabilities convert such thermal imaging into a multimode sensor for crystal growth control. A second configuration of the image processing engine in conjunction with bright and dark field transmission optics is used to nonintrusively determine the microdistribution of free charge carriers and submicron sized crystalline defects in semiconductors. The IR absorption characteristics of wafers are determined with 10-micron spatial resolution and, after calibration, are converted into charge carrier density.
Ettarh, Remare R; Kyobutungi, Catherine
2012-09-01
The objective of the study was to determine the spatial variation in modern contraceptive use and unmet need for family planning across the counties of Kenya and to examine whether the spatial patterns were associated with inequalities in physical access to health facilities. Data were obtained from the 2008-2009 Kenya Demographic and Health Survey and linked to the location of health facilities in the country. Multivariate logistic regression was used to examine the influence of distance to the nearest health facility and health facility density, in addition to other covariates, on modern contraceptive use and unmet need. Overall, the prevalence of modern contraceptive use and unmet need among women aged 15-49 in Kenya was 42.1% and 19.7% respectively. Among the respondents who lived more than 5 km from the nearest health facility modern contraceptive use was significantly less likely compared to women resident 5 km or less from the nearest health facility. Women from counties with higher health facility density were 53% more likely to use modern contraceptives compared to women in counties with low health facility density. Distance and health facility density in the county were not significantly associated with unmet need. Physical access to health facilities is an important determinant of modern contraceptive use and unmet need in Kenya. Strategies should be developed in underserved counties to mitigate the challenge of distance to health facilities, such as delivering services by outreach and mobile facilities.
Domestic wells have high probability of pumping septic tank leachate
NASA Astrophysics Data System (ADS)
Bremer, J. E.; Harter, T.
2012-08-01
Onsite wastewater treatment systems are common in rural and semi-rural areas around the world; in the US, about 25-30% of households are served by a septic (onsite) wastewater treatment system, and many property owners also operate their own domestic well nearby. Site-specific conditions and local groundwater flow are often ignored when installing septic systems and wells. In areas with small lots (thus high spatial septic system densities), shallow domestic wells are prone to contamination by septic system leachate. Mass balance approaches have been used to determine a maximum septic system density that would prevent contamination of groundwater resources. In this study, a source area model based on detailed groundwater flow and transport modeling is applied for a stochastic analysis of domestic well contamination by septic leachate. Specifically, we determine the probability that a source area overlaps with a septic system drainfield as a function of aquifer properties, septic system density and drainfield size. We show that high spatial septic system density poses a high probability of pumping septic system leachate. The hydraulic conductivity of the aquifer has a strong influence on the intersection probability. We find that mass balance calculations applied on a regional scale underestimate the contamination risk of individual drinking water wells by septic systems. This is particularly relevant for contaminants released at high concentrations, for substances that experience limited attenuation, and those that are harmful even at low concentrations (e.g., pathogens).
Lima, Carlos H O; Sarmento, Renato A; Galdino, Tarcísio V S; Pereira, Poliana S; Silva, Joedna; Souza, Danival J; Dos Santos, Gil R; Costa, Thiago L; Picanço, Marcelo C
2018-04-16
Spatiotemporal dynamics studies of crop pests enable the determination of the colonization pattern and dispersion of these insects in the landscape. Geostatistics is an efficient tool for these studies: to determine the spatial distribution pattern of the pest in the crops and to make maps that represent this situation. Analysis of these maps across the development of plants can be used as a tool in precision agriculture programs. Watermelon, Citrullus lanatus (Thunb.) Matsum. and Nakai (Cucurbitales: Cucurbitaceae), is the second most consumed fruit in the world, and the whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is one of the most important pests of this crop. Thus, the objective of this work was to determine the spatiotemporal distribution of B. tabaci in commercial watermelon crops using geostatistics. For 2 yr, we monitored adult whitefly densities in eight watermelon crops in a tropical climate region. The location of the samples and other crops in the landscape was georeferenced. Experimental data were submitted to geostatistical analysis. The colonization of B. tabaci had two patterns. In the first, the colonization started at the outermost parts of the crop. In the second, the insects occupied the whole area of the crop since the beginning of cultivation. The maximum distance between sites of watermelon crops in which spatial dependence of B. tabaci densities was observed was 19.69 m. The adult B. tabaci densities in the eight watermelon fields were positively correlated with rainfall and relative humidity, whereas wind speed negatively affected whiteflies population.
Ultrafast and Wide Range Analysis of DNA Molecules Using Rigid Network Structure of Solid Nanowires
Rahong, Sakon; Yasui, Takao; Yanagida, Takeshi; Nagashima, Kazuki; Kanai, Masaki; Klamchuen, Annop; Meng, Gang; He, Yong; Zhuge, Fuwei; Kaji, Noritada; Kawai, Tomoji; Baba, Yoshinobu
2014-01-01
Analyzing sizes of DNA via electrophoresis using a gel has played an important role in the recent, rapid progress of biology and biotechnology. Although analyzing DNA over a wide range of sizes in a short time is desired, no existing electrophoresis methods have been able to fully satisfy these two requirements. Here we propose a novel method using a rigid 3D network structure composed of solid nanowires within a microchannel. This rigid network structure enables analysis of DNA under applied DC electric fields for a large DNA size range (100 bp–166 kbp) within 13 s, which are much wider and faster conditions than those of any existing methods. The network density is readily varied for the targeted DNA size range by tailoring the number of cycles of the nanowire growth only at the desired spatial position within the microchannel. The rigid dense 3D network structure with spatial density control plays an important role in determining the capability for analyzing DNA. Since the present method allows the spatial location and density of the nanostructure within the microchannels to be defined, this unique controllability offers a new strategy to develop an analytical method not only for DNA but also for other biological molecules. PMID:24918865
Russo, Lucia; Russo, Paola; Siettos, Constantinos I.
2016-01-01
Based on complex network theory, we propose a computational methodology which addresses the spatial distribution of fuel breaks for the inhibition of the spread of wildland fires on heterogeneous landscapes. This is a two-level approach where the dynamics of fire spread are modeled as a random Markov field process on a directed network whose edge weights are determined by a Cellular Automata model that integrates detailed GIS, landscape and meteorological data. Within this framework, the spatial distribution of fuel breaks is reduced to the problem of finding network nodes (small land patches) which favour fire propagation. Here, this is accomplished by exploiting network centrality statistics. We illustrate the proposed approach through (a) an artificial forest of randomly distributed density of vegetation, and (b) a real-world case concerning the island of Rhodes in Greece whose major part of its forest was burned in 2008. Simulation results show that the proposed methodology outperforms the benchmark/conventional policy of fuel reduction as this can be realized by selective harvesting and/or prescribed burning based on the density and flammability of vegetation. Interestingly, our approach reveals that patches with sparse density of vegetation may act as hubs for the spread of the fire. PMID:27780249
Ultrafast and Wide Range Analysis of DNA Molecules Using Rigid Network Structure of Solid Nanowires
NASA Astrophysics Data System (ADS)
Rahong, Sakon; Yasui, Takao; Yanagida, Takeshi; Nagashima, Kazuki; Kanai, Masaki; Klamchuen, Annop; Meng, Gang; He, Yong; Zhuge, Fuwei; Kaji, Noritada; Kawai, Tomoji; Baba, Yoshinobu
2014-06-01
Analyzing sizes of DNA via electrophoresis using a gel has played an important role in the recent, rapid progress of biology and biotechnology. Although analyzing DNA over a wide range of sizes in a short time is desired, no existing electrophoresis methods have been able to fully satisfy these two requirements. Here we propose a novel method using a rigid 3D network structure composed of solid nanowires within a microchannel. This rigid network structure enables analysis of DNA under applied DC electric fields for a large DNA size range (100 bp-166 kbp) within 13 s, which are much wider and faster conditions than those of any existing methods. The network density is readily varied for the targeted DNA size range by tailoring the number of cycles of the nanowire growth only at the desired spatial position within the microchannel. The rigid dense 3D network structure with spatial density control plays an important role in determining the capability for analyzing DNA. Since the present method allows the spatial location and density of the nanostructure within the microchannels to be defined, this unique controllability offers a new strategy to develop an analytical method not only for DNA but also for other biological molecules.
Russo, Lucia; Russo, Paola; Siettos, Constantinos I
2016-01-01
Based on complex network theory, we propose a computational methodology which addresses the spatial distribution of fuel breaks for the inhibition of the spread of wildland fires on heterogeneous landscapes. This is a two-level approach where the dynamics of fire spread are modeled as a random Markov field process on a directed network whose edge weights are determined by a Cellular Automata model that integrates detailed GIS, landscape and meteorological data. Within this framework, the spatial distribution of fuel breaks is reduced to the problem of finding network nodes (small land patches) which favour fire propagation. Here, this is accomplished by exploiting network centrality statistics. We illustrate the proposed approach through (a) an artificial forest of randomly distributed density of vegetation, and (b) a real-world case concerning the island of Rhodes in Greece whose major part of its forest was burned in 2008. Simulation results show that the proposed methodology outperforms the benchmark/conventional policy of fuel reduction as this can be realized by selective harvesting and/or prescribed burning based on the density and flammability of vegetation. Interestingly, our approach reveals that patches with sparse density of vegetation may act as hubs for the spread of the fire.
SUMER: Solar Ultraviolet Measurements of Emitted Radiation
NASA Technical Reports Server (NTRS)
Wilhelm, K.; Axford, W. I.; Curdt, W.; Gabriel, A. H.; Grewing, M.; Huber, M. C. E.; Jordan, M. C. E.; Lemaire, P.; Marsch, E.; Poland, A. I.
1988-01-01
The SUMER (solar ultraviolet measurements of emitted radiation) experiment is described. It will study flows, turbulent motions, waves, temperatures and densities of the plasma in the upper atmosphere of the Sun. Structures and events associated with solar magnetic activity will be observed on various spatial and temporal scales. This will contribute to the understanding of coronal heating processes and the solar wind expansion. The instrument will take images of the Sun in EUV (extreme ultra violet) light with high resolution in space, wavelength and time. The spatial resolution and spectral resolving power of the instrument are described. Spectral shifts can be determined with subpixel accuracy. The wavelength range extends from 500 to 1600 angstroms. The integration time can be as short as one second. Line profiles, shifts and broadenings are studied. Ratios of temperature and density sensitive EUV emission lines are established.
McKown, Athena D; Cochard, Hervé; Sack, Lawren
2010-04-01
Leaf venation architecture is tremendously diverse across plant species. Understanding the hydraulic functions of given venation traits can clarify the organization of the vascular system and its adaptation to environment. Using a spatially explicit model (the program K_leaf), we subjected realistic simulated leaves to modifications and calculated the impacts on xylem and leaf hydraulic conductance (K(x) and K(leaf), respectively), important traits in determining photosynthesis and growth. We tested the sensitivity of leaves to altered vein order conductivities (1) in the absence or (2) presence of hierarchical vein architecture, (3) to major vein tapering, and (4) to modification of vein densities (length/leaf area). The K(x) and K(leaf) increased with individual vein order conductivities and densities; for hierarchical venation systems, the greatest impact was from increases in vein conductivity for lower vein orders and increases in density for higher vein orders. Individual vein order conductivities were colimiting of K(x) and K(leaf), as were their densities, but the effects of vein conductivities and densities were orthogonal. Both vein hierarchy and vein tapering increased K(x) relative to xylem construction cost. These results highlight the important consequences of venation traits for the economics, ecology, and evolution of plant transport capacity.
A Fiber Interferometer for the Magnetized Shock Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Christian
2012-08-30
The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory requires remote diagnostics of plasma density. Laser interferometry can be used to determine the line-integrated density of the plasma. A multi-chord heterodyne fiber optic Mach-Zehnder interferometer is being assembled and integrated into the experiment. The advantage of the fiber coupling is that many different view chords can be easily obtained by simply moving transmit and receive fiber couplers. Several such fiber sets will be implemented to provide a time history of line-averaged density for several chords at once. The multiple chord data can then be Abel inverted to provide radiallymore » resolved spatial profiles of density. We describe the design and execution of this multiple fiber interferometer.« less
A Fiber Interferometer for the Magnetized Shock Experiment
NASA Astrophysics Data System (ADS)
Yoo, C. B.; Gao, K. W.; Weber, T. E.; Intrator, T. P.
2012-10-01
The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory requires remote diagnostics of plasma density. Laser interferometry can be used to determine the line-integrated density of the plasma. A multi-chord heterodyne fiber optic Mach-Zehnder interferometer is being assembled and integrated into the experiment. The advantage of the fiber coupling is that many different view chords can be easily obtained by simply moving transmit and receive fiber couplers. Several such fiber sets will be implemented to provide a time history of line-averaged density for several chords at once. The multiple chord data can then be Abel inverted to provide radially resolved spatial profiles of density. We describe the design and execution of this multiple fiber interferometer.
Density dependence, spatial scale and patterning in sessile biota.
Gascoigne, Joanna C; Beadman, Helen A; Saurel, Camille; Kaiser, Michel J
2005-09-01
Sessile biota can compete with or facilitate each other, and the interaction of facilitation and competition at different spatial scales is key to developing spatial patchiness and patterning. We examined density and scale dependence in a patterned, soft sediment mussel bed. We followed mussel growth and density at two spatial scales separated by four orders of magnitude. In summer, competition was important at both scales. In winter, there was net facilitation at the small scale with no evidence of density dependence at the large scale. The mechanism for facilitation is probably density dependent protection from wave dislodgement. Intraspecific interactions in soft sediment mussel beds thus vary both temporally and spatially. Our data support the idea that pattern formation in ecological systems arises from competition at large scales and facilitation at smaller scales, so far only shown in vegetation systems. The data, and a simple, heuristic model, also suggest that facilitative interactions in sessile biota are mediated by physical stress, and that interactions change in strength and sign along a spatial or temporal gradient of physical stress.
Role of density modulation in the spatially resolved dynamics of strongly confined liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saw, Shibu, E-mail: shibu.saw@sydney.edu.au; Dasgupta, Chandan, E-mail: cdgupta@physics.iisc.ernet.in
Confinement by walls usually produces a strong modulation in the density of dense liquids near the walls. Using molecular dynamics simulations, we examine the effects of the density modulation on the spatially resolved dynamics of a liquid confined between two parallel walls, using a resolution of a fraction of the interparticle distance in the liquid. The local dynamics is quantified by the relaxation time associated with the temporal autocorrelation function of the local density. We find that this local relaxation time varies in phase with the density modulation. The amplitude of the spatial modulation of the relaxation time can bemore » quite large, depending on the characteristics of the wall and thermodynamic parameters of the liquid. To disentangle the effects of confinement and density modulation on the spatially resolved dynamics, we compare the dynamics of a confined liquid with that of an unconfined one in which a similar density modulation is induced by an external potential. We find several differences indicating that density modulation alone cannot account for all the features seen in the spatially resolved dynamics of confined liquids. We also examine how the dynamics near a wall depends on the separation between the two walls and show that the features seen in our simulations persist in the limit of large wall separation.« less
Spatial distribution of limited resources and local density regulation in juvenile Atlantic salmon.
Finstad, Anders G; Einum, Sigurd; Ugedal, Ola; Forseth, Torbjørn
2009-01-01
1. Spatial heterogeneity of resources may influence competition among individuals and thus have a fundamental role in shaping population dynamics and carrying capacity. In the present study, we identify shelter opportunities as a limiting resource for juvenile Atlantic salmon (Salmo salar L.). Experimental and field studies are combined in order to demonstrate how the spatial distribution of shelters may influence population dynamics on both within and among population scales. 2. In closed experimental streams, fish performance scaled negatively with decreasing shelter availability and increasing densities. In contrast, the fish in open stream channels dispersed according to shelter availability and performance of fish remaining in the streams did not depend on initial density or shelters. 3. The field study confirmed that spatial variation in densities of 1-year-old juveniles was governed both by initial recruit density and shelter availability. Strength of density-dependent population regulation, measured as carrying capacity, increased with decreasing number of shelters. 4. Nine rivers were surveyed for spatial variation in shelter availability and increased shelter heterogeneity tended to decrease maximum observed population size (measured using catch statistics of adult salmon as a proxy). 5. Our studies highlight the importance of small-scale within-population spatial structure in population dynamics and demonstrate that not only the absolute amount of limiting resources but also their spatial arrangement can be an important factor influencing population carrying capacity.
NASA Astrophysics Data System (ADS)
Ding, Jingyi; Zhao, Wenwu; Daryanto, Stefani; Wang, Lixin; Fan, Hao; Feng, Qiang; Wang, Yaping
2017-05-01
Desert riparian forests are the main restored vegetation community in Heihe River basin. They provide critical habitats and a variety of ecosystem services in this arid environment. Since desert riparian forests are also sensitive to disturbance, examining the spatial distribution and temporal variation of these forests and their influencing factors is important to determine the limiting factors of vegetation recovery after long-term restoration. In this study, field experiment and remote sensing data were used to determine the spatial distribution and temporal variation of desert riparian forests and their relationship with the environmental factors. We classified five types of vegetation communities at different distances from the river channel. Community coverage and diversity formed a bimodal pattern, peaking at the distances of 1000 and 3000 m from the river channel. In general, the temporal normalized difference vegetation index (NDVI) trend from 2000 to 2014 was positive at different distances from the river channel, except for the region closest to the river bank (i.e. within 500 m from the river channel), which had been undergoing degradation since 2011. The spatial distribution of desert riparian forests was mainly influenced by the spatial heterogeneity of soil properties (e.g. soil moisture, bulk density and soil particle composition). Meanwhile, while the temporal variation of vegetation was affected by both the spatial heterogeneity of soil properties (e.g. soil moisture and soil particle composition) and to a lesser extent, the temporal variation of water availability (e.g. annual average and variability of groundwater, soil moisture and runoff). Since surface (0-30 cm) and deep (100-200 cm) soil moisture, bulk density and the annual average of soil moisture at 100 cm obtained from the remote sensing data were regarded as major determining factors of community distribution and temporal variation, conservation measures that protect the soil structure and prevent soil moisture depletion (e.g. artificial soil cover and water conveyance channels) were suggested to better protect desert riparian forests under climate change and intensive human disturbance.
Engen, Steinar; Lee, Aline Magdalena; Sæther, Bernt-Erik
2018-02-01
We analyze a spatial age-structured model with density regulation, age specific dispersal, stochasticity in vital rates and proportional harvesting. We include two age classes, juveniles and adults, where juveniles are subject to logistic density dependence. There are environmental stochastic effects with arbitrary spatial scales on all birth and death rates, and individuals of both age classes are subject to density independent dispersal with given rates and specified distributions of dispersal distances. We show how to simulate the joint density fields of the age classes and derive results for the spatial scales of all spatial autocovariance functions for densities. A general result is that the squared scale has an additive term equal to the squared scale of the environmental noise, corresponding to the Moran effect, as well as additive terms proportional to the dispersal rate and variance of dispersal distance for the age classes and approximately inversely proportional to the strength of density regulation. We show that the optimal harvesting strategy in the deterministic case is to harvest only juveniles when their relative value (e.g. financial) is large, and otherwise only adults. With increasing environmental stochasticity there is an interval of increasing length of values of juveniles relative to adults where both age classes should be harvested. Harvesting generally tends to increase all spatial scales of the autocovariances of densities. Copyright © 2017. Published by Elsevier Inc.
Lagrue, Clément; Poulin, Robert; Cohen, Joel E.
2015-01-01
How do the lifestyles (free-living unparasitized, free-living parasitized, and parasitic) of animal species affect major ecological power-law relationships? We investigated this question in metazoan communities in lakes of Otago, New Zealand. In 13,752 samples comprising 1,037,058 organisms, we found that species of different lifestyles differed in taxonomic distribution and body mass and were well described by three power laws: a spatial Taylor’s law (the spatial variance in population density was a power-law function of the spatial mean population density); density-mass allometry (the spatial mean population density was a power-law function of mean body mass); and variance-mass allometry (the spatial variance in population density was a power-law function of mean body mass). To our knowledge, this constitutes the first empirical confirmation of variance-mass allometry for any animal community. We found that the parameter values of all three relationships differed for species with different lifestyles in the same communities. Taylor's law and density-mass allometry accurately predicted the form and parameter values of variance-mass allometry. We conclude that species of different lifestyles in these metazoan communities obeyed the same major ecological power-law relationships but did so with parameters specific to each lifestyle, probably reflecting differences among lifestyles in population dynamics and spatial distribution. PMID:25550506
Lagrue, Clément; Poulin, Robert; Cohen, Joel E
2015-02-10
How do the lifestyles (free-living unparasitized, free-living parasitized, and parasitic) of animal species affect major ecological power-law relationships? We investigated this question in metazoan communities in lakes of Otago, New Zealand. In 13,752 samples comprising 1,037,058 organisms, we found that species of different lifestyles differed in taxonomic distribution and body mass and were well described by three power laws: a spatial Taylor's law (the spatial variance in population density was a power-law function of the spatial mean population density); density-mass allometry (the spatial mean population density was a power-law function of mean body mass); and variance-mass allometry (the spatial variance in population density was a power-law function of mean body mass). To our knowledge, this constitutes the first empirical confirmation of variance-mass allometry for any animal community. We found that the parameter values of all three relationships differed for species with different lifestyles in the same communities. Taylor's law and density-mass allometry accurately predicted the form and parameter values of variance-mass allometry. We conclude that species of different lifestyles in these metazoan communities obeyed the same major ecological power-law relationships but did so with parameters specific to each lifestyle, probably reflecting differences among lifestyles in population dynamics and spatial distribution.
NASA Astrophysics Data System (ADS)
Geng, Guannan; Zhang, Qiang; Martin, Randall V.; Lin, Jintai; Huo, Hong; Zheng, Bo; Wang, Siwen; He, Kebin
2017-03-01
Spatial proxies used in bottom-up emission inventories to derive the spatial distributions of emissions are usually empirical and involve additional levels of uncertainty. Although uncertainties in current emission inventories have been discussed extensively, uncertainties resulting from improper spatial proxies have rarely been evaluated. In this work, we investigate the impact of spatial proxies on the representation of gridded emissions by comparing six gridded NOx emission datasets over China developed from the same magnitude of emissions and different spatial proxies. GEOS-Chem-modeled tropospheric NO2 vertical columns simulated from different gridded emission inventories are compared with satellite-based columns. The results show that differences between modeled and satellite-based NO2 vertical columns are sensitive to the spatial proxies used in the gridded emission inventories. The total population density is less suitable for allocating NOx emissions than nighttime light data because population density tends to allocate more emissions to rural areas. Determining the exact locations of large emission sources could significantly strengthen the correlation between modeled and observed NO2 vertical columns. Using vehicle population and an updated road network for the on-road transport sector could substantially enhance urban emissions and improve the model performance. When further applying industrial gross domestic product (IGDP) values for the industrial sector, modeled NO2 vertical columns could better capture pollution hotspots in urban areas and exhibit the best performance of the six cases compared to satellite-based NO2 vertical columns (slope = 1.01 and R2 = 0. 85). This analysis provides a framework for information from satellite observations to inform bottom-up inventory development. In the future, more effort should be devoted to the representation of spatial proxies to improve spatial patterns in bottom-up emission inventories.
DUBROVSKY, J. G.; GAMBETTA, G. A.; HERNÁNDEZ-BARRERA, A.; SHISHKOVA, S.; GONZÁLEZ, I.
2006-01-01
• Background and Aims The basic regulatory mechanisms that control lateral root (LR) initiation are still poorly understood. An attempt is made to characterize the pattern and timing of LR initiation, to define a developmental window in which LR initiation takes place and to address the question of whether LR initiation is predictable. • Methods The spatial patterning of LRs and LR primordia (LRPs) on cleared root preparations were characterized. New measures of LR and LRP densities (number of LRs and/or LRPs divided by the length of the root portions where they are present) were introduced and illustrate the shortcomings of the more customarily used measure through a comparative analysis of the mutant aux1-7. The enhancer trap line J0121 was used to monitor LR initiation in time-lapse experiments and a plasmolysis-based method was developed to determine the number of pericycle cells between successive LRPs. • Key Results LRP initiation occurred strictly acropetally and no de novo initiation events were found between already developed LRs or LRPs. However, LRPs did not become LRs in a similar pattern. The longitudinal spacing of lateral organs was variable and the distance between lateral organs was proportional to the number of cells and the time between initiations of successive LRPs. There was a strong tendency towards alternation in LR initiation between the two pericycle cell files adjacent to the protoxylem poles. LR density increased with time due to the emergence of slowly developing LRPs and appears to be unique for individual Arabidopsis accessions. • Conclusions. In Arabidopsis there is a narrow developmental window for LR initiation, and no specific cell-count or distance-measuring mechanisms have been found that determine the site of successive initiation events. Nevertheless, the branching density and lateral organ density (density of LRs and LRPs) are accession-specific, and based on the latter density the average distance between successive LRs can be predicted. PMID:16390845
NASA Astrophysics Data System (ADS)
Dathe, A.; Nemes, A.; Bloem, E.; Patterson, M.; Gimenez, D.; Angyal, A.; Koestel, J. K.; Jarvis, N.
2017-12-01
Soil spatial heterogeneity plays a critical role for describing water and solute transport processes in the unsaturated zone. Although we have a sound understanding of the physical properties underlying this heterogeneity (like macropores causing preferential water flow), their quantification in a spatial context is still a challenge. To improve existing knowledge and modelling approaches we established a field experiment on an agriculturally used silty clay loam (Stagnosol) in SE Norway. Centimeter to decimeter scale heterogeneities were investigated in the field using electrical resistivity tomography (ERT) in a quasi-3D and a real 3D approach. More than 100 undisturbed soil samples were taken in the 2x1x1 m3plot investigated with 3D ERT to determine soil water retention, saturated and unsaturated hydraulic conductivities and bulk density in the laboratory. A subset of these samples was scanned at the computer tomography (CT) facility at the Swedish University of Agricultural Sciences in Uppsala, Sweden, with special emphasis on characterizing macroporosity. Results show that the ERT measurements captured the spatial distribution of bulk densities and reflected soil water contents. However, ERT could not resolve the large variation observed in saturated hydraulic conductivities from the soil samples. Saturated hydraulic conductivity was clearly related to the macroporosity visible in the CT scans obtained from the respective soil cores. Hydraulic conductivities close to saturation mainly changed with depths in the soil profile and therefore with bulk density. In conclusion, to quantify the spatial heterogeneity of saturated hydraulic conductivities scanning methods with a resolution smaller than the size of macropores have to be used. This is feasible only when the information obtained from for example CT scans of soil cores would be upscaled in a meaningful way.
Canopy Density Mapping on Ultracam-D Aerial Imagery in Zagros Woodlands, Iran
NASA Astrophysics Data System (ADS)
Erfanifard, Y.; Khodaee, Z.
2013-09-01
Canopy density maps express different characteristics of forest stands, especially in woodlands. Obtaining such maps by field measurements is so expensive and time-consuming. It seems necessary to find suitable techniques to produce these maps to be used in sustainable management of woodland ecosystems. In this research, a robust procedure was suggested to obtain these maps by very high spatial resolution aerial imagery. It was aimed to produce canopy density maps by UltraCam-D aerial imagery, newly taken in Zagros woodlands by Iran National Geographic Organization (NGO), in this study. A 30 ha plot of Persian oak (Quercus persica) coppice trees was selected in Zagros woodlands, Iran. The very high spatial resolution aerial imagery of the plot purchased from NGO, was classified by kNN technique and the tree crowns were extracted precisely. The canopy density was determined in each cell of different meshes with different sizes overlaid on the study area map. The accuracy of the final maps was investigated by the ground truth obtained by complete field measurements. The results showed that the proposed method of obtaining canopy density maps was efficient enough in the study area. The final canopy density map obtained by a mesh with 30 Ar (3000 m2) cell size had 80% overall accuracy and 0.61 KHAT coefficient of agreement which shows a great agreement with the observed samples. This method can also be tested in other case studies to reveal its capability in canopy density map production in woodlands.
NASA Technical Reports Server (NTRS)
Gangopadhyay, P.; Judge, D. L.
1996-01-01
Our knowledge of the various heliospheric phenomena (location of the solar wind termination shock, heliopause configuration and very local interstellar medium parameters) is limited by uncertainties in the available heliospheric plasma models and by calibration uncertainties in the observing instruments. There is, thus, a strong motivation to develop model insensitive and calibration independent methods to reduce the uncertainties in the relevant heliospheric parameters. We have developed such a method to constrain the downstream neutral hydrogen density inside the heliospheric tail. In our approach we have taken advantage of the relative insensitivity of the downstream neutral hydrogen density profile to the specific plasma model adopted. We have also used the fact that the presence of an asymmetric neutral hydrogen cavity surrounding the sun, characteristic of all neutral densities models, results in a higher multiple scattering contribution to the observed glow in the downstream region than in the upstream region. This allows us to approximate the actual density profile with one which is spatially uniform for the purpose of calculating the downstream backscattered glow. Using different spatially constant density profiles, radiative transfer calculations are performed, and the radial dependence of the predicted glow is compared with the observed I/R dependence of Pioneer 10 UV data. Such a comparison bounds the large distance heliospheric neutral hydrogen density in the downstream direction to a value between 0.05 and 0.1/cc.
NASA Astrophysics Data System (ADS)
Cerovski-Darriau, C.; Bessette-Kirton, E.; Schulz, W. H.; Kean, J. W.; Godt, J.; Coe, J. A.
2017-12-01
Heavy rainfall from Hurricane Maria—category 4 hurricane that made landfall Sept 20, 2017 on Puerto Rico and produced >500 mm of rain—caused widespread landsliding in mountainous regions throughout the territory. Landslides impacted roads, bridges, and reservoirs—cutting off communities, hindering recovery efforts, and affecting water quality and storage capacity. FEMA tasked the USGS with determining the level of imminent threat posed by landslides to life and property, and helping inform recovery efforts. The USGS landslide response team remotely quantified the spatial density of landslides, then deployed to Puerto Rico to assess damage in the field. These are our initial findings from work currently underway. We used post-hurricane satellite (WorldView 0.5 m resolution) and aerial (Sanborn and QuantumSpatial at 0.15 m resolution) imagery collected Sept 26-Oct 8, 2017 to visually estimate landslide concentration and determine the heaviest hit regions. We divided the territory into 2 x 2 km grids and classified each cell as no visible landslides, <25 landslides (LS)/km2, >25 LS/km2. Hurricane-induced defoliation made landslides readily visible in the imagery as areas of exposed soil or rock with morphology typical of landslides. This method proved to be a rapid way to visualize the spatial distribution of landslides to direct our field efforts. In the field, we found it was a conservative estimate. Landslides occurred in steep areas along the storm track, but high-density pockets occurred in the municipalities of Barranquitos, Jayuya, Lares, Naranjito, Utuado. Assuming Maria produced sufficient rainfall to trigger landslides in all mountainous regions, what controls the density and failure style? We found the highest slide densities disproportionately occurred in the Utuado granodiorite (60% of the unit was >25 LS/km2). Most of the landslides failed as shallow, translational slides. Bedrock slope failures were scarce. Some geologic units, with sufficient topographic relief, generated debris flows. More clay-rich units generated some deeper slumps or shallow flows. Correlations with the 1:100K geologic map revealed that 62% of the high-density areas occurred within granodiorite. Therefore, we hypothesize that when rainfall is not limiting, geology is a major control of landslide susceptibility.
Jones, R Christian; Kelso, Donald P; Schaeffer, Elaine
2008-12-01
Spatial and temporal patterns in water quality were studied for seven years within an embayment-river mainstem area of the tidal freshwater Potomac River. The purpose of this paper is to determine the important components of spatial and temporal variation in water quality in this study area to facilitate an understanding of management impacts and allow the most effective use of future monitoring resources. The study area received treated sewage effluent and freshwater inflow from direct tributary inputs into the shallow embayment as well as upriver sources in the mainstem. Depth variations were determined to be detectable, but minimal due mainly to the influence of tidal mixing. Results of principal component analysis of two independent water quality datasets revealed clear spatial and seasonal patterns. Interannual variation was generally minimal despite substantial variations in tributary and mainstem discharge among years. Since both spatial and seasonal components were important, data were segmented by season to best determine the spatial pattern. A clear difference was found between a set of stations located within one embayment (Gunston Cove) and a second set in the nearby Potomac mainstem. Parameters most highly correlated with differences were those typically associated with higher densities of phytoplankton: chlorophyll a, photosynthetic rate, pH, dissolved oxygen, BOD, total phosphorus and Secchi depth. These differences and their consistency indicated two distinct water masses: one in the cove harboring higher algal density and activity and a second in the river with lower phytoplankton activity. A second embayment not receiving sewage effluent generally had an intermediate position. While this was the most consistent spatial pattern, there were two others of a secondary nature. Stations closer to the effluent inputs in the embayment sometimes grouped separately due to elevated ammonia and chloride. Stations closer to tributary inflows into the embayment sometimes grouped separately due to dilution with freshwater runoff. Segmenting the datasets by spatial region resulted in a clarification of seasonal patterns with similar factors relating to algal activity being the major correlates of the seasonal pattern. A basic seasonal pattern of lower scores in the spring increasing steadily to a peak in July and August followed by a steady decline through the fall was observed in the cove. In the river, the pattern of increases tended to be delayed slightly in the spring. Results indicate that the study area can be effectively monitored with fewer study sites provided that at least one is located in each of the spatial regions.
Pérez-Irineo, Gabriela; Santos-Moreno, Antonio
2014-12-01
The ocelot Leopardus pardalis is of particular significance in terrestrial communities due to its ecological role within the group of small-sized felids and as a mesopredator. However, despite the reduction of ocelot habitat in Southeast Mexico, there are still very few ecological studies. This research aimed to contribute with some ecological aspects of the species in this region. For this, 29 camera trap stations were established in a rain forest in Los Chimalapas (an area of 22 km2) during a two years period (March 2011-June, 2013), in Oaxaca state, Southeast Mexico. Data allowed the estimation of the population density, activity pattern, sex ratio, residence time, and spatial distribution. Population density was calculated using Capture-Recapture Models for demographically open populations; besides, circular techniques were used to determine if nocturnal and diurnal activity varied significantly over the seasons, and Multiple Discriminant Analysis was used to determine which of the selected environmental variables best explained ocelot abundance in the region. A total of 103 ocelot records were obtained, with a total sampling effort of 8,529 trap-days. Density of 22-38 individuals/100 km2 was estimated. Ocelot population had a high proportion of transient individuals in the zone (55%), and the sex ratio was statistically equal to 1:1. Ocelot activity was more frequent at night (1:00-6:00h), but it also exhibited diurnal activity throughout the study period. Ocelot spatial distribution was positively affected by the proximity to the village as well as by the amount of prey. The ocelot population here appears to be stable, with a density similar to other regions in Central and South America, which could be attributed to the diversity of prey species and a low degree of disturbance in Los Chimalapas.
Interaction between fractional Josephson vortices in multi-gap superconductor tunnel junctions
NASA Astrophysics Data System (ADS)
Kim, Ju H.
In a long Josephson junction (LJJ) with two-band superconductors, fractionalization of Josephson vortices (fluxons) can occur in the broken time reversal symmetry state when spatial phase textures (i-solitons) are excited. Excitation of i-solitons in each superconductor layer of the junction, arising due to the presence of two condensates and the interband Josephson effect, leads to spatial variation of the critical current density between the superconductor layers. Similar to the situation in a YBa2 Cu3O7 - x superconductor film grain boundary, this spatial dependence of the crtitical current density can self-generate magnetic flux in the insulator layer, resulting in fractional fluxons with large and small fraction of flux quantum. Similar to fluxons in one-band superconductor LJJ, these fractional fluxons are found to interact with each other. The interaction between large and small fractional fluxons determines the size of a fluxon which includes two (one large and one small) fractional fluxons. We discuss the nature of interaction between fractional fluxons and suggest that i-soliton excitations in multi-gap superconductor LJJs may be probed by using magnetic flux measurements.
Experimental determination of the correlation properties of plasma turbulence using 2D BES systems
NASA Astrophysics Data System (ADS)
Fox, M. F. J.; Field, A. R.; van Wyk, F.; Ghim, Y.-c.; Schekochihin, A. A.; the MAST Team
2017-04-01
A procedure is presented to map from the spatial correlation parameters of a turbulent density field (the radial and binormal correlation lengths and wavenumbers, and the fluctuation amplitude) to correlation parameters that would be measured by a beam emission spectroscopy (BES) diagnostic. The inverse mapping is also derived, which results in resolution criteria for recovering correct correlation parameters, depending on the spatial response of the instrument quantified in terms of point-spread functions (PSFs). Thus, a procedure is presented that allows for a systematic comparison between theoretical predictions and experimental observations. This procedure is illustrated using the Mega-Ampere Spherical Tokamak BES system and the validity of the underlying assumptions is tested on fluctuating density fields generated by direct numerical simulations using the gyrokinetic code GS2. The measurement of the correlation time, by means of the cross-correlation time-delay method, is also investigated and is shown to be sensitive to the fluctuating radial component of velocity, as well as to small variations in the spatial properties of the PSFs.
Muñoz, David J.; Miller, David A.W.; Sutherland, Chris; Grant, Evan H. Campbell
2016-01-01
The cryptic behavior and ecology of herpetofauna make estimating the impacts of environmental change on demography difficult; yet, the ability to measure demographic relationships is essential for elucidating mechanisms leading to the population declines reported for herpetofauna worldwide. Recently developed spatial capture–recapture (SCR) methods are well suited to standard herpetofauna monitoring approaches. Individually identifying animals and their locations allows accurate estimates of population densities and survival. Spatial capture–recapture methods also allow estimation of parameters describing space-use and movement, which generally are expensive or difficult to obtain using other methods. In this paper, we discuss the basic components of SCR models, the available software for conducting analyses, and the experimental designs based on common herpetological survey methods. We then apply SCR models to Red-backed Salamander (Plethodon cinereus), to determine differences in density, survival, dispersal, and space-use between adult male and female salamanders. By highlighting the capabilities of SCR, and its advantages compared to traditional methods, we hope to give herpetologists the resource they need to apply SCR in their own systems.
Thermospheric density and wind retrieval from Swarm observations
NASA Astrophysics Data System (ADS)
Visser, Pieter; Doornbos, Eelco; van den IJssel, Jose; Teixeira da Encarnação, João
2013-11-01
The three-satellite ESA Swarm mission aims at mapping the Earth's global geomagnetic field at unprecedented spatial and temporal resolution and precision. Swarm also aims at observing thermospheric density and possibly horizontal winds. Precise orbit determination (POD) and Thermospheric Density and Wind (TDW) chains form part of the Swarm Constellation and Application Facility (SCARF), which will provide the so-called Level 2 products. The POD and TDW chains generate the orbit, accelerometer calibration, and thermospheric density and wind Level 2 products. The POD and TDW chains have been tested with data from the CHAMP and GRACE missions, indicating that a 3D orbit precision of about 10 cm can be reached. In addition, POD allows to determine daily accelerometer bias and scale factor values with a precision of around 10-15 nm/s2 and 0.01-0.02, respectively, for the flight direction. With these accelerometer calibration parameter values, derived thermospheric density is consistent at the 9-11% level (standard deviation) with values predicted by models (taking into account that model values are 20-30% higher). The retrieval of crosswinds forms part of the processing chain, but will be challenging. The Swarm observations will be used for further developing and improving density and wind retrieval algorithms.
NASA Astrophysics Data System (ADS)
Cochran, Jeffrey M.; Busch, David R.; Ban, Han Y.; Kavuri, Venkaiah C.; Schweiger, Martin J.; Arridge, Simon R.; Yodh, Arjun G.
2017-02-01
We present high spatial density, multi-modal, parallel-plate Diffuse Optical Tomography (DOT) imaging systems for the purpose of breast tumor detection. One hybrid instrument provides time domain (TD) and continuous wave (CW) DOT at 64 source fiber positions. The TD diffuse optical spectroscopy with PMT- detection produces low-resolution images of absolute tissue scattering and absorption while the spatially dense array of CCD-coupled detector fibers (108 detectors) provides higher-resolution CW images of relative tissue optical properties. Reconstruction of the tissue optical properties, along with total hemoglobin concentration and tissue oxygen saturation, is performed using the TOAST software suite. Comparison of the spatially-dense DOT images and MR images allows for a robust validation of DOT against an accepted clinical modality. Additionally, the structural information from co-registered MR images is used as a spatial prior to improve the quality of the functional optical images and provide more accurate quantification of the optical and hemodynamic properties of tumors. We also present an optical-only imaging system that provides frequency domain (FD) DOT at 209 source positions with full CCD detection and incorporates optical fringe projection profilometry to determine the breast boundary. This profilometry serves as a spatial constraint, improving the quality of the DOT reconstructions while retaining the benefits of an optical-only device. We present initial images from both human subjects and phantoms to display the utility of high spatial density data and multi-modal information in DOT reconstruction with the two systems.
Benmarhnia, Tarik; Kihal-Talantikite, Wahida; Ragettli, Martina S; Deguen, Séverine
2017-08-15
Heat-waves have a substantial public health burden. Understanding spatial heterogeneity at a fine spatial scale in relation to heat and related mortality is central to target interventions towards vulnerable communities. To determine the spatial variability of heat-wave-related mortality risk among elderly in Paris, France at the census block level. We also aimed to assess area-level social and environmental determinants of high mortality risk within Paris. We used daily mortality data from 2004 to 2009 among people aged >65 at the French census block level within Paris. We used two heat wave days' definitions that were compared to non-heat wave days. A Bernoulli cluster analysis method was applied to identify high risk clusters of mortality during heat waves. We performed random effects meta-regression analyses to investigate factors associated with the magnitude of the mortality risk. The spatial approach revealed a spatial aggregation of death cases during heat wave days. We found that small scale chronic PM 10 exposure was associated with a 0.02 (95% CI: 0.001; 0.045) increase of the risk of dying during a heat wave episode. We also found a positive association with the percentage of foreigners and the percentage of labor force, while the proportion of elderly people living in the neighborhood was negatively associated. We also found that green space density had a protective effect and inversely that the density of constructed feature increased the risk of dying during a heat wave episode. We showed that a spatial variation in terms of heat-related vulnerability exists within Paris and that it can be explained by some contextual factors. This study can be useful for designing interventions targeting more vulnerable areas and reduce the burden of heat waves. Copyright © 2017 Elsevier B.V. All rights reserved.
Mesa, Matthew G.; Duke, S.D.; Ward, David L.
1990-01-01
Population data for smallmouth bass Micropterus dolomieui in 20,235 ha John Day Reservoir on the Columbia River were used to (1) determine whether Proportional Stock Density (PSD) and Relative Weight (Wr) varied spatially and temporally in two areas of the reservoir with established smallmouth bass fisheries; (2) explore possible causes of any observed variation; and (3) discuss some management implications and recommendations. Both PSD and Wr varied spatially and monthly in all years examined. On an annual basis, PSD varied at one area but not at the other, whereas Wr showed little variation. Possible explanations for the variation in PSD and Wr are differences in growth, mortality, recruitment, and exploitation. Our data suggested that regulations established or changed on a reservoir-wide basis may have different effects on the fishery, depending on location in the reservoir. Also, pooling data from various areas within a reservoir to yield point estimates of structural indices may not represent the variation present in the population as a whole. The significant temporal variability reflects the importance of determining the proper time to sample fish to yield representative estimates of the variable of interest. In areas with valuable fisheries or markedly different population structures, we suggest that an area-specific approach be made to reservoir fishery management, and that efforts be made toward effecting consistent harvest regulations in interstate waters.
Spatial structure and distribution of small pelagic fish in the northwestern Mediterranean Sea.
Saraux, Claire; Fromentin, Jean-Marc; Bigot, Jean-Louis; Bourdeix, Jean-Hervé; Morfin, Marie; Roos, David; Van Beveren, Elisabeth; Bez, Nicolas
2014-01-01
Understanding the ecological and anthropogenic drivers of population dynamics requires detailed studies on habitat selection and spatial distribution. Although small pelagic fish aggregate in large shoals and usually exhibit important spatial structure, their dynamics in time and space remain unpredictable and challenging. In the Gulf of Lions (north-western Mediterranean), sardine and anchovy biomasses have declined over the past 5 years causing an important fishery crisis while sprat abundance rose. Applying geostatistical tools on scientific acoustic surveys conducted in the Gulf of Lions, we investigated anchovy, sardine and sprat spatial distributions and structures over 10 years. Our results show that sardines and sprats were more coastal than anchovies. The spatial structure of the three species was fairly stable over time according to variogram outputs, while year-to-year variations in kriged maps highlighted substantial changes in their location. Support for the McCall's basin hypothesis (covariation of both population density and presence area with biomass) was found only in sprats, the most variable of the three species. An innovative method to investigate species collocation at different scales revealed that globally the three species strongly overlap. Although species often co-occurred in terms of presence/absence, their biomass density differed at local scale, suggesting potential interspecific avoidance or different sensitivity to local environmental characteristics. Persistent favourable areas were finally detected, but their environmental characteristics remain to be determined.
EVLA observations of radio-loud quasars selected to study radio orientation
NASA Astrophysics Data System (ADS)
Maithil, Jaya; Brotherton, Michael S.; Runnoe, Jessie; Wardle, John F. C.; DiPompeo, Michael; De Breuck, Carlos; Wills, Beverley J.
2018-06-01
We present preliminary work to develop an unbiased sample of radio-loud quasars to test orientation indicators. We have obtained radio data of 147 radio-loud quasars using EVLA at 10 GHz and with the A-array. With this high-resolution data we have measured the uncontaminated core flux density to determine orientation indicators based on radio core dominance. The radio cores of quasars have a flat spectrum over a broad range of frequencies, so we expect that the core flux density at the FIRST and the observed frequencies should be the same in the absence of variability. Jackson & Brown (2012) pointed out that the survey measurements of core flux density, like FIRST, often doesn't have the spatial resolution to distinguish cores from extended emission. Our measurements show that at FIRST spatial resolution, core flux measurements are indeed systematically high. Our results establish that orientation studies need high-resolution radio data as compared to survey data, and that the optical emission is a better normalization than the extended radio emission for a core dominance parameter to track orientation.
NASA Astrophysics Data System (ADS)
Luo, Wei; Jasiewicz, Jaroslaw; Stepinski, Tomasz; Wang, Jinfeng; Xu, Chengdong; Cang, Xuezhi
2016-01-01
Previous studies of land dissection density (D) often find contradictory results regarding factors controlling its spatial variation. We hypothesize that the dominant controlling factors (and the interactions between them) vary from region to region due to differences in each region's local characteristics and geologic history. We test this hypothesis by applying a geographical detector method to eight physiographic divisions of the conterminous United States and identify the dominant factor(s) in each. The geographical detector method computes the power of determinant (q) that quantitatively measures the affinity between the factor considered and D. Results show that the factor (or factor combination) with the largest q value is different for physiographic regions with different characteristics and geologic histories. For example, lithology dominates in mountainous regions, curvature dominates in plains, and glaciation dominates in previously glaciated areas. The geographical detector method offers an objective framework for revealing factors controlling Earth surface processes.
NASA Technical Reports Server (NTRS)
Judy, M. M.
1981-01-01
Values of mean trabecular spacing computed from optical diffraction patterns of 1:1 X-ray micrographs of tibial metaphysis and those obtained by standard image digitization techniques show excellent agreement. Upper limits on values of mean trabecular orientation deduced from diffraction patterns and the images are also in excellent agreement. Values of the ratio of mean trabecular spatial density in a region of 300 micrometers distal to the downwardly directed convexity in the cartilage growth plate to the value adjacent to the plate determined for flight animals sacrificed at recovery were significantly smaller than values for vivarium control animals. No significant differences were found in proximal regions. No significant differences in mean trabecular orientation were detected. Decreased values of trabecular spatial density and of both obsteoblastic activity and trabecular cross-sectional area noted in collateral researches suggest decreased modeling activity under weightlessness.
Homogeneous quantum electrodynamic turbulence
NASA Technical Reports Server (NTRS)
Shebalin, John V.
1992-01-01
The electromagnetic field equations and Dirac equations for oppositely charged wave functions are numerically time-integrated using a spatial Fourier method. The numerical approach used, a spectral transform technique, is based on a continuum representation of physical space. The coupled classical field equations contain a dimensionless parameter which sets the strength of the nonlinear interaction (as the parameter increases, interaction volume decreases). For a parameter value of unity, highly nonlinear behavior in the time-evolution of an individual wave function, analogous to ideal fluid turbulence, is observed. In the truncated Fourier representation which is numerically implemented here, the quantum turbulence is homogeneous but anisotropic and manifests itself in the nonlinear evolution of equilibrium modal spatial spectra for the probability density of each particle and also for the electromagnetic energy density. The results show that nonlinearly interacting fermionic wave functions quickly approach a multi-mode, dynamic equilibrium state, and that this state can be determined by numerical means.
A long view of polluting industry and environmental justice in Baltimore
Christopher G. Boone; Michail Fragkias; Geoffrey L. Buckley; J. Morgan Grove
2014-01-01
This study examines the density of polluting industry by neighborhoods in Baltimore over the long term, from 1950 to 2010, to determine if high pollution burdens correspond spatially with expected demographic and housing variables predicted in the environmental justice literature. For 1960-1980 we use data on heavy industry from Dun and Bradstreet directories and for...
Community Seismic Network (CSN)
NASA Astrophysics Data System (ADS)
Clayton, R. W.; Kohler, M. D.; Heaton, T. H.; Massari, A.; Guy, R.; Bunn, J.; Chandy, M.
2015-12-01
The CSN now has approximately 600 stations in the northern Los Angeles region. The sensors are class-C MEMs accelerometers that are packaged with backup power and data memory and are connected to a cloud-based processing system through the Internet. Most of the sensors are located in an xy-spatial network with an average minimum station spacing of 800 m. This density allows the lateral variations in ground motion to be determined, which will lead to detailed microzonation maps of the region. Approximately 100 of the sensors are located on campuses of the Los Angeles Unified School District (LAUSD), and this is part of a plan to provide schools with critical earthquake information immediately following an earthquake using the ShakeCast system. The software system in the sensors is being upgraded to allow on site measurements of PGA and PVA to be sent directly to the ShakeMap and earthquake early warning systems. More than 160 of the sensor packages are located on multiple floors of buildings with typically one or two 3-component sensors per floor. With these data we can identify traveling waves in the building, as well as determine the eigenfrequencies and mode shapes. By monitoring these quantities with high spatial density before, during, and after a major shaking event, we hope to determine the state of health of the structure.
Estimation of spatially restricted LET using track structure models
NASA Technical Reports Server (NTRS)
Kiefer, J.
1994-01-01
The spatial distribution of energy deposition is an important determinant in the formation of biologically significant lesions. It has been widely realized that Linear Energy Transfer (LET) being an average quantity is not sufficient to describe the situation at a submicroscopic scale. To remedy this to some extent 'energy-cut-off' values are sometimes used but since they are related to secondary electron energy and only indirectly to their range they are also not adequate although they may be easily calculated. 'Range-restricted LET' appears to be better but its determination is usually quite involved. Xapsos (1992) suggested a semi-empirical approximation based on a modified Bethe-formula which contains a number of assumption which are difficult to verify. A simpler and easier way is to use existing beam-models which describe energy deposition around an ion's path. They all agree that the energy density (i. e., energy deposited per unit mass) decreases with the inverse square of the distance from the track center. This simple dependence can be used to determine the fraction of total LET which is deposited in a cylinder of a given radius. As an example our own beam model. Energy density depends on distance x (measured in m) from the track center according to the presented formula.
Sétamou, Mamoudou; Bartels, David W
2015-01-01
The spatial niche occupation of the Asian citrus psyllid, Diaphorina citri Kuwayama, 1908, was evaluated to determine its field colonization and food resource exploitation strategies in citrus groves. Mature grapefruit and sweet orange groves were surveyed as part of an area-wide program in 2009-2010 to determine D. citri population densities and between-tree distribution. In both cultivars, significantly more psyllids were found on perimeter trees throughout the study period suggesting a strong edge effect in D. citri distribution in the groves. D. citri densities and infestation levels gradually declined from the edge to the center of grove. Higher numbers of D. citri were recorded on trees located on the east and south sides of the groves than those on the west and north sides. Citrus groves located at the outer edge of the study with at least one side non-surrounded to other citrus groves harbored significantly more D. citri than groves located within the block cluster and entirely surrounded by other groves. In detailed field studies during 2012, infestation of D. citri started from border trees in the grove where possibly one generation is completed before inner trees become infested. In addition, psyllid densities decreased significantly with increasing distance from the grove edge. Using the selection index, D citri exhibited a strong niche occupation preference for border trees.
2015-01-01
The spatial niche occupation of the Asian citrus psyllid, Diaphorina citri Kuwayama, 1908, was evaluated to determine its field colonization and food resource exploitation strategies in citrus groves. Mature grapefruit and sweet orange groves were surveyed as part of an area-wide program in 2009–2010 to determine D. citri population densities and between-tree distribution. In both cultivars, significantly more psyllids were found on perimeter trees throughout the study period suggesting a strong edge effect in D. citri distribution in the groves. D. citri densities and infestation levels gradually declined from the edge to the center of grove. Higher numbers of D. citri were recorded on trees located on the east and south sides of the groves than those on the west and north sides. Citrus groves located at the outer edge of the study with at least one side non-surrounded to other citrus groves harbored significantly more D. citri than groves located within the block cluster and entirely surrounded by other groves. In detailed field studies during 2012, infestation of D. citri started from border trees in the grove where possibly one generation is completed before inner trees become infested. In addition, psyllid densities decreased significantly with increasing distance from the grove edge. Using the selection index, D citri exhibited a strong niche occupation preference for border trees. PMID:26193111
Enhanced Scattering of Diffuse Ions on Front of the Earth's Quasi-Parallel Bow Shock: a Case Study
NASA Astrophysics Data System (ADS)
Kis, A.; Matsukiyo, S.; Otsuka, F.; Hada, T.; Lemperger, I.; Dandouras, I. S.; Barta, V.; Facsko, G. I.
2017-12-01
In the analysis we present a case study of three energetic upstream ion events at the Earth's quasi-parallel bow shock based on multi-spacecraft data recorded by Cluster. The CIS-HIA instrument onboard Cluster provides partial energetic ion densities in 4 energy channels between 10 and 32 keV.The difference of the partial ion densities recorded by the individual spacecraft at various distances from the bow shock surface makes possible the determination of the spatial gradient of energetic ions.Using the gradient values we determined the spatial profile of the energetic ion partial densities as a function of distance from the bow shock and we calculated the e-folding distance and the diffusion coefficient for each event and each ion energy range. Results show that in two cases the scattering of diffuse ions takes place in a normal way, as "by the book", and the e-folding distance and diffusion coefficient values are comparable with previous results. On the other hand, in the third case the e-folding distance and the diffusion coefficient values are significantly lower, which suggests that in this case the scattering process -and therefore the diffusive shock acceleration (DSA) mechanism also- is much more efficient. Our analysis provides an explanation for this "enhanced" scattering process recorded in the third case.
[Spatial distribution pattern of Chilo suppressalis analyzed by classical method and geostatistics].
Yuan, Zheming; Fu, Wei; Li, Fangyi
2004-04-01
Two original samples of Chilo suppressalis and their grid, random and sequence samples were analyzed by classical method and geostatistics to characterize the spatial distribution pattern of C. suppressalis. The limitations of spatial distribution analysis with classical method, especially influenced by the original position of grid, were summarized rather completely. On the contrary, geostatistics characterized well the spatial distribution pattern, congregation intensity and spatial heterogeneity of C. suppressalis. According to geostatistics, the population was up to Poisson distribution in low density. As for higher density population, its distribution was up to aggregative, and the aggregation intensity and dependence range were 0.1056 and 193 cm, respectively. Spatial heterogeneity was also found in the higher density population. Its spatial correlativity in line direction was more closely than that in row direction, and the dependence ranges in line and row direction were 115 and 264 cm, respectively.
Dominkovics, Pau; Granell, Carlos; Pérez-Navarro, Antoni; Casals, Martí; Orcau, Angels; Caylà, Joan A
2011-11-29
Health professionals and authorities strive to cope with heterogeneous data, services, and statistical models to support decision making on public health. Sophisticated analysis and distributed processing capabilities over geocoded epidemiological data are seen as driving factors to speed up control and decision making in these health risk situations. In this context, recent Web technologies and standards-based web services deployed on geospatial information infrastructures have rapidly become an efficient way to access, share, process, and visualize geocoded health-related information. Data used on this study is based on Tuberculosis (TB) cases registered in Barcelona city during 2009. Residential addresses are geocoded and loaded into a spatial database that acts as a backend database. The web-based application architecture and geoprocessing web services are designed according to the Representational State Transfer (REST) principles. These web processing services produce spatial density maps against the backend database. The results are focused on the use of the proposed web-based application to the analysis of TB cases in Barcelona. The application produces spatial density maps to ease the monitoring and decision making process by health professionals. We also include a discussion of how spatial density maps may be useful for health practitioners in such contexts. In this paper, we developed web-based client application and a set of geoprocessing web services to support specific health-spatial requirements. Spatial density maps of TB incidence were generated to help health professionals in analysis and decision-making tasks. The combined use of geographic information tools, map viewers, and geoprocessing services leads to interesting possibilities in handling health data in a spatial manner. In particular, the use of spatial density maps has been effective to identify the most affected areas and its spatial impact. This study is an attempt to demonstrate how web processing services together with web-based mapping capabilities suit the needs of health practitioners in epidemiological analysis scenarios.
2011-01-01
Background Health professionals and authorities strive to cope with heterogeneous data, services, and statistical models to support decision making on public health. Sophisticated analysis and distributed processing capabilities over geocoded epidemiological data are seen as driving factors to speed up control and decision making in these health risk situations. In this context, recent Web technologies and standards-based web services deployed on geospatial information infrastructures have rapidly become an efficient way to access, share, process, and visualize geocoded health-related information. Methods Data used on this study is based on Tuberculosis (TB) cases registered in Barcelona city during 2009. Residential addresses are geocoded and loaded into a spatial database that acts as a backend database. The web-based application architecture and geoprocessing web services are designed according to the Representational State Transfer (REST) principles. These web processing services produce spatial density maps against the backend database. Results The results are focused on the use of the proposed web-based application to the analysis of TB cases in Barcelona. The application produces spatial density maps to ease the monitoring and decision making process by health professionals. We also include a discussion of how spatial density maps may be useful for health practitioners in such contexts. Conclusions In this paper, we developed web-based client application and a set of geoprocessing web services to support specific health-spatial requirements. Spatial density maps of TB incidence were generated to help health professionals in analysis and decision-making tasks. The combined use of geographic information tools, map viewers, and geoprocessing services leads to interesting possibilities in handling health data in a spatial manner. In particular, the use of spatial density maps has been effective to identify the most affected areas and its spatial impact. This study is an attempt to demonstrate how web processing services together with web-based mapping capabilities suit the needs of health practitioners in epidemiological analysis scenarios. PMID:22126392
Negative hydrogen ions in a linear helicon plasma device
NASA Astrophysics Data System (ADS)
Corr, Cormac; Santoso, Jesse; Samuell, Cameron; Willett, Hannah; Manoharan, Rounak; O'Byrne, Sean
2015-09-01
Low-pressure negative ion sources are of crucial importance to the development of high-energy (>1 MeV) neutral beam injection systems for the ITER experimental tokamak device. Due to their high power coupling efficiency and high plasma densities, helicon devices may be able to reduce power requirements and potentially remove the need for caesium. In helicon sources, the RF power can be coupled efficiently into the plasma and it has been previously observed that the application of a small magnetic field can lead to a significant increase in the plasma density. In this work, we investigate negative ion dynamics in a high-power (20 kW) helicon plasma source. The negative ion fraction is measured by probe-based laser photodetachment, electron density and temperature are determined by a Langmuir probe and tuneable diode laser absorption spectroscopy is used to determine the density of the H(n = 2) excited atomic state and the gas temperature. The negative ion density and excited atomic hydrogen density display a maximum at a low applied magnetic field of 3 mT, while the electron temperature displays a minimum. The negative ion density can be increased by a factor of 8 with the application of the magnetic field. Spatial and temporal measurements will also be presented. The Australian Research Grants Council is acknowledged for funding.
Reiter, Matthew E.; Andersen, David E.
2013-01-01
Quantifying spatial patterns of bird nests and nest fate provides insights into processes influencing a species’ distribution. At Cape Churchill, Manitoba, Canada, recent declines in breeding Eastern Prairie Population Canada geese (Branta canadensis interior) has coincided with increasing populations of nesting lesser snow geese (Chen caerulescens caerulescens) and Ross’s geese (Chen rossii). We conducted a spatial analysis of point patterns using Canada goose nest locations and nest fate, and lesser snow goose nest locations at two study areas in northern Manitoba with different densities and temporal durations of sympatric nesting Canada and lesser snow geese. Specifically, we assessed (1) whether Canada geese exhibited territoriality and at what scale and nest density; and (2) whether spatial patterns of Canada goose nest fate were associated with the density of nesting lesser snow geese as predicted by the protective-association hypothesis. Between 2001 and 2007, our data suggest that Canada geese were territorial at the scale of nearest neighbors, but were aggregated when considering overall density of conspecifics at slightly broader spatial scales. The spatial distribution of nest fates indicated that lesser snow goose nest proximity and density likely influence Canada goose nest fate. Our analyses of spatial point patterns suggested that continued changes in the distribution and abundance of breeding lesser snow geese on the Hudson Bay Lowlands may have impacts on the reproductive performance of Canada geese, and subsequently the spatial distribution of Canada goose nests.
Density and nest survival of golden-cheeked warblers: Spatial scale matters
Jennifer L. Reidy; Frank R., III Thompson; Lisa O' Donnell
2017-01-01
Conservation and management plans often rely on indicators such as species occupancy or density to define habitat quality, ignoring factors that influence reproductive success, and potentially limiting conservation achievements. We examined relationships between predicted density and nest survival with environmental features at multiple spatial scales for the golden-...
NASA Astrophysics Data System (ADS)
Larquier, S.; Ponomarenko, P.; Ribeiro, A. J.; Ruohoniemi, J. M.; Baker, J. B. H.; Sterne, K. T.; Lester, M.
2013-08-01
The midlatitude Super Dual Auroral Radar Network (SuperDARN) radars regularly observe nighttime low‒velocity Sub‒Auroral Ionospheric Scatter (SAIS) from decameter‒scale ionospheric density irregularities during quiet geomagnetic conditions. To establish the origin of the density irregularities responsible for low‒velocity SAIS, it is necessary to distinguish between the effects of high frequency (HF) propagation and irregularity occurrence itself on the observed backscatter distribution. We compare range, azimuth, and elevation data from the Blackstone SuperDARN radar with modeling results from ray tracing coupled with the International Reference Ionosphere assuming a uniform irregularity distribution. The observed and modeled distributions are shown to be very similar. The spatial distribution of backscattering is consistent with the requirement that HF rays propagate nearly perpendicular to the geomagnetic field lines (aspect angle ≤1°). For the first time, the irregularities responsible for low‒velocity SAIS are determined to extend between 200 and 300 km altitude, validating previous assumptions that low‒velocity SAIS is an F‒region phenomenon. We find that the limited spatial extent of this category of ionospheric backscatter within SuperDARN radars' fields‒of‒view is a consequence of HF propagation effects and the finite vertical extent of the scattering irregularities. We conclude that the density irregularities responsible for low‒velocity SAIS are widely distributed horizontally within the midlatitude ionosphere but are confined to the bottom‒side F‒region.
Capture-recapture of white-tailed deer using DNA from fecal pellet-groups
Goode, Matthew J; Beaver, Jared T; Muller, Lisa I; Clark, Joseph D.; van Manen, Frank T.; Harper, Craig T; Basinger, P Seth
2014-01-01
Traditional methods for estimating white-tailed deer population size and density are affected by behavioral biases, poor detection in densely forested areas, and invalid techniques for estimating effective trapping area. We evaluated a noninvasive method of capture—recapture for white-tailed deer (Odocoileus virginianus) density estimation using DNA extracted from fecal pellets as an individual marker and for gender determination, coupled with a spatial detection function to estimate density (spatially explicit capture—recapture, SECR). We collected pellet groups from 11 to 22 January 2010 at randomly selected sites within a 1-km2 area located on Arnold Air Force Base in Coffee and Franklin counties, Tennessee. We searched 703 10-m radius plots and collected 352 pellet-group samples from 197 plots over five two-day sampling intervals. Using only the freshest pellets we recorded 140 captures of 33 different animals (15M:18F). Male and female densities were 1.9 (SE = 0.8) and 3.8 (SE = 1.3) deer km-2, or a total density of 5.8 deer km-2 (14.9 deer mile-2). Population size was 20.8 (SE = 7.6) over a 360-ha area, and sex ratio was 1.0 M: 2.0 F (SE = 0.71). We found DNA sampling from pellet groups improved deer abundance, density and sex ratio estimates in contiguous landscapes which could be used to track responses to harvest or other management actions.
NASA Astrophysics Data System (ADS)
Muldoon, F. H.
2018-04-01
Hydrothermal waves in flows driven by thermocapillary and buoyancy effects are suppressed by applying a predictive control method. Hydrothermal waves arise in the manufacturing of crystals, including the "open boat" crystal growth process, and lead to undesirable impurities in crystals. The open boat process is modeled using the two-dimensional unsteady incompressible Navier-Stokes equations under the Boussinesq approximation and the linear approximation of the surface thermocapillary force. The flow is controlled by a spatially and temporally varying heat flux density through the free surface. The heat flux density is determined by a conjugate gradient optimization algorithm. The gradient of the objective function with respect to the heat flux density is found by solving adjoint equations derived from the Navier-Stokes ones in the Boussinesq approximation. Special attention is given to heat flux density distributions over small free-surface areas and to the maximum admissible heat flux density.
Yeung, Edward S.; Chen, Guoying
1990-05-01
A method and means for a spatial and temporal probe for laser generated plumes based on density gradients includes generation of a plume of vaporized material from a surface by an energy source. The probe laser beam is positioned so that the plume passes through the probe laser beam. Movement of the probe laser beam caused by refraction from the density gradient of the plume is monitored. Spatial and temporal information, correlated to one another, is then derived.
A Search for Plasma "Fingers" in the Io Torus
NASA Astrophysics Data System (ADS)
Jaggar, S.; Schneider, N. M.; Bagenal, F.; Trauger, J. T.
1996-09-01
We have compared model and data images of the Io plasma torus to test the radial diffusion model of Yang et al. (J. Geophys. Res., Vol 99, p. 8755, 1994). They predict that radial diffusion takes the form of `fingers' of dense plasma flowing outward due to the centrifugal force. Furthermore, they show that the spatial scale of these significant longitudinal variations is approximately 15(o) . The observations used in this study were obtained using a 2.4m telescope at Las Campanas Observatory using a narrowband filter to isolate emissions from S(++) at 9531 Angstroms. S(++) images are dominated by emission from the warm torus where outward radial transport is expected. Although S(+) images are brighter, they are contaminated by emission from the cold torus where fingers are not expected. We used the Colorado Io Torus Emission Package (CITEP)(Taylor et al., J. Geophys. Res., Vol. 100, p. 19541, 1995) to simulate images of the torus with fingers. CITEP is a comprehensive program which incorporates accurate atomic physics, plasma physics and magnetic field models to simulate the brightness and morphology or torus emissions. We used a Voyager empirical model (Bagenal, J. Geophys. Res., Vol. 99, p. 11043, 1994) modulated by a sinusoidal longitudinal density variation with a 15(o) period and an amplitude proportional to the density at that L-shell. We compared simulated images with data to determine the minimum density contrast necessary to make fingers detectable. We place an upper limit on the density contrast of +/- 20% on a 15(o) spatial scale. We conclude that either the density contrast of this mode of transport is small, or other processes are more important for radial transport. This constraint can also be used in other radial diffusion models which predict density variations on this spatial scale. This work has been supported by NASA's Planetary Astronomy and Planetary Atmospheres programs.
Ferrell, A Michelle; Brinkerhoff, R Jory
2018-04-12
Patterns of vector-borne disease risk are changing globally in space and time and elevated disease risk of vector-borne infection can be driven by anthropogenic modification of the environment. Incidence of Lyme disease, caused by the bacterium Borrelia burgdorferi sensu stricto, has risen in a number of locations in North America and this increase may be driven by spatially or numerically expanding populations of the primary tick vector, Ixodes scapularis . We used a model selection approach to identify habitat fragmentation and land-use/land cover variables to test the hypothesis that the amount and configuration of forest cover at spatial scales relevant to deer, the primary hosts of adult ticks, would be the predominant determinants of tick abundance. We expected that land cover heterogeneity and amount of forest edge, a habitat thought to facilitate deer foraging and survival, would be the strongest driver of tick density and that larger spatial scales (5-10 km) would be more important than smaller scales (1 km). We generated metrics of deciduous and mixed forest fragmentation using Fragstats 4.4 implemented in ArcMap 10.3 and found, after adjusting for multicollinearity, that total forest edge within a 5 km buffer had a significant negative effect on tick density and that the proportion of forested land cover within a 10 km buffer was positively associated with density of I. scapularis nymphs. None of the 1 km fragmentation metrics were found to significantly improve the fit of the model. Elevation, previously associated with increased density of I. scapularis nymphs in Virginia, while significantly predictive in univariate analysis, was not an important driver of nymph density relative to fragmentation metrics. Our results suggest that amount of forest cover (i.e., lack of fragmentation) is the most important driver of I. scapularis density in our study system.
The Potential for Spatial Distribution Indices to Signal Thresholds in Marine Fish Biomass
Reuchlin-Hugenholtz, Emilie
2015-01-01
The frequently observed positive relationship between fish population abundance and spatial distribution suggests that changes in distribution can be indicative of trends in abundance. If contractions in spatial distribution precede declines in spawning stock biomass (SSB), spatial distribution reference points could complement the SSB reference points that are commonly used in marine conservation biology and fisheries management. When relevant spatial distribution information is integrated into fisheries management and recovery plans, risks and uncertainties associated with a plan based solely on the SSB criterion would be reduced. To assess the added value of spatial distribution data, we examine the relationship between SSB and four metrics of spatial distribution intended to reflect changes in population range, concentration, and density for 10 demersal populations (9 species) inhabiting the Scotian Shelf, Northwest Atlantic. Our primary purpose is to assess their potential to serve as indices of SSB, using fisheries independent survey data. We find that metrics of density offer the best correlate of spawner biomass. A decline in the frequency of encountering high density areas is associated with, and in a few cases preceded by, rapid declines in SSB in 6 of 10 populations. Density-based indices have considerable potential to serve both as an indicator of SSB and as spatially based reference points in fisheries management. PMID:25789624
Spatial aspects of tree mortality strongly differ between young and old-growth forests.
Larson, Andrew J; Lutz, James A; Donato, Daniel C; Freund, James A; Swanson, Mark E; HilleRisLambers, Janneke; Sprugel, Douglas G; Franklin, Jerry F
2015-11-01
Rates and spatial patterns of tree mortality are predicted to change during forest structural development. In young forests, mortality should be primarily density dependent due to competition for light, leading to an increasingly spatially uniform pattern of surviving trees. In contrast, mortality in old-growth forests should be primarily caused by contagious and spatially autocorrelated agents (e.g., insects, wind), causing spatial aggregation of surviving trees to increase through time. We tested these predictions by contrasting a three-decade record of tree mortality from replicated mapped permanent plots located in young (< 60-year-old) and old-growth (> 300-year-old) Abies amabilis forests. Trees in young forests died at a rate of 4.42% per year, whereas trees in old-growth forests died at 0.60% per year. Tree mortality in young forests was significantly aggregated, strongly density dependent, and caused live tree patterns to become more uniform through time. Mortality in old-growth forests was spatially aggregated, but was density independent and did not change the spatial pattern of surviving trees. These results extend current theory by demonstrating that density-dependent competitive mortality leading to increasingly uniform tree spacing in young forests ultimately transitions late in succession to a more diverse tree mortality regime that maintains spatial heterogeneity through time.
Adaptive nest clustering and density-dependent nest survival in dabbling ducks
Ringelman, Kevin M.; Eadie, John M.; Ackerman, Joshua T.
2014-01-01
Density-dependent population regulation is observed in many taxa, and understanding the mechanisms that generate density dependence is especially important for the conservation of heavily-managed species. In one such system, North American waterfowl, density dependence is often observed at continental scales, and nest predation has long been implicated as a key factor driving this pattern. However, despite extensive research on this topic, it remains unclear if and how nest density influences predation rates. Part of this confusion may have arisen because previous studies have studied density-dependent predation at relatively large spatial and temporal scales. Because the spatial distribution of nests changes throughout the season, which potentially influences predator behavior, nest survival may vary through time at relatively small spatial scales. As such, density-dependent nest predation might be more detectable at a spatially- and temporally-refined scale and this may provide new insights into nest site selection and predator foraging behavior. Here, we used three years of data on nest survival of two species of waterfowl, mallards and gadwall, to more fully explore the relationship between local nest clustering and nest survival. Throughout the season, we found that the distribution of nests was consistently clustered at small spatial scales (˜50–400 m), especially for mallard nests, and that this pattern was robust to yearly variation in nest density and the intensity of predation. We demonstrated further that local nest clustering had positive fitness consequences – nests with closer nearest neighbors were more likely to be successful, a result that is counter to the general assumption that nest predation rates increase with nest density.
2017-01-01
Grassland and shrub-steppe ecosystems are increasingly threatened by anthropogenic activities. Loss of native habitats may negatively impact important small mammal prey species. Little information, however, is available on the impact of habitat variability on density of small mammal prey species at broad spatial scales. We examined the relationship between small mammal density and remotely-sensed environmental covariates in shrub-steppe and grassland ecosystems in Wyoming, USA. We sampled four sciurid and leporid species groups using line transect methods, and used hierarchical distance-sampling to model density in response to variation in vegetation, climate, topographic, and anthropogenic variables, while accounting for variation in detection probability. We created spatial predictions of each species’ density and distribution. Sciurid and leporid species exhibited mixed responses to vegetation, such that changes to native habitat will likely affect prey species differently. Density of white-tailed prairie dogs (Cynomys leucurus), Wyoming ground squirrels (Urocitellus elegans), and leporids correlated negatively with proportion of shrub or sagebrush cover and positively with herbaceous cover or bare ground, whereas least chipmunks showed a positive correlation with shrub cover and a negative correlation with herbaceous cover. Spatial predictions from our models provide a landscape-scale metric of above-ground prey density, which will facilitate the development of conservation plans for these taxa and their predators at spatial scales relevant to management. PMID:28520757
A Geospatial Database for Wind and Solar Energy Applications: The Kingdom of Bahrain Study Case
NASA Astrophysics Data System (ADS)
Al-Joburi, Khalil; Dahman, Nidal
2017-11-01
This research is aimed at designing, implementing, and testing a geospatial database for wind and solar energy applications in the Kingdom of Bahrain. All decision making needed to determine economic feasibility and establish site location for wind turbines or solar panels depends primarily on geospatial feature theme information and non-spatial (attribute) data for wind, solar, rainfall, temperature and weather characteristics of a particular region. Spatial data includes, but is not limited to, digital elevation, slopes, land use, zonings, parks, population density, road utility maps, and other related information. Digital elevations for over 450,000 spot at 50 m spatial horizontal resolution plus field surveying and GPS (at selected locations) was obtained from the Surveying and Land Registration Bureau (SLRB). Road, utilities, and population density are obtained from the Central Information Organization (CIO). Land use zoning, recreational parks, and other data are obtained from the Ministry of Municipalities and Agricultural Affairs. Wind, solar, humidity, rainfall, and temperature data are obtained from the Ministry of Transportation, Civil Aviation Section. LandSat Satellite and others images are obtained from NASA and online sources respectively. The collected geospatial data was geo-referenced to Ain el-Abd UTM Zone 39 North. 3D Digital Elevation Model (DEM)-50 m spatial resolutions was created using SLRB spot elevations. Slope and aspect maps were generate based on the DEM. Supervised image classification to identify open spaces was performed utilizing satellite images. Other geospatial data was converted to raster format with the same cell resolution. Non-spatial data are entered as an attribute to spatial features. To eliminate ambiguous solution, multi-criteria GIS model is developed based on, vector (discrete point, line, and polygon representations) as well as raster model (continuous representation). The model was tested at the Al-Areen proposed project, a relatively small area (15 km2). Optimum site spatial location for the location of wind turbines and solar panels was determined and initial results indicates that the combination of wind and solar energy would be sufficient for the project to meet the energy demand at the present per capita consummation rate..
Brownian systems with spatially inhomogeneous activity
NASA Astrophysics Data System (ADS)
Sharma, A.; Brader, J. M.
2017-09-01
We generalize the Green-Kubo approach, previously applied to bulk systems of spherically symmetric active particles [J. Chem. Phys. 145, 161101 (2016), 10.1063/1.4966153], to include spatially inhomogeneous activity. The method is applied to predict the spatial dependence of the average orientation per particle and the density. The average orientation is given by an integral over the self part of the Van Hove function and a simple Gaussian approximation to this quantity yields an accurate analytical expression. Taking this analytical result as input to a dynamic density functional theory approximates the spatial dependence of the density in good agreement with simulation data. All theoretical predictions are validated using Brownian dynamics simulations.
NASA Astrophysics Data System (ADS)
Mendolia, D.; D'Souza, R. J. C.; Evans, G. J.; Brook, J.
2013-01-01
Tropospheric NO2 vertical column densities were retrieved for the first time in Toronto, Canada using three methods of differing spatial scales. Remotely-sensed NO2 vertical column densities, retrieved from multi-axis differential optical absorption spectroscopy and satellite remote sensing, were evaluated by comparison with in situ vertical column densities derived using a pair of chemiluminescence monitors situated 0.01 and 0.5 km above ground level. The chemiluminescence measurements were corrected for the influence of NOz, which reduced the NO2 concentrations at 0.01 and 0.5 km by 8 ± 1% and 12 ± 1%, respectively. The average absolute decrease in the chemiluminescence NO2 measurement as a result of this correction was less than 1 ppb. Good correlation was observed between the remotely sensed and in situ NO2 vertical column densities (Pearson R ranging from 0.68 to 0.79), but the in situ vertical column densities were 27% to 55% greater than the remotely-sensed columns. These results indicate that NO2 horizontal heterogeneity strongly impacted the magnitude of the remotely-sensed columns. The in situ columns reflected an urban environment with major traffic sources, while the remotely-sensed NO2 vertical column densities were representative of the region, which included spatial heterogeneity introduced by residential neighbourhoods and Lake Ontario. Despite the difference in absolute values, the reasonable correlation between the vertical column densities determined by three distinct methods increased confidence in the validity of the values provided by each of the methods.
Influence of predator density on nonindependent effects of multiple predator species.
Griffen, Blaine D; Williamson, Tucker
2008-02-01
Interactions between multiple predator species are frequent in natural communities and can have important implications for shared prey survival. Predator density may be an important component of these interactions between predator species, as the frequency of interactions between species is largely determined by species density. Here we experimentally examine the importance of predator density for interactions between predator species and subsequent impacts on prey. We show that aggressive interactions between the predatory shore crabs Carcinus maenas and Hemigrapsus sanguineus increased with predator density, yet did not increase as fast as negative interactions between conspecifics. At low density, interactions between conspecific and heterospecific predators had similar inhibitory impacts on predator function, whereas conspecific interference was greater than interference from heterospecifics at high predator density. Thus the impact of conspecific interference at high predator density was sufficient in itself that interactions with a second predator species had no additional impact on per capita predation. Spatial and temporal variability in predator density is a ubiquitous characteristic of natural systems that should be considered in studies of multiple predator species.
Geostatistics as a tool to study mite dispersion in physic nut plantations.
Rosado, J F; Picanço, M C; Sarmento, R A; Pereira, R M; Pedro-Neto, M; Galdino, T V S; de Sousa Saraiva, A; Erasmo, E A L
2015-08-01
Spatial distribution studies in pest management identify the locations where pest attacks on crops are most severe, enabling us to understand and predict the movement of such pests. Studies on the spatial distribution of two mite species, however, are rather scarce. The mites Polyphagotarsonemus latus and Tetranychus bastosi are the major pests affecting physic nut plantations (Jatropha curcas). Therefore, the objective of this study was to measure the spatial distributions of P. latus and T. bastosi in the physic nut plantations. Mite densities were monitored over 2 years in two different plantations. Sample locations were georeferenced. The experimental data were analyzed using geostatistical analyses. The total mite density was found to be higher when only one species was present (T. bastosi). When both the mite species were found in the same plantation, their peak densities occurred at different times. These mites, however, exhibited uniform spatial distribution when found at extreme densities (low or high). However, the mites showed an aggregated distribution in intermediate densities. Mite spatial distribution models were isotropic. Mite colonization commenced at the periphery of the areas under study, whereas the high-density patches extended until they reached 30 m in diameter. This has not been reported for J. curcas plants before.
Spatial relationships between alcohol-related road crashes and retail alcohol availability.
Morrison, Christopher; Ponicki, William R; Gruenewald, Paul J; Wiebe, Douglas J; Smith, Karen
2016-05-01
This study examines spatial relationships between alcohol outlet density and the incidence of alcohol-related crashes. The few prior studies conducted in this area used relatively large spatial units; here we use highly resolved units from Melbourne, Australia (Statistical Area level 1 [SA1] units: mean land area=0.5 km(2); SD=2.2 km(2)), in order to assess different micro-scale spatial relationships for on- and off-premise outlets. Bayesian conditional autoregressive Poisson models were used to assess cross-sectional relationships of three-year counts of alcohol-related crashes (2010-2012) attended by Ambulance Victoria paramedics to densities of bars, restaurants, and off-premise outlets controlling for other land use, demographic and roadway characteristics. Alcohol-related crashes were not related to bar density within local SA1 units, but were positively related to bar density in adjacent SA1 units. Alcohol-related crashes were negatively related to off-premise outlet density in local SA1 units. Examined in one metropolitan area using small spatial units, bar density is related to greater crash risk in surrounding areas. Observed negative relationships for off-premise outlets may be because the origins and destinations of alcohol-affected journeys are in distal locations relative to outlets. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Tatari, Karolina; Musovic, Sanin; Gülay, Arda; Dechesne, Arnaud; Albrechtsen, Hans-Jørgen; Smets, Barth F
2017-12-15
We investigated the density and distribution of total bacteria, canonical Ammonia Oxidizing Bacteria (AOB) (Nitrosomonas plus Nitrosospira), Ammonia Oxidizing Archaea (AOA), as well as Nitrobacter and Nitrospira in rapid sand filters used for groundwater treatment. To investigate the spatial distribution of these guilds, filter material was sampled at four drinking water treatment plants (DWTPs) in parallel filters of the pre- and after-filtration stages at different locations and depths. The target guilds were quantified by qPCR targeting 16S rRNA and amoA genes. Total bacterial densities (ignoring 16S rRNA gene copy number variation) were high and ranged from 10 9 to 10 10 per gram (10 15 to 10 16 per m 3 ) of filter material. All examined guilds, except AOA, were stratified at only one of the four DWTPs. Densities varied spatially within filter (intra-filter variation) at two of the DWTPs and in parallel filters (inter-filter variation) at one of the DWTPs. Variation analysis revealed random sampling as the most efficient strategy to yield accurate mean density estimates, with collection of at least 7 samples suggested to obtain an acceptable (below half order of magnitude) density precision. Nitrospira was consistently the most dominant guild (5-10% of total community), and was generally up to 4 orders of magnitude more abundant than Nitrobacter and up to 2 orders of magnitude more abundant than canonical AOBs. These results, supplemented with further analysis of the previously reported diversity of Nitrospira in the studied DWTPs based on 16S rRNA and nxrB gene phylogeny (Gülay et al., 2016; Palomo et al., 2016), indicate that the high Nitrospira abundance is due to their comammox (complete ammonia oxidation) physiology. AOA densities were lower than AOB densities, except in the highly stratified filters, where they were of similar abundance. In conclusion, rapid sand filters are microbially dense, with varying degrees of spatial heterogeneity, which requires replicate sampling for a sufficiently precise determination of total microbial community and specific population densities. A consistently high Nitrospira to bacterial and archaeal AOB density ratio suggests that non-canonical pathways for nitrification may dominate the examined RSFs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Trivial constraints on orbital-free kinetic energy density functionals
NASA Astrophysics Data System (ADS)
Luo, Kai; Trickey, S. B.
2018-03-01
Approximate kinetic energy density functionals (KEDFs) are central to orbital-free density functional theory. Limitations on the spatial derivative dependencies of KEDFs have been claimed from differential virial theorems. We identify a central defect in the argument: the relationships are not true for an arbitrary density but hold only for the minimizing density and corresponding chemical potential. Contrary to the claims therefore, the relationships are not constraints and provide no independent information about the spatial derivative dependencies of approximate KEDFs. A simple argument also shows that validity for arbitrary v-representable densities is not restored by appeal to the density-potential bijection.
Hogerwerf, Lenny; Holstege, Manon M C; Benincà, Elisa; Dijkstra, Frederika; van der Hoek, Wim
2017-07-26
Human psittacosis is a highly under diagnosed zoonotic disease, commonly linked to psittacine birds. Psittacosis in birds, also known as avian chlamydiosis, is endemic in poultry, but the risk for people living close to poultry farms is unknown. Therefore, our study aimed to explore the temporal and spatial patterns of human psittacosis infections and identify possible associations with poultry farming in the Netherlands. We analysed data on 700 human cases of psittacosis notified between 01-01-2000 and 01-09-2015. First, we studied the temporal behaviour of psittacosis notifications by applying wavelet analysis. Then, to identify possible spatial patterns, we applied spatial cluster analysis. Finally, we investigated the possible spatial association between psittacosis notifications and data on the Dutch poultry sector at municipality level using a multivariable model. We found a large spatial cluster that covered a highly poultry-dense area but additional clusters were found in areas that had a low poultry density. There were marked geographical differences in the awareness of psittacosis and the amount and the type of laboratory diagnostics used for psittacosis, making it difficult to draw conclusions about the correlation between the large cluster and poultry density. The multivariable model showed that the presence of chicken processing plants and slaughter duck farms in a municipality was associated with a higher rate of human psittacosis notifications. The significance of the associations was influenced by the inclusion or exclusion of farm density in the model. Our temporal and spatial analyses showed weak associations between poultry-related variables and psittacosis notifications. Because of the low number of psittacosis notifications available for analysis, the power of our analysis was relative low. Because of the exploratory nature of this research, the associations found cannot be interpreted as evidence for airborne transmission of psittacosis from poultry to the general population. Further research is needed to determine the prevalence of C. psittaci in Dutch poultry. Also, efforts to promote PCR-based testing for C. psittaci and genotyping for source tracing are important to reduce the diagnostic deficit, and to provide better estimates of the human psittacosis burden, and the possible role of poultry.
X-ray Spectroscopic Characterization of Plasma for a Charged-Particle Energy-Loss Experiment
NASA Astrophysics Data System (ADS)
Hoffman, Nm; Lee, Cl; Wilson, Dc; Barnes, Cris W.; Petrasso, Rd; Li, C.; Hicks, D.
2000-10-01
We are pursuing an approach to a charged-particle energy-loss experiment in which charged fusion products from an imploded ICF capsule travel through a well characterized, spatially separate plasma. For this purpose, a fully ionized, uniform, nearly steady-state carbon-hydrogen plasma will be created by laser irradiation of a plastic foil. The temperature and density structure of this plasma must be determined accurately in order to relate observed energy losses to predictions of theory. Various methods for diagnosing the plasma are possible, including Thomson scattering. Alternatively, if a small admixture of higher-Z material such as chlorine is included in the plastic, x-ray spectroscopic techniques will allow the plasma's temperature and density to be determined. Electron temperature is inferred from the ratios of line strengths of various chlorine ion stages, while electron density is determined from the spectra of lithium-like satellite lines near the He beta line of helium-like chlorine. We present results from detailed-configuration accounting (DCA) models of line emission from C+H+Cl plasmas, and estimate the accuracy with which such plasmas can be characterized.
NASA Technical Reports Server (NTRS)
Nitsche, Ludwig C.; Nitsche, Johannes M.; Brenner, Howard
1988-01-01
The sedimentation and diffusion of a nonneutrally buoyant Brownian particle in vertical fluid-filled cylinder of finite length which is instantaneously inverted at regular intervals are investigated analytically. A one-dimensional convective-diffusive equation is derived to describe the temporal and spatial evolution of the probability density; a periodicity condition is formulated; the applicability of Fredholm theory is established; and the parameter-space regions are determined within which the existence and uniqueness of solutions are guaranteed. Numerical results for sample problems are presented graphically and briefly characterized.
On a theory of surface waves in a smoothly inhomogeneous plasma in an external magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuzelev, M. V., E-mail: kuzelev@mail.ru; Orlikovskaya, N. G.
2016-12-15
A theory of surface waves in a magnetoactive plasma with smooth boundaries has been developed. A dispersion equation for surface waves has been derived for a linear law of density change at the plasma boundary. The frequencies of surface waves and their collisionless damping rates have been determined. A generalization to an arbitrary density profile at the plasma boundary is given. The collisions have been taken into account, and the application of the Landau rule in the theory of surface wave damping in a spatially inhomogeneous magnetoactive collisional plasma has been clarified.
Large Scale Density Estimation of Blue and Fin Whales (LSD)
2014-09-30
172. McDonald, MA, Hildebrand, JA, and Mesnick, S (2009). Worldwide decline in tonal frequencies of blue whale songs . Endangered Species Research 9...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Large Scale Density Estimation of Blue and Fin Whales ...estimating blue and fin whale density that is effective over large spatial scales and is designed to cope with spatial variation in animal density utilizing
Odoi, A; Martin, S W; Michel, P; Holt, J; Middleton, D; Wilson, J
2004-10-01
Giardiasis surveillance data as well as drinking water, socioeconomic and land-use data were used in spatial regression models to investigate determinants of the geographic distribution of endemic giardiasis in southern Ontario. Higher giardiasis rates were observed in areas using surface water [rate ratio (RR) 2.36, 95 % CI 1.38-4.05] and in rural areas (RR 1.79, 95 % CI 1.32-2.37). Lower rates were observed in areas using filtered water (RR 0.55, 95 % CI 0.42-0.94) and in those with high median income (RR 0.62, 95 % CI 0.42-0.92). Chlorination of drinking water, cattle density and intensity of manure application on farmland were not significant determinants. The study shows that waterborne transmission plays an important role in giardiasis distribution in southern Ontario and that well-collected routine surveillance data could be useful for investigation of disease determinants and identification of high-risk communities. This information is useful in guiding decisions on control strategies.
García-Baquero, Gonzalo; Caño, Lidia; Biurrun, Idoia; García-Mijangos, Itziar; Loidi, Javier; Herrera, Mercedes
2016-01-01
Alien species invasion represents a global threat to biodiversity and ecosystems. Explaining invasion patterns in terms of environmental constraints will help us to assess invasion risks and plan control strategies. We aim to identify plant invasion patterns in the Basque Country (Spain), and to determine the effects of climate and human pressure on that pattern. We modeled the regional distribution of 89 invasive plant species using two approaches. First, distance-based Moran’s eigenvector maps were used to partition variation in the invasive species richness, S, into spatial components at broad and fine scales; redundancy analysis was then used to explain those components on the basis of climate and human pressure descriptors. Second, we used generalized additive mixed modeling to fit species-specific responses to the same descriptors. Climate and human pressure descriptors have different effects on S at different spatial scales. Broad-scale spatially structured temperature and precipitation, and fine-scale spatially structured human population density and percentage of natural and semi-natural areas, explained altogether 38.7% of the total variance. The distribution of 84% of the individually tested species was related to either temperature, precipitation or both, and 68% was related to either population density or natural and semi-natural areas, displaying similar responses. The spatial pattern of the invasive species richness is strongly environmentally forced, mainly by climate factors. Since individual species responses were proved to be both similarly constrained in shape and explained variance by the same environmental factors, we conclude that the pattern of invasive species richness results from individual species’ environmental preferences. PMID:27741276
Spatial segregation in eastern North Pacific skate assemblages.
Bizzarro, Joseph J; Broms, Kristin M; Logsdon, Miles G; Ebert, David A; Yoklavich, Mary M; Kuhnz, Linda A; Summers, Adam P
2014-01-01
Skates (Rajiformes: Rajoidei) are common mesopredators in marine benthic communities. The spatial associations of individual species and the structure of assemblages are of considerable importance for effective monitoring and management of exploited skate populations. This study investigated the spatial associations of eastern North Pacific (ENP) skates in continental shelf and upper continental slope waters of two regions: central California and the western Gulf of Alaska. Long-term survey data were analyzed using GIS/spatial analysis techniques and regression models to determine distribution (by depth, temperature, and latitude/longitude) and relative abundance of the dominant species in each region. Submersible video data were incorporated for California to facilitate habitat association analysis. We addressed three main questions: 1) Are there regions of differential importance to skates?, 2) Are ENP skate assemblages spatially segregated?, and 3) When skates co-occur, do they differ in size? Skate populations were highly clustered in both regions, on scales of 10s of kilometers; however, high-density regions (i.e., hot spots) were segregated among species. Skate densities and frequencies of occurrence were substantially lower in Alaska as compared to California. Although skates are generally found on soft sediment habitats, Raja rhina exhibited the strongest association with mixed substrates, and R. stellulata catches were greatest on rocky reefs. Size segregation was evident in regions where species overlapped substantially in geographic and depth distribution (e.g., R. rhina and Bathyraja kincaidii off California; B. aleutica and B. interrupta in the Gulf of Alaska). Spatial niche differentiation in skates appears to be more pronounced than previously reported.
Spatial Segregation in Eastern North Pacific Skate Assemblages
Bizzarro, Joseph J.; Broms, Kristin M.; Logsdon, Miles G.; Ebert, David A.; Yoklavich, Mary M.; Kuhnz, Linda A.; Summers, Adam P.
2014-01-01
Skates (Rajiformes: Rajoidei) are common mesopredators in marine benthic communities. The spatial associations of individual species and the structure of assemblages are of considerable importance for effective monitoring and management of exploited skate populations. This study investigated the spatial associations of eastern North Pacific (ENP) skates in continental shelf and upper continental slope waters of two regions: central California and the western Gulf of Alaska. Long-term survey data were analyzed using GIS/spatial analysis techniques and regression models to determine distribution (by depth, temperature, and latitude/longitude) and relative abundance of the dominant species in each region. Submersible video data were incorporated for California to facilitate habitat association analysis. We addressed three main questions: 1) Are there regions of differential importance to skates?, 2) Are ENP skate assemblages spatially segregated?, and 3) When skates co-occur, do they differ in size? Skate populations were highly clustered in both regions, on scales of 10s of kilometers; however, high-density regions (i.e., hot spots) were segregated among species. Skate densities and frequencies of occurrence were substantially lower in Alaska as compared to California. Although skates are generally found on soft sediment habitats, Raja rhina exhibited the strongest association with mixed substrates, and R. stellulata catches were greatest on rocky reefs. Size segregation was evident in regions where species overlapped substantially in geographic and depth distribution (e.g., R. rhina and Bathyraja kincaidii off California; B. aleutica and B. interrupta in the Gulf of Alaska). Spatial niche differentiation in skates appears to be more pronounced than previously reported. PMID:25329312
NASA Astrophysics Data System (ADS)
Saavedra, Francisco; Hensen, Isabell; Apaza Quevedo, Amira; Neuschulz, Eike Lena; Schleuning, Matthias
2017-11-01
Spatial patterns of seed dispersal and recruitment of fleshy-fruited plants in tropical forests are supposed to be driven by the activity of animal seed dispersers, but the spatial patterns of seed dispersal, seedlings and saplings have rarely been analyzed simultaneously. We studied seed deposition and recruitment patterns of three Clusia species in a tropical montane forest of the Bolivian Andes and tested whether these patterns changed between habitat types (forest edge vs. forest interior), distance to the fruiting tree and consecutive recruitment stages of the seedlings. We recorded the number of seeds deposited in seed traps to assess the local seed-deposition pattern and the abundance and distribution of seedlings and saplings to evaluate the spatial pattern of recruitment. More seeds were removed and deposited at the forest edge than in the interior. The number of deposited seeds decreased with distance from the fruiting tree and was spatially clustered in both habitat types. The density of 1-yr-old seedlings and saplings was higher at forest edges, whereas the density of 2-yr-old seedlings was similar in both habitat types. While seedlings were almost randomly distributed, seeds and saplings were spatially clustered in both habitat types. Our findings demonstrate systematic changes in spatial patterns of recruits across the plant regeneration cycle and suggest that the differential effects of biotic and abiotic factors determine plant recruitment at the edges and in the interior of tropical montane forests. These differences in the spatial distribution of individuals across recruitment stages may have strong effects on plant community dynamics and influence plant species coexistence in disturbed tropical forests.
Spatial variability in ecosystem services: simple rules for predator-mediated pest suppression.
Bianchi, F J J A; Schellhorn, N A; Buckley, Y M; Possingham, H P
2010-12-01
Agricultural pest control often relies on the ecosystem services provided by the predators of pests. Appropriate landscape and habitat management for pest control services requires an understanding of insect dispersal abilities and the spatial arrangement of source habitats for pests and their predators. Here we explore how dispersal and habitat configuration determine the locations where management actions are likely to have the biggest impact on natural pest control. The study focuses on the early colonization phase before predator reproduction takes place and when pest populations in crops are still relatively low. We developed a spatially explicit simulation model in which pest populations grow exponentially in pest patches and predators disperse across the landscape from predator patches. We generated 1000 computer-simulated landscapes in which the performance of four typical but different predator groups as biological control agents was evaluated. Predator groups represented trait combinations of poor and good dispersal ability and density-independent and density-dependent aggregation responses toward pests. Case studies from the literature were used to inform the parameterization of predator groups. Landscapes with a small nearest-neighbor distance between pest and predator patches had the lowest mean pest density at the landscape scale for all predator groups, but there can be high variation in pest density between the patches within these landscapes. Mobile and strongly aggregating predators provide the best pest suppression in the majority of landscape types. Ironically, this result is true except in landscapes with small nearest-neighbor distances between pest and predator patches. The pest control potential of mobile predators can best be explained by the mean distance between a pest patch and all predator patches in the landscape, whereas for poorly dispersing predators the distance between a pest patch and the nearest predator patch is the best explanatory variable. In conclusion, the spatial arrangement of source habitats for natural enemies of agricultural pest species can have profound effects on their potential to colonize crops and suppress pest populations.
A Kennicutt-Schmidt relation at molecular cloud scales and beyond
NASA Astrophysics Data System (ADS)
Khoperskov, Sergey A.; Vasiliev, Evgenii O.
2017-06-01
Using N-body/gasdynamic simulations of a Milky Way-like galaxy, we analyse a Kennicutt-Schmidt (KS) relation, Σ _SFR ∝ Σ _gas^N, at different spatial scales. We simulate synthetic observations in CO lines and ultraviolet (UV) band. We adopt the star formation rate (SFR) defined in two ways: based on free fall collapse of a molecular cloud - ΣSFR, cl, and calculated by using a UV flux calibration - ΣSFR,UV. We study a KS relation for spatially smoothed maps with effective spatial resolution from molecular cloud scales to several hundred parsecs. We find that for spatially and kinematically resolved molecular clouds the Σ _{SFR, cl} ∝ σ _{gas}^N relation follows the power law with index N ≈ 1.4. Using UV flux as SFR calibrator, we confirm a systematic offset between the ΣSFR,UV and Σgas distributions on scales compared to molecular cloud sizes. Degrading resolution of our simulated maps for surface densities of gas and SFRs, we establish that there is no relation ΣSFR,UV -Σgas below the resolution ˜50 pc. We find a transition range around scales ˜50-120 pc, where the power-law index N increases from 0 to 1-1.8 and saturates for scales larger ˜120 pc. A value of the index saturated depends on a surface gas density threshold and it becomes steeper for higher Σgas threshold. Averaging over scales with size of ≳ 150 pc the power-law index N equals 1.3-1.4 for surface gas density threshold ˜5 M⊙ pc-2. At scales ≳ 120 pc surface SFR densities determined by using CO data and UV flux, ΣSFR,UV/SFR, cl, demonstrate a discrepancy about a factor of 3. We argue that this may be originated from overestimating (constant) values of conversion factor, star formation efficiency or UV calibration used in our analysis.
Framework for community functioning: synthesis of stress gradient and resource partitioning concepts
2017-01-01
To understand how communities function and generate abundance, I develop a framework integrating elements from the stress gradient and resource partitioning concepts. The framework suggests that guild abundance depends on environmental and spatial factors but also on inter-guild interactions (competitor or facilitator richness), which can alter the fundamental niche of constituent species in negative (competition) or positive direction (facilitation). Consequently, the environmental and spatial mechanisms driving guild abundance would differ across guilds and interaction modes. Using continental data on stream diatoms and physico-chemistry, the roles of these mechanisms were tested under three interaction modes—shared preference, distinct preference, and facilitative, whereby pairs of guilds exhibited, respectively, a dominance-tolerance tradeoff along a eutrophication gradient, specialization along a pH gradient, or a donor-recipient relationship along a nitrogen gradient. Representative of the shared preference mode were the motile (dominant) and low profile (tolerant) guilds, of the distinct preference mode—the acidophilous and alkaliphilous (low profile) guilds, and of the facilitative mode—nitrogen fixers (donors) and motile species (recipients). In each mode, the influences of environment, space (latitude and longitude), and competitor or facilitator richness on guild density were assessed by variance partitioning. Pure environment constrained most strongly the density of the dominant, the acidophilous, and the recipient guild in the shared preference, distinct preference, and facilitative mode, respectively, while spatial effects were important only for the low profile guild. Higher competitor richness was associated with lower density of the tolerant guild in the shared preference mode, both guilds in the distinct preference mode, and the donor guild in the facilitative mode. Conversely, recipient density in the facilitative mode increased with donor richness in stressful nitrogen-poor environments. Thus, diatom guild abundance patterns were determined primarily by biotic and/or environmental impacts and, with the exception of the low profile guild, were insensitive to spatial effects. This framework identifies major sources of variability in diatom guild abundance with implications for the understanding of biodiversity-ecosystem functioning. PMID:29018618
Measurement of the aerothermodynamic state in a high enthalpy plasma wind-tunnel flow
NASA Astrophysics Data System (ADS)
Hermann, Tobias; Löhle, Stefan; Zander, Fabian; Fasoulas, Stefanos
2017-11-01
This paper presents spatially resolved measurements of absolute particle densities of N2, N2+, N, O, N+ , O+ , e- and excitation temperatures of electronic, rotational and vibrational modes of an air plasma free stream. All results are based on optical emission spectroscopy data. The measured parameters are combined to determine the local mass-specific enthalpy of the free stream. The analysis of the radiative transport, relative and absolute intensities, and spectral shape is used to determine various thermochemical parameters. The model uncertainty of each analysis method is assessed. The plasma flow is shown to be close to equilibrium. The strongest deviations from equilibrium occur for N, N+ and N2+ number densities in the free stream. Additional measurements of the local mass-specific enthalpy are conducted using a mass injection probe as well as a heat flux and total pressure probe. The agreement between all methods of enthalpy determination is good.
Wakano, Joe Yuichiro; Gilpin, William; Kadowaki, Seiji; Feldman, Marcus W; Aoki, Kenichi
2018-02-01
Recent archaeological records no longer support a simple dichotomous characterization of the cultures/behaviors of Neanderthals and modern humans, but indicate much cultural/behavioral variability over time and space. Thus, in modeling the replacement or assimilation of Neanderthals by modern humans, it is of interest to consider cultural dynamics and their relation to demographic change. The ecocultural framework for the competition between hominid species allows their carrying capacities to depend on some measure of the levels of culture they possess. In the present study both population densities and the densities of skilled individuals in Neanderthals and modern humans are spatially distributed and subject to change by spatial diffusion, ecological competition, and cultural transmission within each species. We analyze the resulting range expansions in terms of the demographic, ecological and cultural parameters that determine how the carrying capacities relate to the local densities of skilled individuals in each species. Of special interest is the case of cognitive and intrinsic-demographic equivalence of the two species. The range expansion dynamics may consist of multiple wave fronts of different speeds, each of which originates from a traveling wave solution. Properties of these traveling wave solutions are mathematically derived. Depending on the parameters, these traveling waves can result in replacement of Neanderthals by modern humans, or assimilation of the former by the latter. In both the replacement and assimilation scenarios, the first wave of intrusive modern humans is characterized by a low population density and a low density of skilled individuals, with implications for archaeological visibility. The first invasion is due to weak interspecific competition. A second wave of invasion may be induced by cultural differences between moderns and Neanderthals. Spatially and temporally extended coexistence of the two species, which would have facilitated the transfer of genes from Neanderthal into modern humans and vice versa, is observed in the traveling waves, except when niche overlap between the two species is extremely high. Archaeological findings on the spatial and temporal distributions of the Initial Upper Palaeolithic and the Early Upper Palaeolithic and of the coexistence of Neanderthals and modern humans are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.
Lequy, Emeline; Saby, Nicolas P A; Ilyin, Ilia; Bourin, Aude; Sauvage, Stéphane; Leblond, Sébastien
2017-07-15
Air pollution in trace elements (TE) remains a concern for public health in Europe. For this reasons, networks of air pollution concentrations or exposure are deployed, including a moss bio-monitoring programme in Europe. Spatial determinants of TE concentrations in mosses remain unclear. In this study, the French dataset of TE in mosses is analyzed by spatial autoregressive model to account for spatial structure of the data and several variables proven or suspected to affect TE concentrations in mosses. Such variables include source (atmospheric deposition and soil concentrations), protocol (sampling month, collector, and moss species), and environment (forest type and canopy density, distance to the coast or the highway, and elevation). Modeled atmospheric deposition was only available for Cd and Pb and was one of the main explanatory variables of the concentrations in mosses. Predicted soil content was also an important explanatory variable except for Cr, Ni, and Zn. However, the moss species was the main factor for all the studied TE. The other environmental variables affected differently the TE. In particular, the forest type and canopy density were important in most cases. These results stress the need for further research on the effect of the moss species on the capture and retention of TE, as well as for accounting for several variables and the spatial structure of the data in statistical analyses. Copyright © 2017 Elsevier B.V. All rights reserved.
Snowpack spatial and temporal variability assessment using SMP high-resolution penetrometer
NASA Astrophysics Data System (ADS)
Komarov, Anton; Seliverstov, Yuriy; Sokratov, Sergey; Grebennikov, Pavel
2017-04-01
This research is focused on study of spatial and temporal variability of structure and characteristics of snowpack, quick identification of layers based on hardness and dispersion values received from snow micro penetrometer (SMP). We also discuss the detection of weak layers and definition of their parameters in non-alpine terrain. As long as it is the first SMP tool available in Russia, our intent is to test it in different climate and weather conditions. During two separate snowpack studies in plain and mountain landscapes, we derived density and grain size profiles by comparing snow density and grain size from snowpits and SMP measurements. The first case study was MSU meteorological observatory test site in Moscow. SMP data was obtained by 6 consecutive measurements along 10 m transects with a horizontal resolution of approximately 50 cm. The detailed description of snowpack structure, density, grain size, air and snow temperature was also performed. By comparing this information, the detailed scheme of snowpack evolution was created. The second case study was in Khibiny mountains. One 10-meter-long transect was made. SMP, density, grain size and snow temperature data was obtained with horizontal resolution of approximately 50 cm. The high-definition profile of snowpack density variation was acquired using received data. The analysis of data reveals high spatial and temporal variability in snow density and layer structure in both horizontal and vertical dimensions. It indicates that the spatial variability is exhibiting similar spatial patterns as surface topology. This suggests a strong influence from such factors as wind and liquid water pressure on the temporal and spatial evolution of snow structure. It was also defined, that spatial variation of snowpack characteristics is substantial even within homogeneous plain landscape, while in high-latitude mountain regions it grows significantly.
Lee, Joseph G L; Sun, Dennis L; Schleicher, Nina M; Ribisl, Kurt M; Luke, Douglas A; Henriksen, Lisa
2017-05-01
Evidence of racial/ethnic inequalities in tobacco outlet density is limited by: (1) reliance on studies from single counties or states, (2) limited attention to spatial dependence, and (3) an unclear theory-based relationship between neighbourhood composition and tobacco outlet density. In 97 counties from the contiguous USA, we calculated the 2012 density of likely tobacco outlets (N=90 407), defined as tobacco outlets per 1000 population in census tracts (n=17 667). We used 2 spatial regression techniques, (1) a spatial errors approach in GeoDa software and (2) fitting a covariance function to the errors using a distance matrix of all tract centroids. We examined density as a function of race, ethnicity, income and 2 indicators identified from city planning literature to indicate neighbourhood stability (vacant housing, renter-occupied housing). The average density was 1.3 tobacco outlets per 1000 persons. Both spatial regression approaches yielded similar results. In unadjusted models, tobacco outlet density was positively associated with the proportion of black residents and negatively associated with the proportion of Asian residents, white residents and median household income. There was no association with the proportion of Hispanic residents. Indicators of neighbourhood stability explained the disproportionate density associated with black residential composition, but inequalities by income persisted in multivariable models. Data from a large sample of US counties and results from 2 techniques to address spatial dependence strengthen evidence of inequalities in tobacco outlet density by race and income. Further research is needed to understand the underlying mechanisms in order to strengthen interventions. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
The plasma filling factor of coronal bright points. II. Combined EIS and TRACE results
NASA Astrophysics Data System (ADS)
Dere, K. P.
2009-04-01
Aims: In a previous paper, the volumetric plasma filling factor of coronal bright points was determined from spectra obtained with the Extreme ultraviolet Imaging Spectrometer (EIS). The analysis of these data showed that the median plasma filling factor was 0.015. One interpretation of this result was that the small filling factor was consistent with a single coronal loop with a width of 1-2´´, somewhat below the apparent width. In this paper, higher spatial resolution observations with the Transition Region and Corona Explorer (TRACE) are used to test this interpretation. Methods: Rastered spectra of regions of the quiet Sun were recorded by the EIS during operations with the Hinode satellite. Many of these regions were simultaneously observed with TRACE. Calibrated intensities of Fe xii lines were obtained and images of the quiet corona were constructed from the EIS measurements. Emission measures were determined from the EIS spectra and geometrical widths of coronal bright points were obtained from the TRACE images. Electron densities were determined from density-sensitive line ratios measured with EIS. A comparison of the emission measure and bright point widths with the electron densities yielded the plasma filling factor. Results: The median electron density of coronal bright points is 3 × 109 cm-3 at a temperature of 1.6 × 106 K. The volumetric plasma filling factor of coronal bright points was found to vary from 3 × 10-3 to 0.3 with a median value of 0.04. Conclusions: The current set of EIS and TRACE coronal bright-point observations indicate the median value of their plasma filling factor is 0.04. This can be interpreted as evidence of a considerable subresolution structure in coronal bright points or as the result of a single completely filled plasma loop with widths on the order of 0.2-1.5´´ that has not been spatially resolved in these measurements.
Yeung, E.S.; Chen, G.
1990-05-01
A method and means are disclosed for a spatial and temporal probe for laser generated plumes based on density gradients includes generation of a plume of vaporized material from a surface by an energy source. The probe laser beam is positioned so that the plume passes through the probe laser beam. Movement of the probe laser beam caused by refraction from the density gradient of the plume is monitored. Spatial and temporal information, correlated to one another, is then derived. 15 figs.
Patterning of colloidal particles in the galvanic microreactor
NASA Astrophysics Data System (ADS)
Jan, Linda
A Cu-Au galvanic microreactor is used to demonstrate the autonomous patterning of two-dimensional colloidal crystals with spatial and orientational order which are adherent to the electrode substrate. The microreactor is comprised of a patterned array of copper and gold microelectrodes in a coplanar arrangement that is immersed in a dilute hydrochloric acid solution in which colloidal polystyrene microspheres are suspended. During the electrochemical dissolution of copper, polystyrene colloids are transported to the copper electrodes. The spatial arrangement of the electrodes determines whether the colloids initiate aggregation at the edges or centers of the copper electrodes. Depending on the microreactor parameters, two-dimensional colloidal crystals can form and adhere to the electrode. This thesis investigates the mechanisms governing the autonomous particle motion, the directed particle trajectory (inner- versus edge-aggregation) as affected by the spatial patterning of the electrodes, and the adherence of the colloidal particles onto the substrate. Using in situ current density measurements, particle velocimetry, and order-of-magnitude arguments, it is shown that particle motion is governed by bulk fluid motion and electrophoresis induced by the electrochemical reactions. Bulk electrolyte flow is most likely driven by electrochemical potential gradients of reaction products formed during the inhomogeneous copper dissolution, particularly due to localized high current density at the electrode junction. Preferential aggregation of the colloidal particles resulting in inner- and edge-aggregation is influenced by changes to the flow pattern in response to difference in current density profiles as affected by the spatial patterning of the electrode. Finally, by determining the onset of particle cementation through particle tracking analysis, and by monitoring the deposition of reaction products through the observation of color changes of the galvanic electrodes in situ, it is shown that particle cementation coincides with the precipitation and deposition of reaction products. The precipitation process is caused by shifts in the chemical equilibria of the microreactor due to changes in the composition of the electrolyte during the reactions, which can be used to control particle cementation. The corrosion driven transport, deposition and adherence of colloidal particles at corrosion sites have implications for the development of autonomous self-healing materials.
Spatial-Temporal Dynamics of Urban Fire Incidents: a Case Study of Nanjing, China
NASA Astrophysics Data System (ADS)
Yao, J.; Zhang, X.
2016-06-01
Fire and rescue service is one of the fundamental public services provided by government in order to protect people, properties and environment from fires and other disasters, and thus promote a safer living environment. Well understanding spatial-temporal dynamics of fire incidents can offer insights for potential determinants of various fire events and enable better fire risk estimation, assisting future allocation of prevention resources and strategic planning of mitigation programs. Using a 12-year (2002-2013) dataset containing the urban fire events in Nanjing, China, this research explores the spatial-temporal dynamics of urban fire incidents. A range of exploratory spatial data analysis (ESDA) approaches and tools, such as spatial kernel density and co-maps, are employed to examine the spatial, temporal and spatial-temporal variations of the fire events. Particular attention has been paid to two types of fire incidents: residential properties and local facilities, due to their relatively higher occurrence frequencies. The results demonstrated that the amount of urban fire has greatly increased in the last decade and spatial-temporal distribution of fire events vary among different incident types, which implies varying impact of potential influencing factors for further investigation.
Winter, Karsten; Strom, Alexander; Zhivov, Andrey; Allgeier, Stephan; Papanas, Nikolaos; Ziegler, Iris; Brüggemann, Jutta; Ringel, Bernd; Peschel, Sabine; Köhler, Bernd; Stachs, Oliver; Guthoff, Rudolf F.; Roden, Michael
2017-01-01
Corneal confocal microscopy (CCM) has revealed reduced corneal nerve fiber (CNF) length and density (CNFL, CNFD) in patients with diabetes, but the spatial pattern of CNF loss has not been studied. We aimed to determine whether spatial analysis of the distribution of corneal nerve branching points (CNBPs) may contribute to improving the detection of early CNF loss. We hypothesized that early CNF decline follows a clustered rather than random distribution pattern of CNBPs. CCM, nerve conduction studies (NCS), and quantitative sensory testing (QST) were performed in a cross-sectional study including 86 patients recently diagnosed with type 2 diabetes and 47 control subjects. In addition to CNFL, CNFD, and branch density (CNBD), CNBPs were analyzed using spatial point pattern analysis (SPPA) including 10 indices and functional statistics. Compared to controls, patients with diabetes showed lower CNBP density and higher nearest neighbor distances, and all SPPA parameters indicated increased clustering of CNBPs (all P<0.05). SPPA parameters were abnormally increased >97.5th percentile of controls in up to 23.5% of patients. When combining an individual SPPA parameter with CNFL, ≥1 of 2 indices were >99th or <1st percentile of controls in 28.6% of patients compared to 2.1% of controls, while for the conventional CNFL/CNFD/CNBD combination the corresponding rates were 16.3% vs 2.1%. SPPA parameters correlated with CNFL and several NCS and QST indices in the controls (all P<0.001), whereas in patients with diabetes these correlations were markedly weaker or lost. In conclusion, SPPA reveals increased clustering of early CNF loss and substantially improves its detection when combined with a conventional CCM measure in patients with recently diagnosed type 2 diabetes. PMID:28296936
Ground Penetrating Radar For Estimating Root Biomass Through Empirical Analysis
NASA Astrophysics Data System (ADS)
Wolfe, M.; Dobreva, I. D.; Delgado, A.; Hays, D. B.; Bishop, M. P.; Huo, D.; Wang, X.; Teare, B. L.; Burris, S.
2017-12-01
Variability in soil carbon storage due to agricultural practices is an important component of the carbon cycle. Enhancing soil organic content is a means for restoring degraded soils and for improving soil quality, but also for carbon sequestration. In particular, accurate estimates of soil organic content are essential for quantifying carbon sequestration capabilities of agricultural systems. This project aims to advance the technological and analytical capabilities of Ground Penetrating Radar (GPR) for diagnoses of the soil carbon storage occurring due to the perennial grasses which are often utilized as biofuels. A new GPR processing workflow applied via a prototype software was tested on simulated GPR data of roots with different densities and depths to determine the sensitivity and capability of this technology to quantify these parameters. Field experiments were also conducted in long-term trials of different genotypes of perennial grasses over field sites in Texas to determine the application in authentic environments. GPR scans and soil samples were collected, and root dry biomass was obtained. Evaluation of pre-processing techniques was conducted to provide optimal resolution for assessment. The novel backscatter spatial structure workflow was implemented, and empirical relationships between root biomass and GPR derived observations were developed. Preliminary results suggest that the backscatter spatial structure changes in the presence of high density root biomass conditions, and these variations are indicative of root zone depth and density. Our results illustrate promising applications in root detection, and therefore, the soil organic content accumulation that is pertinent to a healthy soil system.
Benjamin A. Crabb; James A. Powell; Barbara J. Bentz
2012-01-01
Forecasting spatial patterns of mountain pine beetle (MPB) population success requires spatially explicit information on host pine distribution. We developed a means of producing spatially explicit datasets of pine density at 30-m resolution using existing geospatial datasets of vegetation composition and structure. Because our ultimate goal is to model MPB population...
High density event-related potential data acquisition in cognitive neuroscience.
Slotnick, Scott D
2010-04-16
Functional magnetic resonance imaging (fMRI) is currently the standard method of evaluating brain function in the field of Cognitive Neuroscience, in part because fMRI data acquisition and analysis techniques are readily available. Because fMRI has excellent spatial resolution but poor temporal resolution, this method can only be used to identify the spatial location of brain activity associated with a given cognitive process (and reveals virtually nothing about the time course of brain activity). By contrast, event-related potential (ERP) recording, a method that is used much less frequently than fMRI, has excellent temporal resolution and thus can track rapid temporal modulations in neural activity. Unfortunately, ERPs are under utilized in Cognitive Neuroscience because data acquisition techniques are not readily available and low density ERP recording has poor spatial resolution. In an effort to foster the increased use of ERPs in Cognitive Neuroscience, the present article details key techniques involved in high density ERP data acquisition. Critically, high density ERPs offer the promise of excellent temporal resolution and good spatial resolution (or excellent spatial resolution if coupled with fMRI), which is necessary to capture the spatial-temporal dynamics of human brain function.
NASA Technical Reports Server (NTRS)
Herzfeld, Ute C.; Trantow, Thomas M.; Harding, David; Dabney, Philip W.
2017-01-01
Glacial acceleration is a main source of uncertainty in sea-level-change assessment. Measurement of ice-surface heights with a spatial and temporal resolution that not only allows elevation-change calculation, but also captures ice-surface morphology and its changes is required to aid in investigations of the geophysical processes associated with glacial acceleration.The Advanced Topographic Laser Altimeter System aboard NASAs future ICESat-2 Mission (launch 2017) will implement multibeam micropulse photon-counting lidar altimetry aimed at measuring ice-surface heights at 0.7-m along-track spacing. The instrument is designed to resolve spatial and temporal variability of rapidly changing glaciers and ice sheets and the Arctic sea ice. The new technology requires the development of a new mathematical algorithm for the retrieval of height information.We introduce the density-dimension algorithm (DDA) that utilizes the radial basis function to calculate a weighted density as a form of data aggregation in the photon cloud and considers density an additional dimension as an aid in auto-adaptive threshold determination. The auto-adaptive capability of the algorithm is necessary to separate returns from noise and signal photons under changing environmental conditions. The algorithm is evaluated using data collected with an ICESat-2 simulator instrument, the Slope Imaging Multi-polarization Photon-counting Lidar, over the heavily crevassed Giesecke Braer in Northwestern Greenland in summer 2015. Results demonstrate that ICESat-2 may be expected to provide ice-surface height measurements over crevassed glaciers and other complex ice surfaces. The DDA is generally applicable for the analysis of airborne and spaceborne micropulse photon-counting lidar data over complex and simple surfaces.
Spatiotemporal variation of Van der Burgh's coefficient in a salt plug estuary
NASA Astrophysics Data System (ADS)
Shaha, Dinesh Chandra; Cho, Yang-Ki; Kim, Bong Guk; Rafi Afruz Sony, M.; Rani Kundu, Sampa; Faruqul Islam, M.
2017-09-01
Salt water intrusion in estuaries is expected to become a serious global issue due to climate change. Van der Burgh's coefficient, K, is a good proxy for describing the relative contribution of tide-driven and gravitational (discharge-driven and density-driven) components of salt transport in estuaries. However, debate continues over the use of the K value for an estuary where K should be a constant, spatially varying, or time-independent factor for different river discharge conditions. In this study, we determined K during spring and neap tides in the dry (< 30 m-3 s-1) and wet (> 750 m-3 s-1) seasons in a salt plug estuary with an exponentially varying width and depth, to examine the relative contributions of tidal versus density-driven salt transport mechanisms. High-resolution salinity data were used to determine K. Discharge-driven gravitational circulation (K ˜ 0.8) was entirely dominant over tidal dispersion during spring and neap tides in the wet season, to the extent that salt transport upstream was effectively reduced, resulting in the estuary remaining in a relatively fresh state. In contrast, K increased gradually seaward (K ˜ 0.74) and landward (K ˜ 0.74) from the salt plug area (K ˜ 0.65) during the dry season, similar to an inverse and positive estuary, respectively. As a result, density-driven inverse gravitational circulation between the salt plug and the sea facilitates inverse estuarine circulation. On the other hand, positive estuarine circulation between the salt plug and the river arose due to density-driven positive gravitational circulation during the dry season, causing the upstream intrusion of high-salinity bottom water. Our results explicitly show that K varies spatially and depends on the river discharge. This result provides a better understanding of the distribution of hydrographic properties.
Movement of foraging Tundra Swans explained by spatial pattern in cryptic food densities.
Klaassen, Raymond H G; Nolet, Bart A; Bankert, Daniëlle
2006-09-01
We tested whether Tundra Swans use information on the spatial distribution of cryptic food items (below ground Sago pondweed tubers) to shape their movement paths. In a continuous environment, swans create their own food patches by digging craters, which they exploit in several feeding bouts. Series of short (<1 m) intra-patch movements alternate with longer inter-patch movements (>1 m). Tuber biomass densities showed a positive spatial auto-correlation at a short distance (<3 m), but not at a larger distance (3-8 m). Based on the spatial pattern of the food distribution (which is assumed to be pre-harvest information for the swan) and the energy costs and benefits for different food densities at various distances, we calculated the optimal length of an inter-patch movement. A swan that moves to the patch with the highest gain rate was predicted to move to the adjacent patch (at 1 m) if the food density in the current patch had been high (>25 g/m2) and to a more distant patch (at 7-8 m) if the food density in the current patch had been low (<25 g/m2). This prediction was tested by measuring the response of swans to manipulated tuber densities. In accordance with our predictions, swans moved a long distance (>3 m) from a low-density patch and a short distance (<3 m) from a high-density patch. The quantitative agreement between prediction and observation was greater for swans feeding in pairs than for solitary swans. The result of this movement strategy is that swans visit high-density patches at a higher frequency than on offer and, consequently, achieve a 38% higher long-term gain rate. Swans also take advantage of spatial variance in food abundance by regulating the time in patches, staying longer and consuming more food from rich than from poor patches. We can conclude that the shape of the foraging path is a reflection of the spatial pattern in the distribution of tuber densities and can be understood from an optimal foraging perspective.
Mecenero, Silvia; Altwegg, Res; Colville, Jonathan F.; Beale, Colin M.
2015-01-01
Wildlife and humans tend to prefer the same productive environments, yet high human densities often lead to reduced biodiversity. Species richness is often positively correlated with human population density at broad scales, but this correlation could also be caused by unequal sampling effort leading to higher species tallies in areas of dense human activity. We examined the relationships between butterfly species richness and human population density at five spatial resolutions ranging from 2' to 60' across South Africa. We used atlas-type data and spatial interpolation techniques aimed at reducing the effect of unequal spatial sampling. Our results confirm the general positive correlation between total species richness and human population density. Contrary to our expectations, the strength of this positive correlation did not weaken at finer spatial resolutions. The patterns observed using total species richness were driven mostly by common species. The richness of threatened and restricted range species was not correlated to human population density. None of the correlations we examined were particularly strong, with much unexplained variance remaining, suggesting that the overlap between butterflies and humans is not strong compared to other factors not accounted for in our analyses. Special consideration needs to be made regarding conservation goals and variables used when investigating the overlap between species and humans for biodiversity conservation. PMID:25915899
Mecenero, Silvia; Altwegg, Res; Colville, Jonathan F; Beale, Colin M
2015-01-01
Wildlife and humans tend to prefer the same productive environments, yet high human densities often lead to reduced biodiversity. Species richness is often positively correlated with human population density at broad scales, but this correlation could also be caused by unequal sampling effort leading to higher species tallies in areas of dense human activity. We examined the relationships between butterfly species richness and human population density at five spatial resolutions ranging from 2' to 60' across South Africa. We used atlas-type data and spatial interpolation techniques aimed at reducing the effect of unequal spatial sampling. Our results confirm the general positive correlation between total species richness and human population density. Contrary to our expectations, the strength of this positive correlation did not weaken at finer spatial resolutions. The patterns observed using total species richness were driven mostly by common species. The richness of threatened and restricted range species was not correlated to human population density. None of the correlations we examined were particularly strong, with much unexplained variance remaining, suggesting that the overlap between butterflies and humans is not strong compared to other factors not accounted for in our analyses. Special consideration needs to be made regarding conservation goals and variables used when investigating the overlap between species and humans for biodiversity conservation.
Pollock, B B; Meinecke, J; Kuschel, S; Ross, J S; Shaw, J L; Stoafer, C; Divol, L; Tynan, G R; Glenzer, S H
2012-10-01
Uniform density and temperature Xe plasmas have been produced over >4 mm scale-lengths using x-rays generated in a cylindrical Pb cavity. The cavity is 750 μm in depth and diameter, and is heated by a 300 J, 2 ns square, 1054 nm laser pulse focused to a spot size of 200 μm at the cavity entrance. The plasma is characterized by simultaneous imaging Thomson scattering measurements from both the electron and ion scattering features. The electron feature measurement determines the spatial electron density and temperature profile, and using these parameters as constraints in the ion feature analysis allows an accurate determination of the charge state of the Xe ions. The Thomson scattering probe beam is 40 J, 200 ps, and 527 nm, and is focused to a 100 μm spot size at the entrance of the Pb cavity. Each system has a spatial resolution of 25 μm, a temporal resolution of 200 ps (as determined by the probe duration), and a spectral resolution of 2 nm for the electron feature system and 0.025 nm for the ion feature system. The experiment is performed in a Xe filled target chamber at a neutral pressure of 3-10 Torr, and the x-rays produced in the Pb ionize and heat the Xe to a charge state of 20±4 at up to 200 eV electron temperatures.
Paraskevov, A V; Zendrikov, D K
2017-03-23
We show that in model neuronal cultures, where the probability of interneuronal connection formation decreases exponentially with increasing distance between the neurons, there exists a small number of spatial nucleation centers of a network spike, from where the synchronous spiking activity starts propagating in the network typically in the form of circular traveling waves. The number of nucleation centers and their spatial locations are unique and unchanged for a given realization of neuronal network but are different for different networks. In contrast, if the probability of interneuronal connection formation is independent of the distance between neurons, then the nucleation centers do not arise and the synchronization of spiking activity during a network spike occurs spatially uniform throughout the network. Therefore one can conclude that spatial proximity of connections between neurons is important for the formation of nucleation centers. It is also shown that fluctuations of the spatial density of neurons at their random homogeneous distribution typical for the experiments in vitro do not determine the locations of the nucleation centers. The simulation results are qualitatively consistent with the experimental observations.
NASA Astrophysics Data System (ADS)
Paraskevov, A. V.; Zendrikov, D. K.
2017-04-01
We show that in model neuronal cultures, where the probability of interneuronal connection formation decreases exponentially with increasing distance between the neurons, there exists a small number of spatial nucleation centers of a network spike, from where the synchronous spiking activity starts propagating in the network typically in the form of circular traveling waves. The number of nucleation centers and their spatial locations are unique and unchanged for a given realization of neuronal network but are different for different networks. In contrast, if the probability of interneuronal connection formation is independent of the distance between neurons, then the nucleation centers do not arise and the synchronization of spiking activity during a network spike occurs spatially uniform throughout the network. Therefore one can conclude that spatial proximity of connections between neurons is important for the formation of nucleation centers. It is also shown that fluctuations of the spatial density of neurons at their random homogeneous distribution typical for the experiments in vitro do not determine the locations of the nucleation centers. The simulation results are qualitatively consistent with the experimental observations.
Species extinction thresholds in the face of spatially correlated periodic disturbance.
Liao, Jinbao; Ying, Zhixia; Hiebeler, David E; Wang, Yeqiao; Takada, Takenori; Nijs, Ivan
2015-10-20
The spatial correlation of disturbance is gaining attention in landscape ecology, but knowledge is still lacking on how species traits determine extinction thresholds under spatially correlated disturbance regimes. Here we develop a pair approximation model to explore species extinction risk in a lattice-structured landscape subject to aggregated periodic disturbance. Increasing disturbance extent and frequency accelerated population extinction irrespective of whether dispersal was local or global. Spatial correlation of disturbance likewise increased species extinction risk, but only for local dispersers. This indicates that models based on randomly simulated disturbances (e.g., mean-field or non-spatial models) may underestimate real extinction rates. Compared to local dispersal, species with global dispersal tolerated more severe disturbance, suggesting that the spatial correlation of disturbance favors long-range dispersal from an evolutionary perspective. Following disturbance, intraspecific competition greatly enhanced the extinction risk of distance-limited dispersers, while it surprisingly did not influence the extinction thresholds of global dispersers, apart from decreasing population density to some degree. As species respond differently to disturbance regimes with different spatiotemporal properties, different regimes may accommodate different species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belov, A. S., E-mail: alexis-belov@yandex.ru
2015-10-15
Results of numerical simulations of the near-Earth plasma perturbations induced by powerful HF radio waves from the SURA heating facility are presented. The simulations were performed using a modified version of the SAMI2 ionospheric model for the input parameters corresponding to the series of in-situ SURA–DEMETER experiments. The spatial structure and developmental dynamics of large-scale plasma temperature and density perturbations have been investigated. The characteristic formation and relaxation times of the induced large-scale plasma perturbations at the altitudes of the Earth’s outer ionosphere have been determined.
Spatial correlation in matter-wave interference as a measure of decoherence, dephasing, and entropy
NASA Astrophysics Data System (ADS)
Chen, Zilin; Beierle, Peter; Batelaan, Herman
2018-04-01
The loss of contrast in double-slit electron diffraction due to dephasing and decoherence processes is studied. It is shown that the spatial intensity correlation function of diffraction patterns can be used to distinguish between dephasing and decoherence. This establishes a measure of time reversibility that does not require the determination of coherence terms of the density matrix, while von Neumann entropy, another measure of time reversibility, does require coherence terms. This technique is exciting in view of the need to understand and control the detrimental experimental effect of contrast loss and for fundamental studies on the transition from the classical to the quantum regime.
Suppression of Superfluid Density and the Pseudogap State in the Cuprates by Impurities
Erdenemunkh, Unurbat; Koopman, Brian; Fu, Ling; ...
2016-12-16
Here, we use scanning tunneling microscopy (STM) to study magnetic Fe impurities intentionally doped into the high-temperature superconductor Bi 2Sr 2CaCu 2O 8+δ. Our spectroscopic measurements reveal that Fe impurities introduce low-lying resonances in the density of states at Ω 1 ≈ 4 meV and Ω 2 ≈ 15 meV , allowing us to determine that, despite having a large magnetic moment, potential scattering of quasiparticles by Fe impurities dominates magnetic scattering. In addition, using high-resolution spatial characterizations of the local density of states near and away from Fe impurities, we detail the spatial extent of impurity-affected regions as wellmore » as provide a local view of impurity-induced effects on the superconducting and pseudogap states. Lastly, our studies of Fe impurities, when combined with a reinterpretation of earlier STM work in the context of a two-gap scenario, allow us to present a unified view of the atomic-scale effects of elemental impurities on the pseudogap and superconducting states in hole-doped cuprates; this may help resolve a previously assumed dichotomy between the effects of magnetic and nonmagnetic impurities in these materials.« less
Gravity Spectra from the Density Distribution of Earth's Uppermost 435 km
NASA Astrophysics Data System (ADS)
Sebera, Josef; Haagmans, Roger; Floberghagen, Rune; Ebbing, Jörg
2018-03-01
The Earth masses reside in a near-hydrostatic equilibrium, while the deviations are, for example, manifested in the geoid, which is nowadays well determined by satellite gravimetry. Recent progress in estimating the density distribution of the Earth allows us to examine individual Earth layers and to directly see how the sum approaches the observed anomalous gravitational field. This study evaluates contributions from the crust and the upper mantle taken from the LITHO1.0 model and quantifies the gravitational spectra of the density structure to the depth of 435 km. This is done without isostatic adjustments to see what can be revealed with models like LITHO1.0 alone. At the resolution of 290 km (spherical harmonic degree 70), the crustal contribution starts to dominate over the upper mantle and at about 150 km (degree 130) the upper mantle contribution is nearly negligible. At the spatial resolution <150 km, the spectra behavior is driven by the crust, the mantle lid and the asthenosphere. The LITHO1.0 model was furthermore referenced by adding deeper Earth layers from ak135, and the gravity signal of the merged model was then compared with the observed satellite-only model GOCO05s. The largest differences are found over the tectonothermal cold and old (such as cratonic), and over warm and young areas (such as oceanic ridges). The misfit encountered comes from the mantle lid where a velocity-density relation helped to reduce the RMS error by 40%. Global residuals are also provided in terms of the gravitational gradients as they provide better spatial localization than gravity, and there is strong observational support from ESA's satellite gradiometry mission GOCE down to the spatial resolution of 80-90 km.
Spatial Metrics of Tumour Vascular Organisation Predict Radiation Efficacy in a Computational Model
Scott, Jacob G.
2016-01-01
Intratumoural heterogeneity is known to contribute to poor therapeutic response. Variations in oxygen tension in particular have been correlated with changes in radiation response in vitro and at the clinical scale with overall survival. Heterogeneity at the microscopic scale in tumour blood vessel architecture has been described, and is one source of the underlying variations in oxygen tension. We seek to determine whether histologic scale measures of the erratic distribution of blood vessels within a tumour can be used to predict differing radiation response. Using a two-dimensional hybrid cellular automaton model of tumour growth, we evaluate the effect of vessel distribution on cell survival outcomes of simulated radiation therapy. Using the standard equations for the oxygen enhancement ratio for cell survival probability under differing oxygen tensions, we calculate average radiation effect over a range of different vessel densities and organisations. We go on to quantify the vessel distribution heterogeneity and measure spatial organization using Ripley’s L function, a measure designed to detect deviations from complete spatial randomness. We find that under differing regimes of vessel density the correlation coefficient between the measure of spatial organization and radiation effect changes sign. This provides not only a useful way to understand the differences seen in radiation effect for tissues based on vessel architecture, but also an alternate explanation for the vessel normalization hypothesis. PMID:26800503
Community structure of aquatic insects in the Esparza River, Costa Rica.
Herrera-Vásquez, Jonathan
2009-01-01
This study focused on the structure of the aquatic insect community in spatial and temporal scales in the Esparza River. The river was sampled for one full year throughout 2007. During the dry season low flow months, five sampling points were selected in two different habitats (currents and pools), with five replicates per sample site. During the wet season with peak rain, only the data in the "current habitat" were sampled at each site. Specimens present in the different substrates were collected and preserved in situ. A nested ANOVA was then applied to the data to determine richness and density as the response variables. The variations in temporal and spatial scales were analyzed using width, depth and discharge of the river, and then analyzed using a nested ANOVA. Only a correlation of 51% similarity in richness was found, while in spatial scale, richness showed significant variation between sampling sites, but not between habitats. However, the temporal scale showed significant differences between habitats. Density showed differences between sites and habitats during the dry season in the spatial scale, while in the temporal scale significant variation was found between sampling sites. Width varied between habitats during the dry season, but not between sampling points. Depth showed differences between sampling sites and season. This work studies the importance of community structure of aquatic insects in rivers, and its relevance for the quality of water in rivers and streams.
Pollen flow of wheat under natural conditions in the Huanghuai River Wheat Region, China
Sun, Ai-Qing; Zhang, Chun-Qing; Wu, Cheng-Lai; Gao, Qing-Rong
2015-01-01
abstract The transgenic pollen spread is the main pathway of transgenic plant gene flow. The maximum distance of pollen dispersal (horizontal), the spatial dynamics of pollen movement (vertical), and the patterns of pollen dispersal are important considerations in biosafety assessments of genetically modified crops. To evaluate wheat (Triticum aestivum) pollen dispersal, we measured the pollen suspension velocity and analyzed pollen dispersal patterns under natural conditions in the Huanghuai River wheat-growing region in 2009. The pollen suspension velocity was 0.3–0.4 m/s. The highest pollen densities were detected in the north, northwest, and south of the pollen source. Pollen was dispersed over distances greater than 245 m in the northwest and northeast directions. At the pollen source center, pollen density decreased with increasing vertical height. In the north of the pollen source, the pollen density from 65 m to 225 m showed a wave-mode decrease with increasing height. The horizontal transport of pollen over longer distances fitted polynomial equations. In the north, the pollen density was highest at 45 m from the pollen source, and decreased with increasing distance. In the northwest, the pollen density showed a double-peak trend. In the northeast, pollen density was highest from 45 m to 125 m from the source. Wind speeds greater than the pollen suspension velocity and the duration of continuous gusts were the main factors affecting pollen dispersal. This information will be useful for determining the spatial isolation distances for hybrid seed production and for the commercial production of transgenic wheat. PMID:25658025
Exploring the Ecological Association Between Crime and Medical Marijuana Dispensaries
Kepple, Nancy J.; Freisthler, Bridget
2012-01-01
Objective: Routine activities theory purports that crime occurs in places with a suitable target, motivated offender, and lack of guardianship. Medical marijuana dispensaries may be places that satisfy these conditions, but this has not yet been studied. The current study examined whether the density of medical marijuana dispensaries is associated with crime. Method: An ecological, cross-sectional design was used to explore the spatial relationship between density of medical marijuana dispensaries and two types of crime rates (violent crime and property crime) in 95 census tracts in Sacramento, CA, during 2009. Spatial error regression methods were used to determine associations between crime rates and density of medical marijuana dispensaries, controlling for neighborhood characteristics associated with routine activities. Results: Violent and property crime rates were positively associated with percentage of commercially zoned areas, percentage of one-person households, and unemployment rate. Higher violent crime rates were associated with concentrated disadvantage. Property crime rates were positively associated with the percentage of population 15–24 years of age. Density of medical marijuana dispensaries was not associated with violent or property crime rates. Conclusions: Consistent with previous work, variables measuring routine activities at the ecological level were related to crime. There were no observed cross-sectional associations between the density of medical marijuana dispensaries and either violent or property crime rates in this study. These results suggest that the density of medical marijuana dispensaries may not be associated with crime rates or that other factors, such as measures dispensaries take to reduce crime (i.e., doormen, video cameras), may increase guardianship such that it deters possible motivated offenders. PMID:22630790
Exploring the ecological association between crime and medical marijuana dispensaries.
Kepple, Nancy J; Freisthler, Bridget
2012-07-01
Routine activities theory purports that crime occurs in places with a suitable target, motivated offender, and lack of guardianship. Medical marijuana dispensaries may be places that satisfy these conditions, but this has not yet been studied. The current study examined whether the density of medical marijuana dispensaries is associated with crime. An ecological, cross-sectional design was used to explore the spatial relationship between density of medical marijuana dispensaries and two types of crime rates (violent crime and property crime) in 95 census tracts in Sacramento, CA, during 2009. Spatial error regression methods were used to determine associations between crime rates and density of medical marijuana dispensaries, controlling for neighborhood characteristics associated with routine activities. Violent and property crime rates were positively associated with percentage of commercially zoned areas, percentage of one-person households, and unemployment rate. Higher violent crime rates were associated with concentrated disadvantage. Property crime rates were positively associated with the percentage of population 15-24 years of age. Density of medical marijuana dispensaries was not associated with violent or property crime rates. Consistent with previous work, variables measuring routine activities at the ecological level were related to crime. There were no observed cross-sectional associations between the density of medical marijuana dispensaries and either violent or property crime rates in this study. These results suggest that the density of medical marijuana dispensaries may not be associated with crime rates or that other factors, such as measures dispensaries take to reduce crime (i.e., doormen, video cameras), may increase guardianship such that it deters possible motivated offenders.
A study of the feasibility of ultraviolet spectrometry for cometary missions
NASA Technical Reports Server (NTRS)
Feldman, P. D.
1979-01-01
Ultraviolet spectra fo the comet West obtained by sounding rocket experiments in 1976 are reproduced and interpreted in order to estimate the expected brightness of the emission features and determine the spatial extent of these features for the proposed Halley Flyby/Tempel 2 rendezvous and the possible Halley or Encke flybys close to perihelion. A coma model was constructed and evaluated for the physical condition of candidate targets such as heliocentric distance, gas production, and composition. In addition to brightness profiles, the neutral and ion densities of the principal species are also dervied. The brightness profiles can be used to determine the feasibility of utilizing the space telescope to provide supporting observations during the mission. Basic parameters identified are spectral range, wavelength resolution, spatial resolution, sensitivity and dynamic range, rejection of scattered light, and integration or accumulation time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polyakov, D S; Yakovlev, E B
The heating of metals (silver and aluminium) by ultrashort laser pulses is analysed proceeding from a spatially nonuniform kinetic equation for the electron distribution function. The electron subsystem thermalisation is estimated in a wide range of absorbed pulse energy density. The limits of applicability are determined for the two-temperature model. (interaction of laser radiation with matter)
NASA Astrophysics Data System (ADS)
Basak, T.; Hobara, Y.
2015-12-01
A major part of the path of the annular solar eclipse of May 20, 2012 (magnitude 0.9439) was over southern Japan. The D-region ionospheric changes associated with that eclipse, led to several degree of observable perturbations of sub-ionospheric very low frequency (VLF) radio signal. The University of Electro-Communications (UEC) operates VLF observation network over Japan. The solar eclipse associated signal changes were recorded in several receiving stations (Rx) simultaneously for the VLF signals coming from NWC/19.8kHz, JJI/22.2kHz, JJY/40.0kHz, NLK/24.8kHz and other VLF transmitters (Tx). These temporal dependences of VLF signal perturbation have been analyzed and the spatio-temporal characteristics of respective sub-ionospheric perturbations has already been studied by earlier workers using 2D-Finite Difference Time Domain method of simulation. In this work, we determine the spatial scale, depth and temporal dependence of lower ionospheric perturbation in consistence with umbral and penumbral motion. We considered the 2-parameter D-region ionospheric model with exponential electron density profile. To model the solar obscuration effect over it, we assumed a generalized space-time dependent 2-dimensional elliptical Gaussian distribution for ionospheric parameters, such as, effective reflection height (h') and sharpness factor (β). The depth (△hmax, △βmax), center of shadow (lato(t), lono(t)) and spatial scale (σlat,lon) of that Gaussian distribution are used as model parameters. In the vicinity of the eclipse zone, we compute the VLF signal perturbations using Long Wave Propagation Capability (LWPC) code for several signal propagation paths. The propagation path characteristics, such as, ground and water conductivity and geomagnetic effect on ionosphere are considered from standard LWPC prescriptions. The model parameters are tuned to set an optimum agreement between our computation and observed positive and negative type of VLF perturbations. Thus, appropriate set of parameters lead us to the possible determination of spatial scale, depth and temporal dependence of eclipse associated D-region electron density perturbation solely from the VLF-network observations coupled with theoretical modeling.
NASA Astrophysics Data System (ADS)
Pascoe, D. J.; Anfinogentov, S. A.; Goddard, C. R.; Nakariakov, V. M.
2018-06-01
The shape of the damping profile of kink oscillations in coronal loops has recently allowed the transverse density profile of the loop to be estimated. This requires accurate measurement of the damping profile that can distinguish the Gaussian and exponential damping regimes, otherwise there are more unknowns than observables. Forward modeling of the transverse intensity profile may also be used to estimate the width of the inhomogeneous layer of a loop, providing an independent estimate of one of these unknowns. We analyze an oscillating loop for which the seismological determination of the transverse structure is inconclusive except when supplemented by additional spatial information from the transverse intensity profile. Our temporal analysis describes the motion of a coronal loop as a kink oscillation damped by resonant absorption, and our spatial analysis is based on forward modeling the transverse EUV intensity profile of the loop under the isothermal and optically thin approximations. We use Bayesian analysis and Markov chain Monte Carlo sampling to apply our spatial and temporal models both individually and simultaneously to our data and compare the results with numerical simulations. Combining the two methods allows both the inhomogeneous layer width and density contrast to be calculated, which is not possible for the same data when each method is applied individually. We demonstrate that the assumption of an exponential damping profile leads to a significantly larger error in the inferred density contrast ratio compared with a Gaussian damping profile.
What FIREs Up Star Formation: the Emergence of the Kennicutt-Schmidt Law from Feedback
NASA Astrophysics Data System (ADS)
Orr, Matthew E.; Hayward, Christopher C.; Hopkins, Philip F.; Chan, T. K.; Faucher-Giguère, Claude-André; Feldmann, Robert; Kereš, Dušan; Murray, Norman; Quataert, Eliot
2018-05-01
We present an analysis of the global and spatially-resolved Kennicutt-Schmidt (KS) star formation relation in the FIRE (Feedback In Realistic Environments) suite of cosmological simulations, including halos with z = 0 masses ranging from 1010 - 1013 M⊙. We show that the KS relation emerges and is robustly maintained due to the effects of feedback on local scales regulating star-forming gas, independent of the particular small-scale star formation prescriptions employed. We demonstrate that the time-averaged KS relation is relatively independent of redshift and spatial averaging scale, and that the star formation rate surface density is weakly dependent on metallicity and inversely dependent on orbital dynamical time. At constant star formation rate surface density, the `Cold & Dense' gas surface density (gas with T < 300 K and n > 10 cm-3, used as a proxy for the molecular gas surface density) of the simulated galaxies is ˜0.5 dex less than observed at ˜kpc scales. This discrepancy may arise from underestimates of the local column density at the particle-scale for the purposes of shielding in the simulations. Finally, we show that on scales larger than individual giant molecular clouds, the primary condition that determines whether star formation occurs is whether a patch of the galactic disk is thermally Toomre-unstable (not whether it is self-shielding): once a patch can no longer be thermally stabilized against fragmentation, it collapses, becomes self-shielding, cools, and forms stars, regardless of epoch or environment.
Whittington, Jesse; Sawaya, Michael A
2015-01-01
Capture-recapture studies are frequently used to monitor the status and trends of wildlife populations. Detection histories from individual animals are used to estimate probability of detection and abundance or density. The accuracy of abundance and density estimates depends on the ability to model factors affecting detection probability. Non-spatial capture-recapture models have recently evolved into spatial capture-recapture models that directly include the effect of distances between an animal's home range centre and trap locations on detection probability. Most studies comparing non-spatial and spatial capture-recapture biases focussed on single year models and no studies have compared the accuracy of demographic parameter estimates from open population models. We applied open population non-spatial and spatial capture-recapture models to three years of grizzly bear DNA-based data from Banff National Park and simulated data sets. The two models produced similar estimates of grizzly bear apparent survival, per capita recruitment, and population growth rates but the spatial capture-recapture models had better fit. Simulations showed that spatial capture-recapture models produced more accurate parameter estimates with better credible interval coverage than non-spatial capture-recapture models. Non-spatial capture-recapture models produced negatively biased estimates of apparent survival and positively biased estimates of per capita recruitment. The spatial capture-recapture grizzly bear population growth rates and 95% highest posterior density averaged across the three years were 0.925 (0.786-1.071) for females, 0.844 (0.703-0.975) for males, and 0.882 (0.779-0.981) for females and males combined. The non-spatial capture-recapture population growth rates were 0.894 (0.758-1.024) for females, 0.825 (0.700-0.948) for males, and 0.863 (0.771-0.957) for both sexes. The combination of low densities, low reproductive rates, and predominantly negative population growth rates suggest that Banff National Park's population of grizzly bears requires continued conservation-oriented management actions.
NASA Astrophysics Data System (ADS)
Wen, Tzai-Hung
2014-05-01
Dengue fever is one of the world's most widely spread mosquito-borne diseases. International travelers who acquire dengue infection are important routes for virus transmission from one country to another one. Previous studies have shown that imported dengue cases are able to initiate indigenous epidemics when appropriate weather conditions are present. However, the spatial-temporal associations between imported cases and indigenous epidemics in areas with different social-economic conditions are still unclear. This study investigated determinants of spatial-temporal lags of imported dengue cases who initiated indigenous epidemics from 2003 to 2012 in Taiwan. The quantile regression is used to explore the associations between spatial-temporal lags of imported cases and social-economic indicators with geographic heterogeneity. Our results indicated that imported cases in April and May have statistically significant contribution to initiate indigenous epidemics. Areas with high population density and low average income have significant risk of being imported virus from other areas. However, the areas with imported cases are not significant transmission risk. The results imply that imported cases reported in early summer may be an early-warning indicator of indigenous epidemics. Local demographic and economic conditions, rather than imported cases, may determine the areas with the risk of indigenous epidemics.
Optimized growth and reorientation of anisotropic material based on evolution equations
NASA Astrophysics Data System (ADS)
Jantos, Dustin R.; Junker, Philipp; Hackl, Klaus
2018-07-01
Modern high-performance materials have inherent anisotropic elastic properties. The local material orientation can thus be considered to be an additional design variable for the topology optimization of structures containing such materials. In our previous work, we introduced a variational growth approach to topology optimization for isotropic, linear-elastic materials. We solved the optimization problem purely by application of Hamilton's principle. In this way, we were able to determine an evolution equation for the spatial distribution of density mass, which can be evaluated in an iterative process within a solitary finite element environment. We now add the local material orientation described by a set of three Euler angles as additional design variables into the three-dimensional model. This leads to three additional evolution equations that can be separately evaluated for each (material) point. Thus, no additional field unknown within the finite element approach is needed, and the evolution of the spatial distribution of density mass and the evolution of the Euler angles can be evaluated simultaneously.
NASA Astrophysics Data System (ADS)
Boella, E.; Fiúza, F.; Stockem Novo, A.; Fonseca, R.; Silva, L. O.
2018-03-01
A numerical study on ion acceleration in electrostatic shock waves is presented, with the aim of determining the best plasma configuration to achieve quasi-monoenergetic ion beams in laser-driven systems. It was recently shown that tailored near-critical density plasmas characterized by a long-scale decreasing rear density profile lead to beams with low energy spread (Fiúza et al 2012 Phys. Rev. Lett. 109 215001). In this work, a detailed parameter scan investigating different plasma scale lengths is carried out. As result, the optimal plasma spatial scale length that allows for minimizing the energy spread while ensuring a significant reflection of ions by the shock is identified. Furthermore, a new configuration where the required profile has been obtained by coupling micro layers of different densities is proposed. Results show that this new engineered approach is a valid alternative, guaranteeing a low energy spread with a higher level of controllability.
NASA Technical Reports Server (NTRS)
Smith, Andrew; LaVerde, Bruce; Jones, Douglas; Towner, Robert; Hunt, Ron
2013-01-01
Fluid structural interaction problems that estimate panel vibration from an applied pressure field excitation are quite dependent on the spatial correlation of the pressure field. There is a danger of either over estimating a low frequency response or under predicting broad band panel response in the more modally dense bands if the pressure field spatial correlation is not accounted for adequately. Even when the analyst elects to use a fitted function for the spatial correlation an error may be introduced if the choice of patch density is not fine enough to represent the more continuous spatial correlation function throughout the intended frequency range of interest. Both qualitative and quantitative illustrations evaluating the adequacy of different patch density assumptions to approximate the fitted spatial correlation function are provided. The actual response of a typical vehicle panel system is then evaluated in a convergence study where the patch density assumptions are varied over the same finite element model. The convergence study results are presented illustrating the impact resulting from a poor choice of patch density. The fitted correlation function used in this study represents a Diffuse Acoustic Field (DAF) excitation of the panel to produce vibration response.
Investigating Coral Disease Spread Across the Hawaiian Archipelago
NASA Astrophysics Data System (ADS)
Sziklay, Jamie
Coral diseases negatively impact reef ecosystems and they are increasing worldwide; yet, we have a limited understanding of the factors that influence disease risk and transmission. My dissertation research investigated coral disease spread for several common coral diseases in the Hawaiian archipelago to understand how host-pathogenenvironment interactions vary across different spatial scales and how we can use that information to improve management strategies. At broad spatial scales, I developed forecasting models to predict outbreak risk based on depth, coral density and temperature anomalies from remotely sensed data (chapter 1). In this chapter, I determined that host density, total coral density, depth and winter temperature variation were important predictors of disease prevalence for several coral diseases. Expanding on the predictive models, I also found that colony size, wave energy, water quality, fish abundance and nearby human population size altered disease risk (chapter 2). Most of the model variation occurred at the scale of sites and coastline, indicating that local coral composition and water quality were key determinants of disease risk. At the reef scale, I investigated factors that influence disease transmission among individuals using a tissue loss disease outbreak in Kane'ohe Bay, O'ahu, Hawai'i as a case study (chapter 3). I determined that host size, proximity to infected neighbors and numbers of infected neighbors were associated with disease risk. Disease transmission events were very localized (within 15 m) and rates changed dramatically over the course of the outbreak: the transmission rate initially increased quickly during the outbreak and then decreased steadily until the outbreak ended. At the colony scale, I investigated disease progression between polyps within individual coral colonies using confocal microscopy (chapter 4). Here, I determined that fragmented florescent pigment distributions appeared adjacent to the disease front of infected coral and had fewer intact polyps than in healthy coral fragments. These results suggested that disease progression within colonies affected with chronic and acute Montipora white syndromes are highly localized rather than systemic and their bacterial pathogens directly attack the coral tissue rather than zooxanthellae. Overall, my dissertation research indicates that watershed condition and coral community configuration can facilitate and/or inhibit coral disease spread, and that disease transmission may be more spatially constrained than previously thought.
Spatial Differentiation of Landscape Values in the Murray River Region of Victoria, Australia
NASA Astrophysics Data System (ADS)
Zhu, Xuan; Pfueller, Sharron; Whitelaw, Paul; Winter, Caroline
2010-05-01
This research advances the understanding of the location of perceived landscape values through a statistically based approach to spatial analysis of value densities. Survey data were obtained from a sample of people living in and using the Murray River region, Australia, where declining environmental quality prompted a reevaluation of its conservation status. When densities of 12 perceived landscape values were mapped using geographic information systems (GIS), valued places clustered along the entire river bank and in associated National/State Parks and reserves. While simple density mapping revealed high value densities in various locations, it did not indicate what density of a landscape value could be regarded as a statistically significant hotspot or distinguish whether overlapping areas of high density for different values indicate identical or adjacent locations. A spatial statistic Getis-Ord Gi* was used to indicate statistically significant spatial clusters of high value densities or “hotspots”. Of 251 hotspots, 40% were for single non-use values, primarily spiritual, therapeutic or intrinsic. Four hotspots had 11 landscape values. Two, lacking economic value, were located in ecologically important river red gum forests and two, lacking wilderness value, were near the major towns of Echuca-Moama and Albury-Wodonga. Hotspots for eight values showed statistically significant associations with another value. There were high associations between learning and heritage values while economic and biological diversity values showed moderate associations with several other direct and indirect use values. This approach may improve confidence in the interpretation of spatial analysis of landscape values by enhancing understanding of value relationships.
Schistosomiasis Breeding Environment Situation Analysis in Dongting Lake Area
NASA Astrophysics Data System (ADS)
Li, Chuanrong; Jia, Yuanyuan; Ma, Lingling; Liu, Zhaoyan; Qian, Yonggang
2013-01-01
Monitoring environmental characteristics, such as vegetation, soil moisture et al., of Oncomelania hupensis (O. hupensis)’ spatial/temporal distribution is of vital importance to the schistosomiasis prevention and control. In this study, the relationship between environmental factors derived from remotely sensed data and the density of O. hupensis was analyzed by a multiple linear regression model. Secondly, spatial analysis of the regression residual was investigated by the semi-variogram method. Thirdly, spatial analysis of the regression residual and the multiple linear regression model were both employed to estimate the spatial variation of O. hupensis density. Finally, the approach was used to monitor and predict the spatial and temporal variations of oncomelania of Dongting Lake region, China. And the areas of potential O. hupensis habitats were predicted and the influence of Three Gorges Dam (TGB)project on the density of O. hupensis was analyzed.
Morelli, Federico
2017-01-01
Road and railway networks are pervasive elements of all environments, which have expanded intensively over the last century in all European countries. These transportation infrastructures have major impacts on the surrounding landscape, representing a threat to biodiversity. Roadsides and railways may function as corridors for dispersal of alien species in fragmented landscapes. However, only few studies have explored the spread of invasive species in relationship to transport network at large spatial scales. We performed a spatial mismatch analysis, based on a spatially explicit correlation test, to investigate whether alien plant species hotspots in Germany and Austria correspond to areas of high density of roads and railways. We tested this independently of the effects of dominant environments in each spatial unit, in order to focus just on the correlation between occurrence of alien species and density of linear transportation infrastructures. We found a significant spatial association between alien plant species hotspots distribution and roads and railways density in both countries. As expected, anthropogenic landscapes, such as urban areas, harbored more alien plant species, followed by water bodies. However, our findings suggested that the distribution of neobiota is strongest correlated to road/railways density than to land use composition. This study provides new evidence, from a transnational scale, that alien plants can use roadsides and rail networks as colonization corridors. Furthermore, our approach contributes to the understanding on alien plant species distribution at large spatial scale by the combination with spatial modeling procedures. PMID:28829818
NASA Astrophysics Data System (ADS)
Usowicz, B.; Marczewski, W.; Lipiec, J.; Usowicz, J. B.; Sokolowska, Z.; Dabkowska-Naskret, H.; Hajnos, M.; Lukowski, M. I.
2009-04-01
The purpose is obtaining trustful ground based measurement data of SM (Soil Moisture) for validating SMOS, respectively to spatial and temporal distribution and variations. A use of Time Domain Reflectometric (TDR) method is fast, simple and less destructive, to the soil matter, than a usual standard gravimetric method. TDR tools operate efficiently, enable nearly instant measurements, and allow on collecting many measurements from numerous sites, even when operated manually in short time intervals. The method enables also very frequent sampling of SM at few selected fixed sites, when long terms of temporal variations are needed. In effect one obtains reasonably large data base for determining spatial and temporal distributions of SM. The study is devoted to determining a plan on collecting TDR data, in the scales of small and large field areas, and checking their relevance to those available from gravimetric methods. Finally, the ground based SM distributions are needed for validating other SM distributions, available remotely in larger scales, from the satellite data of ENVISAT-ASAR, and from SMOS (Soil Moisture and Ocean Salinity Mission) when it becomes operational. The ground based evaluations are served mainly by geo-statistical analysis. The space borne estimations are retrieved by image processing and physical models, proper to relevant Remote Sensing (RS) instruments on the orbit. Finally, validation must engage again the geo-statistical evaluations, to assess the agreement between direct and remote sensing means, and provide a measure of trust for extending the limited scales of the ground based data, on concluding the agreement in scales proper to the satellite data. The study is focused mainly on trustful evaluating data from the ground, provided independently on satellite data sources. SM ground based data are collected permanently at 2 selected tests sites, and temporary in areas around the tests sites, in one day sessions, repeated several times per vegetation season. Permanent measurements are provided in profiles, down to 50 cm below surface. Temporary SM measurements are collected by hand held TDR (FOM/mts type, Easy Test Ltd., Lublin, Poland) from the top surface layer (1-6 cm), in a grid covering small and large areas, containing few hundred sites. The same places are served by collecting soil samples for the gravimetric analysis of SM, bulk density, other physical and textural characteristics. Sessions on measurement in large areas on the scale of community are repeated for separate days. The two methods used were compared with correlation coefficient, regression equation and differences of values. The spatial variability of soil moisture from gravimetric and TDR measurements were analyzed using geostatistical methods. The semivariogram parameters were determined and mathematical functions were fitted to empirically derived semivariograms. These functions were used for estimation of spatial distribution of soil moisture in cultivated fields by the kriging method. The results showed that spatial distribution patterns of topsoil soil moisture in the investigated areas obtained from TDR and gravimetric methods were in general similar to each other. The TDR soil moisture contents were dependent on bulk density and texture of soil. In areas with fine-textured soils of lower soil bulk densities (approximately below 1.35 Mg m^-3) we observed that TDR soil moisture and spatial differentiation were greater compared to those with gravimetric method. However at higher bulk densities the inverse was true. The spatial patterns were further modified in areas with domination of coarse-textured soils. Decrease of measurement points results in smoothing soil moisture pattern and at the same time in a greater estimation error. The TDR method can be useful tool for ground moisture measurements and validation of satellite data. The use of specific calibration or correction for soil bulk density and texture with respect to the reflectometric method is recommended. The study is a contribution to the project SWEX (AO-3275) and funded by the Polish Ministry of Science and Higher Education (in part by Grant No. N305 046 31/1707 and in part by Grant No. N305 107 32/3865).
Spatial heterogeneity in parasite infections at different spatial scales in an intertidal bivalve.
Thieltges, David W; Reise, Karsten
2007-01-01
Spatial heterogeneities in the abundance of free-living organisms as well as in infection levels of their parasites are a common phenomenon, but knowledge on parasitism in invertebrate intermediate hosts in this respect is scarce. We investigated the spatial pattern of four dominant trematode species which utilize a common intertidal bivalve, the cockle Cerastoderma edule, as second intermediate host in their life cycles. Sampling of cockles from the same cohort at 15 sites in the northern Wadden Sea (North Sea) over a distance of 50 km revealed a conspicuous spatial heterogeneity in infection levels in all four species over the total sample as well as among and within sampling sites. Whereas multiple regression analyses indicated the density of first intermediate upstream hosts to be the strongest determinant of infection levels in cockles, the situation within sites was more complex with no single strong predictor variable. However, host size was positively and host density negatively correlated with infection levels and there was an indication of differential susceptibility of cockle hosts. Small-scale differences in physical properties of the habitat in the form of residual water at low tide resulted in increased infection levels of cockles which we experimentally transferred into pools. A complex interplay of these factors may be responsible for within-site heterogeneities. At larger spatial scales, these factors may be overridden by the strong effect of upstream hosts. In contrast to first intermediate trematode hosts, there was no indication for inter-specific interactions. In other terms, the recruitment of trematodes in second intermediate hosts seems to be largely controlled by pre-settlement processes both among and within host populations.
Assessments of habitat preferences and quality depend on spatial scale and metrics of fitness
Chalfoun, A.D.; Martin, T.E.
2007-01-01
1. Identifying the habitat features that influence habitat selection and enhance fitness is critical for effective management. Ecological theory predicts that habitat choices should be adaptive, such that fitness is enhanced in preferred habitats. However, studies often report mismatches between habitat preferences and fitness consequences across a wide variety of taxa based on a single spatial scale and/or a single fitness component. 2. We examined whether habitat preferences of a declining shrub steppe songbird, the Brewer's sparrow Spizella breweri, were adaptive when multiple reproductive fitness components and spatial scales (landscape, territory and nest patch) were considered. 3. We found that birds settled earlier and in higher densities, together suggesting preference, in landscapes with greater shrub cover and height. Yet nest success was not higher in these landscapes; nest success was primarily determined by nest predation rates. Thus landscape preferences did not match nest predation risk. Instead, nestling mass and the number of nesting attempts per pair increased in preferred landscapes, raising the possibility that landscapes were chosen on the basis of food availability rather than safe nest sites. 4. At smaller spatial scales (territory and nest patch), birds preferred different habitat features (i.e. density of potential nest shrubs) that reduced nest predation risk and allowed greater season-long reproductive success. 5. Synthesis and applications. Habitat preferences reflect the integration of multiple environmental factors across multiple spatial scales, and individuals may have more than one option for optimizing fitness via habitat selection strategies. Assessments of habitat quality for management prescriptions should ideally include analysis of diverse fitness consequences across multiple ecologically relevant spatial scales. ?? 2007 The Authors.
NASA Technical Reports Server (NTRS)
Smith, Andrew; LaVerde, Bruce; Jones, Douglas; Towner, Robert; Waldon, James; Hunt, Ron
2013-01-01
Producing fluid structural interaction estimates of panel vibration from an applied pressure field excitation are quite dependent on the spatial correlation of the pressure field. There is a danger of either over estimating a low frequency response or under predicting broad band panel response in the more modally dense bands if the pressure field spatial correlation is not accounted for adequately. It is a useful practice to simulate the spatial correlation of the applied pressure field over a 2d surface using a matrix of small patch area regions on a finite element model (FEM). Use of a fitted function for the spatial correlation between patch centers can result in an error if the choice of patch density is not fine enough to represent the more continuous spatial correlation function throughout the intended frequency range of interest. Several patch density assumptions to approximate the fitted spatial correlation function are first evaluated using both qualitative and quantitative illustrations. The actual response of a typical vehicle panel system FEM is then examined in a convergence study where the patch density assumptions are varied over the same model. The convergence study results illustrate the impacts possible from a poor choice of patch density on the analytical response estimate. The fitted correlation function used in this study represents a diffuse acoustic field (DAF) excitation of the panel to produce vibration response.
N -tag probability law of the symmetric exclusion process
NASA Astrophysics Data System (ADS)
Poncet, Alexis; Bénichou, Olivier; Démery, Vincent; Oshanin, Gleb
2018-06-01
The symmetric exclusion process (SEP), in which particles hop symmetrically on a discrete line with hard-core constraints, is a paradigmatic model of subdiffusion in confined systems. This anomalous behavior is a direct consequence of strong spatial correlations induced by the requirement that the particles cannot overtake each other. Even if this fact has been recognized qualitatively for a long time, up to now there has been no full quantitative determination of these correlations. Here we study the joint probability distribution of an arbitrary number of tagged particles in the SEP. We determine analytically its large-time limit for an arbitrary density of particles, and its full dynamics in the high-density limit. In this limit, we obtain the time-dependent large deviation function of the problem and unveil a universal scaling form shared by the cumulants.
Measurement of toroidal vessel eddy current during plasma disruption on J-TEXT.
Liu, L J; Yu, K X; Zhang, M; Zhuang, G; Li, X; Yuan, T; Rao, B; Zhao, Q
2016-01-01
In this paper, we have employed a thin, printed circuit board eddy current array in order to determine the radial distribution of the azimuthal component of the eddy current density at the surface of a steel plate. The eddy current in the steel plate can be calculated by analytical methods under the simplifying assumptions that the steel plate is infinitely large and the exciting current is of uniform distribution. The measurement on the steel plate shows that this method has high spatial resolution. Then, we extended this methodology to a toroidal geometry with the objective of determining the poloidal distribution of the toroidal component of the eddy current density associated with plasma disruption in a fusion reactor called J-TEXT. The preliminary measured result is consistent with the analysis and calculation results on the J-TEXT vacuum vessel.
Charge density wave order in 1D mirror twin boundaries of single-layer MoSe 2
Barja, Sara; Wickenburg, Sebastian; Liu, Zhen-Fei; ...
2016-04-18
Here, We provide direct evidence for the existence of isolated, one-dimensional charge density waves at mirror twin boundaries (MTBs) of single-layer semiconducting MoSe 2. Such MTBs have been previously observed by transmission electron microscopy and have been predicted to be metallic in MoSe 2 and MoS 2. Our low-temperature scanning tunnelling microscopy/spectroscopy measurements revealed a substantial bandgap of 100 meV opening at the Fermi energy in the otherwise metallic one-dimensional structures. We found a periodic modulation in the density of states along the MTB, with a wavelength of approximately three lattice constants. In addition to mapping the energy-dependent densitymore » of states, we determined the atomic structure and bonding of the MTB through simultaneous high-resolution non-contact atomic force microscopy. Density functional theory calculations based on the observed structure reproduced both the gap opening and the spatially resolved density of states.« less
Integrating Survey and Molecular Approaches to Better Understand Wildlife Disease Ecology
Cowled, Brendan D.; Ward, Michael P.; Laffan, Shawn W.; Galea, Francesca; Garner, M. Graeme; MacDonald, Anna J.; Marsh, Ian; Muellner, Petra; Negus, Katherine; Quasim, Sumaiya; Woolnough, Andrew P.; Sarre, Stephen D.
2012-01-01
Infectious wildlife diseases have enormous global impacts, leading to human pandemics, global biodiversity declines and socio-economic hardship. Understanding how infection persists and is transmitted in wildlife is critical for managing diseases, but our understanding is limited. Our study aim was to better understand how infectious disease persists in wildlife populations by integrating genetics, ecology and epidemiology approaches. Specifically, we aimed to determine whether environmental or host factors were stronger drivers of Salmonella persistence or transmission within a remote and isolated wild pig (Sus scrofa) population. We determined the Salmonella infection status of wild pigs. Salmonella isolates were genotyped and a range of data was collected on putative risk factors for Salmonella transmission. We a priori identified several plausible biological hypotheses for Salmonella prevalence (cross sectional study design) versus transmission (molecular case series study design) and fit the data to these models. There were 543 wild pig Salmonella observations, sampled at 93 unique locations. Salmonella prevalence was 41% (95% confidence interval [CI]: 37–45%). The median Salmonella DICE coefficient (or Salmonella genetic similarity) was 52% (interquartile range [IQR]: 42–62%). Using the traditional cross sectional prevalence study design, the only supported model was based on the hypothesis that abundance of available ecological resources determines Salmonella prevalence in wild pigs. In the molecular study design, spatial proximity and herd membership as well as some individual risk factors (sex, condition score and relative density) determined transmission between pigs. Traditional cross sectional surveys and molecular epidemiological approaches are complementary and together can enhance understanding of disease ecology: abundance of ecological resources critical for wildlife influences Salmonella prevalence, whereas Salmonella transmission is driven by local spatial, social, density and individual factors, rather than resources. This enhanced understanding has implications for the control of diseases in wildlife populations. Attempts to manage wildlife disease using simplistic density approaches do not acknowledge the complexity of disease ecology. PMID:23071552
van Gestel, Jordi; Weissing, Franz J; Kuipers, Oscar P; Kovács, Ákos T
2014-01-01
In nature, most bacteria live in surface-attached sedentary communities known as biofilms. Biofilms are often studied with respect to bacterial interactions. Many cells inhabiting biofilms are assumed to express ‘cooperative traits', like the secretion of extracellular polysaccharides (EPS). These traits can enhance biofilm-related properties, such as stress resilience or colony expansion, while being costly to the cells that express them. In well-mixed populations cooperation is difficult to achieve, because non-cooperative individuals can reap the benefits of cooperation without having to pay the costs. The physical process of biofilm growth can, however, result in the spatial segregation of cooperative from non-cooperative individuals. This segregation can prevent non-cooperative cells from exploiting cooperative neighbors. Here we examine the interaction between spatial pattern formation and cooperation in Bacillus subtilis biofilms. We show, experimentally and by mathematical modeling, that the density of cells at the onset of biofilm growth affects pattern formation during biofilm growth. At low initial cell densities, co-cultured strains strongly segregate in space, whereas spatial segregation does not occur at high initial cell densities. As a consequence, EPS-producing cells have a competitive advantage over non-cooperative mutants when biofilms are initiated at a low density of founder cells, whereas EPS-deficient cells have an advantage at high cell densities. These results underline the importance of spatial pattern formation for competition among bacterial strains and the evolution of microbial cooperation. PMID:24694715
van Gestel, Jordi; Weissing, Franz J; Kuipers, Oscar P; Kovács, Akos T
2014-10-01
In nature, most bacteria live in surface-attached sedentary communities known as biofilms. Biofilms are often studied with respect to bacterial interactions. Many cells inhabiting biofilms are assumed to express 'cooperative traits', like the secretion of extracellular polysaccharides (EPS). These traits can enhance biofilm-related properties, such as stress resilience or colony expansion, while being costly to the cells that express them. In well-mixed populations cooperation is difficult to achieve, because non-cooperative individuals can reap the benefits of cooperation without having to pay the costs. The physical process of biofilm growth can, however, result in the spatial segregation of cooperative from non-cooperative individuals. This segregation can prevent non-cooperative cells from exploiting cooperative neighbors. Here we examine the interaction between spatial pattern formation and cooperation in Bacillus subtilis biofilms. We show, experimentally and by mathematical modeling, that the density of cells at the onset of biofilm growth affects pattern formation during biofilm growth. At low initial cell densities, co-cultured strains strongly segregate in space, whereas spatial segregation does not occur at high initial cell densities. As a consequence, EPS-producing cells have a competitive advantage over non-cooperative mutants when biofilms are initiated at a low density of founder cells, whereas EPS-deficient cells have an advantage at high cell densities. These results underline the importance of spatial pattern formation for competition among bacterial strains and the evolution of microbial cooperation.
Jesenšek, Dušan; Crivelli, Alain J.
2018-01-01
We develop a general framework that combines long-term tag–recapture data and powerful statistical and modelling techniques to investigate how population, environmental and climate factors determine variation in vital rates and population dynamics in an animal species, using as a case study the population of brown trout living in Upper Volaja (Western Slovenia). This population has been monitored since 2004. Upper Volaja is a sink, receiving individuals from a source population living above a waterfall. We estimate the numerical contribution of the source population on the sink population and test the effects of temperature, population density and extreme events on variation in vital rates among 2647 individually tagged brown trout. We found that individuals dispersing downstream from the source population help maintain high population densities in the sink population despite poor recruitment. The best model of survival for individuals older than juveniles includes additive effects of birth cohort and sampling occasion. Fast growth of older cohorts and higher population densities in 2004–2005 suggest very low population densities in the late 1990s, which we hypothesize were caused by a flash flood that strongly reduced population size and created the habitat conditions for faster individual growth and transient higher population densities after the extreme event. PMID:29657746
NASA Technical Reports Server (NTRS)
Goldsmith, Paul F.
2008-01-01
Viewgraph topics include: optical image of Taurus; dust extinction in IR has provided a new tool for probing cloud morphology; observations of the gas can contribute critical information on gas temperature, gas column density and distribution, mass, and kinematics; the Taurus molecular cloud complex; average spectra in each mask region; mas 2 data; dealing with mask 1 data; behavior of mask 1 pixels; distribution of CO column densities; conversion to H2 column density; variable CO/H2 ratio with values much less than 10(exp -4) at low N indicated by UV results; histogram of N(H2) distribution; H2 column density distribution in Taurus; cumulative distribution of mass and area; lower CO fractional abundance in mask 0 and 1 regions greatly increases mass determined in the analysis; masses determined with variable X(CO) and including diffuse regions agrees well with the found from L(CO); distribution of young stars as a function of molecular column density; star formation efficiency; star formation rate and gas depletion; and enlarged images of some of the regions with numerous young stars. Additional slides examine the origin of the Taurus molecular cloud, evolution from HI gas, kinematics as a clue to its origin, and its relationship to star formation.
Vincenzi, Simone; Jesenšek, Dušan; Crivelli, Alain J
2018-03-01
We develop a general framework that combines long-term tag-recapture data and powerful statistical and modelling techniques to investigate how population, environmental and climate factors determine variation in vital rates and population dynamics in an animal species, using as a case study the population of brown trout living in Upper Volaja (Western Slovenia). This population has been monitored since 2004. Upper Volaja is a sink, receiving individuals from a source population living above a waterfall. We estimate the numerical contribution of the source population on the sink population and test the effects of temperature, population density and extreme events on variation in vital rates among 2647 individually tagged brown trout. We found that individuals dispersing downstream from the source population help maintain high population densities in the sink population despite poor recruitment. The best model of survival for individuals older than juveniles includes additive effects of birth cohort and sampling occasion. Fast growth of older cohorts and higher population densities in 2004-2005 suggest very low population densities in the late 1990s, which we hypothesize were caused by a flash flood that strongly reduced population size and created the habitat conditions for faster individual growth and transient higher population densities after the extreme event.
Janovský, Zdeněk; Mikát, Michael; Hadrava, Jiří; Horčičková, Eva; Kmecová, Kateřina; Požárová, Doubravka; Smyčka, Jan; Herben, Tomáš
2013-01-01
Generalist pollinators are important in many habitats, but little research has been done on small-scale spatial variation in interactions between them and the plants that they visit. Here, using a spatially explicit approach, we examined whether multiple species of flowering plants occurring within a single meadow showed spatial structure in their generalist pollinator assemblages. We report the results for eight plant species for which at least 200 individual visits were recorded. We found that for all of these species, the proportions of their general pollinator assemblages accounted for by particular functional groups showed spatial heterogeneity at the scale of tens of metres. This heterogeneity was connected either with no or only subtle changes of vegetation and flowering species composition. In five of these species, differences in conspecific plant density influenced the pollinator communities (with greater dominance of main pollinators at low-conspecific plant densities). The density of heterospecific plant individuals influenced the pollinator spectrum in one case. Our results indicate that the picture of plant-pollinator interactions provided by averaging data within large plots may be misleading and that within-site spatial heterogeneity should be accounted for in terms of sampling effort allocation and analysis. Moreover, spatially structured plant-pollinator interactions may have important ecological and evolutionary consequences, especially for plant population biology. PMID:24204818
NASA Technical Reports Server (NTRS)
Welch, R. M.; Sengupta, S. K.; Chen, D. W.
1990-01-01
Stratocumulus cloud fields in the FIRE IFO region are analyzed using LANDSAT Thematic Mapper imagery. Structural properties such as cloud cell size distribution, cell horizontal aspect ratio, fractional coverage and fractal dimension are determined. It is found that stratocumulus cloud number densities are represented by a power law. Cell horizontal aspect ratio has a tendency to increase at large cell sizes, and cells are bi-fractal in nature. Using LANDSAT Multispectral Scanner imagery for twelve selected stratocumulus scenes acquired during previous years, similar structural characteristics are obtained. Cloud field spatial organization also is analyzed. Nearest-neighbor spacings are fit with a number of functions, with Weibull and Gamma distributions providing the best fits. Poisson tests show that the spatial separations are not random. Second order statistics are used to examine clustering.
Spatial heterogeneity in the carrying capacity of sika deer in Japan.
Iijima, Hayato; Ueno, Mayumi
2016-06-09
Carrying capacity is 1 driver of wildlife population dynamics. Although in previous studies carrying capacity was considered to be a fixed entity, it may differ among locations due to environmental variation. The factors underlying variability in carrying capacity, however, have rarely been examined. Here, we investigated spatial heterogeneity in the carrying capacity of Japanese sika deer ( Cervus nippon ) from 2005 to 2014 in Yamanashi Prefecture, central Japan (mesh with grid cells of 5.5×4.6 km) by state-space modeling. Both carrying capacity and density dependence differed greatly among cells. Estimated carrying capacities ranged from 1.34 to 98.4 deer/km 2 . According to estimated population dynamics, grid cells with larger proportions of artificial grassland and deciduous forest were subject to lower density dependence and higher carrying capacity. We conclude that population dynamics of ungulates may vary spatially through spatial variation in carrying capacity and that the density level for controlling ungulate abundance should be based on the current density level relative to the carrying capacity for each area.
Hawaii Energy and Environmental Technologies (HEET) Initiative
2009-05-01
current density measured in a PEM fuel cell ( PEMFC ) represents the average of the local reaction rates. Depending on cell design and operating...loss mechanisms determine the spatial and overall performance of a PEMFC : activation, concentration, ohmic, and mass transfer losses. Activation losses...distribution of these various losses in a PEMFC using a six-channel serpentine flow-field. Voltage losses were attributed to each of the mechanisms at each
Spatial, seasonal and climatic predictive models of Rift Valley fever disease across Africa.
Redding, David W; Tiedt, Sonia; Lo Iacono, Gianni; Bett, Bernard; Jones, Kate E
2017-07-19
Understanding the emergence and subsequent spread of human infectious diseases is a critical global challenge, especially for high-impact zoonotic and vector-borne diseases. Global climate and land-use change are likely to alter host and vector distributions, but understanding the impact of these changes on the burden of infectious diseases is difficult. Here, we use a Bayesian spatial model to investigate environmental drivers of one of the most important diseases in Africa, Rift Valley fever (RVF). The model uses a hierarchical approach to determine how environmental drivers vary both spatially and seasonally, and incorporates the effects of key climatic oscillations, to produce a continental risk map of RVF in livestock (as a proxy for human RVF risk). We find RVF risk has a distinct seasonal spatial pattern influenced by climatic variation, with the majority of cases occurring in South Africa and Kenya in the first half of an El Niño year. Irrigation, rainfall and human population density were the main drivers of RVF cases, independent of seasonal, climatic or spatial variation. By accounting more subtly for the patterns in RVF data, we better determine the importance of underlying environmental drivers, and also make space- and time-sensitive predictions to better direct future surveillance resources.This article is part of the themed issue 'One Health for a changing world: zoonoses, ecosystems and human well-being'. © 2017 The Authors.
Spatial, seasonal and climatic predictive models of Rift Valley fever disease across Africa
2017-01-01
Understanding the emergence and subsequent spread of human infectious diseases is a critical global challenge, especially for high-impact zoonotic and vector-borne diseases. Global climate and land-use change are likely to alter host and vector distributions, but understanding the impact of these changes on the burden of infectious diseases is difficult. Here, we use a Bayesian spatial model to investigate environmental drivers of one of the most important diseases in Africa, Rift Valley fever (RVF). The model uses a hierarchical approach to determine how environmental drivers vary both spatially and seasonally, and incorporates the effects of key climatic oscillations, to produce a continental risk map of RVF in livestock (as a proxy for human RVF risk). We find RVF risk has a distinct seasonal spatial pattern influenced by climatic variation, with the majority of cases occurring in South Africa and Kenya in the first half of an El Niño year. Irrigation, rainfall and human population density were the main drivers of RVF cases, independent of seasonal, climatic or spatial variation. By accounting more subtly for the patterns in RVF data, we better determine the importance of underlying environmental drivers, and also make space- and time-sensitive predictions to better direct future surveillance resources. This article is part of the themed issue ‘One Health for a changing world: zoonoses, ecosystems and human well-being’. PMID:28584173
Generalized index for spatial data sets as a measure of complete spatial randomness
NASA Astrophysics Data System (ADS)
Hackett-Jones, Emily J.; Davies, Kale J.; Binder, Benjamin J.; Landman, Kerry A.
2012-06-01
Spatial data sets, generated from a wide range of physical systems can be analyzed by counting the number of objects in a set of bins. Previous work has been limited to equal-sized bins, which are inappropriate for some domains (e.g., circular). We consider a nonequal size bin configuration whereby overlapping or nonoverlapping bins cover the domain. A generalized index, defined in terms of a variance between bin counts, is developed to indicate whether or not a spatial data set, generated from exclusion or nonexclusion processes, is at the complete spatial randomness (CSR) state. Limiting values of the index are determined. Using examples, we investigate trends in the generalized index as a function of density and compare the results with those using equal size bins. The smallest bin size must be much larger than the mean size of the objects. We can determine whether a spatial data set is at the CSR state or not by comparing the values of a generalized index for different bin configurations—the values will be approximately the same if the data is at the CSR state, while the values will differ if the data set is not at the CSR state. In general, the generalized index is lower than the limiting value of the index, since objects do not have access to the entire region due to blocking by other objects. These methods are applied to two applications: (i) spatial data sets generated from a cellular automata model of cell aggregation in the enteric nervous system and (ii) a known plant data distribution.
The luminosity function for the CfA redshift survey slices
NASA Technical Reports Server (NTRS)
De Lapparent, Valerie; Geller, Margaret J.; Huchra, John P.
1989-01-01
The luminosity function for two complete slices of the extension of the CfA redshift survey is calculated. The nonparametric technique of Lynden-Bell (1971) and Turner (1979) is used to determine the shape for the luminosity function of the 12 deg slice of the redshift survey. The amplitude of the luminosity function is determined, taking large-scale inhomogeneities into account. The effects of the Malmquist bias on a magnitude-limited redshift survey are examined, showing that the random errors in the magnitudes for the 12 deg slice affect both the determination of the luminosity function and the spatial density constrast of large scale structures.
Two color interferometric electron density measurement in an axially blown arc
NASA Astrophysics Data System (ADS)
Stoller, Patrick; Carstensen, Jan; Galletti, Bernardo; Doiron, Charles; Sokolov, Alexey; Salzmann, René; Simon, Sandor; Jabs, Philipp
2016-09-01
High voltage circuit breakers protect the power grid by interrupting the current in case of a short circuit. To do so an arc is ignited between two contacts as they separate; transonic gas flow is used to cool and ultimately extinguish the arc at a current-zero crossing of the alternating current. A detailed understanding of the arc interruption process is needed to improve circuit breaker design. The conductivity of the partially ionized gas remaining after the current-zero crossing, a key parameter in determining whether the arc will be interrupted or not, is a function of the electron density. The electron density, in turn, is a function of the detailed dynamics of the arc cooling process, which does not necessarily occur under local thermodynamic equilibrium (LTE) conditions. In this work, we measure the spatially resolved line-integrated index of refraction in a near-current-zero arc stabilized in an axial flow of synthetic air with two nanosecond pulsed lasers at wavelengths of 532 nm and 671 nm. Generating a stable, cylindrically symmetric arc enables us to determine the three-dimensional index of refraction distribution using Abel inversion. Due to the wavelength dependence of the component of the index of refraction related to the free electrons, the information at two different wavelengths can be used to determine the electron density. This information allows us to determine how important it is to take into account non-equilibrium effects for accurate modeling of the physics of decaying arcs.
Study of density distribution in a near-critical simple fluid (19-IML-1)
NASA Technical Reports Server (NTRS)
Michels, Teun
1992-01-01
This experiment uses visual observation, interferometry, and light scattering techniques to observe and analyze the density distribution in SF6 above and below the critical temperature. Below the critical temperature, the fluid system is split up into two coexisting phases, liquid and vapor. The spatial separation of these phases on earth, liquid below and vapor above, is not an intrinsic property of the fluid system; it is merely an effect of the action of the gravity field. At a fixed temperature, the density of each of the coexisting phases is in principle fixed. However, near T sub c where the fluid is strongly compressible, gravity induced hydrostatic forces will result in a gradual decrease in density with increasing height in the sample container. This hydrostatic density profile is even more pronounced in the one phase fluid at temperatures slightly above T sub c. The experiment is set up to study the intrinsic density distributions and equilibration rates of a critical sample in a small container. Interferometry will be used to determine local density and thickness of surface and interface layers. The light scattering data will reveal the size of the density fluctuations on a microscopic scale.
Evaluating population expansion of black bears using spatial capture-recapture
Sun, Catherine C.; Fuller, Angela K.; Hare, Matthew P.; Hurst, Jeremy E.
2017-01-01
The population of American black bears (Ursus americanus) in southern New York, USA has been growing and expanding in range since the 1990s. This has motivated a need to anticipate future patterns of range expansion. We conducted a non-invasive, genetic, spatial capture-recapture (SCR) study to estimate black bear density and identify spatial patterns of population density that are potentially associated with range expansion. We collected hair samples in a 2,519-km2 study area in southern New York with barbed-wire hair snares and identified individuals and measured genetic diversity using 7 microsatellite loci and 1 sex-linked marker. We estimated a mean density of black bears in the region of 13.7 bears/100 km2, and detected a slight latitudinal gradient in density consistent with the documented range expansion. However, elevation and the amounts of forest, crop, and developed landcover types did not influence density, suggesting that bears are using a diversity of resources in this heterogeneous landscape outside their previously described distribution. These results provide the first robust baseline estimates for population density and distribution associated with different landcover types in the expanded bear range. Further, genetic diversity was comparable to that of non-expanding black bear populations in the eastern United States, and in combination with the latitudinal density gradient, suggest that the study area is not at the colonizing front of the range expansion. In addition, the diversity of landcover types used by bears in the study area implies a possible lack of constraints for further northern expansion of the black bear range. Our non-invasive, genetic, spatial capture-recapture approach has utility for studying populations of other species that may be expanding in range because SCR allows for the testing of explicit, spatial ecological hypotheses.
Tashiro, Shota; Le, Minh Nguyen Tuyet; Kusama, Yuta; Nakatani, Eri; Suga, Mika; Furue, Miho K; Satoh, Taku; Sugiura, Shinji; Kanamori, Toshiyuki; Ohnuma, Kiyoshi
2018-04-19
Spatial pattern formation is a critical step in embryogenesis. Bone morphogenetic protein 4 (BMP4) and its inhibitors are major factors for the formation of spatial patterns during embryogenesis. However, spatial patterning of the human embryo is unclear because of ethical issues and isotropic culture environments resulting from conventional culture dishes. Here, we utilized human pluripotent stem cells (hiPSCs) and a simple anisotropic (unidirectional perfusion) culture chamber, which creates unidirectional conditions, to measure the cell community effect. The influence of cell density on BMP4-induced differentiation was explored during static culture using a conventional culture dish. Immunostaining of the early differentiation marker SSEA-1 and the mesendoderm marker BRACHYURY revealed that high cell density suppressed differentiation, with small clusters of differentiated and undifferentiated cells formed. Addition of five-fold higher concentration of BMP4 showed similar results, suggesting that suppression was not caused by depletion of BMP4 but rather by high cell density. Quantitative RT-PCR array analysis showed that BMP4 induced multi-lineage differentiation, which was also suppressed under high-density conditions. We fabricated an elongated perfusion culture chamber, in which proteins were transported unidirectionally, and hiPSCs were cultured with BMP4. At low density, the expression was the same throughout the chamber. However, at high density, SSEA-1 and BRACHYURY were expressed only in upstream cells, suggesting that some autocrine/paracrine factors inhibited the action of BMP4 in downstream cells to form the spatial pattern. Human iPSCs cultured in a perfusion culture chamber might be useful for studying in vitro macroscopic pattern formation in human embryogenesis. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
A common visual metric for approximate number and density
Dakin, Steven C.; Tibber, Marc S.; Greenwood, John A.; Kingdom, Frederick A. A.; Morgan, Michael J.
2011-01-01
There is considerable interest in how humans estimate the number of objects in a scene in the context of an extensive literature on how we estimate the density (i.e., spacing) of objects. Here, we show that our sense of number and our sense of density are intertwined. Presented with two patches, observers found it more difficult to spot differences in either density or numerosity when those patches were mismatched in overall size, and their errors were consistent with larger patches appearing both denser and more numerous. We propose that density is estimated using the relative response of mechanisms tuned to low and high spatial frequencies (SFs), because energy at high SFs is largely determined by the number of objects, whereas low SF energy depends more on the area occupied by elements. This measure is biased by overall stimulus size in the same way as human observers, and by estimating number using the same measure scaled by relative stimulus size, we can explain all of our results. This model is a simple, biologically plausible common metric for perceptual number and density. PMID:22106276
Features of Electron Density Distribution in Delafossite Cualo2
NASA Astrophysics Data System (ADS)
Pogoreltsev, A. I.; Schmidt, S. V.; Gavrilenko, A. N.; Shulgin, D. A.; Korzun, B. V.; Matukhin, V. L.
2015-07-01
We have used pulsed 63,65Cu nuclear quadrupole resonance at room temperature to study the semiconductor compound CuAlO2 with a delafossite crystal structure, and we have determined the quadrupole frequency νQ = 28.12 MHz and the asymmetry parameter η ~ 0, which we used to study the features of the electron density distribution in the vicinity of the quadrupolar nucleus. In order to take into account the influence of correlation effects on the electric field gradient, we carried out ab initio calculations within the density functional theory (DFT) approximation using a set of correlation functionals VWN1RPA, VWN5, PW91LDA, CPW91, and B3LYP1. We mapped the electron density distribution in the vicinity of the quadrupolar copper nucleus for the Cu7Al6o{14/- 1} cluster and we calculated the size of the LUMO-HOMO gap, Δ ~ 3.33 eV. We established the anisotropy of the spatial electron density distribution. Based on analysis of the electron density distribution obtained, we suggest that the bond in CuAlO2 is not purely covalent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matlis, N. H., E-mail: nmatlis@gmail.com; Gonsalves, A. J.; Steinke, S.
We present an analysis of the gas dynamics and density distributions within a capillary-discharge waveguide with an embedded supersonic jet. This device provides a target for a laser plasma accelerator which uses longitudinal structuring of the gas-density profile to enable control of electron trapping and acceleration. The functionality of the device depends sensitively on the details of the density profile, which are determined by the interaction between the pulsed gas in the jet and the continuously-flowing gas in the capillary. These dynamics are captured by spatially resolving recombination light from several emission lines of the plasma as a function ofmore » the delay between the jet and the discharge. We provide a phenomenological description of the gas dynamics as well as a quantitative evaluation of the density evolution. In particular, we show that the pressure difference between the jet and the capillary defines three regimes of operation with qualitatively different longitudinal density profiles and show that jet timing provides a sensitive method for tuning between these regimes.« less
Limit on possible narrow rings around Jupiter
NASA Technical Reports Server (NTRS)
Dunham, E.; Elliot, J. L.; Mink, D.; Klemola, A. R.
1982-01-01
An upper limit to the optical depth of the Jovian ring at high spatial resolution, determined from stellar occultation data, is reported. The spatial resolution of the observation is limited to about 13 km in Jupiter's equatorial plane by the projection of the Fresnel zone on the equatorial plane in the radial direction. At this resolution, the normal optical depth limit is about 0.008. This limit applies to a strip in the Jovian equatorial plane that crosses the orbits of Amalthea, 1979J1, 1979J3, and the ring. An upper limit on the number density of kilometer-size boulders has been set at one per 11.000 sq km in the equatorial plane.
Observation and studies of double J / ψ production at the Tevatron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abazov, V. M.; Abbott, B.; Acharya, B. S.
2014-12-01
We present the observation of doubly-producedmore » $$J/\\psi$$ mesons with the D0 detector at Fermilab in $$p\\bar{p}$$ collisions at $$\\sqrt{s}=1.96$$ TeV. The production cross section for both singly and doubly-produced $$J/\\psi$$ mesons is measured using a sample with an integrated luminosity of 8.1fb$$^{-1}$$. For the first time, the double $$J/\\psi$$ production cross section is separated into contributions due to single and double parton scatterings. Using these measurements, we determine the effective cross section $$\\sigma_{eff}$$, a parameter characterizing an effective spatial area of the parton-parton interactions and related to the parton spatial density inside the nucleon.« less
Evolutionary speed of species invasions.
García-Ramos, Gisela; Rodríguez, Diego
2002-04-01
Successful invasion may depend of the capacity of a species to adjust genetically to a spatially varying environment. This research modeled a species invasion by examining the interaction between a quantitative genetic trait and population density. It assumed: (I) a quantitative genetic trait describes the adaptation of an individual to its local ecological conditions; (2) populations far from the local optimum grow more slowly than those near the optimum; and (3) the evolution of a trait depends on local population density, because differences in local population densities cause asymmetrical gene flow. This genetics-density interaction determined the propagation speed of populations. Numerical simulations showed that populations spread by advancing as two synchronic traveling waves, one for population density and one for trait adaptation. The form of the density wave was a step front that advances homogenizing populations at their carrying capacity; the adaptation wave was a curve with finite slope that homogenizes populations at full adaptation. The largest speed of population expansion, for a dimensionless analysis, corresponded to an almost homogeneous spatial environment when this model approached an ecological description such as the Fisher-Skellam's model. A large genetic response also favored faster speeds. Evolutionary speeds, in a natural scale, showed a wide range of rates that were also slower compared to models that only consider demographics. This evolutionary speed increased with high heritability, strong stabilizing selection, and high intrinsic growth rate. It decreased for steeper environmental gradients. Also indicated was an optimal dispersal rate over which evolutionary speed declined. This is expected because dispersal moves individuals further, but homogenizes populations genetically, making them maladapted. The evolutionary speed was compared to observed data. Furthermore, a moderate increase in the speed of expansion was predicted for ecological changes related to global warming.
Whittington, Jesse; Sawaya, Michael A.
2015-01-01
Capture-recapture studies are frequently used to monitor the status and trends of wildlife populations. Detection histories from individual animals are used to estimate probability of detection and abundance or density. The accuracy of abundance and density estimates depends on the ability to model factors affecting detection probability. Non-spatial capture-recapture models have recently evolved into spatial capture-recapture models that directly include the effect of distances between an animal’s home range centre and trap locations on detection probability. Most studies comparing non-spatial and spatial capture-recapture biases focussed on single year models and no studies have compared the accuracy of demographic parameter estimates from open population models. We applied open population non-spatial and spatial capture-recapture models to three years of grizzly bear DNA-based data from Banff National Park and simulated data sets. The two models produced similar estimates of grizzly bear apparent survival, per capita recruitment, and population growth rates but the spatial capture-recapture models had better fit. Simulations showed that spatial capture-recapture models produced more accurate parameter estimates with better credible interval coverage than non-spatial capture-recapture models. Non-spatial capture-recapture models produced negatively biased estimates of apparent survival and positively biased estimates of per capita recruitment. The spatial capture-recapture grizzly bear population growth rates and 95% highest posterior density averaged across the three years were 0.925 (0.786–1.071) for females, 0.844 (0.703–0.975) for males, and 0.882 (0.779–0.981) for females and males combined. The non-spatial capture-recapture population growth rates were 0.894 (0.758–1.024) for females, 0.825 (0.700–0.948) for males, and 0.863 (0.771–0.957) for both sexes. The combination of low densities, low reproductive rates, and predominantly negative population growth rates suggest that Banff National Park’s population of grizzly bears requires continued conservation-oriented management actions. PMID:26230262
Jacobson, Bailey; Grant, James W A; Peres-Neto, Pedro R
2015-07-01
How individuals within a population distribute themselves across resource patches of varying quality has been an important focus of ecological theory. The ideal free distribution predicts equal fitness amongst individuals in a 1 : 1 ratio with resources, whereas resource defence theory predicts different degrees of monopolization (fitness variance) as a function of temporal and spatial resource clumping and population density. One overlooked landscape characteristic is the spatial distribution of resource patches, altering the equitability of resource accessibility and thereby the effective number of competitors. While much work has investigated the influence of morphology on competitive ability for different resource types, less is known regarding the phenotypic characteristics conferring relative ability for a single resource type, particularly when exploitative competition predominates. Here we used young-of-the-year rainbow trout (Oncorhynchus mykiss) to test whether and how the spatial distribution of resource patches and population density interact to influence the level and variance of individual growth, as well as if functional morphology relates to competitive ability. Feeding trials were conducted within stream channels under three spatial distributions of nine resource patches (distributed, semi-clumped and clumped) at two density levels (9 and 27 individuals). Average trial growth was greater in high-density treatments with no effect of resource distribution. Within-trial growth variance had opposite patterns across resource distributions. Here, variance decreased at low-population, but increased at high-population densities as patches became increasingly clumped as the result of changes in the levels of interference vs. exploitative competition. Within-trial growth was related to both pre- and post-trial morphology where competitive individuals were those with traits associated with swimming capacity and efficiency: larger heads/bodies/caudal fins and less angled pectoral fins. The different degrees of within-population growth variance at the same density level found here, as a function of spatial resource distribution, provide an explanation for the inconsistencies in within-site growth variance and population regulation often noted with regard to density dependence in natural landscapes. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
Hydrodynamic Flow Fluctuations in √sNN = 5:02 TeV PbPbCollisions
NASA Astrophysics Data System (ADS)
Castle, James R.
The collective, anisotropic expansion of the medium created in ultrarelativistic heavy-ion collisions, known as flow, is characterized through a Fourier expansion of the final-state azimuthal particle density. In the Fourier expansion, flow harmonic coefficients vn correspond to shape components in the final-state particle density, which are a consequence of similar spatial anisotropies in the initial-state transverse energy density of a collision. Flow harmonic fluctuations are studied for PbPb collisions at √sNN = 5.02 TeV using the CMS detector at the CERN LHC. Flow harmonic probability distributions p( vn) are obtained using particles with 0.3 < pT < 3.0 GeV/c and ∥eta∥ < 1.0 by removing finite-multiplicity resolution effects from the observed azimuthal particle density through an unfolding procedure. Cumulant elliptic flow harmonics (n = 2) are determined from the moments of the unfolded p(v2) distributions and used to construct observables in 5% wide centrality bins up to 60% that relate to the initial-state spatial anisotropy. Hydrodynamic models predict that fluctuations in the initial-state transverse energy density will lead to a non-Gaussian component in the elliptic flow probability distributions that manifests as a negative skewness. A statistically significant negative skewness is observed for all centrality bins as evidenced by a splitting between the higher-order cumulant elliptic flow harmonics. The unfolded p (v2) distributions are transformed assuming a linear relationship between the initial-state spatial anisotropy and final-state flow and are fitted with elliptic power law and Bessel Gaussian parametrizations to infer information on the nature of initial-state fluctuations. The elliptic power law parametrization is found to provide a more accurate description of the fluctuations than the Bessel-Gaussian parametrization. In addition, the event-shape engineering technique, where events are further divided into classes based on an observed ellipticity, is used to study fluctuation-driven differences in the initial-state spatial anisotropy for a given collision centrality that would otherwise be destroyed by event-averaging techniques. Correlations between the first and second moments of p( vn) distributions and event ellipticity are measured for harmonic orders n = 2 - 4 by coupling event-shape engineering to the unfolding technique.
Olugasa, Babasola O; Dogba, John B; Ogunro, Bamidele; Odigie, Eugene A; Nykoi, Jomah; Ojo, Johnson F; Taiwo, Olalekan; Kamara, Abraham; Mulbah, Charles K; Fasunla, Ayotunde J
2014-10-01
As Lassa fever continues to be a public health challenge in West Africa, it is critical to produce good maps of its risk pattern for use in active surveillance and control intervention. We identified eight spatial features related to the rubber plantation environment and used them as explanatory variables for Lassa fever (LF) outbreaks on the Uniroyal Liberian Agricultural Company (LAC) rubber plantation environment in Grand Bassa County, Liberia. We computed classical and spatial lag regression models on all spatial features, including proximity of residential camp to rubber tree-edge, main road in the plantation, LAC hospital, rice farmland, household refuse dump, human population density, post-harvest storage density of rice and density of rodent deterrent on rice storage. We found significant (p=0.0024) spatial autocorrelation between LF cases and the spatial features we have considered. We concluded that the rubber plantation environment influenced Mastomys species' breeding and transmission of Lassa virus along spatial scale to humans. The risk factors identified in this study offered a baseline for more effective surveillance and control of LF in the post-civil conflict Liberia. Copyright © 2014 Elsevier Ltd. All rights reserved.
Use of spatial capture–recapture to estimate density of Andean bears in northern Ecuador
Molina, Santiago; Fuller, Angela K.; Morin, Dana J.; Royle, J. Andrew
2017-01-01
The Andean bear (Tremarctos ornatus) is the only extant species of bear in South America and is considered threatened across its range and endangered in Ecuador. Habitat loss and fragmentation is considered a critical threat to the species, and there is a lack of knowledge regarding its distribution and abundance. The species is thought to occur at low densities, making field studies designed to estimate abundance or density challenging. We conducted a pilot camera-trap study to estimate Andean bear density in a recently identified population of Andean bears northwest of Quito, Ecuador, during 2012. We compared 12 candidate spatial capture–recapture models including covariates on encounter probability and density and estimated a density of 7.45 bears/100 km2 within the region. In addition, we estimated that approximately 40 bears used a recently named Andean bear corridor established by the Secretary of Environment, and we produced a density map for this area. Use of a rub-post with vanilla scent attractant allowed us to capture numerous photographs for each event, improving our ability to identify individual bears by unique facial markings. This study provides the first empirically derived density estimate for Andean bears in Ecuador and should provide direction for future landscape-scale studies interested in conservation initiatives requiring spatially explicit estimates of density.
NASA Astrophysics Data System (ADS)
Kamburov, D.; Baldwin, K. W.; West, K. W.; Lyon, S.; Pfeiffer, L. N.; Pinczuk, A.
2017-06-01
We compare micro-photoluminescence (μPL) as a measure of the electron density in a clean, two-dimensional (2D) system confined in a GaAs quantum well (QW) to the standard magneto-transport technique. Our study explores the PL shape evolution across a number of molecular beam epitaxy-grown samples with different QW widths and 2D electron densities and notes its correspondence with the density obtained in magneto-transport measurements on these samples. We also measure the 2D density in a top-gated quantum well sample using both PL and transport and find that the two techniques agree to within a few percent over a wide range of gate voltages. We find that the PL measurements are sensitive to gate-induced 2D density changes on the order of 109 electrons/cm2. The spatial resolution of the PL density measurement in our experiments is 40 μm, which is already substantially better than the millimeter-scale resolution now possible in spatial density mapping using magneto-transport. Our results establish that μPL can be used as a reliable high spatial resolution technique for future contactless measurements of density variations in a 2D electron system.
Spatial Distributions of Young Stars
NASA Astrophysics Data System (ADS)
Kraus, Adam L.; Hillenbrand, Lynne A.
2008-10-01
We analyze the spatial distribution of young stars in Taurus-Auriga and Upper Sco, as determined from the two-point correlation function (i.e., the mean surface density of neighbors). The corresponding power-law fits allow us to determine the fractal dimensions of each association's spatial distribution, measure the stellar velocity dispersions, and distinguish between the bound binary population and chance alignments of members. We find that the fractal dimension of Taurus is D ~ 1.05, consistent with its filamentary structure. The fractal dimension of Upper Sco may be even shallower (D ~ 0.7), but this fit is uncertain due to the limited area and possible spatially variable incompleteness. We also find that random stellar motions have erased all primordial structure on scales of lsim0.07° in Taurus and lsim1.7° in Upper Sco; given ages of ~1 and ~5 Myr, the corresponding internal velocity dispersions are ~0.2 and ~1.0 km s-1, respectively. Finally, we find that binaries can be distinguished from chance alignments at separations of lsim120'' (17,000 AU) in Taurus and lsim75'' (11,000 AU) in Upper Sco. The binary populations in these associations that we previously studied, spanning separations of 3''-30'', is dominated by binary systems. However, the few lowest mass pairs (Mprim <~ 0.3 M⊙) might be chance alignments.
NASA Astrophysics Data System (ADS)
Yu, Hai; Ratra, Bharat; Wang, Fa-Yin
2018-03-01
We compile a complete collection of reliable Hubble parameter H(z) data to redshift z ≤ 2.36 and use them with the Gaussian Process method to determine continuous H(z) functions for various data subsets. From these continuous H(z)'s, summarizing across the data subsets considered, we find H 0 ∼ 67 ± 4 km s‑1 Mpc‑1, more consistent with the recent lower values determined using a variety of techniques. In most data subsets, we see a cosmological deceleration–acceleration transition at 2σ significance, with the data subsets transition redshifts varying over 0.33< {z}da}< 1.0 at 1σ significance. We find that the flat-ΛCDM model is consistent with the H(z) data to a z of 1.5 to 2.0, depending on data subset considered, with 2σ deviations from flat-ΛCDM above this redshift range. Using the continuous H(z) with baryon acoustic oscillation distance-redshift observations, we constrain the current spatial curvature density parameter to be {{{Ω }}}K0=-0.03+/- 0.21, consistent with a flat universe, but the large error bar does not rule out small values of spatial curvature that are now under debate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pollock, B. B.; University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093; Meinecke, J.
2012-10-15
Uniform density and temperature Xe plasmas have been produced over >4 mm scale-lengths using x-rays generated in a cylindrical Pb cavity. The cavity is 750 {mu}m in depth and diameter, and is heated by a 300 J, 2 ns square, 1054 nm laser pulse focused to a spot size of 200 {mu}m at the cavity entrance. The plasma is characterized by simultaneous imaging Thomson scattering measurements from both the electron and ion scattering features. The electron feature measurement determines the spatial electron density and temperature profile, and using these parameters as constraints in the ion feature analysis allows an accuratemore » determination of the charge state of the Xe ions. The Thomson scattering probe beam is 40 J, 200 ps, and 527 nm, and is focused to a 100 {mu}m spot size at the entrance of the Pb cavity. Each system has a spatial resolution of 25 {mu}m, a temporal resolution of 200 ps (as determined by the probe duration), and a spectral resolution of 2 nm for the electron feature system and 0.025 nm for the ion feature system. The experiment is performed in a Xe filled target chamber at a neutral pressure of 3-10 Torr, and the x-rays produced in the Pb ionize and heat the Xe to a charge state of 20{+-}4 at up to 200 eV electron temperatures.« less
2014-08-01
Astrodynamics, drag, atmospheric density, geodesy 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF PAGES 12 19a...Translation of ’Le satellite de geodesie ’Starlette’,’ Groupe de Recherches de Geodesie Spatiale, Centre National d’Etudes Spatiales, Bretigny-sur-Orge
Petrovskaya, Natalia B.; Forbes, Emily; Petrovskii, Sergei V.; Walters, Keith F. A.
2018-01-01
Studies addressing many ecological problems require accurate evaluation of the total population size. In this paper, we revisit a sampling procedure used for the evaluation of the abundance of an invertebrate population from assessment data collected on a spatial grid of sampling locations. We first discuss how insufficient information about the spatial population density obtained on a coarse sampling grid may affect the accuracy of an evaluation of total population size. Such information deficit in field data can arise because of inadequate spatial resolution of the population distribution (spatially variable population density) when coarse grids are used, which is especially true when a strongly heterogeneous spatial population density is sampled. We then argue that the average trap count (the quantity routinely used to quantify abundance), if obtained from a sampling grid that is too coarse, is a random variable because of the uncertainty in sampling spatial data. Finally, we show that a probabilistic approach similar to bootstrapping techniques can be an efficient tool to quantify the uncertainty in the evaluation procedure in the presence of a spatial pattern reflecting a patchy distribution of invertebrates within the sampling grid. PMID:29495513
NASA Astrophysics Data System (ADS)
Uglov, A. A.; Smurov, I. Yu; Gus'kov, A. G.; Aksenov, L. V.
1990-08-01
A theoretical study is reported of melting and thermocapillary convection under the action of laser radiation with a nonmonotonic spatial distribution of the power density. An analysis is made of changes in the geometry of the molten bath with time. The transition from a nonmonotonic boundary of a melt, corresponding to the spatial distribution of the radiation, to a monotonic one occurs in a time of the order of 1 ms when the power density of laser radiation is 105 W/cm2. The vortex structure of the flow in the molten bath is governed by the spatial distribution of the laser radiation in such a way that each local power density maximum corresponds to two vortices with oppositely directed velocity components.
Geographic Distribution of Trauma Centers and Injury Related Mortality in the United States
Brown, Joshua B.; Rosengart, Matthew R.; Billiar, Timothy R.; Peitzman, Andrew B.; Sperry, Jason L.
2015-01-01
Background Regionalized trauma care improves outcomes; however access to care is not uniform across the US. The objective was to evaluate whether geographic distribution of trauma centers correlates with injury mortality across state trauma systems. Methods Level I/II trauma centers in the contiguous US were mapped. State-level age-adjusted injury fatality rates/100,000people were obtained and evaluated for spatial autocorrelation. Nearest neighbor ratios (NNR) were generated for each state. A NNR<1 indicates clustering, while NNR>1 indicates dispersion. NNR were tested for difference from random geographic distribution. Fatality rates and NNR were examined for correlation. Fatality rates were compared between states with trauma center clustering versus dispersion. Trauma center distribution and population density were evaluated. Spatial-lag regression determined the association between fatality rate and NNR, controlling for state-level demographics, population density, injury severity, trauma system resources, and socioeconomic factors. Results Fatality rates were spatially autocorrelated (Moran's I=0.35, p<0.01). Nine states had a clustered pattern (median NNR 0.55, IQR 0.48–0.60), 22 had a dispersed pattern (median NNR 2.00, IQR 1.68–3.99), and 10 had a random pattern (median NNR 0.90, IQR 0.85–1.00) of trauma center distribution. Fatality rate and NNR were correlated (ρ=0.34, p=0.03). Clustered states had a lower median injury fatality rate compared to dispersed states (56.9 [IQR 46.5–58.9] versus 64.9 [IQR 52.5–77.1], p=0.04). Dispersed compared to clustered states had more counties without a trauma center that had higher population density than counties with a trauma center (5.7% versus 1.2%, p<0.01). Spatial-lag regression demonstrated fatality rates increased 0.02/100,000persons for each unit increase in NNR (p<0.01). Conclusions Geographic distribution of trauma centers correlates with injury mortality, with more clustered state trauma centers associated with lower fatality rates. This may be a result of access relative to population density. These results may have implications for trauma system planning and requires further study to investigate underlying mechanisms PMID:26517780
Sea Level Budget along the East Coast of North America
NASA Astrophysics Data System (ADS)
Pease, A. M.; Davis, J. L.; Vinogradova, N. T.
2016-12-01
We analyzed tide gauge data, taken from 1955 to 2015, from 29 locations along the east coast of North America. A well-documented period of sea-level acceleration began around 1990. The sea level rate (referenced to epoch 1985.0) and acceleration (post-1990) are spatially and temporally variable, due to various physical processes, each of which is also spatially and temporally variable. To determine the sea-level budgets for rate and acceleration, we considered a number of major contributors to sea level change: ocean density and dynamics, glacial isostatic adjustment (GIA), the inverted barometer effect, and mass change associated with the Greenland Ice Sheet (GIS) and the Antarctic Ice Sheet (AIS). The geographic variability in the budgets for sea-level rate is dominated by GIA. At some sites, GIA is the largest contributor to the rate. The geographic variability in the budgets for sea-level acceleration is dominated by ocean dynamics and density and GIS mass loss. The figure below shows budgets for sea-level rate (left) and acceleration (right) for Key West, Fla., (top) and The Battery in New York City (bottom). The blue represents values (with error bar shown) estimated from tide gauge observations, and the yellow represents the total values estimated from the individual model contributions (each in red, green, cyan, pink, and black). The estimated totals for rate and acceleration are good matches to the tide-gauge inferences. To achieve a reasonable fit, a scaling factor (admittance) for the combined contribution of ocean dynamics and density was estimated; this admittance may reflect the low spatial sampling of the GECCO2 model we used, or other problems in modeling coastal sea-level. The significant contributions of mass loss to the acceleration enable us to predict that, if such mass-loss continues or increases, the character of sea-level change on the North American east coast will change in the next 50-100 years. In particular, whereas GIA presently dominates the spatial variability of sea-level change, mass loss from Greenland and Antarctica will dominate it by 2050-2100. However, the long-term contribution of ocean dynamics and density remain more of a question.
Zinc deficiency with reduced mastication impairs spatial memory in young adult mice.
Kida, Kumiko; Tsuji, Tadataka; Tanaka, Susumu; Kogo, Mikihiko
2015-12-01
Sufficient oral microelements such as zinc and fully chewing of foods are required to maintain cognitive function despite aging. No knowledge exists about the combination of factors such as zinc deficiency and reduced mastication on learning and memory. Here we show that tooth extraction only in 8-week-old mice did not change the density of glial fibrillary acidic protein-labeled astrocytes in the hippocampus or spatial memory parameters. However, tooth extraction followed by zinc deprivation strongly impaired spatial memory and led to an increase in astrocytic density in the hippocampal CA1 region. The impaired spatial performance in the zinc-deficient only (ZD) mice also coincided well with the increase in the astrocytic density in the hippocampal CA1 region. After switching both zinc-deficient groups to a normal diet with sufficient zinc, spatial memory recovered, and more time was spent in the quadrant with the goal in the probe test in the mice with tooth extraction followed by zinc deprivation (EZD) compared to the ZD mice. Interestingly, we found no differences in astrocytic density in the CA1 region among all groups at 22 weeks of age. Furthermore, the escape latency in a visible probe test at all times was longer in zinc-deficient groups than the others and demonstrated a negative correlation with body weight. No significant differences in escape latency were observed in the visible probe test among the ZD, EZD, and normal-fed control at 4 weeks (CT4w) groups in which body weight was standardized to that of the EZD group, or in the daily reduction in latency between the normal-fed control and CT4w groups. Our data showed that zinc-deficient feeding during a young age impairs spatial memory performance and leads to an increase in astrocytic density in the hippocampal CA1 region and that zinc-sufficient feeding is followed by recovery of the impaired spatial memory along with changes in astrocytic density. The combination of the two factors, zinc deficiency and reduced mastication, but not body weight, may inhibit recovery of impaired spatial learning. A zinc-sufficient diet is pivotal for maintaining spatial memory. Copyright © 2015 Elsevier Inc. All rights reserved.
Using multi-spectral imagery to detect and map stress induced by Russian wheat aphid
NASA Astrophysics Data System (ADS)
Backoulou, Georges Ferdinand
Scope and Method of Study. The rationale of this study was to assess the stress in wheat field induced by the Russian wheat aphid using multispectral imagery. The study was conducted to (a) determine the relationship between RWA and edaphic and topographic factors; (b) identify and quantify the spatial pattern of RWA infestation within wheat fields; (c) differentiate the stress induced by RWA from other stress causing factors. Data used for the analysis included RWA population density from the wheat field in, Texas, Colorado, Wyoming, and Nebraska, Digital Elevation Model from the Unites States Geological Survey (USGS), soil data from the Soil Survey Geographic database (SSURGO), and multispectral imagery acquired in the panhandle of Oklahoma. Findings and Conclusions. The study revealed that the population density of the Russian wheat aphid was related to topographic and edaphic factors. Slope and sand were predictor variables that were positively related to the density of RWA at the field level. The study has also demonstrated that stress induced by the RWA has a specific spatial pattern that can be distinguished from other stress causing factors using a combination of landscape metrics and topographic and edaphic characteristics of wheat fields. Further field-based studies using multispectral imagery and spatial pattern analysis are suggested. The suggestions require acquiring biweekly multispectral imagery and collecting RWA, topographic and edaphic data at the sampling points during the phonological growth development of wheat plants. This is an approach that may pretend to have great potential for site specific technique for the integrated pest management.
Skoracka, Anna; Lewandowski, Mariusz; Rector, Brian G; Szydło, Wiktoria; Kuczyński, Lechosław
2017-01-01
The wheat curl mite (WCM), Aceria tosichella Keifer, is a major pest of cereals worldwide that also comprises a complex of at least 16 genetic lineages with divergent physiological traits, including host associations and specificity. The goal of this study was to test the extent to which host-plant species and landscape spatial variation influence WCM presence and population density across the entire area of Poland (>311,000 km2). Three important findings arose from the results of the study. (1) The majority of WCM lineages analyzed exhibited variation in patterns of prevalence and/or population density on both spatial and host-associated scales. (2) Areas of occurrence and local abundance were delineated for specific WCM lineages and it was determined that the most pestiferous lineages are much less widespread than was expected, suggesting relatively recent introductions into Poland and the potential for further spread. (3) The 16 WCM lineages under study assorted within four discrete host assemblages, within which similar host preferences and host infestation patterns were detected. Of these four groups, one consists of lineages associated with cereals. In addition to improving basic ecological knowledge of a widespread arthropod herbivore, the results of this research identify high-risk areas for the presence of the most pestiferous WCM lineages in the study area (viz. the entirety of Poland). They also provide insight into the evolution of pest species of domesticated crops and facilitate testing of fundamental hypotheses about the ecological factors that shape this pest community.
Variation in spatial scale of competing polydomous twig-nesting ants in coffee agroecosystems
Mathis, Kaitlyn A.; Philpott, Stacy M.; Ramirez, Santiago R.
2016-01-01
Arboreal ants are both highly diverse and ecologically dominant in the tropics. This ecologically important group is particularly useful in ongoing efforts to understand processes that regulate species diversity and coexistence. Our study addresses how polydomy can influence patterns of nest occupation in competing arboreal ants. We examined the spatial structure of nest occupation (nest distance, abundance and density) in three polydomous co-occurring twig-nesting ant species (Pseudomyrmex simplex, P. ejectus and P. PSW-53) by mapping twigs occupied by ants from each species within plots in our study site. We then used two colony structure estimators (intraspecific aggression and cuticular hydrocarbon variation) to determine the relative degree of polydomy for each species. All work was conducted in coffee agroforests in Chiapas, Mexico. Our results revealed that the two species with highest abundance and nest density were also highly polydomous, where both species had either single or multiple non-aggressive colonies occupying nests on a large spatial scale (greater than the hectare level). Our results also indicate that the species with the lowest abundance and density is less polydomous, occupying several overlapping and territorial colonies at the hectare level in which multiple colonies never co-occur on the same host plant. These results contribute evidence that successful coexistence and highly polydomous colony structure may allow ants, through reduced intraspecific aggression, to successfully occupy more nests more densely than ant species that have multiple territorial colonies. Furthermore our study highlights the importance of considering intraspecific interactions when examining community assembly of ants. PMID:27795573
Champagne, Emilie; Moore, Ben D; Côté, Steeve D; Tremblay, Jean-Pierre
2018-03-01
Associational effects, that is, the influence of neighboring plants on herbivory suffered by a plant, are an outcome of forage selection. Although forage selection is a hierarchical process, few studies have investigated associational effects at multiple spatial scales. Because the nutritional quality of plants can be spatially structured, it might differently influence associational effects across multiple scales. Our objective was to determine the radius of influence of neighbor density and nutritional quality on balsam fir ( Abies balsamea ) herbivory by white-tailed deer ( Odocoileus virginianus ) in winter. We quantified browsing rates on fir and the density and quality of neighboring trees in a series of 10-year-old cutovers on Anticosti Island (Canada). We used cross-correlations to investigate relationships between browsing rates and the density and nutritional quality of neighboring trees at distances up to 1,000 m. Balsam fir and white spruce ( Picea glauca ) fiber content and dry matter in vitro true digestibility were correlated with fir browsing rate at the finest extra-patch scale (across distance of up to 50 m) and between cutover areas (300-400 m). These correlations suggest associational effects, that is, low nutritional quality of neighbors reduces the likelihood of fir herbivory (associational defense). Our results may indicate associational effects mediated by intraspecific variation in plant quality and suggest that these effects could occur at scales from tens to hundreds of meters. Understanding associational effects could inform strategies for restoration or conservation; for example, planting of fir among existing natural regeneration could be concentrated in areas of low nutritional quality.
Lewandowski, Mariusz; Rector, Brian G.; Szydło, Wiktoria
2017-01-01
The wheat curl mite (WCM), Aceria tosichella Keifer, is a major pest of cereals worldwide that also comprises a complex of at least 16 genetic lineages with divergent physiological traits, including host associations and specificity. The goal of this study was to test the extent to which host-plant species and landscape spatial variation influence WCM presence and population density across the entire area of Poland (>311,000 km2). Three important findings arose from the results of the study. (1) The majority of WCM lineages analyzed exhibited variation in patterns of prevalence and/or population density on both spatial and host-associated scales. (2) Areas of occurrence and local abundance were delineated for specific WCM lineages and it was determined that the most pestiferous lineages are much less widespread than was expected, suggesting relatively recent introductions into Poland and the potential for further spread. (3) The 16 WCM lineages under study assorted within four discrete host assemblages, within which similar host preferences and host infestation patterns were detected. Of these four groups, one consists of lineages associated with cereals. In addition to improving basic ecological knowledge of a widespread arthropod herbivore, the results of this research identify high-risk areas for the presence of the most pestiferous WCM lineages in the study area (viz. the entirety of Poland). They also provide insight into the evolution of pest species of domesticated crops and facilitate testing of fundamental hypotheses about the ecological factors that shape this pest community. PMID:28099506
Analysis of Pollution Hazard Intensity: A Spatial Epidemiology Case Study of Soil Pb Contamination
Ha, Hoehun; Rogerson, Peter A.; Olson, James R.; Han, Daikwon; Bian, Ling; Shao, Wanyun
2016-01-01
Heavy industrialization has resulted in the contamination of soil by metals from anthropogenic sources in Anniston, Alabama. This situation calls for increased public awareness of the soil contamination issue and better knowledge of the main factors contributing to the potential sources contaminating residential soil. The purpose of this spatial epidemiology research is to describe the effects of physical factors on the concentration of lead (Pb) in soil in Anniston AL, and to determine the socioeconomic and demographic characteristics of those residing in areas with higher soil contamination. Spatial regression models are used to account for spatial dependencies using these explanatory variables. After accounting for covariates and multicollinearity, results of the analysis indicate that lead concentration in soils varies markedly in the vicinity of a specific foundry (Foundry A), and that proximity to railroads explained a significant amount of spatial variation in soil lead concentration. Moreover, elevated soil lead levels were identified as a concern in industrial sites, neighborhoods with a high density of old housing, a high percentage of African American population, and a low percent of occupied housing units. The use of spatial modelling allows for better identification of significant factors that are correlated with soil lead concentrations. PMID:27649221
Analysis of Pollution Hazard Intensity: A Spatial Epidemiology Case Study of Soil Pb Contamination.
Ha, Hoehun; Rogerson, Peter A; Olson, James R; Han, Daikwon; Bian, Ling; Shao, Wanyun
2016-09-14
Heavy industrialization has resulted in the contamination of soil by metals from anthropogenic sources in Anniston, Alabama. This situation calls for increased public awareness of the soil contamination issue and better knowledge of the main factors contributing to the potential sources contaminating residential soil. The purpose of this spatial epidemiology research is to describe the effects of physical factors on the concentration of lead (Pb) in soil in Anniston AL, and to determine the socioeconomic and demographic characteristics of those residing in areas with higher soil contamination. Spatial regression models are used to account for spatial dependencies using these explanatory variables. After accounting for covariates and multicollinearity, results of the analysis indicate that lead concentration in soils varies markedly in the vicinity of a specific foundry (Foundry A), and that proximity to railroads explained a significant amount of spatial variation in soil lead concentration. Moreover, elevated soil lead levels were identified as a concern in industrial sites, neighborhoods with a high density of old housing, a high percentage of African American population, and a low percent of occupied housing units. The use of spatial modelling allows for better identification of significant factors that are correlated with soil lead concentrations.
NASA Astrophysics Data System (ADS)
Aguilar-Perera, Alfonso; Appeldoorn, Richard S.
2008-01-01
Despite an extensive study of the fish community off southwestern Puerto Rico, little information is available on the fish spatial distribution along an inshore-offshore, cross-shelf gradient containing a continuum of mangrove-seagrass-coral reefs. We investigated the spatial distribution of reef-associated fish species using a stratified sampling procedure. A total of 52,138 fishes were recorded, representing 102 species belonging to 32 families. Significant differences in mean fish density were evident among strata. Mean densities at shallow fore reefs and deep fore reefs (Romero key) were significantly higher compared to the rest of strata along the gradient. Mean densities of fishes in mangroves and seagrass (Montalva Bay) were comparable to those at shallow back reefs and deep fore reefs offshore (Turrumote), but lower to those inshore (Romero); the lowest fish densities were found in mangroves and seagrass (Montalva Bay) and seagrass (Romero and Corral). At least 17 species, in 7 families, were among the most common in terms of relative abundance representing 76% of the total individuals sampled. A detrended correspondence analysis (DCA) applied to more abundant fish species showed a spatial pattern in density distribution. Three major groupings were evident corresponding to mangroves and seagrass (Montalva Bay), shallow and deep reefs (Romero), and shallow and deep reefs (Corral and Turrumote). A cluster analysis on mean fish densities of the more abundant species revealed a consistent spatial distribution according to biotope by separating the ichthyofauna associated with mangroves, seagrass and that of shallow (back and fore) reefs, and deep fore reefs.
Role of environmental and antibiotic stress on Staphylococcus epidermidis biofilm microstructure.
Stewart, Elizabeth J; Satorius, Ashley E; Younger, John G; Solomon, Michael J
2013-06-11
Cellular clustering and separation of Staphylococcus epidermidis surface adherent biofilms were found to depend significantly on both antibiotic and environmental stress present during growth under steady flow. Image analysis techniques common to colloidal science were applied to image volumes acquired with high-resolution confocal laser scanning microscopy to extract spatial positions of individual bacteria in volumes of size ~30 × 30 × 15 μm(3). The local number density, cluster distribution, and radial distribution function were determined at each condition by analyzing the statistics of the bacterial spatial positions. Environmental stressors of high osmotic pressure (776 mM NaCl) and sublethal antibiotic dose (1.9 μg/mL vancomycin) decreased the average bacterial local number density 10-fold. Device-associated bacterial biofilms are frequently exposed to these environmental and antibiotic stressors while undergoing flow in the bloodstream. Characteristic density phenotypes associated with low, medium, and high local number densities were identified in unstressed S. epidermidis biofilms, while stressed biofilms contained medium- and low-density phenotypes. All biofilms exhibited clustering at length scales commensurate with cell division (~1.0 μm). However, density phenotypes differed in cellular connectivity at the scale of ~6 μm. On this scale, nearly all cells in the high- and medium-density phenotypes were connected into a single cluster with a structure characteristic of a densely packed disordered fluid. However, in the low-density phenotype, the number of clusters was greater, equal to 4% of the total number of cells, and structures were fractal in nature with d(f) =1.7 ± 0.1. The work advances the understanding of biofilm growth, informs the development of predictive models of transport and mechanical properties of biofilms, and provides a method for quantifying the kinetics of bacterial surface colonization as well as biofilm fracture and fragmentation.
Compact microwave imaging system to measure spatial distribution of plasma density
NASA Astrophysics Data System (ADS)
Ito, H.; Oba, R.; Yugami, N.; Nishida, Y.
2004-10-01
We have developed an advanced microwave interferometric system operating in the K band (18-27 GHz) with the use of a fan-shaped microwave based on a heterodyne detection system for measuring the spatial distribution of the plasma density. In order to make a simple, low-cost, and compact microwave interferometer with better spatial resolution, a microwave scattering technique by a microstrip antenna array is employed. Experimental results show that the imaging system with the microstrip antenna array can have finer spatial resolution than one with the diode antenna array and reconstruct a good spatially resolved image of the finite size dielectric phantoms placed between the horn antenna and the micro strip antenna array. The precise two-dimensional electron density distribution of the cylindrical plasma produced by an electron cyclotron resonance has been observed. As a result, the present imaging system is more suitable for a two- or three-dimensional display of the objects or stationary plasmas and it is possible to realize a compact microwave imaging system.
Fakunle, D O; Milam, A J; Furr-Holden, C D; Butler, J; Thorpe, R J; LaVeist, T A
2016-07-01
Studies have shown that communities with higher concentrations of low-income racial and ethnic minorities correlate with a greater presence of tobacco outlets. Community-level income has consistently been among the strongest predictors of tobacco outlet density. This study analyzes two Maryland geopolitical areas with similar racial concentrations yet differing income levels in an attempt to disentangle the race-income relationship with tobacco outlet density. In this cross-sectional examination of tobacco outlet and census tract-level sociodemographic data, Baltimore City, Maryland, and Prince George's County, Maryland, were geocoded to determine tobacco outlet density. Tobacco outlet density was defined as the mean number of tobacco outlets per 1000 persons per census tract. Comparisons of tobacco outlet density and sociodemographic variables were analysed via two-sample t-tests, and the direct effect of sociodemographic variables on tobacco outlet density for each area was analysed via spatial lag regressions. Prince George's County, the area with the higher income level ($77,190 vs $43,571), has a significantly lower tobacco outlet density than Baltimore City (P < 0.001). Prince George's County has a 67.5% Black population and an average of 3.94 tobacco outlets per 1000 persons per tract. By contrast, Baltimore City has a 65.3% Black population and an average of 7.95 tobacco outlets per 1000 persons per tract. Spatial lag regression model results indicate an inverse relationship between income and tobacco outlet density in Baltimore City and Prince George's County (β = -0.03, P < 0.01 &β = -0.01, P = 0.02, respectively), and a significant interaction term indicating a greater magnitude in the relationship between income and tobacco outlet density in Baltimore City (β = -0.05, P < 0.01). Results suggest that higher socio-economic status, even in primarily underrepresented racial and ethnic geopolitical areas, is linked to lower tobacco outlet density. Copyright © 2016 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
Theory of hydrodynamic transport in fluctuating electronic charge density wave states
NASA Astrophysics Data System (ADS)
Delacrétaz, Luca V.; Goutéraux, Blaise; Hartnoll, Sean A.; Karlsson, Anna
2017-11-01
We describe the collective hydrodynamic motion of an incommensurate charge density wave state in a clean electronic system. Our description simultaneously incorporates the effects of both pinning due to weak disorder and also phase relaxation due to proliferating dislocations. We show that the interplay between these two phenomena has important consequences for charge and momentum transport. For instance, it can lead to metal-insulator transitions. We furthermore identify signatures of fluctuating density waves in frequency and spatially resolved conductivities. Phase disordering is well known to lead to a large viscosity. We derive a precise formula for the phase relaxation rate in terms of the viscosity in the dislocation cores. We thereby determine the viscosity of the superconducting state of BSCCO from the observed melting dynamics of Abrikosov lattices and show that the result is consistent with dissipation into Bogoliubov quasiparticles.
On holographic entanglement density
NASA Astrophysics Data System (ADS)
Gushterov, Nikola I.; O'Bannon, Andy; Rodgers, Ronnie
2017-10-01
We use holographic duality to study the entanglement entropy (EE) of Conformal Field Theories (CFTs) in various spacetime dimensions d, in the presence of various deformations: a relevant Lorentz scalar operator with constant source, a temperature T , a chemical potential μ, a marginal Lorentz scalar operator with source linear in a spatial coordinate, and a circle-compactified spatial direction. We consider EE between a strip or sphere sub-region and the rest of the system, and define the "entanglement density" (ED) as the change in EE due to the deformation, divided by the sub-region's volume. Using the deformed CFTs above, we show how the ED's dependence on the strip width or sphere radius, L, is useful for characterizing states of matter. For example, the ED's small- L behavior is determined either by the dimension of the perturbing operator or by the first law of EE. For Lorentz-invariant renormalization group (RG) flows between CFTs, the "area theorem" states that the coefficient of the EE's area law term must be larger in the UV than in the IR. In these cases the ED must therefore approach zero from below as L→∞. However, when Lorentz symmetry is broken and the IR fixed point has different scaling from the UV, we find that the ED often approaches the thermal entropy density from above, indicating area theorem violation.
On Galactic Density Modeling in the Presence of Dust Extinction
NASA Astrophysics Data System (ADS)
Bovy, Jo; Rix, Hans-Walter; Green, Gregory M.; Schlafly, Edward F.; Finkbeiner, Douglas P.
2016-02-01
Inferences about the spatial density or phase-space structure of stellar populations in the Milky Way require a precise determination of the effective survey volume. The volume observed by surveys such as Gaia or near-infrared spectroscopic surveys, which have good coverage of the Galactic midplane region, is highly complex because of the abundant small-scale structure in the three-dimensional interstellar dust extinction. We introduce a novel framework for analyzing the importance of small-scale structure in the extinction. This formalism demonstrates that the spatially complex effect of extinction on the selection function of a pencil-beam or contiguous sky survey is equivalent to a low-pass filtering of the extinction-affected selection function with the smooth density field. We find that the angular resolution of current 3D extinction maps is sufficient for analyzing Gaia sub-samples of millions of stars. However, the current distance resolution is inadequate and needs to be improved by an order of magnitude, especially in the inner Galaxy. We also present a practical and efficient method for properly taking the effect of extinction into account in analyses of Galactic structure through an effective selection function. We illustrate its use with the selection function of red-clump stars in APOGEE using and comparing a variety of current 3D extinction maps.
Arenas-Montes, A; Paniagua, J; Arenas, A; Lorca-Oró, C; Carbonero, A; Cano-Terriza, D; García-Bocanegra, I
2016-10-01
An epidemiological study was carried out to determine the spatial-temporal trends and risk factors potentially involved in the seropositivity to bluetongue virus (BTV) in hunting areas with presence of red deer (Cervus elaphus). A total of 60 of 98 (61.2%; CI95% : 51.6-70.9) hunting areas sampled presented at least one seropositive red deer. Antibodies against BTV were detected in juvenile animals during the hunting seasons 2007/2008 to 2013/2014 in 15 of 98 (15.3%) hunting areas, which indicates an uninterrupted circulation of BTV in this period. A multivariate logistic regression model showed that the red deer density at hunting area level (>22 individuals/km(2) ), the annual abundance of Culicoides imicola (>1.4 mosquitoes/sampling) and the goat density at municipality level (>24.1 individuals/km(2) ) were factors significantly associated with BTV seropositivity in hunting areas. Control measures against BTV in the studied area include vaccination programmes in wild and domestic ruminants, movement control in areas with high densities and abundance of red deer and C. imicola, respectively. Considering the potential risk of BTV re-emergence, red deer should be included in the BT surveillance programmes in regions where these species share habitats with livestock. © 2014 Blackwell Verlag GmbH.
Rice, Marissa A; Hobbs, Lauren E; Wallace, Kelly J; Ophir, Alexander G
2017-09-01
Sex differences are well documented and are conventionally associated with intense sex-specific selection. For example, spatial memory is frequently better in males, presumably due to males' tendency to navigate large spaces to find mates. Alternatively, monogamy (in which sex-specific selection is relatively relaxed) should diminish or eliminate differences in spatial ability and the mechanisms associated with this behavior. Nevertheless, phenotypic differences between monogamous males and females persist, sometimes cryptically. We hypothesize that sex-specific cognitive demands are present in monogamous species that will influence neural and behavioral phenotypes. The effects of these demands should be observable in spatial learning performance and neural structures associated with spatial learning and memory. We analyzed spatial memory performance, hippocampal volume and cell density, and hippocampal oxytocin receptor (OTR) expression in the socially monogamous prairie vole. Compared to females, males performed better in a spatial memory and spatial learning test. Although we found no sex difference in hippocampal volume or cell density, male OTR density was significantly lower than females, suggesting that performance may be regulated by sub-cellular mechanisms within the hippocampus that are less obvious than classic neuroanatomical features. Our results suggest an expanded role for oxytocin beyond facilitating social interactions, which may function in part to integrate social and spatial information. Copyright © 2017 Elsevier Inc. All rights reserved.
Measurement of toroidal vessel eddy current during plasma disruption on J-TEXT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, L. J.; Yu, K. X.; Zhang, M., E-mail: zhangming@hust.edu.cn
2016-01-15
In this paper, we have employed a thin, printed circuit board eddy current array in order to determine the radial distribution of the azimuthal component of the eddy current density at the surface of a steel plate. The eddy current in the steel plate can be calculated by analytical methods under the simplifying assumptions that the steel plate is infinitely large and the exciting current is of uniform distribution. The measurement on the steel plate shows that this method has high spatial resolution. Then, we extended this methodology to a toroidal geometry with the objective of determining the poloidal distributionmore » of the toroidal component of the eddy current density associated with plasma disruption in a fusion reactor called J-TEXT. The preliminary measured result is consistent with the analysis and calculation results on the J-TEXT vacuum vessel.« less
Twenty years of changes in spatial association and community structure among desert perennials.
Miriti, Maria N
2007-05-01
I present results from analyses of 20 years of spatiotemporal dynamics in a desert perennial community. Plants were identified and mapped in a 1-ha permanent plot in Joshua Tree National Park (California, USA) in 1984. Plant size, mortality, and new seedlings were censused every five years through 2004. Two species, Ambrosia dumosa and Tetracoccus hallii, were dominant based on their relative abundance and ubiquitous distributions. Spatial analysis for distance indices (SADIE) identified regions of significantly high (patches) or low (gaps) densities. I used SADIE to test for (1) transience in the distribution of patches and gaps within species over time and (2) changes in juvenile-adult associations with conspecific adults and adults of the two dominant species over time. Plant performance was quantified in patches and gaps to determine plant responsiveness to local spatial associations. Species identity was found to influence associations between juveniles and adults. Juveniles of all species showed significant positive spatial associations with the dominant A. dumosa but not with T. hallii. The broad distribution of A. dumosa may increase the spatial extent of non-dominant species that are facilitated by this dominant. The spatial location of patches and gaps was generally consistent over time for adults but not juveniles. Observed variability in the locations of juvenile patches and gaps suggested that suitable locations for establishment were broad relative to occupied regions of the habitat, and that conditions for seed germination were independent of conditions for seedling survival. A dramatic change in spatial distributions and associations within and between species occurred after a major drought that influenced data from the final census. Positive associations between juveniles and adults of all species were found independent of previous associations and most species distributions contracted to areas that were previously characterized by low density. By linking performance to spatial distribution, results from this study offer a spatial context for plant-plant interactions within and among species. Community composition could be influenced both by individual species tolerances of abiotic conditions and by the competitive or facilitative interactions individuals exert over neighbors.
Spatial-size scaling of pedestrian groups under growing density conditions
NASA Astrophysics Data System (ADS)
Zanlungo, Francesco; Brščić, Dražen; Kanda, Takayuki
2015-06-01
We study the dependence on crowd density of the spatial size, configuration, and velocity of pedestrian social groups. We find that, in the investigated density range, the extension of pedestrian groups in the direction orthogonal to that of motion decreases linearly with the pedestrian density around them, both for two- and three-person groups. Furthermore, we observe that at all densities, three-person groups walk slower than two-person groups, and the latter are slower than individual pedestrians, the differences in velocities being weakly affected by density. Finally, we observe that three-person groups walk in a V-shaped formation regardless of density, with a distance between the pedestrians in the front and back again almost independent of density, although the configuration appears to be less stable at higher densities. These findings may facilitate the development of more realistic crowd dynamics models and simulators.
NASA Astrophysics Data System (ADS)
Michalak, Ł.; Canali, C. M.; Pederson, M. R.; Paulsson, M.; Benza, V. G.
2010-01-01
We consider tunneling transport through a Mn12 molecular magnet using spin density functional theory. A tractable methodology for constructing many-body wave functions from Kohn-Sham orbitals allows for the determination of spin-dependent matrix elements for use in transport calculations. The tunneling conductance at finite bias is characterized by peaks representing transitions between spin multiplets, separated by an energy on the order of the magnetic anisotropy. The energy splitting of the spin multiplets and the spatial part of their many-body wave functions, describing the orbital degrees of freedom of the excess charge, strongly affect the electronic transport, and can lead to negative differential conductance.
Michalak, Ł; Canali, C M; Pederson, M R; Paulsson, M; Benza, V G
2010-01-08
We consider tunneling transport through a Mn12 molecular magnet using spin density functional theory. A tractable methodology for constructing many-body wave functions from Kohn-Sham orbitals allows for the determination of spin-dependent matrix elements for use in transport calculations. The tunneling conductance at finite bias is characterized by peaks representing transitions between spin multiplets, separated by an energy on the order of the magnetic anisotropy. The energy splitting of the spin multiplets and the spatial part of their many-body wave functions, describing the orbital degrees of freedom of the excess charge, strongly affect the electronic transport, and can lead to negative differential conductance.
Duncan, Dustin T; Kawachi, Ichiro; White, Kellee; Williams, David R
2013-08-01
The geography of recreational open space might be inequitable in terms of minority neighborhood racial/ethnic composition and neighborhood poverty, perhaps due in part to residential segregation. This study evaluated the association between minority neighborhood racial/ethnic composition, neighborhood poverty, and recreational open space in Boston, Massachusetts (US). Across Boston census tracts, we computed percent non-Hispanic Black, percent Hispanic, and percent families in poverty as well as recreational open space density. We evaluated spatial autocorrelation in study variables and in the ordinary least squares (OLS) regression residuals via the Global Moran's I. We then computed Spearman correlations between the census tract socio-demographic characteristics and recreational open space density, including correlations adjusted for spatial autocorrelation. After this, we computed OLS regressions or spatial regressions as appropriate. Significant positive spatial autocorrelation was found for neighborhood socio-demographic characteristics (all p value = 0.001). We found marginally significant positive spatial autocorrelation in recreational open space (Global Moran's I = 0.082; p value = 0.053). However, we found no spatial autocorrelation in the OLS regression residuals, which indicated that spatial models were not appropriate. There was a negative correlation between census tract percent non-Hispanic Black and recreational open space density (r S = -0.22; conventional p value = 0.005; spatially adjusted p value = 0.019) as well as a negative correlation between predominantly non-Hispanic Black census tracts (>60 % non-Hispanic Black in a census tract) and recreational open space density (r S = -0.23; conventional p value = 0.003; spatially adjusted p value = 0.007). In bivariate and multivariate OLS models, percent non-Hispanic Black in a census tract and predominantly Black census tracts were associated with decreased density of recreational open space (p value < 0.001). Consistent with several previous studies in other geographic locales, we found that Black neighborhoods in Boston were less likely to have recreational open spaces, indicating the need for policy interventions promoting equitable access. Such interventions may contribute to reductions and disparities in obesity.
Qin, Qianqian; Guo, Wei; Tang, Weiming; Mahapatra, Tanmay; Wang, Liyan; Zhang, Nanci; Ding, Zhengwei; Cai, Chang; Cui, Yan; Sun, Jiangping
2017-04-01
Studies have shown a recent upsurge in human immunodeficiency virus (HIV) burden among men who have sex with men (MSM) in China, especially in urban areas. For intervention planning and resource allocation, spatial analyses of HIV/AIDS case-clusters were required to identify epidemic foci and trends among MSM in China. Information regarding MSM recorded as HIV/AIDS cases during 2006-2015 were extracted from the National Case Reporting System. Demographic trends were determined through Cochran-Armitage trend tests. Distribution of case-clusters was examined using spatial autocorrelation. Spatial-temporal scan was used to detect disease clustering. Spatial correlations between cases and socioenvironmental factors were determined by spatial regression. Between 2006 and 2015, in China, 120 371 HIV/AIDS cases were identified among MSM. Newly identified HIV/AIDS cases among self-reported MSM increased from 487 cases in 2006 to >30 000 cases in 2015. Among those HIV/AIDS cases recorded during 2006-2015, 47.0% were 20-29 years old and 24.9% were aged 30-39 years. Based on clusters of HIV/AIDS cases identified through spatial analysis, the epidemic was concentrated among MSM in large cities. Spatial-temporal clusters contained municipalities, provincial capitals, and main cities such as Beijing, Shanghai, Chongqing, Chengdu, and Guangzhou. Spatial regression analysis showed that sociodemographic indicators such as population density, per capita gross domestic product, and number of county-level medical institutions had statistically significant positive correlations with HIV/AIDS among MSM. Assorted spatial analyses revealed an increasingly concentrated HIV epidemic among young MSM in Chinese cities, calling for targeted health education and intensive interventions at an early age. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
Exploring the Spatial and Temporal Organization of a Cell’s Proteome
Beck, Martin; Topf, Maya; Frazier, Zachary; Tjong, Harianto; Xu, Min; Zhang, Shihua; Alber, Frank
2013-01-01
To increase our current understanding of cellular processes, such as cell signaling and division, knowledge is needed about the spatial and temporal organization of the proteome at different organizational levels. These levels cover a wide range of length and time scales: from the atomic structures of macromolecules for inferring their molecular function, to the quantitative description of their abundance, and distribution in the cell. Emerging new experimental technologies are greatly increasing the availability of such spatial information on the molecular organization in living cells. This review addresses three fields that have significantly contributed to our understanding of the proteome’s spatial and temporal organization: first, methods for the structure determination of individual macromolecular assemblies, specifically the fitting of atomic structures into density maps generated from electron microscopy techniques; second, research that visualizes the spatial distributions of these complexes within the cellular context using cryo electron tomography techniques combined with computational image processing; and third, methods for the spatial modeling of the dynamic organization of the proteome, specifically those methods for simulating reaction and diffusion of proteins and complexes in crowded intracellular fluids. The long-term goal is to integrate the varied data about a proteome’s organization into a spatially explicit, predictive model of cellular processes. PMID:21094684
Regional density of private dentists: empirical evidence from Austria.
Gächter, Martin; Schwazer, Peter; Theurl, Engelbert; Winner, Hannes
2014-02-01
We investigated the determinants of disparities in the regional density of private dentists in Austria. Specifically, we focused on the relationship between the density of private dentists and their public counterparts, thereby controlling for other possible covariates of dentist density. Dentist density was measured at the district level. We used panel data of dentist density from 121 Austrian districts over the years 2001-2008. We applied a Hausman-Taylor framework to cope with possible endogeneity and to control for cross-district effects in the dentist density. A significant negative relationship was found between the density of private and public dentists, indicating a substitution effect between the two dentist groups. A significant positive spatial relationship also existed for private and public dentists in the neighboring regions. Dental capacities in public and private hospitals and dental laboratories run by the public health insurance system did not have a significant effect on private dentist density. Although a strong negative relationship existed between private and public dentists within the districts, one should not draw the conclusion that private dentists in Austria are close substitutes for public dentists. Such a conclusion would require further empirical analysis on the utilization patterns of dental services and their relationships with financing mechanisms. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Integrating resource selection into spatial capture-recapture models for large carnivores
K. M. Proffitt; J. F. Goldberg; M. Hebblewhite; R. Russell; B. S. Jimenez; H. S. Robinson; Kristine Pilgrim; Michael Schwartz
2015-01-01
Wildlife managers need reliable methods to estimate large carnivore densities and population trends; yet large carnivores are elusive, difficult to detect, and occur at low densities making traditional approaches intractable. Recent advances in spatial capture-recapture (SCR) models have provided new approaches for monitoring trends in wildlife abundance and...
Spatial heterogeneity in the carrying capacity of sika deer in Japan
Iijima, Hayato; Ueno, Mayumi
2016-01-01
Abstract Carrying capacity is 1 driver of wildlife population dynamics. Although in previous studies carrying capacity was considered to be a fixed entity, it may differ among locations due to environmental variation. The factors underlying variability in carrying capacity, however, have rarely been examined. Here, we investigated spatial heterogeneity in the carrying capacity of Japanese sika deer ( Cervus nippon ) from 2005 to 2014 in Yamanashi Prefecture, central Japan (mesh with grid cells of 5.5×4.6 km) by state-space modeling. Both carrying capacity and density dependence differed greatly among cells. Estimated carrying capacities ranged from 1.34 to 98.4 deer/km 2 . According to estimated population dynamics, grid cells with larger proportions of artificial grassland and deciduous forest were subject to lower density dependence and higher carrying capacity. We conclude that population dynamics of ungulates may vary spatially through spatial variation in carrying capacity and that the density level for controlling ungulate abundance should be based on the current density level relative to the carrying capacity for each area. PMID:29692470
NASA Astrophysics Data System (ADS)
Šprlák, M.; Han, S.-C.; Featherstone, W. E.
2017-12-01
Rigorous modelling of the spherical gravitational potential spectra from the volumetric density and geometry of an attracting body is discussed. Firstly, we derive mathematical formulas for the spatial analysis of spherical harmonic coefficients. Secondly, we present a numerically efficient algorithm for rigorous forward modelling. We consider the finite-amplitude topographic modelling methods as special cases, with additional postulates on the volumetric density and geometry. Thirdly, we implement our algorithm in the form of computer programs and test their correctness with respect to the finite-amplitude topography routines. For this purpose, synthetic and realistic numerical experiments, applied to the gravitational field and geometry of the Moon, are performed. We also investigate the optimal choice of input parameters for the finite-amplitude modelling methods. Fourth, we exploit the rigorous forward modelling for the determination of the spherical gravitational potential spectra inferred by lunar crustal models with uniform, laterally variable, radially variable, and spatially (3D) variable bulk density. Also, we analyse these four different crustal models in terms of their spectral characteristics and band-limited radial gravitation. We demonstrate applicability of the rigorous forward modelling using currently available computational resources up to degree and order 2519 of the spherical harmonic expansion, which corresponds to a resolution of 2.2 km on the surface of the Moon. Computer codes, a user manual and scripts developed for the purposes of this study are publicly available to potential users.
NASA Astrophysics Data System (ADS)
Naito, A. T.; Cairns, D. M.; Feldman, R. M.; Grant, W. E.
2014-12-01
Shrub expansion is one of the most recognized components of terrestrial Arctic change. While experimental work has provided valuable insights into its fine-scale drivers and implications, the contribution of shrub reproductive characteristics to their spatial patterns is poorly understood at broader scales. Building upon our previous work in river valleys in northern Alaska, we developed a C#-based spatially-explicit model that simulates historic landscape-scale shrub establishment between the 1970s and the late 2000s on a yearly time-step while accounting for parameters relating to different reproduction modes (clonal development with and without the "mass effect" and short-distance dispersal), as well as the presence and absence of the interaction of hydrologic constraints using the topographic wetness index. We examined these treatments on floodplains, valley slopes, and interfluves in the Ayiyak, Colville, and Kurupa River valleys. After simulating 30 landscape realizations using each parameter combination, we quantified the spatial characteristics (patch density, edge density, patch size variability, area-weighted shape index, area-weighted fractal dimension index, and mean distance between patches) of the resulting shrub patches on the simulation end date using FRAGSTATS. We used Principal Components Analysis to determine which treatments produced spatial characteristics most similar to those observed in the late 2000s. Based upon our results, we hypothesize that historic shrub expansion in northern Alaska has been driven in part by clonal reproduction with the "mass effect" or short-distance dispersal (< 5 m). The interactive effect of hydrologic characteristics, however, is less clear. These hypotheses may then be tested in future work involving field observations. Given the potential that climate change may facilitate a shift from a clonal to a sexual reproductive strategy, this model may facilitate predictions regarding future Arctic vegetation patterns.
Influence of macular pigment optical density spatial distribution on intraocular scatter.
Putnam, Christopher M; Bland, Pauline J; Bassi, Carl J
This study evaluated the summed measures of macular pigment optical density (MPOD) spatial distribution and their effects on intraocular scatter using a commercially available device (C-Quant, Oculus, USA). A customized heterochromatic flicker photometer (cHFP) device was used to measure MPOD spatial distribution across the central 16° using a 1° stimulus. MPOD was calculated as a discrete measure and summed measures across the central 1°, 3.3°, 10° and 16° diameters. Intraocular scatter was determined as a mean of 5 trials in which reliability and repeatability measures were met using the C-Quant. MPOD spatial distribution maps were constructed and the effects of both discrete and summed values on intraocular scatter were examined. Spatial mapping identified mean values for discrete MPOD [0.32 (s.d.=0.08)], MPOD summed across central 1° [0.37 (s.d.=0.11)], MPOD summed across central 3.3° [0.85 (s.d.=0.20)], MPOD summed across central 10° [1.60 (s.d.=0.35)] and MPOD summed across central 16° [1.78 (s.d.=0.39)]. Mean intraocular scatter was 0.83 (s.d.=0.16) log units. While there were consistent trends for an inverse relationship between MPOD and scatter, these relationships were not statistically significant. Correlations between the highest and lowest quartiles of MPOD within the central 1° were near significance. While there was an overall trend of decreased intraocular forward scatter with increased MPOD consistent with selective short wavelength visible light attenuation, neither discrete nor summed values of MPOD significantly influence intraocular scatter as measured by the C-Quant device. Published by Elsevier España, S.L.U.
Wang, Hongqing; Piazza, Sarai C.; Sharp, Leigh A.; Stagg, Camille L.; Couvillion, Brady R.; Steyer, Gregory D.; McGinnis, Thomas E.
2016-01-01
Soil bulk density (BD), soil organic matter (SOM) content, and a conversion factor between SOM and soil organic carbon (SOC) are often used in estimating SOC sequestration and storage. Spatial variability in BD, SOM, and the SOM–SOC conversion factor affects the ability to accurately estimate SOC sequestration, storage, and the benefits (e.g., land building area and vertical accretion) associated with wetland restoration efforts, such as marsh creation and sediment diversions. There are, however, only a few studies that have examined large-scale spatial variability in BD, SOM, and SOM–SOC conversion factors in coastal wetlands. In this study, soil cores, distributed across the entire coastal Louisiana (approximately 14,667 km2) were used to examine the regional-scale spatial variability in BD, SOM, and the SOM–SOC conversion factor. Soil cores for BD and SOM analyses were collected during 2006–09 from 331 spatially well-distributed sites in the Coastwide Reference Monitoring System network. Soil cores for the SOM–SOC conversion factor analysis were collected from 15 sites across coastal Louisiana during 2006–07. Results of a split-plot analysis of variance with incomplete block design indicated that BD and SOM varied significantly at a landscape level, defined by both hydrologic basins and vegetation types. Vertically, BD and SOM varied significantly among different vegetation types. The SOM–SOC conversion factor also varied significantly at the landscape level. This study provides critical information for the assessment of the role of coastal wetlands in large regional carbon budgets and the estimation of carbon credits from coastal restoration.
Density fingering in spatially modulated Hele-Shaw cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toth, Tamara; Horvath, Dezso; Toth, Agota
Density fingering of the chlorite-tetrathionate reaction has been studied experimentally in a periodically heterogeneous Hele-Shaw cell where the heterogeneity is introduced in the form of spatial modulation of gap width along the front. Depending on the spatial wavelength, gap width, and chemical composition, three types of cellular structures have been observed. The initial evolution is characterized by dispersion curves, while the long time behavior is described by the change in the autocorrelation function of the front profile and in the mixing length of the patterns.
Wang, Xiao-Li; Chang, Yu; Chen, Hong-Wei; Hu, Yuan-Man; Jiao, Lin-Lin; Feng, Yu-Ting; Wu, Wen; Wu, Hai-Feng
2014-04-01
Based on field inventory data and vegetation index EVI (enhanced vegetation index), the spatial pattern of the forest biomass in the Great Xing'an Mountains, Heilongjiang Province was quantitatively analyzed. Using the spatial analysis and statistics tools in ArcGIS software, the impacts of climatic zone, elevation, slope, aspect and vegetation type on the spatial pattern of forest biomass were explored. The results showed that the forest biomass in the Great Xing'an Mountains was 350 Tg and spatially aggregated with great increasing potentials. Forest biomass density in the cold temperate humid zone (64.02 t x hm(-2)) was higher than that in the temperate humid zone (60.26 t x hm(-2)). The biomass density of each vegetation type was in the order of mixed coniferous forest (65.13 t x hm(-2)) > spruce-fir forest (63.92 t x hm(-2)) > Pinus pumila-Larix gmelinii forest (63.79 t x hm(-2)) > Pinus sylvestris var. mongolica forest (61.97 t x hm(-2)) > Larix gmelinii forest (61.40 t x hm(-2)) > deciduous broadleaf forest (58.96 t x hm(-2)). With the increasing elevation and slope, the forest biomass density first decreased and then increased. The forest biomass density in the shady slopes was greater than that in the sunny slopes. The spatial pattern of forest biomass in the Great Xing' an Mountains exhibited a heterogeneous pattern due to the variation of climatic zone, vegetation type and topographical factor. This spatial heterogeneity needs to be accounted when evaluating forest biomass at regional scales.
Determinants of single family residential water use across scales in four western US cities.
Chang, Heejun; Bonnette, Matthew Ryan; Stoker, Philip; Crow-Miller, Britt; Wentz, Elizabeth
2017-10-15
A growing body of literature examines urban water sustainability with increasing evidence that locally-based physical and social spatial interactions contribute to water use. These studies however are based on single-city analysis and often fail to consider whether these interactions occur more generally. We examine a multi-city comparison using a common set of spatially-explicit water, socioeconomic, and biophysical data. We investigate the relative importance of variables for explaining the variations of single family residential (SFR) water uses at Census Block Group (CBG) and Census Tract (CT) scales in four representative western US cities - Austin, Phoenix, Portland, and Salt Lake City, - which cover a wide range of climate and development density. We used both ordinary least squares regression and spatial error regression models to identify the influence of spatial dependence on water use patterns. Our results show that older downtown areas show lower water use than newer suburban areas in all four cities. Tax assessed value and building age are the main determinants of SFR water use across the four cities regardless of the scale. Impervious surface area becomes an important variable for summer water use in all cities, and it is important in all seasons for arid environments such as Phoenix. CT level analysis shows better model predictability than CBG analysis. In all cities, seasons, and spatial scales, spatial error regression models better explain the variations of SFR water use. Such a spatially-varying relationship of urban water consumption provides additional evidence for the need to integrate urban land use planning and municipal water planning. Copyright © 2017 Elsevier B.V. All rights reserved.
Beck, Jan; Sieber, Andrea
2010-01-01
Background Several authors, most prominently Jared Diamond (1997, Guns, Germs and Steel), have investigated biogeographic determinants of human history and civilization. The timing of the transition to an agricultural lifestyle, associated with steep population growth and consequent societal change, has been suggested to be affected by the availability of suitable organisms for domestication. These factors were shown to quantitatively explain some of the current global inequalities of economy and political power. Here, we advance this approach one step further by looking at climate and soil as sole determining factors. Methodology/Principal Findings As a simplistic ‘null model’, we assume that only climate and soil conditions affect the suitability of four basic landuse types – agriculture, sedentary animal husbandry, nomadic pastoralism and hunting-and-gathering. Using ecological niche modelling (ENM), we derive spatial predictions of the suitability for these four landuse traits and apply these to the Old World and Australia. We explore two aspects of the properties of these predictions, conflict potential and population density. In a calculation of overlap of landuse suitability, we map regions of potential conflict between landuse types. Results are congruent with a number of real, present or historical, regions of conflict between ethnic groups associated with different landuse traditions. Furthermore, we found that our model of agricultural suitability explains a considerable portion of population density variability. We mapped residuals from this correlation, finding geographically highly structured deviations that invite further investigation. We also found that ENM of agricultural suitability correlates with a metric of local wealth generation (Gross Domestic Product, Purchasing Power Parity). Conclusions/Significance From simplified assumptions on the links between climate, soil and landuse we are able to provide good predictions on complex features of human geography. The spatial distribution of deviations from ENM predictions identifies those regions requiring further investigation of potential explanations. Our findings and methodological approaches may be of applied interest, e.g., in the context of climate change. PMID:20463959
Beck, Jan; Sieber, Andrea
2010-05-05
Several authors, most prominently Jared Diamond (1997, Guns, Germs and Steel), have investigated biogeographic determinants of human history and civilization. The timing of the transition to an agricultural lifestyle, associated with steep population growth and consequent societal change, has been suggested to be affected by the availability of suitable organisms for domestication. These factors were shown to quantitatively explain some of the current global inequalities of economy and political power. Here, we advance this approach one step further by looking at climate and soil as sole determining factors. As a simplistic 'null model', we assume that only climate and soil conditions affect the suitability of four basic landuse types - agriculture, sedentary animal husbandry, nomadic pastoralism and hunting-and-gathering. Using ecological niche modelling (ENM), we derive spatial predictions of the suitability for these four landuse traits and apply these to the Old World and Australia. We explore two aspects of the properties of these predictions, conflict potential and population density. In a calculation of overlap of landuse suitability, we map regions of potential conflict between landuse types. Results are congruent with a number of real, present or historical, regions of conflict between ethnic groups associated with different landuse traditions. Furthermore, we found that our model of agricultural suitability explains a considerable portion of population density variability. We mapped residuals from this correlation, finding geographically highly structured deviations that invite further investigation. We also found that ENM of agricultural suitability correlates with a metric of local wealth generation (Gross Domestic Product, Purchasing Power Parity). From simplified assumptions on the links between climate, soil and landuse we are able to provide good predictions on complex features of human geography. The spatial distribution of deviations from ENM predictions identifies those regions requiring further investigation of potential explanations. Our findings and methodological approaches may be of applied interest, e.g., in the context of climate change.
2013-01-01
Background The distribution of anopheline mosquitoes is determined by temporally dynamic environmental and human-associated variables, operating over a range of spatial scales. Macro-spatial short-term trends are driven predominantly by prior (lagged) seasonal changes in climate, which regulate the abundance of suitable aquatic larval habitats. Micro-spatial distribution is determined by the location of these habitats, proximity and abundance of available human bloodmeals and prevailing micro-climatic conditions. The challenge of analysing—in a single coherent statistical framework—the lagged and distributed effect of seasonal climate changes simultaneously with the effects of an underlying hierarchy of spatial factors has hitherto not been addressed. Methods Data on Anopheles gambiae sensu stricto and A. funestus collected from households in Kilifi district, Kenya, were analysed using polynomial distributed lag generalized linear mixed models (PDL GLMMs). Results Anopheline density was positively and significantly associated with amount of rainfall between 4 to 47 days, negatively and significantly associated with maximum daily temperature between 5 and 35 days, and positively and significantly associated with maximum daily temperature between 29 and 48 days in the past (depending on Anopheles species). Multiple-occupancy households harboured greater mosquito numbers than single-occupancy households. A significant degree of mosquito clustering within households was identified. Conclusions The PDL GLMMs developed here represent a generalizable framework for analysing hierarchically-structured data in combination with explanatory variables which elicit lagged effects. The framework is a valuable tool for facilitating detailed understanding of determinants of the spatio-temporal distribution of Anopheles. Such understanding facilitates delivery of targeted, cost-effective and, in certain circumstances, preventative antivectorial interventions against malaria. PMID:24330615
The cause of spatial structure in solar He I 1083 nm multiplet images
NASA Astrophysics Data System (ADS)
Leenaarts, Jorrit; Golding, Thomas; Carlsson, Mats; Libbrecht, Tine; Joshi, Jayant
2016-10-01
Context. The He I 1083 nm is a powerful diagnostic for inferring properties of the upper solar chromosphere, in particular for the magnetic field. The basic formation of the line in one-dimensional models is well understood, but the influence of the complex three-dimensional structure of the chromosphere and corona has however never been investigated. This structure must play an essential role because images taken in He I 1083 nm show structures with widths down to 100 km. Aims: We aim to understand the effect of the three-dimensional temperature and density structure in the solar atmosphere on the formation of the He I 1083 nm line. Methods: We solved the non-LTE radiative transfer problem assuming statistical equilibrium for a simple nine-level helium atom that nevertheless captures all essential physics. As a model atmosphere we used a snapshot from a 3D radiation-MHD simulation computed with the Bifrost code. Ionising radiation from the corona was self-consistently taken into account. Results: The emergent intensity in the He I 1083 nm is set by the source function and the opacity in the upper chromosphere. The former is dominated by scattering of photospheric radiation and does not vary much with spatial location. The latter is determined by the photonionisation rate in the He I ground state continuum, as well as the electron density in the chromosphere. The spatial variation of the flux of ionising radiation is caused by the spatially-structured emissivity of the ionising photons from material at T ≈ 100 kK in the transition region. The hotter coronal material produces more ionising photons, but the resulting radiation field is smooth and does not lead to small-scale variation of the UV flux. The corrugation of the transition region further increases the spatial variation of the amount of UV radiation in the chromosphere. Finally we find that variations in the chromospheric electron density also cause strong variation in He I 1083 nm opacity. We compare our findings to observations using SST, IRIS and SDO/AIA data. A movie associated to Fig. 4 is available at http://www.aanda.org
Linear and non-linear flow mode in Pb-Pb collisions at √{sNN} = 2.76 TeV
NASA Astrophysics Data System (ADS)
Acharya, S.; Adamová, D.; Adolfsson, J.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Alba, J. L. B.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altenkamper, L.; Altsybeev, I.; Alves Garcia Prado, C.; An, M.; Andrei, C.; Andreou, D.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barioglio, L.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Blair, J. T.; Blau, D.; Blume, C.; Boca, G.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonomi, G.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Capon, A. A.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cerello, P.; Chandra, S.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Chowdhury, T.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Concas, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Costanza, S.; Crkovská, J.; Crochet, P.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; de Souza, R. D.; Degenhardt, H. F.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Doremalen, L. V. V.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Duggal, A. K.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Esumi, S.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Fabbietti, L.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Garg, P.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Gay Ducati, M. B.; Germain, M.; Ghosh, J.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grion, N.; Gronefeld, J. M.; Grosa, F.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hassan, H.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hills, C.; Hippolyte, B.; Hladky, J.; Hohlweger, B.; Horak, D.; Hornung, S.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Iga Buitron, S. A.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Isakov, V.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jaelani, S.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jercic, M.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Ketzer, B.; Khabanova, Z.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kielbowicz, M. M.; Kileng, B.; Kim, D.; Kim, D. W.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Konyushikhin, M.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lai, Y. S.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lavicka, R.; Lazaridis, L.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lehrbach, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lim, B.; Lindal, S.; Lindenstruth, V.; Lindsay, S. W.; Lippmann, C.; Lisa, M. A.; Litichevskyi, V.; Ljunggren, H. M.; Llope, W. J.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Loncar, P.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martinez, J. A. L.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Masson, E.; Mastroserio, A.; Mathis, A. M.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mihaylov, D.; Mihaylov, D. L.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Mohisin Khan, M.; Montes, E.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Myrcha, J. W.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Narayan, A.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao de Oliveira, R. A.; Nellen, L.; Nesbo, S. V.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Nobuhiro, A.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Pagano, P.; Paić, G.; Palni, P.; Pan, J.; Pandey, A. K.; Panebianco, S.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, J.; Parmar, S.; Passfeld, A.; Pathak, S. P.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira, L. G.; Pereira da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Pezzi, R. P.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pliquett, F.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Rokita, P. S.; Ronchetti, F.; Rosas, E. D.; Rosnet, P.; Rossi, A.; Rotondi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rueda, O. V.; Rui, R.; Russo, R.; Rustamov, A.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Saha, S. K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H. P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Scheid, H. S.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M. O.; Schmidt, M.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shahoyan, R.; Shaikh, W.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Szczepankiewicz, A.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thakur, S.; Thomas, D.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Tripathy, S.; Trogolo, S.; Trombetta, G.; Tropp, L.; Trubnikov, V.; Trzaska, W. H.; Trzeciak, B. A.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wenzel, S. C.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Willsher, E.; Windelband, B.; Witt, W. E.; Yalcin, S.; Yamakawa, K.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zmeskal, J.; Zou, S.; Alice Collaboration
2017-10-01
The second and the third order anisotropic flow, V2 and V3, are mostly determined by the corresponding initial spatial anisotropy coefficients, ε2 and ε3, in the initial density distribution. In addition to their dependence on the same order initial anisotropy coefficient, higher order anisotropic flow, Vn (n > 3), can also have a significant contribution from lower order initial anisotropy coefficients, which leads to mode-coupling effects. In this Letter we investigate the linear and non-linear modes in higher order anisotropic flow Vn for n = 4, 5, 6 with the ALICE detector at the Large Hadron Collider. The measurements are done for particles in the pseudorapidity range | η | < 0.8 and the transverse momentum range 0.2
Salehi, Mohammad Saied; Mirzaii-Dizgah, Iraj; Vasaghi-Gharamaleki, Behnoosh; Zamiri, Mohammad Javad
2016-11-09
Hindlimb unloading (HU) can cause motion and cognition dysfunction, although its cellular and molecular mechanisms are not well understood. The aim of the present study was to determine the stereological parameters of the brain areas involved in motion (motor cortex) and spatial learning - memory (hippocampus) under an HU condition. Sixteen adult male rats, kept under a 12 : 12 h light-dark cycle, were divided into two groups of freely moving (n=8) and HU (n=8) rats. The volume of motor cortex and hippocampus, the numerical cell density of neurons in layers I, II-III, V, and VI of the motor cortex, the entire motor cortex as well as the primary motor cortex, and the numerical density of the CA1, CA3, and dentate gyrus subregions of the hippocampus were estimated. No significant differences were observed in the evaluated parameters. Our results thus indicated that motor cortical and hippocampal atrophy and cell loss may not necessarily be involved in the motion and spatial learning memory impairment in the rat.
NASA Astrophysics Data System (ADS)
Ranaivomiarana, Narindra; Irisarri, François-Xavier; Bettebghor, Dimitri; Desmorat, Boris
2018-04-01
An optimization methodology to find concurrently material spatial distribution and material anisotropy repartition is proposed for orthotropic, linear and elastic two-dimensional membrane structures. The shape of the structure is parameterized by a density variable that determines the presence or absence of material. The polar method is used to parameterize a general orthotropic material by its elasticity tensor invariants by change of frame. A global structural stiffness maximization problem written as a compliance minimization problem is treated, and a volume constraint is applied. The compliance minimization can be put into a double minimization of complementary energy. An extension of the alternate directions algorithm is proposed to solve the double minimization problem. The algorithm iterates between local minimizations in each element of the structure and global minimizations. Thanks to the polar method, the local minimizations are solved explicitly providing analytical solutions. The global minimizations are performed with finite element calculations. The method is shown to be straightforward and efficient. Concurrent optimization of density and anisotropy distribution of a cantilever beam and a bridge are presented.
NASA Technical Reports Server (NTRS)
Donahue, T. M.; Wasser, B.
1977-01-01
Analysis of OGO-6 OI green line photometer results was carried out for 8 cases when the alignment of the spacecraft was such that local emission rates could be determined below the altitude of maximum emission and down to about 80 km. Results show a variation on a scale of 6 deg to 8 deg in latitude between regions where the emission rate increases rapidly between 90 and 95 km and regions where it increases slowly from 80 km to 95 km. Latitude-altitude maps of iso-emissivity contours and iso-density contours for oxygen concentration are presented. The latter are computed under 3 assumptions concerning excitation mechanisms. Comparisons of the spatial variations of oxygen density with the results of a time dependent theory suggest the regions of strong downward transport alternate on a scale of about 1000 km with regions of weak transport near 90 km. In the first case conversion of O to O3 at night appears to be overwhelmed by downward transport of O.
Linear and non-linear flow mode in Pb–Pb collisions at s NN = 2.76 TeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acharya, S.; Adamová, D.; Adolfsson, J.
The second and the third order anisotropic flow, V 2 and V 3, are mostly determined by the corresponding initial spatial anisotropy coefficients, and , in the initial density distribution. In addition to their dependence on the same order initial anisotropy coefficient, higher order anisotropic flow, V n (n > 3), can also have a significant contribution from lower order initial anisotropy coefficients, which leads to mode-coupling effects. In this Letter we investigate the linear and non-linear modes in higher order anisotropic flow V n for n = 4, 5, 6 with the ALICE detector at the Large Hadron Collider.more » The measurements are done for particles in the pseudorapidity range |η| < 0.8 and the transverse momentum range 0.2 < p T < 5.0 GeV/c as a function of collision centrality. The results are compared with theoretical calculations and provide important constraints on the initial conditions, including initial spatial geometry and its fluctuations, as well as the ratio of the shear viscosity to entropy density of the produced system.« less
NASA Astrophysics Data System (ADS)
Zhu, Liang; Wang, Youguo
2018-07-01
In this paper, a rumor diffusion model with uncertainty of human behavior under spatio-temporal diffusion framework is established. Take physical significance of spatial diffusion into account, a diffusion threshold is set under which the rumor is not a trend topic and only spreads along determined physical connections. Heterogeneity of degree distribution and distance distribution has also been considered in theoretical model at the same time. The global existence and uniqueness of classical solution are proved with a Lyapunov function and an approximate classical solution in form of infinite series is constructed with a system of eigenfunction. Simulations and numerical solutions both on Watts-Strogatz (WS) network and Barabási-Albert (BA) network display the variation of density of infected connections from spatial and temporal dimensions. Relevant results show that the density of infected connections is dominated by network topology and uncertainty of human behavior at threshold time. With increase of social capability, rumor diffuses to the steady state in a higher speed. And the variation trends of diffusion size with uncertainty are diverse on different artificial networks.
Linear and non-linear flow mode in Pb–Pb collisions at s NN = 2.76 TeV
Acharya, S.; Adamová, D.; Adolfsson, J.; ...
2017-08-04
The second and the third order anisotropic flow, V 2 and V 3, are mostly determined by the corresponding initial spatial anisotropy coefficients, and , in the initial density distribution. In addition to their dependence on the same order initial anisotropy coefficient, higher order anisotropic flow, V n (n > 3), can also have a significant contribution from lower order initial anisotropy coefficients, which leads to mode-coupling effects. In this Letter we investigate the linear and non-linear modes in higher order anisotropic flow V n for n = 4, 5, 6 with the ALICE detector at the Large Hadron Collider.more » The measurements are done for particles in the pseudorapidity range |η| < 0.8 and the transverse momentum range 0.2 < p T < 5.0 GeV/c as a function of collision centrality. The results are compared with theoretical calculations and provide important constraints on the initial conditions, including initial spatial geometry and its fluctuations, as well as the ratio of the shear viscosity to entropy density of the produced system.« less
DENSITY: software for analysing capture-recapture data from passive detector arrays
Efford, M.G.; Dawson, D.K.; Robbins, C.S.
2004-01-01
A general computer-intensive method is described for fitting spatial detection functions to capture-recapture data from arrays of passive detectors such as live traps and mist nets. The method is used to estimate the population density of 10 species of breeding birds sampled by mist-netting in deciduous forest at Patuxent Research Refuge, Laurel, Maryland, U.S.A., from 1961 to 1972. Total density (9.9 ? 0.6 ha-1 mean ? SE) appeared to decline over time (slope -0.41 ? 0.15 ha-1y-1). The mean precision of annual estimates for all 10 species pooled was acceptable (CV(D) = 14%). Spatial analysis of closed-population capture-recapture data highlighted deficiencies in non-spatial methodologies. For example, effective trapping area cannot be assumed constant when detection probability is variable. Simulation may be used to evaluate alternative designs for mist net arrays where density estimation is a study goal.
Hollands, Simon; Campbell, M Karen; Gilliland, Jason; Sarma, Sisira
2013-10-01
To investigate the association between fast-food restaurant density and adult body mass index (BMI) in Canada. Individual-level BMI and confounding variables were obtained from the 2007-2008 Canadian Community Health Survey master file. Locations of the fast-food and full-service chain restaurants and other non-chain restaurants were obtained from the 2008 Infogroup Canada business database. Food outlet density (fast-food, full-service and other) per 10,000 population was calculated for each Forward Sortation Area (FSA). Global (Moran's I) and local indicators of spatial autocorrelation of BMI were assessed. Ordinary least squares (OLS) and spatial auto-regressive error (SARE) methods were used to assess the association between local food environment and adult BMI in Canada. Global and local spatial autocorrelation of BMI were found in our univariate analysis. We found that OLS and SARE estimates were very similar in our multivariate models. An additional fast-food restaurant per 10,000 people at the FSA-level is associated with a 0.022kg/m(2) increase in BMI. On the other hand, other restaurant density is negatively related to BMI. Fast-food restaurant density is positively associated with BMI in Canada. Results suggest that restricting availability of fast-food in local neighborhoods may play a role in obesity prevention. © 2013.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boella, E.; Fiúza, F.; Novo, A. Stockem
Here, a numerical study on ion acceleration in electrostatic shock waves is presented, with the aim of determining the best plasma configuration to achieve quasi-monoenergetic ion beams in laser-driven systems. It was recently shown that tailored near-critical density plasmas characterized by a long-scale decreasing rear density profile lead to beams with low energy spread (Fiúza et al 2012 Phys. Rev. Lett. 109 215001). In this work, a detailed parameter scan investigating different plasma scale lengths is carried out. As result, the optimal plasma spatial scale length that allows for minimizing the energy spread while ensuring a significant reflection of ionsmore » by the shock is identified. Furthermore, a new configuration where the required profile has been obtained by coupling micro layers of different densities is proposed. Lastly, results show that this new engineered approach is a valid alternative, guaranteeing a low energy spread with a higher level of controllability.« less
Hasegawa, K; Mori, T; Yamazaki, C
2017-01-01
The spatial scale and density-dependent effects of non-native brown trout Salmo trutta on species richness of fish assemblages were examined at 48 study sites in Mamachi Stream, a tributary of Chitose River, Hokkaido, Japan. The density of age ≥1 year S. trutta was high in the upstream side of the main stem of Mamachi Stream. Fish species richness increased with increasing area of study sites (habitat size), but the increasing magnitude of the species richness with area decreased with increasing age of ≥1 year S. trutta density. The relationships between age ≥1 year S. trutta, however, and presence-absence of each species seemed to be different among species. Species richness was also determined by location and physical environmental variables, i.e. it was high on the downstream side and in structurally complex environments. © 2016 The Fisheries Society of the British Isles.
NASA Astrophysics Data System (ADS)
Barrera-Ballesteros, Jorge K.; Heckman, Timothy M.; Zhu, Guangtun B.; Zakamska, Nadia L.; Sánchez, Sebastian F.; Law, David; Wake, David; Green, Jenny E.; Bizyaev, Dmitry; Oravetz, Daniel; Simmons, Audrey; Malanushenko, Elena; Pan, Kaike; Roman Lopes, Alexandre; Lane, Richard R.
2016-12-01
We present the stellar surface mass density versus gas metallicity (Σ*-Z) relation for more than 500 000 spatially resolved star-forming resolution elements (spaxels) from a sample of 653 disc galaxies included in the SDSS IV MaNGA survey. We find a tight relation between these local properties, with higher metallicities as the surface density increases. This relation extends over three orders of magnitude in the surface mass density and a factor of 4 in metallicity. We show that this local relationship can simultaneously reproduce two well-known properties of disc galaxies: their global mass-metallicity relationship and their radial metallicity gradients. We also find that the Σ*-Z relation is largely independent of the galaxy's total stellar mass and specific star formation rate (sSFR), except at low stellar mass and high sSFR. These results suggest that in the present-day universe local properties play a key role in determining the gas-phase metallicity in typical disc galaxies.
Boella, E.; Fiúza, F.; Novo, A. Stockem; ...
2018-02-01
Here, a numerical study on ion acceleration in electrostatic shock waves is presented, with the aim of determining the best plasma configuration to achieve quasi-monoenergetic ion beams in laser-driven systems. It was recently shown that tailored near-critical density plasmas characterized by a long-scale decreasing rear density profile lead to beams with low energy spread (Fiúza et al 2012 Phys. Rev. Lett. 109 215001). In this work, a detailed parameter scan investigating different plasma scale lengths is carried out. As result, the optimal plasma spatial scale length that allows for minimizing the energy spread while ensuring a significant reflection of ionsmore » by the shock is identified. Furthermore, a new configuration where the required profile has been obtained by coupling micro layers of different densities is proposed. Lastly, results show that this new engineered approach is a valid alternative, guaranteeing a low energy spread with a higher level of controllability.« less
Io's Sodium Corona and Spatially Extended Cloud: A Consistent Flux Speed Distribution
NASA Technical Reports Server (NTRS)
Smyth, William H.; Combi, Michael R.
1997-01-01
For Io neutral cloud calculations, an SO2 source strength of approximately 4x10(exp 27) molecules/sec was determined by successfully matching the SO2(+) density profile near the satellite deduced from magnetometer data acquired by the Galileo spacecraft during its close flyby on December 7, 1995. The incomplete collision source velocity distribution for SO2 is the same as recently determined for the trace species atomic sodium by Smyth and Combi (1997). Estimates for the total energy loss rate (i.e. power) of O and S atoms escaping Io were also determined and imply a significant pickup current and a significant reduction in the local planetary magnetic field near Io.
NASA Astrophysics Data System (ADS)
Ciepłuch, C.; Mooney, P.; Jacob, R.; Zheng, J.; Winstanely, A. C.
2011-12-01
New trends in GIS such as Volunteered Geographical Information (VGI), Citizen Science, and Urban Sensing, have changed the shape of the geoinformatics landscape. The OpenStreetMap (OSM) project provided us with an exciting, evolving, free and open solution as a base dataset for our geoserver and spatial data provider for our research. OSM is probably the best known and best supported example of VGI and user generated spatial content on the Internet. In this paper we will describe current results from the development of quality indicators for measures for OSM data. Initially we have analysed the Ireland OSM data in grid cells (5km) to gather statistical data about the completeness, accuracy, and fitness for purpose of the underlying spatial data. This analysis included: density of user contributions, spatial density of points and polygons, types of tags and metadata used, dominant contributors in a particular area or for a particular geographic feature type, etc. There greatest OSM activity and spatial data density is highly correlated with centres of large population. The ability to quantify and assess if VGI, such as OSM, is of sufficient quality for mobile mapping applications and Location-based services is critical to the future success of VGI as a spatial data source for these technologies.
Silicone Molding and Lifetime Testing of Peripheral Nerve Interfaces for Neuroprostheses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupte, Kimaya; Tolosa, Vanessa
Implantable peripheral nerve cuffs have a large application in neuroprostheses as they can be used to restore sensation to those with upper limb amputations. Modern day prosthetics, while lessening the pain associated with phantom limb syndrome, have limited fine motor control and do not provide sensory feedback to patients. Sensory feedback with prosthetics requires communication between the nervous system and limbs, and is still a challenge to accomplish with amputees. Establishing this communication between the peripheral nerves in the arm and artificial limbs is vital as prosthetics research aims to provide sensory feedback to amputees. Peripheral nerve cuffs restore sensationmore » by electrically stimulating certain parts of the nerve in order to create feeling in the hand. Cuff electrodes have an advantage over standard electrodes as they have high selective stimulation by bringing the electrical interface close to the neural tissue in order to selectively activate targeted regions of a peripheral nerve. In order to further improve the selective stimulation of these nerve cuffs, there is need for finer spatial resolution among electrodes. One method to achieve a higher spatial resolution is to increase the electrode density on the cuff itself. Microfabrication techniques can be used to achieve this higher electrode density. Using L-Edit, a layout editor, microfabricated peripheral nerve cuffs were designed with a higher electrode density than the current model. This increase in electrode density translates to an increase in spatial resolution by at least one order of magnitude. Microfabricated devices also have two separate components that are necessary to understand before implantation: lifetime of the device and assembly to prevent nerve damage. Silicone molding procedures were optimized so that devices do not damage nerves in vivo, and lifetime testing was performed on test microfabricated devices to determine their lifetime in vivo. Future work of this project would include fabricating some of the designed devices and seeing how they compare to the current cuffs in terms of their electrical performance, lifetime, shape, and mechanical properties.« less
[Natural forming causes of China population distribution].
Fang, Yu; Ouyang, Zhi-Yun; Zheng, Hua; Xiao, Yi; Niu, Jun-Feng; Chen, Sheng-Bin; Lu, Fei
2012-12-01
The diverse natural environment in China causes the spatial heterogeneity of China population distribution. It is essential to understand the interrelations between the population distribution pattern and natural environment to enhance the understanding of the man-land relationship and the realization of the sustainable management for the population, resources, and environment. This paper analyzed the China population distribution by adopting the index of population density (PD) in combining with spatial statistic method and Lorenz curve, and discussed the effects of the natural factors on the population distribution and the interrelations between the population distribution and 16 indices including average annual precipitation (AAP), average annual temperature (AAT), average annual sunshine duration (AASD), precipitation variation (PV), temperature variation (TV), sunshine duration variation (SDV), relative humidity (RH), aridity index (AI), warmth index ( WI), > or = 5 degrees C annual accumulated temperature (AACT), average elevation (AE), relative height difference (RHD), surface roughness (SR), water system density (WSD), net primary productivity (NPP), and shortest distance to seashore (SDTS). There existed an obvious aggregation phenomenon in the population distribution in China. The PD was high in east China, medium in central China, and low in west China, presenting an obvious positive spatial association. The PD was significantly positively correlated with WSD, AAT, AAP, NPP, AACT, PV, RH, and WI, and significantly negatively correlated with RHD, AE, SDV, SR, and SDTS. The climate factors (AAT, WI, PV, and NPP), topography factors (SR and RHD), and water system factor (WSD) together determined the basic pattern of the population distribution in China. It was suggested that the monitoring of the eco-environment in the east China of high population density should be strengthened to avoid the eco-environmental degradation due to the expanding population, and the conservation of the eco-environment in the central and west China with vulnerable eco-environment should also be strengthened to enhance the population carrying ability of these regions and to mitigate the eco-environmental pressure in the east China of high population density.
Coherent manipulation of spin correlations in the Hubbard model
NASA Astrophysics Data System (ADS)
Wurz, N.; Chan, C. F.; Gall, M.; Drewes, J. H.; Cocchi, E.; Miller, L. A.; Pertot, D.; Brennecke, F.; Köhl, M.
2018-05-01
We coherently manipulate spin correlations in a two-component atomic Fermi gas loaded into an optical lattice using spatially and time-resolved Ramsey spectroscopy combined with high-resolution in situ imaging. This technique allows us not only to imprint spin patterns but also to probe the static magnetic structure factor at an arbitrary wave vector, in particular, the staggered structure factor. From a measurement along the diagonal of the first Brillouin zone of the optical lattice, we determine the magnetic correlation length and the individual spatial spin correlators. At half filling, the staggered magnetic structure factor serves as a sensitive thermometer, which we employ to study the equilibration in the spin and density sector during a slow quench of the lattice depth.
NASA Technical Reports Server (NTRS)
Takahashi, Kazue; Anderson, Brian J.
1992-01-01
Magnetic field measurements made with the AMPTE CCE spacecraft are used to investigate the distribution of ULF energy in the inner magnetosphere. The data base is employed to examine the spatial distribution of ULF energy. The spatial distribution of wave power and spectral structures are used to identify several pulsation types, including multiharmonic toroidal oscillations; equatorial compressional Pc 3 oscillations; second harmonic poloidal oscillations; and nightside compressional oscillations. The frequencies of the toroidal oscillations are applied to determine the statistical radial profile of the plasma mass density and Alfven velocity. A clear signature of the plasma pause in the profiles of these average parameters is found.
Alcohol outlet density and violence: A geographically weighted regression approach.
Cameron, Michael P; Cochrane, William; Gordon, Craig; Livingston, Michael
2016-05-01
We investigate the relationship between outlet density (of different types) and violence (as measured by police activity) across the North Island of New Zealand, specifically looking at whether the relationships vary spatially. We use New Zealand data at the census area unit (approximately suburb) level, on police-attended violent incidents and outlet density (by type of outlet), controlling for population density and local social deprivation. We employed geographically weighted regression to obtain both global average and locally specific estimates of the relationships between alcohol outlet density and violence. We find that bar and night club density, and licensed club density (e.g. sports clubs) have statistically significant and positive relationships with violence, with an additional bar or night club is associated with nearly 5.3 additional violent events per year, and an additional licensed club associated with 0.8 additional violent events per year. These relationships do not show significant spatial variation. In contrast, the effects of off-licence density and restaurant/café density do exhibit significant spatial variation. However, the non-varying effects of bar and night club density are larger than the locally specific effects of other outlet types. The relationships between outlet density and violence vary significantly across space for off-licences and restaurants/cafés. These results suggest that in order to minimise alcohol-related harms, such as violence, locally specific policy interventions are likely to be necessary. [Cameron MP, Cochrane W, Gordon C, Livingston M. Alcohol outlet density and violence: A geographically weighted regression approach. Drug Alcohol Rev 2016;35:280-288]. © 2015 Australasian Professional Society on Alcohol and other Drugs.
Langenheim, V.E.; Roberts, C.W.; McCabe, C.A.; McPhee, D.K.; Tilden, J.E.; Jachens, R.C.
2006-01-01
This isostatic residual gravity map is part of a three-dimensional mapping effort focused on the subsurface distribution of rocks of the Sonoma volcanic field in Napa and Sonoma counties, northern California. This map will serve as a basis for modeling the shapes of basins beneath the Santa Rosa Plain and Napa and Sonoma Valleys, and for determining the location and geometry of faults within the area. Local spatial variations in the Earth's gravity field (after accounting for variations caused by elevation, terrain, and deep crustal structure explained below) reflect the distribution of densities in the mid to upper crust. Densities often can be related to rock type, and abrupt spatial changes in density commonly mark lithologic boundaries. High-density basement rocks exposed within the northern San Francisco Bay area include those of the Mesozoic Franciscan Complex and Great Valley Sequence present in the mountainous areas of the quadrangle. Alluvial sediment and Tertiary sedimentary rocks are characterized by low densities. However, with increasing depth of burial and age, the densities of these rocks may become indistinguishable from those of basement rocks. Tertiary volcanic rocks are characterized by a wide range in densities, but, on average, are less dense than the Mesozoic basement rocks. Isostatic residual gravity values within the map area range from about -41 mGal over San Pablo Bay to about 11 mGal near Greeg Mountain 10 km east of St. Helena. Steep linear gravity gradients are coincident with the traces of several Quaternary strike-slip faults, most notably along the West Napa fault bounding the west side of Napa Valley, the projection of the Hayward fault in San Pablo Bay, the Maacama Fault, and the Rodgers Creek fault in the vicinity of Santa Rosa. These gradients result from juxtaposing dense basement rocks against thick Tertiary volcanic and sedimentary rocks.
Ross, M P; Shumlak, U
2016-10-01
The ZaP-HD flow Z-pinch project provides a platform to explore how shear flow stabilized Z-pinches could scale to high-energy-density plasma (plasma with pressures exceeding 1 Mbar) and fusion reactor conditions. The Z-pinch is a linear plasma confinement geometry in which the plasma carries axial electric current and is confined by its self-induced magnetic field. ZaP-HD generates shear stabilized, axisymmetric Z-pinches with stable lifetimes approaching 60 μs. The goal of the project is to increase the plasma density and temperature compared to the previous ZaP project by compressing the plasma to smaller radii (≈1 mm). Radial and axial plasma electron density structure is measured using digital holographic interferometry (DHI), which provides the necessary fine spatial resolution. ZaP-HD's DHI system uses a 2 ns Nd:YAG laser pulse with a second harmonic generator (λ = 532 nm) to produce holograms recorded by a Nikon D3200 digital camera. The holograms are numerically reconstructed with the Fresnel transform reconstruction method to obtain the phase shift caused by the interaction of the laser beam with the plasma. This provides a two-dimensional map of line-integrated electron density, which can be Abel inverted to determine the local number density. The DHI resolves line-integrated densities down to 3 × 10 20 m -2 with spatial resolution near 10 μm. This paper presents the first application of Fresnel transform reconstruction as an analysis technique for a plasma diagnostic, and it analyzes the method's accuracy through study of synthetic data. It then presents an Abel inversion procedure that utilizes data on both sides of a Z-pinch local number density profile to maximize profile symmetry. Error estimation and Abel inversion are applied to the measured data.
Walsh, Michael G; Haseeb, Ma
2015-01-01
Ebola virus disease (EVD) is an emerging infectious disease of zoonotic origin that has been responsible for high mortality and significant social disruption in West and Central Africa. Zoonotic transmission of EVD requires contact between susceptible human hosts and the reservoir species for Ebolaviruses, which are believed to be fruit bats. Nevertheless, features of the landscape that may facilitate such points of contact have not yet been adequately identified. Nor have spatial dependencies between zoonotic EVD transmission and landscape structures been delineated. This investigation sought to describe the spatial relationship between zoonotic EVD transmission events, or spillovers, and population density and vegetation cover. An inhomogeneous Poisson process model was fitted to all precisely geolocated zoonotic transmissions of EVD in West and Central Africa. Population density was strongly associated with spillover; however, there was significant interaction between population density and green vegetation cover. In areas of very low population density, increasing vegetation cover was associated with a decrease in risk of zoonotic transmission, but as population density increased in a given area, increasing vegetation cover was associated with increased risk of zoonotic transmission. This study showed that the spatial dependencies of Ebolavirus spillover were associated with the distribution of population density and vegetation cover in the landscape, even after controlling for climate and altitude. While this is an observational study, and thus precludes direct causal inference, the findings do highlight areas that may be at risk for zoonotic EVD transmission based on the spatial configuration of important features of the landscape.
Spatial variability of wildland fuel characteristics in northern Rocky Mountain ecosystems
Robert E. Keane; Kathy Gray; Valentina Bacciu
2012-01-01
We investigated the spatial variability of a number of wildland fuel characteristics for the major fuel components found in six common northern Rocky Mountain ecosystems. Surface fuel characteristics of loading, particle density, bulk density, and mineral content were measured for eight fuel components - four downed dead woody fuel size classes (1, 10, 100, 1000 hr),...
Lucretia E. Olson; John R. Squires; Robert J. Oakleaf; Zachary P. Wallace; Patricia L. Kennedy
2017-01-01
Grassland and shrub-steppe ecosystems are increasingly threatened by anthropogenic activities. Loss of native habitats may negatively impact important small mammal prey species. Little information, however, is available on the impact of habitat variability on density of small mammal prey species at broad spatial scales. We examined the relationship between small mammal...
O'Neil, Shawn T; Bump, Joseph K; Beyer, Dean E
2017-11-01
Understanding landscape patterns in mortality risk is crucial for promoting recovery of threatened and endangered species. Humans affect mortality risk in large carnivores such as wolves ( Canis lupus ), but spatiotemporally varying density dependence can significantly influence the landscape of survival. This potentially occurs when density varies spatially and risk is unevenly distributed. We quantified spatiotemporal sources of variation in survival rates of gray wolves ( C. lupus ) during a 21-year period of population recovery in the Upper Peninsula of Michigan, USA. We focused on mapping risk across time using Cox Proportional Hazards (CPH) models with time-dependent covariates, thus exploring a shifting mosaic of survival. Extended CPH models and time-dependent covariates revealed influences of seasonality, density dependence and experience, as well as individual-level factors and landscape predictors of risk. We used results to predict the shifting landscape of risk at the beginning, middle, and end of the wolf recovery time series. Survival rates varied spatially and declined over time. Long-term change was density-dependent, with landscape predictors such as agricultural land cover and edge densities contributing negatively to survival. Survival also varied seasonally and depended on individual experience, sex, and resident versus transient status. The shifting landscape of survival suggested that increasing density contributed to greater potential for human conflict and wolf mortality risk. Long-term spatial variation in key population vital rates is largely unquantified in many threatened, endangered, and recovering species. Variation in risk may indicate potential for source-sink population dynamics, especially where individuals preemptively occupy suitable territories, which forces new individuals into riskier habitat types as density increases. We encourage managers to explore relationships between adult survival and localized changes in population density. Density-dependent risk maps can identify increasing conflict areas or potential habitat sinks which may persist due to high recruitment in adjacent habitats.
A spatial mark–resight model augmented with telemetry data
Sollmann, Rachel; Gardner, Beth; Parsons, Arielle W.; Stocking, Jessica J.; McClintock, Brett T.; Simons, Theodore R.; Pollock, Kenneth H.; O’Connell, Allan F.
2013-01-01
Abundance and population density are fundamental pieces of information for population ecology and species conservation, but they are difficult to estimate for rare and elusive species. Mark-resight models are popular for estimating population abundance because they are less invasive and expensive than traditional mark-recapture. However, density estimation using mark-resight is difficult because the area sampled must be explicitly defined, historically using ad-hoc approaches. We develop a spatial mark-resight model for estimating population density that combines spatial resighting data and telemetry data. Incorporating telemetry data allows us to inform model parameters related to movement and individual location. Our model also allows 2. The model presented here will have widespread utility in future applications, especially for species that are not naturally marked.
Carbon footprints of cities and other human settlements in the UK
NASA Astrophysics Data System (ADS)
Minx, Jan; Baiocchi, Giovanni; Wiedmann, Thomas; Barrett, John; Creutzig, Felix; Feng, Kuishuang; Förster, Michael; Pichler, Peter-Paul; Weisz, Helga; Hubacek, Klaus
2013-09-01
A growing body of literature discusses the CO2 emissions of cities. Still, little is known about emission patterns across density gradients from remote rural places to highly urbanized areas, the drivers behind those emission patterns and the global emissions triggered by consumption in human settlements—referred to here as the carbon footprint. In this letter we use a hybrid method for estimating the carbon footprints of cities and other human settlements in the UK explicitly linking global supply chains to local consumption activities and associated lifestyles. This analysis comprises all areas in the UK, whether rural or urban. We compare our consumption-based results with extended territorial CO2 emission estimates and analyse the driving forces that determine the carbon footprint of human settlements in the UK. Our results show that 90% of the human settlements in the UK are net importers of CO2 emissions. Consumption-based CO2 emissions are much more homogeneous than extended territorial emissions. Both the highest and lowest carbon footprints can be found in urban areas, but the carbon footprint is consistently higher relative to extended territorial CO2 emissions in urban as opposed to rural settlement types. The impact of high or low density living remains limited; instead, carbon footprints can be comparatively high or low across density gradients depending on the location-specific socio-demographic, infrastructural and geographic characteristics of the area under consideration. We show that the carbon footprint of cities and other human settlements in the UK is mainly determined by socio-economic rather than geographic and infrastructural drivers at the spatial aggregation of our analysis. It increases with growing income, education and car ownership as well as decreasing household size. Income is not more important than most other socio-economic determinants of the carbon footprint. Possibly, the relationship between lifestyles and infrastructure only impacts carbon footprints significantly at higher spatial granularity.
Terahertz Quantum Cascade Structures Using Step Wells And Longitudinal Optical-Phonon Scattering
2009-06-01
emit many photons, which allows for differential quantum efficiencies greater than unity and hence higher power output. QCLs have been successfully...maintained. The step in the well allows for high injection efficiency due to the spatial separation of the wavefunctions. A step quantum well, in which at...III.D.34), the photon density is determined to be ( )thiphotonphoton IILeAn − Γ = ητ (III.D.35) where the internal quantum efficiency
Probabilistic Model for Laser Damage to the Human Retina
2012-03-01
the beam. Power density may be measured in radiant exposure, J cm2 , or by irradiance , W cm2 . In the experimental database used in this study and...to quan- tify a binary response, either lethal or non-lethal, within a population such as insects or rats. In directed energy research, probit...value of the normalized Arrhenius damage integral. In a one-dimensional simulation, the source term is determined as a spatially averaged irradiance (W
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forme, F.R.E.; Fontaine, D.; Wahlund, J.E.
UHF and VHF data for the EISCAT incoherent scatter radar facility in northern Scandinavia is presented. Electron and ion temperatures, electron density, and ion drift velocity were measured from heights of 280 to 1500 km. Enhanced ion acoustic fluctuations are more observable with VHF than UHF radar due to wavelength effects. The fluctuations are usually associated with a large flux of precipitating electrons with energies from 100 ev to 10 kev. The spatial extent of the turbulent regions are determined. 23 refs., 6 figs.
NASA Astrophysics Data System (ADS)
Wu, Ying; Hurley, John P.; Ji, Qing; Kwan, Joe; Leung, Ka-Ngo
2009-03-01
We present recent work on a prototype compact neutron generator for associated particle imaging (API). API uses alpha particles that are produced simultaneously with neutrons in the deuterium-tritium (2D(3T,n)4α) fusion reaction to determine the direction of the neutrons upon exiting the reaction. This method determines the spatial position of each neutron interaction and requires the neutrons to be generated from a small spot in order to achieve high spatial resolution. The ion source for API is designed to produce a focused ion beam with a beam spot diameter of 1-mm or less on the target. We use an axial type neutron generator with a predicted neutron yield of 108 n/s for a 50 μA D/T ion beam current accelerated to 80 kV. The generator utilizes an RF planar spiral antenna at 13.56 MHz to create a highly efficient inductively coupled plasma at the ion source. Experimental results show that beams with an atomic ion fraction of over 80% can be obtained while utilizing only 100 watts of RF power in the ion source. A single acceleration gap with a secondary electron suppression electrode is used in the tube. Experimental results from ion source testing, such as the current density, atomic ion fraction, electron temperature, and electron density will be discussed.
Carrier Decay and Diffusion Dynamics in Single-Crystalline CdTe as seen via Microphotoluminescence
NASA Astrophysics Data System (ADS)
Mascarenhas, Angelo; Fluegel, Brian; Alberi, Kirstin; Zhang, Yong-Hang
2015-03-01
The ability to spatially resolve the degree to which extended defects impact carrier diffusion lengths and lifetimes is important for determining upper limits for defect densities in semiconductor devices. We show that a new spatially and temporally resolved photoluminescence (PL) imaging technique can be used to accurately extract carrier lifetimes in the immediate vicinity of dark-line defects in CdTe/MgCdTe double heterostructures. A series of PL images captured during the decay process show that extended defects with a density of 1.4x10-5 cm-2 deplete photogenerated charge carriers from the surrounding semiconductor material on a nanosecond time scale. The technique makes it possible to elucidate the interplay between nonradiative carrier recombination and carrier diffusion and reveals that they both combine to degrade the PL intensity over a fractional area that is much larger than the physical size of the defects. Carrier lifetimes are correctly determined from numerical simulations of the decay behavior by taking these two effects into account. Our study demonstrates that it is crucial to measure and account for the influence of local defects in the measurement of carrier lifetime and diffusion, which are key transport parameters for the design and modeling of advanced solar-cell and light-emitting devices. We acknowledge the financial support of the Department of Energy Office of Science under Grant No. DE-AC36-08GO28308.
NASA Astrophysics Data System (ADS)
Tompkins, Adrian; Ermert, Volker; Di Giuseppe, Francesca
2013-04-01
In order to better address the role of population dynamics and surface hydrology in the assessment of malaria risk, a new dynamical disease model been developed at ICTP, known as VECTRI: VECtor borne disease community model of ICTP, TRIeste (VECTRI). The model accounts for the temperature impact on the larvae, parasite and adult vector populations. Local host population density affects the transmission intensity, and the model thus reproduces the differences between peri-urban and rural transmission noted in Africa. A new simple pond model framework represents surface hydrology. The model can be used on with spatial resolutions finer than 10km to resolve individual health districts and thus can be used as a planning tool. Results of the models representation of interannual variability and longer term projections of malaria transmission will be shown for Africa. These will show that the model represents the seasonality and spatial variations of malaria transmission well matching a wide range of survey data of parasite rate and entomological inoculation rate (EIR) from across West and East Africa taken in the period prior to large-scale interventions. The model is used to determine the sensitivity of malaria risk to climate variations, both in rainfall and temperature, and then its use in a prototype forecasting system coupled with ECMWF forecasts will be demonstrated.
Inflation in a closed universe
NASA Astrophysics Data System (ADS)
Ratra, Bharat
2017-11-01
To derive a power spectrum for energy density inhomogeneities in a closed universe, we study a spatially-closed inflation-modified hot big bang model whose evolutionary history is divided into three epochs: an early slowly-rolling scalar field inflation epoch and the usual radiation and nonrelativistic matter epochs. (For our purposes it is not necessary to consider a final dark energy dominated epoch.) We derive general solutions of the relativistic linear perturbation equations in each epoch. The constants of integration in the inflation epoch solutions are determined from de Sitter invariant quantum-mechanical initial conditions in the Lorentzian section of the inflating closed de Sitter space derived from Hawking's prescription that the quantum state of the universe only include field configurations that are regular on the Euclidean (de Sitter) sphere section. The constants of integration in the radiation and matter epoch solutions are determined from joining conditions derived by requiring that the linear perturbation equations remain nonsingular at the transitions between epochs. The matter epoch power spectrum of gauge-invariant energy density inhomogeneities is not a power law, and depends on spatial wave number in the way expected for a generalization to the closed model of the standard flat-space scale-invariant power spectrum. The power spectrum we derive appears to differ from a number of other closed inflation model power spectra derived assuming different (presumably non de Sitter invariant) initial conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Megeath, S. T.; Kryukova, E.; Gutermuth, R.
2016-01-15
We analyze the spatial distribution of dusty young stellar objects (YSOs) identified in the Spitzer Survey of the Orion Molecular clouds, augmenting these data with Chandra X-ray observations to correct for incompleteness in dense clustered regions. We also devise a scheme to correct for spatially varying incompleteness when X-ray data are not available. The local surface densities of the YSOs range from 1 pc{sup −2} to over 10,000 pc{sup −2}, with protostars tending to be in higher density regions. This range of densities is similar to other surveyed molecular clouds with clusters, but broader than clouds without clusters. By identifyingmore » clusters and groups as continuous regions with surface densities ≥10 pc{sup −2}, we find that 59% of the YSOs are in the largest cluster, the Orion Nebula Cluster (ONC), while 13% of the YSOs are found in a distributed population. A lower fraction of protostars in the distributed population is evidence that it is somewhat older than the groups and clusters. An examination of the structural properties of the clusters and groups shows that the peak surface densities of the clusters increase approximately linearly with the number of members. Furthermore, all clusters with more than 70 members exhibit asymmetric and/or highly elongated structures. The ONC becomes azimuthally symmetric in the inner 0.1 pc, suggesting that the cluster is only ∼2 Myr in age. We find that the star formation efficiency (SFE) of the Orion B cloud is unusually low, and that the SFEs of individual groups and clusters are an order of magnitude higher than those of the clouds. Finally, we discuss the relationship between the young low mass stars in the Orion clouds and the Orion OB 1 association, and we determine upper limits to the fraction of disks that may be affected by UV radiation from OB stars or dynamical interactions in dense, clustered regions.« less
NASA Astrophysics Data System (ADS)
Holmes, K. W.; Kyriakidis, P. C.; Chadwick, O. A.; Matricardi, E.; Soares, J. V.; Roberts, D. A.
2003-12-01
The natural controls on soil variability and the spatial scales at which correlation exists among soil and environmental variables are critical information for evaluating the effects of deforestation. We detect different spatial scales of variability in soil nutrient levels over a large region (hundreds of thousands of km2) in the Amazon, analyze correlations among soil properties at these different scales, and evaluate scale-specific relationships among soil properties and the factors potentially driving soil development. Statistical relationships among physical drivers of soil formation, namely geology, precipitation, terrain attributes, classified soil types, and land cover derived from remote sensing, were included to determine which factors are related to soil biogeochemistry at each spatial scale. Surface and subsurface soil profile data from a 3000 sample database collected in Rond“nia, Brazil, were used to investigate patterns in pH, phosphorus, nitrogen, organic carbon, effective cation exchange capacity, calcium, magnesium, potassium, aluminum, sand, and clay in this environment grading from closed canopy tropical forest to savanna. We focus on pH in this presentation for simplicity, because pH is the single most important soil characteristic for determining the chemical environment of higher plants and soil microbial activity. We determined four spatial scales which characterize integrated patterns of soil chemistry: less than 3 km; 3 to 10 km; 10 to 68 km; and from 68 to 550 km (extent of study area). Although the finest observable scale was fixed by the field sampling density, the coarser scales were determined from relationships in the data through coregionalization modeling, rather than being imposed by the researcher. Processes which affect soils over short distances, such as land cover and terrain attributes, were good predictors of fine scale spatial components of nutrients; processes which affect soils over very large distances, such as precipitation and geology, were better predictors at coarse spatial scales. However, this result may be affected by the resolution of the available predictor maps. Land-cover change exerted a strong influence on soil chemistry at fine spatial scales, and had progressively less of an effect at coarser scales. It is important to note that land cover, and interactions among land cover and the other predictors, continued to be a significant predictor of soil chemistry at every spatial scale up to hundreds of thousands of kilometers.
Uronide Deposition Rates in the Primary Root of Zea mays1
Silk, Wendy Kuhn; Walker, Robert C.; Labavitch, John
1984-01-01
The spatial distribution of the rate of deposition of uronic acids in the elongation zone of Zea mays L. Crow WF9 × Mo 17 was determined using the continuity equation with experimentally determined values for uronide density and growth velocity. In spatial terms, the uronide deposition rate has a maximum of 0.4 micrograms per millimeter per hour at s = 3.5 mm (i.e., at the location 3.5 mm from the root tip) and decreases to 0.1 mg mm−1 h−1 by s = 10 mm. In terms of a material tissue element, a tissue segment located initially from s = 2.0 to s = 2.1 mm has 0.14 μg of uronic acids and increases in both length and uronic acid content until it is 0.9 mm long and has 0.7 μg of uronide when its center is at s = 10 mm. Simulations of radioactive labeling experiments show that 15 min is the appropriate time scale for pulse determinations of deposition rate profiles in a rapidly growing corn root. PMID:16663488
Regional patterns of earthquake-triggered landslides and their relation to ground motion
NASA Astrophysics Data System (ADS)
Meunier, Patrick; Hovius, Niels; Haines, A. John
2007-10-01
We have documented patterns of landsliding associated with large earthquakes on three thrust faults: the Northridge earthquake in California, Chi-Chi earthquake in Taiwan, and two earthquakes on the Ramu-Markham fault bounding the Finisterre Mountains of Papua New Guinea. In each case, landslide densities are shown to be greatest in the area of strongest ground acceleration and to decay with distance from the epicenter. In California and Taiwan, the density of co-seismic landslides is linearly and highly correlated with both the vertical and horizontal components of measured peak ground acceleration. Based on this observation, we derive an expression for the spatial variation of landslide density analogous with regional seismic attenuation laws. In its general form, this expression applies to our three examples, and we determine best fit values for individual cases. Our findings open a window on the construction of shake maps from geomorphic observations for earthquakes in non-instrumented regions.
Axial Structure of High-Vacuum Planar Magnetron Discharge Space
NASA Astrophysics Data System (ADS)
Miura, Tsutomu
1999-09-01
The spatial structure of high-vacuum planar magnetron discharge is theoretically investigated taking into account the electron confinement. The boundary xes of the electron confinement region depends on BA with Ea/BA as the parameter (BA: the magnetic flux density at the anode, Ea: the average electric field strength). The location at which the frequency of ionization events takes the maximum is expressed as CnNxiep (CnN: a factor related to the electron density distribution, xiep: the distance of the location from the cathode at which the ionization is most efficient). With increasing Ea and BA at a fixed Ea/BA, the density of the confined energetic electrons increases. With increasing Ea, the region where ionization is efficient shifts to the cathode side to give a high efficiency of the magnet. The boundary xes as determined by the probe method agreed with the theoretical prediction.
Air-mass flux measurement system using Doppler-shifted filtered Rayleigh scattering
NASA Technical Reports Server (NTRS)
Shirley, John A.; Winter, Michael
1993-01-01
An optical system has been investigated to measure mass flux distributions in the inlet of a high speed air-breathing propulsion system. Rayleigh scattered light from air is proportional to the number density of molecules and hence can be used to ascertain the gas density in a calibrated system. Velocity field measurements are achieved by spectrally filtering the elastically-scattered Doppler-shifted light with an absorbing molecular filter. A novel anamorphic optical collection system is used which allows optical rays from different scattering angles, that have different Doppler shifts, to be recorded separately. This is shown to obviate the need to tune the laser through the absorption to determine velocities, while retaining the ability to make spatially-resolved measurements along a line. By properly selecting the laser tuning and filter parameters, simultaneous density measurements can be made. These properties are discussed in the paper and experiments demonstrating the velocimetry capability are described.
Surface Current Density Mapping for Identification of Gastric Slow Wave Propagation
Bradshaw, L. A.; Cheng, L. K.; Richards, W. O.; Pullan, A. J.
2009-01-01
The magnetogastrogram records clinically relevant parameters of the electrical slow wave of the stomach noninvasively. Besides slow wave frequency, gastric slow wave propagation velocity is a potentially useful clinical indicator of the state of health of gastric tissue, but it is a difficult parameter to determine from noninvasive bioelectric or biomagnetic measurements. We present a method for computing the surface current density (SCD) from multichannel magnetogastrogram recordings that allows computation of the propagation velocity of the gastric slow wave. A moving dipole source model with hypothetical as well as realistic biomagnetometer parameters demonstrates that while a relatively sparse array of magnetometer sensors is sufficient to compute a single average propagation velocity, more detailed information about spatial variations in propagation velocity requires higher density magnetometer arrays. Finally, the method is validated with simultaneous MGG and serosal EMG measurements in a porcine subject. PMID:19403355
Radial magnetic compression in the expelled jet of a plasma deflagration accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loebner, Keith T. K., E-mail: kloebner@stanford.edu; Underwood, Thomas C.; Mouratidis, Theodore
2016-02-29
A spectroscopic study of a pulsed plasma deflagration accelerator is carried out that confirms the existence of a strong compression in the emerging jet at the exit plane of the device. An imaging spectrometer is used to collect broadened Hα emission from a transaxial slice of the emerging jet at high spatial resolution, and the radial plasma density profile is computed from Voigt fits of the Abel inverted emissivity profiles. The plasma temperature, determined via Doppler broadening of impurity line emission, is compared against the temperature predictions of a radial magnetohydrodynamic equilibrium model applied to the measured density profiles. Empiricalmore » scaling laws developed for the plasma density, combined with the measured and predicted temperatures, indicate that a radially equilibrated Z-pinch is formed within the expelled plasma jet at the exit plane during the deflagration process.« less
Spatially explicit models for inference about density in unmarked or partially marked populations
Chandler, Richard B.; Royle, J. Andrew
2013-01-01
Recently developed spatial capture–recapture (SCR) models represent a major advance over traditional capture–recapture (CR) models because they yield explicit estimates of animal density instead of population size within an unknown area. Furthermore, unlike nonspatial CR methods, SCR models account for heterogeneity in capture probability arising from the juxtaposition of animal activity centers and sample locations. Although the utility of SCR methods is gaining recognition, the requirement that all individuals can be uniquely identified excludes their use in many contexts. In this paper, we develop models for situations in which individual recognition is not possible, thereby allowing SCR concepts to be applied in studies of unmarked or partially marked populations. The data required for our model are spatially referenced counts made on one or more sample occasions at a collection of closely spaced sample units such that individuals can be encountered at multiple locations. Our approach includes a spatial point process for the animal activity centers and uses the spatial correlation in counts as information about the number and location of the activity centers. Camera-traps, hair snares, track plates, sound recordings, and even point counts can yield spatially correlated count data, and thus our model is widely applicable. A simulation study demonstrated that while the posterior mean exhibits frequentist bias on the order of 5–10% in small samples, the posterior mode is an accurate point estimator as long as adequate spatial correlation is present. Marking a subset of the population substantially increases posterior precision and is recommended whenever possible. We applied our model to avian point count data collected on an unmarked population of the northern parula (Parula americana) and obtained a density estimate (posterior mode) of 0.38 (95% CI: 0.19–1.64) birds/ha. Our paper challenges sampling and analytical conventions in ecology by demonstrating that neither spatial independence nor individual recognition is needed to estimate population density—rather, spatial dependence can be informative about individual distribution and density.
Sun, Guibo; Webster, Chris; Ni, Michael Y; Zhang, Xiaohu
2018-05-07
Uncertainty with respect to built environment (BE) data collection, measure conceptualization and spatial scales is evident in urban health research, but most findings are from relatively lowdensity contexts. We selected Hong Kong, an iconic high-density city, as the study area as limited research has been conducted on uncertainty in such areas. We used geocoded home addresses (n=5732) from a large population-based cohort in Hong Kong to extract BE measures for the participants' place of residence based on an internationally recognized BE framework. Variability of the measures was mapped and Spearman's rank correlation calculated to assess how well the relationships among indicators are preserved across variables and spatial scales. We found extreme variations and uncertainties for the 180 measures collected using comprehensive data and advanced geographic information systems modelling techniques. We highlight the implications of methodological selection and spatial scales of the measures. The results suggest that more robust information regarding urban health research in high-density city would emerge if greater consideration were given to BE data, design methods and spatial scales of the BE measures.
Phillips, A M B; Depaola, A; Bowers, J; Ladner, S; Grimes, D J
2007-04-01
The U.S. Food and Drug Administration recently published a Vibrio parahaemolyticus risk assessment for consumption of raw oysters that predicts V. parahaemolyticus densities at harvest based on water temperature. We retrospectively compared archived remotely sensed measurements (sea surface temperature, chlorophyll, and turbidity) with previously published data from an environmental study of V. parahaemolyticus in Alabama oysters to assess the utility of the former data for predicting V. parahaemolyticus densities in oysters. Remotely sensed sea surface temperature correlated well with previous in situ measurements (R(2) = 0.86) of bottom water temperature, supporting the notion that remotely sensed sea surface temperature data are a sufficiently accurate substitute for direct measurement. Turbidity and chlorophyll levels were not determined in the previous study, but in comparison with the V. parahaemolyticus data, remotely sensed values for these parameters may explain some of the variation in V. parahaemolyticus levels. More accurate determination of these effects and the temporal and spatial variability of these parameters may further improve the accuracy of prediction models. To illustrate the utility of remotely sensed data as a basis for risk management, predictions based on the U.S. Food and Drug Administration V. parahaemolyticus risk assessment model were integrated with remotely sensed sea surface temperature data to display graphically variations in V. parahaemolyticus density in oysters associated with spatial variations in water temperature. We believe images such as these could be posted in near real time, and that the availability of such information in a user-friendly format could be the basis for timely and informed risk management decisions.
Sheridan, Jennifer A; Caruso, Nicholas M; Apodaca, Joseph J; Rissler, Leslie J
2018-01-01
Changes in body size and breeding phenology have been identified as two major ecological consequences of climate change, yet it remains unclear whether climate acts directly or indirectly on these variables. To better understand the relationship between climate and ecological changes, it is necessary to determine environmental predictors of both size and phenology using data from prior to the onset of rapid climate warming, and then to examine spatially explicit changes in climate, size, and phenology, not just general spatial and temporal trends. We used 100 years of natural history collection data for the wood frog, Lithobates sylvaticus with a range >9 million km 2 , and spatially explicit environmental data to determine the best predictors of size and phenology prior to rapid climate warming (1901-1960). We then tested how closely size and phenology changes predicted by those environmental variables reflected actual changes from 1961 to 2000. Size, phenology, and climate all changed as expected (smaller, earlier, and warmer, respectively) at broad spatial scales across the entire study range. However, while spatially explicit changes in climate variables accurately predicted changes in phenology, they did not accurately predict size changes during recent climate change (1961-2000), contrary to expectations from numerous recent studies. Our results suggest that changes in climate are directly linked to observed phenological shifts. However, the mechanisms driving observed body size changes are yet to be determined, given the less straightforward relationship between size and climate factors examined in this study. We recommend that caution be used in "space-for-time" studies where measures of a species' traits at lower latitudes or elevations are considered representative of those under future projected climate conditions. Future studies should aim to determine mechanisms driving trends in phenology and body size, as well as the impact of climate on population density, which may influence body size.
The geometry of protein hydration
NASA Astrophysics Data System (ADS)
Persson, Filip; Söderhjelm, Pär; Halle, Bertil
2018-06-01
Based on molecular dynamics simulations of four globular proteins in dilute aqueous solution, with three different water models, we examine several, essentially geometrical, aspects of the protein-water interface that remain controversial or incompletely understood. First, we compare different hydration shell definitions, based on spatial or topological proximity criteria. We find that the best method for constructing monolayer shells with nearly complete coverage is to use a 5 Å water-carbon cutoff and a 4 Å water-water cutoff. Using this method, we determine a mean interfacial water area of 11.1 Å2 which appears to be a universal property of the protein-water interface. We then analyze the local coordination and packing density of water molecules in the hydration shells and in subsets of the first shell. The mean polar water coordination number in the first shell remains within 1% of the bulk-water value, and it is 5% lower in the nonpolar part of the first shell. The local packing density is obtained from additively weighted Voronoi tessellation, arguably the most physically realistic method for allocating space between protein and water. We find that water in all parts of the first hydration shell, including the nonpolar part, is more densely packed than in the bulk, with a shell-averaged density excess of 6% for all four proteins. We suggest reasons why this value differs from previous experimental and computational results, emphasizing the importance of a realistic placement of the protein-water dividing surface and the distinction between spatial correlation and packing density. The protein-induced perturbation of water coordination and packing density is found to be short-ranged, with an exponential decay "length" of 0.6 shells. We also compute the protein partial volume, analyze its decomposition, and argue against the relevance of electrostriction.
NASA Astrophysics Data System (ADS)
Herrero, Horacio S.; Díaz Lozada, José M.; García, Carlos M.; Szupiany, Ricardo N.; Best, Jim; Pagot, Mariana
2018-03-01
The goal of this study is to evaluate the influence of tributary flow density differences on hydrodynamics and mixing at a confluent meander bend. A detailed field characterization is performed using an Acoustic Doppler Current Profiler (ADCP) for quantification of the 3D flow field, flow discharge and bathymetry, as well as CTD measurements (conductivity, temperature, depth) to characterize the patterns of mixing. Satellite images of the confluence taken at complementary times to the field surveys were analyzed to evaluate the confluence hydrodynamics at different flow conditions. The results illustrate the differences in hydrodynamics and mixing length in relation to confluences with equal density tributaries. At low-density differences, and higher discharge ratio (Qr) between the two rivers, the flow is similar to equi-density confluent meander bends. In contrast, at high-density differences (low Qr), the tributary flow is confined to near the confluence but the density difference causes the flow to move across channel. In this case, the density difference causes the lateral spread of the tributary flow to be greater than at a greater Qr when the density difference is less. These results illustrate the potential importance of density differences between tributaries in determining the rate and spatial extent of mixing and sediment dispersal at confluent meander bends.
Skirvin, D J; Stavrinides, M C; Skirvin, D J
2003-08-01
The effect of plant architecture, in terms of leaf hairiness, and prey spatial arrangement, on predation rate of eggs of the spider mite, Tetranychus urticae Koch, by the predatory mite Phytoseiulus persimilis Athias-Henriot was examined on cut stems of chrysanthemums. Three levels of leaf hairiness (trichome density) were obtained using two different chrysanthemum cultivars and two ages within one of the cultivars. The number of prey consumed by P. persimilis was inversely related to trichome density. At low prey densities (less than ten eggs per stem), prey consumption did not differ in a biologically meaningful way between treatments. The effect of prey spatial arrangement on the predation rate of P. persimilis was also examined. Predation rates were higher in prey patches on leaves adjacent to the release point of P. persimilis, but significantly greater numbers of prey were consumed in higher density prey patches compared to low density patches. The predators exhibited non-random searching behaviour, spending more time on leaves closest to the release point. The implications of these findings for biological control and predator-prey dynamics are discussed.
NASA Astrophysics Data System (ADS)
Moreira, Antonio Jose De Araujo
Soybean, Glycine max (L.) Merr., is an important source of oil and protein worldwide, and soybean cyst nematode (SCN), Heterodera glycines, is among the most important yield-limiting factors in soybean production worldwide. Early detection of SCN is difficult because soybean plants infected by SCN often do not exhibit visible symptoms. It was hypothesized, however, that reflectance data obtained by remote sensing from soybean canopies may be used to detect plant stress caused by SCN infection. Moreover, reflectance measurements may be related to soybean growth and yield. Two field experiments were conducted from 2000 to 2002 to study the relationships among reflectance data, quantity and quality of soybean yield, and SCN population densities. The best relationships between reflectance and the quantity of soybean grain yield occurred when reflectance data were obtained late August to early September. Similarly, reflectance was best related to seed oil and seed protein content and seed size when measured during late August/early September. Grain quality-reflectance relationships varied spatially and temporally. Reflectance measured early or late in the season had the best relationships with SCN population densities measured at planting. Soil properties likely affected reflectance measurements obtained at the beginning of the season and somehow may have been related to SCN population densities at planting. Reflectance data obtained at the end of the growing season likely was affected by early senescence of SCN-infected soybeans. Spatio-temporal aspects of SCN population densities in both experiments were assessed using spatial statistics and regression analyses. In the 2000 and 2001 growing seasons, spring-to-fall changes in SCN population densities were best related to SCN population densities at planting for both experiments. However, within-season changes in SCN population densities were best related to SCN population densities at harvest for both experiments in 2002. Variograms were fitted to the data to describe the spatial characteristics of SCN population densities in both fields at planting and at harvest from 2000 to 2003 and these parameters varied within seasons and during overwinter periods in both experiments. Distinct relationships between temporal and spatial changes in SCN population densities were not detected.
Synchronization Tomography: Modeling and Exploring Complex Brain Dynamics
NASA Astrophysics Data System (ADS)
Fieseler, Thomas
2002-03-01
Phase synchronization (PS) plays an important role both under physiological and pathological conditions. With standard averaging techniques of MEG data, it is difficult to reliably detect cortico-cortical and cortico-muscular PS processes that are not time-locked to an external stimulus. For this reason, novel synchronization analysis techniques were developed and directly applied to MEG signals. Of course, due to the lack of an inverse modeling (i.e. source localization), the spatial resolution of this approach was limited. To detect and localize cerebral PS, we here present the synchronization tomography (ST): For this, we first estimate the cerebral current source density by means of the magnetic field tomography (MFT). We then apply the single-run PS analysis to the current source density in each voxel of the reconstruction space. In this way we study simulated PS, voxel by voxel in order to determine the spatio-temporal resolution of the ST. To this end different generators of ongoing rhythmic cerebral activity are simulated by current dipoles at different locations and directions, which are modeled by slightly detuned chaotic oscillators. MEG signals for these generators are simulated for a spherical head model and a whole-head MEG system. MFT current density solutions are calculated from these simulated signals within a hemispherical source space. We compare the spatial resolution of the ST with that of the MFT. Our results show that adjacent sources which are indistinguishable for the MFT, can nevertheless be separated with the ST, provided they are not strongly phase synchronized. This clearly demonstrates the potential of combining spatial information (i.e. source localization) with temporal information for the anatomical localization of phase synchronization in the human brain.
Great Lakes Region Morphology and Impacts of March 17, 2015 SED Geomagnetic Storm
NASA Astrophysics Data System (ADS)
Heine, T.; Moldwin, M.; Zou, S.
2015-12-01
Under quiet geomagnetic conditions, the mid-latitude ionosphere is relatively uniform with little spatial variation in electron density. However, during intense geomagnetic storms, density gradients associated with Storm Enhanced Density (SED) plumes and Sub-auroral Polarization Streams (SAPS) can move across the dayside mid-latitude ionosphere producing small spatial scale density structure that may be connected to ionospheric scintillation. The evolution of the SED plume during the March 17, 2015 "St. Patrick's Day Storm" is investigated using aggregated data from high resolution GPS receivers at the University of Michigan and throughout the Great Lakes region. Structural density features in the SED gradient can be observed and compared to GPS scintillation measurements—providing insight into the physical mechanisms behind ionospheric scintillation.
NASA Astrophysics Data System (ADS)
Justman, D.; Rose, K.; Bauer, J. R.; Miller, R., III; Vasylkivska, V.; Romeo, L.
2016-12-01
ArcGIS Online story maps allows users to communicate complex topics with geospatially enabled stories. This story map web application entitled "Evaluating the Mysteries of Seismicity in Oklahoma" has been employed as part of a broader research effort investigating the relationships between spatiotemporal systems and seismicity to understand the recent increase in seismicity by reviewing literature, exploring, and performing analyses on key datasets. It offers information about the unprecedented increase in seismic events since 2008, earthquake history, the risk to the population, physical mechanisms behind earthquakes, natural and anthropogenic earthquake factors, and individual & cumulative spatial extents of these factors. The cumulative spatial extents for natural, anthropogenic, and all combined earthquake factors were determined using the Cumulative Spatial Impact Layers (CSILs) tool developed at the National Energy Technology Laboratory (NETL). Results show positive correlations between the average number of influences (datasets related to individual factors) and the number of earthquakes for every 100 square mile grid cell in Oklahoma, along with interesting spatial correlations for the individual & cumulative spatial extents of these factors when overlaid with earthquake density and a hotspot analysis for earthquake magnitude from 2010 to 2015.
Spatial analysis of NDVI readings with difference sampling density
USDA-ARS?s Scientific Manuscript database
Advanced remote sensing technologies provide research an innovative way of collecting spatial data for use in precision agriculture. Sensor information and spatial analysis together allow for a complete understanding of the spatial complexity of a field and its crop. The objective of the study was...
Fine-scale population dynamics in a marine fish species inferred from dynamic state-space models.
Rogers, Lauren A; Storvik, Geir O; Knutsen, Halvor; Olsen, Esben M; Stenseth, Nils C
2017-07-01
Identifying the spatial scale of population structuring is critical for the conservation of natural populations and for drawing accurate ecological inferences. However, population studies often use spatially aggregated data to draw inferences about population trends and drivers, potentially masking ecologically relevant population sub-structure and dynamics. The goals of this study were to investigate how population dynamics models with and without spatial structure affect inferences on population trends and the identification of intrinsic drivers of population dynamics (e.g. density dependence). Specifically, we developed dynamic, age-structured, state-space models to test different hypotheses regarding the spatial structure of a population complex of coastal Atlantic cod (Gadus morhua). Data were from a 93-year survey of juvenile (age 0 and 1) cod sampled along >200 km of the Norwegian Skagerrak coast. We compared two models: one which assumes all sampled cod belong to one larger population, and a second which assumes that each fjord contains a unique population with locally determined dynamics. Using the best supported model, we then reconstructed the historical spatial and temporal dynamics of Skagerrak coastal cod. Cross-validation showed that the spatially structured model with local dynamics had better predictive ability. Furthermore, posterior predictive checks showed that a model which assumes one homogeneous population failed to capture the spatial correlation pattern present in the survey data. The spatially structured model indicated that population trends differed markedly among fjords, as did estimates of population parameters including density-dependent survival. Recent biomass was estimated to be at a near-record low all along the coast, but the finer scale model indicated that the decline occurred at different times in different regions. Warm temperatures were associated with poor recruitment, but local changes in habitat and fishing pressure may have played a role in driving local dynamics. More generally, we demonstrated how state-space models can be used to test evidence for population spatial structure based on survey time-series data. Our study shows the importance of considering spatially structured dynamics, as the inferences from such an approach can lead to a different ecological understanding of the drivers of population declines, and fundamentally different management actions to restore populations. © 2017 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.
Balk, Benjamin; Elder, Kelly
2000-01-01
We model the spatial distribution of snow across a mountain basin using an approach that combines binary decision tree and geostatistical techniques. In April 1997 and 1998, intensive snow surveys were conducted in the 6.9‐km2 Loch Vale watershed (LVWS), Rocky Mountain National Park, Colorado. Binary decision trees were used to model the large‐scale variations in snow depth, while the small‐scale variations were modeled through kriging interpolation methods. Binary decision trees related depth to the physically based independent variables of net solar radiation, elevation, slope, and vegetation cover type. These decision tree models explained 54–65% of the observed variance in the depth measurements. The tree‐based modeled depths were then subtracted from the measured depths, and the resulting residuals were spatially distributed across LVWS through kriging techniques. The kriged estimates of the residuals were added to the tree‐based modeled depths to produce a combined depth model. The combined depth estimates explained 60–85% of the variance in the measured depths. Snow densities were mapped across LVWS using regression analysis. Snow‐covered area was determined from high‐resolution aerial photographs. Combining the modeled depths and densities with a snow cover map produced estimates of the spatial distribution of snow water equivalence (SWE). This modeling approach offers improvement over previous methods of estimating SWE distribution in mountain basins.
Dausman, Alyssa M.; Doherty, John; Langevin, Christian D.
2010-01-01
Pilot points for parameter estimation were creatively used to address heterogeneity at both the well field and regional scales in a variable-density groundwater flow and solute transport model designed to test multiple hypotheses for upward migration of fresh effluent injected into a highly transmissive saline carbonate aquifer. Two sets of pilot points were used within in multiple model layers, with one set of inner pilot points (totaling 158) having high spatial density to represent hydraulic conductivity at the site, while a second set of outer points (totaling 36) of lower spatial density was used to represent hydraulic conductivity further from the site. Use of a lower spatial density outside the site allowed (1) the total number of pilot points to be reduced while maintaining flexibility to accommodate heterogeneity at different scales, and (2) development of a model with greater areal extent in order to simulate proper boundary conditions that have a limited effect on the area of interest. The parameters associated with the inner pilot points were log transformed hydraulic conductivity multipliers of the conductivity field obtained by interpolation from outer pilot points. The use of this dual inner-outer scale parameterization (with inner parameters constituting multipliers for outer parameters) allowed smooth transition of hydraulic conductivity from the site scale, where greater spatial variability of hydraulic properties exists, to the regional scale where less spatial variability was necessary for model calibration. While the model is highly parameterized to accommodate potential aquifer heterogeneity, the total number of pilot points is kept at a minimum to enable reasonable calibration run times.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter, T. A.; Moskalenko, I. V.; Jóhannesson, G., E-mail: tporter@stanford.edu
High-energy γ -rays of interstellar origin are produced by the interaction of cosmic-ray (CR) particles with the diffuse gas and radiation fields in the Galaxy. The main features of this emission are well understood and are reproduced by existing CR propagation models employing 2D galactocentric cylindrically symmetrical geometry. However, the high-quality data from instruments like the Fermi Large Area Telescope reveal significant deviations from the model predictions on few to tens of degrees scales, indicating the need to include the details of the Galactic spiral structure and thus requiring 3D spatial modeling. In this paper, the high-energy interstellar emissions frommore » the Galaxy are calculated using the new release of the GALPROP code employing 3D spatial models for the CR source and interstellar radiation field (ISRF) densities. Three models for the spatial distribution of CR sources are used that are differentiated by their relative proportion of input luminosity attributed to the smooth disk or spiral arms. Two ISRF models are developed based on stellar and dust spatial density distributions taken from the literature that reproduce local near- to far-infrared observations. The interstellar emission models that include arms and bulges for the CR source and ISRF densities provide plausible physical interpretations for features found in the residual maps from high-energy γ -ray data analysis. The 3D models for CR and ISRF densities provide a more realistic basis that can be used for the interpretation of the nonthermal interstellar emissions from the Galaxy.« less
A spatial analysis of health-related resources in three diverse metropolitan areas
Smiley, Melissa J.; Diez Roux, Ana V.; Brines, Shannon J.; Brown, Daniel G.; Evenson, Kelly R.; Rodriguez, Daniel A.
2010-01-01
Few studies have investigated the spatial clustering of multiple health-related resources. We constructed 0.5-mile kernel densities of resources for census areas in New York City, NY (n=819 block groups), Baltimore, MD (n=737), and Winston-Salem, NC (n=169). Three of the four resource densities (supermarkets/produce stores, retail areas, and recreational facilities) tended to be correlated with each other, whereas park density was less consistently and sometimes negatively correlated with the others. Blacks were more likely to live in block groups with multiple low resource densities. Spatial regression models showed that block groups with higher proportions of black residents tended to have lower supermarket/produce, retail, and recreational facility densities, although these associations did not always achieve statistical significance. A measure that combined local and neighboring block group racial composition was often a stronger predictor of resources than the local measure alone. Overall, our results from three diverse U.S. cities show that health-related resources are not randomly distributed across space and that disadvantage in multiple domains often clusters with residential racial patterning. PMID:20478737
Preliminary frequency-domain analysis for the reconstructed spatial resolution of muon tomography
NASA Astrophysics Data System (ADS)
Yu, B.; Zhao, Z.; Wang, X.; Wang, Y.; Wu, D.; Zeng, Z.; Zeng, M.; Yi, H.; Luo, Z.; Yue, X.; Cheng, J.
2014-11-01
Muon tomography is an advanced technology to non-destructively detect high atomic number materials. It exploits the multiple Coulomb scattering information of muon to reconstruct the scattering density image of the traversed object. Because of the statistics of muon scattering, the measurement error of system and the data incompleteness, the reconstruction is always accompanied with a certain level of interference, which will influence the reconstructed spatial resolution. While statistical noises can be reduced by extending the measuring time, system parameters determine the ultimate spatial resolution that one system can reach. In this paper, an effective frequency-domain model is proposed to analyze the reconstructed spatial resolution of muon tomography. The proposed method modifies the resolution analysis in conventional computed tomography (CT) to fit the different imaging mechanism in muon scattering tomography. The measured scattering information is described in frequency domain, then a relationship between the measurements and the original image is proposed in Fourier domain, which is named as "Muon Central Slice Theorem". Furthermore, a preliminary analytical expression of the ultimate reconstructed spatial is derived, and the simulations are performed for validation. While the method is able to predict the ultimate spatial resolution of a given system, it can also be utilized for the optimization of system design and construction.
Rood, Ente J J; Goris, Marga G A; Pijnacker, Roan; Bakker, Mirjam I; Hartskeerl, Rudy A
2017-01-01
Leptospirosis is a globally emerging zoonotic disease, associated with various climatic, biotic and abiotic factors. Mapping and quantifying geographical variations in the occurrence of leptospirosis and the surrounding environment offer innovative methods to study disease transmission and to identify associations between the disease and the environment. This study aims to investigate geographic variations in leptospirosis incidence in the Netherlands and to identify associations with environmental factors driving the emergence of the disease. Individual case data derived over the period 1995-2012 in the Netherlands were geocoded and aggregated by municipality. Environmental covariate data were extracted for each municipality and stored in a spatial database. Spatial clusters were identified using kernel density estimations and quantified using local autocorrelation statistics. Associations between the incidence of leptospirosis and the local environment were determined using Simultaneous Autoregressive Models (SAR) explicitly modelling spatial dependence of the model residuals. Leptospirosis incidence rates were found to be spatially clustered, showing a marked spatial pattern. Fitting a spatial autoregressive model significantly improved model fit and revealed significant association between leptospirosis and the coverage of arable land, built up area, grassland and sabulous clay soils. The incidence of leptospirosis in the Netherlands could effectively be modelled using a combination of soil and land-use variables accounting for spatial dependence of incidence rates per municipality. The resulting spatially explicit risk predictions provide an important source of information which will benefit clinical awareness on potential leptospirosis infections in endemic areas.
Goris, Marga G. A.; Pijnacker, Roan; Bakker, Mirjam I.; Hartskeerl, Rudy A.
2017-01-01
Leptospirosis is a globally emerging zoonotic disease, associated with various climatic, biotic and abiotic factors. Mapping and quantifying geographical variations in the occurrence of leptospirosis and the surrounding environment offer innovative methods to study disease transmission and to identify associations between the disease and the environment. This study aims to investigate geographic variations in leptospirosis incidence in the Netherlands and to identify associations with environmental factors driving the emergence of the disease. Individual case data derived over the period 1995–2012 in the Netherlands were geocoded and aggregated by municipality. Environmental covariate data were extracted for each municipality and stored in a spatial database. Spatial clusters were identified using kernel density estimations and quantified using local autocorrelation statistics. Associations between the incidence of leptospirosis and the local environment were determined using Simultaneous Autoregressive Models (SAR) explicitly modelling spatial dependence of the model residuals. Leptospirosis incidence rates were found to be spatially clustered, showing a marked spatial pattern. Fitting a spatial autoregressive model significantly improved model fit and revealed significant association between leptospirosis and the coverage of arable land, built up area, grassland and sabulous clay soils. The incidence of leptospirosis in the Netherlands could effectively be modelled using a combination of soil and land-use variables accounting for spatial dependence of incidence rates per municipality. The resulting spatially explicit risk predictions provide an important source of information which will benefit clinical awareness on potential leptospirosis infections in endemic areas. PMID:29065186
Spatially Resolved Quantification of the Surface Reactivity of Solid Catalysts.
Huang, Bing; Xiao, Li; Lu, Juntao; Zhuang, Lin
2016-05-17
A new property is reported that accurately quantifies and spatially describes the chemical reactivity of solid surfaces. The core idea is to create a reactivity weight function peaking at the Fermi level, thereby determining a weighted summation of the density of states of a solid surface. When such a weight function is defined as the derivative of the Fermi-Dirac distribution function at a certain non-zero temperature, the resulting property is the finite-temperature chemical softness, termed Fermi softness (SF ), which turns out to be an accurate descriptor of the surface reactivity. The spatial image of SF maps the reactive domain of a heterogeneous surface and even portrays morphological details of the reactive sites. SF analyses reveal that the reactive zones on a Pt3 Y(111) surface are the platinum sites rather than the seemingly active yttrium sites, and the reactivity of the S-dimer edge of MoS2 is spatially anisotropic. Our finding is of fundamental and technological significance to heterogeneous catalysis and industrial processes demanding rational design of solid catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Spatial variation in spawning habitat of cutthroat trout in a sediment-rich basin
James P. Magee; Thomas E. McMahon; Russell F. Thurow
1996-01-01
We examined distribution and habitat characteristics of spawning sites of cutthroat trout Oncorhynchus clarki at various spatial scales to assess effects of sedimentation within a large basin in Montana. Redd density varied widely across the basin; nearly all (99%) of the 362 redds observed occurred in two high-elevation headwater tributaries. Redd density at the reach...
Mercury Slovenian soils: High, medium and low sample density geochemical maps
NASA Astrophysics Data System (ADS)
Gosar, Mateja; Šajn, Robert; Teršič, Tamara
2017-04-01
Regional geochemical survey was conducted in whole territory of Slovenia (20273 km2). High, medium and low sample density surveys were compared. High sample density represented the regional geochemical data set supplemented by local high-density sampling data (irregular grid, n=2835). Medium-density soil sampling was performed in a 5 x 5 km grid (n=817) and low-density geochemical survey was conducted in a sampling grid 25 x 25 km (n=54). Mercury distribution in Slovenian soils was determined with models of mercury distribution in soil using all three data sets. A distinct Hg anomaly in western part of Slovenia is evident on all three models. It is a consequence of 500-years of mining and ore processing in the second largest mercury mine in the world, the Idrija mine. The determined mercury concentrations revealed an important difference between the western and the eastern parts of the country. For the medium scale geochemical mapping is the median value (0.151 mg /kg) for western Slovenia almost 2-fold higher than the median value (0.083 mg/kg) in eastern Slovenia. Besides the Hg median for the western part of Slovenia exceeds the Hg median for European soil by a factor of 4 (Gosar et al., 2016). Comparing these sample density surveys, it was shown that high sampling density allows the identification and characterization of anthropogenic influences on a local scale, while medium- and low-density sampling reveal general trends in the mercury spatial distribution, but are not appropriate for identifying local contamination in industrial regions and urban areas. The resolution of the pattern generated is the best when the high-density survey on a regional scale is supplemented with the geochemical data of the high-density surveys on a local scale. References: Gosar, M, Šajn, R, Teršič, T. Distribution pattern of mercury in the Slovenian soil: geochemical mapping based on multiple geochemical datasets. Journal of geochemical exploration, 2016, 167/38-48.
Toward accurate and precise estimates of lion density.
Elliot, Nicholas B; Gopalaswamy, Arjun M
2017-08-01
Reliable estimates of animal density are fundamental to understanding ecological processes and population dynamics. Furthermore, their accuracy is vital to conservation because wildlife authorities rely on estimates to make decisions. However, it is notoriously difficult to accurately estimate density for wide-ranging carnivores that occur at low densities. In recent years, significant progress has been made in density estimation of Asian carnivores, but the methods have not been widely adapted to African carnivores, such as lions (Panthera leo). Although abundance indices for lions may produce poor inferences, they continue to be used to estimate density and inform management and policy. We used sighting data from a 3-month survey and adapted a Bayesian spatially explicit capture-recapture (SECR) model to estimate spatial lion density in the Maasai Mara National Reserve and surrounding conservancies in Kenya. Our unstructured spatial capture-recapture sampling design incorporated search effort to explicitly estimate detection probability and density on a fine spatial scale, making our approach robust in the context of varying detection probabilities. Overall posterior mean lion density was estimated to be 17.08 (posterior SD 1.310) lions >1 year old/100 km 2 , and the sex ratio was estimated at 2.2 females to 1 male. Our modeling framework and narrow posterior SD demonstrate that SECR methods can produce statistically rigorous and precise estimates of population parameters, and we argue that they should be favored over less reliable abundance indices. Furthermore, our approach is flexible enough to incorporate different data types, which enables robust population estimates over relatively short survey periods in a variety of systems. Trend analyses are essential to guide conservation decisions but are frequently based on surveys of differing reliability. We therefore call for a unified framework to assess lion numbers in key populations to improve management and policy decisions. © 2016 Society for Conservation Biology.
Determinants of spikes in ultrafine particle concentration whilst commuting by bus
NASA Astrophysics Data System (ADS)
Lim, Shanon; Dirks, Kim N.; Salmond, Jennifer A.; Xie, Shanju
2015-07-01
This paper examines concentration of ultrafine particles (UFPs) based on data collected using high-resolution UFP monitors whilst travelling by bus during rush hour along three different urban routes in Auckland, New Zealand. The factors influencing in-bus UFP concentration were assessed using a combination of spatial, statistical and GIS analysis techniques to determine both spatial and temporal variability. Results from 68 bus trips showed that concentrations varied more within a route than between on a given day, despite differences in urban morphology, land use and traffic densities between routes. A number of trips were characterised by periods of very rapid increases in UFPs (concentration 'spikes'), followed by slow declines. Trips which recorded at least one spike (an increase of greater than 10,000 pt/cm3) resulted in significantly higher mean concentrations. Spikes in UFPs were significantly more likely to occur when travelling at low speeds and when passengers were alighting and boarding at bus stops close to traffic light intersections.
NASA Astrophysics Data System (ADS)
Kudryavtsev, A. A.; Serditov, K. Yu.
2012-07-01
This study presents 2D simulations of the two-chamber inductively coupled plasma source where power is supplied in the small discharge chamber and extends by electron thermal conductivity mechanism to the big diffusion chamber. Depending on pressure, two main scenarios of plasma density and its spatial distribution behavior were identified. One case is characterized by the localization of plasma in the small driver chamber where power is deposed. Another case describes when the diffusion chamber becomes the main source of plasma with maximum of the electron density. The differences in spatial distribution are caused by local or non-local behavior of electron energy transport in the discharge volume due to different characteristic scale of heat transfer with electronic conductivity.
Sutherland, Chris; Munoz, David; Miller, David A.W.; Grant, Evan H. Campbell
2016-01-01
Spatial capture–recapture (SCR) is a relatively recent development in ecological statistics that provides a spatial context for estimating abundance and space use patterns, and improves inference about absolute population density. SCR has been applied to individual encounter data collected noninvasively using methods such as camera traps, hair snares, and scat surveys. Despite the widespread use of capture-based surveys to monitor amphibians and reptiles, there are few applications of SCR in the herpetological literature. We demonstrate the utility of the application of SCR for studies of reptiles and amphibians by analyzing capture–recapture data from Red-Backed Salamanders, Plethodon cinereus, collected using artificial cover boards. Using SCR to analyze spatial encounter histories of marked individuals, we found evidence that density differed little among four sites within the same forest (on average, 1.59 salamanders/m2) and that salamander detection probability peaked in early October (Julian day 278) reflecting expected surface activity patterns of the species. The spatial scale of detectability, a measure of space use, indicates that the home range size for this population of Red-Backed Salamanders in autumn was 16.89 m2. Surveying reptiles and amphibians using artificial cover boards regularly generates spatial encounter history data of known individuals, which can readily be analyzed using SCR methods, providing estimates of absolute density and inference about the spatial scale of habitat use.
Solar excitation of CdS/Cu2S photovoltaic cells
NASA Technical Reports Server (NTRS)
Boer, K. W.
1976-01-01
Solar radiation of five typical clear weather days and under a variety of conditions is used to determine the spectral distribution of the photonflux at different planes of a CdS/Cu2S solar cell. The fractions of reflected and absorbed flux are determined at each of the relevant interfaces and active volume elements of the solar cell. The density of absorbed photons is given in respect to spectral and spatial distribution. The variance of the obtained distribution, with changes in insolation and absorption spectra of the active solar cell layers, is indicated. A catalog of typical examples is given in the appendix.
Interplanetary scintillation observations with the Cocoa Cross radio telescope
NASA Technical Reports Server (NTRS)
Cronyn, W. M.; Shawhan, S. D.; Erskine, F. T.; Huneke, A. H.; Mitchell, D. G.
1976-01-01
Physical and electrical parameters for the 34.3-MHz Cocoa Cross radio telescope are given. The telescope is dedicated to the determination of solar-wind characteristics in and out of the ecliptic plane through measurement of electron-density irregularity structure as determined from IPS (interplanetary scintillation) of natural radio sources. The collecting area (72,000 sq m), angular resolution (0.4 deg EW by 0.6 deg NS), and spatial extent (1.3 km EW by 0.8 km NS) make the telescope well suited for measurements of IPS index and frequency scale for hundreds of weak radio sources without serious confusion effects.
ON GALACTIC DENSITY MODELING IN THE PRESENCE OF DUST EXTINCTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bovy, Jo; Rix, Hans-Walter; Schlafly, Edward F.
Inferences about the spatial density or phase-space structure of stellar populations in the Milky Way require a precise determination of the effective survey volume. The volume observed by surveys such as Gaia or near-infrared spectroscopic surveys, which have good coverage of the Galactic midplane region, is highly complex because of the abundant small-scale structure in the three-dimensional interstellar dust extinction. We introduce a novel framework for analyzing the importance of small-scale structure in the extinction. This formalism demonstrates that the spatially complex effect of extinction on the selection function of a pencil-beam or contiguous sky survey is equivalent to amore » low-pass filtering of the extinction-affected selection function with the smooth density field. We find that the angular resolution of current 3D extinction maps is sufficient for analyzing Gaia sub-samples of millions of stars. However, the current distance resolution is inadequate and needs to be improved by an order of magnitude, especially in the inner Galaxy. We also present a practical and efficient method for properly taking the effect of extinction into account in analyses of Galactic structure through an effective selection function. We illustrate its use with the selection function of red-clump stars in APOGEE using and comparing a variety of current 3D extinction maps.« less
Towards Determining the Optimal Density of Groundwater Observation Networks under Uncertainty
NASA Astrophysics Data System (ADS)
Langousis, Andreas; Kaleris, Vassilios; Kokosi, Angeliki; Mamounakis, Georgios
2016-04-01
Time series of groundwater level constitute one of the main sources of information when studying the availability of ground water reserves, at a regional level, under changing climatic conditions. To that extent, one needs groundwater observation networks that can provide sufficient information to estimate the hydraulic head at unobserved locations. The density of such networks is largely influenced by the structure of the aquifer, and in particular by the spatial distribution of hydraulic conductivity (i.e. layering), dependencies in the transition rates between different geologic formations, juxtapositional tendencies, etc. In this work, we: 1) use the concept of transition probabilities embedded in a Markov chain setting to conditionally simulate synthetic aquifer structures representative of geologic formations commonly found in the literature (see e.g. Hoeksema and Kitanidis, 1985), and 2) study how the density of observation wells affects the estimation accuracy of hydraulic heads at unobserved locations. The obtained results are promising, pointing towards the direction of establishing design criteria based on the statistical structure of the aquifer, such as the level of dependence in the transition rates of observed lithologies. Reference: Hoeksema, R.J. and P.K. Kitanidis (1985) Analysis of spatial structure of properties of selected aquifers, Water Resources Research, 21(4), 563-572. Acknowledgments: This work is sponsored by the Onassis Foundation under the "Special Grant and Support Program for Scholars' Association Members".
Observation of sand waves in the Taiwan Banks using HJ-1A/1B sun glitter imagery
NASA Astrophysics Data System (ADS)
Zhang, Hua-guo; Lou, Xiu-lin; Shi, Ai-qin; He, Xie-kai; Guan, Wei-bing; Li, Dong-ling
2014-01-01
This study focuses on the large sand waves in the Taiwan Banks. Our goals are to observe the sand waves as completely as possible, to obtain their direction, wavelength, density, and ridge length, to analyze their spatial distributions, and to understand the effects of the current field and water depth on the sand waves. This study demonstrates the possibility of using HJ-1A/1B sun glitter imagery with a large swath width and rapid coverage in studying sand waves. Six cloud-free HJ-1A/1B optical images with sun glitter signals received during 2009 to 2011 were processed. The sand waves were mapped based on their features in the images; their direction, wavelength, density, and ridge length were measured and analyzed. We identified 4604 sand waves distributed in an area of 16,400 km2. The distributions of sand waves and their characteristics were analyzed, and the differences of sand waves between the northwestern subregion and the southeastern subregion are reported. Further analysis and discussion of the relationships between spatial distribution of the sand waves and both the tidal current field from a numerical simulation and water depth led to some interesting conclusions. The current field determines the orientation of the sand wave, while the hydrodynamic conditions and water depth influence the shape, size, and density of sand waves to a certain degree.
Spatial and temporal predictions of agricultural land prices using DSM techniques.
NASA Astrophysics Data System (ADS)
Carré, F.; Grandgirard, D.; Diafas, I.; Reuter, H. I.; Julien, V.; Lemercier, B.
2009-04-01
Agricultural land prices highly impacts land accessibility to farmers and by consequence the evolution of agricultural landscapes (crop changes, land conversion to urban infrastructures…) which can turn to irreversible soil degradation. The economic value of agricultural land has been studied spatially, in every one of the 374 French Agricultural Counties, and temporally- from 1995 to 2007, by using data of the SAFER Institute. To this aim, agricultural land price was considered as a digital soil property. The spatial and temporal predictions were done using Digital Soil Mapping techniques combined with tools mainly used for studying temporal financial behaviors. For making both predictions, a first classification of the Agricultural Counties was done for the 1995-2006 periods (2007 was excluded and served as the date of prediction) using a fuzzy k-means clustering. The Agricultural Counties were then aggregated according to land price at the different times. The clustering allows for characterizing the counties by their memberships to each class centroid. The memberships were used for the spatial prediction, whereas the centroids were used for the temporal prediction. For the spatial prediction, from the 374 Agricultural counties, three fourths were used for modeling and one fourth for validating. Random sampling was done by class to ensure that all classes are represented by at least one county in the modeling and validation datasets. The prediction was done for each class by testing the relationships between the memberships and the following factors: (i) soil variable (organic matter from the French BDAT database), (ii) soil covariates (land use classes from CORINE LANDCOVER, bioclimatic zones from the WorldClim Database, landform attributes and landform classes from the SRTM, major roads and hydrographic densities from EUROSTAT, average field sizes estimated by automatic classification of remote sensed images) and (iii) socio-economic factors (population density, gross domestic product and its combination with the population density obtained from EUROSTAT). Linear (Generalized Linear Models) and non-linear models (neural network) were used for building the relationships. For the validation, the relationships were applied to the validation datasets. The RMSE and the coefficient of determination (from a linear regression) between predicted and actual memberships, and the contingency table between the predicted and actual allocation classes were used as validation criteria. The temporal prediction was done on the year 2007 from the centroid land prices characterizing the 1995-2006 period. For each class, the land prices of the time-series 1995-2006 were modeled using an Auto-Regressive Moving Average approach. For the validation, the models were applied to the year 2007. The RMSE between predicted and actual prices is used as the validation criteria. We then discussed the methods and the results of the spatial and temporal validation. Based on this methodology, an extrapolation will be tested on another European country with land price market similar to France (to be determined).
Using geostatistical methods to estimate snow water equivalence distribution in a mountain watershed
Balk, B.; Elder, K.; Baron, Jill S.
1998-01-01
Knowledge of the spatial distribution of snow water equivalence (SWE) is necessary to adequately forecast the volume and timing of snowmelt runoff. In April 1997, peak accumulation snow depth and density measurements were independently taken in the Loch Vale watershed (6.6 km2), Rocky Mountain National Park, Colorado. Geostatistics and classical statistics were used to estimate SWE distribution across the watershed. Snow depths were spatially distributed across the watershed through kriging interpolation methods which provide unbiased estimates that have minimum variances. Snow densities were spatially modeled through regression analysis. Combining the modeled depth and density with snow-covered area (SCA produced an estimate of the spatial distribution of SWE. The kriged estimates of snow depth explained 37-68% of the observed variance in the measured depths. Steep slopes, variably strong winds, and complex energy balance in the watershed contribute to a large degree of heterogeneity in snow depth.
NASA Astrophysics Data System (ADS)
Freire, J.; González-Gurriarán, E.; Olaso, I.
1992-12-01
Geostatistical methodology was used to analyse spatial structure and distribution of the epibenthic crustaceans Munida intermedia and M. sarsi within sets of data which had been collected during three survey cruises carried out on the Galician continental shelf (1983 and 1984). This study investigates the feasibility of using geostatistics for data collected according to traditional methods and of enhancing such methodology. The experimental variograms were calculated (pooled variance minus spatial covariance between samples taken one pair at a time vs. distance) and fitted to a 'spherical' model. The spatial structure model was used to estimate the abundance and distribution of the populations studied using the technique of kriging. The species display spatial structures, which are well marked during high density periods and in some areas (especially northern shelf). Geostatistical analysis allows identification of the density gradients in space as well as the patch grain along the continental shelf of 16-25 km diameter for M. intermedia and 12-20 km for M. sarsi. Patches of both species have a consistent location throughout the different cruises. As in other geographical areas, M. intermedia and M. sarsi usually appear at depths ranging from 200 to 500 m, with the highest densities in the continental shelf area located between Fisterra and Estaca de Bares. Althouh sampling was not originally designed specifically for geostatistics, this assay provides a measurement of spatial covariance, and shows variograms with variable structure depending on population density and geographical area. These ideas are useful in improving the design of future sampling cruises.
Analysis of Co-spatial UV-Optical STIS Spectra of Planetary Nebulae From HST Cycle 19 GO 12600
NASA Astrophysics Data System (ADS)
Miller, Timothy R.; Henry, Richard B. C.; Dufour, Reginald J.; Kwitter, Karen B.; Shaw, Richard A.; Balick, Bruce; Corradi, Romano
2015-01-01
We present an analysis of five spatially resolved planetary nebulae (PNe), NGC 5315, NGC 5882, NGC 7662, IC 2165, and IC 3568, from observations in the Cycle 19 program GO 12600 using HST STIS. Details of the observations and data are presented in the poster by Dufour et al. in this session. These five observations cover the wavelength range 1150-10,270 Å with 0.2 and 0.5 arcsec wide slits, and are co-spatial to 0.1 arcsec along a 25 arcsec length across each nebula. This unprecedented resolution in both wavelength and spatial coverage enabled detailed studies of physical conditions and abundances from UV line ion emissions (compared to optical lines). We first analyzed the low- and moderate-resolution UV emission lines of carbon using the resolved lines of C III] 1906.68 and 1908.73, which yielded a direct measurement of the density within the volume occupied by doubly-ionized carbon and other similar co-spatial ions. Next, each PN spectrum was divided into spatial sub-regions in order to assess inferred density variations among the sub-regions along the entire slit. Variations in electron temperature and chemical abundances were also probed. Lastly, these nebulae were modeled in detail with the photoionization code CLOUDY. This modeling tested different density profiles in order to reproduce the observed density variations and temperature fluctuations, and constrain central star parameters. We gratefully acknowledge generous support from NASA through grants related to the Cycle 19 program GO 12600, as well as from the University of Oklahoma.
Mapping atomic contact between pentacene and a Au surface using scanning tunneling spectroscopy.
Song, Young Jae; Lee, Kyuho; Kim, Seong Heon; Choi, Byoung-Young; Yu, Jaejun; Kuk, Young
2010-03-10
We mapped spatially varying intramolecular electronic structures on a pentacene-gold interface using scanning tunneling spectroscopy. Along with ab initio calculations based on density functional theory, we found that the directional nature of the d orbitals of Au atoms plays an important role in the interaction at the pentacene-gold contact. The gold-induced interface states are broadened and shifted by various pentacene-gold distances determined by the various registries of a pentacene molecule on a gold substrate.
Physical transport properties of marine microplastic pollution
NASA Astrophysics Data System (ADS)
Ballent, A.; Purser, A.; Mendes, P. de Jesus; Pando, S.; Thomsen, L.
2012-12-01
Given the complexity of quantitative collection, knowledge of the distribution of microplastic pollution in many regions of the world ocean is patchy, both spatially and temporally, especially for the subsurface environment. However, with knowledge of typical hydrodynamic behavior of waste plastic material, models predicting the dispersal of pelagic and benthic plastics from land sources into the ocean are possible. Here we investigate three aspects of plastic distribution and transport in European waters. Firstly, we assess patterns in the distribution of plastics found in fluvial strandlines of the North Sea and how distribution may be related to flow velocities and distance from source. Second, we model transport of non-buoyant preproduction pellets in the Nazaré Canyon of Portugal using the MOHID system after assessing the density, settling velocity, critical and depositional shear stress characteristics of such waste plastics. Thirdly, we investigate the effect of surface turbulences and high pressures on a range of marine plastic debris categories (various densities, degradation states and shapes tested) in an experimental water column simulator tank and pressure laboratory. Plastics deposited on North Sea strandlines varied greatly spatially, as a function of material composition and distance from source. Model outputs indicated that such dense production pellets are likely transported up and down canyon as a function of tidal forces, with only very minor net down canyon movement. Behaviour of plastic fragments under turbulence varied greatly, with the dimensions of the material, as well as density, playing major determining roles. Pressure was shown to affect hydrodynamic behaviours of only low density foam plastics at pressures ≥ 60 bar.
Source clustering in the Hi-GAL survey determined using a minimum spanning tree method
NASA Astrophysics Data System (ADS)
Beuret, M.; Billot, N.; Cambrésy, L.; Eden, D. J.; Elia, D.; Molinari, S.; Pezzuto, S.; Schisano, E.
2017-01-01
Aims: The aims are to investigate the clustering of the far-infrared sources from the Herschel infrared Galactic Plane Survey (Hi-GAL) in the Galactic longitude range of -71 to 67 deg. These clumps, and their spatial distribution, are an imprint of the original conditions within a molecular cloud. This will produce a catalogue of over-densities. Methods: The minimum spanning tree (MST) method was used to identify the over-densities in two dimensions. The catalogue was further refined by folding in heliocentric distances, resulting in more reliable over-densities, which are cluster candidates. Results: We found 1633 over-densities with more than ten members. Of these, 496 are defined as cluster candidates because of the reliability of the distances, with a further 1137 potential cluster candidates. The spatial distributions of the cluster candidates are different in the first and fourth quadrants, with all clusters following the spiral structure of the Milky Way. The cluster candidates are fractal. The clump mass functions of the clustered and isolated are statistically indistinguishable from each other and are consistent with Kroupa's initial mass function. Hi-GAL is a key-project of the Herschel Space Observatory survey (Pilbratt et al. 2010) and uses the PACS (Poglitsch et al. 2010) and SPIRE (Griffin et al. 2010) cameras in parallel mode.The catalogues of cluster candidates and potential clusters are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/597/A114
MYStIX: Dynamical evolution of young clusters
NASA Astrophysics Data System (ADS)
Kuhn, Michael A.
2014-08-01
The spatial structure of young stellar clusters in Galactic star-forming regions provides insight into these clusters’ dynamical evolution---a topic with implications for open questions in star-formation and cluster survival. The Massive Young Star-Forming Complex Study in Infrared and X-ray (MYStIX) provides a sample of >30,000 young stars in star-forming regions (d<3.6 kpc) that contain at least one O-type star. We use the finite mixture model analysis to identify subclusters of stars and determine their properties: including subcluster radii, intrinsic numbers of stars, central density, ellipticity, obscuration, and age. In 17 MYStIX regions we find 142 subclusters, with a diverse radii and densities and age spreads of up to ~1 Myr in a region. There is a strong negative correlation between subcluster radius and density, which indicates that embedded subclusters expand but also gain stars as they age. Subcluster expansion is also shown by a positive radius--age correlation, which indicates that subclusters are expanding at <1 km/s. The subcluster ellipticity distribution and number--density relation show signs of a hierarchical merger scenario, whereby young stellar clusters are built up through mergers of smaller clumps, causing evolution from a clumpy spatial distribution of stars (seen in some regions) to a simpler distribution of stars (seen in other regions). Many of the simple young stellar clusters show signs of dynamically relaxation, even though they are not old enough for this to have occurred through two-body interactions. However, this apparent contradiction might be explained if small subcluster, which have shorter dynamical relaxation times, can produce dynamically relaxed clusters through hierarchical mergers.
Lateral carrier diffusion in InGaAs/GaAs coupled quantum dot-quantum well system
NASA Astrophysics Data System (ADS)
Pieczarka, M.; Syperek, M.; Biegańska, D.; Gilfert, C.; Pavelescu, E. M.; Reithmaier, J. P.; Misiewicz, J.; Sek, G.
2017-05-01
The lateral carrier diffusion process is investigated in coupled InGaAs/GaAs quantum dot-quantum well (QD-QW) structures by means of spatially resolved photoluminescence spectroscopy at low temperature. Under non-resonant photo-excitation above the GaAs bandgap, the lateral carrier transport reflected in the distorted electron-hole pair emission profiles is found to be mainly governed by high energy carriers created within the 3D density of states of GaAs. In contrast, for the case of resonant excitation tuned to the QW-like ground state of the QD-QW system, the emission profiles remain unaffected by the excess kinetic energy of carriers and local phonon heating within the pump spot. The lateral diffusion lengths are determined and present certain dependency on the coupling strength between QW and QDs. While for a strongly coupled structure the diffusion length is found to be around 0.8 μm and monotonically increases up to 1.4 μm with the excitation power density, in weakly coupled structures, it is determined to ca. 1.6 μm and remained virtually independent of the pumping power density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oudini, N.; Taccogna, F.; Bendib, A.
2014-06-15
Laser photo-detachment is used as a method to measure or determine the negative ion density and temperature in electronegative plasmas. In essence, the method consists of producing an electropositive channel (negative ion free region) via pulsed laser photo-detachment within an electronegative plasma bulk. Electrostatic probes placed in this channel measure the change in the electron density. A second pulse might be used to track the negative ion recovery. From this, the negative ion density and temperature can be determined. We study the formation and relaxation of the electropositive channel via a two-dimensional Particle-In-Cell/Mote Carlo collision model. The simulation is mainlymore » carried out in a Hydrogen plasma with an electronegativity of α = 1, with a parametric study for α up to 20. The temporal and spatial evolution of the plasma potential and the electron densities shows the formation of a double layer (DL) confining the photo-detached electrons within the electropositive channel. This DL evolves into two fronts that move in the opposite directions inside and outside of the laser spot region. As a consequence, within the laser spot region, the background and photo-detached electron energy distribution function relaxes/thermalizes via collisionless effects such as Fermi acceleration and Landau damping. Moreover, the simulations show that collisional effects and the DL electric field strength might play a non-negligible role in the negative ion recovery within the laser spot region, leading to a two-temperature negative ion distribution. The latter result might have important effects in the determination of the negative ion density and temperature from laser photo detachment diagnostic.« less
NASA Astrophysics Data System (ADS)
Oudini, N.; Taccogna, F.; Bendib, A.; Aanesland, A.
2014-06-01
Laser photo-detachment is used as a method to measure or determine the negative ion density and temperature in electronegative plasmas. In essence, the method consists of producing an electropositive channel (negative ion free region) via pulsed laser photo-detachment within an electronegative plasma bulk. Electrostatic probes placed in this channel measure the change in the electron density. A second pulse might be used to track the negative ion recovery. From this, the negative ion density and temperature can be determined. We study the formation and relaxation of the electropositive channel via a two-dimensional Particle-In-Cell/Mote Carlo collision model. The simulation is mainly carried out in a Hydrogen plasma with an electronegativity of α = 1, with a parametric study for α up to 20. The temporal and spatial evolution of the plasma potential and the electron densities shows the formation of a double layer (DL) confining the photo-detached electrons within the electropositive channel. This DL evolves into two fronts that move in the opposite directions inside and outside of the laser spot region. As a consequence, within the laser spot region, the background and photo-detached electron energy distribution function relaxes/thermalizes via collisionless effects such as Fermi acceleration and Landau damping. Moreover, the simulations show that collisional effects and the DL electric field strength might play a non-negligible role in the negative ion recovery within the laser spot region, leading to a two-temperature negative ion distribution. The latter result might have important effects in the determination of the negative ion density and temperature from laser photo detachment diagnostic.
Spatial ecology of refuge selection by an herbivore under risk of predation
Wilson, Tammy L.; Rayburn, Andrew P.; Edwards, Thomas C.
2012-01-01
Prey species use structures such as burrows to minimize predation risk. The spatial arrangement of these resources can have important implications for individual and population fitness. For example, there is evidence that clustered resources can benefit individuals by reducing predation risk and increasing foraging opportunity concurrently, which leads to higher population density. However, the scale of clustering that is important in these processes has been ignored during theoretical and empirical development of resource models. Ecological understanding of refuge exploitation by prey can be improved by spatial analysis of refuge use and availability that incorporates the effect of scale. We measured the spatial distribution of pygmy rabbit (Brachylagus idahoensis) refugia (burrows) through censuses in four 6-ha sites. Point pattern analyses were used to evaluate burrow selection by comparing the spatial distribution of used and available burrows. The presence of food resources and additional overstory cover resources was further examined using logistic regression. Burrows were spatially clustered at scales up to approximately 25 m, and then regularly spaced at distances beyond ~40 m. Pygmy rabbit exploitation of burrows did not match availability. Burrows used by pygmy rabbits were likely to be located in areas with high overall burrow density (resource clusters) and high overstory cover, which together minimized predation risk. However, in some cases we observed an interaction between either overstory cover (safety) or understory cover (forage) and burrow density. The interactions show that pygmy rabbits will use burrows in areas with low relative burrow density (high relative predation risk) if understory food resources are high. This points to a potential trade-off whereby rabbits must sacrifice some safety afforded by additional nearby burrows to obtain ample forage resources. Observed patterns of clustered burrows and non-random burrow use improve understanding of the importance of spatial distribution of refugia for burrowing herbivores. The analyses used allowed for the estimation of the spatial scale where subtle trade-offs between predation avoidance and foraging opportunity are likely to occur in a natural system.
Geographical Analysis of the Distribution and Spread of Human Rabies in China from 2005 to 2011
Yin, Wenwu; Yu, Hongjie; Si, Yali; Li, Jianhui; Zhou, Yuanchun; Zhou, Xiaoyan; Magalhães, Ricardo J. Soares.
2013-01-01
Background Rabies is a significant public health problem in China in that it records the second highest case incidence globally. Surveillance data on canine rabies in China is lacking and human rabies notifications can be a useful indicator of areas where animal and human rabies control could be integrated. Previous spatial epidemiological studies lacked adequate spatial resolution to inform targeted rabies control decisions. We aimed to describe the spatiotemporal distribution of human rabies and model its geographical spread to provide an evidence base to inform future integrated rabies control strategies in China. Methods We geo-referenced a total of 17,760 human rabies cases of China from 2005 to 2011. In our spatial analyses we used Gaussian kernel density analysis, average nearest neighbor distance, Spatial Temporal Density-Based Spatial Clustering of Applications with Noise and developed a model of rabies spatiotemporal spread. Findings Human rabies cases increased from 2005 to 2007 and decreased during 2008 to 2011 companying change of the spatial distribution. The ANN distance among human rabies cases increased between 2005 and 2011, and the degree of clustering of human rabies cases decreased during that period. A total 480 clusters were detected by ST-DBSCAN, 89.4% clusters initiated before 2007. Most of clusters were mainly found in South of China. The number and duration of cluster decreased significantly after 2008. Areas with the highest density of human rabies cases varied spatially each year and in some areas remained with high outbreak density for several years. Though few places have recovered from human rabies, most of affected places are still suffering from the disease. Conclusion Human rabies in mainland China is geographically clustered and its spatial extent changed during 2005 to 2011. The results provide a scientific basis for public health authorities in China to improve human rabies control and prevention program. PMID:23991098
Lin, L; Ding, W X; Brower, D L
2014-11-01
Combined polarimetry-interferometry capability permits simultaneous measurement of line-integrated density and Faraday effect with fast time response (∼1 μs) and high sensitivity. Faraday effect fluctuations with phase shift of order 0.05° associated with global tearing modes are resolved with an uncertainty ∼0.01°. For physics investigations, local density fluctuations are obtained by inverting the line-integrated interferometry data. The local magnetic and current density fluctuations are then reconstructed using a parameterized fit of the polarimetry data. Reconstructed 2D images of density and magnetic field fluctuations in a poloidal cross section exhibit significantly different spatial structure. Combined with their relative phase, the magnetic-fluctuation-induced particle transport flux and its spatial distribution are resolved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, L., E-mail: lianglin@ucla.edu; Ding, W. X.; Brower, D. L.
2014-11-15
Combined polarimetry-interferometry capability permits simultaneous measurement of line-integrated density and Faraday effect with fast time response (∼1 μs) and high sensitivity. Faraday effect fluctuations with phase shift of order 0.05° associated with global tearing modes are resolved with an uncertainty ∼0.01°. For physics investigations, local density fluctuations are obtained by inverting the line-integrated interferometry data. The local magnetic and current density fluctuations are then reconstructed using a parameterized fit of the polarimetry data. Reconstructed 2D images of density and magnetic field fluctuations in a poloidal cross section exhibit significantly different spatial structure. Combined with their relative phase, the magnetic-fluctuation-induced particlemore » transport flux and its spatial distribution are resolved.« less
The current-density distribution in a pulsed dc magnetron deposition discharge
NASA Astrophysics Data System (ADS)
Vetushka, Alena; Bradley, James W.
2007-04-01
Using a carefully constructed magnetic probe (a B-dot probe) the spatial and temporal evolution of the perturbation in the magnetic field ΔB in an unbalanced pulsed dc magnetron has been determined. The plasma was run in argon at a pressure of 0.74 Pa and the plasma ions sputtered a pure graphite target. The pulse frequency and duty were set at 100 kHz and 55%, respectively. From the ΔB measurements (measured with magnitudes up to about 0.01 mT) the axial, azimuthal and radial components of the total current density j in the plasma bulk were determined. In the plasma 'on' phase, the axial current density jz has a maximum value of approximately 200 A m-2 above the racetrack region, while high values in the azimuthal current density jΦ are distributed in a region from 1 to 3 cm into the bulk plasma with jΦ exceeding 350 A m-2. In the 'off' phase of the plasma, jz decays almost instantaneously (at least within the 100 ns time-resolution of the ΔB measurements) as the electric field collapses; however, jΦ decays with a characteristic time constant of about 1 µs. This slow decay can be attributed to the presence of decaying Grad-B and curvature drifts, with their rates controlled by the decay in the plasma density. A comparison between axial and azimuthal current densities in the plasma 'on' time, when the plasma is being driven, strongly indicates that classical transport does not operate in the magnetron discharge.
Mercader, R J; Siegert, N W; McCullough, D G
2012-02-01
Emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), a phloem-feeding pest of ash (Fraxinus spp.) trees native to Asia, was first discovered in North America in 2002. Since then, A. planipennis has been found in 15 states and two Canadian provinces and has killed tens of millions of ash trees. Understanding the probability of detecting and accurately delineating low density populations of A. planipennis is a key component of effective management strategies. Here we approach this issue by 1) quantifying the efficiency of sampling nongirdled ash trees to detect new infestations of A. planipennis under varying population densities and 2) evaluating the likelihood of accurately determining the localized spread of discrete A. planipennis infestations. To estimate the probability a sampled tree would be detected as infested across a gradient of A. planipennis densities, we used A. planipennis larval density estimates collected during intensive surveys conducted in three recently infested sites with known origins. Results indicated the probability of detecting low density populations by sampling nongirdled trees was very low, even when detection tools were assumed to have three-fold higher detection probabilities than nongirdled trees. Using these results and an A. planipennis spread model, we explored the expected accuracy with which the spatial extent of an A. planipennis population could be determined. Model simulations indicated a poor ability to delineate the extent of the distribution of localized A. planipennis populations, particularly when a small proportion of the population was assumed to have a higher propensity for dispersal.
NASA Astrophysics Data System (ADS)
Avelino, P. P.; Bazeia, D.; Losano, L.; Menezes, J.; de Oliveira, B. F.
2018-02-01
Stochastic simulations of cyclic three-species spatial predator-prey models are usually performed in square lattices with nearest-neighbour interactions starting from random initial conditions. In this letter we describe the results of off-lattice Lotka-Volterra stochastic simulations, showing that the emergence of spiral patterns does occur for sufficiently high values of the (conserved) total density of individuals. We also investigate the dynamics in our simulations, finding an empirical relation characterizing the dependence of the characteristic peak frequency and amplitude on the total density. Finally, we study the impact of the total density on the extinction probability, showing how a low population density may jeopardize biodiversity.
NASA Astrophysics Data System (ADS)
Pan, Changji; Jiang, Lan; Wang, Qingsong; Sun, Jingya; Wang, Guoyan; Lu, Yongfeng
2018-05-01
The femtosecond (fs) laser is a powerful tool to study ultrafast plasma dynamics, especially electron relaxation in strong ionization of dielectrics. Herein, temporal-spatial evolution of femtosecond laser induced plasma in fused silica was investigated using a two-color pump-probe technique (i.e., 400 nm and 800 nm, respectively). We demonstrated that when ionized electron density is lower than the critical density, free electron relaxation time is inversely proportional to electron density, which can be explained by the electron-ion scattering regime. In addition, electron density evolution within plasma was analyzed in an early stage (first 800 fs) of the laser-material interaction.
Geographic distribution of trauma centers and injury-related mortality in the United States.
Brown, Joshua B; Rosengart, Matthew R; Billiar, Timothy R; Peitzman, Andrew B; Sperry, Jason L
2016-01-01
Regionalized trauma care improves outcomes; however, access to care is not uniform across the United States. The objective was to evaluate whether geographic distribution of trauma centers correlates with injury mortality across state trauma systems. Level I or II trauma centers in the contiguous United States were mapped. State-level age-adjusted injury fatality rates per 100,000 people were obtained and evaluated for spatial autocorrelation. Nearest neighbor ratios (NNRs) were generated for each state. A NNR less than 1 indicates clustering, while a NNR greater than 1 indicates dispersion. NNRs were tested for difference from random geographic distribution. Fatality rates and NNRs were examined for correlation. Fatality rates were compared between states with trauma center clustering versus dispersion. Trauma center distribution and population density were evaluated. Spatial-lag regression determined the association between fatality rate and NNR, controlling for state-level demographics, population density, injury severity, trauma system resources, and socioeconomic factors. Fatality rates were spatially autocorrelated (Moran's I = 0.35, p < 0.01). Nine states had a clustered pattern (median NNR, 0.55; interquartile range [IQR], 0.48-0.60), 22 had a dispersed pattern (median NNR, 2.00; IQR, 1.68-3.99), and 10 had a random pattern (median NNR, 0.90; IQR, 0.85-1.00) of trauma center distribution. Fatality rate and NNR were correlated (ρ = 0.34, p = 0.03). Clustered states had a lower median injury fatality rate compared with dispersed states (56.9 [IQR, 46.5-58.9] vs. 64.9 [IQR, 52.5-77.1]; p = 0.04). Dispersed compared with clustered states had more counties without a trauma center that had higher population density than counties with a trauma center (5.7% vs. 1.2%, p < 0.01). Spatial-lag regression demonstrated that fatality rates increased by 0.02 per 100,000 persons for each unit increase in NNR (p < 0.01). Geographic distribution of trauma centers correlates with injury mortality, with more clustered state trauma centers associated with lower fatality rates. This may be a result of access relative to population density. These results may have implications for trauma system planning and require further study to investigate underlying mechanisms. Therapeutic/care management study, level IV.
A parameter estimation algorithm for spatial sine testing - Theory and evaluation
NASA Technical Reports Server (NTRS)
Rost, R. W.; Deblauwe, F.
1992-01-01
This paper presents the theory and an evaluation of a spatial sine testing parameter estimation algorithm that uses directly the measured forced mode of vibration and the measured force vector. The parameter estimation algorithm uses an ARMA model and a recursive QR algorithm is applied for data reduction. In this first evaluation, the algorithm has been applied to a frequency response matrix (which is a particular set of forced mode of vibration) using a sliding frequency window. The objective of the sliding frequency window is to execute the analysis simultaneously with the data acquisition. Since the pole values and the modal density are obtained from this analysis during the acquisition, the analysis information can be used to help determine the forcing vectors during the experimental data acquisition.
Estimation of optimal hologram recording modes on photothermal materials
NASA Astrophysics Data System (ADS)
Dzhamankyzov, Nasipbek Kurmanalievich; Ismanov, Yusupzhan Khakimzhanovich; Zhumaliev, Kubanychbek Myrzabekovich; Alymkulov, Samsaly Amanovich
2018-01-01
A theoretical analysis of the hologram recording process on photothermal media to estimate the required laser radiation power for the information recording as the function of the spatial frequency and radiation exposure duration is considered. Results of the analysis showed that materials with a low thermal diffusivity are necessary to increase the recording density in these media and the recording should be performed with short pulses to minimize the thermal diffusion length. A solution for the heat conduction equation for photothermal materials heated by an interference laser field was found. The solution obtained allows one to determine the required value of the recording temperature for given spatial frequencies, depending on the thermal physical parameters of the medium and on the power and duration of the heating radiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Xiaochen; Singh, Arunima K.; Fang, Lei
Impurity doping in two-dimensional (2D) materials can provide a route to tuning electronic properties, so it is important to be able to determine the distribution of dopant atoms within and between layers. Here we report the totnographic mapping of dopants in layered 2D materials with atomic sensitivity and subnanometer spatial resolution using atom, probe tomography (APT). Also, APT analysis shows that Ag dopes both Bi 2Se 3 and PbSe layers in (PbSe) 5(Bi 2Se 3) 3, and correlations :in the position of Ag atoms suggest a pairing across neighboring Bi 2Se 3 and PbSe layers. Finally, density functional theory (DFT)more » calculations confirm the favorability of substitutional-doping for both Pb and Bi and provide insights into the,observed spatial correlations in dopant locations.« less
Mullin, Keith D; McDonald, Trent; Wells, Randall S; Balmer, Brian C; Speakman, Todd; Sinclair, Carrie; Zolman, Eric S; Hornsby, Fawn; McBride, Shauna M; Wilkinson, Krystan A; Schwacke, Lori H
2017-01-01
After the Deepwater Horizon (DWH) oil spill began in April 2010, studies were initiated on northern Gulf of Mexico common bottlenose dolphins (Tursiops truncatus) in Mississippi Sound (MSS) to determine density, abundance, and survival, during and after the oil spill, and to compare these results to previous research in this region. Seasonal boat-based photo-identification surveys (2010-2012) were conducted in a section of MSS to estimate dolphin density and survival, and satellite-linked telemetry (2013) was used to determine ranging patterns. Telemetry suggested two different ranging patterns in MSS: (1) inshore waters with seasonal movements into mid-MSS, and (2) around the barrier islands exclusively. Based upon these data, dolphin density was estimated in two strata (Inshore and Island) using a spatially-explicit robust-design capture-recapture model. Inshore and Island density varied between 0.77-1.61 dolphins km-2 ([Formula: see text] = 1.42, 95% CI: 1.28-1.53) and 3.32-5.74 dolphins km-2 ([Formula: see text] = 4.43, 95% CI: 2.70-5.63), respectively. The estimated annual survival rate for dolphins with distinctive fins was very low in the year following the spill, 0.73 (95% CI: 0.67-0.78), and consistent with the occurrence of a large scale cetacean unusual mortality event that was in part attributed to the DWH oil spill. Fluctuations in density were not as large or seasonally consistent as previously reported. Total abundance for MSS extrapolated from density results ranged from 4,610 in July 2011 to 3,046 in January 2012 ([Formula: see text] = 3,469, 95% CI: 3,113-3,725).
Mullin, Keith D.; Wells, Randall S.; Balmer, Brian C.; Speakman, Todd; Sinclair, Carrie; Zolman, Eric S.; Hornsby, Fawn; McBride, Shauna M.; Wilkinson, Krystan A.; Schwacke, Lori H.
2017-01-01
After the Deepwater Horizon (DWH) oil spill began in April 2010, studies were initiated on northern Gulf of Mexico common bottlenose dolphins (Tursiops truncatus) in Mississippi Sound (MSS) to determine density, abundance, and survival, during and after the oil spill, and to compare these results to previous research in this region. Seasonal boat-based photo-identification surveys (2010–2012) were conducted in a section of MSS to estimate dolphin density and survival, and satellite-linked telemetry (2013) was used to determine ranging patterns. Telemetry suggested two different ranging patterns in MSS: (1) inshore waters with seasonal movements into mid-MSS, and (2) around the barrier islands exclusively. Based upon these data, dolphin density was estimated in two strata (Inshore and Island) using a spatially-explicit robust-design capture-recapture model. Inshore and Island density varied between 0.77–1.61 dolphins km−2 (x¯ = 1.42, 95% CI: 1.28–1.53) and 3.32–5.74 dolphins km−2 (x¯ = 4.43, 95% CI: 2.70–5.63), respectively. The estimated annual survival rate for dolphins with distinctive fins was very low in the year following the spill, 0.73 (95% CI: 0.67–0.78), and consistent with the occurrence of a large scale cetacean unusual mortality event that was in part attributed to the DWH oil spill. Fluctuations in density were not as large or seasonally consistent as previously reported. Total abundance for MSS extrapolated from density results ranged from 4,610 in July 2011 to 3,046 in January 2012 (x¯ = 3,469, 95% CI: 3,113–3,725). PMID:29053728
Warburton, Bruce; Gormley, Andrew M
2015-01-01
Internationally, invasive vertebrate species pose a significant threat to biodiversity, agricultural production and human health. To manage these species a wide range of tools, including traps, are used. In New Zealand, brushtail possums (Trichosurus vulpecula), stoats (Mustela ermine), and ship rats (Rattus rattus) are invasive and there is an ongoing demand for cost-effective non-toxic methods for controlling these pests. Recently, traps with multiple-capture capability have been developed which, because they do not require regular operator-checking, are purported to be more cost-effective than traditional single-capture traps. However, when pest populations are being maintained at low densities (as is typical of orchestrated pest management programmes) it remains uncertain if it is more cost-effective to use fewer multiple-capture traps or more single-capture traps. To address this uncertainty, we used an individual-based spatially explicit modelling approach to determine the likely maximum animal-captures per trap, given stated pest densities and defined times traps are left between checks. In the simulation, single- or multiple-capture traps were spaced according to best practice pest-control guidelines. For possums with maintenance densities set at the lowest level (i.e. 0.5/ha), 98% of all simulated possums were captured with only a single capacity trap set at each site. When possum density was increased to moderate levels of 3/ha, having a capacity of three captures per trap caught 97% of all simulated possums. Results were similar for stoats, although only two potential captures per site were sufficient to capture 99% of simulated stoats. For rats, which were simulated at their typically higher densities, even a six-capture capacity per trap site only resulted in 80% kill. Depending on target species, prevailing density and extent of immigration, the most cost-effective strategy for pest control in New Zealand might be to deploy several single-capture traps rather than investing in fewer, but more expense, multiple-capture traps.
Afroz, Sonia; Shen, Hui; Smith, Sheryl S.
2017-01-01
Synaptic pruning underlies the transition from an immature to an adult CNS through refinements of neuronal circuits. Our recent study indicates that pubertal synaptic pruning is triggered by the inhibition generated by extrasynaptic α4βδ GABAA receptors (GABARs) which are increased for 10 d on dendritic spines of CA1 pyramidal cells at the onset of puberty (PND 35–44) in the female mouse, suggesting α4βδ GABARs as a novel target for the regulation of adolescent synaptic pruning. In the present study we used a pharmacological approach to further examine the role of these receptors in altering spine density during puberty of female mice and the impact of these changes on spatial learning, assessed in adulthood. Two drugs were chronically administered during the pubertal period (PND 35–44): the GABA agonist gaboxadol (GBX, 0.1 mg/kg, i.p.), to enhance current gated by α4βδ GABARs and the neurosteroid/stress steroid THP (3α-OH-5β-pregnan-20-one, 10 mg/kg, i.p.) to decrease expression of α4βδ. Spine density was determined on PND 56 with Golgi staining. Spatial learning and relearning were assessed using the multiple object relocation task (MPORT) and an active place avoidance task (APA) on PND 56. Pubertal GBX decreased spine density post-pubertally by 70% (P<0.05), while decreasing α4βδ expression with THP increased spine density by two-fold (P<0.05), in both cases, with greatest effects on the mushroom spines. Adult relearning ability was compromised in both hippocampus-dependent tasks after pubertal administration of either drug. These findings suggest that an optimal spine density produced by α4βδ GABARs is necessary for optimal cognition in adults. PMID:28189613
NASA Astrophysics Data System (ADS)
Engstrom, R.; Ashcroft, E.
2014-12-01
There has been a tremendous amount of research conducted that examines disparities in health and wealth of persons between urban and rural areas however, relatively little research has been undertaken to examine variations within urban areas. A major limitation to elucidating differences with urban areas is the lack of social and demographic data at a sufficiently high spatial resolution to determine these differences. Generally the only available data that contain this information are census data which are collected at most every ten years and are often difficult to obtain at a high enough spatial resolution to allow for examining in depth variability in health and wealth indicators at high spatial resolutions, especially in developing countries. High spatial resolution satellite imagery may be able to provide timely and synoptic information that is related to health and wealth variability within a city. In this study we use two dates of Quickbird imagery (2003 and 2010) classified into the vegetation-impervious surface-soil (VIS) model introduced by Ridd (1995). For 2003 we only have partial coverage of the city, while for 2010 we have a mosaic, which covers the entire city of Accra, Ghana. Variations in the VIS values represent the physical variations within the city and these are compared to variations in economic, and/or sociodemographic data derived from the 2000 Ghanaian census at two spatial resolutions, the enumeration area (approximately US Census Tract) and the neighborhood for the city. Results indicate a significant correlation between both vegetation and impervious surface to type of cooking fuel used in the household, population density, housing density, availability of sewers, cooking space usage, and other variables. The correlations are generally stronger at the neighborhood level and the relationships are stable through time and space. Overall, the results indicate that information derived from high resolution satellite data is related to indicators of health and wealth within a developing world city and that the even if the imagery is collected 10 years after the census information, the relationships are still significant.
Singh, Akath; Santra, Priyabrata; Kumar, Mahesh; Panwar, Navraten; Meghwal, P R
2016-09-01
Soil organic carbon (SOC) is a major indicator of long-term sustenance of agricultural production system. Apart from sustaining productivity, SOC plays a crucial role in context of climate change. Keeping in mind these potentials, spatial variation of SOC contents of a fruit orchard comprising several arid fruit plantations located at arid region of India is assessed in this study through geostatistical approaches. For this purpose, surface and subsurface soil samples from 175 locations from a fruit orchard spreading over 14.33 ha area were collected along with geographical coordinates. SOC content and soil physicochemical properties of collected soil samples were determined followed by geostatistical analysis for mapping purposes. Average SOC stock density of the orchard was 14.48 Mg ha(-1) for 0- to 30-cm soil layer ranging from 9.01 Mg ha(-1) in Carissa carandas to 19.52 Mg ha(-1) in Prosopis cineraria block. Range of spatial variation of SOC content was found about 100 m, while two other soil physicochemical properties, e.g., pH and electrical conductivity (EC) also showed similar spatial trend. This indicated that minimum sampling distance for future SOC mapping programme may be kept lower than 100 m for better accuracy. Ordinary kriging technique satisfactorily predicted SOC contents (in percent) at unsampled locations with root-mean-squared residual (RMSR) of 0.35-0.37. Co-kriging approach was found slightly superior (RMSR = 0.26-0.28) than ordinary kriging for spatial prediction of SOC contents because of significant correlations of SOC contents with pH and EC. Uncertainty of SOC estimation was also presented in terms of 90 % confidence interval. Spatial estimates of SOC stock through ordinary kriging or co-kriging approach were also found with low uncertainty of estimation than non-spatial estimates, e.g., arithmetic averaging approach. Among different fruit block plantations of the orchard, the block with Prosopis cineraria ('khejri') has higher SOC stock density than others.
Influence of landscape-scale factors in limiting brook trout populations in Pennsylvania streams
Kocovsky, P.M.; Carline, R.F.
2006-01-01
Landscapes influence the capacity of streams to produce trout through their effect on water chemistry and other factors at the reach scale. Trout abundance also fluctuates over time; thus, to thoroughly understand how spatial factors at landscape scales affect trout populations, one must assess the changes in populations over time to provide a context for interpreting the importance of spatial factors. We used data from the Pennsylvania Fish and Boat Commission's fisheries management database to investigate spatial factors that affect the capacity of streams to support brook trout Salvelinus fontinalis and to provide models useful for their management. We assessed the relative importance of spatial and temporal variation by calculating variance components and comparing relative standard errors for spatial and temporal variation. We used binary logistic regression to predict the presence of harvestable-length brook trout and multiple linear regression to assess the mechanistic links between landscapes and trout populations and to predict population density. The variance in trout density among streams was equal to or greater than the temporal variation for several streams, indicating that differences among sites affect population density. Logistic regression models correctly predicted the absence of harvestable-length brook trout in 60% of validation samples. The r 2-value for the linear regression model predicting density was 0.3, indicating low predictive ability. Both logistic and linear regression models supported buffering capacity against acid episodes as an important mechanistic link between landscapes and trout populations. Although our models fail to predict trout densities precisely, their success at elucidating the mechanistic links between landscapes and trout populations, in concert with the importance of spatial variation, increases our understanding of factors affecting brook trout abundance and will help managers and private groups to protect and enhance populations of wild brook trout. ?? Copyright by the American Fisheries Society 2006.
Wei, Wang; Yuan-Yuan, Jin; Ci, Yan; Ahan, Alayi; Ming-Qin, Cao
2016-10-06
The spatial interplay between socioeconomic factors and tuberculosis (TB) cases contributes to the understanding of regional tuberculosis burdens. Historically, local Poisson Geographically Weighted Regression (GWR) has allowed for the identification of the geographic disparities of TB cases and their relevant socioeconomic determinants, thereby forecasting local regression coefficients for the relations between the incidence of TB and its socioeconomic determinants. Therefore, the aims of this study were to: (1) identify the socioeconomic determinants of geographic disparities of smear positive TB in Xinjiang, China (2) confirm if the incidence of smear positive TB and its associated socioeconomic determinants demonstrate spatial variability (3) compare the performance of two main models: one is Ordinary Least Square Regression (OLS), and the other local GWR model. Reported smear-positive TB cases in Xinjiang were extracted from the TB surveillance system database during 2004-2010. The average number of smear-positive TB cases notified in Xinjiang was collected from 98 districts/counties. The population density (POPden), proportion of minorities (PROmin), number of infectious disease network reporting agencies (NUMagen), proportion of agricultural population (PROagr), and per capita annual gross domestic product (per capita GDP) were gathered from the Xinjiang Statistical Yearbook covering a period from 2004 to 2010. The OLS model and GWR model were then utilized to investigate socioeconomic determinants of smear-positive TB cases. Geoda 1.6.7, and GWR 4.0 software were used for data analysis. Our findings indicate that the relations between the average number of smear-positive TB cases notified in Xinjiang and their socioeconomic determinants (POPden, PROmin, NUMagen, PROagr, and per capita GDP) were significantly spatially non-stationary. This means that in some areas more smear-positive TB cases could be related to higher socioeconomic determinant regression coefficients, but in some areas more smear-positive TB cases were found to do with lower socioeconomic determinant regression coefficients. We also found out that the GWR model could be better exploited to geographically differentiate the relationships between the average number of smear-positive TB cases and their socioeconomic determinants, which could interpret the dataset better (adjusted R 2 = 0.912, AICc = 1107.22) than the OLS model (adjusted R 2 = 0.768, AICc = 1196.74). POPden, PROmin, NUMagen, PROagr, and per capita GDP are socioeconomic determinants of smear-positive TB cases. Comprehending the spatial heterogeneity of POPden, PROmin, NUMagen, PROagr, per capita GDP, and smear-positive TB cases could provide valuable information for TB precaution and control strategies.
A Permutation-Randomization Approach to Test the Spatial Distribution of Plant Diseases.
Lione, G; Gonthier, P
2016-01-01
The analysis of the spatial distribution of plant diseases requires the availability of trustworthy geostatistical methods. The mean distance tests (MDT) are here proposed as a series of permutation and randomization tests to assess the spatial distribution of plant diseases when the variable of phytopathological interest is categorical. A user-friendly software to perform the tests is provided. Estimates of power and type I error, obtained with Monte Carlo simulations, showed the reliability of the MDT (power > 0.80; type I error < 0.05). A biological validation on the spatial distribution of spores of two fungal pathogens causing root rot on conifers was successfully performed by verifying the consistency between the MDT responses and previously published data. An application of the MDT was carried out to analyze the relation between the plantation density and the distribution of the infection of Gnomoniopsis castanea, an emerging fungal pathogen causing nut rot on sweet chestnut. Trees carrying nuts infected by the pathogen were randomly distributed in areas with different plantation densities, suggesting that the distribution of G. castanea was not related to the plantation density. The MDT could be used to analyze the spatial distribution of plant diseases both in agricultural and natural ecosystems.
Spatial variations in Eulemur fulvus rufus and Lepilemur mustelinus densities in Madagascar.
Lehman, Shawn M
2007-01-01
I present data on variations in Eulemur fulvus rufus and Lepilemur mustelinus densities as well as tree characteristics (height, diameter and stem frequency) between edge and interior forest habitats in southeastern Madagascar. Line transect surveys were conducted from June 2003 to November 2005 in edge and interior forest habitats in the Vohibola III Classified Forest. Although E. f. rufus densities were significantly lower in edge habitats than in interior habitats, density estimates for L. mustelinus did not differ significantly between habitats. Trees in edge habitats were significantly shorter, had smaller diameters and had lower stem frequencies (for those >25 cm in diameter) than trees in interior habitats. Spatial characteristics of food abundance and quality may explain lemur density patterns in Vohibola III. Low E. f. rufus densities may reduce seed dispersal in edge habitats, which has important consequences for the long-term viability of forest ecosystems in Madagascar. Copyright (c) 2007 S. Karger AG, Basel.
Gallina, Alessio; Peters, Sue; Neva, Jason L; Boyd, Lara A; Garland, S Jayne
2017-06-01
The objective of this study was to determine whether motor evoked potentials (MEPs) elicited with transcranial magnetic stimulation and measured with conventional bipolar electromyography (EMG) are influenced by crosstalk from non-target muscles. MEPs were recorded in healthy participants using conventional EMG electrodes placed over the extensor carpi radialis muscle (ECR) and high-density surface EMG (HDsEMG). Fifty MEPs at 120% resting and active motor threshold were recorded. To determine the contribution of ECR to the MEPs, the amplitude distribution across HDsEMG channels was correlated with EMG activity recorded during a wrist extension task. Whereas the conventional EMG identified MEPs from ECR in >90% of the stimulations, HDsEMG revealed that spatial amplitude distribution representative of ECR activation was observed less frequently at rest than while holding a contraction (P < 0.001). MEPs recorded with conventional EMG may contain crosstalk from non-target muscles, especially when the stimulation is applied at rest. Muscle Nerve 55: 828-834, 2017. © 2016 Wiley Periodicals, Inc.
Examining the occupancy–density relationship for a low-density carnivore
Linden, Daniel W.; Fuller, Angela K.; Royle, J. Andrew; Hare, Matthew P.
2017-01-01
The challenges associated with monitoring low-density carnivores across large landscapes have limited the ability to implement and evaluate conservation and management strategies for such species. Non-invasive sampling techniques and advanced statistical approaches have alleviated some of these challenges and can even allow for spatially explicit estimates of density, one of the most valuable wildlife monitoring tools.For some species, individual identification comes at no cost when unique attributes (e.g. pelage patterns) can be discerned with remote cameras, while other species require viable genetic material and expensive laboratory processing for individual assignment. Prohibitive costs may still force monitoring efforts to use species distribution or occupancy as a surrogate for density, which may not be appropriate under many conditions.Here, we used a large-scale monitoring study of fisher Pekania pennanti to evaluate the effectiveness of occupancy as an approximation to density, particularly for informing harvest management decisions. We combined remote cameras with baited hair snares during 2013–2015 to sample across a 70 096-km2 region of western New York, USA. We fit occupancy and Royle–Nichols models to species detection–non-detection data collected by cameras, and spatial capture–recapture (SCR) models to individual encounter data obtained by genotyped hair samples. Variation in the state variables within 15-km2 grid cells was modelled as a function of landscape attributes known to influence fisher distribution.We found a close relationship between grid cell estimates of fisher state variables from the models using detection–non-detection data and those from the SCR model, likely due to informative spatial covariates across a large landscape extent and a grid cell resolution that worked well with the movement ecology of the species. Fisher occupancy and density were both positively associated with the proportion of coniferous-mixed forest and negatively associated with road density. As a result, spatially explicit management recommendations for fisher were similar across models, though relative variation was dampened for the detection–non-detection data.Synthesis and applications. Our work provides empirical evidence that models using detection–non-detection data can make similar inferences regarding relative spatial variation of the focal population to models using more expensive individual encounters when the selected spatial grain approximates or is marginally smaller than home range size. When occupancy alone is chosen as a cost-effective state variable for monitoring, simulation and sensitivity analyses should be used to understand how inferences from detection–non-detection data will be affected by aspects of study design and species ecology.
NASA Astrophysics Data System (ADS)
Byerly, K.; Ohodnicki, P. R.; Moon, S. R.; Leary, A. M.; Keylin, V.; McHenry, M. E.; Simizu, S.; Beddingfield, R.; Yu, Y.; Feichter, G.; Noebe, R.; Bowman, R.; Bhattacharya, S.
2018-04-01
Metal amorphous nanocomposite (MANC) alloys are an emerging class of soft magnetic materials showing promise for a range of inductive components targeted for higher power density and higher efficiency power conversion applications including inductors, transformers, and rotating electrical machinery. Magnetization reversal mechanisms within these alloys are typically determined by composition optimization as well as controlled annealing treatments to generate a nanocomposite structure composed of nanocrystals embedded in an amorphous precursor. Here we demonstrate the concept of spatially varying the permeability within a given component for optimization of performance by using the strain annealing process. The concept is realized experimentally through the smoothing of the flux profile from the inner to outer core radius achieved by a monotonic variation in tension during the strain annealing process. Great potential exists for an extension of this concept to a wide range of other power magnetic components and more complex spatially varying permeability profiles through advances in strain annealing techniques and controls.
NASA Astrophysics Data System (ADS)
Byerly, K.; Ohodnicki, P. R.; Moon, S. R.; Leary, A. M.; Keylin, V.; McHenry, M. E.; Simizu, S.; Beddingfield, R.; Yu, Y.; Feichter, G.; Noebe, R.; Bowman, R.; Bhattacharya, S.
2018-06-01
Metal amorphous nanocomposite (MANC) alloys are an emerging class of soft magnetic materials showing promise for a range of inductive components targeted for higher power density and higher efficiency power conversion applications including inductors, transformers, and rotating electrical machinery. Magnetization reversal mechanisms within these alloys are typically determined by composition optimization as well as controlled annealing treatments to generate a nanocomposite structure composed of nanocrystals embedded in an amorphous precursor. Here we demonstrate the concept of spatially varying the permeability within a given component for optimization of performance by using the strain annealing process. The concept is realized experimentally through the smoothing of the flux profile from the inner to outer core radius achieved by a monotonic variation in tension during the strain annealing process. Great potential exists for an extension of this concept to a wide range of other power magnetic components and more complex spatially varying permeability profiles through advances in strain annealing techniques and controls.
Poultry, pig and the risk of BSE following the feed ban in France--a spatial analysis.
Abrial, David; Calavas, Didier; Jarrige, Nathalie; Ducrot, Christian
2005-01-01
A spatial analysis was carried out in order to analyse the reason why the risk of Bovine Spongiform Encephalopathy (BSE) was spatially heterogeneous in France, during the period following the feed ban of Meat and Bone Meal to cattle. The hypothesis of cross-contamination between cattle feedstuff and monogastric feedstuff, which was strongly suggested from previous investigations, was assessed, with the assumption that the higher the pig or poultry density is in a given area, the higher the risk of cross-contamination and cattle infection might be. The data concerned the 467 BSE cases born in France after the ban of meat and bone meal (July 1990) and detected between July 1st, 2001 and December 31, 2003, when the surveillance system was optimal and not spatially biased. The disease mapping models were elaborated with the Bayesian graphical modelling methods and based on a Poisson distribution with spatial smoothing (hierarchical approach) and covariates. The parameters were estimated by a Markov Chain Monte Carlo simulation method. The main result was that the poultry density did not significantly influence the risk of BSE whereas the pig density was significantly associated with an increase in the risk of 2.4% per 10 000 pigs. The areas with a significant pig effect were located in regions with a high pig density as well as a high ratio of pigs to cattle. Despite the absence of a global effect of poultry density on the BSE risk, some areas had a significant poultry effect and the risk was better explained in some others when considering both pig and poultry densities. These findings were in agreement with the hypothesis of cross-contamination, which could take place at the feedstuff factory, during the shipment of food or on the farm. Further studies are needed to more precisely explore how the cross-contamination happened.
Morin, Dana J.; Fuller, Angela K.; Royle, J. Andrew; Sutherland, Chris
2017-01-01
Conservation and management of spatially structured populations is challenging because solutions must consider where individuals are located, but also differential individual space use as a result of landscape heterogeneity. A recent extension of spatial capture–recapture (SCR) models, the ecological distance model, uses spatial encounter histories of individuals (e.g., a record of where individuals are detected across space, often sequenced over multiple sampling occasions), to estimate the relationship between space use and characteristics of a landscape, allowing simultaneous estimation of both local densities of individuals across space and connectivity at the scale of individual movement. We developed two model-based estimators derived from the SCR ecological distance model to quantify connectivity over a continuous surface: (1) potential connectivity—a metric of the connectivity of areas based on resistance to individual movement; and (2) density-weighted connectivity (DWC)—potential connectivity weighted by estimated density. Estimates of potential connectivity and DWC can provide spatial representations of areas that are most important for the conservation of threatened species, or management of abundant populations (i.e., areas with high density and landscape connectivity), and thus generate predictions that have great potential to inform conservation and management actions. We used a simulation study with a stationary trap design across a range of landscape resistance scenarios to evaluate how well our model estimates resistance, potential connectivity, and DWC. Correlation between true and estimated potential connectivity was high, and there was positive correlation and high spatial accuracy between estimated DWC and true DWC. We applied our approach to data collected from a population of black bears in New York, and found that forested areas represented low levels of resistance for black bears. We demonstrate that formal inference about measures of landscape connectivity can be achieved from standard methods of studying animal populations which yield individual encounter history data such as camera trapping. Resulting biological parameters including resistance, potential connectivity, and DWC estimate the spatial distribution and connectivity of the population within a statistical framework, and we outline applications to many possible conservation and management problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, Xiao Qiong; Niu, Zhi Wen; Ren, Chun-Sheng
2015-06-29
By combining a high-speed frame camera with a monochromator, the spatially resolved optical emission spectrum of hydrogen α line in a single filament of a pulsed positive streamer discharge in water has been experimentally measured. The spatially resolved electron densities in a single filament of a pulsed positive streamer discharge in water with a conductivity of 200 μS/cm were investigated. During the experiment, the average energy per pulse of discharge was 90.6 ± 13.6 mJ. The results show that the electron density in the streamer filament is 10{sup 17–18}/cm{sup 3}, and present a decreasing tendency along the axial direction of the streamer filamentmore » with increasing distance from the tip of the anode.« less
Site-specific management of nematodes pitfalls and practicalities.
Evans, Ken; Webster, Richard M; Halford, Paul D; Barker, Anthony D; Russell, Michael D
2002-09-01
The greatest constraint to potato production in the United Kingdom (UK) is damage by the potato cyst nematodes (PCN) Globodera pallida and G. rostochiensis. Management of PCN depends heavily on nematicides, which are costly. Of all the inputs in UK agriculture, nematicides offer the largest potential cost savings from spatially variable application, and these savings would be accompanied by environmental benefits. We mapped PCN infestations in potato fields and monitored the changes in population density and distribution that occurred when susceptible potato crops were grown. The inverse relationship between population density before planting and multiplication rate of PCN makes it difficult to devise reliable spatial nematicide application procedures, especially when the pre-planting population density is just less than the detection threshold. Also, the spatial dependence found suggests that the coarse sampling grids used commercially are likely to produce misleading distribution maps.
Density-dependent home-range size revealed by spatially explicit capture–recapture
Efford, M.G.; Dawson, Deanna K.; Jhala, Y.V.; Qureshi, Q.
2016-01-01
The size of animal home ranges often varies inversely with population density among populations of a species. This fact has implications for population monitoring using spatially explicit capture–recapture (SECR) models, in which both the scale of home-range movements σ and population density D usually appear as parameters, and both may vary among populations. It will often be appropriate to model a structural relationship between population-specific values of these parameters, rather than to assume independence. We suggest re-parameterizing the SECR model using kp = σp √Dp, where kp relates to the degree of overlap between home ranges and the subscript p distinguishes populations. We observe that kp is often nearly constant for populations spanning a range of densities. This justifies fitting a model in which the separate kp are replaced by the single parameter k and σp is a density-dependent derived parameter. Continuous density-dependent spatial variation in σ may also be modelled, using a scaled non-Euclidean distance between detectors and the locations of animals. We illustrate these methods with data from automatic photography of tigers (Panthera tigris) across India, in which the variation is among populations, from mist-netting of ovenbirds (Seiurus aurocapilla) in Maryland, USA, in which the variation is within a single population over time, and from live-trapping of brushtail possums (Trichosurus vulpecula) in New Zealand, modelling spatial variation within one population. Possible applications and limitations of the methods are discussed. A model in which kp is constant, while density varies, provides a parsimonious null model for SECR. The parameter k of the null model is a concise summary of the empirical relationship between home-range size and density that is useful in comparative studies. We expect deviations from this model, particularly the dependence of kp on covariates, to be biologically interesting.
Jakobsson, Anna; Lázaro, Amparo; Totland, Orjan
2009-07-01
Local flower density can affect pollen limitation and plant reproductive success through changes in pollinator visitation and availability of compatible pollen. Many studies have investigated the relationship between conspecific density and pollen limitation among populations, but less is known about within-population relationships and the effect of heterospecific flower density. In addition, few studies have explicitly assessed how the spatial scales at which flowers are monitored affect relationships. We investigated the effect of floral neighborhood on pollen limitation at four spatial scales in the self-incompatible herbs Armeria maritima spp. maritima and Ranunculus acris spp. acris. Moreover, we measured pollen deposition in Armeria and pollinator visits to Ranunculus. There was substantial variation in pollen limitation among Armeria individuals, and 25% of this variation was explained by the density of compatible and heterospecific flowers within a 3 m circle. Deposition of compatible pollen was affected by the density of compatible and incompatible inflorescences within a 0.5 m circle, and deposition of heterospecific pollen was affected by the density of heterospecific flowers within a 2 m circle. In Ranunculus, the number of pollinator visits was affected by both conspecific and heterospecific flower densities. This did not, however, result in effects of the floral neighborhood on pollen limitation, probably due to an absence of pollen limitation at the population level. Our study shows that considerable variation in pollen limitation may occur among individuals of a population, and that this variation is partly explained by floral neighborhood density. Such individual-based measures provide an important link between pollen limitation theory, which predicts ecological and evolutionary causes and consequences for individual plants, and studies of the effects of landscape fragmentation on plant species persistence. Our study also highlights the importance of considering multiple spatial scales to understand the spatial extent of pollination processes within a population.
Spatial capture-recapture models allowing Markovian transience or dispersal
Royle, J. Andrew; Fuller, Angela K.; Sutherland, Chris
2016-01-01
Spatial capture–recapture (SCR) models are a relatively recent development in quantitative ecology, and they are becoming widely used to model density in studies of animal populations using camera traps, DNA sampling and other methods which produce spatially explicit individual encounter information. One of the core assumptions of SCR models is that individuals possess home ranges that are spatially stationary during the sampling period. For many species, this assumption is unlikely to be met and, even for species that are typically territorial, individuals may disperse or exhibit transience at some life stages. In this paper we first conduct a simulation study to evaluate the robustness of estimators of density under ordinary SCR models when dispersal or transience is present in the population. Then, using both simulated and real data, we demonstrate that such models can easily be described in the BUGS language providing a practical framework for their analysis, which allows us to evaluate movement dynamics of species using capture–recapture data. We find that while estimators of density are extremely robust, even to pathological levels of movement (e.g., complete transience), the estimator of the spatial scale parameter of the encounter probability model is confounded with the dispersal/transience scale parameter. Thus, use of ordinary SCR models to make inferences about density is feasible, but interpretation of SCR model parameters in relation to movement should be avoided. Instead, when movement dynamics are of interest, such dynamics should be parameterized explicitly in the model.
Spatially resolved density and ionization measurements of shocked foams using x-ray fluorescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, M. J.; Keiter, P. A.; Montgomery, D. S.
2016-09-28
We present experiments at the Trident laser facility demonstrating the use of x-ray fluorescence (XRF) to simultaneously measure density, ionization state populations, and electron temperature in shocked foams. An imaging x-ray spectrometer obtained spatially resolved measurements of Ti K-α emission. Density profiles were measured from K-α intensity. Ti ionization state distributions and electron temperatures were inferred by fitting K-α spectra to spectra from CRETIN simulations. This work shows that XRF provides a powerful tool to complement other diagnostics to make equation of state measurements of shocked materials containing a suitable tracer element.
NASA Technical Reports Server (NTRS)
Landt, J. A.
1974-01-01
The geometries of dense solar wind clouds are estimated by comparing single-location measurements of the solar wind plasma with the average of the electron density obtained by radio signal delay measurements along a radio path between earth and interplanetary spacecraft. Several of these geometries agree with the current theoretical spatial models of flare-induced shock waves. A new class of spatially limited structures that contain regions with densities greater than any observed in the broad clouds is identified. The extent of a cloud was found to be approximately inversely proportional to its density.
Causes and consequences of complex population dynamics in an annual plant, Cardamine pensylvanica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crone, E.E.
1995-11-08
The relative importance of density-dependent and density-independent factors in determining the population dynamics of plants has been widely debated with little resolution. In this thesis, the author explores the effects of density-dependent population regulation on population dynamics in Cardamine pensylvanica, an annual plant. In the first chapter, she shows that experimental populations of C. pensylvanica cycled from high to low density in controlled constant-environment conditions. These cycles could not be explained by external environmental changes or simple models of direct density dependence (N{sub t+1} = f[N{sub t}]), but they could be explained by delayed density dependence (N{sub t+1} = f[N{submore » t}, N{sub t+1}]). In the second chapter, she shows that the difference in the stability properties of population growth models with and without delayed density dependence is due to the presence of Hopf as well as slip bifurcations from stable to chaotic population dynamics. She also measures delayed density dependence due to effects of parental density on offspring quality in C. pensylvanica and shows that this is large enough to be the cause of the population dynamics observed in C. pensylvanica. In the third chapter, the author extends her analyses of density-dependent population growth models to include interactions between competing species. In the final chapter, she compares the effects of fixed spatial environmental variation and variation in population size on the evolutionary response of C. pensylvanica populations.« less
Swei, A; Meentemeyer, R; Briggs, C J
2011-01-01
The abiotic and biotic factors that govern the spatial distribution of Lyme disease vectors are poorly understood. This study addressed the influence of abiotic and biotic environmental variables on Ixodes pacificus Cooley & Kohls (Acari:Ixodidae) nymphs, because it is the primary vector of Borrelia burgdorferi Johnson, Schmidt, Hyde, Steigerwaldt & Brenner in the far-western United States. Three metrics of Lyme disease risk were evaluated: the density of nymphs, the density of infected nymphs, and the nymphal infection prevalence. This study sampled randomly located plots in oak (Quercus spp.) woodland habitat in Sonoma County, CA. Each plot was drag-sampled for nymphal ticks and tested for B. burgdorferi infection. Path analysis was used to evaluate the direct and indirect relationship between topographic, forest structure and microclimatic variables on ticks. Significant negative correlations were found between maximum temperature in the dry season and the density of infected ticks in 2006 and tick density in 2007, but we did not find a significant relationship with nymphal infection prevalence in either year. Tick density and infected tick density had an indirect, positive correlation with elevation, mediated through temperature. This study found that in certain years but not others, temperature maxima in the dry season may constrain the density and density of infected I. pacificus nymphs. In other years, biotic or stochastic factors may play a more important role in determining tick density.
Holographic Dark Energy Density
NASA Astrophysics Data System (ADS)
Saadat, Hassan
2011-06-01
In this article we consider the cosmological model based on the holographic dark energy. We study dark energy density in Universe with arbitrary spatially curvature described by the Friedmann-Robertson-Walker metric. We use Chevallier-Polarski-Linder parametrization to specify dark energy density.
Finite Density Condensation and Scattering Data: A Study in ϕ4 Lattice Field Theory
NASA Astrophysics Data System (ADS)
Gattringer, Christof; Giuliani, Mario; Orasch, Oliver
2018-06-01
We study the quantum field theory of a charged ϕ4 field in lattice regularization at finite density and low temperature in 2 and 4 dimensions with the goal of analyzing the connection of condensation phenomena to scattering data in a nonperturbative way. The sign problem of the theory at nonzero chemical potential μ is overcome by using a worldline representation for the Monte Carlo simulation. At low temperature we study the particle number as a function of μ and observe the steps for 1-, 2-, and 3-particle condensation. We determine the corresponding critical values μncrit , n =1 , 2, 3 and analyze their dependence on the spatial extent L of the lattice. Linear combinations of the μncrit give the interaction energies in the 2- and 3-particle sectors and their dependence on L is related to scattering data by Lüscher's formula and its generalizations to three particles. For two dimensions we determine the scattering phase shift and for four dimensions the scattering length. We cross-check our results with a determination of the mass and the 2- and 3-particle energies from conventional 2-, 4-, and 6-point correlators at zero chemical potential. The letter demonstrates that the physics of condensation at finite density and low temperature is closely related to scattering data of a quantum field theory.
NASA Astrophysics Data System (ADS)
Alhaddad, B. I.; Burns, M. C.; Roca, J.
2011-08-01
Urban areas are complicated due to the mix of man-made features and natural features. A higher level of structural information plays an important role in land cover/use classification of urban areas. Additional spatial indicators have to be extracted based on structural analysis in order to understand and identify spatial patterns or the spatial organization of features, especially for man-made feature. It's very difficult to extract such spatial patterns by using only classification approaches. Clusters of urban patterns which are integral parts of other uses may be difficult to identify. A lot of public resources have been directed towards seeking to develop a standardized classification system and to provide as much compatibility as possible to ensure the widespread use of such categorized data obtained from remote sensor sources. In this paper different methods applied to understand the change in the land use areas by understanding and monitoring the change in urban areas and as its hard to apply those methods to classification results for high elements quantities, dusts and scratches (Roca and Alhaddad, 2005). This paper focuses on a methodology developed based relation between urban elements and how to join this elements in zones or clusters have commune behaviours such as form, pattern, size. The main objective is to convert urban class category in to various structure densities depend on conjunction of pixel and shortest distance between them, Delaunay triangulation has been widely used in spatial analysis and spatial modelling. To identify these different zones, a spatial density-based clustering technique was adopted. In highly urban zones, the spatial density of the pixels is high, while in sparsely areas the density of points is much lower. Once the groups of pixels are identified, the calculation of the boundaries of the areas containing each group of pixels defines the new regions indicate the different contains inside such as high or low urban areas. Multi-temporal datasets from 1986, 1995 and 2004 used to urban region centroid to be our reference in this study which allow us to follow the urban movement, increase and decrease by the time. Kernel Density function used to Calculates urban magnitude, Voronoi algorithm is proposed for deriving explicit boundaries between objects units. To test the approach, we selected a site in a suburban area in Barcelona Municipality, the Spain.
Daniel J. Isaak; Jay M. Ver Hoef; Erin E. Peterson; Dona L. Horan; David E. Nagel
2017-01-01
Population size estimates for stream fishes are important for conservation and management, but sampling costs limit the extent of most estimates to small portions of river networks that encompass 100sâ10 000s of linear kilometres. However, the advent of large fish density data sets, spatial-stream-network (SSN) models that benefit from nonindependence among samples,...
Soto-Moyano, Rubén; Valladares, Luis; Sierralta, Walter; Pérez, Hernán; Mondaca, Mauricio; Fernández, Victor; Burgos, Héctor; Hernández, Alejandro
2005-06-01
Mild reduction in the protein content of the mother's diet from 25 to 8% casein, calorically compensated by carbohydrates, does not alter body and brain weights of rat pups at birth, but leads to significant enhancements in the concentration and release of cortical noradrenaline during early postnatal life. Since central noradrenaline and some of its receptors are critically involved in long-term potentiation (LTP) and memory formation, this study evaluated the effect of mild prenatal protein malnutrition on the alpha2C-adrenoceptor density in the frontal and occipital cortices, induction of LTP in the same cortical regions and the visuo-spatial memory. Pups born from rats fed a 25% casein diet throughout pregnancy served as controls. At day 8 of postnatal age, prenatally malnourished rats showed a threefold increase in neocortical alpha2C-adrenoceptor density. At 60 days-of-age, alpha2C-adrenoceptor density was still elevated in the neocortex, and the animals were unable to maintain neocortical LTP and presented lower visuo-spatial memory performance. Results suggest that overexpression of neocortical alpha2C-adrenoceptors during postnatal life, subsequent to mild prenatal protein malnutrition, could functionally affect the synaptic networks subserving neocortical LTP and visuo-spatial memory formation.
Warren, Victoria E; Marques, Tiago A; Harris, Danielle; Thomas, Len; Tyack, Peter L; Aguilar de Soto, Natacha; Hickmott, Leigh S; Johnson, Mark P
2017-03-01
Passive acoustic monitoring has become an increasingly prevalent tool for estimating density of marine mammals, such as beaked whales, which vocalize often but are difficult to survey visually. Counts of acoustic cues (e.g., vocalizations), when corrected for detection probability, can be translated into animal density estimates by applying an individual cue production rate multiplier. It is essential to understand variation in these rates to avoid biased estimates. The most direct way to measure cue production rate is with animal-mounted acoustic recorders. This study utilized data from sound recording tags deployed on Blainville's (Mesoplodon densirostris, 19 deployments) and Cuvier's (Ziphius cavirostris, 16 deployments) beaked whales, in two locations per species, to explore spatial and temporal variation in click production rates. No spatial or temporal variation was detected within the average click production rate of Blainville's beaked whales when calculated over dive cycles (including silent periods between dives); however, spatial variation was detected when averaged only over vocal periods. Cuvier's beaked whales exhibited significant spatial and temporal variation in click production rates within vocal periods and when silent periods were included. This evidence of variation emphasizes the need to utilize appropriate cue production rates when estimating density from passive acoustic data.
Density estimation in a wolverine population using spatial capture-recapture models
Royle, J. Andrew; Magoun, Audrey J.; Gardner, Beth; Valkenbury, Patrick; Lowell, Richard E.; McKelvey, Kevin
2011-01-01
Classical closed-population capture-recapture models do not accommodate the spatial information inherent in encounter history data obtained from camera-trapping studies. As a result, individual heterogeneity in encounter probability is induced, and it is not possible to estimate density objectively because trap arrays do not have a well-defined sample area. We applied newly-developed, capture-recapture models that accommodate the spatial attribute inherent in capture-recapture data to a population of wolverines (Gulo gulo) in Southeast Alaska in 2008. We used camera-trapping data collected from 37 cameras in a 2,140-km2 area of forested and open habitats largely enclosed by ocean and glacial icefields. We detected 21 unique individuals 115 times. Wolverines exhibited a strong positive trap response, with an increased tendency to revisit previously visited traps. Under the trap-response model, we estimated wolverine density at 9.7 individuals/1,000-km2(95% Bayesian CI: 5.9-15.0). Our model provides a formal statistical framework for estimating density from wolverine camera-trapping studies that accounts for a behavioral response due to baited traps. Further, our model-based estimator does not have strict requirements about the spatial configuration of traps or length of trapping sessions, providing considerable operational flexibility in the development of field studies.
NASA Astrophysics Data System (ADS)
Heine, Thomas R. P.; Moldwin, Mark B.; Zou, Shasha
2017-03-01
Kilometer-scale density irregularities in the ionosphere can cause ionospheric scintillation—a phenomenon that degrades space-based navigation and communication signals. During strong geomagnetic storms, the midlatitude ionosphere is primed to produce these ˜1-10 km small-scale irregularities along the steep gradients between midlatitude storm enhanced density (SED) plumes and the adjacent low-density trough. The length scales of irregularities on the order of 1-10 km are determined from a combination of spatial, temporal, and frequency analyses using single-station ground-based Global Positioning System total electron content (TEC) combined with radar plasma velocity measurements. Kilometer-scale irregularities are detected along the boundaries of the SED plume and depleted density trough during the 17 March 2015 geomagnetic storm, but not equatorward of the plume or within the plume itself. Analysis using the fast Fourier transform of high-pass filtered slant TEC suggests that the kilometer-scale irregularities formed near the poleward gradients of SED plumes can have similar intensity and length scales to those typically found in the aurora but are shown to be distinct phenomena in spacecraft electron precipitation measurements.
Detection of an electron beam in a high density plasma via an electrostatic probe
NASA Astrophysics Data System (ADS)
Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart; Yamada, Masaaki; Ji, Hantao
2017-10-01
The perturbation in floating potential by an electron beam is detected by a 1D floating potential probe array to evaluate the use of an electron beam for magnetic field line mapping in the Magnetic Reconnection Experiment (MRX) plasma. The MRX plasma is relatively high density (1013 cm-3) and low temperature (5 eV). Beam electrons are emitted from a tungsten filament and are accelerated by a 200 V potential across the sheath. They stream along the magnetic field lines towards the probe array. The spatial electron beam density profile is assumed to be a Gaussian along the radial axis of MRX and the effective beam width is determined from the radial profile of the floating potential. The magnitude of the perturbation is in agreement with theoretical predictions and the location of the perturbation is also in agreement with field line mapping. In addition, no significant broadening of the electron beam is observed after propagation for tens of centimeters through the high density plasma. These results demonstrate that this method of field line mapping is, in principle, feasible in high density plasmas. This work is supported by the DOE Contract No. DE-AC0209CH11466.
Deleterious mutations can surf to high densities on the wave front of an expanding population.
Travis, Justin M J; Münkemüller, Tamara; Burton, Olivia J; Best, Alex; Dytham, Calvin; Johst, Karin
2007-10-01
There is an increasing recognition that evolutionary processes play a key role in determining the dynamics of range expansion. Recent work demonstrates that neutral mutations arising near the edge of a range expansion sometimes surf on the expanding front leading them rather than that leads to reach much greater spatial distribution and frequency than expected in stationary populations. Here, we extend this work and examine the surfing behavior of nonneutral mutations. Using an individual-based coupled-map lattice model, we confirm that, regardless of its fitness effects, the probability of survival of a new mutation depends strongly upon where it arises in relation to the expanding wave front. We demonstrate that the surfing effect can lead to deleterious mutations reaching high densities at an expanding front, even when they have substantial negative effects on fitness. Additionally, we highlight that this surfing phenomenon can occur for mutations that impact reproductive rate (i.e., number of offspring produced) as well as mutations that modify juvenile competitive ability. We suggest that these effects are likely to have important consequences for rates of spread and the evolution of spatially expanding populations.
The spatial-temporal characteristics of type I collagen-based extracellular matrix.
Jones, Christopher Allen Rucksack; Liang, Long; Lin, Daniel; Jiao, Yang; Sun, Bo
2014-11-28
Type I collagen abounds in mammalian extracellular matrix (ECM) and is crucial to many biophysical processes. While previous studies have mostly focused on bulk averaged properties, here we provide a comprehensive and quantitative spatial-temporal characterization of the microstructure of type I collagen-based ECM as the gelation temperature varies. The structural characteristics including the density and nematic correlation functions are obtained by analyzing confocal images of collagen gels prepared at a wide range of gelation temperatures (from 16 °C to 36 °C). As temperature increases, the gel microstructure varies from a "bundled" network with strong orientational correlation between the fibers to an isotropic homogeneous network with no significant orientational correlation, as manifested by the decaying of length scales in the correlation functions. We develop a kinetic Monte-Carlo collagen growth model to better understand how ECM microstructure depends on various environmental or kinetic factors. We show that the nucleation rate, growth rate, and an effective hydrodynamic alignment of collagen fibers fully determines the spatiotemporal fluctuations of the density and orientational order of collagen gel microstructure. Also the temperature dependence of the growth rate and nucleation rate follow the prediction of classical nucleation theory.
MaNGA: Target selection and Optimization
NASA Astrophysics Data System (ADS)
Wake, David
2015-01-01
The 6-year SDSS-IV MaNGA survey will measure spatially resolved spectroscopy for 10,000 nearby galaxies using the Sloan 2.5m telescope and the BOSS spectrographs with a new fiber arrangement consisting of 17 individually deployable IFUs. We present the simultaneous design of the target selection and IFU size distribution to optimally meet our targeting requirements. The requirements for the main samples were to use simple cuts in redshift and magnitude to produce an approximately flat number density of targets as a function of stellar mass, ranging from 1x109 to 1x1011 M⊙, and radial coverage to either 1.5 (Primary sample) or 2.5 (Secondary sample) effective radii, while maximizing S/N and spatial resolution. In addition we constructed a 'Color-Enhanced' sample where we required 25% of the targets to have an approximately flat number density in the color and mass plane. We show how these requirements are met using simple absolute magnitude (and color) dependent redshift cuts applied to an extended version of the NASA Sloan Atlas (NSA), how this determines the distribution of IFU sizes and the resulting properties of the MaNGA sample.
MaNGA: Target selection and Optimization
NASA Astrophysics Data System (ADS)
Wake, David
2016-01-01
The 6-year SDSS-IV MaNGA survey will measure spatially resolved spectroscopy for 10,000 nearby galaxies using the Sloan 2.5m telescope and the BOSS spectrographs with a new fiber arrangement consisting of 17 individually deployable IFUs. We present the simultaneous design of the target selection and IFU size distribution to optimally meet our targeting requirements. The requirements for the main samples were to use simple cuts in redshift and magnitude to produce an approximately flat number density of targets as a function of stellar mass, ranging from 1x109 to 1x1011 M⊙, and radial coverage to either 1.5 (Primary sample) or 2.5 (Secondary sample) effective radii, while maximizing S/N and spatial resolution. In addition we constructed a "Color-Enhanced" sample where we required 25% of the targets to have an approximately flat number density in the color and mass plane. We show how these requirements are met using simple absolute magnitude (and color) dependent redshift cuts applied to an extended version of the NASA Sloan Atlas (NSA), how this determines the distribution of IFU sizes and the resulting properties of the MaNGA sample.
Smith, Mason R; Tolbert, Stephanie V; Wen, Fei
2018-05-07
Tuning antigen presentation to T cells is a critical step in investigating key aspects of T cell activation. However, existing technologies have limited ability to control the spatial and stoichiometric organization of T cell ligands on 3D surfaces. Here, we developed an artificial antigen presentation platform based on protein-scaffold directed assembly that allows fine control over the spatial and stoichiometric organization of T cell ligands on a 3D yeast-cell surface. Using this system, we observed that the T cell activation threshold on a 3D surface is independent of peptide-major histocompatibility complex (pMHC) valency, but instead determined by the overall pMHC surface density. When intercellular adhesion molecule 1 (ICAM-1) was co-assembled with pMHC, it enhanced antigen recognition sensitivity by 6-fold. Further, T cells responded with different magnitudes to varying ratios of pMHC and ICAM-1 and exhibited a maximum response at a ratio of 15% pMHC and 85% ICAM-1, introducing an additional parameter for tuning T cell activation. This protein-scaffold directed assembly technology is readily transferrable to acellular surfaces for translational research as well as large-scale T-cell manufacturing.